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Abstract 

Lightning-caused forest fires are one of the major natural disturbances in Ontario managed boreal 

forests. Survival of these forests with fires for centuries shows that such disturbances are integral to 

the boreal ecosystem and its ecological functioning. Characterizing the fire regimes defined by fire 

ignition frequency, fire sizes and their spatial distribution patterns etc. thus can help to improve our 

understanding of the boreal forest dynamics and provide guidance for management practices 

attempting to maintain biodiversity and achieve sustainability. 

In this thesis the lightning-caused fire ignitions data for four ecoregions in Ontario managed boreal 

forests (3E, 3W, 3S and 4S) for 1960–2009 were analyzed using pattern analysis and density 

estimation to determine the spatial nature of fire ignitions. These fire ignition spatial patterns were 

further used (as weighted ignition scenario) to simulate forest fire regimes in the study area. Fire 

regimes were also simulated using spatially unweighted ignitions (unweighted ignition scenario). 

Non-spatial (total number of fires, total burn area, number of fires by size classes, annual burn 

fraction) and spatial (spatial burn probability) indicators of the simulated fire regimes under both 

ignition scenarios were compared to test the null hypothesis that modeled forest fire regime is not 

affected by the spatial patterns of input fire ignitions. All data analysis were performed for individual 

ecoregions. Spatial pattern of ignitions were analyzed using the nearest neighbour index and Ripley‘s 

K-function. Ignition densities were estimated using the adaptive kernel density estimation method and 

the fire regimes were simulated using BFOLDS (Boreal Forests Landscape Dynamics Simulator).  

Results showed that lightning-caused fire ignitions are clustered in all ecoregions. Fire ignition 

density also varied spatially within ecoregions. Overall fire ignition density was highest in the 

northwestern ecoregion (4S) and lowest in the eastern ecoregion (3E), which corresponds to the 

combined gradient of effective humidity and temperature in Ontario. For each ecoregion, comparison 

of non-spatial simulated fire regime indicators showed statistically non-significant differences 

between unweighted and weighted ignitions. The spatial burn probability however captured clear 

spatial differences between unweighted and weighted ignitions. Spatial differences in spatial burn 

probability between both ignition scenarios were more prominent in ecoregions of high fire 

occurrence. Results of the weighted ignition scenario closely followed the spatial patterns of the 

estimated fire ignition density in the study area. Based on these results this thesis rejects the null 
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hypothesis and emphasizes that ignition patterns must be considered in simulating fire regime in 

Ontario boreal forests. 
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Chapter 1 

Introduction 

This introduction provides the necessary background information about the need to understand boreal 

forest fire regimes and how lightning-caused ignitions spatial point patterns could be used to improve 

how they are modeled. Section 1.1 reviews the natural disturbance emulation concept in forest 

management with particular emphasis on managed boreal forests in Ontario, Canada. In Section 1.2 

the role of fires in Ontario boreal forests is discussed. Section 1.3 presents a brief discussion about 

fire regime characterization methods and their limitations. Further discussion explains the scope of 

simulation modeling in characterizing forest fire regimes. In Section 1.4 fire ignition and spread in 

fire models is discussed. In Section 1.5 the need to investigate the fire ignition spatial patterns and 

their subsequent use in fire regimes simulations is reviewed. In Section 1.6 the research aim, 

hypothesis and objectives are stated. Finally structure of the thesis is described in Section 1.7  

1.1 The Need to Emulate Natural Disturbance in Forest Management 

Boreal forests (Figure 1.1) have played a pivotal role in Canada‘s economic, social and environmental 

landscape for several centuries (Drushka, 2003; Johnston et al., 2006). Since the 1940s these forests 

have been increasingly managed for sustained yield and to meet the increasing demand for timber. 

This management strategy, which focused on harvesting commercially valuable species and effective 

wildfire suppression (Gauthier et al., 2009) has significantly changed these forests (Kimmins, 2004). 

Compared to naturally burnt forests, managed boreal forests now have less diversity in age-class 

distribution (Franklin, 1993; Long, 2003), and they are more prone to catastrophic fires due to 

accumulated forest fire fuel as a result of logging slash and fire protection (Covington, 2000; Dίaz-

Avalos et al., 2001; Flannigan et al., 2009). The more-or-less exclusive focus on pulp and lumber 

production also overlooked other ecological processes including biodiversity conservation that are 

necessary for ecosystem resilience and sustained forest productivity (Chapin et al., 1997; Schwartz et 

al., 2000; Seymour & Hunter, 1999). To address these concerns, the concepts of ecosystem 

sustainability based forest management (Leopold et al., 1963) gained in popularity during the 1980s 

(Hunter, 1990; Long, 2009). Among these strategies is the Emulating Natural Disturbances approach 

(hereafter called END), which focuses on natural disturbances as inherent ecological processes 



 

 2 

responsible for shaping and sustaining natural forest landscape (Attiwill, 1994; White & Pickett, 

1985). 

 

Figure 1.1 The geographic extend of boreal forests and other forest types in Canada (Source: 

The Atlas of Canada http://atlas.nrcan.gc.ca/). 

According to Seymour & Hunter (1999) preserving natural forest landscapes and their attributes is 

the best way to maintain biodiversity and ecological processes. END has therefore gained 

considerable popularity and is a prominent goal for Canadian boreal forests to reproduce the main 

attributes of natural landscape (Bergeron et al., 2007; Krawchuk & Cumming, 2009). 

According to Perera & Buse (2004, p.4) END is an approach in which forest managers develop 

and apply specific management strategies and practices, at appropriate spatial and temporal scales, 

with the goal of producing forest ecosystems as structurally and functionally similar as possible to 

the ecosystems that would result from natural disturbances, and that incorporate the spatial, 

temporal, and random variability intrinsic to natural systems. 

http://atlas.nrcan.gc.ca/
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The 17.1% of Canadian boreal forests that is in Ontario extends between the northern limits of the 

Great Lake St. Lawrence forests to the Hudson Bay lowlands. Out of the total 50 million ha of boreal 

forests in Ontario, 49% are actively managed (OMNR, 2010a). Figure 1.2 shows the distribution of 

these managed boreal forests in the province. In Ontario END became a legislated management 

strategy with enactment of the Ontario Crown Forest Sustainability Act 1994 (Statutes of Ontario, 

1995, c.25, s.2(3)), which states:  

Crown forests should be managed to provide for long term health and vigor by using forest practices 

that, within the limits of Silvicultural requirements, emulate natural disturbances and landscape 

patterns while minimizing adverse effects on plant life, water, soil, air and social and economic 

values, including recreational values and heritage values.  

 

Figure 1.2 Geographic extent of managed and unmanaged boreal forests in Ontario as 

demarcated by Ontario Ministry of Natural Resources. 
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The rationale of this management concept is that biodiversity will be preserved and sustainability 

will be maintained if the human induced disturbances (mainly harvesting) are within the range of 

variability of natural disturbances (Andison et al., 2009; Bergeron et al., 2004a; Crow & Perera, 2004; 

Drever et al., 2006) as historically forest ecosystems have been resilient to these disturbances 

(Holling, 1981). In practice END does not aim to emulate all the effects and processes of natural 

disturbances, instead it satisfies the needs for harvesting while attempting to maintain ecosystem 

functions and structure (Kimmins, 2004). It uses knowledge of disturbance regimes to guide forest 

managers to adequately represent age class diversity across landscape (Gauthier et al., 2009; 

Valliancourt et al., 2009). Good understanding of the disturbance regimes and associated forest 

dynamics is therefore very important for the success of END (Bergeron et al., 2007; Jetté et al., 2009; 

Klenk et al., 2008; Perera & Buse, 2004). 

1.2 Fire as Natural Disturbance in Ontario Boreal Forests  

Fires are a dominant natural disturbance in Ontario boreal forests. According to OMNR (2010b), an 

area of 14823 ha burned due to 939 fires during 2010, and on average 76021 ha forests burned with 

average number of 1087 fires during the last ten years. These fires play an integral role in the 

ecological functions by removing the vegetation layer and shape the landscape by affecting post fire 

vegetation composition (Perera et al., 1998; Suffling, 1995; Suffling et al., 1988; Veraverbeke et al., 

2010). Characterization of the fire regimes defined by frequency, size, probability/density, severity 

and spatial pattern distribution etc. (Amatulli et al., 2007; Pennington, 2007; Weber & Flannigan, 

1997) is a common focus of research aimed to understand ecological effects of forest fire for 

implementing END in Ontario (Suffling & Perera, 2004). Figure 1.3 represents the conceptual model 

of Bergeron et al. (2007). There, a fire regime in a forest ecosystem is characterized by a wide range 

of variability in fire size, fire frequency and fire severity (Figure 1.3a) that maintains biodiversity. 

The management regime, on the other hand, has a considerably narrow range of variability in harvest 

size, harvest interval and harvest severity and can also be outside the natural range of variability of 

fire regime (Figure 1.3b). They conclude that in a fire prone ecosystem only a forest management 

(managed disturbance) that is fully within the reference frame of forest fire regime (Figure 1.3c) will 

sustain ecological processes and biodiversity. Similar concepts are supported by others in the 

literature (Duncan et al., 2009; Krawchuk & Cumming, 2009; Pennington, 2007; Perera & Buse, 

2004). 
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Figure 1.3 Conceptual model of natural and managed disturbances (a) variability in natural 

disturbance (b) forest management that incorporates little of the diversity of the natural 

disturbance, and (c) forest management reproducing natural disturbance (Source: Bergeron et 

al., 2007). 

1.3 Fire Regime Characterization 

A variety of methods, including tree rings analysis, sedimentary charcoal analysis, fire scars, 

historical narratives and photographs, land survey and management records, have been used to 

reconstruct the spatio-temporal reference conditions from naturally burnt forests (Carcaillet et al., 

2007; Gauthier et al., 2009; Long, 2009; Perera et al., 2004b; Suffling & Perera, 2004). These 

methods however, provide insufficient information for reference conditions (Cui et al., 2009; Li, 

2004; Perera & Buse, 2004) due to their incapacity to fully capture the range of fire disturbance 

variability (Bergeron et al., 2007; Scoular et al., 2010). Simulation modeling – the techniques to 

quantitatively express forest landscape dynamics by abstracting forest fire and forest cover changes 

related scientific knowledge (Perera et al., 2008) – is therefore, considered a feasible alternative (Cary 

et al., 2006; Crow & Perera, 2004; Gardner et al., 1999; Keane et al., 2004; Suffling & Perera, 2004). 
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Although modeling fire regimes is a complex problem due to the complex nature of fire 

phenomena (Couce & Knorr, 2010), various models can be used to simulate fire regimes. Mechanistic 

models like Prometheus (Tymstra et al., 2009) use mathematical equations to link the physical 

environment to the resulting phenomena. These normally deal with an individual fire event over the 

life of that fire and, in some scenarios, reasonably predict the local fire spread. The stochastic models 

like FIRE-BGC (Keane et al., 1996) are used to simulate multiple fire events over long time periods 

and are more suitable for landscape scale studies (He & Mladenoff, 1999).  

Korzukhin et al. (1996) considered models as tools to facilitate the evolution of knowledge about a 

phenomenon, and classified models into two broad groups: empirical models and process 

(mechanistic) models. They stated that empirical models primarily describe the statistical relationship 

among observed variables. On the other hand, process models aim to understand relationships and 

describe data using key mechanisms or processes that determine an object‘s internal structure, rules 

and behaviour. They further argue that in process models more insight into ecological parameters can 

be gained whereas, in empirical models statistical relationships are the main determinants of the 

output. They concluded that process models impart knowledge about the forest system functioning 

and are suited for landscape level studies.  

Regardless of the model classification, a variety of models are available to simulate forest fire 

regimes. Examples include BFOLDS (Perera et al., 2004a), Biome-BGC (Thornton et al., 2002), 

DRYADES (Mailly et al., 2000), FIRE-BGC (Keane et al., 1996), INTELAND (Gauthier et al., 

1994), LANDIS (Mladenoff et al., 1996), MFFM (D‘Andrea et al., 2009), SEM-LAND (Li, 2000) 

and Tardis (Cumming & Armstrong, 2001).  

Keane et al. (2004) termed spatial models that simulate the dynamic interaction of fire, vegetation, 

and often climate, as landscape fire succession models (LFSMs). LFSMs have four essential 

components: vegetation succession, fire ignition, fire spread, and fire effects. Their output is 

commonly time-dependent, geo-referenced digital maps or GIS layers. They also compared 44 

models on the basis of their approaches, design and scale of application. Among these, BFOLDS 

appears to be the only model being used for climate, vegetation and fire dynamics related research 

applications in Ontario. 
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1.4 Fire in Simulation Modeling 

The occurrence of natural forest fires depends on a combination of an ignition source (lightning), 

climatic conditions (temperature, moisture and wind), fuel (distribution, condition and load) and 

topography (Ku-Muhammad & Yun, 2009; Price & Rind, 1994; Vázquez & Moreno, 1993). 

Likewise, the models simulate fires as a function of forest fire weather (temperature, relative 

humidity, precipitation and wind), forest fuel (derived from forest types) and topography, using the 

most sophisticated fire spread algorithms available (Millers et al., 2008). Most of the Canadian forest 

fire models use output from the Canadian Forest Fire Behaviour Prediction (FBP) System (Forestry 

Canada Fire Danger Group, 1992; Wotton, 2009) which uses forest fire weather, forest fuel type and 

topography as inputs to calculate fire behaviour variables. An overview of the structure of the 

Canadian FBP system is presented in Figure 1.4. This system is based on physical models calibrated 

with empirical observations of fuel moisture, fuel consumption and fire behaviour. For fire weather, it 

relies on another system: the Canadian Forest Fire Weather Index (FWI) system. FWI (Figure 1.5) 

integrates weather information (air temperature, relative humidity, wind speed and precipitation) and 

provides numerical ratings of fuel moisture in important fuel layers and fire weather indices without 

regard to differences in forest type (Wotton, 2009).  
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Figure 1.4 An overview of the Canadian Forest Fire Behaviour Prediction (FBP) System 

(Source: Perera et al., 2008). 

 

Figure 1.5 The structure of Canadian Forest Fire Weather Index (FWI) System (Source: 

Wotton, 2009). 
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Another important aspect to consider is the fire ignition process. Naturally occurring forest fires in 

Ontario are caused by lightning. However, not every lightning strike ignites a fire because of 

variability in moisture, bulk density, depth of the fuel (Kourtz & Todd, 1992), long continuing current 

(Latham & Williams, 2001), lightning polarity, multiplicity of lightning strikes (Fuquay et al., 1979) 

and many other factors interacting at multiple spatio-temporal scales (Keane et al., 2004). Due to 

limited lightning related data and knowledge (Perera et al., 2008) and poor understanding of the 

relationship/s between lightning strikes and realized ignitions (Genton et al., 2006; Larjavaara et al., 

2005; Podur et al., 2003) lightning data are not commonly used in simulation modeling. Instead, 

many models follow a stochastic strategy that simulates ignition randomly or from probability 

distributions of fire starts using vegetation characteristics, climatic indicators, and/or topographical 

settings as independent variables (Keane et al., 2004). 

1.5 Fire Ignition Patterns 

Lightning-caused fire ignitions locations do not follow a uniform distribution (Dickson et al., 2006; 

Vázquez & Moreno, 2001). They typically occur in clusters (Amatulli et al., 2007; Genton et al., 

2006; Telesca et al., 2005), which may result into large interconnected burned patches (Vázquez & 

Moreno, 2001). Therefore, the spatial distribution of fire ignitions across the landscape has a 

significant role in the subsequent fire regime, and if ignition distribution patterns are not modeled 

properly, results could be erroneous (Doran, 2004). Despite its importance, some modeling efforts 

e.g; using LANDIS (Chang et al., 2007; Chang et al., 2008) or BFOLDS (Munoz-Marquez, 2005; 

Rempel et al., 2007) do not appear to properly addressed the spatial patterns of ignition points in their 

research.  

In many other studies either random distributions and/or density based methods are used to emulate 

the spatial pattern of natural fires and to seed fire ignitions in their study areas. D‘Andreas et al. 

(2009) ignited forest fires randomly to assess the future land cover scenarios in his study areas 

(Region of Liguria, Italy and Alachua County, Florida, USA) by using MFFM (Modified Forest Fire 

Model). Doran (2004) assessed forest fire risk in Ontario‘s Algonquin Provincial Park using the 

Prometheus model and applied two different approaches to capture natural range of fire ignition 

variability. In his first approach (lightning dependent ignition) he used annual maximum natural fire 

counts (i.e; 34 for the year 1997) to calculate the number of ignitions per month based on the 

percentage of lightning strikes during that month, which were then randomly distributed for 

simulation. In his second approach (random ignition) he randomly distributed 1000 ignition points, of 
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which 775 were in fuels (forest) and were used in subsequent fire simulations. Similarly, Perera et al. 

(2009) and Perera & Cui (2010) applied two different scenarios i.e; (i) random and (ii) ignition 

density based on 42 years fire data, of fire ignition patterns in BFOLDS to account for the uncertainty 

in spatial patterns knowledge. Cui et al. (2009) also used a weighted fire ignition pattern based on the 

42 years ignition density data to characterize fire regimes for ecoregion 3W in Ontario. Beverly et al. 

(2009) used ignition point densities of fires in Prometheus to assess the pattern for modeling fire 

susceptibility in West-central Alberta. These examples illustrate that most of the studies generate 

ignitions spatially random. Some also attempted to capture ignition spatial patterns in their modeling 

efforts by counting number of ignitions in a unit area.  

On the other hand, studies investigating the spatial distribution (of fire occurrence) commonly use 

more advanced quantitative methods, such as those from point pattern analysis. Podur et al. (2003) 

used the K-function to identify the clustering nature of lightning fires in Ontario forests. They further 

estimated the spatial intensity of ignitions using kernel density estimation. Amatulli et al. (2007) 

applied an adaptive kernel density estimation approach to estimate the fire ignition density in their 

study area. They applied an analytical calibration procedure to estimate reliable fire density surfaces. 

Their results also demonstrated that fires are clustered. Genton et al. (2006) in their field-based 

analysis of wildfire ignitions in the St. Johns River Water Management District, Florida used 

distance-based point pattern tools (the K-Function & the L-Function) to describe departures from 

complete spatial randomness (CSR). Their results show that fire events tend to occur in clusters at all 

spatial scales examined (~ 2 km or more). Later, Hering et al. (2009) noted that, in field situations, 

fire intensities vary spatially and the constant intensity assumption can misinterpret trends as clusters. 

Their re-analysis of the same data using an inhomogeneous K-function resulted in less clustering as 

previously observed by Genton et al. Hering et al. (2009) therefore suggested that trends in fire events 

should be included in the model for fire ignition. In a recent study for the province of Alberta, Canada 

Wang & Anderson (2010) also used the K-function and the L-function to identify spatial clustering of 

fires. They also applied kernel density methods to estimate fire intensity surfaces. These 

aforementioned studies confirm that spatial randomness is not a valid option for simulating fire 

ignitions. The variation in observed ignition spatial distribution (mostly the clustering) is due to 

varying suitability of physical landscape, climatic conditions and fuel (O‘Sullivan & Unwin, 2010). I 

therefore, propose in this study to conduct a detailed analysis of lightning-caused ignition in a 

northern Ontario study area and to further use these results in subsequent BFOLDS simulations to 

characterize fire regimes. 
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1.6 Research Aim 

The purpose of this thesis is to quantify the spatial patterns of forest fire regimes in Ontario managed 

boreal forests, with emphasis on lightning-caused fire ignitions, using advanced spatial statistical 

tools. As BFOLDS is used to characterize fire regimes and to evaluate policy guidelines for END in 

Ontario, this thesis focuses on BFOLDS and addresses the following questions: 

(1)  What are the spatial patterns of lightning-caused fire ignitions in Ontario managed boreal 

forests?  

(2)  How can these patterns be used in BFOLDS and what are their effects (if any) on BFOLDS 

results/outcomes?  

The thesis tests the null hypothesis that modeled forest fire regime is not affected by the spatial 

patterns of input fire ignitions.  

The objectives of this thesis are: 

(1)  To understand the spatial patterns of lightning-caused fire ignitions in Ontario managed boreal 

forests at ecologically homogeneous scale. 

(2)  To estimate reliable lightning-caused fire ignition density surfaces that can further be used in 

research, planning and management activities, especially the BFOLDS landscape simulation 

model. 

(3)  To model forest fire regimes of the study area using these spatial patterns of fire ignitions. 

(4)  To assess the outcomes of BFOLDS in simulating forest fire regimes on the basis of fire 

ignition patterns. 

1.7 Thesis Structure 

The rest of the thesis is organized as follow 

Chapter 2 introduces the study area and briefly describes the methods used in fire ignition pattern 

analysis and fire density estimation. This chapter also provides the details of fire regime simulations 

and the description of the employed model (BFOLDS). 

Chapter 3 contains the first manuscript ―Spatial patterns of lightning-caused forest fire ignitions in 

boreal Ontario, 1960–2009‖. This manuscript will be submitted to International Journal of Wildland 

Fire for publication. Though I am the sole author of this thesis, my academic supervisor Professor Dr. 



 

 12 

Roger Suffling and thesis committee members Dr. Ajith Perera and Dr. Douglas Woolford has 

valuable contribution in research problem identification, study design, data analysis and results 

interpretation. They will be the co-authors of this publication. 

Chapter 4 contains the second manuscript ―Sensitivity of simulated fire regime parameters to 

spatial patterns of fire ignition assumptions: a case study from Ontario managed boreal forests‖. This 

is also a complete manuscript that will be submitted to Forest Ecology and Management journal for 

publication. The intended co-authors of this manuscript will be the same as that of first manuscript 

due to their valuable contribution in study design, interpretation of results and critical reviews of the 

manuscript. 

Chapter 5 summarizes the findings of this thesis as detailed in the manuscripts, and suggests future 

work. 
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Chapter 2 

Methodology 

The methodology of the research is discussed in detail in the relevant sections of manuscript chapters 

(Chapter 3 and Chapter 4). Here I cover some information that is not included in these manuscripts 

chapters. In Section 2.1 a brief overview of the study area is provided. Section 2.2 discusses the 

pattern analysis of wildfire ignitions in the study area. Section 2.3 provides details about the fire 

density estimation method used in this research. Section 2.4 provides some details about BFOLDS, its 

main assumptions, and how fire ignition scenarios are incorporated into the fire regime simulations. 

In Section 2.5 list of data used in this research is provided with their sources. 

2.1 Study Area 

In Ontario, stand replacing fires are the most dominant natural disturbances in boreal forests (Perera 

at al., 1998) whose frequency changes across a longitudinal gradient (Beverly & Martell, 2005; 

Suffling, 1995). To capture this variation, the selected study area covers the full extent from East to 

West of the province between 47°15‘ - 53°2.5‘N and 79°30‘ - 95°10‘W, with an elevation range from 

44 to 613 meters above sea level (Figure 2.1). Some study areas were excluded during fire regimes 

simulations due to non-availability of some relevant data as discussed in Section 4.2. 

The area is underlain by Archean rocks (gnesis, granite, granodiorite, metasedimentary and 

metavolcanic) and Proterozoic rocks (southern province) of the Canadian Shield (Baldwin et al., 

2000). The study area consists of four ecoregions: 3E, 3W, 3S and 4S (Hills, 1959). Forests in these 

ecoregions are predominantly Crown (i.e., government) owned and are managed extensively for 

timber harvest. Implementation of changing provincial forest harvest policies over time has resulted 

in various landscape patterns (Perera et al., 2009). The characteristic forest species under various 

climate and soil conditions for these ecoregions are shown in Table 2.1. The sequence of the species 

are adapted from Hills, 1969. The scientific and common names of these species are shown in Table 

2.2 

. 
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Figure 2.1 The Ontario study area. The letters (4S etc) represent the ecoregions.
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Table 2.1 Characteristic forest species in the study area (Source: Hills, 1969). 

Eco- 

Climate 
Soils 

Ecoregions 

3E 3W 3S 4S 

H
o

tter 

Drier JP-SB JP-PW-PR-SB-

SW-Poplar 
JP-BW JP-PW-BW-BO 

Fresh  JP-SW-PR-PW 
Poplar-BW-PW-

PR 
SB-SW-Poplar SW-Poplar-PW 

Wetter Poplar-CE-AE Poplar-BF SB-BF 
Poplar-BS-CE-

AE 

N
o
rm

a
l 

Drier JP-BW-Poplar 
BW-Poplar-JP-

PW-PR 
JP-SB 

JP-PW-PR-SW-

BW-Poplar 

Fresh  BF-SW-Poplar-

BW 

SW-BF-JP-PW-

PR 
Poplar-RS-SW SW-BF-Poplar 

Wetter SB-BF SB-LA Poplar-SB-SW SB-BF 

C
o
ld

er 

Drier SB-JP-LA SB-JP-LA SB-JP SB-JP 

Fresh  SB-LA SB-SW-LA SB-JP SB-JP 

Wetter Mosses-Lichens Mosses-Lichens SB-LA SB-LA 
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Table 2.2 Nomenclature of the forest species shown (in abbreviation) in Table 2.1. 

Abbreviation Common Name Scientific name 

AE American Elm Ulmus americana 

LA American Larch Larix laricina 

BS Black Ash Fraxinus nigra 

BF Balsam Fir Abies balsamea 

BO Bur Oak Quercus macrocarpa 

SB Black Spruce Picea mariana 

PJ Jack Pine Pinus banksiana 

PR Red Pine Pinus resinosa 

BW White Birch Betula papyrifera 

CE White Cedar Thuja occidentalis 

PW White Pine Pinus strobus 

SW White Spruce Picea glauca 
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2.2 Point Pattern Analysis 

A stochastic process that generates random points in space (e.g; forest fire ignitions) is termed a 

spatial point process. The study of realizations of a spatial point process as a spatial point pattern 

(e.g., Genton et al., 2006) may help to characterize that phenomenon and provide some insight 

(Turner, 2009). Two statistics were used to study the patterns of lightning-caused forest fire in the 

study area: the nearest neighbor index (NNI) and Ripley‘s K-function (the K-function). These 

methods are discussed in detail in Section 3.4.2 but a brief outline is provided here. 

The NNI provides insights about spatial point patterns by comparing the distance between the 

nearest point locations (of the phenomenon) and the mean distance between the point locations (Clark 

& Evans, 1954). In this research, NNI was calculated up to neighbours of order 50 using the 

following equation (Levine, 2010). 

 

    

*∑ ,
   (   )

 - 
   + *(    )

 
√  ⁄ +

 (  ) 
 

(2.1) 

where   is the total number of fires in the study area of size  ,     (   ) is the distance between a 

fire location   and its nearest fire location  ,   is the order (number) of the nearest fire location and   is 

the factorial function.  

The K-function uses distance bins to test the nature of observed spatial point patterns (Ripley, 

1977). In particular, it is used to look for departures from CSR. In its simple form the K-function for a 

distance bin   is defined as 

  ( )   (                                                          )   (2.2) 

where   is the mathematical expectation and λ is the intensity of the point process. The exact form of 

the equation for the K-function used in this research appears in Section 3.4.2. Results of the K-

function were further transformed to its linear representation the L-function (Equation 2.3) for ease of 

interpretation (Besag, 1977; Cressie, 1993). The L-function is given by 

 

 ( )  √
 ( )

 
   (2.3) 
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Following O‘Sullivan & Unwin (2010) an acceptance envelope, calculated using a Monte Carlo 

procedure of 100 simulations under the assumption of CSR, was generated to assess whether there 

was a statistically significant deviation from CSR.  

2.3 Fire Density Estimation 

Density estimation commonly refers to non-parametric modeling of a probability density  ( ) given 

a finite number of data points. Here,   can be scalar or multivariate. 

In this research the fire densities in the study area were estimated using a non-parametric density 

estimation method, kernel density estimation. In this non-parametric approach no prior assumptions 

are made about the density shape. Instead the data itself determine the estimate (Silverman, 1986). A 

simple kernel density estimate, donated here by  ̂( ), can be calculated using 

 
 ̂( )  

 

  
∑ (

|    |

 
)

 

   

 (2.4) 

for data          .  ( ), the kernel function, is a symmetric zero-mean probability density function 

with scale parameter h, the ―bandwidth‖. The choice of h is critical, as it controls the smoothness of 

the estimated density. To account for the clustering nature of ignitions the adaptive kernel density 

estimation approach was used. It allows   to vary with the concentration of observation points 

(Silverman, 1986; Worton, 1989). The estimated fire densities were evaluated using a calibration 

procedure based on the minimization of a goodness of fit criteria ( ̂) (Breiman et al., 1977).The 

adaptive kernel density estimation parameters and  ̂ calculations, used in this study, are further 

discussed in detail in Section 3.4.3. 

2.4 Fire Regime Simulations 

To test the null hypothesis that spatial heterogeneity in the patterns of fire ignitions do not affect the 

modeled forest fire regimes, simulations were run using Ontario Ministry of Natural Resources 

(OMNR) model BFOLDS. Further details of this model appear in Section 2.4.1. Simulations were run 

for each ecoregion under two ignition scenarios: ―unweighted‖ (scenario A) and ―weighted‖ (scenario 

B). Under the unweighted scenario the seeding of fire ignitions in the model was spatially random. 

Under the weighted scenario, the estimated fire densities (Section 3.5) were used to spatially weight 

the ignition seeding in the model. Each simulation was run for 200 years, and 30 simulations were run 
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for each ecoregion under each ignition scenario. Prior to these simulations the model was initialized 

with a run of 100 years. 

Table 2.3 shows different spatial and non-spatial fire regime indicators that were compared for both 

ignition scenarios. 

Table 2.3 List of fire regime indicators studied under unweighted and weighted ignition 

scenarios. 

Aspect Indicator 

Non-spatial 

Total number of fires 

Number of fires in different size classes 

Total burnt area 

Annual burnt fraction  

Spatial Burn probability  

  

2.4.1 BFOLDS 

BFOLDS is a raster-based, spatially explicit hybrid model that quantitatively abstracts the boreal 

landscape dynamics (fires and forest cover changes) to understand their variability and probability of 

occurrence (Perera et al., 2008). A conceptual overview is shown in Figure 2.2. BFOLDS has two 

modules: (i) a process based fire event simulation module and (ii) an empirically based forest 

succession simulation module. 
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Figure 2.2 A conceptual overview of major components of BFOLDS (Source: Perera et al., 

2008). 

The BFOLDS fire event module uses the principles of the FBP System (Forestry Canada Fire 

Danger Group, 1992) and simulates multiple fire events on a given landscape at 1-ha resolution and 

daily intervals. It derives the mean number of potential fire ignitions from the daily ignition data of 

fire weather input. It also assumes that potential ignitions follow a Poisson distribution if the mean 

number of potential fire ignitions for a weather day is less than 30, otherwise it uses a normal 

distribution (Perera et al., 2008).  

Fuel moisture is an important factor for a successful ignition. In BFOLDS the fuel moisture is 

indicated by the Duff Moisture Code (DMC), a Canadian forest fire weather index component that 

rates the moisture contents in the upper layers of the forest floor that gain moisture directly from the 

rainfall and where litter is beginning to decay (Wotton, 2009). In BFOLDS the seeded ignitions 

succeed only if the DMC at the ignition location is below a threshold value (Perera et al., 2008). 

Table 2.4 shows the DMC threshold values for the ecoregions used in this study. A systematic flow 

chart of fire events in fire module of BFOLDS is presented in Figure 2.3.  

Table 2.4 Duff Moisture Code (DMC) threshold values (with 10% variation) used in the study. 

Ecoregions DMC Value DMC Range 

3E 20 20 ± 2 (18 – 22) 

3W 20 20 ± 2 (18 – 22) 

3S 40 40 ± 4 (36 – 44) 

4S 40 40 ± 4 (36 – 44) 
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Figure 2.3 Flow chart of schedule fire event in BFOLDS. 
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The seeding of fire ignitions in BFOLDS can be spatially unweighted or weighted, though fires in 

nature by and large are spatially clustered. Difficulty in characterizing reliable fire ignition patterns 

has led many fire regime modeling studies to seed ignitions spatially random. There does not appear 

to be any study, particularly for BFOLDS, which demonstrates the effect of input ignition patterns on 

the model performance in simulating fire regime. Perera et al. (2008) reported that the simulated fire 

regime characteristics of BFOLDS constitute an entirely emergent property that is the combined 

effect of model logic, input data and various user assumptions. In this study all these were kept 

constant and the model performance in simulating fire regimes was evaluated under two ignition 

scenarios. 
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2.5 Data 

A number of data were used in this research, the details of which are given below in Table 2.5. 

Table 2.5 List of data used in this research and their sources. 

Type Data Data Source Remarks 

F
o

rest 

Cover type 

Cover age 

Fuel Type 

1:20,000 forest resources 

inventory (FRI) of Ontario 

Derived from FRI using forest 

unit classification rules and 

fuel classification rules 

modified by Elkie et al., 2007 

S
o
il 

Soil moisture 

Soil nutrient 

1:250000 Ontario Land 

Inventory 

Site classification rules 

modified by Elkie et al., 2007 

W
ea

th
er 

Fine fuel moisture code 

Duff moisture code 

Drought code 

Initial spread index 

Build-up index 

Fire ignitions 

Daily weather data 

(temperature, relative 

humidity, wind and rainfall) 

of weather stations in the 

study area for 1963-2009 

from OMNR fire weather 

archive  

Point data interpolated 

following Flannigan & 

Wotton, 1989 

G
eo

-T
o
p

o
g
ra

p
h

ic 

Elevation 

Slope 

Aspect 

Canadian Digital Elevation 

Data from https://geobase.ca  

 

Latitude 

Longitude 

 Gridded data at 1 ha resolution 

 

GIS layers of Ontario and 

its ecoregions  

ESRI ® Obtained from University of 

Waterloo Map Library 

GIS layers of water 

bodies in the study area 

DMTI Obtained from University of 

Waterloo Map Library 

GIS layers of Geological 

features 

Ontario Geological Survey Obtained from University of 

Waterloo Map Library 

F
ir

e 

Lightning-caused fire 

ignitions 

OMNR forest fire archive 

data for 1960-2009 
 

https://geobase.ca/
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Chapter 3 

Spatial patterns of lightning-caused forest fire ignitions in boreal 

Ontario, 1960–2009 

Summary 

Lightning-caused fires in Ontario managed boreal forests may exhibit various spatial patterns 

depending on the study locations and scale. In this study forest fire ignition data for four ecoregions 

(3E, 3W, 3S and 4S) for 1960-2009 were analyzed using point pattern and density estimation 

methods. Ecoregions were employed as study regions, because they are commonly used for forest 

land-use plans and policies in Ontario. Nearest neighbour index and Ripley‘s K-function analyses 

showed that fire ignitions are spatially clustered in all four ecoregions. Kernel density estimation with 

an adaptive bandwidth was used to estimate the corresponding spatially inhomogeneous lightning-

caused ignition densities. Bandwidths were chosen quantitatively through a calibration process that 

minimizes a goodness of fit criterion. Results show that fire ignition density is the highest in the 

northwestern ecoregion (4S) and the lowest in the eastern ecoregion (3E). Within each ecoregion fire 

ignition density also varies spatially and exhibits distinctive areas of varying fire densities. Overall 

the estimated fire ignition density follows the temperature-humidity gradient of this province. The 

ecoregion with the highest estimated fire ignition density (4S) falls in areas of the lowest humidity 

and the highest temperature. The ecoregion with a lower overall fire ignition density (3E) experiences 

most humidity and coolest temperature. Fire ignition density estimated in this study can provide 

useful information for forest management activities particularly in characterizing forest fire regimes 

in its spatial context. 

3.1 Introduction 

Fire is one of the most important disturbances that shape vegetation dynamics in forested 

landscapes. Canadian boreal forests are characterized by frequent fires (Suffling, 1995; Suffling et al., 

1988). The majority of the fires are human-caused and are concentrated mainly near human activity 

centers: residential, recreational, industrial; and also the transportation networks (Wang & Anderson, 

2010; Woolford & Braun, 2007; Wotton et al., 2003). These are easily detectable, receive a quick 

fire-suppression to protect life and property, and hence, usually result in a smaller burnt area. On the 

other hand, lightning-caused forest fires have a wider geographic occurrence. These can result in 
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larger burnt areas as detection is often slower, and fire fighting units may give them less priority or 

have limited resources to fight fire in remote areas. In Canada overall, though lightning-caused fires 

are less in number than human-caused fires they result in about 85% of the total annual burnt area 

(Wang & Anderson, 2010; Weber & Stocks, 1998). 

Lightning-caused fire ignition and propagation processes involve complex interactions between 

different contributing biotic and abiotic factors (Telesca et al., 2005). Likewise, lightning-caused fire 

ignition patterns, the fundamental characteristic, are also difficult to describe precisely because of 

wide range of spatio-temporal variations in their occurrence. Understanding of these fire patterns is 

important to many activities such as predicting fire occurrence, planning fire management, 

understanding the role of fire in landscape processes, improving plant succession predictive 

modeling, and implementing management based on the natural disturbance emulation concept (Perera 

et al., 1998; Telesca et al., 2007; Tuia et al., 2007). Due to inherent spatio-temporal variations in the 

fire ignitions, analysis of ignition data over decades is required to understand fire patterns in a 

particular study area. 

It is generally agreed that lightning-caused fire ignitions cluster spatially (Cochrane et al., 1999). 

This clustering is attributed to a complex array of factors that are in nature spatially non-random too. 

The source of ignition is cloud to ground lightning strikes with long continuing current that occur 

during the thunderstorms (Latham & Williams, 2001). Hence the spatial patterns of thunderstorms are 

the basic determinant of natural fire patterns (Wang & Anderson, 2010). However, the majority of 

lightning strikes fail to ignite fires in the absence of fuels on the forest floor (Podur et al., 2003). 

Vegetation composition as it affects the availability of fuel also plays important role in fire 

ignitions. Krawchuk et al. (2006) found more ignitions in patches of coniferous species when 

compared with deciduous species. Wang & Anderson (2010) concluded that topography (higher 

elevations) and the forest composition (presence of coniferous species) were the main determinants of 

ignition patterns in their study area. Podur et al. (2003) also found topography as a likely factor 

affecting ignition patterns in Ontario boreal forests. There are also studies that do not find any 

relationship of fire ignitions with topography (e.g., McRae, 1992). Some studies, particularly in 

Canada, also used fuel moisture descriptions of the Canadian Forest Fire Weather Index (FWI) 

system (Van Wagner, 1987) to understand what may affect the risk of lightning-caused fire ignitions. 

In the FWI system daily weather observations are used to calculate numerical ratings representing the 

moisture contents of different fuel types (Wotton, 2009). Nash & Johnson (1996) correlated lightning-
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caused fires in Canadian boreal forests with the Fine Fuel Moisture Code
1
 (FFMC) of the FWI 

system. Flannigan & Wotton (1991) concluded that the Duff Moisture Code
2
 (DMC) of the FWI 

system is the main predictor of lightning-caused fire ignitions. Wotton & Martell (2005) identified the 

Sheltered Duff Moisture Code
3
 (SDMC) as the most significant indicator of fire ignitions in Ontario 

forests. These are but a few of the many studies that have used different bio-physical factors to 

explain the underlying causes of lightning-caused fire ignitions patterns. Previous fires may also 

influence the ignition patterns by reducing the fuel loads in local areas (Krawchuk et al., 2006).  

In recent years, many studies also applied state of the art spatial statistical tools to gain better 

insight into the spatial patterns of fire ignitions. Larjavaara et al. (2005) reported a gradient of 

decreasing density of fires from South to North in Finland based on fire data from 1985–1992 and 

1996–2001. Turner (2009) explored the patterns of fires in New Brunswick, Canada from 1987 to 

2003 using the K-function and kernel density estimation. He focused only on the usability of these 

statistical techniques and did not draw any final conclusion about fire patterns. Wang & Anderson 

(2010) studied spatio-temporal patterns of all fire ignitions in Alberta, Canada, excluding major 

national parks and southern prairie areas. They performed their analysis on a yearly basis (1980–

2007) using the K-function and kernel density estimation. Their results illustrated the wide variability 

in the spatial distribution of fire ignitions from year to year, and also showed that in the North, 

lightning-caused fires are more likely to occur than human-caused fires. In an earlier study, Podur et 

al. (2003) used lightning-caused fire data for the period 1976–98 to conclude that fires in Ontario are 

spatially clustered. As in other studies, they also applied the K-function to test their null hypothesis of 

complete spatial randomness (CSR), and used kernel density estimation method to generated fire 

density surfaces. They also performed some detailed analyses of fire data for an area of high fire 

occurrence (and detection) in the North of the province. Their results showed strong evidence of 

clustering in the lightning-caused ignitions at a distance of approximately 200 km; and two distinct 

hotspots in the province, one in the northwest and the other in the southeast. Woolford & Braun 

(2007) utilized a mode-seeking algorithm, a technique to reduce bias in kernel density estimation, to 

demonstrate that lightning fires in Ontario occur in spatio-temporal clusters. 

                                                      
1
 Index that represents the moisture in the small readily consumable fuels on the surface of the forest floor. 

2
 Index that represents the moisture contents of the upper layers of forest floor where litter begins to decay. 

3
 Index that represents the amount of moisture in the upper part of organic layer in very sheltered locations 

near the boles of over-storey trees. 
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Many of the above mentioned studies used the K-function as the main statistical method for 

exploring fire ignition patterns. Besides the K-function, there are other reliable methods for pattern 

analysis that are not common in fire studies. One such exploratory method, which is widely used for 

pattern analysis in ecological studies, is the nearest neighbour index (NNI). Some studies using this 

method are mentioned in Section 3.4.2. Use of multiple exploratory methods can help to get better 

insight of the complex nature of point patterns. The identified patterns also depend heavily on the 

scale of investigations, a facet of the problem to which many studies do not give proper consideration. 

For density estimation, a priori selection of the kernel function K and its associated smoothing 

parameter (bandwidth or window size) h are required to obtain a reliable density surface (see Section 

3.4.3). The kernel function ensures that the kernel density estimation results in a probability density 

function; and the average of the corresponding distribution is equal to that of the sample used. The 

bandwidth, h is a free parameter that is used to adjust the bias in density estimation. Small values of h 

result in a more variable (i.e., less smooth) density estimate, whereas, large values of h will reduce the 

random variation but may over-smooth the resulting fit (Silverman, 1986). Hence, it is critical that 

care be taken when determining the bandwidth. In the studies mentioned above and many others not 

cited here, the kernel function and smoothing parameter are selected subjectively. Such selection, in 

the absence of an expert knowledge, may lead to erroneous results. Amatulli et al. (2007) discussed 

these issues in detail, and proposed an analytical calibration procedure for kernel density to yield 

reliable density surfaces. 

This study addresses the above issues. The study area was selected to ensure that results are 

meaningful for future applications. Two exploratory methods were used to assess the behaviour of 

lightning-caused fire ignitions at the ecoregion level and to test the hypothesis that the distribution of 

fire ignitions in Ontario managed boreal forests is spatially homogeneous. In addition, the spatial fire 

ignition density was estimated using a quantitative approach, namely adaptive kernel density 

estimation. This reduces the risk of under/over–density estimation by allowing the bandwidth to vary 

spatially. Further details are discussed in subsequent sections. 

The broader objectives of the study are (i) to understand the spatial patterns of lightning-caused fire 

ignitions in Ontario managed boreal forests at ecologically homogeneous landscape scale, and (ii) to 

generate reliable fire ignition density surfaces that can further be used in research, planning and 

management activities. 
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3.2 Study Area 

The study area in Ontario consists of ecoregions 3E, 3W, 3S and 4S (Figure 3.1). Stretching from 

East to West across the entire province, this area encompasses the majority of the Ontario (boreal) 

shield ecozone where fire detection efficiency is relatively high due to active forest fire management. 

The area is also representative of full range of humidity (Hills, 1959) and forest fire frequency 

(Beverly & Martell, 2005; Suffling, 1995) in the province. 

 

Figure 3.1 Location of the study area in relation to Ontario ecoregions. 

The majority of this area is Crown (i.e., government) owned and its vegetation is mainly boreal 

forest. There is also some Great Lakes St. Lawrence forest in the southwest part (4S) of the area. The 

dominant species in the northeast (3E) are black spruce (Picea mariana), trembling aspen (Populus 

tremuloides), jack pine (Pinus banksiana), white birch (Betula papyrifera), balsam fir (Abies 

balsamea) and white spruce (Picea glauca) (Latremouille et al., 2008). In the central region (3W), 

black spruce is the dominant species in the older forests. Other species are jack pine, white birch, 
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poplar and balsam fir. Similarly, in the upper northwest (3S) black spruce is the dominant species. 

Natural regeneration is mostly of black spruce and jack pine (Racey et al., 2000).The majority of the 

forests in the lower northwest (4S) are younger stands of jack pine, black spruce and poplar with a 

high recruitment of black spruce and jack pine (Racey et al., 2000). Details on the composition of the 

forested area in each ecoregion are provided in Table 3.1. 

Table 3.1 Land-use distribution in the study area (in thousand hectares) Source: (Forest 

Management, 2006; Hills, 1959). 

Ecoregions Water Wetland Field/ 
Agri 

Other Treed 
Bog/Fen 

 Forest Total 

3E 
(Medium Humid) 

922.4 251.2 40.9 84.9 899.9 11478.7 13678.0 

3W 
(Driest Humid) 

1515.9 70.1 0.0 62.7 301.1 6940.5 8890.4 

3S 
(Sub Humid) 

980.9 123.5 0.0 164.6 484.4 4870.5 6624.0 

4S 
(Sub Humid) 

1440.4 27.2 14.7 130.0 123.4 4220.8 5956.5 

 

3.3 Data 

The fire data for the period 1960–2009 were obtained from the Ontario Ministry of Natural Resources 

(OMNR) fire database. This database is an archive of all fires detected and reported to the provincial 

aviation and forest fire management center by fire managers through Fire Information Reports (Form 

208). Each fire report includes fire location, forest type(s), weather, fire cause, detection date, attack 

date, suppression date, area burned, etc. The number of fires in each region is detailed in Table 3.2. 

Forest cover type data (FRI, 2007) of the study area were also obtained from the OMNR. 

University of Waterloo Map Library services were used to obtain geographic data of ecoregions 

from ESRI (ESRI, 2001), water bodies (lakes, rivers etc.) from DMTI (DMTI, 2010) and geological 

data from Ontario Geologic Survey (OGS, 1988). Canadian Digital Elevation Data (CDED) was 

obtained from GeoBase ® (GeoBase, 2007). 
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Table 3.2 Fire ignition statistics in the study area during 1960-2009. 

Ecoregions Number of 
Fire ignitions 

Fire ignitions reported as in water 

% of total 
ignitions 

Maximum 
distance from 

nearest land (m) 

Ignitions > 1000m 
distance from 
nearest land 

3E 2948 4.1  766.6 0 

3W 5107 8.5 3462.2 8 

3S 2329 10.9 720.3 0 

4S 7213 15.4 1741.6 2 

3.4 Methods 

3.4.1 Data Preparation 

Spatial pattern analysis and density estimation can be sensitive to the size and shape of the study area. 

Analysis output may change with changes in boundary (Clark & Evans, 1954). It is therefore 

important to carefully select a representative study area. In this study, all data analyses were based on 

individual ecoregions (3E, 3W, 3S and 4S) because these are the representative land units for forest 

land-use plans and policies in Ontario (Perera et al., 2009). The fire ignition density in the overall 

study area will provide a broader picture for the managed boreal forests of the province.  

Fire ignition locations in the study area for the study period (1960-2009) were extracted from the 

OMNR fire database and exported as a point shapefile using ArcGIS 9.3 ®. Fire ignitions and all 

other data were projected to OMNR‘s standard map projection Lambert Conformal Conic projection. 

Fires ignitions were then separated in individual shapefiles for each ecoregion. Inspection of data 

revealed that some ignitions were erroneously shown to occur in water (Table 3.2). A similar data 

error was discussed in detail by Podur et al. (2003) and Turner (2009). The most likely sources of 

such errors are data entry error and the relatively coarse scale used to record fire locations. Turner 

(2009) reported that rounding to the nearest minute can result in up to 1 km datum displacement but 

this may not have much effect on pattern detection (Freeman & Ford, 2002). In our case, the majority 

of in-water fire ignitions were well within this 1 km range except a few in 3W and 4S (Table 3.2). In 
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the absence of any other record to precisely correct such locational errors, these fires origins were 

arbitrarily relocated
4
 25 m inland from the nearest shoreline. 

Data also showed that some fire ignitions occurred at the same location. Two such examples from 

ecoregion 3W are shown in Figure 3.2(a) alongwith their year of occurrence. In one case three fires 

during 1965, 1966 and 1970 occurred at the same place. The other highlighted sample location shows 

where two fires occurred during 1979 and 1980 at the same place. To account for each fire ignition 

separately in data analyses, all such fires were also relocated with a grid of 100 m x 100 m (~ 141 m). 

Results for sample locations are shown in Figure 3.2(b). As the purpose of this study was to 

investigate the long term overall average spatial distribution of fire ignitions, year to year temporal 

variation in the number of fires was not considered.

                                                      
4
 No data were available about the actual shape of burnt area and the relative location of the ignition point in 

the burnt area. It was thus assumed that such fires would have started close to the shoreline. 
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Figure 3.2 Sample locations (red ovals) from 3W where multiple fires occurred during different 

years (a) the original locations (b) location after adjustments. 

(a) 

(b) 
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3.4.2 Exploratory Data Analysis 

Among a wide variety of exploratory data analyses methods, indices (the descriptive adjuncts to 

statistical tests) are commonly used for spatially non-random phenomena such as forest fires to test 

the degree of departure from CSR (Ghent & Zucker, 1990). In this study, two second-order distance 

statistics (NNI and the K-function) were used to study the fire ignition patterns within the overall 

distribution of fire ignitions in the study area.  

NNI is extensively and effectively used to investigate spatial patterns (Bleacher et al., 2009; Getis, 

1964; Herbers & Foitzik, 2002; Kenkel, 1988; Kolbei & Janzen, 2002; Lee et al., 1997; Rogerson & 

Sun, 2001; Young & Merriam, 1994; Zenner, 2000). It is a ratio (Equation 3.1) that compares the 

observed distance between the nearest points and the mean distance between points that follow CSR 

(Clark & Evans, 1954) 

     
 (  )

 (   )
 (3.1) 

where  (  ) is the nearest neighbour distance and  (   )is the mean distance that are calculated 

using equations 3.2 and 3.3 respectively. 

 

 (  )  ∑*
   (   )

 
+

 

   

 (3.2) 

 
 (   )     √  ⁄   (3.3) 

where    (   ) is the distance between a point   and its nearest neighbour, denoted point  , and   is 

the number of points in the study area  . 

Under CSR, the expected value of the index is 1. A value less than 1 shows clustering, and greater 

than 1 shows inhibition (dispersion). Normally, this index is calculated using the distance to the very 

first neighbour. In this study, to capture spatial pattern at multiple scale, NNI was calculated using 

Crimestat® software (Levine, 2010) for the first 50 nearest neighbours using: 

 
 (    )  

 (  ) 

(    ) √[  ⁄ ]

 
(3.4) 

where   is the order of nearest neighbour and   is the factorial function. 
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The K-function is also widely used in pattern analysis studies, particularly for fire, (Freeman & 

Ford, 2002; Genton et al., 2006; Hering et al., 2009; Kenkel, 1988; Podur et al., 2003; Sterner et al., 

1986; Turner, 2009; Wang & Anderson, 2010). Unlike the NNI it uses distance bins up to the limit of 

study area to test the nature (clustering, CSR, or inhibition) of spatial point patterns (Ripley, 1977). 

Mathematically, it is defined as 

 

 ( )  
 

  
∑∑ (   )

 

   

 

 

 (3.5) 

where A is the study area, N is the number of points and   (   ) is the number of other points   found 

within a circle of radius   from a point  . Generally, radii are increased in small increments. 50–100 

intervals are commonly used to plot the K-function.  

A revised equation with a weighting factor to adjust the boundary effects of the study area 

(Venables & Ripley, 1997) is given by: 
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where    
   is the inverse of the proportion of the circumference of a circle of radius   placed over 

each point that is within the study area. A value of 1 was used for    
   where circle was within the 

study area.  

Besag (1977) proposed the L-function,  ( ) as a linear representation of  ( ) that also stabilizes 

the variance and has zero value under CSR (Cressie, 1993; Freeman & Ford, 2002). It is shown in 

Equation 3.7. 

 

 ( )  √
 ( )

 
   (3.7) 

Spatstat package in R (Baddeley & Turner, 2005) was used to calculate the K-function and the L-

function. For each ecoregion, 100 simulations under the assumption of CSR were run to obtain Monte 

Carlo based envelops to test the departure from random expectations. For 3E and 3S analysis were 

run using ignition data for 1960-2009. For 3W and 4S the analysis was based on the last 20 years of 

data, namely 1990-2009 inclusive. This was necessary due to computational constraints caused by the 

large number of fires in the historical records for these two ecoregions. 
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3.4.3 Fire Density Surfaces 

A variety of interpolation techniques exists that generalize finite point data values to an entire area of 

interest. Among these, kernel density estimation is widely used due to well understood statistical 

properties. This non-parametric technique usually employs a symmetric probability density function 

(Katkovnik & Shmulevich, 2002; Silverman, 1986; Worton, 1989) to estimate the density as 

 
 ̂( )  

 

  
∑ (

|    |

 
)

 

   

 (3.8) 

where  ̂( ) is kernel estimator,  ( ) is the kernel function,   is the smoothing parameter (bandwidth 

or window size),   is the number of observations and   is a coordinates vector representing the 

location of the function being estimated.  

The choice of the kernel function and of the smoothing parameter is important. The performance of 

different kernel functions has been discussed in the literature. For example, Amatulli et al. (2007); 

Breiman et al. (1977) and Levine (2010) preferred the Gaussian (normal) kernel function. Others 

(Podur et al., 2003; Wang & Anderson., 2010) suggested using a quartic kernel function. Levine 

(2010) argues that subjectively kernel function can be selected based on the decision of relative 

weight of near points to the far points. Silverman (1986) compared the performance of five kernel 

functions and did not find any significant differences in their performance. He however favoured the 

normal function as it yields a smooth curve with derivatives of all orders. Following the suggestion of 

Amatulli (2011) to achieve an expected normal distribution of the data in the neighbourhood of each 

point, a normal kernel function was used in this study. 

Selection of the bandwidth,  , is also an important consideration when employing kernel density 

estimation, and there are ―rules of thumb‖ for choosing a fixed   (e.g; Sheather & Jones, 1991; Wand 

& Jones, 1995). However, to account for the irregular spatial distribution of fire ignitions, an adaptive 

approach (Silverman, 1986) was used to allow   to vary with the concentration of observation points. 

It is narrow in areas of high concentration and vice versa (Worton, 1989). To calculate an optimal 

value for  , the kth nearest neighbour estimate approach was followed. In this method   is based on 

the distance between a point and its kth nearest point that will minimize the mean square error 

between the true and estimated densities (Katkovnik & Shmulevich, 2002; Levine, 2010). Practically, 

this is not possible due to unknown true (real) density. To deal with this problem, a number of 

approaches have been suggested and discussed (Amatulli et al., 2007; Silverman, 1986). In this study, 
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the calibration and validation procedure (minimization of goodness of fit criteria ( ̂)) proposed by 

Breiman et al. (1977) was followed. It is calculated by using following equation: 

 
 ̂  ∑( ̂( )  

 

 
)
  

 

 (3.9) 

where   is the number of neighbours and   is the number of data points, whereas,  ̂( ) is calculated 

using Equation 3.10 (Amatulli et al., 2007) 

  ̂( )   
   ̂(    ) ( )    (3.10) 

where  ̂(    ) is the estimated kernel density at sample point   using  th nearest neighbour and  ( )    

is the area of circle having radius ( ) equal to the distance between  th nearest neighbour and each 

sample point  . 

This procedure is computationally demanding. For efficiency it was performed in two stages. First, 

the density surfaces were generated with 3, 6, 9 and 12 nearest neighbours (referred as k-3, k-6, k-9 

and k-12 respectively), and  ̂ was calculated for each of these density surfaces. This helped to identify 

the possible value of k with minimum  ̂. In the second stage, the density surfaces were generated 

using the number of nearest neighbours surrounding the k that yielded minimum  ̂ in first stage. The k 

values that yielded the minimum  ̂ in the second stage were finally selected to generate fire density 

surfaces for their respective ecoregions. All density surfaces were generated at a 250 m pixel 

resolution. The results are discussed in the following section. 

3.5 Results and Discussions 

As mentioned in  Section 3.4.1, selection of the study area is very important and results can vary with 

changes in boundary. Figure 3.3(a) shows the NNI up to 50
th
 neighbouring fire ignitions in ecoregion 

3S, 4S and their combined area (3S4S). Lower values on the NNI scale represent more clustering and 

vice versa. The graph clearly shows that, at every scale of neighbour (up to 50
th
), fire ignitions in 4S 

are less clustered compared to fire ignitions in 3S. When both ecoregions were combined (3S4S) and 

fire ignitions were analyzed collectively for NNI, clustering was stronger at all scales. Boundary 

effects were also explored by adding a 50 km buffer
5
 to 3S, 4S and 3S4S (namely 3S_b50, 4S_b50 

                                                      
5
 Buffers on the western sides of 3S and 4S could not be included due to non-availability of fire data in the 

adjoining province of Manitoba 
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and 3S4S_b50 respectively) and then calculating NNI. These results are shown in Figure 3.3(b). In 

this case the clustering signals were different. Clustering was highest in 4S_b50, lowest in 3S_b50, 

and moderate in  4S3S_b50. 

 

 

Figure 3.3 Effect of study area boundary on fire ignition clustering patterns reflected by NNI 

for 3S, 4S and combined 3S4S (a) without buffer (b) with a buffer of 50 km. 

Figure 3.4 shows the NNI for all ecoregions. Results of this analysis clearly demonstrate that fire 

ignitions are clustered in all ecoregions with the highest degree of clustering in 3S and the least in 3E. 
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Results also illustrate that the concentration of points gradually decreases as the number of 

neighbours increase. 

 

Figure 3.4 Nearest Neighbour Index (NNI) for 50th neighbouring fire ignitions in study area 

ecoregions. 

Linear transformations ( ( )) of the K-function are plotted in Figure 3.5. In every ecoregion,  ( ) 

values are much higher than what should be expected from a simulation envelope. Hence, the 

hypothesis of CSR can be rejected in favour of clustered behaviour. Results not only confirm the 

findings of an earlier study that fires in boreal Ontario are clustered at larger distances (Podur et al., 

2003), but also provide more insight to the spatial patterns at shorter distances. Higher values of  ( ) 

at all distances also show that fires are more clustered in ecoregions 3E and 3W than others. These 

results are different from NNI analysis, which shows fires in 3E are the least clustered. The simple 

explanation is that for non-random distribution different statistics will yield different results due to 

differences in methods. In this study, the analysis was based on neighbours for NNI whereas distances 

independent of number of neighbours form the basis of the K-function. 
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Figure 3.5 Results of the K-function represented by its linear transformation L(t) for study area 

ecoregions. 

 

(3E) (3W) 

(3S) (4S) 
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Fire ignition density surfaces using the adaptive kernel estimation method were estimated by 

employing different number of neighbours (k). Performance of each k was assessed by  ̂, which 

validates the procedure by calculating under/over-estimation at each point. Results of the first stage 

analysis are presented in Table 3.3, which shows  ̂ values for different k in each ecoregion. The  ̂ 

values for k-3  are quite high compared to others mainly due to some very close fire ignitions. For 

example, in 4S the average distance of the 3
rd

 neighbouring ignition was 2426 m but many fire 

ignitions were as close as 141 m. Results show that the minimum value of  ̂ for ecoregions 3E, 3W 

and 4S was from k-9. For ecoregion 3S, the minimum value of  ̂ was from k-6. 

Table 3.3  ̂ values for fire ignition density surfaces generated by different number of 

neighbours (1
st
 Stage). 

Smoothing Parameter / 

Ecoregions 
k-3 k-6 k-9 k-12 

3E 27.994 0.101 0.027 0.049 

3W 49.157 0.280 0.016 0.028 

3S 13.119 0.021 0.035 0.062 

4S 39.586 0.037 0.011 0.020 

 

In order to find the least  ̂ values, further density surfaces were generated using different number of 

neighbours surrounding the ones that yielded minimum  ̂ in the first stage. Results presented in 

Figure 3.6 show that least  ̂ values for 3E, 3W, 3S and 4S were from k-8 (0.021), k-8 (0.015), k-6 

(0.021) and k-7 (0.007) respectively. The  ̂ value for k-5 in 3S is 0.970 and is not shown in the figure. 
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Figure 3.6 Comparison of  ̂ values for fire ignition density surfaces (2
nd

 Stage). 

Based on these least  ̂ values, the most representative fire ignition density surfaces generated for 

different ecoregions are shown in Figure 3.7–3.10. The white areas in these figures are the water 

bodies (i.e; rivers, lakes etc.). Overall, the highest fire density (1.092) is in 4S, followed by 3W 

(0.681), 3S (0.401) and 3E (0.328). 
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Figure 3.7 Relative fire ignition density in 3E for period (1960-2009) with adaptive kernel 

density estimation method using k-8. 

In 3E (Figure 3.7) fire ignition density is higher in the South and West compared to rest of the 

region. There are also few isolated areas of medium to high fire ignition density in central and 

northwestern part of the region. The largest contiguous area with high fire ignition density is in the 

South.  

In 3W areas of high fire ignition density are spread over the whole region except the northeastern 

part. Figure 3.8 also shows three big clusters of high fire ignition density in 3W. There are also 

isolated small patches of medium to high fire ignition density throughout the region. 
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Figure 3.8 Relative fire ignition density in 3W for period (1960-2009) with adaptive kernel 

density estimation method using k-8. 

In 3S (Figure 3.9) the largest contiguous area of higher fire ignition density is along the southern 

border. Areas in the eastern half of the region have more patches of higher fire ignition density 

compared to the western half. Contrarily, in 4S (Figure 3.10) clusters of high fire ignition density are 

more in western half of the region. In the East there are also small clusters of high fire ignition 

density. 

The fire ignition density distribution in the whole study area is represented in Figure 3.11. It shows 

that northwestern part of the province (4S) has the highest fire ignition density and it decreases 

towards East. Fire ignition density is also low in far northern areas. There are also few isolated 

patches of medium fire ignition density in the southeast (3E). These results partially confirm the 

findings of an earlier study (Podur et al., 2003) that found a zone of high fire density in the northwest 

of the province. Their finding of another high fire density zone in the southeast of the province can 

not be confirmed as the location is mainly outside the area of this study. Overall, this study provides 

more details at finer spatial scale. 
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Figure 3.9 Relative fire ignition density in 3S for period (1960-2009) with adaptive kernel 

density estimation method using k-6. 

 

Figure 3.10 Relative fire ignition density in 4S for period (1960-2009) with adaptive kernel 

density estimation method using k-7. 
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Figure 3.11 Estimated fire ignition density in the study area using adaptive kernel density 

estimation for the period 1960–2009. 

A detailed investigation of underlying causes of these ignition patterns was not possible since the 

exploratory techniques used for this study do not incorporate covariates. Moreover, recall the purpose 

of this study was to produce ignition density maps that could be used as input for spatially explicit 

landscape planning models.  However, results were visually compared with some physical factors to 

gain some insight. In their study, Podur et al. (2003) found more fires in elevated areas and suggested 

topography as the possible driving factor in the fire patterns. Results of this study support their 

opinion as majority of the fire ignitions are in higher elevation areas.  

Fire ignition patterns were also compared with distribution of different forest cover types in the 

study area and no visual relationship was observed. It is also likely that certain geological features 

may influence the occurrence of lightning strikes and contribute in fire pattern formation. Maps of 

various geological features (geological formations, major iron formations and faults) were therefore 

overlaid on fire density maps to find any relationship visually. Fire ignition density did not follow the 

patterns of any of these. According to Hills (1959) Ontario has three regions of effective humidity: 



 

 46 

medium humid (humid eastern), driest humid (humid western) and sub humid, with a decreasing 

gradient from the northeast to the southwest. According to this classification, 4S and 3S are in sub 

humid region, 3W is in driest humid region and 3E in medium humid region He also discussed that 

the temperature gradient decreases from the south to the north. Following this classification, 4S is in 

the higher effective temperature region whereas 3S, 3W and 3E are in lower temperature region. This 

also provides a likely explanation for the fire ignition patterns found in this study. 4S, where the 

ignition density is the highest, experiences the most dry and hot climate. 3S though falls in sub humid 

region and shares the same temperature zone with 3W. However, some areas of 3S being in more 

north than 3W have less temperature than 3W and resultantly less fire ignitions. Southern parts of 3S 

though have high fire ignition density but overall 3W experiences more fires than 3S. 3E being in the 

most humid region experiences the least fire ignitions which are mostly in the southern areas where 

temperatures are relatively high. Thus results of this study confirm Podur et al. (2003) association of 

high fire areas with higher elevations but these areas also coincide broadly with regions of Northern 

Ontario that are relatively warm and dry. The relative influence of the causal factors of this 

geographic fire pattern remains to be elucidated in details. 

This study shows that fire ignitions in the study area are clustered. It is likely that the degree of 

clustering is affected by other prominent landscape features. The landscape is characterized by 

hundreds to thousands of lakes of different sizes that were not considered in this study for fire ignition 

pattern analysis. The research question about the scale of lightning-caused ignition clustering in 

Ontario boreal forests can be revisited by including the patterns of lakes in the analysis.  

Also, the lakes act as fire barrier that, due to the limitation of the statistical method, was not 

possible to consider in the density estimation. It is therefore likely that in some areas of high 

concentration of lakes, the ignition density is over-estimated due to smoothing across the areas. 

3.6 Conclusions 

This study is a part of a project investigating the boreal fire regimes due to natural fires; therefore 

only lightning-caused fire ignitions were analyzed. Our study employed spatial statistical tools to 

analyze fire ignition patterns in Ontario managed boreal forests, and a calibration process for adaptive 

kernel density estimation to reliably estimate fire ignition density by reducing over/under-estimation 

error. Results were also compared visually with some bio-physical factors to identify the potential 

causes of the observed fire ignition patterns in the study area. The main findings of the study are; (i) 



 

 47 

selection of a representative study area is important because spatial patterns change with changes in 

the boundary, (ii) NNI and the K-function analyses both showed that lightning-caused fire ignitions in 

the study area are spatially clustered, (iii) the estimated degree of the clustering can depend on the 

method used, (iv) reliable density estimates can be obtained by using a smoothing parameter that 

minimizes over/under-estimation error, (v) the fire ignition density in the northwest ecoregion (4S) is 

the highest and (vi) the fire ignition density in the eastern ecoregion (3E) is the lowest. It was also 

noticed that Ontario forest fire data are not free from locational errors although, such errors appear to 

be minor in magnitude and frequency, nor should such small errors have a large impact on the 

estimated densities.  

It was observed that at a broader scale fire ignitions in the study area follow the well-known 

combined humidity-temperature gradient. Also the visual comparisons of ignition patterns with forest 

types, topography and different geological formations did not show any relationship. Further research 

is suggested to investigate the combined effect of these factors on ignition patterns in the study area. 
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Chapter 4 

Sensitivity of simulated fire regime parameters to spatial patterns 

of fire ignition assumptions: a case study from Ontario managed 

boreal forests 

Summary 

The characterization of forest fire regimes is pivotal to improve our understanding of boreal forest 

dynamics and for the success of management practices attempting to emulate fire disturbances. In this 

study the BFOLDS model was used to simulate boreal forest fire regimes for four ecoregions (3E, 

3W, 3S and 4S) in Ontario, under two fire ignition scenarios: unweighted and weighted. Four non-

spatial (total number of fires, total burn area, number of fires by size classes, annual burn fraction) 

and one spatial (spatial burn probability - SBP) fire regime indicators were compared to test the 

hypothesis of statistically no difference under unweighted and weighted ignition scenarios. Overall, 

the results for non-spatial indicators at 95% confidence interval (CI) showed no significant 

differences in the simulated fire regimes under unweighted and weighted ignition scenarios. 

However, the spatial indicator – SBP – captured clear spatial differences between unweighted and 

weighted ignitions. Results of the weighted scenario closely followed the spatial patterns of fire 

ignition density in the study area. Under the unweighted scenario, SBP in some areas was under-

estimated and in some other areas it was over-estimated. Based on the results of SBP, this study 

rejects the null hypothesis and emphasizes that ignition patterns must be considered in simulating 

forest fire regimes.  

4.1 Introduction 

Fires occur frequently in the boreal forests (Rowe & Scotter, 1973; Telesca et al., 2005) and are 

believed to shape boreal vegetation dynamics (Payette, 1992; Suffling et al., 1988; Turner & Dale, 

1991) by influencing many aspects including species distribution (Flannigan & Bergeron, 1998; 

Suffling, 1995), species composition (Bergeron et al., 2004b: Veraverbeke et al., 2010), species age 

class distribution (Bergeron et al., 2001), etc. The survival of boreal forests despite the presence of 

these disturbances, for centuries, provides sufficient evidence that fires are an integral part of that 

ecosystem (Millers et al., 2008; Rowe & Scotter, 1973) and the natural variability in the system 

caused by them is a vital attribute that can provide guidance for forest management to maintain 
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biodiversity and achieve forest sustainability (Attiwill, 1994; Landres et al., 1999; Leopold et al., 

1963; Perera & Cui, 2010). 

In Ontario, two thirds (about 50 million ha) of the forests are boreal. These extend between the 

northern limits of the Great Lakes St. Lawrence forests to the Hudson Bay lowlands. Like most boreal 

forests, these forests are also characterized by fires (Perera et al., 1998). To maintain biodiversity and 

achieve forest sustainability, the provincial forest management guidelines emphasize preserving the 

fire-driven natural dynamics in these forests (OMNR, 2001). The fire driven vegetation dynamics are 

however, poorly understood due to the complexity in fire phenomena (Telesca et al., 2005). Fire 

ignition and its spread are highly variable processes controlled by a complex interaction between 

different environmental factors (Millers et al., 2008), including the sources of ignition, weather 

conditions, vegetation and topography (Mermoz et al., 2005). Characterization of the fire regimes is 

therefore needed for understanding fire phenomena and the subsequent vegetation dynamics (Perera 

et al., 2009; Suffling & Perera, 2004; Telesca et al., 2007; Vázquez & Moreno, 2001). One approach 

to characterize such a regime is the empirical studies of fire histories. Due to spatio-temporal 

variability in fire occurrence there are many possible forest fire regime characterizations (Perera & 

Buse, 2006) that empirical studies can not capture (Perera et al., 2009). Results of such studies 

therefore can not be generalized for forest management purposes. An alternative approach is to use 

models that incorporate knowledge about large scale fire processes to simulate fire regimes (Cary et 

al., 2006; Li, 2000a; Suffling & Perera, 2004). Generally, these models simulate fires as a function of 

different environmental factors (fuel, weather, topography) using sophisticated fire spread algorithms 

(Couce & Knorr, 2010; Cui et al., 2009; Millers et al., 2008; Weaver & Perera, 2004).To capture long 

term fire dynamics, simulations are normally run over hundreds of years (Li, 2000b, Wimberely et al., 

2000).  

Each fire event in simulation modeling is characterized by its location, occurrence time and area 

burned (Tuia et al., 2007). Due to spatial variability of relevant environmental factors (weather, 

vegetation, topography) the ignition locations can substantially influence fire occurrences and the 

subsequent fire regime (de Vasconcelos et al., 2001; Parisien & Moritz, 2009). This accentuates the 

need to properly consider the fire ignition patterns of the study area while seeding ignitions in the 

model (Catry et al., 2008; Krenn & Hergarten, 2009; Weaver & Perera, 2004). Though fire ignition 

locations are spatially non-random (Genton et al., 2006), many simulation studies randomly distribute 

fire ignition across the landscape (D‘Andrea et al., 2009; Doran, 2004; Munoz-Marquez, 2005; Perera 
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& Cui, 2010). Some of these studies (Doran, 2004; Perera & Cui, 2010) also ran simulations based on 

a weighted ignition scenario to account for the uncertainty about real ignition spatial patterns. For the 

studies that seeded fire ignitions spatially random in the simulations, it was assumed that either these 

were lacking the data for spatial patterns or that they relied on the assumption that including or 

ignoring the ignition spatial patterns would not affect the model output. In the context of the latter 

assumption, no study was found in the literature, particularly for Ontario boreal forests that analyzed 

the modeled forest fire regimes under unweighted and weighted ignition scenarios. The objective of 

this study is to demonstrate the implications of accounting for ignition spatial patterns in simulated 

forest fire regimes. The weighted ignition scenarios for this study are generated from analyzing 47 

years lightning-caused fires, as discussed in detail in Chapter 3. Here we test the null hypothesis that 

statistically there is no significant difference in simulated forest fire regimes, in Ontario managed 

boreal forests, with and without accounting for forest fire ignition patterns. 

4.2 Study Area 

The study area (Figure 4.1) includes Ontario managed boreal forests in ecoregions 3E, 3W, 3S and 

4S. Some areas of 3S in the North and northwest; and of 3E in the northeast (shown white in Figure 

4.1) were excluded in the analysis due to non-availability of soil and forest cover data. 

Throughout the study area, black spruce (Picea mariana) is the main species in old forests. 

Although, black spruce and jack pine (Pinus banksiana) are the main species in young stands (Racey 

et al., 2000), the species composition varies throughout the study area due to differences in geo-

climatic patterns (Hills, 1959) and is also mediated by fire regimes (Suffling, 1995). In 3E besides 

black spruce, trembling aspen (Populus tremuloides), white birch (Betula papyrifera), balsam fir 

(Abies balsamea) and white spruce (Picea glauca) are also abundant (Latremouille et al., 2008). In 

3W, white birch, and poplar are common species; and conifer-conifer mixedwood is more dominant 

than conifer-hardwood mixedwood. In 3S poplar forms both pure and mixedwood stands. About a 

quarter of this ecoregion is mixedwood with major proportion of conifer-hardwood. In 4S, other pine 

species are red pine (Pinus resinosa) and white pine (Pinus strobus); and conifer-conifer mixedwood 

is dominant (Racey et al., 2000). Details on species composition are also provided in Section 2.1. 

Stand replacing fires are the most dominant natural disturbances that shape the landscape of the 

forests in the study area (Latremouille et al., 2008; Perera at al., 1998; Racey et al., 2000). 
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Figure 4.1 Location of the study area in Ontario, Canada. Labels are the name of ecoregions 

(Hills, 1959). 

4.3 Methods 

4.3.1 Simulation Model 

In this study BFOLDS was used to simulate forest fire regimes. This model developed by the Ontario 

Forest Research Institute (OFRI) is used by OMNR and academic researchers for studies involving 

boreal forest fire regimes (Cui et al., 2009). BFOLDS is a raster-based spatially explicit model that 
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uses a process-based fire simulation module to simulate forest fire events at a 1 ha spatial resolution. 

BFOLDS follows the principles of Canadian Fire Behaviour Prediction (FBP) system (Forestry 

Canada Fire Danger Group, 1992) and is capable of simulating multiple fires simultaneously over a 

large area. It simulates different fire processes (ignition, spread, and extinguishment) as a function of 

fire weather, topography and fuel type. A fire in BFOLDS burns any 1-ha cell only when it has 

burnable fuel types and when the duff moisture code
6
 (DMC) is above a standard threshold value. The 

model also assumes that (i) once burnt a cell consumes all its fuel it cannot burn again for next ten 

years; and (ii) regardless of the above mentioned favourable conditions, all fires extinguish at the end 

of fire season (Julian day 304). Description and functioning of the model is discussed in details by 

Ouellette (2008) and Perera et al. (2008). 

4.3.2 Simulation Scenarios 

As mentioned in Section 4.3.1 BFOLDS requires a threshold value of DMC to ignite fires. In this 

study the threshold values were set following Perera et al. (2009). For ecoregions 3E and 3W a 

threshold of 20±2 was employed; and for 3S and 4S a threshold of 40±4 was used. The model was 

initialized for 100 years for each ecoregion using present day land cover composition (forest type and 

age). Forest composition at the end of initialization period was then used as base forest composition 

in simulations. Two fire ignition scenarios, namely unweighted (scenario A) and weighted (scenario 

B), were used in this study. Under the unweighted scenario, fire ignitions were seeded randomly 

across the study area. Under the weighted scenario, fire ignition patterns were used to spatially weight 

the seeding of fire ignitions. These ignition patterns were estimated using forest fire data in the study 

area for the period 1960–2009. The details of the methodology used to calculate these weighted grids 

are discussed in Chapter 3 of this thesis. For each of the 4 ecoregions, 30 simulations were run under 

each of the 2 scenarios resulting in total 240 simulations. To capture robust estimates of fire regime 

characteristics each simulation ran for 200 years (Perera et al., 2009). During a simulation run, each 

year was randomly assigned a weather year from 1963-2009. For consistency, corresponding 

simulation years under both scenarios were assigned the same weather year. Once a simulation 

started, the land cover changed as a function of age and/or due to fire disturbance and subsequent 

succession.  

                                                      
6
 Index that represents the moisture contents of the upper layers of forest floor where litter begins to decay. 
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4.4 Results and Discussions 

To reduce boundary effects, a buffer of 25 km was clipped from each ecoregion used in the 

simulations, and data analysis was performed on the remaining study area. Data were analyzed for 

four non-spatial (total number of fires, number of fires in different size classes, total burnt area, 

annual burn fraction - ABF) and one spatial (spatial burn probability – SBP) fire regime indicators. 

Each indicator was calculated for each simulation under each scenario. 

4.4.1 Fire Regimes – Non-spatial Aspect 

Results for non-spatial fire regime indicators for unweighted and weighted ignition scenarios were 

statistically compared by calculating 95% confidence intervals (CI). If limits of CI contain the value 

0, the P-value is at least 0.05. In this case differences in values are considered statistically non-

significant at the 5% level.  

Results for each indicator for 30 simulations under each scenario are shown with boxplots and 

discussed in detail in this section. In each boxplot, the boxed area represents the interquartile range 

and the horizontal line in each box shows the median. The ends of the vertical bars extend above and 

below 1.5 times the interquartile range and potential outliers outside of this range are identified by an 

x. Naming scheme on the X-axis represents the ecoregion and the scenario. For example 3E-A means 

unweighted scenario for ecoregion 3E and 3E-B means weighted scenario for ecoregion 3E.  
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Figure 4.2 Boxplots and 95% CI limits for the number of fires in each ecoregion over the 

simulation period. 

Figure 4.2 shows the boxplots (for 30 simulations) for the number of fires over the simulation 

period and 95% CI limits for the corresponding difference in the means for each ecoregion. Results 

show that overall 4S has the maximum number of fires with a mean of 10743 and 11468 fires for 

scenario A and scenario B respectively. 3W (6931, 7492) has the second most number of fires 

followed by 3E (5046, 4805) whereas; 3S received the least number of fires (1712, 1584). Results at 

95% CI show that for each ecoregion the mean number of fires under both scenarios are significantly 

different. 

To see the differences in the distribution of the number of fires in different fire sizes, and to 

investigate the source of the results presented in Figure 4.2, the total number of fires were divided in 

five size classes: namely C1 (1-10 ha), C10 (11-100 ha), C100 (101-1000 ha), C1000 (1001-10000 

ha) and C10000 (over 10000 ha). Figure 4.3 shows the boxplots of simulated number of fires in these 

size classes for individual ecoregions under the two scenarios. CI values are presented in Table 4.1.  
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Figure 4.3 Boxplots for number of fires in size classes (C1, C10, C100, C1000 and C10000) in 

each ecoregion over simulation period under unweighted (A) and weighted (B) ignition 

scenarios. 
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Table 4.1 95% Confidence intervals for the difference in the mean number of fires for each of 

the five fire size classes. 

 3E 3W 3S 4S 

Fire Size 

Classes 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

C1 200 432 -480 -171 40 104 -924 -354 

C10 -71 -2 -124 -118 0.43 18.64 -92 -10 

C100 -64 36 -190 -17 7 37 -127 39 

C1000 -46 5 -154 29 0.89 32 -53 69 

C10000 -13 6 -22 25 1.21 16.32 -2 3 

 

Results show that under both scenarios the number of fires in 3E, 3W and 4S in larger size classes 

(C1000 and C10000) are similar. The numbers of fires in smaller size classes (C1 and C10) are 

significantly different in all ecoregions. Since in size class C1 fires (the smallest fires) are the most 

frequent, this has influenced the results of total number of fires (Figure 4.2). Results for 3S show that 

numbers of fires in all classes under both scenarios are significantly different. 

Results shown in Figure 4.4 represent the boxplots of simulated burnt areas over the simulation 

period and 95% CI limits for each ecoregion. Overall the maximum area was burnt in 3W with mean 

burnt area of 9880912 ha (scenario A) and 10007115 ha (scenario B); followed by 3E (3931369 ha, 

4006461 ha), 4S (2660488 ha, 2593918 ha) and 3S (2161422 ha, 1893180 ha). Results at 95% CI 

show that in 3E, 3W and 4S total burnt areas have no differences at 95% CI under both scenarios 

whereas, total burnt areas in 3S under unweighted and weighted ignition scenarios are significantly 

different. As fewer large fires are responsible for most of the area burnt, the results of number of fires 

in larger size classes (Figure 4.3, Table 4.1) corroborate the results of total burnt area. 
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Figure 4.4 Boxplots and 95% CI limits for total area burnt in each ecoregion over the 

simulation period. 

Comparing the total area burnt is not a useful measure if study areas have different sizes. In such 

situations annual burn fraction (ABF) is a better indicator. ABF is the average annual percentage area 

burnt out of the total forested area during the simulation period (Perera et al., 2009). Equation 4.1 

shows the mathematical expression to calculate ABF 

     
                                             

                                                  
      (4.1) 

 The boxplots of simulated ABF over the simulation period and 95% CI limits for each ecoregion 

are shown in Figure 4.5.The mean ABF (for 30 simulations) is highest for 3W: scenario A (1.06%), 

scenario B (1.07%); followed by 3S (0.81%, 0.71%) and 4S (0.47%, 0.46%). 3E has the least ABF 

(0.22%, 0.22%). For 3E, 3W and 4S corresponding values of CI (-0.02, 0.01), (-0.09, 0.07) and (-

0.03, 0.05) respectively show no significant difference in ABF under both scenarios. Contrarily, CI 
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for 3S (0.02, 0.18) shows that ABFs are significantly different under both scenarios. In this respect 

results for 3S are justified as burnt areas for it are also significantly different under both scenarios. 

 

Figure 4.5 Boxplots and 95% CI limits for annual burn fraction (ABF) in each ecoregion over 

the simulation period. 

The results for 3S were further investigated to find plausible cause for different behaviour. Figure 

4.6 shows the ignition density of 3S used for simulations under the weighted scenario. It shows that 

the ignition density is the highest along the southern border of the ecoregion. However, when buffer 

was clipped from the area majority of the high ignition density area was left out. The actual data used 

in final analysis was for the area inside the polygon (black outlined area in Figure 4.6). This means 

that due to the buffer a reasonable number of fires and the burnt areas under the weighted scenario 

were excluded from the analysis. The spatial burn probability map for the weighted scenario (Figure 

4.9(b)) also illustrates more fire occurrence along the southern border. Comparison of numbers of 

fires and areas burnt (Table 4.2) also confirms that number of fires and the burnt area were less under 

weighted scenario. Due to non-availability of data for the adjoining areas it was not possible to create 
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an outside buffer and run an analysis for the entire ecoregions. This suggests, however, that results 

could be improved if the data for these adjoining areas were available. 

 

Figure 4.6 Ignition density in 3S used for weighted scenario in BFOLDS simulations. Black line 

shows the boundary of the clipped area. 
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Table 4.2 Comparison of average number of fires and burnt area for 30 simulations in 3S 

 Unweighted Scenario Weighted Scenario 

Fire Size Classes Number of fires 

C1 (1-10 ha) 1058 986 

C10 (11-100 ha) 133 123 

C100 (101-1000 ha) 248 226 

C1000 (1001-10000 ha) 219 203 

C10000 (>10000 ha) 55 46 

Total Burnt Area 000 ha 

 2161.4 1893.2 

4.4.2 Fire Regimes – Spatial Aspect 

Forest fires are a spatial phenomenon whose distribution and behaviour can vary across a landscape. 

The quantification of these spatial characteristics is very important for forest management. To explore 

for any spatial patterns in the fire regimes, spatial burn probability (SBP) was calculated for each 

pixel. Equation 4.2 shows the mathematical expression for SBP for a given pixel. 

 
    

                

                                       
 (4.2) 

SBP maps (Figure 4.7–4.10)
7
 show the spatial variability in burn probability in the study area and 

illustrate the general findings that fire regimes in boreal forests have considerable spatial variation 

(Keane et al., 2004). In 3E under unweighted scenario (Figure 4.7(a)), areas of medium to high
8
 SBP 

are throughout the ecoregion except the northeastern part whereas, under weighted scenario (Figure 

4.7(b)) areas of medium to high SBP are mainly concentrated in the South and the West. In 3W under 

unweighted scenario (Figure 4.8(a)) some areas in the North have very high SBP; and medium SBP 

areas are spread throughout the region whereas, under weighted scenario (Figure 4.8(b)) most of the 

medium to high SBP areas are in the South and the West with a few areas of medium SBP in the 

North and northeast. SBP of 3S also show clear differences under both scenarios. Under unweighted 

scenario (Figure 4.9(a)) areas with medium SBP are spread throughout the region whereas, under 

                                                      
7
 White areas in the maps are areas under water bodies (lakes, rivers etc) 

8
 The terms “medium”, “high” used in this section are for individual ecoregions. 



 

 61 

weighted scenario (Figure 4.9(b)) medium SBP areas are mainly concentrated in the South and 

southeast with two prominent patches of high SBP. In the western part, there is another area of high 

to medium SBP that stretches from the South to the North. Spatial differences of SBP are also 

obvious in 4S. Under unweighted scenario (Figure 4.10(a)) medium to high SBP areas are manly 

stretched from southeast to northwest whereas, under weighted scenario (Figure 4.10(b)) areas with 

medium to high SBP are throughout the region with higher concentration in central and western parts.  
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Figure 4.7 Spatial burn probability maps of 3E under ignition scenarios (a) unweighted (b) 

weighted. 

(a) 

(b) 
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Figure 4.8 Spatial burn probability maps of 3W under ignition scenarios (a) unweighted (b) 

weighted. 

(a) 

(b) 
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Figure 4.9 Spatial burn probability maps of 3S under ignition scenarios (a) unweighted (b) 

weighted. 

(a) 

(b) 
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Figure 4.10 Spatial burn probability maps of 4S under ignition scenarios (a) unweighted (b) 

weighted. 

(a) 

(b) 
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Visually the maps (Figure 4.7–4.10) show spatial differences of SBP for each ecoregion under both 

ignition scenarios. To statistically test these results a Kappa statistic was calculated. It quantitatively 

measures the degree of agreement based on the difference between observed (actual) and expected 

(by chance) agreement (Cohen, 1960). A Kappa value of 1 represents perfect agreement and a value 

of 0 equates to by chance agreement (Viera & Garrett, 2005). A scale (Table 4.3) proposed by Landis 

& Koch (1977) was used in this study to interpret the results of Kappa analysis. 

Table 4.3: Interpretation of Kappa statistic for categorical data (Source: Landis & Koch, 1977). 

Kappa Statistic Strength of Agreement 

< 0.00  Poor 

0.00 – 0.20  Slight 

0.21 – 0.40  Fair 

0.41 – 0.60  Moderate 

0.61 – 0.80  Substantial 

0.81 – 1.00  Almost perfect 

To conduct a Kappa analysis, the SBP for individual ecoregion under each ignition scenario was 

categorized into six ordinal classes: 0, (0, 0.005], (0.005, 0.01], (0.01, 0.015], (0.015, 0.020] and 

>0.020 (Figure 4.11). All the analysis for Kappa and its P value (Viera & Garrett, 2005) were done in 

R (R Development Core Team, 2009) using the vcd package (Meyer et al., 2009). 
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Figure 4.11: Comparison of spatial burn probability between scenarios and ecoregions. 
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Table 4.4: Results of Kappa statistic for spatial burn probability under unweighted and 

weighted ignitions. 

Ecoregion Kappa Value Approximate 

St. Error 

P value Remarks 

3E 0.675 0.0003 0 Substantial agreement 

3W 0.194 0.0004 0 Slight agreement 

3S 0.086 0.0008 0 Slight agreement 

4S 0.240 0.0006 0 Fair agreement 

 

Results of Kappa shown in Table 4.4 demonstrate that SBP under both ignition scenarios are 

statistically different in all ecoregions. The high agreement in 3E is due to low fire activity in this 

ecoregion. These results also imply that the higher the fire activity in a region the more the spatial 

differences in burn probability when comparing unweighted and weighted ignition scenarios. 

Further, to highlight the areas of high differences in SBP of both ignition scenarios, the SBP 

difference maps were created. Figure 4.12–4.15 show the colour-coded difference maps for all 

ecoregions that were generated by subtracting the SBP of unweighted scenario from the SBP of the 

weighted scenario. Red colour represents the 20% of the forested area where the SBP under weighted 

scenario was higher than unweighted scenario. Blue colour represents the 20% of the total forested 

area where SBP under unweighted scenario was higher than weighted scenario. Grey areas represent 

60% of the forested areas that is marked as transition zone (where SBP differences are less) of SBP 

under both scenarios. 
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Figure 4.12 Spatial burn probability (SBP) difference map for 3E. 

 

Figure 4.13 Spatial burn probability (SBP) difference map for 3W. 
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Figure 4.14 Spatial burn probability (SBP) difference map for 3S. 

 

Figure 4.15 Spatial burn probability (SBP) difference map for 4S. 
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These results clearly show the remarkable differences in spatial aspect of simulated fire regimes 

under unweighted and weighted ignition scenario. As discussed in Section 4.3.2 both scenarios 

received the same forest compositions and weather conditions. The only difference was the spatial 

distribution of ignition seeding. Also, the forest compositions and weather conditions used in this 

study were the major determinants of the current fire ignition spatial distribution. Thus, comparing 

the modeled SBP of each scenario with the current spatial distribution of fire ignitions can give 

insight to evaluate the results of both scenarios for reliability. Lightning-caused forest fire data from 

OMNR forest fire database, for the period 1960–2009, was used for this purpose. The fire locations 

were plotted on SBP difference maps (Figure 4.12–4.15) and results are shown in Figure 4.16–4.19. 

Visual comparison shows that for all ecoregions fire density (number of fires) is high in areas where 

modeled SBP under weighted ignition scenario is high. The areas with high SBP under unweighted 

scenario actually received fewer fires during 1960-2009. In other words the unweighted scenario 

overestimates SBP at places shown blue in figures and underestimate at locations shown red in 

figures. These results illustrate that weighted scenario closely follows the actual spatial fire ignition 

density and provide more realistic picture about the SBP. 

 

Figure 4.16 Modeled SBP difference map with locations of fires during 1960-2009 in 3E. 
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Figure 4.17 Modeled SBP difference map with locations of fires during 1960-2009 in 3W. 

 

Figure 4.18 Modeled SBP difference map with locations of fires during 1960-2009 in 3S. 
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Figure 4.19 Modeled SBP difference map with locations of fires during 1960-2009 in 4S. 

4.5 Conclusions 

The characterization of fire regimes is important to improve our understanding of boreal forests 

dynamics and to improve methods that attempt to emulate fire driven disturbances in management 

practices aimed at maintaining biodiversity and achieving forest sustainability. This study was 

conducted to demonstrate the effects of changes in ignition patterns on the simulated fire regime. The 

BFOLDS model was used to run simulations under unweighted and weighted ignition scenarios for 

four ecoregions of Ontario boreal forests: namely 3E, 3W, 3S and 4S. Simulation data were analyzed 

for different fire regime indicators and results were compared at 95% CI. Comparison of non-spatial 

indicators between unweighted and weighted ignition scenarios showed no significant differences in 

fire regime for 3E, 3W and 4S. Results for 3S showed significant differences at 95% CI in fire regime 

characteristics under both ignition scenarios. Further analysis of the data showed that in 3S 

differences occurred due to removing some areas as buffer. Overall these results using non-spatial 

indicators suggest that changes in ignition patterns do not significantly alter such aggregate measures. 

Contrary to the non-spatial indicators, the SBP captured clear spatial differences under both 

ignition scenarios. Kappa statistics showed that differences are more in ecoregions of high fire 
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activity. Fire occurrence is a spatial phenomenon and, for an accurate understanding of forest 

dynamics, this spatial aspect must be accounted for. In the light of these results therefore, this study 

rejects the null hypothesis and concludes that spatial patterns of fire ignitions should be considered 

when modeling the boreal forest fire regimes. 

Despite the clear differences in modeled SBP under both scenarios, the different behaviour (non-

significant differences) of non-spatial indicators needs further investigation. Under both scenarios, 

majority of the fires in all ecoregions were from small size classes and were significantly different at 

95% CI. The burnt areas and the number of fires in larger size classes were similar under both 

ignition scenarios. Under weighted ignition scenario, the patches of high SBP indicate high fire 

occurrence in those areas, which should reduce the possibility of large fire by reducing fuel (already 

burnt areas). As the number and sizes of large fires do not differ significantly between unweighted 

and weighted scenarios, this lends indirect evidence that earlier fires do not inhibit later ones. This is 

possible as most of the modeled fires were of smaller size (1-10 ha) whereas BFOLDS uses a 9 x 9 

(ha
2
) search window to determine potential spread the fire (Perera et al., 2008). In BFOLDS a fire 

extinguishes if any of the following conditions is met in all pixels adjacent to the fire front: (i) no 

fuel, (ii) DMC is higher than the threshold value, or (iii) the fire season ends. Hundreds to thousands 

of lakes in the study area also act as no-fuel pixels in BFOLDS. Presence of these lakes or the DMC 

above threshold values may also influence the non-spatial indicators of modeled fire regime. These 

opinions however, can not be confirmed as BFOLDS does not record the final cause of 

extinguishment of a fire. 

The objective of the study was to demonstrate the effects of incorporating spatial non-randomness 

of fire ignitions. Consequently, only a few fire regime indicators were investigated. Further studies 

could be conducted using the weighted ignition patterns (i) by extending the buffers outside the 

ecoregions if relevant data are available; and (ii) for a wider range of fire regime indicators to capture 

more features of fire dynamics in the study area. Depending on the resources available studies could 

also be conducted over longer simulation periods using more simulations. This may help to capture 

more variability or at least identify threshold values for number of simulations and/or number of years 

in a simulation for an individual ecoregion. 
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Chapter 5 

Conclusions and Recommendations 

The research undertaken in this thesis was motivated by the essential need to improve our 

understanding about the spatial patterns of fires in Ontario managed boreal forests, and their role 

when simulating a forest fire regime. In this chapter the main findings of the research are discussed in 

Section 5.1. In Section 5.2 recommendations are made for future research. 

5.1 Conclusions 

Lightning-caused forest fires play an important role in Ontario boreal forest dynamics. For 

sustainable management of these forests and biodiversity conservation it is necessary to consider 

forests fires as an integral part of the boreal ecosystem and the management activities should mimic 

these fires. This accentuates the need first to understand the fire behaviour as reflected in forest fire 

regimes. Simulating forest fire regimes is a preferred choice to capture inherent spatio-temporal 

variability in fire regimes (Perera & Cui, 2010). Though, fire ignition in the model is an important 

consideration to achieve reliable simulated forest fire regimes (Krenn & Hergarten, 2009), none of the 

fire regime studies in the literature thoroughly investigated spatial fire ignition patterns. 

To fill this gap in the literature, this thesis presents a two-phase approach. Each phase is fully 

discussed in an individual chapter of this thesis. In the first phase (Chapter 3) point pattern analyses 

of lightning-caused fire ignitions in the study area were performed to demonstrate the inhomogeneous 

nature of ignition patterns. Further, fire ignition densities were estimated. In the second phase 

(Chapter 4) estimated fire density surfaces were used to seed fire ignitions in BFOLDS. An 

unweighted ignition seeding grid was also used in BFOLDS. Finally, BFOLDS‘s performance was 

assessed by comparing the results of both ignition scenarios for some major fire regime indicators. 

All the analyses, in both phases, were based on individual ecoregions (3E, 3W, 3S and 4S) of the 

study area. 

5.1.1 Spatial Ignition Patterns 

Two spatial statistical methods: NNI and the K-function were used for point pattern analysis of the 

lightning-caused fire ignitions. To see the effects of study area size, analyses were performed also by 

combining areas of two ecoregions (3S and 4S) and adding a buffer around ecoregions. Regardless as 

to whether or not ecoregions were combined/buffers were employed, results demonstrate that the 
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distribution of lightning-caused forest fires does not follow CSR. The results also demonstrated the 

need to carefully define the study area, so that the identified patterns can further be used for policy 

and management applications.  

To generate ignition density surfaces, an adaptive kernel density estimation approach was used. 

This method is particularly applicable to a phenomenon whose distribution is not spatially 

homogeneous. By adjusting the bandwidth depending on the density of incident points of the 

phenomenon, this method yields reliable density estimates. Bias (over/under estimation) in the 

density estimation was further reduced by adopting a quantitative validation procedure: goodness of 

fit criteria. This procedure helped to identify the bandwidth settings to generate reliable fire density 

surface for each ecoregion. 

Results of density estimation showed that fire density varies among the ecoregions. Overall the 

highest fire density was in ecoregion 4S followed by 3W and 3S. Fire density in ecoregion 3E was the 

least among all the ecoregions. These results also showed that at ecoregion-scale fire ignition density 

follows the combined gradient of effective humidity and temperature (Hills, 1959). Ecoregion 4S is 

the one that experiences the highest temperature and the least humidity among all the four ecoregions. 

On the other hand, ecoregion 3E where the estimated fire density was the least is the one with 

minimum temperature and the highest humidity. This has implications for the allocation of resources 

for fire management activities in the study area. 

Within each ecoregion fire density also varied. Overall the southern and the western parts of all 

ecoregions showed clusters of higher to medium fire density. At this local scale the GIS layers of 

different biophysical factors were overlaid to estimated fire density maps to find any visual 

correlation. These included elevation, forest cover types and various geological features (geological 

formations, iron formations and faults). Visually spatial relations of fire ignition density were noticed 

only with elevation. Fire ignition density was high in elevated areas. 

5.1.2 Simulated Fire Regimes 

In Ontario, BFOLDS is widely used by the OMNR and researchers for boreal forest fire regime 

related studies. In this research BFOLDS was used to simulate forest fire regimes under two ignition 

scenarios: unweighted and weighted. For each ecoregion 30 simulations were run under each ignition 

scenario and each simulation span for 200 years. After the simulations a buffer of 25 km was clipped 

to reduce any boundary effects on further data analyses. Data were analyzed for four non-spatial fire 



 

 77 

regime indicators: total number of fires, fires distribution in different size classes, total burnt area and 

annual burn fraction (ABF); and results under both ignition scenarios were compared at 95% CI level. 

To capture the spatial aspect of simulated fire regime, the spatial burn probability (SBP) of individual 

pixel over the simulation period (200 years) for 30 simulations was calculated. Results of SBP under 

both ignition scenarios were compared using Kappa statistic and the SBP difference maps. 

Comparison of results revealed that, for each ecoregion, the total number of fires was significantly 

different between ignition scenarios but there were no differences in the total burnt area except in 

ecoregion 3S. Results of 3S differed from other ecoregions for all non-spatial fire regime indicators, 

and are thus discussed in separate paragraph in this section. For remaining ecoregions (3E, 3W and 

4S) total number of fires were further divided in five size classes of sizes 1-10 ha (C1), 11-100 ha 

(C10), 101-1000 ha (C100), 1001-10000 ha (C1000) and > 10000 ha (C10000). Number of fires in 

each ecoregion in smaller size classes were significantly different under both ignition scenarios 

Differences in number of fires in larger size classes (C1000 and C10000) were not significant. This 

explained the results for total burnt area as larger fires contribute more in total burnt area compared to 

small fires. Comparison of ABF also showed non-significant differences under both ignition scenarios 

for each ecoregion. 

In the case of ecoregion 3S, the comparison under both ignition scenarios showed significant 

differences for all non-spatial fire regime indicators. Clipping of the buffer was the most likely cause 

for this different behaviour. In 3S the actual number of fires and the estimated fire ignition density 

was high in the southern areas. Under weighted ignition scenario this area received more fires and 

more area was burnt that were left out after clipping the buffer. 

Simulation results also showed that overall number of fires is greatest in 4S followed by 3W and 

3E (Figure 4.2). The least number of fires is in 3S. These results partially confirm the spatial ignition 

density results discussed in Section 5.1.1. According to that the highest ignition density is in 4S 

followed by 3W, 3S and 3E. Two possible reasons justify the lesser number of simulated fires in 3S 

compared to 3E. First, in density estimation all fires and total area of 3S were considered whereas, in 

fire regime simulations a reasonable part of the ecoregion in the North and northwest was left out due 

to non-availability of other relevant datasets. Second, the analyses for fire regimes indicators were 

performed after clipping a buffer from the simulated area. This again left out a reasonable number of 

simulated fires from 3S as discussed in preceding paragraph.  
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The sequence of simulated number of fires (among ecoregions) was however not the same when 

the total number of fires were distributed in different size classes. Though 4S had the highest number 

of fires, majority of these were in size class 1 (1-10 ha). In all other size classes 3W had maximum 

number of fires followed by 3E for C10 and C10000; and 4S for C100 and C1000. In the largest size 

class (C10000) 4S had the least number of fires (Figure 4.3). These results were reflected in total 

burnt area. Total burnt area was the maximum in 3W followed by 3E and 4S. ABF values of 3W were 

also highest followed by 3S, 4S and 3E (Figure 4.5). These results imply the highest fire activity is in 

ecoregion 3W and the least in 3E. 

Overall the comparisons of non-spatial fire regime indicators among ecoregions imply that fires of 

larger size classes contributed more towards fire activity. Though 3E had more simulated larger fires 

than 3S and 4S, it had the minimum ABF due to its larger area.  

Contrary to non-spatial indicators, SBP showed remarkable differences in burn probability of 

pixels under both ignition scenarios. Results presented in Figure 4.12 – 4.15 clearly show that in each 

ecoregion some areas had high burn probability under unweighted ignition scenario and some other 

areas under weighted ignition scenarios. When compared with spatial distribution of actual fires, for 

all ecoregions weighted ignition scenario provided more realistic picture and reliable results. Spatial 

differences also existed in burn probability among ecoregions. The areas of highest burn probability 

were in 3W followed by 3S, 4S and 3E. 

Overall, the comparisons under both ignition scenarios showed that fire regimes were similar when 

only non-spatial aspects were considered, and were different remarkably when compared spatially. 

Fire is a spatial phenomenon and ignoring spatial aspects in simulated fire regimes will therefore 

provide unrealistic results. I therefore reject the null hypothesis of the thesis and conclude that spatial 

ignition patterns should be an important consideration in simulating fire regimes in boreal forests. 

In Ontario the recent forest management guide suggests that to emulate fire disturbances a range of 

clearcut sizes should be created and 80% of the clearcuts in boreal forests or 90 % of the clearcuts in 

Great Lakes St. Lawrence should be less than 260 ha size (OMNR, 2001). However, there is dire need 

to estimate fire disturbances frequency by size classes and their spatial distribution to properly plan 

for range of the clearcut sizes. Results of this study can provide some bench mark conditions to define 

clearcut sizes for each ecoregion and their spatial arrangements. The modeled spatial burn probability 

can also serve as a guiding tool to identify hot spot areas for lightning-caused fire ignitions and for 

appropriate allocation of forest fire management resources. 
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5.2 Recommendations 

Some locational errors were noted in Ontario forest fire data. Some fires locations were in water 

bodies. It is suggested that OMNR should take some quality control measures to avoid such errors in 

future data. 

In this research only lightning-caused data were analyzed to determine the ignition patterns. Results 

showed that fire ignitions in the study area are clustered. The landscape in the study area is 

characterized by hundreds of thousands of lakes that may have strong influence on these identified 

patterns. Further research is recommended to investigate lakes‘ spatial patterns and revisit the 

research question of fire ignition spatial patterns by including the spatial patterns of lakes in the 

analysis. 

In this research only a few fire regime indicators were investigated to demonstrate the effects of 

fire ignition patterns on simulated fire regimes. Further studies can be conducted for a wider range of 

fire regime indicators, particularly the spatio-temporal ones, to capture more features of fire dynamics 

in the study area. 

Due to data availability limitations, (i) fire regime simulations could not be conducted for whole 

ecoregion 3S; and (ii) data analyses were performed by clipping buffers (to reduce edge effects) 

inside the ecoregions. If relevant data are available, similar studies can be conducted to the full extent 

of ecoregions with outside buffers. 

It is also recommended that if resources permit, studies could also be conducted over longer 

simulation periods using more simulations. This may help to capture more variability or at least 

identify threshold values for number of simulations and/or number of years in a simulation for an 

individual ecoregion. 

Results of non-spatial fire regime indicators overall showed that simulated fire regimes under both 

ignition scenarios are similar whereas there were clear spatial differences. The causes of similar 

results of non-spatial fire regime indicators under both ignition scenarios could not be properly 

addressed due to model limitations. Results suggest that fuel reduction due to earlier fires may not be 

the factor to extinguish large simulated fires. This could not be confirmed as BFOLDS provides no 

information that how a fire finally extinguishes in the model. Including this component in BFOLDS 

output can improve our understanding about the role of earlier fires, lakes and weather in fire 

extinguishment in the study area. 
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