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Abstract

Hybrid systems with or without stochastic noise and with or without time delay

are addressed and the qualitative properties of these systems are investigated. The

main contribution of this thesis is distributed in three parts.

In Part I, nonlinear stochastic impulsive systems with time delay (SISD) with

variable impulses are formulated and some of the fundamental properties of the

systems, such as existence of local and global solution, uniqueness, and forward

continuation of the solution are established. After that, stability and input-to-

state stability (ISS) properties of SISD with fixed impulses are developed, where

Razumikhin methodology is used. These results are then carried over to discussed

the same qualitative properties of large scale SISD. Applications to automated

control systems and control systems with faulty actuators are used to justify the

proposed approaches.

Part II is devoted to address ISS of stochastic ordinary and delay switched

systems. To achieve a variety stability-like results, multiple Lyapunov technique as

a tool is applied. Moreover, to organize the switching among the system modes,

a newly developed initial-state-dependent dwell-time switching law and Markovian

switching are separately employed.

Part III deals with systems of differential equations with piecewise constant

arguments with and without random noise. These systems are viewed as a spe-

cial type of hybrid systems. Existence and uniqueness results are first obtained.

Then, comparison principles are established which are later applied to develop some

stability results of the systems.
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Chapter 1

Introduction

Conventionally, the term “hybrid systems” means systems having behaviour char-

acterized by continuous and discrete components interacting with each other, or

between them (the continuous and discrete parts) with environmental factors. The

hybrid paradigm is an adequate tool to cover a diversified applications in natural

sciences and engineering systems, ranging from room heating systems to control

systems with a high-level supervisor, from air traffic control to automated highway

systems, from population growth dynamics to epidemical disease models, from se-

cure communications to neural networks. The study of hybrid systems has created

a fascinating discipline binding mathematics to various application fields.

Although hybrid systems have been with us for a long time, it was in 1980s that

hybrid systems took a systematic configuration. Typically, the mathematical model

of a hybrid system is (1) a combination of a set of continuous or discrete differential

equations representing the evolution of the system and a set of difference equations

representing jumps or impulsive actions in the system states. Here, the first set

describes the continuous component of the system, while the second set describes
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the discrete part. (2) A hybrid system can also have a mix of a finite number of

subsystems (or modes) and a control-based discrete logic to jump among the modes.

The first category of hybrid systems is referred to as impulsive systems or systems

with impulsive differential equations, wheres the second group is called switched (or

switching) systems. Another class of hybrid systems are impulsive switched systems,

in which impulses arise as a result of switching. These three hybrid system types

are the main focus of this thesis. We should remark that, in the literature, but not

in this thesis, a hybrid system is often meant to be a switched system.

The main characteristic of an impulsive system is that, at certain moments

between the intervals of the continuous evolutions, the system process undergoes

abrupt changes. The durations of these changes are sufficiently small when com-

pared to the total duration of the process. These changes can be reasonably well-

approximated by instantaneous changes of the state or impulses. The evolutionary

process is then suitably modeled as an impulsive system.

The applications of impulsive systems are found in many areas, such as in

mechanical and electrical engineering systems including pendulum and mass-spring

systems, industrial robotics or electrical circuits, in aeronautics including impulse

maneuver of a spacecraft, in biological systems including the function of the heart

and biological neural networks, in pharmacokinetics including the maintenance of

the drug levels in a body, in population dynamics including a specie maintenance

through periodic shocks and harvesting, and in epidemical disease models including

pulse vaccination.

Theoretically speaking, impulsive systems have richer properties than the corre-

sponding non-impulsive ones. For instance, the initial value problem of an impulsive

system may not have a solution even when the underlying non-impulsive system

does; some other fundamental properties of the system, such as continuous depen-
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dence on the initial condition, continuation of solution, may be violated or needs

new interpretation. On the other hand, under some conditions, impulses may be

helpful in making the continuation of solutions possible [Lak89]. Another undesir-

able performance that an impulsive system may experience is the so-called beating

phenomenon in which an impulsive hyper-surface is being visited infinitely many

times. This challenge may happen when the impulses are state-dependent, but not

constants.

Similar to other dynamical or control systems, among the most important prop-

erties of impulsive systems is stability. However, one cannot directly carry over the

analysis of continuous system theory to impulsive systems. The reasons are twofold.

On one hand, if a stable system is subject to frequent impulses, the system may

lose its stability due to up or down jump discontinuities. On the other hand, if

the impulses being applied to a system are well-timed in the sense that they follow

a certain formalized impulsive logic, they may be helpful in recovering the afore-

said circumstances, and even play a stabilizing factor if the underlying system is

unstable [Liu94].

The theory of impulsive differential equations is interesting in itself, and a rea-

sonably great amount of research has been done on the analysis of such systems.

For more information on the theory of impulsive systems, readers may refer to

see [Bai89, Bai93, Had06, Lak89, Li05, Sam95, Yang01] and the references cited

therein. Currently, the field of impulsive systems is very active since their applica-

tions are widespread. A part of this thesis is devoted to broaden the analysis and

applications of impulsive system theory.

One kind of hybrid system, as stated earlier, is a switched system which is a

composition of multi-dynamical systems with a monitoring device called a switch-

ing logic, also known as switching law, switching rule, or switching signal. The
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main objective of switching signal is to orchestrate the jumping among the system

modes so as to accomplish a desired feature of the system. A peculiar feature of

switched systems is the stability property. Although the system retains the clas-

sical stability properties, the methodology of determining the conditions for the

stability of a switched system is a complicated, but very interesting, task in the

sense that switching among asymptotically stable subsystems may produce insta-

bility if the switching moments are poorly chosen. By contrast, if the activation

time designated to each subsystem is determined by a well-designed switching law,

asymptotic stability of each individual mode may not be necessary for the stability

of a switched system.

The importance of studying switched systems is threefold. Firstly, a large class

of real life and engineering systems have behaviours which are intrinsically governed

by multimodal dynamics, such as control systems, robots, thermostats in cooling or

heating systems, prey-predator systems with different but finite prey sources, and

epidemic disease models. The following switched SIR model with Pulse Treatment

studied in [Ste09].

Ṡ = µ− βiSI − µS, t ∈ (tk−1, tk],

İ = βiSI − gI − µI,

Ṙ = gI − µR,

S(t+) = S(t),

I(t+) = I(t)− piI(t),

R(t+) = R(t) + piI(t).

Secondly, many systems are asymptotically stabilized by several feedback control

signals, rather than one signal. The following diagram illustrates a logic-based

controller ( or a supervisory controller).
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Logic-based controller 

σ

Controller 1
y

u
Controller 2

Supervisor

Process

Figure 1.1: Logic-based supervisory controller.

Thirdly, switched system patterns can reduce the complexity of some systems.

Switched systems have been an active research area in the last three decades. It

has received much attention including books [Alu96, Ant95, Ant97, Gro93, Hes06,

Li05, Lib03] and many research papers cited therein.

The study of switched systems is more challenging than that of single-mode

systems. Nevertheless, there has been reasonable, increasing progress in this field.

Most of the work has focused on designing an appropriate switching law to pro-

vide some stability properties. To the best of the author’s knowledge, the earli-

est attempt appeared in [Nar94], where the authors proved exponential stability

of linear time-invariant systems by using a common Lyapunov function. Also,

in their work, the subsystem matrices are assumed to be asymptotically stable

and piecewise commutative. This second condition is very restrictive which makes

the approach not widely applicable. Later, in [Mor96], the authors showed that,

when all individual modes are exponentially stable, the entire switched system pre-

serves the same stability property provided that the running time between any two
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consecutive switchings called dwell time is sufficiently large. This dwell-time ap-

proach was later extended to a more general, relaxed one called average dwell time

[Hes99]. These approaches were later employed to achieve the stability results for

a larger class of switched systems in which some of the modes are unstable (see

[Lib99, Hu99, Zha01]). In the general case, the stable modes should be activated

longer to compensate the growth of unstable system states. In [Day99], the authors

investigated the stability of a class of dynamical systems which undergo arbitrary

switchings. In their work, the focus is on proving a converse Lyapunov function

theorem for that class of systems. A more general approach than the dwell-time

one is called Markovian switching, in which the switching signal is a Markov chain

which takes values in a finite sets. In other words, the jump among the system

modes follows a probabilistic or random rule [Mao06]. An interesting consequence

in adopting this type of switching arises from involving the transition rates of the

Markov chain in the calculation of dwell times. One can easily recognize that the

stability requirement of the individual modes is neither sufficient, nor necessary for

guaranteeing a stability property of a switched system.

The dwell-time and average dwell-time approaches have been widely applied

to determine exponential stability of linear and nonlinear switched systems, with

or without the presence of perturbation, and with or without time delay. Their

limitation, however, is that they are independent of the system states even at the

switching moments or at the initial time. In [DePe02], a state-dependent dwell-

time approach was proposed to investigate asymptotic stability-like property for

nonlinear switched systems subject to input disturbance. The interesting feature

of this switching rule is that the dwell time is a function depending on the system

states and comparison functions characterizing the considered qualitative property.

This approach has inspired the author of this thesis to develop a new switching
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law called initial-state-dependent dwell-time approach to establish some stability-

like properties of nonlinear switched systems with and without input disturbance.

We should mention that, except in the first attempt, the more flexible multiple-

Lyapunov-function approach is used in determining the stability conditions.

Ordinary differential equations have long played important roles in modeling

many physical processes, and they will continue to serve as a fundamental tool in

future investigations. A drawback of these models is that they are ruled by the so-

called Markovian principle in which the future state of a dynamical system depends

only on the present state, leading to ordinary differential equations (ODEs), and

not on the past. In fact, they are approximations of some real systems. In those

cases, more realistic models should involve some of the historical values of the

state; this leads to delay differential equations (DDEs), also known as (retarded)

functional differential equations (FDEs), or differential equations with deviating

arguments. The early motivations for studying DDEs came from their applications

in population dynamics when Volterra investigated the prey-predator model, and

in Minorsky’s study of ship stabilization and automatic steering. These studies

indicate the importance of considering delay in the feedback mechanism [Min42].

Another motivation for studying state-delayed systems stems from the fact that

the presence of delay, even in a first-order system, may not be trouble-free. It may

cause undesirable performances, such as oscillations of large amplitudes, chaotic

behaviour, losing uniqueness, or resulting in discontinuous solutions; whereas delay

may make the continuation of a solution possible, or reduce the complexity of some

systems [Bur05]. In other cases, a small delay may destabilize some systems, but

a large delay may stabilize others. As a result, there have been many studies on

delay systems in the past decades by researchers from different fields. One may be

referred to see [Bel63, Dri77, Els73, Bel03, Kra63, Hal66, Hal71, Hal93], and other
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references dedicated to applications [Mac89, Gop92, Kua93].

If a hybrid system involves deviating arguments (or delayed states), we are

led to a hybrid system with time delay. The system properties that have been re-

ceived researchers’ attentions are existence, uniqueness, and continuation of solution

[Ball99b, Liu2000], stability [Liu01, Alw08a, Alw08b], stabilization by impulsive ef-

fects [Alw09a, Alw09b], and boundedness [Liu03]. Another challenge that may be

caused by considering impulsive effects in delayed systems is the high discontinuity

of the system vector fields. Namely, to have a well-behaved solution of a delay

system, it is required that the initial state function be continuous. Due to the

discontinuity feature of the solutions of impulsive systems, one may think, in the

first place, to relax the continuity restriction on the initial function. Unfortunately,

in doing so, the delayed state may be discontinuous everywhere, because the vector

field, as a composite function depending on the delayed state, of the corresponding

system cannot be conclusive as a continuous or even piecewise continuous function.

This complicated situation, produced by a minor thing, can be ruled out by re-

stricting the system vector fields to be in a class of piecewise continuous composite

functions [Ball99b, Liu2000].

A special class of FDEs or hybrid systems are systems of (differential) equations

with piecewise constant arguments (EPCA). From the perspective of functional dif-

ferential equations, although the arguments can be delay, advanced or a mix of

these two types, the past history is given at individual points, rather than inter-

vals, which enables one to use the theory of ordinary differential equations, and

not of FDEs. The hybridness is because the dynamics of these equations depend

on both continuous and discrete arguments. This type of differential equation ap-

pears in the “sequential-continuous” disease models [Bus82]. EPCA also appeared

as an attempt to extend FDEs with continuous arguments to equations with dis-
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continuous ones. Typically, the vector fields in EPCA contain arguments which are

constants on certain subintervals. Consequently, the corresponding solutions are

continuous and generally differentiable everywhere except at the joining point be-

tween two consecutive subintervals where one-side derivatives exist. Furthermore,

the continuity of the solution at such points produces a recursive relation or dif-

ference equation. Therefore, the initial data are given by a finite set, but not as

a function as in the case of FDEs. In most of the work that has been done so

far, the underlying difference equations are used to characterize some of the system

properties, such as stability, oscillation, and periodic solutions. Moreover, another

motivations for studying EPCA is that equations of the delay type can be used to

find approximate solutions for differential equations with discrete delays.

The theory of EPCA was initially developed in [Coo94] and well discussed in

the survey paper [Coo91] and book [Wie93]. Further properties and use of these

equations were considered in some other works; for instance, oscillatory properties

of first-order differential equations with retarded and advanced arguments are inves-

tigated in [Aft85], oscillatory and asymptotic properties of EPCA with delay argu-

ments were discussed in [Gop92], a criterion for the existence of periodic solution of

EPCA was developed in [Akh08b], and in [Cab04] the authors constructed a Green’s

function to the linear operator of the boundary-value EPCA and obtained some

comparison results for the same differential equations. In [Coo94, Gyo91, Gyo08],

EPCA were used to find numerical approximation of DDEs. Moreover, in [Yang09],

the authors focused on numerical solutions of Runge-Kutta methods for first-order

periodic EPCA. In this article, the solution was given by a numerical Green’s func-

tion. A general type of EPCA, known as EPCAG (i.e., equations with piecewise

constant arguments of a general type), in which a piecewise constant real function

takes values over discrete subintervals instead of at the most-left endpoint of each
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subinterval, has appeared in some works [Akh08b, Akh08c]. In those works, the

solutions of linear and quasi-linear EPCAG are determined by a unique initial da-

tum at an initial moment, rather than by a countable set of initial data defining at

discrete moments, or, as in the case of FDEs, by an initial function defined on some

interval from the past history. Consequently, in either case, EPCA or EPCAG,

FDEs reduce to ordinary ones.

In numerous mathematical models, we deal with systems whose states are driven

by some inherent noise having a probabilistic (or stochastic), not deterministic,

structure. Therefore, it is natural to incorporate this stochasticity in the design

of these systems, leading to stochastic systems (SSs) or systems with stochastic (or

random) differential equations (SDEs). From a practical perspective, systems of

this type are more realistic compared to the deterministic ones in the sense that

the former systems better match the available data used to design a mathematical

model and accurately predict the future behaviour of a certain process. The theory

of SSs (or SDEs), however, is more sophisticated than that of the deterministic

systems. Consequently, many tools utilized in analyzing deterministic problems

cannot be carried over to handle the corresponding stochastic problems. Stochastic

integrals, for instance, may not be understood in the sense of the classical Leibniz-

Newton calculus, but in the sense of Itô calculus, as will be discussed in Chapter

2. Another challenge produced by the randomness is that a solution of a SDE is

given by a random process, consisting of an infinite sequence of the so-called sample

paths, also known as realizations or trajectories, wheres a solution of a deterministic

differential equation is represented by a single sample path. Moreover, analytic

solutions of SDEs are very difficult and even impossible in some cases to obtain;

therefore, the interest changes to approximate solutions [Klo99] or to the qualitative

behaviour of these solutions. Due to the random (or probabilistic) behaviour of
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the SDE solutions, it is reasonable that the qualitative notions are redefined in a

probabilistic sense. Among these properties is stability, which has received a fair

amount of research including books [Gard88, Gih72, Kus67, Kha80, Mao08, Mao94,

Moh84, Xie06] and many other references cited therein.

Considering random noise in a hybrid system with or without time delay leads

to a stochastic hybrid system with or without delay. Systems of this type have

received less attention due to some technical difficulties, especially those systems

which are subject to impulsive effects. Among the available results are a book

[Mao06], which concerns SDEs with Markovian switching, and research papers deal-

ing with the problems of stability and stabilization of stochastic switched system

[Mao07, Mao99, Yua05] and establishing some fundamental properties of stochastic

impulsive systems, such as existence of global (or regular) solution, uniqueness, and

stability [Liu07, Liu08].

One of the most important qualitative aspects that can be studied is stability.

At the end of the nineteenth century, Aleksandr M. Lyapunov invented the direct

method to study the stability of a system without prior knowledge of its solution.

The method, which bears his name today, is the most effective technique provided

the right auxiliary function, called a Lyapunov function, can be constructed to

establish the stability property.

An alternative approach to Lyapunov stability is the input-to-output stability

approach, in which the system output is directly related to the system input with

no knowledge of the internal structure of the state equation. In other words, the

system is viewed as a black box that can be accessed only through the input and

output of the system. The bridge between these two different stability notions

is input-to-state stability (ISS), where the system is described by a state space

realization that includes a variable input function.
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Roughly speaking, by ISS we mean that, assuming that the unforced system has

asymptotically stable equilibrium point, if the system input is uniformly small, then

the magnitude of system response is small regardless of the magnitude of system

initial state. The ISS is an essential concept in analyzing stability-like aspects of

nonlinear systems under input disturbance or noise. During the last two decays

and due to its usefulness, ISS presented by Sontag [Son89, Son02] has become

a central foundation of modern nonlinear feedback and design. It is a nonlinear

generalization of finite L2 gains and finite gains with respect to supremum norm.

It is a key tool in systems with recursive design and co-prime factorizations. An

implications of ISS is that when the input is identically zero it reduces to the

classical asymptotic stability of the equilibrium state of the system. For further

characterizations, implications, and applications of the ISS, readers may consult

[Ang2000, Cai05, Kok99, Son89, Son95, Son96, Son98, Son02, Teel01, Teel03] and

references cited therein. The ISS property of hybrid systems was addressed in

[Cai05, Cai09, Che09, Hes05, Hua09].

In the design of safety-critical control systems, such as in aircraft and space

vehicles, a hazard that may occur is the event of control component failures, such

as actuator or sensor outages. Since failures are inevitable in the real world, it

is necessary to design reliable controllers to achieve desired performance require-

ments of the plant, not only when the system operating properly, but also in the

presence of actuator failures. Control systems that tolerate actuator and sensor

outages are called reliable control systems. In the last three decades, the problem

of designing reliable controllers has received much attention. In [Ack85], the author

proposed a graphical approach for selecting from among stabilizing state-feedback

gains to ensure reliable stability despite sensor failures. In [Vei92], a methodol-

ogy was developed for the design of centralized and decentralized control systems
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which are reliable in providing guaranteed stability and H∞ performance, not only

when the control components are normal, but also in the presence of actuator and

sensor failures. Later, in [Seo96], a robust reliable H∞ control method was pro-

posed, where a state feedback for linear systems with time-varying norm-bounded

uncertainties and actuator failures is used. In [Wang99], a robust reliable control

design was proposed for uncertain systems with time-delayed states and nonlinear

disturbance. We should also point out that, in [Che05], the authors have addressed

the problem of designing a robust reliable controller for a class of deterministic

ordinary time-varing uncertain impulsive systems with actuator outage, using Lya-

punov theorems which lead to solving an algebraic Riccati equation. The problem

of designing a robust reliable control for control systems with time delay was ad-

dressed in [Gao01, Luo06, Wang2000]. In [Wang01], the authors considered the

problem of robust reliable control for stochastic delay systems with nonlinear dis-

turbances. The focus was on the design of a state feedback memoryless controllers

such that, for all admissible uncertainties and actuator outages, the systems retain

stochastic exponential stability, where the Lyapunov functional approach was used

to analyze the stability property.

Motivated by what we have discussed, the main theme of this thesis deals with

analyzing and broadening the theory of stochastic hybrid system with or without

time delay, and with applying the theory of hybrid systems to further investigate

systems with EPCA with or without random noise. The main contents of this thesis

can be divided into three parts.

Part 1. Stochastic Impulsive Systems with Time Delay and Applications

This part concentrates on developing the essential foundations of the theory of

stochastic impulsive systems with time delay (SISD) and some applications.
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Chapter 2 serves as an introductory chapter to the rest of Part 1. It

includes some basic definitions, system formulations, defining stochastic dif-

ferential equations and developing the initial value problem of SISD where

impulses occur at variable times.

In Chapter 3, we establish the existence of a well-behaved local solution,

i.e., a solution that does not exhibit the beating phenomenon. Later in the

same chapter, we develop sufficient conditions to ensure the global existence

and uniqueness of a solution.

Having developed the regularity problems of the systems, in Chapter 4,

we turn our attention to establish some stability results for the same sys-

tems, where the impulses occur at fixed times. Using Razumikhin technique,

Lyapunov-type sufficient conditions are developed to prove some stability

properties in the mean square (m.s.). We have also used the comparison

principle approach to achieve the same qualitative properties.

Once the stability results have been proved, we extend our finding to

large-scale SISD in Chapter 5. To do so, we adopt an efficient approach, in

which the interconnected (or composite) system is decomposed into simpler,

more manageable isolated subsystems and the rest will be viewed as pertur-

bation. Lyapunov functions together with Razumikhin technique are used to

prove the desired properties, which are later clarified by an application from

control system.

Chapter 6 deals with the input-to-state stability (ISS) of nonlinear sys-

tems subject to input disturbance with bounded energy. Two approaches are

proposed, an (εu, δu) (or the classical Lyapunov) and comparison principle

techniques. An application to cascade (also known as feedforward or recur-
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sive) systems is presented to justify the effectiveness of these techniques. The

systems in this chapter have deterministic hybridness-free ordinary differen-

tial equations. The material of this chapter will be used later in establishing

the ISS properties of SISD and large scale SISD.

In Chapters 7 and 8, we consider SISD and large scale SISD subject to

input disturbance and proved some ISS properties using the aforementioned

approaches. Some interesting implications of these results are also given in

these chapters.

Chapter 9 is devoted to the problem of designing a robust reliable control

with state feedback for a class of uncertain stochastic impulsive systems with

time delay. The uncertainties are time varying with bounded norms and the

controllers have actuators with possible failures.

Part 2. Deterministic and Stochastic Switched Systems

This part is dedicated to deterministic and stochastic switched systems with

and without time delay.

Chapter 10 serves as an introduction to the rest of this part. We state

some definitions and theorems that will be used throughout this part of the

thesis.

In Chapter 11, we designe a dwell-time-based switching signal to tackle

the problems of stability and stabilization of uncertain impulsive switched

systems with time delay.

The focus of Chapter 12 is on establishing some ISS properties in the

mean square (m.s.) of ordinary stochastic switched systems. The switch-

ing rules used in this chapter are the newly developed initial-state-dependent

dwell-time (τisd) condition and the Markovian switching. Systems with all
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stable modes are investigated first, then a more general case is considered,

where unstable modes are included. Some special results are presented to

show the usefulness of our proposed methodology.

In Chapter 13, the τisd switching signal is used to obtain some similar

ISS properties of stochastic switched systems with time delay. Lyapunov-like

theorems are proved using the Razumikhin technique.

Part 3. Differential Equations with Piecewise Constant Arguments (EPCA)

In this part of the thesis, we apply the theory of hybrid systems to fur-

ther investigate the properties of systems with EPCA. Another motivation

for adopting a hybrid system paradigm is to reduce the complexity of these

systems. This part has three chapters.

In Chapter 14, we develop a comparison principle for systems with non-

linear EPCA, then this result will be utilized to establish some stability prop-

erties, where we use Lyapunov function approach. We also show that the

piecewise arguments can play a stabilizing role in some cases where the un-

derlying systems are unstable. Some special cases of linear EPCA with a

general type (i.e., EPCAG) are considered.

Chapter 15 discusses systems with stochastic EPCA (SEPCA). We study

the problems of existence of a global solution, uniqueness, and stability. In

analyzing the stochastic qualitative characteristic, we follow two approaches.

Namely, we extend the comparison principle developed in Chapter 14 and use

Lyapunov functions together with Razumikhin technique.

Chapter 16 includes a conclusion of the thesis and some future works.
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Part I

Stochastic Impulsive Systems with

Time Delay and Applications
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Chapter 2

Mathematical background

In this introductory chapter, we present some basic definitions and background to

the rest of Part 1. Also, we introduce impulsive systems, and impulsive systems with

time delay. We then define stochastic differential equations. Finally, we formulate

stochastic impulsive systems with time delay.

2.1 Basic Definitions

Consider the following initial value problem ẋ = f(t, x),

x(t0) = x0,
(2.1)

where x ∈ Rn, t ≥ t0 with t0 ∈ R+, and f : R+ × D → Rn is continuous in t

and locally Lipschitz in x with D ⊂ Rn being the domain containing the origin

x = 0. Assume that f(t, x∗) = 0 for all t ≥ t0. Then, the real root x∗ ∈ Rn is

called an equilibrium point, or trivial solution of system (2.1) if x∗ ≡ 0. Throughout

this thesis, we deal with x∗ ≡ 0 (or x ≡ 0 for simplicity of notation), since any
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equilibrium points can be shifted to the origin. As stated earlier, from a practical

perspective, a dynamical system must meet some essential requirements, and among

them is the qualitative property of (Lyapunov) stability.

Definition 2.1. For any t ≥ t0, let x(t) = x(t, t0, x0) be a solution of system (2.1).

Then, the trivial solution x ≡ 0 of (2.1) is said to be

1. stable if, for any ε > 0 and t0 ∈ R+, there is δ = δ(ε, t0) > 0 such that

‖x0‖ < δ implies ‖x(t)‖ < ε, ∀t ≥ t0; (2.2)

2. uniformly stable if it is stable and δ is independent of t0;

3. unstable if it is not stable;

4. asymptotically stable if it is stable and there is a positive constant c = c(t0) such

that, for all ‖x0‖ < c, limt→∞ x(t) = 0;

5. uniformly asymptotically stable if it is uniformly stable and there is a positive

constant c, independent of t0, such that, for all ‖x0‖ < c, limt→∞ x(t) → 0,

uniformly in t0; that is, for any η > 0, there is T = T (η) > 0 such that, for

all ‖x0‖ < c,

‖x(t)‖ < η, ∀t ≥ t0 + T (η);

6. exponentially stable if there are positive constants c, k, and λ such that

‖x(t)‖ ≤ k‖x0‖e−λ(t−t0), ∀‖x0‖ < c.

Furthermore, the above stability properties are satisfied globally if (1,2,4,5,6) hold

for any x0 ∈ Rn.
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In analyzing the stability properties by the Lyapunov method, we define a class

of functions which enjoy some positive definiteness features.

Definition 2.2. Let D ⊂ Rn be an open set containing x = 0. A function

V : D → R is said to be positive semi-definite if (i) V (t, 0) = 0 and (ii) V (t, x) ≥ 0,

for all t ≥ t0 and x ∈ D \ {0}. It is said to be positive definite if the inequality in

(ii) is replaced by (ii)′ V (t, x) > 0. Moreover, it is said to be radially unbounded

(or proper) if it is positive definite and, for each fixed t, lim‖x‖→∞ V (t, x) =∞.

In analyzing the stability (or stability-like) properties, we usually introduce

some special functions known as comparison functions [Kha02, Hah67].

Definition 2.3. A function α ∈ C([0, a]; R+) is said to belong to class K (i.e.,

α ∈ K) if it is strictly increasing and α(0) = 0. If, in addition, a = ∞ and

α(r)→∞ as r →∞, then α is said to belong to class K∞.

Definition 2.4. A function β ∈ C([0, a)×R+; R+) is said to belong to class KL if,

for each fixed s, the mapping β(·, s) ∈ K, and, for each fixed r, the mapping β(r, ·)

is decreasing and β(r, s)→ 0 as s→∞.

To motivate the notion of (asymptotic) input-to-state stability (ISS), consider

the following nonlinear system ẋ = f(t, x, u), t ≥ t0,

x(t0) = x0,
(2.3)

where f : R+ × Rn × Rm → Rn with t0 ∈ R+ and the input u ∈ PC(R+; Rm)

with bounded energy (i.e., supt≥t0 ‖u(t)‖ < ∞). This system can be viewed as a

perturbation of the unforced system

ẋ = f(t, x, 0), (2.4)
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with the same initial state. Assume now that the trivial solution of (2.4) is globally

uniformly asymptotically stable. An immediate question that can be addressed is:

what can be said about the qualitative behaviour of the nonlinear system (2.4) if it

is perturbed by some bounded input disturbance u? Generally, the answer may not

hold unless some further sufficient conditions are satisfied. The following definition

summarizes these conditions.

Definition 2.5. System (2.3) is said to be input-to-state stable (ISS) if there exist

functions β ∈ KL and γ ∈ K such that, for any initial state x0 and bounded input

u, the solution x(t) exists, for all t ≥ t0, and satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ
(

sup
t0≤s≤t

‖u(s)‖
)
. (2.5)

In fact, this inequality can be written as follows

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ
(

sup
t0≤s≤t

‖u(s)‖
)
, ∀ t0 ≤ t ≤ t0 + T,

‖x(t)‖ ≤ γ
(

sup
t0≤s≤t

‖u(s)‖
)
, ∀ t ≥ t0 + T,

where T ≥ 0. Evidently, for large enough T , the KL function β converges to zero

asymptotically, and when t ≥ t0 + T , the solution will stay bounded by a class-K

function γ, meaning that the solution of (2.3) has an ultimate bound γ, which is a

ball with a radius depending on the input.

Clearly, from the inequality (2.5), if the input u is set to zero (i.e., u(t) ≡ 0 for

all t ≥ t0), the ISS reduces to the globally uniformly asymptotic stability of the

trivial solution of the unforced system (2.4).

Before stating some sufficient conditions regarding the stability properties, we

need the following definition of upper right-hand derivative, which is also known as

a Dini derivative, of the function V .
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Definition 2.6. Let J ⊆ R+ and D be an open subset of Rn. If V : J ×D → R+,

then the upper right-hand derivative of V with respect to system (2.1) is defined by

D+V (t, x) = lim
h→0+

sup
1

h
[V
(
t+ h, x+ hf(t, x)

)
− V (t, x)], ∀(t, x) ∈ J ×D.

If, moreover, V has continuous partial derivatives with respect to t and x, then we

have

D+V (t, x) = V̇ (t, x) =
∂V (t, x)

∂t
+∇xV (t, x) · f(t, x),

where ∇xV is the gradient of V .

The following Lyapunov-type theorem gives sufficient conditions that ensure

ISS, which can also prove the asymptotic stability property of x ≡ 0 of the unforced

system (2.4).

Theorem 2.1. [Kha02] Let x(t) = x(t, t0, x0) be a solution of (2.3). Assume that

there exist class K∞ functions a and b, a class K function ρ, and a positive-definite

function c. Let V : R+ × Rn → R+ such that the following conditions holds:

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), ∀(t, x) ∈ R+ × Rn;

V̇ (t, x, u) ≤ −c(x), whenever ‖x‖ ≥ ρ(‖u‖),

for any (t, x, u) ∈ R+×Rn×Rm. Then, system (2.3) is ISS with γ(·) = b−1
(
a(ρ(·))

)
.

Particularly, if u(t) ≡ 0 for all t ∈ R+, then the trivial solution of the unforced

system (2.4) is globally uniformly asymptotically stable.

2.2 Impulsive Systems

To formulate impulsive systems, consider the following control system ẋ = f(t, x) + u(t),

x(t0) = x0,
(2.6)
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where u : R+ → Rn is the system input having the form

u(t) =
∞∑
k=1

Ckx(t)δ(t− τk), (2.7)

with Ck being the control gain matrix of an appropriate dimension and δ(·) being

the Dirac delta function defined by

δ(t− τk) =

 0, t 6= τk,

undefined, t = τk,
(2.8)

where τk forms a strictly increasing sequence {τk}∞k=1 with limk→∞ τk = ∞. From

(2.6) and (2.7) we get, after integrating over [τk, τk + h],

x(τk + h)− x(τk) =

∫ τk+h

τk

(
f(s, x(s)) + u(s)

)
ds,

where h is sufficiently small. As h→ 0+, we obtain

∆x(t)
∣∣
τk

= x(τ+
k )− x(τk) = Ckx(τk),

where x(t+k ) = limh→0+ x(tk +h), and x(tk) = x(t−k ), i.e., the solution is assumed to

be left-continuous. Apparently, the controller u has the effect of suddenly changing

the state of system (2.6) at time instant τk; that is, u is an impulsive controller.

Consequently, the closed-loop system (2.6) becomes
ẋ = f(t, x), t 6= τk,

∆x(t) = Ckx(t), t = τk, k = 1, 2, · · · ,

x(t+0 ) = x0.

(2.9)

This system is called an impulsive system or system with impulsive differential

equations. A general system is obtained when the right-hand side of the difference

equation (or the impulsive amount) is given by a nonlinear function, say I(t, x(t))

and the impulsive moments are state dependent, rather than constant, i.e., t =
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τk(x). Even more general case is when impulses occur if a spatio-temporal relation

κ(t, x) = 0 is satisfied. Then, the impulsive system (in the latter case) has the form

ẋ(t) = f(t, x(t)), κ(t, x) 6= 0, (2.10a)

∆x(t) = I(t, x(t)), κ(t, x) = 0, (2.10b)

x(t0) = x0, (2.10c)

where we have assumed that there is no an impulsive action at the initial time

t0, i.e., when x(t+0 ) = x(t0). The solution of this system evolves as follows: the

system state starts when κ(t0, x0) 6= 0. Then, whenever κ(t, x) 6= 0, the system

process is governed by the ordinary differential equation (2.10a) until t = τ1 such

that κ(τ1, x(τ1)) = 0 is satisfied. At this moment, the process is subject to an

impulse and instantly changes by some amount I(t, x(t)), given by the difference

equation in (2.10b), causing a jump discontinuity in the system state. For t > τ1,

if the relation κ(t, x) 6= 0 holds, the process continues according to the differential

equation in (2.10a) until an impulsive action occurs again. This continues in the

same manner as long as the solution exists. Consequently, the resulting solution is

either continuous or piecewise continuous with simple jump discontinuities at the

moments of impulse t for which I(t, x(t)) 6= 0.

Due to the difficulty in dealing with relations of the type κ(t, x) = 0, the interest

deflects to a particular type of relation, where the set of points (t, x) ∈ R+×Rn for

which κ(t, x) = 0 are assumed to be represented by a sequence of hyper-surfaces

of the form t = τk(x), where generally τk ∈ C(Rn; R+) for k = 0, 1, 2, · · · , and

0 = τ0(x) < τ1(x) < τ2(x) < · · · , and limk→∞ τk(x) = ∞ for each x ∈ Rn. There-

fore, the particular system can be written as
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ẋ(t) = f(t, x(t)), t 6= τk(x), (2.11a)

∆x(t) = I(t, x(t)), t = τk(x), (2.11b)

x(t0) = x0. (2.11c)

In this case, the system is said to have impulses at variable times. Indicative

features of this system are that solutions start at different points will be subject

to impulses (or jump discontinuities) at different times. This problem breaks down

the classical continuous dependence or stability since neighbouring solutions tend

to undergo impulses at slightly different times. Also, a solution may hit the same

hyper-surface several times or not at all, or intersect it more than once after inter-

secting other hyper-surfaces. The frequent interception of the same hyper-surface is

called pulse or beating phenomenon. To avoid this circumstance, further restrictions

have to be made on the impulsive hyper-surface, as will be seen in the following

chapter.

If the functions τk’s are constants (i.e., τk(x) = τk for all k and x), system (2.11)

is said to have impulses at fixed times, and all solutions undergo impulses at the

same times.

Another challenging issue arising in impulsive systems, which makes the theory

of ordinary differential equation is not directly applicable, is known as confluence

(or solution merging), which happens when, for instance, two solutions start at

different points merge after a certain impulse. The reason is that, for specific

impulse amount represented by the function I, the mapping x + I(τk, x) is not

one-to-one in x. On the other hand, if the mapping is not onto, the backward

continuation of solutions would be impossible.
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So far, we have assumed that the solutions of impulsive systems are left-continuous,

instead, one may consider solutions to be right-continuous. Accordingly, system

(2.11) is written as

ẋ(t) = f(t, x(t)), t 6= τk(x(t−)), (2.12a)

∆x(t) = I(t, x(t−)), t = τk(x(t−)), (2.12b)

x(t0) = x0. (2.12c)

The choice of right-continuous is advantageous when time delay is involved in

impulsive systems.

2.3 Delay Systems

As pointed out earlier, one of the main discrepancies between ordinary and delay

differential equations is the initial data. In the ordinary case, the initial condition

is given at a specific time, whereas for delay differential equations the initial data

are generally continuous functions defined on a finite interval. To define the initial

value problem of delay systems, we need some definitions.

Let Cr = C([−r, 0],Rn), with r > 0 representing a time delay, be the set of all

continuous functions from [−r, 0] to Rn. If φ ∈ Cr, the r-norm of this function is

defined by ‖φt‖r = sup−r≤s≤0 ‖φ(s)‖, where ‖ · ‖ is the Euclidean norm on Rn.

Definition 2.7. Let t∗ ∈ R and a > 0. If x is a function mapping [t∗ − r, t∗ + a]

into Rn, then, for every t ∈ [t∗, t∗ + a], we define a new function xt which maps

[−r, 0] into Rn by xt(s) = x(t+ s), for all s ∈ [−r, 0] (i.e., xt : [−r, 0]→ Rn).

Here, for each t ∈ [t∗− r, t∗], xt(s) (or simply xt) is the segment of the function

x from t∗− r to t∗ that has been shifted to the interval [−r, 0]. A general nonlinear
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DDE is described by

ẋ(t) = f(t, xt), (2.13a)

where f , which depends on both t and the new function xt ∈ Cr, is called a func-

tional. An initial condition is given as a continuous function

xt0(s) = φ(s), s ∈ [−r, 0]. (2.13b)

Thus, the initial value problem of a delay system is defined by (2.13).

One can similarly define the Dini derivative D+V with respect to the delay

system (2.13).

Definition 2.8. Let J ⊆ R+ and D be an open subset of Rn. If V : J ×D → R+,

then the upper right-hand derivative of V with respect to system (2.13) is defined

by

D+V (t, ψ(0)) = lim
h→0+

sup
1

h

[
V
(
t+ h, ψ(0) + hf(t, ψ)

)
− V (t, ψ(0))

]
,

for all (t, ψ) ∈ J × PC([−r, 0];D).

If, moreover, V has continuous partial derivatives with respect to its variables, then

we have

D+V (t, ψ(0)) = V̇ (t, ψ(0)) =
∂V (t, ψ(0))

∂t
+∇ψ(0)V (t, ψ(0)) · f(t, ψ).

2.4 Impulsive Systems with Time Delay

Incorporating impulsive effects of the variable time type in the delay system (2.13)

leads to impulsive system with time delay (ISD). Due to the discontinuous behaviour
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of the system state, the functional and the initial functions should be defined on a

larger class of piecewise continuous functions.

In the following, we define classes of functions, which are right-continuous on

their domains and left-continuous except at simple jump discontinuities where the

left-hand limits exist.

Definition 2.9. [Ball99a] For any a, b ∈ R with a < b and for some set D ∈ Rn,

define

PC
(
[a, b];D

)
=
{
ψ : [a, b]→ D

∣∣∣ψ(t+) = ψ(t), ∀t ∈ [a, b), ψ(t−) exists in D, ∀t ∈ (a, b],

and ψ(t−) = ψ(t) for all except at most a finite number of points

t ∈ (a, b]
}
,

PC
(
[a, b);D

)
=
{
ψ : [a, b)→ D

∣∣∣ψ(t+) = ψ(t), ∀t ∈ [a, b), ψ(t−) exists in D, ∀t ∈ (a, b),

and ψ(t−) = ψ(t) for all except at most a finite number of points

t ∈ (a, b)
}
,

PC
(
[a,∞);D

)
=
{
ψ : [a,∞)→ D

∣∣∣ ∀c > a, ψ
∣∣
[a,c]
∈ PC([a, c];D)

}
.

The number of discontinuities is finite if the functions are defined on finite inter-

vals; otherwise, i.e., on infinite interval, the number of discontinuities is countably

infinite, which form an increasing sequence of points tending to infinity.

Let PCr
(
[−r, 0]; Rn

)
= {φ : φ ∈ PC([−r, 0]; Rn)}, and define the r-norm of

φ ∈ PCr by ‖φ‖r = sup−r≤s≤0 ‖φ(s)‖. If x ∈ PC([t0 − r,∞); Rn) with t0 ∈ R+,

we define a function xt ∈ PC([−r, 0]; Rn) by xt(s) = x(t + s) for all s ∈ [−r, 0].

Let J ⊆ R+ and D ⊂ Rn be an open set. Then, a nonlinear ISD with impulses at
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variable times may have the form

ẋ(t) = f(t, xt), t 6= τk(x(t−)), (2.14a)

∆x(t) = I(t, xt−), t = τk(x(t−), (2.14b)

xt0 = φ(s), s ∈ [−r, 0], (2.14c)

where f : J × PC([−r, 0];D)→ Rn and φ ∈ PC([−r, 0];D). If one is interested in

impulses at fixed times, the corresponding ISD can be defined analogously.

2.5 Stochastic Differential Equations

In this section, we present some basic concepts that will be used throughout this

part and the thesis in general. First of all, we start with introducing some no-

tations and definitions from the probability theory. Then, we give the definition

of stochastic processes which include the so-called Wiener (or Brownian motion)

process. After that, we define a particularly important class of stochastic integrals,

namely Itô integrals, which leads us to the main part of this section—stochastic

differential equations.

2.5.1 Notations and Basic Definitions

Probability theory is a mathematical branch that deals with the analysis of ran-

dom experiments, where the outcomes, which are called elementary events and

traditionally denoted by ω, fully depend on chance. The (elementary) events can

be grouped together to form a bigger set, say Ω, called a sample space. If the event

ω is a possible outcome of a certain random experiment, we suitably write ω ∈ Ω.
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Denote by F the family of all interesting events of Ω. For further purposes, F is

required to be a σ-algebra (or σ-field), which is defined below.

Definition 2.10. A collection of subsets (or events) F of Ω is said to be a σ-algebra

on Ω if the following conditions hold:

1. the empty subset ∅ ∈ F ;

2. if A ∈ F , then Ac ∈ F , where Ac stands for the complement of A;

3. if {Ai}i≥1 ∈ F , then ∪i≥1Ai ∈ F .

A measure space can then be defined by the pair (Ω,F), and the elements of F ,

in this case, are called F-measurable sets. If S is a class of subsets of Ω, then one

can find a smallest σ-algebra σ(S) on Ω that contains S. Particularly, if Ω = Rd

and S is the smallest class of all open set in Rd, then Bd = σ(S) is called the Borel

σ-algebra and its elements are called Borel sets. We can now introduce the concepts

of a random variable and probability measure.

Definition 2.11. A real-valued function X : Ω→ R is said to be a random variable

or F-measurable if {ω : X(ω) ≤ x} ∈ F for all x ∈ R. Also, an Rd-valued function

X(ω) = (X1(ω), X2(ω), · · · , Xd(ω))T is said to be F -measurable if all the elements

Xi are F -measurable. Analogously, an Rd×m-valued function X(ω) = [Xij(ω)]d×m

is said to be F -measurable if all the elements Xij are F -measurable.

Definition 2.12. A function P : F → [0, 1] is said to be a probability measure on

the measurable space (Ω,F) if the following conditions hold:

1. P(∅) = 0 and P(Ω) = 1;

2. for any pairwise disjoint sequence or collection of subsets {Ai}i≥1 ⊂ F (i.e.,

Ai ∩ Aj = ∅ for all i 6= j),

P
(
∪i≥1 Ai

)
=
∞∑
i=1

P(Ai).
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Moreover, the triplet (Ω,F ,P) is called a probability space. Also, the probability

space is said to be complete if the σ-algebra is complete, i.e., F = F̄ , where F̄ is

the completion of F .

In this thesis, we will always assume that the probability space (or F) is com-

plete.

It is well known that the probabilistic behaviour of a random variable is com-

pletely and uniquely described by its distribution function F (x), which is defined

by

F (x) = P{ω : X(ω) ≤ x}, for all x ∈ R.

Assume that X is a continuous random variable, then there exists a non-negative

and integrable function f(x) such that, for every x,

F (x) =

∫ x

−∞
f(s)ds,

which implies that f(x) = dF (x)
dx

, which is called the (probability)density function

of X.

Let (Ω,F ,P) be a probability space and X be a random variable that is inte-

grable with respect to the probability measure P, then the mathematical expectation,

also known as mean or average value of x = X(ω) with respect to P is a real number

defined by

E[X] =

∫
Ω

X(ω) dP(ω) =

∫ ∞
−∞

x dF (x),

the pth moment of X is defined by

E[Xp] =

∫
Ω

Xp(ω) dP(ω) =

∫ ∞
−∞

xp dF (x),
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where p > 0. Particularly, if p = 2, E[X2] is the mean square (m.s.) of X. Also,

the variance of X is defined by

V (X) = E
[
X − E[X]

]2
,

and, if Y is another random variable, the covariance of X and Y is defined by

Cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]
,

where all involved integrals exist.

Consider the probability space (Ω,F ,P), and let X1(ω), X2(ω), · · · , a sequence

of random variables, and X(ω) be defined on the given probability space. Then,

the sequence {Xk(ω)}k≥1 is said to converge to X(ω) with probability one (w.p.1)

or almost surely (a.s.) if

P
{
ω : lim

k→∞
Xk(ω) = X(ω)

}
= 1;

it is said to converge to X(ω) in probability or stochastically if, for every ε > 0,

lim
k→∞

P
{
ω : |Xk(ω)−X(ω)| > ε

}
= 0;

it is said to converge to X(ω) in the pth moment if

lim
k→∞

E
[
|Xk(ω)−X(ω)|p

]
= 0,

where all involved integrals exist, and it is said to converge to X(ω) in the m.s. if

p = 2. Furthermore, if {Xk(ω)}k≥1 and X(ω) have distribution functions Fk(x) and

F (x), respectively, then the sequence of the random variables is said to converge to

X(ω) in distribution if

lim
k→∞

Fk(x) = F (x)

in every continuity point of F (x).
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2.5.2 Stochastic Processes

Let (Ω,F ,P) be a complete probability space. A filtration is a family (or a sequence)

of increasing sub-σ-algebra {Ft}t≥0 of F (i.e., Ft ⊂ Fs ⊂ F for all 0 ≤ t < s <∞).

The filtration {Ft}t≥0 is said to be right continuous if Ft = ∩s>tFs, and it is said

to satisfy the usual conditions if it is right continuous and F0 contains all P-null

sets (i.e., any random event A ∈ F0 with P(A) = 0). From now on, the complete

probability space under consideration satisfies the usual conditions, and, in this

case, we use the quadruple (Ω,F , {Ft}t≥0,P).

Definition 2.13. A stochastic processX(t) is a family of random variables {Xt(ω); t ∈

I, ω ∈ Ω} (which is also denoted by X(t, ω) for the same t and ω).

Throughout this thesis, we restrict ourselves to a parameter or (index) set I ⊆

R+ and state space Ω that is R or Rn, unless stated otherwise. Apparently, a

stochastic process is a function of two variables; for each fixed t ∈ I, Xt(ω) is a

random variable (or Rn-valued random variable), while, for each fixed ω ∈ Ω, Xt(ω)

is real-valued (or Rn-valued) function defined on I. The latter is called a sample

path or realization of the stochastic process.

Let X(t) be an Rd-valued stochastic process. It is said to be continuous (respec-

tively, right continuous, left continuous) if, for almost all ω ∈ Ω, Xt(ω) is continuous

(respectively, right continuous, left continuous) for all t ∈ R+. It is said to be cadlag

if it is right continuous and, for almost all ω ∈ Ω, the left limit lims→tXs(ω) exists

and is finite for all t > 0. It is said to be integrable if, for all t ∈ R+, Xt(ω) is an

integrable random variable. It is said to be Ft-adapted (or non-anticipated) if, for

all t ∈ R+, it is Ft-measurable. If Yt(ω) is another stochastic process, then the two
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processes are said to be indistinguishable if

P
{
ω : Xt(ω) = Yt(ω), ∀t ∈ R+

}
= 1.

Let X(t) be an Rd-valued cadlag Ft-adapted process, and D be an open subset

of Rd. Then, the first exit time of the process X(t) from D is defined by

τ = inf{t ∈ R+

∣∣X(t) 6∈ D},

where inf ∅ =∞.

Like random variables, stochastic processes can be characterized by their mo-

ments, variance, and autocorrelation.

Definition 2.14. Let X(t) be a continuous stochastic process. Then, the mathe-

matical expectation (or mean or the first moment) of X(t) is defined by

m(t) = E[X(t)] =

∫ ∞
−∞

xf(x, t) dx,

where f (or f(x, t)) is the probability density function of x = X(t); the second

moment (or the mean square) is defined by

m2(t) = E[X2(t)] =

∫ ∞
−∞

x2f(x, t) dx;

the variance,

V ar[X(t)] = E[(X(t)−m(t))2] = m2(t)−m2(t),

and the auto-correletion is defined by

R(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, t1;x2, t2) dx1dx2.

Definition 2.15. Let (Ω,F ,P) be a complete probability space with a filtration

{Ft}t≥0. A stochastic process W (t) for all t ∈ R+ that is continuous (a.s.) and
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Ft-adapted is said to be Wiener (or Brownian motion) process if

1. P{ω : W (0) = 0} = 1;

2. for any 0 ≤ s < t <∞, the increment W (t)−W (s) is independent of Fs;

3. for any t ∈ R+ and h > 0, the increment W (t + h) − W (t) is Gaussian (or

normally) distributed with

E[W (t+ h)−W (t)] = µh;

E[(W (t+ h)−W (t))2] = σ2h,

where the mean µ ∈ R and the variance σ2 is a positive constant. If µ = 0 and

σ2 = 1, W is said to be a standard Wiener process.

Following the definition of distribution function F , the jointly distribution func-

tion of X(t1), · · · , X(tn) is defined by

FX(t1),··· ,X(tn)(x1, · · · , xn) = P{X(t1) ≤ x1, · · · , X(tn) ≤ xn},

and, if F has partial derivatives at x1, · · · , xn, then the corresponding probability

density function of (x1, · · · , xn) is given by

f(x1, · · · , xn) =
∂n

∂x1 · · · ∂xn
FX(t1),··· ,X(tn)(x1, · · · , xn).

A stochastic process X(t) is said to be stationary if and only if, for all time

instants t1, · · · , tn and any time difference τ ,

fX(t1),··· ,X(tn)(x1, · · · , xn) = fX(t1+τ),··· ,X(tn+τ)(x1, · · · , xn).

We conclude this subsection with a mathematically useful stochastic process

called Gaussian white noise process.
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Definition 2.16. A stochastic process N is said to be a Gaussian white noise

process if and only if it is a stationary Gaussian process with mean zero and auto-

correlation given by

R(τ) = Cδ(τ),

where C is a constant and δ is a Dirac delta or impluse function.

Clearly, the variance of the Gaussian white noise is V ar[N (t)] =∞.

2.5.3 Stochastic Differential Equations

Consider a physical process described by the following ordinary differential equation

dx

dt
= f(t, x). (2.15)

If it is perturbed by some disturbance having a stochastic behaviour, say ξ = ξ(t)

for any t, then (2.15) may be written as

dX

dt
= F (t,X, ξ). (2.16)

Due to the random part, this differential equation cannot be interpreted as its

ordinary counterpart in (2.15). To better understand the new situation, we consider

the following special form of (2.16)

dX

dt
= f(t,X) + g(t,X)N (t), (2.17)

with a deterministic drift coefficient f(t,X) perturbed by a noise term g(t,X)N (t)

with N being a Gaussian white noise process and the diffusion coefficient g(t,X)

is the noise intensity. Integrating (2.17) over [t0, t] yields

X(t) = X(t0) +

∫ t

t0

f(s,X(s))ds+

∫ t

t0

g(s,X(s))N (s)ds, (2.18)
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where the first integral is deterministic for almost every ω ∈ Ω, while the second

one cannot be defined in any meaningful manner.

To cope with this difficulty, we replace the aforementioned integral by an integral

of the form ∫ t

t0

g(s,X)dW (s), (2.19)

where W is a Wiener process with the formal relationship with the Gaussian white

noise process being given by Ẇ (t) = N (t) and so dW (t) = N (t)dt. The resulting

integral in (2.19) cannot be defined as a Riemann-Stieltjes integral, because, for

almost all ω ∈ Ω, the Wiener sample path W (ω) is nowhere differentiable and has

unbounded variation over every time interval.

However, one can define this integral on a larger class of stochastic processes

depending on the properties of Wiener process. This definition was first proposed

by K. Itô, and the integral is now known as Itô stochastic integral.

Consider the integral of the form∫ b

a

g(s, ω)dW (s, ω), (2.20)

where g is a stochastic process with appropriate conditions and W is a Wiener

process, where we generally assume that the two processes are not mutually inde-

pendent and g(t, ω) is not absolutely continuous for almost all ω ∈ Ω.

The core feature of the Itô integral is that the random function g is non-

anticipative or adapted to the filtration {Ft}t≥0, i.e., g(t, ω) can at most depend on

the present and past, and not on the future, values of the Wiener process W (t, ω).

More precisely, let (Ω,F , {Ft}t≥0,P) be a complete probability space on which the

Wiener process W (t, ω) is defined for all t ∈ R+ and

1. for every t1, t2 ∈ R+, t1 < t2 implies that Ft1 ⊂ Ft2 ;
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2. for all t ∈ R+, the random variable W (t, ω) is Ft-measurable;

3. for ti+1 > ti ≥ t, the increment W (ti+1, ω)−W (ti, ω) is independent of Ft.

For a, b ∈ R+ with a ≤ b, denote by L2[a, b] the class of all real-valued random

processes (functions) g(t) defined on [a, b] and satisfying the following conditions:

4. for all t ∈ [a, b], g(t, ω) is Ft-measurable;

5. the integral ∫ b

a

g2(t, ω)dt (2.21)

is finite w.p.1.

To define the Itô (stochastic) integral, consider the partition a = t1 < t2 <

· · · < tk+1 = b, and let g(t, ω) be a step or simple function, i.e., g(t, ω) = g(ti, ω) for

all t ∈ [ti, ti+1], which is assumed to be Fti-measurable, bounded random variable.

Then, the Itô integral is defined by∫ b

a

g(t, ω)dW (t) =
k∑
i=1

g(ti, ω)[W (ti+1)−W (ti)]. (2.22)

Another way to define Itô integral is as a limit of a m.s. convergent sequence

of simple processes. Let gn(t, ω) ∈ L2[a, b] be an arbitrary sequence of simple

processes. Then, the Itô integral is defined by∫ b

a

g(t, ω)dW (t) = lim
n→∞

∫ b

a

gn(t, ω)dW (t) (2.23)

in L2[a, b], i.e.,

lim
n→∞

E
∫ b

a

|g(t, ω)− gn(t, ω)|2dt = 0.

The Itô integral in (2.23) has some nice properties. Assuming that g ∈ Lad([a, b]; Rd),

i.e., g is an Rd-valued Ft-adapted process such that
∫ b
a

E‖g(t)‖2dt < ∞, some of
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these properties are

1. E
∫ b
a
g(t)dW (t) = 0;

2. E
∥∥∥ ∫ ba g(t)dW (t)

∥∥∥2

≤
∫ b
a

E‖g(t)‖2 dW (t).

Replacing the stochastic integral in (2.18) by the Itô integral results in the

following stochastic integral equation

X(t) = X(t0) +

∫ t

t0

f(s,X(s))ds+

∫ t

t0

g(s,X(s))dW (s), (2.24)

which is equivalent to the symbolic stochastic differential equation (SDE) of Itô

type

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), (2.25)

with the initial state X(t0) = X0. Before presenting the solution of this equation,

we need to define the following class of random processes (functions).

Definition 2.17. Let (Ω,F , {Ft}t≥0,P) be a complete probability space. For any

ω ∈ Ω, a, b ∈ R+, with a < b, and p ≥ 1, a random process f(t, ω) is said to belong

to class Lad(Ω, Lp[a, b]) if it is Ft-adapted and almost all its sample paths are pth

integrable in the Riemann sense.

Definition 2.18. For any t0, T ∈ R+, the Rn-valued stochastic process x(t) =

x(t, t0, x0) is said to be a solution of n-dimensional initial value problem

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), t ∈ [t0, T ], (2.26a)

x(t0) = x0, (2.26b)

where W (t) = (W1(t), · · · ,Wm(t))T ∈ Rm and x0 is an Ft0-measurable Rn-valued

random variable such that E[‖x0‖2] <∞, if the the following properties hold:

1. x(t) is continuous and Ft-adapted;
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2. the Rn-valued f ∈ Lad(Ω, L1[a, b]) and the Rn×m-valued g ∈ Lad(Ω, L2[a, b]);

3. for any t ∈ [t0, T ], x(t) satisfies the SDE in (2.26a) w.p.1;

4. at t = t0, x satisfies the initial condition in (2.26b) w.p.1.

Furthermore, a solution x(t) is said to be unique if any other solution y(t) is indis-

tinguishable from x(t), i.e.,

P
{
x(t) = y(t), ∀t ∈ [t0, T ]

}
= 1.

When working on Itô SDEs, there arise some peculiarities, and amongst them

is that if x is a solution of an Itô equation and V (t, x(t)) is a sufficiently smooth

function, we cannot use the chain rule of the classical calculus to set up the SDE gov-

erning V (t, x(t)). Instead, we use the stochastic version of the chain rule, which is

called Itô formula. Before stating the definition of Itô formula, we define C1,2(Rn; R)

to be a class of functions, say V , such that Vt = ∂V/∂t, Vx and Vxx, being the gra-

dient and Hessian matrix of V , are all continuous functions.

Itô formula. For any t0 ∈ R+ and t ≥ t0, let x(t) be an Rn-dimensional Itô

process, i.e., Rn-valued continuous adapted process satisfying

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), (a.s.), (2.27)

where f ∈ Lad(Ω, L1[a, b]) and g ∈ Lad(Ω, L2[a, b]). Let V ∈ C1,2(Rn; R). Then, for

any t ≥ t0, V is a real-valued Itô process satisfying

dV (t, x) = LV (t, x)f(t, x)dt+ Vx(t, x)g(t, x)dW (t), (a.s.)

where

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
tr[gT (t, x)Vxx(t, x)g(t, x)].
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The operator L (or LV as a single notation) is also called the averaged derivative

(or infinitesimal diffusion operator) at a point (t, x) and can be generally defined

as

LV (t, x) = lim
h→0+

1

h

[
E[V (t+ h, x(t+ h))]− V (t, x)

]
.

As mentioned earlier, a more general system than (2.26) is when the system

states are subject to time lag. This leads to stochastic systems with time delay or

systems with stochastic functional differential equations, which are typically defined

by  dx(t) = f(t, xt)dt+ g(t, xt)dW (t), t ∈ [t0, T ],

xt0(s) = φ(s), s ∈ [−r, 0],
(2.28)

for any t0, T ∈ R+ with T ≥ t0.

We have stated clearly that one of the main discrepancies between ordinary

and delay systems is the amount of the initial data, which, in the latter case,

must be given over a certain period of time rather than at a specific time instance.

Moreover, due to the randomness that drives the system states, the given initial

condition function is generally defined as a stochastic process. Consequently, to

define a solution of the initial value problem given in (2.28), it is natural to consider

the initial function φ to be Ft0-measurable, continuous random variable mapping

[−r, 0] into Rn such that E[‖φ‖pr] < ∞ for some p > 0. The solution of (2.28) can

then be defined similarly to that of (2.26) except, of course, x(t) is defined over the

interval [t0 − r, T ] for all T ∈ R+ (or [t0 − r, t0 + α] for α > 0).

Having defined the solution x of (2.28) and the Itô formula, we can present the

definition of some stochastic properties of the trivial solution of (2.28).

Definition 2.19. For any t ≥ t0 with t0 ∈ R+, let x(t) = x(t, t0, φ) be a solution

of system (2.28). Then, the trivial solution x ≡ 0 of (2.28) is said to be
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1. almost-surely stable (or stable w.p.1) if, for any given ε, ε′ > 0, and t0 ∈ R+,

there exists δ = δ(ε, ε′, t0) such that

‖φ‖r < δ implies P{ω : sup
t≥t0
‖x(t)‖ > ε′} < ε;

2. pth moment stable if, for any ε > 0 and t0 ∈ R+, there exists δ = δ(ε, t0) such

that, for p > 0,

‖φ‖pr < δ implies E[sup
t≥t0
‖x(t)‖p] < ε;

3. asymptotically stable if, for any ε ∈ (0, 1), there exists δ = δ(ε, t0) such that

‖φ‖r < δ implies P{ω : lim
t→∞

sup ‖x(t)‖ = 0} < 1− ε;

4. almost-surely asymptotically stable if it is almost-surely stable and

P{ω : lim
t→∞

sup ‖x(t)‖ = 0} = 1;

5. pth moment asymptotically stable if it is stable in the pth moment and

lim
t→∞

E[sup ‖x(t)‖p] = 0;

6. pth moment exponentially stable if there exist positive constants p,K, and λ

such that, for any t0 ∈ R+,

‖φ‖pr < δ implies E[‖x(t)‖p] ≤ K‖φ‖pre−λ(t−t0).

Moreover, the above stability properties are said to be satisfied globally if they hold

for arbitrarily large δ. Also, they are said to hold uniformly if δ is chosen to be

independent of t0.
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On the other hand, if the system states of (2.26) experience impulsive effects at

fixed times, we are led to stochastic impulsive systems or systems with stochastic

impulsive differential equations, which are generally given by
dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), t 6= τk,

∆x(t) = I(t, x(t−)), t = τk,

x(t0) = x0.

(2.29)

This system was studied in [Liu07, Liu08]. The focus was on establishing the

problems of existence and uniqueness of a global solution and some qualitative

properties, such as asymptotic and exponential stability in the pth moment. In

both results, the comparison principle approach was used to achieve the aforesaid

system characteristics.

In analyzing regularity conditions of stochastic systems with and without time

delays, or with and without impulsive effects, a very common practice is to assume

that the system vector fields are (locally or globally) Lipschitz to assure a unique

solution, and a linear growth condition to avoid the finite escape time that a solution

may have. More specifically, these conditions are made to guarantee that a Picard

successive iteration is convergent. However, employing Lyapunov technique, one

can get unique solutions even if Lipschitz conditions are relaxed [Kha80, Mao06].

We conclude this section by presenting some inequalities [Mao06] that will be

used throughout this thesis.

Definition 2.20. A function ϕ : R→ R is said to be convex if the following hold

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y), λ ∈ (0, 1).

It is said to be concave if ≤ is replaced by ≥.
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Jensen’s inequality. If ϕ : R → R is a convex function, and x : Ω → R is a

random variable on a probability space (Ω,F ,P) such that E[x] <∞, then

ϕ(E[x]) ≤ E[ϕ(x)].

Tchebychev’s inequality. If x : Ω→ Rn is a random variable such that E[‖x‖p] <

∞, for some p > 0, then

P
{
ω ∈ Ω : ‖x‖ ≥ ε

}
≤ E[‖x‖p]

εp
, for some ε > 0.

Hölder’s inequality. Let x and y be Rn-valued random processes. If p, q ∈ (1,∞)

and 1/p+ 1/q = 1, then

∣∣E[xTy]
∣∣ ≤ E[‖x‖p]1/pE[‖y‖q]1/q

holds provided that the pth moments on the right hand side are finite.

Bihari’s inequality. [Bih56] For all t ∈ [0, T ] with T > 0, let u(t) ≥ 0 be a

Borel measurable function and v(t) ≥ 0 be an integrable function. Suppose that

K : R+ → R+ is a continuous nondecreasing function such that K(t) > 0 for all

t > 0. If, for some c > 0,

u(t) ≤ c+

∫ t

0

v(s)K(u(s))ds, ∀ t ∈ [0, T ],

then

u(t) ≤ G−1
(
G(c) +

∫ t

0

v(s)ds
)

holds for all t ∈ [0, T ] such that

G(c) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

0+
ds
K(s)

, for r > 0, and G−1 is the inverse function of G.
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2.6 Stochastic Impulsive System with Time De-

lay

In the previous section, we have described stochastic systems with time delay,

and systems with stochastic impulsive differential equations. In this section, these

systems are combined to lead us to consider stochastic impulsive system with time

delay (SISD). Before formulating the latter system, and for convenient reading, we

restate some of the notations that have been presented in previous sections.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-

null sets). Let W (t) = (W1(t),W2(t), · · · ,Wm(t))T be an m-dimensional Wiener

process defined on the above probability space. Let r > 0 represent time delay and

denote by C([−r, 0],Rn) (and PC([−r, 0],Rn)) the space of continuous (piecewise

continuous) functions φ mapping [−r, 0] into Rn. Moreover, if x : [t− r,∞)→ Rn,

we define xt by xt = x(t + s) for s ∈ [−r, 0] and the corresponding r-norm is

‖xt‖r = supt−r≤s≤t ‖x(s)‖. We also define xt− ∈ PC([−r, 0],Rn) by xt−(s) = x(t+s)

for −r ≤ s < 0 and xt−(s) = x(t−) for s = 0. We should mention that this does not

mean xt− = lims→t− xs because, if x ∈ PC([−r, 0],Rn), the limit lims→t− xs does

not generally exist. For p > 0, let LpF0
([−r, 0]; Rn) be the set of all F0-measurable

PC([−r, 0],Rn)-valued random variables φ = {φ(s) : −r ≤ s ≤ 0} such that

E[‖φ‖pr] ≤ c, for some c ≥ 0. We also assume that φ is independent of W (t, ω).

For a given Wiener process W (t, ω) and filtration {Ft| a ≤ t ≤ b}, we assume that

W (t, ω) is Ft-adapted (i.e. for each t ∈ [a, b], W (t, ω) is Ft-measurable) and for

any s ≤ t, the random variable W (t, ω)−W (s, ω) is independent of the σ-algebra

Fs.

In the following, the definition of piecewise continuous functions introduced in
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[Ball99b, Liu2000] is modified, since the solution of a stochastic initial value problem

is a random process, rather than merely a deterministic function.

Definition 2.21. For a, b ∈ R, with a < b, and D ⊂ Rn, a random process

ψ : [a, b] × Ω → D is said to be an element of the space PC([a, b] × Ω,D) (or

D-cadlag) if, for almost all ω ∈ Ω, ψ(t+, ω) = ψ(t, ω) ∀ t ∈ [a, b) and ψ(t−, ω)

exists in D ∀ t ∈ (a, b] and ψ(t−, ω) = ψ(t, ω) for all but at most a finite number of

points t ∈ (a, b]. Furthermore, a random process ψ : [a,∞)× Ω→ D is said to be

an element of PC([a,∞) × Ω,D) if, for almost all ω ∈ Ω, c > a, where t ∈ [a, c],

ψ(t, ω) ∈ PC([a, c]× Ω, D).

Consider now the following nonlinear SDE with time delay

dx(t) = f(t, xt)dt+ g(t, xt) dW (t), t ∈ [a, b], (2.30a)

where x ∈ Rn is the system state random process, f ∈ Rn, and g ∈ Rn×m. The

initial condition is given by

xt0(s) = φ(s), s ∈ [−r, 0], (2.30b)

where φ ∈ L2
F0

([−r, 0],Rn) (i.e., the initial state is assumed to be F0-adapted,

piecewise continuous with finite pth moment); thus, the corresponding stochastic

integral equation is

x(t) = φ(0) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs) dW (s), (2.31)

where t ≥ t0. The first integral is a Riemann integral almost surely (a.s.) and the

second one is an Itô integral satisfying

E
[ ∫ t

t0

g(s, xs) dW (s)
]

= 0, and E
∥∥∥∫ t

t0

g(s, xs) dW (s)
∥∥∥2

=

∫ t

t0

E‖g(s, xs)‖2 ds.
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Considering impulse effects (of variable times) in (2.30a) leads to the following

SISD

dx(t) = f(t, xt)dt+ g(t, xt) dW (t), t 6= τk(x(t−)), (2.32a)

∆x(t) = I(t, xt−), t = τk(x(t−)), (2.32b)

where τk ∈ C2(Rn,R+) represents an impulsive hypersurface, for k = 0, 1, 2, · · · ,

and satisfies 0 = τ0(x) < τ1(x) < τ2(x) < · · · and limk→∞ τk(x) = ∞ for x ∈ Rn.

The initial condition is given by

xt0(s) = φ(s), s ∈ [−r, 0]. (2.32c)

We also assume that the solution of (2.32) is right-continuous (i.e., x(t+) =

x(t)). In difference equation (2.32b), ∆x = x(t)− x(t−) and the functional I(·) is

the impulse amount, which is assumed to be Ftk-adapted.

In the following, we define the solution of the initial value problem (2.32).

Definition 2.22. For any t0 ∈ R+ and α > 0, an Rn-valued random process

x ∈ PC([t0 − r, t0 + α]; Rn) is said to be a solution of (2.32) if it satisfies the

following conditions:

(i) the set of impulses T = {t ∈ (t0, t0 + α]
∣∣∣ t = τk(x(t−)) for some k} is finite;

(ii) x(t) is continuous for all t ∈ (t0, t0 + α]\T and Ft-adapted;

(iii) the functionals f ∈ Lad(Ω, L[t0, t0 + α]) and g ∈ Lad(Ω, L2[t0, t0 + α]);

(iv) for any t ∈ (t0, t0 +α], φ ∈ L2
F0

([−r, 0],Rn), and I(tk, xt−k
) that is Ftk-adapted,
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the following equation

x(t) =


φ(t− t0), t ∈ [t0 − r, t0]

φ(0) +
∫ t
t0
f(s, xs)ds+

∫ t
t0
g(s, xs) dW (s)

+
∑
{k:tk∈(t0,t]} I(tk, xt−k

), t ∈ (t0, t0 + α]

(2.33)

holds w.p.1;

(v) for any t ∈ T, x(t) satisfies the difference equation in (2.32b) w.p.1;

(vi) x satisfies the initial condition in (2.32c) w.p.1.

Remark 2.1. In fact, one can restate condition (ii) as follows:

(ii)′ for D ⊂ Rn, x ∈ PC([t0 − r, t0 + α],D) and is Ft-adapted.

We should also mention that, in the definition, we have restricted ourselves

to the case where solutions undergo a finite number of impulses over any finite

interval. However, letting t ∈ (t0,∞), there would be a countably infinite number

of impulses, which represent the simple jump discontinuities of x.

A special class of the SISD (2.32) is when the impulsive instances occur at fixed

times, i.e.,

dx(t) = f(t, xt)dt+ g(t, xt) dW (t), t 6= τk, (2.34a)

∆x(t) = I(t, xt−), t = τk, (2.34b)

xt0(s) = φ(s), s ∈ [−r, 0]. (2.34c)

This system will be studied in later chapters.

We conclude this section with the following results, which have further use in

the next chapter.
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Let x and y be two Rn-valued random processes having probability measures

Px and Py, respectively. Then, the Prokhorov distance between the (probability)

measures is denoted by D(x, y) = D(Px,Py). Moreover, if D(x, y) = 0, then x and

y have the same probability measure. Also, if P
{
ω ∈ Ω : limn→∞ ‖xn(ω)−x(ω)‖ =

0
}

= 1, then {xn} is a D-Cauchy sequence. The converse of this fact is true in the

following sense.

Skorokhod’s Theorem. Let {xn} be a D-Cauchy sequence of random variables.

Then, one can construct another sequence of random variables {yn} and a random

variable y such that

D(xn, yn) = 0 and P
{
ω ∈ Ω : lim

n→∞
‖yn(ω)− y(ω)‖ = 0

}
= 1.

Definition 2.23. A collection of sequences of random variables Q = {xr| r ∈ Λ},

for some index set Λ, is said to be totally D-bounded if every infinite sequence

{xnr} ⊂ Q has a D-Cauchy subsequence.

Prokhorov’s Theorem. Q is totally D-bounded if and only if, for every ε > 0,

there exists a compact set Kε of Rn such that

P{x ∈ Kε} > 1− ε,

for every x ∈ Q.

Lemma 2.1. Let S ⊂ Rn, a, b ∈ R+ with a < b, and c, ε be positive constants.

Then,

Q′ =
{
x(n) ∈ C([a, b], S)

∣∣E[‖x(n)(t)‖2] ≤ c and

E[‖x(n)(t1)− x(n)(t2)‖2] ≤ ε, ∀n ∈ N, t1, t2 ∈ [a, b]
}

is totally D-bounded subset of C([a, b], S).
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Proof. By Tchebychev’s inequality, one can find, for every ε > 0, γ1(ε) and γ2(ε)

such that P{ω ∈ Ω : ‖x(n)(t)‖ > γ1(ε)} ≤ ε
2

and P{ω ∈ Ω : ‖x(n)(t1) − x(n)(t2)‖ >

γ2(ε)} ≤ ε
2
. Hence, P{ω ∈ Ω : ‖x(n)(t)‖ > γ1(ε) or ‖x(n)(t1)− x(n)(t2)‖ > γ2(ε)} ≤

ε, which implies that P{ω ∈ Ω : ‖x(n)(t)‖ ≤ γ1(ε) or ‖x(n)(t1)−x(n)(t2)‖ ≤ γ2(ε)} >

1− ε for every x ∈ Q. For some α > 0, let

Kε =
{
x(n) ∈ C([t0, t0 + α], S)

∣∣ ‖x(n)(t)‖ ≤ γ1(ε) and

‖x(n)(t1)− x(n)(t2)‖ ≤ γ2(ε), ∀ t1, t2 ∈ [t0, t0 + α]
}
.

Clearly, P{x ∈ Kε} > 1−ε. By Arzela-Ascoli’s Theorem, the compactness of Kε

follows. Finally, applying Prokhorov’s Theorem yields the totally D-boundedness

of the subset Q′.

Remark 2.2. Q′ is a collection of sequences which are both uniformly bounded

and equicontinuous in the m.s.
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Chapter 3

Fundamental Properties of SISD

In this chapter, we consider the SISD constructed in chapter 2. The main interest is

to establish the essential foundation of the theory of the system. Using Itô calculus,

we develop results on the local and global existence, forward continuation, and

uniqueness. As stated earlier, the system has impulses at variable times, the time

delay is constant, and the random noise is approximated by a Wiener process. The

material of this chapter has been published in [Alw10].

3.1 Local Results

We start this section with establishing a local existence result of the initial value

problem (2.32). We will show how the solution evolves between two impulse hy-

persurfaces and then, under certain condition on the surfaces, if this solution starts

initially at a hypersurface, it will depart this surface in mean. While, in most of

the local existence results of stochastic systems, the vector field functions (or func-

tionals in delay systems) are assumed to be bounded by a linear growth estimation,
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in this work, we deviate from this convention, and assume that the functionals are

bounded by some time-varying random function having bounded integral. This

general case makes the current result more efficient than the available approaches.

The technique adopted to prove the following local result is a combination of the

approaches used in developing the existence results for impulsive delay systems in

[Ball99a] and stochastic systems in [Lad80]. One more thing to note is that, in

[Ball99b, Liu2000], the functional f is assumed to be quasi-bounded. In fact, the

time-varying estimate considered in this work already includes this condition.

Theorem 3.1. Let J ⊂ R+ and D ⊂ Rn be an open set containing φ(0). Assume

that f ∈ Lad(Ω, L[t0, t0 + α]) and g ∈ Lad(Ω, L2[t0, t0 + α]), where α > 0 and

[t0, t0 + α] ⊂ J , and are continuous in ψ. Moreover, there exists a (random)

function m(t) such that, for (t, ψ) ∈ [t0, t0 + β] × F , for some positive β ≤ α and

compact set F ⊂ D,

‖f(t, ψ)‖2 ∨ ‖g(t, ψ)‖2 ≤ m(t), (a.s.) (3.1)

where ∫ t

t0

m(s) ds <∞, (a.s.).

Then, for almost all ω ∈ Ω and each (t, φ) ∈ J × L2
F0

([−r, 0],Rn), there exists a

(local) Ft-adapted solution x(t) = x(t, t0, φ) of (2.32) on [t0−r, t0+β]. Furthermore,

assume that τk ∈ C2(D,R+), for k = 1, 2, · · · , and, whenever t∗ = τk(x
∗) for some

(t∗, x∗) ∈ J ×D and some k, there exists a δ > 0, where [t∗, t∗ + δ] ⊂ J , such that

E[Lτk(x(t))] 6= 1, (3.2)

for all t ∈ (t∗, t∗+δ] and for all functions x that are Ft-adapted PC([t∗−r, t∗+δ],D),

continuous on (t∗, t∗ + δ] and satisfy x(t∗) = x∗ and E[‖x(s) − x∗‖2] < λ for s ∈
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[t∗, t∗ + δ] and λ > 0. Then, the solution x leaves the hypersurface τk(x) in mean,

i.e., x exists on [t0 − r, t0 + β] for some β > 0, for which x will not intersect any

impulse hypersurface at any time t ∈ (t0, t0 + β].

Proof. Let (t, φ) ∈ J×L2
F0

([−r, 0]×Ω,Rn) and choose α > 0 such that [t0, t0+α] ⊂

J . Since for almost all ω ∈ Ω, φ(0) ∈ D and D is an open set, one can choose λ > 0

such that

F := F (z, λ) = {z ∈ Rn; ‖z − φ(0)‖ ≤ λ} ⊂ D. (3.3)

Clearly, F is a compact set. Set

M(t) =

∫ t

t0

m(s) ds, t ∈ [t0, t0 + α].

Clearly, M(t) is absolutely continuous (a.s.) with respect to t and nondecreasing.

Also, M(t0) = 0 and M(t) is bounded (a.s.). Therefore, there is a positive number,

say M̃ , such that

M(t) =

∫ t

t0

m(s) ds ≤ M̃, t ∈ [t0, t0 + α].

Let β = min
{
α, λ

2fM − 1
}
> 0. For 0 < β1 < β, define

Q =
{
x ∈ PC([t0 − r, t0 + β1],D)

∣∣∣xt0 = φ, x is continuous on (t0, t0 + β1]

and Ft-adapted, and ‖x(t)− φ(0)‖2 ≤ λ (a.s.), ∀t ∈ (t0, t0 + β1]
}
.

If x ∈ Q, (i.e., x is continuous on [t0, t0 + β1] and Ft-adapted), then the compos-

ite functions f(t, xt) and g(t, xt) are adapted and almost surely integrable since

f(t, xt) ∈ Lad(Ω, L[t0, t0 + β1]) and g(t, xt) ∈ Lad(Ω, L2[t0, t0 + β1]).

For n = 1, 2, 3, · · · , define the sequence of random processes
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x(n)(t) =



φ(t− t0), t ∈ [t0 − r, t0],

φ(0), t ∈ (t0, t0 + β/n],

φ(0) +
∫ t−β/n
t0

f(s, x
(n)
s ) ds

+
∫ t−β/n
t0

g(s, x
(n)
s ) dW (s), t ∈ (t0 + β/n, t0 + β].

(3.4)

By the above argument and φ ∈ L2
F0

([−r, 0],Rn), the sequence {x(n)} is well defined

and, for each n, x(n)(t) is Ft-adapted. Moreover, for t ∈ (t0 + β/n, t0 + 2β/n], we

have

‖x(n)(t)− φ(0)‖ ≤
∥∥∥∫ t−β/n

t0

f(s, x(n)
s )ds

∥∥∥+
∥∥∥∫ t−β/n

t0

g(s, x(n)
s )dW (s)

∥∥∥.
Therefore, in view of (3.1),

E
[
‖x(n)(t)− φ(0)‖2

]
≤ 2
{

E
∥∥∥∫ t−β/n

t0

f(s, x(n)
s )ds

∥∥∥2

+ E
∥∥∥∫ t−β/n

t0

g(s, x(n)
s )dW (s)

∥∥∥2}
≤ 2
{β
n

∫ t0+β/n

t0

E‖f(s, x(n)
s )‖2ds+

∫ t0+β/n

t0

E‖g(s, x(n)
s )‖2ds

}
≤ 2(

β

n
+ 1)M̃ ≤ λ,

where we used (a + b)2 ≤ 2(a2 + b2) and Cauchy-Schwartz inequality. If a subse-

quence of {x(n)} is taken, then {x(n)} ∈ Q (a.s.) and by mathematical induction we

can show that this is true for t ∈ (t0 +kβ/n, t0 +(k+1)β/n], for k = 1, 2, · · · , n−1.

Thus, for n ≥ 2, x(n) belongs to Q. We also have, from (3.4),

‖x(n)(t)‖ ≤ ‖φ(0)‖+
∥∥∥∫ t−β/n

t0

f(s, x(n)
s )ds

∥∥∥+
∥∥∥∫ t−β/n

t0

g(s, x(n)
s )dW (s)

∥∥∥.
Therefore,
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E
[
‖x(n)(t)‖2

]
≤ 3
{

E‖φ(0)‖2 + E
∥∥∥∫ t−β/n

t0

f(s, x(n)
s )ds

∥∥∥2

+ E
∥∥∥∫ t−β/n

t0

g(s, x(n)
s )dW (s)

∥∥∥2}
≤ 3
{
c1 +

β

n

∫ t0+β/n

t0

E‖f(s, x(n)
s )‖2ds+

∫ t0+β/n

t0

E‖g(s, x(n)
s )‖2ds

}
≤ 3
{
c1 + (

β

n
+ 1)M̃

}
.

Namely, we have

E
[
‖x(n)(t)‖2

]
≤ λ′, (3.5)

where λ′ = 3
{
c1 + (β

n
+ 1)M̃

}
. By Tchebychev’s inequality, one can find, for ε > 0,

γ1(ε) such that

P
{
‖x(n)(t)‖ > γ1(ε)

}
≤

E
[
‖x(n)(t)‖2

]
γ1(ε)2

≤ λ′

γ1(ε)2
=
ε

2
.

Now, for each n, let y(n) denote the restriction of x(n) to [t0, t0 + β]. Then, y(n) is

continuous on [t0, t0 + β] and, moreover, for t ∈ [t0, t0 + β], we have

P
{
‖y(n)(t)‖ > γ1(ε)

}
≤ ε

2
, (3.6)

meaning that the sequence {y(n)(t)} is uniformly bounded (a.s.). We also have

y(n)(t1)− y(n)(t2) =

∫ t1

t2

f(s, y(n)
s )ds+

∫ t1

t2

g(s, y(n)
s )dW (s),

so that

E
[∥∥∥y(n)(t1)− y(n)(t2)

∥∥∥2]
≤ 2
{

E
∥∥∥∫ t1

t2

f(s, y(n)
s )ds

∥∥∥2

+ E
∥∥∥∫ t1

t2

g(s, y(n)
s ) dW (s)

∥∥∥2}
≤ 2M2(|t1 − t2|+ 1) ≤ ε′,

namely,

E
[∥∥∥y(n)(t1)− y(n)(t2)

∥∥∥2]
≤ ε′,
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which implies that, for a positive ε, there exists γ2(ε) such that

P
{
‖y(n)(t1)− y(n)(t2)‖ > γ2(ε)

}
≤ ε

2
, (3.7)

which shows that the sequence {y(n)} is equicontinuous (a.s.).

Combining (3.6) and (3.7) yields

P
{
‖y(n)(t)‖ ≤ γ1(ε) or ‖y(n)(t1)− y(n)(t2)‖ ≤ γ2(ε)

}
> 1− ε.

Set

Kε =
{
y(n) ∈ C([t0, t0 + β],D)

∣∣∣ ‖y(n)(t)‖ ≤ γ1(ε) and ‖y(n)(t1)− y(n)(t2)‖ ≤ γ2(ε)
}
.

The following part of the proof is aimed to prove the convergence of the SIE

sequence in (3.4)1. Since Kε is uniformly bounded and equicontinuous, by Arzela-

Ascoli’s Theorem [Lad80], it is a compact subset of C([t0, t0 + β],D). In addi-

tion, by Lemma 3.1, it satisfies P{y(n) ∈ Kε} > 1 − ε. Thus, by Prokhorov’s

Theorem, the collection of continuous processes {y(n)(t)} is totally D-bounded.

Thus, {(y(n)(t),W (n)(t), y
(n)
0 )} is totally bounded, where W (n)(t) ≡ W (t) and y

(n)
0 ≡

φ(0) =: y0. Therefore, one can find aD-Cauchy subsequence {(y(nr)(t),W (nr)(t), y
(nr)
0 )}

of {(y(n)(t),W (n)(t), y
(n)
0 )}. By Skorohod’s Theorem [Lad80], we can construct

a sequence of random functions (u(nr)(t), w(nr)(t), u
(nr)
0 ) and a random function

(u(t), w(t), u0) such that

D
(

(y(nr)(t), B(nr)(t), y
(nr)
0 ), (u(nr)(t), w(nr)(t), u

(nr)
0 )

)
= 0, (3.8)

for n1, n2, n3, · · · , and

P
{

(u(nr)(t), w(nr)(t), u
(nr)
0 )→ (u(t), w(t), u0)

}
= 1, (3.9)

1This part of the proof is inspired by that of Theorem 4.2.1 in [Lad80] except the equations

there are delay-free. We reproduced it here for the proof to be self-contained.
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as r →∞.

Notation. Denote the superscript nr by the subscript r; for example, the subse-

quence {u(nr)(t)} becomes {ur(t)}.

The subsequence {ur(t)} is a D-Cauchy sequence. By the definition of totally D-

bounded set, one can construct or find (n-indexed) D-Cauchy subsequence {unr (t)}

of {ur(t)} and construct a subsequence {un(t)} of the (restricted) solution sequence

{y(n)} as follows

unr (t) =


ur0 , t ∈ (t0, t0 + β/n],

ur0 +
∫ t−β/n
t0

f(s, unrs) ds

+
∫ t−β/n
t0

g(s, unrs) dwr(s), t ∈ (t0 + β/n, t0 + β],

for every r = 1, 2, · · · , and

un(t) =


u0, t ∈ (t0, t0 + β/n],

u0 +
∫ t−β/n
t0

f(s, uns ) ds

+
∫ t−β/n
t0

g(s, uns ) dw(s), t ∈ (t0 + β/n, t0 + β].

Set

Ir(t) =

∫ t

t0

f(s, urs) ds+

∫ t

t0

g(s, urs) dwr(s), (3.10a)

Inr (t) =

∫ t−β/n

t0

f(s, unrs) ds+

∫ t−β/n

t0

g(s, unrs) dwr(s), (3.10b)

I(t) =

∫ t

t0

f(s, us) ds+

∫ t

t0

g(s, us) dw(s), (3.10c)

In(t) =

∫ t−β/n

t0

f(s, uns ) ds+

∫ t−β/n

t0

g(s, uns ) dw(s), (3.10d)

Irr (t) =

∫ t−β/r

t0

f(s, urrs) ds+

∫ t−β/r

t0

g(s, urrs) dwr(s). (3.10e)
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From (3.10a) and (3.10b), we have

Inr (t)− Ir(t) =

l0︷ ︸︸ ︷∫ t−β/n

t0

f(s, unrs) ds−
∫ t

t0

f(s, urs) ds

+

∫ t−β/n

t0

g(s, unrs) dwr(s)︸ ︷︷ ︸
l1

−
∫ t

t0

g(s, urs) dwr(s) (3.11)

The integrals l0 and l1 can be written as∫ t

t0

fn(s, unrs) ds,

∫ t

t0

gn(s, unrs) dwr(s),

where fn(s, unrs) and gn(s, unrs) are sequences of step functions. As for fn and

gn, we expect that they are at least piecewise continuous functions. Also, since the

functionals f and g are continuous in the second argument and unr (t) is a D-Cauchy

sequence which converges to ur(t), we have∫ t

t0

‖fn(s, unrs)− f(s, urs)‖2 ds→ 0

and ∫ t

t0

‖gn(s, unrs)− g(s, urs)‖2 ds→ 0

in probability2.

Therefore, the sequence of the deterministic integrals converges to∫ t

t0

f(s, urs) ds,

2In fact, if a subsequence is taken, the convergence holds w.p.1.
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and by the definition of Itô integral, we have∫ t

t0

g(s, urs) dwr(s) =

∫ t

t0

gn(s, unrs) dwr(s)

in probability. Hence Inr (t) converges to Ir(t) uniformly in probability as n → ∞;

namely, we have, for any r = 1, 2, · · · and given ε > 0,

P{‖Inr (t)− Ir(t)‖ > ε} < ε, (3.12)

as n→∞. Similarly, from (3.10c) and (3.10d), we obtain

P{‖In(t)− I(t)‖ > ε} < ε. (3.13)

From (3.10b) and (3.10d), we get

P{Inr (t)→ In(t)} = 1, (3.14)

as r → ∞, because we have a sequence of stochastic integrals {Inr (t)}∞r=1 which,

by (3.9), converges to the stochastic integral In(t) as r → ∞. Also, (3.14) implies

that, for any ε > 0, there exists a positive number r such that r ≥ r0 = r0(ε),

‖f(s, unrs)− f(s, uns )‖ <

√
ε3

4β2
,

and

‖g(s, unrs)− g(s, uns )‖ <

√
ε3

4β
.

Hence

E[‖Inr (t)− Ir(t)‖2] ≤ 2E
[
β

∫ t0+β

t0

‖f(s, unrs)− f(s, uns )‖2 ds
]

+ 2E
[ ∫ t0+β

t0

‖g(s, unrs)− g(s, uns )‖2 ds
]

≤ 4E
[ ∫ t0+β

t0

ε3

4β
ds
]

= ε3,
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and by Tchebychev’s inequality, we get

P{‖Inr (t)− In(t)‖ > ε} < ε, r ≥ r0(ε). (3.15)

We want now to show that

u(t) = φ(0) +

=:I(t)︷ ︸︸ ︷∫ t

t0

f(s, us) ds+

∫ t

t0

g(s, us) dW (s)

holds. Note that

P
{
‖u(t)− φ(0)− I(t)‖ > 6ε

}
= P

{
‖u(t)−

=0︷ ︸︸ ︷
urr(t) + ur0 + Irr (t)−φ(0)− I(t) + In(t)− In(t) + Inr (t)− Inr (t)

+ Ir(t)− Ir(t)‖ > 6ε
}

= P
{
‖(u(t)− urr(t)) + (ur0 − φ(0))− (I(t)− In(t)) + (Inr (t)− In(t))

+ (Ir(t)− Inr (t)) + (Irr (t)− Ir(t))‖ > 6ε
}

≤ P
{
‖y(t)− yrr(t)‖ > ε

}
+ P

{
‖ur0 − φ(0)‖ > ε

}
+ P

{
‖I(t)− In(t)‖ > ε

}
+ P

{
‖Inr (t)− In(t)‖ > ε

}
+ P

{
‖Ir(t)− Inr (t)‖ > ε

}
+ P

{
‖Irr (t)− Ir(t)‖ > ε

}
< 6ε,

namely

P
{
‖u(t)− φ(0)− I(t)‖ > 6ε

}
< 6ε.

Since ε > 0 is arbitrary, this implies that

u(t) = φ(0) +

∫ t

t0

f(s, us) ds+

∫ t

t0

g(s, us) dW (s),
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with probability one. Hence, y ≡ u. Finally, define

x(t) =


φ(t− t0), t ∈ [t0 − r, t0],

y(t), t ∈ (t0, t0 + β].
(3.16)

Thus, x is the required solution of (2.32). To complete the proof, we show that,

under the assumption in (3.2), the solution x cannot continue along the hypersurface

t = τk(x) when it starts on it. If it were not true, then there would exist some δ > 0

such that t = τk(x(t)) for all t ∈ [t0, t0 + δ]. Thus, it follows that, by differentiating

with respect to t, applying Itô formula, and taking the mathematical expectation,

1 = E[Lτk(x(t))], t ∈ (t0, t0 + δ),

which contradicts assumption (3.2). This completes the proof.

The hypotheses of Theorem 3.1 are generally made to assure that the initial

value problem in (2.32) has a local solution (a.s.) evolving between any two hy-

persurfaces. Particularly, the boundedness condition (3.1) prevents a solution from

exhibiting a finite escape time over any finite interval. While the restriction im-

posed on the hypersurfaces given in (3.2) guarantees that any solution begins on

an arbitrary surface will not evolve along it even after a small period of time.

Under the same hypotheses on the functionals f and g (i.e., almost surely all

guaranteed solutions do not have any finite escape time), a similar existence result

can be extracted from Theorem 3.1, where the impulse moments are all constants as

shown in (2.34). This special result has further use in later chapters when stability

is discussed.

Corollary 3.1. Assume that the functionals f and g satisfy the conditions of

Theorem 3.1. Then, for any t0 ∈ J and φ ∈ L2
F0

([−r, 0] × Ω; Rn), the SISD with
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fixed time impulses in (2.34) has a local solution defined on [t0− r, t0 + β] for some

positive β.

Proof. Since the hypersurfaces are all constants, condition (3.2) holds. Thus, the

desired conclusion follows when Theorem 3.1 is applied.

3.2 Forward Continuation

Having seen how the solution x grows between two hypersurfaces, regardless of

where it initially begins, we are in a position to address the problem of forward

continuation of solution of (2.32) which, at the same time, does not exhibit the

beating phenomenon on an impulse hypersurface. Before establishing the main

theorems of this section, we start with presenting the concept of forward continu-

ation of a solution. Here, we restrict ourselves to the forward, but not backward,

continuation because of the resulting difficulties in considering both the time delay

and impulsive effects. It is also practically meaningful to consider increasing time.

Definition 3.1. Let x and y be solutions of the impulsive stochastic system (2.32)

on the intervals J1 and J2, respectively, where J1 ⊂ J2 and both intervals have the

same closed left endpoints. If x(t) and y(t) are indistinguishable for all t ∈ J1 (i.e.,

x(t) = y(t) (a.s.) ∀ t ∈ J1), then y is said to be a proper forward continuation of x,

or simply continuation of x. In this case, a solution x defined on J1 is said to be

continuable; otherwise, it is said to be noncontinuable and J1 is called the maximal

interval of existence of x.

Before presenting the forward continuation problem (Theorem 3.2), we state

Zorn’s Lemma [Phi84], which will be used in the proof of the theorem.

Zorn’s Lemma. Let (X,≺) be a partially ordered set such that, if for every totally
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ordered subset S of X there exists an element z in X for which z � y for all y ∈ S

(i.e., z is an upper bound of S), then the partially ordered set X has a maximal

element.

Theorem 3.2. Suppose that the functionals f and g satisfy the conditions in

Theorem 3.1, τk ∈ C2(D,R+), for some k = 1, 2, · · · , and the limit limk→∞ τk(x) =

∞ is uniform in x. Assume that

E[Lτk(ψ(0))] < 1, (3.17)

for all (t, ψ) ∈ J × PC([−r, 0],D) and k = 1, 2, · · · . Furthermore, assume that

ψ(0) + I(τk(ψ(0)), ψ) ∈ D,

τk(ψ(0) + I(τk(ψ(0)), ψ)) ≤ τk(ψ(0)) (3.18)

hold almost surely for all ψ ∈ PC([−r, 0],D) for which ψ(0−) = ψ(0) (a.s.) and

for all k = 1, 2, · · · . Then, for every continuable solution x of (2.32), there exists a

continuation y of x that is noncontinuable. Moreover, any solution x of (2.32) can

intersect each impulse hypersurface at most once.

Proof. Let x be any solution of (2.32) that is defined on [t0 − r, t0 + β1) or

[t0 − r, t0 + β1], where 0 < β1 < ∞. Denote by X the set of all solutions x with

their continuations. For any y, z ∈ X, we define the partial ordering ≺ by y ≺ z

if, for almost all ω ∈ Ω, either y = z or z is a continuation of y. Let S be a totally

ordered subset of X. Now for y ∈ S, we associate β(y) such that β1 ≤ β(y) ≤ ∞

and by which the solution y is defined on [t0 − r, t0 + β(y)) or [t0 − r, t0 + β(y)].

Define

β2 = sup{β(y) | y ∈ S}.
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Clearly, β1 ≤ β2 ≤ ∞ and y is defined on a subset of [t0 − r, t0 + β2] if β2 < ∞ or

[t0 − r, t0 + β2) if β2 =∞. At this stage, one considers two cases. The trivial case

is when β2 < ∞ and there is some solution y that is defined on [t0 − r, t0 + β2].

Consequently, this solution y of (2.32) is an upper bound on S and at the same

time it is the required solution continuation. In the other case, we will show that

there is a solution z defined on [t0 − r, t0 + β2) such that, for all y ∈ S, y ≺ z, i.e.,

z will be an upper bound on S. Hence, by Zorn’s lemma, the set X has a maximal

element. For this purpose, for t ∈ [t0 − r, t0 + β2), we define the following function

z(t) = y(t), (a.s.), (3.19)

where y is any solution in S for which t < t0 + β(y). The new function z is well-

defined, it is right-continuous (i.e., z(t+) = z(t) (a.s.)) for all t ∈ [t0 − r, t0 + β2),

the left limit z(t−) exists for all t ∈ (t0 − r, t0 + β2) and z(t−) = z(t) (a.s.) for all

but at most a finite number of points in (t0 − r, t0) [Ball99a]. Moreover, if z has

a finite number of simple jump discontinuities in any finite interval of (t0, t0 + β2),

then z is a solution of (2.32) (i.e., z ∈ PC([t0 − r, t0 + β2)) and Ft-adapted). To

show this is the only possible case, for β2 <∞, define

T = {t ∈ (t0, t0 + β2) | t = τk(z(t−)) for some k}.

Then, except at these points, z(t−) = z(t) (a.s.). We first consider the case where

T is finite. Under the assumptions on f and g, the functions f(t, zt) and g(t, zt) can

only have a finite number of simple jump discontinuities on the interval (t0, t0 +β2)

and, except at these points or at the points of T, the solution z is continuous and

has the solution form given in (2.33). This is because the functions f(t, zt) and

f(t, yt) have the same properties. Thus, if y ∈ PC([t0− r, t0 +β2)) and Ft-adapted,

so is z. A more challenging case is when β2 < ∞ and T has an infinite number

of discontinuities in (t0, t0 + β2). In this case, T has an increasing sequence of
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impulse times T = {tk}∞k=1, where t0 < t1 < t2 < · · · < tk < · · · < t0 + β2 and

limk→∞ tk = t0 +β2. For k = 1, 2, · · · , denote by jk the index of the unique impulse

hypersurface τjk that the solution z reaches at tk, i.e., tk = τjk(z(t−k )). For some

finite integer N > 0, if jk < N , then z can reach only a finite number of impulse

hypersurfaces. Since, as assumed, there is an increasing number of impulse times,

the solution z must reach at least one impulse hypersurface more than once. In

other words, jk = jk+m and hence tk = τjk(z(t−k )) and tk+m = τjk(z(t−k+m)) for some

positive integers k andm (i.e., the hypersurface τjk is being hit at times tk and tk+m).

This also implies that, if y ∈ S, then tk = τjk(y(t−k )) and tk+m = τjk(y(t−k+m)), where

tk+m < t0 + β(y). We will show that, according to our assumptions, this cannot

happen for the solution y to reach the same hypersurface more than once.

For this purpose, for i = 0, 1, 2, · · · ,m, we define

hk+i(t) = t− τjk+i(y(t)), (a.s.), (3.20)

for t ∈ [t0 − r, tk+m]. Note that hk+i(t
−
k+i) = 0 for all i. Suppose for the sake

of contradiction that, for some 0 ≤ i ≤ m − 1, we have jk+i > jk+i+1 and hence

τjk+i(ν) > τjk+i+1
(ν) for all ν ∈ D. This implies [Ball99a]

hk+i+1(tk+i) ≥ 0, (a.s.). (3.21)

On the other hand, differentiating hk+i+1(t) with respect to t, for all t ∈

(tk+i, tk+i+1), applying Itô formula, and taking the mathematical expectation give

D+E[hk+i+1(t)] = 1− E[Lτjk+i+1
(y(t))], (3.22)

for all t ∈ (tk+i, tk+i+1). By (3.17), hki+1(t) is increasing over the interval (tk+1, tk+i+1),

and the fact that hk+i+1(t−k+i+1) = 0, we conclude that hk+i+1(tk+i) < 0 in mean,

which contradicts with what we got in (3.21). Thus, jk+i < jk+i+1 and hence
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jk < jk+1 < · · · < jk+m, which also contradicts with our supposition jk = jk+m.

Therefore, the solution y and hence z must intersect a given impulse hypersurface

at most once in mean. This completes the proof.

In Theorem 3.2, our interest is in a solution, as introduced in Definition 2.17,

intersecting consecutive hypersurfaces either a finite number of times in limited

time period, or countably infinitely many times in an unlimited time period. This

condition is represented by requiring limk→∞ τk(x) =∞ uniformly in x. Moreover,

to prevent the solution from experiencing rhythmical beating phenomenon, the

condition (3.17) must hold.

In the following corollary, we consider SISD with fixed impulsive times (i.e.,

t = τk for all k) and establish the same forward continuation result, i.e., there is

always a maximal interval on which a solution of (2.34) can be defined .

Corollary 3.2. Suppose that the functionals f and g satisfy the conditions of

Theorem 3.1. Also, assume that ψ(0) + I(τk, ψ) ∈ D (a.s.) for all ψ ∈ D for which

ψ(0−) = ψ(0) and for all k = 1, 2, · · · . Then, for every continuable solution x of

(2.34), there exists a continuation y of x that is noncontinuable.

Proof. Since t = τk for all k, the conditions (3.17) and (3.18) hold for all k. Thus,

by Theorem 3.2, it is guaranteed that a solution of (2.34) can be always defined on

a maximal interval of existence.

Before developing the global existence result, we address the case where the

solution is noncontinuable in the sense that the solution cannot be entirely contained

in any compact set.

Theorem 3.3. Let x be a solution of (2.32) that is defined for all t ∈ [t0−r, t0 +β),

where 0 < β < ∞ and [t0, t0 + β] ⊂ J . If x is noncontinuable, then there is a

66



sequence {sk}∞k=1, with t0 < s1 < s2 < · · · < sk < · · · < t0+β and limk→∞ sk = t0+β

(a.s.) such that x(sk) /∈ F , for any compact set F ⊂ D.

Proof. Assume, for contradiction, that there is a compact set F1 ⊂ D and β1 > 0

for which x(t) ∈ F1 for all t ∈ [t0 + β1, t0 + β). Let F2 be the closure of the

range of the solution x when t is restricted to [t0 − r, t0 + β1]. Then, the set

F = F1 ∪ F2 ⊂ D is also compact, and x(t) ∈ F for all t ∈ [t0 − r, t0 + β). Now for

any t, t ∈ [t0 + β1, t0 + β), we have from (2.33)

‖x(t)− x( t )‖ ≤
∥∥∥∫ t

t

f(s, xs)ds
∥∥∥+

∥∥∥∫ t

t

g(s, xs)dW (s)
∥∥∥. (3.23)

Hence,

E
[
‖x(t)− x( t )‖2

]
≤ 2
{

E
∥∥∥∫ t

t

f(s, xs)ds
∥∥∥2

+ E
∥∥∥∫ t

t

g(s, xs)dW (s)
∥∥∥2}

≤ 2
{

[t− t ]

∫ t

t

E‖f(s, xs)‖2ds+

∫ t

t

E‖g(s, xs)‖2ds
}

≤ 2M̃2(|t− t|+ 1) < ε, (3.24)

for some arbitrary ε > 0 and M̃ > 0, which is guaranteed by Theorem 3.1. By

Tchebychev’s inequality, we obtain

P
{
‖x(t)− x(t)‖ > η

}
≤ ε

η2
,

for some η > 0. Then, by Cauchy criterion the limit limt→(t0+β) x(t) exists with

probability one and its limit point, say ζ, is in F . That is the solution x can be

continued by defining x(t0 +β) = ζ. But this contradicts with our supposition that

x is noncontinuable. Thus, the conclusion of the Theorem follows.
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3.3 Global Existence of a Solution

In this section, we address the global existence problem of the solution of (2.32).

Although, in most of the available results concerning global existence of delay or

stochastic systems, the vector fields are assumed to grow linearly to avoid any finite

escape time that a solution may have, in the current results, the functionals f and g

are assumed to be bounded by a nonlinear estimate (of the system state) described

by a continuous increasing concave function κ. Consequently, this requires using

a Bihari’s inequality, a more general result than the well-known Gronwall-type

inequalities.

Theorem 3.4. Suppose that J = R+, D = Rn, the functionals f(t, ψ) ∈ Lad(Ω, L[t0,

t0 +α]) and g(t, ψ) ∈ Lad(Ω, L2[t0, t0 +α]), where α > 0 and [t0, t0 +α] ⊂ J , and are

continuous in ψ. Assume further that there are two measurable functions h1, h2 (or

h1, h2 ∈ PC(R+,R+)) and a continuous increasing concave function κ : R+ → R+

such that

‖f(t, ψ)‖2 ∨ ‖g(t, ψ)‖2 ≤ h2
1(t) + h2

2(t)κ(‖ψ‖2
r), (a.s.), (3.25)

for all (t, ψ) ∈ R+ × L2
Ft([−r, 0]; Rn) (i.e., ψ is an Ft-adapted piecewise continuous

and E[‖ψ‖2
r] < ∞). Then, for each (t, φ) ∈ R+ × L2

F0
([−r, 0],Rn), there exists a

local Ft-adapted solution x = x(t, t0, φ(0)) for (2.32) that can be continued to

[t0 − r,∞).

Proof. For all (t, φ) ∈ R+ × L2
F0

([−r, 0],Rn), let x = x(t, φ(0)) be a local solution

of (2.32) that is guaranteed by Theorem 3.2. Assume, for contradiction, that for

finite β the solution x is noncontinuable in the sense of Theorem 3.3. We will show

that, according to our assumptions, this is not possible.

Let a = E[‖φ(0)‖2] + E
[(∑

{k:tk∈(t0,t]}

∥∥∥I(tk, xt−k
)
∥∥∥)2]

, b = (β + 1)β~2, where
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~ = sup{h1(t) | ∀t ∈ [t0, t0 + β]}, and c = E[‖φ‖2
r].

Then, for all t ∈ (t0, t0 + β),

E[‖x(t)‖2] ≤ 4
{

E[‖φ(0)‖2] + E
[( ∑
{k:tk∈(t0,t]}

∥∥∥I(tk, xt−k
)
∥∥∥)2]

+ β

∫ t

t0

E‖f(s, xs)‖2ds

+

∫ t

t0

E‖g(s, xs)‖2ds
}

≤ 4
{
a+ b+ (β + 1)

∫ t

t0

h2
2(s)κ(E[‖xs‖2

r])ds
}
,

which implies that

E[‖xt‖2
r] ≤ c+ 4(a+ b) + 4(β + 1)

∫ t

t0

h2
2(s)κ(E[‖xs‖2

r]) ds

= B + 4(β + 1)

∫ t

t0

h2
2(s)κ(E[‖xs‖2

r]) ds,

where B = c+ 4(a+ b). Using Bihari’s Lemma [Bih56, Mao94] yields

E[‖xt‖2
r] ≤ G−1

(
G(B) + 4(β + 1)

∫ t

t0

h2
2(s)ds

)
,

where

G(u) =

∫ u

0+

ds

κ(s)
, u > 0,

and G(B) + 4(β + 1)
∫ t
t0
h2

2(s)ds ∈ Dom(G−1). If B → 0, then G(B) → −∞, and

hence G−1 → 0. Namely, if B → 0, E[‖xt‖2
r] ≤ 0 <∞.

Hence E[‖x(t)‖2] < ∞. This contradicts with that x is noncontinuable. Thus,

the solution must be bounded when t → (t0 + β)− and the global existence result

follows. This completes the proof.

We should remark that, in Theorem 3.4, due to the generality of condition

(3.25), we have excluded the time varying bound m on f and g. In fact, one can
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easily show this inclusion, because κ is continuous and hence bounded by a constant

on any compact set containing x.

If one considers SISD with fixed impulses, i.e., system (2.34), then a similar

result can be obtained, as shown in the next corollary; the proof is a direct result

from Corollary 3.2 and hence Theorem 3.1.

Corollary 3.4. Suppose that J = R+, D = Rn, the functionals f(t, ψ) ∈

Lad(Ω, L[t0, t0+α]) and g(t, ψ) ∈ Lad(Ω, L2[t0, t0+α]), where α > 0 and [t0, t0+α] ⊂

J , and are continuous in ψ. Assume further that there are two measurable func-

tions h1, h2 (or h1, h2 ∈ PC(R+,R+)) and a continuous increasing concave function

κ : R+ → R+ such that ‖f(t, ψ)‖2 ∨ ‖g(t, ψ)‖2 ≤ h2
1(t) + h2

2(t)κ(‖ψ‖2
r) (a.s.), for

all (t, ψ) ∈ R+ × L2
Ft([−r, 0],Rn) (i.e., ψ is Ft-adapted piecewise continuous and

E[‖ψ‖2
r] < ∞). Then, for each (t, φ) ∈ R+ × L2

F0
([−r, 0],Rn), there exists a local

Ft-adapted solution x = x(t, t0, φ(0)) for (2.34) (i.e., systems with fixed impulses)

that can be continued to [t0 − r,∞).

Finally, we end the main contribution of this chapter by stating a sufficient

condition on the functionals f and g to assure that the system (2.32) has a unique

solution. Among these conditions is the Lipschitz condition.

Lipschitz condition. A functional f is said to satisfy Lipschitz condition if there

exists a positive constant L such that

‖f(t, ψ1)− f(t, ψ2)‖ ≤ L‖ψ1 − ψ2‖r, ∀t ∈ [0, T ], T > 0,

for all ψ1, ψ2 in some compact set F ⊂ D where D ⊂ Rn is an open subset.

Theorem 3.5. Suppose that the assumptions of Theorem 3.4 hold. Also, assume

that the functionals f(t, ψ) and g(t, ψ) are locally Lipschitz in ψ. Then, system
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(2.32) has a unique solution defined on [t0 − r, t0 + β), where 0 < β ≤ ∞ and

[t0, t0 + β) ⊂ J .

Proof. For all t ∈ [t0 − r, t0 + β), let x = x(t, t0, φ(0)) and y = y(t, t0, φ(0))

be two solutions of (2.32) such that x 6≡ y (a.s.), for contradiction. This in turn

implies that there is some t ∈ (t0, t0 + β) such that x(t) 6= y(t) (a.s.). Define the

stopping time t1 = inf{t ∈ (t0, t0 + β) |x(t) 6= y(t)}. If t1 is not an impulsive time

(i.e., t1 6= τk(x(t−1 )) or equivalently t1 6= τk(y(t−1 )) for all k), then x(t1) = x(t−1 ) =

y(t−1 ) = y(t1) (a.s.); otherwise, x(t1) = x(t−1 )+I(t1, xt−1 ) = y(t−1 )+I(t1, yt−1 ) = y(t1).

Therefore, in both cases we have x(t1) = y(t1) (a.s.). Let ε > 0 be sufficiently small

such that t1 + ε < t0 + β and the solutions x and y do not reach any hypersurface

over (t1, t1 + ε]. Let δ > 0 be a sufficiently small number such that δ < ε and

δ(δ+1)L2 ≤ 1
4
, where L > 0, such that ‖f(t, ψ1)−f(t, ψ2)‖∨‖g(t, ψ1)−g(t, ψ2)‖ ≤

L‖ψ1−ψ2‖r, for all t ∈ [t0, t1 + ε] and all ψ1, ψ2 in some compact set F ⊂ D where

D is an open subset of Rn. Then for all t ∈ [t1, t1 + δ], we have from (2.33)

E[‖x(t)− y(t)‖2] = 2
{

E
∥∥∥∫ t

t1

(f(s, xs)− f(s, ys)) ds
∥∥∥2

+ E
∥∥∥∫ t

t1

(g(s, xs)− g(s, ys)) dW (s)
∥∥∥2}

≤ 2
{
δ

∫ t

t1

E‖f(s, xs)− f(s, ys))‖2 ds

+

∫ t

t1

E‖g(s, xs)− g(s, ys))‖2 ds
}

≤ 2(δ + 1)

∫ t

t1

E[L2‖xs − ys‖2
r] ds

≤ 2(δ + 1)L2

∫ t

t1

sup
u∈[t1,s]

E‖x(u)− y(u)‖2ds

≤ 2(δ + 1)L2

∫ t1+δ

t1

sup
u∈[t1,t1+δ]

E‖x(u)− y(u)‖2ds
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≤ 2(δ + 1)L2δ sup
u∈[t1,t1+δ]

E‖x(u)− y(u)‖2

≤ 1

2
sup

u∈[t1,t1+δ]

E‖x(u)− y(u)‖2

for all t ∈ [t1, t1+δ]. The last inequality implies that sup[t1,t1+δ] E[‖x(t)−y(t)‖2] = 0.

Since x and y are continuous functions for all t ∈ [t1, t1 + δ], then

P
{

sup
[t1,t1+δ]

‖x(t)− y(t)‖ > 0
}

= 0, (3.26)

which implies that x(t) = y(t) (a.s.) for all t ∈ [t1, t1 + δ] [Gard88]. But this

contradicts with our supposition that x 6≡ y. Thus, it must be true that (2.32) has

a unique solution. This completes the proof.

Considering SISD with fixed impulses, one can get the same uniqueness result,

as the next corollary tells us. This proof is straightforward, thus it is omitted here.

Corollary 3.5. Assume that the SISD (2.34) satisfies the conditions of Theorem

3.5. Then, there exists a unique solution for (2.34) that is defined on [t0−r, t0 +β),

where 0 < β ≤ ∞ and [t0, t0 + β) ⊂ J .

3.4 Conclusion and Comments

A general nonlinear stochastic impulsive system with time delay, experiencing im-

pulsive effects at variable times, was introduced in this chapter. We established a

local existence result of stochastic systems over a space of piecewise continuous and

Ft-adapted functions. We should mention that, in proving the equicontinuity prop-

erty of the solution sequence, one may get the same result by following another, but

lengthy, approach and then employing Kolmogorov’s Theorem for continuity. As

mentioned earlier, the proof of the convergence of sequence of SIEs is inspired by
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that of Theorem 4.2.1 in [Lad80]; one can prove the same convergence result if the

functionals satisfy Lipschitz condition. We also showed that, by imposing a further

condition on the impulsive hypersurface, solutions leave this surface in mean. Due

to some technical difficulties in backward extending a given solution of an impulsive

system with or without time delay, we focused on forward continuation. We also

showed that, under some conditions on the impulse function and impulses, solutions

do not exhibit rhythmical beating upon a hypersurface. Supposing that the drift

and diffusion coefficients are bounded by some nonlinear estimate, a global result

has been achieved. One can get the same result if the coefficients are assumed to

grow linearly. Finally, a unique solution was guaranteed if Lipschitz condition is

imposed on the coefficients.

73



Chapter 4

Stability Properties for SISD

This chapter is devoted to establishing some stability properties of SISD with fixed

impulses (2.34). In analyzing these results, we adopt two approaches, namely, an

(ε, δ)-based and comparison principle techniques. In both cases, the interest is

to develop Lyapunov-type sufficient conditions to assure the qualitative proper-

ties in the m.s., employing Razumikhin technique. Conventionally, in Razumikhin

methodology, we consider Lyapunov functions V (t, ψ(0)) for all t ≥ 0, but not

functionals V (s, ψ(s)) for all s ∈ [t−r, t], and examine their time derivatives, along

the system trajectories, which are required to be non-positive or strictly negative

for all the time whenever V (t, ψ(0)) is sufficiently larger than V (s, ψ(s)) for all

s ∈ [t− r, t]. The material of this chapter forms the basis of [Alw-a, Alw-b].

For convenient reading, we consider again the SISD with fixed impulses

dx(t) = f(t, xt)dt+ g(t, xt) dW (t), t 6= τk, (4.1a)

∆x(t) = I(t, xt−), t = τk, (4.1b)

xt0(s) = φ(s), s ∈ [−r, 0], (4.1c)

74



where f and g satisfy the existence of a unique solution conditions in Corollary 3.5.

We should keep in mind that the solution x of interest is Ft-adapted and belongs

to PC([t0 − r, t0 + α];D) for some α > 0 and open subset D ⊂ Rn. For the system

to possess a trivial solution x(t) ≡ 0 ∈ D, we assume that f(t, 0) = 0 ∈ Rn and

g(t, 0) = 0 ∈ Rn×m for all t ∈ R+ and I(τk, 0) = 0 ∈ Rn for all τk ∈ T.

Before analyzing the stability results of the trivial solution of (4.1), we introduce

some assumptions and definitions that will be used in this chapter.

Definition 4.1. S(%) = {z ∈ Rn
∣∣ ‖z‖ ≤ % (a.s.), % > 0}.

To guarantee that the solution stays bounded (in the m.s.) after impulsive

actions being applied, we assume the following:

Assumption A1. There exist 0 ≤ %1 ≤ % such that, for all τk ∈ T and x defined

on PC([−r, 0];D), if

E[‖x(τ−k )‖2] < %1, then E[‖x(τk)‖2] < %.

We also assume that the impulsive moments satisfy the following assumption.

Assumption A2. For any k ∈ N, we have

τsup = sup{τk − τk−1} <∞ and τinf = inf{τk − τk−1} > 0.

In the following definition, we present some function classes that will be used

throughout this thesis.

Definition 4.2. A function α is said to belong to class-K1 if it is a class-K and

convex; it is said to belong to class-K2 if it is a class-K and concave; it is said to

belong to class-K3 if it belongs to C(R+; R+) such that α(0) = 0, α(s) > 0 for all

s > 0 and it is nondecreasing.
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In the following we state the concepts of m.s. stability of (4.1).

Definition 4.3. Let φ ∈ L2
F0

([−r, 0],D) and x(t) = x(t, t0, φ), with x ∈ PC([t0 −

r, t0 +α];D) for some α > 0, be a solution of (4.1). Then, the trivial solution x ≡ 0

is said to be

(i) stable in the m.s., if for every ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0

such that

E[‖φ‖2
r] ≤ δ implies E[‖x(t)‖2] < ε, ∀t ≥ t0;

(ii) uniformly stable in the m.s., if δ in (i) is independent of t0;

(iii) asymptotically stable in the m.s., if it is stable and for any t0 ∈ R+, there

exists η = η(t0) > 0 such that

E[‖φ‖2
r] ≤ η implies lim

t→∞
x(t) = 0;

(iv) uniformly asymptotically stable in the m.s., if it is uniformly stable in the

m.s. and there exists some η > 0 such that, for every γ > 0, there exists

T = T (η, γ) > 0 for which

E[‖φ‖2
r] ≤ η implies E[‖x(t)‖2] < γ, ∀t ≥ t0 + T ;

(v) unstable in m.s. if (i) fails to hold.

4.1 Analysis by a Scalar Lyapunov Function: (ε, δ)-

based Approach

This section deals with establishing m.s. stability properties of (4.1) using (ε, δ)-

based Lyapunov theorems together with Razumikhin technique. Generally, we
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will assume that the continuous system has m.s. stable (or asymptotically stable)

trivial solution and the impulses tend to be thought of as small perturbation. The

interest is to develop sufficient conditions such that the impulsive system retains

the qualitative properties.

Theorem 4.1. Assume that the conditions of Corollary 3.5 and Assumptions A1

and A2 are satisfied, and there exist functions a ∈ K2, b ∈ K1, and a constant

dk ≥ 0 with d =
∑∞

k=1 dk < ∞. Suppose that V ∈ C1,2
(
[−r,∞) × S(%)

)
; R+

)
satisfies

(i) for all (t, ψ(0)) ∈ [−r,∞)× S(%),

b(‖ψ(0)‖2) ≤ V (t, ψ(0)) ≤ a(‖ψ(0)‖2), (a.s.);

(ii) for all t 6= τk in R+ and ψ ∈ PC
(
[−r, 0];S(%)

)
,

LV (t, ψ) ≤ 0, (a.s.),

provided that V (t + s, ψ(s)) ≤ q(V (t, ψ(0))) for some s ∈ [−r, 0], where q is

a class-K3 function;

(iii) at any impulsive moment τk ∈ T and ψ ∈ PC
(
[−r, 0];S(%)

)
,

V (τk, ψ(0) + I(τk, ψ(τ−k ))) ≤ α(dk)V (τ−k , ψ(0)), (a.s.),

with ψ(0−) = ψ(0), where (τk, ψ(τ−k )) ∈ R+×PC
(
[−r, 0];S(%1)

)
,
∏∞

k=1 α(dk) <

∞, and α(dk) > 1∀k.

Then, the trivial solution x ≡ 0 is uniformly stable in the m.s.

Proof. From condition (i), we have for s ∈ [0, %], b(s) ≤ a(s); so that we can

find two functions b̂ ∈ K1 and â ∈ K2 such that b̂(s) ≤ b(s) ≤ a(s) ≤ â(s) for all
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s ∈ [0, %]. This implies

b̂(‖ψ(0)‖2) ≤ V (t, ψ(0)) ≤ â(‖ψ(0)‖2), (a.s.),

for all t ∈ R+ and ψ ∈ PC
(
[−r, 0];S(%)

)
.

Let x(t) = x(t, t0, φ) be the unique solution of system (4.1), and 0 < ε ≤ %1.

Define d =
∏∞

k=1 α(dk). Then, 1 ≤ d <∞ because d <∞. Choose δ = δ(ε) so that

δ < â−1
(
b̂(ε)/d

)
and clearly 0 < δ < ε.

Let t0 ∈ [τl−1, τl) for some positive integer l and φ for which E[‖φ‖2
r] ≤ δ.

We claim that the trivial solution is uniformly stable in the m.s. If our claim

were not true, there would exist ts such that, for all t ∈ [t0 − r, ts), we have

E[‖x(t)‖2] < ε < %1,

and either

E[‖x(ts)‖2] = ε,

which implies that

E[‖x(ts)‖2] = E[‖xts‖2
r] = ε,

or

ε < E[‖x(ts)‖2], where ts = τk for some k,

and by Assumption A1,

ε < E[‖x(ts)‖2] < %

since E[‖xts−‖2] ≤ ε < %1. Thus, in either case, V (t, x(t)) is defined for t ∈ [t0, t
s].
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Moreover, from assumption (ii), we have

LV (t, xt) ≤ 0.

Applying the Itô formula to the process V (t, x(t)) for t ∈ [t0, t
s] and taking the

mathematical expectation yield

E[V (t, x(t))] ≤ E[V (s, x(s))] + E
∫ t

s

LV (u, xu)du, ∀ t0 ≤ s ≤ t ≤ ts

≤ E[V (s, x(s))].

Define m(t) = E[V (t, x(t))] for all t ∈ [t0, t
s]. Then,

D+m(t) = lim
h→0+

1

h
[m(t+ h)−m(t)] ≤ 0,

that is, the function m(t) is non-increasing for all t ∈ (t0, t
s] between the impulse

moments.

By the condition in (iii), we have

m(τk) ≤ α(dk)m(τ−k ), ∀ t ∈ (t0, t
s].

Since m(t) = E[V (t, x(t))] ≤ E[V (s, x(s))] = m(s), m(t) is non-increasing for all

t ∈ [t0, t
s] between impulses. If ts ∈ (t0, tl), then

b̂(E[‖x(ts)‖2]) ≤ m(ts) ≤ m(t0) < â(δ) <
b̂(ε)

d
≤ b̂(ε).

On the other hand, let ts ∈ [τk, τk+1) for some k ≥ l. In this case we have,

m(ts) ≤ m(τk), because m is nonincreasing ∀ t ≤ ts, (4.2)

m(τ−k ) ≤ m(t0) < â(δ), (4.3)

m(τ−i ) ≤ m(τi−1), i = l + 1, l + 2, · · · , k, (4.4)

m(τi) ≤ α(di)m(τ−i ), i = l, l + 1, l + 2, · · · , k. (4.5)
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By (4.5), we have

m(τi) ≤ α(di)m(τ−i )

≤ α(di)m(τi−1) by (4.4)

≤ α(di)α(di−1)m(τ−i−1) by (4.5)

...

≤
l∏

i=1

α(di)m(t0)

m(τi) ≤ dm(t0) ≤ d â(δ). by (4.2)

Namely, m(τi) ≤ d â(δ), which implies that

m(ts) ≤ m(τi) ≤ d â(δ),

where the first inequality is from (4.2). We also have

b̂(ε) < b̂(E‖x(ts)‖2) ≤ m(ts) < d â(δ) < b̂(ε).

This is a contradiction. It turns out that x ≡ 0 is uniformly stable in m.s. This

completes the proof.

In the existence and uniqueness results, we have assumed that the vector field

functionals f and g are bounded above by a time varying integrable random func-

tion m over a compact segment of R+. To prove asymptotic stability, we need to

strengthen our boundedness assumption on f and g to be valid over R+.

Definition 4.4. A functional f : R+ × PC([−r, 0];D)→ Rn is said to be strongly

quasi-bounded in the m.s. if, for each compact set F ⊂ D ⊂ Rn, there exists a pos-

itive constant M such that E[‖f(t, ψ)‖2] ≤M for all (t, ψ) ∈ R+ × PC
(
[−r, 0];F

)
.
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In the next theorem, we address the m.s. asymptotic stability result for (4.1).

This qualitative property requires strengthening the infinitesimal diffusion operator

L to be bounded above by a strictly negative estimate.

Theorem 4.2. Assume that the assumptions of Corollary 3.5 and A1 and A2 are

satisfied, the functionals f and g are strongly quasi-bounded in m.s., there exist

functions a ∈ K2, b, c ∈ K1, and a constant dk ≥ 0 with d =
∑∞

k=1 dk < ∞. Let

V ∈ C1,2
(
[−r,∞)× S(%)

)
; R+

)
satisfy

(i) assumptions (i) and (iii) of Theorem 4.1;

(ii) for all t 6= τk ∈ R+ and ψ ∈ PC
(
[−r, 0];S(%)

)
,

LV (t, ψ) ≤ −c(‖ψ(0)‖2), (a.s.),

provided that V (t + s, ψ(s)) ≤ q(V (t, ψ(0))) for some s ∈ [−r, 0], where q is

a class-K3 function.

Then, the trivial solution x ≡ 0 of (4.1) is uniformly asymptotically stable in the

m.s.

Proof. Let ĉ ∈ K1 such that ĉ(s) ≤ c(s) for all s ∈ R+. Given any 0 < ε ≤ %1. Let

δ = δ(ε) be the constant of uniform stability in the m.s. defined in Theorem 4.1.

Choose a number N > 0 such that N > m̂0dc̄
−1
(

1
5
[δ2 − δ( δ

4M
+ 1)]

)
4M
δ

.

Suppose that a solution x = x(σ, φ) with E[‖φ‖2] < δ2

3
satisfies E[‖xt‖2

r] ≥ δ2

3

for any t ≥ σ.

Assume that each interval of length r contains a tk such that E[‖x(tk)‖2] ≥ δ2

3
.

Then, there exists a sequence {tk} such that

σ + (2k − 1)r ≤ tk ≤ σ + 2kr, k = 1, 2, · · · ,
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and

E[‖x(tk)‖2] ≥ δ2

3
,

which implies that E[‖xtk‖2
r] ≥ δ2

3
.

Integrating the stochastic differential equation (4.1a) over [tk, tk + δ
4M

] yields

x(t) = xtk +

∫ tk+ δ
4M

tk

f(t, xt)dt+

∫ tk+ δ
4M

tk

g(t, xt)dW (t),

from which we get

E[‖x(t)‖2] ≤ 3E[‖xtk‖2
r] + 3

δ

4M

∫ tk+ δ
4M

tk

E‖f(t, xt)‖2dt+ 3

∫ tk+ δ
4M

tk

E‖g(t, xt)‖2dt,

which gives

E[‖x(t)‖2]− 3E[‖xtk‖2
r] ≤

3

4

δ

M
M

δ

4M
+ 3M

δ

4M
,

i.e.,

E[‖x(t)‖2]− 3E[‖xtk‖2
r] < δ(

δ

4M
+ 1). (4.6)

Since we have assumed that E[‖xtk‖2
r] ≥ δ2

3
, then−E[‖xtk‖2

r] ≤ − δ2

3
or−3E[‖xtk‖2

r] ≤

−δ2. By adding 5E[‖x(t)‖2] to the both sides of the last inequality, we get

5E[‖x(t)‖2]− 3E[‖xtk‖2
r] < 5E[‖x(t)‖2]− δ2. (4.7)

From (4.6) and (4.7), we obtain

0 ≤ 6(E[‖x(t)‖2]− E[‖xtk‖2
r]) ≤ 5E[‖x(t)‖2]− δ2 + δ(

δ

4M
+ 1),

which gives

E[‖x(t)‖2] ≥ 1

5
[δ2 − δ( δ

4M
+ 1)] > 0, provided that δ > (

δ

4M
+ 1),
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from which we have

−c̄
(
E[‖x(t)‖2]

)
≤ −c̄

(1

5
[δ2 − δ( δ

4M
+ 1)]

)
.

Therefore, for t ∈ [tk, tk + δ
4M

], we have

E[LV (t, xt)] ≤ −ĉ
(
E[‖x(t)‖2]

)
≤ −ĉ

(1

5
[δ2 − δ( δ

4M
+ 1)]

)
.

By Itô’s formula, we have

E[V (t, x(t))] ≤ E[V (tk, x(tk))] + E
∫ tk+ δ

4M

tk

LV (t, xt)dt

≤ E[V (tk, x(tk))]− ĉ
(1

5
[δ2 − δ( δ

4M
+ 1)]

) δ

4M
,

or

m(t) ≤ m(tk)− ĉ
(
δ2 − δ( δ

4M
+ 1)

) δ

4M
,

where m(t) = E[V (t, x(t))], i.e., the function m decreases by ĉ
(

1
5
[δ2 − δ( δ

4M
+

1)]
)

δ
4M

> 0 over the interval [tk, tk + δ
4M

].

To investigate the overall behaviour of the function m(t) for all t ≥ t0, we define

a new function, say m̂, as follows

m̂(t) =


m(t), t ∈ [t0, tl),[∏i

k=l α(dk)
]−1

m(t), t ∈ (ti, ti+1), i = l, l + 1, · · · .

This shows that the function m̂ decreases by d −1ĉ
(

1
5
[δ2 − δ( δ

4M
+ 1)]

)
δ

4M
> 0 over

the interval [tk, tk + δ
4M

] or [tk − δ
4M
, tk], where d̄ =

∏i
k=l α(dk). This implies that

m̂(t0 + T ) ≤ m̂(t0)−Nd −1c̄
(1

5
[δ2 − δ( δ

4M
+ 1)]

) δ

4M
.
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By our assumptions and choice of N , we conclude that

m̂(t0 + T ) ≤ a(%1)−Nd −1c̄
(1

5
[δ2 − δ( δ

4M
+ 1)]

) δ

4M
< 0,

which is a contradiction. Thus, it must be true that, under our assumptions,

E[‖x(t)‖2] < ε for all t ≥ t0, i.e., the trivial solution of (4.1) is uniformly asymp-

totically stable in the m.s. This completes the proof.

Assumptions (i) and (ii) in Theorem 4.1 and assumption (ii) and the first part

of (i) in Theorem 4.2 are made to ensure that the Lyapunov function V is non-

increasing and strictly decreasing, respectively, in the m.s., which implies that the

continuous system is m.s. uniformly stable and asymptotically stable, respectively.

To assure that the overall behaviour of V decreases for all time, we assume that

V is non-increasing at the impulsive moments, because, otherwise, the reduction

of V may not compensate the jump increases. This condition is summarized in

assumption (iii) in Theorem 4.1 (and the second part of (i) in Theorem 4.2). We

should also mention that the strongly quasi boundedness condition on f and g can

be dropped if the upper bound of the operator L in Theorem 4.2 is replaced by the

stronger condition

(ii)′ for all t 6= τk and ψ ∈ PC([−r, 0];S(%)), LV (t, ψ) ≤ −c(V (t, ψ(0))), (a.s.),

provided that V (t+ s, ψ(s)) ≤ q(V (t, ψ(0))) for some s ∈ [−r, 0] and q ∈ K3.

Furthermore, it is obvious that these two theorems do not impose any restriction

on the time delay. This makes our results efficient to delay differential equations.

Example 4.1. Consider the following impulsive system

dx =
(
− 4x+ x(t− 1)e−|x|

)
dt− 0.1 sinx(t− 1)dW, t 6= τk,

∆x(t) =
1

k2
xt− , t = τk, k = 1, 2, · · · .
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Define V (x) = x2 as a Lyapunov function candidate. Then, one can easily show

that LV (x) ≤ −c(x) < 0 with q = 2, where c(s) = 3s2. At t = τk, we have

|x(τk)| = |x(τ−k ) +
1

k2
xτ−k
| ≤ |x(τ−k )|+

√
2

k2
|x(τ−k )| ≤ (1 +

√
2

k2
)|x(τ−k )|,

and from which we have V (x(τk)) ≤ α(dk)V (x(τ−k )), where α(dk) = (1 +
√

2dk)
2

and dk = 1
k2 . We also have %1 < %/(1 +

√
2dk). Choose a(s) = b(s) = s2. Thus, the

assumptions of Theorems 4.1 and 4.2 are satisfied, i.e., the trivial solution x ≡ 0 is

asymptotically stable in the m.s. The simulation result of this example is shown in

Figure 4.1.

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

t

E
[x

(t
)]

Figure 4.1: First moment asymptotic stability of x ≡ 0.

4.2 Analysis by Comparison Principle

The focus of this section is to develop a comparison principle for the SISD with

fixed impulses (4.1) and then, by utilizing this technique, we establish some m.s.
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stability properties of this system. Generally, the approach of comparison principle

enables one to compare multivariable systems with a single variable system and

hence the features of the latter system imply the corresponding features of the

compared systems. As in the previous section, we employ Razumikhin methodology

to write Lyapunov-like sufficient conditions guaranteeing the stability results. For

further reading about the comparison principle of stochastic ordinary systems with

impulsive differential equations, one may consult [Liu08].

Theorem 4.3. Assume that the assumptions of Corollary 3.5 and A1 and A2 are

satisfied, and there exists a class-K2 function a. Let V ∈ C1,2
(
[−r,∞)×S(%)

)
; R+

)
satisfy

(i) V (t, ψ(0)) ≤ a(‖ψ(0)‖2) ≤ a(‖ψ‖2
r), (a.s.), ∀(t, ψ(0)) ∈ [−r,∞)× S(%);

(ii) LV (t, ψ(t)) ≤ h(t, V (t, ψ(0))), (a.s.), ∀t 6= τk and ψ ∈ PC
(
[−r, 0];S(%)

)
provided that V (t+ s, ψ(s)) ≤ q(V (t, ψ(0))) for all s ∈ [−r, 0], with q being a

class-K3 function, where h : R+ × R+ → R is continuous on [τk−1, τk), h(t, z)

is concave in z for any t ∈ R+, and, for each x ∈ Rn and k ≥ 1,

lim
(t,y)→(τ−k ,x)

h(t, y) = h(τ−k , x)

exists;

(iii) ∀ τk ∈ T and ψ ∈ PC
(
[t0 − r,∞);S(%)

)
,

V (τk, ψ(0) + I(τk, ψ(τ−k ))) ≤ αk(V (τ−k , ψ(0−))), (a.s.),

where ψ(0−) = ψ(0), (τk, ψ(τ−k )) ∈ R+ × PC
(
[−r, 0];S(%1)

)
, and αk : R+ →

R+ is a non-decreasing, concave function;
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(iv) the scalar impulsive system
D+v(t) = h(t, v(t)), t 6= τk,

v(t) = αk(v(t−)), t = τk,

v(t0) = v0 ≥ 0

(4.8)

has a maximal solution r(t) = r(t, t0, v0).

Then, E[V (t0, x0)] < v0 implies E[V (t, x(t))] < r(t) for all t ≥ t0.

Proof. Let x(t) = x(t, t0, φ) be any solution of system (4.1). We have from (i)

E[V (t, x(t))] ≤ E[a(‖x(t)‖2)] ≤ a(E[‖x(t)‖2]) <∞.

Also, by Itô formula and condition (ii), we have, for all t ∈ [τk−1, τk),

E[V (t, x(t))] = E[V (τk−1, x(τk−1)] + E
∫ t

τk−1

LV (s, xs)ds

≤ E[V (τk−1, x(τk−1)] +

∫ t

τk−1

E[h(s, V (s, x(s)))]ds

≤ E[V (τk−1, x(τk−1)] +

∫ t

τk−1

h(s,E[V (s, x(s))])ds,

and from which we get

D+m(t) ≤ h(t,m(t)), t 6= τk,

where m(t) = E[V (t, x(t))] for all t ∈ [τk−1, τk). At the impulsive moments, we have

from condition (iii), m(τk) ≤ αk(m(τ−k )). Namely, we have
D+m(t) ≤ h(t,m(t)), t 6= τk,

m(t) ≤ αk(m(t−)), t = τk,

m(t0) = E[V (t0, x0)].
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Therefore, comparing with (4.8) leads to

m(t) = E[V (t, x(t))] < r(t) = v(t), ∀t ≥ t0.

This completes the proof.

In this following, we make use of this comparison result to show how the stability

properties of the scalar impulsive system (4.8) imply those of the SISD (4.1).

Theorem 4.4. Assume that the conditions of Corollary 3.5 and Assumptions A1

and A2 hold, and there exist functions a ∈ K2 and b ∈ K1. Assume further that

V ∈ C1,2
(
[−r,∞)× S(%)

)
; R+

)
satisfies

(i) for all (t, ψ(0)) ∈ [−r,∞)× S(%),

b(‖ψ(0)‖2) ≤ V (t, ψ(0)) ≤ a(‖ψ(0)‖2), (a.s.);

(ii) for all t 6= τk and ψ ∈ PC
(
[−r, 0];S(%)

)
,

LV (t, ψ(t)) ≤ h(t, V (t, ψ(0))), (a.s.),

provided that V (t + s, ψ(s)) ≤ q(V (t, ψ(0))) with s ∈ [−r, 0], where q is a

class-K3 function, h : R+ ×R+ → R is continuous in its variables, h(t, 0) = 0

and h(t, z) is concave in z for any t ∈ R+, and, for each x ∈ Rn and k ≥ 1,

lim
(t,y)→(τ−k ,x)

h(t, y) = h(τ−k , x)

exists;

(iii) ∀ τk ∈ T and ψ ∈ PC
(
[−r, 0];S(%)

)
,

V (τk, ψ(0) + Ik(τk, ψ(τ−))) ≤ αk(V (τ−k , ψ(0−))), (a.s.),

where ψ(0−) = ψ(0), (τk, ψ(τ−k )) ∈ R+ × PC
(
[−r, 0];S(%1)

)
, and αk : R+ →

R+ is a non-decreasing, concave function and αk(0) = 0.
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Then, the stability properties of the scalar impulsive system (4.8) imply the corre-

sponding properties of (4.1).

Proof. Let 0 < ε < %1 < %, and t0 ∈ R+. Assume that the comparison system is

stable. So that, for given b(ε) > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such

that

v0 < δ implies v(t, t0, v0) < b(ε), ∀t ≥ t0,

where v(t, t0, v0) is any solution of the comparison system.

Choose v0 = a(‖φ‖2
r) and δ1 = δ1(ε) > 0 for which a(δ1) < b(ε). Define

δ̂ = min{δ, δ1}. We claim that, if E[‖φ‖2
r] ≤ δ̂, then

E[‖x(t)‖2] < ε, ∀t ≥ t0.

If our claim were not true, there would be a t̄ ∈ [τk, τk+1) for some k such that

ε ≤ E[‖x(t̄)‖2],

and

E[‖x(t)‖2] < ε, ∀ t ∈ [τk, t̄).

Also, this together with Assumption A1, i.e., E[‖x(τ−k )‖2] < ε < %1 and

E[‖x(τk)‖2] = E[‖x(τ−k ) + I(τk, xτ−k
)‖2] < %,

implies the existence of a t such that τk < t ≤ t̄ satisfying

ε < E[‖x(t)‖2] < %.

Define m(t) = E[V (t, x(t))] for all t ∈ [t0, t]. By Theorem 4.3, we get

m(t) < r(t, t0, a(E[‖φ‖2
r])), ∀ t ∈ [t0, t],
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where r(t, t0, a(E[‖φ‖2
r])) is the maximal solution of the scalar comparison system.

Finally, by condition (i), we obtain

b(ε) ≤ m(t) = E[V (t, x(t))] ≤ r(t, t0, a(E[‖φ‖2
r])) ≤ r(t, t0, a(δ)) < b(ε),

which contradicts with our supposition. Therefore, it must be true that

E[‖x(t)‖2] < ε, ∀ t ≥ t0.

As for the uniform property, it suffices to choose δ independent of t0.

To prove the uniform attractivity, we choose 0 < η < %1 < %. Assume that the

comparison system is uniformly attractive, i.e., for a given b(η) > 0, there exist

δ > 0 and a constant T = T (η) > 0 such that

v0 ≤ δ implies v(t, t0, v0) < b(η), ∀ t ≥ t0 + T.

Following the argument used in proving the stability property, we obtain

b(E[‖x(t)‖2]) ≤ v(t, t0, v0) < b(η), ∀ t ≥ t0 + T,

i.e., the system (4.1) is uniformly attractive in the m.s., which leads to the m.s.

uniformly asymptotic stability property of x ≡ 0. This completes the proof.

We should remark that, using the efficient comparison principle, our theorem

does not impose any restriction on the stability of continuous system. That is to

say, as will be seen in the next corollary, the impulsive effects can have a stabilizing

role even when the underlying continuous system is unstable. The requirement in

this circumstance is that the impulses applied to the system be small enough to

reduce the growth of the continuous part.

Corollary 4.1. In Theorem 4.4, assume that there exists a piecewise constant

function p : R+ → R+ and a class-K2 function c such that, for any (t, ψ(0)) ∈

90



R+ × PC([t− r,∞);S(%)),

h(t, V (t, ψ(0))) = p(t)c(V (t, ψ(0))). (4.9)

Suppose further that there exist γk ≥ 0 and %0 > 0 such that, for all z ∈ (0, %0)

and any k = 1, 2, · · · , ∫ τk

τk−1

p(s)ds+

∫ αk(z)

z

ds

c(s)
≤ −γk. (4.10)

Then, the trivial solution x ≡ 0 of SISD (4.1) is uniformly stable in the m.s. If,

moreover,
∑∞

k=1 γk = +∞, then x ≡ 0 is asymptotically stable in the m.s.

Proof. In light of Theorem 4.3, defining m(t) = E[V (t, x(t))] for any t ≥ t0 yields
D+m(t) ≤ p(t)c(m(t)), t 6= τk,

m(t) ≤ αk(m(t−)), t = τk,

m(t0) = m0 = E[V (t0, x0)].

(4.11)

Consider the following scalar impulsive comparison system
D+v(t) = p(t)c(v(t)), t 6= τk,

v(t) = αk(v(t−)), t = τk,

v(t0) = v0 > m0.

(4.12)

We are now aiming to prove the stability properties of the comparison system

(4.12), which, by Theorem 4.4, imply the corresponding properties of SISD (4.1).

Let 0 < ε < %0 and t0 ∈ [τ1, τ2). Choose δ > 0 for which δ < min{ε, αk(ε)} and

0 ≤ v0 < δ. We claim that v(t) < ε for all t ∈ [t0, τ2), where v is any solution of

(4.12). If our claim were not true, then there would exist a t∗ ∈ [t0, τ2) such that

v(t∗) ≥ ε. Integrating the differential inequality in (4.11) over (t0, t
∗) gives∫ v(t∗)

v(t0)

ds

c(s)
≤
∫ t∗

t0

p(s)ds, (4.13)
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where a variable substitution is performed. By our choice of t0 and t∗ and the

positiveness of p, we have ∫ t∗

t0

p(s)ds ≤
∫ τ2

τ1

p(s)ds,

and by the early analysis, ∫ v(t∗)

v(t0)

ds

c(s)
>

∫ ε

α1(ε)

ds

c(s)
.

Therefore, (4.13) becomes ∫ τ2

τ1

p(s)ds+

∫ α1(ε)

ε

ds

c(s)
> 0,

which is a contradiction with (4.10), i.e., it must be true that v(t) < ε for all

t ∈ [t0, τ2) or t ∈ [τ1, τ2).

Suppose that, for all t ∈ [t0, τk) (or generally t ∈ [τk−1, τk)), v(t) < ε. Then, it

follows from (4.11) that, for all t ∈ [τk, τk+1),∫ v(t)

v(τk)

ds

c(s)
≤
∫ t

τk

p(s)ds ≤
∫ τk+1

τk

p(s)ds. (4.14)

Noting that v(τk) = αk(v(τ−k )), the last inequality becomes∫ v(t)

v(τ−k )

ds

c(s)
≤
∫ τk+1

τk

p(s)ds+

∫ α(v(τ−k ))

v(τ−k )

ds

c(s)
≤ −γk. (4.15)

Thus, v(t) ≤ v(τ−k ) < ε for all t ∈ [τk, τk+1), and, by induction, v(t) < ε for all

t ≥ t0, i.e., the trivial solution v ≡ 0 is uniformly stable.

To prove asymptotic stability of v ≡ 0, let ε = %0 and choose δ0 = δ0(%) > 0 such

that v0 < δ0 implies that v(t) < %0 for all t ≥ t0. We will prove that limk→∞ v(τk) =

0. If this were not the case, there would exist an η > 0 such that limk→∞ v(τk) = η.

From (4.15), we get ∫ v(τk+1)

v(τk)

ds

c(s)
=
v(τk+1)− v(τk)

c(η)
≤ −γk,
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where

1

c(η)
= sup

{ 1

c(s)

∣∣∣ ∀ s ∈ [v(τk), v(τk+1)]
}
,

which also implies, by consecutive induction, that

v(τk) ≤ v(τk−1)− c(η)
k∑
i=1

γk.

Letting k goes to infinity produces a contradiction. Therefore, it must be true that

η = 0, which proves the asymptotic stability of v ≡ 0. Finally, applying Theorem

4.4 implies that x ≡ 0 is asymptotically stable. This completes the proof.

A similar result can be obtained if p(t) in (4.9) is replaced by −p(t) for all t or,

particularly, p(t) = ±p and the impulsive condition (iii) of Theorem 4.4 is replaced

by αk · V (τ−k , ψ(0)). In the latter case, the inequality in (4.10) reduces to

± p(τk − τk−1) + lnαk ≤ −γk, ∀ k. (4.16)

Example 4.2. Consider the following SISD

dx =
(
− 7x− 0.5y(t− 1)e−x

2
)
dt,

dy =
(
− 5y + sinx(t− 1)

)
dt+

(
− 0.1x(t− 1)

1 + y2
)
)
dW2,

∆x(τk) = −2x(τ−k ),

∆y(τk) = 0.2y(τ−k − 1).

Define V (x, y) = 1
2
(x2 + y2) as a Lyapunov function candidate. Then, after cum-

bersome calculation, we get LV (x, y) ≤ −6.98V (x, y), where q = 2, and, at t = τk,

we get V (x(τk), y(τk)) ≤ αkV (x(τ−k ), y(τ−k )), where αk = 6. By (4.16), we find that

τk − τk−1 = 0.6 for all k. Thus, the trivial solution is asymptotically stable in the

m.s. Figure 4.2 shows the simulation result.
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Figure 4.2: Mean square asmptotic stability of (x, y)T = (0, 0).

Example 4.3. Consider the following SISD

dx =
(

4x− x2(t− 1)
)
dt+ 0.1x dW, t 6= τk,

∆x(t) = −k + 2

k + 1
x(t−), t = τk, k = 1, 2, · · · .

Define V (x) = 1
2
x2. Then, LV (x) ≤ 5.55x2, i.e., the underlying non-impulsive

system has an unstable trivial solution. Apply now the impulsive effect to get,

at t = τk, V (x(τk)) ≤ αkV (x(τ−k )), where αk = 1
(k+1)2

< 1. From (4.16), we get

τk− τk−1 = 0.2 for all k. The simulation result is shown in Figure 4.3, which shows

the stabilizing effects of impulses.

4.3 Conclusions and Comments

Throughout this chapter, the focus was on SISD with fixed impulses and the main

interest was to investigate some stability properties to time-delayed stochastic im-
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Figure 4.3: First moment asymptotic stability of x ≡ 0.

pulsive systems. We have adopted two different approaches to establish these prop-

erties, namely, an (ε, δ)-based (Section 4.1) and comparison principle (Section 4.2)

approaches. In both cases, using Razumikhin methodology, we have developed

some Lyapunov-like sufficient conditions. The latter technique, which is Lyapunov-

function-based, is efficient to examine qualitative properties of delay systems, be-

cause it enables one to employ the theory of ordinary differential equations and it

provides results that are independent of time delay.

Particularly, in Section 4.1, the continuous dynamic considered is stable and

perturbed by impulsive actions with bounded total effects. It is noticed that the

impulsive system can retain its stability property if the impulses are relatively small

and infrequently applied to the system. In Section 4.2, it is shown that systems

can preserve their stability properties even if they are disturbed by unbounded

impulses. Moreover, it is evident that impulses can help in stabilizing systems
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which are originally unstable. This case requires the system to be subject to very

frequent impulses in order to reduce the growth of continuous states.

The proposed results of this chapter will be further used in establishing some

stability properties of large scale SISD, which is the main theme of the next chapter.
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Chapter 5

Large Scale Stochastic Impulsive

Systems with Time Delay

In this chapter, we consider large scale nonlinear stochastic systems with delayed

states and subject to impulsive effects. Typically, a large scale system is described

by a large number of variables, nonlinearities, and uncertainties. We will continue

to apply the Razumikhin technique to develop Lyapunov-type sufficient conditions

to guarantee some stability properties of these systems. Analyzing the qualitative

properties of large scale systems can be achieved by different ways. An efficient

approach to deal with such a complex system is to decompose the composite (or

interconnected) the system into simpler, more manageable isolated subsystems at

different hierarchical levels. Analyze each individual subsystem, namely, initially

ignore the interconnection between the subsystems, then combine the available re-

sults together with interconnection, which is usually viewed as a perturbation, to

draw a conclusion about the qualitative properties of the composite system. Con-

ventionally, the individual impulsive subsystems are stable with a certain degree of
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stability. In order for the composite system to preserve the stability property, the

perturbation has to be relatively smaller than the degree of stability of each sub-

systems. This type of relation between isolated subsystems and the interconnection

is usually represented in a special type of matrices called test matrices.

The qualitative properties of the composite systems will be established in three

sections. In Section 5.1, we examine the properties by a scalar Lyapunov function,

which is a sum of the Lyapunov functions related to the isolated subsystems. In

Section 5.2, the comparison principle developed in Chapter 4 is used to extend the

stability results for the large scale systems, where a scalar Lyapunov function is

considered for the analysis. In Section 5.3, we continue with a comparison principle

in our stability analysis, but, rather than using a scalar function, we consider a

vector Lyapunov function in describing the solution behaviour of the composite

systems. The material of this chapter forms the basis of [Alw-c].

Before we state the main contribution of this chapter, we define what is meant

to be a large scale system.

Typically, an interconnected or composite system with decomposition Di may

have the form

Di :


dwi(t) = fi(t, w

i
t)dt+ gi(t, w

1
t , w

2
t , · · · , wlt)dt+

∑l
j=1 σij(t, w

j
t )dWj(t), t 6= τk,

4wi(t) = Ii(t, wit−), t = τk,

wit0 = φi(s), s ∈ [−r, 0],

(5.1)

where k ∈ N and i = 1, 2, · · · l for some l ∈ N. Here, we have wi (or wit) ∈ Rni , which

is an ni-dimensional vector state (or, respectively, deviated state) and n =
∑l

i ni

for some ni ∈ N. We should emphasize that w equipped with superscript i is a

system state, and not an outcome of the sample space Ω of a probability space.
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fi : R+×Rni → Rni , gi : R+×Rn → Rni , σij : R+×Rnj → Rni×mj , m =
∑l

imi for

some mi ∈ N, Ii : T × Rni → Rni with T = {τk
∣∣ k = 1, 2, · · · } where τk represents

constant impulsive moments and satisfies 0 < τ1 < τ2 < · · · , and limk→∞ τk = ∞,

and φi : [−r, 0]→ Rni .

Define the isolated (or unperturbed) subsystems Si as follows

Si :


dwi(t) = fi(t, w

i
t)dt+ σii(t, w

i
t)dWi(t), t 6= τk,

4wi(t) = Ii(t, wit−), t = τk,

wit0 = φi(s), s ∈ [−r, 0].

(5.2)

For x ∈ Rn, let xT = [(w1)T , (w2)T , · · · , (wl)T ] and xTt = [(w1
t )
T , (w2

t )
T , · · · , (wlt)T ],

and define f : R+ × Rn → Rn by

fT (t, xt) = [fT1 (t, w1
t ), f

T
2 (t, w2

t ), · · · , fTl (t, wlt)],

g : R+ × Rn → Rn by

gT (t, xt) = [gT1 (t, xt), g
T
2 (t, xt), · · · , gTl (t, xt)]

= [gT1 (t, w1
t , w

2
t , · · · , wlt), gT2 (t, w1

t , w
2
t , · · · , wlt), · · · , gTl (t, w1

t , w
2
t , · · · , wlt)],

σ : R+ × Rn → Rn×m by

σ(t, xt) = [σij(t, w
j
t )],

and W : R+ → Rm by

W T = [W1,W2, · · · ,Wl],

where, for any i, Wi : R+ → Rmi . We also define the impulsive functional I :

T× Rn → Rn as follows

IT (t, xt−) = [IT1 (t, w1
t−), IT2 (t, w2

t−), · · · , ITl (t, wlt−)].

99



Adopting these notations, the impulsive composite (or interconnected) system

with decomposition Di can be written in the form S

S :


dx(t) = F (t, xt)dt+ σ(t, xt)dW (t), t 6= τk,

4x(t) = I(t, xt−), t = τk,

xt0 = Φ(s), s ∈ [−r, 0],

(5.3)

where F (t, xt) = f(t, xt) + g(t, xt) is an Lad
(
Ω, L[t0, t0 + α]

)
function for some

α > 0, σ ∈ Lad
(
Ω, L2[t0, t0 + α]

)
, and Φ : [−r, 0]→ Rn. The initial function of the

composite system is defined by ΦT = [φT1 , φ
T
2 , · · · , φTl ] and it is assumed to be in

L2
F0

([−r, 0]; Rn).

5.1 Analysis by a Scalar Lyapunov Function

In this section, we are concerned with establishing m.s. uniformly asymptotic

stability of the trivial solution of the composite system (5.3). For the random

noise intensity, we consider two cases, which are, in this first case (Theorem 5.1),

σii(·, ·) 6= 0 and σij(·, ·) = 0 for all i 6= j, whilst, in Theorem 5.2, σij(·, ·) 6= 0 for all

i, j.

As mentioned earlier, the individual isolated subsystems are assumed to have

trivial solution wi = 0 ∈ Rni that is uniformly asymptotically stable in the m.s.,

as discussed in Theorem 4.2. For convenience, we state the sufficient conditions

guaranteeing the stability property in the following definition.

Definition 5.1. For all i = 1, 2, · · · , l, the isolated subsystem Si in (5.2) is said to

possess Property A if Assumptions A1 and A2 (in Chapter 4) hold, the functionals

fi and σii are strongly quasi-bounded in the m.s., there exist functions ai ∈ K2,
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bi, ci ∈ K1, and constants σi < 0 and dk ≥ 0 with d =
∑∞

k=1 dk < ∞, and

V i ∈ C1,2
(
[−r,∞)× S(%)

)
; R+

)
such that

(i) for all (t, ψi(0)) ∈ [−r,∞)× S(%),

bi(‖ψi(0)‖2) ≤ V i(t, ψi(0)) ≤ ai(‖ψi(0)‖2), (a.s.);

(ii) for all t 6= τk in R+ and ψi ∈ PC
(
[−r, 0];S(%)

)
,

LiV i(t, ψi) ≤ σici(‖ψi(0)‖2), (a.s.),

provided that V i(t+ s, ψi(s)) ≤ q̄V (t, ψi(0)) for some q̄ > 1 and s ∈ [−r, 0];

(iii) for any τk ∈ T and ψi ∈ PC
(
[0− r, 0];S(%)

)
,

V i
(
τk, ψ

i(0) + Ii(τk, ψi(τ−k ))
)
≤ α(dk)V

i(τ−k , ψ
i(0)), (a.s.),

where ψi(0−) = ψi(0) and
∏∞

k=1 α(dk) <∞ with α(dk) > 1∀k.

In the following theorem, we state and prove the m.s. square asymptotic stabil-

ity of the trivial solution of (5.3).

Theorem 5.1. Suppose that the composite system S in (5.3) satisfies the following

conditions:

(i) every isolated subsystem Si possesses Property A;

(ii) for any i, j = 1, 2, · · · , l, there exists a positive constant bij such that

gTi (t, ψi)V i
ψi(0)(t, ψ

i(0)) ≤ c
1/2
i (‖ψi(0)‖2)

l∑
j=1

q̄bijc
1/2
j (‖ψj(0)‖2),

where q̄, ci, γ are defined in (i);
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(iii) the test matrix S = [sij]l×l is negative definite, where

sij =


αi(σi + q̄bii), i = j,

1
2
q̄(αibij + αjbji), i 6= j,

for some positive constant αi, and σ is defined in (i).

Then, the trivial solution x ≡ 0 of composite system S in (5.3) is uniformly asymp-

totically stable in the m.s.

Proof. Let x(t) = x(t, t0,Φ) be the solution of the composite system S. Define the

composite Lyapunov function candidate

V (t, x(t)) =
l∑

i=1

αiV
i(t, wi),

where, for any i, αi is a positive constant and V i is a positive-definite function

related to the ith isolated (unperturbed) subsystem Si given in (5.2). From (i),

there exist bi ∈ K1 and ai ∈ K2 such that, for any i,

bi(‖wi(t)‖2) ≤ V i(t, wi(t)) ≤ ai(‖wi(t)‖2) ≤ ai(‖wit‖2
r),

from which we have

l∑
i=1

αi bi(‖wi(t)‖2) ≤ V (t, x(t)) ≤
l∑

i=1

αi ai(‖wit‖2
r).

Clearly, the sum V is a positive definite, decreasing function. Thus, there exist

b ∈ K1 and a ∈ K2 such that

b(‖x(t)‖2) ≤ V (t, x(t)) ≤ a(‖xt‖2
r).

Since σij(t, w
j) ≡ 0 for any i 6= j, the infinitesimal diffusion operator becomes

LV i(t, x) = LiV i(t, wi) + gTi (t, xt)V
i
wi(t, w

i),
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and from which, together with conditions (i) and (ii), we get

LV (t, x) =
l∑

i=1

αi LVi(t, x)

=
l∑

i=1

αi

{
LiV i(t, wi) + gi(t, xt)

TV i
wi(t, w

i)
}

≤
l∑

i=1

αi

{
σici(‖wi‖2) + c

1/2
i (‖wi‖2)

l∑
j=1

q̄bijc
1/2
j (‖wj‖2)

}
= zTSz,

where zT =
(
c

1/2
1 (‖w1‖2), c

1/2
2 (‖w2‖2), · · · , c1/2

l (‖wl‖2)
)
, and S is the negative-definite

matrix defined in (iii). It follows that the eigenvalues of S are strictly negative (i.e.,

λM(S) < 0). Therefore,

LV (t, x) ≤ λM(S)
l∑

i=1

ci(‖wi‖2),

i.e., LV (t, x) is negative definite, which implies that

LV (t, x) ≤ −c(‖x(t)‖2),

where c is a class-K1 function. At the impulsive moments t = τk, we have

V (τk, x(τk)) =
l∑

i=1

αiV
i(τk, w

i(τk))

≤
l∑

i=1

αiαi(dk)V
i(τ−k , w

i(τ−k ))

≤ αM(dk)
l∑

i=1

αiV
i(τ−k , w

i(τ−k )), αM(dk) = max
i
{αi(dk)}

= αM(dk)V (τ−k , x(τ−k )).

Thus, the conditions of Theorem 4.2 are all satisfied; therefore composite system

(5.3) is uniformly asymptotically stable in the m.s. This completes the proof.
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In the next theorem, we consider that the isolated subsystems and the intercon-

nection are both subject to random noise, i.e., σij(t, w
i
t) 6= 0 for any i, j = 1, 2, · · · , l.

Theorem 5.2. Suppose that composite system (5.3) satisfies following conditions:

(i) assumptions (i) and (ii) of Theorem 5.1 hold;

(ii) for any i = 1, 2, · · · , l, there exists ei > 0 such that

(yi)TV i
ψi(0)ψi(0)(t, ψ

i(0))yi ≤ q̄ei‖yi(0)‖2,

where yi = σij(t, ψ
j
t ), the ith row of the matrix σ;

(iii) for any σij(t, ψ
j
t ), i, j = 1, 2, · · · , l, there exists dij ≥ 0 such that

‖σij(t, ψj)‖2 ≤ q̄dijci(‖ψj(0)‖2);

(iv) the matrix S = [sij]l×l is negative definite, where

sij =


αi(σi + q̄bii) + 1

2

∑
k=1,k 6=i q̄αkekdki, i = j,

1
2
q̄(αibij + αjbji), i 6= j,

for some positive constant αi for any i.

Then, composite system (5.3) is uniformly asymptotically stable in the m.s.

Proof. Let x be the solution of the composite system. Define the composite

Lyapunov function candidate

V (t, x) =
l∑

i=1

αiV
i(t, wi),
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from which we get

LV (t, x) =
l∑

i=1

αi

{
LiVi(t, wi) + gTi (t, xt)V

i
wi(t, w

i)

+
1

2

l∑
j=1,i 6=j

tr
[
σTij(t, w

j
t )V

i
wiwi(t, w

i)σij(t, w
j
t )
]}

≤
l∑

i=1

αi

{
σici(‖wi‖2) + c

1/2
i (‖wi‖2)

l∑
j=1

q̄bijc
1/2
j (‖wj‖2)

+
1

2

l∑
j=1,i 6=j

q̄ei‖σij(t, wjt )‖2
}

≤
l∑

i=1

αi

{
σici(‖wi‖2)

+ c
1/2
i (‖wi‖2)

l∑
j=1

q̄bijc
1/2
j (‖wj‖2) +

1

2

l∑
j=1,i 6=j

q̄eidijci(‖wj‖2)
}

= zTSz,

where zT =
(
c

1/2
1 (‖w1‖2), c

1/2
2 (‖w2‖2), · · · , c1/2

l (‖wl‖2
)
, and S is the negative-definite

matrix defined in (iv). Thus, as in Theorem 5.1, there exists a class-K1 function c

such that

LV (t, x) ≤ −c(‖x(t)‖2),

and, at the impulsive moments t = τk, we have

V (τk, x(τk)) ≤ αM(dk)V (τ−k , x(τ−k )).

Thus, the conditions of Theorem 4.2 are all satisfied; therefore composite system

(5.3) is uniformly asymptotically stable in the m.s. This completes the proof.

In Theorems 5.1 and 5.2, we have assumed that the individual isolated sub-

systems possess Property A so as to guarantee their m.s. uniformly asymptotic
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stability. Also, assumption (ii) in Theorem 5.1 and the second part of assumption

(i) in Theorem 5.2 describe the upper bound on the deterministic interconnection

of the system. In Theorem 5.2, we have assumed that the system interconnection

undergoes noisy perturbation, which is estimated by an upper bound given in as-

sumption (ii) of Theorem 5.2. The relationship between the stability degree (or

the decay rate) of each subsystem and their interconnections, deterministic and

stochastic, is formed in the test matrix S, and the negative definiteness ensures

that the stability margin of each individual is stronger than the interconnection.

In the following corollary, we state the sufficient conditions to assure m.s. ex-

ponential stability of the trivial solution of composite system (5.3). The proof is

an immediate result of the two theorems, and is omitted here.

Corollary 5.1. In Theorem 5.1 or 5.2, for any i = 1, 2, · · · , l and s > 0, let

ai(s) = ais
2, bi(s) = bis

2, and ci(s) = cis
2, where ai, bi, and ci are positive constants.

If we choose

a(s) = max
i
{αiai}s2, b(s) = min

i
{αibi}s2, c(s) = λM(S)s2,

the trivial solution of composite system (5.3) is exponentially stable in the m.s.

As an application of the proposed results, we consider an indirect control system

in automatic control, which describes the longitudinal motion of an aircraft [Lef65,

Mich77]. The control system under consideration is a modification of Example 4.6.1

in [Mich77], where we have involved time delay and impulsive effects.

Example 5.1. Consider the control SISD
dx = Axdt+ bf(y)dt+ σ11(x(t− 1))dW1 + σ12(y)dW2, t 6= τk,

dy =
(
− ζy − ξf(y)

)
dt+ aTxdt+ σ21(x)dW1 + σ22(y(t− 1))dW2, t 6= τk,

(5.4)
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where xT = (x1, x2, x3, x4), while y ∈ R is the controller (i.e., n1 = 4, n2 = 1),

A ∈ R4×4, b ∈ R4, ζ, ξ ∈ R, f ∈ R is continuous for all y ∈ R, f(y) = 0 if and

only if y = 0, and 0 < yf(y) < k|y|2 for all y 6= 0 and k > 0, a ∈ R4, σ11 ∈ R4×4,

σ12 ∈ R1×1, σ21 ∈ R4×1, σ22 ∈ R1×1, W1 ∈ R4, and W2 ∈ R.

The isolated subsystems are

Si :


dx = Axdt+ σ11(x(t− 1))dW1, t 6= τk,

dy =
(
− ζy − ξf(y)

)
dt+ σ22(y(t− 1))dW2, t 6= τk.

(5.5)

The impulses are given by the following difference equations
∆x(τk) = I1(τk, x(τ−k )) = 1

k2

(
− 2x1(τ−k ),−2x2(τ−k ), 2x3(τ−k ), 0

)T
,

∆y(τk) = I2(τk, y(τ−k )) = − 1
1+k2y(τ−k ).

(5.6)

Let A =


−5 0 0 0

0 −6 0 0

0 0 −8 0

0 0 0 −10

,

σ11 = 0.01


sinx1(t− 1) 0 x2(t−1)

1+x2
4

0

0 x2(t−1)

1+x2
1

0 −x2
3(t− 1)

0 0 x3(t− 1) 0

0 0 0 −x4(t− 1)

,

bT = (1, 1, 1, 1), aT = (1, 1, 1, 1), ζ = 5, ξ = 2, σ12 = 0.01 y
1+y2

, σT21 = 0.01(x2, x1, x4, x3),

and σ22 = 0.01 sin y(t− 1).
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Let V 1(x) = ‖x‖2 and V 2(y) = y2 be the Lyapunov function candidates for

the isolated subsystems in (5.5). After cumbersome calculations, one may get

L1V
1(x) ≤ (−10 + 0.0002q̄)‖x‖2 and L2V

2(y) ≤ (−2ζ + 0.0001q̄)y2 = (−10 +

0.0001q̄)y2 (i.e., σ1 = −10 + 0.0002q̄ and σ2 = −10 + 0.0001q̄). For the stabil-

ity of the non-impulsive isolated subsystems, we take q̄ = 2. As for the inter-

connections, we have V 1T

x (x)g1(x, y) = 2xT ξf(y) ≤ 4k‖x‖ · |y| (i.e., b12 = 4k),

V 2
y (y)g2(x, y) = 2yaTx ≤ 4‖x‖ · |y| (i.e., b21 = 4). The (noisy) interconnections

are: σT12(y)V 1
xxσ12(y) = 2‖σ12(y)‖2 ≤ 0.0002y2 and σT21(x)V 2

yyσ21(x) = 2‖σ21(x)‖2 ≤

0.0002‖x‖2 (i.e., e1 = e2 = 2 and d12 = d21 = 0.0001).

Let V (x, y) = α1V
1(x) + α2V

2(y) = ‖x‖2 + y2 (i.e., α1 = α2 = 1) be the

composite Lyapunov function candidate for composite system (5.4). Then, the

matrix

S =

−9.9997 2k + 2

2k + 2 −7.9997


is negative definite if k < 3.9998. Let f(y) = 2y

1+y2
. Clearly, if we choose k = 2, the

required conditions are satisfied. Therefore, the condition LV ((x, y)) ≤ zTSz < 0

is satisfied, where zT = (‖x‖, |y|).

At the impulsive moments τk, we have

V (x(τk), y(τk)) = ‖x(τk)‖2 + y2(τk)

≤ (1 +
2

k2
)‖x(τ−k )‖2 + (1− 5

1 + k2
)y2(τ−k )

≤ αM(dk)V (x(τ−k ), y(τ−k )),

where αM(dk) = 1 + 2
k2 . For any i = 1, 2, and s > 0, choose ai(s) = bi(s) = s2.

Then, the trivial solution (x, y)T ≡ (0, 0) ∈ R5 of composite SISD system (5.4)-

(5.6) is exponential stable in the m.s. if a(s) = b(s) = s2 and c(s) = 2.9169s2 for

all s > 0. The simulation result is shown in Figure 5.1.
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Figure 5.1: Mean square asymptotic stability of (x, y)T ≡ (0, 0).

5.2 Analysis by Comparison Principle

In this section, depending on the type of composite Lyapunov function candidate,

we adopt two approaches to analyze the stability property using the comparison

principle. In subsection 5.2.1, a scalar function is considered, as chosen in Section

5.1, while in subsection 5.2.2, we use a vector Lyapunov function.

5.2.1 Scalar Lyapunov Function Approach

In this subsection, we applied our stability results developed in Section 4.2 to large

scale system (5.3). As done so far, we analyze each isolated subsystem, which is

required here to meet the conditions of Theorem 4.4 and, under a certain restriction

imposed on the interconnection, we draw conclusion regarding the overall system

stability.

Theorem 5.3. Assume that the assumptions of Theorem 5.2 hold except that,

provided that V i(t+ s, ψi(s)) ≤ q̄V (t, ψi(0)) for some q̄ > 1 and s ∈ [−r, 0],
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LiV i(t, ψi) ≤ h1i(t, V
i(t, ψi(0))), (a.s.),

and

gTi (t, ψ)V i
ψi(0)(t, ψ

i(0)) +
1

2

∑
j=1,i 6=j

tr
[
σTij(t, ψ

j)V i
ψi(0)ψi(0)(t, ψ

i(0))σij(t, ψ
j)
]

< h2i(t, V (t, ψ(0))),

where h̄ ∈ C
(
[τk−1, τk)× R+; R

)
, h̄(t, u) is concave in u for all t ∈ R+ and

lim
(t,y)→(τ−k ,x)

h̄(t, y) = h̄(τ−k , x),

where h̄ is both h1i and h2i . Then, the stability properties of the composite system

(5.3) are implied by those of the following scalar comparison system
D+v = h(t, v), t 6= τk,

v(t) = αM(dk)v(t−), t = τk,

v(t0) = v0 ≥ 0,

(5.7)

where h is a scalar function defined later.

Proof. Let xT =
(
(w1)T , (w2)T , · · · , (wl)T

)
be the solution of the composite sys-

tem. Define the composite Lyapunov function candidate by

V (t, x) =
l∑

i=1

αiV
i(t, wi).

Then, whenever V (t, xt) ≤ q̄V (t, x),

LV (t, x) =
l∑

i=1

αi

{
LiV i(t, wi) + gi(t, xt)

TV i
wi(t, w

i)
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+
1

2

l∑
j=1,i 6=j

tr
[
σij(t, w

j
t )V

i
wiwi(t, w

i)σij(t, w
j
t )
]}

≤
l∑

i=1

αi

{
h1i(t, V

i(t, wi)) + h2i(t, V
i(t, wi))

}
=:h(t, V (t, x)), t 6= τk.

It follows that, after applying Itô formula to process V and taking the mathematical

expectation,

D+m(t) ≤ h(t,m(t)),

and, at t = τk, we have shown in Theorem 5.1 that

m(τk) ≤ αM(dk)m(τ−k ).

In summary, we have
D+m ≤ h(t,m(t)), t 6= τk,

m(t) ≤ αM(dk)m(t−), t = τk,

m(t0) ≤ v0,

which is compared with the scalar comparison system (5.7). To conclude the desired

result, it suffices to apply Theorem 4.4. This completes the proof.

The next corollary is analogous to Corollary 4.1; thus we state it without a

proof.

Corollary 5.2. In Theorem 5.3, let p : R+ → R+ be a piecewise continuous

function and c ∈ K2 such that

h(t, V (t, x)) = p(t)c(V (t, x)),
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and ∫ τk

τk−1

p(s)ds+ lnαM(dk) ≤ −γk, k = 1, 2, · · · , (5.8)

for some positive constant αM(dk). Then, if γk ≥ 0, the composite system is

uniformly stable in m.s., and if
∑∞

k=1 γk = +∞, the system is asymptotically stable

in the m.s.

Example 5.2. Consider again the continuous control composite system given in

(5.4) and same composite Lyapunov scalar function V (x, y) = ‖x‖2 + y2. By the

previous analysis, we have found

L1V
1(x) ≤ σ1V

1(x) = (−10 + 0.0002q̄)V 1(x),

L2V
2(y) ≤ σ2V

2(y) = (−10 + 0.0001q̄)V 2(y),

V 1(x)gT1 (x, y) ≤ 2k(V 1(x) + V 2(y)) = 2kV (x, y),

V 2(y)gT2 (x, y) ≤ 2(V 1(x) + V 2(y)) = 2V (x, y),

σT12(y)V 1
xxσ12(y) ≤ 0.0002V 2(y),

σT21(x)V 2
yyσ21(y) ≤ 0.0002V 1(x),

that is, h11(V
1(x)) = σ1V

1(x), h12(V
2(y)) = σ2V

2(y), h21(V
1(x)) = (2k+2.0001)V 1(x),

and h22(V
2(y)) = (2k + 2.0001)V 2(y). Therefore,

h(V (x, y)) =
l∑

i=1

αi

{
h1i(V

i(t, wi)) + h2i(V
i(t, wi))

}
= (σ1 + 2k + 2.0001)V 1(x) + (σ2 + 2k + 2.0002)V 2(y)

≤ pV (x, y),

where p = σ1 + 2k + 2.0001 = −3.9997, from which one has

LV (x, y) ≤ pV (x, y).
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Figure 5.2: Mean square asymptotic stability of (x, y)T = (0, 0).

Consider now the following impulsive difference equations
∆x(τk) = −5

4
x(τ−k ),

∆y(τk) = −5
4
y(τ−k ).

(5.9)

It follows that V (x(τk), y(τk)) ≤ αkV (x(τ−k ), y(τ−k )) where αk = 1
16

. Making use

of condition (5.8), one obtains τk − τk−1 > 0.69 for any k. Therefore, the trivial

solution (x, y)T = (0, 0) ∈ R5 of composite SISD (5.8)-(5.9) is exponentially stable

in the m.s. The simulation result is shown in Figure 5.2.

Reconsider the control composite continuous system (5.4) with unstable state

subsystem where

A =


5 0 0 0

0 −6 0 0

0 0 −8 0

0 0 0 −10

 .
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Figure 5.3: Mean square asymptotic stability of (x, y)T = (0, 0).

Following the same analysis, we obtain L1V
1(x) ≤ (10 + 0.0001q̄)V 1(x); that is,

the state isolated subsystem is unstable, while L2V
2(y) ≤ −9.9998V 2(y). It follows

that the composite system is unstable where h(V (x, y), u) = 6.0005V (x, y) > 0.

Considering the stabilizing impulsive effects in (5.9) gives τk − τk−1 ≤ 0.3. Figure

5.3 shows the simulation result.

5.2.2 Vector Lyapunov Function Approach

In this subsection, we continue to develop a comparison principle for composite

large scale SISD (5.3), where we use a vector Lyapunov function having components

which are Lyapunov functions related to the isolated subsystems and the finding of

Theorem 5.3 will be carried over to every individual subsystems. In other words,

the comparison occurs between a vector of differential inequalities and a vector of
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differential equations whose solutions are known and enjoy some stability properties.

As done in Section 5.1, for convenient theorem statement, we define Property B.

Definition 5.2. The isolated subsystem Si (5.2) is said to possess Property B if

Assumptions A1 and A2 hold, there exist functions ci ∈ K1, and ai which satisfies

the conditions of h̄ in Theorem 5.3, and V i ∈ C1,2
(
[−r,∞) × S(%)

)
; R+

)
, which is

decrescent and satisfies

(i) for all (t, ψi(0)) ∈ [−r,∞)× S(%),

ci(‖ψi(0)‖2) ≤ V i(t, ψi(0)), (a.s.);

and, for all t 6= τk in R+ and ψi ∈ PC
(
[−r, 0];S(%)

)
,

LiV i(t, ψi) ≤ ai(t, V
i(t, ψi(0))), (a.s.),

provided that V i(t+ s, ψi(s)) ≤ q̄V (t, ψi(0)) for some q̄ > 1 and s ∈ [−r, 0];

(ii) for any τk ∈ T and ψi ∈ PC
(
[t0 − r,∞);S(%)

)
,

V i
(
τk, ψ

i(0) + Ii(τk, ψi(τ−k ))
)
≤ α(dk)V

i(τ−k , ψ
i(0)), (a.s.),

where ψi(0−) = ψi(0) and
∏∞

k=1 αk(dk) with α(dk) > 1 for all k.

Definition 5.3. A function g(t, u) (or g : R+ × Rn → R) is said to be quasi

monotone nondecreasing in u if, for any u, v ∈ Rn such that 0 ≤ uj < vj for all

i 6= j and 0 ≤ ui = vi, we have g(t, u) < g(t, v) for any fixed t in R+.

In the following theorems, we state and prove a comparison principle and sta-

bility results for composite system (5.3).

Theorem 5.4. Assume that the following assumptions hold:
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(i) every isolated subsystem Si has Property B;

(ii) for any i = 1, 2, · · · , l, there exist a function b̄i(t, u) ∈ C
(
[τk−1, τk) × R+; R

)
and b̄i is quasi monotone nondecreasing in u such that

gTi (t, ψ)V i
ψi(0)(t, ψ

i(0)) +
1

2

l∑
j=1,i 6=j

tr
[
σTij(t, ψ

j)V i
ψi(0)ψi(0)(t, ψ

i(0))σij(t, ψ
j)
]

< b̄i(t, V (t, ψ(0))),

where V T (t, x) =
(
V 1(t, w1), V 2(t, w2), · · · , V l(t, wl)

)
;

(iii) let aT (·) =
(
a1(·), a2(·), · · · , al(·)

)
∈ Lad

(
Ω, L[t0, t0 + α]

)
and

b̄T (·) =
(
b̄1(·), b̄2(·), · · · , b̄l(·)

)
∈ Lad

(
Ω, L2[t0, t0+α]

)
, where ai(·) and b̄i(·) are

defined in assumptions (i) and (ii), respectively, and assume that the following

inequalities hold

|a(t, v′) + b̄(t, v′)|2 ≤ h1(t) + h2(t)κ(‖v′‖2),

|a(t, v′) + b̄(t, v′)− a(t, v′′)− b̄(t, v′′)| ≤ K‖v′ − v′′‖,

where t ∈ R+, h1, h2 are Borel measurable functions (or PC(R+,R+) func-

tions), κ : R+ → R+ is continuous, increasing, concave function, v′, v′′ ∈ Rl
+,

and K > 0;

(iv) there exists an adapted function p : Rl × R+ → R such that

sup
V (t,x)≤v

l∑
i,j=1

‖σTij(t, ψj)Vψi(0)i(t,ψi(0))‖2 ≤ p(t, v),

where

p(t, v) ≤ h1(t) + h2(t)κ(‖v‖2).

116



Then, provided that V (t0, x0) < v0, V (t, x(t)) < v(t), for all t ≥ t0, where

v = (v1, v2, · · · , vl)T (i.e., v ∈ Rl) is a solution of the vector stochastic impulsive

differential equation
dv =

(
a(t, v) + b̄(t, v)

)
dt+ VdW (t), t 6= τk,

∆v(t) = αM(dk)v(t−), t = τk,

(5.10)

with V = [vij]l×l being a matrix random process such that

‖V‖2 ≤ p(t, v),

and αM(·) = maxi{αi(·); i = 1, 2, · · · , l}.

Proof. Let x be the solution of impulsive system (5.3). Define

V T (t, x(t)) =
(
V 1(t, w1), V 2(t, w2), · · · , V l(t, wl)

)
as a vector Lyapunov function candidate for the composite system, where V i is the

Lyapunov function related to the ith isolated subsystem Si. Then, by the vector

form of Itô formula, we have

dV T (t, x(t)) =
(
dV 1(t, w1), dV 2(t, w2), · · · , dV l(t, wl)

)
,

where

dV i(t, wi) <
(
ai(t, V

i(t, wi)) + b̄i(t, V
i(t, wi))

)
dt+

l∑
ij

vijdWi(t),

where vij = V iT

wi (t, wi)σij(t, w
j
t ). It follows that the vector differential inequality is

dV (t, x(t)) <
(
a(t, V (t, x(t))) + b̄(t, V (t, x(t)))

)
dt+ VdW (t),

for any t ∈ [τk−1, τk), k = 1, 2, · · · .
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At the impulsive moments t = τk, we have

V T (τk, x(τk))

=
(
V 1(τk, w

1(τk)), V
2(t, w2(τk)), · · · , V l(t, wl(τk))

)
≤
(
α1(dk)V

1(τk, w
1(τ−k )), α2(dk)V

2(τk, w
2(τ−k )), · · · , αl(dk)V l(τk, w

l(τ−k ))
)

≤ αM(dk)
(
V 1(τ−k , w

1(τ−k )), V 2(τ−k , w
2(τ−k )), · · · , V l(τ−k , w

l(τ−k ))
)

= αM(dk)V
T (τ−k , x(τ−k )).

Particularly, for t ∈ [τ0, τ1), we have V i(t0, w
i(t0)) < v0 and

dV i(t, wi)− dvi <
{

[ai(t, V
i(t, wi))− ai(t, vi)] + [b̄i(t, V (t, x(t)))− b̄i(t, v(t))]

}
dt.

Since the composite system satisfies the existence-uniqueness conditions, V (t, x(t))

is a continuous process w.p.1 for all [τ0, τ1). Similar conclusion can be drawn for

the process v(t). Therefore, to ensure that, given V (t0, x0) < v0, V (t, x(t)) < v(t)

w.p.1 for all [τ0, τ1), it suffices to show that dV i(t, wi) − dvi(t) < 0 whenever

V i(t, wi) = yi(t). But this inequality is true because b̄i is quasi monotone non-

decreasing. Thus, we obtain that V i(t, wi(t)) < vi(t) for all t ∈ [τ0, τ1), and at the

impulsive moment τ1, we have

V i
(
τ1, w

i(τ1)
)
− vi(τ1) < αM(dk)

[
V i(τ−1 , w

i(τ−1 ))− vi(τ−1 )
]
< 0,

i.e.,

V i(τ1, w
i(τ1)) < vi(τ1).

Similarly, for any k = 2, 3, · · · and t ∈ [τk−1, τk), we get V i(t, wi(t)) < vi(t)

and at t = τk, V
i(τk, w

i(τk)) < vi(τk). Therefore, for all t ≥ t0 and i = 1, 2, · · · , l,

Vi(t, w
i(t)) < vi(t), from which we get the vector inequality

V (t, x(t)) < v(t), ∀ t ≥ t0.
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This completes the proof.

Theorem 5.5. Suppose that the assumptions of Theorem 5.4 hold, and there exist

class-K1 functions α1 and c, a function h̄ ∈ C
(
[τk, τk−1) × Rl; R+

)
, z ∈ Rl, and

U ∈ C1,2
(
[τk−1, τk)× Rl; R+

)
, which is decrescent, U(t, 0) = 0, and satisfies

(i) for all t ∈ R+ and v ∈ PC(R+; Rl),

α1(‖v‖2) ≤ U(t, v), (a.s.),

zTUvv(t, v)z ≤ h̄(t, v)‖z‖2, (a.s.),

and

Ut(t, v) + Uv(t, v)
[
a(t, v) + b̄(t, v)

]
+

1

2
h(t, v)p(t, v) ≤ −c(‖v‖), (a.s.), ;

(ii) for any τk ∈ T and v ∈ PC(R+; Rl),

U(τk, v(τk)) = α(dk)U(τ−k , v(τ−k )).

Then, comparison system (5.10) and, hence, composite SISD (5.3) have asymptot-

ically stable trivial solutions in the m.s.

Proof. Let v ≥ 0 be the solution vector of the comparison system (5.10). Apply

Itô formula to process U to get

LU(t, v) ≤ −c(‖v‖),

which shows that, by the previous analysis, (5.10) has the desired stability property.

As for composite system (5.3), we have shown in Theorem 5.4 that the vector

inequality V (t, x(t)) < v(t) holds for all t ≥ t0. It follows that

α1(‖x(t)‖2) ≤
[ l∑
i=1

c2
i (‖wi‖2)

]1/2

≤ ‖V (t, x(t))‖ < ‖v(t)‖,
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where c ∈ K1. Taking the mathematical expectation and then applying α−1
1 to both

sides imply the desired result, i.e., E[‖x(t)‖2] ≤ α−1
1 (E[‖v(t)‖2]) for all t ≥ t0. This

completes the proof.

Corollary 5.3. In Theorem 5.5, assume that there exists a positive constant c

such that c(s) = c s for all s > 0 and

βT
(
a(t, v) + b̄(t, v)

)
≤ −c‖v‖,

for some positive vector β ∈ Rl. Then, system (5.10) possesses the same stability

property.

Proof. Let U(t, v) = βTv > 0 be a Lyapunov function candidate. Then, Uv = βT

and Uvv = 0 ∈ Rl×l, from which LU(t, v) ≤ −c‖v‖. Applying the impulsive effects

yields the desired result.

Example 5.3. Consider the composite system in (5.4) and the same Lyapunov

functions. We have found L1V
1(x) ≤ σ1V

1(x) and L2V
2(x) ≤ σ2V

2(x), from

which we get a(V (x, y))T = (a1(V 1(x)), a2(V 2(y))) = (σ1V
1(x), σ2V

2(y)). From the

interconnection, we have found b̄(V (x, y))T =
(
(2k+0.0001)V (x, y), 2.0001V (x, y)

)
.

Clearly, the functions a and b satisfy the conditions in (iii) of Theorem 5.4. As for

the condition (iv), we have

sup
V≤v

l∑
i,j=1

‖σTij(wi)Vwi(wi)i‖2

= sup
V≤v

[
‖σT11(x(t− 1))V 1

x (x)‖2 + ‖σT12(y))V 1
x (x)‖2‖σT21(x)V 2

y (x)‖2

+ ‖σT22(y(t− 1)))V 2
y (x)‖2

]
≤ 4 sup

V≤v

[
ξ1(V 1(x))2 + 0.0004V 1(x)V 2(y) + ξ2(V 2(y))2

]
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≤ 4 sup
V≤v

[
ξ1v

2
1 + 0.0004v1v2 + ξ2v

2
2

]
≤ 8ξ̄‖v‖2,

that is, p(v) ≤ 8ξ̄‖v‖2, where ξ̄ = max{ξ1, ξ2}, ξ1 = 1.0004 and ξ2 = 1.0002 with

q̄ = 2.

Making use of the impulsive effect given in Example 5.1, we get

V T (x(τk), y(τk)) = (V 1x(τk)), V
2(y(τk))

≤ (1 +
1

k2
)(V 1(x(τ−k )), V 2(y(τ−k ))) = (1 +

1

k2
)V T (x(τ−k ), y(τ−k ))

≤ (1 +
1

k2
)vT (τ−k ) = vT (τk).

Thus, by Theorem 5.4, V (x(t), y(t)) ≤ v(t), for all t ≥ t0.

As for the stability result, choose U(v) = v1 + v2, i.e., βT = (1, 1). It is

easy to show that LU(v) ≤ −5.9997U(v), where we have chosen k = 2. Also,

U(v(τk)) = αM(dk)U(v(τ−k )), where αM(dk) = 1+ 1
k2 . Therefore, the trivial solution

of composite system (5.4) is asymptotically stable in the m.s.

5.3 Conclusion and Comments

In this chapter, we considered large scale SISD with fixed impulses. Our inter-

est was to establish some qualitative properties by decomposing the system into

smaller isolated subsystems and the rest that was treated as system perturbation.

Assuming that the subsystems have asymptotic stable trivial solutions in the m.s.,

and the perturbation is estimated by an upper bound, which is smaller than the

stability margin of the individual subsystems, we were able to conclude that the

interconnected SISD has trivial solution that is asymptotically stable in the m.s.

121



Most of the stability results formulated in this chapter were based on our findings

obtained in Chapter 4. Namely, we developed some standard Lyapunov theorems

(Section 5.1) and established a comparison principle using scalar and vector Lya-

punov functions (Section 5.2). We also showed that impulses can stabilize some

unstable continuous systems. To demonstrate the effectiveness of the proposed

theoretical results, we discussed the stability and stabilization problems of an auto-

mated indirect control system. Along the line of some of the proofs adopted here,

one may consult [Mich77].
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Chapter 6

Input-to-State Stability of

Ordinary Differential Equations

This chapter deals with the concept of input-to-state (IS) stability of nonlinear

ordinary differential equations. Throughout the relevant literature on IS stability,

a common practice in proving the IS stability notion of a system is to define a

function that is positive definite everywhere and vanishes at the equilibrium point

(of the system). Furthermore, this function strictly decreases along the solution

trajectories of the system whenever the solution magnitude is larger than some

positive, increasing function depending on the input and vanishes at zero input. In

this case, the system response decreases over a certain time period and eventually it

lingers on at an ultimate bound depending on the input. These sufficient conditions

were adopted to define the concept of IS stability [Son89, Son02]. Clearly, if the

input is zero, the IS stability becomes asymptotic stability of the equilibrium point.

To have a better insight into the system behaviour, we propose another approach

based on the parameters (εu, δu) to define and prove the IS stability of ordinary
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systems. We are mainly interested in developing Lyapunov-like sufficient conditions

to establish asymptotic IS stability, i.e., the system response is stable and attracted

in the presence of input. This property also implies that, if the input is zero,

the equilibrium point becomes stable and attractive. To show the effectiveness of

this approach, we apply the results to a recursive (or cascade) system. We will

also develop comparison theorems to establish the same qualitative results. The

material of this chapter forms the basis of [Alw-d].

Consider the nonlinear system

ẋ = f(t, x, u), (6.1a)

x(t0) = x0, (6.1b)

where x ∈ Rn is the system state, f : R+×Rn×Rm → Rn is the vector field which

is piecewise continuous, f(t, 0, 0) = 0 for all t ≥ t0 with t0 ∈ R+, and f is locally

Lipschitz in x and u. We assume that the input u : R+ → Rm is continuous or

piecewise continuous and bounded for all t ∈ R+. We also assume that the unforced

system

ẋ = f(t, x, 0), (6.2a)

x(t0) = x0, (6.2b)

has a trivial solution that is globally uniformly asymptotically stable (g.u.a.s.).

In the following, we give some definitions that will be used later.

Definition 6.1. Let x(t) = x(t, t0, x0) be a solution of (6.1) and ρ ∈ K. System

(6.1) is said to be

(i) input-to-state stable (IS stable) with a gain ρ if, for every εu > 0 and t0 ∈ R+,
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there exists a δu = δu(t0, ε
u) > 0 such that

ρ(‖u‖) ≤ ‖x0‖ ≤ δu implies ρ(‖u‖) ≤ ‖x(t)‖ ≤ εu, ∀t ≥ t0;

(ii) uniformly IS stable with a gain ρ if δu in (i) is independent of t0;

(iii) input-to-state attractive with a gain ρ if, for any ηu > 0 and t0 ∈ R+, there

exist δu > 0 and T u = T u(t0, η
u) such that

ρ(‖u‖) ≤ ‖x0‖ ≤ δu implies ρ(‖u‖) ≤ ‖x(t)‖ ≤ ηu, ∀t ≥ t0 + T u;

(iv) uniformly IS attractive with a gain ρ if T u in (iii) is independent of t0;

(v) uniformly asymptotic input-to-state stable (aIS stable) with a gain ρ if (ii) and

(iv) hold;

(vi) exponentially input-to-state (eIS) stable with a gain ρ if (v) holds, and, more-

over, there exist two positive constants K and λ such that

‖x(t)‖ ≤ K‖x0‖e−λ(t−t0), ∀ t ≥ t0. (6.3)

6.1 Analysis by (εu, δu) Approach

In this section, we state and prove some Lyapunov-type theorems regarding the

uniform properties of IS stability and aIS stability.

Theorem 6.1. Let V ∈ C1(R+ × Rn; R). Suppose there exist class-K functions a,

b, and ρ such that

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), for all (t, x) ∈ R+ × S(%);
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(ii) V̇ (t, x) = ∂V
∂t

+ ∂V
∂x
f(t, x, u) ≤ 0, whenever ‖x‖ ≥ ρ(‖u‖),

for all (t, x, u) ∈ R+ × S(%)× R+.

Then, system (6.1) is uniformly IS stable.

Proof. Let x(t) = x(t, t0, x0) be the solution of system (6.1). For a given εu ∈ (0, %)

and any t0 ∈ R+, choose δu = δu(t0, ε
u) > 0 such that δu < a−1(b(εu)), which

implies 0 < δu < εu.

We claim that our supposition guarantees that system (6.1) is IS stable. If this

were not true, there would exist t∗ > t0 such that

ρ(‖u‖) ≤ εu = ‖x(t∗)‖, (6.4)

and

ρ(‖u‖) ≤ ‖x(t)‖ < εu, for all t ∈ [t0, t
∗).

From (ii), V (t, x(t)) ≤ V (t0, x0) for all t ∈ [t0, t
∗]. Define m(t) = V (t, x(t)) over

[t0, t
∗]. Then, we have

m(t∗) ≤ m(t0) ≤ a(‖x0‖) ≤ a(δu) < b(εu)

by our choice of δu. On the other hand, by (6.4), we have

ρ̄(‖u‖) ≤ b(εu) = b(‖x(t∗)‖) ≤ m(t∗), ρ̄ = b ◦ ρ,

where b ◦ ρ stands for the composite function of b and ρ, i.e., b ◦ ρ(·) = b(ρ(·)). The

last inequality implies that

ρ(‖u‖) ≤ εu < εu,
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which is a contradiction. We conclude that the system is IS stable. To prove the

uniformity property, it is sufficient to choose δu = δu(εu) > 0. This completes the

proof.

Theorem 6.2. Assume that the assumptions of Theorem 6.1 hold except that the

condition in (ii) is replaced by

V̇ (t, x) ≤ −c(‖x‖), whenever ‖x‖ ≥ ρ(‖u‖),

for all (t, x, u) ∈ R+ × S(%) × Rm, where c ∈ K. Then, system (6.1) is uniformly

aIS stable. If, in addition, % = ∞ and b(s) → ∞ as s → ∞, the system satisfies

the stability property globally.

Proof. Let x(t) be the solution of (6.1). Obviously, the system is uniformly IS

stable, i.e., there exists δu0 > 0 such that, for a given % > 0 and t0 ∈ R+,

ρ(‖u‖) ≤ ‖x0‖ < δu0 implies ρ(‖u‖) ≤ ‖x(t)‖ < %, ∀ t ≥ t0.

Let εu ∈ (0, %) and choose δu(εu) as in Theorem 6.1. Choose T u = T (εu) such that

T u =
a(δu0 )

c(ηu)
+ 1 for some ηu.

We claim that, by the given information, the system satisfies the desired stability

property, which implies the existence of a t∗ ∈ [t0, t0 + T u] such that

ρ(‖u‖) ≤ ‖x(t∗)‖ < ηu.

If this were not the case, then for all t ∈ [t0, t0 + T u],

ρ(‖u‖) ≤ ηu ≤ ‖x(t)‖ < %.

Define m(t) = V (t, x(t)) over [t0, t0 + T u]. Our assumption implies that

m(t0 + T u) = m(t0)−
∫ t0+Tu

t0

c(‖x(t)‖)dt

≤ a(‖x0‖)− c(ηu)T u

≤ a(δu0 )− c(ηu)
(a(δu0 )

c(ηu)
+ 1
)

= −c(ηu) < 0,
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which is a contradiction. Therefore, it must be true that there is a t∗ ∈ [t0, t0+T u] at

which ρ(‖u(t)‖) ≤ ‖x(t∗)‖ < ηu. This conclusion, together with uniform property,

proves the desired result.

In Theorem 6.2, if c(s) = cs, for some real number c and all s > 0, a(s) = as,

and b(s) = bs, for some positive constants a, b, and all s > 0, the result reduces to

exponential IS stability. Also, another immediate special result is when u(t) ≡ 0 for

all t ∈ R+; that is, the result reduces to the classical uniform asymptotic stability

of the trivial solution x ≡ 0.

6.2 Analysis by Comparison Principle

In this section, we continue to establish the same IS stability properties of system

(6.1) by using a comparison principle. We start with comparing a solution of a

system of differential inequality with a maximal solution of an auxiliary system of

differential equations. Later, assuming that the auxiliary system enjoys some IS

stability properties, we will be able to conclude the corresponding properties of the

original system (6.1).

Theorem 6.3. Assume that system (6.1) has a unique solution x, and there exists

a class-K function a. Let V ∈ C1(R+×S(%); R+) for some positive constant % such

that

(i) V̇ (t, x) ≤ h(t, V, u), for all (t, V, u) ∈ R2
+ × Rm,

where h : R2
+ × Rm → R is a continuous function on its domain;
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(ii) the scalar comparison system  v̇ = h(t, v, u),

v(t0) = v0 ≥ 0
(6.5)

has a maximal solution r(t) = r(t, t0, v0) for all t ≥ t0.

Then, V (t, x) < r(t) for all t ≥ t0 whenever V (t0, x0) < v0.

Proof. Let x(t) be a unique solution of system (6.1). Define m(t) = V (t, x(t)) over

R+, then from (i), we have

ṁ(t) ≤ h(t,m(t), u(t)), for all t ≥ t0.

Given m(t0) = V (t0, x0) < v0, we claim that m(t) < r(t) for all t > t0. If this were

not true, there would exist a t∗ > t0 such that

m(t∗) = r(t∗) = v(t∗), and m(t) < r(t) = v(t), for all t ∈ [t0, t
∗).

This implies that

ṁ(t∗) > v̇(t∗)

= h(t∗, v(t∗), u(t∗))

= h(t∗,m(t∗), u(t∗))

≥ ṁ(t∗),

which is a contradiction. This completes the proof.

Theorem 6.4. Suppose that system (6.1) has a unique solution, and there exist

class-K functions a and b. Let V ∈ C1(R+ × S(%); R+) such that

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), for all (t, x) ∈ R+ × S(%);
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(ii) V̇ (t, x) ≤ h(t, V, u), for all (t, V, u) ∈ R2
+ × Rm,

where h : R2
+×Rm → R is a continuous function on its domain, and h(t, 0, 0) =

0.

Then, IS stability properties of comparison system (6.5) imply the corresponding

properties of system (6.1).

Proof. Let εu > 0 and t0 ∈ R+. Assume that the comparison system is IS stable.

Then, there is a δv,u = δv,u(t0, ε
u) such that

0 < ρ(‖u‖) ≤ v0 < δv,u implies ρ(‖u‖) ≤ v(t, t0, v0) < b(ε), ∀ t ≥ t0,

where v(t, t0, v0) is any solution of the comparison system and ρ ∈ K.

Choose v0 = a(‖x0‖) and δ∗ such that a(δ∗) < b(εu). Define δx,u = min{δv,u, δ∗}.

We claim that, if

ρ(‖u‖) ≤ ‖x0‖ < δx,u, then ρ(‖u‖) ≤ ‖x(t)‖ < εu, ∀ t ≥ t0.

If our claim were not true, there would be a t∗ > t0 such that

ρ(‖u‖) ≤ εu ≤ ‖x(t∗)‖, and ρ(‖u‖) ≤ ‖x(t)‖ < εu, ∀ t ∈ [t0, t
∗).

Define m(t) = V (t, x(t)) over [t0, t
∗]. Then, by Theorem 6.3, we have

m(t) < r(t) = v(t, v0, a(‖x0‖)), ∀ t ∈ [t0, t
∗],

and

ρ̄(‖u‖) ≤ b(εu) ≤ b(‖x(t∗)‖) ≤ m(t∗) < v(t∗, t0, a(‖x0‖)) ≤ v(t∗, t0, a(δx,u)) < b(εu),

with ρ̄ = b ◦ ρ, which is a contradiction. Therefore, it must be true that

ρ(‖u‖) ≤ ‖x(t)‖ < εu, ∀ t ≥ t0.
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To prove the uniform property, it suffices to choose δv,u independent of t0.

As for the IS attractive property, we choose ηu > 0 and assume that comparison

system (6.5) is IS attractive, i.e., for a given b(ηu) > 0, there exist a δu > 0 and

T u = T u(ηu) > 0 such that

ρ(‖u‖) ≤ v0 < δu implies ρ(‖u‖) ≤ v(t, t0, v0) < b(ηu), ∀ t ≥ t0 + T u,

from which we obtain

ρ̄(‖u‖) ≤ b(‖x(t)‖) ≤ m(t) ≤ v(t, t0, v0) < b(ηu), ∀ t ≥ t0 + T u,

i.e., system (6.1) is IS attractive. Thus, the system is uniformly aIS stable. This

completes the proof.

In the following corollary, we consider two special cases of Theorem 6.4.

Corollary 6.1. Assume that the assumptions of Theorem 6.4 hold.

(i) If there exist class-K functions c and γ such that

h(t, V (t, x(t)), u(t)) ≤ −c(V (t, x(t))) + γ(‖u‖),

then system (6.1) is uniformly aIS stable;

(ii) if there exist positive constants a, b, and c such that a(s) = as, b(s) = bs, and

c(s) = cs for all s > 0, then system (6.1) is eIS stable.

Proof. (i) From the given condition, we have

ṁ(t) ≤ −c(m(t)) + γ
(
‖u‖
)
,

where m(t) = V (t, x(t)), or

ṁ(t) ≤ −c̄(m(t)),
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whenever c(m(t)) ≥ 1
θ
γ
(
‖u‖
)
, for some θ ∈ (0, 1), where c̄(·) = (1 − θ)c(·), which

implies that m(t) ≥ c−1
(

1
θ
γ
(
‖u‖
))

=: ρ̄
(
‖u‖
)
. Therefore, the differential inequality

may be compared with

v̇(t) = −c̄(v(t)),

whenever v(t) ≥ m(t) ≥ ρ̄
(
‖u‖
)
. By the classical stability theorems for nonlinear

systems, for a given ηv > 0 and t0 ∈ R+, there exist a δv > 0 and T v = T v(ηv) > 0

such that

v(t) ≤ ηv, ∀ t ≥ t0 + T v,

whenever v(t) ≥ ρ̄
(
‖u‖
)
, or

ρ̄
(
‖u‖
)
≤ v(t) ≤ ηv, ∀ t ≥ t0 + T v.

That is, comparison system (6.5) is uniformly aIS stable. Hence, by Theorem 6.4,

system (6.1) has the same stability property.

(ii) We have ṁ(t) ≤ −c̄ m(t) whenever m(t) ≥ 1
c θ
γ
(
‖u‖
)
. This implies that

1

c θ
γ
(
‖u‖
)
≤ m(t) ≤ v(t) ≤ Kv0e

−c̄(t−t0),

i.e., the comparison system is eIS stable, which implies the desired result.

6.3 Application: Cascade Systems

To demonstrate the applicability of the proposed result, we consider the following

cascade system

ẋ = f(t, x, y), x(t0) = x0, (6.6)

ẏ = g(t, y), y(t0) = y0, (6.7)

132



where f : R+ × Rn × Rm → Rn and g : R+ × Rm → Rm. The question of

interest is that, under what conditions on (6.6) and (6.7), the cascade system has

globally uniformly asymptotically stable (g.u.a.s.) equilibrium point? The following

theorem reveals the answer.

Theorem 6.5. Consider the cascade system (6.6)-(6.7). Suppose that the trivial

solution y ≡ 0 is g.u.a.s. If (6.6) is aIS stable with y being viewed as an input, then

the trivial solution zT = (x, y) ≡ (0, 0) is g.u.a.s..

Proof. Assume that y ≡ 0 is g.u.a.s.; that is, for a given ηy > 0 and t0 ∈ R+, there

exists a T y = T y(ηy) such that

‖y(t)‖ ≤ ηy, ∀ t ≥ t0 + T y, (6.8)

and, since the system (6.6) is aIS stable, we have

‖x(t)‖ ≤ γ
(

sup
t
y(t)

)
, ∀ t ≥ t0 + T x, (6.9)

where γ ∈ K and T x > T y, or

‖x(t)‖ ≥ ρ
(

sup
t
y(t)

)
, ∀ t ≥ t0 + T x, (6.10)

where ρ ∈ K, and

ρ
(

sup
t
y(t)

)
≤ ‖x(t)‖ ≤ ηx, ∀ t ≥ t0 + T x, (6.11)

for any ηx > 0. Therefore, by (6.8) and (6.11), we obtain, for t ≥ t0 + T x,

ρ
(

sup
t≥t0+Tx

y(t)
)
≤ ‖x(t)‖ ≤ ‖z(t)‖ ≤ ‖x(t)‖+ ‖y(t)‖ ≤ ηx + ηy. (6.12)

Choosing ηx = ρ
(

supt≥t0+Tx y(t)
)

implies that

‖z(t)‖ ≤ ηy, ∀ t ≥ t0 + T x,
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Figure 6.1: Simulation results of the cascade system.

i.e., zT = (0, 0) is uniformly asymptotically stable. This completes the proof.

The following example elaborates this result.

Example 6.1. Consider again the cascade system (6.6)-(6.7) with the following

specific vector fields: f(x, y) = −(x + y2) and g(y) = −2y, and the initial states

x(0) = 2 and y(0) = 0.7. Clearly, y = 0 is g.u.a.s., which leads to that the

system ẋ = −x + 0.49e−4t, with x(0) = 2, is aIS stable with input y(t) = 0.7e−2t.

Furthermore, defining V (x) = 1
2
x2 as an IS stable Lyapunov function yields |x(t)| ≥

√
2y(t), where we take θ = 1/2 < 1, i.e., the gain is ρ(r) =

√
2r. Also, it is easy to

show that, if we choose ηy = 0.01, then T x = 6. Finally, taking ηx = ρ(supt≥6 y(t))

implies that the cascade system has the required stability property. The simulation

results are shown in Figure 6.1.

6.4 Conclusion

In this chapter, the qualitative notion of input-to-stae stability proposed by Sontag

was re-presented in the same line of defining the classical concept of stability. That
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is to say, we used an (εu, δu)-based approach so as to have a closer insight into

the system behaviour. This method was also adopted to develop a comparison

principle to achieve the same stability-like concept. To justify the effectiveness

of this theoretical result, we applied it to a cascade system to prove the uniform

asymptotic stability of the corresponding equilibrium point.
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Chapter 7

Input-to-State Stability for SISD

In Chapter 5, we discussed some stability properties of SISD, which were later

extended to analyze the properties of large scale SISD. In Chapter 6, we devel-

oped results for studying the input-to-state stability concept of ordinary systems.

We intent to further investigate the input-to-state stability properties of systems

whose states undergo impulsive effects, time lag, and random noise in this chapter.

In particular, assuming that the SISD have m.s. uniformly asymptotically stable

equilibrium point at the origins, we want to apply the IS stability results of the last

chapter to examine the system states after being perturbed by input disturbance

with bounded energy. The material of this chapter forms the basis of [Alw-e].

7.1 Input-to-State Stability of SISD

The focus of this chapter is on establishing input-to-state stability properties for

SISD with fixed impulses. We adopt the two proposed approaches presented in

Chapter 6, namely, the (εu, δu)-based and comparison principle techniques. Using
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Razumikhin method, Lyapunov-type sufficient conditions are developed to prove

the stability properties in the m.s.

Before presenting the main contributions of this chapter, we introduce some

materials that will be used later.

Consider the following nonlinear time-delayed stochastic differential equation

with input u ∈ PC(R+; Rq)

dx(t) = f(t, xt, u(t))dt+ g(t, xt, u(t)) dW (t), t ∈ [a, b], (7.1)

where x ∈ Rn is the system state random process, f : R+ × Rn × Rq → Rn, which

belongs to Lad(Ω, L([t0, t0 + α])), and g : R+ ×Rn ×Rq → Rn×m, which belongs to

Lad(Ω, L2([t0, t0 + α])).

Considering impulse effects with fixed times in (7.1) leads to the following

stochastic impulsive system with time delay and input

dx(t) = f(t, xt, u(t))dt+ g(t, xt, u(t)) dW (t), t 6= τk, (7.2a)

∆x = I(t, xt− , u(t−)), t = τk. (7.2b)

The initial condition is given by

xt0(s) = φ(s), s ∈ [−r, 0], (7.2c)

where φ ∈ L2
F0

([−r, 0] × Ω,Rn), τk represents constant impulsive moments, for

k = 0, 1, 2, · · · , and satisfies 0 = τ0 < τ1 < τ2 < · · · , and limk→∞ τk = ∞. We

also assume that the solution of (7.2) is right-continuous (i.e., x(t+) = x(t)). In

difference equation (7.2b), ∆x = x(t)−x(t−) and the functional I : T×Rn×Rq →

Rn, where T = {τk
∣∣ k = 0, 1, 2, · · · }, is the impulse amount, which is assumed to be

Ftk-adapted. Furthermore, for the system to admit a trivial solution, we assume
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that, for almost all sample paths in Ω, f(t, 0, 0) = 0 ∈ Rn, g(t, 0, 0) = 0 ∈ Rn×m for

all t ≥ t0, and I(τk, 0, 0) = 0 ∈ Rn for all τk ∈ T.

Definition 7.1. A functional f is said to be strongly quasi-bounded in the m.s.,

if for each compact set F ⊂ D ⊂ Rn, there exists a positive constant M such that

E[‖f(t, ψ, u)‖2] ≤M for all (t, ψ, u) ∈ R+ × PC
(
[−r, 0];F

)
× Rq.

Assumption B1. There exist 0 ≤ %1 ≤ % such that, for all τk ∈ T, x defined on

PC[t− r,∞) for all t ≥ t0 ∈ R+, u ∈ PC(R+; Rq), and ρ ∈ K such that, if

ρ(‖u‖) ≤ E[‖x(τ−k )‖2] < %1, then E[‖x(τk)‖2] < %.

Assumption B1 is made to guarantee that the solution stays bounded (in the

m.s.) after impulses. Also, the solution is allowed to cross the ultimate bound of u

after an impulsive effect.

Definition 7.2. Let φ ∈ L2
F0

([−r, 0] × Ω,Rn), x(t) = x(t, t0, φ) be a solution of

(7.2), and ρ ∈ K. Then, system (7.2) is said to be

(i) input-to-state (IS) stable in the m.s. with a gain ρ if, for every εu > 0 and

t0 ∈ R+, there exists a δu = δu(t0, ε
u) > 0 such that

ρ(‖u‖) ≤ E[‖φ‖2
r] ≤ δu implies ρ(‖u‖) ≤ E[‖x(t)‖2] < εu, ∀t ≥ t0;

(ii) uniformly IS stable in the m.s. with a gain ρ if δu in (i) is independent of t0;

(iii) IS attractive in the m.s. with a gain ρ if, for any ηu > 0 and t0 ∈ R+, there

exist a δu > 0 and T u = T u(t0, η
u) such that

ρ(‖u‖) ≤ E[‖φ‖2
r] ≤ δu implies ρ(‖u‖) ≤ E[‖x(t)‖2] < ηu, ∀t ≥ t0 + T u;
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(iv) uniformly IS attractive in the m.s. with a gain ρ if T u in (iii) is independent

of t0;

(v) uniformly asymptotic input-to-state (aIS) stable in the m.s. with a gain ρ if

(ii) and (iv) hold;

(vi) exponentially input-to-state (eIS) stable in the m.s. with a gain ρ if (v) holds,

and, moreover, there exist two positive constants K and λ such that

‖x(t)‖ ≤ KE[‖φ‖2
r]e
−λ(t−t0), ∀ t ≥ t0. (7.3)

Remark 7.1. Immediate implications of this definition are stated in the following.

1. Clearly, for zero input, the above definitions reduce to the classical uniformly

asymptotic stability in the m.s. of the trivial solution of (7.2 ) with zero input.

2. If g = 0 ∈ Rn×m, r = 0 ∈ R and I = 0 ∈ Rn, Definition 7.2 reduces to

Definition 6.1.

3. If g = 0 ∈ Rn×m, r = 0 ∈ R, Definition 7.2 reduces to that of impulsive system

subject to input disturbance

ẋ = f(t, x, u), t 6= τk,

∆x(t) = I(t, x(t−)), t = τk,

x(t0) = x0.

Due to the dependence of the functionals f and g on the input u, the Itô formula

should be modified accordingly.

Itô formula. For t0 ∈ R+ and all t ≥ t0, let x(t) be an n-dimensional Itô process,

i.e., Rn-valued continuous adapted process satisfying

dx(t) = f(t, xt, u(t)) dt+ g(t, xt, u(t)) dW (t), (a.s.),
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where f and g are as defined before. Let V ∈ C1,2
(
R+ × Rn,R+

)
. Then, for all

t ≥ t0, V (t, x(t)) is an Itô process with its stochastic differential equation given by

dV (t, x(t)) = LV (t, xt, u(t))dt+ Vx(t, x(t))g(t, xt, u(t)) dW (t), (a.s.),

where

LV (t, xt, u(t)) =

Vt(t, x(t)) + Vx(t, x)f(t, xt, u(t)) +
1

2
tr
(
gT (t, xt, u(t))Vxx(t, x(t))g(t, xt, u(t))

)
,

and Vx(t, x(t)) and Vxx(t, x(t)) are the gradient and Hessian matrix of V (t, x(t)).

Evidently, the diffusion infinitesimal operator L depends on u, although the

process V is input-free.

7.2 Analysis by an (εu, δu) Approach

In this section, we state and prove some IS stability properties of system (7.2), using

the technique developed in Section 6.1. We should mention that, in this section,

the impulsive functional is input-free.

Theorem 7.1. For any solution x of (7.2), assume that Assumptions B1 and

A2 hold, and there exist functions a ∈ K2, b ∈ K1, c ∈ C(R+; R+), γ ∈ K, and

a constant dk ≥ 0 with d =
∑∞

k=1 dk < ∞. Suppose that V ∈ C1,2
(
[−r,∞) ×

S(%)
)
; R+

)
satisfies

(i) for all (t, ψ(0)) ∈ [−r,∞)× S(%),

b(‖ψ(0)‖2) ≤ V (t, ψ) ≤ a(‖ψ(0)‖2), (a.s.);
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(ii) for all t 6= τk, ψ ∈ PC
(
[−r, 0];S(%)

)
, and u ∈ PC(R+; Rq),

LV (t, ψ, u) ≤ −c(‖ψ(0)‖2) + γ(‖u‖), (a.s.),

provided that V (t + s, ψ(s)) ≤ q(V (t, ψ(0))) for some s ∈ [−r, 0], where q is

a class-K3 function;

(iii) for any τk ∈ T and ψ ∈ PC
(
[r, 0];S(%)

)
,

V (τk, ψ(0) + I(τk, ψ(τ−k ))) ≤ α(dk)V (τ−k , ψ(0)), (a.s.),

where ψ(0−) = ψ(0), (τk, ψ(τ−k )) ∈ R+×PC
(
[−r, 0];S(%1)

)
,
∏∞

k=1 α(dk) <∞

with α(dk) > 1 for all k.

Then, system (7.2) is uniformly IS stable in the m.s.

Proof. Following the same analysis as in Theorem 5.1, let x(t) = x(t, t0, φ) be the

unique solution of system (7.2), and 0 < εu ≤ %1. Define d =
∏∞

k=1 α(dk). Then,

1 ≤ d < ∞ because d < ∞. Choose δu = δu(εu) so that δu < â−1
(
b̂(εu)/d

)
and

clearly 0 < δu < εu. Let t0 ∈ [τl−1, τl) for some positive integer l and φ for which

ρ(‖u‖) ≤ E[‖φ‖2
r] ≤ δu.

We claim that the system is uniformly IS stable in the m.s. If this were not the

case, then there would be a ts at which, for all t ∈ [t0 − r, ts),

ρ(‖u‖) ≤ E[‖x(t)‖2] < εu < %1,

and either

ρ(‖u‖) ≤ E[‖x(ts)‖2] = εu,

which implies that

ρ(‖u‖) ≤ E[‖x(ts)‖2] = E[‖xts‖2
r] = εu,
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or

ρ(‖u‖) ≤ εu < E[‖x(ts)‖2], where ts = τk for some k.

By Assumption B1,

ρ(‖u‖) ≤ εu < E[‖x(ts)‖2]| < %,

since E[‖xts−‖2] ≤ εu < %1. Thus, in either case, V (t, x) is defined for t ∈ [t0, t
s].

Moreover, from assumption (ii), we have

‖x‖ ≥ ρ(‖u‖) implies LV (t, xt, u) ≤ 0,

where ρ(·) = [c−1(γ(·))]1/2. Applying Itô formula to process V (t, x(t)) for t ∈ [t0, t
s]

and taking the mathematical expectation give

E[V (t, x(t))] ≤ E[V (s, x(s))] + E
∫ t

s

LV (w, xw, u)dw, ∀ t0 ≤ s ≤ t ≤ ts

≤ E[V (s, x(s))].

Define m(t) = E[V (t, x(t))] for all t ∈ [t0, t
s]. Then,

D+m(t) = lim
h→0+

1

h
[m(t+ h)−m(t)] ≤ 0, whenever ‖x‖ ≥ ρ(‖u‖),

i.e., the function m(t) is non-increasing for all t ∈ (t0, t
s] between the impulse

moments. By the condition in (iii), we have

m(τk) ≤ α(dk)m(τ−k ), ∀ t ∈ (t0, t
s].

Since m(t) = E[V (t, x(t))] ≤ E[V (s, x(s))] = m(s), m(t) is non-increasing for all

t ∈ [t0, t
s] between impulses. If ts ∈ (t0, tl), then

b̂[ρ(‖u‖)] ≤ b̂(E[‖x(ts)‖2]) ≤ m(ts) ≤ m(t0) < â(δu) <
b̂(εu)

d
≤ b̂(εu).
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On the other hand, let ts ∈ [τk, τk+1) for some k ≥ l. In this case, whenever

‖x‖ ≥ ρ(‖u‖), we have, by the same argument followed in Theorem 5.1,

m(τi) ≤ dm(t0) ≤ d â(δu), (7.4)

which implies that

m(ts) ≤ m(τi) ≤ d â(δu).

We also have

ρ̄(‖u‖) ≤ b̂(εu) < b̂(E‖x(ts)‖2) ≤ m(ts) < d â(δu) < b̂(εu),

where ρ̄(·) = b̂ ◦ ρ(·), which is a contradiction. Therefore, it must be true that

system (7.2) is uniformly IS stable in m.s. This completes the proof.

In the following theorem, we prove the aIS stability in the m.s. of the system

(7.2). This property requires strengthening the upper bound estimation of the

diffusion operator, as the following theorem tells us.

Theorem 7.2. For any solution x of (7.2), assume that Assumptions B1 and A2

hold, the functionals f and g are strongly quasi-bounded in m.s., and there exist

functions a ∈ K2, b, c ∈ K1, and a constant dk ≥ 0 with d =
∑∞

k=1 dk < ∞. Let

V ∈ C1,2
(
[−r,∞)× S(%)

)
; R+

)
satisfy

(i) assumptions (i) and (iii) of Theorem 7.1;

(ii) for all t 6= τk ∈ R+ and ψ ∈ PC
(
[−r, 0];S(%)

)
,

LV (t, ψ, u) ≤ −c(‖ψ(0)‖) + γ(‖u(t)‖), (a.s.),

provided that V (t + s, ψ(s)) ≤ q(V (t, ψ(0))) for some s ∈ [−r, 0], where q is

a class-K3 function.
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Then, system (7.2) is uniformly aIS stable in the m.s.

Proof. Since the solution is uniformly IS stable, given any 0 < εu ≤ %1, choose

δu = δu(εu), as done in Theorem 7.1.

For 0 < θ < 1, the inequality in (ii) can be written as

‖ψ(0)‖ ≥ ρ(‖u‖) implies LV (t, ψ, u) ≤ −c̄(‖ψ(0)‖), (a.s.),

where ρ(·) = [ĉ−1(1
θ
γ(·))]1/2 and c̄(·) = (1− θ)ĉ(·).

Choose a number N > 0 such that N > m̂0dc̄
−1
(

1
5
[δu

2 − δu( δu

4M
+ 1)]

)
4M
δu

.

Suppose now a solution x = x(σ, φ) with ρ(‖u‖) ≤ E[‖φ‖2] < δu
2

3
satisfies

E[‖xt‖2
r] ≥ δu

2

3
for any t ≥ σ.

Assume that each interval of length r contains tk such that E[‖x(tk)‖2] ≥ δu
2

3
.

Then, there exists a sequence {tk} such that

σ + (2k − 1)r ≤ tk ≤ σ + 2kr, k = 1, 2, · · · ,

and

E[‖x(tk)‖2] ≥ δu
2

3
.

Integrating the stochastic differential equation (7.1) over [tk, tk + δu

4M
] yields

x(t) = xtk +

∫ tk+ δu

4M

tk

f(t, xt, u(t))dt+

∫ tk+ δu

4M

tk

g(t, xt, u(t))dW (t),

from which we get, as concluded in Theorem 5.1,

−c̄
(
E[‖x(t)‖2]

)
≤ −c̄

(1

5
[δu

2 − δu( δ
u

4M
+ 1)]

)
,

so that for t ∈ [tk, tk + δu

4M
], whenever ‖x(t)‖ ≥ ρ(‖u‖),

E[LV (t, xt, u)] ≤ −c̄
(
E[‖x(t)‖2]

)
≤ −c̄

(1

5
[δu

2 − δu( δ
u

4M
+ 1)]

)
.
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By Itô formula we have, whenever ‖x(t)‖ ≥ ρ(‖u‖),

E[V (t, x(t))] ≤ E[V (tk, x(tk))] + E
∫ tk+ δu

4M

tk

LV (t, xt, u(t))dt

or

m(t) ≤ m(tk)− c̄
(
δu

2 − δu( δ
u

4M
+ 1)

) δu

4M
,

where m(t) = E[V (t, xt)], that is the function m decreases by c̄
(

1
5
[δu

2 − δu( δu

4M
+

1)]
)
δu

4M
> 0 over the interval [tk, tk + δu

4M
].

To investigate the overall behaviour of function m(t) for all t ≥ t0, we define

new function, say m̂, as follows

m̂(t) =


m(t), t ∈ [t0, tl),[∏i

k=l α(dk)
]−1

m(t), t ∈ (ti, ti+1), i = l, l + 1, · · · .

This shows that function m̂ decreases by d −1c̄
(

1
5
[δu

2 − δu( δu

4M
+ 1)]

)
δu

4M
> 0 over

the interval [tk, tk + δu

4M
] or [tk − δu

4M
, tk], where d̄ =

∏i
k=l α(dk). This implies that

ρ(‖u‖) ≤ m̂(t0 + T ) ≤ m̂(t0)−Nd −1c̄
(1

5
[δu

2 − δu( δ
u

4M
+ 1)]

) δu

4M
.

By our assumption and our choice of N , we conclude that

ρ(‖u‖) ≤ m̂(t0 + T ) ≤ a(%1)−Nd −1c̄
(1

5
[δu

2 − δu( δ
u

4M
+ 1)]

) δu

4M
< 0,

which is a contradiction. Thus, it must be true that, under our assumptions,

ρ(‖u‖) ≤ E[‖x(t)‖2] < εu for all t ≥ t0, i.e., system (7.2) is uniformly aIS stable in

the m.s. This completes the proof.

Example 7.1. Consider the following impulsive system with input disturbance

dx =
(
− 4x+ x(t− 1)e−|x| + 0.5u(t)

)
dt− 0.1 sinx(t− 1)dW, t 6= tk,

∆x(t) =
1

k2
xt− , t = tk, k = 1, 2, · · · .

145



0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

E
[x

(t
)]

Figure 7.1: First moment aIS stability with u(t) = sin(t).

We showed in Example 5.1 that the trivial solution of the unforced system is

uniformly asymptotically stable in the m.s. To examine the IS stability properties,

consider the input function u(t) = sin(t). Then, whenever |x| ≥ [ 1
2θ

sin(t)]1/2,

LV (xt, u) ≤ −c(x) with c(s) = 2.5s2, where we have chosen q = 2 and θ = 1/2.

Thus, by Theorem 7.2, the system is uniformly aIS stable in the m.s. The simulation

result of this example is shown in Figures 7.1.

7.3 Input-to-State Stability of Large Scale SISD

In this section, we continue to examine the IS stability properties of system (7.2).

We carry over the technique of Section 7.1 to build up a comparison principle, which

will be used to prove the qualitative results. We are mainly interested in developing

some Lyapunov-type theorems. Also, in these theorems, impulses not necessarily

have bounded total effects and, moreover, they are assumed to be perturbed by

input disturbance.
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Theorem 7.3. For any solution x of (7.2), assume that Assumptions B1 and A2

hold, and there exists a class-K2 function a. Let V ∈ C1,2
(
[−r,∞) × S(%)

)
; R+

)
satisfy

(i) V (t, ψ(0)) ≤ a(‖ψ(0)‖2), (a.s.), for all (t, ψ(0)) ∈ [−r,∞)× S(%);

(ii) LV (t, ψ(t), u(t)) ≤ h(t, V (t, ψ(0), u(t))), (a.s.), for all t 6= τk in R+,

ψ ∈ PC
(
[−r, 0];S(%)

)
, and u ∈ PC(R+; Rq), provided that V (t + s, ψ(s)) ≤

q(V (t, ψ(0))), where q is a class-K3 function, h : R2
+ × R → R is continuous

on [τk−1, τk), h(t, z, u) is concave in z for any t ∈ R+, and, for each x ∈ Rn

and k ≥ 1,

lim
(t,y,v)→(τ−k ,x,u)

h(t, y, v) = h(τ−k , x, u)

exists;

(iii) ∀ τk ∈ T and ψ ∈ PC
(
[−r, 0];S(%)

)
,

V (τk, ψ(0) + Ik(τk, ψ(τ−k ), u(τ−k ))) ≤ αk(V (τ−k , ψ(0))) + γ(‖u(τ−k )‖), (a.s.),

where ψ(0−) = ψ(0), (τk, ψ(τ−k )) ∈ (t0,∞) × PC
(
[−r, 0];S(%1)

)
, γ ∈ K and

αk : R+ → R+ is a non-decreasing, concave function;

(iv) the scalar impulsive system
D+v(t) = h(t, v(t), u(t)), t 6= τk,

v(t) = αk(v(t−)) + γ(‖u(t−)‖), t = τk,

v(t0) = v0 ≥ 0

(7.5)

has a maximal solution r(t) = r(t, t0, v0).
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Then, E[V (t0, x0)] < v0 implies E[V (t, x(t))] < r(t) for all t ≥ t0.

Proof. Let x(t) = x(t, t0, φ) be any solution of system (7.2). From (i) with the aid

of existence results, we have

E[V (t, x(t))] ≤ E[a(‖x(t)‖2)] ≤ a(E[‖x(t)‖2]) <∞.

Also, by Itô formula and condition (ii), we have, for all t ∈ [τk−1, τk),

E[V (t, x(t))] = E[V (τk−1, x(τk−1)] + E
∫ t

τk−1

LV (s, xs, u(s))ds

≤ E[V (τk−1, x(τk−1)] +

∫ t

τk−1

h
(
s,E[V (s, x(s))], u(s)

)
ds,

from which we get

D+m(t) ≤ h(t,m(t), u(t)), t 6= τk,

where m(t) = E[V (t, x(t))] for all t ∈ [τk−1, τk) and all k. At the impulsive moments,

we have, from condition (iv),

m(τk) ≤ αk(m(τ−k )) + γ(‖u(τ−k )‖).

In summary, we have obtained
D+m(t) ≤ h(t,m(t), u(t)), t 6= τk,

m(t) ≤ αk(m(t−)) + γ(‖u(t−)‖), t = τk,

m(t0) = E[V (t0, x0)].

We claim that

m(t) = E[V (t, x(t))] < r(t) = v(t), ∀t ≥ t0,
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is true. If this were not the case, without loss of generality, there would be a t1 > t0,

where t1 6= τk, such that m(t1) = v(t1), and for all t ∈ [t0, t1), m(t) < v(t). This

implies that

D+m(t1) > D+v(t1)

= h(t1, v(t1), u(t1))

= h(t1,m(t1), u(t1))

= D+m(t1).

Contradiction. Thus, it must be true that m(t) < v(t) for all t 6= τk. Finally, at

t = τk ∈ T, we have

m(τk) ≤ αk(m(τ−k )) + γ(‖u(τ−k )‖) < αk(v(τ−k )) + γ(‖u(τ−k )‖) = v(τk).

This completes the proof.

Having proved the required comparison principle, we are in a position to estab-

lish the qualitative results.

Theorem 7.4. For any solution x of system (7.2), assume that Assumptions B1

and A2 hold, and there exist functions a ∈ K2 and b ∈ K1. Assume further that

V ∈ C1,2
(
[−r,∞)× S(%)

)
; R+

)
satisfies

(i) for all (t, ψ(0)) ∈ [−r,∞)× S(%),

b(‖ψ(0)‖2) ≤ V (t, ψ(0)) ≤ a(‖ψ(0)‖2), (a.s.);

(ii) for all t 6= τk, ψ ∈ PC
(
[−r, 0];S(%)

)
, and u ∈ PC(R+; Rq),

LV (t, ψ(t), u(t)) ≤ h(t, V (t, ψ(0)), u(t)), (a.s.),
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provided that V (t + s, ψ(s)) ≤ q(V (t, ψ(0))), where q is a class-K3 function,

h : R+×R+×Rq → R is continuous in its variables, h(t, 0, 0) = 0 and h(t, z, u)

is concave in z for any t ∈ R+, and, for each x ∈ Rn and k ≥ 1,

lim
(t,y,w)→(τ−k ,x,u)

h(t, y, w) = h(τ−k , x, u)

exists;

(iii) ∀ τk ∈ T and ψ ∈ PC
(
[−r, 0];S(%)

)
,

V (τk, ψ(0) + Ik(τk, ψ(τ−k ), u(τ−k ))) ≤ αk(V (τ−k , ψ(0))) + γ(‖u(τ−k )‖), (a.s.),

where ψ(0−) = ψ(0), (τk, ψ(τ−k )) ∈ (t0,∞) × PC
(
[−r, 0];S(%1)

)
, γ ∈ K and

αk is a non-decreasing, concave function.

Then, the IS stability properties of the scalar impulsive system (7.5) imply the

corresponding properties of (7.2).

Proof. Let 0 < εu < %1 < % and t0 ∈ R+. Assume that comparison system (7.5) is

IS stable. Therefore, for given b(εu) > 0 and t0 ∈ R+, choose δv,u = δv,u(t0, ε
u) > 0

such that

0 < ρ(‖u‖) ≤ v0 < δv,u implies ρ(‖u‖) ≤ v(t, t0, v0) < b(εu), ∀t ≥ t0,

for any solution v(t) = v(t, t0, v0) of comparison system (7.5).

Choose v0 = a(‖φ‖2
r) and δ1 = δ1(ε) > 0 for which a(δ1) < b(εu). Define

δx,u = min{δv,u, δ1}. We claim that, if ρ(‖u‖) ≤ E[‖φ‖2
r] ≤ δx,u, then

ρ(‖u‖) ≤ E[‖x(t)‖2] < εu, ∀t ≥ t0.

If our claim were not true, there would be a t̄ ∈ [τk, τk+1) for some k such that

ρ(‖u‖) ≤ εu ≤ E[‖x(t̄)‖2],
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and

ρ(‖u(t)‖) ≤ E[‖x(t)‖2] < εu, ∀ t ∈ [τk, t̄).

Also, this together with Assumption B1, i.e., E[‖x(τ−k )‖2] < εu < %1 and

E[‖x(τk)‖2] = E[‖x(τ−k ) + I(τk, xτ−k
, u(τ−k )‖2] < %

implies the existence of a t such that τk < t ≤ t̄ satisfying

ρ(‖u‖) ≤ εu < E[‖x(t)‖2] < %.

Define m(t) = E[V (t, x(t))] for all t ∈ [t0, t]. Then, by Theorem 7.3, we get

m(t) < r(t, t0, a(E[‖φ‖2
r])), ∀ t ∈ [t0, t],

where r(t, t0, a(E[‖φ‖2
r])) is the maximal solution of the scalar comparison system.

Finally, by the condition (i), we obtain

ρ̄(‖u‖) ≤ b(εu) ≤ m(t) = E[V (t, x(t))] < r(t, t0, a(E[‖φ‖2
r])) < r(t, t0, a(δx,u)) < b(εu),

where ρ̄(·) = b ◦ ρ(·), which is a contradiction. Thus, it must be true that

ρ(‖u‖) ≤ E[‖x(t)‖2] < εu, ∀ t ≥ t0.

If δv,u is chosen independently of t0, then system (7.2) is uniformly IS stable.

To prove the uniform IS attractivity, we choose 0 < ηu < %1 < %. Assume that

comparison system (7.5) is uniformly IS attractive, i.e., for a given b(ηu) > 0, there

exist δ > 0 and constant T u = T u(ηu) > 0 such that

ρ(‖u‖) ≤ v0 ≤ δ implies ρ(‖u‖) ≤ v(t, t0, v0) < b(ηu), ∀ t ≥ t0 + T u.

Following the argument used in proving the IS stability property, we obtain

b(ρ(‖u‖)) ≤ b(E[‖x(t)‖2]) ≤ v(t, t0, v0) < b(ηu), ∀ t ≥ t0 + T u,
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i.e., the system (7.2) is uniformly IS attractive in the m.s., which leads to the

uniform aIS stability property in the m.s. of the system. This completes the proof.

Corollary 7.1. In Theorem 7.4, assume that there exist a positive constant p,

c ∈ K1, and γ ∈ K such that, for any (t, ψ(0)) ∈ R+ × PC([t− r,∞);S(%)),

h(t, ψ(0), u(t)) = p c(V (t, ψ(0))) + γ(‖u(t)‖).

Suppose further that there exist ζk ≥ 0 and %0 > 0 such that, for all z ∈ (0, %0) and

any k ∈ N,

p̄(τk − τk−1) +

∫ αk(z)+γ(‖u(τ−k )‖)

z

ds

c(s)
≤ −ζk. (7.6)

Then, composite system (7.2) is uniformly IS stable in the m.s. If, moreover,∑∞
k=1 ζk = +∞, the system is aIS stable in the m.s.

Proof. Defining m(t) = E[V (t, x(t))] for any t ≥ t0 yields
D+m(t) ≤ pc(m(t)) + γ(‖u(t)‖), t 6= τk,

m(t) ≤ αk(m(t−)) + γ(‖u(t−)‖), t = τk,

m(t0) = m0 = E[V (t0, x0)].

(7.7)

Consider the following impulsive comparison system
D+v(t) = pc(v(t)) + γ(‖u(t)‖), t 6= τk,

v(t) = αk(v(t−)) + γ(‖u(t−)‖), t = τk,

v(t0) = v0 > m0.

(7.8)

We want to prove that comparison system (7.8) is uniformly aIS stable in the

m.s., and, by the comparison principle result, the SISD with input (7.2) has the

same qualitative property.
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We claim that, under our supposition, system (7.8) is uniformly IS stable in

the m.s., i.e., given 0 < εu < %0 and t0 ∈ [τ1, τ2), one can choose δu such that

δu < min{εu, αk(ε)} and ρ(‖u‖) ≤ v0 < δu imply that ρ(‖u‖) ≤ v(t) < εu for all

t ∈ [t0, τ2). If it were not true, there would be a t∗ ∈ [t0, τ2) such that ρ(‖u‖) ≤

εu < v(t∗). Also, one may write the differential inequality in (7.7) as

D+m(t) ≤ p̄c(m(t)), whenever m(t) ≥ c−1
( 1

pθ
γ(‖u‖)

)
, (7.9)

where p̄ = (1 + θ)p for some θ > 0. It follows that, after integration over (t∗, t0),∫ v(t∗)

v(t0)

ds

c(s)
≤
∫ t∗

t0

p̄ds ≤ p̄(τ2 − τ1), (7.10)

wheneverm(t) ≥ c−1
(

1
pθ
γ(‖u‖)

)
=: ρ(‖u(t)‖). Since v(τk) = αk(v(τ−k ))+γ(‖u(τ−k )‖)

for all k, we have ∫ v(t∗)

v(t0)

ds

c(s)
>

∫ ε

α1(ε)+γ(‖u(τ−1 )‖)

ds

c(s)
.

It follows that

p̄(τ2 − τ1) +

∫ α1(ε)+γ(‖u(τ−1 )‖)

ε

ds

c(s)
> 0,

which contradicts with (7.6). By the same argument followed in proving Corollary

4.1, we obtain∫ v(t)

v(τ−k )

ds

c(s)
≤ p̄(τk+1 − τk) +

∫ α(v(τ−k ))+γ(‖u(τ−k )‖)

v(τ−k )

ds

c(s)
≤ −ζk, (7.11)

whenever ρ(‖u(t)‖) < m(t), which implies that v(t) ≤ v(τ−k ) < ε for all t ∈

[τk, τk+1). By the comparison result, we have ρ(‖u(t)‖) < m(t) < v(t) ≤ v(τ−k ) < ε

for all t ∈ [τk, τk+1). By induction, ρ(‖u(t)‖) < v(t) < ε for all t ≥ t0, i.e., (7.8) is

uniformly IS stable in the m.s.

The proof of uniformly aIS stability in the m.s. is analogous to that of Corollary

4.1. The proof is complete.
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Example 7.2. Consider the following impulsive system with input

dx =
(
− 7x− 0.5y(t− 1)e−x

2
)
dt,

dy =
(
− 5y + sinx(t− 1)

)
dt+

(
− 0.1x(t− 1)

1 + y2
+ u(t)

)
dW2,

∆x(tk) = −2x(t−k ) + η sin(t−k ),

∆y(tk) = 0.2y(t−k − 1).

Define V (x, y) = 1
2
(x2 + y2). We showed in Example 4.2 that the trivial solution

x ≡ 0 of the unforced system is asymptotically stable in the m.s. To investigate

the aIS stability property, we choose u(t) = sin(t) and u(τ−k ) = sin(τ−k ). Then,

one can show that h(V, u) = −2.96V , whenever ‖(x, y)T‖ ≥
√

2| sin(t)|, where

we have taken q = 2 and θ = 1/2. Also, at t = τk, we have V (x(τk), y(τk)) ≤

6V (x(τ−k ), y(τ−k )) + η2 sin2(τ−k ). Taking η = 0.05 gives τk − τk−1 = 0.95 for all k.

That is, the system is aIS in the m.s. Figure 7.2 shows the simulation result of the

system.

Example 7.3. Consider the following system

dx =
(
− x+ u(t)[5x− x2(t− 1)]

)
dt+ 0.1xdW, t 6= tk,

∆x(t) = −k + 2

k + 1
x(t−) + 0.01 sin(t−), t = tk, k = 1, 2, · · · .

Clearly, the unforced system has an asymptotically stable equilibrium point at

the origin. Set u(t) = 1 for all t. Define V (x) = 1
2
x2. Then, LV (x) ≤ 5.55x2, i.e.,

the non-impulse system is not IS stable. On the other hand, at t = τk, we have

V (x(τk)) ≤ αkV (x(τ−k )) + 0.01, where αk = 1
(k+1)2

< 1. We also get, by Corollary

7.1, τk− τk−1 = 0.2 for all k. The simulation result of this system is given in Figure

7.5, which shows the stabilizing effects of impulses.

154



0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

E
[||

x(
t)

||2 ]

Figure 7.2: Mean square aIS stability with u(t) = sin(t).
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Figure 7.3: First moment aIS stability with u(t) = sin(t).
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7.4 Conclusions and Comments

In this chapter, we investigated some input-to-state stability properties for SISD

with fixed impulses and input disturbance. We used two different approaches to

establish these properties, namely, an (εu, δu)-based and comparison principle tech-

niques developed in Chapter 6. In the first technique, the continuous dynamics

were stable and the total effects of impulses was bounded, while, in the second

technique, unbounded impulses and both stable and unstable continuous dynamics

were considered. Our focus was on developing Lyapunov-like sufficient condition

theorems, using Razumikhin methodology.
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Chapter 8

Input-to-State Stability of Large

Scale SISD

In this chapter, we consider large-scale nonlinear stochastic systems with time de-

lay and subject to impulsive effects and disturbance input. As stated earlier, the

random noise is described by Wiener process, the time delay is finite, the input has

bounded energy, and the impulsive actions occur at constant times, not of state

dependent type due to some technical difficulties. Also, for the same reasoning,

throughout this chapter, the impulses are considered input-free. The focus is to

explore m.s. asymptotic IS stability properties of the system. We will continue to

apply the approaches developed in Chapters 6 and 7 to establish the qualitative

properties. Also, we use Razumikhin technique and comparison principle to de-

velop Lyapunov-like sufficient conditions. In analyzing the qualitative properties,

we decompose the interconnected system into smaller isolated subsystems, which

are assumed to be uniformly asymptotically IS stable in the m.s. and the rest will

be viewed as perturbation, which is required to be small in magnitude compared
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with degree of stability of each isolated subsystems. The material of this chapter

forms the basis of [Alw-f].

Consider the forced interconnected or composite system with decomposition Du
i

Du
i :



dwi(t) = fi(t, w
i
t, u)dt+ gi(t, w

1
t , w

2
t , · · · , wlt, u)dt

+
∑l

j=1 σij(t, w
j
t , u)dWj(t), t 6= τk,

4wi(t) = Ii(t, wit−), t = τk,

wit0 = φi(s), s ∈ [−r, 0],

(8.1)

where k ∈ N and i = 1, 2, · · · l for some l ∈ N. Here, wi or wit ∈ Rni are ni-

dimensional vector state or, respectively, its deviated state, n =
∑l

i ni for some ni ∈

N and u is a PC(R+; Rq) function. fi : R+×Rni×Rq → Rni , gi : R+×Rn×Rq → Rni ,

σij : R+×Rnj ×Rq → Rni×mj and m =
∑l

imi for some mi ∈ N, Ii : T×Rni → Rni

with T = {τk
∣∣ k = 1, 2, · · · } where τk represents constant impulsive moments and

satisfies 0 < τ1 < τ2 < · · · , and limk→∞ τk =∞, and φi : [−r, 0]→ Rni .

The forced isolated subsystems Sui can be defined as

Sui :


dwi(t) = fi(t, w

i
t, u)dt+ σii(t, w

i
t, u)dWi(t), t 6= τk,

4wi(t) = Ii(t, wit−), t = τk,

wit0 = φi(s), s ∈ [−r, 0].

(8.2)

Also, for x ∈ Rn, let xT = [(w1)T , (w2)T , · · · , (wl)T ] and xTt = [(w1
t )
T , (w2

t )
T , · · · ,

(wlt)
T ] and define the functionals f : R+ × Rn × Rq → Rn by

fT (t, xt, u) = [fT1 (t, w1
t , u), fT2 (t, w2

t , u), · · · , fTl (t, wlt, u)],

g : R+ × Rn × Rq → Rn by

gT (t, xt, u) = [gT1 (t, xt, u), · · · , gTl (t, xt, u)]

= [gT1 (t, w1
t , w

2
t , · · · , wlt, u), · · · , gTl (t, w1

t , w
2
t , · · · , wlt, u)],
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σ : R+ × Rn × Rq → Rn×m by

σ(t, xt, u) = [σij(t, w
j
t , u)],

and W : R+ → Rm by

W T = [W1,W2, · · · ,Wl],

where, for any i, Wi : R+ → Rmi . We also define the impulsive functional I :

R× Rn → Rn as

IT (t, xt−) = [IT1 (t, w1
t−), IT2 (t, w2

t−), · · · , ITl (t, wlt−)].

Accordingly, the impulsive composite (or interconnected) system with decom-

position Du
i can be defined as

Su :


dx(t) = F (t, xt, u)dt+ σ(t, xt, u)dW (t), t 6= τk,

4x(t) = I(t, xt−), t = τk,

xt0 = Φ(s), s ∈ [−r, 0],

(8.3)

where F : R+ × Rn × Rq → Rn is defined by F (t, xt, u) = f(t, xt, u) + g(t, xt, u),

which is an Lad
(
Ω, L[t0, t0 + α]

)
function for some α > 0, σ is as defined above,

which is an Lad
(
Ω, L2[t0, t0 + α]

)
function, and Φ : [−r, 0] → Rn is defined by

ΦT = [φT1 , φ
T
2 , · · · , φTl ], which is an L2

F0
([−r, 0]; Rn) function.

8.1 ISS Properties by a Scalar Lyapunov Func-

tion

This section deals with the m.s. uniformly aIS stability properties of composite

SISD (8.3). We first start with summarizing the conditions guaranteeing the m.s.

uniformly aIS stability property of each isolated subsystem.
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Definition 8.1. The isolated subsystem Sui is said to possess Property C if

Assumptions B1 and A2 hold, the functionals fi and σii are strongly quasi-bounded

in the m.s., there exist functions ai ∈ K2, bi, ci ∈ K1, γ ∈ K and constants σi < 0

and dk ≥ 0 with d =
∑∞

k=1 dk <∞, and V i ∈ C1,2
(
[−r,∞)× S(%)

)
; R+

)
such that

(i) for all (t, ψi(0)) ∈ [−r,∞)× S(%),

bi(‖ψi(0)‖2) ≤ V i(t, ψi(0)) ≤ ai(‖ψi(0)‖2), (a.s.);

(ii) for all t 6= τk, ψ
i ∈ PC

(
[−r, 0];S(%)

)
, and u ∈ PC(R+; Rq),

LiV i(t, ψi, u) ≤ σici(‖ψi(0)‖2) + γ(‖u‖), (a.s.),

provided that V i(t+ s, ψi(s)) ≤ q̄V (t, ψi(0)) for some q̄ > 1 and s ∈ [−r, 0];

(iii) for any τk ∈ T and ψi ∈ PC
(
[−r, 0];S(%)

)
,

V i
(
τk, ψ

i(0) + Ii(τk, ψi(τ−k ))
)
≤ α(dk)V

i(τ−k , ψ
i(0)), (a.s.),

where ψ(0−) = ψ(0),
∏∞

k=1 α(dk) <∞ with α(dk) > 1 for all k.

Remark 8.1. One can re-write the diffusion operator inequality in (ii) as

LiV i(t, ψi, u) ≤ σ̄ici(‖ψi(0)‖2), (a.s.),

whenever ‖ψi(0)‖ ≥
[
c−1
i

(
1
θσi
‖γ(‖u‖)

)]1/2
=: ρ1i(‖u‖), where σ̄i = σi + θ < 0, for

some θ > 0, and ρ1i ∈ K.

In the following theorem, we state and prove the aIS property of the solution of

comparison system (8.3).

Theorem 8.1. Suppose that composite system (8.3) satisfies the following condi-

tions:
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(i) every isolated subsystem Sui possesses Property C;

(ii) for any i, j = 1, 2, · · · , l, there exists a positive constant bij such that

gTi (t, ψi, u)V i
ψi(0)(t, ψ

i(0)) ≤ c
1/2
i (‖ψi(0)‖2)

l∑
j=1

q̄bijc
1/2
j (‖ψj(0)‖2),

whenever ‖ψi(0)‖ ≥ ρ2i(‖u‖), where q̄, ci, and γ are defined in (i) and ψk is

the kth component of ψ;

(iii) for any vector (yi)T , i = 1, 2, · · · , l, there exists ei > 0 such that

(yi)TV i
ψi(0)ψi(0)(t, ψ

i(0))yi ≤ ei‖yi(0)‖2,

with yi = σij(t, ψ
i, u) being the ith row of matrix σ;

(iv) for any σij(t, ψ
j
t , u), i, j = 1, 2, · · · , l, there exists dij ≥ 0 such that

‖σij(t, ψj, u)‖2 ≤ q̄dijci(‖ψj(0)‖2),

whenever ‖ψi(0)‖ ≥ ρ3i(‖u‖);

(v) the matrix S = [sij]l×l is negative definite, where

sij =


αi(σ̄i + q̄bii) + 1

2

∑
k=1,k 6=i q̄αkekdki, i = j,

1
2
q̄(αibij + αjbji), i 6= j,

for some positive constant αi for any i.

Then, composite system (8.3) is uniformly aIS stable in the m.s.

Proof. Let x be the solution of composite system (8.3). Define the composite

Lyapunov function candidate by

V (t, x) =
l∑

i=1

αiV
i(t, wi),
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from which we get

LV (t, x, u) =
l∑

i=1

αi

{
LiVi(t, wi, u) + gTi (t, xt, u)V i

wi(t, w
i)

+
1

2

l∑
j=1,i 6=j

tr
[
σTij(t, w

j
t , u)V i

wiwi(t, w
i)σij(t, w

j
t , u)

]}

≤
l∑

i=1

αi

{
σ̄ici(‖wi‖2) + c

1/2
i (‖wi‖2)

l∑
j=1

q̄bijc
1/2
j (‖wj‖2)

+
1

2

l∑
j=1,i 6=j

q̄ei‖σij(t, wjt )‖2
}

≤
l∑

i=1

αi

{
σ̄ici(‖wi‖2) + c

1/2
i (‖wi‖2)

l∑
j=1

q̄bijc
1/2
j (‖wj‖2)

+
1

2

l∑
j=1,i 6=j

q̄eidijci(‖wj‖2)
}

= zTSz,

whenever

‖x‖ ≥ ρ(‖u‖) := max{max
i
ρ1i(‖u‖),max

i
ρ2i(‖u‖),max

i
ρ3i(‖u‖)},

where zT =
(
c

1/2
1 (‖w1‖2), c

1/2
2 (‖w2‖2), · · · , c1/2

l (‖wl‖2)
)
, and S is the negative-definite

matrix defined in (v). It follows that the eigenvalues of S are strictly negative.

Therefore,

LV (t, xt, u) ≤ λM(S)
l∑

i=1

ci(‖wi‖2), whenever ‖x‖ ≥ ρ(‖u‖),

i.e., LV (t, xt, u) is negative definite, which implies that

LV (t, x, u) ≤ −c(‖x(t)‖2), whenever ‖x‖ ≥ ρ(‖u‖),
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where c is a class-K1 function. At the impulsive moments t = τk, we have

V (τk, x(τk)) =
l∑

i=1

αiV
i(τk, w

i(τk))

≤
l∑

i=1

αiαi(dk)V
i(τ−k , w

i(τ−k ))

≤ αM(dk)
l∑

i=1

αiV
i(τ−k , w

i(τ−k )), αM(dk) = max
i
{αi(dk)}

= αM(dk)V (τ−k , x(τ−k )).

Thus, the conditions of Theorem 7.2 are satisfied; therefore composite SISD

(8.3) is uniformly aIS stable in the m.s. This completes the proof.

In Theorem 8.2, as clarified earlier, Property C is assumed to insure the m.s.

uniformly aIS stability property of each isolated subsystem. Assumptions (ii) and

(iii) represent the upper bound estimations on the deterministic and noisy per-

turbations (or interconnection). Moreover, to guarantee the stability feature of

composite SISD, these perturbations have to be sufficiently small, as described by

the test matrix S in assumption (v).

The following corollary states some special cases of Theorem 8.1.

Corollary 8.1. In Theorem 8.1,

1. if u(t) ≡ 0 for all t ∈ R+, the trivial solution x ≡ 0 of the corresponding unforced

composite system in (8.3) is asymptotically stable in the m.s.;

2. for any i = 1, 2, · · · , l and s > 0, let ai(s) = ais
2, bi(s) = bis

2, and ci(s) = cis
2

for any i; consequently the functions shown in the proof can be chosen as

a(s) = max
i
{αiai}s2, b(s) = min

i
{αibi}s2, c(s) = λM(S)s2.
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Then, composite system (8.3) is eIS stable in the m.s. If, moreover, u(t) ≡ 0

for all t ∈ R+, then the trivial solution x ≡ 0 is exponentially stable in the

m.s.

Example 8.1. Consider the following control system, which is a modification of

the control system presented in Example 5.1,
dx = Axdt+ bf(y)dt+ σ11(x(t− 1))dW1 + σ12(y)dW2, t 6= τk,

dy =
(
− ζy − ξf(y) + u

)
dt+ aTxdt+ σ21(x)dW1 + σ22(y(t− 1))dW2, t 6= τk,

(8.4)

where xT = (x1, x2, x3, x4), y ∈ R is the controller (i.e., n1 = 4, n2 = 1), A ∈ R4×4,

b ∈ R4, ζ, ξ ∈ R, f ∈ R is continuous for all y ∈ R, f(y) = 0 if and only if y = 0,

and 0 < yf(y) < k|y|2 for all y 6= 0 and k > 0, u ∈ R, a ∈ R4, σ11 ∈ R4×4,

σ12 ∈ R1×1, σ21 ∈ R4×1, σ22 ∈ R1×1, W1 ∈ R4, and W2 ∈ R.

The impulses are given by the following difference equations
∆x(τk) = I1(τk, x(τ−k )) = 1

k2

(
− 2x1(τ−k ),−2x2(τ−k ), 2x3(τ−k ), 0

)T
,

∆y(τk) = I2(τk, y(τ−k )) = − 1
1+k2y(τ−k ).

(8.5)

The isolated subsystems are
dx = Axdt+ σ11(x(t− 1))dW1, t 6= τk,

dy =
(
− ζy − ξf(y) + u

)
dt+ σ22(y(t− 1))dW2, t 6= τk.

(8.6)

We showed in Example 5.1 that the trivial solution zT = (x, y) = (0, 0) ∈ R5 is

exponentially stable in the m.s.

Consider now the input u(t) = sin(t) in the control system. Then, L2V
2(y) ≤

(−2ζ+q̄+θ) < 0 provided that |y| ≥ 2
θ
| sin(t)|, where θ = 1/2 and q̄ = 2. Therefore,

164



0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

E
[||

x(
t)

||2 ]

Figure 8.1: Mean square aIS stability.

provided that ‖(x, y)T‖ ≥ |y| ≥ 4| sin(t)|, LV ((x, y), u) ≤ −2.9169‖(x, y)2‖ < 0.

This, together with the impulsive condition, implies that composite system (8.4)

with the impulsive effect in (8.5) is eIS stable in the m.s. The simulation result of

this system is shown in Figure 8.1.

8.2 ISS Properties by Comparison Principle

In this section, we continue to prove the qualitative properties of composite SISD

with fixed impulses by using the comparison principle developed in previous chap-

ters.

8.2.1 Analysis by a Scalar Lyapunov Function

As achieved previously, in this subsection, we consider a scalar Lyapunov function

to establish our results.

Theorem 8.2. Assume that the assumptions of Theorem 8.1 hold except that,
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provided that V i(t+ s, ψi(s)) ≤ q̄V (t, ψi(0)) for some q̄ > 1 and s ∈ [−r, 0],

LiV i(t, ψi, u(t)) ≤ h1i(t, V
i(t, ψi(0), u(t))),

and

gTi (t, ψ, u(t))V i
ψi(0)(t, ψ

i(0)) +
1

2

∑
j=1,i 6=j

tr[σTij(t, ψ
j, u(t))V i

ψi(0)ψi(0)(t, ψ
i(0))σij(t, ψ

j, u(t))

< h2i(t, V (t, ψ(0)), u(t)),

where h̄ ∈ C
(
[τk−1, τk) × R+ × Rq; R

)
, h̄(t, v, u) is concave in v for all t ∈ R+ and

u ∈ PC(R+; Rq), and

lim
(t,y,v)→(τ−k ,x,u)

h̄(t, y, v) = h̄(τ−k , x, u),

where h̄ is both h1i and h2i . Then, IS stability properties of composite system (8.3)

are implied by those of the following scalar comparison system
D+v = h(t, v, u), t 6= τk,

v(t) = αM(dk)v(t−), t = τk,

v(t0) = v0 ≥ 0,

(8.7)

where h is a scalar function defined later.

Proof. For any solution xT =
(
(w1)T , (w2)T , · · · , (wl)T

)
of the composite system,

define the composite Lyapunov function candidate by

V (t, x) =
l∑

i=1

αiV
i(t, wi),

where, for all i = 1, 2, · · · , l, αi > 0 and V i is the Lyapunov function related to the
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ith isolated subsystems Sui . Then, whenever V (t, xt) ≤ q̄V (t, x),

LV (t, xt, u) =
l∑

i=1

αi

{
LiV i(t, wi, u) + gi(t, xt, u)TV i

wi(t, w
i)

+
1

2

l∑
j=1,i 6=j

tr
[
σij(t, w

j
t , u)V i

wiwi(t, w
i)σij(t, w

j
t , u)

]}

≤
l∑

i=1

αi

{
h1i(t, V

i(t, wi), u) + h2i(t, V
i(t, wi), u)

}
=:h(t, V (t, x, u)), t 6= τk.

It follows that, after applying Itô formula and taking the mathematical expectation,

D+m(t) ≤ h(t,m(t), u(t)),

and, at t = τk, we have shown in Theorem 8.1 that

m(t) ≤ αM(dk)m(t−).

In summary, we have
D+m ≤ h(t,m(t), u(t)), t 6= τk,

m(t) ≤ αM(dk)m(t−), t = τk,

m(t0) ≤ u0,

(8.8)

which is compared with the scalar comparison system (8.7). By Theorem 7.4,

provided that (8.7) is uniformly aIS stable, composite system (8.3) is uniformly aIS

stable in the m.s. This completes the proof.

We should remark that, in Theorem 7.4, the difference equation is input-dependent,

i.e., generally, γ(‖u(τ−k )‖) 6≡ 0.

In the following corollary, we state a special case of Theorem 8.2, which is also

similar to Corollary 7.1.
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Corollary 8.2. In Theorem 8.2, assume that there exist p ∈ R, c ∈ K1, and γ ∈ K

such that

h(t, V (t, x), u) = pc(V (t, x)) + γ(‖u‖).

Suppose further that there exist ζk and %0 > 0 such that, for all z ∈ (0, %0) and

k = 1, 2, · · · , the following inequality

p(τk − τk−1) + lnαM(dk) ≤ −γk, k = 1, 2, · · · ,

holds. Then, if ζk ≥ 0, the composite system is uniformly IS stable in m.s., and if∑∞
k=1 ζk = +∞, the system is aIS stable in the m.s.

Example 8.2. Consider composite system (8.4). By the previous analysis, we

have, for the same Lyapunov function candidates,

L2V
2(y) ≤ (−10 + 0.0001q̄ + θ)V 2(y), whenever |y| ≥ 2

θ
| sin(t)|,

and

LV (xt, u) ≤ −3.9997V ((x, y)) =: h(V (x, y)),

whenever ‖(x, y)T‖ ≥ |y| ≥ 4| sin(t)|.

Consider the impulsive difference equations
∆x(τk) = −5

4
x(τ−k ),

∆y(τk) = −5
4
y(τ−k ).

(8.9)

Then, V (x(τk), y(τk)) ≤ αkV (x(τ−k ), y(τ−k )), where αk = 1
16

. Making use of the

condition in Corollary 8.2, one may obtain τk − τk−1 > 0.69 for any k, which

means that the conditions of Corollary 7.2 are satisfied. Therefore, the impulsive
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Figure 8.2: Mean square aIS stability.

composite system given in (8.4) and (8.9) is eIS stable in the m.s. The simulation

result is shown in Figure 8.2.

According to Corollary 8.2, one can show that the given impulses stabilize the

unstable system (with input) (8.4), where matrix A in this case is given by

A =


5 0 0 0

0 −6 0 0

0 0 −8 0

0 0 0 −10

 .

Then, one may get L1V
1(x) ≤ (10 + 0.0001q̄)V 1(x), which shows that the

isolated subsystem is unstable, while L2V
2(y) ≤ −9.4998V 2(y), whenever |y| ≥

2
θ
| sin(t)|. Putting these together, one may get h(V (x, y), u) = 7.0005V (x, y) > 0,

which shows that the non-impulsive composite system is unstable. By considering

the stabilizing impulsive effects, we obtain τk − τk−1 ≤ 0.33. Figure 8.3 shows the

simulation result.
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Figure 8.3: Mean square aIS stability.

8.2.2 Analysis by a Vector Lyapunov Function

In this subsection, we want to develop a comparison principle and then prove the

stability properties of the composite SISD with fixed impulses (8.3). Our analysis is

based on using a vector Lyapuonv function and decomposing the large scale system

into subsystems with smaller scales. Before stating the main theorems, we present

the following definition, which will be used in the rest of this subsection.

Definition 8.2. The isolated subsystem Sui in (8.2) is said to possess Property

D if Assumptions A2 and B1 hold, there exist functions ci ∈ K1, ai which satisfies

the conditions of h̄ in Theorem 8.2, and V i ∈ C1,2
(
[−r,∞) × S(%)

)
; R+

)
, which is

decrescent and satisfies

(i) for all (t, ψi(0)) ∈ [−r,∞)× S(%),

ci(‖ψi(0)‖2) ≤ V i(t, ψi(0)), (a.s.),

and, for all t 6= τk, ψ
i ∈ PC

(
[−r, 0];S(%)

)
, and u ∈ PC(R+; Rq),

LiV i(t, ψi, u) ≤ ai(t, V
i(t, ψi(0)), u(t)), (a.s.),

provided that V i(t+ s, ψi(s)) ≤ q̄V (t, ψi(0)) for some q̄ > 1 and s ∈ [−r, 0];
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(ii) for any τk ∈ T and ψi ∈ PC
(
[−r, 0];S(%)

)
,

V i
(
τk, ψ

i(0) + Ii(τk, ψi(τ−k ))
)
≤ α(dk)V

i(τ−k , ψ
i(0)), (a.s.),

where ψi(0−) = ψi(0) and
∏∞

k=1 α(dk) <∞ with α(dk) > 1 for all k.

In the following theorems, we state and prove a comparison principle and IS

stability results for composite system (8.3).

Theorem 8.3. Assume that the following assumptions hold:

(i) every isolated subsystem Sui has Property D;

(ii) for any i = 1, 2, · · · , l, there exist a function b̄i ∈ C
(
[τk−1, τk) × R+ × Rq; R

)
and b̄i is quasi monotone nondecreasing such that

gTi (t, ψ, u)V i
ψi(0)(t, ψ

i(0)) +
1

2

l∑
j=1,i 6=j

tr[σTij(t, ψ
j, u)V i

ψi(0)ψi(0)(t, ψ
i(0))σij(t, ψ

j, u)

< b̄i(t, V (t, ψ(0)), u),

where V T (t, x) =
(
V 1(t, w1), V 2(t, w2), · · · , V l(t, wl)

)
;

(iii) let aT (·) =
(
a1(·), a2(·), · · · , al(·)

)
∈ Lad

(
Ω, L[t0, t0 + α]

)
and

b̄T (·) =
(
b̄1(·), b̄2(·), · · · , b̄l(·)

)
∈ L2

ad

(
Ω, L2[t0, t0+α]

)
, where ai(·) and b̄i(·) are

defined in assumptions (i) and (ii), respectively, and assume that the following

inequalities hold:

|a(t, v′, u′) + b̄(t, v′, u′)|2 ≤ h1(t) + h2(t)κ(‖v′‖2),

|a(t, v′, u′) + b̄(t, v′, u′)− a(t, v′′, u′′)− b(t, v′′, u′′)| ≤ K
(
‖v′ − v′′‖+ ‖u′ − u′′‖

)
,

where t ∈ R+, h1 and h2 are PC(R+,R+) functions, κ : R+ → R+ is con-

tinuous, increasing, concave function, v′ and v′′ ∈ Rl
+, u′ and u′′ ∈ Rq, and

K > 0;
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(iv) there exists a function p : Rl × R+ × Rq → R such that

sup
V (t,x)≤v

l∑
i,j=1

‖σTij(t, ψj, u)Vψi(0)i(t,ψi(0))(t, ψ
i(0))‖2 ≤ p(t, v, u),

where

p(t, v, u) ≤ h1(t) + h2(t)κ(‖v‖2).

Then, V (t0, x0) < v0 implies that V (t, x(t)) < v(t), for all t ≥ t0, where v =

(v1, v2, · · · , vl)T is a solution of the vector stochastic impulsive differential equation
dv = [a(t, v, u) + b̄(t, v, u)]dt+ VdW (t), t 6= τk,

∆v(t) = αM(dk)v(t−), t = τk,

(8.10)

with V = [vij]l×l being a matrix random process such that

‖V‖2 ≤ p(t, v, u),

and αM(·) = maxi{αi(·), i = 1, 2, · · · , l}.

Proof. For any solution x of composite SISD (8.3), define the vector Lyapunov

function for the composite system

V T (t, x(t)) =
(
V 1(t, w1), V 2(t, w2), · · · , V l(t, wl)

)
,

where V i is the Lyapunov function related to the ith isolated subsystem Sui . Then,

by the vector form of the Itô formula, we have

dV T (t, x(t)) =
(
dV 1(t, w1), dV 2(t, w2), · · · , dV l(t, wl)

)
,

where

dV i(t, wi) < [ai(t, V
i(t, wi), u) + b̄i(t, V

i(t, wi), u)]dt+
l∑
ij

vijdWi(t),
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where vij = V iT

wi (t, wi)σij(t, w
j
t , u). It follows that the vector differential inequality

is

dV (t, x(t)) <
[
a(t, V (t, x(t)), u(t)) + b̄(t, V (t, x(t)), u(t))

]
dt+ VdW (t),

for any t ∈ [τk−1, τk) and k ∈ N.

By the same argument followed in proving Theorem 5.4, we have, at the impul-

sive moments t = τk,

V T (τk, x(τk)) = αM(dk)V
T (τ−k , x(τ−k )),

and, for all t ≥ t0 and i = 1, 2, · · · , l, Vi(t, wi(t)) < vi(t). It follows that

V (t, x(t)) < v(t), ∀ t ≥ t0.

Finally,

‖V‖2 =
l∑

i,j=1

‖vij‖2 =
l∑
ij

‖V iT

wi (t, wi)σij(t, w
j
t , u)‖2

≤ sup
V (t,x)<v(t)

l∑
i,j=1

‖V iT

wi (t, wi)σij(t, w
j
t , u)‖2

≤ p(t, v, u).

This completes the proof.

In the following theorem, we state and prove the stability result.

Theorem 8.4. Suppose that the assumptions of Theorem 8.3 hold, and there

exist α1 ∈ K2, c ∈ K1, a function h̄ ∈ C
(
[τk, τk−1) × Rl; R+

)
, z ∈ Rl, and U ∈

C1,2
(
[τk, τk−1)× Rl : R+

)
which is decrescent, U(t, 0) = 0, and satisfies
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(i) for all t ∈ R+ and v ∈ PC(R+; Rl),

α1(‖v‖2) ≤ U(t, v), (a.s.),

zTUvv(t, v)z ≤ h̄(t, v)‖z‖2, (a.s.),

and

Ut(t, v) + Uv(t, v)
[
a(t, v, u) + b̄(t, v, u)

]
+

1

2
h(t, v)p(t, v, u) ≤ −c(‖v‖), (a.s.),

whenever ‖v‖ > V i(t, wi) ≥ ρ(‖u‖), where ρ ∈ K and for any i;

(ii) for any τk ∈ T and v ∈ PC(R+; Rl),

U(τk, v(τk)) = α(dk)U(τ−k , v(τ−k )).

Then, the IS stability properties of comparison system (8.10) imply the correspond-

ing properties of composite SISD (8.3).

Proof. Let v ≥ 0 be the solution vector of comparison system (8.10). By Itô

formula, we obtain

LU(t, v, u) ≤ −c(‖v‖), whenever ‖v‖ ≥ ρ(‖u‖).

By the previous analysis, we conclude that (8.10) is aIS stable in the m.s. As for

composite system (8.3), we have shown in Theorem 8.3 that the vector inequality

V (t, x(t)) < v(t) holds for all t ≥ t0, from which, together with the condition in (i),

we obtain ‖v‖ > ‖V (t, x)‖ ≥ V i(t, wi) ≥ ρ(‖u‖). It follows that

α1(‖x(t)‖2) ≤
[ l∑
i=1

c2
i (‖wi‖2)

]1/2

≤ ‖V (t, x(t))‖ < ‖v(t)‖,

where α1 ∈ K1. Taking the mathematical expectation and then applying α−1
1 to

both sides imply the desired result. This completes the proof.
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In the following corollary, we consider a special case of Theorem 8.4.

Corollary 8.3. In Theorem 8.4, assume that there exists a positive constant c

such that c(s) = c s for all s ≥ 0, and, whenever ‖v‖ ≥ ρ(u),

βT
(
a(t, v, u) + b̄(t, v, u)

)
≤ −c‖v‖,

for some positive vector β ∈ Rl. Then, system (8.10) is aIS stable in the m.s.

Proof. Let v be the solution of (8.10) and define U(t, v) = βTv as a Lya-

punov function candidate. Then, Uv = βT and Uvv = 0 ∈ Rl×l. It follows that

LU(t, v, u) ≤ −c‖v‖, whenever ‖v‖ ≥ ρ(u), which implies the required result.

Example 8.3. Consider composite system (8.4) and the same Lyapunov func-

tions. We showed in Example 5.3 that a(V (x, y)) = (a1(V 1(x)), a2(V 2(y)))T =

(σ1V
1(x), σ2V

2(y))T and b̄(V (x, y)) =
(
(2k+0.0001)V (x, y), 2.0001V (x, y)

)T
. Clearly,

functions a and b̄ satisfy the conditions in (iii) of Theorem 8.3. As for condition

(iv), we have

sup
V≤v

l∑
i,j=1

‖σTij(wi)Vwi(wi)i‖2 ≤ 8ξ̄‖v‖2,

i.e., p(v) ≤ 8ξ̄‖v‖2, where ξ̄ = max{ξ1, ξ2}, ξ1 = 1.0004, and ξ2 = 1.0002 with

q̄ = 2.

Also, at the impulsive moments given in Example 5.1, we get

V T (x(τk), y(τk)) ≤ (1 +
1

k2
)vT (τ−k ) = vT (τk).

Thus, by Theorem 8.3, V (x(t), y(t)) < v(t), for all t ≥ t0, which proves the

comparison result. As for the stability result, we choose U(v) = v1 + v2, i.e.,

βT = (1, 1), which gives LU(v) ≤ −5.9997U(v), where we have chosen k = 2, and
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U(v(τk)) = αM(dk)U(v(τ−k )), where αM(dk) = 1+ 1
k2 . Therefore, the trivial solution

of unforced composite system (8.4) is asymptotically stable in the m.s.

Consider now the input u(t) = sin(t) in the isolated control subsystem. Then,

one can easily find L1V
1(x) ≤ σ1V

1(x) and L2V
2(y) ≤ σ∗2V

2(y) + u2, where σ∗2 =

−9 + 0.0001q̄, from which we get a(V (x, y), u) = (σ1V
1(x), σ∗2V

2(y) + u2)T and

b̄(V (x, y), u) = b̄(V (x, y)), which satisfy the conditions in (iii) of Theorem 8.3. At

the impulsive times τk, we have, for i = 1, 2,

V i(wi(τk))− vi(τk) ≤ αi(dk)
(
V i(wi(τ−k ))− vi(τ−k )

)
≤ αM(dk)

(
V i(wi(τ−k ))− vi(τ−k )

)
< 0.

As concluded earlier, V (t, x) < v(t) for all t ≥ t0. The comparison result is

complete. As for the stability property, we have, from the diffusion operator of the

isolated control subsystem,

L2V
2(y) ≤ −σ̄∗2V 2(y),

where σ̄∗2 = σ∗2−1/2, whenever V 2(y) = y2 > 2u2 (i.e., |y| >
√

2|u| = ρ(|u|)), which

implies that ‖v‖ > ‖V (x, y)‖ ≥ ρ(|u|). At the impulsive moments τk, we have

U(v(τk)) = βTv(τk) = βTαM(dk)v(τ−k ) = αM(dk)β
Ty(τ−k ) = αM(dk)U(y(τ−k )).

Therefore, by Theorem 8.4, composite SISD (8.4) and (8.5) is uniformly aIS

stable in the m.s.

8.3 Conclusion

In this chapter, we considered a large scale nonlinear stochastic impulsive systems

with time delay and input. The main interest was to establish m.s. asymptotic IS
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stability of the system. We started with developing Lyapunov-type theorems using

Razumikhin technique. Later, the focus was on establishing a comparison principle

to achieve the same stability property. We also applied the theoretical proposed

results to an automated control system.
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Chapter 9

Reliable Robust Control for

Uncertain SISD

This chapter deals with the problem of designing a robust reliable control for a

class of uncertain stochastic impulsive systems with time delay. The uncertainties

are assumed to be time-varying and norm-bounded, the time delay is constant, and

the nonlinear disturbances are unknown, but have linear-growth-type bounds. The

actuators are categorized into two sets. One set has actuators, which are susceptible

to failure, while the other set is robust to failures and never fails. Particularly,

the interest is to design a state feedback controller such that, for all admissible

uncertainties and actuator failures occurring in a prespecified subset of actuators,

the plant preserves exponential stability in the mean square and independently of

the time delay. Using Razumikhin technique, Lyapunov-like sufficient conditions

are developed to guarantee the stability property, which leads to solving a modified

algebraic Riccati equation. The material of this chapter forms the basis of [Alw-g].

Consider the following stochastic control system with time delay and impulsive
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effects

dx(t) = [(A+ ∆A(t))x+ (Ā+ ∆Ā(t))xt +Bu+ f(xt)]dt

+ g(xt) dW (t), t 6= τk, (9.1a)

∆x(t) = Ckx(t−), t = τk, (9.1b)

xt0(s) = φ(s), s ∈ [−r, 0], (9.1c)

where x ∈ Rn is the system state, u ∈ Rq is the control input of the form Kx,

with K ∈ Rn×q being a control matrix gain, f ∈ Rn and g ∈ Rn×m are disturbance

functions, for any k ∈ N, Ck is a matrix of real numbers, which represents the

impulse intensity, φ ∈ Rn is the initial state function, which is assumed to be

in L2
F0

([−r, 0]; Rn), τk represents constant impulsive moments, which satisfies 0 =

τ0 < τ1 < · · · < τk < · · · , and limk→∞ τk = ∞. In difference equation (9.1b),

∆(t) = x(t+) − x(t−), where x(t−) (and x(t+)) is the state just before (and after)

the impulsive action. We also assume that the solution is right continuous (i.e.,

x(t+) = x(t)). A, Ā, and B are real constant matrices of appropriate dimensions,

and ∆A and ∆Ā are real-valued matrices, which are piecewise continuous functions

representing parameter uncertainties with bounded norms. To guarantee that SISD

(9.1) has unique regular solution, we assume that functionals f ∈ Lad(Ω, L[a, b])

and g ∈ Lad(Ω, L2[a, b]) satisfy the Lipschitz condition. We also assume that f(0) =

0 ∈ Rn and g(0) = 0 ∈ Rn×m to ensure that the system admits a trivial solution.

A symmetric matrix P is said to be positive definite if the scalar xTPx > 0 for all

nonzero x ∈ Rn and xTPx = 0 for x = 0. Denote by λmin(P ) (and λmax(P )) the

smallest (and largest) eigenvalue of P .

The following definition and assumption will be needed throughout this chapter.

Definition 9.1. The trivial solution of system (9.1) is said to be robustly globally
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exponentially stable in the m.s. if there exist positive constants λ and K such that,

if φ ∈ L2
F0

([−r, 0]; Rn), then

E[‖x(t)‖2] ≤ KE[‖φ‖2
r]e
−λ(t−t0), ∀ t ≥ t0,

for any solution x(t) = x(t, t0, φ) of (9.1).

Assumption A3. For all t ∈ R+, the admissible parameter uncertainties are

defined by

∆A = DU(t)H and ∆Ā = D̄V(t)H̄,

where D, D̄,H, and H̄ are known real constant matrices with appropriate dimen-

sions that give the structure of the uncertainties, and U and V are unknown real

time-varying matrices containing the uncertain parameters in the linear parts and

satisfy

‖U(t)‖ ≤ 1 and ‖V(t)‖ ≤ 1,

respectively.

As for the reliability with respect to actuator failures, it is common practice that

the m control actuators are categorized into two groups. Let the set of actuators

that are susceptible to failures be denoted by Σ ⊆ {1, 2, · · · ,m}, where the actua-

tors may fail. The other set of actuators, which are robust to failures and are needed

to stabilize the system under consideration, is denoted by Σ̄ ⊆ {1, 2, · · · ,m} − Σ,

where the actuators never fail. This means that, in the stabilization problem, the

elements of Σ are redundant, but useful in improving the performance of the control

systems, while the elements of Σ̄ are required to stabilize the system. Consider the
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decomposition of the control matrix

B = BΣ +BΣ̄,

where BΣ is the control matrix associated with the set Σ, and BΣ̄ is the control

matrix associated with the complementary subset of the control input, i.e., BΣ and

BΣ̄ are generated by zeroing out the columns corresponding to Σ and Σ̄, respectively.

Let σ ∈ Σ correspond to a particular subset of the susceptible actuators that

experience a failure, and assume that the controller failures are modeled as the

control input failures ui = 0 for all i ∈ σ. The decomposition becomes

B = Bσ +Bσ̄,

where Bσ and Bσ̄ have the same definitions of BΣ and BΣ̄.

As mentioned earlier, our interest is to design a state feedback controller of the

form

u(t) = Kx(t), (9.2)

which robustly globally exponentially stabilizes SISD (9.1) in the m.s. for all admis-

sible uncertainties and all actuator failures occurring with the pre-specified subset

Σ.

Since the control input u is applied to the system plant only through the normal

actuators and the outputs of the faulty actuators are assumed to be zero, the closed-

loop control system is

dx(t) = [(A+ ∆A(t) +Bσ̄K)x+ (Ā+ ∆Ā(t))xt + f(xt)]dt

+ g(xt) dW (t), t 6= τk, (9.3a)

∆x(t) = Ckx(t−), t = τk, (9.3b)

xt0(s) = φ(s), s ∈ [−r, 0]. (9.3c)
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9.1 Stability and Stabilization of Uncertain SISD

In this section, we state and prove the main contribution of this chapter. We start

with proving some matrix inequalities that will be used in the proofs of the main

theorems.

Lemma 9.1. For any arbitrary ε1 > 0 and a positive-definite matrix P , we have

2xTPĀxt ≤ xT
(
ε1PĀĀ

TP +
q̄

ε1

I
)
x,

where q̄ > 1 such that V (xt) ≤ q̄V (x) with V being a positive-definite function.

Proof. Let ε1 > 0. Since(√
εxT (PĀ)− 1√

ε
xTt

)(√
εxT (PĀ)− 1√

ε
xTt

)T
≥ 0,

then

0 ≤ ε1x
TPĀĀTPx+

1

ε1

xTt xt − xT (PĀ)xt − xt(PĀ)Tx

= ε1x
TPĀĀTPx+

1

ε1

xTt xt − 2xT (PĀ)xt.

It follows that

2xT (PĀ)xt ≤ ε1x
TPĀĀTPx+

1

ε1

xTt xt

≤ ε1x
TPĀĀTPx+

q̄

ε1

xTx

= xT
(
ε1PĀĀ

TPx+
q̄

ε1

I
)
x.
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Lemma 9.2. For any arbitrary ε2 > 0, q̄ > 1 as defined in Lemma 9.1, and a

positive-definite matrix P , we have

2xTP (∆Ā)xt = 2xTP (D̄V(t)H̄)xt ≤ ε2x
TPD̄D̄TPx+

q̄

ε2

‖H̄‖2xTx.

Proof. Let ε2 > 0. Then,

0 ≤
(√

ε2x
TPD̄V(t)− 1

√
ε2

xTt H̄
T
)(√

ε2x
TPD̄V(t)− 1

√
ε2

xTt H̄
T
)T

= ε2x
TP (V(t)VT (t))D̄D̄TPx+

1

ε2

xTt H̄
T H̄xt − xTPD̄V(t)H̄xt − xTt H̄TVT (t)D̄TPx.

It follows that

2xTPD̄V(t)H̄xt ≤ ε2x
TPD̄D̄TPx+

1

ε2

xTt H̄
T H̄xt

≤ ε2x
TPD̄D̄TPx+

q̄

ε2

‖H̄‖2xTx

= xT
(
ε2PD̄D̄

TP +
q̄

ε2

‖H̄‖2I
)
x.

Lemma 9.3. For any arbitrary ε4 > 0, q̄ > 1 as defined in Lemma 9.1, and a

positive-definite matrix P , we have

fT (xt)Px+ xTPf(xt) ≤ xT
(
ε4q̄‖U‖2I +

1

ε4

P 2
)
x,

where U is a matrix such that

‖f(xt)‖2 ≤ ‖U‖2‖xt‖2.

Proof. Let ε4 > 0. Then,

0 ≤
(√

ε4f
T (xt)−

1

ε4

xTP
)(√

ε4f
T (xt)−

1

ε4

xTP
)T

= ε4F
T (xt)F (xt) +

1

ε4

xTPPx− F T (xt)Px− xTPf(xt).
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This implies that

F T (xt)Px+ xTPf(xt) ≤ ε4‖f(xt)‖2 +
1

ε4

xTP 2x

≤ ε4‖U‖2‖xt‖2 +
1

ε4

xTP 2x

≤ ε4q̄‖U‖2‖x‖2 +
1

ε4

xTP 2x

≤ ε4q̄‖U‖2xTx+
1

ε4

xTP 2x

≤ xT
(
ε4q̄‖U‖2I +

1

ε4

P 2
)
x.

The following theorem, which is a theoretical basis in the design of reliable

robust control systems, guarantees the m.s. robust global exponential stability of

the trivial solution of SISD (9.1) independently of the time delay. This result is

achieved if the algebraic Riccati-like equation stated in the theorem is solvable for

a positive-definite matrix P .

Theorem 9.1. Let the controller gain K be given. Assume that Assumptions

A1-A3 hold, there exist positive constants ε1, ε2, ε3, and ε4, and a positive-definite

matrix P such that the following algebraic Riccati-like matrix inequality(
A+BK

)T
P + P

(
A+BK

)
+ P

(
ε3DD

T + ε1ĀĀT + ε2D̄D̄
T +

1

ε4

I
)
P

+ q̄
( 1

ε1

+
‖H‖2

ε2

+ ε4‖U‖2 + γ
)
I +

1

ε3

HTH + αP = 0

holds, where q̄ is defined in Lemma 9.1, α > 0, and γ > 0 such that

tr[gT (xt)Pg(xt)] ≤ 2γq̄xTPx.

Suppose further that there exists a positive constant

β = λmax[(I + Ck)
TP (I + Ck)]/λmin(P ) (9.4)
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such that the inequality

ln β − ν(τk − τk−1) ≤ 0 (9.5)

holds, where 0 < ν < α and k = 1, 2, · · · . Then, uncertain SISD (9.1) is robustly

globally exponentially stabilized in the m.s. by the state feedback control law given

in (9.2).

Proof. Let x be the solution of SISD (9.1) and V (x) = xTPx be a Lyapunov

function candidate. Then,

LV (x) = [(A+ ∆A)x+ (Ā+ ∆Ā)xt +BKx+ f(xt)]
TPx

+ xTP [(A+ ∆A)x+ (Ā+ ∆Ā)xt +BKx+ f(xt)]

+
1

2
tr[gT (xt)Pg(xt)]

≤ xT [ATP + PA+ 2KTBTP ]x+ 2xTP (∆A)x+ 2xTPĀxt

+ 2xTP (∆Ā)xt + fT (xt)Px+ xTPf(xt) + γq̄xTPx.

By Lemmas 1-3 and the fact that [Li97]

2xTP (∆A)x = 2xT (DU(t)H)Px ≤ xT
(
ε3PDD

TP +
1

ε3

HTH
)
x,

for some ε3 > 0, we get

LV (x) ≤ xT
(

(A+BK)TP + P (A+BK)
)
x+ xT

(
ε3PDD

TP +
1

ε3

HTH
)
x

+ xT
(
ε1PĀĀ

TP +
q̄

ε1

I
)
x+ xT

(
ε2PD̄D̄

TP +
q̄

ε2

‖H̄‖2I
)
x

+ xT
(
ε4q̄‖U‖2I +

1

ε4

P 2
)
x+ γq̄xTPx

= xT
(

(A+BK)TP + P (A+BK) + ε3PDD
TP +

1

ε3

HTH

+ ε1PĀĀ
TP +

q̄

ε1

I + ε2PD̄D̄
TP +

q̄

ε2

‖H̄‖2I

+ ε4q̄‖U‖2I +
1

ε4

P 2 + γq̄P
)
x
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≤ −αxTPx = −αV (x).

Applying the Itô formula to process V (x) and taking the mathematical expectation

give

D+m(t) ≤ −αm(t), t ∈ (τk−1, τk),

where m(t) = E[V (x(t))] for all t 6= τk.

At t = τk, we have

V (x(τk)) = xT (τk)Px(τk) = xT (τ−k )
(
I + Ck

)T
P
(
I + Ck

)
x(τ−k ) ≤ βV (x(τ−k )),

which implies that

m(τk) ≤ βm(τ−k ).

Then, one may get

m(t) ≤ m0

∏
t<τk<t

βe−α(t−t0),

where m0 = m(t0) = E[V (x0)]. Applying the condition in (9.5), we get

m(t) ≤ m0e
−(α−ν)(t−t0).

Therefore, uncertain SISD (9.1) is globally exponentially stabilized by the robust

state feedback control law (9.2). This completes the proof.

Remark 9.1. The solvability condition of the algebraic Riccati-like equation is

made to ensure that the positive-definite matrix V is strictly decreasing in the

m.s. between the impulsive moments. Moreover, the decay rate of V is greater

than the jumps caused by applying the impulsive effects (see Figures 9.1 and 9.2).

This condition is summarized in (9.5). The positive tuning parameters εi (for
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i = 1, 2, 3, 4) are presented to reduce the conservativeness of the matrix inequalities

proved in Lemmas 9.1-9.3. We should also remark that Theorem 9.1 does not

impose any restriction on the impulses and time delay.

Having proved the key-role theorem, we are in a position to propose the robust

reliable control design, which provides robust global stability in the presence of

actuator outages. As mentioned earlier, the outputs of the faulty actuators are

assumed to be zero.

Theorem 9.2. Assume that Assumptions A1-A3 and the impulse condition in

Theorem 9.1 hold, and there exist positive constant parameters ε1, ε2, ε3, ε4, and

ε5, and a positive-definite matrix P such that the following Riccati-like matrix

inequality

ATP + PA+ P
(
− ε5BΣ̄B

T
Σ̄ + ε3DD

T + ε1ĀĀT + ε2D̄D̄
T +

1

ε4

I
)
P

+ q̄
( 1

ε1

+
‖H̄‖2

ε2

+ ε4‖U‖2
)
I +

1

ε3

HTH + γq̄P + αP = 0

holds. Then, uncertain SISD (9.1) is robustly globally exponentially stabilized in

the m.s. by the state feedback control law u = Kx, where

K = −1

2
ε5B

TP, (9.6)

for any admissible uncertainties and all actuator failures corresponding to σ ⊆ Σ.

Proof. Since the control input u is applied to the system plant only through the

normal actuators and the outputs of the faulty actuators are assumed to be zero,

we have, from (9.6), BK = −1
2
ε5Bσ̄B

T
σ̄ P .

Let x be the solution of system (9.1) and V (x) = xTPx be a Lyapunov function
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candidate. Then, as in Theorem 9.1, we have

(A+BK)TP + P (A+BK) + ε3PDD
TP +

1

ε3

HTH + ε1PĀĀ
TP +

q̄

ε1

I

+ ε2PD̄D̄
TP +

q̄

ε2

‖H̄‖2I + ε4q̄‖U‖2I +
1

ε4

P 2 + γq̄P

= ATP + PA− ε5PBσ̄B
T
σ̄ P + ε3PDD

TP +
1

ε3

HTH + ε1PĀĀ
TP +

q̄

ε1

I

+ ε2PD̄D̄
TP +

q̄

ε2

‖H̄‖2I + ε4q̄‖U‖2I +
1

ε4

P 2 + γq̄P

≤ ATP + PA− ε5PBΣ̄B
T
Σ̄P + ε3PDD

TP +
1

ε3

HTH + ε1PĀĀ
TP +

q̄

ε1

I

+ ε2PD̄D̄
TP +

q̄

ε2

‖H̄‖2I + ε4q̄‖U‖2I +
1

ε4

P 2 + γq̄P

= −αP < 0,

where we have used the fact BΣ̄B
T
Σ̄
≤ Bσ̄B

T
σ̄ [Vei92] in the second last inequality.

Thus, by Theorem 9.1, we conclude the desired result.

In the following, we demonstrate the proposed approach through a numerical

example with simulations. We consider two cases. In Case 1, the control com-

ponents (or actuators) are operating properly and, in Case 2, there is a failure in

the second actuator. In both cases, the state feedback control law guarantees the

stabilization requirement.

Example 9.1. Consider uncertain SISD (9.1) where xT = (x1, x2),

A =

0.1 0.3

0 −15

 , Ā =

0.2 1

0.5 0.1

 , B =

1 −0.1

0 1

 , K =

−4 0.6

0 1

 ,

D =

1

0

 , H =
(

0 1
)
, U(t) = sin(t), f(x(t− 1)) =

−0.1x1(t− 1)

0.05x2(t− 1)

 ,
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D̄ =

0

1

 , H̄ =
(

0 1
)
, V(t) = cos(t), g(x(t− 1)) = 0.01

x1(t− 1)

x2(t− 1)

 ,
ε1 = 1, ε2 = 0.1, ε3 = 0.4, ε4 = 0.2, γ = 0.01, α = 2, q̄ = 2,

U =

−0.1 0

0 0.05

 , and Ck =

0.5 0

0 0.5

 for all k.

Case 1: When there is no actuator failure, we have, from the algebraic Riccati-like

equation,

P =

 1.4721 −0.2012

−0.2012 1.1115

 .
It follows that β = 3.4398 and, after taking ν = 1.5 < α, τk − τk−1 > 0.62, for

all k. The simulation result is shown in Figure 9.1, where the initial function is

φ(s) = 1− s for all s ∈ [−1, 0].

Case 2. When there is a failure in actuator 2, i.e.,

Σ̄ = {2}, and BΣ̄ =

1 0

0 0

 ,
we have

P =

 1.9701 −0.2566

−0.2566 0.9861

 , K =

−0.4925 0.0642

0 0

 ,
where ε5 = 0.05. It follows that τk − τk−1 > 1.07 for all k. The simulation result is

shown in Figure 9.2.
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Figure 9.1: Mean square exponential stability: normal actuators.
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Figure 9.2: Mean square exponential stability: a failure in actuator 2.
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9.2 Conclusions.

In this chapter, we addressed the problem of reliable robust controller for uncertain

SISD. The focus was on the design of such a controller to guarantee stability, not

only when the control components are operationally normal, but also when there

is a failure in some prespecified subset of actuators. Furthermore, the outputs of

the faulty actuators were assumed to be zero. The proposed approach is efficiently

applicable to impulsive systems with deviated states. We applied the Razumikhin

criterion, where Lyapunov functions were used in analyzing the stability property,

which led to solving a Ricatti-like matrix equation.
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Part II

Deterministic and Stochastic

Hybrid Systems
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Chapter 10

Mathematical Background

As described in the introductory chapter of this thesis, a switched system is a

combination of a finite number of subsystems and a control-based switching logic

to organize the switching among the subsystems. In this chapter, we focus on

a mathematical formulation of such a system, including defining what is meant

to be a switching signal or law. Then, we present some definitions of switched

systems with time delay and are subject to some random noise represented by a

Wiener process. We will also introduce some solution and stability definitions of

stochastic switched systems under a given switching signal. Finally, we conclude

this introductory chapter with impulsive switched systems, i.e., switched systems

experience jump discontinuities in their states.

Consider the following controlled system

ẋ = f(t, x) + u(t), (10.1)

with initial value x(t0) = x0 ∈ Rn, where x : R+ → Rn is the system state,

f : R+×Rn → Rn is the system vector field, and u ∈ Rn is the system input of the
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form

u(t) =
∞∑
k=1

Ckx(t)lk(t), (10.2)

where Ck is a control gain matrix with appropriate dimensions and lk(·) is the

ladder function, which is defined by

lk =

 1, tk−1 ≤ t < tk,

0, otherwise.
(10.3)

Controller (10.2) can be written as

u(t) = Ckx(t), t ∈ [tk−1, tk), k ∈ N,

meaning that the controller u(t) switches its values at every time instant t = tk,

i.e., u is a switching controller. Accordingly, closed-loop system (10.1) becomes ẋ = f(t, x) + Ckx, t ∈ [tk−1, tk),

x(t0) = x0.
(10.4)

This system is called switched (or switching) system.

Typically, a nonlinear switched system takes the form ẋ = fσ(t)(t, x), t ≥ t0,

x(t0) = x0,
(10.5)

where σ(t) : [t0,∞)→ S = {1, 2, · · · , N}, for some N ∈ N, is a piecewise constant

function called switching signal, also known as a switching law or switching rule,

and takes values in the compact set S, which is also named by the finite state space.

The role of σ is to switch among the vector fields on the right-hand side of (10.5),

i.e., fi for all i ∈ S, so as to accomplish a certain desired task. The solution of
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(10.5) is generally equipped with a proper switching signal, i.e., it is represented by

the pair (x, σ) to emphasize the switching signal in use.

As in systems and control theory, one of the most important problems in

switched systems is the search for conditions assuring stability. The basic, but

very interesting, problems in stability of switched systems are introduced in [Lib99]

and classified into the following three categories.

Problem A. (Stability under arbitrary switching) Finding sufficient conditions to

guarantee asymptotic stability of a switched system for an arbitrary switching

signal.

Problem B. (Stability by a constrained switching) Identifying the switching sig-

nals for which a switched system is asymptotically stable.

Problem C. (Stabilizability) Constructing a switching signal that makes a switched

system asymptotically stable.

Problems A and B are usually considered under the hypotheses that the individ-

ual subsystems are asymptotically stable, while Problem C is considered under the

assumption that the individual subsystems are unstable. Throughout this thesis,

we are mainly concerned with Problems B and C.

We have mentioned earlier that switched systems inherit the stability properties

of the fundamental theory of single mode systems. However, a possible strange be-

haviour is that switching among all asymptotically stable subsystems does not nec-

essarily guarantee the stability of switched system. The remedy to this undesirable

situation is to design a logic-based switching law in order to control the transition

among the involved modes. It has been shown in [Mor96, Lib99, Hes99] that, if the

running time of each single mode is sufficiently large to allow the switching effect to
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diminish, then it ensures that the entire switched system preserves the same stabil-

ity property. This type of switching is often named by slow or constrained switching

and the running time between any two successive switching moments, say tk for any

k ∈ N, is called dwell time and is denoted by τ . This type of switching signals can

be represented by

Sinf(τ) = {τ
∣∣ inf tk − tk−1 ≥ τ, ∀k ∈ N}, (10.6)

for some τ > 0.

From a practical perspective, it may not be suitable to activate every individual

mode over a time period τ to accomplish the asymptotic stability property. Instead,

to achieve the same qualitative property, as proposed in [Hes99], the average dwell

time, denoted by τave, can be taken sufficiently large. This type of switching signals,

denoted by Save(τ,N0), is defined as follows: for any T ≥ t ≥ t0,

Nσ(T, t) ≤ N0 +
T − t
τave

, (10.7)

where Nσ(T, t) represents the number of switching moments of σ in the interval

(t, T ) and N0 is the chatter bound.

A more general class of switching signal than Sinf(τ) is called Markovian switch-

ing, in which the signal σ is a right-continuous Markov chain (or process), which

takes values in a finite state space S with generator Γ = (γij)N×N ; that is, jumps

among the system modes follow a probabilistic rule defined by

P{r(t+ h) = j|r(t) = i} =

 γijh+ o(h), if i 6= j,

1 + γiih+ o(h), if i = j,
(10.8)

where h > 0. Here, γij > 0 is the transition rate from i to j if i 6= j, and

γii = −
∑N

j=1,j 6=i γij and o(h) is such that limh→0
o(h)
h

= 0.
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Conventionally, if the switching signal is represented by a Markov process, the

corresponding switched system (10.5) has the form ẋ(t) = f(t, x(t), σ(t)), t ≥ t0,

x(t0) = x0, σ(t0) = σ0,
(10.9)

for some initial state σ0 ∈ S.

In the nonlinear switched system (10.5), if we consider time delay and random

noise, we are led to the following nonlinear stochastic switched systems with time

delay (SSSD) dx(t) = fσ(t)(t, xt)dt+ gσ(t)(t, xt)dW (t), t ≥ t0,

xt0(s) = φ(s), s ∈ [−r, 0],
(10.10)

where fσ : R+ × C([−r, 0]; Rn) → Rn is assumed to belong to the function class

Lad(Ω;L[a, b]) for some a, b ∈ R+ with a < b, gσ : R+ × C([−r, 0]; Rn) → Rn×m

represents the noise intensity, which belongs to the function class Lad(Ω;L2[a, b]),

W : R+ × Ω → Rm is m-dimensional Wiener process defined on the complete

probability space (Ω,Ft, {Ft}t≥t0 ,P), and φ : R+ → Rn is the initial function,

which belongs to a class of Ft-measurable C([−r, 0]; Rn) random variable φ with

E[‖φ‖pr] < ∞. The latter function class is denoted by LpF0
([−r, 0]; Rn) for some

p > 0.

In the following, we present the definition of a solution of SSSD.

Definition 10.1. For any t ∈ [t0, T ], with t0, T ∈ R+ and t0 < T , and Rn-valued

random process x(t) = x(t, t0, φ), the pair (x(t), σ(t)) is said to be a solution of

SSSD in (10.10) if it has the following properties:

1. x(t) is continuous and adapted with respect to the filtration {Ft}t≥t0 ;

2. fσ(t)(t, xt) ∈ Lad(Ω;L[t0, T ]) and gσ(t)(t, xt) ∈ Lad(Ω;L2[t0, T ]);
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3. the stochastic integral equation

x(t) = φ+

∫ t

t0

fσ(s)(s, xs)ds+

∫ t

t0

gσ(s)(s, xs)dW (s) (10.11)

holds w.p.1, where x(t) = φ(t) for all t ∈ [−r, 0].

For simplicity of notation, we denote the solution of (10.10) by the process x.

To avoid any confusion between the domains of the solution x and switching signal

σ, we state it clearly that x is defined for all t ≥ −r, while σ is defined over R+.

A solution x(t) is said to be unique if any other solution y(t) is indistinguishable

form x(t) for all t ≥ −r.

Classical hypotheses that ensure the existence of a unique solution of SSSD are

that the vector fields satisfy a linear growth condition, and Lipschitz condition in

the second variable. The following theorem summarizes these conditions [Mao06].

Theorem 10.1. Let σ : R+ → S be a switching signal. Assume that there exist a

positive constant C such that functionals fσ and gσ satisfy the following conditions:

‖fσ(t)(t, ψ)‖2 + ‖gσ(t)(t, ψ)‖2 ≤ C(1 + ‖ψ‖2
r), (10.12)

for all t ∈ R+ and ψ ∈ C([−r, 0]; Rn), and

‖fσ(t)(t, ψ1)− fσ(t)(t, ψ2)‖2 + ‖gσ(t)(t, ψ1)− gσ(t)(t, ψ2)‖2 ≤ C‖ψ1 − ψ2‖2
r, (10.13)

for all t ∈ R+ and ψ1, ψ2 ∈ C([−r, 0]; Rn). Then, there exists a unique solution x

defined for all t ≥ −r with the initial function φ ∈ LpF0
([−r, 0]; Rn). Furthermore,

the solution x satisfies

E
[

sup
−r≤t≤T

‖x(t)‖2
]
<∞, for all T > 0. (10.14)
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Once again, if the switching signal σ is a Markov process, which is assumed to

be independent of the Wiener process, the corresponding SSSD can be written as
dx(t) = f(t, xt, σ(t))dt+ g(t, xt, σ(t))dW (t), t ≥ t0,

xt0(s) = φ(s), s ∈ [−r, 0],

σ(t0) = σ0,

(10.15)

where f : R+ × C([−r, 0]; Rn)× S → Rn, g : R+ × C([−r, 0]; Rn)× S → Rn×m and

σ0 ∈ S. The solution x of SSSD in (10.15) can be similarly defined as the solution

of (10.10) except that the stochastic integral is slightly modified as follows:

x(t) = φ+

∫ t

t0

f(s, xs, σ(s))ds+

∫ t

t0

g(s, xs, σ(s))dW (s), (10.16)

which is required to hold w.p.1. We should also modify the assumption guaranteeing

the existence of a unique solution, as stated in the following theorem [Mao06].

Theorem 10.2. Let σ : R+ → S be a switching signal that is represented by

a Markov process. Assume that there exist a positive constant C such that the

functionals f and g satisfy the following conditions:

‖f(t, ψ, σ(t))‖2 + ‖g(t, ψ, σ(t))‖2 ≤ C(1 + ‖ψ‖2
r), (10.17)

for all t ∈ R+ and ψ ∈ C([−r, 0]; Rn), and

‖f(t, ψ1, σ(t))− f(t, ψ2, σ(t))‖2 + ‖g(t, ψ1, σ(t))− g(t, ψ2, σ(t))‖2 ≤ C‖ψ1 − ψ2‖2
r,

(10.18)

for all t ∈ R+ and ψ1, ψ2 ∈ C([−r, 0]; Rn). Then, there exists a unique solution x

defined for all t ≥ −r with the initial function φ ∈ LpF0
([−r, 0]; Rn). Furthermore,

the solution x satisfies

E
[

sup
−r≤t≤T

‖x(t)‖2
]
<∞, for all T > 0. (10.19)
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After having obtained some qualitative properties of SISD in previous chapters,

we introduced an important diffusion operator (L, or LV as a single notation) as-

sociated with the underlying stochastic differential equation and then examined its

estimated upper bound along the trajectories of the system solutions. In SSSD, we

continue to present such an operator. However, due to the deterministic or prob-

abilistic nature of the switching signal σ, the operator can be defined accordingly.

Particularly, if σ is of a deterministic type, then we define Li (or LVi) as before,

where i is such that σ = i ∈ S; that is, Li (or LVi) is the operator of the solution

process of the ith subsystem associated with the C1,2-function Vi, which is desig-

nated to the same subsystem. If σ, on the other hand, is a Markov process, one

has to take into account the transition rates of this jump process when writing this

operator. In the following definition, we state the generalized Itô formula [Mao06].

Definition 10.2. (Generalized Itô Formula) If x(t) (or (x(t), σ(t))) is an

Itô process governed by (10.15), and V (t, x(t), i) ∈ C1,2(R+ × Rn × S; R+) with

σ = i ∈ S, then V (t, x(t), i) is an Itô process with its differential equation given by

dV (t, x(t), i) = LV (t, x(t), i)dt+ Vx(t, x(t), i)g(t, x(t), i)dW (t), (10.20)

where

LV (t, x(t), i) =Vt(t, x(t), i) + Vx(t, x(t), i)f(t, x(t), i)

+
1

2
tr[gT (t, x(t), i)Vxx(t, x(t), i)g(t, x(t), i)]

+
N∑
j=1

γijV (t, x(t), j). (10.21)

In analyzing a certain switched system, it may be convenient to specify the

switching signal σ in S to indicate the system mode in action, and the subinterval

on which the selected mode is being activated. If, for instance, we have chosen
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a switching law, say Θ, then generally, we use ik to refer to the ith mode, for

any i ∈ S, and kth subinterval [tk−1, tk), for any k ∈ N. Also, we denote by

{tk}k∈N the switching sequence or signal, which is generated by the switching law Θ.

Furthermore, whenever investigating a system property, we always assume that the

switching sequence is strictly increasing and limk→∞ tk =∞, so long as t ∈ R+, to

avoid a problem trivialness. The second issue of importance is that any mode cannot

be activated on any two successive subintervals [tk−1, tk) and [tk, tk+1), and the

switching sequence in this case is usually called minimal. Consequently, following

the above particular notation, SSSD in (10.15) is simply written as follows:
dx(t) = f(t, xt, i)dt+ g(t, xt, i)dW (t), t ∈ [tk−1, tk),

xt0(s) = φ(s), s ∈ [−r, 0],

σ(t0) = σ0,

(10.22)

and, by the same manner, after replacing the subscript σ by the mode number i,

we write the SSSD in (10.10).

One more issue about switched systems is the stability definition. In fact, it

can be formulated parallel to that of a single-mode system except that, in switched

systems, we should highlight the switching law under consideration. In the follow-

ing, we state some stochastic stability properties of the trivial solution of SSSD in

(10.15), which of course imply the corresponding definitions of the other special

systems.

Definition 10.3. For any t0 ∈ R+ and a given switching law σ with an initial state

σ0, let (x(t), σ(t)) be any solution of (10.15), where x(t) = x(t, t0, φ) ∈ C([t0−r, t0 +

α]; Rn), for some α > 0, with φ ∈ LpF0
C([−r, 0]; Rn). Then, the trivial solution of

(10.15) is said to be

1. stable in the pth moment if, for any given ε > 0 and t0 ∈ R+, there exists a
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δ = δ(t0, ε) > 0 such that

E[‖φ‖pr] < δ implies E[‖x(t)‖p] < ε, ∀t ≥ t0;

2. uniformly stable in the pth moment if it is stable in the pth moment and δ = δ(ε);

3. asymptotically stable in the pth moment if it is stable in the pth moment and

there exists an η = η(t0) > 0 such that

E[‖φ‖pr] < η implies lim
t→∞

E[‖x(t)‖p] = 0;

4. uniformly asymptotically stable in the pth moment if it is uniformly stable in the

pth moment and there exists η > 0 such that, for a given γ > 0, there exists

T = T (η, γ) > 0 such that

E[‖φ‖pr] < η implies E[‖x(t)‖p] < γ, ∀t ≥ t0 + T ;

5. exponentially stable in the pth moment if there exist positive constants K and λ

such that

E[‖x(t)‖p] ≤ KE[‖φ‖pr]e−λ(t−t0), whenever E[‖φ‖pr] < η.

Moreover, the above stability properties are said to hold globally if δ and η are

chosen arbitrarily large.

Having familiarized ourselves with impulsive and switched systems, we are in

a position to define another type of hybrid systems, namely, impulsive switched

systems, also known as switched systems with impulsive effects. The impulses arise

when a switched system transits from one mode to another. Such systems have

applications in biology, pulse vaccination, and engineering. An early study that

formulated this system and developed some of its qualitative results was in [Lak98].
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Later, this type of systems was appeared in some other works including papers

[Wan04, Gua05] and a book [Li05].

A nonlinear deterministic ordinary impulsive switched system can have the fol-

lowing form

ẋ(t) = fσ(t)(t, x(t)), t 6= tk, (10.23a)

∆x(t) = I(t, x(t−)), t = tk, (10.23b)

x(t0) = x0, (10.23c)

where σ : [t0,∞) → S for any t0 ∈ R+ is the switching signal that is a piecewise

constant function. The discontinuities of σ, which represent the impulsive moments

and at the same time switching moments, form a strictly increasing sequence T =

{tk}k∈N with limk→∞ tk = ∞. As elaborated above, if one is interested in labeling

a system mode which is operating on the kth subinterval, we will write σ = ik for

any ik ∈ S. It follows that, the differential equation (10.23a) is written as follows:

ẋ(t) = fik(t, x(t)), t ∈ [tk−1, tk).

We next define a solution of the initial value problem in (10.23).

Definition 10.4. For any t ≥ t0 with t0 ∈ R+, x ∈ PC([t0 − r, t0 + α]; Rn), for

some α > 0, and a given switching signal σ, the pair (x(t), σ(t)) is said to be a

solution of the impulsive switched system in (10.23) if

1. x(t) is continuous for all t ∈ R+ except at the switching (or impulsive) moments

T = {tk}k∈N (i.e., ∀t ∈ R+ \ T);

2. the derivative of x exists and continuous for all t 6= tk, and at tk the right-hand

derivative exists;
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3. the right-hand derivative of x satisfies the differential equation in (10.23a) for

all t ∈ R+ \ T;

4. x satisfies the difference equation (10.23b) for all t ∈ T;

5. x satisfies the initial condition in (10.23c).

Finally, it could be of special interest to write the general form of the above

solution, which is, after using the so-called method of steps,

x(t) = x0 +

∫ t

t0

fik(s, x(s))ds+
∑

{k:t0<tk≤t}

I(tk, x(t−k )), (10.24)

for all t ≥ t0.
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Chapter 11

Robust Stability and Stabilization

This chapter deals with robust stability and stabilization of uncertain time-delayed

switched systems experiencing impulsive effects. The nominal ordinary version of

this system (i.e., system without uncertainties and zero time lag) was introduced

in the last chapter. The focus here is on uncertainties of the structured type. We

study linear and weakly nonlinear systems that incorporate stable and unstable sub-

systems, and others consist of all unstable subsystems. The technique of multiple

Lyapunov functions and dwell-time approach are used to investigate some stability

properties. We also develop a switching rule to stabilize impulsive switched systems

incorporating all unstable subsystems. Numerical examples are also presented to

illustrate the effectiveness of the proposed approach and gain better insight into

the systems. The material of this chapter has been published in [Alw09a].

The organization of this chapter is as follows: in Section 11.1, we formulate the

system under consideration and introduce the material that is required to tackle

the problem. Our main results are given in Section 11.2; a linear system is first

studied, then a special case of nonlinear system is considered. Particular results,
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where systems have all unstable subsystems, are also presented in the same section.

11.1 Problem Formulation

A general impulsive switched system with time delay (ISSD) is given by

ẋ(t) = fσ(t)(t, x(t), xt), t 6= tk, (11.1a)

∆x(t) = I(x(t−), xt−), t = tk, (11.1b)

xt0(s) = φ(s), s ∈ [−r, 0], (11.1c)

where x ∈ Rn is the state vector of the system and σ(t) : [t0,∞) → S is the

switching signal, which takes values in the compact set S = {1, 2, · · · , N}, for some

N ∈ N. The discontinuities of σ(t), representing the switching-impulsive moments

which occur simultaneously, form a strictly increasing sequence T = {tk}∞k=1 such

that limk→∞ tk = ∞. Throughout this chapter, we assume that σ belongs to a

class of deterministic dwell-time-based switching signals. We also assume that the

solution is right-continuous (i.e., x(tk) = x(t+k ) = limh→0− x(tk + h)). In difference

equation (11.1b), ∆x = x(tk) − x(t−k ) and I(·) represents the impulse amount at

time instant tk. For the existence of a unique solution, we assume further that, for

any ik ∈ S, functional fik is a piecewise continuous function and it is Lipschitz in

the state variables. Moreover, to ensure that the system admits a trivial solution,

for all ik ∈ S, fik(t, 0, 0) = 0 for all t ∈ [tk−1, tk) and I(t−k , 0) = 0 for all tk ∈ T. Let

xt = x(t+s), where s ∈ [−r, 0] and r is a positive constant that represents the time

delay, x(t) ∈ PC([t0 − r, T ]; Rn), for some T > 0, be the solution of (11.1), where

the initial condition xt0 = φ ∈ PC([−r, 0]; Rn), and ‖xt‖τ = supt−τ≤s≤t ‖x(s)‖, with

‖ · ‖ being the Euclidean norm.
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The following notations will be used in this chapter. Let Rn×n denote the set of

all n×nmatrices. Denote by AT the transpose of a matrixA, λ(A) the eigenvalues of

an n×n matrix A, Re[λ(A)] the real part of λ(A), and ‖A‖ = max1≤j≤n(
∑n

i=1 a
2
ij)

1/2

the norm of the n× n matrix A = (aij). A symmetric matrix P ∈ Rn×n is said to

be positive definite if the scalar xTPx > 0 for all nonzero x ∈ Rn and xTPx = 0 for

x = 0. Denote by λmin(P ) and λmax(P ) the minimum and maximum eigenvalues of

matrix P , respectively. For a single mode linear time-invariant system ẋ = Ax, if A

is a Hurwitz matrix1, then there exist positive-definite matrices P and Q satisfying

the following Lyapunov equation

ATP + PA = −Q. (11.2)

Defining V (x) = xTPx yields

λmin(P )‖x‖2 ≤ V (x) ≤ λmax(P )‖x‖2.

If there is a Vi(x), for any i ∈ S = {1, 2, · · · , N}, it follows that

Vj(x) ≤ µVi(x), ∀i, j ∈ S,

where µ = λM/λm ≥ 1 with λM = max{λmax(Pi),∀i ∈ S}, and λm = min{λmin(Pi),

∀i ∈ S}.

Before we tackle the stability problem, the following definition and lemmas are

needed.

Definition 11.1 [Ball99a] For any t ≥ t0, let x(t) = x(t, t0, φ), with φ ∈ PC([−r, 0];D)

for some open set D ⊂ Rn, be a solution of (11.1). Then, the trivial solution of

system (11.1) is said to be

1An n × n matrix A is said to be Hurwitz if all its eigenvalues have negative real parts (i.e.

Re[λ(A)] < 0).
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1. stable if, for any given ε > 0 and t0 ∈ R+, there exists δ = δ(t0, ε) > 0 such that

‖φ‖r ≤ δ implies ‖x(t)‖ ≤ ε, ∀t ≥ t0;

2. unstable if it is not stable;

3. asymptotically stable if it is stable and there exists δ = δ(t0) > 0 such that

‖φ‖r ≤ δ implies lim
t→∞

x(t) = 0;

4. exponentially stable if there exist positive constants c, k, and λ such that

‖φ‖r ≤ δ implies ‖x(t)‖ ≤ k‖φ‖re−λ(t−t0), ∀‖φ‖r < c.

The above stability properties are said to hold globally if φ is chosen arbitrarily

large or D = Rn.

Lemma 11.1. [Alw08a, Hal66] Let u : [t0 − τ,∞) → R+ be continuous function,

and satisfy the following delay differential inequality

u̇(t) ≤ αu(t) + β sup
θ∈[t−r,t]

u(θ), t ∈ [t0,∞).

(i) If α < 0, β > 0, and α + β < 0, then there exist positive constants k and ζ

such that

u(t) ≤ ke−ζ(t−t0), t ≥ t0;

(ii) if α > 0 and β > 0, then there exist positive constants ξ and k such that

u(t) ≤ keξ(t−t0), t ≥ t0, (11.3)

where ξ = α + β and k = supθ∈[t0−r,t0] u(θ).

Lemma 11.2. [Li97] Let F , Ξ, and H be real matrices of appropriate dimensions

with ‖Ξ‖ < 1. Then, for any ε > 0, the following inequality holds.

FΞH +HTΞTF T ≤ ε−1FF T + εHTH.
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11.2 Uncertain Impulsive Switched Systems with

Time Delay

In this section, we address the problems of stability and stabilization of uncertain

impulsive switched systems with time delay (UISSD). As stated earlier, the uncer-

tainties are of structured type. Two systems will be considered, linear and weakly

nonlinear systems.

11.2.1 Linear UISSD

Linear UISSD can have the following form

ẋ(t) = [Aik + ∆Aik ]x(t) + [Bik + ∆Bik ]x(t− r), t ∈ [tk−1, tk), (11.4a)

∆x(t) = Bkx(t−) + Ckx(t− − r), t = tk, (11.4b)

where ik ∈ S = {1, 2, · · · , N}, Aik and Bik are n×n known real constant matrices.

The admissible uncertainties in this chapter are defined in the following assumption.

Assumption A4. Assume that the uncertainties satisfy the following properties:

∆Aik = HikΞik(t)Fik and ∆Bik = JikΓik(t)Kik ,

where Hik , Fik , Jik , and Kik are known real constant matrices with appropriate

dimensions that give the structure of the uncertainties, and Ξik(t) and Γik(t) are

unknown real time-varying matrices satisfying ‖Ξik(t)‖ ≤ 1 and ‖Γik(t)‖ ≤ 1,

respectively.

In the following theorem, for any admissible uncertainty, we state Lyapunov-

based sufficient conditions to guarantee robustly exponential stability of the uncer-

tain system composing of unstable and stable subsystems. Let S = Su ∩Ss, where,
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for convenience, Su = {1, 2, · · · , r} and Ss = {r + 1, r + 2, · · · , N} are the sets of

indices of unstable and stable subsystems, respectively.

Theorem 11.1. The trivial solution of system (11.4) is robustly globally expo-

nentially stable (with respect to any admissible uncertainty defined in A4) if the

following assumptions hold:

(i) (1) for ik ∈ Su,

Re[λ(Aik)] > 0, Re[λ(Aik +Bik)] > 0, and
(

2γ +
λ∗ik + β∗ik + β∗∗ik

λm

)
> 0.

(2) for ik ∈ Ss, Aik is Hurwitz and

−
(λmin(Qik)− λ∗ik − β

∗
ik
− β∗∗ik

λM

)
+
β∗ik + β∗∗ik
λm

< 0,

where β∗ik = ‖PikBik‖, β∗∗ik = ‖PikJikKik‖, and λ∗ik = λmax[ε−1FikF
T
ik

+ ε(PikHik)
T (PikHik)] with ε being a positive constant;

(ii) let λ+ = max{ξik : ik ∈ Su}, λ− = min{ζik : ik ∈ Ss}, and T+(t0, t) and

T−(t0, t) be the total activation time of the unstable and stable modes, re-

spectively. For any t0, assume that the switching law guarantees that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥ λ+ + λ∗

λ− − λ∗
, (11.5)

where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < ζik such that

(1) for ik ∈ Su and k = 1, 2, · · · , l,

lnµ(αk + ψk)− ν(tk − tk−1) ≤ 0; (11.6)

(2) for ik ∈ {l + 1, l + 2, · · · , N − 1} and k = l + 1, l + 2, · · · , N − 1,

lnµ(αk + ψke
ζikr) + ζikr − ν(tk − tk−1) ≤ 0, (11.7)

where αk = (α∗k + ψ∗k)/λm, ψk = (ψ∗k + γ∗k)/λm, α∗k = λ2
max[I +Bk]λM ,

ψ∗k = PM‖I +Bk‖ · ‖Ck‖, γ∗k = λmax[Ck]
2λM , and PM = max{‖Pik‖,∀ik ∈ S}.
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Proof: For ik ∈ S, let Vik(x) = xTPikx. Then, the total derivative of Vik along the

trajectories of (11.4) is

V̇ik(x) =xT [ATikPik + PikAik ]x+ xT [∆ATikPik + Pik∆Aik ]x

+ 2xTPik [Bik + ∆Bik ]x(t− r).

For ik ∈ Ss, we have

V̇ik(x) ≤− λmin(Qik)‖x‖2 + xT [F T
ik
ET
ik

(t)(PikHik)
T + (PikHik)Eik(t)Fik ]x

+ 2xTPikBikx(t− r) + 2xTPikJikΓik(t)Kikx(t− r)

≤− λmin(Qik)‖x‖2 + xT [ε−1FikF
T
ik

+ ε(PikHik)
T (PikHik)]x

+ ‖PikBik‖(‖x(t)‖2 + ‖xt‖2
r) + ‖PikJikΓik(t)Kik‖(‖x(t)‖2 + ‖xt‖2

r)

≤− λmin(Qik)‖x‖2 + xT [ε−1FikF
T
ik

+ ε(PikHik)
T (PikHik)]x

+ ‖PikBik‖(‖x(t)‖2 + ‖xt‖2
r) + ‖PikJikKik‖(‖x(t)‖2 + ‖xt‖2

r)

≤− λmin(Qik)‖x‖2 + λmax[ε−1FikF
T
ik

+ ε(PikHik)
T (PikHik)]‖x(t)‖2

+ ‖PikBik‖(‖x(t)‖2 + ‖xt‖2
r) + ‖PikJikKik‖(‖x(t)‖2 + ‖xt‖2

r)

≤−
(λmin(Qik)− λ∗ik − β

∗
ik
− β∗∗ik

λM

)
Vik(x) +

β∗ik + β∗∗ik
λm

‖Vikt‖r.

By item (i) of Lemma 11.1, with αik =
λmin(Qik )−λ∗ik−β

∗
ik
−β∗∗ik

λM
and βik =

β∗ik
+β∗∗ik
λm

, there

exists a ζik > 0 such that

Vik(x) ≤ ‖Viktk−1
‖re−ζik (t−tk−1).

For ik ∈ Su, we have

V̇ik(x) ≤2γxTPikx+ λ∗ik‖x‖
2 + ‖PikBik‖(‖x(t)‖2 + ‖xt‖2

r)

+ ‖PikJikKik‖(‖x(t)‖2 + ‖xt‖2
τ )

≤
(

2γ +
λ∗ik + β∗ik + β∗∗ik

λm

)
Vik(x) +

β∗ik + β∗∗ik
λm

‖Vikt‖r,
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where γ > 0 such that Re([Aik − γI]) < 0. Using Lemma 11.1 (ii), with β1ik =

2γ+ (λ∗ik +β∗ik +β∗∗ik )/λm and β2ik = (β∗ik +β∗∗ik )/λm, there exists a ξik > 0 such that

Vik(x) ≤ ‖Viktk−1
‖reξik (t−tk−1).

At the impulsive moments t = tk, we have

Vik(x(tk)) =xT (tk)Pikx(tk)

=[(I +Bk)x(t−k ) + Ckx(t−k − r)]
TPik [(I +Bk)x(t−k ) + Ckx(t−k − r)]

=xT (t−k )[(I +Bk)
TPik(I +Bk)]x(t−k ) + 2xT (t−k )(I +Bk)

TPikCkx(t−k )

+ xT (t−k − r)CkPikCkx(t−k − r)

≤λmax[(I +Bk)
TPik(I +Bk)]x

T (t−k )x(t−k )

+ ‖I +Bk‖.‖Pik‖.‖Ck‖(‖x(t−k )‖2 + ‖xt−k ‖
2
r)

+ λmax[CT
k PikCk]x

T (t−k − r)x(t−k − r)

≤

=:α∗k︷ ︸︸ ︷
λ2

max[I +Bk]
TλM ‖x(t−k )‖2 +

=:ψ∗k︷ ︸︸ ︷
‖I +Bk‖.PM .‖Ck‖(‖x(t−k )‖2 + ‖xt−k ‖

2
r)

+

=:γ∗k︷ ︸︸ ︷
λmax[Ck]

2λM ‖xt−k ‖
2
r

=(α∗k + ψ∗k)‖x(t−k )‖2 + (ψ∗k + γ∗k)‖xt−k ‖
2
r

≤αkVik(x(t−k )) + ψk‖Vikt−
k

‖r,

where αk = (α∗k + ψ∗k)/λm and ψk = (ψ∗k + γ∗k)/λm.

For simplicity, let us activate an unstable and stable modes on [t0, t1) and [t1, t2),

respectively. Then, we have

V1(x(t)) ≤ ‖V1t0
‖reξ1(t−t0),

V2(t) ≤ ‖V2t1
‖re−ζ2(t−t1). (11.8)
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The norm in (11.8) is calculated as follows:

V2(t1) ≤ α1V2(t−1 ) + ψ1‖V2
t−1
‖r,

where

V2(t−1 ) ≤ µV1(t−1 ) ≤ µ‖V1t0
‖reξ1(t1−t0),

and

‖V2
t−1
‖r ≤ µ‖V1t0

‖reξ1(t1−t0).

Then,

V2(t1) ≤ µ(α1 + ψ1)‖V1t0
‖reξ1(t1−t0).

Therefore, inequality (11.8) becomes

V2(t) ≤ µ(α1 + ψ1)‖V1t0
‖τeξ1(t1−t0)e−ζ2(t−t1).

Generally, one may have the following estimate

VN(t) ≤
l∏

k,ik=1

µ(αk + ψk)e
ξik (tk−tk−1) ×

N−l−1∏
k,ik=l+1

µ(αk + ψke
ζikr)eζikre−ζik (tk−tk−1)

× ‖V1t0
‖τe−ζN (t−tN−1).

Using assumption (ii), we have

VN(t) ≤ ‖V1t0
‖re−(λ∗−ν)(t−t0).

Therefore,

‖x(t)‖ ≤ K‖φ‖re−(λ∗−ν)(t−t0),
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where K =
√
µ. This shows that the trivial solution of system (11.4) is robustly

globally exponentially stable. This completes the proof.

In Theorem 11.1, assumption (i) is introduced to describe the continuous parts

of the system, where in item (i) all modes are unstable and in item (ii) the modes

are stable. Assumption (ii) is concerned with the switching signal, which tells us

that, in order to guarantee exponential stability or to compensate the growth in

unstable modes, the stable modes must be activated longer than the unstable ones.

Example 11.1. Consider system (11.4) where S = {1, 2}, r = 1 and the matrices

are given below.

1. Unstable Mode.

A1 =

 2 0

0 1

 , B1 =

 1 0

0.1 1

 , H1 =

 0.3 0.1

0 0.3

 ,

Ξ1(t) = sin(t)I2, F1 = I2, J1 = I2,Γ1(t) = cos(t)I2, and K1 =

 0.3 0

0.1 0.3

 .

2. Stable Mode.

A2 =

 −2 0

0.1 −3

 , B2 =

 0.2 0

0.1 0.1

 , H2 = I2, Ξ2(t) = sin(t)I2,

F2 =

 0.1 0

0.05 0.1

 , J2 = 0.1I2, Γ2(t) = cos(t)I2, K2 = I2.

The impulsive actions are Bk = −0.3I2 and Ck = 0.3I2.

Taking γ = 3, Q1 =

 1 0

0 1.7

, and Q2 = 2I2 give P1 =

 0.5 0

0 0.425

,
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P2 =

 0.5 0.01

0.01 0.3337

, µ = 1.503 > 1, and ζ = 1.21. With little effort, one

can check that assumptions (i) and (ii) are fulfilled, where ε = 1 and ν = 1. The

impulsive parameters are α∗k = 0.2453, ψ∗k = 0.1051, γ∗k = 0.0451, αk = 1.0521,

and ψk = 0.4509. The unstable and stable dwell time are τu = 1 and τ s = 3.3,

respectively. Figure 11.1 shows the convergence of the solutions to the equilibrium

state of the system.
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Figure 11.1: System with unstable and stable subsystems: φ(t) = t+ 0.5.

Having established exponential stability of uncertain systems with unstable and

stable subsystems, in the next theorem we consider systems consisting of all unsta-

ble subsystems, and present sufficient conditions to guarantee stability and asymp-

totical stability of these systems; in other words, we want to show that impulses

can play as a stabilizer.

Theorem 11.2. Consider the system given in (11.4) with uncertainties being

defined in Assumption A4, where S = Su. Assume that the following assumptions
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are satisfied:

(i) assumption (i)(1) of Theorem 11.1 holds;

(ii) there exists a constant ϑ ≥ 1 such that

ln
(
ϑµ(αk + ψk)

)
+ ξik(tk+1 − tk) ≤ 0,

where αk, ψk, and ξik are defined in Theorem 11.1.

Then, ϑ = 1 implies that the trivial solution of system (11.4) is robustly stable, and

ϑ > 1 implies that the trivial solution of system (11.4) is robustly asymptotically

stable.

Proof. For each ik ∈ S, let Vik(t) = xTPikx. Then, from Theorem 11.1, we have

the following

Vik(x) ≤ ‖Viktk−1
‖reξik (t−tk−1),

and, at t = tk, we have

Vik(x(tk)) = xT (tk)Pikx(tk)

≤ αkVik(x(t−k )) + ψk‖Vikt−
k

‖r.

Hence,

Vik(t) ≤‖V1t0
‖reξ1(t1−t0)µ(α1 + ψ1)eξ2(t2−t1)

× µ(α2 + ψ2)eξ2(t3−t2) · · ·µ(αk + ψk)e
ξik (tk+1−tk)

=‖V1t0
‖r

1

ϑk
eξ1(t1−t0)ϑµ(α1 + ψ1)eξ2(t2−t1)

× ϑµ(α2 + ψ2)eξ2(t3−t2) · · ·ϑµ(αk + ψk)e
ξik (tk+1−tk),
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and, by (ii), we get

Vik(t) ≤ ‖V1t0
‖τ

1

ϑk
eξ1(t1−t0).

Therefore,

‖x(t)‖ ≤ K√
ϑk
‖φ‖reξ1(t1−t0)/2.

Apparently, if ϑ = 1, system (11.4) is robustly stable, and if ϑ > 1 and k → ∞,

system (11.4) is robustly asymptotically stable.

Example 11.2. Consider the uncertain system (11.4) with r = 1 and the subsys-

tems are given by

1. First Mode.

A1 =

 1 0

1 0

 , B1 = I2, H1 = 0.1I2, Ξ1(t) = cos(10πt)I2,

F1 =

 1 0.2

0 1

 , J1 =

 0.2 0

0.1 0.2

 , Γ1(t) = sin(10πt)I2, K1 = I2.

2. Second Mode.

A2 = I2, B2 = I2, H2 = 0.1I2, Ξ2(t) = sin(10πt)I2, F2 = 0.3I2,

J2 = 0.1I2, Γ2(t) = cos(10πt)I2, K2 =

 1 −0.1

0 1

 .

The impulsive actions are Bk = −0.99I2 and Ck = 0.1I2.

Take γ = 2, Q1 = I2, and Q2 =

 2 0

0 1

 to get P1 =

 0.5 0.1667

0.1667 0.3333

,

P2 =

 1.25 0.25

0.25 0.5

, µ = 5.7557. Taking ε = 2 gives ξ1 = 9.8899, ξ2 = 11.7792,
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ϑ∗ = 2.4947. Let ϑ = 1.5 ∈ [1, ϑ∗). The dwell time of the first and second

subsystems are, respectively, 0.07 and 0.06. As expected, the dwell times are very

small since the subsystems are both unstable. Figure 11.2 illustrates this result.
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Figure 11.2: System with all unstable subsystems: φ(t) = t+ 1.

11.2.2 Weakly Nonlinear UISSD

Consider the following system

ẋ(t) = fik(t, x, xt), t ∈ [tk−1, tk), (11.9a)

∆x(t) = Rk(x(t−), xt−), t = tk, (11.9b)

where fik = (Aik + ∆Aik)x + gik(t, x, xt) and the uncertainty ∆Aik is defined in

Assumption A4. We also assume that system (11.9) has a unique equilibrium point

at the origin, i.e., gik(t, 0, 0) = 0 for all t ≥ t0 and Rk(0, 0) = 0 for any tk ∈ T. In
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the following theorem, we give sufficient conditions that ensure robust exponential

stability of uncertain system (11.9).

Theorem 11.3. Consider the uncertain system (11.9) with S = Su ∪ Ss. Then,

the trivial solution of system (11.9) is robustly globally exponentially stable if the

following assumptions hold:

(i) (1) for ik ∈ Su,

Re[λ(Aik)] > 0 and
(

2γ +
λ∗ik + a∗ik
λm

)
> 0;

(2) for ik ∈ Ss, Aik is Hurwitz and

−
(λmin(Qik)− λ∗ik − a

∗
ik

λM

)
+
b∗ik
λm

< 0,

where λ∗ik is defined in Theorem 11.1, and aik and bik are positive constants

such that

2xTPikgik(t, x, xt) ≤ aik‖x(t)‖2 + bik‖xt‖2
r;

(ii) there exist positive constants dk and ek such that

2xTPikRk(x(t−k ), xt−k
) +RT

k (x(t−k ), xt−k
)PikRk(x(t−k ), xt−k

)

≤ dk‖x(t−k )‖2 + ek‖xt−k ‖
2
r;

(iii) assumption (ii) of Theorem 11.1 with αk = 1 + dk
λm

and ψik = ek
λm

.

Proof: For each ik ∈ S, let Vik(x) = xTPikx be a Lyapunov function candidate.

Then, the time derivative of Vik along the trajectories of (11.9) is

V̇ik(x) = xT [ATikPik + PikAik ]x+ xT [∆ATikPik + Pik∆Aik ]x

+ 2xTPikgik(t, x, xt)

≤ xT [ATikPik + PikAik ]x+ λ∗ik‖x‖
2 + aik‖x‖2 + bik‖xt‖2

r.
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By a similar argument followed in proving Theorem 11.1, for any ik ∈ Su, there

exits a positive constant ξik such that

Vik ≤ ‖Viktk−1
‖τeξik (t−tk−1),

and, for any ik ∈ Ss, there exists a positive constant ζik such that

Vik ≤ ‖Viktk−1
‖τe−ζik (t−tk−1).

At t = tk, and for any ik ∈ S, we have

Vik(x(tk)) = xT (tk)Pikx(tk)

= [x(t−k ) +Rk(x(t−k )), xt−k
)]TPik [x(t−k ) +Rk(x(t−k )), xt−k

)]

= xT (t−k )Pikx(t−k ) + 2xTPikRk(x(t−k ), xt−k
)

+RT
k (x(t−k ), xt−k

)PikRk(x(t−k ), xt−k
)

≤ Vik(x(t−k )) + dk‖x(t−k )‖2 + ek‖xt−k ‖
2
r

≤ (1 +
dk
λm

)Vik(t
−
k ) +

ek
λm
‖Vikt−

k

‖r

= αkVik(t
−
k ) + ψk‖Vikt−

k

‖r.

Hence, there exists a positive constant K such that

‖x(t)‖ ≤ K‖φ‖re−(λ∗−ν)(t−t0),

where K, λ∗, and ν are as defined in Theorem 11.1. This completes the proof.

For better understanding, we study the following example.

Example 11.3. Consider system (11.9) and the nonlinear subsystems are

1. Unstable Subsystem

ẋ1(t) = x1(t) + 0.01x2(t) cos t+ 0.1x1(t− 1) cosx2(t),

ẋ2(t) = x2(t)− 0.02x1(t) cos t+ 0.1 ln(1 + x2
1(t)).
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2. Stable Subsystem

ẋ1(t) = −x1(t) + 0.2 ln(1 + x2
2(t)),

ẋ2(t) = −2x2(t) + 0.05x2(t) sin t+ 0.1x1(t− 1).

The impulsive functions are

Rk(x(t−k ), x−tk) =

 0.1x1(t−k ) sinx2(t−k )

−x2(t−k ) + 2x1(t−k − 1)

 .

Taking Q1 = I2, γ = 2, and Q2 =

 1 0

0 2

 give P1 = P2 = 0.5I2, and hence

V1(x) = V2(x) = 1
2
(x2

1 + x2
2). With little effort, we get the following constants:

a1 = 0.1, b1 = 0.05, λ∗1 = 0.0001, the growth rate ξ = 2.1, a2 = 0.2, b2 = 0.05,

λ∗2 = 0.0125, and the decay rate ζ = 1.306; for all k, dk = 8/5, ek = 4, αk = 21/5,

and ψk = 8. For ν = 1.2, the dwell times are τu = 2 and τ s = 4.5. The simulation

result is shown in Figure 11.3.

As for systems that consist of all unstable subsystems, we consider the following

nonlinear uncertain system with nonlinear impulse

ẋ(t) = (Aik + ∆Aik)x(t) + gik(t, x(t), xt), t ∈ [tk−1, tk), (11.10a)

∆x(t) = Bkx(t−) +Rk(x(t−), xt−), t = tk, (11.10b)

where Bk ∈ Rn×n is a real constant matrix and ∆Aik is defined in Assumption

A4. In the following theorem, we introduce sufficient conditions that guarantee

stability and asymptotic stability of the system experiencing impulsive effects given

in (11.10b).

Theorem 11.4. Consider the uncertain impulsive switched system (11.10). As-

sume that the following assumptions are satisfied:
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Figure 11.3: System with unstable and stable modes: φ(t) = t+ 0.5.

(i) assumption (i)(1) of Theorem 11.3 holds;

(ii) there exist positive constants aik and bik such that

2xTPikgik(t, x, xt) ≤ aik‖x‖2 + bik‖xt‖2
r;

(iii) there exists a constant ϑ ≥ 1 such that

ln(ϑµ(αk + ψk)) + ξik(tk+1 − tk) ≤ 0, (11.11)

where µ is defined before, αk = (λ2
max[I + Bk] + dk)/λm and ψk = ek/λm, dk

and ek are positive constants such that the following inequality holds

2xT (t−k )[I +Bk]
TPiRk(x(t−k ), xt−k

) +Rk(x(t−k ), xt−k
)TPiRk(x(t−k ), xt−k

)

≤ dk‖x(t−k )‖2 + ek‖xt−k ‖
2
r,

and ξik = (2γλm+λ∗ik+aik+bik)/2λm is the growth rate of the ikth subsystem,

with λ∗ik being defined in Theorem 11.1.

222



Then, ϑ = 1 implies that the trivial solution of system (11.10) is robustly stable, and

ϑ > 1 implies that the trivial solution of system (11.10) is robustly asymptotically

stable.

Proof. For each ik, define Vik(x) = xTPikx. Then, from Theorem 11.3, we have

Vik ≤ ‖Viktk−1
‖reξik (t−tk−1),

and, at t = tk,

V (x(tk)) = xT (tk)Pikx(tk)

= [(I +Bik)x(tk) +Rik(x(t−k ), x−k )]TPik [(I +Bik)x(tk) +Rik(x(t−k ), x−k )]

≤ xT (t−k )(I +Bk)
TPik(I +Bk)x(t−k ) + 2xT (t−k )(I +Bk)

TPikRk(x(t−k ), x−k )

+RT
k (x(t−k ), x−k )PikRk(x(t−k ), x−k )

≤ λmax[(I +Bk)
TPik(I +Bk)x(t−k )]‖x(t−k )‖2 + dk‖x(t−k )‖2 + ek‖xt−k ‖

2
r

≤ λ2
max(I +Bk)λM‖x(t−k )‖2 + dk‖x(t−k )‖2 + ek‖xt−k ‖

2
r

≤ αkVik(t
−
k ) + ψk‖Vikt−

k

‖r.

By the same argument followed in proving Theorem 11.2, we have

Vik(x) ≤ ‖V1t0
‖τ

1

ϑk
eξ1(t1−t0),

from which we obtain

‖x(t)‖ ≤ K√
ϑk
‖φ‖reξ1(t1−t0)/2.

Clearly, if ϑ = 1, system (11.10) is robustly stable, and, if ϑ > 1 and k → ∞,

system (11.10) is robustly asymptotically stable.

Example 11.4. Consider impulsive system (11.10) and the nonlinear subsystems

are
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1. First Mode

ẋ1(t) = 3x1(t) + 0.01 sin(5πt)x1(t) + x2(t− 1)e−|x1(t)|,

ẋ2(t) = 0.01 sin(5πt)x2(t) + sin x1(t− 1).

2. Second Mode

ẋ1(t) = 2x1(t) + 0.01 cos(5πt)x1(t) + x1(t) cosx2(t− 1),

ẋ2(t) = 5x2(t) + 0.01 cos(5πt)x2(t) + x2(t− 1).

The impulsive functions are

Rk(x(t−k ), x−tk) =

 −0.1x1(t−k ) + 0.1x2(t−k − 1)

−0.1 sinx1(t−k − 1)

 .

Taking γ = 6, ε = 1, Q1 =

 3 0

0 6

, and Q2 =

 4 0

0 1

 give P1 = P2 = 0.5I2,

and hence V1(x) = V2(x) = 1
2
(x2

1 + x2
2). One can easily get the following constants:

for the first subsystem, a1 = b1 = 0.5, λ∗1 = 0.0125, the growth rate ξ1 = 7.0125,

and ϑ∗1 = 14.2857; for the second subsystem, a2 = 1, b2 = 0.5, λ∗2 = 0.0125, the

growth rate ξ2 = 7.5125, and ϑ∗2 = ϑ∗1; for all k, αk = 0.04 and ψk = 0.03. For

ϑ = 4 ∈ [1, ϑ∗), the dwell times of the first and second subsystems are τ = 0.18 and

τ = 0.16, respectively. The simulation result is shown in Figure 11.4.

According to the results of Theorems 11.1 and 11.2, one can notice that the

convergence of solutions to the equilibrium state is influenced by the size of decay

and growth rates of subsystems and impulsive amounts. Consequently, assumptions

(ii) and (iii) of Theorems 11.1 and 11.3, respectively, can be refined by relaxing the

condition of activating stable subsystems longer than unstable ones. The following

corollary illustrates this result.
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Figure 11.4: Systems with all unstable subsystems: φ(t) = −t+ 0.5.

Corollary 11.1. Consider uncertain system (11.10) with S = Su ∪Ss. The trivial

solution is robustly asymptotically stable if the following assumptions hold:

(i) assumptions (i) and (ii) of Theorem 11.3 are satisfied;

(ii)(1) for ik ∈ Su and k = 1, 2, · · · , l,

lnµ(αk + ψk) + ξik(tk − tk−1) ≤ 0;

(ii) (2) for ik ∈ {l + 1, l + 2, · · · , N − 1} and k = l + 1, l + 2, · · · , N − 1,

lnµ(αk + ψke
ζikr) + ζikr − ζik(tk − tk−1) ≤ 0,

where αk and ψik are defined in Theorem 11.4, and ξik and ζik are the growth

and decay rates of unstable and stable subsystems, respectively.
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11.3 Conclusion

Throughout this chapter, we discussed a time-delayed impulsive switched system

with uncertainties of the structured type. The focus was on establishing the prob-

lems of robust stability and stabilization of this system by designing switching laws

to organize the switching among either a mix of stable and unstable or all unstable

subsystems. In the latter case, we showed how helpful impulses can stabilize a

switched system with all unstable subsystems. In the stability analysis, we con-

sidered a deterministic dwell-time-based approach together with the technique of

multiple Lyapunov functions.
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Chapter 12

Input-to-State Stability of

Stochastic Switched Systems

This chapter concerns with studying the sensitivity of nonlinear switched systems,

whose states are driven by Wiener process, to bounded disturbances or controls.

Lyapunov-based sufficient conditions are established to guarantee input-to-state

(ISS) properties in the pth moment. The first case in which system switches among

a family of ISS modes is studied. Then, a more general class is considered, in

which unstable subsystems perturbed by bounded disturbance are taken into ac-

count. Switching among the system modes is controlled by two separated switching

rules, a new criterion called initial-state-dependent dwell-time (τisd) condition, and

Markovian switching. Implications of our results are stated and some numerical

examples are presented to justify the proposed theoretical results.

The τisd technique is inspired by the state-dependent approach proposed in

[DePe02]. The features of the new approach are (1) like state-dependent approach,

the dwell time depends on the comparison functions that distinguish each subsys-
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tem, so long as multiple Lyapunov technique is adopted, (2) in contrast to state-

dependent approach, which requires the knowledge of the state at the switching

times, it is easier to work with in the sense that it can be determined a priori,

because it depends on the magnitude of the initial state only, (3) unlike constant

dwell-time condition which may result in divergence if it is adopted to nonlinear

or, in some cases, to linear systems, τisd approach generates a sequence of state

magnitudes, evaluated at the switching moments, that is convergent to a limit set

depending on the ISS-gain of the system, or convergent to zero in the case of input-

free (or unforced) systems; briefly, assuming that the solution exists all the time,

in considering the τisd condition, it is guaranteed that the solution converges when

time goes to infinity, and (4) it can be applied to a family of all ISS subsystems

and even a larger class, where some of the systems are unstable.

The switched system under consideration has a finite family of subsystems hav-

ing ISS property. We also consider the case, in which some of these subsystem are

unstable, i.e., the unforced subsystems are unstable. This case occurs if the modes

are being viewed as stable closed-loop and some of the controllers are unavailable

leading to instability. In both cases, the state is excited by a random noise that

is represented by a Wiener (or Brownian motion) process. As mentioned earlier,

the focus of this chapter is to establish some results on asymptotic input-to-state

stability (aISS) in pth moment.

The result has some implications. If we do not consider the random noise

effect, the stability property reduces to aISS for nonlinear deterministic switched

systems. If the system is subject to random noise, but not to input disturbance,

the result reduces to the pth moment asymptotic stability of the equilibrium point

of the unforced stochastic switched system, and it implies asymptotic stability if

the system is noise-free. Moreover, if the system has a single mode, the results
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reduce to the pth moment aISS property for nonlinear stochastic systems, i.e.,

a generalization of the standard aISS concept introduced by Sontag. We should

mention that the authors of [Spil03] analyzed such systems in which the input is

a random function. They established some results on the necessary conditions for

the stochastic ISS notion. The material of this chapter forms the basis of [Alw-h].

Consider the following stochastic switched system with input

dx(t) = fσ(t)(t, x(t), u(t))dt+ gσ(t)(t, x(t), u(t))dW (t), t ≥ t0, (12.1a)

x(t0) = x0, (12.1b)

where the state vector x ∈ Rn is assumed to be a right-continuous Itô process, the

input u : [t0,∞)→ Rl is an essentially bounded function with ‖u(t)‖∞ ≤ 1, where

‖u(t)‖∞ := ess. supt≥t0 ‖u(t)‖, the switching signal σ(t) : [t0,∞)→ S is a piecewise

constant function taking values in a finite compact set S = {1, 2, · · · , N} for some

N ∈ N. If switching among the elements of S occurs randomly, we assume that the

switching signal σ(·) is a right-continuous Markov chain taking values in S with the

generator Γ = [γij]N×N and its evolution is governed by the following probability

transitions

P{σ(t+ h) = j
∣∣σ(t) = i} =

 γijh+ o(h), if i 6= j,

1 + γiih+ o(h), if i = j,

where h > 0, γij is the transition rate from mode i to mode j with γij ≥ 0, when i 6=

j, and γii = −
∑N

j=1,j 6=i γij, and o(h) is such that limh→0 o(h)/h = 0. The switching

signal σ(·) is assumed to be independent of W (·). Let {tk}k∈N (with tk ∈ R+) be a

strictly increasing sequence of switching times satisfying limk→∞ tk = ∞. For any

ik, or, for simplicity of notation, i ∈ S, the functions fi : [tk−1, tk)×Rn×Rl → Rn,

gi : [tk−1, tk) × Rn × Rl → Rn×m, belonging to Lad(Ω, Lp[tk−1, tk)) with p = 1

and p = 2, respectively, are assumed to be smooth enough to guarantee a unique
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solution, and fi(t, 0, 0) = 0 ∈ Rn and gi(t, 0, 0) = 0 ∈ Rn×m; that is, the unforced

system (12.1) admits a trivial solution x ≡ 0. We also assume the initial state x0

to be F0-measurable with finite pth moment (i.e., E[‖x0‖p] <∞).

In Definition 10.2, we stated the generalized Itô formula of a switched system

ruled by Markovian switching. One can similarly states the formula if the switched

system undergoes input disturbance, and, consequently, the infinitesimal diffusion

operator L will have the following form

LV (t, x(t), u(t), i) =Vt(t, x(t), i) + Vx(t, x(t), i)f(t, x(t), u(t), i)

+
1

2
tr[gT (t, x(t), u(t), i)Vxx(t, x(t), i)g(t, x(t), u(t), i)]

+
N∑
j=1

γijV (t, x(t), j), (12.2)

where V is a C1,2([tk−1, tk)×Rn; R+) function mapping the pair (x(t), i) into V (t, x(t), i),

and γij is the transition rate defined above.

A common practice in proving the existence of a regular (global) solution for

a stochastic system is to assume that the vector field functions f and g to grow

linearly over the entire space. This restrictive condition can be relaxed if Lyapunov

technique is used instead [Gard88, Kha80, Mao06]. In these references it was shown

that the solution is regular if a local solution exists and the infinitesimal diffusion

operator L (for a fixed mode number with u ≡ 0) is either non-positive [Gard88] or

bounded by some nonnegative linear estimate of V (i.e., for some positive constant

c, LV ≤ cV ) [Kha80, Mao06]. In the following lemma, which is inspired by Theorem

3.4.1 in [Kha80] and Theorem 3.19 in [Mao06], we consider the Lyapunov approach

to prove the existence of a regular solution, where the operator is bounded by a

nonnegative nonlinear estimate of V (i.e., where LV (t, x, u) ≤ α(V (t, x)) for some

α ∈ K2). As will be seen, the lemma has a further use in Theorem 12.2 regarding
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the estimate of E[V (t, x(t))]. We should also remark that the result of this lemma

remains correct if the system is input-free.

Lemma 12.1. Assume that a unique solution x(t) = x(t, t0, x0) of the initial value

problem

dx(t) = f(t, x(t), u(t))dt+ g(t, x(t), u(t))dW (t),

x(t0) = x0

exists for all t ∈ [t0, τ∞), where τ∞ is the explosion time. Let V ∈ C1,2(R+×Rn; R+)

such that it is radially unbounded (i.e., lim‖x‖→∞
[

inft≥t0 V (t, x)
]

= ∞, for all

(t, x) ∈ R+ × Rn) and

LV (t, x, u) ≤ α(V (t, x)),

where α is a class-K2 function. Then, the solution x(t) is unique and defined for

all t ≥ t0.

Proof. Let x(t) = x(t, t0, x0) be a local solution of the system. We claim that

τ∞ = ∞. If our claim were not true, there would exist positive constants ε and T

such that

P{τ∞ ≤ T} > ε.

Define a sequence of stopping times τl, ∀ l ≥ 1, of process x from the ball ‖x‖ > l,

i.e.,

τl = inf{t ≥ t0 : ‖x(t)‖ > l},

such that τl → τ∞ (a.s.). This implies that, for sufficiently large l∗,

P{τl ≤ T} > ε′, for some ε′ < ε, l ≥ l∗.

231



For any t ∈ [t0, T ] and l ≥ l∗, let τl(t) = min{τl, t}. Apply the generalized Itô

formula to process V (τl(t), x(τl(t))) and then take the mathematical expectation to

get

E[V (τl(t), x(τl(t)))] = E[V (t0, x0)] + E
∫ τl(t)

t0

LV (s, x(s), u(s))ds

≤ E[V (t0, x0)] + E
∫ t

t0

LV (τl(s), x(τl(s)), u(τl(s)))ds

≤ E[V (t0, x0)] +

∫ t

t0

α
(
E[V (τl(s), x(τl(s)))]

)
ds.

By Bihari’s inequality [Mao94], we get

E[V (τl(t), x(τl(t)))] = G−1
[
G
(
E[V (t0, x0)]

)
+ (t− t0)

]
≤ G−1

[
G
(
E[V (t0, x0)]

)
+ (T − t0)

]
<∞,

where G(s) =
∫ s

1
dt
α(t)

, G−1 is the inverse function of G, and G
(
E[V (t0, x0)]

)
+ (T −

t0) ∈ Domain(G−1). From the above inequality, we see E[V (t, x(t)] < ∞ for any

t ∈ [t0, T ].

On the other hand,

E
[
1{τl≤T}V (τl, x(τl))

]
≤ G−1

[
G
(
E[V (t0, x0)]

)
+ (T − t0)

]
,

where 1A is the indicator function of a set A, i.e., 1A(x) = 1 if x ∈ A and otherwise

0. Define

ηl = inf{V (t, x) : ‖x‖ ≥ l, t ≥ t0}.

Thus,

G−1
[
G
(
E[V (t0, x0)]

)
+ (T − t0)

]
≥ ηlP{τl ≤ T} ≥ ε′ηl.
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Letting l → ∞ implies contradiction, because V is radially unbounded; therefore,

it must be true that

P{τl ≥ T} = 1.

The uniqueness follows from the definition of x up to equivalence, i.e., if y is another

solution, then

P{‖x(t)− y(t)‖ = 0, t0 ≤ t ≤ σ∞} = 1.

This completes the proof..

Definition 12.1. For any t0 ∈ R+, t ≥ t0, and x0 ∈ Rn, let x(t) = x(t, t0, x0) be a

solution of system (12.1). Then, system (12.1) is said to be uniformly asymptotically

input-to-state stable (aISS) in the pth moment if there exist functions β ∈ KL and

γ ∈ K such that, for any u and p ≥ 1, the solution satisfies

E[‖x(t)‖p] ≤ β
(
E[‖x0‖p], t− t0

)
+ γ(‖u(t)‖∞), ∀t > t0.

It is said to be exponentially input-to-state stable (eISS) in the pth moment if in

addition β
(
E[‖x0‖p], t − t0

)
≤ KE[‖x0‖p]e−λ(t−t0), for some positive constants K

and λ.

Remark 12.1. Immediate implications of the above definition are, e.g., for zero

input, it reduces to the uniform pth moment asymptotic (or exponential) stability

of the trivial solution of unforced system, and for non-zero input and g ≡ 0, it

reduces to the standard definition of uniform ISS, which in turn implies the uniform

asymptotic (or exponential) stability for zero input.
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12.1 Initial-state-dependent dwell-time condition

In this section, we state and prove our Lyapuonv-based sufficient conditions to

ensure aIS stability in the pth moment of the solution of the switched system

(12.1). In Theorem 12.1, we consider a switched system with all stable modes and

show the convergence of the solution trajectories to a ball of radius depending on

the input magnitude. We also consider a more general case (Theorem 12.2), in

which some of the modes are unstable.

Theorem 12.1. For any i ∈ S, t ∈ [tk−1, tk), x ∈ Rn, and p ≥ 1, there exists Vi ∈

C1,2
(
[tk−1, tk)×Rn; R+

)
with Vi(t, 0) = 0, which satisfies the following assumptions:

(i) there exist a concave function α1i ∈ K∞ and a convex function α2i ∈ K∞ such

that

α2i(‖x‖p) ≤ Vi(t, x) ≤ α1i(‖x‖p), (a.s.); (12.3)

(ii) there exist α∗3i ∈ K1 and γ ∈ K such that

LVi(t, x(t), u(t)) ≤ −α3i(‖x‖p), (a.s.), (12.4)

provided that ‖x‖p > α∗
−1

3i

(
1
ν
γ(‖u‖∞)

)
=: ρi(‖u‖∞) (a.s.), where 0 < ν < 1

and α3i(·) = (1− ν)α∗3i(·);

(iii) for all k = 1, 2, · · · , the τisd condition

tk − tk−1 ≥ ln
θ2i

(
ak−1E[‖x0‖p]

)
θ1i

(
akE[‖x0‖p]

) > 0 (12.5)

holds, where ak are positive real numbers with a0 = 1, ak < ak−1, and

limk→∞ ak = 0, and θi1 and θ2i are some class-K∞ functions.
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Then, system (12.1) is pth moment aISS with the ultimate bound (or ISS gain)

ρM = max{ρi = α∗
−1

3i
◦ γ∗ : i ∈ S} where γ∗(·) = 1

ν
γ(·).

Remark 12.2.

1. Assumptions (i) and (ii) are made to ensure the aISS property in the pth moment

of each subsystem. The function Vi satisfying these assumptions is called

stochastic ISS Lyapunov function related to the ith subsystem.

2. The idea behind the dwell-time-based condition in (iii) is to generate a sequence

of solution trajectories at the switching times that converges (in the pth mo-

ment) to a limit set with a radius depending on the ultimate bound of the

input.

Proof of Theorem 12.1. For all t ≥ t0, let x(t) be the solution of (12.1), and for

any t ∈ [tk−1, tk), let Vi(t, x(t)) be a Lyapunov function related to the ith mode. By

(ii), we define mi(t) = E[Vi(t, x(t))] for all t ∈ [tk−1, tk). Applying the Itô formula

to Vi(t) and taking the mathematical expectation give

mi(t) = mi(tk−1) + E
∫ t
tk−1
LVi(s, x(s), u(s))ds

≤ mi(tk−1)− E
∫ t
tk−1

α3i(‖x(s)‖p)ds

≤ mi(tk−1)−
∫ t
tk−1

α3i(E[‖x(s)‖p])ds

≤ mi(tk−1)−
∫ t
tk−1

α3i(α
−1
1i

(mi(s))ds

= mi(tk−1)−
∫ t
tk−1

αi(mi(s))ds,

or

D+mi(t) ≤ −αi(mi(t)),
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where αi = α3i ◦ α−1
1i

. Then, by a classical stability result [Kha02], there exists a

class-KL function β∗i such that

mi(t) ≤ β∗i (mi(tk−1), t− tk−1),

or, by (i),

α2i(E[‖x(t)‖p]) ≤mi(t) ≤ β∗i (mi(tk−1), t− tk−1) ≤ β∗i (α1i(E[‖x(tk−1)‖p]), t− tk−1)

=: βi(E[‖x(tk−1)‖p], t− tk−1)

≤ θ∗1i

[
θ∗2i(E[‖x(tk−1)‖p])e−(t−tk−1)

]
,

which implies that

E[‖x(t)‖p] ≤ α−1
2i

{
θ∗1i

[
θ∗2i(E[‖x(tk−1)‖p])e−(t−tk−1)

]}
= θ−1

1i

[
θ2i(E[‖x(tk−1)‖p])e−(t−tk−1)

]
, (12.6)

where θ1i(r) := θ∗
−1

1i
(α2i(r)), θ2i := θ∗2i(r), and θ∗1i and θ∗2i are K∞ functions, which

are guaranteed by [DePe02, Son98].

Specifically, for i = 1 and k = 1 (i.e., t ∈ [t0, t1)), we have from (12.6)

E[‖x(t)‖p] ≤ θ−1
11

[
θ21(E[‖x(t0)‖p])e−(t−t0)

]
,

and, at the switching instant t = t1 (i.e., after t1 − t0 > 0), we have

E[‖x(t1)‖p] ≤ θ−1
11

[
θ21(E[‖x(t0)‖p])e−(t1−t0)

]
.

By the τisd condition (12.5), we get

E[‖x(t1)‖p] ≤ a1E[‖x0‖p],

which implies, that for i = 2 and t ∈ [t1, t2),

E[‖x(t)‖p] ≤ θ−1
12

[
θ22E[‖x(t1)‖p])e−(t−t1)

]
≤ θ−1

12

[
θ22(a1E[‖x0‖p])e−(t−t1)

]
.
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By the same argument, for t ∈ [tk−1, tk), we get

E[‖x(t)‖p] ≤ θ−1
1i

[
θ2i(ak−1E[‖x0‖p])e−(t−tk−1)

]
,

whenever ‖x(t)‖ > [ρi(‖u‖∞)]1/p (a.s.), and, at t = tk, E[‖x(tk)‖p] ≤ akE[‖x0‖p].

Since limk→∞ ak = 0, the system states will approach (in the pth moment) the

ultimate bound [ρ(‖u‖∞)]1/p, where ρ = maxi{ρi}; that is, the switched system

(12.1) is aISS in the pth moment. This completes the proof.

Implications of this result are stated in the following corollary, whose proofs are

straightforward and are omitted here.

Corollary 12.1. In Theorem 12.1, if

1. α1i(s) = α1is, α2i(s) = α2is, and α∗3i(s) = α∗3is, for all s > 0, where α1i , α2i ,

and α∗3i are positive constants, the above aISS properties reduce to eISS.

2. u(t) ≡ 0 for any t ∈ R+, aISS reduces to the uniform global asymptotic stability

(GAS) in the pth moment of the trivial solution of the nonlinear stochastic

switched system

dx(t) = fσ(t)(t, x(t))dt+ gσ(t)(t, x(t))dW (t),

x(t0) = x0.

3. g ≡ 0 and u 6≡ 0, the aISS property reduces to the standard aISS of the nonlinear

switched system

ẋ(t) = fσ(t)(t, x(t), u(t)),

x(t0) = x0,

where LV = V̇ = Vt + Vxf(t, x, u).
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4. g ≡ 0 and u ≡ 0, the aISS property reduces to GAS of the nonlinear switched

system

ẋ(t) = fσ(t)(t, x(t)),

x(t0) = x0,

where LV = V̇ = Vt + Vxf(t, x).

In the following example, we illustrate these results.

Example 12.1. Consider the following switched system with input

dx = (−aix+ u(t))dt+ u(t) sinx dW (t),

where i ∈ S = {1, 2} and ai is a positive real number. Let Vi(x) = 1
4
x4 be a

Lyapunov function candidate related to the ith subsystem and α1i(x) = α2i(x) =

Vi(x). Then

LVi(x, u) ≤ −aix4 + |x|3|u|+ 3

2
x4

≤ −aix4 + aiθx
4 − aiθx4 + |x|3|u|+ 3

2
x4, 0 < θ < 1,

≤ −α3iV (x),

provided that |x| ≥ |u|/(aiθ − 3/2) with aiθ > 3/2, where α3i = 4ai(1 − θ) >

0. Thus, the subsystems are both aISS in the fourth moment. Letting a1 = 4,

a2 = 8, and θ = 1/2 gives α31 = 8 and α32 = 14. By Theorem 12.1, we have

mi(t) ≤ mi(tk−1)e−α3i
(t−tk−1) ≤ e−(t−tk−1), where mi(t) = E[Vi(x(t))] for any t ∈

[tk−1, tk). This also implies that θ1i(r) = θ2i(r) = r, from which we obtain E[x4] ≤

E[x4(tk−1)] ≤ e−(t−tk−1). Therefore, the τisd condition implies that tk − tk−1 ≥

ln(ak−1

ak
), where we choose ak = 1

k+1
, k = 1, 2, · · · . In Figure 12.1, we show the

simulation result of the second moment of the solution, where the input function
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Figure 12.1: Mean square aISS with u(t) = sin(t).

u(t) = sin(t). We should also remark that, for better insight into the solution

curve, the display is over the rectangle t ∈ [0, 30] and x ∈ [0, 0.1]. With the

same sinusoidal input function, Figure 12.2 shows that the system is aISS in the

first moment. Figure 12.3 illustrates the first moment aISS property of the system,

where disturbance input is given by the hyperbolic function u(t) = 1/(1+t). Figure

12.4 shows the classical asymptotic stability (in the first moment) property of the

equilibrium point x ≡ 0 for the stochastic switched system, i.e., when u(t) ≡ 0.

The standard aISS property of the deterministic switched system is shown in Figure

12.5.

In the following theorem, we state and prove the pth moment aISS property of

switched system with stable and unstable subsystems. For convenience of notation,

let Ss = {1, 2, · · · , Ns} and Su = {1, 2, · · · , Nu}, with Ns + Nu = N , be the index

sets of stable and unstable subsystems, respectively, and S = Ss ∪ Su.

Theorem 12.2. Consider system (12.1) with S = Ss ∪ Su. Assume that the

following assumptions hold:
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Figure 12.2: First moment aISS with u(t) = sin(t).
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Figure 12.3: First moment aISS property with u(t) = 1/(1 + t).
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Figure 12.4: First moment asymptotic stability of x ≡ 0 (i.e., u(t) = 0).
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Figure 12.5: aISS property with u(t) = sin(t) and g ≡ 0.
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(i) for each i ∈ S, there exist class-K∞ functions α1i , α2i , and ρi, where α1i is

concave and α2i is convex, a class-K1 function α3i , and a class-K2 function

ᾱ3i such that

(1) α2i(‖x‖p) ≤ Vi(t, x) ≤ α1i(‖x‖p), (a.s.);

(2) LVi(t, x, u) ≤ −α3i(‖x‖p), (a.s.), ∀i ∈ Ss, whenever ‖x‖p >

ρi(‖u‖∞);

(3) LVi(t, x, u) ≤ ᾱ3i(‖x‖p), (a.s.), ∀i ∈ Su,

where Vi(t, x(t)) ∈ C1,2([tk−1, tk)× Rn; R+) with Vi(t, 0) = 0;

(ii) the following τisd condition holds

(1) for all i ∈ Ss = {1, 2, 3, · · · , Ns} and k = 1, 3, 5, · · · ,

t1 − t0 ≥ ln
θ21

(
E[‖x0‖p]

)
θ1i

(
a1E[‖x0‖p]

) > 0,

t3 − t2 ≥ ln
θ23

(
a1A1E[‖x0‖p]

)
θ13

(
a2E[‖x0‖p]

) > 0,

· · ·

(2) for all i ∈ Su = {1, 2, 3, · · · , Nu} and k = 2, 4, 6, · · ·

0 < t2 − t1 ≤ G2

[
α22

(
a1A1E[‖x0‖p]

)]
−G2

[
α12

(
a1E[‖x0‖p]

)]
,

0 < t4 − t3 ≤ G4

[
α24

(
a2A2E[‖x0‖p]

)]
−G4

[
α14

(
a2E[‖x0‖p]

)]
,

· · ·

where 0 < ak < akAk ≤ ak−1 with a0 = 1, and θ1i(r) := θ∗
−1

1i
(α1i(r)) and

θ2i := θ∗2i(r) are functions of class K∞, and G2, G4, · · · are functions defined

in Lemma 12.1.
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Then, switched system (12.1) is pth moment aISS with the ultimate bound ρM :=

maxi ρi.

Remark 12.3. In the proof of this theorem, we adopt the case, where the switching

among the stable and unstable modes occurs alternatively for convenience.

Proof. For all t ≥ t0, let x(t) be the solution of (12.1), and, for any t ∈ [tk−1, tk)

and i ∈ S, we take Vi(t, x(t)) ∈ C1,2([tk−1, tk)×Rn; R+). For i = 1, we run a stable

mode for all t ∈ [t0, t1). Then, we have, from Theorem 12.1,

E[‖x(t)‖p] ≤ θ−1
11

[
θ21(E[‖x0‖p])e−(t−t0)

]
,

and, at t = t1, we have, by the stable τisd condition (i.e., by (ii) (1)),

E[‖x(t1)‖p] ≤ a1E[‖x0‖p].

If an unstable mode is activated for t ∈ [t1, t2), we have, by Lemma 12.1 and (i),

E[‖x(t)‖p] ≤ α−1
22

{
G−1

2

(
G2(α12(E[‖x(t1)‖p])) + (t− t1)

)}
≤ α−1

22

{
G−1

2

(
G2(α12(a1E‖x0‖p])) + (t− t1)

)}
,

and, at t = t2, it implies, by the unstable τisd condition (i.e., by (ii) (2)),

E[‖x(t2)‖p] ≤ a1A1E[‖x0‖p].

By the same manner, one generates a sequence of states at the switching times

E[‖x(tk)‖p] ≤ akE[‖x0‖p] and E[‖x(tk+1)‖p] ≤ akAkE[‖x0‖p].

Since, for all k ∈ N, ak < akAk ≤ ak−1, limk→∞ ak = 0 and E[‖x0‖p] < ∞,

limk→∞ E[‖x(tk)‖p] = 0, i.e., when t → ∞ the solution (in the pth moment) will

linger on at the ultimate bound of the system input. This completes the proof of

the pth moment aISS of switched system (12.1).
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Example 12.2. Consider the switched system with the following unstable mode

dx = (−ax3 + xu(t))dt+
√

2ax2dW (t),

and the stable mode

dx = (−ax3 − bx+ u(t))dt+
√

2ax2dW (t),

where a and b are positive constants. Here, S = Su ∪ Ss = {1, 2}.

For any i ∈ S, let Vi(x) = 1
2
x2. Then, for i = 1 ∈ Su, we have

LV1(x, u) = x2u(t) = x2,

where u(t) = 1 for all t ∈ [tk−1, tk), for some k, i.e., the subsystem is unstable. This

also implies that D+E[V1(x(t))] = 2E[V1(x(t))], and, by Lemma 12.1, we get

E[V1(x(t))] = E[V1(x(tk−1))]e2(t−tk−1),

i.e., G(r) = ln(r) and G−1(r) = er. If we choose α11(x) = α21(x) = V1(x), we

obtain

E[x2(t)] = E[x2(tk−1)]e2(t−tk−1).

Analogously, for i = 2 ∈ Ss, we have LV2(x, u) ≤ −α32V2(x), provided that |x| ≥

|u|/bθ, where α32 = 2b(1 − θ) > 0 and 0 < θ < 1, which implies that E[V2(x)] ≤

E[V2(x(tk−1))]e−α32 (t−tk−1) ≤ E[V2(x(tk−1))]e−2(t−tk−1), if we choose b = 2 and θ =

1/2, i.e., θ12(r) = θ22(r) = r. Let α12(x) = α22(x) = V2(x). Then,

E[x2(t)] ≤ E[x2(tk−1)]e−(t−tk−1), t ∈ [tk−1, tk).

As for the dwell time, let us first run a stable mode (i.e., k = 1). Then, from the

stable dwell-time condition, we get, if a1 = 1/2, t1− t0 ≥ ln 2 = 0.7, and, for k = 2,
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Figure 12.6: Mean square aISS with u(t) = sin(t).
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Figure 12.7: First moment aISS with u(t) = sin(t).

we run the unstable mode with A1 = 1.5 > 1, which gives t2 − t1 ≤ 1
2

ln 1.5 = 0.2.

By the same manner, we get, for k = 3, t3 − t2 ≥ ln a1A1

a2
, where a1A1 > a2, which

implies a2 < 3/4, so that taking a2 = 1/4 gives t3 − t2 ≥ 1.1. For k = 4, we get

1 < A2 ≤ 2, so that taking A2 = 1.5 gives t4 − t3 ≤ 0.2. Figures 12.6 and 12.7

show the second and first moment aISS of the switched system under sinusoidal

disturbance input function u(t) = sin(t).
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12.2 Markovian Switching

In this section, we continue to examine ISS properties of the switched system with

input discussed in last section. The interest is to develop Lyapunov sufficient con-

ditions to ensure the qualitative properties. In the analysis, we use the Markovian

switching and multiple Lyapunov function technique.

Consider the nonlinear system with Markovian switching
dx(t) = f(t, x(t), u(t), σ(t))dt+ g(t, x(t), u(t), σ(t))dW (t),

x(t0) = x0, σ(t0) = σ0 ∈ S.
(12.7)

The switching signal σ(t) is a Markov process taking values in a finite state space

S = {1, 2, · · · , N} (i.e., σ(t) : [t0,∞)→ S). In the following theorem, we state the

sufficient conditions that guarantee the pth moment eISS of forced system (12.7).

Theorem 12.3. For any i ∈ S, assume that the following assumptions hold:

(i) there exist constants K > 0, αi > 0, ρi ≥ 0, and σi ≥ 0 such that

‖f(t, x, 0, i)‖ ≤ K‖x‖, ‖xTf(t, x, 0, i)‖ ≤ αi‖x‖2,

‖g(t, x, 0, i)‖ ≤ ρi‖x‖, ‖xTg(t, x, 0, i)‖ ≤ σi‖x‖2;

(ii) the functions f and g are locally Lipschitz in u, for all t and x, i.e., there exist

positive constants c3 and c4 such that

‖f(t, x, u, i)− f(t, x, 0, i)‖ ≤ c3‖u‖,

‖g(t, x, u, i)− g(t, x, 0, i)‖ ≤ c4‖u‖;

(iii) there exist positive constants λ, c1, and c2 such that

c1‖x‖p ≤ V (t, x, i) ≤ c2‖x‖p, (12.8)

LV (t, x, u, i) ≤ −λ‖x‖p, (12.9)
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whenever ‖x‖ > ρ(‖u‖∞), where V ∈ C1,2([t0,∞) × Rn × S; R+) and ρ is a

class-K function.

Then, system (12.7) is pth moment eISS for 0 < p < min{2, (3c4 + 4σi)/(c4 + 2σi)}

with Lyapunov exponent being not larger than −λ/c2.

Proof. For any t ≥ t0, let x(t) = x(t, t0, x0) be the solution of (12.7). For any

i ∈ S and βi > 0, define V (t, x(t), i) = βi‖x(t)‖p as a Lyapunov function candidate

related to the ith mode. Then,

LV (t, x, u, i)

= pβi‖x‖p−2xTf(t, x, u, i) +
1

2
pβi‖x‖p−2‖g(t, x, u, i)‖2

−1

2
p(2− p)βi‖x‖p−4‖xTg(t, x, u, i)‖2 +

N∑
j=1

γijβj‖x‖p

= pβi‖x‖p−2xT
[
f(t, x, u, i)− f(t, x, 0, i) + f(t, x, 0, i)

]
+

1

2
pβi‖x‖p−2‖g(t, x, u, i)− g(t, x, 0, i) + g(t, x, 0, i)‖2

−1

2
p(2− p)βi‖x‖p−4‖xT [g(t, x, u, i)− g(t, x, 0, i) + g(t, x, 0, i)]‖2

+
N∑
j=1

γijβi‖x‖p

≤ pβi‖x‖p−2
{
‖xT [f(t, x, u, i)− f(t, x, 0, i)]‖+ ‖xTf(t, x, 0, i)‖

}
+

1

2
pβi‖x‖p−2

{
‖g(t, x, u, i)− g(t, x, 0, i)‖2 + ‖g(t, x, 0, i)‖2

+2‖g(t, x, u, i)− g(t, x, 0, i)‖ · ‖g(t, x, 0, i)‖
}

+
1

2
p(2− p)βi‖x‖p−4

{
‖xT [g(t, x, u, i)− g(t, x, 0, i)]‖2 + ‖xTg(t, x, 0, i)‖2

+2‖xT [g(t, x, u, i)− g(t, x, 0, i)]‖ · ‖xTg(t, x, 0, i)‖
}

+
N∑
j=1

γijβj‖x‖p

≤ pβi‖x‖p−2‖xT [f(t, x, u, i)− f(t, x, 0, i)]‖+ pβi‖x‖p−2‖xTf(t, x, 0, i)‖

247



+
1

2
pβi‖x‖p−2‖g(t, x, u, i)− g(t, x, 0, i)‖2 +

1

2
pβi‖x‖p−2 · ‖g(t, x, 0, i)‖2

+2
1

2
pβi‖x‖p−2‖g(t, x, u, i)− g(t, x, 0, i)‖ · ‖g(t, x, 0, i)‖

}
+

1

2
p(2− p)βi‖x‖p−4‖xT [g(t, x, u, i)− g(t, x, 0, i)]‖2

+
1

2
p(2− p)βi‖x‖p−4‖xTg(t, x, 0, i)‖2

+2
1

2
p(2− p)βi‖x‖p−4‖xT [g(t, x, u, i)− g(t, x, 0, i)]‖ · ‖xTg(t, x, 0, i)‖

+
N∑
j=1

γijβj‖x‖p

≤ pβic3‖x‖p−1‖u‖+ pβi|αi|‖x‖p +
1

2
pβic

2
4‖x‖p−2‖u‖2 +

1

2
pβiρ

2
i ‖x‖p

+pβiρic4‖x‖p−1‖u‖∞ +
1

2
p(2− p)βic2

4‖x‖p−2‖u‖2
∞ +

1

2
p(2− p)βiσ2

i ‖x‖p

+p(2− p)βiσic4‖x‖p−2‖u‖∞ +
N∑
j=1

γijβi‖x‖p

≤
{
pβi|αi|+

1

2
pβiρ

2
i +

1

2
p(2− p)βiσ2

i +
N∑
j=1

γijβj

}
‖x‖p

+
{
βic3‖x‖p−1 +

1

2
pβic

2
4‖x‖p−2 + pβiρic4‖x‖p−1 +

1

2
p(2− p)βic2

4‖x‖p−2

+p(2− p)βiσic4‖x‖p−2
}
‖u‖∞

=
{
p|αi|+

1

2
pρ2

i +
1

2
p(2− p)σ2

i

}
βi +

N∑
j=1

γijβj‖x‖p

+
{[
c3 + pρic4

]
‖x‖p−1 +

[1

2
pc2

4 +
1

2
p(2− p)c2

4 + p(2− p)σic4

]
‖x‖p−2

}
βi‖u‖∞

=

{[
p|αi|+

1

2
pρ2

i +
1

2
p(2− p)σ2

i

]
βi +

N∑
j=1

γijβj

}
‖x‖p

+
{[
c3 + pρic4

]
‖x‖p−1 +

[
− (0.5c4 + σi)p+ (1.5c4 + 2σi)

]
c4p‖x‖p−2

}
βi‖u‖∞

= −β∗i ‖x‖p + 2M(‖x‖)‖u‖∞

≤ −λ∗‖x‖p + 2M(‖x‖)‖u‖∞, (12.10)
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where λ∗ = min{−β∗i : i ∈ S} with

β∗i = −βi
[
p|αi|+

1

2
pρ2

i +
1

2
p(2− p)σ2

i

]
+

N∑
j=1

γijβj < 0,

and

M(‖x‖) = max
{
βi
[
c3 + pρic4

]
‖x‖p−1, c4pβi

[
− (0.5c4 + σi)p+ (1.5c4 + 2σi)

]
‖x‖p−2

}
.

To use λ∗‖x‖p to dominate 2M(‖x‖)‖u‖∞, we write the last inequality in (12.10)

as

LV (t, x, u, i) ≤ −(λ∗ − ν)‖x‖p − ν‖x‖p + 2M(‖x‖)‖u‖∞, 0 < ν < λ∗,

≤ −(λ∗ − ν)‖x‖p

= −λ‖x‖p,

where λ := λ∗ − ν > 0, provided that ν‖x‖p > 2M(‖x‖)‖u‖∞ or
‖x‖ > 2βi/ν · [c3 + pρic4] ‖u‖∞, if M(‖x‖) = βi [c3 + pρic4] ‖x‖p−1,

‖x‖ > {2βipc4/ν · [−(0.5c4 + σi)p+ (1.5c4 + 2σi)] ‖u‖∞}1/2 ,

if M(‖x‖) = c4pβi [−(0.5c4 + σi) + (1.5c4 + 2σi)] ‖x‖p−2.

(12.11)

Applying the generalized Itô formula to eλt/c2V (t, x, i) and taking the mathe-

matical expectation yield

E[e
λ
c2
t
V (t, x, i)]

= E[V (t0, x0, σ0)]e
λ
c2
t0 + E

[ ∫ t

t0

e
λ
c2
s
[
λ

c2

V (s, x, i) + LV (s, x, i)]ds
]

≤ E[V (t0, x0, σ0)]e
λ
c2
t0 + E

[ ∫ t

t0

e
λ
c2
s
[
λ

c2

V (s, x, i)− λ

c2

V (s, x, i)]ds
]

= E[V (t0, x0, σ0)]e
λ
c2
t0 .
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By (12.8), the last inequality becomes

E[e
λ
c2
t
c1‖x‖p] ≤ c2E[‖x0‖p]e

λ
c2
t0 ,

from which we obtain

c1e
λ
c2
tE[‖x‖p] ≤ c2E[‖x0‖p]e

λ
c2
t0 ,

or

E[‖x‖p] ≤ c2

c1

E[‖x0‖p]e−
λ
c2

(t−t0)

= KE[‖x0‖p]e−
λ
c2

(t−t0)
, K = c2/c1.

This result shows that system (12.7) is pth moment eISS with the ultimate bound

given in (12.11) and Lyapunov exponent −λ/c2.

Example 12.3. Consider the following switched system with input

Mode 1.

dx =
a

1 + t
(x+ u(t))dt+ b(sinx+ u(t))dW (t),

Mode 2.

dx = c(xe−|x| + u(t))dt+ b(x+ u(t) ln |1 + x|)dW (t),

and the probability transition matrix

Γ =

 −1 1

1 −1

 ,

where a, b, c, and d are some constants to be chosen later.
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Figure 12.8: First moment aISS with a = c = −1 and u(t) = sin(t).

Clearly, the vector field functions satisfy assumptions (i) and (ii) of Theorem

12.3, where K1 = α1 = c31 = |a|, K2 = α2 = c32 = |c| with c ∈ {−1, 1}, ρ1 =

σ1 = c41 = |b|, ρ2 = σ2 = c42 = |d|, c3 = max{|a|, |c|}, and c4 = max{|b|, |d|}.

For i = 1, 2, let V (x, i) = βi|x|p with 0 < p < min{2, (3
2
c4 + 2σi)/(

1
2
c4 + σi)}.

Taking |a| = |b| = |c| = |d| = p = 1 yields β∗1 = −3β1 + β2 and β∗2 = β1 − 3β2,

and upon choosing β1 = β2 = 1, we obtain λ∗ = min{β1, β2} = −2. Therefore, if

ν = 1 ≤ −λ∗, LV (x, u, i) ≤ −|x| < 0, provided that |x| > 4|u|∞. By our choice of

the probability transition matrix Γ = [γij]2×2, we get π1 = π2 = 0.5, the time spent

in the first and second modes. Figures 12.8-12.10 illustrate the first moment aISS

property with u(t) = sin(t) (Figures 12.8 and 12.9) and u(t) = e−t (Figure 12.10).

In Figures 12.8 and 12.10, the switching occurred between two stable modes, while

in Figure 12.9, between stable and unstable modes.

12.3 Conclusion

Nonlinear switched system property of aISS in the pth moment was established in

this chapter. The main interest was to develop sufficient conditions to guarantee
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Figure 12.9: First moment aISS with a = −1, c = 1 and u(t) = sin(t).
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Figure 12.10: First moment aISS with a = c = −1 and u(t) = e−t.
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the system property. We should remark that, throughout the chapter, the entire

switched system is subject to the same input disturbance. Therefore, one may con-

sider a more general case, in which there are more than one inputs or controllers. In

the first part of this chapter, we applied the initial-state-dependent dwell-time con-

dition to control the switching among the system modes. Two cases were discussed,

namely, systems with all stable modes, and with stable and unstable modes. The

latter case required generalizing a lemma, in which Bihari’s lemma, rather than

Bellman-Grownwall lemma, plays an important role. We showed that the result

of Theorem 12.1 has some implications that can be applied to some special cases,

such as random-noise-free systems and non-zero input disturbance, or the other way

around, or applied to switched systems under no effect of these two types of pertur-

bations. In fact, one can also derive some analogous implications from Theorems

12.2 and 12.3. In Section 12.2, i.e., Theorem 12.3, we stated and proved the eISS

property for systems according to Markovian switching rule. We also showed that

in Theorems 12.2 and 12.3, as known in analyzing stability of switched systems,

stability of each single mode is not necessary for the stability of the entire switched

system. The ISS property, in this case, is warranted if stable modes are activated

longer than unstable ones.
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Chapter 13

Input-to-State Stability of

Stochastic Switched Systems with

Time Delay

In this chapter, we consider stochastic switched systems with time delay. The focus

is on establishing the problem of pth moment asymptotic input-to-state stability of

the systems. Particularly, we continue to apply the initial-state-dependent dwell-

time τisd condition proposed in last chapter to organize the switching among the

system modes. As noticed in the last chapter, by adopting the τisd switching law,

we generate a convergent sequence of solutions evaluated at the switching instants.

In fact, as will be seen, due to the type of sufficient conditions developed in this

chapter, we make a slight change in the structure of this condition, where the

input disturbance is now involved. To analyze the results, we seek Lyapunov-type

sufficient conditions, where Razumikhin method is exploited to enable us to use

Lyapunov functions. The results of this chapter will be developed in two steps; we
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first embark on systems with all stable modes. Then, we consider systems including

unstable modes. The material of this chapter forms the basis of [Alw-i].

Consider the following switched system

dx(t) = fσ(t)(t, xt, u(t))dt+ gσ(t)(t, xt, u(t))dW (t), t ≥ t0, (13.1a)

xt0(s) = φ(s), s ∈ [−r, 0], (13.1b)

where x ∈ Rn is the system state, u ∈ PC(R+; Rl) is an external input with ‖u‖∞ <

∞, φ(t) ∈ LpF0
([−r, 0]; Rn), for some p > 0, is the initial condition, σ(t) : [t0,∞)→

S = {1, 2, · · · , N} is the switching signal, and fi(t, 0, 0) = 0 and gi(t, 0, 0) = 0 for

all t ≥ t0 and i ∈ S, where i = ik, for simplicity of notation. We also denote by

{tk}k∈N a strictly increasing sequence of switching times with limk→∞ tk =∞.

In the following, we state the definition of asymptotic and exponential input-

to-state stability of system (13.1).

Definition 13.1. For any t0 ∈ R+, t ≥ t0 and φ(t) ∈ LpF0
([−r, 0]; Rn), let

x(t) = x(t, t0, φ) be a solution of (13.1). Then, the system is said to be uniformly

asymptotically ISS (aISS) in the pth moment if there exists β ∈ KL and γ ∈ K

such that, for any input u, the solution x satisfies

E[‖x(t)‖p] ≤ β
(
E[‖φ‖pr], t− t0

)
+ γ(‖u‖∞). (13.2)

It is said to be exponentially ISS (eISS) in the pth moment if in addition β
(
E[‖φ‖pr], t−

t0
)
≤ KE[‖φ‖pr]e−λ(t−t0), for some positive constants λ and K.

13.1 Switched System with Stable Modes

This section concentrates on developing conditions that guarantee the ISS property

using the initial-state-dependent dwell-time (τisd) condition.
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Theorem 13.1. For any i ∈ S, k ∈ N, and u ∈ PC(R+; Rl), assume that there exist

ci > 0, α1i ∈ K2, α2i ∈ K1, and γi ∈ K. Suppose further that Vi ∈ C1,2([tk−1, tk)×

D; R+), with D being an open subset of Rn, and Vi(t, 0) = 0 such that the following

conditions hold:

(i) α2i(‖ψ(0)‖p) ≤ Vi(t, ψ(0)) ≤ α1i(‖ψ(0)‖p), (a.s.), ∀t ∈ [tk−1, tk) and

ψ(0) ∈ C([−r, 0]; Rn);

(ii) LV (t, ψ, u) ≤ −ciV (t, ψ(0)) + γi(‖u(t)‖), (a.s.), ∀t ∈ [tk−1, tk) and

ψ ∈ C([−r, 0]; Rn), whenever Vi(t + s, ψ(s)) ≤ q̄iVi(t, ψ(0)) for some q̄i > 1

and s ∈ [−r, 0];

(iii) the dwell-time τisd condition satisfies

t1 − t0 ≥
1

c1

{
ln
[
2α11(E[‖φ‖pr])erc1

]
− ln

[
α21

(
a1E[‖φ‖pr]

)]}
,

tk − tk−1 ≥
1

ci

{
ln
[
2α1i

(
ai−1E[‖φ‖pr] + α−1

2i−1

( 2

ci−1

γi−1(‖u‖∞)
))]

erci

− ln
(
α2i(aiE[‖φ‖pr])

)}
, (13.3)

where ai < ai−1 < 1, for any i = 2, 3, · · · , such that limi→∞ ai−1 = 0.

Then, system (13.1) is aISS in the pth moment.

Proof. Let x be a solution of (13.1) and define Vi(t, x) as a Lyapunov function

candidate related to the ith subsystem. Also, define mi(t) = E[Vi(t, x(t))] for all

t ∈ [tk−1, tk). Then, from (ii) and Itô formula, we have

mi(t) = mi(tk−1) + E
∫ t

tk−1

LVi(s, xs, u(s))ds

≤ mi(tk−1)−
∫ t

tk−1

(
ciE[Vi(s, x(s))] + γi(‖u(s)‖)

)
ds,
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which gives

D+mi(t) ≤ −cimi(t) + γi(‖u(t)‖).

It follows that, for all t ∈ [tk−1, tk),

mi(t) ≤ mi(tk−1)e−ci(t−tk−1) +

∫ t

tk−1

e−ci(s−tk−1)γi(‖u(s)‖) ds

≤ α1i(E[‖xtk−1
‖pr])e−ci(t−tk−1) + γi(‖u‖∞)

∫ t

tk−1

e−ci(s−tk−1) ds

≤ α1i(E[‖xtk−1
‖pr])e−ci(t−tk−1) + γi(‖u‖∞)

[ 1

ci

(
1− e−ci(t−tk−1)

)]
≤ α1i(E[‖xtk−1

‖pr])e−ci(t−tk−1) +
1

ci
γi(‖u‖∞).

Namely, for all k ∈ N and t ∈ [tk−1,tk), we have

α2i(E[‖x(t)‖p]) ≤ mi(t) ≤ α1i(E[‖xtk−1
‖pr])e−ci(t−tk−1) +

1

ci
γi(‖u‖∞). (13.4)

Particularly, for i = 1 and t ∈ [t0, t1) (i.e., k = 1), we have, from (13.4)

m1(t) ≤ α1i(E[‖φ‖pr])e−c1(t−t0) +
1

c1

γ1(‖u‖∞), (13.5)

and, for i = 2 and t ∈ [t1, t2), we have

m2(t) ≤ α12(E[‖xt1‖pr])e−c2(t−t1) +
1

c2

γ2(‖u‖∞), (13.6)

where E[‖xt1‖pr] can be found as follows: from (13.5) and α21(E[‖x(t)‖p]) ≤ m1(t),

for all t ∈ [t0, t1), we have

E[‖x(t)‖p] ≤ α−1
21

(
α11(E[‖φ‖pr])e−c1(t−t0) +

1

c1

γ1(‖u‖∞)
)

≤ α−1
21

(
2α11(E[‖φ‖pr])e−c1(t−t0)

)
+ α−1

21

(
2

1

c1

γ1(‖u‖∞)
)
,

and, after taking the supremum norm over the interval [t1 − r, t1], we get

E[‖xt1‖pr] ≤ α−1
21

(
2α11(E[‖φ‖pr])erc1e−c1(t1−t0)

)
+ α−1

21

( 2

c1

γ1(‖u‖∞)
)
.
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By the dwell-time condition (i.e., after t1 − t0 > 0, as given in (iii)), we get

E[‖xt1‖pr] ≤ a1E[‖φ‖pr] + α−1
21

( 2

c1

γ1(‖u‖∞)
)
,

where 0 < a1 < 1. Therefore, inequality (13.6) becomes, with the aid of (i),

α22(E[‖x(t)‖p]) ≤ m2(t) ≤ α12

(
a1E[‖φ‖pr] + α−1

21

[ 2

c1

γ1(‖u‖∞)
])
e−c2(t−t1)

+
1

c2

γ2(‖u‖∞), (13.7)

or

E[‖x(t)‖] ≤ α−1
22

[
α12

(
a1E[‖φ‖pr] + α−1

22

( 2

c1

γ1(‖u‖∞)
))
e−c2(t−t1) +

1

c2

γ2(‖u‖∞)
]
,

from which, we obtain

E[‖xt2‖pr] ≤ α−1
22

[
2α12

(
a1E[‖φ‖pr] + α−1

21

( 2

c1

γ1(‖u‖∞)
))
erc2 · e−c2(t2−t1)

]
+ α−1

22

(
2

1

c2

γ2(‖u‖∞)
)
,

and, after t2 − t1 > 0, we get 1

E[‖xt2‖pr] ≤ a2E[‖φ‖pr] + α−1
22

(
2

1

c2

γ2(‖u‖∞)
)
,

so that, for i = 3 and t ∈ [t2, t3), we have

α23(E[‖x(t)‖p]) ≤ m3(t) ≤ α13

(
a2E[‖φ‖pr] + α−1

22

( 2

c2

γ2(‖u‖∞)
))
e−c3(t−t2)

+
1

c3

γ3(‖u‖∞).

1The dwell time τisd

t2 − t1 ≥
1
c2

{
ln
[
2α12

(
a1E[‖φ‖pr ] + α−1

21

( 2
c1
γ1(‖u‖∞)

))
erc2

]
− ln

(
α22(a2E[‖φ‖pr ])

)}
.

258



Generally, for any i ∈ S and t ∈ [tk−1, tk), we have

mi(t) ≤ α1i

(
ai−1E[‖φ‖pr] + α−1

2(i−1)

( 2

ci−1

γi−1(‖u‖∞)
))
e−ci(t−tk−1) +

1

ci
γi(‖u‖∞),

(13.8)

and, after tk − tk−1 > 0, we get

E[‖xtk−1
‖pr] ≤ aiE[‖φ‖pr] + α−1

1

( 2

ci
γi(‖u‖∞)

)
.

In fact, from (13.8) with the aid of (i), we obtain

E[‖x(t)‖p] ≤ α−1
2i

(
2α1i(aiE[‖φ‖pr])e−ci(t−tk−1)

)
(13.9)

+ α−1
2i

(
2α−1

2(i−1)

( 2

ci−1

γi−1(‖u‖∞)
)
e−ci(t−tk−1) +

2

ci
γi(‖u‖∞)

)
,

where the first term on the right hand side of the inequality is a KL function, say

β(ai−1E[‖φ‖pr], t − tk−1), which approaches zero when t → ∞, since this in turn

implies that limi→∞ ai−1 = 0 by the definition of ai. The second term is a class-K

function, say γ(‖u‖∞), which becomes zero only when u ≡ 0. This shows that

system (13.1) is aISS in the pth moment.

In the following corollary, we state some special results of Theorem 13.1, where

the proofs are direct conclusions and will be omitted here.

Corollary 13.1. In Theorem 13.1, if

1. the random intensity gi ≡ 0 for all i ∈ S, the result reduces to the uniform aISS

of the nonlinear deterministic switched system

ẋ(t) = fσ(t)(t, xt, u(t)), t ≥ t0,

xt0(s) = φ(s), s ∈ [−r, 0];
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2. the input u ≡ 0, the result reduces to the pth moment uniform aISS of the

stochastic switched system

dx(t) = fσ(t)(t, xt)dt+ gσ(t)(t, xt)dW (t), t ≥ t0,

xt0(s) = φ(s), s ∈ [−r, 0];

3. α1i(s) = α1is and α2i(s) = α2is for all i ∈ S and s > 0, the result reduces to

uniform eISS in the pth moment.

13.2 Systems with Stable and Unstable Modes

In this section, we extend the result of Theorem 13.1 to a system that consists of

stable and unstable modes, i.e., S = Su ∪ Ss.

Theorem 13.2. For any i ∈ S = Ss ∪ Su, k ∈ N, and u ∈ PC(R+; Rl), assume

that there exist α1i ∈ K1, α2i ∈ K2, γi ∈ K, ci > 0, and di > 0. Suppose further

that Vi(t, ψ(0)) ∈ C1,2([tk−1, tk) × D; R+) and Vi(t, 0) = 0 such that the following

conditions hold:

(i) α2i(‖ψ(0)‖p) ≤ Vi(t, ψ(0)) ≤ α1i(‖ψ(0)‖p), (a.s.), ∀t ∈ [tk−1, tk) and

ψ(0) ∈ C([−r, 0]; Rn);

(i) (1) ∀ i ∈ Ss, LV (t, ψ, u) ≤ −ciV (ψ(0))+γi(‖u(t)‖), (a.s.), ∀t ∈ [tk−1, tk)

and ψ ∈ C([t−r, t]; Rn), whenever Vi(t+s, ψ(s)) ≤ q̄iVi(t, ψ(0)) for some q̄i > 1

and s ∈ [−r, 0];

(ii) (2) ∀ i ∈ Su, LV (t, ψ, u) ≤ diV (t, ψ(0)) + γi(‖u(t)‖), (a.s.), ∀t ∈

[tk−1, tk) and ψ ∈ C([−r, 0]; Rn), whenever Vi(t + s, ψ(s)) ≤ q̄iVi(t, ψ(0)) for

some q̄i > 1 and s ∈ [−r, 0];
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(iii) the τisd condition satisfies

(1) for i ∈ Su

t1 − t0 ≤
1

c1

(
ln
(
A1α21(E[‖φ‖pr])

)
− ln

(
2α11(E[‖φ‖pr])

))
,

tk − tk−1 ≤
1

di

[
ln
(
α2i

(
Ai

i−1∏
j=1

ai−1Ai−2E[‖φ‖pr]
))
,

− ln
(
α1i

(
2
i−1∏
j=1

ai−1Ai−2E[‖φ‖pr]
)

+ α−1
2i−1

( 2

ci−1

γi−1(‖u‖∞)
))]

,

where i = 3, 5, · · · , N − 1;

(2) for i ∈ Ss = {2, 4, · · · , N},

tk − tk−1 ≤
1

ci

[
ln
(

2α1i

(
Ai−1

i∏
j=2

ajAj−1E[‖φ‖pr]
)

+ α−1
2i−1

( 2

di−1

γi−1(‖u‖∞)edi−1(tk−tk−1)
)
erci
)

− ln
(
α2i

( i∏
j=2

ajAj−1E[‖φ‖pr
))]

,

where ai and Ai are positive constants such that aiAi < 1 for any i ∈ S (or

limi→∞(aiAi) = 0).

Then, system (13.1) is aISS in the pth moment.

Proof. Let x(t) = x(t, t0, φ) be a solution of (13.1). Define Vi(t, x(t)) as a Lya-

punov function candidate related to the ith subsystem. We also define mi(t) =

E[Vi(t, x(t))] for all t ∈ [tk−1, tk).

In light of Theorem 13.1, for i ∈ Su and t ∈ [tk−1, tk), we have from (ii) (2) and

(i)

α2i(E[‖x(t)‖p]) ≤ mi(t) ≤ α1i(E[‖xtk−1
‖pr])edi(t−tk−1) +

1

di
γi(‖u‖∞)edi(t−tk−1),

(13.10)
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while, for i ∈ Ss and t ∈ [tk−1, tk), we have, from (ii) (1) and (i),

α2i(E[‖x(t)‖p]) ≤ mi(t) ≤ α1i(E[‖xtk−1
‖pr])e−ci(t−tk−1) +

1

ci
γi(‖u‖∞). (13.11)

Particularly, for i = 1 and t ∈ [t0, t1), if an unstable subsystem is activated, we

have

α21(E[‖x(t)‖p]) ≤ α11(E[‖φ‖pr])ed1(t−t0) +
1

d1

γ1(‖u‖∞)ed1(t−t0), (13.12)

and if, for i = 2 and t ∈ [t1, t2), we run a stable subsystem, we get

α22(E[‖x(t)‖p]) ≤ m2(t) ≤ α12(E[‖xt1‖pr])e−c2(t−t1) +
1

c2

γ2(‖u‖∞), (13.13)

where E[‖xt1‖pr] is found as follows: from (13.12), we have

E[‖x(t)‖p] ≤ α−1
21

(
2α11(E[‖φ‖pr])ed1(t−t0)

)
+ α−1

21

( 2

d1

γ1(‖u‖∞)ec1(t−t0)
)
,

from which, after taking the supremum norm over the interval [t1 − r, t1],

E[‖xt1‖pr] ≤ α−1
21

(
2α11(E[‖φ‖pr])ed1(t1−t0)

)
+ α−1

21

( 2

d1

γ1(‖u‖∞)ec1(t1−t0)
)
.

This also implies that by the dwell-time condition, after t1 − t0 > 0,

E[‖xt1‖pr] ≤ A1E[‖φ‖pr] + α−1
21

( 2

d1

γ1(‖u‖∞)ed1(t1−t0)
)
.

Therefore, (13.13) becomes

α22(E[‖x(t)‖p]) ≤ α12

[
A1E[‖φ‖pr] + α−1

21

( 2

d1

γ1(‖u‖∞)ed1(t1−t0)
)]
e−c2(t−t1)

+
1

c2

γ2(‖u‖∞), (13.14)

or

E[‖x(t)‖p] ≤ α−1
22

[
2α12

(
A1E[‖φ‖pr] + α−1

21

( 2

d1

γ1(‖u‖∞)ed1(t1−t0)
))
e−c2(t−t1)

]
+ α−1

22

( 2

c2

γ2(‖u‖∞)
)
, (13.15)
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and

E[‖xt2‖pr] ≤ α−1
22

[
2α12

(
A1E[‖φ‖pr] + α−1

21

( 2

d1

γ1(‖u‖∞)ed1(t1−t0)
))
e−c2(t2−t1)erc2

]
+ α−1

22

( 2

c2

γ2(‖u‖∞)
)
. (13.16)

After t2 − t1 > 0, which can be found as in Theorem 13.1, we have

E[‖xt2‖pr] ≤ a2A1E[‖φ‖pr] + α−1
22

( 2

c2

γ2(‖u‖∞)
)
.

For i = 3 and k = 3, i.e., t ∈ [t2, t3), we run an unstable subsystem

m3(t) ≤ α13(‖xt2‖r)ed3(t−t2) +
1

d3

γ3(‖u‖∞)ed3(t−t2), (13.17)

where the upper bound of ‖xt2‖r is given in (13.16); therefore by (i), (13.17) becomes

α23(E[‖x(t)‖p]) ≤ α13

(
a2A1E[‖φ‖pr] + α−1

22

( 2

c2

γ2(‖u‖∞)
))
ed3(t−t2) (13.18)

+
1

d3

γ3(‖u‖∞)ed3(t−t2).

For i = 4 and t ∈ [t3, t4) we have, after running a stable mode,

m4(t) ≤ α14(E[‖xt3‖pr])e−c4(t−t3) +
1

c4

γ4(‖u‖∞); (13.19)

similarly, we find

E[‖xt3‖pr] ≤ A3a2A1E[‖φ‖pr] + α−1
23

( 2

d3

γ3(‖u‖∞)ed3(t3−t2)
)
.

Generally, if, for i = N − 1 and t ∈ [tk−2, tk−1), we run an unstable subsystem, we

have

mN−1(t) ≤ α1N−1

(N−1∏
j=1

aj−1Aj−2E[‖φ‖pr] + α−1
2(N−1)−1

[ 2

c(N−1)−1

γ(N−1)−1(‖u‖∞)
])

× edN−1(t−tk−2) +
1

dN−1

γN−1(‖u‖∞)edN−1(t−tk−2),
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and if, for i = N and t ∈ [tk−1, tk), we run a stable subsystem, we have

mN(t) ≤ α1N

(
AN−1

N−1∏
j=1

aj−1Aj−2E[‖φ‖pr] + α−1
2N−1

[ 2

dN−1

γN−1(‖u‖∞)
])
e−cN (t− tk−1)

+
1

cN
γN(‖u‖∞)

≤ α1N

(
2AN−1

N−1∏
j=1

aj−1Aj−2‖φ‖r
)
e−cN (t− tk−1)

+ α1N

(
2α−1

2N−1

[ 2

dN−1

γN−1(‖u‖∞)
])
e−cN (t− tk−1) +

1

cN
γN(‖u‖∞).

The first term on the right-hand side of the inequality is a class-KL function,

which vanishes when N → ∞, by the definition of sequence {aiAi−1} for any i.

The second term is a class-K function, which is generally bounded and vanishes if

u ≡ 0. Therefore, when time evolves, the initial state becomes very small and the

solution will eventually be bounded by a class-K function, which depends on the

external input force u. To complete the proof, it suffices to make use of (i).

13.3 Conclusion

In this chapter, we considered a stochastic switched system with time delay and

input disturbance, where the main interest was to establish some input-to-state

stability properties of the system. Using Razumikihin method, we developed some

Lyapunov-like theorems, where the initial-state-dependent dwell-time condition

proposed in Chapter 12 was used, after modification by taking into account the

input disturbance, to control switching among the system modes. Also, we consid-

ered two mode cases; in the first case, switching occurs between all stable modes,

while in the second case, the system consists of stable and unstable modes.
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Part III

Differential Equations with

Piecewise Constant

Arguments-Hybrid System

Approach
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Chapter 14

Comparison Principle and

Stability Results for EPCA

By EPCA we mean differential equations with piecewise constant arguments over

certain intervals. The arguments can be delay, advanced, or a mix of these two

types. The dynamics of these differential equations generally depend on both con-

tinuous and discrete arguments, which results in discontinuities of system vector

fields. This type of discontinuity enables us to study such systems under hybrid

(or particularly switched) system umbrella. Using switched system approach will

allow us to apply the theory of continuous differential equations on every subinter-

val, which will motivate the concept of dwell time. From the functional differential

equation theory perspective, EPCA are special equations, where the state history is

given at certain individual points, rather than on intervals, which allow us to employ

the theory of ordinary differential equations, but not delay differential equations.

The material of this chapter forms the basis of [Alw-j].
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Typically, nonlinear EPCA have the form

ẋ(t) = f(t, x(t), x(γ(t))), (14.1)

where the argument γ is a piecewise constant function defined on intervals with a

certain length, and it may be defined by γ(t) = [t], [t−n], t−n[t], [t+1], for any t and

a positive integer n, where [·] is the greatest-integer function [Coo84, Coo91, Wie93].

A general type of EPCA, (EPCAG), in which the piecewise constant real func-

tion γ takes values over discrete subintervals instead of at the most-left endpoint

of each subinterval, have appeared in some works [Akh08b, Akh08c].

On the other hand, in the system studied in [Lak98], the differential equations

have the form

ẋ(t) = f
(
t, x(t), λk(xk))

)
, t ∈ [tk, tk+1],

where, for some non-negative integer k, xk = x(tk), and λk are some continuous

functions, and the system state experiences impulsive effects due to switching in

the arguments λk and xk. In that work, the focus was on establishing comparison

and stability results for this impulsive switched system.

In this chapter, the purpose is to develop a comparison principle for this sys-

tem. Then, by employing this result, together with the use of Lyapunov-function

approach, we establish some stability properties of the system. The organization

of this chapter is as follows. In Section 14.1, we formulate the problem and define

some concepts that will be used in the rest of this chapter. The main contribution

will be given in Section 14.2. Some special cases will also be introduced. Some

numerical examples are presented in Section 14.3. Finally, we conclude our work

in Section 14.4.
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14.1 Problem Formulation and Preliminaries

For non-negative integers k, define {tk}∞k=0 and {ξk}∞k=0 as sequences of non-negative

real numbers such that t0 ∈ R+ and limk→∞ tk = ∞. Generally, ξk is defined such

that tk−1 < ξk ≤ tk, for any k ∈ N and ξ0 = t0.

Consider the following EPCA

ẋ(t) = f
(
t, x(t), λ%(t)(x(γ(t)))

)
, (14.2a)

where x ∈ Rn is the system state, and, for all t ≥ t0, %(t) and γ(t) take values

in {k}∞k=0 and {ξk}∞k=0, respectively. More specifically, for t ∈ [tk, tk+1], we define

%(t) = k and γ(t) = ξk. These piecewise constant functions, % and γ, represent the

switching signals with roles of switching between the vector field function arguments

λk and the values of its state argument x, respectively. Obviously, if, for all k, λk

is an identity function, EPCA (14.2a) reduces to (14.1). We should note that, for

k = 0, we have ξ0 = t0, t ∈ [t0, t1], and the differential equation in (14.2a) is an

ordinary one; then, for k > 0 and t ∈ [tk, tk+1], the system state is allowed to be

fed back with some historic data at individual moments ξk ∈ (tk−1, tk]. In addition,

since the solution depends on the past history through an individual point, the

initial state, in contrast to the case of functional differential equation, is given at a

specific time, rather than over an interval, i.e.,

x(t0) = x0, (14.2b)

for some x0 ∈ Rn.

In the following, we define the solution of the initial-value problem (IVP) (14.2).

Definition 14.1. A function x : (α, β)→ R is said to be a solution of (14.2) if the

following conditions hold:
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(i) x(t) is continuous for all t ∈ (α, β);

(ii) the derivative of x(t) exists and is continuous at t 6= ξk, t ∈ (α, β) (k =

1, 2, 3, · · · ), and, at t = ξk, one-sided derivative exists;

(iii) the derivative of x(t), wherever exists, satisfies the EPCA in (14.2a);

(iv) x(t) satisfies the initial condition in (14.2b) at t = t0.

System (14.2) may be rewritten in the form

ẋ(t) = f
(
t, x(t), λk(xξk)

)
, t ∈ [tk, tk+1), k = 0, 1, 2, · · · , (14.3a)

x(t0) = x0, (14.3b)

where xξk = x(ξk) and λk(xξk) = λk(x(ξk)) are constants. Throughout this chapter,

we assume that function f(t, x, y) is continuous in its variables, i.e., f ∈ C(R+ ×

Rn × Rm; Rn), and globally Lipschitz in x and y.

As mentioned earlier, the dependence of the solution x(t) of IVP (14.2) or (14.3)

on the initial state at t = t0 allows us to employ the theory of ordinary differential

equations. For instance, for k = 0 and t ∈ (t0, t1), the IVP

ẋ(t) = f(t, x(t), λ0(xξ0)),

x(t0) = x0,

with ξ0 = t0, has a unique solution, say x0(t), ∀t ∈ (t0, t1), and limt→t−1
x0(t) =

x0(t−1 ) ∈ Rn. Similarly, for k = 1 and t ∈ [t1, t2), we have the IVP1

ẋ(t) = f(t, x(t), λ1(xξ1)),

x(t1) = x0(t−1 ),

1We should remark that, in the unified notation of the solution x, the initial condition x(t1) =

x0(t−1 ) becomes x(t1) = x(t−1 ), by our definition of x.
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which has a unique solution x1(t), ∀t ∈ [t1, t0) and limt→t−2
x1(t) = x1(t−2 ). By

induction, for any k and t ∈ [tk, tk+1), xk(t) is a unique solution and limt→t−k+1
xk(t)

exists. Define the solution x(t) by

x(t) =



x0, t = t0,

x0(t, t0, x0), t ∈ (t0, t1),

x1(t, t1, x1), t ∈ (t1, t2), where x1 = x0(t−1 , t0, x0),

· · ·

xk(t, tk, xk), t ∈ (tk, tk+1), where xk = xk−1(t−k , tk−1, xk−1),

· · · .

Since limt→t−k+1
x(t) exists for any k, the solution x must exist over a right-

maximal interval [t0,∞). We have the following result.

Proposition 14.1. For k = 0, 1, · · · , let %(t) : [tk, tk+1) → {k}∞k=0 and γ(t) :

[tk, tk+1)→ {ξk}∞k=0, where ξk is as defined earlier. Assume that f ∈ C(R+ × Rn ×

Rm; Rn) and f(t, x, y) is globally Lipschitz in x and y. Then, the IVP (14.2) or

(14.3) has a unique solution x defined over the right-maximal interval [t0,∞).

The scalar initial-value problem can be defined analogously.

u̇(t) = g(t, u(t), σk(uξk)), (14.4a)

u(t0) = u0, (14.4b)

where u ∈ R+, uξk = u(ξk), σk ∈ C(R+; R) and g ∈ C(R2
+ × R; R).

Assuming that f(t, 0, λk(0)) = 0 and g(t, 0, σk(0)) = 0, for all t ∈ R+, systems

(14.3) and (14.4) admit trivial solutions x ≡ 0 ∈ Rn and u ≡ 0 ∈ R, respectively.

Definition 14.2. Let x, y ∈ Rn and t ∈ [tk, tk+1), for k = 0, 1, 2, · · · . Then,

if V ∈ C([tk, tk+1) × Rn; R+), the upper right-hand derivative of V is defined as
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follows:

D+V (t, x, y) = lim
h→0+

sup
1

h

[
V (t, x+ hf(t, x, λk(y)))− V (t, x)

]
. (14.5)

Moreover, if V ∈ C1([tk, tk+1)× Rn; R+), then

D+V (t, x, y) =
∂V (t, x)

∂t
+∇V (t, x) · f(t, x, λk(y)). (14.6)

14.2 Main Results

In this section, we will state and prove our main results. We first develop a com-

parison principle for nonlinear EPCA; then we make use of this result to establish

some stability properties for the system. We will also consider some special case of

EPCA and EPCAG. In Theorems 14.1 and 14.2, ξk is as defined in Section 14.1.

Theorem 14.1. Assume that

(i) for k = 0, 1, 2, · · · , V ∈ C([tk, tk+1) × Rn; R+), V (t, x) is locally Lipschitz in x,

and

D+V (t, x, Vξk) ≤ g(t, V (t, x), σk(Vξk))), t ∈ (tk, tk+1),

where Vξk = V (ξk, x(ξk));

(ii) the maximal solution ϑ(t, t0, u0) of the scalar EPCA (14.4) exists on [t0,∞).

Then, for any solution x(t) = x(t, t0, x0) of (14.3), V (t0, x0) ≤ u0 implies V (t, x(t)) ≤

ϑ(t, t0, u0) for t ≥ t0.

Proof. Define m(t) = V (t, x(t)) for any solution x(t) = x(t, t0, x0) that is defined

on [t0,∞). Then, we have

D+m(t) ≤ g(t,m(t), σk(mξk)), t ∈ (tk, tk+1),
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where mξk = m(ξk). Particularly, for t ∈ [t0, t1], we have, by the classical compari-

son principle [Lak69],

m(t) ≤ ϑ0(t, t0, u0), t ∈ [t0, t1],

where ϑ0(t, t0, u0) is the maximal solution of

u̇(t) = g(t, u(t), σ0(uξ0)),

u(t0) = u0.

For t ∈ [t1, t2], we have

m(t) ≤ ϑ1(t, t1, u1) = ϑ1(t, t1, ϑ0(t1, t0, u0)), u1 = u(t1) = ϑ0(t1, t0, u0),

where ϑ1(t, t1, u1) is the maximal solution of

u̇(t) = g(t, u(t), σ1(uξ1)),

u(t1) = u1.

Generally, one may get

m(t) ≤ ϑk(t, tk, uk), t ∈ [tk, tk+1],

where ϑk(t, tk, uk) is the maximal solution of

u̇(t) = g(t, u(t), σk(uξk)),

u(tk) = uk.

Define u(t) by
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u(t) =



u0, t = t0,

ϑ0(t, t0, u0), t ∈ (t0, t1],

ϑ1(t, t1, u1), t ∈ (t1, t2], where u1 = ϑ0(t1, t0, u0),

· · ·

ϑk(t, tk, uk), t ∈ (tk, tk+1], where uk = ϑk−1(tk, tk−1, uk−1),

· · · .

Then, for t ≥ t0, we get

m(t) ≤ u(t).

Since ϑ(t, t0, u0) is the maximal solution of the scalar EPCA (14.4), then, for t ≥ t0

m(t) ≤ ϑ(t, t0, u0).

The proof is complete.

In the following corollary and example, we consider some special cases of EPCA

and EPCAG.

Corollary 14.1. Suppose that the conditions in Theorem 14.1 hold. Let k =

0, 1, 2, · · · and t ∈ [tk, tk+1]. If we choose that

(i) g(t, u, σk(uξk)) = βkuξk , with βk being a constant for all k, then

(1) for ξk = tk,

V (t, x(t)) ≤



[
1 + β0(t− t0)

]
V (t0, x0), k = 0, t ∈ (t0, t1],[

1 + βk(t− tk)
]∏k

j=1

[
1 + βj−1(tj − tj−1)

]
V (t0, x0),

k = 1, 2, · · · , t ∈ (tk, tk+1],
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where for k = 0, 1, 2, · · · , tk < tk+1 for βk > 0, and tk+1 < tk − 1
βk

for

βk < 0;

(2) for tk−1 < ξk ≤ tk, where k = 1, 2, 3, · · · and ξ0 = t0,

V (t, x(t)) = V0(t, x(t)) ≤
[
1 + β0(t− t0)

]
V0(t0, x0),

for any t ∈ [t0, t1) such that t1 − t0 < − 1
β0

, and

V (t, x(t)) = Vk(t, x(t)) ≤ Vk−1(tk, x(tk)) + βk(t− tk)Vk−1(ξk, x(ξk)),

for any t ∈ [tk, tk+1) such that, for any k = 1, 2, 3, · · · , tk+1−tk < − Ck
βkCξk

where Ck = Vk−1(tk−1, x(tk−1)) and Cξk = Vk−1(ξk, x(ξk));

(ii) g(t, u, σk(uξk)) = αu(t) + βkuξk , with α and βk being constants for any k, then

(1) for ξk = tk,

V (t, x(t)) ≤



[
(1 + β0

α
)eα(t−t0) − β0

α

]
V (t0, x0), k = 0, t ∈ (t0, t1],[

(1 + βk
α

)eα(t−tk) − βk
α

]∏k
j=1

[
(1 +

βj−1

α
)eα(tj−tj−1) − βj−1

α

]
×V (t0, x0), k = N, t ∈ (tk, tk+1],

provided that, for k = 0, 1, 2, · · · ,

for any tk+1 > tk, when α > 0, βk > 0, or

when α < 0, βk > 0 with

α > −βk > 0,

tk+1 < tk + 1
α

ln
[
βk
α

(
1 + βk

α

)−1]
, when α > 0, βk < 0 with

βk
α

(
1 + βk

α

)−1

> 1;
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(2) for tk−1 < ξk ≤ tk, where k = 1, 2, 3, · · · , and ξ0 = t0,

V (t, x(t)) = V0(t, x(t)) ≤
[
eα(t−t0) +

β0

α

(
eα(t−t0) − 1

)]
× V0(t0, x0), ∀t ∈ [t0, t1),

and

V (t, x(t)) = Vk(t, x(t)) ≤ eα(t−tk)Vk−1(tk, x(tk)) +
βk
α

[
eα(t−tk) − 1

]
× Vk−1(ξk, x(ξk)), ∀t ∈ [tk, tk−1),

provided that, for k = 0, 1, 2, · · · ,

tk+1 > tk +
1

α
lnTk,

where α > 0 and βk > 0, or, when α < 0 and βk > 0 with Vk−1(tk, x(tk))+

βk
α
Vk−1(ξk, x(ξk)) < 0, or

tk+1 < tk +
1

α
lnTk,

when α > 0, βk < 0 with Vk−1(tk, x(tk)) + βk
α
Vk−1(ξk, x(ξk)) < 0, where

Tk = βk
α
Vk−1(ξk, x(ξk))

(
Vk−1(tk, x(tk)) + βk

α
Vk−1(ξk, x(ξk))

)−1

> 1;

(iii) g(t, u, σk(uξk)) = αu(t) + h(t, u, σk(uξk)) with α ∈ R, h ∈ C
(
R+ × R2; R+

)
,

and h(t, u, v) is globally Lipschitz in u and v, then

V (t, x(t)) ≤ eα(t−t0)V (x0) +
k∑
j=1

∫ tj

tj−1

eα(t−s)h(s, V (s, x(s)), σk(Vξj−1
))ds

+

∫ t

tk

eα(t−s)h(s, V (s, x(s)), σk(Vξk))ds.

Proof (i)(1) For t ∈ [tk, tk+1], since uξk = utk , the solution of u̇(t) = βkuξk is

u(t) =
[
1 + βk(t− tk)

]
uk.
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Particularly, for k = 0 and t ∈ [t0, t1],

u(t) =
[
1 + β0(t− t0)

]
u0,

and, for k = 1 and t ∈ [t1, t2],

u(t) =
[
1 + β1(t− t1)

][
1 + β0(t1 − t0)

]
u0.

By induction, we get

u(t) =



[
1 + β0(t− t0)

]
u0, k = 0, t ∈ (t0, t1],[

1 + βk(t− tk)
]∏k

j=1

[
1 + βj−1(tj − tj−1)

]
u0,

k = 1, 2, · · · , t ∈ (tk, tk+1].

To complete the proof, we use our comparison result.

(i)(2) For any k and t ∈ [tk, tk+1), we have

u(t) = u(tk) + βk(t− tk)u(ξk).

For k = 0, ξ0 = t0 and

u(t) =
[
1 + β0(t− t0)

]
u0 =: u0(t),

where the R.H.S. is positive if t < t0− 1/β0; therefore, for k = 1 and t ∈ [t1, t2), we

get

u(t) = u0(t1) + β1(t− t1)u0(ξ1) =: u1(t).

By induction, one may get

u(t) = uk(t) = uk−1(tk) + βk(t− tk)uk−1(ξk), t ∈ [tk, tk+1), k = 1, 2, 3, · · · ,
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from which, we get the general form in (i)(2).

(ii)(1) For t ∈ (tk, tk+1], we have

u̇(t) = αu(t) + βkuξk ,

and its solution is given by

u(t) =
[
eα(t−tk) +

βk
α

(
eα(t−tk) − 1

)]
uk, (14.7)

from which we obtain

u(t) =



[
(1 + β0

α
)eα(t−t0) − β0

α

]
u0, k = 0, t ∈ (t0, t1],[

(1 + βk
α

)eα(t−tk) − βk
α

]∏k
j=1

[
(1 +

βj−1

α
)eα(tj−tj−1) − βj−1

α

]
u0,

k = 1, 2, · · · , t ∈ (tk, tk+1],

where α and βk are defined in (ii). Applying the comparison principle leads us to

the required result. The proof of (ii)(2) can be obtained is a similar way used in

(i)(2) and is omitted here.

(iii) For k = 0, 1, 2, · · · and t ∈ [tk, tk+1], we have

u̇(t) = αu(t) + h(t, u(t), σk(uξk)),

and its solution is given by

u(t) = eα(t−tk)uk +

∫ t

tk

eα(t−s)h(s, u(s), σk(uξk)) ds.

For t ∈ [t0, t1], we have

u(t) = eα(t−t0)u0 +

∫ t

t0

eα(t−s)h(s, u(s), σ0(uξ0)) ds,
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and, at t = t1,

u1 = eα(t1−t0)u0 +

∫ t1

t0

eα(t1−s)h(s, u(s), σ0(uξ0)) ds.

For t ∈ [t1, t2], we have

u(t) = eα(t−t1)u1 +

∫ t

t1

eα(t−s)h(s, u(s), σ1(uξ1)) ds

= eα(t−t1)
{
eα(t1−t0)u0 +

∫ t1

t0

eα(t1−s)h(s, u(s), σ0(uξ0)) ds
}

+

∫ t

t1

eα(t−s)h(s, u(s), σ1(uξ1)) ds

= eα(t−t0)u0 +

∫ t1

t0

eα(t−s)h(s, u(s), σ0(uξ0)) ds+

∫ t

t1

eα(t−s)h(s, u(s), σ1(uξ1)) ds.

For t ∈ [t2, t3], we have

u(t) = eα(t−t0)u0 +

∫ t1

t0

eα(t−s)h(s, u(s), σ0(uξ0)) ds+

∫ t2

t1

eα(t−s)h(s, u(s), σ1(uξ1)) ds

+

∫ t

t2

eα(t−s)h(s, u(s), σ2(uξ2)) ds.

By induction, for t ∈ [tk, tk+1],

u(t) = eα(t−t0)u0 +
k∑
j=1

∫ tj

tj−1

eα(t−s)h(s, u(s), σj−1(uξj−1
)) ds

+

∫ t

tk

eα(t−s)h(s, u(s), σk(uξk)) ds,

and, for t ≥ t0, we have

u(t) = eα(t−t0)u0 +
∞∑
j=1

∫ tj

tj−1

eα(t−s)h(s, u(s), σj−1(uξj−1
)) ds,

and, by the comparison result, we get

V (t, x(t)) ≤ eα(t−t0)V (t0, x0) +
∞∑
j=1

∫ tj

tj−1

eα(t−s)h(s, V (s, x(s)), σj−1(Vξj−1
)) ds.
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The proof is complete.

Remark 14.1. In some special cases of the function g, such as those in Corollary

14.1(i) and (ii), one can consider EPCAG, in which ξk ∈ [tk, tk+1), rather than at

the most left-end point tk, for any k. In the following example, we state these

results.

Example 14.1. Suppose that the conditions in Theorem 14.1 hold where ξk ∈

(tk, tk+1) and t ∈ [tk, tk+1] for any k. If we choose that

(i) g(t, u, σk(uξk)) = βkuξk , with βk being a constant for all k, then

V (t, x(t)) ≤



[
β0

1−β0(ξ0−t0)
(t− t0) + 1

]
V (t0, x0), k = 0, t ∈ (t0, t1],[

βk
1−βk(ξk−tk)

(t− tk) + 1
]∏k

j=1

[
βj−1

1−βj−1(ξj−1−tj−1)
(tj − tj−1) + 1

]
×V (t0, x0), k ∈ N, t ∈ (tk, tk+1],

provided that, for k = 0, 1, 2, · · · ,
ξk < tk + 1

βk
, for βk > 0,

ξk > tk+1 + 1
βk
, for βk < 0;

(ii) g(t, u, σk(uξk)) = αu(t) + βkuξk , with α and βk being constants, then

V (t, x(t)) ≤



[
eα(t−t0) + β0eα(ξ0−t0)

α[1−β0
α

(eα(ξ0−t0)−1)]

(
eα(t−tk) − 1

)]
V (t0, x0),

k = 0, t ∈ (t0, t1],[
eα(t−tk) + βke

α(ξk−tk)

α[1−βk
α

(eα(ξk−tk)−1)]

(
eα(t−tk) − 1

)]∏k
j=1

[
eα(ξj−1−tj−1)

+
βj−1e

α(ξj−1−tj−1)

α[1−
βj−1
α

(eα(ξj−1−tj−1)−1)]

(
eα(tj−tj−1) − 1

)]
V (t0, x0),

k = 1, 2, · · · , t ∈ (tk, tk+1],
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provided that, for k = 0, 1, 2, · · · ,

ξk < tk + 1
α

ln
(

1 + α
βk

)
, when α > 0, βk > 0, or

when α < 0, βk > 0 with βk > −α > 0,

ξk >
1
α

ln
(
eαtk+1 + α

βk
eαtk

)
and

tk+1 >
1
α

ln
(
− α

βk
eαtk

)
, when α > 0, βk < 0.

With Theorem 14.1 in hand, we are in a position to establish some stability

results for the nonlinear EPCA.

Theorem 14.2. Let the conditions in Theorem 14.1 hold, and assume further that

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖)

is satisfied, where a and b are class-K functions. Then, the stability properties of

the trivial solution (u ≡ 0) of scalar EPCA (14.4) imply the corresponding stability

properties of the trivial solution (x ≡ 0) of (14.3).

Proof. Let t0 ∈ R+ and ε > 0 be given. Suppose that u ≡ 0 is stable. Then, for

given b(ε) > 0 and t0 ∈ R+, there exists δ1 = δ1(t0, ε) > 0 for which we have

0 ≤ u0 ≤ δ1 implies u(t, t0, u0) ≤ b(ε), t ≥ t0,

where u(t, t0, u0) is any solution of (14.4). Choose δ2 = δ2(ε) such that a(δ2) < b(ε).

Define δ = min{δ1, δ2}. We claim that, if ‖x0‖ < δ, then ‖x(t)‖ < ε, for t ≥ t0,

where x(t) = x(t, t0, x0) is any solution of (14.3). If our claim were not true, then

there would exist a t∗ > t0 and tk < t∗ ≤ tk+1 for which ‖x0‖ < δ and

‖x(t)‖ < ε for t0 ≤ t ≤ tk, (14.8)

‖x(t)‖ ≥ ε for tk ≤ t∗ ≤ tk+1.
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From (14.8), we have ‖x(tk)‖ < ε. Hence, we can find a t̃ such that tk < t̃ ≤ t∗, at

which

ε ≤ ‖x(t̃)‖.

Let u0 = a(‖x0‖) < δ1, and define m(t) = V (t, x(t)), for t0 < t ≤ t̃. By Theorem

14.1,

V (t, x(t)) ≤ ϑ(t, t0, a(‖x0‖)), t0 ≤ t ≤ t̃,

where ϑ(t, t0, a(‖x0‖)) is the maximal solution of scalar system (14.4). Then, we

obtain

b(ε) ≤ b(‖x(t̃)‖) ≤ V (t̃, x(t̃)) ≤ ϑ(t̃, t0, a(‖x0‖)) < b(ε),

which is a contradiction. This shows that x ≡ 0 is stable. If, moreover, δ is

independent of t0, then x ≡ 0 is uniformly stable.

To prove asymptotic stability of x ≡ 0, it suffices to show attractivity of this

solution. Suppose that u ≡ 0 is asymptotically stable. Then, it implies that x ≡ 0

is stable, i.e., for each ε > 0, there exists a δ = δ(t0, ε) such that

‖x0‖ < δ implies ‖x(t)‖ < ε, ∀t ≥ t0.

Since u ≡ 0 is attractive, given b(ε) > 0 and t0 ∈ R+, there exist δ∗0 = δ∗0(t0) > 0

and T = T (t0, ε) > 0 such that

0 ≤ u0 ≤ δ∗0 implies u(t, t0, u0) < b(ε), ∀t ≥ t0 + T.

Choose a δ̃ such that a(δ̃) < δ∗0. Define ρ = min{δ∗0, δ̃} and let ‖x0‖ < ρ. Then, as

we did in proving the stability of x ≡ 0, we can get

b(‖x(t)‖) ≤ V (t, x(t)) ≤ ϑ(t, t0, a(‖x0‖)) < b(ε),
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from which ‖x(t)‖ < ε for all t ≥ t0 + T , i.e., x ≡ 0 is attractive. Hence, x ≡

0 is asymptotically stable. If T is independent of t0, then x ≡ 0 is uniformly

asymptotically stable.

Corollary 14.2. In Theorem 14.2, let g(t, u(t), σk(uξk)) = βkuξk , with βk being a

constant for all k.

(i) In the case ξk = tk,

(1) if βk > 0 for any k and the infinite series

∞∑
j=1

βj−1(tj − tj−1) (14.9a)

converges, then x ≡ 0 is uniformly stable;

(2) if βk < 0 for any k and, in addition to assumption (i)(1), for any j,

0 < tj − tj−1 < −
1

βj−1

, (14.9b)

then x ≡ 0 is uniformly asymptotically stable.

(ii) In the case βk < 0, and tk−1 < ξk ≤ tk for any k = 0, 1, 2, · · · and ξ0 = t0, if

uk(t) ≤ L for some positive constant L, where uk(t) is defined in Corollary

14.1 for any k and t ∈ [tk, tk+1), then u ≡ 0 is uniformly stable; if, in ad-

dition, uk(t) ≤ Lk for any k and t ∈ [tk, tk+1), and
∑∞

k=0 Lk < ∞, then the

trivial solution u ≡ 0 and hence x ≡ 0 are uniformly asymptotically stable.

Particularly, one may define L = sup{Lk : k = 0, 1, 2, · · · }.

Proof (i)(1) The solution of the scalar EPCA

u̇(t) = βkuξk , t ∈ [tk, tk+1], k = 0, 1, 2, · · · ,

u(t0) = u0
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is given by

u(t) =
(

1 + βk(t− tk)
) k∏
j=1

[
1 + βj−1(tj − tj−1)

]
u0.

By (14.9a), the product
∏∞

j=1

[
1+βj−1(tj−tj−1)

]
converges. Therefore, defining

M =
∏∞

j=1

[
1 + βj−1(tj − tj−1)

]
<∞ yields

u(t, t0, u0) = Mu0 < Mσ, for some σ > 0 such that u0 < σ,

meaning that the trivial solution u ≡ 0 is uniformly stable, which implies, by

Theorems 14.2, the uniform stability of the trivial solution x ≡ 0. In particular,

for k = 0, 1, 2, · · · , one may choose that βk = 1
2k

, tk+1 − tk < δ for some δ > 0.

(i)(2) Assumption (14.9b) is equivalent to 0 < 1 + βj−1(tj − tj−1) < 1, so that

let 1 + βj−1(tj − tj−1) = 1
e
, for example, then M approaches zero; this proves the

uniform asymptotic stability of u ≡ 0 and x ≡ 0.

(ii) The proof is straightforward and is omitted here.

Remark 14.2. It is worth noting that the assumption 0 < uk(t) ≤ Lk, for any k

and t ∈ [tk, tk+1), is equivalent to

Lk − Ck
βkCξk

< t− tk <
−Ck
βkCξk

,

where Ck and Cξk are defined in Corollary 14.1.

Corollary 14.3. In Theorem 14.3, let g(t, u(t), σk(uξk)) = αu(t) + βkuξk , where

α > 0, βk < 0, and ξk = tk for k = 1, 2, · · · . Then, the trivial solution x ≡ 0 is

uniformly stable if the infinite series

∞∑
j=1

[
(1 +

βj−1

α
)eα(tj−tj−1) − βj−1

α

]
(14.10)
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converges. Furthermore, if, in addition, the terms in corresponding infinite product

are all less than unity, then x ≡ 0 is uniformly asymptotically stable.

Proof. Since the infinite series in (14.10) converges, so does the infinite product

M =
∞∏
j=1

[
(1 +

βj−1

α
)eα(tj−tj−1) − βj−1

α

]
.

Then,

u(t) < Mσ,

for some positive σ for which u0 < σ; that is, u ≡ 0 is uniform stability. Employing

our comparison result, the uniform stability of x ≡ 0 will be a consequence of this

stability property. Finally, by our assumption, if, for instance, every term in the

infinite product is less than or equal to 1/e, then

u(t) =
∞∏
j=1

[
(1 +

βj−1

α
)eα(tj−tj−1) − βj−1

α

]
u0 → 0,

that is, u ≡ 0 and accordingly x ≡ 0 are uniformly asymptotically stable.

Remark 14.3.

(i) The interesting finding of Corollary 14.3 is that the system has unstable or-

dinary part, which is stabilized by negative piecewise constant given at an

individual point in each subinterval.

(ii) Assuming each term in the product is equal to or less than some positive

constant c < 1 results in, for ξk = tk,

tk+1 − tk >
1

α
ln
[(
c+

βk
α

)(
1 +

βk
α

)−1]
,

where
(
c+ βk

α

)(
1 + βk

α

)−1

> 1 so long as
(

1 + βk
α

)
< 0 and c < 1.
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Corollary 14.4. In Theorem 14.2, let g(t, u(t), σk(uξk)) = −ω(u) + βkuξk with

ω ∈ K, βk ≥ 0, and ξk = tk for all k. Then, x ≡ 0 is uniformly asymptotically

stable provided that the series
∑∞

j=1 βj(tj − tj−1) converges.

Proof. Since D+V (x, Vξk) ≤ −ω(V (x)) + βkVξk implies

D+V (x, Vξk) ≤ βkVξk ,

then it follows from Corollary 14.3 that u ≡ 0 of the scalar EPCA

u̇(t) = −ω(u(x)) + βkuξk , (14.11a)

u(t0) = u0 (14.11b)

is uniformly stable. Thus, for a fixed ρ > 0, there is a σ = σ(ρ) > 0 such that

0 ≤ u0 ≤ σ implies u(t, t0, u0) < ρ, t ≥ t0, (14.12)

for any solution of (14.11). Let ε ∈ (0, ρ) be given and δ = δ(ε). In the rest of the

proof, we need to show that u ≡ 0 is attractive; it suffices to show that there exists

a T = T (ε) > 0 such that

u(t∗, t0, u0) < δ = δ(ε), (14.13)

for any t∗ ∈ [t0, t0 + T ] and any solution u(t, t0, u0) of (14.11) that satisfies (14.12).

Since
∑∞

j=1 βj(tj − tj−1) converges, define

M =
∞∑
j=1

βj(tj − tj−1) <∞.

Choose T1 = T1(ε) > 0 such that

T1 > 2ρM [ω(δ)]−1. (14.14)
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Define

T = max
{
T1,

2(σ + 1)

ω(δ)

}
. (14.15)

We claim that (14.13) is true for T given by (14.15). If this were not true, suppose,

for contradiction, that there were a solution u(t) = u(t, t0, u0) of (14.11) with u0 < σ

such that

u(t) ≥ δ, t ∈ [t0, t0 + T ]. (14.16)

Integrating (14.11) over [t0, t0 + T ] yields

0 ≤ u(t0 + T ) = u0 −
∫ t0+T

t0

ω(u(s)) ds+
k∑
j=1

βj−1uξj−1
(tj − tj−1)

+ βkuξk(t0 + T − tk)

≤ σ − Tω(δ) + ρM

= σ − Tω(δ)

2
− Tω(δ)

2
+ ρM

≤ σ − Tω(δ)

2
< −1 < 0,

which is a contradiction. Thus, (14.13) must be true, that is,

u(t∗, t0, u0) < δ,

for any solution of u(t, t0, u0) of (14.11) with u0 < σ. Hence, u ≡ 0 is uniformly

attractive and consequently uniformly asymptotically stable, which in turn implies

that x ≡ 0 is uniformly asymptotically stable.

Corollary 14.5. Let g(t, u(t), σk(uξk)) = αu(t) + h(t, u(t), σk(uξk)) with α < 0.

Then, x ≡ 0 is uniformly asymptotically stable provided that the series
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∑∞
j=1

∫ tj
tj−1

eα(t−s)h(s, u(s), σj−1(uξj−1
)) ds

converges. In particular, h(t, u(t), σk(uξk)) = 0 when k (or t)→∞.

Proof. The proof is straightforward since, from the solution

u(t) = eα(t−t0)u0 +
∞∑
j=1

∫ tj

tj−1

eα(t−s)h(s, u(s), σj−1(uξj−1
)) ds,

we get limt→∞ u(t) = 0.

14.3 Numerical Examples

To illustrate our results, we discuss some examples.

Example 14.2. Consider the nonlinear EPCA
ẋ = 2x+ 2βke

y2yξk , t ∈ [tk, tk+1], k = 0, 1, 2, · · · ,

ẏ = y + βk(1 + x2)xξk ,
(14.17)

where βk = −3.5 for all k. Clearly, the ordinary part is unstable. Let

V (x, y) = x+ y for x > 0 and y > 0. Then, one may get

V̇ ≤ αV + βkVξk ,

where α = 2. The solution of the differential inequality is given in Corollary

14.1(ii), and by Corollary 14.3 the trivial solution x ≡ 0 of (14.17) is uniformly

asymptotically stable. If ξk = tk, then tk+1 ∈ (0.15, 0.34), where c = 0.6.

Figure 14.1 shows the simulation result in the case ξk = tk for all k.

Example 14.3. Consider the nonlinear EPCA
ẋ = y − x[1 + θ(x2 + y2)], t ∈ [tk, tk+1],

ẏ = −x− y[1 + θ(x2 + y2)] +
2yξk
2k
,

(14.18)
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Figure 14.1: Uniform asymptotic stability of (x, y)T = (0, 0) in Example 14.2

for any k = 0, 1, 2, · · · , where 0 < θ � 1. Let V (x, y) = 1
2
(x2 + y2). Then,

V̇ (x, y) = xy − x2[1 + θ(x2 + y2)]− xy − y2[1 + θ(x2 + y2)] +
2yyξk

2k

≤ −(x2 + y2)− θ(x2 + y2)2 +
1

2k
(x2 + y2) +

1

2k
(x2

ξk
+ y2

ξk
)

= −θV 2(x, y) + βkV (xξk , yξk).

Let ω(u) = θu2. Then, by Corollary 14.4, the trivial solution of (14.18) is

uniformly asymptotically stable. Simulation result is shown in Figure 14.2,

where θ = 0.01, ξk = tk, and tk+1 − tk = 1 for all k = 0, 1, 2, · · · .

Example 14.4. Consider the nonlinear EPCA
ẋ = −x, t ∈ [tk, tk+1], k = 0, 1, 2, · · · ,

ẏ = −2y +
xξk sin yξk

1+x2 ye−t.
(14.19)
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Figure 14.2: Uniform asymptotic stability of (x, y)T = (0, 0) in Example 14.3

Let V (x, y) = 1
2
(x2 + y2). Then,

V̇ (x, y) = −x2 − 2y2 +
xξk sin yξk

1 + x2
y2e−t

≤ −(x2 + y2) +
1

2
(y4 + x2

ξk
)e−t

= −2V (x, y) +
(

2V 2(x, y) + V (xξk , yξk)
)
e−t

= αV + h(t, V, Vξk),

where α = −2 and h(t, V, Vξk) = (2V 2 +Vξk)e
−t. By Corollary 14.5, the trivial

solution of (14.19) is uniformly asymptotically stable. Figure 14.3 shows the

asymptotic stability of the trivial solution of (14.19).
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Figure 14.3: Uniform asymptotic stability of (x, y)T = (0, 0) in Example 14.4.

14.4 Conclusion

Systems of nonlinear EPCA, which treated as a switched system, were formulated.

A comparison principle was developed and successfully used to establish some sta-

bility properties of the system. A Lyapunov-function criterion was used to analyze

our stability results. Besides, some special cases of retarded EPCA and EPCAG

were considered. We also showed that piecewise constant arguments contribute to

stabilize unstable systems of ordinary differential equations.
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Chapter 15

Existence, Uniqueness and

Stability of Stochastic EPCA

In this chapter, we consider systems with stochastic EPCA (or SEPCA). Our in-

terest is to establish some results on the existence of a unique solution. We then

establish a comparison principle, which will be used later to develop some stability

results by using Razumikhin methodology. The organization of this chapter is as

follows: in Section 15.1, we state and prove the existence and uniqueness results.

In Section 15.2, we develop Lyapunov-like sufficient conditions to guarantee the

stability properties. The material of this chapter forms the basis of [Alw-k].

Consider the nonlinear systems with SEPCA of the form

dx(t) = f(t, x(t), λ%(t)(x(γ(t))))dt+ g(t, x(t), λ%(t)(x(γ(t))))dW (t), (15.1a)

x(t0) = x0, (15.1b)

where x ∈ Rn is the system state and, for all t ≥ t0, %(t) and γ(t) are piecewise

constant functions taking values in the sets K = {k}∞k=0 and Ξ = {ξk}∞k=0, respec-
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tively, where tk ≤ ξk < tk−1 for any k = 0, 1, 2, · · · . As stated in Chapter 14,

these functions represent the switching logics of the system switching between the

piecewise constant argument λk and the values of its state argument x.

Accordingly, one may define system (15.1) as follows: for any t ∈ [tk, tk+1),

k ∈ K,

dx(t) = f(t, x(t), λk(x(ξk)))dt+ g(t, x(t), λk(x(ξk)))dW (t), (15.2a)

x(t0) = x0, (15.2b)

or equivalently

x(t) = x0 +

∫ t

t0

f(s, x(s), λk(x(ξk)))ds+

∫ t

t0

g(s, x(s), λk(x(ξk)))dW (s). (15.3)

The following definitions will be needed in this chapter.

Definition 15.1. For any α, β ∈ R, an Rn-valued stochastic process x : (α, β)→ R

is said to be a solution of (15.1) if the following hold:

(i) x(t) is continuous and Ft-adapted for all t ∈ (α, β);

(ii) f(t, x(t), λk(x(ξk))) ∈ Lad(Ω, L1(α, β)) and g(t, x(t), λk(x(ξk))) ∈ Lad(Ω, L2(α, β));

(iii) the stochastic integral equation (15.3) holds w.p.1.

Definition 15.2. [Mao06] For all t ∈ [a, b], an Rn-valued Ft-adapted process

f(t) with
∫ b
a
‖f(t)‖pdt < ∞ (a.s.) (i.e., f ∈ Lad(Ω;Lp[a, b])) is said to be in

Mp([a, b]; Rn) if E
[ ∫ b

a
‖f(t)‖pdt

]
<∞.

Definition 15.3. [Mao06] An Rn-valued Ft-adapted integrable process X(t) is

said to be a martingale with respect to the filtration {Ft}t≥0 if

E[X(t)|Fs] = X(s), (a.s.), for all 0 ≤ s < t <∞,
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where E[X(t)|Fs] stands for the conditional expectation of processX(t) with respect

to the filtration Fs.

Doob’s martingale inequality. [Mao06] For all t ≥ 0, let X(t) be an Rn-valued

martingale and [a, b] be a bounded interval of R. If p > 1 and X(t) ∈ Lp(Ω; Rn),

then

E
[

sup
a≤t≤b

‖X(t)‖p
]
≤
( p

p− 1

)p
E[‖X(b)‖p].

Borel-Cantelli’s lemma. [Mao06] If {Ak}∞k=1 ⊂ F and
∑∞

k=1 P(Ak) <∞, then

P(lim sup
k→∞

Ak) = 0.

15.1 Existence and Uniqueness Results

In this section, we discuss the existence of a unique solution of SEPCA given in

(15.1) or (15.2). The technique followed in proving these results is to generate

a convergent Cauchy sequence of solutions. For this purpose, we assume that

the system vector fields are bounded by a linear growth estimates and satisfy the

Lipschitz condition. The first condition is to avoid a finite escape time that a

solution may have when time evolves. The second condition is made to be used in

proving the convergence of the generated sequence and to guarantee the uniqueness

of the solution. Along the same line of proving the existence and uniqueness results

of ordinary stochastic differential equation, one may consult [Mao06].

Theorem 15.1. Assume the following assumptions hold:

(i) the vector fields functions f and g satisfy the linear growth condition, i.e., there
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exists a positive L1 such that

‖f(t, x, y)‖2 + ‖g(t, x, y)‖2 ≤ L1(1 + ‖x‖2 + ‖y‖2), (a.s.),

for all (t, x, y) ∈ [tk, tk+1)× Rn × Rn;

(ii) f and g satisfy a global Lipschitz condition, i.e., there exists a positive constant

L2 such that

‖f(t, x1, y1 − f(t, x2, y2))‖2 + ‖g(t, x1, y1)− g(t, x2, y2))‖2

≤ L2‖x1 − x2‖2 + ‖y1 − y2‖2, (a.s.),

for all (t, x, y) ∈ [tk, tk+1)× Rn × Rn.

Then, system (15.1) or (15.2) has a unique solution for all t ≥ t0.

Before we prove this theorem, the following lemma is needed.

Lemma 15.1. For any k ∈ K, assume that the linear growth condition holds.

Then, solution x cannot grow faster than the following exponential estimate

E

(
sup

tk≤t≤tk+1

‖x(t)‖2

)
≤ (1 + ck)e

3L1(tk+1−tk+4)(tk+1−tk),

where ck = 3E[‖x0‖2] + 3L1(tk+1 − tk + 4)(tk+1 − tk)E[‖λk(xξk)‖2] < ∞. In other

words, x(t) ∈M2([tk, tk+1); Rn) with 0 < tk+1 − tk ≤ θ <∞ for any k.

Proof. Choose k arbitrarily, and, for any l ≥ 1, define a sequence of stopping times

τl = tk+1 ∧ inf{t ∈ [tk, tk+1) : ‖x(t)‖ ≥ l},

where liml→∞ τl = tk+1 (a.s.). For simplicity of notation, we set xl(t) = x(t∧ τl) for

all t ∈ [tk, tk+1). Then, from system (15.1), we get

xl(t) = xk +

∫ t

tk

f(s, xl(s), λk(xξk))1[tk,τl]ds+

∫ t

tk

g(s, xl(s), λk(xξk))1[tk,τl]dW (s),
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where 1A is the indicator function of a set A. In virtue of (i) and using Doob’s

martingale inequality to the stochastic Itô integral, one may get

E
(

sup
tk≤t≤t

‖xl(t)‖2

)
≤ 3E[‖xk‖2] + 3L1(tk+1 − tk)

∫ t

tk

(1 + E[‖xl(s)‖2] + E[‖λk(xξk)‖2])ds

+ 12L1

∫ t

tk

(1 + E[‖xl(s)‖2] + E[‖λk(xξk)‖2])ds

≤ 3E[‖xk‖2] + 3L1(tk+1 − tk + 4)

∫ t

tk

(1 + E[‖xl(s)‖2])ds

+ 3L1(tk+1 − tk + 4)(tk+1 − tk)E[‖λk(xξk)‖2],

which implies

1 + E
(

sup
tk≤t≤t

‖xl(t)‖2

)
≤ 1 + ck + 3L1(tk+1 − tk + 4)

∫ t

tk

(1 + E[‖xl(s)‖2])ds

≤ 1 + ck + 3L1(tk+1 − tk + 4)

∫ t

tk

(1 + E[ sup
tk≤t≤τl

‖xl(s)‖2])ds.

By the Gronwall inequality, we get

E
(

sup
tk≤t≤t

‖xl(t)‖2

)
≤ (1 + ck)e

3L1(tk+1−tk+4)(tk+1−tk).

The desired result is implied by letting l→∞. This completes the proof.

Proof of Theorem 15.1. The proof given here is over [t0, t1) since the rest will

be similar. Define the sequence xn(t), with x0(t) = x0, by the following iteration

xn(t) = x0 +

∫ t

t0

f(s, xn−1(s), λk(xn−1ξ0
))ds+

∫ t

t0

g(s, xn−1(s), λk(xn−1ξ0
))dW (s),

(15.4)
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where xjξ0 = xj(ξ0) = xj(t0). By Lemma 15.1, x0 ∈ M2([tk, tk+1); Rn) and by

mathematical induction, we can see that xn(t) ∈M2([tk, tk+1); Rn) as follows:

E[‖xn(t)‖2] ≤ C1 + 3L1(t+ t1)

∫ t

t0

E[‖xn−1(s)‖2]ds,

where C1 = 3E[‖x0‖2] + 3L1t1(1 + t1)
(

1 + E[‖λk(xn−1ξ0
)‖2]
)
<∞, where we used

the fact t1 − t0 < t1. This also implies that, for an arbitrary j,

max
1≤n≤j

E[‖xn(t)‖2] ≤ C1 + 3L1(t+ t1)

∫ t

t0

max
1≤n≤j

E[‖xn−1(s)‖2]ds

≤ C1 + 3L1(t+ t1)

∫ t

t0

(
E[‖x0‖2] + max

1≤n≤j
E[‖xn(s)‖2]

)
ds

= C2 + 3L1(t+ t1)

∫ t

t0

max
1≤n≤j

E[‖xn(s)‖2]ds,

where C2 = C1 + 3L1t1(1 + t1)E[‖x0‖2]. By the Gronwall inequality

max
1≤n≤j

E[‖xn(t)‖2] ≤ C2e
3L1t1(1+t1).

Since j is arbitrary, we get

E[‖xn(t)‖2] ≤ C2e
3L1t1(1+t1), (15.5)

i.e., for all n, xn ∈M2([tk, tk+1); Rn), that is, xn(t) is bounded over [t0, t1).

Now, we want to prove that this sequence is convergent. Note that

‖x1(t)− x0(t)‖2 = ‖x1(t)− x0‖2

≤ 2
∥∥∥∫ t

t0

f(s, x0, λk(x0ξ0
))ds

∥∥∥2

+ 2
∥∥∥∫ t

t0

g(s, x0, λk(x0ξ0
))dW (s)

∥∥∥2

,

which implies, after taking the mathematical expectation,

E[‖x1(t)− x0(t)‖2]

≤ 2L1 [(t1 − t0)(1 + (t1 − t0))]
(
1 + E[‖x0‖2] + E[‖λk(xξ0)‖2]

)
= C,
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i.e., E[‖x1(t)− x0(t)‖2] ≤ C, where

C = 2L1 [(t1 − t0)(1 + (t1 − t0))]
(
1 + E[‖x0(t)‖2] + E[‖λk(xξ0)‖2]

)
.

We will show by mathematical induction that, for any n ≥ 0 and t ∈ [t0, t1),

E[‖xn+1(t)− xn(t)‖2] ≤ C[M(t− t0)]n

n!
, (15.6)

with M = 2L2(t1 − t0 + 1). Obviously, the relation is true for n = 0, 1. Assume

that it is also true for some n ≥ 0. As for the case of n+ 1, we have

‖xn+2(t)− xn+1(t)‖2

≤ 2
∥∥∥∫ t

t0

(
f(s, xn+1(s), λk(xn+1ξ0

))− f(s, xn(s), λk(xnξ0 ))
)
ds
∥∥∥2

+ 2
∥∥∥∫ t

t0

(
g(s, xn+1(s), λk(xn+1ξ0

))− g(s, xn(s), λk(xnξ0 ))
)
dW (s)

∥∥∥2

.

Taking the mathematical expectation and using the Lipschitz condition give

E[‖xn+2(t)− xn+1(t)‖2] ≤ 2L2(t− t0 + 1)E
∫ t

t0

(
‖xn+1(s)− xn(s)‖2

+ ‖λk(xn+1ξ0
)− λk(xnξ0 )‖2

)
ds

= M

∫ t

t0

E[‖xn+1(s)− xn(s)‖2]ds

≤M

∫ t

t0

C[M(s− t0)]n

n!
ds =

C[M(t− t0)]n+1

(n+ 1)!
,

because λk(xn+1ξ0
)− λk(xnξ0 ) = 0 for any n ≥ 0. For instance, for n = 0, we have

λk(x1ξ0
)− λk(x0ξ0

) = λk(x1(t0))− λk(x0(t0)) = 0 (a.s.).

This is because x0(t) = x0 for all t, and, by the solution sequence (15.4), we have

x1(t0) = x0(t0) = x0. Thus, the relation is true for n+ 1.
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To prove xn is a Cauchy sequence, replace n by n− 1 and consider

sup
t0≤t≤t1

‖xn+1(t)− xn(t)‖2

≤ 2 sup
t0≤t≤t1

∥∥∥∫ t

t0

[f(s, xn(s), λk(xnξ0 ))− f(s, xn−1(s), λk(xn−1ξ0
))]ds

∥∥∥2

+ 2 sup
t0≤t≤t1

∥∥∥∫ t

t0

[g(s, xn(s), λk(xnξ0 ))− g(s, xn−1(s), λk(xn−1ξ0
))]dW (s)

∥∥∥2

,

which implies, after taking the mathematical expectations and using the Doob’s

martingale inequality

E
(

sup
t0≤t≤t1

‖xn+1(t)− xn(t)‖2

)
≤ 2L2(t1 − t0 + 4)

∫ t1

t0

E
[
‖xn(s)− xn−1(s)‖2 + ‖λk(xnξ0 )− λk(xn−1ξ0

)‖2
]
ds

= 2L2(t1 − t0 + 4)

∫ t1

t0

E
[
‖xn(s)− xn−1(s)‖2

]
ds, (15.7)

because λk(xnξ0 )− λk(xn−1ξ0
) = 0 for any n ≥ 1. For instance, for n = 1, we have

λk(x1ξ0
)− λk(x0ξ0

) = λk(x1(t0))− λk(x0(t0)) = 0 (a.s.).

This is because x0(t) = x0 for all t, and, by the solution sequence (15.4), we have

x1(t0) = x0(t0) = x0. Therefore, from (15.7), it follows that

E
(

sup
t0≤t≤t1

‖xn+1(t)− xn(t)‖2
)
≤ 4M

∫ t1

t0

4C[M(s− t0)]n−1

(n− 1)!
ds

=
4C[M(t1 − t0)]n

n!
,

from which, we get

P
{

sup
t0≤t≤t1

‖xn+1(t)− xn(t)‖2 >
1

2n

}
≤ 4C[M(t1 − t0)]n

n!
.

Since series
∑∞

n=0
4C[M(t1−t0)]n

n!
is convergent, by the Borel-Cantelli’s lemma, we have

sup
t0≤t≤t1

‖xn+1(t)− xn(t)‖2 ≤ 1

2n
.
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It follows that, w.p.1, the partial sums

xn(t) = x0(t) +
n−1∑
j=0

(xj+1(t)− xj(t))

are convergent over [t0, t1]. Therefore, we conclude that sequence xn(t) is Cauchy,

i.e., there exists a limit point x such that limn→∞ xn(t) = x(t), which implies that,

for all t ∈ [t0, t1),

x(t) = x0 +

∫ t

t0

f(s, x(s), λk(xξ0))ds+

∫ t

t0

g(s, x(s), λk(xξ0))dW (s). (15.8)

Similarly, one can show this relation holds for any t ∈ [tk, tk+1). We should

mention that the inequality in (15.8) is still true for any k because by defining the

general form of the solution sequence for any t ∈ [tk, tk+1), we have

xn(t) = x0(tk) +

∫ t

tk

f(s, xn−1(s), λk(xn−1ξk
))ds

+

∫ t

tk

g(s, xn−1(s), λk(xn−1ξk
))dW (s), (15.9)

where xjξk = xj(ξk) = xj(tk); for instance, if n = 2, we obtain

λk(x2ξk
))− λk(x1ξk

)) = λk(x2(tk))− λk(x1(tk))

= λk(x0(tk))− λk(x0(tk))

= 0,

w.p.1. Due to the continuity of solution x, limt→t−k+1
x(t) = x(tk+1). Thus, the

constructed solution is continuous and Ft-adapted for all t ≥ t0. Furthermore,

from (15.6), for all t ≥ t0, sequence xn(t) is Cauchy in L2, which implies that

limn→∞ xn(t) = x(t) in L2. It follows that, by letting n→∞ in (15.5),

E[‖x(t)‖2] ≤ C2e
3L1t1(1+t1), for all t ≥ t0,
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i.e., x ∈ M2(R+; Rn). Next, we will show that x satisfies the stochastic integral

equation in (15.3), for all t ∈ [tk, tk+1] and every k, as follows:

E
∥∥∥∫ t

t0

f(s, xn(s), λk(xnξk ))ds− f(s, x(s), λk(xξk))ds
∥∥∥2

+ E
∥∥∥∫ t

t0

g(s, xn(s), λk(xnξk ))dW (s)− g(s, x(s), λk(xξk))dW (s)
∥∥∥2

≤ L2(tk+1 − t0 + 1)

∫ tk+1

t0

E‖xn(s)− x(s)‖2ds→ 0, as n→∞.

Therefore, by letting n→∞ in (15.4), we get the required result. Finally, to prove

the uniqueness, assume that there is another solution, say y(t). Then,

x(t)− y(t) =

∫ t

t0

(
f(s, x(s), λk(xξk))− f(s, y(s), λk(yξk))

)
ds

+

∫ t

t0

(
f(s, x(s), λk(xξk))− f(s, y(s), λk(yξk))

)
dW (s),

which implies that, after applying the Hölder’s inequality, Doob’s martingale in-

equality, and Lipschitz condition,

E
[

sup
t0≤s≤t

‖x(s)− y(s)‖2
]
≤ 2L2(tk+1 + 4)

∫ t

t0

E[ sup
t0≤u≤s

‖x(u)− y(u)‖2]ds.

By the Gronwall inequality, we obatin

E
[

sup
t0≤s≤t

‖x(s)− y(s)‖2
]

= 0.

Thus, processes x and y are indistinguishable for all t. Hence, system (15.1) has a

unique solution x(t) for all t ≥ t0. This completes the proof.

15.2 Stability Results

Having established the existence of a unique solution, this section deals with the

stability properties of the trivial solution of system (15.1). Our results are based
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on developing Lyapunov-like sufficient conditions by using a comparison principle

(Subsection 15.2.1) and Razumikhin technique (Subsection 15.2.2).

15.2.1 Analysis by Comparison Principle

In this subsection, as achieved in the last chapter, we develop a comparison principle

that will be used later to prove some stability results.

Theorem 15.2. Assume that the following assumptions hold:

(i) for k ∈ K, V ∈ C1,2([tk, tk+1)× Rn; R+), V is bounded below, and satisfies

LV (t, x, y) ≤ h(t, x, σk(y)), (a.s.), t ∈ [tk, tk+1),

where the function h is concave and nondecreasing in x and σk with σk being

a concave function;

(ii) the scalar comparison system

u̇(t) = h(t, u(t), σk(uξk)), t ∈ [tk, tk+1), (15.10)

u(t0) = u0

has a maximal solution ν(t, t0, u0) for all t ≥ t0.

Then, for any solution x of (15.1), E[V (t0, x0)] ≤ u0 implies E[V (t, x)] ≤ ν(t, t0, u0)

for any t ≥ t0.

Proof. For any k ∈ K and t ∈ [tk, tk+1), let x(t) be the solution of system (15.1)

that is guaranteed by Theorem 15.1. Let τkl , or, for simplicity τl, for l ≥ 1, be the

first exit time of the process from the ball

Bl(x) = {x ∈ Rn : ‖x‖ ≤ l},
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i.e., τl = inf{t ∈ [tk, tk+1) : ‖x(t)‖ > l}.

Define τl(t) = min{τl, t}. Then, by Itô formula, we have, for any t ∈ [tk, τl(t)],

E[V (τl(t), x(τl(t)))] = E[V (tk, x(tk))] + E
∫ τl(t)

tk

LV (s, x(s), σk(Vξk))ds

≤ E[V (tk, x(tk))] + E
∫ τl(t)

tk

h(s, V (s, x(s)), σk(Vξk))ds,

where Vξk = V (ξk, x(ξk)). Define m(t) = E[V (s, x(s))] for all tk ≤ s ≤ τl(t). Thus,

by the properties of h and σk, the last inequality becomes

m(t) ≤ m(tk) +

∫ s

tk

h(r,m(r), σk(mξk))dr, tk ≤ r ≤ s ≤ τl(t),

where mξk = m(ξk) = E[V (ξk, x(ξk))].

By Theorem 14.1, we obatin

m(t) ≤ νk( t, tk,mξk), t ∈ [tk, τl(t)],

and, by letting l → ∞, we obtain, for all t ∈ [tk, tk+1), m(t) ≤ νk( t, tk,mξk).

Particularly, for t ∈ [t0, t1), we have

m(t) ≤ ν0( t, t0,mξ0) = ν0( t, t0,m(t0)) ≤ ν0( t, t0, u0) =: ν(t, t0, u0),

where ν0(·, ·, ·) is the maximal solution of the scalar comparison system (15.10) for

t ∈ [t0, t1) with m(t0) = E[V (t0, x(t0))] ≤ u0, as given initially.

For t ∈ [t1, t2), we have

m(t) ≤ ν1( t, t1,mξ1) = ν1( t, t1,m(t1)) = ν1( t, t1, ν1( t1, t0, u0))

=: ν(t, t0, u0),

or

m(t) ≤ ν(t, t0, u0), t ∈ [t0, t2).

302



In general, one obtains

m(t) = E[V (t, x(t))] ≤ ν(t, t0, u0), t ≥ t0,

where ν(t, t0, u0) is the maximal solution of the comparison system (15.10) for all

t ≥ t0. This completes the proof.

In the following theorem, we prove some stability properties of the trivial solu-

tion of (15.1).

Theorem 15.3. Assume that the conditions of Theorem 15.2 hold. Suppose also

that there exist two functions b ∈ K1 and a ∈ K2 such that

b(‖x‖2) ≤ V (t, x) ≤ a(‖x‖2), (a.s.). (15.11)

Then, the stability properties of the trivial solution u ≡ 0 of system (15.10) imply

the stability properties (in the m.s.) of the trivial solution x ≡ 0 of system (15.1).

Proof. Assume that the trivial solution u ≡ 0 of the comparison system (15.10) is

stable. Then, for every ε > 0, there exists δ = δ(t0, ε) > 0 for which

ν(t, t0, u0) < b(ε), whenever u0 ≤ δ, ∀ t ≥ t0 ≥ 0, (15.12)

where ν(t, t0, u0) is the maximal solution of the scalar comparison system (15.10).

To investigate the stability at t0, we choose δ = δ(t0, ε) ≤ δ1 (for the same ε)

with a(δ1) < b(ε) and let u0 = a(E[‖x0‖2]) ≤ δ1. Now, let E[‖x0‖2] ≤ δ. Then,

from (15.11), we obtain

b(E[‖x(t0)‖2]) ≤ E[V (t0, x0)] ≤ a(E[‖x0‖2]) ≤ a(δ) ≤ b(ε),

i.e., E[‖x0‖2] ≤ ε, whenever E[‖x0‖2] ≤ δ.
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Under the given assumptions, we claim that the trivial solution x ≡ 0 of SEPCA

(15.1) is stable in the m.s. for all t > t0, i.e., for the assigned ε and δ, the following

statement

E[‖x0‖2] ≤ δ implies E[‖x(t)‖2] < ε, ∀ t > t0

holds. If our claim were not true, there would be a t∗ > tk > t0, specifically

tk < t∗ ≤ tk+1, such that E[‖x0‖2] ≤ δ and

E[‖x(t)‖2] < ε, tk ≤ t < t∗, (15.13)

E[‖x(t∗)‖2] = ε. (15.14)

Recall that, by Theorem 15.2, we have shown E[V (t, x(t))] ≤ ν(t, t0, u0) for all

t ≥ t0. This, together with (15.12), implies

E[V (t∗, x(t∗))] ≤ ν(t∗, t0, u0) = ν(t∗, t0, a(E[‖x0‖p])) < b(ε).

We also have, by (15.11) and (15.14),

b(ε) = b(E[‖x(t∗)‖2]) ≤ E[V (t∗, x(t∗))].

Combining the last two inequality results in a contradiction. Therefore, our claim

must be true, i.e., the trivial solution x ≡ 0 is stable in the m.s. for all t ≥ t0. As

for the uniformity property, it suffices to choose δ independently of t0.

To prove the m.s. asymptotic stability property of x ≡ 0, we need only to

establish attractivity of this solution. Assume that u ≡ 0 is asymptotic stable,

which implies the existence of δ2 = δ(t0) and T = T (t0, ε) > 0, for any given ε,

such that

u0 ≤ δ2 implies ν(t, t0, u0) < b(ε), ∀ t ≥ t0 + T.
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Following the same argument of the first part, we choose u0 = a(E[‖x0‖2]) ≤ δ2

and δ3 < δ2 such that E[‖x0‖2] ≤ δ3. Then,

b(E[‖x(t)‖2]) ≤ E[V (t, x(t))] ≤ ν(t, t0, a(E[‖x0‖2])) ≤ b(ε),

i.e., E[‖x(t)‖2] ≤ ε for all t ≥ t0 + T . We have proved that x ≡ 0 is asymptotic

stability in the m.s. Furthermore, choosing T = T (ε) leads to the uniformity

property.

In the following, we illustrate our theoretical result through a numerical example

with simulation.

Example 15.1. Consider the following SEPCA

dx =
(
− x[λ+ θ(x2 + y2) + βkxξk ]

)
dt+ axdW1,

dy = bydt− x2dW1 + γξkyξke
−x2

dW2. (15.15)

Taking V (x, y) = 1
2
(x2 + y2) as a Lyapunov function candidate implies

LV ≤ −(λ+
β2
k

2
+
a2

2
)x2 + by2 +

β2
k

2
x2
ξk

+
γ2
k

2
y2
ξk

≤ θ∗

2
(x2 + y2) +

1

2
ξk(x

2
ζk

+ y2
ξk

)

= θ∗V (x, y) + ζkVξk ,

where θ∗ = 2 min{−(λ +
β2
k

2
+ a2

2
), b} < 0 and ζk = max{β2

k , γ
2
k} > 0. Choose

λ = 2, θ = 1, a = 1, b = −1, βk = γk = 1/2k, and a = b = V = 1
2
‖(x, y)‖2.

Clearly, the trivial solution of the comparison system is asymptotically stable. This

conclusion can be checked with Corollary 14.5, where w(s) = s > 0, βk = ζk, and

tk − tk−1 = 1 for any k. We deduce that (x, y)T = (0, 0) is asymptotically stable in

the m.s. Figures 15.1 and 15.2 show the simulation results of the mean and m.s. of

the solution.
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Figure 15.1: First moment asymptotic stability of (x, y)T = (0, 0).
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Figure 15.2: Mean square asymptotic stability of (x, y)T = (0, 0).
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15.2.2 Analysis by Razumikhin Technique

In this subsection, we continue to investigate some stability properties of the triv-

ial solution of (15.1), where we use Razumikhin method to state Lyapunov-like

theorems. Before stating the stability conditions, the following lemma is needed.

Lemma 15.2. Assume that the conditions that guarantee the existence of a unique

solution of system (15.1) with λk(s) = s, for all s, and σ(t) = tk, for all t ∈ [tk, tk+1),

hold. Then, for any t ≥ t0,

E[‖x(β(t))‖2] ≤ K(t∗, L2)E[‖x(t)‖2],

where K(t∗, L2) = 3
1−3t∗(t∗+1)L2−t∗L2C1

> 1 with t∗ being such that tk+1 − tk < t∗.

Proof. For a fixed k and any t ∈ [tk, tk+1), consider the stochastic integral equation

x(t) = x(tk) +

∫ t

tk

f(s, x(s), x(tk))ds+

∫ t

tk

g(s, x(s), x(tk))dW (s),

which implies

E[‖x(t)‖2] = 3E[‖x(tk)‖2] + 3t∗
∫ t

tk

E[‖f(s, x(s), x(tk))‖2]ds

+3

∫ t

tk

E[‖g(s, x(s), x(tk))‖2]ds

≤ 3E[‖x(tk)‖2] + 3t∗
∫ t

tk

E[L2(‖x(s)‖2 + ‖x(tk)‖2)]ds

+3

∫ t

tk

E[L2(‖x(s)‖2 + ‖x(tk)‖2)]ds

≤ 3E[‖x(tk)‖2] + 3(t∗ + 1)

(
L2t
∗E[‖x(tk)‖2] + L2

∫ t

tk

E[‖x(s)‖2]ds

)
,

i.e.,

E[‖x(t)‖2] = 3 [1 + t∗(t∗ + 1)L2] E[‖x(tk)‖2] + 3L2(t∗ + 1)

∫ t

tk

E[‖x(s)‖2]ds.

307



By the Gronwall inequality, we get

E[‖x(t)‖2] ≤ C1E[‖x(tk)‖2],

where C1 = 3 [1 + t∗(t∗ + 1)L2] e3L2(t∗+1).

On the other hand, one gets

E[‖x(tk)‖2] ≤ 3E[‖x(t)‖2] + 3t∗
∫ t

tk

E[‖f(s, x(s), x(tk))‖2]ds

+ 3

∫ t

tk

E[‖g(s, x(s), x(tk))‖2]ds

≤ 3E[‖x(t)‖2] + 3(t∗ + 1)

[
t∗L2E[‖x(tk)‖2] + L2

∫ t

tk

E[‖x(s)‖2]ds

]
≤ 3E[‖x(t)‖2] + 3t∗(t∗ + 1)L2E[‖x(tk)‖2] + L2

∫ t

tk

C1E[‖x(tk)‖2]ds

= 3E[‖x(t)‖2] + 3t∗(t∗ + 1)L2E[‖x(tk)‖2] + t∗L2C1E[‖x(tk)‖2]

= 3E[‖x(t)‖2] + (3t∗(t∗ + 1)L2 + t∗L2C1) E[‖x(tk)‖2],

from which we get

E[‖x(tk)‖2] ≤ K(t∗, L2)E[‖x(t)‖2],

where K(t∗, L2) = 3/ [1− 3t∗(t∗ + 1)L2 − t∗L2C1] > 1.

Theorem 15.4. Consider the SEPCA in (15.1) with λk(s) = s, for all s, and

σ(t) = tk, for all t ∈ [tk, tk+1). Assume that there exist b ∈ K1 and a ∈ K2. Let

V ∈ C1,2(R+ × S(%); R+) such that the following conditions holds:

(i) b(‖x‖2) ≤ V (t, x) ≤ a(‖x‖2), (a.s.), ∀(t, x) ∈ R+ × S(%);

(ii) for any t ∈ (tk, tk+1) and x, y ∈ S(%),

LV (t, x, y) ≤ 0, (a.s.), whenever V (β(t), y) ≤ V (t, x).
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Then, the trivial solution x ≡ 0 of (15.1) is uniformly stable in the m.s.

Proof. Let x be a solution of SEPCA (15.1), and V ∈ C1,2(R+×S(%); R+), t0 = tk,

for any k. For a given 0 < ε < ρ, choose δ > 0 such that a(δ) < b(ε) and

E[V (t0, x(t0))] < a(δ) < b(ε), whenever E[‖x0‖p] ≤ δ,

where x0 = x(t0).

By (ii), one can define m(t) = E[V (t, x(t))] for any t. We claim that for any

t ≥ t0, m(t) ≤ m(t0). If our claim were not true, there would exist t, t̄ ∈ [t0, τl] such

that t0 ≤ t < t̄ < τl and

m(t) = m(t0),

and

m(t) > m(t0), t ∈ (t, t̄]. (15.16)

By the Mean-Value Theorem, there exists t∗ ∈ (t, t̄) such that

ṁ(t∗) =
m(t̄)−m(t

¯
)

t̄− t
> 0, (15.17)

by (15.16), which implies

m(t∗) > m(t0).

On the other hand, by (ii), ṁ(t∗) ≤ 0, where t∗ < τl, which contradicts with ṁ

being positive as shown in (15.17). Therefore, it must be true that

m(t) ≤ m(t0), ∀t ∈ [t0, τl],

and, by letting l→∞, the last inequality holds for t ∈ [tk, tk+1).
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Therefore, we have shown that

m(t) ≤ m(t0) = E[V (t0, x(t0))] < b(ε).

On the other hand, by (i), we have

b(E[‖x(t)‖2]) ≤ m(t) = E[V (t, x(t))] < b(ε),

which implies that

E[‖x(t)‖2] < ε, whenever E[‖x0‖2] ≤ δ,

which shows that, for any k and t0 = tk, the trivial solution is uniformly stable in

the m.s.

To complete the proof, we show that the trivial solution is uniformly stable for

any t0 differs from tk. For the same choice of ε, δ, and δ = δ1/K(t∗, L2), we choose

the solution x(t) of SEPCA to satisfy E[‖x(t0)‖2] < δ, which, by Lemma 15.2,

implies E[‖x(tk)‖2] < K(t∗, L2)E[‖x(t)‖2] < δ1 (where t = t0 and by our choice of

δ). Thus, if E[‖x(tk)‖2] < δ1, m(tk) < b(ε) yields the required results by the earlier

discussion of the case t0 = tk. The proof is complete.

Theorem 15.5. Suppose that the assumptions in Theorem 15.4 hold except that

the condition in assumption (ii) is replaced by

(ii)′ for any t ∈ (tk, tk+1) and x, y ∈ S(%),

LV (t, x, y) ≤ −w(‖x(t)‖2), (a.s.),

whenever V (β(t), y) ≤ V (t, x), where w is a class-K1 function.

Assume further that there exists a continuous nondecreasing convex function

ψ, for which ψ(s) > s for all s > 0. Then, the trivial solution x ≡ 0 is uniformly

asymptotically stable in the m.s.
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Proof. Let x(t) = x(t, t0, x0) be the solution of (15.1). Since LV (t, x, y) < 0, by

Theorem 15.4, the trivial solution is uniformly stable in the m.s.

We need to prove that x ≡ 0 is attractive. For a fixed k, let t0 = tk, and,

for a given 0 < ε < %1 < %, choose δ > 0 such that a(K(t∗, L2)δ) = b(%1). This

implies that, if E[‖x(tk)‖2] < δ, E[‖x(t)‖2] < %1 because b(E[‖x(t)‖2]) ≤ m(t), and

by Theorem 15.4, m(t) ≤ a(δ) < a(K(t∗, L2)δ) for all t ≥ tk. Next, we prove the

existence of a T = T (ε) for which, if E[‖x(tk)‖2] < δ, then E[‖x(t)‖2] < ε for all

t ≥ tk + T .

Define γ = inf{w(s) : a−1(b(ε)) ≤ s ≤ %1} and δ1 = K(t∗, L2)δ. Then, by the

properties of ψ, there exists an a > 0 such that ψ(s)−s > a, for all b(ε) < s < a(δ).

Let N be the smallest positive number for which b(ε) +Na ≥ a(δ1).

Choose

rk = k(
a(δ1)

γ
+ t∗) + tk, k = 1, 2, · · · , N.

We will prove (by mathematical induction) that

m(t) ≤ b(ε) + (N − k)a, k = 0, 1, · · · , N.

Clearly, for k = 0, we have

m(t) ≤ a(δ1) ≤ b(ε) +Na,

i.e., the inequality is correct for k = 0. Assume that it is correct for some k. Now

we want to prove the validity of the relation for the case k + 1, i.e.,

m(t) ≤ b(ε) + (N − k)a, t ≥ rk+1.

Set Ik = [β(rk) + t∗, rk+1]. We claim that there is some t′ ∈ Ik such that

m(t′) ≤ b(ε) + (N − (k + 1))a.
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If not, we would have

m(t) > b(ε) + (N − k − 1)a, ∀ t ∈ Ik.

On the other hand, since we assumed that the relation is correct for the k case,

i.e.,

m(t) ≤ b(ε) + (N − k)a, t ≥ rk,

we have

m(β(rk)) ≤ m(t) ≤ b(ε) + (N − k)a, ∀ t ≥ β(rk) + t∗.

From the properties of the ψ function, we have

ψ(m(t)) ≥ m(t) + a > b(ε) + (N − k)a ≥ m(β(t)).

Since a−1(b(ε)) ≤ E[‖x(t)‖2] ≤ ρ1 for all t ∈ Ik, it follows

D+m(t) ≤ −w(E[‖x(t)‖2]) ≤ −γ,

which implies that

m(rk+1) ≤ m(β(rk) + t∗)− γ(rk+1 − β(rk)− t∗)

< a(δ1)− γ(rk+1 − β(rk)− t∗) = 0, (15.18)

which is a contradiction. Thus, it must be true that

m(t′) ≤ b(ε) + (N − (k + 1))a.

We want to prove that

m(t) ≤ b(ε) + (N − (k + 1))a, ∀ t ∈ [t′,∞).
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We claim it is true. If not, there would be a t′′ ∈ (t′,∞) such that

m(t′′) > b(ε) + (N − (k + 1))a > m(t′),

which means that we can find a t̄ ∈ (t′, t′′) such that t̄ 6= tk and

D+m(t̄) > 0,

and

m(t̄) > b(ε) + (N − (k + 1))a.

If there is no such t̄, then, for all t ∈ (t′, t′′) with t 6= tk,

D+m(t) ≤ 0,

or

m(t̄) ≤ b(ε) + (N − (k + 1))a. (15.19)

Now, if D+m(t) ≤ 0, it follows that m(t′′) ≤ m(t′), which is a contradiction. If

m(t̄) ≤ b(ε)+(N−(k+1))a, it follows that m(t) ≤ m(t′′), for all (t′, t′′) with t 6= tk,

which is a contradiction. Thus, there must exist t̄ satisfying (15.19).

From the properties of ψ, we have

ψ(m(t̄)) > m(t̄) > b(ε) + (N − k)a ≥ m(β(t̄)),

which implies that D+m(t̄) ≤ −γ < 0, which is a contradiction. Thus, it must be

true that

m(t) ≤ b(ε) + (n− k − 1)a, ∀ t ≥ rk+1.

Particularly, for k = N , we have

m(t) ≤ b(ε), ∀ t ≥ rN = N(
a(δ1)

γ
+ t∗) + t0,
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from which we get

E[‖x(t)‖2] < ε,

for all t ≥ tk + T where T = N(a(δ1)
γ

+ t∗). This completes the proof of uniform

asymptotic stability in the m.s. of t0 = tk for a fixed k. As for the case t0 6= tk, one

can adopt the analysis of Theorem 15.4 to achieve the required result.

Example 15.2. Consider the SEPCA

dx = axdt+ (y + βkxξk)dW1,

dy = (by + γkyξk)dt+ ln |1 + x|dW1 − y2dW2.

Taking V (x, y) = 1
2
(x2 + y2) as a Lyapunov function candidate yields

LV
(
(x, y), (xξk , yξk)

)
≤ (a+ 1)x2 + (b+

3

2
)y2 +

1

2
(x2

ξk
+ y2

ξk
)

≤ θ∗V (x, y) + V (xξk , yξk)

≤ (θ∗ + q)V (x, y),

where θ∗ = 2 min{a + 1, b + 3
2
} < 0, q > 1 such that θ∗ + q < 0. Choosing

a = −2, βk = 1
2k
, b = −7, and γk = 1

3k
results in θ∗ < 0 and θ∗ + q < 0 for

q = 2 > 1. Let a(‖(x, y)‖2) = b(‖(x, y)‖2) = V (x, y) = 1
2
‖(x, y)‖2 and ψ(s) = qs.

Then, by Theorem 15.5, the trivial solution is uniformly asymptotically stable in

the m.s. Figures 15.3 and 15.4 show the simulation results of the mean and m.s. of

the solution.

15.3 Conclusion

In this chapter, we considered systems with SEPCA, which were treated as a hybrid

(or switched) system. The focus was on establishing some existence and uniqueness
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Figure 15.3: First moment asymptotic stability of (x, y)T = (0, 0).
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Figure 15.4: Mean square asymptotic stability of (x, y)T = (0, 0).
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results. Then, we investigated some stability properties. As for the existence re-

sult, we assumed that the vector fields were bounded above by some linear growth

estimation. Therefore, we can modified this result by considering the (nonlinear)

sufficient condition adopted in the early existence result for the SISD. The second

part of this chapter dealt with developing stability results, where we used compar-

ison principle and Razumikhin techniques to obtain some sufficient conditions to

guarantee the stability properties in the m.s. We should mention that the results

of Section 15.3 are a modification of the same technique used in [Akh09] to prove

the stability properties of deterministic EPCA.

316



Chapter 16

Conclusions and Future Research

Hybrid systems, including impulsive, switched, impulsive switched systems, are

adequate as a tool to model many physical processes subject to abrupt changes (or

impulses) in their states, mode switching, a mix of the two aspects, or switching in a

state argument at a certain moment. They become even more useful if time delays

are considered in their evolutionary behaviour. Moreover, to have a more realistic

description of a physical process, some environmentally influencing random factors

(or noises) must be taken into account. When random effects are considered in a

hybrid system with deviating states, we have a stochastic hybrid system with time

delay. The main objective of this thesis is to enrich the research area of stochastic

hybrid systems with or without delayed states.

In this chapter, we highlight the contributions of this thesis and suggest some

future research problems that are related to hybrid systems with or without time

lags and stochastic noise.

In Chapter 3, we established the essence of the theory of stochastic impulsive

systems with time delay (SISD), i.e., the existence of unique forward continuable
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solution. To have a better insight into the system, one may extend the the theoreti-

cal foundation by addressing the problems of continuous dependence of the solution

on the initial data, and maximal and minimal solutions of the system.

To further study the system, m.s. stability and input-to-state stability (ISS)

properties were developed in Chapters 4 and 7, where a partial result of Chapter

7 depends on the ISS property proposed in Chapter 6. In analyzing these quali-

tative notions, we employed Razumikhin methodology, which required defining a

suitable Lyapunov function. These results have also been applied to tackle the

same qualitative properties of large scale SISD. To justify these theoretical results,

we applied them to some control systems with faulty actuators and systems de-

scribing the longitudinal motion of an aircraft. This approach can be applied to

some large electric networks, electric power systems, or neural systems in biology.

Also, the proposed theoretical results can be adopted to tackle problem of output

regulation (or servomechanism) for stochastic hybrid systems. This problem deals

with designing a feedback controller to achieve asymptotic tracking (or disturbance

rejection) for a class of reference inputs (or disturbances in uncertain systems) and

to maintain closed-loop stability.

In Part II of the thesis, we considered switched systems. In Chapter 11, we

discussed deterministic switched systems with impulsive effects. The main interest

was to design a dwell-time switching signal to establish some stability results using

multiple Lyapunov function technique. This result can be further generalized to in-

clude some perturbation of stochastic structure. In Chapters 12 and 13, we focused

on stochastic switched systems with and without time delay. The main contribution

of these chapters was to develop a new switching law called initial-state-dependent

dwell time in order to investigate some ISS properties of the systems (in a proba-

bilistic sense). Therefore, one may extend the dependence of the switching law on
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the system states, but not only on the initial states. In Chapter 12, we used the

Markov process as a switching law to jump among the system modes to obtain m.s.

exponential stability of the system.

Part III was devoted to broaden the applicability of the theory of switched sys-

tems to deterministic and stochastic differential equations with piecewise constants

arguments (EPCA). As stated earlier, the delay type of EPCA can be used to find

approximate solutions of delay differential equations with discrete delays. There-

fore, due to the difficulties in evaluating analytical solutions, it is worthwhile to

conduct research on applying the proposed approach to obtain the same finding.

On the other hand, throughout this thesis, we remarked that the random noise

is approximated by a Wiener process. In fact, in practice, there are some types

of noises described, for instance, by a Poisson process. Consequently, one may

consider other processes and address the mentioned problems. Furthermore, it is

known that the Wiener process, as an integrator, belongs to a class of martingale

processes, which is a subclass of semi-martingale processes. It is of practical and

theoretical importance to consider these processes (or integrators) in hybrid systems

and investigate many features of the systems.

Moreover, when dealing with hybrid systems of either type, as presented here,

the interest was to apply the theory of ordinary differential equations. In fact,

there are other, but complicated and interesting at the same time, approaches to

handle switched or impulsive systems. For example, in the first case, the finite set

of differential equations ẋ = fi(t, x), for some i, is replaced by a single differential

inclusion ẋ ∈ F (t, x). While in an impulsive system, the differential and difference

equations are alternatively represented by a measure differential inclusion dx ∈

F(t, x)dt. In both cases, F and F are set-valued mappings, and not single points.

These two approaches require a rigorous background, which is beyond the scope of
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this thesis, since most of the classical theory cannot be applied to these types of

systems.

320



Bibliography

[Ack85] J. Ackremann. Sampled-Data Control Systems. Springer-Verlag, New York,

1985.

[Aft85] A.R. Aftabizadeh and J. Wiener. Oscillatory properties of first order linear

functional differential equations. Applicable Analysis, 20, pp.165-187, 1985.

[Akh08b] M.U. Akhmet. Stability of differential equations with piecewise constant

arguments of generalized type. Nonlinear Analysis, 68, pp. 794-803, 2008.
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