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Abstract

There has been a move recently in academia, industry, and the consumer space towards the use 

of  unsupervised  parallel  computation and  distributed  networks  (i.e.,  networks  of  computing 

elements working together to achieve a global outcome with only local knowledge). To fully 

understand the types of problems that these systems are applied to regularly,  a representative 

member of this group of unsupervised parallel and distributed systems is needed to allow the 

development of  generalizable results.  Although not the only potential  candidate,  the field of 

cellular automata is an excellent choice for analyzing how these systems work as it is one of the 

simplest members of this group in terms of design specification. The current ability of the field 

of cellular automata to represent the realm of unsupervised parallel and distributed systems is 

limited to only a subset of the possible systems, which leads to the main goal of this work of 

finding a method of allowing cellular automata to represent a much larger range of systems.

To achieve this goal, a conceptual framework has been developed that allows the definition of 

interconnected systems of cellular  automata that  can represent  most,  if  not  all,  unsupervised 

parallel and distributed systems. The framework introduces the concept of allowing the boundary 

conditions of a cellular automaton to be defined by a separately specified system, which can be 

any system that  is  capable  of  producing  the  information  needed,  including  another  cellular 

automaton. Using this interconnection concept, two forms of computational simplification are 

enabled: the deconstruction of a large system into smaller, modular pieces; and the construction 

of a large system built from a heterogeneous set of smaller pieces. This framework is formally 

defined using an interconnection graph, where edges signify the flow of information from one 

node to the next and the nodes are the various systems involved.

A library  has  been  designed  which  implements  the  interconnection  graphs  defined  by  the 

framework for a subset of the possible nodes, primarily to allow an exploration of the field of 

cellular automata as a potential representational member of unsupervised parallel and distributed 

systems. This library has been developed with a number of criteria in mind that will allow it to be 

instantiated on both hardware and software using an open and extendable architecture to enable 

interaction with external systems and future expansion to take into account novel research. This 

extendability is discussed in terms of combining the library with genetic algorithms to find an 

interconnected system that will satisfy a specific computational goal. There are also a number of 
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novel  components  of  the  library  that  further  enhance  the  capabilities  of  potential  research, 

including  methods  for  automatically  building  interconnection  graphs  from  sets  of  cellular 

automata and the ability to skip over static regions of a given cellular automaton in an intelligent 

way to reduce computation time. With a particular set of cellular automaton parameters, the use 

of this feature reduced the computation time by 75%.

As a demonstration of the usefulness of both the library and the framework that it implements, a 

hardware application has been developed which makes use of many of the novel aspects that 

have been introduced to produce an interactive art installation named 'Aurora'. This application 

has  a  number  of  design  requirements  that  are  directly  achieved  through  the  use  of  library 

components and framework definitions. These design requirements included a lack of centralized 

control or data storage, a need for visibly dynamic behaviour in the installation, and the desire 

for the visitors to the installation to be able to affect the visible movement of patterns across the 

surface of the piece. The success of the library in this application was heavily dependent on its 

instantiation on a mixture of hardware and software, as well as the ability to extend the library to 

suit particular needs and aspects of the specific application requirements.

The main goal of this thesis research, finding a method that allows cellular automata to represent 

a much larger range of unsupervised parallel and distributed systems, has been partially achieved 

in  the creation of  a  novel framework which defines  the concept of  interconnection,  and the 

design of an interconnection graph using this concept. This allows the field of cellular automata, 

in combination with the framework, to be an excellent representational member of an extended 

set of unsupervised parallel and distributed systems when compared to the field alone. A library 

has been developed that satisfies a broad set of design criteria that allow it to be used in any 

future research built on the use of cellular automata as this representational member. A hardware 

application was successfully created that makes use of a number of novel aspects of both the 

framework and the library to demonstrate their applicability in a real world situation.
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 1. Introduction

The field of cellular automata was designed to aid in the understanding of the simplest types of 

unsupervised  parallel  computation.  An  individual  cellular  automaton  is  primarily  an 

interconnection of elemental  computational units,  referred to as  cells in a  cell  matrix,  whose 

states vary depending only on the states of cells in a localized neighbourhood. In contrast to 

supervised parallel systems, in which tasks are divided up among parallel computing elements 

and the results combined to achieve a global outcome, the computation in a cellular automaton is 

unsupervised and  happens  only locally  based  on  these  neighbourhoods.  The  purpose  of  this 

dissertation  is  to  present  a  new  formal  framework  for  considering  interconnections  of 

heterogeneous collections  of  cellular  automata,  to expand the tools  available for  design  and 

analysis of unsupervised parallel and distributed systems.

Cellular automata are characterized by a number of parameters, the most important of which are 

cell  geometry and neighbourhood, number of cell states, and state transition rules.  The most 

basic form of cellular automaton consists of a square grid of cells (geometry) where each cell is 

either on or off (two states). Which specific cells are on or off can change over time based on a 

particular set of rules. The rules governing each cell's state are based on which neighbouring 

cells were on or off at the previous point in time. It is important to understand that using only 

these simple design parameters, a cellular automaton as a whole can reach a specific pattern of 

on and off cells even though the states of individual cells are only influenced by the states of 

their own neighbours. Through this ability to achieve a global task with only local knowledge, 

the field of cellular automata can be considered the most basic example of unsupervised parallel 

computation. In other words, this form of parallel computing consists primarily of a group of 

individual computational elements that are each carrying out tasks which contribute to an overall 

goal, without any particular element having knowledge of what the goal actually is.

The field of cellular automata spans a wide range of systems, from the simple example described 

above to  complex designs  known as  universal  computers  that  are able to emulate any other 

known computing system [1]. The following examples illustrate the breadth of applications for 

cellular  automata:  physics  and  traffic  simulations  [2],  pattern  recognition  [3],  digital  image 

manipulation  [4],  cryptography  [5],  and  technology-based  art  installations  [6].  Due  to  their 

relative simplicity of specification, cellular automata are also used to model other more complex 
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computing systems to produce generalizable results [7].

Cellular  automata are  inherently parallel  systems,  but  they are  generally simulated  on serial 

computers,  which  can  lead  to  a  significantly  longer  computation  time  compared  to  parallel 

implementations  [8]. This longer simulation time may be one reason why, in a review of the 

literature,  few  examples  were  found  of  using  cellular  automata  to  simulate  any  large-scale 

parallel  systems. Fully parallel  implementations do exist  in hardware  [9], but  the number of 

physical connections between modules becomes unwieldy for a cellular automaton of any useful 

size.  To  fully  understand  this  aspect  of  possible  system  designs,  a  metric  for  the  level  of 

parallelism1 in a system has been developed in this dissertation that is represented on the x axis 

of  the computing spectrum in  Figure 1.1.  This metric is  based on a  ratio  of the number of 

processing units used by a system to the number of basic computing elements in that system, 

where the cells are these basic elements for a cellular automaton. In this way, a given system can 

range from being fully parallel, if every element has its own processor, to being fully serial, for a 

very large system with many elements all computed on one processor.

Although the  classical  definition of  a  cellular 

automaton requires all of its cells to have the 

same parameters, there are instances within the 

field  of  cellular  automata  where  each  cell  is 

allowed  to  have  different  parameters.  Such  a 

system is known as a hybrid cellular automaton 

[10], and these systems are designed to  allow 

different  elements  within  the  system  to  have 

different  individual  functionality,  all  used  in 

harmony to achieve an overall goal.  To allow 

an exploration of this aspect of the computing 

spectrum, a second metric has been developed for the level of homogeneity, or hybridity, in a 

system, which is used as the y axis of Figure 1.1. This metric is based on a ratio of the number of 

unique sets of element parameters being used to the number of elements in that system. Similar 

to the first metric, a system can range from being fully identical, when many elements are all 

using one set of parameters, to fully hybrid, where every single element has its own unique set.

1 The author recognizes that parallelism is an overloaded word and can have a number of different meanings 

depending on the topic, field, or subject. In the course of this dissertation, the definition above will be used.
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As  is  evident  from  the  occupied  areas  in  Figure  1.1,  there  are  three  main  regions  of  the 

computing spectrum that are currently in use within the field of cellular automata. The majority 

of  work  in  cellular  automata  focuses  on  their  implementation  on  large  serial  systems,  with 

processors that often have two or four cores, leading to a large mass on the left extreme of the 

spectrum due to  the ratio  between processors  (1 to  4)  and cells  (1000s).  Since the classical 

definition of cellular automata dictates the creation of entire systems with the same parameters, 

there  is  a  similar  mass  on  the  bottom  extreme  of  the  spectrum  due  to  the  ratio  between 

parameters (1) and cells (1000s). Finally, in the field of cellular automata there is effectively no 

previous work that explores the middle range of either parallelism or hybridity, which leads to 

the three visibly separated regions shown.

As an example from the field of cellular automata in the middle of the parallelism spectrum, a set 

of  processors  could  each  compute  the  state  of  a  particular  subset  of  cells  within  a  cellular 

automaton. This is between the extremes of having either a single processor computing an entire 

cellular automaton (at the left) or each individual cell having its own processor (at the right). An 

example of a medium hybridity system would be if each particular subset of cells used a unique 

set of system parameters. This is between the extremes of a typical cellular automaton (at the 

bottom), where all cells have the same parameters, to fully hybrid systems (at the top), where 

every cell's  parameters  are different.  Although a  few of  these systems have been created  in 

hardware as implementation shortcuts, the full range of parallelism and hybridity that makes up 

the computing spectrum has not been explored from a theoretical or design point of view.

This thesis research is directly motivated by the desire to create a framework that will allow the 

development of  cellular  automata  which exist  in  these open spaces  away from the occupied 

regions of the currently used computing spectrum2. This will create an environment where an 

increase in computational efficiency can be achieved while limiting the incidental increase in 

physical complexity.  This motivation for exploring the middle range of Figure 1.1 is related to 

the trade-offs between serial vs. parallel, and homogeneous vs. hybrid, implementations. Fully 

2 While  this  section  describes  the  theoretical  motivation,  there  is  also  a  parallel,  practical  motivation,  which 

spawned the theoretical investigation. In the summer and fall of 2010, I created the hardware and firmware for an 

artistic installation, Aurora, based on embodied cellular automata, comprised of 2592 cells. Since there was a 

desire for the behaviour of the different parts of the installation to be unique, or at least different from other 

adjacent behaviours, the need for a hybrid mix of cellular automata parameters became clear. This in turn led to 

the desire to have a systematic way to analyze a series of connected CAs having different parameters. The lack 

of an existing framework in the literature resulted in the development of the conceptual framework that is the 

focus of this thesis research, and a large portion of the developments in the library as well.
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serial systems have relatively high computational overhead compared with fully parallel systems. 

However,  fully  parallel  systems  are  much  more  complex  due  to  the  number  of  physical 

connections required to communicate cell states in each neighbourhood.

The exploration of the full range of parallelism and hybridity allows for a trade-off between 

computation time and complexity,  as  well  as  allows individual  areas  of  a  system to acquire 

specialized functions thanks to the potential for mid-range hybridity. By enabling a specification 

of  the  fraction  of  processors  per  cell,  and  the  variability  of  parameters  across  the  cellular 

automaton, this exploration also potentially allows the use of existing search and optimization 

tools to locate solutions in the field where there is currently no ability to investigate, due to the 

lack  of  such  a  framework.  This  outlines  a  need  to  develop  a  library  that  implements  this 

framework and enables the creation of a wide range of novel types of cellular automata, on both 

serial and parallel hardware, for use in this search.

In the case of this dissertation, this need is satisfied through the development of a library based in 

part  on  a  novel  conceptual  framework  that  enables  this  expansion  along  both  axes  of  the 

computing  spectrum.  This  is  done  by  defining  the  components  of  a  framework  for 

interconnecting a set of individual cellular automata together into a graph, and implementing this 

framework as part of a larger cellular automata library.  By varying the size of the individual 

cellular  automata  in  the  graph,  and  allowing each of  them to have  their  own set  of  system 

parameters, the entire solution space of Figure 1.1 can be examined. An exploration is also made 

as part of this dissertation of one particular point in the solution space through the application of 

this library in the design of a specific parallel, hybrid hardware system.

 1.1.Motivating Factors

The field of cellular automata was introduced in the 1940s by Jon von Neumann, considered to 

be  the  father  of  the  modern  serial  computer  architecture  [11].  Even  then  there  was  a  need 

foreseen for both parallel and serial systems in computational theory. In part due to the advent of 

the transistor  making computation of  any kind exponentially cheaper,  the simpler  serial  and 

limited parallel3 architectures exploded into their current computing monopoly while the harder 

to build, and seemingly unnecessary at the time, fully parallel architectures languished behind 

with little support. The need for fully parallel systems has only become apparent in recent years 

as computing needs have reached, and in some cases exceeded, the limits of the simpler systems.

3 In this context, limited parallelism is defined as any parallel system with fewer than ten processing cores.
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To accelerate the transition to the kinds of parallel and distributed systems that are envisioned in 

academia and industry as the future of computing, a representative system must be chosen that 

can  systematically  model  the  entire  range  of  potential  systems  to  allow  the  discovery  of 

generalizable results. In this dissertation, the field of cellular automata is investigated as one such 

representative system, since it  can transparently and clearly represent a large subset of these 

systems using very simple parameters. Since completing global tasks using only local knowledge 

is a key component of unsupervised parallel computing, the suitability of cellular automata in 

representing general parallel systems is a result of their core functionality: any particular global 

task, ranging from needing local to global scales of information processing, is carried out by 

many simple units with only local knowledge and connections. In addition, the simplicity of the 

specification  of  all  cellular  automata,  even  those  with  complex  behaviour,  makes  the  field 

attractive as a representative group of their fellow parallel and distributed systems.

Given the current state of the art in the field of cellular automata, and its currently used range of 

the parallel/hybrid  spectrum as depicted in  Figure 1.1,  a  major void exists  in the full  set  of 

representable systems. This void can be filled through the creation of a conceptual framework 

that allows the definition of cellular automata that exist across the full range of possible levels of 

both parallelism and hybridity. As shown in Figure 1.2 using similar colours to those used in the 

computing spectrum graph from Figure 1.1, the framework would need to be able to split a large 

serial system into a set of parallel modules, each running on a unique processor, as well as being 

able to take a number of smaller unconnected serial systems and  connect them into a larger 

hybrid system. It would also need to have the freedom to convert between these two new types of 

systems. On achieving these forms of system conversions, the framework would then enable 

cellular  automata to act as representative systems for the majority of, if  not all,  parallel  and 

distributed systems that currently exist throughout the parallel/hybrid spectrum.

Developing  such  a  conceptual  framework,  and  a  library  that  implements  and  enhances  its 

abilities, is the overall motivation of this research. Any library that implements this framework 
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will  also  need  to  be able  to  handle  the  simulation and  implementation of  the  full  range  of 

possible cellular  automata on both software and hardware,  as well  as being easily usable in 

current and future research. To shape and target the design of the library, these key motivational 

factors have been condensed down into specific criteria for success in the next section. Due to 

the vast amount of potential research in the use of cellular automata as representative members 

of most unsupervised parallel and distributed systems, these criteria are primarily focused on the 

key aspects needed to drive the development of a high-level library that initially uses a limited 

set of system parameters but is designed to be extendable in the future.

 1.2.Design Criteria

A set of criteria has been developed to guide the successful design of the library. These criteria 

have  been  developed  to  ensure  the  library  allows  the  implementation  and  development  of 

software-  and  hardware-based  cellular  automata  for  use  as  representative  members  in  the 

investigation of parallel and distributed systems. For this library to be successful at a high level it 

must:  implement  the  new conceptual  framework,  be  usable  on  any suitable  combination  of 

hardware  and  software,  use  an  open  architecture  to  allow  interfacing  with  other  systems, 

replicate the functionality of the majority of currently available functionality, and allow simple 

extensions to  create new functionality.  These five core aspects  are used to define  the set  of 

criteria that the library must satisfy.

The primary criterion for the success of this library is the implementation of the new conceptual 

framework.  To  achieve  this,  the  library  must  have  the  ability  to  separate  the  necessary 

computation in a cellular automaton into parallel modular pieces to spread the usable spectrum of 

computation across the full range of parallelism. This allows for the multitudes of computations 

needed  for  a  massive cellular  automaton  to  be  split  into  smaller  computational  modules,  as 

simply demonstrated in the left system transition of Figure 1.2. The library must also allow each 

individual  module to specify its  own set  of  parameters,  so  that  the overall  system can exist 

anywhere along the full range of hybridity, as demonstrated in the right transition of Figure 1.2. 

Depending on the scale and speed that is necessary for the task at hand, the modules could be 

implemented on the different cores of a multiple-core processor, a subset of servers in a server 

farm, or even a distributed set of microcontrollers. The use of computational modules would also 

allow a  measurable  increase in  the  speed  and  size  of  possible  cellular  automata  with  every 
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modular addition of resources, similar to the methods currently used to increase the throughput 

of server farms by adding new banks of servers as needed.

The secondary criterion for success is to ensure that any improvements that are developed as a 

part of this library are directly applicable in both software and hardware implementations so that 

the computational modules used to satisfy the primary criterion can be directly instantiated. To 

accomplish this, the library will need to be built from a set of fairly basic computational modules 

that can be directly  instantiated in software or hardware. Steps will also need to be taken to 

reduce the typical complexity of hardware implementations of cellular automata for the same 

reason.  There are  a number of  key physical  elements  that  will  need to be optimized before 

hardware implementations are as viable as their software counterparts, including the number of 

connections used, communication systems, power demands, and storage capacity. However, the 

key  non-physical  element  that  contributes  the  most  towards  ensuring  that  hardware 

implementations  are  as  viable as  those  in  software  is  an  increase  in  overall  computational 

efficiency.  This  boost  in  efficiency would also act  to  ensure that  power  demands were at  a 

minimum and could potentially improve other physical elements as well, such as by reducing the 

number of necessary connections or frequency of communication. 

Along with the primary and secondary criteria, there are a few ancillary criteria that have been 

identified which will increase the usefulness of the library in future research. The first criterion is 

that the library architecture is open, to allow for simple access to data from any of the various 

systems  that  are  generally  used  alongside  cellular  automata,  such  as  the  genetic  algorithm 

approach to evolutionary optimization. To achieve this criterion, an interface must be developed 

as part of the library that will allow external systems to query useful data from the library, as 

well as to manipulate and analyze both local and global properties of the cellular automata that 

are implemented.  This  will  create  the capability to  externally measure and  interact  with  the 

cellular automata using the library in both high- and low-level ways, such as allowing a genetic 

algorithm to determine the density or global state of a particular cellular automaton or enabling a 

graphical interface with the ability to specify initial cell state conditions manually.

The  second  ancillary criterion  for  the  success  of  the  library is  the  inclusion  of  the  current 

standards of functionality in the field of cellular automata. The field as a whole contains a large 

number of different possible system parameters, of which only the most important have been 

introduced here, which can be used to fully describe a large body of previous work. To model all 
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of this previous work, a library must provide the ability to use any of the possible parameters. 

However, the majority of previous work uses only a limited subset of the potential parameters 

that are available, and it is this limited subset that must be implemented to satisfy the criterion. 

While this initial  work will focus only on a subset of the full  range of parameters,  the next 

criterion ensures that the library is able to allow expandability to facilitate future development.

The last ancillary criterion is creating the capability of extending the core library. This allows the 

introduction and development of new functionality above what is currently available in this and 

other cellular automata libraries. There is a wide potential for new forms of functionality, and 

with each form there exists the ability to define and solve new tasks that cannot currently be 

specified. As stated in the previous paragraph, this capability will also allow all of the possible 

system parameters that currently exist, and many that may exist in the future, to be incorporated 

into the library. The integration of these criteria in the design of the library can be regarded as a 

completely successful design.

The next section provides a high-level overview of the methods used to develop a library that is 

designed to satisfy these criteria. The achievement of fine control over the levels of hybridity and 

parallelism of cellular automata in this library relies directly on a particular implementation of 

the  interconnection  framework  that  is  the  core  novel  component  of  this  research.  The 

achievement  of  the  remainder  of  these  criteria,  such  as  increasing  efficiency  and  allowing 

extendability,  relies on the development of specific novel aspects of the library that are also 

introduced in the next section.

 1.3.Methodology

To  achieve  the  criteria  that  were  set  out  in  the  previous  section,  a  number  of  changes  are 

necessary compared to common methods of building cellular automata libraries. These changes 

are realized primarily through the design of a framework that allows an expansion throughout the 

computing spectrum in the field of cellular automata, and through the creation of a library that 

implements  both  this  framework  and  a  number  of  additional  novel  aspects.  A  hardware 

application of this library is also developed, where a subset of the library functionality remains in 

software while  the  remainder  is  replaced with  functionally-equivalent  hardware  components. 

This application is designed to serve as a demonstration of both the framework and the library 

being applied directly within a physically realized system in a way that will test the successful 
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integration of all of the design criteria.

The biggest fundamental change from more common implementations, such as [12], and the key 

idea behind the new conceptual framework, is a mechanism which allows two different types of 

computational simplification: breaking down a large system into parallel pieces and uniting a 

number of different parallel systems into a single larger system. In this way, the new framework 

allows for cellular automata, and therefore the set of parallel and distributed systems they can 

simulate, to occupy a much broader area of the computing spectrum shown in  Figure 1.1, as 

these two types of simplification can be restated as parallelism and hybridity, respectively.  The 

success  in  implementing this  framework  in  the  library,  and  therefore  achieving  the  primary 

criterion, is built  on two design aspects: the separation of computation into modules and the 

joining of a mix of cellular automata into a more complex system.  The framework at its core 

creates the ability to interconnect a number of individual systems in a variety of ways to produce 

new and interesting computational systems throughout the parallelism and hybridity spectrum.

In addition to implementing this framework and easily achieving the second ancillary criterion of 

duplicating the limited set of system parameters that are available in other libraries, this design 

includes a number of interesting and unique aspects of its own. The main new aspect of this 

library is the creation of a method for quickly skipping over any areas of a cellular automaton 

that are not changing over time. This method has the potential to vastly increase the efficiency of 

the system overall, as the majority of the computational time for any cellular automaton is spent 

on the calculation of which cells are changing state at any given time. Since there are many 

different  types  of  cellular automata,  with many varied forms of  local  and global  changes  in 

activity, at any particular time this method could either be helping or hindering the efficiency of 

the overall system. These varying effects on the overall efficiency, as well as the effects of the 

implementation of the framework, are analyzed for a number of specific cellular automata. This 

new aspect, as well as others that will be discussed as part of the library description, serve to 

achieve the final ancillary criterion of creating new functionality.

An additional feature of the library is the inclusion of an interface which allows external systems 

to analyze and interact with any cellular automaton that it has created. This includes being able to 

both measure the current state of the system and manipulate its local and global properties. This 

interface spans a broad range of possible functions which includes the ability to both change the 

state of a single cell in real-time using a graphical interface, and classify a set of parameters 
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based on the system's reaction to a specific set of initial conditions. Extensions to the interface, 

as well as to the library itself, are also possible to allow future research to easily build upon its 

core components. This interface to the library directly achieves the first ancillary criterion of 

having an open architecture.

Finally,  this  library  is  extended  and  converted  into  a  mixed  software  and  hardware 

implementation that  is  used in an embodied system to serve as  both a  demonstration of the 

achievement of the secondary criterion and the use of the library. The library, and by extension 

the  framework,  is  directly  applied  to  allow a  set  of  different  cellular  automata  to  each  be 

computed locally on their own hardware, while acting as a single massive cellular automaton, 

and the region-skipping method is applied to reduce the time and power needed to compute the 

global state of each individual cellular automaton. As a part of this hardware implementation, an 

evolutionary computing method known as genetic algorithms is combined with the library to 

allow the system as a whole to discover a particular hybrid set of parameters that will solve a 

specific task. This ability to work with a joined set of different cellular automata increases the 

solution space for a given task, while potentially allowing more efficient solutions to existing 

problems or even solutions where none currently exist.

 1.4.Contributions

The main goal of this thesis research is to enable an exploration of the majority of the available 

computing spectrum by using the field of cellular automata as a representative member of a 

subset  of  parallel  and  distributed  systems.  As  a  direct  solution  to  this  goal,  a  conceptual 

framework is developed that allows the field of cellular automata to emerge from the edges of 

the computing spectrum and spread across the full range of both parallelism and hybridity. To 

implement this framework, and create the capability for a practical exploration of this spectrum, 

a library has been designed that is judged based on a number of design criteria. These criteria 

ensure that the library can be instantiated and used in a wide range of potential investigations 

throughout the hardware and software realms and the computing spectrum. To demonstrate the 

use of the library, using a mixture of software and hardware, and to underline the capabilities of 

the  new conceptual  framework,  an  embodied  hardware  application  has  been  developed  that 

makes use of all of the library components needed to successfully achieve the chosen criteria.
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 1.5.Outline

This section is intended to provide the reader with a chapter by chapter summary of the core 

contents of this dissertation. This has been done to both guide reading and to provide a high level 

skeleton which will be fleshed out in the chapters to follow.

A solid foundation is provided in Chapter 2 of the core concepts in the field of cellular automata, 

as well as discussions of a number of related topics. These topics include two specific types of 

cellular automata, a method for computational analysis, hardware applications, and a method of 

searching the field for the solution to a particular problem. The purpose of these discussions is to 

ensure that the reader has a suitable understanding of the underlying topics before moving into 

the details of the framework itself. This is done not only to simplify comprehension, but also to 

allow the reader to appreciate the differences between the state of the art and the developments 

that arise in the course of this thesis research.

Once  this  foundation  has  been  laid,  Chapter  3 defines  the  framework  that  is  the  primary 

contribution of this  thesis  research.  This framework has been developed to define all  of  the 

conceptual  elements  needed  to  allow the  interconnection  of  a  set  of  cellular  automata.  The 

chapter contains a description of the various elements that are introduced to the field of cellular 

automata, as well as definitions of how they function with respect to the field in general. The 

core functional element of this framework is an interconnection graph in which the main nodes 

are cellular automata, other nodes are interconnectable systems, and the edges between all of 

these nodes define how each pair is connected.

A newly created library for cellular automata research is described in Chapter 4 that implements 

this framework, as well as a few other unique developments. The chapter begins with a brief 

discussion of the core implementation aspects of the library, including scope limiting, followed 

by three dedicated sections. The first section describes the novel aspects of the library, which 

primarily consists  of  two things:  interconnection and being able to skip static  regions  while 

updating. The next section discusses the changes in efficiency for each of these primary aspects 

to quantitatively demonstrate the overhead and gains associated with each, with a focus on the 

dependence of static region skipping on global dynamics. Finally, the last section outlines a few 

specific applications including interactive systems and the use of the library in searching for 

solutions to specific tasks.
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The description of an interactive art installation, which was built using the concepts introduced 

and developed in both the framework and library, is contained in Chapter 5. The installation in 

question,  named  “Aurora,”  is  used  primarily  in  this  dissertation  as  a  demonstration  of  the 

application of the novel aspects of the framework and the success of the library design. It also 

serves to introduce various hardware issues that arise in the implementation of cellular automata 

as embodied systems, and discusses how a few can be resolved by specific aspects of the library.

Finally,  the main conclusions of this thesis research, and potential future research topics,  are 

discussed in Chapter 6. The library is determined to satisfy all of the criteria that were set out in 

Section 1.2, and the specifics of how each criterion was satisfied is discussed in detail. Based on 

this success, the framework's potential uses in the field of computational theory are explored as 

future work. In particular, there is a discussion of its use in the analysis of the computational 

robustness of hardware implementations of cellular automata in the face of various forms of 

software and hardware failure. The application of the library to a few potential tasks is described, 

with an emphasis on tasks other than those typically seen in the field of cellular automata.

12



 2. Background

To understand the contributions of this thesis research, an introduction to the field of cellular 

automata is  necessary,  along with a description of how the field can be combined with both 

embodied hardware and evolutionary computing. Most of the recent work that is discussed in 

this section, in both cellular automata and their combinations with other systems, is done in one 

dimension (1D) with very little work in two or more dimensions. In fact, one of the main factors 

that could be affecting the absence of multidimensional research in the field of cellular automata 

is the lack of a library similar to what is outlined by the criteria from Section  1.2. Without a 

physically implementable library that would allow fast updates of very large parallel systems, the 

computational needs and required infrastructure of multidimensional cellular automata may have 

led to their avoidance on the part of the majority of researchers in the field. This would explain 

the presence of extensive cellular automata work in 1D with only extremely minimal work in 2D 

and beyond, even though the field of cellular automata first began in 2D.

There is an extensive realm of systems that fit into the field of cellular automata. There are many 

different  types  of  cellular  automata,  and  within each there exists  a  range  of  possible  global 

dynamics. This range of dynamics includes systems that have a static or periodic structure, are 

statistically random,  or  even  act  chaotically.  There  are  even  known combinations  of  system 

parameters that create a cellular automaton that is capable of universal computation [1]. Thanks 

to  their  simplicity  in  definition,  cellular  automata  are  an  excellent  tool  for  the  analysis  of 

distributed systems and can be used to emulate and simulate both serial and parallel computing 

systems across a broad spectrum of research fields. A core taxonomy that will be used throughout 

this dissertation is developed in the next section, as well as brief explorations of both the history 

and more recent work in the field of cellular automata.

After the core section on cellular automata, two related fields are introduced in the following two 

sections that are both used directly as design components in the hardware application outlined in 

Chapter 5 of this dissertation. The first of these related fields is the implementation of cellular 

automata in  hardware in  the form of  embodied systems.  The  general  concepts of  embodied 

systems  are  introduced  and  compared  to  more  popular  embedded  systems,  and  details  of 

embodied forms of cellular automata and some recent work in their development is discussed. 

The second related field is a subset of the larger field of evolutionary computing that are known 
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as genetic algorithms. Again, their general concepts are described before the introduction of their 

combination with cellular automata and some recent work are discussed.

 2.1.Cellular Automata

As  mentioned  above,  the  field  of  cellular 

automata  consists  of  a  wide  spectrum  of 

possible  systems,  but  the  majority  of  this 

spectrum  can  be  specified  using  only  a  few 

simple parameters. These parameters, shown in 

Figure  2.1,  are  generally concerned  with  two 

core aspects of a particular cellular automaton: 

how  individual  cells  within  the  system  are 

specified, and why and when the state of these cells changes over time. The cells in a cellular 

automaton are defined based on their geometry, their state, and which cells are considered to be 

neighbours. The progression of cell states is based on a rule which dictates what the new state of 

a cell will be given the current state of that cell and the states of its neighbours.

More formally, a cellular automaton is a mathematical model that can be viewed as a set of cells 

distributed spatially across a lattice, each of which acts as a finite state machine that uses only 

local knowledge of neighbouring cell states to progress through a limited set of states over time. 

The spatial distribution in  2D typically uses a full lattice of shapes that completely covers an 

infinite plane. To create a cell matrix that contains all of the cells in the system, each individual 

shape in the lattice becomes a distinct cell which has a particular state. Every cell also has access 

to the state of its neighbouring cells' states, where the local neighbourhood can be defined in 

many different ways but is generally based on how far away cells are from each other.

In 2D, in the case where an infinite plane is not used, there are also boundary conditions which 

define how the cells on the edges of a cellular automaton relate to each other in terms of which 

cells are neighbours. This most often takes the form of connecting the top edge of a cellular 

automaton to the bottom, and the right to the left, to create an environment that is toroidal, or 

doughnut shaped, to simulate an infinite plane. However, other boundary conditions seen in the 

literature include defining the edges as static cells, having the cell states chosen randomly at run-

time,  or  acting  as  reflectors  which  take  on  either  the  state  of  the  direct  edge  cells  or  their 
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neighbouring cell one step away from the edge, as if in a mirror [13].

The rule that is used to cause a change from one state to the next is generally known as the 

transition rule or function. The combination of the size of the neighbourhood and the number of 

states each cell can have dictates the number of possible transition rules for a particular cellular 

automaton.  These  locally  informed  rules  are  typically  deterministic,  synchronous,  and  act 

concurrently to calculate the next state of every cell in the system at once, based only on each 

cell's local knowledge of its neighbourhood at the previous time step. For the purpose of this 

work, probabilistic, asynchronous, and any other forms of rules will not be considered.

The shape that is used as the basis for the cell matrix can be chosen from a list of any of the 

various geometric objects that can be tiled to completely cover a plane, commonly known as 

tessellations. There are many different mixed sets of shapes that can achieve this coverage, as is 

evident from the various methods of laying stone tiles, but the majority of these tilings create a 

number of different relationships between the various cells. These relationships have a direct 

impact on how neighbourhoods are defined, as can be seen in the example of Penrose tiles in 

Figure 2.2, which have been used to implement a cellular automaton in the past [14] but require 

the definition of a number of different neighbourhoods to work.

To avoid the need for  complex neighbourhood calculations,  a  common relationship between 

shapes is desired. To this end, only homogeneous shapes that always have the same number of 

neighbours will  be considered in this dissertation. Even with this restriction, there are still  a 

number  of  potential  tessellating  shapes  available:  any  rectangular  or  triangular  shape,  most 

hexagonal shapes, and one pentagonal shape. The hexagonal tiling restriction requires only that 

two of the shape's sides are parallel and congruent, while there is only one pentagonal tiling 

without mixed neighbourhoods. It is important to realize that the shape of the individual cells 

within a cellular automaton have little effect on the overall shape of the cell matrix, other than to 

contribute their particular relationships to the cell-level details of the edges of the system.
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Figure 2.2. Shows the seven different allowable vertex relationships in a Penrose tiling using rhombs. These can be 

combined to build a variety of neighbourhoods with a large range of different numbers of neighbours.



In addition to the need to choose a shape for the cells, the range of possible cell states must be 

chosen. This state can range from a discrete two-state system, generally referred to as a binary 

cellular automaton, through to as many states as there are integers, to purely continuous states 

that have only a maximum and minimum value and can take on any real value in between. The 

choice of the type of state (discrete or continuous) and the range (typically from 0 to a positive 

value)  has a direct  effect on how the transition rule  is defined. With a continuous state,  the 

transition rule is a function that takes the cell states as arguments and calculates the new state. 

For the remainder of this dissertation, it is assumed that the state is always discrete as the current 

abilities of computing systems has little distinction between the two at a high enough number of 

discrete states. However, it is important to note that the range of applicability of this research 

remains valid even without the restriction of using only discrete states.

The  selection  of  the  neighbourhood  is  a  key 

parameter  of  the  specification  of  a  cellular 

automaton, as it dictates, along with the number 

of  possible  cell  states,  how  many  transition 

rules  are  available.  There  are  many  different 

neighbourhoods that can be chosen, and which 

one to use depends greatly on the desired behaviour of the cellular automaton in question. Any 

change to the symmetry or size of the neighbourhood can have vastly different results. The two 

most  popular  types  of  neighbourhood,  shown in  Figure  2.3,  are both named after  historical 

figures  in  the  field  of  cellular  automata:  von  Neumann  and  Moore.  The  von  Neumann 

neighbourhood (Figure 2.3a) is defined as including all cells that are within a given number of 

orthogonally  connected  cells,  while  the  Moore  neighbourhood  (Figure  2.3b)  is  defined  as 

including all  cells  that  are  within  a  given  number  of  radially  connected  cells.  In  this  case, 

orthogonal distance is measured by how many shared cell edges must be crossed to get to a cell, 

while radial distance is based on how many shared cell edges or corners must be crossed. For a 

visual  method  of  distinguishing  between  these  two  types,  think  of  the  von  Neumann 

neighbourhood as diamond shaped while the Moore is round.

When a particular cellular automaton is not implemented on an infinite plane but as a finite sized 

cell  matrix,  as  is  usually done, there is  a  requirement  to deal  with how neighbourhoods are 

specified on the boundaries of the system. These boundary conditions can take many different 
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Figure  2.3.  The  von  Neumann  (a)  and  Moore  (b) 

neighbourhoods of an inner cell (dark grey) in a square 

tessellation with a one cell distance.
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forms,  each  of  which  can  contribute  very different  changes  in  the  behaviour  to  the  overall 

system. The simplest form of boundary conditions are static, where all missing neighbours are 

considered to be in a predefined state (typically 0) that does not change over time. Although this 

is very simple to implement, it  is generally destructive to any information processing that is 

being done.  A simple  extension  of  this  method  generates  a  random valid  state  each  time a 

missing neighbour's state is needed. This method introduces random noise to the edges of the 

system, which can be either beneficial or damaging, depending on the task at hand.

The most common type of boundary conditions that are used in the research world are spatially 

periodic boundaries. In most periodic boundary conditions, the top edge cells of a square-shaped 

cell matrix are connected to the bottom edge cells as if the entire matrix were wrapped around a 

tube, and the left and right edge cells of this cylinder wrap in a similar way. Given this tube that 

has been wrapped end to end, periodic boundary conditions are also commonly referred to as a 

toroidal environment,  as the cell matrix acts the same as the surface of a torus, or doughnut 

(Figure 2.4).  Using these boundary conditions,  an infinite plane can be simulated if  the cell 

matrix is large: any patterns that appear to move or grow across the system will continue to move 

or grow indefinitely until they interact with themselves. An example of a pattern that appears to 

move across the cell matrix, commonly known as a 'glider', is discussed in Subsection 2.1.1.

There are many possible types of transition rules, with the most popular types known generally 

as fully specified, rotationally or axially symmetric, and various totalistic rules. A selection of 

how these rule types label a given set of cell states is shown in Figure 2.5. Each of the different 

rule types defines the next state of a cell based on different patterns in the cell's neighbourhood. 

When using fully specified rules (FS), every possible pattern of neighbourhood states is used, 

while with symmetric rules, only the sets of symmetrically equivalent neighbourhood patterns 

are used. The equivalence between neighbourhood patterns in symmetric rules changes based on 

the type of symmetric rules used: in axial rules (AS), patterns are equivalent if they are mirrored 
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copies along a given axis, while in rotational rules (RS) patterns are equivalent if they are rotated 

copies. The most easily defined types of rules are totalistic rules (T), which are based only on the 

number  of  cells  in  a  neighbourhood in  each  particular  state,  without  needing to  know their 

specific pattern. There are a number of simple extensions that are also commonly used in the 

realm of totalistic rules to expand their usefulness, shown in Figure 2.6.

The omission of the state of the inner cell from 

a totalistic rule is known as an outer-totalistic 

rule  (OT),  and  means  that  the  state  of  any 

particular cell cannot affect its own next state. 

This  extension  to  general  totalistic  rules  is 

typically  done  in  tandem  with  the  further 

extension  of  inner-dependence,  which  creates 

the  ability  to  define  a  distinct  set  of  outer-

totalistic rules for every possible inner cell state. This means that the state of a cell has a direct 

influence on its own next state, in a more powerful way than in general totalistic rules where it 

shares  equal  influence with  its  neighbours.  Compared  with  general  outer-totalistic  rules,  the 

addition of inner-dependence increases the total number of potential rules by a power of n, the 

number of possible inner cell states, along with increasing the size of each rule by a factor of n.

When using any discrete totalistic rules, the simplest method of defining a transition function is 

to create a look-up table for the next state, indexed in a unique way using the number of cells in 
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Figure 2.6. Examples of how the most common totalistic 

rule types are indexed and specified.
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Figure  2.5.  Example  of  how the  various  types  of  rules  label  each  set  of  states  using  a  size  1  von  Neumann 

neighbourhood in a square tessellation. The numbers represent the specific unique rule index that would be used.
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each state within a neighbourhood. In a two-state system, this index is usually the number of 

cells in the 'on' or 1 state, while the contents of the table are simply the next state for the cell (1's 

and 0's). As shown in Figure 2.7, if a cell in a four neighbour two-state outer-totalistic system has 

three neighbours in the 'on' state (1, black), and the value at i = 3 in the look-up table is a 1, then 

the cell's next state is a 1. Note that due to the outer-totalistic extension, the previous state of the 

central cell is not used in any way.

With the added complication of inner-dependence, the number of look-up tables is multiplied by 

the number of possible inner cell states, n. In most implementations this takes the form of a 2D 

matrix of cell states, where the column index into a given look-up table is provided as before 

while the row index to select a particular table is simply the value of the current state of the inner 

cell.  Since the number of tables in the matrix is always the same as  n,  each column can be 

replaced  by  compressing  that  column's  contents  into  a  single  value.  This  is  achieved  by 

multiplying  each  look-up  tables'  contents  by  n to  the  power  of  the  row index,  then  adding 

together  the  new contents  of  each  column.  Figure  2.8 demonstrates  this  compression  for  a 

particular four neighbour two-state inner-dependent outer-totalistic rule.

The final parameter to be specified is also the only parameter that is more often a part of the 

problem definition or randomly chosen than a part of the actual system specification itself. This 

parameter consists of the initial state that each individual cell in a given cellular automaton starts 

in  before  the system begins  to  progress  through time,  known as  initial  conditions.  In  many 
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Figure 2.8. Example of how an inner-dependent outer-totalistic rule is compressed into a single table of values.

0 1 1 0 0

2 0 2 0 2

0 1 1 0 0

1 0 1 0 1
2 1 3 0 2

x 20

x 21

Σ

Inner-Dependent
Outer-Totalistic Temporary Values Compressed Table

Figure  2.7. Example of how an outer-totalistic rule is applied using a size 1 von Neumann neighbourhood in a 

square tessellation. Grey cells indicate a cell state that is either irrelevant to the rule, as is the case with the inner cell  

before the transition, or unknown, as is the case with the outer cells that may have changed based on unshown cells.

0

0

1

1

1

2

1

3

0

4i =

+1

+0

+1+1



problems, these initial conditions are actually the input to the problem and the remainder of the 

system parameters are used to attempt to manipulate these initial states to find some sort of 

output. In other problems, there are a set of very specific initial conditions for large regions of 

the cell matrix that act in tandem with the system parameters to accomplish a task, while a small 

region of varying cells is used as the input.

The field of cellular automata is far too large 

for any kind of broadly inclusive research to be 

done in the scope of a graduate thesis, or even 

in  any  single  document.  Therefore,  in  the 

implementation of the library in Chapter 4, only 

a subset of the possible parameters will be used 

as  shown  in  Figure  2.9.  However,  since  any 

unconnected cellular automaton is  represented 

by only a few basic graph nodes, the framework 

developed  in  the  next  chapter  is  able  to 

accommodate  most,  if  not  all,  of  the  current 

field  of  cellular  automata.  The  subset  of 

parameters used in the library (in white) is: 2D shapes that are homogeneous and can tessellate 

infinitely, two discrete states, Moore and von Neumann neighbourhoods with a size of one cell, 

and all  forms of totalistic  rules  including outer-totalistic and inner-dependent variations.  The 

specific reasons behind each of these choices of parameter limitations are discussed in detail as a 

part of describing the implementation of the library in Chapter  4. However, for the purpose of 

this thesis, this subset of parameters will be used as the standard in the field of cellular automata.

Due to  the  vast  numbers  of  possible  combinations  of  parameters,  there  are  only really  two 

options for using cellular automata as computational task-solving systems. The first consists of 

exhaustively searching for, or carefully hand-picking, a set of parameters to achieve a necessarily 

simple goal.  Due to the inherent  difficulty of finding useful  parameters in the vast  space of 

cellular  automata,  this  manual  design  or  search  generally  includes  the  need  to  define  very 

specific  initial  conditions  as  suggested in  the previous paragraph.  This is  the most common 

method used in research, going as far back as when John von Neumann created the very first 

cellular automaton in the 1940s [11]. A summarized listing of the major milestones in the history 
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Figure  2.9.  Concept  map  of  the  limited  set  of  system 

parameters  that  are  available  within  the  library.  White 

nodes are usable parameters, while dark grey nodes are 

not. Light grey nodes indicate partial implementation.
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of the field of cellular automata is discussed in the first subsection.

In  addition to the common parameters previously discussed, there are a wide range of other 

parameters  and aspects  of  cellular automata that  have been introduced recently that  include: 

dissipative systems, where external inputs can change behaviour  [15]; hybrid systems, where 

each cell can have different parameters [10]; and hierarchical systems, where each cell's state is 

based on an entirely separate cellular automaton  [16]. A few specific examples of these recent 

developments in the field of cellular automata are discussed further in Subsection 2.1.2.

Further extending the idea of modifications to the traditionally software-based field of cellular 

automata, a number of hardware applications merit investigation. To this end, Section 2.2 begins 

with a brief introduction to the field of embodied hardware, including how it relates to more 

common embedded systems.  It  then moves on to  a  discussion of  how cellular  automata are 

generally implemented as an embodied system, and a selection of recent work is discussed that 

deals  with  systems  used  to  accomplish  a  variety  of  tasks  that  range  from  computationally 

complex control systems to architectural designs made strictly for their visual appeal.

Other than the exhaustive searching and carefully hand-picking option, the second option for 

designing cellular automata to achieve specific tasks, which is steadily growing in popularity, 

consists of searching the large potential parameter-space using automated search methods. The 

most promising method used in this application is a form of evolutionary computing known as 

genetic algorithms. Since genetic algorithms are specifically designed to be able to search large, 

non-linear spaces that are defined by a number of discrete or continuous numerical parameters, 

they are an excellent fit for this type of search. A brief introduction to genetic algorithms is given 

in Section 2.3, along with details and recent work on their use with cellular automata.

 2.1.1. Historical Development

As  mentioned  previous  in  this  section,  the  field  of  cellular  automata  began  with  John  von 

Neumann in the 1940s with an investigation into the computational aspects of self replication 

[11]. In his efforts towards creating a self-replicating machine, he was inspired by Ulam [17] to 

use a regular structure, similar to the biological cells that Ulam himself was working with, as the 

environment for replication. Using a 2D environment of square cells, each of which could take 

on one of 29 different states, and a fully specified transition rule based on a cell's own state and 

the state of its four edge-connected neighbours (the von Neumann neighbourhood of size 1), von 

Neumann  created  the  first  cellular  automaton.  With  this  environment,  he  was  successful  in 
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designing  a  self-replicating  machine  which  was,  in  fact,  a  universal  constructor  [1]:  it  was 

capable  of  building any structure that  was possible  within the environment  given a suitable 

localized set of initial conditions for the cellular automaton. Unfortunately, von Neumann passed 

away before he was able to publish his work so it was not brought to the public's attention until 

1966 when Arthur W. Burks edited and completed it on his behalf. Leading up to and following 

its public release, a number of major developments came about in the field, most of which were 

dependent  on von Neumann's  work: Edward Moore  [18],  who proposed the first  finite  state 

machine in 1956; Edgar Codd [19] and Christopher Langton [20], who built on the research on 

self-replicating machines in the late 1960s and early 1970s, and Edwin Roger Banks [21], who 

wrote a doctoral thesis on information processing and transmission in cellular automata in 1971.

The  next  major  step  in  the  development  of  the  field  of  cellular  automata  came  with  the 

introduction in the 1960s of John Conway's “Game of Life”, based on his lattice experience with 

John Leech and Ulam's cells [22]. The Game of Life is not truly a game in the classical sense, 

but the plethora of interesting patterns and behaviours that come about with only subtle changes 

in its initial conditions make it very entertaining to play with nonetheless. It consists of a  2D 

square tessellation of cells using a size-1 Moore neighbourhood with two states per cell, typically 

labelled as  alive or  dead. The inner-dependent, outer-totalistic transition rules are simple: if a 

dead cell has exactly three live neighbours it becomes alive, otherwise it stays dead; if a live cell 

has exactly two or three neighbours it stays alive, otherwise it becomes dead. In the compressed 

inner-dependent outer-totalistic rule system that was described earlier, this is [0 0 2 3 0 0 0 0 0].

These simple rules led to so many interesting patterns, such as the 'glider' in  Figure 2.10, and 

algorithmic possibilities, thanks to the ability to create logic gates with these 'gliders', that they 

were presented in Martin Gardner's Mathematical Puzzles column for Scientific American [23]. 

This column's popularity in the academic world led to a number of newsletters and a plethora of 

research papers, the most important of which are contained within the recently released book 
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Figure 2.10. A moving pattern of cell states known as a 'glider' in John Conway's Game of Life cellular automaton. 

The pattern of 'live' cells at t = 0 is recreated at t = 4, after having moved one cell to the right and one cell down.
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“Game of Life Cellular Automata” by Andrew Adamatzky [14]. A few of the key discoveries that 

were made based on the Game of Life, the majority of which are also discussed in this new book, 

include: its ability to support universal computation [24]; a super-set of “Life-Like” rules, which 

have many similar properties to the Game of Life rules [25]; and even the use of common cell 

state patterns in the Game of Life to create both music ([26]..[29]) and art ([6], [30]).

The  last  major  milestone in  the  history of  the  field  of  cellular  automata  comes  courtesy of 

Stephen Wolfram and his series of papers on the topic in the early 1980s [7]. These papers were 

mainly  concerned  with  a  class  of  cellular  automata  that  Wolfram  labelled  as  “Elementary 

Cellular Automata”: 1D cellular automata with two states per cell and only the two closest cells 

for neighbours. Based on this limited set of neighbours and states, there are only 256 (2^2^3) 

different fully specified rules, as shown in  [31]. Wolfram's main contribution to the field is a 

system of classification for cellular automata that categorizes them into four distinct groups, and 

has  been  shown  to  remain  a  valid  classification  mechanism  in  multidimensional cellular 

automata as well as the simple 1D systems for which it was developed [32]. Briefly, these classes 

are: Class 1, eventual progression of every cell in the system to a homogeneous state regardless 

of initial conditions; Class 2, reduction to static or temporally periodic patterns from any initial 

conditions; Class 3, visibly chaotic patterns from the majority of initial conditions; and Class 4, a 

mix of periodic and translating patterns that show complex global structure and are capable of 

information processing and transfer. Further work by Matthew Cook showed that 'Rule 110', the 

only Class 4 Elementary Cellular Automata, is capable of universal computation [33].

In the time since these major milestones, there have also been a number of minor developments 

that  have  grown  the  field  of  cellular  automata  to  its  current  status  as  a  major  part  of  the 

computational space. Some of these developments have been briefly introduced earlier in this 

section, and the main ones are discussed further in the next subsection on more recent work in 

the field. The main development that is important to this work in terms of cellular automata is the 

introduction of hybrid systems: where individual cells within a system can each have different 

parameters. Following a discussion of hybrid systems, and other recent developments in the field 

of cellular automata, there are two sections dedicated to topics that are also important to this 

work: hardware implementations of cellular automata,  in Section  2.2, and the use of genetic 

algorithms to search for parameter sets, in Section 2.3.
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 2.1.2. Recent Work

In  this  subsection,  a  number  of  examples  are  used to  demonstrate  a  subset  of  the potential 

changes that can be made to a more typical cellular automaton to expand its abilities and utility. 

Although this can take many forms, the two main changes to the overall system that are explored 

below are the use of hybrid and dissipative elements. Following these two examples, there is a 

brief discussion of a method for analyzing specific parameters of a cellular automaton for their 

intrinsic computational abilities, which is particularly effective when there is no quiescent state 

and therefore no visibly obvious method of passing information.

The first change, and the one which is most closely related to the design of the framework in the 

next chapter, is the ability to define a cellular automaton where each individual cell is defined by 

a different set of parameters. This is known as a hybrid system, and can be directly related to the 

vertical axis of the computing spectrum shown in Figure 1.1. Typically hybrid systems will be 

limited artificially to only use a few different  sets of parameters,  such as only changing the 

transition  rules,  or  using  only a  few cells  in  1D,  each  with  different  parameters.  A simple 

example of this type of restriction is created when using the method for designing 1D linear 

hybrid cellular automata with a characteristic polynomial that is described in [10]. In this case, 

the cells are limited to only being able to change their transition rule compared to other cells, and 

can only choose from a restricted set of rules that enable the particular method.

The  second  change,  which  is  directly  used  in  the  hardware  application  that  is  described  in 

Chapter 5, is the ability for the state of the cells in a cellular automaton to not only be influenced 

by their local  neighbouring cells,  but also by the external  environment.  These are known as 

dissipative cellular automata, and can be simply described as systems where a form of external 

information can influence the states of the cells in the system in real time. A particular form of 

dissipative cellular automata are described in [15] which are also asynchronous: the cells update 

independently at arbitrary times. In this work, the ratio between how often cells are updated and 

how often the external  environment  affects the cells  is  used as a  classifier to group various 

systems together.  The  goal  of  this  work  is  to  be  able to  artificially create  a  desired  pattern 

globally by only imposing it on a small local set of cells.

Other than these changes, very intriguing work has also been done that combines the fields of 

nonlinear dynamics and computing theory into a new field called computational mechanics [34], 

which characterizes the patterns and structures that occur in natural processes through formal 
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computational models. Instead of taking the traditional approach in computing theory of finding 

a  cellular  automaton  to  perform  a  specific  function,  computational  mechanics  seeks  to 

decompose the behaviours of a particular cellular automaton, or a group of them with similar 

parameters, into their core patterns using higher and higher levels of abstract descriptions [35]. 

These descriptions generally start with the following foundational levels: a background of one or 

more static or periodic patterns known as regular domains; the borders between these domains, 

which take the form of particles; and the interactions between these particles, which have the 

ability to perform useful computations using the particles' direction and speed as the data.

A foundation has been laid in this section of the core aspects of the field of cellular automata, 

along with subsections on both the history of cellular automata up to this point and some of the 

more recent work that has been influential in the development of this thesis research. Building on 

this foundation, the rest of this chapter describes the main extensions of cellular automata that 

are used in this research: hardware implementations of cellular automata in the next section, and 

the use of genetic algorithms to search for particular sets of parameters in Section 2.3.

 2.2.Hardware Implementation

There are many different  ideas  of what actually constitutes  a  hardware implementation of  a 

computational task, and these ideas are largely based on past experience and the particular field 

of computation. In this section, the focus will be on two forms of hardware implementations that 

are the most common and useful in terms of cellular automata: embodied and embedded systems. 

A comparison of these two types of hardware, and the key aspects that make them more useful 

than other hardware for cellular automata implementations, is discussed below.

Although there are a few conflicting definitions of embodied and embedded systems among the 

loosely connected fields of robotics, artificial intelligence, and cognitive research, the definitions 

that will be used throughout this dissertation are as follows. An embedded system is an assembly 

of hardware on which a computational task is carried out defined by low-level software, and 

using a much lower level of hardware architecture compared to modern day personal computers. 

Embodied systems are a subset of these embedded systems that also have a form of physically 

dependent representation and that can often sense and interact with their surroundings [36]. Both 

embedded and embodied methods of implementation introduce beneficial aspects in the design, 

development, and use of hardware in the field of cellular automata.
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In the first subsection, a number of common forms of cellular automata hardware are described 

in general with a discussion of the benefits and drawbacks of their implementation on particular 

types of hardware. This mainly focuses on the embodied and embedded systems that have been 

discussed in general above. In Subsection 2.2.2, a selection of recent research is described, most 

of which takes advantage of a few of the benefits of cellular automata hardware implementations 

to get the most out of their use, either as a control system or an artificially intelligent machine.

 2.2.1. Cellular Automata Implementation

The most common implementations of cellular automata generally consist of a program running 

on  a  form of  serial  computer,  often  using a  parallel-core  processor,  that  simulates  and then 

displays the output of a cellular automaton on a monitor. This form of implementation is a prime 

example of a system that exists in the extreme lower left corner of the computing spectrum from 

Chapter  1. The next most common implementation method, which is sometimes labelled as a 

hardware solution, effectively just replaces the serial computer with a form of supervised parallel 

computer, whether it consists of multiple serial computers in a network or a specially designed 

parallel system using custom boards. Regardless of the specifics, this solution again is generally 

applied to the cellular automaton as a whole and resides in the lower left corner of the spectrum.

The first  form of implementation that  is  definitely a hardware solution,  a type of embedded 

system, is when a configurable piece of hardware (e.g., an FPGA board) is programmed using a 

specific  set  of  cellular  automaton  parameters.  This  way,  the  hardware  has  been  specifically 

designed  to  allow  for  the  large  numbers  of  direct  connections  necessary  to  perform  the 

computation of that cellular automaton as quickly as possible. This, most often, also resides in 

the lower left corner of the spectrum. However, there are implementations where a configurable 

piece of hardware has been designed to act as a single cell as well, moving the system along to 

the lower right corner of the spectrum with a single processor for every cell in the system.

Within  the  scope  of  cellular  automata,  embodied  hardware  entails  a  form  of  hardware 

modularization that causes the computation of a set of cells or cellular automata to be spread 

among  a  number  of  spatially  distributed,  modularly  connected  systems,  each  with  its  own 

processor and local information storage. An embodied system of this kind can have a range of 

computational  abilities  from  a  few  processors,  each  computing  one  or  more  large  cellular 

automata, to vast numbers of very simple processors each computing the outcome for a single 

cell or small group of cells. The architecture of an embodied hardware system is very different 
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from the other methods generally used in the computation and display of cellular automata in a 

number of ways that are broadly introduced below.

Since most cellular automata are based around a synchronous update method, the main issue 

with  their  implementation  on  distributed  hardware  is  the  difficulty  of  keeping  the  various 

modules  of  the  system  synchronized.  This  can  be  very  difficult  at  the  upper  extreme  of 

distribution, where each cell is purposely blind to the rest of the system, without resorting to 

connecting all of the cells to a common signal. However, in a situation where individual cellular 

automata, or even just large groups of cells, are running on modular hardware as small, locally-

synchronous systems that share boundaries with other modules, there are a number of different 

ways that the system as a whole can be updated asynchronously without losing any information. 

The simplest of these methods, one that was briefly considered in the hardware application in 

Chapter 5, would be to include a flag on each of the modules that let any connected neighbouring 

systems know when the module has finished updating and is waiting for data.

Building on these aspects of hardware implementations of cellular automata, a selection of recent 

research has been described in the following subsection. The projects discussed are a system that 

relies on the predictable nature of a subset of cellular automata to operate window shades on a 

building, a sensor-driven hierarchical cellular automaton that provides dynamic lighting, and an 

interactive wall that allows any number of custom systems to exist including the Game of Life.

 2.2.2. Recent Work

There are a range of different forms of hardware-implemented cellular automata, even a small 

subset  of  which  could  fill  an  entire  book.  In  light  of  this,  a  selection  of  specific  hardware 

implementations are discussed in this subsection that deal with a broad range of the particular 

aspects of cellular automata that directly impact the design of any hardware. The examples below 

cover a set of applications that include 1D and 2D cellular automata, dissipative and hierarchical 

systems, interactivity and presence sensing, and modular distributed systems.

The  first  example  of  a  hardware  cellular  automaton  implementation  is  the  use  of  the  state 

progression of a  1D cellular automaton to control digital window shades  [9]. Each row of the 

building's window shades displays the state of the cellular automaton at the time step after the 

row above it, starting from specific initial conditions in the top row that are seldom changed. 

This is done in a way similar to how 1D cellular automata are typically displayed, as a 2D image 

with time as the vertical dimension and starting with initial conditions at the top as shown in 
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Figure  2.11.  Since  the  computation  has  been 

implemented at the individual cell level, there 

would  typically  be  the  need  to  somehow 

synchronize the state changes of the cells using 

a  global  clock. However,  in  this  case,  since 

each  row's  behaviour  is  based  solely  on  the 

states in the previous row and the states change 

infrequently,  there  is  no  need  for 

synchronization across the cells. For example, 

if  a  cell  takes  longer  than  its  neighbours  to 

update, the cells below the slow cell may be in the wrong state temporarily. Once the slow cell 

updates  to the  correct  state,  the cells  below it  will  also correct  themselves.  Since the initial 

conditions do not change on a regular basis, the states will remain static for large periods of time.

Another example (shown in  Figure 2.12) is in 

the use  of  a  set  of  asynchronous,  dissipative, 

hierarchical cellular automata implemented on 

custom  embodied  hardware  that  are  used  to 

provide  artistic,  sensor-driven  lighting  in  a 

tunnel environment in  [37] and  [38], and later 

extended  to  be  used  as  modular  interactive 

lighting tiles  for indoor environments in  [39]. 

The  first  application  makes  use  of  a  set  of 

parameters that allows memory of past states, reaction to sensor inputs, and the evaporation of a 

cell's  state  to  its  neighbours  to  enable  a  diffusion  of  information  throughout  the  system, 

represented as a smooth, dynamically changing lighting pattern. In the second application, these 

tiles are extended to be used as modular lighting elements in a home and is built on a similar 

framework and hierarchy as the previous application.

Touch-sensitive  screens  and  embedded  systems  are  sometimes  joined  to  create  a  more 

specialized form of hardware that is on the verge of becoming embodied, as shown in this final 

example. To illustrate these types of systems, a modular system created by the Logic Systems 

Laboratory of  the Swiss Federal  Institute of Technology in Lausanne (EPFL),  known as the 
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Figure  2.12.  Organization  of  the  hierarchical  cellular 

automata in the second example. Note the multiple levels 

of systems involved. Image reproduced from [38].

Figure  2.11.  Illustration  of  the  Elementary  'Rule  45' 

cellular automaton using periodic boundaries, with initial 

conditions  in  the  top  line  and  each  progressive  line 

showing the state in the following time step.
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BioWall,  is  used.  The  BioWall  is  built  from 

touch-sensitive  modules  that  each  contain  an 

LCD  and  an  FPGA  that  are  specifically 

developed for a particular set of parameters. An 

application  on  this  BioWall  using  a 

combination  of  the  Game of  Life  parameters 

and a form of self-replicating blocks (shown in 

Figure 2.13) was developed in [40], and is used 

as  a  demonstration  of  a  dynamically  hybrid 

application. In this implementation, the Game of Life is applied as normal except for when a 

square block of four cells are created. When this happens, the block of cells and their neighbours 

adopt new transition rules and a new neighbourhood shape which, in combination, support the 

self-replication of the block based on input from touch sensors in each cell. This application of 

new rules within an environment of other rules can be considered as a slightly more complex 

form of a hybrid system than those with static but different rules in each cell.

This  overall  section has  provided some background on hardware implementations,  including 

definitions of embedded and embodied systems, and how cellular automata are impacted by the 

use of hardware in their representation. This specific subsection has also described some specific 

examples of hardware applications of cellular automata, with a wide range of different types of 

systems used to demonstrate a subset of the possibilities that exist. Next, a particular form of 

evolutionary computing known as genetic algorithms are explored and described, both in general 

and with a focus on their implementation in searching for cellular automata parameters.

 2.3.Genetic Algorithms

Genetic algorithms are a type of evolutionary algorithm within evolutionary computing, a sub-

field  of  computational  intelligence  based  mainly  on  the  ideas  and  concepts  of  biological 

evolution. They have been developed as a search method for large or non-linear search spaces, 

and work especially well compared to other search methods when there are many local minima 

[41]. Like other evolutionary algorithms, they apply the mechanisms of evolution (reproduction, 

mutation,  crossover  and  selection)  to  search  a  population  of  candidates  for  the  “fittest” 

individual(s) of a given generation. In the case of genetic algorithms, the population is made up 
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Laboratory. Image reproduced from [40].



of groups of  genes, called chromosomes,  which directly or indirectly represent the controllable 

parameters of a system. These genes can be very detailed and specify every individual aspect of a 

system or can be very broad and provide only a high-level of control. The actual method of how 

genetic  algorithms work is described in the next subsection,  with details  of how the various 

evolutionary mechanisms are applied to the chromosomes.

There is a lot of existing work in the combination of genetic algorithms and cellular automata, 

mainly  because  of  the  size  and  non-linearity  of  the  parameter  search  space  and  the  near-

impossibility  of  a  manual  search.  Subsection  2.3.2 provides  a  general  foundation  on  this 

combination, and mainly focuses on a discussion of how a cellular automaton can be represented 

as a chromosome using various genes to directly modify the system parameters such as transition 

rules or neighbourhood size. This is followed by a description of a selection of recent work on 

the combination of cellular automata and genetic algorithms in Subsection 2.3.3.

 2.3.1. Genetic Algorithm Structure

A population  of  these  chromosomes  are  created  at  random  throughout  the  search  space, 

sometimes distributed in previously determined high-potential areas of the search space, and are 

evaluated in terms of their 'fitness' in satisfying the goal of the search. This fitness is calculated 

for each chromosome using a fitness function, and is used as a quantitative rating system of how 

well the given chromosome does at satisfying a desired goal. This goal could be computing the 

outcome of an algorithm, finding the best performer among a group of competing behaviours, or 

even just locating the global maximum of a function.

Once the best chromosomes are determined in a given generation using the fitness function, they 

are selected as the parents of future generations. There are many different ways of choosing how 

to pick the 'best' chromosomes, with the most common methods being fitness above a certain 

threshold or in the top 10% of all members of that generation. Any chromosomes that are not 

chosen  as  parents  are  generally  eliminated  from the  population  to  allow only the  fittest  to 

survive. This shows that the parameters specified by the genes and the definition of the fitness 

function are key elements to effectively applying genetic algorithms.

After each generation, two parents are selected and combined to create new chromosomes using 

a method called 'crossover', in which a subset of the genes of each parent are switched with each 

other. Typically the point at which crossover happens is chosen at random, but there are cases 

where it benefits the search to have the crossover occur at a specific point in the chromosomes 

30



such as between two specific genes. Once these new chromosomes are created, each of their 

genes has a small probability that it will change to a different value, to mimic mutation.

The algorithm will continue indefinitely going through the cycle of finding the fitness, selecting 

parents, abandoning the unfit, and creating children until either a set number of generations or 

until there is a chromosome created that satisfies the fitness function within a specified tolerance. 

In many cases, there is no optimal goal or the task may have no solution so there needs to be a 

way of ending the evolutionary cycle. Generally this is done by keeping track of the best member 

in each generation and stopping if it has been the best for a set number of generations.

 2.3.2. Evolving Cellular Automata

In the world of cellular automata, there are vast numbers of possible sets of parameters, which 

create a huge search space when attempting to produce or  find a system that will solve some 

global task. This is further complicated by the fact that the search space is not locally similar, 

with minor changes in any of the parameters leading to anything from no change at all  to a 

completely different set of behaviours. Due to these issues, the most promising automated search 

method of sifting through all of the possibilities of useful or promising sets of cellular automaton 

parameters seems to be through the use of genetic algorithms.

Not only do genetic algorithms provide the most promising search method for finding a system 

with a specific global behaviour, the methods of evolution and gene specification can also help to 

classify groups of cellular automata. How the mutation and crossover of genes happens can lead 

to a number of clustering mechanisms as a direct consequence with even a very broad fitness 

function.  The  combination  of  a  few  specific  gene  sequences  may occur  in  all  high  fitness 

members of the population, allowing a more direct investigation into the nature of all cellular 

automata that fit the parameters. How the genes are built, and with which parameters, can also 

lead to grouping and classification in a similar fashion to that of the evolutionary changes. Other 

than a few specific parameters that define how the selection, crossover and mutation aspects will 

occur, the main considerations involved with implementing a genetic algorithm on a given task 

are how to choose the genetic attributes and what the fitness function will be measuring.

Due to the variety of different types of cellular automata, there are a range of different potential 

genetic attributes that can be used to find the solution to a given problem. The tessellation used 

can be included, as well as the size and shape of the neighbourhood. Boundary conditions and 

transition rules are both used, and are typically kept the same for the whole cellular automaton, 
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although sometimes hybrid systems are used. Finally, the initial density of particular cell states is 

used  when  the  task  is  not  dependent  on  initial  conditions.  The  transition  rules  and  initial 

conditions are the most popular parameters to be used as genetic attributes, as most of the rest of 

the parameters are rarely used due to the types of tasks and libraries that are currently available.

In terms of how the fitness function is specified with relation to cellular automata, generally 

there  are  two  different  options,  although  there  are  rare  cases  where  other  options  present 

themselves as part of a specific task. The first popular option is to examine the state of either all 

or a subset of cells after a specific number of time steps have passed to determine if a task-

dependent condition has been met. This often takes the form of all of the selected cells being in a 

particular state, or using pattern recognition to find if a specific goal pattern has been reached. 

The other popular option is generally more difficult to compute, and is based on the steady state 

of the cells given that the initial state was a part of the task. Typically this will involve keeping 

track of whether or not any cells have changed in a given time step and continuing to progress 

through time until the cells have all reached a steady state. This option is usually used when 

trying to find a parameter set that implements a classification system for the initial conditions.

There are two very common tasks that are used to demonstrate and validate the performance of 

any cellular automaton library with genetic algorithms, both typically applied in 1D: the density 

and  synchronization  tasks.  The  density  task  attempts  to  find  a  rule  in  a  two  state  cellular 

automaton that will result in all of the cells taking on, after a given number of time steps, the 

state that was initially the majority state. The synchronization task attempts to find a rule in a 

similar system that will result in an oscillation of the states of all of the cells in the system from 

one homogeneous state to the other, given any possible initial conditions.

Although  there  has  been  some  use  of  human  selection  in  genetic  algorithms,  a  subset  of 

interactive evolutionary computing [42], none of this work has been done in relation to cellular 

automata. The use of a human-in-the-loop fitness function, where a person chooses the fitness of 

the members of a population, is the main method of using people in genetic algorithms, although 

there are other applications where people are used to create the new population using a given 

selection of parents. In the next subsection, recent work on the combination of cellular automata 

with genetic algorithms is discussed that includes research using both of these tasks, as well as 

some other work using a number of more specialized tasks that are very problem-specific.
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 2.3.3. Recent Work

Genetic algorithms are frequently used in academia to attempt to find solutions to a wide range 

of problems in the field of cellular automata. Again, since this topic is so broad, only a small but 

broad selection of research is discussed in this subsection to allow an introduction to the field. 

There are a number of different groups that have worked with genetic algorithms in the field of 

cellular automata, and a few of these groups are discussed below along with their contributions.

The first  group to  be discussed  is  a  group  of  researchers  involved  in  the Evolving Cellular 

Automata Project, which was based at the Sante Fe Institute and at the Los Alamos National 

Laboratory. Although the project is no longer active, the group's contributions to the evolution of 

cellular automata are extensive and are described fairly exhaustively, along with the addition of 

computational  mechanics  to  genetic  algorithms,  in  [43].  To briefly summarize,  Mitchell  and 

Crutchfield,  along  with  a  number  of  other  students  and  researchers,  evolved  a  number  of 

different rules for solving both the density task and the synchronization task in 1D. Once found, 

these solutions were analyzed in both traditional fashion and using computational mechanics to 

discover how the evolutionary process was finding the best candidates for each task. Building on 

some of this group's earlier work in genetic algorithms ([44]..[55]), some solutions to the density 

task were also found by extending similar methods into 2D systems by Inverso et al [56].

The next group to perform work in the use of genetic algorithms with cellular automata were 

Breukelaar and Bäck, at the Leiden Institute of Advanced Computer Science ([57]..[60]). Their 

main work is in the development of an improved approach to finding transition rules for 2D 

cellular  automata using genetic algorithms.  In  [60],  solutions are found for the density task, 

which they call the 'majority problem', a task where a chequerboard is created from any initial 

conditions, called the 'chequerboard problem', and a more general task where a rule is desired to 

change any initial conditions to a specific pattern of states, called the 'bitmap problem'.

Finally, the most recent group to work on the combination of genetic algorithms with cellular 

automata are Sapin, Bull, and Adamatzky at the University of the West of England, as explained 

in [61] and [62]. Their work is focused on multiple searches within an increasingly restricted set 

of rules that initially support any one of a number of specific 'glider' patterns. The initial search is 

used to discover a set of patterns that produce these 'gliders' at regular intervals, known as 'glider 

guns'. Once a set of 'glider guns' are found, another search is done of only the rules that support 

them to discover  how to use these 'guns'  to  build  basic  logic  gates,  to  find parameters  that 
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support universal computation. The authors outline how they designed the genetic algorithms 

overall, as well as specifically how their different fitness functions were developed.

This overall section has introduced general methods and applications of genetic algorithms, as 

well  as  explaining  how they are  used  with  cellular  automata.  This  specific  subsection  then 

provided a few examples of different applications of genetic algorithms in concert with cellular 

automata, including the search for solutions that directly benefit the field. Overall, this chapter 

has  provided  a  background  in  cellular  automata,  and  their  combination  with  hardware  and 

genetic  algorithms,  which  will  serve  as  a  solid  foundation  on  which  the  remainder  of  this 

dissertation is built. In the next chapter, the interconnection framework, the main contribution of 

this thesis research, is discussed and its relationships to the various elements explored in this 

chapter are described.
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 3. Framework

In this research, a framework is developed that defines a new method of organization for a group 

of cellular automata, and indirectly simplifies their implementation in software and hardware. 

This new method of organization has been labelled  interconnection and is used to enable the 

design of cellular automata throughout the computing spectrum that was introduced in Chapter 1. 

In  this  chapter,  the novel  concept  of  interconnection is  explored and  extended  into  a  set  of 

definitions  that  will  allow the  creation  at  the  high  level  of  an  interconnected  set  of  simple 

systems which include cellular automata and their boundary conditions. This concept is initially 

explored in terms of the specifics of how to connect a few cellular automata together, followed 

by examples of more complex interconnected systems, and ending with a more formal definition 

of the overall framework using graph theory.

Using the foundation in the field of cellular automata that was laid in the previous chapter, an 

analogy can be made to introduce the core concept of this framework. In the same way that a 

specific  cell  is  partially defined  by its  position  and  connections  within  a  particular  cellular 

automaton, a specific cellular automaton can be defined in part by its position and connections 

within a particular interconnected system. A visual illustration of a simple interconnected system 

example, made up of a square interconnected grid of cellular automata, is shown in Figure 3.1. 

In the following section, the concept of interconnection is explained in more detail and used to 

introduce a number of different types of interconnected systems that are designed specifically 

with  cellular  automata  in  mind.  The  methods  used  to  perform  these  interconnections  are 

described, including a comparison with similarly implemented methods in the field of cellular 

automata  that  were  discussed  in  the  previous  chapter.  Once  these  methods  are  explained,  a 
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Figure 3.1. Illustration of an extension of cellular automata concepts to demonstrate an example of an interconnected 

system. On the left is a subset of cells from within the cellular automaton in the centre. This cellular automaton itself 

is only a single member of a set of interconnected cellular automata in a rectangular grid pattern, shown on the right.



number of different systems of interconnected cellular automata are introduced, each of which 

enables  a  different  form of  exploration  of  the  computing spectrum.  Three  specific  forms  of 

exploration are demonstrated using an example of a complex interconnected system to show how 

they will interact with each other.

With this basic understanding of the concepts in place, Section  3.2 extends the usefulness of 

interconnection to a larger set of systems by defining the core components of a graph known in 

this work as an interconnection graph. Briefly, the edges of an interconnection graph represent 

the  directed  transfer  of  information from one  node  to  another,  while  the  nodes  can  be  any 

systems  which  are  consuming  or  producing  information.  Although  the  nodes  used  in  this 

dissertation are limited to cellular automata and some simple information producers, they are 

only a small subset of the possible systems that can exist in this graph framework. Using only 

this limited set of systems within the framework, a wide range of interconnected systems can be 

specified, designed and analyzed based on well-known concepts in the field of graph theory.

Once the concept of interconnection has been extended into the interconnection graph framework 

and  some demonstrative  examples  presented,  a  library is  described  in  the  next  chapter  that 

implements this framework for a subset of the possible nodes. This library includes a number of 

aspects dedicated to interconnection, such as a set of methods for automatically interconnecting 

grids of cellular automata, and novel aspects that provide ancillary benefits to an interconnected 

system, including a mechanism for skipping updates for static regions of cells.

 3.1. Interconnection

The main innovation explored in this thesis research is interconnection: the ability to connect the 

boundaries of a set of cellular automata. These interconnections are effectively an extension of 

the methods used in hardware implementations of large cellular automata to divide their storage 

requirements across multiple memory modules. In essence, each interconnection acts as a two-

way dynamic information transfer point, where the states of the cells on the edges of each system 

are accessible to the edge cells of the connected system. This can be explained directly using an 

assumption that the two systems are combined into one larger cellular automaton, ignoring any 

differences in parameters, so that the edges of both systems are adjacent. If the neighbourhood of 

a given edge cell would include the edge cell(s) of the connected system under this assumption, 

then that given cell has direct access to the state(s) of those connected edge cell(s).
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Providing this access to the edge cells of an interconnected system is accomplished by extending 

the methods normally  used for periodic boundary conditions, where two opposing edges of a 

single  system  are  connected, to  allow  the  edges  of  two  different  cellular  automata  to  be 

connected.  These  interconnections  are  made,  using  similar  logic,  between  each  cellular 

automaton and its  neighbours as dictated by the overall  system design. Therefore,  in a fully 

interconnected system, each of the edges of a particular cellular automaton is connected to  a 

specific edge  of another. These interconnections can exist on as many sides as is necessary to 

build the overall map of cellular automata that is desired. Note that the shape of the cell matrix of 

a specific cellular automaton may be completely different from the shape of each individual cell.

The concepts behind interconnection have only been explored up to this point in the realm of 

hardware [8], and have generally been used simply as an abstraction of the arrays that are used in 

software implementations instead of being developed as a feature in their own right. With the 

addition of interconnection directly within the set  of design parameters as part of this thesis 

research, the framework introduces the possibility to search for, design, and simulate cellular 

automata  solutions  comprising  multiple,  interconnected  systems.  Thanks  to  this  concept,  a 

number of interesting system designs can be investigated, including a few specific designs that 

are discussed below. The three specific designs that are discussed can be effectively labelled as 

hybrid sets, spatially abstracted sets, and sets with mixed dimensions.

First, within an interconnected system there can exist any number of individual cellular automata 

that can each use a different set of parameters (transition rules, neighbourhood, etc.) than those 

around it in the system to create a hybrid set. Unlike other interconnected systems, no additional 

overhead is needed to implement a system, other than what is needed for periodic boundaries, 

provided that there is a specified method of sharing edge states between the various different 

types  of cellular automata.  For  the majority of these parameter  differences,  the edge-sharing 

method is simply based on how many cells the neighbourhoods for each cellular automaton need 

to have access to in the connected system. In the case where the two systems use different cell 

shapes,  there  are  further  definitions  needed  in  terms  of  how  the  edge  neighbourhoods  are 

organized  when  some  of  the  cells  are  different  shapes.  Regardless  of  the  content  of  these 

definitions, only simple extensions should be needed to allow any potential combination that is 

desired. This creates the ability to design a system that can exist anywhere along the entire range 

of hybridity. An example of a complex hybrid system is shown in Figure 3.2, where the colours 
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of the cellular automata each represent a different set of parameters and the shapes of the cellular 

automata represent the various overall cell matrix shapes in 2D and 3D.

The second specific system design uses the fact 

that  a  particular  cellular  automaton  can  share 

anywhere  from  one  to  all  of  its  edges  with 

others  which are not  necessarily in  its  spatial 

neighbourhood,  as  shown  by  the  arrows  in 

Figure 3.2. Or, as an alternative, that there is the 

ability for a cellular automaton to connect one 

set  of  opposing  edges  into  a  cylindrical 

wrapping while the other edges can be interconnected to other systems or given more traditional 

boundary conditions. In this way, a number of unique system designs can exist where a cellular 

automaton can affect the cell states on the edge of another, without affecting the states of any 

other  interconnected systems. It is important to note that in a case where an individual system 

does not share any of its edges,  it is isolated and acts as an independent cellular automaton. 

These systems can broadly be labelled as spatially abstracted sets of cellular automata, as the 

cells can act as though they are spread across a range of surfaces and shapes that are impossible 

to physically recreate without moving into higher dimensions of space. In  Figure 3.2, one of 

these impossible systems is  shown as  there is  no physical  way to  spatially attach all  of  the 

interconnected edges along the arrows and maintain any useful spatial shape or surface.

The final system design to be described is  one where the dimensions of the various cellular 

automata involved are different, the third visible aspect of the system shown in Figure 3.2. For 

example, the use of the entire system state of a 1D cellular automaton as one or more boundary 

conditions of a 2D system, since each edge in 2D is effectively the same structure as an entire 1D 

system. Since there are a number of very simply defined 1D cellular automata that exhibit very 

complex behaviour, their use as boundary conditions has the potential to produce very complex, 

computationally useful  patterns  in  2D.  This can be viewed as  a  simple method of  inputting 

algorithms that  could potentially find solutions to a number of difficult  tasks within a given 

system. As an analogy, consider that a wind tunnel is effectively a 3D visualization method for a 

2D input. Note that this can be extended to using any (n-1)-dimensional system as the boundary 

conditions for an n-dimensional cellular automaton.
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cellular automata. The colours represent different sets of 

parameters, while the arrows represent shared edges.



To create a solid framework that describes how to define interconnections consistently, a set of 

graph components  have  been developed and discussed in the next section.  Using this graph 

framework,  not  only can sets of  cellular  automata be  interconnected,  but  all  of the possible 

boundary conditions can be specified. With each individual system or information source defined 

as a node, and each directed edge connection defining the path of information flow from one 

node to another, this graph can be used as a tool for the analysis and design of a wide range of 

interconnected systems.

 3.2. Interconnection Graph

The previous section outlined the concepts behind interconnection, some details of how it works 

for cellular automata, and a number of examples of the types of systems that it enables. This 

section elaborates on a graph framework for defining any interconnected system that includes 

cellular automata, and other information sources, as an interconnected graph. As with any graph 

framework, there are two core components that need to be formally defined, nodes and edges, as 

well as the methods of connecting these components. In this framework, any system that can act 

as a producer and/or consumer of information is a node, while the flow of information between 

nodes is defined using the edges. The framework does not restrict the class(es) of information 

that flow(s) along the edges (e.g., discrete/continuous, scalar/vector, etc.). How these edges are 

defined and used to interconnect nodes is discussed below, followed by which types of systems 

can be defined as nodes, and ending with examples of a few nodes used later in this dissertation.

Within  an  interconnection  graph,  each  edge  shows  the  directed  flow of  information from a 

producer to a consumer. Each node can have multiple connection points on a given side, each of 

which may be a producer or consumer of a different class of information. Therefore, the edges of 

these graphs define how each specific class of information flows throughout the system, and 

between which particular nodes' connection points it is flowing. When two nodes each have a 

side with a pair of producer and consumer connection points that both use the same class of 

information and are connected together in both directions, a bidirectional edge can be used to 

clearly show this relationship and simplify the graph. This and other connection methods are 

explored with an example later in this section.

The nodes in these graphs are individual systems, which must manipulate and use information in 

a few very specific ways that are described below. Any given node can have multiple connection 
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points, each of which can use different classes of information and can be either a producer or 

consumer of that information. In some instances, such as with the edges of a cellular automaton, 

a  particular  type  of  node  will  require  that  a  few  of  its  connection  points  must  consume 

information from a producer for the system to continue to function. This means that every node's 

required consumer connection points must be properly sourced with information by a suitably 

matched producer, or there is  a chance of complete system failure.  Although there is  only a 

chance of failure, due to the robustness to information loss of unsupervised parallel systems, this 

requirement is applied in the graphs in general to ensure system stability.  Note that there is no 

way that a producer connection point can require information be pulled from it, nor can there be 

too many consumers sourcing information from one particular producer since in this framework 

a producer point can always be infinitely copied.

For a particular system to be used as a node within an interconnection graph, it must satisfy a 

number  of  requirements.  First,  the  system  must  have  a  mechanism  for  the  transfer  of 

information, whether that is as a producer or a consumer (or both), which dictates the role of 

each connection point on the system's node. Second, the format and content of the information 

that is being produced or consumed by the system must be the same as (and connected to) at least 

one other node in the graph that has the opposite role, to prevent the existence of unconnected 

nodes. Finally, the system must be able to perform its information transfer in one time step of the 

overall  system, or  at  least  to continue to transfer  the same information repeatedly until  new 

information is generated. These requirements are designed to ensure that all of the nodes in a 

graph can function and contribute to the overall system.

Given this set of requirements, there are a vast number of systems that can be used as nodes 

limited only by the desired complexity in the overall system, a subset of which are shown in 
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Figure 3.3. Examples of various types of possible nodes in the interconnection graph. Arrows pointing out of a node 

are producer connection points while those pointing into a node are consumers. Tripled arrows indicate external 

input. Rounded node edges signify a scalar connection point, while flat edges signify a vector connection point.
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Figure 3.3. The only consumers of information that have been shown are the cellular automaton 

nodes, or CA nodes, as they are the primary system that is investigated in this thesis research 

using the interconnection graph. The other three types of nodes that that are shown in Figure 3.3 

are all strictly producers of information, and each has both a scalar (circle) and vector (square) 

form. These nodes are labelled as follows: # for static nodes, F(t) for dynamic nodes, and S for 

sensor nodes. These node types are described below, but are only a subset of possible nodes.

In  drawing  these  nodes,  three  forms  of  standard  notational  elements  have  been  used.  First, 

arrows that leave a node's edge are producer connection points for that edge while arrows that 

point  towards  a  node's  edge  are  that  edge's  consumer points.  Second,  a  triple  set  of  arrows 

pointing at a node but connected from nothing indicate that some form of external information is 

being used. Third, a rounded edge on a node indicates that a scalar value is transferred on any 

connections on that edge, while a straight edge indicates the same for a vector of values of a 

specific  length.  Any  scalar  connection  point  is  capable  of  producing  information  for  any 

consumer in the system, provided that the value produced is within the acceptable range for that 

consumer.  Since  only  one  scalar  value  is  being  produced  by the  point  at  a  particular  time 

regardless of the node type, that value is repeated to create a set of values of whatever size is 

necessary to connect to a particular vector consumer point length.

In a cellular automaton node, the number of connection points is entirely dependent on the shape 

and size of the cell matrix as it can vary widely from one system to the next. Also, the format of 

the information being produced and consumed on a given edge is always one dimension smaller 

than the cellular automaton itself, as it must match the size of the corresponding edge of the cell 

matrix. For example, a 2D cellular automaton produces a 1D array at each edge. Due to these 

complications, if the cell matrix is an odd shape or has different numbers of cells on particular 

edges, then a number of different information formats (and connection points) will be necessary.

Although each of the connection points on a cellular automaton node acts as a consumer and 

must take in information from a producer (as boundary conditions), not all of its points must also 

be  active  producers.  This  is  due  to  a  requirement  in  cellular  automata  of  knowing how the 

neighbourhoods of any edge cells are defined to progress to the states in the next time step. 

However, there is no requirement that another system be monitoring the states of the edge cells 

of  a  cellular  automaton.  Since  the  connection  points  of  a  cellular  automaton  node  can  be 

connected to the points on the opposite side of the same node, a single system with periodic 
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boundary conditions in all directions can be specified using only a single one of these nodes and 

a pair of bidirectional edges as shown in Figure 3.4a.

A static scalar node is the simplest type of node 

available in this framework, as it has a constant 

value  and  can  produce  information  for  any 

consumer in the system. The static vector nodes 

are  only slightly  more  complex,  as  they  still 

have  a  constant  set  of  values  but  can  only 

produce information for consumers of the same 

size  as  themselves.  Using  cellular  automaton 

nodes and static nodes, it is possible to specify 

every classical set of cellular automaton parameters that has been used up until the development 

of this framework. For instance, to define a cellular automaton where all boundary conditions are 

static, homogeneous and identical, only two nodes are necessary: the cellular automaton node, 

and a static scalar node. The interconnection graph (shown in Figure 3.4b) is complete when all 

of the consumer connection points of the cellular automaton node have been connected from the 

static scalar node's producer points. Note in this graph that the scalar producer node is producing 

two vectors, of sizes N and M, for four consumer points.

The dynamic and sensor nodes are usable in a similar way as the static nodes in terms of how 

their connections are made with consumer points. However, how the values that are passed along 

to those consumers are produced is very different. In dynamic nodes, the values are based on the 

output of some form of function that changes over time, and may take into account as a part of 

the function, any internal part of the interconnected system. This differs from the sensor nodes 

due to the information being internal to the graph, whereas in a sensor node at least some of the 

information used comes from an external source. These three types of producer nodes are some 

of the most general types of nodes that can be defined, as they can inherently represent any 

system that does not require direct input from other parts of the interconnected system but can 

inject information into it. The applications of using nodes such as these are explored as a part of 

implementing this framework in the next chapter.

The graph for an example of an interconnected system is shown in Figure 3.5 that makes use of 

an assortment of the node types and producer/consumer pairings that have been described. There 

42

Figure 3.4. Interconnection graphs for the two main types 

of  2D  cellular  automaton  that  are  currently  used  in 

academia:  a)  a  system  with  periodic  boundaries,  b)  a 

system with static homogeneous boundaries.
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are  a  few  interesting  connection  methods  in  this  particular  example  that  require  further 

description. The bidirectional connection between opposing sides of a cellular automaton node 

represents  the wrapping of those edges,  which is  exactly the same as the periodic boundary 

conditions as described earlier and used in Figure 3.4a. This can be seen connecting the top and 

bottom edges  of  the  left-most  2D cellular  automaton node,  making it  act  as  though it  were 

wrapped around a horizontal cylinder. The connection of the producer to the consumer on the 

same edge of a cellular automaton node, as shown at the top of the middle 2D cellular automaton 

node, can be thought of as a mirror condition: the cells on that edge will see copies of their own 

state and neighbours' states as if looking in a mirror. 

Note that this  system also uses two of the specific design aspects from the previous section: 

hybrid sets of parameters and mixed dimensions of cellular automata. In this graph, hybrid sets 

of parameters are represented by the shades of the nodes, and the left- and right-most 2D cellular 

automaton nodes share the same parameters, as indicated by having the same shade. The mixture 

of dimensions is particularly evident where the right-most 2D cellular automaton uses the output 

of the 1D node as its boundary condition, requiring the size of the 1D system to be the same as 

the vertical dimension of the 2D system. It is fairly simple to confirm that every consumer point 

is connected to a corresponding producer, making this a valid interconnection graph, in addition 

to a few of the cellular automaton node producer points remaining unused.

In  this  chapter,  a  framework  for  the  interconnection  of  cellular  automata  and  other  simple 

systems  has  been  defined.  This  framework  also  simplifies  the  implementation  of  cellular 

automata in both software and hardware by allowing modularization and hybridity to span the 

full range of the computing spectrum. The core concept of this framework, interconnection, has 

been introduced and explained with a number of examples, and the graph components needed to 
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Figure 3.5. An example of an interconnected system drawn using the graph framework. In this example the shade of 

a particular CA node represents a specific set of system parameters. This means that the left- and right-most 2D CA 

nodes both have the same set of parameters, while the rest of the CA nodes each have different sets of parameters.
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define interconnected systems and facilitate their design have been developed. The specifics of 

how a  graph  in  this  framework  is  constructed  and  built  have  been  discussed,  a  number  of 

examples of nodes within these graphs are given, and an example of an interconnected system 

has been described using these nodes. To clearly demonstrate the use of this framework, as well 

as to successfully accomplish the overall library design criteria for this dissertation, a library has 

been developed that is described in the next chapter. This library not only implements the graph 

framework from this chapter  but also a number of other novel aspects that  directly serve to 

achieve  the  criteria  as  set  out  in  Section  1.2.  Following  the  description  of  this  library,  an 

application that makes use of the library is discussed in Chapter 5 which includes the use of an 

interconnection graph to describe the overall system.
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 4. Implementation: Library

Informed  and  influenced  by the  architecture  of  the  interconnection  framework  as  described 

previously, a library for cellular automata has been designed. This library was also designed as a 

prototyping and simulation environment to aid in the development and design of a hardware 

application of cellular automata, which will be described in detail in Chapter  5. After a brief 

discussion of general implementation details, there are four sections dedicated to specific aspects 

of the library:  implementation of interconnection and other novel aspects in Section  4.1, one 

specific instantiation of this library architecture in software in Section 4.2, computational results 

of the use of these novel concepts in this specific software instantiation of the library in Section 

4.3, and finally a discussion of a few of the library's applications in Section 4.4.

This library has also been designed to satisfy all of the criteria as set out in Section 1.2. These 

can be summarized as having a unified objective of fulfilling the need for a high-level system 

that  implements  the  interconnection  framework,  can  be  instantiated  on  both  hardware  and 

software, has an open and extendable architecture, and will fully implement the standard set of 

parameters  in  the  field  of  cellular  automata.  To  enable  full  implementation  of  the  standard 

parameters, there exists in this library the ability to create a single large cellular automaton and 

manipulate any of the standard system parameters that are desired. This ensures that the ability to 

execute any tasks designed with other systems in mind is maintained.

Nonetheless, there are a number of parameters 

of this library that have been artificially limited 

for  various  organizational  and  computational 

reasons  that  are  discussed  subsequently,  as 

shown in  Figure 4.1 (a reproduction of  Figure

2.9 for ease of reading).  For the sake of scope 

limiting,  this  library has  been  designed  using 

inner-dependent, outer-totalistic transition rules 

with two states per cell. This allows both a wide 

range of possible rules and an intrinsic method 

of  transcribing  the  rules  in  a  simple,  human-

readable format as defined in Section 2.1. It is 

45

Figure  4.1.  Concept  map  of  the  limited  set  of  system 

parameters  that  are  available  within  the  library.  White 

nodes are usable parameters, while dark grey nodes are 

not. Light grey nodes indicate partial implementation.
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important to highlight that any two-state outer-totalistic, or even general totalistic, rule can still 

be specified as they are both subsets of the inner-dependent, outer-totalistic rule set. How these 

other  forms  of  totalistic  rules  are  converted  into  inner-dependent  outer-totalistic  rules  is 

discussed in detail in the next paragraph. By using the broadest definition of totalistic rules, all 

forms  of  totalistic  rules  can  be  used  which  allows  the  library  to  maintain  the  maximum 

functionality without losing simplicity.

Examples of how these conversions work from other types of totalistic rules to the corresponding 

inner-dependent outer-totalistic rule  are shown in  Figure 4.2 (using the format introduced in 

Figure 2.6) for a two-state cellular automaton with five cells in its neighbourhood. To implement 

general totalistic rules the simple look-up table for the rules must be created, as shown on the left 

side of Figure 4.2. Given this simple look-up table, each element of the inner-dependent outer-

totalistic rule matrix will have the same value as the element in the table that corresponds to the 

sum of both the inner cell index and the outer total index. To remove the inner-dependence of a 

rule but maintain the outer-totalistic behaviour, the look-up tables for each of the possible inner 

cell states must be equal as shown on the right side of Figure 4.2.

To avoid complex neighbourhood mechanics, and retain the original cellular automata concept of 

simple identical cells, the possible cell shapes were limited to only homogeneous and infinitely 

tessellating (covers the plane) shapes. These requirements reduce the potential cell shapes that 

can be used in 2D down to just three: rectangular, triangular, and a subset of hexagonal forms. 

The subset of hexagonal shapes requires that at least two opposing sides of the hexagon are 

parallel and congruent. If these restrictions were not in place, then any number of other potential 

shapes could be chosen where each cell might have a different neighbourhood depending on its 
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Figure  4.2. Conversions from sample totalistic and outer-totalistic rules into compressed inner-dependent, outer-

totalistic rules. Both of these rules are valid for any two-state cellular automaton with five cells in a neighbourhood. 

Note that a 'five cell neighbourhood' is the equivalent of 'a cell with four neighbours'. Totalistic rules use the entire 

neighbourhood (from 0 to 5 cells in the '1' state), while outer-totalistic rules use the neighbours only (0 to 4 cells).
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location within the tessellation, as discussed in Section 2.1 when using Penrose tiles and all but 

one pentagonal form. These tilings, as well as the one pentagonal tiling that does have a single 

neighbourhood mapping, also require an extension to this library's underlying cell organization 

to work.  Though all  of  these tilings  have been shown to  support  modified forms of cellular 

automata [14], they were not included in this library. It can be noted that  1D cellular automata 

are a subset of 2D systems, and can be implemented using 2D systems by setting static 0-state 

boundary conditions on the right and left edges of a single-cell width 2D system. However, due 

to their use of fully specified rules, the majority of  1D cellular automata cannot currently be 

defined in this library. This is not seen as an issue as their relative simplicity and limited single-

cell edge effects mean that they are not the target of this thesis research.

Building on these three regular tessellations, only the Moore and von Neumann neighbourhoods 

have been included  in  this  design.  They are  the  two best  known and widely used types  of 

neighbourhoods, and are available across all three of the available shapes within this library. In 

addition  to  limiting  the  neighbourhood  types  to  these  two  popular  options,  the  size  of  the 

neighbourhoods has been restricted to only including neighbours that are one cell away from the 

central cell,  so that only the directly orthogonal and radial neighbours of the central cell  are 

involved. As is evident from Figure 4.3, this still allows five different neighbourhoods to be used 

across the three different cell shapes and three different types of totalistic transition rules. It is 

interesting  to  note  that  the  von  Neumann  and  Moore  neighbourhoods  in  the  hexagonal 

tessellation with neighbours within a distance of one cell are exactly the same neighbourhood 

due to the lack of any corner-connections in a hexagonal environment.

One of the extended benefits of using the limited set of system parameters as discussed above is 

the ability to build upon as much of the previous research in 2D systems as possible while still 
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Figure 4.3. The five types of neighbourhoods available in this library. The light grey cells are always considered in 

the same way in the three types of totalistic rules. However, the dark grey cells are considered differently: in general 

totalistic rules, dark grey cells are identical to light grey cells; in outer-totalistic rules, they are ignored; and in inner-

dependent outer-totalistic rules, they dictate which set of outer-totalistic rules to use on the other cells.



limiting the scope of this library to a manageable size to maintain simplicity. The majority of the 

cellular automata that are discussed and investigated in Chapter 2 are 1D, and those that are not 

tend to deal with very specific 2D systems such as Conway's Game of Life and its relatives 

known as the “Life-Like” rules [14]. There is very little work on the broad exploration of general 

2D cellular automata, and effectively none of that little work uses non-square lattices. Of the 

work  that  does  exist,  the  typical  focus  seems  to  be  on  the  universal  computation and  self-

replicating behaviours that first started the field (such as in [60] and [63]).

The ability to build on the existing 2D research is mainly due to the ability to simulate Game of 

Life and Life-Like rules, almost all of which can be specified using the limited set of system 

parameters available in the current library (shown in Figure 4.1). The only Life-related research 

that is not accessible while using the current library limitations is on systems that use complex 

neighbourhoods,  three or more states,  or non-totalistic rules,  all  of which can be included if 

necessary with fairly simple extensions to the library architecture. This ability to create specific 

extensions  for  a  given  problem  demonstrates  an  inherent  achievement  of  the  extendable 

architecture desired, which allows the core components of the cellular automata library to be 

faster than typical generalized libraries without sacrificing the ability to generalize if needed.

Built upon this core subset of system parameters, there are a number of novel aspects that have 

been  developed  for  use  in  this  library that  are  discussed  further  in  the  next  section.  Many 

improvements have been made available within the design of this library compared to other 

known cellular automata libraries, such as  [12] and  [64], including a detailed specification of 

boundary conditions and the ability to easily extend the library to accommodate many different 

forms of research. The two primary improvements that have had the most impact on the success 

of this library are the implementation of interconnection, based on the framework from the last 

chapter, and the addition of a mechanism to skip static cells in updates. A comparison of the 

computational benefits and costs of these aspects within the library is made in Section 4.3, based 

on the efficiency of calculating the progression of particular cellular automata.

Given  the fundamental  design of  this library described in  this  section,  as  well  as  the  novel 

approaches  that  are  discussed  in  the  next  section,  a  brief  exploration  of  a  few  potential 

applications is discussed in Section  4.4. The applications encompass a number of topics, both 

new and more common to the field, before focusing on the two main applications that further 

differentiate  this  library from other  available systems:  using the library alongside interactive 
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systems and genetic algorithms. Both of these applications have been included in the hardware 

demonstration that is discussed in the next chapter.

 4.1.Novel Aspects

There are a number of improvements that have been made in this library in comparison to most 

traditional approaches in the field of cellular automata, both in terms of computational speed and 

in terms of design freedom. These traditional approaches generally use an array of state variables 

to represent the cell matrix, and require embedding prior knowledge of the boundary conditions 

within the cell state update algorithm [64]. To achieve the improvements in this library, a tradeoff 

has been made where individual cells are represented by basic data structures instead of simple 

state variables. This has been done not only to simplify shared memory use, but also to allow the 

cells to inherently have access to their neighbours' states, as two of the three core elements in the 

structure of each cell are the cell state and a list of the neighbouring cells. The other element 

enables a mechanism for skipping static cells called sleep, which will be explained further in the 

second subsection. There are few other systems that use structures for the cells because of the 

overhead  needed  and  the  memory footprints  that  exist  in  very large  systems.  However,  the 

benefits of these more complex data structures in the majority of cases when using this library 

vastly outweigh the issues that may arise from their use. A thorough discussion of the various 

improvements that tip the scales in favour of these data structures follows.

The first major improvement, and the feature used to implement the interconnection framework, 

is the ability to specify how each of the different boundaries will behave on a given cellular 

automaton, down to the individual cell level. This freedom on the system edges allows for both 

the traditional choices of having a static boundary condition for the system as a whole, as well as 

the ability to have any number of edges, or small sections of edges, be specified independently. 

These newly independent boundary cells can be defined in a number of ways that include as 

inputs to the system, information transfer points between systems, or simply using a temporally 

periodic pattern of states instead of just a single static homogenous state.

Building on the ability to specify each boundary cell uniquely, an interconnection graph can be 

created by manipulating the boundaries  of individual  cellular  automata implemented.  This is 

achieved by making the edges of each pair of interconnected cellular automata act as dynamic 

information transfer points. Using this mechanism the framework can be directly implemented, 
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allowing its benefits to apply to the library. As an extension, the library also has a component 

that can automatically build a specific interconnection graph to facilitate boundary initialization. 

The details of these interconnection mechanisms are further discussed in Subsection 4.1.1.

One feature that any computation on an even slightly parallel system should take advantage of is 

the use of threading to divide the computational task into smaller, parallel pieces. However, there 

is  an advantage built  into  this  library that  makes  threading far  more powerful  than in  other 

setups. Since the cells are represented by shared data structures, there is no need for any direct 

communication  between  interconnected  systems  after  initially  setting  up  the  boundary 

conditions.  Based on this mechanism, each of  the nodes in  an interconnection graph can be 

assigned to a thread that requires no communication with any other thread. This means that the 

threads, as used in this library, allow a substantial savings in computational time on any system 

with multiple processing units. It must be noted that threading is a separate concept from the 

splitting that occurs in an interconnection graph, and that both threading and interconnection will 

actually slow down computation on a single-processor system.

The second major improvement is an efficient method for skipping over unchanging cells, which 

is considered a sparse matrix technique in cellular automata optimization [64]. In this library, this 

is accomplished with the inclusion of a 'sleep' flag within the data structure of each cell. If, in a 

given time step, neither a cell nor any of its neighbours change state, then the cell will turn on the 

sleep flag to indicate that it is sleeping. Sleeping cells are skipped in the system update until they 

are woken by a changing neighbour, which leads to a much shorter computation time in any 

transition rules where there are more static areas than dynamic ones. The specifics of how the 

sleep mechanism works and its benefits are discussed in Subsection 4.1.2.

In Section 4.2, the specific implementation design of the library is discussed in detail to ensure a 

full understanding of the various components that are used to achieve these novel aspects. The 

overall design of the library is shown, along with the various interfaces and general structures 

that  are  used  to  allow  both  the  core  implementation  of  cellular  automata  as  well  as  the 

implementation of the novel aspects described later in this section. A specific instantiation of the 

library in software is also introduced, and illustrative comparative results, in terms of how the 

two improvements above affect  the efficiency of the progression of a  few particular  cellular 

automata  over  standard  implementations,  are  given  in  Section  4.3.  These  comparisons  are 

included to give a sense of the costs associated with the inclusion of both of these novel aspects 
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of the library to be weighed against their general benefits. There is also a specific exploration of 

how the variations in the global  dynamics among cellular  automata will  change the specific 

behaviour in terms of the costs and benefits in efficiency of progression when using sleep.

Finally, a major addition to this library compared to more traditional approaches, which typically 

run independent of their environment, is the ability to interactively modify both individual and 

groups of cell states, the parameters of a particular cellular automaton, and the progression of 

time through a graphical interface. As most cellular automata tasks are interpreted as a form of 

visual feedback, this allows a user to create an entire system from the base cellular automata 

right up to components of the user interface from within this library. This is further explored, 

along with other applications of the library, in Section 4.4.

 4.1.1. Interconnection

As previously introduced,  there is  a  mechanism within this library that  explicitly allows the 

implementation  of  any  interconnection  graph  and  its  various  components.  In  particular,  the 

shared  data  structures  representing  cells  are  accessible  through  the  library  neighbourhood 

mechanics  to  as  many  interconnected  systems  as  are  needed  to  reproduce  the  graph 

interconnections.  This  mechanism  is  extended  through  the  inclusion  of  a  component  for 

automatically building a limited range of interconnection graphs to prevent the need to manually 

specify boundary conditions for every edge cell.

The implementation of interconnection in this library is mainly based on the idea that the edge 

cells of the corresponding sides of two interconnected cellular automata act as though they were 

neighbours in one larger cellular automaton. Due to the use of data structures in storing cells, and 

that each cell therefore knows exactly which other cells are its neighbours without caring about 

which system each cell is a part of, the extension from assigning a local cell as a neighbour to 

assigning a cell from another cellular automaton as a neighbour is fairly minor. Thanks to this 

simplicity of assignment, the only issue that arises in the implementation of interconnection is 

that  the  states  of  the  cells  on  the  edges  of  a  cellular  automaton  may need  to  be  accessed 

concurrently by multiple threads or processors. Note that concurrent access to data brings with it 

the added complexity of having to consider mutual exclusion and deadlock prevention.

Only the  limited  subset  of  interconnection  graph  nodes  from  Figure  3.3 in  Section  3.2 are 

implemented in this library, primarily to allow an exploration of the interconnected systems that 

are geared towards cellular automata. The implementation of other nodes is enabled through the 
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extendability of the library, and allows the creation of any interconnection graph that is desired. 

Provided that the interconnection itself works, additional  functionality has been added to the 

interface for this library that enables the automatic interconnection of anywhere from just two 

cellular automata up to a multidimensional array, given that the edge connections between any 

pair are bidirectional. In the array format, two cellular automata are considered to be paired if 

their locations within the array are adjacent. This component also allows the selection of various 

directions of periodic boundary conditions on the outside of the interconnected systems that can 

occur along with the automatic interconnection to build a variety of interconnection graphs.

 4.1.2. Sleep

The addition of a 'sleep' flag to each cell,  as introduced above, is a major contributor to the 

efficiency of updates in this library. Using this flag, each cell is labelled as either: awake, ready 

for  state  updates  based  on  the  transition  rule;  or  asleep,  maintaining  its  state  and  ignoring 

transition updates. The flag is a part of each cell's data structure, as described in the next section, 

allowing it to be changed by both the cellular automaton that it is a part of as well as any other 

systems it might be connected to through interconnection. Although only the local updates can 

trigger sleep, the ability of a changing interconnected cell to wake a local cell is vital to the 

accurate application of all interconnected systems' transition rules.

A given awake cell will be flagged as asleep, after all updates have been applied in a specific 

time step, if neither it nor its neighbours have changed state in both the current update and the 

previous update. Once a cell is flagged as being asleep, it will be skipped over by the transition 

rule updates and will remain in its current state until one of its neighbours is changed. At the end 

of the same time step that one of its neighbours changes, a sleeping cell is woken up so that in 

the next step it regains the ability to change state based on the states of its changed neighbours. 

In  this  way,  there  is  no  possibility  for  a  transition  update  to  miss  a  sleeping cell  that  was 

supposed to have changed in a given time step.

Although similar systems are sometimes used in other cellular automaton simulators (generally 

labelled as sparse matrix techniques), the particulars of the implementation of sleep as it exists in 

this library seem to be unique. The unique features of this method are primarily: the use of a 

localized flag within the cell, and the changes in sleep being triggered purely based on whether 

or not a given cells' neighbours and local state have changed.  The primary advantage of this 

localized method of skipping static cells is that there is no need for a supervisory level of control, 
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which directly allows implementations of individual cells, or small groups of cells, on distributed 

hardware systems. These localized features also allow the system to be used with a much wider 

range of system parameters than most other efficiency methods that have been developed4, which 

are generally written in a way that specifically assumes the use of a particular subset of system 

parameters, since there is no limitation in this library on the parameters that are used.

The inclusion of a sleep flag in each cell,  and the sleep mechanism that it enables, creates a 

number of direct advantages in both computational aspects and global  behaviour analysis. In 

terms of computation, there are direct effects on the time it takes to apply the transition function 

to the cellular automata in question. In systems that have large regions of static behaviour, or 

which have a quiescent state, the ability of cells to sleep vastly reduces the computation time. 

This  is  primarily  due  to  the  majority  of  computation  time  used  in  cellular  automata  being 

dedicated to computing the outcome of the transition rules, often with a constant repeated result 

for whole regions of cells. However, in systems that are very active throughout the entire cell 

matrix there is an expensive overhead of checking and waking cells with little benefit in time 

gained in exchange. These varied effects are investigated for a few specific well known sets of 

cellular automata parameters in Section 4.3.

On the topic of global behaviour analysis, a few different characterization tools arise from the 

use of sleep. For example, if a cellular automaton exists where a region of cells sleeps for a few 

time steps without being woken, then the specific pattern of cell states in that region can be 

classified  as  static,  or  a  still  life.  In  examining  the  dynamic  number  of  sleeping  cells, 

classification can be made of various types of activity for a particular system that takes into 

account  the  effect  that  the  parameters  may  have.  Finally,  with  a  range  of  different  initial 

conditions an investigation can be made of how the systems react in general to random input, and 

how much randomness is maintained or created over time. This is directly related to Wolfram's 

work on the relationship between externally supplied and internally generated randomness [32].

 4.2. Implementation Details

In  this  section,  the  details  of  how  the  library  can  be  implemented  purely  in  software  are 

discussed. This consists of a description of the particular objects that have been developed as part 

of one specific instantiation of the library design. The class structures and associated methods for 

4 Published  implementations  of  detailed  cellular  automaton  code  are  difficult  to  come  by  in  the  literature. 

Comparisons  with  “other  methods”  or  “existing  systems”  is  the  result  of  a  web  survey  of  posted  cellular 

automata tools and code. For several examples of such websites see [12], [65], [66], and [67].
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each cell are described, as well as those associated with each cellular automaton. These classes 

are  used  in  the  construction  of  a  connector  class  which  has  the  ability  to  automatically 

interconnect cellular automata. Finally, the elements of the graphical user interface are discussed, 

along with the various methods that allow user input through both a keyboard and a mouse.

Each cell in the library is defined by a class (Cell, shown in Figure 4.4) which contains specific 

information: the states of the cell in the current and previous time step (state array), a list of the 

data structures of the cell's neighbours (neighbours), and a flag that indicates if the cell is awake 

or not (awake). Using this information, the Cell class contains a method (applyRules) that allows 

it to calculate an index into a compressed inner-dependent, outer-totalistic rule table (rules in the 

parent CA class) to find its next state. It also contains a method (wakeNeighbours) that is called 

once all of the cells in the parent CA have updated, which determines whether or not it should be 

waking its neighbours based on its state changes. There is also a second class (Cell2D) which 

implements the  Cell class when using 2D cellular automata, mainly to allow the cell to check 

what row (row) and column (col) of the  CA it is located at (using  ego). The two classes also 

contain a number of elements and methods (x,  y,  showCellTile) to assist in the creation of the 

graphical user interface (GUI) to enable the display and manual manipulation of cell states.

A pair of much larger classes also exist that define each cellular automaton (CA and  CA2D in 

Figure  4.5),  along  with  a  number  of  smaller  helper  classes  that  simplify  interconnection 

(Stepper), define constants (CA2DConstants) or specific 2D patterns of cell states (Stamp2D), 

and allow specific shapes of cells to exist(*CA2D). The CA class contains the specific transition 
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Figure 4.4. A UML diagram of the Cell and Cell2D classes. Cell2D implements the Cell class.



rules for the system (rules) and an n-dimensional array of its cells (cells), along with a number of 

elements that facilitate the graphic representation of the cellular automaton (_x,  _y,  cellShape, 

cellSize, etc.). In addition to the methods associated with the GUI (drawCell,  show,  makeTile, 

*Background, etc.), the  CA class also contains a number of abstract method specifications for 

setting (fillCells, randomize, switchClickedCell) and updating (updateCells, updateSleepers) the 

states of its cells based on the particular demands of an implementing class, such as CA2D. The 

Stepper class is a singleton which allows multiple cellular automata to update synchronously.
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Figure 4.5. A UML diagram of the CA and CA2D core classes, including the various smaller helper classes that they 

are connected to through inheritance and implementation. The Hex-,  Sqr-, and TriCA2D classes all implement the 

CA2D class, which in turn implements the CA class. The CA2D class also inherits constants from CA2DConstants.



The CA2D class implements all of the abstract methods of the CA class for a general 2D cellular 

automaton, as well as some of its own methods to create the 2D cells (makeCells), set the list of 

neighbours  for  each  cell  (initNeighbours),  and  to  allow the  insertion  of  random cell  states 

(injectLife).  The class  also  has  an array (gliders)  of  specific  2D patterns  (Stamp2D objects) 

which are created (makeGliders) and applied as cell states (placeGlider) using abstract method 

specifications  for  an  implementing  class,  of  which  three  exist  (HexCA2D,  SqrCA2D,  and 

TriCA2D). Similar to the  CA class, the  CA2D class contains a number of elements (cMouse, 

rMouse) and methods (flip*, clicked, *Glider, etc.) that assist in its graphical representation.

Using the CA2D class, an automatic interconnection class (CA2DConnector in Figure 4.6) was 

developed using an overloaded method (connect), which can take as an argument either a single 

CA2D object or a 1D or 2D array of  CA2D objects,  along with a few simple arguments for 

wrapping and orientation, and create the bidirectional interconnections as the arguments specify. 

The wrap argument dictates whether to wrap the cell matrix edges periodically in both directions, 

while  the  wrapTtoB and  wrapLtoR arguments  do  the  same  for  the  two  possible  directions 

individually. The orientation argument specifies whether the objects in a 1D array are spatially 

indexed as a horizontal or vertical set, while for a 2D array it specifies if the array is indexed 

using rows then columns or columns then rows. Note that the CA2DConnector class currently 

can only create interconnections between CA2D objects with the same cell matrix dimensions.

56

Figure  4.6.  A UML diagram  of  the  CA2DConnector class  and  the  GUI  class  (labelled  nuitblanche010).  The 

connector  class  is  designed  to  interconnect  a  single  pair,  or  a  1D or  2D array,  of  CA2D objects  in  a  simple 

bidirectional grid pattern. The GUI class allows the keyboard and mouse interactions and controls the update speed.



The GUI is primarily made up of methods and elements in previously described classes, as well 

as a main GUI class (nuitblanche010 in Figure 4.6). In addition to the GUI elements (fixFlash, 

backgroundColor,  caIndex, etc.) and methods (draw*,  show,  highlight), this class controls the 

updates of the entire interconnected system (using runCycle and update), along with a number of 

methods that allow direct interaction with the system in real-time using a keyboard (keyPressed) 

or mouse (mousePressed). This interaction is mainly used to manipulate the progression of time 

(play),  but  can also be  used to  assign  new parameters  to  a  given  CA,  toggle  the state  of  a 

particular Cell in the cell matrix, or even to directly randomize a limited set of cells or set down a 

glider pattern if one is known (gliderStamp). The interface, like the library, is fully extendable to 

allow the definition of any possible command that is desired from any supported input device.

Although the high level design established at the beginning of this chapter could be instantiated 

using a number of different software languages and hardware elements, the version of the library 

described here was developed using the Processing language and environment on a personal 

computer, and on its completion will be posted to the Processing website  [68]. Processing is a 

high-level interpreted language which was developed to provide access to powerful computing 

and  interface  functionality  for  novice  programmers,  specifically  for  the  arts  and  design 

communities. The selection of Processing as the implementation language for this instantiation 

enables direct access to the realm of cellular automata for these non-specialist groups.

This software includes all of the components of the library, both novel and standard, to facilitate 

its use in a wide range of different potential tasks from the fields of art to research to industry. 

Not only does this software enable the validation of the results of this dissertation, it allows the 

construction of systems that have specific applications in mind from the beginning of the design 

process. It can act as a simulator for a distributed system, and can be extended to model a given 

distributed system graphically with a user interface, thanks to its instantiation as a Processing 

library. The direct benefits of this instantiation as a Processing library include the ability to create 

graphics in  3D, make full use of a computer's mouse and keyboard as input devices, and even 

interact with the Internet or physical hardware when combined with other simple libraries.

As should be evident given both the high-level architecture from earlier in this chapter and the 

specific software classes described above, this library satisfies all of the design criteria that were 

set out in Section 1.2. The interconnection framework has been implemented, albeit for a specific 

subset of nodes, including an automatic connector class for basic grid-like systems. The entire 
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high-level  library  design  has  been  built,  demonstrating  its  usability  in  a  purely  software 

environment. The architecture is completely open and, thanks to the freedom of the Processing 

language and environment, can be easily interfaced with a variety of other systems. The software 

has been designed to be able to accommodate all of the parameters in the restricted set from 

Figure 4.1. Finally, the software can be extended to use more parameters, have other systems 

integrated into all levels of abstraction, and has already been extended to allow the injection of 

random cell states and the insertion of predefined patterns of cell states.

Using the software library that has been described in this section, a number of computational 

results have been found. This data was collected through the simulation of different types of 

interconnected systems of cellular  automata,  which are introduced and discussed in the next 

section.  These  simulations  make use  of  most  of  the  structures  and  methods  that  have  been 

discussed  above,  with  a  specific  focus  on  the  effects  of  sleep  and  interconnection  on  the 

computational efficiency of various sets of popular cellular automata parameters and different 

interconnected systems, respectively.

 4.3.Results

This section provides and discusses the results of a number of profiling experiments that were 

designed to determine the effects of this library on the efficiency of system updates in cellular 

automata.  In  these  experiments,  the  total  number  of  cells  in  the  system was  kept  constant, 

independent of how many cellular automata there were, and the initial conditions of these cells 

consisted of a randomly chosen set of states with a density of 50% (half of the cells in the on 

state). To  ensure  consistency  across  these  experiments,  an  easily  repeatable  set  of  system 

parameters  was desired that  would facilitate the validation of these results, aside from those 

based on interconnection, using other libraries.

Due to its popularity in existing 2D cellular automata research, John Conway's Game of Life was 

chosen as the primary parameter set. As described in Section 2.1, it uses binary cell-states, a 2D 

square tiling, a contact-based Moore neighbourhood, and specific inner-dependent outer-totalistic 

rules. The Game of Life has very complex global dynamics, including both a quiescent state and 

moving patterns, which allow it to act as a universal computer.

To determine what kinds of effects different parts of the library might have on the efficiency of 

updates, an experiment was carried out that was designed to separate their contributions to the 
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overall system efficiency. Each of the novel aspects of the library was enabled and disabled, 

alone and in combinations, to discover both their individual and concurrent effects. Based on 

these experiments, most of the aspects of the library did not have any measurable effect on the 

efficiency  of  the  system.  However, both  the  interconnection  and  sleep  mechanisms  made 

significant  changes  to  the efficiency of  the  system,  both independently and  when combined 

together. The results of a few simulations with combinations of sleep and interconnection can be 

seen in  Figure 4.7, with 'Split' meaning that one large cellular automaton is split into smaller 

identical parallel systems in the same way as the left transition of Figure 1.2. 

As  is  evident  by  these  initial  results,  the  only  novel  aspects  of  this  library  that  have  any 

measurable effect on the efficiency of the system are those directly involved in the cell updates. 

This result is to be expected, as the majority of computing resources used by cellular automata 

are  dedicated  to  cell  updates.  On  top  of  the  overhead  of  the  standard  cellular  automaton 

implementation, interconnection requires additional overhead for two main reasons: to provide 

each  system  access  to  any  neighbouring  systems'  edge  cells,  and  to  allow  each  cellular 

automaton in an overall interconnected set to individually update themselves. This knowledge, 

when combined with the seemingly identical drops in efficiency seen in both split systems in 

Figure 4.7,  seems to  indicate that  interconnection creates  a  constant  overhead.  Upon further 

analysis, it can be seen that the addition of interconnection shifts both the linear baseline and the 

non-linear sleep data by a constant factor, consistent with a constant overhead. A discussion of 

interconnection's influence on the efficiency of updates follows in Subsection 4.3.1.
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Figure 4.7. The effects on computation time when using the 'sleep' flag and splitting a large cellular automaton into 

an interconnected grid of identical cellular automata.
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The  effects  of  sleep  on  efficiency  are  somewhat  more  complex.  Although  it  also  has  an 

associated overhead, there is no clear method of predicting what it will be. This unpredictable 

nature is due to the variations of which cells require updates to the sleep flag from step to step. In 

isolation, the overhead reduces the efficiency of updates based on the unknown global dynamics. 

There is also an added overhead once interconnection is introduced, to allow sleeping cells on 

the edge of a particular system to wake when their interconnected neighbour cells change. The 

potential gain in efficiency by using the sleep mechanism can offset this entire overhead, but it is 

also based on the global dynamics, making the effects difficult to state with certainty.  A full 

discussion of the effects of sleep on system update efficiency is in Subsection 4.3.2.

 4.3.1. Interconnection

To determine whether or not the overhead due to interconnection is actually a constant drop in 

efficiency, as hypothesized previously in this section, a number of experiments were carried out. 

Since the overhead appears to be based solely on how the interconnection relates to cell updates, 

these experiments were designed to compare the different independent variables involved. The 

variables  in  question  are  the  number  of  edge-connected  cells  and  the  number  of  individual 

cellular automata in the overall system. In these tests, the total number of cells and all parameters 

that are not involved with interconnection remain constant.

The  number  of  edge-connected  cells  can  be 

modified  directly  without  affecting  other 

variables by using a consistently interconnected 

and constant number of cellular automata in a 

pattern and varying the overall  dimensions  of 

the set (as in Figure 4.8). In this experiment, the 

change in dimensions varies the shape of the set 

of cellular automata from square to a thin rectangular strip while maintaining a constant number 

of cells, causing the number of edge cells to vary across a large but finite range.  Note that  M 

must always be an integer divisor of  N to ensure that any configuration that fits this definition 

has the same number of cells.  The results of these variations have been summarized in  Figure

4.9, with each set of data points representing a particular number of cellular automata in a given 

pattern. As seen in this graph, the number of edge cells in the system appears to have a constant 

linear effect on the time it takes the entire system to update for a given pattern and number of 
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Figure  4.8.  Diagram showing  how the  number  of  edge 

cells was varied without affecting the number or pattern 

of cellular automata in an interconnected set.
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cellular automata. This effect ranges from approximately an 8% increase with two systems up to 

approximately a 15% increase for larger numbers of systems.

As the number of edge cells appears to have a constant effect on efficiency for a given data set, 

the impact of the number of individual  cellular automata can be analyzed by comparing the 

different  data  sets.  Other  than  the case  of  two systems,  as  the number of  cellular  automata 

increase, they appear to have a beneficial impact which gives the appearance of a reduction in 

the amount of overhead for a particular number of edge cells. This is likely an effect of the 

multiple cellular automata being evaluated in parallel when possible, one of the main benefits of 

interconnection. In the case of only two cellular automata, the reduction of the multidimensional 

array organization of  the  systems  involved  into  a  single  array is  thought  to  be  causing  the 

reduction in computing time, but this has not yet been confirmed.

As is apparent from the results above, the drop in efficiency based on interconnection is linear 

and constant for a given number of cellular automata, creating an approximately 8% to 15% 

longer computation time. This value seems to be dependent on the number of cellular automata 

that are in use, as well as how well the implementation of the library will handle parallel tasks. In 

the next section, experiments on the impact of sleep are carried out.

 4.3.2. Sleep

Experiments  were  carried  out  to  separate  the  conflicting  effects  of  sleep:  the  overhead  of 

checking and setting the sleep flag, and the benefits of applying the sleep mechanism to skip 
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Figure 4.9. Effect on computing time of varying the number of edge cells in an interconnected system. Each set of 

data points represents a constant number of cellular automata in a specific pattern. The times have been averaged 

over ten executions of each particular data point, and each time found is for 1500 generations.
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over static cells. Since both of these effects are directly related to the global dynamics of a given 

cellular automaton, a number of well known parameter sets were chosen (from listing at [69]) to 

be used in these simulations as shown in Figure 4.10, again in the same format as was used in 

Figure 2.6. The sets were specifically chosen to ensure common parameters with each other and 

the Game of Life other than their transition rules, to allow the known complex dynamics of each 

system's transition rules to contribute useful data to the sleep characterization. These common 

parameters  are:  square  cells,  a  contact-based  Moore  neighbourhood,  two discrete  states,  and 

inner-dependent outer-totalistic transition rules. These experiments were all carried out using a 

cellular automaton with a 240×240 cell matrix and periodic boundary conditions, with a data 

point every 100 generations up to 1500, averaged over ten executions of the same system. Also, 

the following conventions are used for sleep:  removed, where all traces of sleep are removed 

from the code; disabled, where the sleep flag is updated but transition rules are applied whether 

it is set or not; and enabled, where sleep is actively preventing sleeping cell state updates.

In general, the global behaviours of the rules used fall into three different levels of activity in cell 

state changes over time: consistently high, slowly decreasing, and rapid decay. The most active 

group consists of three of the eight chosen parameter sets: Amoeba, with areas of chaos that are 

continually  changing  size;  Walled  Cities,  where  rectangular  regions  of  random  chaos  are 

enclosed in static lines of cells; and Replicator, where every initial pattern is copied eight times 

every 32 generations.  Only one of the chosen sets has a slowly decreasing level  of activity, 

Coagulations,  as  it  produces  many  slowly  changing  patterns  that  gradually  stabilize  under 

periodic  boundary conditions.  The  final  group,  those  with  rapidly decreasing  activity  levels 

which  should  benefit  the  most  from the  application  of  sleep,  contains  the  remainder  of  the 

parameter  sets.  The  global  behaviour  of  the  Game  of  Life  has  been  described  earlier  in 

Subsection 2.1.1, and High Life is simply a slightly more active version of it, but the remaining 

two sets with rapidly decreasing activity levels are Diamoeba, which creates various forms of 
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Figure  4.10. The rules that are used in the simulations for sleep. In all of these systems, the only parameter that 

differs from the parameters in Conway's Game of Life is the transition rules, so only those are shown here.
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diamond shaped static patterns of state '1' cells with changing edges, and Day & Night, which 

creates large regions of static patterns in both states with changing edges.

To isolate the drop in efficiency caused solely by the sleep overhead, the actual application of the 

sleep mechanism was disabled to ensure no hidden gain in efficiency. When the benefits of sleep 

have been disabled, the time increase shows how much is taken to check and set the sleep flags. 

As shown in Figure 4.11, this change in efficiency seems to be based on the overall activity level 

of the rule used. This means that although the overhead is limited to a given range, it seems to be 

directly dependent on the global dynamics of the specific rule. This overhead appears as a 25% 

to 75% longer computation time, which must be completely overcome by the benefits of sleep to 

justify including it as a component of the library. It is important to note that the rules used are 

chaotic, in that even very similar initial conditions can lead to completely different behaviour, 

and  therefore  attempting to  fit  a  curve  to  the averaged  sleep  data  has  little  to  no meaning. 

However,  it  is  possible  to  cluster  the  rules  into  high-  and  low-activity  groups  (high/low 

percentage of cells changing state frequently), as shown by the highlighted areas of Figure 4.11.

Taking this dynamics-dependent drop in efficiency into consideration, further simulations were 

carried out with sleep enabled and compared to simulations with sleep completely removed from 

the library. As shown in  Figure 4.12, the overall effects of the sleep mechanism on computing 

time varies widely based on the global dynamics of the transition rules that are used. In general, 
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these results are to be expected based on the methods used to implement the sleep mechanism, 

however a number of interesting results for the specific rules are described below.

Based on the typical state progression in each of these rules, sleep seems to majorly benefit only 

those rules which have many static patterns, a quiescent state, or both, as expected. This group of 

rules,  as  shown  in  the  bottom group  highlighted  in  Figure  4.12,  should  always  have  sleep 

enabled. The rules which have very active cells consistently over time still suffer drastic negative 

drops in efficiency when sleep is enabled which closely match the overhead of these rules in 

Figure 4.11, only improving over those times by 15-20%. This means that for any rule with a 

high level of activity over time, sleep should be completely removed from the update process. 

However, for rules like Coagulations, where a mass of activity dies off slowly while leaving 

behind static regions of cells, it appears that to maximize efficiency throughout the entire run-

time of the system, sleep must be removed until the critical point when it will start to speed up 

the system. These massive differences in efficiency effects of the sleep mechanism, not only 

between rules but even over time in one particular rule, lead to a foreseeable need in the near 

future for an intelligent decision making algorithm to discover in which situations that  sleep 

needs to be activated to optimize computing time, and when it should be removed altogether.

By taking the shape of this sleep efficiency graph for a given rule and comparing it to a set of 

common rules with well known global dynamics, general statements can be made about the types 
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of global dynamics that are present in the new rule. A number of comparable rules, or a linear 

combination thereof, could be used to effectively filter and classify a potentially useful new rule. 

This  classification  and  filtering  mechanism  is  applicable  in  a  wide  range  of  applications, 

including finding  universal  systems,  searching for  particular  global  behaviour,  or  even  as  a 

fitness  function  in  genetic  algorithms  as  these  are  all  generally  related  to  how  the  sleep 

mechanism will perform on particular sets of parameters.

The  changes  in  computing  time  when  using  the  novel  aspects  of  this  library,  particularly 

interconnection and sleep, have been discussed along with the results of a number of simulations 

to verify these results. Although there is an overhead associated with both interconnection and 

sleep, their use introduces a range of benefits that greatly outweigh their respective overheads. In 

the next section, applications of this library are discussed along with specific types of systems 

that directly benefit from both of the novel aspects that have been analyzed in this section.

 4.4.Applications

Building on and using the library that has been defined in this chapter up to this point, a wide 

range of applications present themselves. A few of these applications are extensions of common 

tasks in cellular automata research, while others are introduced entirely by the novel aspects of 

the  library  and  framework.  In  particular  the  addition  of  cell-based  boundary  specifications, 

including the interconnection mechanism, creates the potential for completely new tasks as well 

as new solutions to common tasks. These applications can range from an investigation of the 

effects of the separation or combination of various popular cellular automata systems, through to 

the use of the library within the fields of interactive systems or evolutionary computing.

A direct application in the implementation of these systems is derived from the introduction of 

interconnections between distinct cellular automata, and arises due to the simplicity in software 

and hardware of using these interconnections to distribute computation. The ability to separate a 

very  large  cellular  automaton  into  arbitrarily  small  homogenous  subsections,  each  sharing 

boundaries  and using the same rules,  allows the computation of  much smaller  relative parts 

without losing the global behaviour that is desired. In this way, the interconnections between 

cellular automata are a directly applicable method of determining how to separate computational 

tasks among many parallel systems to satisfy the primary criterion of this library.
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The cell-based boundary specifications can also create the ability to use any number of edges of 

a cellular automaton, or group thereof, as inputs to or from an interconnected system. A given 

input to a n-dimensional cellular automaton only needs to take the form of a (n-1)-dimensional 

array of cell states, and can be based on anything from internal statistics to external sensor data 

to be a part of the interconnection graph. There is also the ability within this library to directly 

change the state of any cell in the system, so that direct human input can be used in real-time to 

insert a pattern or change an ongoing computational process. This leads directly to the use of this 

library within the realm of interactive systems, as discussed in Subsection 4.4.1.

Building on the foundations of 1D hybrid cellular automata where each cell has a different set of 

rules, there is also a direct application in the use of interconnected systems, each having different 

rules to solve various tasks. This would allow the benefits of hybrid systems to grow from simple 

1D problems to the vast realm of  2D problems in computer graphics and image manipulation 

where currently, general  2D cellular automata can perform only simple pattern recognition. It 

could even allow existing  2D character recognition cellular automata to be interconnected and 

made more efficient, with a high-level guide dictating which set of different pattern recognition 

rules to use for each section of the problem.

Finally,  using the  interconnection mechanism as  a  directly specifiable  parameter  of  a  set  of 

cellular  automata enables the use of the presence of edges in the interconnection graph as a 

genetic parameter within the realm of genetic algorithms. Not only can suitable parameters of a 

given cellular automaton be determined to solve a task, but using this library the interdependent 

parameters for multiple systems, and how they are interconnected, could be discovered. By being 

able to change how the systems are interconnected, the potential search field can be expanded by 

many orders of magnitude. Applications of this library when combined with genetic algorithms 

are introduced in Subsection 4.4.2.

 4.4.1. Interactive Systems

In general, interactive systems involve a form of input from a person that affects a perceptible 

change  in  the  system.  The  field  of  interactive  systems,  outside  of  its  sub-fields  of  human-

computer  and  human-robot  interaction,  is  primarily  focused  within  the  art  and  architecture 

realms. There are many examples of interactive art, with a large majority of them taking the form 

of  technologically  enabled  artistic  pieces  generally  known  as  tech-art  such  as  Aurora,  the 

installation  that  is  described  in  Chapter  5.  In  terms  of  architecture,  a  few simple  forms  of 
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interactive systems are intelligent building shading systems that are based on human occupation, 

and lighting systems that are motion sensitive. These are similar to the examples of the current 

uses of interactive cellular automata in this field that have been described in Subsection 2.2.2. In 

comparison to these existing examples, the library that has been developed allows a much more 

complex set of interactive elements and overall interactive systems to exist.

The freedom of specification for each edge of a cellular automaton in this library allows for a 

number of different types of inputs to modify and influence the state of those edge cells.  This 

input can come in many different forms so long as it can be modified or manipulated to appear as 

a  set  of cell states.  The states can be dynamic,  static,  random, or even based on an entirely 

separate cellular automaton of their own, as introduced at the end of Section 3.1. Also from that 

section, there is the possibility of using a single input source as the boundary condition on either 

multiple edges of a single cellular automaton or the edges of multiple cellular automata within a 

larger, interconnected system.

The input could also be from an external source such as other software, other hardware, sensor 

values, or even direct human input. As an example, a sensor that directly outputs its value as a set 

of  cell  states  could  be  used,  similar  to  how  ambient  light  levels  are  used  to  create  initial 

conditions for the 1D shading system from Subsection 2.2.2 [9]. Or, from the simple prototype in 

[9], it could be based on a manual manipulation of the states of the edge cells while the cellular 

automaton progresses in real time. If the system were connected to the Internet, the input could 

potentially be driven by anything in the world.

With the addition of a small  extension to the 

library,  multiple  layers  of  an  edge  could  be 

based on various inputs. Using this extension, 

the bottom few rows of a cellular automaton, or 

interconnected set thereof, could behave as an 

equalizer in response to music (Figure 4.13). As 

long as the injection of cell states is done so it 

does not affect the rules, it could be done by an entirely separate system using a communication 

mechanism. If the rules for a set of cellular automata support moving patterns, or  gliders, this 

would lead to various patterns of gliders sporadically rising from the bottom cells as they change 

to the beat of the music in the form of a digitally choreographed ballet.
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Figure  4.13.  Diagram  of  the  interconnection  graph  for 

how a dynamic node such as an equalizer could affect the 

bottom rows of a cellular automaton node.
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In addition to the use of edges as inputs, the library allows the state of individual cells to be 

changed directly.  It is  further extended to allow the creation and insertion of any predefined 

pattern centred at a given cell within a system. In the graphical simulator built on the software 

library of Section 4.2, these placements can be chosen through direct human input. For example, 

if a system is using rules that support a particular glider, then the pattern for that glider can be 

specified as a valid pattern for that rule and stored in the software. Then, at any point during a 

simulation that glider can be placed anywhere in the lattice based on which cell is selected.

 4.4.2. Genetic Algorithms

As discussed in Section  2.3, there is a broad base of work combining genetic algorithms with 

cellular automata to solve tasks and find various sets of parameters to satisfy different objectives. 

However, most research on combined systems in  2D is once again focused on the search for 

universal computation or self-replication. There are any number of reasons why this might be the 

case,  but  based on the current  limitations  of  available cellular  automata libraries  one of  the 

contributing factors is likely that there is no library currently available that has an open enough 

architecture  to  allow  any  other  research.  This  library  has  been  designed  specifically  with 

applications in genetic algorithms in mind, and can therefore reduce these limitations.

The use of this library with genetic algorithms is simplified by the addition of a number of high-

level functions that provide access to the kinds of information that are generally desired for task-

based evolution.  The first  set  of  high-level  functions  relate  to statistical  manipulation of  the 

system, and include the ability to fill a given system with a specific density of cells and to find 

the density at any particular time step. Another set of functions uses the sleep flag to determine 

various global behaviours, as described at the end of Subsection 4.1.2. These include how active 

the system's cells are at a given time step, and whether or not there appears to be a quiescent state 

in a given rule. This allows a genetic algorithm to search, for example, for a set of parameters 

which achieve a specific desired activity level, if that is the overall goal.

Other than the potential for a much faster computation of the fitness function using the threading 

and  sleep features  of  the  library,  there  is  little  change to  the typical  methods  of  combining 

evolution with cellular automata for any of the traditional tasks. Note that although sleep may 

help or hurt depending on the task, the ability to compute the fitness of every chromosome in 

parallel using threads leads to a faster system overall on any form of parallel system, even those 

which simply have a parallel processor in a serial architecture. To show that no core functionality 
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of a typical cellular automaton has been lost with respect to evolutionary computation, a compact 

genetic algorithm component was also developed as an extension to the library.

To validate this component, a demonstration task was needed to replicate the results of other 

work  in  the  combination  of  cellular  automata  and  genetic  algorithms.  After  reviewing  the 

literature, the density task (all cells reaching a common state based on their initial density) seems 

to be the most popular option for evolutionary computation. The majority of work in this field 

was done at the Sante Fe Institute, by Mitchell and Crutchfield and their students [43]. However, 

only a small part of this work was done in 2D, and even that was not done using totalistic rules. 

Further work on the density task was done in 2D using totalistic rules by Inverso et al [56], so 

their density task solution is used as the standard to which comparisons will be made.

To perform the density task, a fitness function was created based on the density of cell states 

after 100 time steps from a known random initial density. The chromosome used was simply a 

direct reproduction of the transition rules.  The fitness of a chromosome was calculated after 

applying its  rule  to  a  cellular  automaton,  running the  system for  100 generations,  and  then 

evaluating the fitness function, as shown in Figure 4.14. The task was run using both one large 

cellular automaton and the same system split into four interconnected modules (2×2). Using both 

of  these methods,  the genetic  algorithm achieved the Inverso rule  after  the same number of 

evolutionary steps. However, the system took slightly longer to compute when using the 2×2 

split system, as expected based on the results in the previous section of this chapter.

In addition to being able to replicate the findings of other work using this library, the ability to 

interconnect a number of cellular automata leads to many more possible genetic attributes. There 

is the opportunity for each of the individual cellular automata to have a selection of different 

transition  rules,  neighbourhoods,  or  even  tessellations  be  a  part  of  the  chromosome that  is 
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Figure 4.14. Diagram of the application of the density task fitness function on a population of transition rules. When 

using an interconnected system, the 2D cellular automaton was simply replaced with four connected 2D systems.
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evolved. The inclusion of these interconnections as genetic components, and the distribution of 

different  parameters among interconnected cellular automata, creates a vastly different search 

space from that which is typically explored. These diverse new possibilities have the potential to 

solve a wider range of problems than standard systems using only a single cellular automaton.

To demonstrate the freedom of these new genetic attributes, an extended version of the density 

task was created using a chromosome that  was a  concatenation of  rules  for  each individual 

cellular  automaton (shown in  Figure  4.15).  Additional  crossover  points  were added  between 

these  concatenated  rules  to  create  the  potential  for  maintaining  whole  rules  when  new 

chromosomes  are  created  using  the  crossover  mechanism.  The  search  space  for  this 

chromosome, and therefore the task, is exponentially larger than that of the standard density task.

In this extended version of the density task, the integrated genetic algorithm was still able to find 

the Inverso rule even though it had to effectively find the same rule four separate times. On 

average, this method took 5 to 8 times more evolutionary generations (and therefore real-world 

time) than the standard method. However, this extended system could be used to solve far more 

interesting  problems  that  depend  on  scales  of  knowledge  somewhere  between  the local 

neighbourhood and global tasks usually used, such as a version of the chequerboard problem 

where the alternating blocks of homogeneous cell states are more than one cell in size.

In  addition  to  these  attributes,  the  set  of  interconnections  between  particular  nodes  in  an 

interconnection graph can be used as a  parameter in the evolution of  an overall  system. By 

including the capability of arbitrarily networking various cellular automata together, the library 

allows the genetic algorithm to act like another member of the evolutionary computing family 

known as genetic programming. With a genetically determined network of interconnections, each 

cellular automaton acts as a time-dependent function. The input to this function is the pattern of 

cell states that cross the interconnections at each time step, while the output crosses back over 

the same interconnections concurrently. This introduces many new and interesting potential tasks 
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Figure  4.15.  Diagram  of  how a  rules-only  chromosome  is  changed  from  the  standard  application  of  genetic 

algorithms with cellular automata to their use with a set of four interconnected systems.
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as well as providing new solutions to more common tasks, as it takes on the attributes of genetic 

programming [70]. A selection of these tasks and solutions are discussed further in Section 6.2.

In summary, this chapter has discussed the library that has been developed to satisfy the criteria 

as set out in Section 1.2. This library has implemented the interconnection framework from the 

previous chapter, as well as added a few unique components including interactivity and sleep. 

The instantiation of the library in software has been discussed, with UML diagrams of all of the 

core  classes  used  to  implement  the  high-level  architecture  laid  out  at  the  beginning  of  this 

chapter.  The  key components  of  the  library  have  been  analyzed  in  terms  of  computational 

efficiency using this software instantiation, and the global dynamics of the particular cellular 

automaton the sleep mechanism is applied to have been determined to result in a direct impact on 

efficiency.  Finally,  a  number  of  applications  have  been  introduced  as  a  brief  outline  of  the 

potential uses of the library. In the next chapter, the development of a hardware application based 

on this library is discussed as a demonstration of both the library itself and as a concrete use of 

the framework from Chapter 3.
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 5. Application: Aurora

In October of 2010, an artistic installation, named 'Aurora', was created to fill the atrium space of 

the Royal Conservatory of Music in Toronto, Ontario  for an event called “Nuit Blanche” (see 

Figure 5.1). Aurora won the People's Choice award, and was designed alongside the artistic and 

creative team at Philip Beesley Architect Inc. It was conceived of as a 1 m wide cloud of light, 

sound and movement that reacted to visitors and was 10 m tall and 25 m long. To achieve this 

concept, a set of 18 modular embodied interconnected cellular automata were developed that 

each contained 144 (24×6) cells, for a total of 2592 (18×144) cells in the piece. Each of these 

cells controlled a super-bright white LED and a vibration motor using their state.

The initial motivation for creating this installation using cellular automata was simply to gain a 

greater  understanding  of  the computational  complexity  of  the  patterns  generated,  primarily 
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Figure 5.1. Image of Aurora installation from the 2nd floor. Note the scale of the space based on the people.



influenced by an instance of art based on the Game of Life  [71]. Once an investigation of the 

state of the art in the field of cellular automata was carried out, it was discovered that the entire 

installation would need to  be  built  as  if  it  were one large  cellular  automaton with  common 

parameters throughout. Since there was a desire for the behaviour of the different parts of the 

installation to be unique,  or at  least  different  from other adjacent behaviours,  the need for a 

hybrid mix of cellular automata parameters became clear. However, to be able to use a hybrid 

mix of parameters within a single cellular automaton, it quickly became necessary to create a 

framework that would allow a level of hybridity that did not exist in any other implementations, 

either in hardware or software. This led to the initial development of the conceptual framework 

that is the focus of this thesis research, and a large portion of the library as well. Once these two 

core systems had been developed, their application in the design of this installation began.

The design requirements for this installation consisted of four key aspects: no centralized control 

or storage, the visitors had to be able to affect the piece, the behaviour had to change over the 

course of the installation, and there had to be some form of distinguishable movement of light. 

To avoid the need for any centralized systems, a parallel module was designed for each cellular 

automaton  that  connected  to  the  other  modules  to  form the  interconnected  system  desired. 

Presence sensors were included that hung below the installation to allow visitors to affect the 

cells in their location through the interaction and sensor aspects of the library and framework, 

respectively. The behaviour of the cellular automata was designed to change over time by using a 

genetic algorithm to evolve new parameters at  a set frequency. Finally,  to guarantee that the 

lights in the installation showed movement, the parameters that were chosen had to support some 

form of moving cell state patterns.

In  the  next  section,  the  interconnection graph  for  Aurora  is  defined  and  the  overall  system 

behaviour is discussed in terms of how it fits within the framework from Chapter 3. Following 

that, Section  5.2 describes the specific details of the embedded implementation of the library 

from Chapter 4, with a focus on how the various components of the library have been changed so 

that  they  work  well  in  this  particular  hardware  application.  A description  of  a  few  post-

installation  investigations  that  have  been  briefly  initiated  can  be  found  in  Chapter  6 as  a 

subsection of Future Work, that includes discussions of a method of tracking visitor interest and 

a preliminary look at its use in human-in-the-loop fitness functions for genetic algorithms.
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 5.1. Interconnection Graph

The interconnection graph for the embedded system that was designed for Aurora is shown in 

Figure 5.2. As is evident,  there are three different node types used in the graph:  2D cellular 

automaton  nodes,  dynamic  sensor  vector  nodes,  and  a  static  scalar  node.  The  2D cellular 

automata nodes used are each made up of 144 (24×6) cells, and share a number of common 

parameters: two states, square cells, and a size 1 Moore neighbourhood. The range of shades of 

the cellular automata nodes indicate that each of the nodes can have a different set of transition 

rules. The dynamic sensor vector nodes each provide a vector of six values based on the input of 

a set of six presence sensors hanging below the installation. In addition to providing the lower 

boundary condition, these sensor nodes can randomly affect the states of cells up to three rows 

away from the boundary, depending on the sensor data. The static scalar node has a value of zero 

and is connected to the top of all of the cellular automata, as well as the extreme edges of the 

installation, to ensure that the cell state activity in the installation does not become high enough 

that the movement of cell states appears to simply be random noise. This effect of having a 

boundary absorb cell state activity is achieved through the use of transition rules that have a 

quiescent state that is the same as the used boundary condition, so the boundary is therefore 

unable to inject any non-quiescent cell states into the overall system.

The range of transition rules that are used in the installation are chosen from a restricted set of 

possible rules that all support the 'glider' pattern and movement from the Game of Life cellular 

automaton. This is done to allow 'glider' patterns to be created anywhere, move across multiple 

cellular automata in the installation, then either crash at the top and sides of the piece or dive into 

the visitor-affected cells  at  the bottom. The simplicity of the 'glider'  design also enables  the 

visitor-affected  cells  to  easily  create  new gliders  driven  solely  by their  presence  under  the 
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Figure 5.2. The interconnection graph for Aurora. As before, different shades represent different parameter sets.
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installation. Based on the restrictions needed to support the Game of Life 'glider', the transition 

rules that were available are known to have many static patterns, so  the sleep mechanism was 

enabled to reduce the time needed to do the state updates at each time step.

 5.2.Hardware Library Implementation

To control this massive system without a centralized computer, a hardware-based version of the 

library described in the previous chapter was developed, as shown in Figure 5.3. This hardware 

application  of  the  library  was  created  using  custom hardware  designs  and  the open-source 

Arduino platform [72]. It incorporates a set of embodied cellular automata, each with their own 

computing and sensing elements, that allows local computation of each time step without any 

outside information. There is also a method for interconnecting one cellular automaton to the 

next using bidirectional cables hooked directly to shift registers to enable boundary interaction 

without needing a high-level communications protocol. This allows the cellular automata to be 

distributed across a huge space (250 m2) and avoids using centralized systems. After the initial 

programming, the communication between controllers is limited to a global update message used 

as a heartbeat to ensure that the entire installation is switching its cell states at the same time.

Due to the relative cost of basic logic circuits compared to simple microcontrollers, the level of 

embodiment in this work is at the individual cellular automaton level. This means that the set of 

cells  that  make up each  individual  cellular  automaton are  using the  same rules  and will  be 
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Figure 5.3. A block diagram of the hardware components used in Aurora. On the far left is a breakout unit (dark 

green) made up of the two boards (blue) that control the eight cells (orange) it is assigned. Just right of these, three 

breakout units are daisy-chained together,  along with a sensor board (red) at the bottom, to form a cell column 

(purple). In the centre, six of these chains are connected to a controller unit (yellow) to form a single embodied 

cellular automaton system (green). On the right, 18 of these systems are connected using a communication link and 

a bi-directional cable to create the overall installation. The communication link is used on startup to program the 

initial  parameters of each controller  unit,  then only as a  global  synchronizing heartbeat  during operation.  Total 

number of cells: 18 systems * 6 chains/system * 3 breakout units/chain * 8 cells/breakout unit = 2592 cells.
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updated synchronously, while the edges of these cellular automata will be cross-connected to 

allow  the  edge  cell  state  information  to  pass  asynchronously  without  sharing  rules  or 

computational resources. The hardware consists mainly of two parts: a controller unit (shown in 

yellow in Figure 5.3), the central processing and communications component for each module in 

the system; and a breakout unit (shown in blue in Figure 5.3), to separate the serial data from the 

controller unit into parallel signals for each of the breakout unit's eight cells' actuators.

The controller units consist of custom designed hardware directly attached to an Arduino clone 

made by Modern Device,  known as a  Bare Bones Board (BBB)  [73].  The custom hardware 

(schematic shown in Figure 5.4) allows the BBBs to each control a set of six cellular automaton 

cell  columns  of  arbitrary  length,  read  data  from  their  neighbours  on  edge  cell  states,  and 

communicate  using  RS485  with  a  manually  changeable  address.  To  achieve  the  data 

independence gained by using data structures in the library, shift registers are used as external 

memory units that can be written to by the local controller and read by neighbouring controllers. 

The  control  units  each  have  the  ability  to  keep  track  of  local  state  changes  as  well  as 

incorporating the states of the edges of both of its neighbouring controllers so as to reproduce the 

interconnection abilities of the library. The contents of the shift registers are controlled using a 

set of multiplexed serial output channels, while reading from neighbouring controllers is done 

using a similar smaller set of multiplexed serial input channels.
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Figure 5.4. Schematic diagram of the custom hardware in the controller unit. This custom hardware, along with a 

Bare Bones Board from Modern Device, makes up the pair of yellow boards shown in Figure 5.3.



The breakout units each control eight cells, and consist of two custom boards (schematics shown 

in  Figure 5.5) which connect to each other using a set of header pins: a memory board and a 

high-current  driver  board.  The  memory  board  has  connectors  for  communication  with  the 

controller and with further daisy-chained breakout units, as well as a latching cascading 8-bit 

shift register that contains the state of all eight cells. In addition to a data pass-through for sensor 

signals, the memory boards can be chained to extend each column by eight cells at a time. The 

driver boards use the control signals from each memory board in combination with a high current 

source driver to power the individual cells. Thanks to this modular driver board, the cells can 

potentially power anything from simple LEDs to large motors by simply switching out the board 

for one of the right power.

In addition to this core hardware, a set of hanging SHARP GP2Y0A21YK infrared proximity 

sensors allow each embodied cellular automaton to sense the people that are moving below it. 

Each of the six columns of cells in a particular cellular automaton has a sensor hanging below it, 

and the presence of a visitor below a particular column of cells can affect the states of the bottom 

three cells in that column. With the movement of visitors below the installation, the changes in 

the states of the bottom cells creates the appearance of a boiling mass of light and vibration. 

Thanks to the restriction of the rules to only those that support the Game of Life 'glider', this 

boiling also occasionally will emit 'gliders' as if consuming energy from the movement of the 

visitors themselves to produce internal movement.

The outputs of the sensors  were also initially going to be used to track the locations of the 

visitors within the installation to determine their interest in particular cellular automata. This was 

then to inform a fitness function for a genetic algorithm used to evolve the transition rules over 

time,  with  the  idea  that  more  interesting  rules  would  attract  more  viewers,  and  the  entire 
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Figure 5.5. Schematics of the memory board (left) and the high-current driver board (right) that connect to form the 

breakout units. These two boards make up the pair of blue boxes from Figure 5.3.



sculpture would eventually evolve to rules that the visitors found interesting. However, due to 

the time constraints that existed on the design and installation, as well as the fact that the entire 

event only ran for a total 12 hours, the supervisory component that enables genetic algorithms to 

work was not incorporated into the actual construction of Aurora. This meant that there was no 

tracking of people within the installation, no genetic algorithm that needed a fitness function, and 

therefore no evolutionary aspect to the piece. To maintain the dynamic behaviour, the rules of the 

cellular automata were changed randomly at random intervals.

In this chapter, the use of the library, and by extension the framework, has been described in 

terms of an embodied cellular automata application in the form of an art installation. The specific 

design requirements for the installation dictated a need for specific aspects of cellular automata 

to exist that had not been developed until the creation of the framework in this research. How the 

framework is applied, and the interconnection graph that describes this application, has been laid 

out fully to demonstrate their direct use in a hardware application. The components of the library 

that have been adapted into hardware versions have been discussed, as well as the rest of the 

hardware that is used to enable the parts of the library that remain in software. In the next chapter 

of this dissertation, the conclusions of this work are described, including a discussion of how the 

main goal of this work was achieved and how well the library design criteria were successfully 

met.  Along with  these conclusions,  a  few topics  are  introduced as  areas  where  future work 

should occur  using the framework,  the library,  and some of  the additional  individual  design 

elements that have been developed as well as some initial investigations inspired by 'Aurora'.
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 6. Conclusion

In the last few chapters, a number of novel topics have been discussed that contribute to both the 

field  of  cellular  automata and  to  the larger  field  of  distributed  systems  in  general.  A graph 

framework has been defined for the interconnection of information processing nodes,  with a 

particular emphasis on the use of cellular automata as these nodes. A library that implements this 

framework, along with a number of other novel aspects, has been discussed and designed which 

will  enable  the  application of  these  novel  aspects  in  the  research  and industrial  worlds.  An 

application has  been described that  makes  use of  the library,  and demonstrates a number of 

interesting uses of its novel aspects. The conclusions that have been reached throughout the time 

spent working on this thesis research are discussed below, while the next section will elaborate 

on some of the possible future work that this research enables.

The main goal of this thesis research has been achieved through the successful development of 

the interconnection graph framework in Chapter 3. The framework has enabled an exploration of 

the distributed computing spectrum from Chapter 1 by allowing cellular automata to behave as a 

representative member of the full range of parallel and distributed systems. This framework has 

also been developed to allow it to directly model the full range of these systems in a way which 

enables a theoretical analysis of the overall systems and their interconnections, in some cases 

using the well established field of graph theory. As an extension of this ability, any node within 

an interconnection graph can be replaced with another node, either built from a simpler or more 

complex system, that mimics the information manipulation of the first, without having to use the 

original underlying system.

To implement this framework, as well  as to enable a practical  exploration of  the computing 

spectrum, the design of a library was discussed in Chapter 4 that was created based on a set of 

design criteria from Section 1.2. These criteria were developed to guide the design of the library 

to  allow  the  use  of  the  framework  in  research  and  applications  throughout  the  computing 

spectrum on both hardware and software.  There are five different  criteria  that  the successful 

design of the library is judged upon, made up of two required criteria and three ancillary criteria. 

The primary criterion required the implementation of the framework discussed above, which was 

achieved  for  a  subset  of  possible  node  types  that  focus  on  the  use  of  cellular  automata  as 

interconnected system nodes. The secondary criterion required the library to be designed so as to 
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allow  implementation  on  both  software  and  hardware,  which  was  successfully  done  and 

demonstrated in the application from Chapter 5 on a mix of hardware and software. Since both of 

these required criteria were met, further work on the achievement of the three optional ancillary 

criteria was performed.

The first  of the ancillary criteria is  the ease of combining the library with external  systems, 

which was achieved in the form of a full breadth interface that takes into account the need for 

both  low-  and  high-level  measurement  and  manipulation  of  the  systems  implemented.  The 

second ancillary criterion is based on the reproduction of typically available parameter sets in the 

field of cellular automata, and is demonstrated through the implementation of the Game of Life 

and other similar parameter sets in the library.  Finally, the last of the ancillary criteria is the 

creation of new functionality above and beyond that typically found in other cellular automata 

libraries that are available, of which there are many examples in this library including the sleep 

mechanism and a wide range of possible interactive elements. This last criterion was also the 

inspiration for the ease of extendability in the library, which effectively allows the addition to the 

library of any new components that might be desired.

To fully demonstrate the use of the framework and the application of this successfully designed 

library, Chapter 5 describes a dynamic and interactive art installation created using aspects of the 

library on both hardware and software. This installation required the development of both the 

framework and the library to be designed as it was, and made use of aspects of the library that 

demonstrated each of the five criteria that were discussed above. It also provides a case study for 

an investigation of a particular region of the distributed computing spectrum, as the hardware can 

support  a  wide  range  of  different  system architectures  with  only minimal  software  changes 

required. Although not implemented on the opening evening of the installation, the development 

and use of genetic algorithms alongside an embodied application of the library provides a small 

peek into a much wider world of potential opportunities for further research. In the next sections, 

a  number  of  different  possibilities  in  this  realm  of  future  research,  including  the  potential 

opportunities  in  genetic  algorithms  combined  with  embodied  cellular  automata,  have  been 

introduced. The possibilities provided are only a small subset  of the full range of interesting 

problems and analysis that are enabled by using the framework on its own, the library, and their 

combination with external systems.
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 6.1.Aurora Inspired Future Work

A number of interesting and potentially valuable avenues were discovered after the installation of 

the Aurora piece that are worth mentioning. These designs and systems were briefly investigated 

in response to various issues that were encountered in the course of developing Aurora. They 

cover a number of  different  aspects  of embedded design and human interaction,  and can be 

categorized  into  the  following  core  topics:  synchronization,  varied  cell  shapes  in  hardware, 

human interest tracking, and human-in-the-loop fitness functions for genetic algorithms.

Due to difficulties during construction of the installation,  a  number of connections were not 

made in the power and communications hardware,  leading to the majority of the installation 

having effectively no communication network. As the sole job of the communication network 

was synchronization, this introduced the potential for a given controller to update a second time 

before its current edge states could be read by a neighbouring unit. This appeared to be quite rare 

based on an attempt at  visually tracking cell  states,  but  the imprecision and  wide variety of 

interactions  between  rules  make  any  visual  tracking  attempts  difficult.  Based  on  these 

difficulties, a number of possible methods of maintaining synchronization without a global clock 

signal were briefly investigated to find one that would be applicable to the embodied hardware 

that  was  used  in  this  installation.  All  of  the  methods  that  were  found  are  extensions  or 

modifications of existing work in the realm of asynchronous cellular automata, primarily using a 

doubled set of states to prevent a secondary update from happening in a given cell until all of the 

cell's  neighbours  had been updated for  a  first  time.  The examination and implementation is 

recommended of one of the various methods of designing asynchronous cellular automata [74].

Along with the typical square shape for cells, hexagons and triangles should also be explored as 

potential cell shapes in hardware, and various methods of implementation should be investigated 

in terms of how hardware interconnections would work with these different shapes. Although it 

would appear at first glance that the square lattice is bound to be the standard, the only reason 

that  it  has  been  generally  chosen  over  a  hexagonal  lattice  up  to  this  point  is  its  ease  of 

representation in a computer simulation. The hexagonal lattice actually makes far more sense as 

a hardware cell shape due to all of its neighbours having identical relationships with the central 

cell. This gives it a common neighbourhood under both Moore and von Neumann neighbourhood 

types,  as described in Section  2.1.  While the von Neumann neighbourhood always creates a 

common relationship between neighbours, both the square and triangular lattices have multiple 
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neighbour relationships in the Moore neighbourhood: edges and corners for the square lattice, 

and edges and two different types of corners in a triangular lattice.

Although these different neighbour relationships do not seem at first to be too much cause for 

concern, the situation changes once they are analyzed in terms of physical implementation. The 

multiple types of neighbours directly correspond to an equal number of physical connections that 

need  to  be  designed  into  any  hardware.  Regardless  of  whether  every  single  cell  is  being 

individually  connected  or  multiple  cells  are  grouped  together  and  connected  en  masse,  the 

different types of connections could cause a number of challenging issues to arise during both 

design  and  construction.  These  challenges  in  connections  are  the  most  difficult  part  of 

implementing cellular automata on distributed hardware. However, with the development of the 

framework and the library, a number of these connection issues have been resolved by allowing 

groups of cells  to be implemented on one piece of more powerful hardware.  In  light  of this 

ability,  the connections between the hardware components can be made at  a  higher level  of 

organization than is required when using simple hardware at an individual cell level. Because of 

this design feature, the hardware used in Aurora can also directly implement both triangular and 

hexagonal lattice shapes simply by changing the software on the control modules, as the level of 

communication is between cellular automata as opposed to individual cells or groups of cells. 

One possible evolutionary fitness function which was mentioned in this work is based on the 

interest shown by visitors to various parts of the installation. In addition to the work described in 

this dissertation,  a  method of  predicting interest  in regions of  a  public  installation has been 

developed as  an extension of  this  hardware  system and is  described  in  full  in  Appendix  A. 

Briefly, a height map was built that covered the installation space, similar to a topographical map 

of the various altitudes of mountainous terrain, using the distributed set of sensors below each 

controller unit to find the changes in height over time. This height map was then fed through a 

pattern recognition system that used estimated classifications of measurements into groups, such 

as “heads” or “shoulders”,  to make a probabilistic estimate of the locations of any potential 

people.  The  estimated  centre  of  each  person,  and  the  probabilistic  mapping  of  all  potential 

people,  was then used to create and update particle filters.  These were used to find a better 

estimate of visitor locations, as well as an initial estimate on their directions of motion. Based on 

averages of these particle filters, an estimate was made of the location and direction of each 

person. This system was then augmented with an interest prediction algorithm that created a 
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map, which changed over time, of what regions of the installation space were interesting. This 

overall method of predicting the interest of visitors in an artistic installation is potentially a key 

part of an expanded look at work in the field of interactive genetic algorithms.

 6.2.General Future Work

Building on the successful achievement of both the main goal of this work and the library design 

criteria, the use of the novel aspects of this thesis research in some future work will be discussed 

in  this  section.  This  starts  with  a  description  of  a  number  of  possibilities  in  analyzing  the 

robustness  of  hardware  applications  of  cellular  automata,  and  moves  into  the  need  for  an 

investigation of the effects of specific types of interconnected systems. Following these potential 

opportunities, the combination of this work with the field of genetic algorithms is outlined with a 

discussion of the possible new gene attributes that will allow the discovery of solutions to tasks 

and problems, both old and new, that cannot currently be solved. Finally, some work will be 

described inspired by the issues that arose during the construction of 'Aurora', including some 

initial investigations that were carried out after the installation had finished have been described 

in a subsection. 

One future  possibility for  research  involves  using the  framework  and  library to  analyze  the 

robustness of information processing in embodied cellular automata in the face of various forms 

of hardware failures. For example, determining what the effects would be when the connections 

between one or more pairs of cells is broken, and whether these broken connections will affect 

only a local area or the entire cellular automaton. In hardware, these broken connections could 

appear  as  a  constant  state,  or  vary either  randomly or  in  a  predictable  pattern.  As  another 

example, what are the effects if an actual cell becomes stuck in a single state, changes states 

randomly or predictably, or only updates every few time steps. How would the cell be detected, 

and what could be done to fix them? What can be done in these cases of cell-level issues to 

maintain the integrity of the system needs to be addressed, as well as how both the local and 

global dynamics will change and if these changes are dependent on the specific set of system 

parameters or are generally applicable? Simulating these broken connections would be as simple 

as replacing an edge in a custom interconnection graph with a scalar producer that will mimic the 

cell state(s) as desired. Or, at the library level, by replacing a cell structure with another similar 

structure that will perform the same form of mimicry.
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On a  higher  level,  there  are  further  questions  regarding  the  necessary levels  of  connection 

between entire regions of a cellular automaton. What would happen to a cellular automaton that 

had a set of connections broken all within one row, or in the centre of the system compared to at 

the edges? What if all of the cells in a particular region were stuck in one state, or oscillating 

between a few different states either randomly or predictably? Are these hardware issues going to 

affect the information processing that is being done only locally, or will they completely change 

the outcome? All of these questions have need of answers, and only through the application of 

the  framework  will  the  majority  of  them be  able  to  be  answered  at  the  level  required  for 

computationally reliable results.

As  an  extension  of  the  library  itself,  an  intelligent  sleep  modification  algorithm  could  be 

designed that would use an adaptable parameter to define how many time steps a cell needs to 

remain in the same state before it will be flagged as sleeping. This parameter could start at some 

initial moderately low discrete value and change over the course of time so that in active patterns 

it increased to create very little computational overhead, while in mostly static patterns it would 

decrease to create the same savings as seen currently when set to two time steps.

In terms of specific applications, an investigation should be made of the vast realm of various 

forms of mixed systems of interconnected cellular automata, including the three specific designs 

that  were discussed in  Subsection  4.1.1:  mixed dimension systems,  where there is  a  mix of 

different dimensions of cellular automata; hybrid systems, where cellular automata with different 

sets  of  parameters  are  interconnected;  and  spatially  abstracted  systems,  where  the 

interconnections between cellular automata are impossible to construct in a spatially consistent 

way. For example, a mixed dimension system where a number of 1D cellular automata are used 

as the boundary conditions for a set of interconnected 2D systems could allow a simple form of 

human readable input to translate into vastly complex information processing. Or as an example 

of  a  hybrid  system,  cellular  automata  could  be  interconnected  using  different  shapes,  to 

determine  the  effects  of  various  axes  of  symmetry between  systems.  All  of  these  forms  of 

interconnected systems could be analyzed for potential uses in information processing.

With the addition of genetic algorithms to this work, a wellspring of potential research is created 

that builds on the already existing work in their combination with more typical cellular automata 

as discussed in Subsection 2.3.3. There have been only very preliminary investigations made of 

how the use of interconnection affects the evolution of genes in genetic algorithms, in large part 
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due to the vast realm of possible genetic attributes that can include not only the parameters of 

every interconnected system but the actual interconnections between systems themselves. For 

instance, a chromosome could be specified using only the ability to modify the interconnections 

in an interconnection graph and the rules of each cellular automaton node. The solutions found 

using this chromosome will need to be compared to those found when using only the rules, or 

only the interconnections. As an example, a larger version of a chequerboard problem where 

increasingly  larger  blocks  of  cells  are  desired  is  an  excellent  candidate  for  this  type  of 

exploration. With a block size of only one cell, the solution is simply the same as with a single 

cellular  automaton,  but  as  soon  as  the  size  is  increased  there  is  likely  a  need  for  using 

interconnection  to  allow hybridity  between  cells.  It  also  needs  to  be  determined  how these 

changes will affect the solution when the objective of the fitness function is based on a global 

outcome instead of a local effect. If the goal is to find the best individual set of parameters for 

one  cellular  automaton,  it  should  be  determined  if  using  an  interconnected  set  of  cellular 

automata will help or hurt the search.
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Appendix A

Tracking Fields of Interest in Large Scale Art Installations

Submitted for course credit in ME 780 Topic 7: Autonomous Mobile Robots

90



 

Abstract—Finding  interesting  cellular  automata  through 
evolutionary  computing  depends  on  how  well  the  fitness 
function can gauge interest. When standard tracking methods 
fail,  a  method is  needed to  track moving people in  order  to 
extract  their  interest.  A  low  resolution  height  graph  is 
generated and used to produce a probability map. Based on this 
map, particle filters are created to track fields of interest. An 
average success rate of 92% is found using this method.

I .  I N T R O D U C T IO N

This  work  has  developed  as  an  answer  to  a  question 
brought  forward  through  a  number  of  large  scale  art 
installations done in concert  with Philip  Beesley Architect 
Inc. (PBAi) in various locations around the world.  The main 
goal of these collaborations is the creation of interactive art 
as a breeding ground for new forms of design in architecture 
and engineering.

The first of these, the Hylozoic Series, has had a number 
of  generations  displayed  all  around  the  world.  The  most 
recent of these are installations in: the Mois Multi Festival, 
Quebec City, Canada; the Festival de Mexico, Mexico City, 
Mexico; and representing Canada at the Venice Architecture 
Biennale, Venice,  Italy.  The Hylozoic Series are described 
as  “artificial  responsive  forests  with  organic  movements, 
embedded intelligence, and ongoing chemical reactions.”

Another  series  of  installations  that  was  just  debuted  at 
Nuit Blanche  2010  in Toronto (see  Fig.  1)  is  called  the 
Aurora Series, and has been described as an “environment 
for  human-aware  artificial  life  within hanging  columns of 
light, movement, and sound.” The work in this paper is based 
mainly on developing needs in the Aurora Series.

Manuscript received December 4, 2010.
Brandon J. DeHart is a MASc candidate in the Electrical and Computer 

Engineering Dept.  at the University of Waterloo, 200 University Avenue 
West, Waterloo, ON, Canada, N2L 3G1 (e-mail: bjdehart@uwaterloo.ca).

Some recent interest has been generated in using cellular 
automata  (CA)  for  problem  solving  and  real  world 
applications ([1], [2]), due to the recent explosion of parallel 
processing systems. However, there is no guaranteed method 
of  designing  an  environment,  or  a  set  of  rules  within  a 
specific environment, that will allow the CA to accomplish 
some desired function. In the interest of solving this problem 
for use in artistic installations, a possible method for finding 
various  CA  that  will  be  useful  in  a  specific  way  is 
evolutionary computing.

Evolutionary computing, also known sometimes as genetic 
algorithms, is a well known optimization method for large 
and/or difficult search spaces such as that of finding good 
CA with which to solve real problems ([3], [4]). They consist 
of evolving and mutating a set of genes (specifying system 
parameters)  towards  a  global  goal,  defined  by  a  fitness 
function.  The  fitness  function  itself  is  a  measure  of  how 
successful  the set  of  genes are,  and  so finding the fitness 
function is the main goal of much of the work in this field.

In  the case  of  the Aurora  Series,  each hanging column 
contains and runs a Cellular Automaton which interacts with 
those around it. In order to find which column patrons find 
the most interesting (and least interesting), the columns are 
used as a population (each column is a specific set of genes) 
within  which  to  evolve  and  change  CA  rules  with 
evolutionary computing. Thanks to the physically distributed 
nature  of  the genes throughout  the installation,  the fitness 
function will be defined as how interesting a specific region 
(and therefore set of CA) are to the people passing by. To 
find these interesting regions, it is necessary to first find what 
the people are looking at within the installation over time. It 
is this problem that is described in the following Section.

I I.  EN V IR O N M E N T

In order to find what regions of the installation people are 
actively interested in, there is a need to discover first where 
the people are within the installation. There is a lot of work 
dedicated  to  the  problem  of  tracking  people  in  an  open 
space. However, to my knowledge, all of these methods use 
a style of sensing that is unavailable to use in the case of 
these installations.

The various reasons that these sensing styles will not work 
in this case will be discussed in Part A of this Section, along 
with a sensing solution that will work for this installation.

Due to the difficulty and inherent hardware problems that 
exist in large installations such as these, a physical test bed 
does not exist leading to the need for a functional simulation 
which is discussed in Parts B and C of this Section.
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Fig. 1.  A side view of the Aurora installation hanging in the atrium of the 
Royal Conservatory of Music in Toronto for Nuit Blanche 2010.
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A. Real World
The majority of  the work in tracking human movement 

([5],  [6],  [7]) consists of attempting to recognize people in 
video sequences. Unfortunately, due to the large scale of the 
installations and the low-hanging elements involved, cameras 
from the top or the sides will not be able to see much detail 
other than peripheral  information. These could be used as 
counters to inform the system of when people enter and exit 
the area of interest, but no more than that.

Some other  work  ([8],  [9])  focuses  on  tracking  people 
using heat, with an infrared camera, in order to ignore small 
physical obstructions such as in these installations. However, 
due to the use of high-heat activated Shape Memory Alloys 
actuators  in  this  series,  the  body  heat  of  people  will  be 
heavily masked from any angle.

Finally, a possibility that isn't mentioned in any previous 
work is to use floor mats with built in pressure sensors in 
order to track people's movements. In some installations this 
could  work,  but  most  of  the  instances  of  this  series  are 
placed in public spaces where there is no access or ability to 
cover the ground with anything.

Thanks to the problems listed above, the only real location 
that any sensing solution could exist is along the top of the 
space  that  the  people  themselves  occupy.  Since  the 
installations  are  fairly  large,  this  means  some  form  of 
distributed sensing must take place. As the local electronics 
in  a  given  region  are  nowhere  near  complex  enough  to 
handle video in addition to their other duties, a distributed 
set of simple sensors is needed.

This leaves a number of analog sensors as options, with 
the most economical  and sensible being an infrared  range 
sensor pointed directly at the floor from a known height in 
order  to  give  a  good  estimate  for  the  height  of  anything 
below. A distributed set of height measurements would also 
have the advantage of allowing distinction between specific 
people if they come together and separate again.

B. Simulated People
In order to develop and test this work, a simulated set of 

height measurements was created  to allow for testing of a 
range of possible scenarios without the need for a physical 
installation to test in. These measurements were based on a 
set  of  simulated  people  moving  in  an  area  viewed  from 
overhead by a distributed set of simulated range sensors.

Each of the people was randomly initialized with a set of 
values based on average size of a human as shown in Fig. 2. 
The ranges are: body width, 18” - 24”; head height, 5'4” - 
6'6”; and shoulder height, 10” - 14” less than head height.

All people were modeled from above in 2 dimensions as: a 
head, represented by a circle; and shoulders, represented by 
an underlying ellipse. The head of each simulated person has 
a diameter of 10” and a color given by the head height. The 
shoulders have a minor axis diameter of 10” in the heading 
direction (forward) and a major axis diameter equal to the 
body width, while the color is given by the shoulder height.

The state (x) of each person was governed by a simple 
model as shown in (1), where the position (x, y) is in inches 
and the heading (θ) is in radians. The inputs (u) are simply 
the  velocity  in  the  direction  of  the  heading  (v)  in 
inches/second and angular velocity (ω) in radians/second.

x t=[x t

y t

t
]=[xt−1v t cos t−1

yt−1v t sint−1
t−1t

] t  (1)

The disturbance to the state (ε) is given as a multivariate 
Gaussian distribution with a diagonal covariance matrix with 
non-zero members listed in (2).

xx= yy=0.01,=0.0001  (2)

The  location  and  heading  values  were  initialized  at 
random from within the full set of possible  values. As shown 
in (3), the input model is completely probabilistic to simulate 
a random human walking pattern in an open space.

u t=[ v t

t ]=[ v t−1dv t

t−1d  t]
pdv t= N 0, 1=1 ,else dv t=0

p t=N 0, 0.01=1 , else d t=0

 (3)

The velocity was initialized to a random value from 6” to 
36”  per  second,  while  the  angular  velocity was randomly 
chosen from -π/10 to π/10 radians per second. These values 
were determined heuristically to simulate human motion.

C. Simulated Sensors
To simplify the simulation and boundary formulations, the 

installation used is a large square, with distributed hanging 
points located at the intersections of an overlaid rectangular 
grid. The grid consists of squares 10” wide by 10” long, in 
order to ensure that a person's head can never be detected on 
more than one sensor at a time.

Each simulated sensor outputs a  height measurement as 
given  in  (4),  with  the  variance  on  the  noise  taken  from 
experience with a number of infrared range sensors.
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Fig. 2.  Diagram showing the allowable size ranges of simulated people.
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hx , y=hx , y: trueN 0,h , h=0.0001  (4)

Once the sensors have found their measurements for the 
given  time-step,  they  are  self-sorted  into  various  classes. 
These classes take into account the possibility of noise in the 
measurements  and  so  have  slightly  expanded  boundaries 
compared to what the possible ranges of heights are for the 
related people. There are 4 classes as follows:

• Head, if h > 5'10”;
• Head or Shoulder, if 5'2” ≤ h ≤ 5'10”;
• Shoulder, if 4' ≤ h < 5'2”;
• Nothing, if h < 4'.

These classes are used  in order to facilitate all forms of 
measurement interpretation as discussed in the next Section.

I II .  ME A S U R E M E N T S

There  are  two  main  aspects  of  data  interpretation  that 
come from the sensor readings, both of which are discussed 
in this Section. The first is some basic sensor clustering into 
groups, which is discussed in Part  A. The second aspect, in 
Part  B, is the construction of a probability map using both 
the raw sensor  classes  and the sensor groups.  In  order  to 
reduce computational  time, only active sensors (those in a 
class  other  than  Nothing)  are  considered  in  both  sensor 
groups  and  construction  of  the  probability  map.  Both  the 
sensor groups and the probability map play important roles 
in  the  initialization,  iteration,  and  error  correction  of  the 
particle filters that are discussed in the next Section.

A. Sensor Groups
Sensor groups are initially created using a basic system 

which iterates  through all  active sensors  and  groups  them 
together based on euclidean distance as given in (5).

d =S1, x−S 2, x
2S 1, y−S 2, y 

2  (5)

The distance must be less than the maximum width of a 
person. If two or more active sensors are found within range 
of each other, they are both assigned to a group. This initial 
grouping is later used as a hub to which unassigned active 
sensors can be added if they move within range. This also 
allows dead sensors within the group to be removed.

Rejection  policies  also  exist  in  the  groups  in  order  to 
attempt to ensure that sensors detecting two different people 
are not in the same group. The simplest of these consist of 
each group only being able to have one sensor in the Head 
class, and all sensors in the group needing to be within half 
the maximum body width from the group center.

Once the groups have been formed and no currently active 
sensors are without a group, the group centers are assumed 
to be very likely locations for people to be in.

B. Probability Map
At each time-step, the probability map is initialized with a 

low,  non-zero  probability  throughout  before  any  distinct 
probability regions are  added.  The regions themselves  are 

integrated  into the map additively so that  the probabilities 
can stack with each other. Once all regions have been added, 
the values are normalized using the highest value region.

The regions are each created based on using either sensors 
directly or the sensor groups found in the previous Part of 
this Section. There are high probability regions created and 
centered  around each  of  the  active  sensors,  with different 
shapes and sizes of region based on the various classes the 
sensors can have. The probability of a given point in a region 
due to a particular sensor is strictly a function of its distance 
from that sensor as is seen in (6).

d S=S x−x 2S y− y2  (6)

Each  of  the  different  active  sensor  classes  create  a 
different high probability region. If the sensor is in the Head 
class, then the region is a circle with radius 5” as shown in 
(7). This is due to the fact that if the sensor reads a Head, 
then the furthest the center of the person can be is 5” from 
the sensor, due to a head having a diameter of 10”.

p x , y∣d S≤5=90   (7)

If the sensor is in the Shoulder class, the region is a ring 
with an  outer  radius  of  12”  and  an inner  radius  of  5”  as 
shown in  (8).  Since  a  definite  shoulder  reading  can  only 
happen if the sensor is outside of the head but still  within 
half the maximum body width, the region looks like a ring.

p x , y∣5d S≤12=90  (8)

Finally, if the sensor is in the Head or Shoulder class, then 
the region is a circle with radius 12” as shown in (9). As the 
measurement could be either a head or a shoulder, the region 
is a union of the head and shoulder regions.

p x , y∣d S≤12=90   (9)

In  addition  to  the  individual  sensors  contributing  high 
probability regions, the sensor groups create regions of their 
own that always overlap with their associated sensors. These 
are also strictly a function of distance, but in this case it is 
the distance from a given point to the group as seen in (10).

d G=G x−x2G y− y2  (10)

There are only two distinct regions that are created from 
the sensor groups: one when the group has 1 active sensor, 
and one with 2 or more active sensors. In the case of 1 active 
sensor, similar reasoning to that of a Head or Shoulder class 
sensor applies to create a 12” radius circle, as seen in (11).

p  x , y∣d G≤12, G size=1=90   (11)

In the case of 2 or more active sensors, the distance of the 
group  center  from  any  valid  person's  location  will  be  a 
maximum of 7”, giving a 7” radius circle as shown in (12).

p x , y∣d G≤7, G size≥2=90  (12)

93



In order to clarify how the regions interact once they are 
integrated  into  the  probability  map,  a  couple  of  possible 
combinations  are  shown in  Fig.  3.  These  are  just  two of 
many different possible combinations that can occur.

IV.  PA RT I C L E  F I LT E R S

The  use  of  particle  filters  instead  of  any  of  the  other 
possible sensor filters for this work was mostly based on the 
non-linear  nature  of  both the  measurement  model  and  the 
motion models used. Since these typically require a number 
of modifications that will remove guarantees of optimality, a 
solution was found which uses a set of particle filters. Also, 
since  this  work  will  at  some  point  be  implemented  on  a 
distributed  set  of  microprocessors,  an  inherently  discrete 
solution  at  multiple  levels  provides  many  methods  of 
division of labour in order to allow real-time computation.

One of the main limitations in particle filters is the issue of 
particle deprivation. This can happen when there is little to 
no  new information  presented,  and  results  in  the  particle 
filter arbitrarily focusing all of its particles in one small area. 
This focus can cause the filter to ignore future conflicting 
information. Unfortunately, in a number of different possible 
positions a person can be setting off none of the sensors in 
their region. Other times a person may stop, or be spinning in 
place, which will lead to a constant sensor reading. Both of 
these scenarios would be an issue if only one particle filter 
was being used to track all people in the installation.

In order to avoid this issue and make deprivation a useful 
attribute of the particle, one filter is created and assigned to 
each  likely person  given by the center  of  a  sensor  group. 
Since  the  filter  will  be  narrowly  distributed  and  the 
probability  map  in  the  vicinity  of  a  sensor  group  will 
encourage an even narrower distribution, deprivation of the 
filters will actually lead to a better estimate of that particular 
person's state within the installation.

The remainder of this Section will deal with the following 
aspects  of  each  particle  filter:  the  initialization  in  Part  A, 
updating and resampling in  Part  B,  estimating the overall 
state in Part C, and any needed error correction in Part D.

A. Initialization
Each particle  filter  is  initialized based  on a new sensor 

group being found, and the filter is associated with the group 
in order to allow for later error correction. The locations of 
particles within the filter are normally distributed around the 

group center while the heading of each particle is randomly 
chosen from the full range as shown in (13).

x p ,0=[ G xN 0,9
G yN 0,9

random0,2]  (13)

The  inputs  to  each  particle  are  initialized  in  the  same 
range as the input model for the people, as shown in (14).

u p ,0=[ random6,36
random−/10,/10]  (14)

B. Update
The state update of the particles is done using the same 

kinetic model as the simulated people as given in (1,2) so it 
will  not  be  repeated  here.  The  change  in  inputs  that  the 
people will use are unknown though, so the input update for 
the particles in a given filter will have a zero-mean, normally 
distributed, additive disturbance as shown in (15).

u p ,t=[ v p ,t−1N 0,1
 p ,t−1N 0,0.01]  (15)

Once the motion model update has been completed, each 
particle  is  given a weight taken from the probability map 
based on their estimated location. Based on these weights, a 
cumulative  weight  density  function  is  created  from  all 
particles in a given filter. This function is uniformly sampled 
and evaluated in order to build a new set of particles from 
the old. This process is known as resampling and will allow 
for the old distribution of particles to more closely match the 
true state as modified by the newly found measurements.

C. Estimate
The resampled particles are used to find an estimate for 

each  filter's  overall  state,  given  in  the  same  way as  the 
simulated people or particles. In order to do this, the state is 
assumed  to  be  made  up  of  independent  Gaussian 
distributions, leading to the need only to find the mean and 
variance of each state variable.  In  the case of the location 
variables, this is fairly simply done with a basic average and 
simple variance as given in (16).

E [a ]= 1
P ∑

p=1

P

a , Var a =E [a2]E [a ] 2  (16)

However, in the case of the heading variable the formulas 
in  (16)  do  not  hold  thanks  to  the  periodic  nature  of  the 
values.  In  this  case,  a  circular  mean  and  variance  are 
necessary. To accomplish this, the heading is assumed to be 
the  angular  component  of  a  location  on  the unit  circle  in 
polar  coordinates,  which  can  easily  be  converted  into  a 
location in Cartesian coordinates using basic trigonometry. 
An  average  location  can  then  be  found  in  Cartesian 
coordinates which is converted back into polar coordinates. 
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Fig.  3.   Diagram  showing  two  possible  combinations  of  probability 
regions, where darker regions indicate higher probability. Left: a Shoulder 
or Head sensor and a Shoulder sensor side by side in a group together. 
Right: a Head sensor in a group of its own.



The  angular  component  of  this  polar  location  will  be  the 
correct average heading as shown in (17).

=[ x

 y


]=[ E [ x ]

E [ y ]
atan2  E [sin] , E [cos] ]  (17)

The  radial  component  of  the  polar  location  will  be  a 
measure of  how tightly grouped the headings were with a 
value  of  1  being  all  equal  and  a  value  of  0  meaning 
uniformly distributed. In order  to convert this value into a 
variance, it is subtracted from 1 as shown in (18).

Var  x=[ E [ x2] x
2

E [ y2] y
2

1−E [sin ] 2E [cos] 2]  (18)

The  maximum  distance  of  the  estimated  location 
compared to the simulated person being tracked was found 
to  be  5”,  which  is  almost  entirely  due  to  the  method  of 
building the  probability map and  sensor  groups  using the 
assumption that a head is a 5” radius circle.

Even when a person stops within the installation, which is 
typically a problem for particle filters, the estimated location 
stays  within 5”  of  the  actual  person.  The  only issue  that 
arises from a stopped person is an increased variance on the 
heading, as without further sensor input there is no way to 
know if the person has stopped completely or is spinning.

Once an estimate is found, provided the error correction 
does  not  remove  the  filter  from  use,  each  filter's  state 
estimate  is  used  as  the  origin  and  direction  of  a  field  of 
interest as described in the next Section.

D. Errors
In  order  to  ensure  that  the  particle  filter  estimates  are 

valid,  various  forms of  error  detection are  applied.  These 
errors, if detected, signal that the particle filter estimate is in 
one of three different states that all require that the filter be 
removed from use and reassigned in some way.

The first state occurs if an estimate has drifted more than 
12” away from the center of its associated sensor group as 
shown in (19).  When a filter  estimate has  moved this far 
away from its  group,  it  is  assumed that  the filter  is  on a 
divergent path from that  of the person being tracked.  If  a 
filter  is  found  in  this  state,  it  is  reinitialized  using  the 
location of its current sensor group.

 x−G x
2 y−G y

212  (19)

The  second  state  occurs  when  the  estimate  leaves  the 
installation boundaries, which happens in the general course 
of use as tracked people leave the installation. As such, this 
is the most often detected error state. In order to detect when 
this is the case, one or more of the logical statements in (20) 
must be true. The variable  E is a heuristically chosen value 

(5” is used) of how close to the edge an estimate should be 
before it is assumed that it will be leaving the installation.

 xE & cos  r 0
 xx MAX−E & cos  r 0
 yE & cos r−/20
 yy MAX −E & cos  r/20

 (20)

Finally, the third state occurs when the filter's associated 
group orphans it (this can happen when a person stops in a 
position between sensors) and the filter estimate is left in the 
middle of  open  space  for  a  time.  When this  happens,  the 
variances over the state become very large very rapidly and 
the total weight of all of the particles gets close to zero.

In both the second and third states, the filter in question is 
removed from use and placed into a list of free filters. These 
filters are then used when new sensor groups are created as 
new people enter the installation.

V.  I N T E R E S T  MA P S

The  estimated  interest  map  is  built  using  the  particle 
filters'  state  estimates  for  the  locations  and  headings  of 
people  within  the  installation.  Each  estimate  is  only 
considered valid if the variance on the heading is less than 
0.1, and the particle filter is associated with a sensor group.

If a filter passes both of these checks, then it is assumed 
that there is a trapezoidal field of interest projected from the 
estimated location in the direction of motion, the extremes of 
which are  found based  on  the  following assumptions:  the 
viewing angle is 60°, centered around the estimated heading; 
the start of the field is 1' from the estimated location; and the 
depth of the field is 5' from the estimated location.
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Fig. 4.  Interest map comparison. In this image, the color representations 
are:  green  for  true  positive,  red  for  false  positives,  yellow  for  false 
negatives, and black for true negatives.



The estimated interest map itself is made by integrating all 
of these predicted fields of interest over time. The fields are 
each treated as a medium probability region, which are then 
overlaid together with a slightly eroded copy of the previous 
map estimate in order to emphasize recent interest more than 
past interest. This estimated interest map will slowly change 
over time to show what regions of the installation the people 
currently find interesting and which ones they do not.

In a similar fashion, with the same assumptions, and using 
the  simulated  people's  actual  locations  and  headings,  a 
comparison is made through direct subtraction of the actual 
interest  map from the  estimated  one.  The  values  on  both 
maps are chosen so that errors can be distinguished into false 
positives (estimate shows interest when people do not) and 
false negatives (estimate shows no interest when people do), 
along with true positives  and  true  negatives  (estimate and 
real people agree on presence/lack of interest). These can be 
seen distinctly as shown in Fig. 4.

VI.  CO N C L U S IO N

As should be evident from Fig. 4, the performance of the 
work described in this paper surpassed expectations in terms 
of  being  able  to  track  and  predict  the  interest  of  people 
moving through a large scale installation. After a number of 
executions of  the simulation and with various numbers  of 
people, the average percentage of true interest points out of 
the overall interest map comparison was 92%. Also, of the 
errors,  the  false  negatives  were  an  average  of  6% of  the 
comparison, while false positives were only 2%.

Some future possibilities  that  are  planned for  this work 
include the incorporation of better pattern recognition in the 
measurement interpretation task in order  to: create a more 
useful probability map, be able to initialize the filters with 
some  form  of  subset  of  possible  headings,  and  improve 
group rejection for when people are close to one another.

Another future improvement is the possibility of extending 
a single particle filter to track all people in a subsection of 
the installation and perform hand-offs between them in order 
to better correct for individual filter errors. This will allow 
for removing the dependence on the deprivation problem.

Finally, this work could definitely benefit from a number 
of improvements related to the interest fields themselves and 
the human motion data: a more realistic model of the human 
motion would improve testing and tracking of real  people; 
using real data from an installation along with verification of 
the  true  motion  would  allow  a  much  better  correlation 
between measurements and truth; and a better idea of what 
the field of interest actually looks like based on a person's 
orientation would directly inform the fitness function.
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