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ABSTRACT 

 

The reduction of sulphur in transportation fuel has gained significant importance as the 

regulatory agencies worldwide react to air quality concerns and the impact of sulphur oxides 

on the environment.  The overall objective of this research was to identify, develop and 

characterize, based on underlying scientific principles, sorbents that are effective in removal 

of refractory sulphur compounds from fuel through the process of selective adsorption.  It 

was determined that impregnation of powdered activated carbon with a transition metal 

(TM) significantly boosted the adsorption performance of the activated carbon.  It is 

hypothesized that the impregnation resulted in the formation of new adsorptive sites that 

strongly interacted with the lone pairs of electrons on sulphur and nitrogen while having 

minor impact on the existing oxygen functional groups on the surface of the activated 

carbon.  The percent loading of the TM was determined through wet adsorption study.  The 

best performing sorbent was shown to have maximum adsorption capacities of 

approximately 1.77 and 0.76 mmol-S/g-sorbent for DBT and 4,6 DMDBT, respectively, 

with approximately 100% regenerability through solvent wash and thermal treatment.  On 

average, the PTM impregnation showed approximately 137% increase in adsorption 

capacity of the activated carbon.  The sorbent also has good adsorption capacities for 

organo-nitrogen compounds (i.e., quinoline and carbazole) and a low selectivity towards 

aromatics, which is desired in adsorptive desulphurization.   The surface morphology of the 

activated carbon, the oxygen functional groups on the surface of the activated carbon, as 

well as strong (chemisorption) interaction between the TM’s partly vacant and far reaching 

‘d’ orbital and lone pair electrons on sulphur and nitrogen are considered to be the main 

contributing factors to the observed enhancement.  It was established in this study that the 

adsorption isotherms of the impregnated activated carbons best fit Sips isotherm equation, 

which is a combination of the Langmuir and Freundlich equations.  This finding fits well 

with our initial hypothesis regarding the introduction of new adsorptive sites as a result of 

TM impregnation and that the sites did not fit well with Langmuir’s monolayer and uniform 

adsorption mechanism.   
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A kinetic study of the sulphur adsorption using a flow reactor showed a good fit with pseudo 

second order kinetic model, indicative of an adsorption that is highly dependent on the 

concentration of available sites on the surface of the sorbent.  On average, as expected, the 

TM impregnated ACC exhibited a higher initial rate of adsorption.  The adsorption onto TM 

sites tends to be more exothermic than adsorption (mainly physisorption) on activated 

carbon.   Therefore, more thermodynamically favoured chemisorption is expected to occur 

more rapidly than physisorption.  It was determined that on average, the initial adsorption 

rate does not change significantly with temperature while the sulphur adsorption capacity 

decreases with increase in temperature.  It is postulated that the increase in temperature 

increases surface diffusivity but impedes diffusion flux.  The impediment of the diffusion 

flux will result in reduction in adsorbed quantity. 

 

It was also shown that the intra-particle diffusion exists in the adsorption of DBT on TM 

impregnated activated carbon, however, it is not likely that the overall adsorption is 

controlled or noticeable impacted by it.  As the temperature of the reactor increases the 

Weber-Morris intra-particle diffusion plot moves away from the origin, and thus intra-

particle diffusion becomes less of a controlling mechanism.  This further confirms the fact 

that the boundary layer (i.e., surface diffusion) and potentially adsorptive interactions at the 

surface are the dominating mechanisms in the sulphur adsorption onto TM impregnated 

activated carbon.   

 

It was determined that the distribution of TM species on the surface of the activated carbon 

is relatively inhomogeneous, with some areas showing well dispersed TM species while 

other areas showing large clusters.  Different impregnation method that can improve 

dispersion on the surface may significantly enhance adsorption performance of the sorbent.   

 

Furthermore, in this study impregnation of activated carbon using several other transition 

metals were examined.  It was determined that other less expensive transition metals can 

also improve the adsorption performance of the activated carbon.  Further study on less 

expensive options for impregnating the activated carbon may be beneficial. 
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1.0 Introduction 
 
The increasing concern about air quality and the impact of air pollution on human health and 

the ecosystem has lead regulatory agencies to impose tighter regulations on key sources of 

pollution.  With the transportation sector being a major contributor to air pollution, one of 

the main areas of focus for the regulators and the scientific community has been the 

improvement of fuel quality.  One of the outcomes of this has been more stringent limits on 

sulphur content in fuels.   In the United States, the maximum sulphur content (limit) in 

highway diesel fuel was reduced from 500 ppmw (based on a 1993 regulation) to 15 ppmw 

in 2006 and further reduced to 10 ppmw in 2010 (15 ppmw for non-road vehicles, 

locomotives and marine engines).  Within the European Union, the sulphur content in diesel 

was reduced to 50 ppmw in 2005 and a further reduction to 10 ppmw in 2010 (Wen et al. 

2010).  Future regulations to further reduce the sulphur content in the fuel are expected.   

 

Furthermore, hydrocarbon fuels can be used in proton-exchange membrane fuel cells 

(PEMFCs) and solid oxide fuel cells (SOFCs).  For these applications the sulphur content in 

the hydrocarbon fuel has to be less than 1 ppmw for PEMFCs and less than 3 – 30 ppmw for 

SOFCs (Zhou, 2006).  To ensure that fuel cell technology will be a viable replacement for 

current energy systems it is important to ensure fuel requirements are met using feasible 

methods of desulphurization. 

 

All of these have resulted in the desulphurization process becoming an important part of fuel 

production.  The petroleum refiners are faced with an ever so challenging task of meeting 

the regulatory requirements for sulphur content in fuel while maintaining product quality 

and economical feasibility.  Commercially available methods of desulphurization are either 

incapable of reducing the sulphur content to such low levels (15 ppm), are extremely energy 

intensive or due to severe process conditions (i.e., high pressure and high temperature) result 

in saturation of the olefins and reduction in fuel octane number.  The mandate to reduce 

sulphur content in fuel and the limitation with existing desulphurization methods has 

resulted in a surge in research and innovation to develop new methods for deep and ultra-
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deep desulphurization, including adsorptive desulphurization.  The focus of this research 

work has been on adsorptive desulphurization with a focus on developing a sorbent that has 

good adsorption capacity, regenerability and selectivity towards subject sulphur compounds.       

 

Section 2.0 of this report provides a background on sulphur removal from fuel, Section 3.0 

includes a literature review in this research area as well as a discussion on currently 

available desulphurization methodologies, both those commercially available and those in 

the research stage.  The fundamentals of selective adsorption are also discussed in this 

section.  The experimental work completed including, theoretical background and 

methodologies are presented in Section 4.  The background on adsorption isotherm models 

used in this study and the results of the experimental work are discussed in Section 5.  

Section 6 discusses experimental results and characterization specific to tantalum 

impregnated activated carbon sorbent.  Section 7 discusses adsorption kinetics and the 

results of the flow reactor experiments.  The concluding remarks and recommendations for 

future research work are presented in Section 8. 

 

1.1 Research Objective 
 

The research work undertaken was adsorptive desulphurization for the production of low 

sulphur fuel.  As mentioned above, existing desulphurization processes bear many 

deficiencies including, high energy usage, reduced fuel quality (i.e., lower octane number), 

solid waste generation and limited sulphur reduction capabilities.  Therefore, research in the 

area of adsorptive desulphurization, to expand on our understanding of the sulphur 

adsorption process and ultimately develop a sorbent that can effectively and efficiently 

remove refractory sulphur compound, will benefit both the petroleum refinery industry as 

well as the environment.   

 

The overall objective of this research was to identify, develop and characterize, based on 

sorbent characterization and underlying scientific principles, sorbents that are effective in 
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removing refractory sulphur compounds from fuel through the process of selective 

adsorption.  Positive results would be beneficial for the oil refinery sector as the sector is 

currently struggling with the technological and cost feasibilities of meeting some of the 

existing and future low sulphur fuel needs.  This will subsequently pave the way for use of 

transportation fuel in fuel cell applications, which requires ultra-low sulphur content (e.g., 

less than 0.1 ppmw).  The specific objectives of this research were as follows: 

 

(1) Investigate sorbent characteristics that effect sulphur adsorption capacity of 

activated carbons and metal-impregnated activated carbons in the adsorptive 

desulphurization process.  The focus on activated carbon is due to numerous 

reasons including, relatively cheap and abundant supply, very large surface area 

per unit mass, surface functional groups that can interact (physisorption) with 

target sulphur and/or nitrogen compounds, easy to manufacture, and if not 

reusable after numerous regenerations, it can be combusted under controlled 

conditions to generate energy.  The impregnation of activated carbons with 

metals is to develop a sorbent with enhanced adsorption capacity.  This topic is 

further discussed in subsequent sections. 

 

(2) Investigate key physical (e.g., pore size, pore volume, sorbent surface 

morphology) and/or chemical (e.g., surface functional groups) parameters that 

may affect the sulphur adsorption capacity of the sorbent.  The focus again was 

on activated carbons and metal-impregnated activated carbons as per (1) above. 

 

(3) Based on underlying scientific principles and sorbent characterization determine 

potential rationale for the effects of the physical and/or chemical parameters 

(above 2) on the adsorption performance of the selected sorbents. 

 

(4) Identify key parameters that should be considered in developing effective 

desulphurization sorbents, including those that pertain to the kinetics of 

adsorption. 
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2.0 Background of Sulphur Removal 
 

2.1 Sources of Sulphur in Fuel  
 

Sulphur compounds are naturally present in crude oil both in the form of organic and 

inorganic compounds.  The total sulphur content, the percent organic sulphur and the percent 

inorganic sulphur vary depending on the location of the extraction.  The inorganic forms of 

sulphur include hydrogen sulfide (H2S) and carbonyl sulphide (CS).  The organic forms of 

sulphur include thiols (mercaptans) (e.g. methyl mercaptan, ethyl mercaptan, propyl 

mercaptan), thiophenes, benzothiophenes, dibenzothiophenes, benzonaphthothiophenes, 

benzo (d,e,f) dibenzothiophenes and their alkylated derivatives.  Organic sulphur 

compounds with higher molecular weight are less reactive and are mostly found in diesel 

fuel.  Conversely, those with lower molecular weight are more reactive and are mostly found 

in gasoline.   

 

After hydrodesulphurization the remaining sulphur compounds in the fuel are mainly 

thiophene (T), benzothiophene (BT), dibenzothiophene (DBT) and their alkylated 

derivatives, which vary depending on the type of fuel.  For gasoline the dominant sulphur 

containing compounds include, methylthiophenes, benzothiophene, thiophene and 

dimethylthiophenes.  For diesel, the dominant sulphur containing compounds are methyl, 

dimethyl and trimethyl benzothiophenes and dibenzothiophenes (e.g. 4-MDBT, 

4,6-DMDBT, 2,4,6-TMDBT, 3,6-DMDBT, DBT).  For jet fuel, the dominating organo-

sulphur compounds are mainly trimethyl benzothiophenes, such as 2,3,7-TMBT, 2,3,5-

TMBT and 2,3,6-TMBT.  Molecular structures of some of the key organo-sulphur 

compounds are presented in Appendix B. 

 

In the case of diesel fuel, the majority of the refractory sulphur compounds (especially 4,6-

dimethyldibenzothiophene, 4-methyldibenzothiophene and dibenzothiophene) are found in 

the light cycle oil (LCO).  With these relatively un-reactive sulphur compounds being the 
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most difficult to remove with the currently available sulphur removal methods, it is sensible 

to focus on developing methods that can successfully remove these sulphur compounds from 

the LCO fraction.  An example of the average content of sulphur containing compounds in 

the FCC for a North American refinery is presented in Table 2.1. 

 

Table 2.1 - An Example of the Average Content of Sulphur COMPOUNDS IN FCC  

Sulphur Containing Compounds Content  
(ppmw) 

 Mercaptan Sulphur 24.2 

Sulfide sulphur 7.3 

Thiophene sulphur 61.9 

C1 Thiophene sulphur 115 

C2 Thiophene sulphur 130.6 

C3 Thiophene sulphur 90.9 

C4 Thiophene sulphur 88 

Benzothiophene & Dibenzothiophene 238.1 

Source: Irvine 1998.  
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2.2 Environmental Implications & Regulations 
 

When combusting fossil fuel (gasoline, diesel, fuel oils, jet fuel, etc.) sulphur dioxide (SO2) 

is emitted into the atmosphere.  Emissions of SO2, along with emissions of nitrogen oxides, 

are the primary cause of acidic deposition which has a significant effect on the environment, 

particularly in developed and developing nations.  Also, sulphur containing compounds are 

known for their interaction with precious metals commonly used in engine exhaust catalytic 

converters.  Sulphur originating from gasoline, diesel or lubricant oils reacts with active 

metals and poisons the catalyst in the catalytic converter and thus reduces its conversion 

capacity for other contaminants such as carbon monoxide and unburned hydrocarbons 

(Karjalainen et al. 2004).  

 

The more stringent guidelines set by the United States Environmental Protection Agency 

(U.S. EPA), known as Tier II, came into effect in June 2006, which obligated the refinery 

sector to reduce the sulphur content of diesel fuel to 15 ppmw (from 500 ppmw) and 

gasoline fuel to 30 ppmw (from 350 ppmw).  As mentioned above, the European Union 

(EU) has further reduced the allowable sulphur content of fuel from 50 ppmw (since 2005) 

to 10 ppmw in 2010.  In the United States, fuel types such as diesel used in non-road 

vehicles, locomotives and marine engines are required to meet the 15 ppmw sulphur limit 

(as of 2010).  These stringent regulatory requirements have proven to be challenging for the 

refineries especially with the continuous increase in the sulphur content of crude oil as well 

as the ever increasing cost of the refining operation and crude oil.  According to Torrisi et al. 

the average sulphur content of crude oil processed in the United States has increased from 

0.89 wt% in 1981 to about 1.25 wt% in 1997 (Torrisi et al. 2002).   

 

The Ontario Ministry of Environment requires the petroleum refineries to report their 

sulphur-in-gas on a quarterly basis.  Ontario’s regulation was replaced by a federally 

regulated 30 ppm sulphur limit in gasoline since January 1, 2005. 

 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 7 University of Waterloo Thesis 

In the Notice of Intent on Cleaner Vehicles, Engines and Fuels, published in the Canada 

Gazette I in February 2001, Environment Canada committed to developing measures to 

reduce the level of sulphur in both light and heavy fuel oils used in stationary facilities.  

There is currently no regulated national standard for sulphur in either Heavy Fuel Oil (HFO) 

or Light Fuel Oil (LFO).  British Columbia, Ontario, Quebec, New Brunswick and the 

Montreal Urban Community regulate the sulphur content in HFO at various levels ranging 

from 1.1 % wt. up to 3.0 % wt.  Several provinces including New Brunswick, Ontario and 

Quebec regulate the sulphur content of LFO at 0.5% wt.  The commercial standard set by 

the Canadian General Standards Board (CGSB) specifies limits of 0.3% wt. sulphur content 

for type 0 LFO and 0.5% wt. for types 1 and 2 LFO.  The CGSB does not specify any limit 

for sulphur in HFO. 
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3.0 Current Methods of Desulphurization 
 
Currently hydrodesulphurization (HDS) uses a Co-Mo / Al2O3 catalyst at high pressure and 

high temperature.  The mechanism of HDS for dibenzothiophene is known to occur through 

hydrogenation and hydrogenolysis.  Hydrogenation refers to the formation of S-H bond 

whereas hydrogenolysis is the cleavage of C-S bond.  Each of these two desulphurization 

reaction pathways occurs at different catalytic sites of the commercially used cobalt-

molybdenum on alumina (Co-Mo/Al2O3) catalyst.  The rate constants for hydrogenation of 

DBT and 4,6-DMDBT are 0.015 and 0.010 L/min, while the rate constants for th 

hydrogenolysis pathway for DBT and 4,6-DMDBT are 0.048 and 0.004 L/min, respectively.  

It has been proposed that during hydrogenation, the steric hindrance of methyl groups is 

reduced and the electron density on sulphur is increased.  Therefore, hydrogenation is the 

preferred pathway in the desulphurization process of substituted dibenzothiophene (Ma et al. 

2003).   

 

Over 90% of sulphur and olefin in gasoline is in the naphtha from FCC.  It is well know that 

sulphur removal from naphtha can be achieved by catalytic hydrodesulphurization.  

However, one of the most important drawbacks of this method is the hydro-saturation of 

olefins and thus octane loss of about 10 numbers (Cullen & Avidan, 2001). 
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3.1 Commercially Available Desulphurization Processes 
  

Current commercially available deep and ultra-deep desulphurization methods for diesel fuel 

face a major hurdle due to the low reactivity of di-substituted benzothiophenes, such as 4,6-

dimethyldibenzothiophene.  The methyl groups at C4 and C6 cause steric problems for the 

sulphur to interact with active sites of the sorbent/catalyst.  This problem is magnified due to 

two additional factors:    

 (1) Presence of nitrogen compounds and polyaromatics in diesel fuel.   

 (2) Presence of H2S in the reaction system during hydrodesulphurization.   

 

Both polyaromatics and nitrogen compounds can compete with sulphur compounds for 

active sites on the sorbent/catalyst surface during chemisorption, which would hinder the 

hydrogenation and subsequent hydrodesulphurization of sulphur compounds.  On the other 

hand the H2S directly competes with organic sulphur compounds and thus the 

hydrogenolysis of C-S.  Having said that, removal of aromatics from the diesel fuel is 

desirable as it improves combustion characteristics and also reduces formation of harmful 

emissions (Song et al. 2003).   

 

One of the commercially available methods of catalytic hydrodesulphurization is the S-Zorb 

developed by Phillips Petroleum Company.  The company claims that the proprietary 

sorbent is capable of removing refractory sulphur compounds from the stream through 

adsorption in a fluidized bed reactor and that the sorbent can be regenerated using air 

(forming SO2) and further reduced using H2.  It is also claimed that the process removes 

refractory species such as 4,6-dimethyldibenzothiophene.  The reaction reported for 

benzothiophene is: 
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      Benzothiophene  +    H2  →  S (ads)   +  ethyl benzene 

 

One of the drawbacks of this process is that it is carried out under high temperatures (340 – 

430 °C) and relatively high pressures (100 – 500 psig) (Phillips Petroleum, 2001). 

  

Another innovative approach to sulphur removal is the ultrasound technology developed by 

SulphCo Company.  This process consists of two steps:  

1. Oxidation of thiophenic compounds in an ultrasound reactor forming 
sulfoxides and sulfones.  

 
2. Sulfoxides and sulfones are removed by solvent extraction.   

 

The ultrasound is used to create gas bubble cavities used for oxidation of thiophenes.  This 

process is done under high temperature and high pressure conditions and currently there are 

no commercial installations.  Also, the effectiveness of this process in removal of 4,6-

DMDBT is unknown (Yang, 2003).  

 

Currently available sulphur removal technologies and their pros and cons are summarized in 

TABLE 3.1.   
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TABLE 3.1 - COMPARISON OF CURRENTLY AVAILABLE SULPHUR TREATMENT/REMOVAL TECHNOLOGIES 

TECHNOLOGY OCTANE 
LOSS VOLUME LOSS

SULPHUR 
REDUCTION 
CAPABILITY 

HYDROGEN 
CONSUMPTION

COMMERCIAL 
INSTALLATIONS 

ADDITIONAL 
PROS ADDITIONAL CONS 

Feed HDS No n/a may not meet  
30 wt ppm High Many 

1-Improved liquid 
yield 
2-Reduced SOx 
emissions 

Highest initial capital cost 

Catalytic Distillation hydro-
treating Yes No 10 - 30 wt ppm Yes 1st started up in May 

2000 n/a 
1-Catalyst cost 
2- May produce recombined RSH 
3-High capital cost 

Conventional Hydrofining 
with octane recovery No up to 5% 10 wt ppm Yes Operating since 1991 n/a 1- Catalyst Cost 

2- Total olefin saturation and Rvp increase 

Selective cat naphtha 
Hydrofining Yes No 10 wt ppm Yes Yes n/a 1- Catalyst cost 

2-May produce recombined RSH 

Dual-catalyst reactor Yes No 10 - 30 wt ppm Limited Several in Operation 
No need for 
additional product 
sweetening 

1- Catalyst cost 
2- Includes diolefin saturation and interstage strip 
3- May produced recombined RSH 

Low pressure fixed-bed 
hydroprocessing Yes 0.3 - 2% 10 wt ppm Yes Yes n/a 

1- Requires MTBE (or equivalent) addition for max 
yield case to recover octane. 
2- Total olefin saturation and Rvp increase 

Olefinic alkylation Yes Yes 10 wt ppm No One n/a Catalyst Cost 

Sorbent No 
Yield is almost 

100% of original 
stream 

10 wt ppm Low Small-scale start-up 
in 2001 

No recombined RSH 
formed 

1- High initial capital cost 
2- Sulphur yielding as SO2 

Extractive mass transfer No No 10 wt ppm No No 

1- Cost savings 
compared to HDS as 
final polishing step
2- Preserves octane 

1- Chemical costs 
2- RSH removal only 

Source: Hydrocarbon Processing: February 2002 issue, pp 45-50 (with permission)     
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In some of the industrial installations, or those developed methodologies ready for 

commercialization, the hydrodesulphurized product is blended with the hydrocarbon 

fraction from the adsorber. The sulphur contents of the ultra-clean fuels produced from 

such an integrated process may be in the range of 1 to 5 ppmw.  This is achieved by 

integrating two desulphurization processes of Selective Adsorption of Removing Sulphur 

(SARS) and Hydrodesulphurization of Concentrated Fraction (HDSCS) (Ma et al. 2002).    

The inventors of the SARS claim that the process has several potential advantages over 

other commercialized processes, including: 

 

(1) The SARS process is effective for ultra-deep desulphurization of 

liquid hydrocarbon fuels including gasoline, diesel fuel and jet fuel 

at room temperature. 

 

(2) The SARS adsorption process is operated at ambient temperature 

and ambient pressure, without using any H2, which leads to low 

energy consumption, low investment and low operating cost. 

 

(3) For a refinery operation, the hydrodesulphurization following the 

SARS only deals with the sulphur fraction (HDSCS), which leads 

to low hydrogen consumption and low energy consumption, as well 

as low investment and low operating cost. 

 

(4) Little or no octane penalty is expected for gasoline, because in the 

adsorption desulphurization process most of the olefins with high 

octane number are kept in the gasoline without suffering 

hydrogenation (Ma et al. 2002).    
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3.2 Current Desulphurization Research  
 

In order to achieve ultra-deep desulphurization through formulating catalysts with 

improved hydrogenation activity (i.e., hydrodesulphurization), several approaches have 

been undertaken, including: 

  

(1) improving hydrogenation ability of the sorbent/catalyst for enhanced 

hydrogenation of aromatic rings in 4,6-dimethyldibenzothiophene;  

 

(2) integrating acidic property in the sorbent/catalyst to include 

isomerization of methyl groups away from C4 and C6 positions; and  

 

(3) removing inhibiting compounds such as H2S and tailoring reaction 

conditions for adsorption of sulphur compounds.    

 

More recent developments in deep desulphurization include removal via selective 

adsorption of sulphur containing compounds at ambient conditions and without the use of 

H2.  The bench-scale experiments for this type of selective adsorption use heterogeneous 

sorbents (usually impregnated with metal species such as Cu and Pd) to selectively adsorb 

(chemisorption or physisorption, depending on the compound being adsorbed) sulphur-

containing compounds (Ma et al. 2003).  Summaries of abstracts of recent publications in 

the field of adsorptive sulphur removal mainly dealing with activated carbon and modified 

activated carbon are provided below.  Also provided at the end of this section is a brief 

description of the adsorption mechanism in general. 

 

Both thiophenic compounds and non-sulphur aromatic compounds can interact with metal 

species of the sorbent through π-electrons.  π-electrons are those electrons that participate 

in π complexation (Ma et al. 2003).  The same study proposes the use of this selective 
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adsorption method for hydrodesulphurization for a more economical desulphurization 

process.  The proposed integrated process consists of an initial selective adsorption process 

for removal of sulphur containing compounds followed by hydrodesulphurization of 

concentrated sulphur compounds using high activity catalysts such as Co-Mo on MCM-41.  

The subsequent desulphurization of the concentrated sulphur compounds allows for more 

efficient utilization of a reactor due to the higher concentrations, faster 

hydrodesulphurization rate due to absence (or lesser concentration) of inhibiting aromatics 

(normally interfere with sulphur removal by adsorbing onto hydrogenation sites) and 

smaller reactor volume (volume reduction by > 94%) due to lesser quantity of materials to 

be processed (Ma et al. 2002). 

 

Kabe et al. compared the reactivities of dibenzothiophene (DBT), 4-

methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzonthiophene (4,6-DMDBT) 

using a Co-Mo/Al2O3 catalyst under deep desulphurization conditions to obtain a sulphur 

concentration of less than 0.05 wt%.  The results indicated that while conversions of all 

three sulphur-containing compounds to cyclohexylbenzenes were the same, the conversion 

into biphenyls decreased with increasing degree of alkylation (Kabe et al. 1993).  Based on 

the results it was concluded that the three compounds were adsorbed to the catalyst surface 

via π-electrons in the aromatic rings but the alkylated species were more strongly adsorbed 

and the C-S bond cleavage of alkylated species was disturbed by steric hindrance of the 

methyl groups.  This steric hindrance is expected to increase with the size of the alkyl 

group, i.e. from methyl to ethyl to propyl (Kabe et al. 1993 and Ma et al. 2003). 

 

Studies incorporating mesoporous MCM-41 as a support for conventional Co-Mo catalysts 

have shown improved sulphur removal.  The design approach makes use of high surface 

area of MCM-41 for higher activity per unit weight, uniform mesopores to facilitate 

diffusion of sulphur compounds, and mild acidity of the aluminum containing support 

(MCM-41) to facilitate dispersion of Co-Mo and promote isomerization (Song et al. 2003). 
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Babich and Moulijin conducted research on activated alumina in the form of fine-sized 

slurry in a countercurrent moving bed in a commercial process called the IRVAD Process 

(combination of inventor name “IRVine” and “ADsorption”) for desulphurization.  

Gasoline products with sulphur as low as 0.5 ppmw were claimed.  Desorption is 

performed with hydrogen at various temperatures up to 270°C.  Ag-exchanged Y-zeolite 

and Cu(II)-Y were also used in temperatures as high as 200-350°C and 200-550°C, 

respectively, however, both showed low thiophene capacities.  A transition metal 

compound supported on silica gel was also used intending for the metal to form a bond 

with the sulphur atom of the thiophenic compound.  However, the sulphur adsorption 

capacity was low (Babich & Moulijn, 2003). 

 

In his 2002 research, Song conducted research on reduction or elimination of sulphur 

poisoning of noble metals, which are used as catalyst in hydrodesulphurization.  In order to 

reduce or eliminate the poisoning of noble metals, recently developed processes use multi-

staged catalytic beds to achieve deep desulphurization.  In the first stage a Co-Mo or Ni-

Mo catalyst supported on alumina was used for deep hydrogenation and desulphurization.  

In the second step the gaseous by-products are removed and in the third step noble metals 

are used for further hydrogenation and desulphurization of already low sulphur content 

feed solution.  Results showed reduction in sulphur poisoning (Song, 2002).     

 

A systematic approach, taken by Yang et al. in the search of a thiophene-selective sorbent 

was completed in 2004.  The study concluded that through π–complexation the selectivity 

for sulphur adsorption is improved.  The calculation for the bonding between benzene and 

thiophene with Cu+ and Ag+ exchanged on Y-zeolites showed that the π–complexation 

bond for thiophene is stronger than that with benzene.  Furthermore, the calculated bond 

strengths are in the proximity of 20 kcal/mol, indicating a weak chemical bond that is 

reasonable for the purpose of removing thiophenic compounds.  The author claims that the 

weak chemical bonds such as π-complexation are considered to be the preferred means for 

selective removal of thiophene.  Based on the research work completed by Yang et al. 
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effective π–complexation sorbents for sulphur removal include Cu(I)Y, CuCl/γ -Al2O3 and 

AgNO3/SiO2 (Yang et al. 2004). 

 

Vapour phase adsorption isotherms of thiophene on various sorbents were measured in 

order to assess their suitability for sulphur removal. Direct correlation between adsorption 

in vapour phase and liquid phase has not been established yet, however a potential 

theoretical approach has been used by replacing the “saturated pressure” term with the 

“saturated concentration in solution” term, in order to use the results from vapour phase 

experiments for the liquid phase.  It is assumed that a sorbent capable of adsorbing 

thiophene at very low partial pressures in the gas phase should also be able to do so in the 

liquid phase (Yang et al. 2004). 

 

Another study by Yang et al. looks at Cu+ and Ag+ on Y-zeolite as an adsorbent for 

sulphur compounds.  In this study deep desulphurization is achieved at ambient conditions 

using commercial diesel with sulphur content of approximately 430 ppmw.  The authors 

claim that the chosen adsorbent supported on Y-zeolite is highly selective for sulphur 

compounds (evident from adsorption bond energy differentials between thiophene and 

benzene) and also has a relatively high sulphur-capacity.  According to the study, the 

bonding is a π-complexation where electrons are donated from the “π*” orbital of 

thiophene to the vacant “s” orbital of metals (sigma donation), while the electrons from the 

“d” orbital of the metals are back donated to the “π*” orbital of thiophene.  The results of 

this research work indicate significant reduction in sulphur (to levels suitable for use in 

PEM fuel cells) as well as promising re-generability  via thermal desorption (at 350°C) or 

by solvent extraction (using dimethylformamide or carbon tetrachloride).  An activated 

carbon (AC) layer to increase the capacity of the sorbent, by targeting larger sulphur 

compounds, was also used (Yang et al. 2003).  The authors claim that the removal of larger 

sizes of thiophenic compounds using AC seems to have contributed to the reduction of the 

overall sulphur compounds, as it is believed that the Y-zeolite may have experienced some 
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steric problem with adsorption of larger sulphur compounds such as 4,6-

dimethyldibenzothiophene (Yang et al. 2003). 

 

Liquid phase breakthrough experiments were performed on a fixed-bed adsorber of CuY, 

AgY and NaY using solutions of thiophene in n-octane as the feed. The zeolites were 

activated in-situ prior to cooling and breakthrough experiments. As concluded from vapour 

phase isotherms, the three zeolites have similar total capacities for thiophene and benzene.  

It is claimed that the NaY lacks selectivity for thiophene since it does not form π –

complexation.  With AgY and CuY and feeds containing 2000 and 500 ppmw thiophene, 

the sulphur content of the effluent remained below the detection limit (~0.28 ppmw) for an 

extended period of time. The thiophene capacity for AgY was 7.5 wt% for a feed 

concentration of 2000 ppmw.  The result for CuY was 21.42 wt% for the same feed. 

Therefore, CuY was a better sorbent in both sulphur selectivity and capacity for thiophene 

sulphur removal from gasoline and diesel fuels.  The authors also claim that  “Sulphur-

free” fuel was also produced using commercial gasoline and diesel on Cu(I)Y as well as on 

Cu(I)Y with a layer of 15% guard-bed of activated carbon.  A total of 34.3 cm3 of diesel 

and 19.6 cm3 of gasoline were purified per gram of total sorbent (Yang et al. 2003).   

 

A study by Zhang et al. (2005) on deep desulphurization of gasoline for use in fuel cell 

applications looked at the performance of a cerium on Zn-Fe-O on Al2O3 sorbent for 

removal of organic sulphur compounds from gasoline, via adsorption.  Based on the 

findings of the study, a composition consisting of 4.54 wt.% ZnO, 2.25 wt. % Fe2O3 and 

2.5 wt.% CeO2 illustrated best sulphur removal results. The study also claims that the 

regeneration of the sorbent was also successful, using a gas mixture containing 6 vol.% 

steam and air, and a gas space velocity of 2,400 mL/h/mL.  The actual adsorption process 

was found to be optimal at 60 oC, resulting in final sulphur concentrations of less than 

10ppm. The characterization of the sorbent and the adsorption was carried out using BET, 

XRD and SEM apparatus (Zhang et al. 2005). 
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An alternative method for reducing the sulphur content of fuel and specifically diesel is 

oxidative desulphurization (OD) process, in which the refractory sulphur compounds are 

oxidized to their corresponding sulfones and are then removed using adsorption, 

extraction, distillation or decomposition. Hydrogen peroxide (H2O2) is a commonly used 

oxidizing agent; however, in the absence of catalyst the oxidation process is relatively 

slow. A study by Garcia-Gutierrez et al. looked at the utilization of molybdenum supported 

on alumina (Mo/Al2O3) as a catalyst in the oxidation of organic sulphur compounds and 

subsequent removal of the sulfones via adsorption. The study claimed a sulphur removal of 

99.7% by weight (final sulphur concentrations are not specified) (Garcia-Gutierrez et al. 

2006). 

 

A study by Sakanishi et al. on adsorptive removal of sulphur compounds (BT, 2-MBT) 

from naphtha fractions (model compounds: toluene, naphthalene and 1-methylnaphthalene) 

via carbon adsorption indicated that mesoporous activated carbon with a fine particle size 

was more effective in selective adsorption of 2-ring sulphur compounds from naphtha 

fractions (Sakanishi et al. 2003). 

 

A recent study by Song et al. on activated carbon examined the effects of surface 

properties and structure of activated carbons on adsorption of BT, DBT, 4-MDBT and 4,6-

DMDBT in the presence of aromatics in a model diesel compound (hexadecane).  The 

study has looked at activated carbons and carbon blacks from different sources, including, 

coconut, various types of coal, wood, as well as petroleum coke.  The sorbents varied in 

surface area (range from 254 m2/g to 2,201 m2/g), particle size (range from ultra fine to 

pellets of ~ 1.6 mm in dia.) and surface functional groups.  They have characterized these 

activated carbons by nitrogen adsorption, X-ray diffraction and X-ray photoelectron 

spectroscopy (XPS) techniques.  The surface functional groups were analyzed using XPS.  

The chemical states of C, N and O species were determined from charge-corrected high-

resolution scans.  Results indicated that in addition to the structural aspect of activated 

carbons (e.g. pore size, surface area), surface functional groups play a key role in 
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adsorption capacity and selectivity towards sulphur compounds.  The equilibrium 

adsorption capacities for various carbon materials (both activated carbon and carbon black) 

indicated a range of 1.7 to 7.0 mg-Sulphur / g-Adsorbent (0.05 – 0.22 mmol-sulphur / g-

sorbent).  The results also indicated that regardless of the type of carbon material, the 

adsorption selectivity for sulphur compounds increased in the order of BT < DBT < 4-

MDBT < 4,6-DMDBT.  The paper also concluded that the increase in concentration of 

oxygen containing functional groups on the surface resulted in improvement in sulphur 

adsorption capacity.  It is claimed that the regeneration of activated carbon sorbents 

through solvent washing was shown to be effective.  A follow-up study by the same group 

claimed that the acidic oxygen functional groups, such as carboxyl and hydroxyl on the 

surface were determined to be the active sites for refractory sulphur compounds, including 

4,6-DMDBT.  Based on the results, the authors claim that an increase in acidic oxygen 

functional groups on the surface of the activated carbon can significantly improve 

adsorption of sulphur compounds (Song et al. 2006). 

 

In a research study by Yu et al. the effect of metal ions (Ag+, Ni2+, Cu2+ and Zn2+) loaded 

on activated carbon was studied in terms of the activation energy of desorbing the 

adsorbed dibenzothiophene. The metal ion was loaded on activated carbon through 

impregnation process.  A series of temperature-programmed desorption (TPD) 

experiments were carried out in order to determine the activation energy of desorption.  

Two distinct desorption peaks were detected for all the metal impregnated activated 

carbons, which the authors claim is due to corresponding interaction of the sulphur 

compound (DBT) with the activated carbon surface (functional groups) and with the metal 

ions impregnated on the surface of activated carbon.  The study claims that this is an 

indication of forming new adsorptive sites for the sulphur compounds.  The desorption 

activation energies were measured as follows (all units in kJ/mol): Ag(I)/AC = 92.96, 

Zn(II)/AC = 88.64, Ni(II)/AC = 74.91, Cu(II)/AC = 69.32, AC = 54.65 and Fe(III)/AC = 

47.39.  The study also claims that the enhancement of interaction with sulphur compounds 

due to silver loading is due to the fact that Ag+ is a soft acid and DBT is a soft base, while 
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the reduction in activation energy of desorption for iron impregnated activated carbon is 

due to the fact that Fe3+ is a hard acid, while DBT was soft base.  The authors claim that 

the loading of copper, nickel and zinc on the surfaces of the activated carbon could 

weaken the local hard acids of the surface of the activated carbon therefore, the DBT 

adsorption  was somewhat enhanced (Yu et al. 2007). 

 

The adsorption performance of seven activated carbons and three activated alumina were 

evaluated in a batch adsorption system and a fixed-bed flow adsorption system for 

removing quinoline and indole from a model diesel fuel in the coexistence of sulphur 

compounds and aromatics. The authors showed that different adsorbents show significantly 

different selectivity toward basic and non-basic nitrogen compounds (quinoline and indole) 

and sulphur compounds (dibenzothiophene and 4,6-dimethyldibenzothiophene).  

Generally, the activated carbons show higher capacity than activated alumina for removing 

the nitrogen compounds. The selectivity as well as adsorption capacity of the activated 

carbon sorbents for nitrogen compounds were correlated with their textural properties and 

oxygen content.  The authors claim that the microporous surface area and micropore 

volume are not key factors in the removal of nitrogen compounds in the tested activated 

carbons.  Also, the oxygen functionality of the activated carbons may play a more 

important role in determining the adsorption capacity for the nitrogen compounds since the 

adsorption capacity for nitrogen compounds increases with increased oxygen concentration 

of the activated carbons.  The type of the oxygen-functional groups may be crucial in 

determining their selectivity for various nitrogen or sulphur compounds. Regeneration of 

the saturated adsorbents was conducted by toluene washing followed by heating to remove 

the remained toluene. The paper claims that the spent activated carbons can be regenerated 

to fully recover the adsorption capacity (100% regenerability) (Song et. al. 2009). 

 
A study by Selvavathi et al. consisted of adsorptive desulphurization of refractory sulphur 

compounds including, dibenzothiophene (DBT), 4-methylbenzothiophene (4MDBT) and 

4,6-dimethyl-dibenzothiophene (4,6-DMDBT).  Two commercially available activated 
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carbons and modified forms of the same activated carbons, acid treated using HNO3, and 

Ni supported systems were studied for sulphur adsorption. The modified activated carbons 

showed better adsorption capacity in comparison to the original activated carbons (as 

received) (Selvavathi et al. 2009). 

 

A study was carried out by He et al. on adsorption desulphurization of fluid catalytic 

cracking (FCC) gasoline using oxidized activated carbon (via ozone) as an adsorbent.  The 

study claims that under optimum adsorption conditions, including: activated carbon 

particles 80 - 100 mesh, adsorption temperature of 80°C and liquid hourly space velocity 

of 1.70 h-1, sulphur content in initial FCC gasoline effluent after adsorption was reduced 

from 796 µg/g to 18 µg/g, with an initial desulphurization efficiency of 97.7%.  The 

authors also claim that the activated carbon can be regenerated after reaching saturation.  

The regeneration conditions were optimized as follows: ethanol as desorption agent, 

desorption temperature of 60°C and liquid hourly space velocity of 11.70 h-1 for ethanol.  

After reusing the activated carbon 3 times, the adsorption capacity drops to 45 µg/g and the 

initial desulphurization efficiency drops to 94.3% (He et al. 2008). 

 

A study on adsorptive desulphurization of diesel fuel was carried out using CuO supported 

on activated carbon and modified with acid (i.e., HNO3) in a fixed bed reactor experiment.  

The factors affecting desulphurization capacity decreased in the order: mass fraction of 

HNO3, calcination temperature, activation temperature, mass loading content of CuO and 

lastly, the temperature of the fixed bed.  The author claims to have established optimum 

conditions for adsorptive desulphurization as follows: the mass fraction of HNO3 at 65%, 

calcination temperature at 450°C, activation temperature at 80°C, CuO content of 3% (by 

weight), and the temperature of the fixed bed at 120°C.  Under these conditions, the 

sorbent was regenerated three times by thermal cycling.  The rate of desulphurization 

declined slowly (Yang et al. 2007). 
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In a study by Yu et al. (2007) the removal of sulphur-containing species in oil using 

activated carbon was explored.  A batch type adsorptive apparatus was used to evaluate the 

desulphurization performance of activated carbons pre-treated under different conditions.  

The evaluation was based on adsorption isotherms.  The initial sulphur content in the 

model oil compound used was at 440 ppmw.  The study claims that the adsorption capacity 

towards thiophene improved for the activated carbon that was treated with acid (i.e., 

HNO3) at 120°C in comparison to the untreated activated carbons.  It is also claimed that 

the optimum adsorption performance is achievable at 20°C, an adsorption time of three 

hours, and an adsorbent/oil ratio of 0.09 g/g.  It was determined that the adsorption 

isotherm for thiophene on the activated carbons satisfactorily fit the Freundlich model and 

equation.  Thiophene adsorption on the activated carbon was determined to be spontaneous 

(Yu et al. 2007). 

 

Kim et al. (2007) conducted a study on adsorptive desulphurization and denitrogenation of 

a model fuel containing aromatic, sulphur and nitrogen compounds.  The study was done 

on activated carbon-based adsorbents.  The results provided new insight into the adsorption 

properties (selectivity and capacity) of several metal-loaded carbon adsorbents for different 

compounds.  The authors claim that in most cases, the loading of the activated carbon with 

metals improved the adsorption capacity towards DBT and quinoline while no change was 

observed for 4,6-DMDBT and indole.  The authors showed that Ag loaded activated 

carbon improved the adsorption capacity of DBT the most, however, the reverse was 

observed for nitrogen compounds.  In case of Ce improved the adsorption capacity for both 

quinoline and DBT in this study (Kim et al. 2007). 

 

In a study conducted by Yao (2006) the surface of adsorptive sorbent made up of activated 

carbon (AC) was improved through acid treatment (HNO3) and loading with metallic ions.    

It was determined that the surface acidity groups of activated carbon increased 

considerably because of acid treatment.  The BET surface area of the activated carbon 

however, decreases from 667.6 m2/g to 372 m2/g.  The surface area of the activated carbon 
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also decreased as a result of metal loading.  The study claimed that the adsorption capacity 

of the sorbent improved as a result of metal ion loading.  It was claimed that AC loading 

with Fe3+ exhibits good adsorption performance, with removal ratio of 85.1%, to sulphur 

complexes of thiophene that are difficult to be removed from gasoline (Yao, 2006). 

 

In a study by Zhou et al. (2006) the adsorptive performance of modified activated carbons 

were evaluated for adsorptive removal of sulphur compounds from a liquid hydrocarbon 

fuel.  In preparing an ultra-high-surface-area activated carbon from Shenfu coal through 

chemical activation, strong bases NaOH and KOH were used.  The study claims that the 

preparation of sorbent through chemical treatment was optimized based on examining 

variables such as impregnation time, activating-agent/coal ratio, base (KOH/NaOH) ratio, 

and activating temperature.  The claim indicates that the experimental results support the 

key impacts that variables such as activating-agent/coal ratio, KOH/NaOH ratio, activating 

temperature and activating time have on improving the performance of the activated 

carbon in adsorptive desulphurization.  The study also claims that chemical activation with 

two activating agents of NaOH and KOH may be a more efficient method in developing 

sorbents with high desulphurization capacity (activated carbon based) in comparison with 

chemical activation with KOH or NaOH alone.  It was determined in their study that the 

surface area of the activated carbon prepared with mixture of NaOH and KOH was up to 

3000 m/g2 (Zhou et al. 2006). 

 

In a study by Ma et al. (2006), a series of semi-empirical quantum chemical calculations 

was performed for the fundamental understanding of the adsorptive mechanism of sulphur 

compounds over activated carbon.  It was determined that acidic oxygen functional groups, 

carboxyl or hydroxyl, which exist on the surface of activated carbon are adsorption sites 

for sulphur compounds.  The study claims an excellent linear correlation between the 

estimated heat of adsorption and the experimentally measured selectivity factors.  The 

results indicated that the removal of sulphur compounds from liquid hydrocarbon fuels 
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could be improved by increasing the acidic oxygen functional groups on the surface of the 

activated carbon (Ma et al. 2006). 

 

In a study by Bandosz and Conchi (2006), a series of sulphur adsorption experiments on 

impregnated activated carbon was completed.  The activated carbon was loaded with 

sodium, cobalt, copper, and silver.  The adsorption of dibenzothiophene was conducted at 

ambient temperature. The authors claimed a highly dispersed metal loading on activated 

carbon, with the loading controlled by selective washing.  The modified activated carbon 

adsorbents showed good adsorption capacities and selectivity for DBT.  The authors claim 

that the incorporated metals have three functions; (1) form new active sites for selective 

adsorption of sulphur compounds; (2) form structural stabilizers for the carbon substrate; 

and, (3) act as catalyst initiators in reactive adsorption.  From the list of metals used for 

impregnation, cobalt and copper loaded activated carbons showed the highest adsorption 

capacity.  The study claims that this is due to not-well defined catalytic synergetic effects.  

The study also claims that the presence of sulphur compounds in the structure of the 

activated carbon (sulfonic functional groups) results in sulphur-sulphur interactions, which 

improve the adsorption capacity of the sorbent towards DBT (Bandosz & Conchi, 2006). 

 

Zhou et al (2009) conducted a study on adsorption of dibenzothiophene (DBT) from n-

octane solution using activated carbon from bamboo charcoal. The equilibrium and 

kinetics of DBT adsorption on the sorbent as well as the adsorption isotherm of the sulphur 

adsorption were correlated with Langmuir and Freundlich isotherms.  The authors claim 

that the experimental data well fitted the Freundlich adsorption mechanism. Two 

simplified kinetic models including pseudo first-order and pseudo second-order equations 

were selected to follow the adsorption processes. The study claims that the DBT adsorption 

is best described using the pseudo second-order kinetic equation (Zhou et al. 2009). 

 

A comprehensive study on adsorption of organo-sulphur (dibenzothiophene and 4,6-

dimethyldibenzothiophene) and organo-nitrogen (quinoline, indole and carbazole) 
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compounds on activated carbon was carried out by Wen et al (2010).  The study was 

completed on model diesel fuel, light cycle oils and shale oil. The study claims that the 

activated carbon sorbent was more selective towards the cyclic nitrogen compounds in 

comparison to the organo-sulphur compounds examined in the study.  Amongst the 

nitrogen compounds the greatest removal rate was achieved by quinoline, in comparison to 

indole and carbazole.  The adsorption kinetics for nitrogen and sulphur compounds were 

found to follow pseudo second-order kinetics. The authors claim that the external diffusion 

is not a controlling step in the adsorption process. The study claims that the activated 

carbon has a highly heterogeneous surface in the adsorption of the said sulphur and 

nitrogen compounds, with the exception of carbazole, for which a homogeneous surface is 

claimed.  The adsorption process is claimed to be spontaneous and favourable due to a 

negative free energy for adsorption (Wen et al. 2010). 

 

A competitive adsorption study, comparing the adsorption of polycyclic aromatic sulphur 

heterocycles (dibenzothiophene and 4,6 dimethyldibenzothiophene) and polycyclic 

aromatic hydrocarbons (naphthalene, anthracene and phenanthrene) on activated carbon 

was studied by Bu et al (2011).  The study focused on determining the impact of non-

sulphur polycyclic compounds on the adsorption of sulphur compounds.  The study claims 

that the adsorptive affinities of molecules with polycyclic aromatic skeleton structure are 

mainly due to the π–π dispersive interaction between the aromatic rings and the surface of 

the activated carbon. It is also claimed that the electron donor–acceptor mechanism plays a 

key role in the adsorption of sulphur compounds.  The study also looked at the pore sizes 

of the activated carbon and claims that the adsorption of large molecules in an effective 

manner would require the pore size to be larger than the critical diameter of the adsorbate.   

Larger pore size means reduction in diffusion resistance.  The study claims that the 

adsorption selectivity increased in the following order: naphthalene<fluorine 

<dibenzothiophene<4,6-dimethyldibenzothiophene<anthracene<phenanthrene. The authors 

also concluded that the adsorption capacity of sulphur compounds decreases significantly 

in the presence of polycyclic aromatic hydrocarbons.  The observed competition is said to 
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be due to similarity in structure, molecular diameter and adsorption mechanisms between 

the sulphur compounds and those of polycyclic aromatic hydrocarbons (Bu, Loh et al. 

2011). 

A sulphur adsorption study was carried out by Tang et al (2011) using ion-exchanged (Ag) 

mesoporous aluminosilicate as the sorbent.  The adsorbate was dibenzothiophene in a 

binary solution with n-octane. The equilibrium adsorption data for dibenzothiophene was 

fitted to Langmuir and Freundlich isotherm models. The study claims that the data fit well 

with the Langmuir isotherm model and that the temperature and the active sites on the 

surface of the aluminosilicate play a key role in adsorption capacity of dibenzothiophene.  

The authors also claim that π-complexation plays a role in sulphur adsorption and is more 

effective at higher temperature and that the saturated adsorption capacity had a linear 

correlation with the silver ions loaded on the adsorbents (i.e., higher metal contents means 

improved adsorption capacity).  The study indicates that for more effective adsorption of 

sulphur species through π-complexation the process can be operated at higher temperature.  

The authors suggest that since adsorptive desulphurization will occur after 

hydrodesulphurization process, where the temperature of the reactor / content is high, 

having the adsorptive desulphurization occur at higher temperature would not only have a 

higher adsorption capacity, but also it will mean cost savings, as the temperature of the 

feedstock is not required to be reduced (Tang, Li et al. 2011).  

 

The key findings of adsorptive sulphur removal research published to date, including 

experimental conditions (e.g., Temperature, LHSV), initial sulphur concentrations and 

sulphur adsorption capacities, are summarized in TABLE 3.2, below.  The highest 

adsorption capacity listed in the table pertains to thiophene adsorption in n-octane solution, 

using Cu(I)-Y (LPIE) zeolite, at approximately 2.6 mmol-S/g.  Although this is an 

impressive adsorption capacity, it is not for refractory sulphur compounds that are 

commonly targeted in more recent research work, such as dibenzothiophene and 

methylated dibenzothiophene (e.g., 4,6 dimethyldibenzothiophene).  As mentioned earlier, 
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these compounds, especially the 4,6 DMDBT, are amongst the most challenging 

compounds to be eliminated/removed through HDS and/or adsorption methods, mainly due 

to the steric hindrance caused by the methyl groups of the benzene rings.  The maximum 

reported adsorption capacity for key refractory sulphur compound (4,6 

dimethyldibenzothiophene) is at 0.52 mmol-S/g, which was achieved using an activated 

carbon based sorbent (see Table 3.2) (Liu et al., 2010). 

 

 

Table A-1 in Appendix A summarizes the description and findings of some of the key 

sulphur adsorption work/methods that have been researched and/or are currently 

commercialized.    

 

The focus of this research work is on adsorptive removal of dibenzothiophene and 

4,6 dimethyldibenzothiophene as well as key organo-nitrogen compounds including, 

quinoline and carbazole.  
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TABLE 3.2 – ADSORBENTS INVESTIGATED FOR ADSORPTIVE REMOVAL OF SULPHUR FROM FUEL – RESEARCH STAGE 

 

Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

Ni/Si-Al Gasoline 305 200 °C  
LHSV = 4.8h-1 >9.5 >0.30 Ma et al. 

Ni-Al Gasoline 210 Ambient Temperature >1.7 >0.05 Ma et al. 

Ni-Al Real jet fuel 210 200 °C  
LHSV = 4.8h-1 >>4.4 >>0.14 Ma et al. 

Cu(I)-Y (VPIE) Jet fuel 364 Ambient Temperature 23.1 0.72 Hernandez-Maldonado 
et al. 

Zn(II)-Y    (LPIE-RT) Jet fuel 364 Ambient Temperature 3.7 0.12 Hernandez-Maldonado 
et al. 

Zn(II)-X    (LPIE-RT) Jet fuel 364 Ambient Temperature 6.3 0.20 Hernandez-Maldonado 
et al. 

CuCl/AC JP-5 1172 Ambient Temperature, 
LHSV = 2.3h-1 4.8 0.15 Wang et al. 

PdCl2/Al2O3 JP-5 1172 Ambient Temperature, 
LHSV = 2.3h-1 9.1 0.28 Wang et al. 

PdCl2/AC JP-5 1172 Ambient Temperature, 
LHSV = 2.3h-1 19.7 0.62 Wang et al. 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 29 University of Waterloo Thesis 

Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

Ni/Si-Al JP-8 736 220 °C 
LHSV = 2.4h-1 - - Velu et al. 

Ni/Si-Al Light JP-8 380 220 °C  
LHSV = 2.4h-1 - - Velu et al. 

KYNiIE-3 (red) Light JP-8 380 80°C ~6 ~0.19 Velu et al. 

KYNi8lWl (red) Light JP-8 Real diesel 380 80°C ~7 ~0.12 Velu et al. 

Activated Carbon Diesel 297 Ambient Temperature 9.41 0.29 Hernandez-Maldonado 
and Yang 

Selexsorb CDX (AL2O3) Diesel 297 Ambient Temperature 12.17 0.38 Hernandez-Maldonado 
and Yang 

Ce(IV)-Y (LPIE-80) Diesel 297 Ambient Temperature 3.91 0.12 Hernandez-Maldonado 
and Yang 

Cu(I)-Y (LPIE-RT) Diesel 297 Ambient Temperature 11.97 0.37 Hernandez-Maldonado 
and Yang 

AC/Cu(I)-Y (LPIE-RT) Diesel 297 Ambient Temperature 13 0.41 Hernandez-Maldonado 
and Yang 

CDX/Cu(I)-Y (LPIE-RT) Diesel 297 Ambient Temperature 10.97 0.34 Hernandez-Maldonado 
and Yang 
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Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

CDX/Cu(I)-Y (LPIE-RT) Diesel 297 Ambient Temperature 13.63 0.43 Hernandez-Maldonado 
and Yang 

Cu(I)-Y (VPIE) Diesel 297 Ambient Temperature 13.12 0.41 Hernandez-Maldonado 
and Yang 

CDX/Cu(I)-Y (VPIE) Diesel 297 Ambient Temperature 14.02 0.44 Hernandez-Maldonado 
and Yang 

Ni(II)-Y (LPIE-RT) Diesel 297 Ambient Temperature 6.53 0.20 Hernandez-Maldonado 
and Yang 

Ni(II)-Y (LPIE-135) Diesel 297 Ambient Temperature 6.82 0.21 Hernandez-Maldonado 
and Yang 

Na-Y T in n-octane (model fuel) 760 Ambient Temperature 33.6 1.05 Hernandez-Maldonado 
et al. 

Na-Y T in benzene 760 Ambient Temperature 3.2 0.10 Hernandez-Maldonado 
et al. 

H-Y T in n-octane 760 Ambient Temperature 36.8 1.15 Hernandez-Maldonado 
et al. 

Ag-Y (LPIE) T in n-octane 760 Ambient Temperature 29 0.91 Hernandez-Maldonado 
et al. 

Ag-Y (LPIE) T in benzene 760 Ambient Temperature 5.5 0.17 Hernandez-Maldonado 
et al. 
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Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

Cu(I)-Y (LPIE) Ambient Temperature 81.8 2.56 Hernandez-Maldonado 
et al. 

 

T in n-octane 760 
re-estimated based on 
provided breakthrough 
curve. 

- - Hernandez-Maldonado 
et al. 

Cu(I)-Y (LPIE) T in benzene 760   17.3 0.54 Hernandez-Maldonado 
et al. 

Cu(I)-Y (LPIE) T in n-octane 190 Ambient Temperature 41 1.28 Hernandez-Maldonado 
et al. 

Cu(I)-Y (LPIE) T in 20% benzene, 80% n-
octane 190 Ambient Temperature 14.1 0.44 Hernandez-Maldonado 

et al. 

Cu(I)-Y (LPIE) T in isooctane 190 Ambient Temperature, 
LHSV = 12h-1 ~23 0.72 Ma et al. 

Ni(II)-Y (LPIE) BT,DBT, and 4,6-DMDBT 
in n-octane 150 Ambient Temperature - - Ko et al. 

Ni(II)-Y (LPIE) 
BT,DBT, and 4,6-DMDBT 
in n-octane with 5 v/v % 
benzene 

150 Ambient Temperature - - Ko et al. 

Ni(II)-Y (LPIE) 
BT,DBT, and 4,6-DMDBT 
in n-octane with 5000 
ppmw H2O 

150 Ambient Temperature - - Ko et al. 
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Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

Ni-Al T+BT in paraffins with 8% 
toluene 400 Ambient Temperature, 

LHSV = 24h-1 14.2 0.44 Ma et al. 

Ni-Al T+BT in paraffins with 8% 
toluene + 5.1% olefin 400 Ambient Temperature, 

LHSV = 24h-1 4 0.13 Ma et al. 

Ni-Al 

DBT and 4,6-DMDBT in 
paraffins with 10% t-
butybenzene and 303 ppmw 
N 

687 Ambient Temperature, 
LHSV = 4.8h-1 2.4 0.08 Ma et al. 

KYNi30lWl (reduced) BT+ 2-BT+ 5-BT in decane 
with 19% n-butylbenzene 506 Ambient Temperature 11 0.34 Velu et al. 

KYNi30lWl (reduced) BT+ 2-BT+ 5-BT in decane 
with 19% n-butylbenzene 506 80°C 11.5 0.36 Velu et al. 

Activated alumina 

DBT and 4,6-DMDBT in 
paraffins with 10% t-
butybenzene and 303 ppmw 
N 

687 Ambient Temperature, 
LHSV = 4.8h-1 3.4 0.11 Kim et al. 

AC 

DBT and 4,6-DMDBT in 
paraffins with 10% t-
butybenzene and 303 ppmw 
N 

687 Ambient Temperature, 
LHSV = 4.8h-1 16.3 0.51 Kim et al. 

AC (ACNU) 
BT, DBT, 4-MDBT, 4,6-
DMDBT in paraffins with 
10% butybenzene  

398 Ambient Temperature, 
LHSV = 4.8h-1 13.1 0.41 Zhou et al. 
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Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

AC [8] 
BT, DBT, 4-MDBT, 4,6-
DMDBT in paraffins with 
10% butybenzene 

398 Ambient Temperature, 
LHSV = 4.8h-1 16.7 0.52 Zhou et al. 

Cu(I)-Y (LPIE-RT) Real gasoline 335 Ambient Temperature 12.61 0.39 Hernandez-Maldonado 
and Yang 

Cu(I)-Y (LPIE) Gasoline 305 Ambient Temperature, 
LHSV = 4.8h-1 0.64 0.02 Ma et al. 

AC/Cu(I)-Y (LPIE-RT) Gasoline 335 Ambient Temperature 15.87 0.50 Hernandez-Maldonado 
and Yang 

Ni/Si-Al Gasoline 305 Ambient Temperature, 
LHSV = 4.8h-1 1.5 0.05 Ma et al. 

 Ni(II)-X (LPIE-RT) Diesel 297 Ambient Temperature 8.03 0.25 Hernandez-Maldonado 
and Yang 

Ni(II)-Y (SSIE) Diesel 297 Ambient Temperature 9.25 0.29 Hernandez-Maldonado 
and Yang 

CDX/Ni(II)-Y (SSIE) Diesel 297 Ambient Temperature 10.59 0.33 Hernandez-Maldonado 
and Yang 

NaY DBT in Hexadecane 900 30 °C 48 1.5 Ng et al. 

NiY DBT in Hexadecane 900 30 °C 32 1.0 Ng et al. 
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Sorbent Fuel Description 
Sulphur in 

Fuel 
(ppmw)     

Adsorption  
Conditions 

Saturated 
Capacity  
(mg-S/g) 

Saturated 
Capacity 

(mmol-S/g) 
Reference 

CsY DBT in Hexadecane 900 30 °C 32 1.0 Ng et al. 

Ni(II)-Y (LPIE) Diesel 186 Ambient Temperature ~0.5 0.02 Ko et al. 

Source: Hydrogen and Syngas Production and Purification Technologies, 2010, pp.248 – 252. 

Note:  
T: Thiophene, BT: Benzothiophene, DBT: Dibenzothiophene, 4,6 DMDBT: 4,6 dimethyldibenzothiophene 
JP-8, JP: reference to jet fuel specifications based on U.S. Gov. publication (1990) 
AC: Activated Carbon, Y: Y-zeolite 
LHSV: Liquid hourly space velocity (unit: 1/hour)   
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3.3 Adsorption 
 

The process of adsorption is based on three main types of intermolecular interactions 

between a sorbate (also referred to as adsorbate) and sorbent (also referred to as adsorbent): 

(1) dispersion (van der Waals) energy, (2) electrostatic interactions and (3) chemical bond.  

The dispersion energy consists of an intermolecular interaction which is highly repulsive 

when in near-field, weakly attractive at intermediate separation and non-existing at large 

separation distances.  A weaker form of energy, known as induction, resulting from dipole 

and induced-dipole interaction is typically grouped implicitly with the dispersion energy.  

The van der Waals’ weak intermolecular attractive force increases with an increase in 

molecular density (i.e., increase in number of moles or decrease in volume).  Also important 

to dispersion (van der Waals) energy is the ability to polarize, or polarizability of the 

interacting pair (both sorbate and sorbent).  The higher the polarizability of the surface atom 

of a sorbent, the higher the potential for dispersion and adsorptive interaction (Do, 1998). 

 

The electrostatic energy is the interaction of permanent dipoles/multipoles with the electric 

field.  For this type of interaction, the charges and van der Waals radii of the surface atoms 

of the sorbate-sorbent are key, as they determine the strength of the electric field, based on 

Coulomb’s equation: 

  

F = Kc [q1.q2] / r2      (3-1) 

Where: 

F =   magnitude of electric force 
q1 and q2 =  charges on interacting pair (i.e., charges on sorbate and sorbent) 
r =  distance between centers of interacting pair (sum of their van der 

Waals’ radii) 
Kc =  electrostatic constant 

 

The two commonly distinguished forms of adsorption are physisorption and chemisorption.  

In physisorption, a molecule is adsorbed onto a surface without undergoing a significant 

change in its electronic structure, whereas in case of chemisorption, the electronic structure 
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of the adsorbate (i.e., molecule being adsorbed on to the surface) is significantly perturbed.  

It is common to assume that an adsorbate is chemisorbed when the adsorbate’s bond energy 

to the surface is greater than 10 kcal/mol and physisorbed when it is at or below 10 kcal/mol 

(Masel, 1996).  Nevertheless, it is important to note that distinguishing between 

chemisorption and physisorption may not be as clear in every case, especially in cases were 

a particulate adsorbate can be adsorbed to a surface both physically and chemically, due to 

variability in adsorptive sites and/or the nature of the adsorbate molecule.  There are also 

instances were an adsorbate is initially physisorbed to the surface and then converted to a 

chemisorbed state (Masel, 1996). 

 

Another distinction that can be made for surface adsorption is based on the change that an 

adsorbate molecule will go through when adsorbed onto a surface.  If the adsorbate 

molecules remain intact after adsorption the process can be considered a non-dissociative 

adsorption whereas if bond cleavage occurs in the adsorbate (i.e., formation of new 

molecules) it can be referred to as dissociative adsorption (Masel, 1996). 

 

For some chemical bonds, a weak bond, involving for example π electrons (i.e., electrons 

that participate in π-complexation), is the driving force in an intermolecular interaction.  The 

weak π-bonding between a sorbent and a sorbate is also referred to as π-complexation.  This 

type of bonding is only applicable in the case of transition metals with d-orbitals.  For these 

sorbents, in addition to their typical σ-bonds using their s-orbital electrons, π-bonds are also 

formed due to the ability of the d-orbital electrons to back-donate electron density to the π-

orbital of the sorbate (Yang, 2003). 

 

In case of transition metals, the furthest occupied electron levels are “d” orbitals.  The “d” 

orbitals of the transition metals are more diffused and spatially delocalized in comparison to 

the “s” and “p” orbitals.  The unique properties of the “d” orbital, including the angular 

orientation and radial distribution are responsible for the distinctive characteristics of the 

transition metals (Kiselev & Krylov, 1989).    
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The strength of attraction between sorbent and sorbate is dependent of the following factors: 

 

• How empty is the “s” orbital of the outermost electron shell of the cation on the 
sorbent surface. 

 
• Availability of π-electrons in the sorbate, which can be donated to the cation of the 

sorbent. 
 

• Availability of “d” orbital electrons of the cation on the sorbent surface and ease of 
donating “d” orbital electrons to the sorbate (Yang, 2003). 

 

Sorbents commonly consist of transition metals or metal oxides supported on porous 

structures such as alumina or activated carbons, or activated carbons which in addition to 

their porous structure inherently have functional groups such as carbonyls and carboxyls on 

the surface.  The dispersion / near-field repulsion forces exists in all sorbate-sorbent 

interactions and is believed to be the dominant force in the case of activated carbon.  For 

metal oxides and zeolites, the electrostatic interactions often dominate (Masel, 1996).   

 
The adsorption performance of activated carbons depends on both physical and chemical 

properties of its surface.  Physical properties, including surface area, pore size and 

distribution, are key in determining contact between the sulphur-bearing compounds and 

active functional groups (e.g., carbonyl) on the surface.  Chemical properties such as the 

type and density of surface functional groups are key in determining the type of adsorption 

(chemisorption / physisorption), capacity, and the ability to regenerate.  Both the physical 

and chemical properties of a carbon sorbent vary depending on the source, activation 

conditions and methodology (Bansal and Goyal, 2005).   

 

Separation via adsorption is based on three fundamental mechanisms: 

 

1- Steric mechanism – which is when the porous media of the sorbent has 

pore dimensions that prevent the larger molecules from entering the 

pores; 
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2- Equilibrium mechanism – which is based on variation in the ability of the 

sorbent to adsorb different species (i.e. stronger adsorbed species are 

removed more readily from the stream); and, 

 

3- Kinetic mechanism – which is based on the variations in rate of diffusions 

of different species into the pores of the sorbent (i.e. by controlling the 

exposure time, one can preferentially remove faster diffusing species). 

 

In many instances, more than one of the above listed mechanisms comes into play in the 

adsorptive separation process (Do, 1998).   

 

3.4 Sorbent Selection for Sulphur Adsorption 
 

In this section, the rationale for selecting sorbents for adsorptive removal of sulphur 

compounds is discussed.  The focus of the discussion is on activated carbon, which as will 

become clear by the end of this sub-section, is a valuable and effective sorbent to be used for 

the purposes of sulphur removal from transportation fuel. 

 

3.4.1. Activated Carbon - Background 
 

Activated carbon is made up primarily of carbon, modified through chemical and physical 

treatments to have a porous structure with extremely high surface area.  In many cases, a 

single sample of activated carbon can contain pore sizes that are macropores (dia.>50 nm), 

mesopores (2 nm<dia.<50 nm) and micropores (dia.< 2nm) (Do, 1998).   The surface area of 

activated carbon can be in the thousands of square-metres per gram of activated carbon.  For 

example, in his work on selective adsorption of refractory sulphur species, Farag reports an 

activated carbon with a surface area of 3,060 m2/g (Farag 2007).   
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Activated carbons have many applications in the chemical, biological, medical and 

environmental fields.   Some of the most common applications of activated carbon include 

water purification (e.g., drinking water treatment), gas purification (e.g., extraction of 

volatile organic compounds), air filtration (e.g., personal respirators), and flue gas cleaning 

(simultaneous removal of SO2 and NOx) (McGuire and Suffet, 1980).  The adsorptive nature 

of activated carbon makes it a good candidate for removal of pollutants from air and water, 

in environmental applications such as spill cleanup, remediation of contaminated ground 

water, and capture of volatiles from painting/coating, fuel dispensing, dry cleaning and other 

processes, some of which are discussed below (Serp and Figueiredo, 2009).  

 

In recent years, research has been undertaken in the use of activated carbon for storing 

natural gas and hydrogen gas.  The porous nature of the activated carbon acts like a sponge 

for different gases including natural gas and hydrogen.  In most cases, gases are attached to 

the carbon material via Van der Waals forces.  The adsorbed gases can then be extracted / 

desorbed through application of heat.  Natural gas can be combusted and hydrogen can be 

used in hydrogen fuel cell applications.  The storage of gas in activated carbons is appealing 

mainly because the gas can be stored in a low pressure, low mass, low volume environment, 

which is considered to be more feasible and safer than bulky on board compression tanks in 

vehicles (Pfeifer et al. 2008). 

 

In medical applications, activated carbon is commonly used for treating overdoses and 

poisoning.  The activated carbon can bind / adsorb the poisoning agent (depending on the 

poison) and thus prevent absorption by the gastrointestinal tract (Serp and Figueiredo, 

2009).   

 

Activated carbon filters are also used to retain radioactive gases from a nuclear boiling water 

reactor turbine condenser. The air vacuumed from the condenser contains traces of 

radioactive gases.  Activated carbon adsorption beds are used to adsorb and retain the trace 

radioactive gases (Serp and Figueiredo, 2009). 
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Iodine or sulphur impregnated activated carbon is commonly used to capture and retain 

mercury in the flue gas associated with the combustion of coal in coal-fired power plants 

and wastes in medical waste incinerators (Serp and Figueiredo, 2009). 

 

In heterogeneous catalysis, activated carbon is used as a support for active sites (e.g., 

transition metals and/or transition metal oxides) and as a surface for facilitating chemical 

reactions.  A few examples of such application are provided below: 

 

• In their 2004 research work, Silva and Figueiredo used activated carbon with 

manganese(III) salen complexes bearing hydroxyl groups for epoxidation of styrene 

in acetonitrile, using iodosylbenzene as an oxygen source.  The research showed that 

the heterogenized catalysts are chemo-selective towards the styrene epoxide 

compared to their homogeneous counterparts, and they are resistant to leaching and 

can be re-used without loss of their catalytic activity. (Silva et al. 2004). 

 

• Iron-impregnated activated carbon was tested for its catalytic properties in the 

oxidation of 4-chlorophenol in aqueous solution with hydrogen peroxide.  The 

authors suggested suitability of such a catalyst for such an application in a fixed-bed 

reactor (Lücking et al. 1998). 

 

• It was demonstrated that Pd on activated carbon (Pd/C) is an active and selective 

single catalyst for multi-step reactions in domino and tandem reactions involving (1) 

Heck reactions and hydrogenations for the synthesis of (a) dibenzyl and (b) 2-styryl-

phenylamine, (2) Sonogashira coupling and intramolecular heteroannulation to form 

indole ring systems, and (3) Heck and Suzuki coupling reactions to produce 4-

styryl-biphenyl.  The activated carbon based catalyst showed a yield of 72 to 93% 

(Gruber et al. 2004). 

 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 41 University of Waterloo Thesis 

• A heterogeneous copper-impregnated activated carbon was used as a catalyst in 

wastewater treatment, for the purpose of oxidation of organic pollutants.  Highly 

porous activated carbon was used as the catalyst support. The catalyst was designed 

to promote the oxidation of organic pollutants in dyeing and printing wastewater 

from the textile industry.  The activated carbon based catalyst enhanced the 

conversion of organic compounds in dyeing and printing wastewater, shortened the 

reaction time, and lowered the reaction temperature and the system total pressure 

(Hu et al. 1999). 

 

• Activated carbon was successfully used as a support for a molybdenum catalyst for 

hydrodesulphurization.  It was determined that the catalytic activity for thiophene 

hydrodesulphurization increased with increases in porosity and surface area of the 

activated carbon (Serp and Figueiredo, 2009). 

 

Activated carbons are produced from various sources including, biomass such as coconut 

shells, general nutshells and wood, as well as coal and petroleum coke (petcoke).  The 

activation process varies resulting in different characteristics in the produced activated 

carbon, however, the process typically consists of steam and/or acid treatment followed by 

thermal treatment, which results in formation of various functional groups on the surface of 

the activated carbon, the most common ones being the oxygen functional groups such as 

carbonyl and carboxyl.  Depending on the source of carbon and the activation process, other 

functional groups, such as nitrogen-containing ones including, pyridine, amide, imides, 

lactam and pyrrole can form on the surface of activated carbon.  Halides and sulphur can 

also exist on the surface and form complexes with other surface functional groups (Jansen 

and van Bekkum 1995).  The existence of sulphur species on the surface of the activated 

carbon is not desirable for many applications and is considered to be an impurity, especially 

for cases where the activated carbon is to be used as a substrate for transition metals (Gould, 

Baturina et al. 2009).  Baker and Rolison have reported that Pt nanoparticles were fully 

poisoned by the sulphur in the activated carbon substrate (Vulcan) (Baker et al. 2004).  
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The particle size of activated carbon used in adsorption or catalytic applications plays a key 

role in its performance.  The powdered form of activated carbon (particle sizes of less than 

125 micron) presents a large surface area to volume ratio with a small diffusion distance 

(i.e., shallow pores).  The granular activated carbon on the other hand has a relatively larger 

particle size compared to powdered activated carbon and consequently, presents a smaller 

external surface area and deeper pores.  Therefore, diffusion of adsorbate for granular 

activated carbons can be an important rate determining step.  As a result, granular forms of 

activated carbons are more commonly used for gaseous adsorbates due to their faster rate of 

diffusion.   

 

In literature, smaller particle sizes are associated with improved activity for activated carbon 

when used for catalytic / adsorptive applications.  For example, for hydrogen and formic 

acid oxidation, activated carbon with smaller particle size is shown to perform better than 

those with larger particle sizes.  It should however be noted that smaller particle size 

catalyst/sorbent (activated carbon) does not always positively influence the reaction rate 

and/or adsorption capacity.  For example, it is well documented that for reactions such as 

oxidation of carbon monoxide and methanol as well as the oxygen reduction reaction on Pt / 

activated carbon catalyst, the activity of the catalyst decreases with a decrease in particle 

size (Serp and Figueiredo, 2009).  

 

For metal impregnation of activated carbon, a few key factors can influence the activity / 

capacity of the catalyst / sorbent, including: 

 

• The structure and morphology of the support (i.e., activated carbon) can 

influence the dispersion of metal nanoparticles. 
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• The catalytic / adsorptive activity or capacity can be affected by the 

interaction between the metal and substrate as the functional groups on the 

surface of the activated carbon interact with the metal nanoparticles. 

 

• The catalytic / adsorptive activity or capacity can be impacted by antagonistic 

interaction of metal nanoparticles with impurities of the activated carbon 

such as sulphur and/or halides, resulting in poisoning of metal active sites. 

 

It is documented in the literature that the interaction of some of the surface functionalities 

(e.g., carboxyl group) with catalyst precursors affects the dispersion of active sites (i.e., 

metal particles).  Some authors have also indicated that oxygen-containing functional groups 

on the surface can also influence the intrinsic catalytic activity of the metal particles on the 

surface (Serp and Figueiredo, 2009). 

 

 

3.4.2. This Research Work 
 

Activated carbons possess a high level of flexibility for use as sorbents and/or supports for 

adsorptive removal of organo-sulphur compounds.  Several of the useful attributes of 

activated carbon are listed below: 

 

• The physical attributes of the activated carbon, including surface area, degree of 

dispersion of active sites and pore size distribution vary significantly depending on 

the source of carbon and activation process.  They can be modified to facilitate a 

particular purpose such as the diffusion of reactants and products to and from the 

active sites.  Similarly, the chemical attributes of the surface include functional 

groups and acidic/basic properties can be modified to fit a particular purpose (Serp 

and Figueiredo, 2009). 
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• The structure of activated carbon is stable at high temperatures and is resistant to 

both acidic and basic media (Serp and Figueiredo, 2009).   

 

• Activated carbons can be obtained from waste streams such as petroleum coke 

(petcoke) which is generated as a result of the coking process at petroleum 

processing facilities.  The use of a waste stream for a useful application at 

petroleum refineries (e.g., adsorptive desulphurization) makes it an attractive option 

for the industry not only in terms of cost, but also in terms of accessibility. 

 

• Generally, activated carbons are inexpensive and in most cases cheaper than 

conventional catalyst supports.  

 

• The metal active sites (impregnated metals) can be recovered, if and when the 

sorbent’s adsorptive properties diminish, through combustion of the activated 

carbon.  This process can also be a source of energy.  

 

Activated carbon therefore is an attractive sorbent for adsorptive desulphurization of 

transportation fuel.  The research work presented here focuses on activated carbons and 

modified activated carbons.  The modifications to the activated carbon include metal 

impregnation and thermal treatment in inert conditions.  The purpose of activated carbon 

modification and impregnation is to enhance its performance in adsorptive removal of 

sulphur compounds.    
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4.0 Experimental Methods 
 

As mentioned in the previous section, the overall objective of this research work was to 

identify, develop and characterize, based on sorbent characterization and underlying 

scientific principles, sorbents that are effective in removing refractory sulphur 

compounds from fuel, through the process of selective adsorption.  In order to achieve the 

objectives, several sorbents were prepared based on information from relevant literature.  

A series of liquid phase adsorption isotherm experiments were completed using the 

prepared sorbents.  The adsorption mechanisms were identified and a series of sorbent 

characterization experiments were completed on the best performing sorbent.  In the end, 

a series of flow reactor experiments were completed using the best performing sorbent, in 

order to gain some insight into the kinetics of adsorption and impact of temperature on 

sulphur adsorption. 

 

The following list provides the breakdown of experimental work completed as a part of 

this research: 

 
1. Sorbent selection and preparation 
 
2. Liquid phase adsorption study: 

a. Metal impregnation and adsorption performance 
b. Adsorption isotherm mechanism 
c. Organo-nitrogen adsorption 
d. Competitive adsorption and selectivity 
e. Sorbent regenerability 

 
3. Heat of adsorption study  

 
4. Sorbent characterization: 

a. Surface area and pore size 
b. Acidity strength 
c. Surface functional groups 
d. Surface morphology and dispersion 
e. Oxidation state and surface chemical bonds 
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5. Flow Reactor Experiment – A kinetic study 

 

This chapter provides a brief explanation on the instruments and experimental 

methodologies used to carry out the above-mentioned experimental work, with the 

exception of the flow reactor experiments, which are discussed in Section 7.  Also, more 

details regarding the experimental methods are provided in subsequent sections of this 

report, where the results of the experiments are discussed. 

 

The model organo-sulphur compounds used in this study were: dibenzothiophene (DBT) 

and 4,6-dimethyldibenzothiophene (4,6-DMDBT), and the organo-nitrogen compounds 

were quinoline (QIN) and carbazole (CBZL).  Hexadecane (model diesel compound) was 

used as the solvent for all the experimental work. 

 

4.1 Sorbent Selection and Preparation  
 
As mentioned in sub-section 3.4, the focus of this research work is on activated carbon 

and modified (i.e., impregnated) activated carbon.  The activated carbon will have two 

functions (1) act as a support for active sites (i.e., metals) that would be impregnated on 

its surface, and (2) act as a sorbent (adsorptive interaction of sulphur compounds with the 

surface functionalities of the activated carbon).   

 

Sorbent preparation as well as surface area and pore size determination techniques, 

commonly used for evaluating sorbents are discussed in this section. 

 

4.1.1. Activated Carbon  
 
Three activated carbons with varying characteristics, including source, surface area and 

pore size distribution were selected based on previous preliminary work carried out by 

our research group in 2003 and 2004.  The three selected activated carbons and their 

supplier / manufacturer are summarized in TABLE 4.1.  
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TABLE 4.1 – SELECTED ACTIVATED CARBONS 

      

Sorbent ID Manufacturer / Distributor 

Activated Carbon - Centaur ACC CALGON  

Activated Carbon - Norit ACN Aldrich Chemical 

Acid-washed Activated Carbon AAC Aldrich Chemical 

   
 

 

The preliminary evaluation of the three activated carbons was to determine if there is a 

correlation between the surface area and sulphur adsorption performance.  The BET areas 

were correlated with the adsorption capacities for DBT (Table 5.1 and 5.2) to determine 

if greater surface area translates to higher adsorption capacity for sulphur compound 

(DBT).  It should be noted that as mentioned previously, other factors such as surface 

functional groups also play a key role in the adsorption capacity of an activated carbon.  

This topic will be further explored in Section 5. 

 

 

Metal Impregnation on Activated Carbon  

 

A selection of alkaline earth and transition metals were selected based on their 

characteristics, the preliminary work completed by our research group and information 

gathered from relevant literature.  The metals were used in preparing metal-impregnated 

activated carbon.  The expected result is a sorbent with well dispersed active sites (metal 
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species) that can interact with the existing functional groups on the surface of the 

activated carbon as well as adsorbate species for improved performance.   

 

To build on the previous work of our research group in terms of further improving the 

adsorption characteristics of activated carbon for sulphur adsorption, the best performing 

activated carbon amongst the selected three was used for metal impregnation 

experiments.  The procedure to prepare metal impregnated activated carbon is discussed 

below.  

 

The procedure for the metal impregnation on the activated carbons sorbent is as follows: 

 

• For the selected metals, a 2% wt. (metal) solution was prepared using the 

corresponding water soluble salts.  The metals and their corresponding salts 

are summarized in TABLE 4.2, below. 

 

• Ground and dried activated carbon (< 125 μm) was added to the solution 

and stirred for 24 hours at ambient temperature and atmospheric pressure. 

 

• The mixture was filtered (suction-filtration) and air dried for 24 hours. 

 

• The air dried activated carbon was treated under helium (He) flow at 

110 °C for 3 hours, followed by 1 hour thermal treatment at 400 oC.  The 

initial thermal treatment at 110 °C was to ensure that most of the 

physisorbed materials (including moisture) are removed without inducing a 

structural modification of the sorbent at this initial stage.  The subsequent 

thermal treatment at 400 °C was to induce a structural uniformity and 

improve crystalline structure in terms of pore accessibility.  This is further 

discussed in sub-section 6.6.3 (HRTEM).  The thermal treatment was done 

in a glass flow reactor with a 0.8 micron pore size frit supporting the 

activated carbon.  The reactor was purged with helium for 10 minutes 
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before introducing heat.  The helium flow was continuous throughout the 

thermal treatment at a flow rate of 90 mL/min. 

 
This method of impregnation while different than wet impregnation is considered to be 

suitable for the purposes of this research work as it is relatively easy to implement and 

has shown to provide relatively good dispersion of metal species on the surface of the 

activated carbon.  

 

The metals selected for the impregnation of activated carbon were based on the literature 

review for sulphur adsorption applications (e.g., used in ion-exchanged zeolites) and 

applications in which catalysts with acidic (Lewis acid) properties were prepared.  This is 

discussed further below and in subsequent sections.  The metals used for the 

impregnation of activated carbon and their respective water-soluble metal salts used in 

the impregnation process are listed in TABLE 4.2. 

TABLE 4.2 - METALS USED FOR AC IMPREGNATION 
      

Sorbent ID Metal Salt Used for 
Impregnation 

Ag-impregnated Centaur Activated Carbon Ag / ACC AgNO3 

Fe-impregnated Centaur Activated Carbon Fe / ACC FeSO4 

Ta-impregnated Centaur Activated Carbon Ta / ACC TaF5 

Sn-impregnated Centaur Activated Carbon Sn / ACC SnCl2 

Ni-impregnated Centaur Activated Carbon Ni / ACC Ni (NO3)2 

Co-impregnated Centaur Activated Carbon Co / ACC CoNO3 

Ga-impregnated Centaur Activated Carbon Ga / ACC Ga(NO3)3 

Sr-impregnated Centaur Activated Carbon Sr / ACC Sr(NO3)2 
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4.1.2. Preliminary Sorbent Characterization 
 
The following sections discuss some of the most commonly used techniques for 

characterizing a sorbent in terms of surface area, pore volume and particle size 

distribution and their impact on the intended purpose of the sorbent (in this case sulphur 

adsorption). 

 

 

BET – Surface Area 
 

As a part of the preliminary assessment the specific surface area (m2/g) of the selected 

activated carbons were determined based on Brunauer-Emmett-Teller (BET) 

methodology.  The methodology and the equations are discussed below and the results 

are presented in Table 4.1, above.   

 

BET theory makes the following assumptions: 

 

1. Gas molecules physically adsorb on solid surfaces in layers; 

2. there is no interaction between each adsorption layer; and, 

3. Langmuir adsorption theory can be applied to each layer. 

 

The latter is in reference to monolayer and equal energies across the adsorption sites. 

 

The BET equation is expressed as follows: 
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Where, 

 P = Equilibrium pressure of adsorbate at the temperature of adsorption (torr) 
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 Po = Saturation pressure of adsorbate at the temperature of adsorption (torr) 

 v = Quantity of adsorbed gas (cc/g) 

vm = Quantity of gas adsorbed in monolayer (cc/g) 

c = BET constant, calculated as follows: 
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Where, 

 E1 = Heat of adsorption of the first layer 

EL = Heat of adsorption for second and higher layers  

 

The BET equation (4-1) above can be plotted with the x-axis being ⎥
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.  The vm can then be calculated from the slope and the y-intercept of 

the linear plot, as follows: 
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The total surface area and the specific surface area (i.e., per unit mass) are calculated 

using equations (4-4) and (4-5), below: 
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Where, 

  Stot = Total surface area (m2) 
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  N = Avogadro’s number (6.02 x 1023 /mol) 

  V = Molar volume of adsorbent gas (cc) 

  s = adsorption cross section area (°A2) (10-20 m) 

 

 

W
S

S tot=         (4-5) 

 

Where, 

 S = Specific surface area (m2/g) 

 W = Weight of sorbent (g) 

 

For the purposes of this study, a Micrometrics GEMINI® instrument was employed.  The 

following procedures were followed: 

 

1. Activated carbon samples were pre-treated for 2 hours under a flow of helium 

gas.  The treatment consisted of heating under inert gas (He), at a temperature 

ramp-up rate of 3oC/min to a maximum of 200 oC (held at this temperature for 

two hours). 

 

2. The dry activated carbon sample weights were determined from the weights of 

the sample tubes with the samples before and after the pre-treatments.  The 

samples were then transferred to the adsorption unit. 

 

3. The BET surface area was calculated by adsorbing nitrogen gas at liquid 

nitrogen temperature, following a pre-programmed procedure built-in to the 

instrument for calculating the surface area and pore volumes for activated 

carbons (note: the pore volume determination is discussed in Section 6.3; for 

the preliminary assessment only surface area was determined). 
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Sorbent Particle Size  

 

From the three selected activated carbons, the best performing one (i.e., highest 

adsorption capacity towards DBT) was selected for further analysis including assessment 

of adsorption performance as a function of particle size distribution.   

 

In order to determine the level of impact that sorbent particle size (i.e., contact surface) 

has on adsorption performance, adsorption studies were undertaken for three different 

particle size ranges, as follows: (a) 250 μm – 500 μm; (b) 125 μm – 250 μm; and (c) less 

than 125 μm (powder).   

 

The particle size impact analysis was completed with the activated carbon that had the 

highest adsorption capacity towards DBT (see Table 5.1).  The liquid phase adsorption of 

a DBT-hexadecane mixture was carried out for each size fraction.  The methodology for 

the liquid phase adsorption is described in the following sub-section.  In addition, the heat 

of adsorption was measured for the three adsorbents with different particle sizes, using 

flow calorimetry, details of which are discussed in subsequent sections. 
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4.2 Liquid Phase Adsorption Study 
 

Equilibrium adsorption of organo-sulphur and/or organo-nitrogen in a binary solution 

with hexadecane was employed to determine and compare the adsorption performances 

of the prepared sorbents.  From these equilibrium adsorption experiments, adsorption 

isotherms were constructed for each sorbent.  Adsorption isotherm provides insight into 

the adsorption mechanism of a particular sorbent-adsorbate interaction.  The saturated 

adsorption capacity of a sorbent towards a particular adsorbate can also be determined 

from its adsorption isotherm.  The equilibrium adsorption isotherm experiments were 

performed according to the following steps: 

 

• The sorbent was thermally treated under helium (He) flow at 110 °C for 3 

hours, followed by 1 hour at 400 oC.  This was done in a fixed bed reactor 

with the sorbent being supported on a 0.8 µm glass frit. 

 

• Approximately 5g of adsorbate mixture (hexadecane + adsorbate such as 

DBT and/or 4,6 DMDBT) for each concentration (see Table 4.3) was 

dispensed in labelled vials. For each adsorbate mixture vial an identical 

adsorbate mixture vial was also used as a blank. 

 

• Dried sorbent was immediately added to the mixture, and placed in pre-

heated (at 50 °C) water-bath.  The adsorption temperature was maintained 

at 50oC. 

 

• Magnetic stir bars were used in each vial for continuous mixing. 

 

• The adsorption experiment (mixing at 50 °C) was carried out continuously 

for 20 hours. 
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• At the end of each run, the vials were centrifuged to remove the sorbent 

particulates from suspension.  Each vial was centrifuged at 3000 RPM for 

10 minutes.  

 

• Samples were extracted from each vial and analyzed for sulphur 

concentration using gas chromatography coupled with a flame ionization 

detector (GC/FID) (see below for details on GC/FID analysis). 

 

• The measured sulphur concentration in each of the samples was compared 

against the corresponding concentration in the stock solution to determine 

the amount adsorbed.  Calculation details are discussed in Section 5.1. 

 

Mixtures of DBT in hexadecane or 4,6 DMDBT in hexadecane were prepared with target 

sulphur concentrations as summarized in  Tables 4.3 and 4.4, respectively. 
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TABLE 4.3 - HEXADECANE/DBT SOLUTIONS PREPARED FOR ISOTHERMAL ADSORPTION 

 

      

Solution No. 
Calculated Gravimetric 

Concentration 
(ppmw-S) 

GC / FID Analysis 
(mmol-S / L) 

1 3000 66.39 

2 2200 51.65 

3 1800 41.68 

4 1200 26.81 

5 900 20.84 

6 400 9.26 

7 200 4.73 

8 100 2.79 

    Note: 
         The calculated concentrations are based on the weight of solvent (hexadecane) and that of  
          DBT, rounded to the nearest 10th.  
          For the purposes of calculating adsorption capacity, measured (GC/FID) values were used (in mmol-S/L). 

 

TABLE 4.4 - HEXADECANE/4,6 DMDBT SOLUTIONS PREPARED FOR ISOTHERMAL 

ADSORPTION 

      

Solution No. 
Calculated Gravimetric 

Concentration 
(ppmw-S) 

GC / FID Analysis 
(mmol-S / L) 

1 800 21.48 

2 400 10.21 

3 200 4.95 

4 100 2.72 

5 50 1.34 

6 25 0.64 

        Note: 
         The calculated concentrations are based on the weight of solvent (hexadecane) and that of  
          4,6 DMDBT, rounded to the nearest 10th.  
          For the purposes of calculating adsorption capacity, measured (GC/FID) values were used (in mmol-S/L). 
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Gas Chromatography Analysis  
 

GC analysis was carried out using a Varian CP-3800 gas chromatograph equipped with 

an automatic sampler, a VF-5MS capillary column (30 m x 0.32 mm, film 

thickness;1.0mm) and three detectors: flame ionization detector (FID), thermionic 

specific detector (TSD) and pulsed flame photometric detector (PFPD).  The FID was 

maintained at a temperature of 300°C, nitrogen specific TSD at 300°C, and sulphur 

specific PFPD at 200°C.  The following temperature program was used to analyze the 

concentration of the adsorbate sulphur compounds: 

 

For hexadecane – DBT mixture: 
 
Initial temperature = 80o C (for 0 minute) 

Temperature ramp-up rate = 10o C/min (17 minutes) 

Temperature 2 = 250o C (final temperature for 8 minutes) 

Detector temperature (FID) = 300o C  

 Detector temperature (PFPD) = 200o C 

 Auto sampler injection volume = 0.5 μL 

 

For the hexadecane – 4,6-DMDBT mixture, due to the higher boiling point of DMDBT 

the upper temperature was set at 265 o C for a duration of 2.5 minutes: 

 

For hexadecane - 4,6-DMDBT mixture: 

Initial temperature = 80o C (for 0 minute) 

First temperature ramp-up rate = 5o C/min 

Temperature 2 = 120o C (for 0 minute) 

Second temperature ramp-up rate = 2o C/min  

Temperature 3 = 170o C (for 0 minute) 

Third temperature ramp-up rate = 10o C/min (17 minutes) 

Temperature 4 = 265o C (final temperature for 2.5 minutes) 
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Detector temperature (FID) = 300o C  

 Detector temperature (PFPD) = 200o C 

 Injection volume = 0.5 μL 

 
The GC/FID data for the stock solution (DBT in hexadecane or 4,6 DMDBT in 

hexadecane) are presented in Tables 4.3 and 4.4, above.  For each sample at least two (2) 

injections (i.e., runs) were completed.  In cases where the two values were significantly 

different, three new runs were completed. 

 

Supplementary data for GC/FID analytical method and calibration are provided in 

Appendix C. 
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4.3 Heat of Adsorption Study 

 

One of the methods of obtaining insights into the nature of the adsorption, including bond 

strength is to measure heat of adsorption.  To obtain this, the Flow Calorimetry method, 

which was pioneered by our research group in the area of sulphur adsorption, was used to 

determine the heat of adsorption.  Details of this methodology and its implementation are 

discussed below and also in subsequent sections. 

 

Flow Calorimetry 
 

Heat of adsorption was measured using a flow microcalorimeter.  A schematic diagram of 

the SETARAM C80 is provided in FIGURE 4.1. This microcalorimeter is equipped with 

an auxiliary thermostat and two percolation cells, one functions as a reference cell and the 

other as a sample cell.  Three Teledyne ISCO D-Series high precision syringe pumps 

were used to pump the solvent and adsorbate mixture through the percolation cells (both 

reference and sample cells).  Approximately 0.25g of the heat-treated sorbent was loaded 

into the sample cell, which was promptly placed in the calorimeter under the solution 

(hexadecane) in order to minimize exposure to air.  Pure solvent (hexadecane) was 

pumped through both the empty reference cell and over the adsorbent bed in the sample 

cell at a flow rate of 4.00 mL/h.  The calorimeter and auxiliary heater were set to 30°C to 

preheat the feed.  All the syringe pumps and pumping lines were maintained at an 

isothermal temperature of 30°C.  The solvent was pumped through the calorimeter until 

thermal equilibrium was reached. The thermal equilibrium condition was characterized 

by a constant heat flow output (‘baseline’) seen in the resident Setsoft® software that was 

integrated with the Setaram C80 Flow Microcalorimeter.  The feed to the sample cell in 

the calorimeter was then switched to the adsorbate solution (21.8 mmol of adsorbate 

(DBT) per liter of solution (hexadecane)) by the three way valve, while the flow of pure 

solvent (i.e. hexadecane) continued through the reference cell at the same flow rate.  As 

the adsorbate solution passes over the sorbent bed, the heat evolved upon the 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 60 University of Waterloo Thesis 
 

displacement of solvent by solute (adsorbate) molecules on the adsorbent was measured 

by the calorimeter.  Samples of the calorimeter effluent were collected periodically.  The 

sulphur concentrations in the collected samples were determined by GC analysis.  The 

DBT heat of adsorption for each adsorbent was determined by integrating the area under 

heat flow curve.  The amounts adsorbed were also determined from the breakthrough 

curves, constructed using the GC-determined sulphur concentrations.  Molar heat of 

adsorption for sulphur in DBT was determined from these two values. As adsorption 

solution passes over the sorbent bed, the heat evolved upon the displacement of solvent 

by adsorbate molecules or adsorbate-solvent complex (heat of displacement) was 

measured by the resident Setsoft® software which was integrated with the calorimeter.  

The effluent samples were collected periodically at regular intervals and analyzed using 

gas chromatography.   

 

FIGURE 4.1 - SETARAM C80 FLOW CALORIMETRY – A SCHEMATIC DIAGRAM 

 
 

 
Sample Cell Reference Cell 
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4.4 Best performing sorbent and additional analysis 
 
The results from the equilibrium adsorption study was used to identify the sorbent with 

the highest adsorption capacity for DBT and/or 4,6-DMDBT (note: as a part of 

competitive adsorption study, adsorption analysis was conducted on a mixture solution 

containing both DBT and 4,6 DMDBT).  The identified sorbent (i.e., best performing) 

was studied further in order to determine surface characteristics and/or material properties 

that resulted in the observed performance improvement as well as to gain a better 

understand of the adsorption mechanism.  Subsequent studies on the best performing 

sorbent included: effect of metal loading (i.e., percent by weight of impregnated metal) 

on the adsorption capacity, study of adsorption isotherm mechanisms, organo-nitrogen 

adsorption study, competitive adsorption and selectivity analysis, sorbent regeneration 

analysis, sorbent acidity study, assessment of change in surface functional groups as a 

result of sulphur compound adsorption, oxidation state of impregnated metal on the 

surface of the sorbent and surface bonds formed after adsorption, heat of adsorption 

analysis, surface morphology and qualitative assessment of degree of dispersion of the 

impregnated metal on the surface of the sorbent.  These studies are briefly discussed 

below and additional explanations and the results are presented in Sections 5 and 6. 

 

1- Effect of Percent Metal Loading 

In order to better determine the impact of metal impregnation on the adsorption 

performance (in this case the adsorption capacity), equilibrium adsorption isotherm study 

was undertaken for sorbents with different metal loadings (i.e., percent metal weight used 

in impregnation).   

 

The initial metal impregnation was 2% by weight for all the metals examined in this 

study.  Subsequently, the adsorption of DBT and 4,6 DMDBT in hexadecane was 

performed on activated carbon sorbents with 2wt%, 5wt% and 10wt% metal loadings.  

This was completed for the impregnated activated carbon that had the best adsorption 

capacity towards the sulphur compounds.  
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2- Adsorption Isotherm Mechanism 

Since the initial analysis indicated improved adsorption performance as a result of metal 

impregnation (for some of the selected metals) additional adsorption isotherm studies 

were undertaken to determine an adsorption mechanism that best fits the metal-modified 

activated carbon.  The study included curve fitting of the adsorption data, linearization of 

adsorption isotherm and linear regression analysis.  

 

3- Organo-Nitrogen Adsorption Study 

 The organo-nitrogen compounds co-exist in the precursors of transportation fuel and 

often inhibit the sulphur removal by blocking the active sites on the adsorbent used for 

hydrodesulphurization or sulphur adsorption.  Removal of organo-nitrogen compounds 

such as quinoline and carbazole from the untreated fuel is therefore an important step in 

adsorptive removal of sulphur.  Therefore, equilibrium adsorption analysis was conducted 

for selected organo-nitrogen compounds, employing the best performing adsorbents. 

 

4- Competitive Adsorption and Selectivity Analysis 

Given that in petroleum refining application precursors of transportation fuel include a 

mixture of organo-sulphur and organo-nitrogen compounds along with aromatics, a 

competitive adsorption and selectivity study was undertaken for the best performing 

sorbent.  The analysis consisted of equilibrium adsorption analysis for an equi-molar 

(21.8 mmol/L each) mixture of DBT, quinoline and naphthalene in hexadecane.   

  

5- Sorbent Regeneration 

The regenerability of the spent adsorbent was conducted to assess its feasibility for 

industrial scale petroleum refining.  A combination of solvent wash, ultrasonic treatment 

and thermal treatment were used to test the regenerability of the spent sorbents.  The 

adsorption capacity of the regenerated sorbent was determined through equilibrium 

adsorption analysis.  The spent (i.e., used) sorbent was washed with toluene while under 

ultrasonic treatment.  The sorbent was subsequently dried and heat treated under helium 

(He) flow at 110 °C for 3 hours, followed by 1 hour at 400 °C. 
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6- Sorbent Characterization  

Sorbent characterization including surface analysis was completed for the best 

performing sorbent as well as virgin activated carbon (i.e., un-impregnated activated 

carbon) in order to better understand the mechanism and properties that led to the 

improved adsorption performance.  The characterization included: 

 
• BET Surface Analysis – The specific surface area (m2/g-sorbent), pore volume 

and pore diameter analysis was also completed for the three different metal 

loadings and compared against un-impregnated activated carbon (i.e., virgin AC).    

 

• HRTEM – EDX Analysis – The surface of the sorbent was examined for 

morphology and dispersion of impregnated metal on the surface using high 

resolution transmission electron microscopy (HRTEM).  Also, the surface 

elements were identified using energy dispersive X-ray (EDX) spectroscopy.  

 

• XPS Analysis – The oxidation state and potential bond forming between the 

adsorbate and adsorbent species was investigated using X-ray Photoelectron 

Spectroscopy (XPS). 

 

• TPD Ammonia Analysis – The acidity strength of the sorbent was analyzed using 

Temperature Programmed Desorption (TPD) with Ammonia. 

 

• FTIR Analysis – The surface functional groups of the sorbent were analyzed 

using Fourier Transform Infrared (FTIR) spectroscopy.   

 

Additional details for the above-mentioned characterization methods and equipment are 
provided below and in subsequent sections (Section 5 and Section 6). 
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HRTEM 
The TEM analysis of the sorbents was performed at the Canadian Centre for Electron 

Microscopy at the McMaster University.  The TEM analysis was carried out on a FEI 

Titan 80-300 Cubed TEM equipped with a CEOS-designed hexapole-based aberration 

corrector for the image-forming lens and one for the probe-forming lens.  The instrument 

operates a high-resolution monochromator allowing 0.1eV energy resolution with 

improved spectrometer optics (Gatan 866 model), stable spectrometer electronics and 

high-tension supply.  The instrument is fitted with a Super-Twin lens in order to achieve 

sub-Angstrom resolution both for phase contrast imaging and Scanning Transmission 

Electron Microscopy (STEM).  Additional explanation is provided along with the results 

in Section 5. 

 

XPS 

The XPS analysis was conducted at the University of Waterloo’s Chemistry Department.  

The analysis was performed using a Thermo-VG Scientific ESCALab 250 Microprobe, 

equipped with a monochromatic Al Kα X-ray source with an energy rating of 1486.6 eV 

and a typical energy resolution of 0.4-0.5 eV full-width.  The principles of measurement 

and details of the experimental setup are discussed Section 5.   

 

TPD-Ammonia 
Temperature programmed desorption of NH3 was carried out using a Altamira TPD 

adsorption system.  In a typical experiment, approximately 0.1 g of adsorbent sample was 

pre-treated in a U-shaped quartz sample tube attached to the sample port in a flow of 

argon (carrier gas) for 30 minutes at 200 oC. Then the sample was cooled to room 

temperature under the argon flow and NH3 gas was adsorbed onto the sample in pulses 

until it was saturated. Saturation of the adsorbent with the ammonia gas was ensured by 

observing Thermal Conductivity Detector (TCD) signal of the instrument’s software. 

After this step sample was flushed using the carrier gas at room temperature for 5 minutes 
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to remove the physisorbed NH3. Then the sample was gradually heated at a rate of 10 
oC/min to 1000 oC, followed by cooling of the sample back to room temperature.  The 

desorption of NH3 was monitored by a response signal from the thermal conductivity 

detector. The TCD response was plotted against time and temperature to give the 

desorption pattern of NH3 (see Figure 6.10).   

 

FTIR 
 
A qualitative assessment of surface functional groups present on the surface of the 

activated carbon and changes to these functional groups after impregnation and sulphur 

adsorption was undertaken using FTIR.  As infrared light hits the sample, it is absorbed 

much like in the UV spectroscopy.  Unlike in UV spectroscopy, the molecule must 

experience a change to the dipole moment as it absorbs the light. The energy causes 

either a vibration or rotation in a bond, which we see in the IR spectrum.  Each peak 

represents a specific stretch, bend, or rotation in the molecule. Some very intensely seen 

peaks are due to O-H, N-H, C=C and C=O stretches.  Peaks are not seen for N2 or O2, 

because these bonds do not experience a net change in dipole as a result of their vibration.  

There are often times that different peaks correspond to the same bond in a 

molecule.  This is because the bond can vibrate in many different ways that induce a 

change to the dipole moment.  In general an IR spectrum is divided into two sections:  the 

functional group area and the fingerprint area.  In this study the focus will mostly be on 

the functional group area.  This is the area where peaks are associated with characteristic 

functional groups like O–H or C=O.  In this assessment IR spectra are examined for the 

presence or absence of peaks in the IR spectrum to confirm the presence or absence of 

certain functional groups in the selected activated carbon based sorbents.   

 

The interpretation of infrared spectra involves the correlation of absorption bands in the 

spectrum of an unknown compound with the known absorption frequencies for the types 

of bonds. The characteristic infrared adsorption frequencies for various bonds 

(compounds) are summarized in Table 4.5.  The infrared absorbencies for some key 
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functional groups are illustrated in Figure 4.2.  To identify the source of an absorption 

band one would need to assess the intensity (weak, medium or strong), shape (broad or 

sharp), and position (cm-1) of the band in the spectrum.  Additional explanations as well 

as results are provided in Section 5. 
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TABLE 4.5 - CHARACTERISTIC INFRARED ABSORPTION FREQUENCIES 

 

Bond Compound Type Frequency range, cm-1 

2960-2850(s) stretch 
Alkanes 

1470-1350(v) scissoring and bending C-H 

CH3 Umbrella Deformation 1380(m-w) - Doublet - isopropyl, t-butyl 

3080-3020(m) stretch 
C-H Alkenes 

1000-675(s) bend 

Aromatic Rings 3100-3000(m) stretch 

Phenyl Ring Substitution Bands 870-675(s) bend C-H 

Phenyl Ring Substitution Overtones 2000-1600(w) - fingerprint region 

3333-3267(s) stretch 
C-H Alkynes 

700-610(b) bend 

C=C Alkenes  1680-1640(m,w)) stretch 

CºC Alkynes 2260-2100(w,sh) stretch 

C=C Aromatic Rings 1600, 1500(w) stretch 

C-O Alcohols, Ethers, Carboxylic acids, Esters 1260-1000(s) stretch 

C=O Aldehydes, Ketones, Carboxylic acids, Esters 1760-1670(s) stretch 

Monomeric -- Alcohols, Phenols 3640-3160(s,br) stretch 

Hydrogen-bonded -- Alcohols, Phenols 3600-3200(b) stretch O-H 

Carboxylic acids 3000-2500(b) stretch 

3500-3300(m) stretch 
N-H Amines 

1650-1580 (m) bend 

C-N Amines 1340-1020(m) stretch 

CºN Nitriles 2260-2220(v) stretch 

1660-1500(s) asymmetrical stretch 
NO2 Nitro Compounds 

1390-1260(s) symmetrical stretch 

Note:   
v - variable, m - medium, s - strong, br - broad, w - weak 
Source: (Young, 1996) 
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FIGURE 4.2 - INFRARED ABSORBANCE FOR COMMON FUNCTIONAL GROUPS 

 
Source: (Young, 1996). 

 

In this study, the samples were pre-treated at 120oC and inert gas (He) for one (1) hour 

prior to IR analysis.   
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5.0 Results & Discussion 
 
This section includes an initial background review of key adsorption isotherm 

mechanisms.  The latter part of this section includes the experimental data and discussion 

of the results and findings. 

 

5.1 Adsorption Isotherms – A Background Review 
 

The key adsorption isotherm mechanisms that will be utilized to fit experimental data in 

this study are discussed below.  The data fitting details for all isotherms are provided in 

Appendix C.  In all cases the data was fitted to more than one mechanism in order to 

determine the mechanism that best represents the experimental data.  The isotherm 

mechanisms were selected based on relevant information from the literature review (i.e., 

Langmuir and Freundlich) and the adsorption scheme postulated by the author for sulphur 

adsorption on metal-impregnated activated carbon (i.e., Sips).    

 

 

Langmuir Adsorption Isotherm 

 

The Langmuir Isotherm is the most commonly used isotherm to describe adsorption.  The 

Langmuir Isotherm can be derived from the thermodynamics of the equilibrium state of 

the following reaction: 

 

where S represents the adsorbate, A represents the empty active sites on the adsorbent, 

and SA represents the complex of an active site with the adsorbate adsorbed to its 

surface.  The equilibrium constant, K (L/mol), for this reaction can be written as: 

 

[ ]
[ ][ ]AS

SAK =        (5-1) 

S + A                  SA 
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Where: 

[S] = concentration of adsorbate 

[A] =  concentration of active sites 

[SA] = concentration of adsorbate adsorbed on active sites 

 

The concentration of the active-site and adsorbate complex, [SA], can be written as:  

 

[ ]
m

e

q
q

SA =         (5-2) 

 

Where, 

qm =  Maximum adsorption capacity (mmol/g)   

qe =  Actual amount of moles of adsorbate per unit adsorbent at 

equilibrium (mmol/g).   

 

qm is simply the total number of moles of adsorbate per unit adsorbent that theoretically 

could be adsorbed onto the surface of the adsorbent if every active site was filled.  The 

concentration of the remaining empty active sites at equilibrium, [A], can therefore be 

written as [ ]
m

e

q
q

A −= 1 .  If the equilibrium adsorbate concentration, [S], is replaced with 

the concentration of adsorbate at equilibrium [Ce, (mmol/L)] and equation (5-1) is 

rewritten, it yields: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

m

e
e

m

e

q
q

C

q
q

K
1

       (5-3) 

 

which can be rearranged to yield the Langmuir Isotherm: 
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e

em
e KC

KCq
q

+
=

1
        (5-4) 

 Where, 

Ce = Concentration of adsorbate within the solution at equilibrium 

(mmol/L) 

  K = Equilibrium constant  

 

In this equation, Ce and qe can both be experimentally determined and qe can be 

calculated by the equation: 

 

( )
a

sseo
e m

mCCq ρ−
=        (5-5) 

Where, 

Co = Initial solution concentration (mmol/L) 

ρs = Solution density (g/L) 

ms = Mass of solution (g) 

ma = Mass of adsorbent (g)  

 

Also in equation (5-4) is the equilibrium constant K, and the maximum adsorption 

capacity qm.  These values can both be experimentally determined by linear regression of 

equation (5-4).  A popular form of linear regression is to rewrite equation (5-4) as: 

 

m
e

me

e

Kq
C

qq
C 11

+=        (5-6) 

When a plot of 
e

e

q
C

 versus Ce is made the maximum adsorption capacity (qm) and the 

Langmuir equilibrium constant (K) can be calculated as follows: 
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slope
qm

1
=         (5-7) 

( ) )intercept(intercept-
1

−
=

×
=

y
slope

yq
K

m

     (5-8)  

    

Also, note that K = kads / kdes, where Kads and Kdes correspond to adsorption and 

desorption rate constants, respectively. 
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Freundlich Adsorption Isotherm 

 

The Freundlich isotherm is one of the earlier empirically derived equations used to 

describe multi-layer adsorption.  The Freundlich isotherm is the most important multi-site 

adsorption isotherm for rough surfaces (e.g., activated carbon) (Masel, 1996).  The 

Freundlich equation has the form:  

 

Cn = K C1/n           (5-9)   

 

Where: 

 Cn = concentration of adsorbed species (mmol /g) 

 K =  fitting parameter (generally temperature dependent) (mmol1-1/n L1/n /g) 

 n = fitting parameter (generally temperature dependent) 

 

The larger the n value, the more the isotherm’s behaviour deviates from linear isotherm 

(Do, 1996). 

 

The linearized version of Freundlich’s equation (5-9) is obtained by taking the logarithm 

of the original equation, above: 

 

log10 Cn = log10 (K) + 1/n log10(C)         (5-10) 

 

The values of ‘K’ and ‘n’ are obtained from the slope and y-intercept of the linear plot of 

logCn versus logC, as follows (Do, 1998): 

 

 n = 1 / Slope        (5-11) 

     

 K = 10 (y-intercept)       (5-12) 
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Modified Langmuir Isotherm (Sips Equation) 

 

An isotherm equation that has received some attention is a modified version of the 

Langmuir equation, which also incorporates the multi-layer / multi-site characteristics of 

Freundlich isotherm (Do, 1998).   

 

In their 2005 research work, Sohn ad Kim state there are two possible reasons why the 

Langmuir isotherm, which was originally used to describe gaseous-solid systems, may 

not work as well for liquid-solid systems: (1) when a species is adsorbed from a solution 

there will be accompanying desorption of another species for charge balance 

considerations; and (2) an adsorptive surface can be heterogeneous and result in island 

type adsorption which is different than Langmuir’s uniform, monolayer adsorption (Sohn 

and Kim 2005). 

 

The equation for this isotherm is as follows: 

 

)1( x

x

KC
KC
+

=θ        (5-13) 

 

Where: 

 C = Solute concentration  

 θ = surface coverage ( θ= q / qmax) 

 K = Langmuir equilibrium constant (K = kads/kdes) 

 X = fitting parameter 

 

Through rearranging, equation (5-13) can be written in its linear form as follows: 

 

maxmax

1111
qCKqq

x

+⎥⎦
⎤

⎢⎣
⎡
⎥
⎦

⎤
⎢
⎣

⎡
=       (5-14) 
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The values of K and qmax (same as qm in the Langmuir equation 5-4, above) can be 

obtained from the slope and y-intercept of the linear plot of 1/q versus [1/C]x.  X is a 

fitting parameter, which when it equals 1, the adsorption resembles that of Langmuir, 

when less than 1, the adsorbate-sorbent system shows less dependency on concentration 

(C) and when greater than 1, the system shows a greater dependency on concentration 

(Sohn and Kim 2005).   

 

5.2 Sorbent Selection & Preparation 
 

The three selected Activated Carbons (ACs) were analyzed for adsorption performance, 

including adsorption capacity and equilibrium constant.  For this assessment, adsorption 

isotherms, fitted to the linearized version of the Langmuir adsorption isotherm, were 

used. 

 

Adsorption performances for the selected ACs consisting of maximum adsorption 

capacity, qm (from equation 5-4) and equilibrium constant K (from equation 5-3) were 

calculated using the above mentioned linearization of Langmuir isotherms (equation 5-6).  

The particle size distribution for the three selected ACs was kept the same (i.e., 125µ - 

250µ).  In the case of Activated Carbon Centaur (ACC), multiple runs were performed to 

ensure repeatability.  The adsorption capacity (qm in mmol-S/g-sorbent) and equilibrium 

constant (K in L/mmol) for the three selected ACs are summarized in TABLE 5.1.  Results 

indicate that the ACC has the highest adsorption capacity of the three selected activated 

carbons.  Also presented in Table 5.1 are the regression values (R2) for the linearization 

of the Langmuir equation (equation 5-6).  The R2 values (~0.99) for all three ACs 

indicate that the experimental data fits well with the Langmuir isotherm model. 
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TABLE 5.1 - ADSORPTION ISOTHERM DATA FOR DBT ON SELECTED ACTIVATED CARBON SORBENTS AT 50 °C 

 
 

Isotherm DBT in Hexadecane 

Sorbent ID Particle size 

Type* Linear Regression 
(R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Activated Carbon - 
Centaur ACC 125 - 250 µ Langmuir 0.988 ± 0.002 0.57 ± 0.05 1.02 ± 0.20 

Activated Carbon - 
Norit ACN 125 - 250 µ Langmuir 0.997 0.47 0.79 

Acid-washed Activated 
Carbon AAC 125 - 250 µ Langmuir 0.992 0.37 0.81 

Note:       

* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C.  

** The qmax values are based on Langmuir isotherm equation and in reference to DBT adsorption.   

Standard Deviation is provided for experiments with 3 or more repeats.     
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Sorbent Particle Size Effect on Sulphur Adsorption 

 

In order to determine the impact of particle size on the sulphur adsorption, adsorption 

performance was assessed for different sorbent particle size distributions.  Finer particle 

sizes means higher surface area, which would facilitate more contact between the sorbent 

and sorbate and thus improve adsorptive activity of the sorbent (Serp and Figueiredo, 

2009).  Therefore, it is expected that finer particles sizes would result in better adsorption 

performance (i.e., higher qmax).   

 

Based on it adsorption performance (Table 5.1), the ACC was selected for this analysis.  

Three particle size distribution ranges were examined: (1) 250μ - 500μ; (2) 125μ - 250μ 

and (3) < 125μ (powder).  At least 2 runs were completed for each particle size fraction 

range.  The mean adsorption capacities and equilibrium constants for both DBT and 4,6-

DMDBT are summarized in TABLE 5.2.   
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TABLE 5.2 - ADSORPTION ISOTHERM DATA FOR DBT ON ACC OF VARIOUS PARTICLE SIZES AT 50 °C  

 
 

Isotherm DBT in Hexadecane 

Sorbent ID Particle size 

Type* Linear Regression 
(R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Activated Carbon - 
Centaur ACC-500 250 - 500 µ Langmuir 0.984 0.45 1.27 

Activated Carbon - 
Centaur ACC-125 125 - 250 µ Langmuir 0.988 ± 0.002 0.57 ± 0.05 1.02 ± 0.20 

Activated Carbon - 
Centaur ACC-PWDR <125µ Langmuir 0.992 0.74 0.42 

Note:       

* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C. 

** The qmax values are based on Langmuir isotherm equation and in reference to DBT. 

Standard Deviation is provided for experiments with 3 or more repeats.  Values without standard deviation are mean values for two runs. 
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The finer particle size fraction (<125µ) had a qm that is approximately 33.7% and 34.4% 

higher for DBT and 4,6-DMDBT, respectively, in comparison to the 500µ particle sizes.  

The results are therefore in accordance with the expected outcome.   

 

5.3 BET – Surface Area 
 

As a part of sorbent characterization, the three initially selected activated carbons were 

analyzed for total surface area using BET methodology (see Section 4.5 for details on the 

theory and methodology).  The results are summarized in TABLE 5.3. 

 

TABLE 5.3 - BET SURFACE AREA MEASUREMENT 

 

BET Surface Area 

(m2/g) 
Sorbent ID 

run 1 run 2 run 3 Mean 

Ni-impregnated Centaur Activated Carbon Ni / ACC 629.5 627.4 n/a 628 

Activated Carbon - Centaur ACC 635.13 641.2 n/a 638 

Acid-washed Activated Carbon AAC 396.4 415.3 n/a 406 

Activated Carbon - Norit ACN 928.2 916.1 918 921 + 7 

      

 

The mean total surface area values indicate that acid-washed activated carbon (AAC) has 

the lowest surface area.  This correlates well with its lower adsorption capacity.  

However, ACC is shown to have lower surface area than AC Norit (ACN), yet it is 

shown that ACC has higher adsorption capacity than ACT.  One may conclude that 

although ACC has lower surface area than ACT, it may have more favourable 
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morphology (i.e. larger pore sizes) and/or a higher concentration of surface functional 

groups which can effectively interact with sulphur compounds in the adsorption process.  

Assessment of pore size distribution may provide more insights into this matter.   

 

The BET surface area for metal-impregnated activated carbon (in this case, nickel on 

ACC) was also measured in order to determine how much of a reduction in surface area 

results from metal impregnation.  The sample analyzed was 2% by weight Ni-

impregnated ACC.  Comparison of the surface areas for the impregnated and non-

impregnated ACC indicates a reduction of approximately 1.6% (for 2% wt. 

impregnation).  This expected reduction in surface area is considered to be relatively low.  

Therefore, improved adsorption due to metal impregnation (introduction of new 

adsorptive sites) is expected to result in an overall improvement of the sulphur adsorption 

capacity. 

 

5.4 Effect of Impregnation on Sulphur Adsorption 
 

Further adsorption performance assessment was carried out for transition metal 

impregnated ACC.  The first set of assessments was completed for a sorbent particle size 

range of 125μ - 250μ (also referred to as 125μ).  For impregnation, the transition metals 

were selected based on previous work completed in our research group as well as those 

published in the literature.  As mentioned in previous sections of this thesis, nickel is 

considered to enhance sulphur adsorption due to its ability (because of its partially filled 

‘d’ orbital) to form π bonding with sulphur of DBT and DMDBT (Hernández-

Maldonado, Yang et al. 2005).  Iron (Fe) and cobalt (Co) also have partially filled “d” 

orbitals and have been used in zeolite impregnation for sulphur adsorption work.  In the 

case of copper (Cu), due to difficulties in maintaining a Cu+1 oxidation state when 

preparing the sorbent, it was not considered for this assessment.  Silver (Ag) also has an 

unsaturated “d” orbital and has also been used in published sulphur adsorption research 

work (Chen, Wang et al. 2009).  Tantalum was used as a catalyst for applications which 
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required presence of strong Lewis acid sites.  With the sulphur in DBT and DMDBT 

having a lone pair of electrons, tantalum interaction with the lone pair could effectively 

contribute to sulphur adsorption.  Additional explanation regarding other metal 

candidates used for the impregnation of the activated carbon is provided below. 

 

A preliminary set of liquid phase adsorption experiments were completed using the ACC 

with a particle size range of 125µ - 250µ (hereby referred to as ACC-125).  The ACC-

125 was impregnated with Fe and Ag and the sulphur adsorptions were compared with 

the un-impregnated ACC-125. The resulting isotherms are presented in FIGURE 5.1.  

Isotherms and linearization plots for these runs and repeat runs are provided in Appendix 

C. 

 

The linearization of the Langmuir isotherm for virgin ACC and the Freundlich isotherm 

for the impregnated ACC (i.e., Fe/ACC-125 and Ag/ACC-125 (see Appendix C) was 

used to establish maximum adsorption capacity and the equilibrium constant for each 

sorbent.  These values are summarized in Table 5.4.  The R-squared values for the best-fit 

line of linearized Langmuir / Freundlich isotherms were high, ranging from 0.97 to 0.99, 

indicating good fit of the experimental data with the corresponding isotherm model. 
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FIGURE 5.1 - ADSORPTION ISOTHERMS FOR ACC AND IMPREGNATED ACC 

(PARTICLE SIZE 125µ << 250µ, DBT-C16 BINARY MIXTURE AT 50 °C) 

 

Results indicate that the metal impregnation of the ACC improves the adsorption 

performance in the following order: Fe/ACC > Ag/ACC > ACC.  This can be said about 

the adsorption capacity as well as the equilibrium constant (see Table 5.4). 
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TABLE 5.4 - COMPARISON OF ADSORPTION ISOTHERM DATA FOR DBT ON ACTIVATED CARBON BASED SORBENTS AT 50 °C 

 

Isotherm DBT in Hexadecane 

Sorbent ID 

Impregnation Salt 
&  

(Percent Weight 
Loading) 

Particle size 

Type* 
Linear 

Regression  
(R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Ag-impregnated Activated 
Carbon - Centaur Ag / ACC AgNO3 

(2% by Wt. loading) 125 - 250 µ Freundlich 0.987 0.637 1.127 

Fe-impregnated Activated 
Carbon - Centaur Fe / ACC FeSO4 

(2% by Wt. loading) 125 - 250 µ Freundlich 0.987 0.678 1.190 

Activated Carbon - Centaur 
(Virgin) ACC n/a 125 - 250 µ Langmuir 0.57 ± 0.05 0.57 ± 0.05 1.02 ± 0.20 

Note:        
* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C. 

** The qmax values are based on Langmuir or modified Langmuir isotherm equations and in reference to 4,6 DMDBT. 

The 2% by Wt. metal loading is based on calculations. 

Standard Deviation is provided for experiments with 3 or more repeats. 
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Given the impact of particle size on adsorption performance (established earlier on) 

further metal impregnation was carried out using finer particle sizes (i.e., <125μ).   

 

 

DBT Adsorption Isotherms 

 

Additional transition, alkaline-earth, group III and group IV metals were employed to 

modify the activated carbons to study their efficiency in sulphur removal.  They include, 

tantalum (Ta), tin (Sn), gallium (Ga) and strontium (Sr).  Some of the metal species have 

unfilled “d” orbitals, some do not have any “d” electrons and some are strongly 

electrophilic (see explanation below).  The adsorption performances of the impregnated 

ACC (<125μ) sorbents (i.e., Ni/ACC, Ta/ACC, Sn/ACC, Ga/ACC, Sr/ACC and 

Co/ACC) were investigated by liquid phase adsorption of adsorbate sulphur (DBT and 

DMDBT in hexadecane) mixtures (see Appendix C for isotherm data, isotherm plots and 

linearization plots). 

 

This experimental data for the liquid phase adsorption was analyzed with the following 

adsorption mechanisms: (1) Langmuir; (2) Freundlich; and, (3) Modified Langmuir or 

Sips.  As discussed in sub-section 5.1, the Sips isotherm combines the Freundlich’s multi-

site approach with Langmuir’s layered approach, realizing that the unlimited Freundlich 

adsorption (increase in adsorption ‘q’ with increase in concentration ‘c’) is not realistic.   

 

The results are summarized TABLE 5.5, below.  The table includes the isotherm 

mechanism that the experimental data fits best, the associated linear regression value, the 

maximum adsorption capacity (qmax) and the associated equilibrium constant.  The data 

are presented in reducing order, in terms of adsorption capacity. 
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In general, the data supports the following observation: as the active sites associated with 

the impregnated metal species play a more significant role in sulphur adsorption (i.e., are 

more effective in improving the adsorption capacity), the more the adsorption mechanism 

moves away from Langmuir’s isotherm model and more towards Freundlich’s isotherm 

model.   

 

This observation adds more validity to the postulation that the metal sites introduce new 

sulphur adsorption sites that interact differently with the sulphur species than the existing 

functional groups on the surface of the activated carbon. 

 

Additional explanation for each of the sorbents is provided below. 
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TABLE 5.5 - COMPARISON OF ADSORPTION ISOTHERM DATA FOR DBT ON ACTIVATED CARBON BASED SORBENTS AT 50 °C 
 

Isotherm 

Sorbent ID 

Impregnation Salt 
&  

(Percent Weight 
Loading) 

Particle size 
Type* 

Linear 
Regression  

(R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Ta-impregnated Centaur Activated 
Carbon Ta-2 / ACC TaF5 

(2% by Wt. loading) Powder (<125µ) Modified 
Langmuir 0.992 ± 0.003 1.10 ± 0.04 0.28 ± 0.04 

Sn-impregnated Centaur Activated 
Carbon Sn / ACC SnCl2 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.985 0.87 0.19 

Ni-impregnated Centaur Activated 
Carbon Ni / ACC Ni (NO3)2 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.994 ± 0.004 0.81 ± 0.02 0.24 ± 0.01 

Co-impregnated Centaur Activated 
Carbon Co / ACC CoNO3 

(2% by Wt. loading) Powder (<125µ) Langmuir 0.968 0.77 0.54 

Activated Carbon - Centaur 
(Virgin) ACC n/a Powder (<125µ) Langmuir 0.992 0.74 0.42 

Ga-impregnated Centaur Activated 
Carbon Ga / ACC Ga(NO3)3 

(2% by Wt. loading) Powder (<125µ) Langmuir 0.987 0.74 0.76 

Sr-impregnated Centaur Activated 
Carbon Sr / ACC Sr(NO3)2 

(2% by Wt. loading) Powder (<125µ) Langmuir 0.994 0.67 0.47 

Ag-impregnated Centaur 
Activated Carbon Ag / ACC AgNO3 

(2% by Wt. loading) Powder (<125µ) Langmuir 0.987 0.64 1.13 

Note:        

* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C. 

** The qmax values are based on Langmuir or modified Langmuir isotherm equations and in reference to 4,6 DMDBT. 

The 2% by Wt. metal loading is based on calculations. 

Standard Deviation is provided for experiments with 3 or more repeats. 
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From the adsorption performances summarized in TABLE 5.5 the following can be 

concluded: 

 

• Ta/ACC (2 wt.% Ta impregnated Centaur activated carbon) has the highest 

adsorption capacity amongst the selected sorbents.  The data had good 

repeatability, adding confidence to this conclusion.  It is presumed that since 

tantalum is a strong Lewis acid, when dispersed on the surface of the ACC 

support, it would enhance the adsorption capacity of ACC by introducing 

additional active sites that have high affinity for the lone pair of electrons of 

sulphur present in DBT.   

 

• For Ni/ACC, the electron deficiency in its “d” orbital and the spatial distribution 

of the “d” orbital, make Ni a good active site for π-complexation.   

 

• Sn/ACC has the second highest adsorption capacity, which may be due to its 

relatively higher electronegativity (1.96) in comparison to other metal species in 

this study.  However, there are no vacant “d” orbitals in Sn to form π-

complexation.  The improved adsorption capacity of Sn/ACC in comparison to 

virgin ACC is therefore attributed to mechanisms other than the common ones 

such as Lewis acid coordination or formation of π-electron interactions (Cotton 

and Wilkinson, 1972). 

 

• Sr/ACC has the second lowest adsorption capacity amongst the selected sorbents, 

even lower than ACC.  The latter may be due to some pore blockage (Sr has the 

largest metallic radius amongst the metals studied here).  Obvious spatial 

limitations of “s” orbital electrons in comparison to “d” orbitals limits the extent 

of potential interactions with sulphur species, however, once formed, the bond 

strength would most likely be higher (Cotton and Wilkinson, 1972), which was 

further investigated by measuring the heat of adsorption (see sub-section 5.5).  
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4,6 DMDBT Adsorption Isotherms 

 

Similar to DBT, liquid phase adsorption experiments were also completed for 4,6 

DMDBT, using the same sorbents as above (i.e., metal impregnated ACC, <125µ).  It 

should be noted that due to limited solubility of 4,6-DMDBT in C16, the maximum 

DMDBT concentration used in this study was  800 ppmw-S (~ 19 mmol-S/L).   

 

The same general observation as above (for DBT) can be said about 4,6 DMDBT 

adsorption, i.e., as the active sites associated with the impregnated metal species play a 

more significant role in sulphur adsorption (i.e., are more effective in improving the 

adsorption capacity), the more the adsorption mechanism moves away from Langmuir’s 

isotherm model and more towards Freundlich’s isotherm model.   

 

The adsorption isotherm data, isotherm plots and linearization plots are provided in 

Appendix C.  The data are summarized in TABLE 5.6, in reducing order of the adsorption 

capacity.  Similar to DBT, the highest qmax was for tantalum impregnated ACC. 
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TABLE 5.6 - ADSORPTION ISOTHERM DATA FOR 4,6 DMDBT ON ACTIVATED CARBON BASED SORBENTS AT 50 °C  
 

Isotherm 
Sorbent ID 

Impregnation Salt 
&  

(Percent Weight 
Loading) 

Particle size 
Type* Linear 

Regression (R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Ta-impregnated Centaur Activated 
Carbon Ta-2 / ACC TaF5 

(2% by Wt. loading) Powder (<125µ) Modified 
Langmuir 0.991 ± 0.007 0.75 ± 0.04 0.78 ± 0.34 

Ni-impregnated Centaur Activated 
Carbon Ni / ACC Ni (NO3)2 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.995 ± 0.006 0.67 ± 0.02 0.26 ± 0.03 

Co-impregnated Centaur Activated 
Carbon Co / ACC CoNO3 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.997 0.66 0.26 

Ag-impregnated Centaur Activated 
Carbon Ag / ACC AgNO3 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.986 0.65 0.27 

Sn-impregnated Centaur Activated 
Carbon Sn / ACC SnCl2 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.993 0.62 0.26 

Centaur Activated Carbon ACC n/a Powder (<125µ) Langmuir 0.976 ± 0.013 0.58 ± 0.01 1.75 ± 0.57 

Sr-impregnated Centaur Activated 
Carbon Sr / ACC Sr(NO3)2 

(2% by Wt. loading) Powder (<125µ) Langmuir 0.95 0.57 1.42 

Ga-impregnated Centaur Activated 
Carbon Ga / ACC Ga(NO3)3 

(2% by Wt. loading) Powder (<125µ) Freundlich 0.989 0.56 0.26 

Note:        
* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C. 

** The qmax values are based on Langmuir or modified Langmuir isotherm equations and in reference to 4,6 DMDBT. 
The 2% by Wt. metal loading is based on calculations. 
Standard Deviation is provided for experiments with 3 or more repeats. 
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From the adsorption performances summarized in TABLE 5.6, the following can be 

concluded: 

 

• Ta/ACC (2 wt.% Ta impregnated Centaur activated carbon), similar to the DBT 

adsorption, has the highest adsorption capacity amongst the selected sorbents.  

The data had good repeatability, adding confidence to this conclusion.  The same 

explanation (i.e. strong Lewis acid) as that provided above (for DBT) can be said 

for 4,6-DMDBT as well.  However, steric hindrance of alkyl groups my result in 

lower overall adsorption of 4,6-DMDBT in comparison to DBT. 

 

• Ni/ACC had the second highest adsorption capacity and the lowest equilibrium 

constant.  As mentioned above, electron deficiency in its “d” orbital and the 

spatial spread of the “d” orbital, make Ni a good active site for π-complexation 

for adsorption of organo-sulphur compounds.   

 

• The difference observed between the adsorption capacity of plain ACC and 

sorbents impregnated with Ag, Sn, Sr and Ga are not considered to be significant.  

Therefore, although these species may create new active sites for the adsorption of 

4,6-DMDBT, their interaction with surface morphology of the ACC support 

seems to cause pore blockage and also do not seem to notably overcome the steric 

hindrance associated with the methyl groups of 4,6-DMDBT.   
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5.5 Flow microcalorimetry 
 

As discussed above, in order to determine adsorption strength between the sorbent and 

sorbate, flow microcalorimetry (calorimetry) was used to measure the heat of adsorption.  

This is the heat released when a sulphur compound (in this case DBT) replaces an already 

adsorbed compound (in this case C16).  More energy is released (in the form of heat) 

when DBT is adsorbed onto the active sites of the sorbent than when C16 is adsorbed.  

Therefore, this thermodynamically favoured displacement continues until it reaches 

saturation, at which point the amount of DBT adsorbed and the amount of DBT desorbed 

reach equilibrium and the amount of heat released drops to the baseline.  The higher heat 

release would typically be associated with stronger interaction (adsorption strength) 

between the sulphur compound (DBT) and the active sites.   

 

The resident Setsoft® software linked with the Setaram C80 Flow calorimeter was used to 

generate heat flow curves.  The integration of the heat flow curve (area under the curve) 

was also performed using the Setsoft® software.  The area under the heat flow curve 

(baseline to baseline) is equal to the total heat of adsorption associated with DBT and the 

sorbent.  It should be noted that the amount of heat released is also a function of sorbent 

weight (note: the concentration of DBT in hexadecane was kept approximately the same 

for all the runs).  Therefore, to ensure that heat-releases can be compared, total heat of 

adsorption values were normalized based on the dry weight of the sorbents.  The 

normalized heat of adsorption values are presented in TABLE 5.7. 

 

The outflow from the calorimeter was collected at regular intervals and analyzed for 

sulphur content using GC/FID.  The sulphur concentrations were plotted versus time (the 

time the sample was collected) to generate a breakthrough curve. When the sorbent 

reaches saturation, the net adsorption of sulphur compound will diminish and therefore, 
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the sulphur concentration in the outflow reaches that of the bulk solution which enters the 

calorimeter cell, hence the term breakthrough. 

 

The heat flow curve and the breakthrough curve for each sorbent were plotted on the 

same graph (time matched).  The combined curves for virgin ACC (un-impregnated) and 

that of Sr-ACC (Strontium 2% Wt. impregnated ACC), which had the highest heat of 

adsorption, are presented in Figure 5.2 and Figure 5.3, respectively.  The plots for other 

sorbents are presented in Appendix C.     

 

 

FIGURE 5.2 - CALORIMETRY HEAT FLOW AND BREAKTHROUGH CURVES FOR DBT IN 

HEXADECANE ON ACC (<125 µ) AT 30 °C 
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The heat flow and breakthrough plots illustrate that the peak of the heat of adsorption 

correlates with the initial part of the adsorption process when the sorbent has maximum 

capacity.  The heat curve tapers-off back to the baseline as the sorbent reaches saturation 

(no net sulphur adsorption).   

 

 

FIGURE 5.3 - CALORIMETRY HEAT FLOW AND BREAKTHROUGH CURVES FOR DBT IN 

HEXADECANE ON Sr-ACC (<125 µ) AT 30 °C 
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The normalized heat of adsorption values (TABLE 5.7) indicate that the Sr-ACC has the 

highest heat of adsorption, thus having the strongest adsorption strength towards DBT 

amongst the selected sorbents.  As mentioned above, this maybe due to the interaction 
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with the electrons in the “s” orbital of Sr, which although they do not have the spatial 

spread of the “d” orbital, they are capable of forming stronger (but less of) bonding with 

the sulphur compound (i.e., DBT).  As expected Ta/ACC also has a reasonably high heat 

of adsorption towards DBT.  This is expected to be associated with the strong Lewis acid 

characteristic of Ta and its affinity for sulphur’s lone pair of electrons. 

 

Also presented in Table 5.7 are the molar heats of adsorption in kJ per mole of sulphur 

adsorbed.  The molar heats of adsorption clearly reveal the strong interaction of DBT 

with Sr sites.   
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TABLE 5.7 - HEAT OF ADSORPTION VALUES FOR ACTIVATED CARBON AND IMPREGNATED ACTIVATED CARBONS  

(BINARY SOLUTION OF APPROXIMATELY 900 ppmw-S DBT IN HEXADECANE AT 30 °C) 
  

Sorbent Description Sorbent ID Metal Impregnation
(% by Weight) Sorbent Particle Size Normalized Heat 

(J/g-sorbent) 
Molar Heat  
(kJ/mol-S) 

Sr-impregnated Centaur Activated Carbon Sr-ACC 2% <125 u (powder) 16.57 24.65 

Ta-impregnated Centaur Activated Carbon Ta-ACC 2% <125 u (powder) 11.13 10.12 

Co-impregnated Centaur Activated Carbon Co-ACC 2% <125 u (powder) 9.98 12.92 

Activated Carbon - Centaur (Virgin) ACC 0% <125 u (powder) 6.78 9.11 

Ag-impregnated Centaur Activated Carbon Ag-ACC 2% <125 u (powder) 6.02 9.45 

Ga-impregnated Centaur Activated Carbon Ga-ACC 2% <125 u (powder) 5.18 6.97 

Ni-impregnated Centaur Activated Carbon Ni-ACC 2% <125 u (powder) 4.9 6.05 

Activated Carbon - Centaur (Virgin) ACC125 0% 125 - 250 3.24 5.68 

Activated Carbon - Centaur (Virgin) ACC 500 0% 250 - 500 0.98 2.20 
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Another observation was the impact of sorbent particle size on the adsorption heat.  Three 

particle size factions of ACC, were analyzed using the calorimeter.  The particle size 

fractions were: 

• ACC500 (particle size range: 250μm - 500μm); 

• ACC125 (particle size range: 125μm - 250μm); and, 

• ACC Powder (particle size <125μm).   

 

The combined heat flow and breakthrough curves for the ACC Powder (<125 µm) are 

presented in Figure 5.2, above.  The plots for ACC500 and ACC125 are presented in 

FIGURE 5.4 and FIGURE 5.5, respectively. 

 

FIGURE 5.4 - CALORIMETRY HEAT FLOW AND BREAKTHROUGH CURVES FOR DBT IN 

HEXADECANE ON ACC500 (250µm << 500µm) AT 30 °C 
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FIGURE 5.5 - CALORIMETRY HEAT FLOW AND BREAKTHROUGH CURVES FOR DBT IN 

HEXADECANE ON ACC-125µm (125µm<<250µm) AT 30 °C 
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The normalized heat of adsorption results indicate almost 7 times higher heat release for 

the powder ACC versus the 500μm size fraction (see TABLE 5.7).  This is evidence that 

more contact surface area resulting from finer particle sizes promotes more adsorptive 

interactions. 
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6.0 Study of Tantalum Impregnated Activated 
Carbon 

 

It was ascertained through wet adsorption analysis that tantalum impregnation of 

activated carbon (Ta/ACC) boosts the adsorption capacity of virgin activated carbon by 

approximately 50% for DBT and 30% for 4,6 DMDBT.  Also, the analysis showed that 

amongst the metal-impregnated activated carbons analyzed tantalum had the highest 

adsorption capacity for both sulphur compounds (i.e., DBT and 4,6 DMDBT).  The 

sulphur adsorption capacity of Ta/ACC is quite high when compared against the 

adsorption performances published in the literature and those currently deployed in the 

industry (see Section 3).  As such, more detailed analysis and characterization of tantalum 

impregnated activated carbon is warranted to determine key factors that influence its 

performance and to obtain insight into the potential adsorption type / mechanism by 

which it adsorbs sulphur species.  To accomplish this following analysis were completed: 

 

• Effect of tantalum loading – In order to determine the effect of tantalum on 

sulphur adsorption, sorbents with varying percent weight loading of tantalum on 

activated carbon were prepared and analyzed for their adsorption performance.  

In addition, the impact of tantalum loading on sorbent surface area and pore 

volume was assessed.  Potential adsorption mechanisms for organo-sulphur 

compounds on tantalum impregnated sorbent were also investigated. 

 

• Effect of fluoride and acid – TaF5 salt readily dissociates in water and forms an 

acidic solution (pH ~ 2).  Through the impregnation process, fluoride and/or its 

complexes can form sites on the surface of the activated carbon that can 

influence adsorption.  Also, the acidic nature of the solution may physically 

and/or chemically alter the activated carbon.  To determine any of such effects, 

sorbents were prepared using the hydrofluoric acid (HF) and sulphuric acid 

(H2SO4).  The adsorption performances of the acid treated sorbents were 
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determined through isothermal wet adsorption analysis.  The results were 

compared against Ta-impregnated activated carbon. 

 

• Heat of adsorption – The heat of adsorption for the tantalum impregnated 

activated carbon was compared with that of virgin activated carbon in order to 

establish insight into type(s) of adsorptive sites that may exists on the surface 

of the sorbent as a result of the impregnation.  Change in normalized heats of 

adsorption (between the virgin and impregnated activated carbon) can reveal 

existence of new / different adsorptive sites on the surface of tantalum-

impregnated activated carbon.  This can help explain the improved adsorption 

performance and possible adsorption type (i.e., physisorption or chemisorption) 

for the tantalum sites. 

 

• Competitive Adsorption – The industrial use of the developed sorbent for 

adsorptive desulphurization would mean exposure to numerous chemical 

species that can compete for the adsorptive sites of the sorbent.  These species 

include coexisting sulphur compounds, with DBT and 4,6 DMDBT being the 

most difficult to remove, as well as aromatics such as naphthalene and organo-

nitrogen compounds such as quinoline and carbazole.  To determine its 

adsorptive performance in a competitive environment (i.e., numerous 

adsorbates co-existing) sulphur, aromatic and nitrogen adsorption on tantalum 

impregnated activated carbon was investigated.  

 

• Characterization – When physical and/or chemical changes to a sorbent are 

assessed together with its adsorptive performance, one can establish links 

between certain properties / characteristics of the sorbent and the change in its 

performance it order to expand the understanding of the adsorption process and 

key factors that influence it.  To establish a better understanding of the physical 

and chemical changes that take place as a result of metal impregnation, a series 

of systematic characterizations were completed, as follows: 
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o HRTEM was used to determine physical characteristics of the sorbent 

and changes as a result of tantalum impregnation process.  The    

physical features including surface morphology and dispersion of 

tantalum on the surface of the activated carbon were evaluated.  The 

analysis was carried out on tantalum impregnated activated carbon as 

well as virgin activated carbon. 

 

o Along with HRTEM, EDX analysis was also conducted to determine 

elements (e.g., tantalum) that exist on the surface of the sorbents.  The 

analysis was carried out on tantalum impregnated activated carbon as 

well as virgin activated carbon. 

 

o FTIR analysis was used to identify functional groups on the surface of 

the sorbents and determine if the impregnation process influences those 

functional groups.  The analysis was carried out on tantalum 

impregnated activated carbon as well as virgin activated carbon. 

 

o TPD – Ammonia analysis was used to determine a change in the acidic 

strength of the sorbent as a result of tantalum impregnation. The analysis 

was carried out on tantalum impregnated activated carbon as well as 

virgin activated carbon. 

 

o XPS analysis was carried out to determine the oxidation state of 

tantalum on the surface of the sorbent, tantalum complexes that may 

form, and functional groups that may exist on the surface of the sorbent.  

The analysis was also used to gain insights into the bonds that may form 

between the active sites of the sorbent (e.g., tantalum sites) and 

adsorbates (e.g., DBT, carbazole).  The analysis was carried out on 

virgin activated carbon, unused (fresh) tantalum-impregnated activated 
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carbon and used tantalum-impregnated activated carbon (i.e., used in an 

equilibrium adsorption experiment for organo-sulphur or organo-

nitrogen compounds).  

 

6.1 Tantalum Chemistry and Impregnation 
 
The metal impregnation procedure was briefly discussed in previous sections.  The 

impregnation process used for tantalum is different that the rest of the metals due to the 

chemical properties of tantalum and its halide/oxide complexes.  As such, a more detailed 

explanation of the impregnation process and the chemical/physical properties of tantalum 

and its complexes are provided in this section.   

 

Tantalum Chemistry 

Tantalum is a rare refractory metal which naturally exists in the form of oxide complexes 

along with other transition metals such as, iron, manganese and niobium (i.e., columbite-

tantalite: (Fe, Mn)(Nb, Ta)2O6).  Although a metal, tantalum has chemical properties in 

its V oxidation state that is quite typical of non-metal elements.  This includes formation 

of numerous anionic species instead of cationic ones (virtually no cationic chemistry).   

The columbite-tantalite dissociates in hydrofluoric acid, producing fluorinated tantalum 

and niobium as well as oxyfluoride complexes such as, TaOF5
2-.  Sulphuric acid is also 

used in combination with HF, during the acid digestion processing of the columbite-

tantalite.  For a reasonable dissolution rate, concentrated HF (up to 70%) at temperatures 

of 70 – 90 °C is required.  Highly concentrated HF includes very reactive species such as 

HF2- which can result in formation of anionic complexes such as TaF6
- and TaF7

2- .  In 

case of H2SO4 and HF mixed acid solution, the chemistry is more complex but it is likely 

that H2SO4 interacts mainly with iron and manganese, while the HF interacts mainly with 

niobium and tantalum.  The dissolved fluorinated refractory metals are then separated 

through liquid-liquid extraction using aqueous solutions and organic solvents 

(Agulyansky 2004). 
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Production of tantalum oxide includes precipitation of tantalum hydroxide (Ta2O5.nH2O) 

in an aqueous solution and subsequent thermal treatment of tantalum hydroxide to form 

tantalum oxide.  The strip solution of tantalum includes oxyfluoro acid complexes 

including oxyfluorotantalic acid (H2TaOF5) and fluorotantalic acid (H2TaF7) (Buslaev, 

Nikolaev et al. 1985).  For conversion of the liquid acids into solid (i.e., precipitate) 

tantalum oxide, three key steps are commonly performed: (1) substitution of fluoride 

ions, (2) precipitation of insoluble tantalum compounds formed (e.g., tantalum 

hydroxide), and (3) decomposition of precipitate through thermal treatment, to form 

tantalum oxides (Agulyansky 2004).  Fluoride substitution step is key in determining the 

quality / purity of the tantalum oxide formed.  Fluoride impurities, which exist mainly in 

the form of oxyfluorides such as TaO2F and Ta3O7F, can have deterring effects on 

tantalum oxide applications.  For the thermal treatment, it is shown that higher 

temperature during the thermal treatment leads to less water molecules incorporated in 

the oxide complex (Titov, Krokhin et al. 1995). 

 

The oxides of tantalum can exist in the form of Ta2O5 (which is the most stable) or TaOx 

with x being less than or equal to 2.5.  The tantalum oxide is a dense white powder which 

is relatively inert and insoluble in water.  Tantalum fluoride (TaF5) on the other hand 

readily dissociates in water forming a strong acidic solution (if not diluted) which helps 

to prevent the formation of precipitates at low pH.   

 

Tantalum Impregnation 

 

Use of a support (in this case, inexpensive support such as activated carbon) to disperse 

adsorptively active metals makes the sorbent more economical while improving its 

performance as a sorbent or catalyst through electronic interaction of metal with the 

substrate (Park and Keane 2003). 

 

An effective impregnation of transition metals on the surface of a support consists of well 

dispersed metal species on the surface with minimal clustering of the metal species.  This 
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is to minimize overlapping active sites and to maximize the interaction between adsorbate 

and the active sites (i.e., metal sites).  To achieve this, the metal species are to be fully 

dissolved in a carrier solvent (e.g., aqueous) so that they can penetrate the pores and 

cavities of the support (i.e., activated carbon) in a wet impregnation process and 

subsequently precipitate out of solution and form active sites on the surface of the 

sorbent.   

 

As mentioned above, tantalum oxide is insoluble in water, while tantalum pentaflouride 

dissociates in water, forming an acidic solution (i.e., HF, H2TaOF5), which keeps the 

formed tantalum hydroxide in solution, allowing it to infiltrate the pores and cavities of 

the activated carbon.  Therefore, for the purposes of this study, TaF5 was used for the 

tantalum impregnation of the activated carbon.   

 

The wet impregnation of activated carbon was done over 24 hours to ensure that the 

process is not limited by mass transfer.  Also, the mixture was under continuous agitation 

for the 24-hour period to help with surface wetting, contact (active site and support) and 

dispersion.  The wet activated carbon was filtered using suction filtration and washed 

with distilled water several times to reduce acidity and help with formation of hydroxide 

precipitates on the surface of the activated carbon.  The air dried Ta-impregnated 

activated carbon was then dried under helium flow as follows: 

 

• continuous thermal treatment at 150 °C for 3 hours, with a temperature ramp-up 

rate of 10 °C /min for 25 – 100 °C, a 30 minute hold at 100 °C followed by a 

second ramp-up (same rate as before) to 150 °C (hold for 2 hours and 15 

minutes). 

• Continuous thermal treatment at 400 °C for 1 hour, with a temperature ramp-up 

rate of 10 °C /min.   
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The thermally treated sorbent was cooled under helium flow.  Any exposure to air at the 

above mentioned temperatures can result in full or partial oxidization of the activated 

carbon, which voids its use as a sorbent and sorbent structure.   

 

The cooled sorbent (Ta-impregnated activated carbon) was then weighed and 

immediately transferred to vials / cells with adsorbate solution to ensure minimum 

exposure to air.  This is due to the hydrophilic nature of activated carbon.  In fact in our 

experiments it was observed that longer exposures to ambient air / moisture in the air 

significantly inhibited the adsorptive performance of the sorbent, while no exposure (e.g., 

in case of the flow reactor experiments, where an in-situ thermal treatment was 

undertaken under helium flow) showed noticeable improvement in adsorption 

performance.    

 

6.2 Adsorption Performance as a Function of Tantalum Loading 
 
The effect of tantalum on sulphur adsorption was investigated through equilibrium 

adsorption of DBT and 4,6 DMDBT on sorbents with different percent tantalum loadings.  

For this analysis, sorbents with tantalum loadings of 2%, 5% and 10% by weight were 

prepared and identified as follows: 

 

• Ta-2/ACC – 2% Ta (by weight) on Activated Carbon Centaur 

• Ta-5/ACC – 5% Ta (by weight) on Activated Carbon Centaur 

• Ta-10/ACC – 10% Ta (by weight) on Activated Carbon Centaur 

 

The adsorption isotherm data, isotherm plots and linearization plots for multiple runs for 

each sorbent are provided in Appendix C.    

 

A third party measurement of tantalum content for the 5% and 10% impregnated sorbents 

were performed.  The analysis was conducted at Cambridge Materials Testing Limited 
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using ICP method.  The results indicated a percent by weight concentration of 3.14% and 

8.04% for the 5% and 10% Ta-impregnated sorbents. 

 

The DBT adsorption isotherms for the three sorbents as well as that of un-impregnated 

activated carbon (i.e., virgin ACC) are presented in Figure 6.1.  The maximum adsorption 

capacities for DBT as well as K values are presented in TABLE 6.1.   

 
 

FIGURE 6.1 - DBT ADSORPTION ISOTHERMS FOR Ta-IMPREGNATED  ACC AT 
DIFFERENT TANTALUM LOADINGS 

 

NOTE: 
Ta-2/ACC – 2% Ta (by weight) on Activated Carbon Centaur 
Ta-5/ACC – 5% Ta (by weight) on Activated Carbon Centaur 
Ta-10/ACC – 10% Ta (by weight) on Activated Carbon Centaur 
ACC – Un-impregnated (virgin) ACC 
Isotherms for repeat runs are provided in Appendix C 
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TABLE 6.1 - ADSORPTION ISOTHERM DATA FOR DBT ON ACTIVATED CARBON BASED SORBENTS AT DIFFERENT TANTALUM 
LOADINGS, AT 50 °C  

 
 

Isotherm 

Sorbent ID 

Impregnation Salt 
&  

(Percent Weight 
Loading) 

Particle size 
Type* 

Linear 
Regression  

(R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Activated Carbon - 
Centaur (Virgin) ACC n/a Powder 

(<125µ) Langmuir 0.992 0.74 0.42 

Ta-impregnated 
Activated Carbon - 
Centaur 

Ta-2 / ACC TaF5 
(2% by Wt. loading) 

Powder 
(<125µ) 

Modified Langmuir 
(Sips Equation) 0.992 ± 0.003 1.10 ± 0.04 0.28 ± 0.04 

Ta-impregnated 
Activated Carbon - 
Centaur 

Ta-5 / ACC TaF5 
(5% by Wt. loading) 

Powder 
(<125µ) 

Modified Langmuir 
(Sips Equation) 0.993 ± 0.003 1.49 ± 0.16 0.32 ± 0.06 

Ta-impregnated 
Activated Carbon - 
Centaur 

Ta-10 / ACC TaF5 
(10% by Wt. loading) 

Powder 
(<125µ) 

Modified Langmuir 
(Sips Equation) 0.984 ± 0.012 1.00 ± 0.07 0.39 ± 0.06 

Note:        

* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C. 

** The qmax values are based on Langmuir or modified Langmuir isotherm equations and in reference to DBT. 

The percent by Wt. tantalum loading is based on calculations. 

Standard Deviation is provided for experiments with 3 or more repeats.  Values without standard deviation are mean values for two runs. 
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Through adsorption isotherm analysis, a difference between the adsorption mechanism of 

sulphur compounds on to ACC (virgin) and tantalum impregnated ACC was discovered.  

This is clearly visible from the isotherms shown in Figure 6.1.  The virgin ACC follows 

the Langmuir’s monolayer isotherm while all three tantalum impregnated ACCs do not 

show a good fit with Langmuir’s isotherm.  Instead all three tantalum impregnated 

sorbents show a better fit with Freundlich isotherm, which is based on independent, 

multi-site adsorption mechanism.  The experimental data for the tantalum impregnated 

ACC fitted best with Sips model, which is a combination of Freundlich and Langmuir 

isotherms (as per sub-section 5.1).   This will be discussed further in the following 

sections.  Linearization and regression coefficients support this conclusion.  The 

calculation details and linearization plots are provided in Appendix C. 

 

It is believed that the modification of activated carbon with Ta results in the introduction 

of new adsorption sites which interact strongly with the adsorbate’s electrons.  This 

interaction is believed to be due to the Lewis acid characteristics that the tantalum species 

on the surface possess.  In the sulphur adsorption process, these sites interact with the 

lone pair of electrons of sulphur in DBT and DMDBT.   

 

The maximum adsorption capacities of the three impregnated sorbents clearly show 

improvements in capacity in comparison to virgin ACC. The sulphur adsorption capacity 

for DBT followed the trend: ACC < Ta-10ACC < Ta-2/ACC < Ta-5/ACC.  The 5% Ta-

impregnated ACC (Ta-5/ACC) had an adsorption capacity approximately 100% higher 

than that of virgin ACC.  This further confirms the formation of additional active sites 

that adsorb sulphur compounds.  

 

The reduction in DBT adsorption capacity for Ta-10/ACC is attributed to clustering and 

pore blockage and thus reduced access to adsorptive sites due to overload of tantalum 

species.  This is further discussed in the following sections.   
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Adsorption of 4,6 dimethyldibenzothiophene (4,6 DMDBT) in hexadecane (C16) was 

also conducted in liquid phase using 2%, 5% and 10% Ta-impregnated ACC.  The results 

were compared against virgin ACC.  The adsorption isotherms are presented in FIGURE 

6.2 and the adsorption capacities are presented in TABLE 6.2. 

 

The findings are similar to those mentioned above for DBT adsorption: (1) adsorption 

mechanism of tantalum impregnated ACC is likely different than virgin ACC, (2) the 

virgin ACC follows Langmuir’s isotherm mechanism while Ta-impregnated ACC seems 

to fit best with Sips model (also referred to as modified Langmuir).  

 

The density of the sorbent changes with higher loading of tantalum.  Since the adsorption 

is a function of surface area comparison of amount adsorbed per unit weight of sorbent 

amongst the four sorbents may be conservative in determining the adsorption 

performance of the sorbents.  In other words, the actual adsorption capacities would 

likely be higher. 
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FIGURE 6.2 - 4,6 DMDBT ADSORPTION ISOTHERMS FOR Ta-IMPREGNATED  ACC AT 

DIFFERENT TANTALUM LOADINGS 
(BINARY SOLUTION OF 4,6 DMDBT AND HEXADECANE AT 50 °C) 
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NOTE: 
Ta-2/ACC – 2% Ta (by weight) on Activated Carbon Centaur 
Ta-5/ACC – 5% Ta (by weight) on Activated Carbon Centaur 
Ta-10/ACC – 10% Ta (by weight) on Activated Carbon Centaur 
ACC – Un-impregnated (virgin) ACC 
Isotherms for repeat runs are provided in Appendix C 
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TABLE 6.2 - ADSORPTION ISOTHERM DATA FOR 4,6 DMDBT ON ACTIVATED CARBON BASED SORBENTS AT DIFFERENT 
TANTALUM LOADINGS, AT 50 °C 

 
 

Isotherm 

Sorbent ID 

Impregnation Salt 
&  

(Percent Weight 
Loading) 

Particle size 

Type* Linear 
Regression (R2) 

qmax 
** 

(mmol-S/g-sorbent) 
K 

(L/mmol) 

Centaur Activated 
Carbon ACC n/a Powder (<125µ) Langmuir 0.976 ± 0.013 0.58 ± 0.01 1.75 ± 0.57 

Ta-impregnated 
Centaur Activated 
Carbon 

Ta-2 / ACC TaF5 
(2% by Wt. loading) Powder (<125µ) Modified Langmuir 

(Sips Equation) 0.991 ± 0.007 0.75 ± 0.04 0.78 ± 0.34 

Ta-impregnated 
Centaur Activated 
Carbon 

Ta-5 / ACC TaF5 
(5% by Wt. loading) Powder (<125µ) Modified Langmuir 

(Sips Equation) 0.994 ± 0.005 0.76 ± 0.07 0.92 ± 0.29 

Ta-impregnated 
Centaur Activated 
Carbon 

Ta-10 / ACC TaF5 
(10% by Wt. loading) Powder (<125µ) Modified Langmuir 

(Sips Equation) 0.994 ± 0.002 0.48 ± 0.03 1.28 ± 0.18 

Note:        

* The isotherm that best fit the data is presented in this table.  Details, including R2 for other isotherm types are presented in Appendix C. 
** The qmax values are based on Langmuir or modified Langmuir isotherm equations and in reference to 4,6 DMDBT. 
The percent by Wt. metal loading is based on calculations. 
Standard Deviation is provided for experiments with 3 or more repeats. 
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The sulphur adsorption capacity for 4,6 DMDBT followed the trend: ACC < Ta-10/ACC 

< Ta-2/ACC < Ta-5/ACC, which is similar to that observed for DBT adsorption.  The 

best performing sorbent (i.e., Ta-5/ACC) has approximately 31% higher adsorption 

capacity in comparison to virgin ACC.  Similar to DBT, the adsorption mechanism is best 

described by the Sips equation, which further confirms the above-indicated hypothesis 

(i.e., formation of adsorptive sites that function independently of those already existing 

on the surface of the activated carbon).  The Sips equation curbs (i.e., defines a qmax) the 

continuous increase in adsorption with increase of sorbate concentration, which is a 

characteristic of Freundlich’s empirical mechanism.  The Ta-impregnated ACC consists 

of a heterogeneous surface consisting of patches of adsorption sites with similar 

adsorption energies grouped together and with no interaction between the patches (i.e., 

independent active/adsorptive sites).  One can assume that each patch adsorbs only one 

adsorbate molecule and thus the Langmuir equation applies to each patch and Freundlich 

applies to the heterogeneous surface as a whole. 

 

Similar to DBT adsorption capacity, the reduction in 4,6 DMDBT adsorption capacity for 

Ta-10/ACC is attributed to clustering and pore blockage and thus reduced access to 

adsorptive sites due to overload of tantalum species.  This is further investigated in the 

following sections.   

 

The maximum adsorption capacity calculated using Sips equation and experimental data 

(0.76 mmol-sulphur/gads) at 50 °C is higher (by a significant margin) than any other 

adsorption capacity reported in the literature for the particularly difficult to remove 4,6 

DMDBT.  This higher adsorption capacity observed for DMDBT is believed to be due to 

the introduction of tantalum adsorption sites which to some extend can overcome the 

steric hindrance of 4,6-DMDBT.  The strength of this interaction with Ta may result in 

ortho methyl groups present on the DMDBT molecule to orient in such way that 

facilitates interaction between the tantalum site and the sulphur atom of DMDBT 

molecule (Agulyansky 2004).   
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6.3 Impact of Tantalum Loading on Surface Area and Pore Volume 
 

In order to better explain some of the observed trends in adsorption capacity of the 

tantalum impregnated activated carbon discussed in the previous section, the impact of 

tantalum impregnation on surface area and pore volume was investigated. 

 

The surface areas and pore volumes were determined using BET surface area analysis.  

The analysis was completed for virgin ACC along with the three tantalum impregnated 

ACCs, i.e., Ta-2/ACC, Ta-5/ACC and Ta-10/ACC.  The results are summarized in Table 

6.3.  The results indicate that as the percentage of tantalum loading on to the activated 

carbon increases there is a corresponding decrease in the BET surface area and pore 

volume.  The 5% Ta impregnation results in approximately 3% reduction in BET surface 

area in comparison to the 2% Ta loading, whereas, 10% Ta impregnation results in 

approximately 34% reduction in surface area, compared to the 2% Ta loading.  Similar 

reductions are also observed for pore volume. 

 

This anticipated result confirms one part of the above-mentioned hypothesis regarding 

the reduction in adsorption capacity of Ta-10/ACC: Overloading of tantalum species, 

resulting in pore blockage and thus reduced access to adsorptive sites. 

 
TABLE 6.3 -  BET SURFACE AREA AND PORE VOLUME ANALYSIS 

 

Adsorbent BET SA (m2/g) Pore Volume (cc/g) 

ACC 646 0.265 

Ta-2/ACC 597 0.127 

Ta-5/ACC 578 0.098 

Ta-10/ACC 445 0.056 
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6.4 Impact of Acid Treatment on Adsorption Performance 
 
As mentioned earlier, for tantalum impregnation process, TaF5 in aqueous solution was 

used, which resulted in formation of an acidic solution that may potentially impact 

physical and/or chemical nature of the activated carbon and thus influence the adsorption 

performance.  In order to determine if the observed improvement in sulphur adsorption 

capacity of the Ta-impregnated ACC is due to the presence of tantalum adsorption sites 

or due to the presence of any residual fluoride ion layer that might be present on the ACC 

surface or simply the acidification of ACC during the impregnation process, acid treated 

sorbents were prepared and tested for DBT adsorption.  The acid treatments were done 

using hydrofluoric acid (HF) and sulphuric acid (H2SO4).  For this purpose HF and 

H2SO4 treated ACC were synthesized in a liquid acid treatment procedure as follows: 

 

• ACC of <125µ particle size was added to 1.0 M HF acid and stirred using a 

Teflon covered magnetic stir bar, overnight (18 hours); 

• The mixture was suction filtered and the recovered ACC was dried in air for 24 

hours; and, 

• The air dried ACC was thermally treated in the same way as other sorbents (i.e., 

110 °C for 3 hours followed by 1 hour at 400 °C), before being used in liquid 

adsorption study. 

 

The same procedure was used for sulphuric acid. 

 

The DBT adsorption isotherms for the two acid-treated ACCs are presented in Figure 6.3.  

The maximum adsorption capacities and Langmuir equilibrium constant (K) values are 

summarized in TABLE 6.4.   
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FIGURE 6.3 - DBT ADSORPTION ISOTHERM FOR ACID TREATED ACC 
(ACC<125µ, BINARY SOLUTION OF DBT IN HEXADECANE AT 50 °C) 
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TABLE 6.4 - DBT ADSORPTION RESULTS FOR ACID TREATED ACC 
 

Acid Treatment qmax  

(mmol-S/g-sorbent) 
K 

(L/mmol) 

HF Treated ACC 0.82 0.15 

H2SO4  Treated ACC 0.63 0.27 

 
 
For both acid treated ACCs, there was a minor change in the maximum adsorption 

capacity (DBT) when compared to virgin ACC.  Research on activated carbons has 

shown that structurally they are typically resistant to acids and bases (Serp and 
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Figueiredo, 2009).  Therefore, it is not anticipated that the acid treatment would result in 

disruption of the activated carbon structure.  Moreover, the results were not indicative of 

formation of secondary adsorption sites as a result of acid treatment since the 

experimental data fits the Langmuir adsorption isotherm model better than the Freundlich 

model (see Appendix C).  Although acid treatment may potentially alter the surface 

chemistry of the activated carbon, one may argue  that the observed change in qmax (when 

compared with virgin ACC) is relatively minor and thus acid treatment has little or no 

impact on sulphur adsorption capacity of ACC. 

 

6.5 Competitive Adsorption 
 

As mentioned above the industrial applications for the developed sorbent for adsorptive 

desulphurization would require maintaining a good adsorption capacity in the presence of 

other chemical species that can potentially compete for the adsorption sites.  These 

species include coexisting sulphur compounds, with DBT and 4,6 DMDBT being the 

most difficult to remove and thus most important for this study, as well as aromatics, 

such as naphthalene and organo-nitrogen compounds, such as quinoline and carbazole.  

To determine the adsorptive performance of the tantalum impregnated ACC in a 

competitive environment (i.e., numerous co-existing adsorbates) the adsorption of 

sulphur, aromatic and nitrogen compounds as well as combination thereof, on tantalum 

impregnated activated carbon (i.e., Ta-5/ACC) was investigated.   

 

 

6.5.1. Adsorption of Organo-Nitrogen Compounds 
 

Adsorption of organo-nitrogen compounds from a mixture of quinoline and hexadecane 

was investigated using the best performing tantalum impregnated ACC, i.e., 5% by 

weight Ta-impregnated ACC (Ta-5/ACC).  The investigation consisted of liquid 

adsorption isotherm analysis for both virgin ACC and Ta-5/ACC.  This was to ascertain 
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the impact that Ta impregnation has on quinoline adsorption.  The isotherms are 

presented in Figure 6.4 and the adsorption capacities and K values are presented in 

TABLE 6.5.  

 
 

FIGURE 6.4 - QUINOLINE ADSORPTION ISOTHERMS FOR  TA-IMPREGNATED ACC AND 
VIRGIN ACC 
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TABLE 6.5 - QUINOLINE ADSORPTION ON TA-IMPREGNATED ACC AND VIRGIN ACC 

(BINARY SOLUTION OF QUINOLINE IN HEXADECANE AT 50 °C) 
 

Adsorbent Adsorption Capacity 

(mmol-N/g-sorbent) 
K 

(L/mmol) 

Ta-5/ACC 1.84 0.189 

ACC (virgin) 1.36 0.062 

  Note: 
  Results are mean values based on two runs. 
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The results indicate that similar to that of sulphur adsorption, nitrogen adsorption is 

improved as a result of tantalum impregnation.  The improvement in adsorption capacity 

is approximately 35%, which is considered to be significant.  Similar to sulphur 

adsorption, the isotherm for Ta-5/ACC seems to fit the Freundlich equation while virgin 

ACC best fits the Langmuir adsorption equation.  The linearization and regression 

analysis are provided in Appendix C.   

 

In addition to the liquid isotherm study of quinoline adsorption on virgin ACC and 

Ta-5/ACC (above), a single point adsorption study was conducted for carbazole.  For 

each sorbent two separate runs were completed.  The results of each run and the average 

adsorption capacity in mmol-N/g-sorbent is provided in Table 6.6, below. 

 

Similar to quinoline, the tantalum impregnated ACC illustrates higher adsorption 

capacity towards carbazole (approximately 21% higher) in comparison to virgin ACC. 

 

TABLE 6.6 - CARBAZOLE ADSORPTION CAPACITY ANALYSIS FOR ACC AND TA/ACC 
(BINARY SOLUTION OF CARBAZOLE IN TETRALIN AT 50 °C) 

 
          

GC/FID 
(mmol-N/L) 

Sorbent Use Run ID 

Stock Solution After Adsorption 

Adsorption Capacity 
(mmol-N / g-sorbent) 

Run 1 23.5 14.5 0.41 

ACC (Virgin) 

Run 2 23.5 15.1 0.37 

Run 1 23.5 15.7 0.47 

5%-Ta/ACC 

Run 2 23.5 16.1 0.48 

Note: 
Based on 300 ppmw-N carbazole in tetralin. 
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The strong Lewis acid characteristic of Ta is believed to be responsible for this greater 

adsorption capacity for both quinoline and carbazole.  It is postulated that the new 

adsorptive sites (i.e., tantalum species) interact strongly (strong Lewis acid) with the lone 

pair of electrons of nitrogen in quinoline and carbazole and thus improve adsorption 

performance.    

 

6.5.2. Adsorption of Aromatic Compounds 
 

The adsorption capacity of sorbents towards aromatic compounds was assessed using a 

mixture of naphthalene and hexadecane.  The investigation consisted of liquid adsorption 

isotherm analysis for both virgin ACC and Ta-5/ACC.  This was to ascertain the impact 

that Ta impregnation of ACC has on naphthalene adsorption.     

 

The isotherms are presented in FIGURE 6.5 and the adsorption capacities and K values are 

presented in Table 6.7.  Amounts of naphthalene adsorbed are significantly less compared 

to that of sulphur and nitrogen compounds. Little change in adsorption capacity of 

naphthalene was observed for the Ta-5/ACC when compared with virgin ACC.  The 

lower adsorption capacity for naphthalene on these sorbents is not clearly understood, 

however, one may hypothesize that the surface functionalities of the activated carbon and 

tantalum species on the surface of the ACC interact primarily with the sulphur and 

nitrogen atoms in organo-sulphur (DBT and 4,6 DMDBT) and organo-nitrogen 

(quinoline and carbazole) compounds, respectively, rather than their aromatic rings. 

 

The adsorption isotherms for both virgin ACC and Ta-5/ACC fit the Langmuir’s 

adsorption mechanism.  
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FIGURE 6.5 - NAPHTHALENE ADSORPTION ISOTHERMS FOR Ta-IMPREGNATED ACC 
AND VIRGIN ACC (BINARY SOLUTION OF NAPHTHALENE IN HEXADECANE AT 50 °C) 
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TABLE 6.7 - NAPHTHALENE ADSORPTION  ON Ta-IMPREGNATED ACC AND VIRGIN 
ACC (BINARY SOLUTION OF NAPHTHALENE IN HEXADECANE AT 50 °C) 

 

Adsorbent qmax  
(mmol/g-sorbent)* 

K 
(L/mmol) 

Ta-5/ACC 0.25 0.095 

ACC (virgin) 0.23 0.973 

Note: 
  Results are mean values based on two runs. 
  * mmol of naphthalene per gram of sorbent 
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6.5.3. Competitive Adsorption – Sulphur / Nitrogen / Aromatics 
 

A study of competitive adsorption and selectivity was carried out to determine adsorption 

behaviour of Ta-impregnated ACC in a mixture (which tends to be the case in industrial 

applications).  Equilibrium adsorption of a mixture of sulphur (DBT), nitrogen 

(quinoline) and aromatic (naphthalene), containing equi-molar amounts of each 

compound was studied using 5% by weight Ta-impregnated ACC.  The results indicate 

higher selectivity towards quinoline than DBT and naphthalene for both virgin ACC and 

Ta-5/ACC. The least selectivity is observed for naphthalene, which again is similar for 

both sorbents.   

 

The order of amounts adsorbed is in a similar trend as that of adsorption of individual 

adsorbates.  Results of this experiment are presented in Table 6.8, below. 

 
 

TABLE 6.8 - COMPETITIVE ADSORPTION – DBT, QUINOLINE   
AND NAPHTHALENE ON TA-5/ACC 

 
      

Adsorption Capacity 
(mmol/g) 

Adsorbate 

ACC (virgin) Ta-5/ACC 

DBT 0.39 0.47 

Quinoline 0.46 0.48 

Naphthalene 0.09 0.18 

Note:  
Equi-molar concentrations of each adsorbate (at approximately 22 mmol/L) was used,  
adsorption time: 24 hours, temperature: 50 °C 
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6.6 Sorbent Regenerability 
 

Regenerability of the best performing sorbent, Ta-5/ACC was studied to determine its 

feasibility for industrial applications.  The regenerability consisted of solvent wash, 

ultrasonic treatment and heat treatment.  The spent/used sorbent was washed with toluene 

while under ultrasonic treatment.   

 

In order to determine regeneration temperature for the thermal treatment of the used 

sorbent a thermogravimetric analysis was undertaken on a used, tantalum impregnated 

activated carbon sorbent.  The analysis consisted of a temperature ramp-up rate of 10 °C 

per minute, and a 30-minute hold (isothermal) at 400 °C, followed by a final temperature 

ramp-up (at the same rate of 10 °C / min) to a maximum temperature of 600 °C.  The 

result is presented graphically in Figure 6.6, below. 

 

The results indicate a 4.46% mass reduction in the temperature range of approximately 

312 °C and 397 °C.  The result was compared with that of unused Ta-5/ACC and the 

mass reduction observed for used sorbent did not appear for unused sorbent.  It was 

therefore concluded that the mass loss detected at those temperatures can potentially be 

associated with the residual organo-sulphur compound, in this case, DBT (boiling point ~ 

332 °C).  It should be noted the used sorbent sample used in themogravimetric analysis 

was not washed with toluene or sonicated.    
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FIGURE 6.6 - THERMOGRAVIMETRIC ANALYSIS OF USED Ta-5/ACC 
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The sorbent was subsequently heat treated at 400°C under He flow. The results of the 

analysis are presented in Table 6.9.  After the sorbent regeneration process, the sulphur 

adsorption capacity was decreased by approximately 6%.   

 

TABLE 6.9 - SORBENT REGENERABILITY ANALYSIS – TA-5/ACC 
 

Adsorbent qmax  / mmolgads
-1 

Fresh 1.14 

Reuse-1 1.07 

 
 
As we will see in Section 7, the regenerability of Ta-5/ACC is near 100% (i.e., the 

adsorption capacity is fully restored) when sorbent treatment and activation is conducted 

in-situ (See Section 7). 
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6.7 Heat of Adsorption Analysis – Ta-5/ACC 
 

The heat of adsorption for 5% by weight Ta-impregnated ACC was studied using a flow 

calorimeter (DBT in hexadecane mixture).  The results were compared to that of virgin 

ACC in order to determine the impact of Ta impregnation on heat of adsorption.  The 

results are presented in Figure 6.7 and Table 6.10.  Results indicated a molar heat of 

adsorption that is more than three times higher for Ta-5/ACC in comparison to virgin 

ACC.  This observation is expected and it is believed to be due to (1) introduction of new 

adsorption sites and (2) the stronger adsorption bond (i.e., chemisorption) that is formed 

between the Lewis acid Ta and the electron pair of sulphur in DBT.   

 
The Ta sites tend to form stronger adsorption bonds with organo-sulphur compounds than 

those formed between the surface functional groups and the organo-sulphur compounds.  

As we will see in subsequent sections (i.e., XPS), formation of a tantalum – sulphur bond 

is detected in used Ta-5/ACC sorbent, indicating a chemisorption interaction between Ta 

sites and sulphur.   
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FIGURE 6.7 - HEAT FLOW CURVES FOR ACC, 5%TAACC ADSORBENTS 
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TABLE 6.10 - COMPARISON OF HEAT OF ADSORPTION TA-5/ACC VERSUS ACC 
 

Adsorbent Normalized Heat 
(J/g-sorbent) 

Molar Heat  
(kJ/mol) 

Adsorption Capacity 
(mmol/g-sorbent) 

Ta-5/ACC 11.15 13.60 0.82 

ACC 1.35 3.86 0.35 
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6.8 Sorbent Characterization 
 

When physical and/or chemical changes to a sorbent are assessed together with its 

adsorptive performance, one can establish links between certain properties / 

characteristics of the sorbent and the change in its performance in order to gain a better 

understanding of the adsorption and key factors that influence it.  To establish a better 

understanding of the physical and chemical changes that take place as a result of metal 

impregnation, series of systematic characterizations were completed which are further 

discussed in the following subsections. 

 

 

6.8.1. FTIR – Surface Functional Groups 
 

A qualitative assessment of the selected sorbents was carried out using FTIR, in order to 

identify surface functional groups that exist on the surface of the activated carbons.  

Furthermore, comparative assessments were conducted to qualitatively determine 

possible interactions between impregnation metal species (i.e., tantalum species) and the 

existing surface functional groups.   

 

The results of FTIR analysis for the sorbents ACC (virgin), Ta-2/ACC and Ta-5/ACC are 

presented in Figure 6.8, below.  In the literature, a description of FTIR bands for various 

activated carbons is reported.  Figure 4.2 provides the infrared absorption bands assigned 

to various functional groups (Young, 1996).  The functional groups present on surfaces of 

various activated carbons vary depending on the source of the activated carbon.   
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FIGURE 6.8 - FTIR ANALYSIS OF SORBENTS 
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In the case of ACC, several characteristic bands of activated carbon are observed in the 

FTIR spectra. Peaks corresponding to oxygen functional groups of highly conjugated C-

O stretching (1152 cm-1, 1360 cm-1), aromatic ring stretching coupled to highly 

conjugated carbonyl groups (1565 cm-1), C-C triple bond stretching (2300 cm-1), C-H 

stretching in aliphatic methylene and methyl groups (2384 cm-1), broad O-H stretching 

band in hydroxyl, carboxyl and phenolic groups (3420 cm-1) and O-H stretching band 

(3570 cm-1) are evident. The FTIR was also completed for Ta-2/ACC and Ta-5/ACC.  

The characteristic vibration bands described above (oxygen functional groups) were 

found to be present in the FTIR spectra of all three adsorbents indicating little or no 

impact on the active functional groups of activated carbon as a result of tantalum 

impregnation.  Also, it was determined that the thermal treatment of the activated carbon 
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to a maximum temperature of 400 °C does not impact the surface functional groups of the 

activated carbon.  This is the case for both virgin and impregnated ACC. 

 

 

6.8.2. Temperature-Programmed Desorption – Ammonia  
 
Information regarding the strength of the acidity of the sorbent was obtained via the 

quantitative and qualitative analysis of the temperature programmed desorption (TPD) of 

ammonia. The sorbent was activated in situ by prolonged thermal treatment while 

exposed to carrier gas and were subsequently saturated with ammonia. The adsorbed 

ammonia was removed by thermal treatment.  The sorbent bed was heated according to a 

predetermined thermal profile (see below). The signal peaks resulting from desorption of 

ammonia as a function of temperature provided information regarding the relative 

strength of acidity of the adsorption sites.  

 
Sample Preparation 

Sorbents of a particle size range 125µ - 250µ were prepared using crushing and sieving. 

Approximately 0.1g of catalyst meeting this size specification was precisely weighed 

using a Sartorius balance (± 0.00005 g).  The sorbent was transferred into a quartz U-tube 

reactor, which utilizes a small amount of quartz wool on both ends of the tube to ensure 

that the sorbent remains inside the U-tube during the analysis and as the carrier gas flows 

through the U-tube. The U-tube was then secured to the sample station of an Altamira 

AMI-200 Catalyst Characterization System using ultra-torr fittings with o-ring seals 

provided by Altamira Instruments. 

 

Once the U-tube was inserted into the sample station of the Altamira AMI-200 and 

sealed, an 800 W heating mantle was raised into position to surround the U-tube. The U-

tube was enclosed at the top of the mantle with insulation and insulation tape. The AMI-

200 is equipped with multiple gas input ports capable of accommodating up to 4 carrier 

gases, 4 treatment gases and 4 blend gases. The volumetric flow rates of the carrier, 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 129 University of Waterloo Thesis 
 

treatment and blend gas streams are controlled by three Brooks mass flow controllers 

within the AMI-200 apparatus. UHP 5.0 Argon was used as a carrier gas and anhydrous 

ammonia was connected to a treatment gas inlet. No blend gases were used in these 

experiments.  

 

The direction of gas flow within the apparatus was controlled by two multi-port sampling 

valves as illustrated in the schematic representation of the Altamira AMI-200 Figure 6.9. 

The AMI-200 was equipped with a thermal conductivity detector (TCD) downstream of 

the analytical vent enabling the quantification of ammonia desorbing from the specimen 

(i.e., sorbent). 

 
FIGURE 6.9 - A SCHEMATIC DIAGRAM OF TPD FLOWS AND CONTROL SYSTEM 

 

 
 
The pre-treatment and analysis steps are listed below: 

 

• Flow of argon (carrier gas) for 30 minutes at 200 oC; 
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• Cool to room temperature under the argon flow; 

• NH3 gas adsorption onto the sample in pulses until it was saturated (saturation of 

the adsorbent with the ammonia gas confirmed by TCD); 

• Flush sample using the carrier gas  at room temperature for 5 minutes to remove 

the excess and loosely bonded NH3; 

• Heat up sample at a rate of 10 oC/min to 1000 oC; and, 

• Cool the sample back to room temperature.  

 

The desorption of NH3 was monitored by a response signal from the thermal conductivity 

detector. The TCD response was plotted against time and temperature to give the 

desorption pattern of NH3.  The plots for ACC and Ta/ACC are presented in Figure 6.10.  

 
Generally, the higher the temperature at which desorption of ammonia takes place, the 

stronger the acidity of the sorbent.  ACC and tantalum impregnated ACC were analyzed 

for acidity.  Results are shown graphically in FIGURE 6.10. 
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FIGURE 6.10 - TPD-AMMONIA FOR Ta-IMPREGNATED AND NON-IMPREGNATED 
ACTIVATED CARBON (ACC) 
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The results indicate that although ACC has some acidic properties, impregnation with Ta 

significantly improved the acidity of the sorbent.  The desorption of ammonia at lower 

temperature ranges (e.g., 70 – 80 °C) is indicative of weakly adsorbed (likely 

physisorbed) ammonia.  Significant ammonia desorption was detected, which was 

determined to peak at a bed temperature of approximately 780 °C.  This is indicative of a 

strong ammonia-sorbent bond for Ta/ACC, which is otherwise absent for virgin ACC 

(un-impregnated).  Thus the strong interaction is considered to be between the tantalum 

on the surface of the activated carbon and ammonia.   

 

It should be noted that this technique does not reveal the nature of the acidity since NH3 

will adsorb indiscriminately on both Lewis and Bronsted acid sites.  However, tantalum 

is well known for its Lewis acid properties (Howarth and Gillespie 1996).  This is 

780 oC

285 oC
70 – 80 oC 
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particularly useful since Lewis acid sites provide good adsorption sites for thiophenic 

compounds, due to the interaction with the lone pair of electrons of sulphur.   

 
6.8.3. HRTEM Analysis 
 
HRTEM was used to determine physical characteristics of the sorbent and changes as a 

result of tantalum impregnation process.  The physical features including surface 

morphology and dispersion of tantalum on the surface of the activated carbon were 

evaluated.  The analysis was carried out on tantalum impregnated activated carbon as 

well as virgin activated carbon. 

 

Along with HRTEM, EDX analysis was also conducted to determine elements (e.g., 

tantalum) that exist on the surface of the sorbents.  The analysis was carried out on 

tantalum impregnated activated carbon as well as virgin activated carbon. 

 
The results are illustrated in FIGURE 6.11 (a) to (d).  It can be seen from the figures that 

the thermal treatment at 400 °C induces structural uniformity in the activated carbon 

support and is believed to improve its crystalline structure in terms of pore accessibility.   

In addition, the thermal treatment of sorbent at 400 °C is believed to improve the 

dispersion of various tantalum species and a more uniform array of lattice structure.   

 

The improved dispesion of tantalum species as a result of heat treatment can potentially 

be due to the differences in the crystallographic structures of various Ta oxide species 

(Sata et al. 2010).  As we will discuss later on, the tantalum species on the surface of the 

activated carbon consist mainly of various tantalum oxide species such s Ta2O5 and TaOx 

with  x<2.5. 
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FIGURE 6.11 - HRTEM FOR VIRGIN ACC AND Ta-5/ACC 

 
(a)      (b) 

            
(c)      (d) 

        
 
 

  ACC (Heat Treated)   ACC (Not Heat Treated) 

   5% Ta/ACC (Heat Treated)  5% Ta/ACC (not heat treated) 
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The existence of the tantalum onto activated carbon is confirmed through HRTEM-EDX 

analysis.  The EDX results for un-impregnated ACC and 5% Ta/ACC are presented in 

FIGURE 6.12 (a) and (b), respectively. The results unambiguously confirm the 

incorporation of the tantalum species onto the surface or in the pores of the activated 

carbon.   

 
 

FIGURE 6.12 – HRTEM-EDX ANALYSIS FOR (a)VIRGIN ACC AND (b)Ta-5/ACC 
      
      (a) 

 
  
       (b) 
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Although tantalum species are found in the porous structure of ACC, the combined TEM 

and EDX analysis of zoomed in segments of the sorbent indicate that the distribution of 

tantalum species on the surface of the activated carbon is relatively inhomogeneous, with 

some areas showing well dispersed tantalum species (spectrum 1 in Figure 6.13) and 

others showing large clusters of tantalum species, pointing to a relatively low dispersion 

(spectrum 1 in Figure 6.14).  Improving the dispersion of tantalum species on the surface 

can potentially improve the already high (highest to date by a significant margin) 

adsorption capacity of Ta-5/ACC. 
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FIGURE 6.13 - TEM OF Ta-5/ACC AND EDX ANALYSIS FOR THE DISPERSED Ta  
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FIGURE 6.14 - TEM  OF Ta-5/ACCAND EDX ANALYSIS FOR THE CLUSTERED Ta 
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6.8.4. XPS Analysis 
 
X-ray photoelectron spectroscopy (XPS) is based on photo-ionization and dispersive 

energy analysis.  The photoelectrons that are emitted for a sample are analyzed in order to 

determine the composition and oxidation state of the sample.  XPS is a surface analysis 

method and thus the composition and oxidation state pertain to the surface of the sample.  

XPS allows the study of the energy levels of atomic cores, based on Einstein’s equation:      

τe = hn – Eb, 

Where:  

τe : kinetic energy of the photoemitted electron 

 Eb : binding energy of the core level 

 h: Plank’s constant (6.62 x 10-34 J s)  

n: rediation frequency (Hz) 

  

Different chemical bonds are associated with different binding energies.  This difference 

can determine types of binding sites for similar atoms based on their binding energies.  

This type of analysis is achieved through XPS.  The photon absorbed by an atom in a 

molecule leads to the ionization and emission of inner shell electron.   

 

The exact value of the binding energy of an emitted electron depends on the following 

key factors: 

(1) The level from which the photoemission is occurring from; 

(2) The oxidation state of the atom; and, 

(3) The local chemical and physical environment. 

 

Changes in the oxidation state and/or chemical and physical environment of the sample 

result in small shifts in peak positions in the spectrum, commonly referred to as chemical 

shifts.  Such shifts are readily detected and interpreted through XPS analysis.  The XPS 
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technique is of high intrinsic resolution since the core levels have discrete and well 

defined energy levels (Perkin Elmer, 1990). 

 

Through observation it is determined that in analyzing elements using XPS, spin orbit 

splitting occurs which leads to additional peaks in the binding energy spectra.  This is the 

case for p, d and f orbitals, resulting in doublets in XPS spectra.  In case of s orbital, 

splitting does not occur (i.e., single peak in XPS spectrum).  The splittings are 

distinguished by total angular momemtum of the electron which is a combination of its 

orbital angular momentum ‘l’ and spin angular momentum ‘s’.  For orbitals with doublets 

(i.e., p, d and f) the quantum numbers referring to total angular momentum, ‘j’ are listed 

in Table 6.11, below (Moulden et al. 1995). 

 

TABLE 6.11 - TOTAL ANGULAR MOMENTUM VALUES FOR ORBITS IN XPS 
 

subshell j values 

s 1/2 

P 1/2 , 3/2 

d 3/2 , 5/2 

f 5/2 , 7/2 

Note: j = |l ± s|  
  

The photoelectron lines for each peak are expressed in reference to the associated energy 

level, orbital shell and its ‘j’.  For example, Ta 4f 7/2 refers to energy level 4 (i.e., n = 4), 

‘f’ orbital and ‘j’ value of 7/2.   

 

The XPS analysis was completed using an Al Kα radiation source (hn = 1486.6 eV).  

Therefore, the kinentic energy of the emitted photoelectrons will have a range of 0 to 

~1486 (energy resolution of 0.4-0.5 eV).  The analysis was completed under ultra-high 

vacuum, at 10-9 torr.  
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The XPS analysis was completed in order to determine and/or confirm, (1) chemical 

species and/or functional groups that exist on the surface of the activated carbon; (2) 

tantalum species and oxidation state of tantalum that exists on the surface of the activated 

carbon; (3) the change in tantalum species / oxidation state after the sorbent is exposed to 

adsorbates (in this case, DBT and CBZL); and, (4) bonding strength of sulphur (in DBT) 

and nitrogen (in CBZL) with tantalum adsorption sites.   

 

The XPS analysis was completed for the following samples: 

  

(1) Unused virgin ACC – Unused, heat treated activated carbon 

sorbent with no metal impregnation; 

(2) Unused Ta-5/ACC – Unused, heat treated activated carbon with 

5% Ta impregnation; 

(3) Used (DBT) Ta-5/ACC – Used (for dibenzothiophene adsorption), 

heat treated activated carbon with 5% Ta impregnation; and, 

(4) Used (CBZL + DBT) Ta-5/ACC – Used (for carbazole adsorption), 

heat treated activated carbon with 5% Ta impregnation. 

 

A full elemental survey of virgin ACC and unused Ta-5/ACC was completed to 

determine elemenal species that exist on the surface of the sorbent.  The survey scans are 

provided in Appendix C.  The results indicate existence of carbon and oxygen for both 

ACC and Ta-5/ACC and tantalum for Ta-5/ACC.  Fluoride was not detected in Ta-

5/ACC.  This is in line with the expected dissolution of tantalum pentafluoride and 

formation of tantalum oxides (Ta2O5 and TaOx, x<2.5) during the impregnation 

procedure. 
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Carbon – C 1s  

 

The deconvoluted XPS spectra for C 1s ½, for samples: (1) Used (DBT) Ta-5/ACC and 

(2) Used (CBZL + DBT) Ta-5/ACC are presented in Figures 6.15 and 6.16, respectively.  

The binding energies corresponding to carbon 1s peaks are also presented in the figures.  

The deconvolution for the first sample results in four (4) peaks and in the second sample 

results in three (3) peaks.  The carbon peak with highest intensities (at 58.7% and 65.5%, 

respectively) for both figures appears at approximately 284 eV, and corresponds to 

polymeric carbon (Benndorf, Grischke et al. 1988).  The carbon 1s peak at approximately 

284.3 eV in Used (CBZL + DBT) Ta-5/ACC corresponds to carbon in carbazole (Kessel 

and Schultze 1990).  Similarly, the C 1s peak at approximately 284.5 eV is considered to 

correspond to carbon in dibenzothiophene.  The peak at approximately 285 eV also 

apprears in both cases and corresponds to C-C bonding.  The peak at approximately 288 

eV also exists in both spectra, and corresponds to caboxylic functionalities, which is 

expected to exist on the surface of the activated carbon.  The binding energy at 

approximately 286 eV for the first sample can be attributed to single bonds to both S and 

O.  The intensity of this peak is at 9.1%, suggesting there S from DBT is adsorbed at 

carbon functional groups on the surface of the activated carbon.  Generally, oxygen can 

induce a primary substitution effect on the C 1s line, shifting the higher binding energy 

side by approximately 1.5 eV for each C-O bond.  Therefore, a O-C-O and a C=O have 

similar C 1s ½ binding energies.  (Sarac, Tofail et al. 2004).     

 

The carbon 1s peak corresponding to carbon in tantalum cabide is at 282.7 eV (Gruzalski, 

Zehner et al. 1985).  As can be seen this peak position does not exist in either of the XPS 

spectra, leading to the conclusion that tantalum oxides do not form complexes with 

carbon of the substrate. 

 

The results point to the fact that majority of the functional groups on the surface of the 

activated carbon (ACC) are oxygen based.   
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Results also indicated that similar carbon species with similar intensities (excluding C-S) 

were observed on the surface of the virgin (without metal impregnation) ACC.  This re-

confirms that the impregnation process has little or no impact on the oxygen functional 

groups on the surface of the activated carbon.   

 
 

FIGURE 6.15 - DECONVOLUTED XPS SPECTRUM FOR USED (DBT) TA-5/ACC   
CURVE FITTING FOR C 1S 1/2 
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FIGURE 6.16 - DECONVOLUTED XPS SPECTRUM FOR USED (CBZL+DBT) TA-5/ACC  

CURVE FITTING FOR C 1S 1/2 

 
 

 

Oxygen – O 1s  

 

The XPS spectra for O 1s ½ , for samples: (1) Unused virgin ACC, (2) Unused Ta-

5/ACC, (3) Used (DBT) Ta-5/ACC and (4) Used (CBZL + DBT) Ta-5/ACC are 

presented in Figures 6.17 to 6.20, respectively.  The binding energies corresponding to 

oxygen 1s peaks are also presented in the figures.                                                                      

 

The O 1s binding energy falls within a relatively narrow range of approximately 2 eV, at 

a peak of approximately 533 eV, which when deconvoluted, represent single and double 

bonds with carbon (i.e., C-O and C=O) (Sarac, Tofail et al. 2004) as well as O 1s 

corresponding to O in Ta2O5 / TaOx, which is documented to occur at 530.9 eV (Chun, 

Ishikawa et al. 2003).  The deconvoluted O 1s for sample (4) is presented in Figure 6.21. 
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Comparing the XPS spectra for the used and unused samples indicates that the interaction 

between the oxygen functional groups on the surface of the activated carbon and 

adsorbate species (i.e., dibenzothiophene and carbazole) do not result in formation of new 

bonds, which reconfirms physisorption of the adsorbate species on the activated carbon 

surface.  

 
 

FIGURE 6.17 -  FITTED XPS SPECTRUM FOR UNUSED VIRGIN ACC   
CURVE FITTING FOR O 1S 1/2 
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FIGURE 6.18 - FITTED XPS SPECTRUM FOR UNUSED TA-5/ACC   
CURVE FITTING FOR O 1S 1/2 

 
 
 

FIGURE 6.19 - FITTED XPS SPECTRUM FOR USED (DBT) TA-5/ACC  
CURVE FITTING FOR O 1S 1/2 
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FIGURE 6.20 - FITTED XPS SPECTRUM FOR USED (CBZL+DBT) TA-5/ACC  

CURVE FITTING FOR O 1S 1/2 

 
 

FIGURE 6.21 -  DECONVOLUTED XPS SPECTRUM FOR USED (CBZL+DBT) TA-5/ACC  
CURVE FITTING FOR O 1S 1/2 
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Sulphur – S 2p  

 

The deconvoluted XPS spectra for S 2p ½ and 2p ¾ , for samples: (1) Used (DBT) Ta-

5/ACC and (2) Used (CBZL + DBT) Ta-5/ACC are presented in Figures 6.22 and 6.23, 

respectively.   

 

The S 2p binding at 163.6 eV corresponds to S in CS2 and at 164.7 eV corresponds to 

organic sulphur, possibly aromatic.  The binding energy of sulphur in dibenzothiophene 

is at 168.2 eV, which corresponds with S 2p measured for Used (CBZL + DBT) Ta-

5/ACC. 

 
 

FIGURE 6.22 - DECONVOLUTED XPS SPECTRUM FOR USED (DBT) TA-5/ACC  
CURVE FITTING FOR S 2P 
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FIGURE 6.23 - DECONVOLUTED XPS SPECTRUM FOR USED (CBZL+DBT) TA-5/ACC  

CURVE FITTING FOR S 2P 

 
 

Tantalum – Ta 4f   

 

The deconvoluted XPS spectra for Ta 4f (5/2 and 7/2), for samples: (1) Unused Ta-

5/ACC, (2) Used (DBT) Ta-5/ACC and (3) Used (CBZL + DBT) Ta-5/ACC are 

presented in Figures 6.24 to 6.26, respectively.   

 

The fact that the tantalum peaks are relatively broad suggests that more than one tantalum 

species are present on the surface of the sorbent (Skadtchenko, Trudeau et al. 2003).  The 

peaks corresponding to Ta 4f 5/2 and 4f 7/2 in TaOx (x = 2, 4) are at approximately 28 eV 

and 26 eV, respectively (Demiryont, Sites et al. 1985).  For Ta2O5, the peaks 

corresponding to Ta 4f 5/2 and 4f 7/2 are documented at 28.5 eV and 26.7 eV, 

respectively (Demiryont, Sites et al. 1985). 
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The peaks corresponding to Ta 4f 7/2 in TaS and TaS2 are at approximately 26.6 eV and 

26.7 eV, respectively (McGuire, Schweitzer et al. 1973).  The peak at 26.1 eV for the 

used (DBT) Ta-5/ACC sample is considered to be associated with the Ta-S bond, with S 

remaining as a part of DBT, and the observed reduction can potentially be due to 

electronic interactions with the organic sulphur molecule.   

 

Generally, when comparing the peaks corresponding to Ta 4f (both 5/2 and 7/2) in the 

unused sorbent (Figure 6.24) and used sorbents (6.25 and 6.26), the binding energies 

have shifted lower by 0.4 eV to 1.6 eV.  This can potentially be due to induced negative 

charge on Ta associated with the sulphur in DBT and/or nitrogen in carbazole (Masud, 

Alam et al. 2011). 

 

The peak corresponding to Ta0 metal is at 23.7 eV for 4f 5/2 and 21.8 eV for 4f 7/2. 

(Chun, Ishikawa et al. 2003).  These peaks did not exist in any of the three tantalum 

spectra.   
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FIGURE 6.24 - DECONVOLUTED XPS SPECTRUM FOR UNUSED TA-5/ACC  
CURVE FITTING FOR TA 4F 

 
 

FIGURE 6.25 - DECONVOLUTED XPS SPECTRUM FOR USED (DBT) TA-5/ACC  
CURVE FITTING FOR TA 4F 
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FIGURE 6.26 - DECONVOLUTED XPS SPECTRUM FOR USED (CBZL+DBT) TA-5/ACC  

CURVE FITTING FOR TA 4F 
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Nitrogen – N 1s  

 
The fitted XPS spectrum for N 1s, for Used (CBZL + DBT) Ta-5/ACC is presented in 

FIGURE 6.27.  The binding energy corresponding to the nitrogen 1s peak is also presented 

in the figure.   

 

The nitrogen in the Ta-N bond has a 1s peak at 398.2 eV  (Chuang and Chen 1998).  This 

is the closest binding energy that matches the observed value at 399.7 eV.  As mentioned 

above, it is likely that the nitrogen bond in carbazole remains intact and the electron 

cloud of carbazole rings resulted in a shift of approximately 1.5 eV.  It is therefore 

concluded that tantalum species on the surface from a bond (chemisorb) the carbazole 

molecule as a whole, through bonding to its nitrogen. 

 
 

FIGURE 6.27 -FITTED XPS SPECTRUM FOR USED (CBZL+DBT) TA-5/ACC  
CURVE FITTING FOR N 1S 
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7.0 Flow Reactor Experiment  
 
The purpose of the flow reactor experiments was to gain some insights into the kinetics 

of sulphur adsorption onto tantalum impregnated activated carbon.  This includes 

determining the kinetic model that best fits the sulphur adsorption, and determining 

mechanisms and process parameters that influence and/or control the adsorbate uptake 

rate. 

 

7.1 Background 
The performance of a sorbent in sulphur removal is dependent on four main factors:  

 

1. The maximum capacity of the sorbent towards sulphur compounds, (in this case 

DBT and/or 4,6 DMDBT), which may or may not be fully realized under actual 

process conditions; 

2. The equilibrium behaviour, which influences  the efficiency by which the capacity 

is reached and in many cases controls the maximum capacity of a sorbent; 

3. The kinetics behaviour, which pertains to mechanisms such as diffusion and 

adsorption (e.g., reaction rate in case of chemisorption) that control the overall 

rate of adsorption; and, 

4. The process conditions, such as temperature and contact time between sorbate and 

sorbent which can influence both kinetics and thermodynamics of the adsorption 

process and thereby affect the performance of a sorbent. 

 

7.2 Experimental 
The equipment and experimental setup and procedure was developed and improved upon, 

through several experimental iterations and trial and errors.  The ‘perfected’ setup and 
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experimental procedure used in collecting the presented data / results are summarized 

below. 

 

For the purposes of the flow reactor experiment, a fixed bed reactor system consisting of 

the following components was prepared: 

• 0.6mm inside diameter, glass reactor, with built-in 0.9µm glass frit for sorbent 

support and a bulge segment for sorbent bed; 

• High Performance Liquid Chromatography (HPLC) pump, equipped with line 

pressure indicator (up to 6000 psi) and flow range of 0.1 mL/min to 10 mL/min; 

• Vertical tubular furnace with built-in dual heating elements; 

• Programmable temperature controller system with dual logic input for bed 

temperature and furnace temperature; 

• Stainless steel tubes and fittings, including a four-way connector with needle 

valves and purge port; 

• Gas flow controller system consisting of a flow indicator and control valves;  

• Thermocouple wire; 

• Sample collection system consisting of a sample holder ring and motorized rotor; 

and, 

• Quartz wool. 

 

A schematic diagram of the flow reactor setup is provided in Figure 7.2, below.   

 

The experimental procedure for the flow reactor experiments are as follows: 

• The dried sorbent was weighed and placed into the flow reactor on top of the glass 

frit. 

• Glass wool was inserted into the reactor and placed within the bulge portion of the 

reactor.  The sorbent particles, attached to the microfibers of the glass wool 

forming a well dispersed sorbent bed.  This was to improve contact efficiency 

between the adsorbate and adsorbent.  Figure 7.2 is a photograph of 1000x 
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magnification of the bed, illustrating the attachment of sorbent particles (black 

activated carbon particles) to the exterior of the see-through glass microfibers.   

 

FIGURE 7.1 – SORBENT ENTRAPPED IN GLASS MICROFIBER IN THE  
FLOW REACTOR BED 

 

 
 

• A second glass wool cluster was compacted and inserted into the reactor, just 

above the bulge portion to prevent entrainment of sorbent in the reactor outflow. 

• The thermocouple wire was twisted around the reactor.  The reactor was placed 

inside the tubular furnace with the bottom connected to the four-way connector 

and the top connected to the sample connection port, a 1/8” S.S. tube connecting 

to the sample collection system.  

• The reactor was purged and kept under helium (ultra pure 5.0) flow at a flow rate 

of 80 mL/min.   

• The programmable temperature controller was set to raise the temperature from 

ambient (25 °C) to 110 °C at 10 °C/min.  The temperature was held at 110 °C for 

60 minutes.  It was then raised to 150 °C at the same rate and kept at this 
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temperature for 120 minutes.  This was followed by a temperature ramp up to 400 

°C at the same ramp-up rate of 10 °C/min and held at 400 °C for 60 minutes.  The 

reactor was then cooled to the desired temperature (in this case, ambient or 25 °C, 

40 °C, 70 °C and 100 °C) while under helium flow. 

• Once the temperature of the bed stabilized, the flow of gas was stopped and the 

flow of DBT in hexadecane (at ~ 900 ppmw-S) was initiated.  The respective 

valves were adjusted accordingly.  The HPLC pump was set to operate at the 

desired flow rate (in this case 0.1 mL/min).   

• Sample collection was started approximately 25 minutes after the solution (i.e., 

DBT in hexadecane) came into contact with the sorbent bed, taken at regular time 

intervals, in this case, every 12.5 minutes.  Samples were collected until the 

concentration of sulphur (i.e., DBT) in the outflow stabilized.  

• The samples were analyzed using Varian 3800, GC/FID, according to the heating 

program discussed in Section 4. 

 

A photograph illustrating the instruments and setup of the flow reactor apparatus is 

provided in Figure 7.3, below.  
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FIGURE 7.2 - A SCHEMATIC DIAGRAM OF THE FLOW REACTOR EXPERIMENT 

 
 

 
 Note:  

HPLC pump: High Performance Liquid Chromatography pump 
 Adsorbate: Dibenzothiophene, Solvent: Hexadecane 
 Helium: Ultra pure 5.0 
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FIGURE 7.3 – FLOW REACTOR APPARATUS 

 

 
 

7.3 Adsorption Kinetics 
 

Generally, the kinetics of a reaction that occurs on the surface, such as sulphur 

adsorption, is significantly different than typical reaction kinetics in the gas or liquid 

phase.  Therefore, the rate equations tend to be quite different (Zhao, Zhang et al. 2008).  

Adsorption onto porous media consists of a transfer from the liquid phase to the solid 

phase through (1) boundary layer mass transfer from the bulk to interface film, (2) 

internal diffusion within the sorbent pore and (3) adsorption within the sorbent pore or on 

its external surface (Poots, McKay et al. 1976). 
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As mentioned in previous chapters, adsorption consists of a collision of a molecule with a 

surface such that the molecule sticks to the surface.  The trapping of a molecule occurs 

when its translational energy loss due to a collision with a surface is such that the 

molecule stays on the surface.  The sticking of a molecule occurs when upon collision a 

molecule loses energy and converts into a state where the molecule remains on the 

surface.  It is important to note that trapping and sticking processes are different in that 

the rate of trapping is the rate at which the energy is transferred between the incoming 

molecule and the surface whereas the rate of sticking is the rate at which the incoming 

molecules (after collision) find an active site to adsorb to either through physisorption or 

chemisorption (Masel, 1996).  In other words, in sticking a molecule not only has to lose 

its energy upon collision with a lattice, it also has to interact with active sites on the 

surface (e.g., form a bond) such that it is adsorbed by the surface.  Sticking is commonly 

expressed as a probability S(θ) as a function of surface coverage, θ: 

 

[ ]
[ ]surfaceonimpingethatmoleculesofnumber

stickthatmoleculesofnumber
=)S(θ    (7-1) 

 

If the surface flux of incoming molecules is defined as Iz, it is easy to see that adsorption 

rate would then depend on the product of the surface flux (molecules/cm2 sec) and the 

probability of adsorption S(θ), as follows: 

 

 ra = S(θ).Iz         (7-2) 

 

The flux of incoming molecules is dependent on the speed and density of the molecules 

(Masel, 1996). 

 

In addition to the above basic collision scenarios, a molecule can also have an initial 

collision, followed by movement along the surface until it finds and sticks to an 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 160 University of Waterloo Thesis 
 

adsorption site.  This scenario, which is also referred to as precursor-moderated 

adsorption, is more complex to model but, in principle consists of an initial collision 

where the molecule loses most of its energy to the lattice and is trapped.  The molecule 

then needs to diffuse over the surface to find a bare site to fill (Masel, 1996). 

 

A molecule can also have an elastic collision with the surface and scatter or come into 

contact with an already occupied adsorption site (also referred to as active site), and 

replace the already adsorbed molecule.   The latter occurs when the replacement is 

favoured from an energy perspective, i.e., associated with a decrease in surface free 

energy (DG) (Do, 1998).   

 

In addition to the above, mass transfer or diffusion, i.e., transport of adsorbate to the 

surface of the sorbent, plays a key role in adsorption kinetics.  It should be noted that 

diffusivity can be on the surface (external mass transfer) or can be within pore volumes 

(internal mass transfer).  The two diffusivities are significantly different in mechanism 

and how they are impacted by variables such as loading, adsorbate molecular size and 

temperature (Do, 1998).  This topic will be discussed further in subsequent sections. 
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7.4 Adsorption Kinetic Model 
 

The rate of adsorption or the rate of sulphur (DBT) uptake by the selected sorbents was 

analyzed using pseudo first-order and pseudo second-order kinetic models.  The flow 

reactor experiment was conducted for virgin and impregnated activated carbon.  The 

experimental data for the flow reactor experiments for virgin activated carbon (ACC – 

virgin) and 5% tantalum impregnated activated carbon (Ta-5/ACC) was fitted into both 

kinetics models in order to determine which model would best fit the experimental data.  

The flow reactor experiment was also completed for the best performing sorbent (i.e., Ta-

5/ACC) at reactor temperatures of 25 °C (ambient), 40 °C, 70 °C and 100 °C.  Variables 

such as contact time and loading rates that can potentially impact the rate were kept the 

same.  For all the runs, a binary solution of approximately 900 ppmw-S DBT in 

hexadecane was used.  The flow rate of the binary solution was kept constant at 0.1 

mL/min.   

 

 

Pseudo First-Order Kinetic Model 

For the purposes of this study, Lagergren’s pseudo first-order rate equation was used, as 

follows: 

 

 )(1 tead
t qqk

dt
dq

−=         (7-3) 

Where: 

qe = amount of sulphur adsorbed at equilibrium (mmol-S/g-sorbent) 
qt = amount of sulphur adsorbed at time t (mmol-S/g-sorbent) 
k1ad = pseudo first-order adsorption rate constant (min-1). 

 

When integrated, at boundary conditions, i.e., t = 0 to t; qt = 0 to qt, equation (7-3) will 

become: 
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303.2
.log)(log 1 tkqqq ad

ete −=−       (7-4) 

 

The values of qe and k1ad can be obtained from the y-intercept and slope of the linear plot 

for ‘log (qe – qt)’ versus ‘t’, as follows: 

 

 qe = 10 (Y-intercept) 

 k1ad = 2.303 x Slope  

 

The initial rate of adsorption can be obtained by multiplying the rate constant (k1ad) by 

the calculated equilibrium adsorption capacity (qe).  The initial rate of adsorption is 

referred to as ‘h1’ (mmol/g/min) in this document (1 for first-order) (Wen, Han et al. 

2010). 

 

Pseudo Second-Order Kinetic Model 

For the purposes of this study, the experimental data were also fitted to a pseudo second-

order rate equation, as follows: 

 

 2
2 )( qtqek

dt
dq

ad
t −=         (7-5) 

Where: 

k2ad = pseudo second-order adsorption rate constant (mmol/g/min). 
 

When integrated, the equation (7-5) will become: 

 

eeadt q
t

qkq
t

+= 2
2 .

1         (7-6) 

 

The values of qe and k2ad can be obtained from the y-intercept and slope of the linear plot 

for ‘(t/qt)’ versus ‘t’, as follows: 
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 qe = 1 / Slope 

 k2ad = (Slope)2 / y-intercept  

 

The initial rate of adsorption can be obtained by multiplying the rate constant (K2ad) by 

the square of the calculated equilibrium adsorption capacity (qe).  The initial rate of 

adsorption is referred to as ‘h2’ (mmol/g/min) in this document (2 for first-order) (Wen, 

Han et al. 2010). 

 

7.5 Tantalum Impregnation and Adsorption Kinetics 
 

The impact of tantalum impregnation on adsorption kinetics was studied.  The flow 

reactor analysis was completed for virgin ACC and Ta-5/ACC.  In total, five runs were 

completed, two for ACC-virgin and three for Ta-5/ACC.  The third run for Ta-5/ACC 

was completed for regenerated sorbent.  The results are summarized in Table 7.1, and 

details are provided in Appendix C. 

 

For all the runs, the experimental data were fit to both pseudo first-order and pseudo 

second-order kinetic models (as described above).  The linear regressions indicate that for 

both virgin and impregnated activated carbon, the data best fit the pseudo second-order 

kinetic model, with R2 values ranging from 0.975 to 0.997 (see Table 7.1 and Appendix 

C).   

 

On average the tantalum impregnated ACC exhibited a higher initial rate of adsorption.  

This is expected as the adsorption on tantalum sites is shown to be of chemisorption type 

(forming Ta-S bond as per XPS analysis).  The adsorption onto tantalum sites tends to be 

more exothermic than adsorption (mainly physisorption) on activated carbon (as per the 

microcalorimetry analysis presented in Section 5 of this report).  Therefore, more 
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thermodynamically favoured chemisorption (lowering of surface free energy at a faster 

rate) is expected to occur more rapidly than physisorption. 

 

The equilibrium adsorption capacities of the sorbents were calculated based on the 

pseudo second-order kinetic equation (7-6).  The observed better fit for pseudo second 

order is indicative of the fact that the sulphur adsorption is much dependent on the 

concentration of available adsorptive sites on the surface of the activated carbon. On 

average, the tantalum impregnation showed an approximately 137% increase in 

adsorption capacity compared to the activated carbon.  It should be noted that the 

adsorption capacities calculated from the flow reactor experimental data are higher than 

those calculated from isotherm experiments for the same sorbents.  In addition to the 

difference in estimation/calculation methods, it is believed that the in-situ activation of 

the sorbent, which prevents exposure to air and moisture, improves the adsorption 

capacity of the sorbents.  This is further confirmed by the results of the virgin activated 

carbon presented in Table 7.1.  The sorbent for the first ACC-virgin run was dried and 

activated in a separate reactor and was then weighed and transferred to the flow reactor.  

However, the sorbent for the second run was dried and activated in-situ under helium (no 

exposure to air / moisture prior to exposure to the binary solution).  This has contributed 

to the approximately 25% higher adsorption capacity observed for run II versus run I.   

 

The sorbents for all other flow reactor runs in this study were activated in-situ, in 

accordance to the procedure described in sub-section 7.2, above. 

 

Another interesting observation is the regenerability of the tantalum impregnated 

activated carbon.  As mentioned above, the third run for the Ta-5/ACC was with 

regenerated sorbent.  For sorbent regeneration, the same procedure as before (discussion 

in Section 6) was applied, consisting of a toluene wash, sonication and thermal treatment.  

The thermal treatment of the sorbent however, was completed in-situ.  The results 

indicate almost 100% regeneration.   
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In their 2009 research work, Zhou et al. indicated that the adsorption capacity of the 

activated carbon was able to be fully recovered through solvent regeneration and thermal 

treatment (Zhou, et al. 2009).  As mentioned above, adsorption on activated carbon is 

mainly physisorption, which is considered to be fully reversible, thus easily regenerated.  

Nevertheless, the sulphur bond on Ta-5/ACC is considered chemisorption and thus more 

difficult to regenerate.  The results of this study indicate that the tantalum impregnated 

activated carbon can almost be fully regenerated.  From an industrial application point of 

view, this adds more value to an already superior sorbent for adsorptive desulphurization.  
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TABLE 7.1 - KINETICS RESULTS – FLOW REACTOR EXPERIMENTS FOR VIRGIN ACC 
AND TA-5/ACC AT REACTOR TEMPERATURE OF 25 °C 

 
              

Sorbent Run ID 
Volumetric 
Flow Rate 
(mL/min) 

Adsorption 
Kinetics 

Linear 
Regression 

(R2)** 

Initial Rate of 
Adsorption 

(mmol/g/min) 

Adsorption 
Capacity 

(mmol-S/g-sorbent) 

Run I 0.1 Pseudo second 
order 0.9746 0.0155 0.66 

ACC - Virgin 

Run II 0.1 Pseudo second 
order 0.9784 0.0091 0.83 

Run I 0.1 Pseudo second 
order 0.9898 0.0156 1.79 

Run II 0.1 Pseudo second 
order 0.9763 0.0158 1.73 Ta-5/ACC 

Run III* 1.1 Pseudo second 
order 0.9973 0.0161 1.78 

Note:       
All runs were completed using approximately 900 ppmw-S (~21.3 mmol-S/L) DBT in hexadecane (binary solution).  
All runs consisted of in-situ activated (i.e., no exposure to air) for approximately 4 hours prior to each run.  
* The third flow reactor run for 25 °C reactor temperature was completed on regenerated sorbent.    
** The R2 values pertain to the linearized pseudo second order equation (t/qt vs. t).   

 

 

 

7.6 Adsorption Temperature and Adsorption Kinetics 
 

The impact of adsorption temperature on the kinetics of adsorption was studied.  For this 

study, Ta-5/ACC was used.  The flow reactor experiment was completed at reactor 

temperatures (i.e., sorbent bed temperature) of 25 °C (ambient), 40 °C, 70 °C and 100 °C.  

Variables such as contact time and loading rates that can potentially impact the rate were 

kept the same.  The binary solution (approximately 900 ppmw-S DBT in hexadecane) 

was pumped through the reactor / sorbent bed at a constant flow rate of 0.1 mL/min.  The 

results are summarized in Table 7.2, below.  Details of calculations including graphs are 

provided in Appendix C. 
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The experimental data were fit to both pseudo first-order and pseudo second-order 

kinetics to determine which one better fits the experimental data.  Results for both fittings 

are provided in Appendix C.  It was determined based on linear regression that for all the 

temperatures, the experimental data better fits the pseudo second-order kinetic model, 

with R2 values ranging from 0.976 to 0.997 (see Table 7.2).  The two key finding of the 

temperature varying flow reactor experiments are:   

 

1. On average the initial adsorption rate did not change significantly with 

temperature, with the exception of the rate at 70 °C, which was lower than the 

rest, all others rates were on average similar. 

 

2. The sulphur adsorption capacity decreases with increase in reactor 

temperature.  In fact the adsorption capacity drops approximately 60% when 

the temperature of the sorbent bed was increased from 40 °C to 70 °C.  The 

highest adsorption capacity was obtained for ambient (25 °C) reactor 

temperature.   

 

In order to explore these results further, we will need to look at the expected impact of 

temperature on diffusivity and adsorptive interaction. 

 

Surface diffusion is defined as the thermal motion of adsorbed molecules on a surface 

(Do, 1998).  The mobility of adsorbed molecules at the surface is a function of distance 

between adjacent sites, and the average time that a site is occupied between jumps.  One 

can define ‘Es’ as the activation energy needed for each jump, and write the following 

equation for surface diffusivity: 

 

⎥⎦
⎤

⎢⎣
⎡−=

RT
EDD s

ss exp0         (7-7) 
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Where, 

 Ds = surface diffusivity 

 Ds0 = pre-exponential factor  

 R = Gas constant 

 T =  Temperature (K) 

 

 

Surface flux can be defined as mass transfer along the surface induced by a surface 

concentration gradient, per unit length or area.  Therefore if ‘Js’ represents surface flux, 

we can express the following proportionality: 

 

   

 ⎥⎦
⎤

⎢⎣
⎡

dz
dCKDJs sα         (7-8) 

 

Where, 

 α =  proportionality 

 K =   equilibrium constant [ K = Ko exp (-DH / RT) ] 

 dC/dz =  concentration gradient 

 

From the above equation (7-7) and proportionality (7-8), as well as the expression for K, 

one can derive the following proportionality for surface flux: 

 

 

dz
dC

RT
HEsKoDJs s ⎥⎦
⎤

⎢⎣
⎡ Δ+
−expα       (7-9) 

 

Now a few key points: 
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• For thermodynamically favourable adsorption, the associated surface free energy 

should decrease (ΔG<0); and, 

• Adsorption is associated with a decrease in entropy (ΔS<0), as the molecules 

adsorbing into the surface of the sorbent gain orderliness; 

 

Therefore, in the expression ΔG = DH – TΔS, DH would be negative.  It should be noted 

that the exothermic aspect of sulphur adsorption was shown in previous sections of this 

report, based on the heat of adsorption data measured through microcalorimetry 

experiments. 

  

Heat of adsorption is typically greater than the activation energy for jumping between the 

sites on the surface (i.e., Es).  Therefore, in the proportionality (7-9), the term –(Es + DH) 

will be positive.  This means that for a given concentration gradient, although the surface 

diffusivity (equation 7-7) increases with an increase in temperature, the surface flux 

decreases with an increase in temperature (Do, 1998). 

 

For pore volume diffusion, the diffusion flux can be expressed as follows: 

 

⎥⎦
⎤

⎢⎣
⎡−=

dz
dCDJ effp         (7-10) 

 

Where, 

 Jp =  pore diffusion flux for porous media 

 Deff =   effective diffusivity based on total cross-sectional area 

 dC/dz =  concentration gradient 

 

We also know that the pore diffusion flux is inversely proportional to temperature (based 

on Knudson pore diffusion): 
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MRT
J p π

α
2

1         (7-11) 

 

Where, 

 M = Molecular weight 

 R = Gas constant 

 T =  Temperature (K) 

 

Pore diffusivity can increase or decrease with an increase in temperature, however, in 

both cases its rate of change is not as fast as surface diffusion.  In other words, the 

diffusivity at the surface dominates over pore diffusivity (Do, 1998). 

 

Now the two main findings mentioned above can be explained as follows: 

 

• The net rate of adsorption is the difference between the rate of adsorption and rate 

of desorption.  The rate of adsorption can depend on mass transfer (diffusion) and 

adsorptive interactions between the adsorbate and sorbent (physisorption or 

chemisorption).  It was established above that the increase in temperature 

increases surface diffusivity but impedes diffusion flux.  Therefore, one may 

postulate that the impediment of the diffusion flux will result in reduction in 

adsorbed quantity, and hence adsorption capacity, while the impact on adsorptive 

interactions (exothermic) is offset by improved diffusivity.  Hence there are minor 

changes in the rate of adsorption due to changes in reactor temperature.   
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TABLE 7.2 - KINETICS RESULTS – FLOW REACTOR EXPERIMENTS FOR TA-5/ACC AT VARIOUS REACTOR TEMPERATURES 
 

                

Adsorption Capacity 
(mmol-S/g-sorbent) Reactor 

Temperature Run ID 
Volumetric Flow 

Rate 
(mL/min) 

Best Fit Kinetic 
Linear 

Regression 
(R2)** 

Initial Rate of 
Adsorption 

(g/mmol/min) per run Mean 

Run I 0.1 Pseudo second order 0.9898 0.0156 1.79 

Run II 0.1 Pseudo second order 0.9763 0.0158 1.73 25 °C 

Run III* 0.1 Pseudo second order 0.9973 0.0161 1.78 

1.77 

Run I 0.1 Pseudo second order 0.9951 0.0155 1.56 

40 °C 

Run II 0.1 Pseudo second order 0.9951 0.0161 1.61 

1.58 

Run I 0.1 Pseudo second order 0.9870 0.0115 0.96 
70 °C 

Run II 0.1 Pseudo second order 0.9982 0.0091 1.00 

0.98 

Run I 0.1 Pseudo second order 0.9922 0.0189 0.86 

100 °C 

Run II 0.1 Pseudo second order 0.9973 0.0121 0.95 

0.90 

Note:        
All runs were completed using approximately 900 ppmw-S (~21.3 mmol-S/L) DBT in hexadecane (binary solution). 
All runs consisted of in-situ activated (i.e., no exposure to air) for approximately 4 hours prior to each run.    
* The third flow reactor run for 25 °C reactor temperature was completed on regenerated sorbent.     
** The R2 values pertain to the linearized pseudo second order equation (t/qt vs. t).     
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7.7 Intra-particle Diffusion and Adsorption 
 

As mentioned above, the overall adsorption process for sulphur compounds onto the 

sorbent can be influenced by several mechanisms, including surface and pore diffusion, 

as well as adsorptive interaction with the surface (i.e., physisorption or chemisorption).  

In order to determine the impact of intra-particle (pore) diffusion on adsorption, the 

Weber-Morris Intra-particle model (1964) was utilized, according to the following 

equation: 

 

 

CtKq idt += 5.0         (7-12) 

 

Where, 

 Kid = rate constant for intra-particle transport (mmol / g / min1/2) 

 t = Time (min) 

 C =  y-intercept (constant) 

qt = amount adsorbed at time, t (mmol/g) 
 

If the Weber-Morris plot of qt versus t0.5 generates a linear plot, which passes through the 

origin, it is a good indication that the intra-particle diffusion is the key controlling 

mechanism for the adsorption.  This analysis was completed for the tantalum 

impregnated activated carbon and for all the reactor temperatures that were assessed in 

this study.  The results are summarized in Table 7.3, below.  All data and calculation 

spreadsheets are provided in Appendix C.   

 

The plots of qt versus t0.5 were linear with reasonable R2, however, none of the plots 

passed through the origin.  This indicates that intra-particle diffusion exists, but it is not 

likely that the overall adsorption is controlled nor noticeably impacted by it. 
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As the temperature of the reactor increases, the y-intercept value ‘C’ increases, indicating 

that the plot is moving away from the origin, and thus intra-particle diffusion is becoming 

less of a controlling mechanism.  This can further point to the fact that the boundary layer 

(i.e., surface diffusion) and, potentially, surface adsorption are the dominating 

mechanisms in the sulphur adsorption onto Ta-5/ACC (Sutherland, 2010).   

 

For the highest reactor temperature tested (100 °C), the plot consists of two linear zones, 

with the first zone representing external surface adsorption derived by surface diffusion 

and surface adsorption (see Appendix C).  In the second zone, adsorption reaches the 

later stage and the intra-particle diffusion seems to have more influence on the adsorption 

(Wen, Han et al. 2010). 

 

 

TABLE 7.3- WEBER-MORRIS MODEL RESULTS FOR INTRA-PARTICLE DIFFUSION  
 

        

Sorbent Flow Reactor Temperature 
(°C) 

Kid * 
(mmol/g min1/2) 

C ** 
(mmol/g) 

25 0.069 0.101 

40 0.057 0.196 

70 0.040 0.073 

Ta-5/ACC 

100 0.015 0.489 

Note:    
*   The Kid (rate constant of intra-particle transport) values are averages of two runs for each reactor temperature. 
** C is the y-intercept for the linearized plot, based on Weber-Morris model: qt = Kid (t1/2) + C 
     qt is the adsorption at time t in mmol of sulphur per gram of sorbent. 
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8.0 Conclusions and Recommendations 

8.1 Conclusions 
 

Changes in regulations concerning sulphur content of fuel in the developed nations 

including Canada and United States have resulted in extensive research to improve 

existing technologies or to come up with new processes to further reduce the total sulphur 

content in fuel such as gasoline, diesel and jet fuel.  From the production of crude oil to 

the end use of refinery products, sulphur has always been a source of pollution, occurring 

initially in the form of hydrogen sulphide (H2S) or sour gas and other organically bonded 

sulphur compounds naturally occurring in crude oil.  Therefore, in order to curb its 

unfavourable direct and indirect environmental impacts as well as the adverse effects on 

human health, governments have taken the initiative to bring about regulations to limit 

sulphur emissions from the combustion of fossil fuels. 

 

Regulatory agencies have and continue to implement stringent guidelines and regulations 

on sulphur content in fuels (especially transportations fuels including diesel, gasoline and 

jet fuel).  This encompasses not only fuel used for on-road vehicles (requiring maximum 

of 10 ppmw-Sulphur), but also diesel used in non-road vehicles, locomotives and marine 

engines (requiring 15 ppmw-Sulphur).  Furthermore, use of existing transportation fuels 

for fuel cell applications is considered a convenient and suitable future option.  However, 

this application would require sulphur content in fuel less than 1 ppmw-S (ideally less 

than 0.2 ppmw-S).  As a result extensive research work has gone into improving the 

existing technologies or to come up with new processes/technologies to further reduce the 

sulphur content in fuel.   

 

As mentioned above, the overall objective of this research was to identify, develop and 

characterize, based on underlying scientific principles, sorbents that are effective in 

removal of refractory sulphur compounds from fuel through the process of selective 

adsorption. Many physical attributes and chemical characteristics of both sorbent and 
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sorbate determine their interaction in an adsorption process.  Research work completed 

here illustrates that: 

 

- Activated carbon is a suitable sorbent for sulphur removal via adsorption.  It is 

relatively inexpensive and abundant, has very large surface area per unit mass, has 

functional groups on the surface that can interact (physisorption) with target 

sulphur and nitrogen compounds, is easy to manufacture, and if not reusable after 

numerous regenerations, it can be combusted under controlled conditions to 

generate energy.  The physical and chemical attributes of activated carbon can be 

modified to better fit a particular purpose.  Activated carbons can be obtained 

from waste streams such as petroleum coke (petcoke), which is generated as a 

result of coking process at petroleum processing facilities.  The use of a waste 

stream for a useful application at petroleum refineries (e.g., adsorptive 

desulphurization) makes it an attractive option for the industry not only in terms 

of cost, but also in terms of accessibility. 

 

- The best performing sorbent, Ta-5/ACC, which was developed as a part of this 

research work, had maximum adsorption capacities of approximately 1.77 and 

0.76 mmol-S/g-sorbent for DBT and 4,6 DMDBT, respectively.  These capacities 

are significantly higher than those published to date.  The sorbent also has good 

adsorption capacities for organo-nitrogen compounds (i.e., quinoline and 

carbazole) and a low selectivity towards aromatics, which is desired in adsorptive 

desulphurization.   The surface morphology of the activated carbon, the oxygen 

functional groups on the surface of the activated carbon, as well as strong 

(chemisorption) interaction between tantalum’s partly vacant and far reaching ‘d’ 

orbital and lone pair electrons on sulphur and nitrogen are considered to be the 

main contributing factors to the observed enhancement. The benefit of Ta 

impregnation is three fold: (1) increase of overall sulphur adsorption capacity; (2) 

the impact on the adsorption sites of ACC are likely minor as a result of the Ta 
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impregnation; and (3) formation of more stable adsorption bond with organo-

sulphur compounds, evident from measured higher adsorption energy. 

 

- It was uniquely established in this study that the adsorption isotherms of the 

impregnated activated carbons best fit Sips isotherm equation, which is a 

combination of the Langmuir and Freundlich equations.  This finding fits well 

with our initial hypothesis regarding the introduction of new adsorptive sites as a 

result of tantalum impregnation and that the sites did not fit well with Langmuir’s 

monolayer and uniform adsorption mechanism.  

 

- While Ta-5/ACC has more active sites than Ta-2/ACC, it is believed that the 

reduction in adsorption capacity of Ta-10/ACC is mainly due to pore blockage 

and reduction of surface area, as well as, blockage of active sites on the surface of 

the activated carbon.  The Ta-5/ACC sorbent has shown remarkable selectivity 

towards organo-sulphur (i.e. DBT) and organo-nitrogen (i.e. quinoline) 

compounds and has a regenerability rate of 94% for batch process and 

approximately 100% (i.e., fully restored adsorption capacity) when regenerated 

and used for adsorption in-situ. 

 

- The TEM results illustrate that heat treatment of the activated carbon induces 

regularity in the pore structure. Thermal treatment at 400 °C induces a structural 

uniformity in the activated carbon support and improves its crystalline structure in 

terms of pore accessibility.   In addition, the thermal treatment of sorbent at 

400 °C results in better dispersion of various tantalum species and a more uniform 

array of lattice structure.   

 

- XPS analysis indicates formation of Ta-S and Ta-N bonds thus supporting the 

initial hypothesis of chemisorption for the tantalum sites.  In other words, DBT, 

4,6 DMDBT, quinoline and carbazole maintain their molecular structure but 

simply adsorb to the active sites.   



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 177 University of Waterloo Thesis 
 

 

- The HRTEM-EDX analysis of zoomed-in segments of the sorbent indicate that 

the distribution of tantalum species on the surface of the activated carbon is 

relatively inhomogeneous, with some areas showing well dispersed tantalum 

species while other areas showing large clusters of tantalum species, pointing to a 

relatively low dispersion. 

 

- The FTIR results indicate that the characteristic vibration bands describing 

oxygen functional groups (present on the surface of the activated carbon) for 

virgin and impregnated (tantalum) activated carbon, thus indicating little or no 

impact on the active functional groups of ACC as a result of tantalum 

impregnation.  Additionally, results indicate that the thermal treatment of the 

activated carbon up to 400 °C does not impact the surface functional groups of the 

activated carbon.  

 

The purpose of the flow reactor experiments was to gain some insights into the kinetics 

of sulphur adsorption onto tantalum impregnated activated carbon.  This includes 

determining the kinetic model that best fits the sulphur adsorption, and determining 

mechanisms and process parameters that influence and/or control the adsorbate update 

rate.  The key finding of the flow reactor experiments are as follows: 

 

• The flow reactor data fitted well with the pseudo second order kinetic model. 

 

• On average, as expected, the tantalum impregnated ACC exhibited a higher initial 

rate of adsorption in comparison to virgin ACC.  This is expected as the 

adsorption on tantalum sites is shown to be of chemisorption type.  The 

adsorption onto tantalum sites tends to be more exothermic than adsorption 

(mainly physisorption) on activated carbon.   Therefore, more thermodynamically 

favoured chemisorption is expected to occur more rapidly than physisorption.  On 
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average, the tantalum impregnation showed approximately 137% increase in 

adsorption capacity over the activated carbon.   

 

• The in-situ thermal treatment of the spent tantalum impregnated activated carbon 

resulted in almost 100% regeneration. 

 

• The data indicated that on average the initial adsorption rate did not change 

significantly with temperature.  With the exception of the rate at 70 °C which was 

lower than the rest, all others rates were on average similar. The data also indicate 

that the sulphur adsorption capacity decreases with an increase in reactor 

temperature.  In fact the adsorption capacity drops approximately 60% when the 

temperature of the sorbent bed increases from 40 °C to 70 °C.  The highest 

adsorption capacity was obtained for ambient (25 °C) reactor temperature.  The 

net rate of adsorption is the difference between the rate of adsorption and rate of 

desorption.  Rate of adsorption depends on mass transfer (diffusion) and 

adsorptive interactions between the adsorbate and sorbent (physisorption or 

chemisorption).  We established that the increase in temperature increases surface 

diffusivity but impedes diffusion flux.  Therefore, one may postulate that the 

impediment of the diffusion flux will result in reduction in adsorbed quantity, 

hence adsorption capacity, while impact on adsorptive interactions (exothermic) is 

offset by improved diffusivity, hence minor change in rate of adsorption due to 

change in reactor temperature.   

 

• Based on Weber-Morris intra-particle diffusion model, intra-particle diffusion 

exists in the adsorption of DBT on tantalum impregnated activated carbon, 

however, it is not likely that the overall adsorption is controlled or noticeably 

impacted by it.  Also, as the temperature of the reactor increases the y-intercept 

value ‘C’ increases, indicating that the plot is moving away from the origin, and 

thus intra-particle diffusion is becoming less of a controlling mechanism.  This 

can further point to the fact that the boundary layer (i.e., surface diffusion) and 
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potentially surface adsorption are play a key role in the sulphur adsorption onto 

Ta-5/ACC.   

 

 

8.2 Recommendations 
 
One of the key factors in determining potential commercial usage of an effective sorbent 

is its performance in a mixture of numerous competing compounds.  Therefore, continued 

work on competitive adsorption, using a larger group of compounds (e.g., a commercially 

available diesel fuel sample) is recommended.  Also, actual testing of the developed 

sorbent, Ta-5/ACC with actual diesel fuel with high sulphur content is recommended.   

 

The analysis in this research work indicated that the dispersion of tantalum on the surface 

was relatively inhomogeneous.    Better dispersion has shown to improve adsorption 

performance.  Ways of improving the dispersion of tantalum species on the surface of the 

activated carbon can be investigated further.  Methods such as wet adsorption may prove 

to be more effective in improving dispersion of metal species on the surface of the 

activated carbon. 

 

Also, the adsorption kinetics may be different for other sulphur compounds such as 4,6 

DMDBT and nitrogen compounds.  The assessment of the kinetics will provide insight 

into the adsorption process, which one can use to optimize the process.  This includes 

assessment of contact time (i.e., flow rate through the sorbent bed) and sorbate loading. 
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TABLE A-1 
SUMMARY OF CURRENT SULPHUR REMOVAL TECHNIQUES 

 
 

Ref Year Compound Sorbents Solution Experimental Condition Removal % Observations/ Comments 

1 - Thiophene 
CeO2, CeO2-ZrO2, ZrO2, 
Ga2O3, TiO2, ZnO, 
Al2O3,SiO2 and CaO 

- 

Infrared Method  
T= 300-670 K 
Samples were preheated at 670-970 K 
in vacuum and O2 
Adsorption in presence /absence of H2 

N/R 
The amount of sulphate species diminishes in the following sequence: 
CeO2> CeO2-ZrO2> ZrO2> Ga2O3> TiO2> ZnO> Al2O3>SiO2 
The sulphur retention is highest for metal oxides with strong redox and basic properties 

2 1997 Sulphur 
Compounds 

Activated Carbon 
 & Zeolite 13X Naphtha T= 80 C N/R 

Adsorption in the range of practical interest (550ppm) can be achieved effectively by using 
activated carbon at 80 C. 
Zeolite 13 X maybe more effective for low concentration ranges (<50 ppm) at ambient 
temperatures 

NaY Zeolite  
1) Initial Ads.: 53.36; Reads.:59.09 
2) Initial Ads.: 67.7; Reads.1: 55.96; 
Reads.2:14.75 

3 2002 Thiophene 

Zeolite 13X 

Hexadecane 

Adsorption takes place in a heat 
shaker at 45 C and 150 rpm. Two 
series of experiment with regeneration 
performed. 

1) Initial Ads.: 62.68; Reads.:26.37 
2) Initial Ads.: 45.94; Reads1.: 
36.75; Reads2.: 6.72 

Previous experiments indicate that zeolites (NaY and 13 X) out perform all other sorbents 
tested. 
The regeneration process suggests that NaY have a superior advantage in large scale 
applications. 

4 2001 DMDBT Alumina, zirconia and 
magnesia - Study by IR spectroscopy N/R 

The main adsorption process is due to adsorption on Lewis sites or on acid-base pairs. 
On alumina the adsorption is strongest. Adsorption of 4,6,-DMDBT is definitely limited in 
extent likely due to steric hindrance. 

Zeolite 13X 1) 1.47mmol S sorbed / g adsorbent 
2) 1st ads.: 0.3166; 2nd ads.: 0.2721 

NaY zeolite 1) 1.89 
2) 1st ads.: 0.4724; 2nd ads.: 0.4157 

USY zeolite  1.52 

5 2004 Thiophene 

Acidic zeolites 

Hexadecane 

Adsorption takes place in a heat 
shaker at 48 C and 150 rpm for 20 
hours. 
For 13 X and NaY a regeneration 
study was performed as well. 

1.54 

Adsorption in the range of 200 to 3000 wppm can be achieved effectively by using type 13 X, 
NaY, Acidic and USY zeolites at moderate temperature. 
Adsorption patterns follows this manner: USY> Acidic> NaY> 13 X 

6 2002 Benzothiophene Raney NiAl alloy 
(Aldrich) 

Naphthalene in 
methanol 

The solution was eluted through a 
packed bed of Raney Ni in a glass 
column at 45 C. The column was kept 
under nitrogen to prevent base metal 
oxidation. 

100   

7 2000 Sulphur 
Compounds S Zorb Gasoline 

Gasoline is combined with hydrogen 
and heated, the vaporized gasoline is 
injected into a fluid bed. 
T= 650- 775 F; P= 100-300 PSIG 

Low sulphur case:97 
High sulphur case: 99.3 S Zorb Technology by Conoco Philips Petroleum Company 
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Ref Year Compound Sorbents Solution Experimental Condition Removal % Observations/ Comments 

8 2003 

Benzothiophene 
and its substituted 
aromatic sulphur 
compounds 

Y Zeolites (with Cu, Ni, 
Pd and Ce ions) 

Model jet fuel 
(MJF) & real jet 
fuel (JP-8) 

The process is called : PSU-SARS 
T= 80 C 

CeY: 10 mg S sorbed / g adsorbent 
for MJF (510 ppmw S) and 4.5 mg/g 
for JP-8 (750 ppm S) 

In static condition, with a residence time of 5 h, the selectivity order is 2-MBT (Methyl 
benzothiophene) >= 5-MBT > BT 
Under dynamic condition with a residence time of 0.4 h, the selectivity order is 5-MBT> BT> 
2-MBT 

9 2003 Thiophene 
Nanostructured W2C on 
ultrahigh-surface-area 
carbon (HSAC) 

Fuel oil 
30 min for W/HSAC and WC/HSAC 
and 60 min for W2C/HSAC no sulphur detected in the product Adsorption capacity is in the order of: W2C/HSAC> W/HSAC> WC/HSAC >> HSAC 

10 2003 Dibenzothiophene 4 nm and 22 nm Carbon 
Aerogels n-hexadecane Ambient temperature and pressure over 4 nm: 86 

over 22 nm: 93 

selective adsorption of dibenzothiophene using carbon aerogels is feasible. 
The carbon aerogel with the larger average pore size had higher adsorption capacity and faster 
adsorption kinetics. 

11 2004 Sulphur 
Compounds 

AC/Cu(I)-Y, CU(I)-Y, 
Selexsorb, CDX 
(Alumina), CuCl/γ-Al2O3, 
Activated carbon, Cu(I)-
ZSM-5 

Commercial 
diesel fuel 

Fixed bed adsorbent operated at 
ambient temperature and pressure 

with the CU(I)Y the product will 
contain as low as 0.15 ppmw-S 

Copper (auto-reduced) type-Y zeolites are superior adsorbents for the removal of all sulphur 
compounds from commercial diesel fuels.  
Total sulphur adsorption capacity at breakthrough follow the order:AC/Cu(I)-Y> CU(I)-Y> 
Selexsorb> CDX (Alumina)> CuCl/γ-Al2O3> Activated carbon> Cu(I)-ZSM-5 
The Cu(I)-ZSM-5 is promising for application with selectivity toward small thiophene 
molecules 

12 2004 Sulphur 
Compounds 

Cu(I)- Y (VPIE), 
Selexsorb CDX, Selexsorb 
CDX/Cu(I)-Y(VPIE) 

Commercial Jet 
fuels 

Fixed bed adsorbent operated at 
ambient temperature and pressure 
The activated alumina was used as 
guard bed to Cu(I)-Y(VPIE). 

The best adsorbent produces 38 m3 
of jet fuel per gram of sorbent with a 
weighted average content of 0.071 
ppmw-S 

Vapor Phase Ion Exchanged copper (I) type Y zeolites are superior adsorbent for removal of 
all sulphur compounds from commercial jet fuels. 
Total sulphur adsorption capacity at breakthrough follow the order: 
Selexsorb CDX< Cu(I)-Y (VPIE)< Selexsorb CDX/Cu(I)-Y(VPIE) 

13 2003 Benzene and 
dibenzohiophene Silica and alumina 

Benzene, 
dibenzohiophene 
and n-octanol 
Diesel fuel 

The Mixture and a cobalt salt (acetate 
or chloride) and an aldehyde was 
stirred at 40 C for 15 min. Then, the 
produces dibenzothiophene sulfone 
was removed by silica or alumina 
adsorption 

For Diesel fuel : 97 Several organic sulfides including benzothiophene and 4,6- dimethyl dibenzothiophene also 
could be converted to the corresponding sulfones in almost quantitative yeilds. 

14 2003 Dimethyl 
dibenzothiophenes Catalysts: CoMo/ Al2O3 

A Narrow cut 
gas oil fraction 
with octadecane 
as solvent 

Hdrodesulphurization process 
T= 350-390 C, P= 5.2 Mpa 

Adsorption constant for different 
solvent concentration: 35.75 - 52.32 
l/mol 

Dimethyl benzothiophene with a methyl group in position  were the least reactive of the 
sulphur compounds present in the lump 

15* 2002 

Mercaptans, 
sulfides, 
thiophenic- type 
components 

- 

Cracked stock 
gasoline with 
Techtive-DS as 
solvent 

GT- Desulf process: the primary 
operation is extractive distillation. 
Relative volataliry of the feed is 
altered and sulfu compounds 
extracted. 

The product contains less than 10 
ppmw of thiophenic-type sulphur 
compounds 

The technology delivers zero octane loss and handles a wide range of feed composition 
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Ref Year Compound Sorbents Solution Experimental Condition Removal % Observations/ Comments 

16* 2003 Thiophene 

Catalysts: MoS2 and WS2 
sulfides, non-promoted or 
promoted with Co and Ni.  
The supports were ZrO2, 
alumina stabilized TiO2 
and pure alumina 

- - - 
The nature of promoter plays determining role for the catalytic performance. The most active 
ones for hydrodesulphurization reactions were Ni-promoted Mo and W catalysts, supported on 
ZrO2. 

N/R: Not Reported       
* Processes other than (passive) adsorption      
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ag (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ << 250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.117 0.259 20.33 0.13458 0.1949 20.330 0.637 20.330 31.924 1.308 -0.196

31.460 4.863 0.198 7.11 0.04473 0.3115 7.110 0.492 7.110 14.458 0.852 -0.308

23.080 5.042 0.151 7.72 0.05036 0.1999 7.720 0.501 7.720 15.403 0.888 -0.300

9.570 5.129 0.064 0.77 0.00511 0.2329 0.770 0.251 0.770 3.071 -0.114 -0.601

5.210 5.112 0.034 0.20 0.00132 0.2129 0.200 0.156 0.200 1.285 -0.699 -0.808

2.630 4.911 0.017 0.04 0.00025 0.1976 0.040 0.083 0.040 0.480 -1.398 -1.080

1.450 4.889 0.009 0.01 0.00006 0.1963 0.010 0.046 0.010 0.216 -2.000 -1.334

0.570 4.985 0.004 0.03 0.00019 0.1356 0.030 0.026 0.030 1.168 -1.523 -1.590

Intercept 1.393 K 0.226

Slope 1.570 n 2.546

qm 0.637 R2 0.911

K 1.127

R2 0.987

Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ag (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.216 0.488 63.310 0.42722 0.0877 63.310 0.697 63.310 90.817 1.801 -0.157

56.640 4.791 0.351 41.350 0.25627 0.1303 41.350 0.727 41.350 56.857 1.616 -0.138

46.330 5.437 0.326 20.790 0.14622 0.2640 20.790 0.680 20.790 30.556 1.318 -0.167

30.640 5.447 0.216 18.170 0.12804 0.1378 18.170 0.638 18.170 28.494 1.259 -0.195

Linear Plot - Freundlich

log (C) log (q)

Linear Plot - Freundlich

log (C) log (q)

Ag/ACC (<125µ)

Bulk Solution (DBT + C16)

C/q

Conc. Final Plot data Linear Plot - Langmuir

C C/q

C

Plot data

Ag / ACC - 125 µ

Bulk Solution (DBT + C16) Conc. Final Linear Plot - Langmuir
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22.400 4.861 0.141 10.190 0.06407 0.1436 10.190 0.535 10.190 19.060 1.008 -0.272

10.740 5.325 0.074 2.040 0.01405 0.1849 2.040 0.324 2.040 6.294 0.310 -0.489

5.350 5.398 0.037 1.060 0.00740 0.1149 1.060 0.261 1.060 4.065 0.025 -0.584

2.560 4.987 0.017 0.150 0.00097 0.1264 0.150 0.123 0.150 1.220 -0.824 -0.910

1.420 4.946 0.009 0.020 0.00013 0.1261 0.020 0.071 0.020 0.282 -1.699 -1.149

Intercept 2.286 K 0.242

Slope 1.382 n 3.260

qm 0.724 R2 0.984

K 0.605

R2 0.997
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Fe (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ << 250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.046 0.255 15.66 0.1022 0.227 15.660 0.673 15.660 23.283 1.195 -0.172

31.460 4.931 0.201 11.29 0.0720 0.216 11.290 0.595 11.290 18.988 1.053 -0.226

23.080 4.857 0.145 2.41 0.0151 0.349 2.410 0.372 2.410 6.475 0.382 -0.429

9.570 4.849 0.060 0.77 0.0048 0.213 0.770 0.260 0.770 2.964 -0.114 -0.585

5.210 5.199 0.035 0.23 0.0015 0.195 0.230 0.172 0.230 1.336 -0.638 -0.764

2.630 4.964 0.017 0.03 0.0002 0.217 0.030 0.077 0.030 0.390 -1.523 -1.114

1.450 5.106 0.010 0.01 0.0001 0.164 0.010 0.058 0.010 0.173 -2.000 -1.237

0.570 5.020 0.004 0.04 0.0003 0.106 0.040 0.033 0.040 1.228 -1.398 -1.487

Intercept 1.240 K 0.248

Slope 1.476 n 2.615

qm 0.678 R2 0.905

K 1.190

R2 0.987

log (C) log (q)

Linear Plot - Freundlich

Fe / ACC - 125 µ

Conc. Final Plot data

C C/q

Linear Plot - LangmuirBulk Solution (DBT + C16)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Co (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.573 0.282 15.34 0.1106 0.2241 15.340 0.764 15.340 20.086 1.186 -0.117

31.460 5.262 0.214 11.42 0.0777 0.2101 11.420 0.649 11.420 17.587 1.058 -0.188

23.080 5.017 0.150 6.61 0.0429 0.2261 6.610 0.473 6.610 13.980 0.820 -0.325

9.570 5.284 0.065 2.41 0.0165 0.1431 2.410 0.342 2.410 7.046 0.382 -0.466

5.210 5.359 0.036 0.58 0.0040 0.1530 0.580 0.210 0.580 2.765 -0.237 -0.678

2.630 5.136 0.017 0.06 0.0004 0.1901 0.060 0.090 0.060 0.668 -1.222 -1.047

1.450 5.148 0.010 0.02 0.0001 0.1466 0.020 0.065 0.020 0.308 -1.699 -1.187

0.570 5.152 0.004 0.02 0.0001 0.1541 0.020 0.024 0.020 0.841 -1.699 -1.624

Intercept 1.850 K 0.235

Slope 1.330 n 2.346

qm 0.752 R2 0.942

K 0.719

R2 0.946

log (C) log (q)

Linear Plot - FreundlichPlot data Linear Plot - LangmuirBulk Solution (DBT + C16)

Co / ACC
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: ACC 

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ <<250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.200 0.263 19.13 0.13 0.220 19.130 0.611 19.130 31.333 1.282 -0.214

31.460 5.029 0.205 12.09 0.08 0.232 12.090 0.544 12.090 22.230 1.082 -0.265

23.080 5.005 0.149 5.41 0.04 0.246 5.410 0.466 5.410 11.618 0.733 -0.332

9.570 4.898 0.061 1.29 0.01 0.245 1.290 0.214 1.290 6.022 0.111 -0.669

5.210 5.106 0.034 0.19 0.0013 0.160 0.190 0.208 0.190 0.914 -0.721 -0.682

2.630 5.093 0.017 0.10 0.0007 0.173 0.100 0.097 0.100 1.036 -1.000 -1.015

1.450 5.087 0.010 0.01 0.0001 0.323 0.010 0.029 0.010 0.341 -2.000 -1.533

0.570 4.996 0.004 0.02 0.0001 0.211 0.020 0.017 0.020 1.187 -1.699 -1.773

Intercept 1.613 K 0.205

Slope 1.616 n 2.271

qm 0.619 R2 0.898

K 1.002

R2 0.986

log (q)

Linear Plot - Langmuir

ACC - 125µ

Conc. FinalBulk Solution (DBT + C16)

C C/q

Plot data Linear Plot - Freundlich
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Acid-washed activated carbon

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ <<250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 4.918 0.249 24.27 0.15 0.2589 24.270 0.364 24.270 66.692 1.385 -0.439

31.460 5.003 0.204 18.81 0.12 0.2213 18.810 0.370 18.810 50.840 1.274 -0.432

23.080 5.311 0.159 14.43 0.10 0.1847 14.430 0.322 14.430 44.846 1.159 -0.492

9.570 5.195 0.064 1.88 0.01 0.3103 1.880 0.167 1.880 11.287 0.274 -0.778

5.210 5.019 0.034 0.96 0.01 0.2096 0.960 0.132 0.960 7.292 -0.018 -0.881

2.630 5.110 0.017 0.17 0.0011 0.2168 0.170 0.075 0.170 2.267 -0.770 -1.125

1.450 5.079 0.010 0.06 0.0004 0.1590 0.060 0.057 0.060 1.045 -1.222 -1.241

0.570 5.374 0.004 0.02 0.0001 0.0712 0.020 0.054 0.020 0.372 -1.699 -1.270

Intercept 2.938 K 0.142

Slope 2.659 n 3.381

qm 0.376 R2 0.986

K 0.905

R2 0.991

Linear Plot - Langmuir

AAC (125µ)

log (C) log (q)

Conc. Final Linear Plot - Freundlich

C/q
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ni (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.031 0.471 56.63 0.37 0.1258 56.630 0.814 56.630 69.542 1.753 -0.089

56.640 5.023 0.368 40.39 0.26 0.1452 40.390 0.727 40.390 55.536 1.606 -0.138

46.330 5.031 0.302 29.16 0.19 0.1605 29.160 0.696 29.160 41.883 1.465 -0.157

30.640 5.041 0.200 17.17 0.11 0.1429 17.170 0.615 17.170 27.934 1.235 -0.211

22.400 5.004 0.145 6.33 0.04 0.2337 6.330 0.445 6.330 14.220 0.801 -0.352

10.740 5.015 0.070 1.45 0.01 0.2101 1.450 0.287 1.450 5.054 0.161 -0.542

5.350 5.039 0.035 0.98 0.01 0.1183 0.980 0.241 0.980 4.070 -0.009 -0.618

2.560 5.017 0.017 0.19 0.00 0.1179 0.190 0.130 0.190 1.456 -0.721 -0.884

1.420 4.799 0.009 0.05 0.00 0.1047 0.050 0.081 0.050 0.615 -1.301 -1.090

Intercept 3.590 K 0.232

Slope 1.234 n 3.057

qm 0.810 R2 0.995

K 0.344

R2 0.989

Linear Plot - Freundlich

C C/q log (C) log (q)

Ni/ACC

Conc. Final Plot data Linear Plot - LangmuirBulk Solution (DBT + C16)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Activated Carbon - Norit

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ <<250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 4.942 0.463 51.79 0.33 0.2867 51.790 0.459 51.790 112.855 1.714 -0.338

56.640 5.177 0.379 38.47 0.26 0.2584 38.470 0.471 38.470 81.695 1.585 -0.327

46.330 4.619 0.277 29.50 0.18 0.2320 29.500 0.433 29.500 68.060 1.470 -0.363

30.640 4.571 0.181 17.24 0.10 0.1773 17.240 0.447 17.240 38.580 1.237 -0.350

22.400 4.715 0.137 12.07 0.07 0.1560 12.070 0.404 12.070 29.886 1.082 -0.394

10.740 5.187 0.072 3.94 0.03 0.1530 3.940 0.298 3.940 13.211 0.595 -0.525

5.350 4.550 0.031 0.95 0.01 0.1620 0.950 0.160 0.950 5.943 -0.022 -0.796

2.560 4.946 0.016 0.13 0.0008 0.1161 0.130 0.134 0.130 0.971 -0.886 -0.873

1.420 5.097 0.009 0.04 0.0003 0.0972 0.040 0.094 0.040 0.427 -1.398 -1.029

Intercept 2.700 K 0.201

Slope 2.124 n 4.229

qm 0.471 R2 0.969

K 0.787

R2 0.997

C C/q

ACN - 125µ 

Linear Plot - LangmuirBulk Solution (DBT + C16) Plot dataConc. Final Linear Plot - Freundlich
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 250µ<<500µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.027 0.471 21.40 0.14 0.6877 21.400 0.482 21.400 44.403 1.330 -0.317

56.640 4.989 0.366 17.30 0.11 0.5110 17.300 0.497 17.300 34.819 1.238 -0.304

46.330 5.428 0.325 15.14 0.11 0.4500 15.140 0.487 15.140 31.110 1.180 -0.313

30.640 5.209 0.206 10.25 0.07 0.3416 10.250 0.402 10.250 25.484 1.011 -0.396

22.400 4.856 0.141 7.62 0.05 0.2412 7.620 0.385 7.620 19.797 0.882 -0.415

10.740 5.361 0.074 0.72 0.0050 0.3662 0.720 0.190 0.720 3.794 -0.143 -0.722

5.350 5.022 0.035 0.13 0.0008 0.2231 0.130 0.152 0.130 0.855 -0.886 -0.818

2.560 4.293 0.014 0.10 0.0006 0.1343 0.100 0.102 0.100 0.983 -1.000 -0.993

1.420 4.827 0.009 0.01 0.0001 0.2255 0.010 0.039 0.010 0.256 -2.000 -1.408

Intercept 1.684 K 0.206

Slope 2.014 n 3.226

qm 0.497 R2 0.972

K 1.196

R2 0.989

log (C) log (q)C C/q

ACC-250 µ

Linear Plot - LangmuirConc. Final Plot data Linear Plot - FreundlichBulk Solution (DBT + C16)

ACC - 250µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 5.0 10.0 15.0 20.0 25.0

C (mmol-S/L)

q 
(m

m
ol

-S
/g

-s
or

be
nt

)

Langmuir - Linear Plot

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

0.0 5.0 10.0 15.0 20.0 25.0
C

C
/q

202



Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ga (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.095 0.477 55.39 0.37 0.164 55.390 0.685 55.390 80.920 1.743 -0.165

56.640 5.138 0.376 37.04 0.25 0.166 37.040 0.785 37.040 47.195 1.569 -0.105

46.330 5.243 0.314 30.78 0.21 0.133 30.780 0.795 30.780 38.725 1.488 -0.100

30.640 5.300 0.210 21.08 0.14 0.096 21.080 0.683 21.080 30.875 1.324 -0.166

22.400 5.263 0.152 8.24 0.06 0.183 8.240 0.527 8.240 15.642 0.916 -0.278

10.740 5.076 0.071 1.78 0.01 0.183 1.780 0.321 1.780 5.540 0.250 -0.493

5.350 4.636 0.032 1.20 0.01 0.092 1.200 0.271 1.200 4.426 0.079 -0.567

2.560 4.965 0.016 0.30 0.00 0.091 0.300 0.160 0.300 1.879 -0.523 -0.797

1.420 5.376 0.010 0.02 0.00 0.141 0.020 0.069 0.020 0.289 -1.699 -1.160

Intercept 1.761 K 0.248

Slope 1.345 n 3.177

qm 0.743 R2 0.984

K 0.764

R2 0.987

log (q)log (C)

Linear Plot - LangmuirConc. Final Plot data
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Sn (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.159 0.483 58.34 0.39 0.1095 58.340 0.855 58.340 68.225 1.766 -0.068

56.640 5.758 0.422 40.42 0.30 0.1514 40.420 0.798 40.420 50.649 1.607 -0.098

46.330 5.090 0.305 31.02 0.20 0.1400 31.020 0.720 31.020 43.076 1.492 -0.143

30.640 5.100 0.202 20.07 0.13 0.1132 20.070 0.616 20.070 32.576 1.303 -0.210

22.400 4.966 0.144 12.80 0.08 0.1200 12.800 0.514 12.800 24.905 1.107 -0.289

10.740 5.361 0.074 3.87 0.03 0.1198 3.870 0.398 3.870 9.732 0.588 -0.400

5.350 4.761 0.033 1.51 0.01 0.0926 1.510 0.255 1.510 5.912 0.179 -0.593

2.560 5.339 0.018 0.48 0.00 0.0869 0.480 0.165 0.480 2.903 -0.319 -0.782

1.420 4.907 0.009 0.06 0.00 0.1079 0.060 0.080 0.060 0.750 -1.222 -1.097

Intercept 5.136 K 0.219

Slope 1.142 n 2.880

qm 0.876 R2 0.996

K 0.222

R2 0.979

Linear Plot - Langmuir

C C/q

Sn/ACC

Conc. Final Plot dataBulk Solution (DBT + C16)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Sr (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.261 0.493 61.40 0.418 0.1181 61.400 0.632 61.400 97.129 1.788 -0.199

56.640 5.546 0.406 44.02 0.316 0.1339 44.020 0.676 44.020 65.096 1.644 -0.170

46.330 5.120 0.307 37.93 0.251 0.0834 37.930 0.667 37.930 56.855 1.579 -0.176

30.640 5.523 0.219 20.42 0.146 0.1257 20.420 0.581 20.420 35.153 1.310 -0.236

22.400 5.758 0.167 17.64 0.131 0.0656 17.640 0.540 17.640 32.637 1.246 -0.267

10.740 5.278 0.073 4.45 0.030 0.1121 4.450 0.383 4.450 11.615 0.648 -0.417

5.350 4.848 0.034 1.67 0.010 0.0809 1.670 0.285 1.670 5.854 0.223 -0.545

2.560 5.119 0.017 0.54 0.004 0.0668 0.540 0.200 0.540 2.697 -0.268 -0.698

1.420 5.660 0.010 0.20 0.001 0.0655 0.200 0.136 0.200 1.466 -0.699 -0.865

Intercept 3.162 K 0.235

Slope 1.487 n 3.582

qm 0.672 R2 0.982

K 0.470

R2 0.994

Linear Plot - Langmuir

C

Sr/ACC

Conc. Final Plot data

C/q

Linear Plot - Freundlich
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: ACC 

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

66.390 5.022 0.431 55.77 0.36 0.100 55.770 0.691 55.770 80.674 1.746 -0.160 0.134 1.447 0.500

51.650 5.075 0.339 38.64 0.25 0.110 38.640 0.778 38.640 49.675 1.587 -0.109 0.161 1.286

41.680 5.312 0.286 30.61 0.21 0.105 30.610 0.727 30.610 42.091 1.486 -0.138 0.181 1.375

26.810 5.012 0.174 17.18 0.11 0.104 17.180 0.598 17.180 28.725 1.235 -0.223 0.241 1.672

20.840 5.633 0.152 13.17 0.10 0.100 13.170 0.560 13.170 23.515 1.120 -0.252 0.276 1.786

9.260 5.171 0.062 4.78 0.03 0.078 4.780 0.383 4.780 12.490 0.679 -0.417 0.457 2.613

4.730 5.601 0.034 0.83 0.01 0.118 0.830 0.240 0.830 3.457 -0.081 -0.620 1.098 4.165

2.790 5.504 0.020 0.64 0.00 0.065 0.640 0.234 0.640 2.734 -0.194 -0.631 1.250 4.272

1.420 5.508 0.010 0.04 0.00 0.109 0.040 0.090 0.040 0.443 -1.398 -1.044 5.000 11.075

Intercept 3.007 K 0.249 Intercept 1.352

Slope 1.341 n 3.372 Slope 1.991

qm 0.746 R2 0.988 qmax 0.739

K 0.446 K 0.679

R2 0.987 R2 0.9862

C/q

Linear Plot - Langmuir

ACC (<125µ) 

Conc. Final Plot data

C

Linear Plot - Freundlich

X(1/C)X 1/qlog (C) log (q)

Bulk Solution (DBT + C16) Modified Langmuir
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

66.390 4.650 0.399 50.87 0.3060 0.0814 50.870 1.147 50.870 44.349 1.706 0.060 0.102 0.872 0.580

51.650 5.392 0.360 34.20 0.2386 0.1513 34.200 0.805 34.200 42.511 1.534 -0.094 0.129 1.243

41.680 5.559 0.300 26.62 0.1914 0.1500 26.620 0.722 26.620 36.872 1.425 -0.141 0.149 1.385

26.810 5.111 0.177 13.61 0.0900 0.1673 13.610 0.522 13.610 26.089 1.134 -0.283 0.220 1.917

20.840 4.874 0.131 12.31 0.0776 0.1021 12.310 0.527 12.310 23.369 1.090 -0.278 0.233 1.898

9.260 5.054 0.061 3.29 0.0215 0.1196 3.290 0.326 3.290 10.081 0.517 -0.486 0.501 3.064  

4.730 4.766 0.029 0.65 0.0040 0.1355 0.650 0.186 0.650 3.501 -0.187 -0.731 1.284 5.386

2.790 4.453 0.016 0.40 0.0023 0.1002 0.400 0.137 0.400 2.911 -0.398 -0.862 1.701 7.277

Intercept 8.211 K 0.203 Intercept 0.874

Slope 0.874 n 2.506 Slope 3.715

qm 1.145 R2 0.987 qmax 1.144

K 0.106 K 0.235

R2 0.882 R2 0.9886

Linear Plot - Langmuir

C C/q

Ta - 2 / ACC

Conc. Final Plot dataBulk Solution (DBT + C16)

log (q)

Modified Langmuir

log (C)

Linear Plot - Freundlich
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (10% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

3096.0 5.379 2394.96 701.05 0.127 57.853 16.935 0.928 62.348 1.762 -0.032 0.189 1.078 0.410

2145.0 4.670 1648.93 496.07 0.111 39.832 11.983 0.652 61.078 1.600 -0.186 0.221 1.533

1914.0 5.490 1469.88 444.13 0.118 35.507 10.728 0.644 55.170 1.550 -0.191 0.231 1.554

1143.0 5.317 705.91 437.10 0.152 17.052 10.559 0.478 35.645 1.232 -0.320 0.313 2.090

880.9 4.920 599.67 281.23 0.099 14.486 6.793 0.437 33.168 1.161 -0.360 0.334 2.290

403.3 4.754 184.33 218.98 0.094 4.453 5.290 0.345 12.921 0.649 -0.463 0.542 2.902

200.6 5.397 60.26 140.35 0.099 1.456 3.390 0.240 6.069 0.163 -0.620 0.857 4.170

102.3 5.000 16.13 86.17 0.088 0.390 2.082 0.154 2.535 -0.409 -0.813 1.472 6.506

52.6 5.049 1.50 51.11 0.087 0.036 1.235 0.093 0.390 -1.442 -1.033 3.903 10.790

20.0 4.846 0.08 19.93 0.124 0.002 0.481 0.024 0.074 -2.742 -1.613 13.310 41.061

Intercept 6.425 K 0.211 Intercept 1.031

Slope 1.199 n 3.127 Slope 2.979

qm 0.834 R2 0.987 qmax 0.970

K 0.187 K 0.346

R2 0.911 R2 0.9958

Ta-10 / ACC 

LangmuirConc. FinalBulk Solution (DBT + C16)

log (C)C/q

Sulfur in Solution Freundlich

log (q) X

Modified Langmuir
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (5% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

3096.0 5.194 2128.21 967.80 0.1224 51.409 23.378 1.283 40.058 1.711 0.108 0.170 0.779 0.450

2145.0 5.583 1601.81 543.19 0.1117 38.694 13.121 0.848 45.608 1.588 -0.071 0.193 1.179

1914.0 4.818 1412.35 501.65 0.0943 34.117 12.118 0.801 42.600 1.533 -0.096 0.204 1.249

1143.0 5.438 785.74 357.27 0.1010 18.980 8.630 0.601 31.575 1.278 -0.221 0.266 1.664

880.9 4.988 445.36 435.54 0.1288 10.758 10.521 0.527 20.410 1.032 -0.278 0.343 1.897

403.3 5.370 153.46 249.85 0.1128 3.707 6.035 0.372 9.973 0.569 -0.430 0.555 2.690

200.6 5.507 47.75 152.86 0.1048 1.153 3.692 0.251 4.595 0.062 -0.600 0.938 3.984

102.3 5.527 12.20 90.10 0.0997 0.295 2.176 0.156 1.888 -0.531 -0.807 1.733 6.407

52.6 5.422 3.10 49.51 0.0860 0.075 1.196 0.098 0.767 -1.126 -1.011 3.212 10.253

Intercept 6.232 K 0.238 Intercept 0.765

Slope 0.888 n 2.782 Slope 3.050

qm 1.126 R2 0.982 qmax 1.308

K 0.143 K 0.251

R2 0.869 R2 0.9908

Bulk Solution (DBT + C16)

Ta-5 / ACC

Conc. Final

C/q

Sulfur in Solution Langmuir Freundlich

log (C) log (q)

Modified Langmuir
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Co (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.425 0.508 64.700 0.4541 0.07 64.700 0.781 64.700 82.818 1.811 -0.107

56.640 4.921 0.361 45.130 0.2873 0.09 45.130 0.778 45.130 58.015 1.654 -0.109

46.330 5.476 0.328 35.930 0.2545 0.11 35.930 0.682 35.930 52.715 1.555 -0.166

30.640 4.921 0.195 22.280 0.1418 0.08 22.280 0.630 22.280 35.377 1.348 -0.201

22.400 5.322 0.154 10.730 0.0739 0.15 10.730 0.537 10.730 19.967 1.031 -0.270

10.740 5.048 0.070 3.000 0.0196 0.14 3.000 0.359 3.000 8.351 0.477 -0.445

5.350 4.809 0.033 0.910 0.0057 0.11 0.910 0.247 0.910 3.687 -0.041 -0.608

2.560 3.466 0.011 0.080 0.0004 0.11 0.080 0.101 0.080 0.794 -1.097 -0.997

1.420 5.084 0.009 0.030 0.0002 0.11 0.030 0.082 0.030 0.366 -1.523 -1.086

Intercept 3.503 K 0.240

Slope 1.261 n 3.265

qm 0.793 R2 0.994

K 0.360

R2 0.990

Co/ACC

Conc. Final Plot dataBulk Solution (DBT + C16) Linear Plot - Langmuir

C C/q log (C) log (q)

Linear Plot - Freundlich
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: ACC 

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ <<250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.215 0.264 12.89 0.09 0.351 12.890 0.504 12.890 25.586 1.110 -0.298

31.460 4.978 0.203 7.91 0.05 0.347 7.910 0.437 7.910 18.092 0.898 -0.359

23.080 5.346 0.160 1.78 0.01 0.551 1.780 0.267 1.780 6.657 0.250 -0.573

9.570 5.223 0.065 0.72 0.0049 0.304 0.720 0.196 0.720 3.665 -0.143 -0.707

5.210 4.871 0.033 0.38 0.0024 0.191 0.380 0.159 0.380 2.389 -0.420 -0.798

2.630 5.221 0.018 0.02 0.0001 0.352 0.020 0.050 0.020 0.399 -1.699 -1.300

1.450 5.170 0.010 0.02 0.0001 0.206 0.020 0.047 0.020 0.430 -1.699 -1.332

0.570 4.995 0.004 0.03 0.0002 0.197 0.030 0.018 0.030 1.689 -1.523 -1.751

0.310 5.172 0.002 0.02 0.0001 0.137 0.020 0.014 0.020 1.413 -1.699 -1.849

Intercept 1.583 K 0.183

Slope 1.938 n 2.111

qm 0.516 R2 0.880

K 1.225

R2 0.987

Linear Plot - FreundlichLinear Plot - Langmuir

C C/q

Conc. Final Plot data

log (C) log (q)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Acid-washed activated carbon 

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ <<250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.035 0.255 24.19 0.16 0.269 24.190 0.361 24.190 66.998 1.384 -0.442

31.460 4.950 0.201 18.21 0.12 0.258 18.210 0.329 18.210 55.306 1.260 -0.482

23.080 5.128 0.153 12.61 0.08 0.202 12.610 0.343 12.610 36.745 1.101 -0.464

9.570 4.965 0.061 1.67 0.011 0.318 1.670 0.159 1.670 10.472 0.223 -0.797

5.210 5.180 0.035 1.08 0.007 0.194 1.080 0.143 1.080 7.574 0.033 -0.846

2.630 5.075 0.017 0.07 0.0005 0.178 0.070 0.094 0.070 0.741 -1.155 -1.025

Intercept 3.754 K 0.161

Slope 2.686 n 4.056

qm 0.372 R2 0.956

K 0.715

R2 0.993

log (C) log (q)

Linear Plot - Freundlich

AAC (125µ) - Dried

Conc. Final Plot data

C/q

Linear Plot - Langmuir
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ni (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.610 0.525 56.270 0.41 0.1500 56.270 0.779 56.270 72.239 1.750 -0.108

56.640 5.674 0.416 38.970 0.29 0.1842 38.970 0.704 38.970 55.342 1.591 -0.152

46.330 5.347 0.320 34.860 0.24 0.1156 34.860 0.686 34.860 50.790 1.542 -0.163

30.640 5.123 0.203 16.980 0.11 0.1429 16.980 0.634 16.980 26.800 1.230 -0.198

22.400 5.028 0.146 13.280 0.09 0.1077 13.280 0.551 13.280 24.112 1.123 -0.259

10.740 5.023 0.070 4.600 0.03 0.0990 4.600 0.403 4.600 11.414 0.663 -0.395

5.350 5.107 0.035 1.790 0.01 0.0767 1.790 0.307 1.790 5.838 0.253 -0.513

2.560 5.115 0.017 0.600 0.00 0.0640 0.600 0.203 0.600 2.961 -0.222 -0.693

1.420 5.164 0.009 0.160 0.00 0.0657 0.160 0.128 0.160 1.249 -0.796 -0.892

Intercept 4.166 K 0.241

Slope 1.273 n 3.254

qm 0.785 R2 0.990

K 0.306

R2 0.991

Ni/ACC

Bulk Solution (DBT + C16) Linear Plot - LangmuirConc. Final Linear Plot - Freundlich

log (C) log (q)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 250µ<<500µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

66.390 5.787 0.497 62.50 0.47 0.0814 62.500 0.358 62.500 174.701 1.796 -0.446

51.650 5.826 0.389 46.28 0.35 0.0919 46.280 0.440 46.280 105.080 1.665 -0.356

41.680 5.306 0.286 34.64 0.24 0.1132 34.640 0.427 34.640 81.139 1.540 -0.370

26.810 5.056 0.175 21.40 0.14 0.0900 21.400 0.393 21.400 54.435 1.330 -0.405

20.840 5.911 0.159 16.01 0.12 0.0997 16.010 0.370 16.010 43.217 1.204 -0.431

9.260 5.631 0.067 5.88 0.04 0.0869 5.880 0.283 5.880 20.753 0.769 -0.548

4.730 6.334 0.039 2.46 0.02 0.0801 2.460 0.232 2.460 10.593 0.391 -0.634

2.790 6.294 0.023 1.20 0.01 0.0779 1.200 0.166 1.200 7.221 0.079 -0.779

1.420 5.950 0.011 0.24 0.002 0.0751 0.240 0.121 0.240 1.984 -0.620 -0.917

Intercept 1.886 K 0.176

Slope 2.529 n 4.290

qm 0.395 R2 0.935

K 1.341

R2 0.980

C/q

Plot data Linear Plot - Langmuir

ACC-250 µ

C log (q)log (C)

Linear Plot - FreundlichConc. FinalBulk Solution (DBT + C16)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Sn (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

72.370 5.159 0.483 52.890 0.35 0.1566 52.890 0.830 52.890 63.709 1.723 -0.081

56.640 5.758 0.422 33.880 0.25 0.2331 33.880 0.727 33.880 46.582 1.530 -0.138

46.330 5.090 0.305 30.610 0.20 0.1460 30.610 0.709 30.610 43.173 1.486 -0.149

30.640 5.100 0.202 20.680 0.14 0.1221 20.680 0.538 20.680 38.423 1.316 -0.269

22.400 4.966 0.144 15.720 0.10 0.0932 15.720 0.460 15.720 34.140 1.196 -0.337

10.740 5.361 0.074 4.895 0.03 0.1320 4.895 0.307 4.895 15.941 0.690 -0.513

5.350 4.761 0.033 0.995 0.01 0.1322 0.995 0.203 0.995 4.904 -0.002 -0.693

2.560 5.339 0.018 0.720 0.00 0.0869 0.720 0.146 0.720 4.923 -0.143 -0.835

1.420 4.907 0.009 0.250 0.00 0.1079 0.250 0.069 0.250 3.632 -0.602 -1.162

Intercept 7.813 K 0.156

Slope 1.152 n 2.338

qm 0.868 R2 0.975

K 0.147

R2 0.949

Sn/ACC

Linear Plot - Freundlich

C C/q log (C) log (q)

Bulk Solution (DBT + C16) Conc. Final Plot data Linear Plot - Langmuir

Sn / ACC
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Adsorption Isotherm - DBT in Hexadecane

Sorbent:  ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C (remaining) C (removed) q

mmol/L g mmol mmol/L mmol g mmol/L mmol/L mmol/g

66.390 4.890 13.690 52.700 0.33 0.1211 52.700 13.690 0.715 73.698 1.722 -0.146 0.079 1.398 0.640

51.650 5.194 16.100 35.550 0.24 0.1566 35.550 16.100 0.691 51.460 1.551 -0.161 0.102 1.448

41.680 4.496 13.075 28.605 0.17 0.1114 28.605 13.075 0.683 41.903 1.456 -0.166 0.117 1.465

26.810 4.883 7.040 19.770 0.12 0.0681 19.770 7.040 0.653 30.274 1.296 -0.185 0.148 1.531

20.840 5.336 8.665 12.175 0.08 0.1096 12.175 8.665 0.546 22.311 1.085 -0.263 0.202 1.833

9.260 4.739 5.815 3.445 0.02 0.0996 3.445 5.815 0.358 9.625 0.537 -0.446 0.453 2.794

4.730 4.718 3.895 0.835 0.01 0.1020 0.835 3.895 0.233 3.582 -0.078 -0.632 1.122 4.290

2.790 4.513 1.955 0.835 0.00 0.0511 0.835 1.955 0.223 3.738 -0.078 -0.651 1.122 4.477

1.420 4.744 1.020 0.400 0.00 0.0347 0.400 1.020 0.180 2.217 -0.398 -0.744 1.798 5.544

Intercept 3.427 K 0.244 Intercept 1.295

Slope 1.348 n 3.335 Slope 2.552

qm 0.742 R2 0.989 qmax 0.772

K 0.393 K 0.507

R2 0.997 R2 0.9802

log (q)

Freundlich

log (C)C/q

Conc. Final Linear Plot - Langmuir

ACC (<125µ) 

Bulk Solution (DBT + C16) Modified Langmuir

(1/C)X 1/q X

ACC (<125µ)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

3096.0 5.300 2438.700 657.30 0.1060 58.910 15.878 1.027 57.359 1.770 0.012 0.160 0.974 0.450

2145.0 5.087 1421.480 723.52 0.1660 34.338 17.478 0.693 49.559 1.536 -0.159 0.204 1.443

1914.0 4.882 1301.975 612.03 0.1384 31.451 14.784 0.675 46.622 1.498 -0.171 0.212 1.482

1143.0 5.185 690.520 452.48 0.1402 16.680 10.930 0.523 31.896 1.222 -0.282 0.282 1.912

880.9 4.769 399.810 481.09 0.1543 9.658 11.621 0.465 20.787 0.985 -0.333 0.360 2.152

403.3 5.284 140.030 263.27 0.1243 3.383 6.360 0.350 9.672 0.529 -0.456 0.578 2.859

200.6 4.843 82.360 118.24 0.0631 1.990 2.856 0.284 7.015 0.299 -0.547 0.734 3.526

102.3 5.363 15.490 86.81 0.0856 0.374 2.097 0.170 2.202 -0.427 -0.770 1.556 5.884

52.6 4.570 3.040 49.56 0.0760 0.073 1.197 0.093 0.789 -1.134 -1.031 3.238 10.738

Intercept 7.150 K 0.225 Intercept 0.938

Slope 1.030 n 3.006 Slope 3.076

qm 0.971 R2 0.990 qmax 1.066

K 0.144 K 0.305

R2 0.908 R2 0.9943

Freundlich Modified Langmuir

(1/C)XC/q log (C) log (q)

Conc. Final Sulfur in Solution LangmuirBulk Solution (DBT + C16)

Ta-2 / ACC

1/q X
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (10% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

3096.0 4.625 2140.40 955.60 0.1433 51.704 23.084 0.964 53.644 1.714 -0.016 0.294 1.038 0.310

2145.0 4.822 1363.68 781.32 0.1767 32.941 18.874 0.666 49.436 1.518 -0.176 0.338 1.501

1914.0 5.164 1300.06 613.94 0.1515 31.405 14.830 0.654 48.019 1.497 -0.184 0.344 1.529

1143.0 4.906 726.69 416.32 0.1293 17.554 10.057 0.494 35.560 1.244 -0.307 0.411 2.026

880.9 4.233 540.76 340.14 0.1013 13.063 8.217 0.444 29.407 1.116 -0.352 0.451 2.251

403.3 4.317 222.62 180.69 0.0637 5.378 4.365 0.383 14.054 0.731 -0.417 0.594 2.613

200.6 4.824 47.73 152.87 0.0929 1.153 3.693 0.248 4.648 0.062 -0.605 0.957 4.031

102.3 5.225 12.98 89.32 0.0689 0.314 2.158 0.212 1.481 -0.504 -0.674 1.433 4.725

52.6 5.429 0.53 52.08 0.0848 0.013 1.258 0.104 0.122 -1.897 -0.982 3.873 9.599

Intercept 7.051 K 0.274 Intercept 1.052

Slope 1.126 n 4.079 Slope 2.283

qm 0.888 R2 0.959 qmax 0.951

K 0.160 K 0.461

R2 0.887 R2 0.9715

C/q log (C)

FreundlichConc. Final

log (q)

Ta-10 / ACC

Sulfur in Solution Langmuir

(1/C)X

Bulk Solution (DBT + C16)

1/q X

Modified Langmuir
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 10.0 20.0 30.0 40.0 50.0 60.0

C (mmol-S/L)

q 
(m

m
ol

-S
/g

-s
or

be
nt

)

Modified Langmuir

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(1/C)^x

1/
q

218



Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (5% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q log (C solution) log (q)

ppm g ppm ppm g mmol/L mmol/L mmol/g mmol/L mmol/g

3096.0 5.753 2344.24 751.76 0.0946 56.628 18.160 1.429 39.638 1.753 0.155 0.275 0.700 0.320

2145.0 5.120 1462.67 682.33 0.1200 35.333 16.483 0.910 38.835 1.548 -0.041 0.320 1.099

1914.0 4.880 1239.74 674.27 0.1206 29.947 16.288 0.853 35.124 1.476 -0.069 0.337 1.173

1143.0 4.881 749.79 393.21 0.0746 18.112 9.498 0.804 22.526 1.258 -0.095 0.396 1.244

880.9 4.510 552.25 328.66 0.0674 13.340 7.939 0.687 19.411 1.125 -0.163 0.436 1.455

403.3 4.875 75.19 328.11 0.1098 1.816 7.926 0.455 3.990 0.259 -0.342 0.826 2.197

200.6 4.839 12.60 188.00 0.0989 0.304 4.541 0.287 1.059 -0.517 -0.541 1.463 3.479

102.3 4.719 0.62 101.69 0.1288 0.015 2.456 0.116 0.128 -1.828 -0.934 3.846 8.589

52.6 4.117 0.07 52.54 0.0984 0.002 1.269 0.069 0.023 -2.804 -1.163 7.894 14.559

Intercept 3.894 K 0.378 Intercept 0.632

Slope 0.808 n 3.720 Slope 1.824

qm 1.237 R2 0.989 qmax 1.582

K 0.208 K 0.347

R2 0.885 R2 0.9923

Freundlich

C/q

Conc. FinalBulk Solution (DBT + C16) LangmuirSulfur in Solution

(1/C)X 1/q X

Ta-5 / ACC

Modified Langmuir

Ta-5 / ACC
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: ACC 

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 125µ <<250µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.1456 0.260 18.100 0.12 0.2545 18.100 0.549 18.100 32.984 1.258 -0.261

31.460 5.1063 0.208 14.200 0.09 0.2130 14.200 0.535 14.200 26.528 1.152 -0.271

23.080 5.0632 0.151 4.650 0.03 0.3013 4.650 0.401 4.650 11.606 0.667 -0.397

9.570 5.1324 0.064 1.310 0.01 0.2729 1.310 0.201 1.310 6.519 0.117 -0.697

5.210 4.8213 0.032 0.280 0.0017 0.2679 0.280 0.115 0.280 2.439 -0.553 -0.940

2.630 5.0130 0.017 0.200 0.0013 0.1754 0.200 0.090 0.200 2.226 -0.699 -1.047

1.450 5.1263 0.010 0.120 0.0008 0.0955 0.120 0.092 0.120 1.299 -0.921 -1.035

0.570 4.9345 0.004 0.010 0.0001 0.0957 0.010 0.037 0.010 0.268 -2.000 -1.428

Intercept 2.071 K 0.193

Slope 1.731 n 2.671

qm 0.578 R2 0.990

K 0.836

R2 0.990

Linear Plot - Freundlich

log (C) log (q)

ACC - 125µ

Linear Plot - Langmuir

C C/q

Conc. Final Plot dataBulk Solution (DBT + C16)

ACC (<125µ)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ni (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

39.080 5.204 0.263 26.52 0.18 0.106 26.520 0.799 26.520 33.185 1.424 -0.097

31.460 5.043 0.205 20.56 0.13 0.097 20.560 0.735 20.560 27.989 1.313 -0.134

23.080 5.001 0.149 13.22 0.09 0.098 13.220 0.650 13.220 20.353 1.121 -0.187

9.570 5.049 0.063 3.34 0.02 0.100 3.340 0.409 3.340 8.174 0.524 -0.389

5.210 5.175 0.035 1.22 0.01 0.095 1.220 0.282 1.220 4.321 0.086 -0.549

2.630 5.239 0.018 0.34 0.00 0.090 0.340 0.173 0.340 1.960 -0.469 -0.761

1.450 5.097 0.010 0.19 0.00 0.061 0.190 0.136 0.190 1.400 -0.721 -0.867

Intercept 2.634 K 0.255

Slope 1.207 n 2.802

qm 0.828 R2 0.998

K 0.458

R2 0.989

Linear Plot - Freundlich

log (C) log (q)

Plot dataConc. Final

C
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C/q
(g/L)
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

3096.0 5.102 2355.300 740.70 0.1146 56.895 17.893 1.031 55.209 1.755 0.013 0.199 0.970 0.400

2145.0 4.615 1549.390 595.61 0.1267 37.427 14.388 0.678 55.209 1.573 -0.169 0.235 1.475

1914.0 5.006 1388.125 525.88 0.1265 33.532 12.703 0.650 51.559 1.525 -0.187 0.245 1.538

1143.0 4.622 710.150 432.85 0.1195 17.155 10.456 0.523 32.788 1.234 -0.281 0.321 1.911

880.9 4.790 655.200 225.70 0.0651 15.827 5.452 0.519 30.498 1.199 -0.285 0.331 1.927

403.3 4.590 199.080 204.22 0.0825 4.809 4.933 0.355 13.544 0.682 -0.450 0.534 2.816

200.6 5.149 63.035 137.57 0.0805 1.523 3.323 0.275 5.538 0.183 -0.561 0.845 3.637

102.3 4.758 12.995 89.31 0.0837 0.314 2.157 0.159 1.979 -0.503 -0.800 1.590 6.304

52.6 4.050 0.965 51.64 0.0937 0.023 1.247 0.070 0.334 -1.632 -1.156 4.498 14.337

Intercept 7.348 K 0.227 Intercept 0.913

Slope 1.078 n 3.146 Slope 3.035

qm 0.928 R2 0.987 qmax 1.096

K 0.147 K 0.301

R2 0.885 R2 0.9943

log (C) log (q)

FreundlichSulfur in Solution Langmuir

C/q

Bulk Solution (DBT + C16)

Ta-2 / ACC

Conc. Final Modified Langmuir
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (10% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

3096.0 4.581 2116.90 979.10 0.1332 51.136 23.651 1.052 48.593 1.709 0.022 0.273 0.950 0.330

2145.0 4.799 1359.12 785.88 0.1666 32.831 18.984 0.707 46.408 1.516 -0.150 0.316 1.414

1914.0 5.233 1295.06 618.94 0.1449 31.284 14.951 0.699 44.784 1.495 -0.156 0.321 1.432

1143.0 5.148 722.11 420.89 0.1401 17.443 10.167 0.483 36.094 1.242 -0.316 0.389 2.069

880.9 4.603 563.32 317.59 0.0998 13.608 7.672 0.458 29.726 1.134 -0.339 0.423 2.184

403.3 4.416 239.73 163.58 0.0704 5.791 3.951 0.321 18.060 0.763 -0.494 0.560 3.119

200.6 4.332 35.53 165.08 0.0890 0.858 3.988 0.251 3.417 -0.066 -0.600 1.052 3.982

102.3 4.996 10.93 91.37 0.0704 0.264 2.207 0.203 1.303 -0.578 -0.693 1.552 4.935

52.6 4.787 0.51 52.09 0.0914 0.012 1.258 0.085 0.145 -1.909 -1.069 4.267 11.729

Intercept 7.879 K 0.263 Intercept 0.928

Slope 1.029 n 3.730 Slope 2.563

qm 0.972 R2 0.947 qmax 1.078

K 0.131 K 0.362

R2 0.844 R2 0.9839

Modified Langmuir

(1/C)X 1/q X

Freundlich

C/q log (C) log (q)

Conc. Final LangmuirSulfur in Solution
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Adsorption Isotherm - DBT in Hexadecane

Sorbent: Ta (5% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q log (C solution) log (q)

ppm g ppm ppm g mmol/L mmol/L mmol/g mmol/L mmol/g

3096.0 5.312 2263.74 832.26 0.1015 54.683 20.104 1.361 40.175 1.738 0.134 0.257 0.735 0.340

2145.0 4.992 1445.41 699.60 0.1102 34.916 16.900 0.990 35.256 1.543 -0.004 0.299 1.010

1914.0 4.753 1216.22 697.78 0.1100 29.379 16.856 0.942 31.182 1.468 -0.026 0.317 1.061

1143.0 4.533 736.43 406.58 0.0843 17.789 9.821 0.683 26.038 1.250 -0.165 0.376 1.464

880.9 4.362 532.01 348.90 0.0883 12.851 8.428 0.539 23.860 1.109 -0.269 0.420 1.857

403.3 4.602 70.75 332.55 0.1116 1.709 8.033 0.429 3.988 0.233 -0.368 0.833 2.334

200.6 4.773 10.44 190.16 0.0915 0.252 4.594 0.310 0.814 -0.598 -0.509 1.597 3.226

102.3 4.812 0.63 101.68 0.1188 0.015 2.456 0.129 0.117 -1.821 -0.890 4.161 7.770

52.6 4.774 0.13 52.48 0.1044 0.003 1.268 0.075 0.040 -2.520 -1.125 7.192 13.336

Intercept 4.476 K 0.373 Intercept 0.635

Slope 0.799 n 3.792 Slope 1.753

qm 1.251 R2 0.971 qmax 1.576

K 0.179 K 0.362

R2 0.874 R2 0.9961

Conc. Final Sulfur in Solution LangmuirBulk Solution (DBT + C16)

Ta-5 / ACC

Freundlich Modified Langmuir
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

19.51 4.9709 0.125 9.81 0.063 0.1102 9.810 0.566 9.81 17.331 0.99 -0.247 0.254 1.767 0.600

10.53 5.1704 0.070 2.60 0.017 0.1336 2.600 0.397 2.6 6.549 0.41 -0.401 0.564 2.519

4.96 4.218 0.027 0.16 0.001 0.1750 0.160 0.150 0.16 1.069 -0.80 -0.825 3.003 6.681

2.56 3.2391 0.011 0.22 0.001 0.0564 0.220 0.174 0.22 1.265 -0.66 -0.760 2.481 5.752

1.45 3.6328 0.007 0.02 0.0001 0.0771 0.020 0.087 0.02 0.229 -1.70 -1.060 10.456 11.472

0.54 4.3852 0.003 0.01 0.00006 0.0650 0.010 0.046 0.01 0.216 -2.00 -1.335 15.849 21.619

Intercept 0.758 K 0.277 Intercept 2.069

Slope 1.725 n 2.911 Slope 1.147

qm 0.580 R2 0.980 qmax 0.483

K 2.276 K 1.804

R2 0.989 R2 0.9595

Xlog (C) log (q)

ACC

Conc. Final Plot data LangmuirBulk Solution (4,6 DMDBT + C16)

C C/q

Freundlich Modified Langmuir
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ACC (<125µ)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0 2.0 4.0 6.0 8.0 10.0 12.0

C (mmol-S/L)

q 
(m

m
ol

-S
/g

-s
or

be
nt

)

Langmuir - Linear Plot

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0

C

C
/q

225



Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ni (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

19.51 5.0581 0.128 3.050 0.020 0.2230 3.050 0.483 3.05 6.315 0.48 -0.316

10.53 5.2243 0.071 2.120 0.014 0.1623 2.120 0.350 2.12 6.054 0.33 -0.456

4.96 5.0189 0.032 0.890 0.006 0.1211 0.890 0.218 0.89 4.079 -0.05 -0.661

2.56 5.1233 0.017 0.380 0.003 0.1112 0.380 0.130 0.38 2.925 -0.42 -0.886

1.45 5.1581 0.010 0.190 0.001 0.1005 0.190 0.084 0.19 2.271 -0.72 -1.077

Intercept 2.428 K 0.233

Slope 1.433 n 1.626

qm 0.698 R2 0.998

K 0.590

R2 0.931

log (C) log (q)

FreundlichLangmuir

C C/q

Ni / ACC (<125µ)

Plot dataConc. FinalBulk Solution (4,6 DMDBT + C16)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Co (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.6133 0.156 12.060 0.088 0.111 12.060 0.619 12.06 19.481 1.08 -0.208

10.21 5.0953 0.067 1.960 0.013 0.163 1.960 0.334 1.96 5.871 0.29 -0.476

4.95 5.1051 0.033 1.280 0.008 0.082 1.280 0.295 1.28 4.336 0.11 -0.530

2.72 5.3495 0.019 0.650 0.004 0.065 0.650 0.221 0.65 2.936 -0.19 -0.655

1.34 5.2089 0.009 0.070 0.0005 0.079 0.070 0.108 0.07 0.646 -1.15 -0.965

0.64 4.9316 0.004 0.010 0.0001 0.086 0.010 0.047 0.01 0.213 -2.00 -1.329

Intercept 1.531 K 0.262

Slope 1.516 n 2.775

qm 0.660 R2 0.997

K 0.990

R2 0.978

FreundlichPlot dataConc. Final Langmuir

C C/q log (C) log (q)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: 250µ <<500µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

19.51 4.3182 0.109 3.460 0.019 0.252 3.460 0.356 3.46 9.717 0.54 -0.448

10.53 4.4566 0.061 2.700 0.016 0.127 2.700 0.357 2.7 7.572 0.43 -0.448

4.96 4.6556 0.030 0.270 0.002 0.180 0.270 0.157 0.27 1.723 -0.57 -0.805

2.56 4.1981 0.014 0.060 0.0003 0.152 0.060 0.090 0.06 0.670 -1.22 -1.048

1.45 4.9685 0.009 0.030 0.0002 0.178 0.030 0.051 0.03 0.586 -1.52 -1.291

0.54 4.74 0.003 0.010 0.0001 0.204 0.010 0.016 0.01 0.627 -2.00 -1.798

Intercept 0.649 K 0.238

Slope 2.604 n 2.072

qm 0.384 R2 0.932

K 4.014

R2 0.998

Langmuir

C C/q

Conc. Final Plot data Freundlich Modified Langmuir

(1/C)X 1/q Xlog (q)log (C)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Sr (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.4318 0.151 9.270 0.065 0.149 9.270 0.575 9.27 16.109 0.97 -0.240

10.21 5.1838 0.068 5.100 0.034 0.087 5.100 0.395 5.1 12.918 0.71 -0.404

4.95 5.4814 0.035 1.180 0.008 0.088 1.180 0.304 1.18 3.875 0.07 -0.516

2.72 5.0744 0.018 0.250 0.002 0.101 0.250 0.161 0.25 1.556 -0.60 -0.794

1.34 5.3907 0.009 0.040 0.0003 0.104 0.040 0.087 0.04 0.460 -1.40 -1.060

0.64 4.7401 0.004 0.020 0.0001 0.111 0.020 0.034 0.02 0.582 -1.70 -1.464

Intercept 1.243 K 0.243

Slope 1.768 n 2.467

qm 0.566 R2 0.947

K 1.422

R2 0.953

C C/q

FreundlichConc. Final Plot data Langmuir Modified Langmuir

log (C) log (q) (1/C)X 1/q X

Bulk Solution (4,6 DMDBT + C16)

Sr/ACC
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ga (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.3353 0.148 7.180 0.050 0.182 7.180 0.543 7.18 13.225 0.86 -0.265

10.21 5.1978 0.069 2.710 0.018 0.135 2.710 0.374 2.71 7.244 0.43 -0.427

4.95 5.1484 0.033 0.970 0.006 0.097 0.970 0.274 0.97 3.546 -0.01 -0.563

2.72 5.6605 0.020 0.110 0.001 0.148 0.110 0.129 0.11 0.851 -0.96 -0.889

1.34 5.1324 0.009 0.030 0.0002 0.128 0.030 0.068 0.03 0.442 -1.52 -1.168

0.64 4.352 0.004 0.020 0.0001 0.071 0.020 0.049 0.02 0.406 -1.70 -1.308

Intercept 0.998 K 0.263

Slope 1.790 n 2.549

qm 0.559 R2 0.989

K 1.795

R2 0.970

Conc. Final Plot data Langmuir

Ga / ACC

Bulk Solution (4,6 DMDBT + C16)

C C/q (1/C)X 1/q Xlog (q)

Modified Langmuir
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ag (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.501 0.153 11.060 0.079 0.118 11.060 0.629 11.06 17.585 1.04 -0.201

10.21 5.3876 0.071 3.140 0.022 0.123 3.140 0.402 3.14 7.806 0.50 -0.396

4.95 5.0275 0.032 0.500 0.003 0.132 0.500 0.219 0.5 2.279 -0.30 -0.659

2.72 4.9928 0.018 0.150 0.001 0.115 0.150 0.144 0.15 1.042 -0.82 -0.842

1.34 5.3139 0.009 0.030 0.0002 0.113 0.030 0.080 0.03 0.375 -1.52 -1.097

0.64 5.136 0.004 0.010 0.0001 0.110 0.010 0.038 0.01 0.263 -2.00 -1.420

Intercept 1.060 K 0.269

Slope 1.544 n 2.615

qm 0.648 R2 0.986

K 1.457

R2 0.977

Bulk Solution (4,6 DMDBT + C16)

Ag / ACC

Conc. Final Plot data Langmuir

C C/q log (C) log (q)

Freundlich

Langmuir - Linear Plot

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0

C

C
/q

Ag / ACC

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0 2.0 4.0 6.0 8.0 10.0 12.0
C (mmol-S/L)

q 
(m

m
ol

-S
/g

-s
or

be
nt

)

231



Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Sn (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.2375 0.146 9.090 0.062 0.139 9.090 0.602 9.09 15.094 0.96 -0.220

10.21 5.0203 0.066 2.760 0.018 0.143 2.760 0.338 2.76 8.157 0.44 -0.471

4.95 5.5603 0.036 1.170 0.008 0.093 1.170 0.294 1.17 3.985 0.07 -0.532

2.72 5.0135 0.018 0.140 0.001 0.117 0.140 0.144 0.14 0.976 -0.85 -0.843

1.34 5.1943 0.009 0.060 0.0004 0.094 0.060 0.091 0.06 0.656 -1.22 -1.039

0.64 5.0436 0.004 0.010 0.0001 0.086 0.010 0.048 0.01 0.208 -2.00 -1.318

Intercept 1.300 K 0.263

Slope 1.608 n 2.761

qm 0.622 R2 0.993

K 1.237

R2 0.946

C/q

Sn /ACC

Conc. Final Plot data Langmuir
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ta (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of 
Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.0783 0.141 11.070 0.073 0.0960 11.070 0.712 11.07 15.539 1.04 -0.147 0.260 1.404 0.560

10.21 4.9063 0.065 4.160 0.026 0.0881 4.160 0.436 4.16 9.544 0.62 -0.361 0.450 2.294

4.95 5.0704 0.032 1.010 0.007 0.0896 1.010 0.288 1.01 3.502 0.00 -0.540 0.994 3.467

2.72 5.3828 0.019 0.260 0.002 0.1035 0.260 0.166 0.26 1.571 -0.59 -0.781 2.126 6.042

1.34 5.4206 0.009 0.080 0.001 0.0818 0.080 0.108 0.08 0.741 -1.10 -0.967 4.114 9.258

0.64 5.1345 0.004 0.030 0.0002 0.0629 0.030 0.064 0.03 0.466 -1.52 -1.191 7.125 15.524

Intercept 1.469 K 0.273 Intercept 1.327

Slope 1.358 n 2.562 Slope 1.992

qm 0.737 R2 0.995 qmax 0.753

K 0.924 K 0.666

R2 0.951 R2 0.996

Ta-2%/ACC

Conc. FinalBulk Solution (4,6 DMDBT + C16) Plot data Langmuir

C C/q

Freundlich

log (q) (1/C)X 1/q X
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ta (5% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

801.2 5.4952 347.150 454.050 0.1065 8.386 10.968 0.732 11.454 0.92 -0.135 0.398 1.366 0.433

399.9 4.5726 51.020 348.880 0.1225 1.232 8.428 0.407 3.028 0.09 -0.390 0.913 2.457

186.1 4.7617 42.150 143.950 0.0554 1.018 3.477 0.387 2.633 0.01 -0.413 0.992 2.586

104.9 5.0304 20.000 84.900 0.0597 0.483 2.051 0.224 2.161 -0.32 -0.651 1.370 4.473

50.6 4.989 1.110 49.490 0.0812 0.027 1.195 0.095 0.282 -1.57 -1.022 4.792 10.524

25.3 4.9908 0.065 25.235 0.1182 0.002 0.610 0.033 0.047 -2.80 -1.478 16.374 30.033

Intercept 0.889 K 0.347 Intercept 1.230

Slope 1.280 n 2.750 Slope 1.774

qm 0.781 R2 0.992 qmax 0.813

K 1.440 K 0.693

R2 0.976 R2 0.997

Modified Langmuir

(1/C)X 1/q XC/q

Bulk Solution 
(4,6 DMDBT + C16) Sulfur in SolutionConc. Final
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ag (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

801.2 4.785 497.110 304.090 0.102 12.008 7.346 0.445 26.990 1.08 -0.352 0.237 2.248 0.580

399.9 5.2031 155.070 244.830 0.129 3.746 5.914 0.310 12.092 0.57 -0.509 0.465 3.228

186.1 5.7563 30.000 156.100 0.122 0.725 3.771 0.230 3.151 -0.14 -0.638 1.205 4.348

104.9 4.5992 8.000 96.900 0.098 0.193 2.341 0.142 1.360 -0.71 -0.847 2.594 7.037

50.6 4.8169 0.780 49.820 0.112 0.019 1.203 0.067 0.281 -1.72 -1.173 10.010 14.908

25.3 5.3904 0.130 25.170 0.189 0.003 0.608 0.022 0.140 -2.50 -1.650 28.298 44.647

Intercept 1.157 K 0.217 Intercept 2.187

Slope 2.221 n 2.888 Slope 1.478

qm 0.450 R2 0.968 qmax 0.457

K 1.920 K 1.480

R2 0.983 R2 0.9954

C/q

Conc. Final Modified Langmuir

(1/C)X 1/q Xlog (C) log (q)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 4.8426 0.135 7.62 0.048 0.158 7.620 0.550 7.62 13.848 0.88 -0.259 0.296 1.817 0.600

10.21 5.4508 0.072 1.69 0.012 0.183 1.690 0.329 1.69 5.134 0.23 -0.483 0.730 3.038

4.95 5.3719 0.034 0.67 0.005 0.109 0.670 0.273 0.67 2.458 -0.17 -0.564 1.272 3.668

2.72 5.1492 0.018 0.35 0.002 0.084 0.350 0.188 0.35 1.860 -0.46 -0.725 1.877 5.314

1.34 5.4276 0.009 0.01 0.0001 0.129 0.010 0.072 0.01 0.138 -2.00 -1.141 15.849 13.824

0.64 5.0568 0.004 0.01 0.0001 0.101 0.010 0.041 0.01 0.246 -2.00 -1.391 15.849 24.604

Intercept 0.957 K 0.280 Intercept 2.319

Slope 1.734 n 2.828 Slope 1.069

qm 0.577 R2 0.962 qmax 0.431

K 1.811 K 2.169

R2 0.977 R2 0.8489

Freundlich

log (C) log (q)

Langmuir

C C/q

Modified LangmuirBulk Solution (4,6 DMDBT + C16) Conc. Final Plot data
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ni (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

19.51 5.1807 0.131 12.18 0.082 0.079 12.180 0.624 12.18 19.532 1.09 -0.205

10.53 5.5364 0.075 4.47 0.032 0.099 4.470 0.440 4.47 10.165 0.65 -0.357

4.96 5.4834 0.035 2.35 0.017 0.050 2.350 0.367 2.35 6.397 0.37 -0.435

2.56 5.6062 0.019 0.57 0.004 0.067 0.570 0.215 0.57 2.654 -0.24 -0.668

1.45 4.0087 0.008 0.04 0.0002 0.089 0.040 0.082 0.04 0.489 -1.40 -1.087

Intercept 1.960 K 0.261

Slope 1.501 n 2.806

qm 0.666 R2 0.999

K 0.766

R2 0.974

Bulk Solution (4,6 DMDBT + C16)

Ni / ACC (<125µ)

C C/q

LangmuirConc. Final Plot data Freundlich

log (C) log (q)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ta (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

801.2 5.3871 490.22 310.98 0.0684 11.842 7.512 0.765 15.472 1.07 -0.116 0.325 1.307 0.46

399.9 5.3197 189.51 210.40 0.0869 4.578 5.082 0.402 11.374 0.66 -0.395 0.501 2.485

186.1 5.0118 24.61 161.50 0.1100 0.594 3.901 0.230 2.585 -0.23 -0.638 1.267 4.349

104.9 5.3503 14.28 90.63 0.0816 0.345 2.189 0.186 1.857 -0.46 -0.731 1.623 5.385

50.6 4.892 5.59 45.01 0.0576 0.135 1.087 0.119 1.130 -0.87 -0.923 2.487 8.371

25.3 4.1387 0.39 24.92 0.0697 0.009 0.602 0.046 0.201 -2.03 -1.335 8.401 21.630

Intercept 1.680 K 0.267 Intercept 1.277

Slope 1.288 n 2.644 Slope 2.456

qm 0.776 R2 0.990 qmax 0.783

K 0.767 K 0.520

R2 0.904 R2 0.9940

C/q 1/q X

Bulk Solution 
(4,6 DMDBT + C16)

Ta-2%/ACC

Conc. Final Freundlich

log (C) log (q)

Sulfur in Solution Langmuir Modified Langmuir

(1/C)X

Langmuir - Linear Plot
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ta (5% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 6.824 0.190 13.720 0.121 0.0910 13.720 0.753 13.72 18.225 1.14 -0.123 0.219 1.328 0.580

10.21 6.6157 0.087 6.110 0.052 0.0608 6.110 0.577 6.11 10.587 0.79 -0.239 0.350 1.733

4.95 5.7778 0.037 1.590 0.012 0.0714 1.590 0.352 1.59 4.520 0.20 -0.454 0.764 2.843

2.72 6.2297 0.022 0.460 0.004 0.0635 0.460 0.287 0.46 1.604 -0.34 -0.542 1.569 3.486

1.34 7.1261 0.012 0.090 0.001 0.0887 0.090 0.130 0.09 0.693 -1.05 -0.886 4.041 7.697

0.64 6.2019 0.005 0.020 0.0002 0.0797 0.020 0.062 0.02 0.320 -1.70 -1.205 9.669 16.022

Intercept 1.254 K 0.305 Intercept 1.269

Slope 1.293 n 2.695 Slope 1.535

qm 0.774 R2 0.982 qmax 0.788

K 1.031 K 0.827

R2 0.978 R2 0.9979

Langmuir Freundlich

log (C) log (q)

Conc. Final Plot data

C C/q

Ta-5/ACC

Bulk Solution (4,6 DMDBT + C16)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ag (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

801.2 4.8471 394.00 407.20 0.1377 9.518 9.836 0.448 21.248 0.98 -0.349 0.303 2.233 0.530

399.9 4.6394 171.00 228.90 0.0913 4.131 5.529 0.363 11.364 0.62 -0.440 0.472 2.751

186.1 4.4673 58.80 127.30 0.0603 1.420 3.075 0.295 4.819 0.15 -0.531 0.830 3.393

104.9 5.4482 18.60 86.30 0.0851 0.449 2.085 0.173 2.602 -0.35 -0.763 1.528 5.792

50.6 4.3773 1.50 49.10 0.0822 0.036 1.186 0.082 0.443 -1.44 -1.088 5.803 12.239

25.3 4.85 0.49 24.81 0.0766 0.012 0.599 0.049 0.241 -1.93 -1.309 10.500 20.371

Intercept 1.127 K 0.230 Intercept 2.147

Slope 2.181 n 3.021 Slope 1.744

qm 0.458 R2 0.991 qmax 0.466

K 1.935 K 1.231

R2 0.988 R2 0.9951

C/q

Ta-10%/ACC

Conc. Final Freundlich

(1/C)X 1/q Xlog (C) log (q)

Langmuir Modified LangmuirSulfur in SolutionBulk Solution 
(4,6 DMDBT + C16)

Langmuir - Linear Plot
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: ACC s

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

801.2 4.806 507.82 293.38 0.0775 12.267 7.087 0.569 21.576 1.09 -0.245 0.222 1.759 0.600

399.9 4.965 136.85 263.05 0.1254 3.306 6.354 0.325 10.157 0.52 -0.487 0.488 3.072

186.1 4.6741 34.11 151.99 0.0961 0.824 3.672 0.231 3.567 -0.08 -0.636 1.123 4.329

104.9 4.6422 5.97 98.93 0.1065 0.144 2.390 0.135 1.070 -0.84 -0.870 3.196 7.421

50.6 4.797 0.50 50.10 0.1273 0.012 1.210 0.059 0.205 -1.92 -1.229 14.151 16.950

25.3 4.8875 0.85 24.45 0.1169 0.021 0.591 0.032 0.643 -1.69 -1.496 10.293 31.304

Intercept 1.488 K 0.227 Intercept 3.032

Slope 1.707 n 2.665 Slope 1.582

qm 0.586 R2 0.930 qmax 0.330

K 1.147 K 1.916

R2 0.962 R2 0.6641

C/q

Freundlich

log (C) log (q)

Bulk Solution 
(4,6 DMDBT + C16) Sulfur in Solution Langmuir

ACC

Conc. Final Modified Langmuir

(1/C)X 1/q X

Langmuir - Linear Plot
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ni (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

19.51 5.1063 0.129 7.53 0.050 0.1277 7.530 0.620 7.53 12.151 0.88 -0.208

10.53 5.1707 0.070 2.20 0.015 0.1988 2.200 0.280 2.2 7.849 0.34 -0.552

4.96 5.5092 0.035 0.62 0.004 0.1886 0.620 0.164 0.62 3.780 -0.21 -0.785

2.56 5.076 0.017 0.10 0.0007 0.1907 0.100 0.085 0.1 1.181 -1.00 -1.072

1.45 5.1101 0.010 0.04 0.0003 0.1740 0.040 0.054 0.04 0.747 -1.40 -1.271

0.54 5.0199 0.004 0.01 0.0001 0.1662 0.010 0.021 0.01 0.483 -2.00 -1.684

0.24 4.9153 0.002 0.01 0.0001 0.1501 0.010 0.010 0.01 1.026 K 0.220

Intercept 1.598 n 2.086

Slope 1.525 R2 0.988

qm 0.656

K 0.955

R2 0.888

Ni / ACC (<125µ)

C

Conc. Final Plot data LangmuirBulk Solution (4,6 DMDBT + C16)
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ta (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

19.51 4.3096 0.109 7.97 0.044 0.0923 7.970 0.697 7.97 11.434 0.90 -0.157 0.234 1.435 0.700

10.53 5.216 0.071 2.95 0.020 0.1398 2.950 0.366 2.95 8.063 0.47 -0.437 0.469 2.733

4.96 4.6368 0.030 0.50 0.003 0.1303 0.500 0.205 0.5 2.435 -0.30 -0.688 1.625 4.870

2.56 4.4842 0.015 0.14 0.001 0.0862 0.140 0.163 0.14 0.860 -0.85 -0.788 3.960 6.140

1.45 4.7531 0.009 0.04 0.0002 0.0875 0.040 0.099 0.04 0.404 -1.40 -1.004 9.518 10.092

0.54 4.3748 0.003 0.01 0.0001 0.0988 0.010 0.030 0.01 0.329 -2.00 -1.518 25.119 32.938

Intercept 1.184 K 0.285 Intercept 1.413

Slope 1.414 n 2.411 Slope 1.215

qm 0.707 R2 0.950 qmax 0.708

K 1.194 K 1.162

R2 0.906 R2 0.9824

Ta-2%/ACC

Conc. Final Plot data Langmuir

C/qC

Bulk Solution (4,6 DMDBT + C16) Modified Langmuir

log (C) log (q) (1/C)X 1/q X
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ta (5% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln n solution C solution n solution weight C solution q

mmol/L g mmol mmol/L mmol g mmol/L mmol/g

21.48 5.7740 0.160 10.33 0.091 0.0879 10.330 0.788 10.33 13.111 1.01 -0.104 0.195 1.269 0.700

10.21 5.1320 0.068 5.03 0.043 0.0502 5.030 0.493 5.03 10.208 0.70 -0.307 0.323 2.029

4.95 5.0253 0.032 1.22 0.009 0.0769 1.220 0.300 1.22 4.068 0.09 -0.523 0.870 3.335

2.72 5.0030 0.018 0.37 0.003 0.0596 0.370 0.245 0.37 1.508 -0.43 -0.610 2.006 4.076

1.34 5.4012 0.009 0.06 0.001 0.0763 0.060 0.115 0.06 0.520 -1.22 -0.938 7.166 8.661

0.64 5.6320 0.005 0.02 0.0002 0.0917 0.020 0.049 0.02 0.407 -1.70 -1.309 15.462 20.366

Intercept 1.387 K 0.297 Intercept 1.475

Slope 1.263 n 2.489 Slope 1.187

qm 0.792 R2 0.969 qmax 0.678

K 0.910 K 1.243

R2 0.924 R2 0.9885

C C/q log (C) log (q)

Ta-5/ACC

(1/C)X 1/q X

Modified LangmuirLangmuir FreundlichBulk Solution (4,6 DMDBT + C16) Conc. Final Plot data
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Adsorption Isotherm - 4,6 DMDBT in Hexadecane

Sorbent: Ag (2% wt.) on ACC

Temperature = 50°C

Duration: 24 Hours

Sorbent particle size: <125µ

Sorbent

C solution weight of Soln C solution n solution weight C (remaining) C (removed) q

ppm g ppm ppm g mmol/L mmol/L mmol/g

801.2 4.9041 531.48 269.72 0.0815 12.839 6.515 0.507 25.313 1.11 -0.295 0.216 1.972 0.600

399.9 4.6595 137.23 262.68 0.1210 3.315 6.345 0.316 10.487 0.52 -0.500 0.487 3.164

186.1 4.3858 26.75 159.36 0.1010 0.646 3.849 0.216 2.988 -0.19 -0.665 1.300 4.624

104.9 4.9315 11.92 92.99 0.0872 0.288 2.246 0.164 1.751 -0.54 -0.784 2.111 6.085

50.6 4.8689 1.72 48.88 0.0870 0.042 1.181 0.085 0.486 -1.38 -1.068 6.743 11.698

25.3 4.9862 0.47 24.84 0.1076 0.011 0.600 0.036 0.312 -1.95 -1.444 14.781 27.805

Intercept 1.414 K 0.224 Intercept 1.939

Slope 1.917 n 2.817 Slope 1.705

qm 0.522 R2 0.971 qmax 0.516

K 1.356 K 1.138

R2 0.978 R2 0.9910

Modified Langmuir

(1/C)X 1/q Xlog (C)

FreundlichConc. Final

log (q)C/q

Langmuir

Ta-10%/ACC

Bulk Solution 
(4,6 DMDBT + C16) Sulfur in Solution

Langmuir - Linear Plot
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APPENDIX C2 – CALORIMETRY AND BREAKTHROUGH 
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APPENDIX C3 – SUPPLEMENTARY DATA – XPS ANALYSIS – FULL SURVEY 
 
 
 

FIGURE C4-1 – XPS ANALYSIS FOR ACC – FULL SURVEY 

 
 

FIGURE C4-2 – XPS ANALYSIS FOR Ta-5/ACC – FULL SURVEY 
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APPENDIX C4 –GC/FID ANALYTICAL METHOD AND CALIBRATION 
 
GC Analytic Methods 

1 Liquid Sample Analysis – GC method 

  
The liquid products of adsorption of DBT was analyzed by GC-FID (Varian CP-3800) 

equipped with a VF-05MS capillary column ( mmmm μ0.130.030 ×× ). Ultra high purity 

helium is used as the carrier gas. 

Control method: 

Injector: Middle (1177 split/splitless) 
 

Time, min Split state Split ratio Split event table Initial On 55 
 
Heater: ON; Set point: 250�; Stabilization time: 0.50 min 
 
Column oven zone: 
 Temperature program: 

Rate, �/min Step, � Time, min 
Initial 80 0.00 
10.0 250 8.00 

 Total time 25.00 
 
Column: 
  

Carrier gas He 
Length 15.00 m 
Inside diameter 320 um 
Constant flow Enabled 
Column flow 6.0 ml/l 
Pressure pulse Disabled 

Detectors: 
• Front (FID) 

He makeup flow H2 flow Air flow 
28 ml/min 30 ml/min 300 ml/min 

  
FID event table: 

Time, min Range Auto zero
Initial 12 Yes 

 



Adsorptive Removal of Refractory Sulphur Compounds from Transportation Fuels 
 

 

 
July 2011 254 University of Waterloo Thesis 

Heater: ON; Set point: 300 °C 

1.2 Integration event 
 

Active Time Event On Value
Yes 0.00 Set peak width  0.1 
Yes 0.00 Set threshold  0.1 
Yes 0.00 Turn integration Off  
Yes 2.80 Turn integration On  

     

1.3 Example of DBT chromatograph 
 

Fig.C4-4-1 Example of DBT chromatographs at different reaction times under 25oC 
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Fig.C4-4-2 Change of DBT peak at different reaction times under 25oC 

 
 

Calibration Method 
 

Method type: External Standard 

Response: Area (for FID) 

Standard Unit: mmol/L-conc. 

DBT

DBT
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Fig. 4-4-3 GC calibration curves of starting reactants, DBT 

 
 

DBT 
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GC Calculation Processes 

• Calculation of product component concentrations in liquid product samples: 
 

1. Concentration of starting reagents (DBT) in the feedstock: 

           1
1

,
,

, −
−

⋅
=⋅⋅

molgMW
ppmwR

gmolppmwC
R

inFeed
jinFeed

j  

2. Concentration of S-adsorption products and starting reagents in liquid product 

samples: 

          
i

GC

i Rf
AreappmwC =, , Rf: Response factor 

          1
1

,
,, −

−

⋅
=⋅⋅

molgMW
ppmwCgmolppmwC

i

i
i  

3. Normalized concentration of the component i based on the composition: 

%100
,

,%, 1

1

mol
gmolppmwC

gmolppmwCmolC

i
i

i
i ×

⋅⋅
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=
∑ −

−

  

 
• Conversion of starting reagents: 

 
∑
≠

−=
)(

%,1
jii

ij molCConv  ---applied in the calculation of conversions of 

DBT. 
 

 
 
 



Sample ID Time
(min) Run1 Run2 Average 

(mmol/L)
Sulfur in outflow
(mmol-S.min/L)

Sulfur in Outflow
(mmol-S)

Total Sulfur
(mmol-S)

Sulfur Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 20 1.06 1.17 1.115 0 0.000 0.043 0.043 0.23 4.47 0.29 -0.53 86.47

2 26 5.15 5.06 5.105 38.9 0.004 0.055 0.051 0.28 5.10 0.25 -0.61 93.01 qe 0.6 qe 0.66

3 32 7.84 6.44 7.14 115.4 0.012 0.068 0.057 0.31 5.66 0.22 -0.66 104.12 Kad1 0.0250 Kad2 0.0357

4 38 7.56 7.94 7.75 208.5 0.021 0.081 0.060 0.33 6.16 0.20 -0.70 116.51 R2 0.8486 R2 0.9746

5 44 8.14 7.14 7.64 304.7 0.030 0.094 0.063 0.34 6.63 0.18 -0.74 128.18 h1 0.0155 h2 0.0155

6 50 8.28 8.61 8.445 405.2 0.041 0.106 0.066 0.36 7.07 0.17 -0.78 139.66

7 56 8.6 9.81 9.205 515.5 0.052 0.119 0.068 0.37 7.48 0.16 -0.80 152.41

8 62 9 8.97 8.985 629.2 0.063 0.132 0.069 0.38 7.87 0.15 -0.82 165.32

9 68 8.74 8.62 8.68 739.6 0.074 0.145 0.071 0.38 8.25 0.14 -0.85 176.89

10 74 8.12 9.56 8.84 849.1 0.085 0.157 0.073 0.39 8.60 0.13 -0.88 187.68

11 80 8.49 9.17 8.83 959.5 0.096 0.170 0.074 0.40 8.94 0.12 -0.92 198.19

12 86 9.28 8.3 8.79 1069.7 0.107 0.183 0.076 0.41 9.27 0.11 -0.95 208.13

13 92 7.02 7.06 7.04 1168.6 0.117 0.196 0.079 0.43 9.59 0.10 -1.02 214.55

14 98 6.9 8.04 7.47 1259.3 0.126 0.209 0.083 0.45 9.90 0.08 -1.12 218.31

15 104 9.2 8.77 8.985 1359.0 0.136 0.221 0.085 0.46 10.20 0.06 -1.21 224.09

16 110 7.05 7.37 7.21 1457.1 0.146 0.234 0.088 0.48 10.49 0.04 -1.35 229.08

17 116 8.1 7.71 7.905 1551.6 0.155 0.247 0.092 0.50 10.77 0.03 -1.57 232.83

18 122 8.5 7.91 8.205 1663.8 0.166 0.260 0.093 0.51 11.05 0.02 -1.73 240.80

19 128 8.17 7.57 7.87 1775.7 0.178 0.272 0.095 0.52 11.31 0.01 -2.00 248.46

20 134 9.95 9.34 9.645 1885.2 0.189 0.285 0.097 0.53 11.58 0.00 - 255.21

Kid 0.03773

C 0.08109

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: ACC (run I)
Run Temperature: 25 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment:None in‐Situ Activation

0.1840

Pseudo First Order Kinetics

Psuedo First Order Fitting
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Sample # Time run1 run2 Average 
(mmol/L)

Sulfur in outflow
(mmol-S.min/L)

Sulfur in 
Outflow

(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 20 0.1 0.1 0.1 0 0.000 0.043 0.043 0.16 4.47 0.44 -0.36 125.15

2 26 0.8 0.8 0.8 2.3 0.000 0.055 0.055 0.21 5.10 0.39 -0.41 125.66 qe 0.8 qe 0.83

3 32 11.1 11.2 11.115 32.0 0.003 0.068 0.065 0.24 5.66 0.35 -0.45 131.33 Kad1 0.0160 Kad2 0.0134
4 38 15.1 14.9 14.96 97.2 0.010 0.081 0.071 0.27 6.16 0.33 -0.48 142.26 R2 0.8798 R2 0.9784
5 44 16.4 16.4 16.42 175.7 0.018 0.094 0.076 0.29 6.63 0.31 -0.51 154.06 h1 0.0121 h2 0.0091
6 50 17.2 17.2 17.21 259.8 0.026 0.106 0.080 0.30 7.07 0.30 -0.53 165.58
7 56 18.1 18.1 18.08 348.0 0.035 0.119 0.084 0.32 7.48 0.28 -0.55 176.77
8 62 18.2 18.0 18.08 438.4 0.044 0.132 0.088 0.33 7.87 0.27 -0.57 187.43
9 68 18.4 18.2 18.32 529.4 0.053 0.145 0.092 0.34 8.25 0.25 -0.60 197.36
10 74 18.4 18.3 18.35 621.1 0.062 0.157 0.095 0.36 8.60 0.24 -0.62 206.66
11 80 19.1 18.5 18.775 713.9 0.071 0.170 0.099 0.37 8.94 0.23 -0.64 215.54
12 86 18.9 18.8 18.84 807.9 0.081 0.183 0.102 0.38 9.27 0.21 -0.67 224.08
13 92 18.9 18.8 18.835 902.1 0.090 0.196 0.106 0.40 9.59 0.20 -0.70 232.11
14 98 19.0 18.9 18.985 996.6 0.100 0.209 0.109 0.41 9.90 0.19 -0.72 239.72
15 104 19.1 19.1 19.1 1091.9 0.109 0.221 0.112 0.42 10.20 0.18 -0.75 247.04
16 110 19.1 19.3 19.16 1187.5 0.119 0.234 0.115 0.43 10.49 0.16 -0.78 254.03
17 116 20.0 19.4 19.67 1284.6 0.128 0.247 0.118 0.44 10.77 0.15 -0.81 260.97
18 122 19.9 19.4 19.65 1382.9 0.138 0.260 0.121 0.46 11.05 0.14 -0.85 267.82
19 128 19.4 19.5 19.48 1480.7 0.148 0.272 0.124 0.47 11.31 0.13 -0.88 274.24
20 134 19.6 19.5 19.55 1578.3 0.158 0.285 0.127 0.48 11.58 0.12 -0.92 280.31
21 140 19.5 19.6 19.51 1675.9 0.168 0.298 0.130 0.49 11.83 0.11 -0.96 286.12
22 146 19.7 19.5 19.58 1773.7 0.177 0.311 0.133 0.50 12.08 0.10 -1.01 291.67
23 152 19.5 19.8 19.635 1871.7 0.187 0.323 0.136 0.51 12.33 0.09 -1.06 297.06
24 158 19.7 19.8 19.745 1970.1 0.197 0.336 0.139 0.52 12.57 0.08 -1.12 302.30
25 164 19.8 19.6 19.705 2068.8 0.207 0.349 0.142 0.53 12.81 0.06 -1.19 307.37
26 170 19.8 19.8 19.78 2167.5 0.217 0.362 0.145 0.54 13.04 0.05 -1.27 312.25
28 176 19.8 19.9 19.845 2266.5 0.227 0.374 0.148 0.56 13.27 0.04 -1.37 317.01
29 182 19.7 20.0 19.85 2365.8 0.237 0.387 0.151 0.57 13.49 0.03 -1.49 321.64
30 188 19.9 19.7 19.765 2464.8 0.246 0.400 0.154 0.58 13.71 0.02 -1.67 326.04
31 194 19.9 19.9 19.88 2563.9 0.256 0.413 0.156 0.59 13.93 0.01 -1.97 330.31

32 200 19.9 19.8 19.865 2663.3 0.266 0.426 0.159 0.60 14.14 0.00 334.47

Kid 0.04208
C -0.00439

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: ACC (run II)
Run Temperature: 25 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.2663

Pseudo First Order Kinetics

Psuedo First Order Fitting
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Sample ID
Sample 

Time
(min)

run1 run2 Average 
(mmol/L)

Sulfur in outflow
(mmol-S.min/L)

Sulfur in 
Outflow

(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 10 0.05 0.05 0.05 0 0.000 0.021 0.021 0.11 3.16 1.24 0.09 89.86

2 22.5 0.51 0.51 0.51 3.5 0.000 0.048 0.048 0.25 4.74 1.10 0.04 90.52 qe 1.5 qe 1.79

3 35 1.06 0.94 1 12.9 0.001 0.074 0.073 0.38 5.92 0.97 -0.01 91.45 Kad1 0.0108 Kad2 0.0049

4 47.5 2.01 2.05 2.03 31.9 0.003 0.101 0.098 0.51 6.89 0.84 -0.08 92.78 R2 0.9654 R2 0.9898

5 60 4.33 4.84 4.585 73.2 0.007 0.128 0.120 0.63 7.75 0.72 -0.14 95.32 h1 0.0163 h2 0.0156

6 72.5 7.61 7.03 7.32 147.6 0.015 0.154 0.140 0.73 8.51 0.62 -0.21 99.37

7 85 8.99 8.47 8.73 247.9 0.025 0.181 0.156 0.82 9.22 0.54 -0.27 104.13

8 97.5 12.67 13.35 13.01 383.8 0.038 0.207 0.169 0.88 9.87 0.47 -0.33 110.25

9 110 13.81 13.32 13.565 549.9 0.055 0.234 0.179 0.94 10.49 0.42 -0.38 117.45

10 122.5 15.82 15.37 15.595 732.2 0.073 0.261 0.187 0.98 11.07 0.37 -0.43 124.95

11 135 16.2 16.1 16.15 930.6 0.093 0.287 0.194 1.02 11.62 0.34 -0.47 132.91

12 147.5 17.12 16.45 16.785 1136.4 0.114 0.314 0.200 1.05 12.14 0.30 -0.52 140.86

13 160 17.94 16.18 17.06 1347.9 0.135 0.340 0.206 1.08 12.65 0.28 -0.56 148.75

14 172.5 18.73 17.03 17.88 1566.3 0.157 0.367 0.210 1.10 13.13 0.25 -0.60 156.74

15 185 17.82 18.63 18.225 1792.0 0.179 0.394 0.214 1.12 13.60 0.23 -0.64 164.94

16 197.5 17.85 17.99 17.92 2017.9 0.202 0.420 0.218 1.14 14.05 0.21 -0.68 172.86

17 210 18.5 17.79 18.145 2243.3 0.224 0.447 0.223 1.16 14.49 0.19 -0.73 180.44

18 222.5 17.14 17.82 17.48 2465.9 0.247 0.473 0.227 1.19 14.92 0.17 -0.78 187.53

19 235 18.76 18.8 18.78 2692.6 0.269 0.500 0.231 1.21 15.33 0.14 -0.84 194.69

20 247.5 21.06 18.62 19.84 2933.9 0.293 0.527 0.233 1.22 15.73 0.13 -0.88 202.89

21 260 19.11 19.36 19.235 3178.2 0.318 0.553 0.235 1.23 16.12 0.12 -0.92 211.16

22 272.5 16.9 19.22 18.06 3411.3 0.341 0.580 0.239 1.25 16.51 0.10 -0.98 218.27

23 285 19.44 17.92 18.68 3640.9 0.364 0.606 0.242 1.27 16.88 0.08 -1.07 224.85

24 297.5 19.77 18.51 19.14 3877.3 0.388 0.633 0.245 1.28 17.25 0.07 -1.16 231.88

25 310 20.48 19.88 20.18 4123.0 0.412 0.660 0.247 1.29 17.61 0.06 -1.23 239.65

26 322.5 18.98 18.04 18.51 4364.8 0.436 0.686 0.250 1.31 17.96 0.05 -1.34 246.90

27 335 19.75 19.46 19.605 4603.0 0.460 0.713 0.253 1.32 18.30 0.03 -1.50 253.65

28 347.5 19.93 20.94 20.435 4853.3 0.485 0.739 0.254 1.33 18.64 0.02 -1.64 261.49

29 360 19.05 19.95 19.5 5102.9 0.510 0.766 0.256 1.34 18.97 0.01 -1.84 269.16

30 372.5 18.59 18.66 18.625 5341.2 0.534 0.793 0.259 1.35 19.30 0.00 - 275.52

C

Kid2 0.07246 0.06712

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run I)
Run Temperature: 25 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.1912

Pseudo First Order Kinetics

Pseudo First Order Fitting
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Sample # Time 
(min) Run 1 run2 Average 

(mmol/L)

Sulfur in 
outflow

(mmol-S.min/L)

Sulfur in 
Outflow
(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 20 9.84 9.82 9.83 0 0.000 0.043 0.043 0.38 4.47 1.02 0.01 51.98

2 32.5 11.19 11.29 11.24 131.7 0.013 0.069 0.056 0.51 5.70 0.90 -0.04 64.20 qe 1.1 qe 1.73

3 45 15.52 15.51 15.515 298.9 0.030 0.096 0.066 0.60 6.71 0.81 -0.09 75.57 Kad1 0.0060 Kad2 0.0052

4 57.5 16.62 16.84 16.73 500.4 0.050 0.122 0.072 0.65 7.58 0.76 -0.12 87.95 R2 0.8710 R2 0.9763

5 70 17.46 17.29 17.375 713.6 0.071 0.149 0.078 0.70 8.37 0.71 -0.15 99.78 h1 0.0066 h2 0.0158

6 82.5 17.7 17.68 17.69 932.8 0.093 0.176 0.082 0.74 9.08 0.67 -0.18 110.91

7 95 17.43 17.86 17.645 1153.6 0.115 0.202 0.087 0.78 9.75 0.62 -0.20 121.07

8 107.5 18.08 17.92 18 1376.4 0.138 0.229 0.091 0.82 10.37 0.59 -0.23 130.50

9 120 18.37 18.45 18.41 1603.9 0.160 0.255 0.095 0.86 10.95 0.55 -0.26 139.78

10 132.5 18.23 18.49 18.36 1833.8 0.183 0.282 0.099 0.89 11.51 0.52 -0.29 148.68

11 145 18.43 18.56 18.495 2064.1 0.206 0.309 0.102 0.92 12.04 0.49 -0.31 157.03

12 157.5 18.49 18.62 18.555 2295.7 0.230 0.335 0.106 0.95 12.55 0.45 -0.34 165.01

13 170 18.57 18.51 18.54 2527.5 0.253 0.362 0.109 0.99 13.04 0.42 -0.37 172.52

14 182.5 18.89 18.69 18.79 2760.8 0.276 0.388 0.112 1.01 13.51 0.39 -0.40 179.82

15 195 18.8 18.79 18.795 2995.7 0.300 0.415 0.115 1.04 13.96 0.37 -0.44 186.96

16 207.5 18.74 18.79 18.765 3230.5 0.323 0.442 0.118 1.07 14.40 0.34 -0.47 193.70

17 220 18.87 18.77 18.82 3465.4 0.347 0.468 0.122 1.10 14.83 0.31 -0.51 200.12

18 232.5 18.87 18.79 18.83 3700.7 0.370 0.495 0.125 1.13 15.25 0.28 -0.55 206.29

19 245 18.8 18.83 18.815 3936.0 0.394 0.521 0.128 1.15 15.65 0.25 -0.59 212.16

20 257.5 18.74 18.83 18.785 4171.0 0.417 0.548 0.131 1.18 16.05 0.23 -0.64 217.70

21 270 18.86 18.91 18.885 4406.4 0.441 0.575 0.134 1.21 16.43 0.20 -0.70 223.06

22 282.5 18.85 18.82 18.835 4642.2 0.464 0.601 0.137 1.24 16.81 0.17 -0.77 228.23

23 295 18.72 18.63 18.675 4876.6 0.488 0.628 0.140 1.27 17.18 0.14 -0.84 232.96

24 307.5 19 18.506667 19 5112.1 0.511 0.654 0.143 1.29 17.54 0.12 -0.94 237.66

25 320 18.6 18.366667 19.2 5350.8 0.535 0.681 0.146 1.32 17.89 0.09 -1.04 242.70

26 332.5 18.53 18.226667 19.4 5592.1 0.559 0.708 0.148 1.34 18.23 0.07 -1.16 247.98

27 345 18.46 18.086667 19.6 5835.8 0.584 0.734 0.151 1.36 18.57 0.05 -1.31 253.50

28 357.5 18.39 17.946667 19.8 6082.1 0.608 0.761 0.152 1.38 18.91 0.03 -1.51 259.29

29 370 18.32 17.806667 19.9 6330.2 0.633 0.787 0.154 1.39 19.24 0.01 -1.84 265.25

30 382.5 18.25 17.666667 20.1 6580.2 0.658 0.814 0.156 1.41 19.56 0.00 - 271.40

Kid 0.06559
C 0.13585

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run II)
Run Temperature: 25 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment:in‐Situ Activation

Pseudo First Order Kinetics Pseudo Second Order Kinetics
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Sample ID Time
(min) run1 run2 Average 

(mmol/L)
Sulfur in outflow
(mmol-S.min/L)

Sulfur in 
Outflow
(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption 
Capacity

(mmol-S/g-sorbent)
t0.5 qe - qt log(qe - qt) t/qt

1 20 5.07 4.73 4.9 0 0.000 0.043 0.043 0.28 4.47 1.07 0.03 71.20

2 32.5 7.84 8.91 8.375 63.8 0.006 0.069 0.063 0.41 5.70 0.94 -0.03 78.43 qe 1.3 qe 1.78

3 45 11.12 11.24 11.18 159.4 0.016 0.096 0.080 0.53 6.71 0.83 -0.08 85.42 Kad1 0.0094 Kad2 0.0051

4 57.5 13.94 14.34 14.14 281.6 0.028 0.122 0.094 0.62 7.58 0.73 -0.13 92.48 R2 0.9261 R2 0.9973

5 70 16.37 16.28 16.325 426.8 0.043 0.149 0.106 0.70 8.37 0.65 -0.18 99.80 h1 0.0124 h2 0.0161

6 82.5 17.22 16.97 17.095 592.7 0.059 0.176 0.116 0.77 9.08 0.59 -0.23 107.49

7 95 18.09 16.95 17.52 771.2 0.077 0.202 0.125 0.83 9.75 0.53 -0.28 115.12

8 107.5 18.35 19.31 18.83 959.9 0.096 0.229 0.133 0.88 10.37 0.48 -0.32 122.69

9 120 18.14 19.36 18.75 1153.0 0.115 0.255 0.140 0.92 10.95 0.43 -0.37 129.82

10 132.5 19.91 19.36 19.635 1351.8 0.135 0.282 0.147 0.97 11.51 0.39 -0.41 136.78

11 145 19.47 19.58 19.525 1562.7 0.156 0.309 0.152 1.01 12.04 0.35 -0.46 144.27

12 157.5 19.8 20.18 19.99 1787.5 0.179 0.335 0.156 1.03 12.55 0.32 -0.49 152.58

13 170 19.86 20.23 20.045 2017.5 0.202 0.362 0.160 1.06 13.04 0.30 -0.52 160.99

14 182.5 19.79 20.32 20.055 2245.0 0.225 0.388 0.164 1.08 13.51 0.27 -0.56 168.77

15 195 19.56 20.31 19.935 2471.8 0.247 0.415 0.168 1.11 13.96 0.25 -0.61 176.11

16 207.5 20.38 19.39 19.885 2697.3 0.270 0.442 0.172 1.13 14.40 0.22 -0.65 182.99

17 220 20.58 21.16 20.87 2918.1 0.292 0.468 0.176 1.16 14.83 0.19 -0.72 189.03

18 232.5 19.11 21.03 20.07 3140.2 0.314 0.495 0.181 1.19 15.25 0.16 -0.79 194.93

19 245 19.83 19.94 19.885 3370.4 0.337 0.521 0.184 1.22 15.65 0.14 -0.86 201.42

20 257.5 20.28 19.6 19.94 3602.1 0.360 0.548 0.188 1.24 16.05 0.12 -0.93 207.83

21 270 21.13 20.4 20.765 3830.5 0.383 0.575 0.191 1.26 16.43 0.09 -1.04 213.65

22 282.5 19.17 20.75 19.96 4057.1 0.406 0.601 0.195 1.29 16.81 0.07 -1.18 219.03

23 295 20.77 19.93 20.35 4289.4 0.429 0.628 0.199 1.31 17.18 0.04 -1.36 224.85

24 307.5 20.87 19.85 20.36 4522.6 0.452 0.654 0.202 1.33 17.54 0.02 -1.66 230.57

25 320 20.05 19.5 19.775 4755.5 0.476 0.681 0.205 1.36 17.89 0.00 - 236.08

Kid 0.07539

C 0.04782

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run III) ‐ Regenerated
Run Temperature: 25 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activated

Pseudo First Order Kinetics Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion
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Sample ID
Sample 

Time
(min)

Run1 Run2 Average 
(mmol/L)

Sulfur in outflow
(mmol-S.min/L)

Sulfur in 
Outflow

(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 25 6.81 6.9 6.855 0 0.000 0.053 0.053 0.38 5.00 0.89 -0.05 66.31

2 37.5 12.24 11.39 11.815 116.7 0.012 0.080 0.068 0.48 6.12 0.78 -0.11 77.67 qe 1.5 qe 1.56

3 50 14.09 13.95 14.02 278.2 0.028 0.106 0.079 0.56 7.07 0.71 -0.15 89.79 Kad1 0.0103 Kad2 0.0064

4 62.5 14.61 15.06 14.835 458.5 0.046 0.133 0.087 0.62 7.91 0.64 -0.19 101.20 R2 0.9153 R2 0.9951

5 75 15.88 16.49 16.185 652.4 0.065 0.160 0.094 0.67 8.66 0.59 -0.23 112.16 h1 0.0158 h2 0.0155

6 87.5 15.95 16.03 15.99 853.5 0.085 0.186 0.101 0.71 9.35 0.55 -0.26 122.44

7 100 16.17 16 16.085 1053.9 0.105 0.213 0.107 0.76 10.00 0.50 -0.30 131.39

8 112.5 15.96 16.37 16.165 1255.5 0.126 0.239 0.114 0.81 10.61 0.46 -0.34 139.45

9 125 17.81 18.13 17.97 1468.8 0.147 0.266 0.119 0.84 11.18 0.42 -0.38 148.10

10 137.5 16.98 17.77 17.375 1689.8 0.169 0.293 0.124 0.88 11.73 0.39 -0.41 156.97

11 150 17.41 17.92 17.665 1908.8 0.191 0.319 0.128 0.91 12.25 0.35 -0.45 164.96

12 162.5 18.43 18.45 18.44 2134.4 0.213 0.346 0.132 0.94 12.75 0.32 -0.49 173.27

13 175 18.73 19.01 18.87 2367.6 0.237 0.372 0.136 0.96 13.23 0.30 -0.52 182.08

14 187.5 20 18.71 19.355 2606.5 0.261 0.399 0.138 0.98 13.69 0.28 -0.55 191.27

15 200 18.84 19.45 19.145 2847.1 0.285 0.426 0.141 1.00 14.14 0.26 -0.58 200.35

16 212.5 18.5 17.73 18.115 3080.0 0.308 0.452 0.144 1.02 14.58 0.24 -0.62 207.98

17 225 19.53 17.8 18.665 3309.9 0.331 0.479 0.148 1.05 15.00 0.21 -0.67 214.84

18 237.5 18.62 18.25 18.435 3541.8 0.354 0.505 0.151 1.07 15.41 0.19 -0.72 221.66

19 250 19 18.33 18.665 3773.6 0.377 0.532 0.155 1.10 15.81 0.17 -0.78 228.18

20 262.5 18.37 18.87 18.62 4006.7 0.401 0.559 0.158 1.12 16.20 0.14 -0.84 234.58

21 275 19.83 18.44 19.135 4242.6 0.424 0.585 0.161 1.14 16.58 0.12 -0.91 241.17

22 287.5 19.44 19.08 19.26 4482.6 0.448 0.612 0.163 1.16 16.96 0.10 -0.99 248.12

23 300 19.91 18.93 19.42 4724.3 0.472 0.638 0.166 1.18 17.32 0.09 -1.06 255.13

24 312.5 20.04 19.58 19.81 4969.5 0.497 0.665 0.168 1.19 17.68 0.07 -1.15 262.47

25 325 19.56 20.65 20.105 5219.0 0.522 0.692 0.170 1.20 18.03 0.06 -1.22 270.31

26 337.5 20.59 20.44 20.515 5472.9 0.547 0.718 0.171 1.21 18.37 0.05 -1.29 278.72

27 350 20.57 19.63 20.1 5726.7 0.573 0.745 0.172 1.22 18.71 0.04 -1.37 287.01

28 362.5 20.8 19.12 19.96 5977.1 0.598 0.771 0.174 1.23 19.04 0.03 -1.50 294.58

29 375 20.24 18.97 19.605 6224.4 0.622 0.798 0.176 1.24 19.36 0.02 -1.74 301.50

30 387.5 20.18 20.91 20.545 6475.3 0.648 0.825 0.177 1.25 19.69 0.01 -2.11 308.90

31 400 20.08 20.47 20.275 6730.4 0.673 0.851 0.178 1.26 20.00 0.00 - 316.92

32 412.5 19.06 19.34 19.2 6977.2 0.698 0.878 0.180 1.28 20.31 -0.01 - 323.33

33 425 20.36 20.76 20.56 7225.7 0.723 0.904 0.182 1.29 20.62 -0.03 - 329.92

34 437.5 20.33 20.64 20.485 7482.2 0.748 0.931 0.183 1.29 20.92 -0.03 - 337.87

35 450 19.7 20.14 19.92 7734.7 0.773 0.958 0.184 1.30 21.21 -0.04 - 344.98

36 462.5 19.35 19.21 19.28 7979.7 0.798 0.984 0.186 1.32 21.51 -0.06 - 350.57

Kid 0.05419

C 0.20895

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run I)
Run Temperature: 40 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.1411

Pseudo First Order Kinetics

Pseudo First Order Fitting
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Sample # Time 
(min) Run1 Run2 Average 

(mmol/L)

Sulfur in 
outflow

(mmol-S.min/L)

Sulfur in 
Outflow
(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 25 0.1 0.1 0.1 0 0.000 0.053 0.053 0.39 5.00 0.92 -0.04 63.96

2 37.5 0.8 0.8 0.8 116.7 0.012 0.080 0.068 0.50 6.12 0.81 -0.09 74.92 qe 1.6 qe 1.61

3 50 11.06 11.17 11.115 278.2 0.028 0.106 0.079 0.58 7.07 0.73 -0.14 86.60 Kad1 0.0103 Kad2 0.0062
4 62.5 15.05 14.87 14.96 458.5 0.046 0.133 0.087 0.64 7.91 0.67 -0.18 97.62 R2 0.9153 R2 0.9951
5 75 16.43 16.41 16.42 652.4 0.065 0.160 0.094 0.69 8.66 0.62 -0.21 108.19 h1 0.0164 h2 0.0161
6 87.5 17.23 17.19 17.21 853.5 0.085 0.186 0.101 0.74 9.35 0.57 -0.25 118.10
7 100 18.08 18.08 18.08 1053.9 0.105 0.213 0.107 0.79 10.00 0.52 -0.28 126.73
8 112.5 18.17 17.99 18.08 1255.5 0.126 0.239 0.114 0.84 10.61 0.47 -0.33 134.51
9 125 18.41 18.23 18.32 1468.8 0.147 0.266 0.119 0.88 11.18 0.43 -0.36 142.85

10 137.5 18.41 18.29 18.35 1689.8 0.169 0.293 0.124 0.91 11.73 0.40 -0.40 151.40
11 150 19.05 18.5 18.775 1908.8 0.191 0.319 0.128 0.94 12.25 0.37 -0.44 159.12
12 162.5 18.92 18.76 18.84 2134.4 0.213 0.346 0.132 0.97 12.75 0.34 -0.47 167.13
13 175 18.89 18.78 18.835 2367.6 0.237 0.372 0.136 1.00 13.23 0.31 -0.51 175.63
14 187.5 19.04 18.93 18.985 2606.5 0.261 0.399 0.138 1.02 13.69 0.29 -0.53 184.49
15 200 19.07 19.13 19.1 2847.1 0.285 0.426 0.141 1.03 14.14 0.27 -0.56 193.25
16 212.5 19.07 19.25 19.16 3080.0 0.308 0.452 0.144 1.06 14.58 0.25 -0.60 200.61
17 225 19.96 19.38 19.67 3309.9 0.331 0.479 0.148 1.09 15.00 0.22 -0.65 207.22
18 237.5 19.86 19.44 19.65 3541.8 0.354 0.505 0.151 1.11 15.41 0.20 -0.70 213.80
19 250 19.44 19.52 19.48 3773.6 0.377 0.532 0.155 1.14 15.81 0.17 -0.76 220.09
20 262.5 19.6 19.5 19.55 4006.7 0.401 0.559 0.158 1.16 16.20 0.15 -0.83 226.27
21 275 19.47 19.55 19.51 4242.6 0.424 0.585 0.161 1.18 16.58 0.13 -0.90 232.63
22 287.5 19.67 19.49 19.58 4482.6 0.448 0.612 0.163 1.20 16.96 0.11 -0.97 239.33
23 300 19.49 19.78 19.635 4724.3 0.472 0.638 0.166 1.22 17.32 0.09 -1.05 246.09
24 312.5 19.67 19.82 19.745 4969.5 0.497 0.665 0.168 1.23 17.68 0.07 -1.13 253.17
25 325 19.79 19.62 19.705 5219.0 0.522 0.692 0.170 1.25 18.03 0.06 -1.21 260.73
26 337.5 19.8 19.76 19.78 5472.9 0.547 0.718 0.171 1.26 18.37 0.05 -1.27 268.84
28 350 19.78 19.91 19.845 5726.7 0.573 0.745 0.172 1.26 18.71 0.04 -1.35 276.84
29 362.5 19.74 19.96 19.85 5977.1 0.598 0.771 0.174 1.28 19.04 0.03 -1.48 284.15
30 375 19.87 19.66 19.765 6224.4 0.622 0.798 0.176 1.29 19.36 0.02 -1.72 290.81
31 387.5 19.89 19.87 19.88 6475.3 0.648 0.825 0.177 1.30 19.69 0.01 -2.10 297.95
32 400 19.94 19.79 19.865 6730.4 0.673 0.851 0.178 1.31 20.00 0.00 - 305.69

Kid 0.05917
C 0.18249

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run II)
Run Temperature: 40 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.1361

Pseudo First Order Kinetics

Pseudo First Order Fitting
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Sample ID
Sample 

Time
(min)

run1 run2 Average 
(mmol/L)

Sulfur in 
outflow

(mmol-S.min/L)

Sulfur in 
outflow

(mmol-S.min/L)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption 
Capacity

(mmol-S/g-sorbent)
t0.5 qe - qt log(qe - qt) t/qt

1 25 7.51 7.37 7.44 0 0.000 0.053 0.053 0.27 5.00 0.52 -0.29 93.80
2 37.5 11.8 11.97 11.89 120.8 0.012 0.080 0.068 0.34 6.12 0.45 -0.35 110.54 qe 0.8 qe 0.96
3 50 14.17 14.23 14.20 283.8 0.028 0.106 0.078 0.39 7.07 0.39 -0.40 127.93 Kad1 0.0106 Kad2 0.0125
4 62.5 16.82 16.49 16.66 476.7 0.048 0.133 0.085 0.43 7.91 0.36 -0.45 146.21 R2 0.9157 R2 0.9870
5 75 16.87 17.7 17.29 688.8 0.069 0.160 0.091 0.45 8.66 0.33 -0.48 165.03 h1 0.0086 h2 0.0115
6 87.5 16.76 17.2 16.98 902.9 0.090 0.186 0.096 0.48 9.35 0.30 -0.52 182.13
7 100 17.81 16.82 17.32 1117.3 0.112 0.213 0.101 0.51 10.00 0.28 -0.55 197.52
8 112.5 17.59 17.84 17.72 1336.2 0.134 0.239 0.106 0.53 10.61 0.26 -0.59 212.32
9 125 17.94 18.02 17.98 1559.3 0.156 0.266 0.110 0.55 11.18 0.23 -0.63 226.72
10 137.5 18.12 17.56 17.84 1783.2 0.178 0.293 0.114 0.57 11.73 0.21 -0.67 240.20
11 150 18.42 18.36 18.39 2009.6 0.201 0.319 0.118 0.59 12.25 0.19 -0.71 253.27
12 162.5 18.23 18.64 18.44 2239.8 0.224 0.346 0.122 0.61 12.75 0.17 -0.76 266.31
13 175 18.41 19.62 19.02 2473.8 0.247 0.372 0.125 0.63 13.23 0.16 -0.80 279.47
14 187.5 19.17 18.4 18.79 2710.1 0.271 0.399 0.128 0.64 13.69 0.14 -0.84 292.48
15 200 18.19 19.12 18.66 2944.1 0.294 0.426 0.131 0.66 14.14 0.13 -0.89 304.37
16 212.5 20.27 19.15 19.71 3183.9 0.318 0.452 0.134 0.67 14.58 0.11 -0.94 317.06
17 225 17.66 16.74 17.20 3414.6 0.341 0.479 0.137 0.69 15.00 0.10 -1.01 327.08
18 237.5 17.8 18.5 18.15 3635.5 0.364 0.505 0.142 0.71 15.41 0.07 -1.13 334.28
19 250 18.44 20.06 19.25 3869.3 0.387 0.532 0.145 0.73 15.81 0.06 -1.23 344.06
20 262.5 18.98 18.46 18.72 4106.6 0.411 0.559 0.148 0.74 16.20 0.04 -1.35 354.26
21 275 20.51 18.38 19.45 4345.1 0.435 0.585 0.151 0.75 16.58 0.03 -1.52 364.37
22 287.5 18.57 18.92 18.75 4583.8 0.458 0.612 0.153 0.77 16.96 0.02 -1.78 374.15
23 300 18.8 18.12 18.46 4816.3 0.482 0.638 0.157 0.79 17.32 0.00 - 382.09

Kid 0.03941

C 0.10410

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run I)
Run Temperature: 70 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.1996

Pseudo First Order Kinetics

Pseudo First Order Fitting
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Sample ID
Sample 

Time
(min)

run1 run2 Average 
(mmol/L)

Sulfur in outflow
(mmol-S.min/L)

Sulfur in 
Outflow

(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 25 3.76 4.03 3.90 0 0.000 0.053 0.053 0.19 5.00 0.57 -0.24 133.14
2 37.5 6.18 6.43 6.31 63.8 0.006 0.080 0.073 0.26 6.12 0.50 -0.30 144.71 qe 0.8 qe 1.00
3 50 8.71 9.29 9.00 159.5 0.016 0.106 0.090 0.32 7.07 0.44 -0.35 156.62 Kad1 0.0095 Kad2 0.0091
4 62.5 10.46 10.64 10.55 281.7 0.028 0.133 0.105 0.37 7.91 0.39 -0.41 168.92 R2 0.9215 R2 0.9982
5 75 13.22 12.16 12.69 426.9 0.043 0.160 0.117 0.41 8.66 0.35 -0.46 181.77 h1 0.0072 h2 0.0091
6 87.5 14.31 13.39 13.85 592.8 0.059 0.186 0.127 0.45 9.35 0.31 -0.50 195.33
7 100 14.16 15.26 14.71 771.3 0.077 0.213 0.136 0.48 10.00 0.28 -0.55 208.84
8 112.5 15.57 15.4 15.49 960.1 0.096 0.239 0.143 0.51 10.61 0.26 -0.59 222.29
9 125 14.63 16.18 15.41 1153.2 0.115 0.266 0.151 0.53 11.18 0.23 -0.64 235.05
10 137.5 16.81 15.99 16.40 1352.0 0.135 0.293 0.157 0.56 11.73 0.21 -0.68 247.52
11 150 17.63 17.07 17.35 1562.9 0.156 0.319 0.163 0.57 12.25 0.19 -0.73 260.90
12 162.5 18.03 16.58 17.31 1779.6 0.178 0.346 0.168 0.59 12.75 0.17 -0.77 274.32
13 175 17.75 19.47 18.61 2004.1 0.200 0.372 0.172 0.61 13.23 0.16 -0.81 288.30
14 187.5 18.38 18.01 18.20 2234.1 0.223 0.399 0.176 0.62 13.69 0.14 -0.85 302.57
15 200 18.36 18.05 18.21 2461.7 0.246 0.426 0.179 0.63 14.14 0.13 -0.89 315.83
16 212.5 18.01 18.14 18.08 2688.5 0.269 0.452 0.183 0.65 14.58 0.12 -0.94 328.40
17 225 17.53 18.5 18.02 2914.1 0.291 0.479 0.187 0.66 15.00 0.10 -1.00 340.23
18 237.5 17.83 18.56 18.20 3140.5 0.314 0.505 0.191 0.68 15.41 0.09 -1.06 351.70
19 250 18.19 17.93 18.06 3367.1 0.337 0.532 0.195 0.69 15.81 0.07 -1.14 362.75
20 262.5 18.34 18.14 18.24 3594.0 0.359 0.559 0.199 0.70 16.20 0.06 -1.23 373.41
21 275 18.37 18.81 18.59 3824.2 0.382 0.585 0.203 0.72 16.58 0.05 -1.33 384.28
22 287.5 18.32 18.65 18.49 4055.9 0.406 0.612 0.206 0.73 16.96 0.03 -1.46 395.08
23 300 18.73 17.95 18.34 4286.1 0.429 0.638 0.210 0.74 17.32 0.02 -1.66 405.22
24 312.5 18.77 19.08 18.93 4519.1 0.452 0.665 0.213 0.75 17.68 0.01 -1.99 415.56
25 325 19.72 18.22 18.97 4755.9 0.476 0.692 0.216 0.76 18.03 0.00 - 426.36

Kid 0.04138
C 0.04165

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run II)
Run Temperature: 70 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.2833

Pseudo First Order Kinetics

Pseudo First Order Fitting
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Sample ID
Sample 

Time
(min)

run1 run2 Average 
(mmol/L)

Sulfur in outflow
(mmol-S.min/L)

Sulfur in 
Outflow

(mmol-S)

Total Sulfur
(mmol-S)

Sulfur 
Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 25 0.25 0.35 0.3 0 0.000 0.053 0.053 0.21 5.00 0.57 -0.25 121.63

2 37.5 0.87 0.9 0.885 7.4 0.001 0.080 0.079 0.31 6.12 0.47 -0.33 122.77 qe 0.4 qe 0.86

3 50 1.81 1.98 1.895 24.8 0.002 0.106 0.104 0.40 7.07 0.37 -0.43 124.53 Kad1 0.0098 Kad2 0.0254

4 62.5 3.92 3.93 3.925 61.2 0.006 0.133 0.127 0.49 7.91 0.28 -0.55 127.49 R2 0.9063 R2 0.9922

5 75 8.84 8.77 8.805 140.7 0.014 0.160 0.146 0.56 8.66 0.21 -0.68 133.39 h1 0.0043 h2 0.0189

6 87.5 13.16 14.38 13.77 281.8 0.028 0.186 0.158 0.61 9.35 0.16 -0.79 143.32

7 100 16.84 16.14 16.49 470.9 0.047 0.213 0.166 0.64 10.00 0.13 -0.88 156.20

8 112.5 17.27 18.78 18.025 686.7 0.069 0.239 0.171 0.66 10.61 0.11 -0.95 170.55

9 125 17.1 19.12 18.11 912.5 0.091 0.266 0.175 0.68 11.18 0.10 -1.01 185.14

10 137.5 19.07 18.53 18.8 1143.2 0.114 0.293 0.178 0.69 11.73 0.08 -1.08 199.63

11 150 18.62 20.05 19.335 1381.5 0.138 0.319 0.181 0.70 12.25 0.07 -1.13 214.45

12 162.5 18.92 19.62 19.27 1622.8 0.162 0.346 0.183 0.71 12.75 0.06 -1.19 229.19

13 175 19.27 21.83 20.55 1871.7 0.187 0.372 0.185 0.72 13.23 0.06 -1.24 244.54

14 187.5 19.68 20.13 19.905 2124.5 0.212 0.399 0.187 0.72 13.69 0.05 -1.28 260.17

15 200 22.12 21.92 22.02 2386.6 0.239 0.426 0.187 0.72 14.14 0.05 -1.30 276.92

16 212.5 20.13 20.37 20.25 2650.8 0.265 0.452 0.187 0.72 14.58 0.05 -1.30 293.95

17 225 22.79 20.41 21.6 2912.3 0.291 0.479 0.188 0.72 15.00 0.05 -1.32 310.51

18 237.5 21.61 22.56 22.085 3185.3 0.319 0.505 0.187 0.72 15.41 0.05 -1.29 329.00

19 250 19.5 18.89 19.195 3443.3 0.344 0.532 0.188 0.72 15.81 0.05 -1.32 344.84

20 262.5 20.41 21.29 20.85 3693.6 0.369 0.559 0.189 0.73 16.20 0.04 -1.38 359.08

21 275 19.55 19.43 19.49 3945.8 0.395 0.585 0.191 0.74 16.58 0.04 -1.44 373.44

22 287.5 20.34 22.31 21.325 4200.8 0.420 0.612 0.192 0.74 16.96 0.03 -1.49 388.20

23 300 20.04 19.43 19.735 4457.5 0.446 0.638 0.193 0.74 17.32 0.03 -1.54 403.11

24 312.5 20.67 19.9 20.285 4707.6 0.471 0.665 0.194 0.75 17.68 0.02 -1.65 416.48

25 325 20.82 19.78 20.3 4961.3 0.496 0.692 0.195 0.76 18.03 0.02 -1.75 430.40

26 337.5 22.81 21.73 22.27 5227.3 0.523 0.718 0.195 0.76 18.37 0.02 -1.75 446.98

27 350 20.01 21.75 20.88 5497.0 0.550 0.745 0.195 0.75 18.71 0.02 -1.72 464.41

28 362.5 20.12 22.46 21.29 5760.6 0.576 0.771 0.195 0.75 19.04 0.02 -1.74 480.40

29 375 20.34 19.5 19.92 6018.1 0.602 0.798 0.196 0.76 19.36 0.02 -1.82 494.84

30 387.5 18.98 20.13 19.555 6264.8 0.626 0.825 0.198 0.77 19.69 0.01 -2.12 506.36

31 400 20.58 19.13 19.855 6511.2 0.651 0.851 0.200 0.77 20.00 0.00 517.55

C

Kid1 0.09060 -0.24104

Kid2 0.00967 0.57682

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run I)
Run Temperature: 100 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.2588

Pseudo First Order Kinetics

Pseudo First Order Fitting
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Sample ID
Sample 

Time
(min)

run1 run2 Average 
(mmol/L)

Sulfur in outflow
(mmol-S.min/L)

Sulfur in Outflow
(mmol-S)

Total Sulfur
(mmol-S)

Sulfur Removed
(mmol-S)

Sorbent 
Weight

(g)

Adsorption Capacity
(mmol-S/g-sorbent) t0.5 qe - qt log(qe - qt) t/qt

1 25 0.58 0.65 0.615 0 0.000 0.053 0.053 0.19 5.00 0.60 -0.22 134.60

2 37.5 1.46 1.63 1.545 13.5 0.001 0.080 0.078 0.27 6.12 0.51 -0.29 136.91 qe 0.8 qe 0.95

3 50 4.26 3.6 3.93 47.7 0.005 0.106 0.102 0.35 7.07 0.43 -0.36 140.92 Kad1 0.0105 Kad2 0.0136

4 62.5 7.25 6.9 7.075 116.5 0.012 0.133 0.121 0.42 7.91 0.37 -0.44 147.52 R2 0.9103 R2 0.9973

5 75 9.92 9.87 9.895 222.6 0.022 0.160 0.137 0.48 8.66 0.31 -0.51 156.41 h1 0.0080 h2 0.0121

6 87.5 12.92 12.42 12.67 363.6 0.036 0.186 0.150 0.52 9.35 0.27 -0.58 167.26

7 100 15.32 14.49 14.905 535.9 0.054 0.213 0.159 0.56 10.00 0.23 -0.63 179.91

8 112.5 15.82 15.17 15.495 725.9 0.073 0.239 0.167 0.58 10.61 0.21 -0.69 193.18

9 125 15.43 16.72 16.075 923.3 0.092 0.266 0.174 0.61 11.18 0.18 -0.74 206.16

10 137.5 16.42 16.44 16.43 1126.4 0.113 0.293 0.180 0.63 11.73 0.16 -0.79 218.86

11 150 17.74 21.32 19.53 1351.2 0.135 0.319 0.184 0.64 12.25 0.15 -0.84 233.40

12 162.5 20.23 17.65 18.94 1591.6 0.159 0.346 0.187 0.65 12.75 0.14 -0.86 249.39

13 175 17.71 19.29 18.5 1825.6 0.183 0.372 0.190 0.66 13.23 0.13 -0.90 264.05

14 187.5 18.34 18.2 18.27 2055.4 0.206 0.399 0.193 0.68 13.69 0.11 -0.95 277.62

15 200 18.36 17.9 18.13 2282.9 0.228 0.426 0.197 0.69 14.14 0.10 -1.00 290.35

16 212.5 21.01 19.9 20.455 2524.1 0.252 0.452 0.200 0.70 14.58 0.09 -1.04 304.67

17 225 19.18 19.54 19.36 2772.9 0.277 0.479 0.201 0.70 15.00 0.09 -1.07 319.85

18 237.5 18.99 17.9 18.445 3009.2 0.301 0.505 0.204 0.71 15.41 0.08 -1.12 332.71

19 250 19.49 18.39 18.94 3242.8 0.324 0.532 0.208 0.73 15.81 0.06 -1.20 344.77

20 262.5 20.31 18.76 19.535 3483.3 0.348 0.559 0.210 0.73 16.20 0.05 -1.26 357.62

21 275 21.76 21.51 21.635 3740.6 0.374 0.585 0.211 0.74 16.58 0.05 -1.29 373.11

22 287.5 20.43 19.84 20.135 4001.7 0.400 0.612 0.212 0.74 16.96 0.05 -1.30 389.16

23 300 21.27 19.66 20.465 4255.4 0.426 0.638 0.213 0.74 17.32 0.05 -1.34 403.75

24 312.5 20.28 20.58 20.43 4511.0 0.451 0.665 0.214 0.75 17.68 0.04 -1.37 418.53

25 325 19.98 19.87 19.925 4763.3 0.476 0.692 0.215 0.75 18.03 0.04 -1.43 432.49

26 337.5 19.93 19.67 19.8 5011.5 0.501 0.718 0.217 0.76 18.37 0.03 -1.51 445.46

27 350 19.84 19.82 19.83 5259.2 0.526 0.745 0.219 0.76 18.71 0.02 -1.60 458.09

28 362.5 18.35 21.84 20.095 5508.8 0.551 0.771 0.220 0.77 19.04 0.02 -1.72 470.91

29 375 18.4 18.58 18.49 5749.9 0.575 0.798 0.223 0.78 19.36 0.01 -1.98 481.73

30 387.5 19.97 20.92 20.445 5993.3 0.599 0.825 0.225 0.79 19.69 0.00 -2.60 492.78

31 400 21.83 20.08 20.955 6252.0 0.625 0.851 0.226 0.79 20.00 0.00 - 507.05

32 412.5 19.28 20.03 19.655 6505.8 0.651 0.878 0.227 0.79 20.31 0.00 - 520.10

33 425 19.2 21.2 20.2 6754.9 0.675 0.904 0.229 0.80 20.62 -0.01 - 531.90

34 437.5 18.43 19.17 18.8 6998.7 0.700 0.931 0.231 0.81 20.92 -0.02 - 542.28

35 450 17.74 18.53 18.135 7229.5 0.723 0.958 0.235 0.82 21.21 -0.03 - 549.42

C

Kid1 0.07565 -0.18535

Kid2 0.01968 0.40053

Pseudo Second Order Kinetics

Weber-Morris Intra-Particle Diffusion

Flow Reactor Experiment
Sorbent: Ta‐5/ACC (run II)
Run Temperature: 100 °C
Flow rate:  0.1 mL/min 
Solution: DBT+C16 Flow 
Comment: in‐Situ Activation

0.2864

Pseudo First Order Kinetics

Pseudo First Order Fitting
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