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Abstract 
 
 
 

The welding of austenite stainless steel often results in large amount of welding 

distortion due to its high thermal expansion coefficient and low thermal conductivity. 

This has created great difficulty in the dimensional control of the welded stainless steel 

structure, ending up with high manufacturing cost. Researches on the welding distortion 

of stainless steels were very limited, especially for large weld structures with complex 

component shapes. The studies of this thesis were initiated with focus on the stainless 

steel nozzle-to-shell-can weld structures, a very typical structural configuration for 

pressure vessels used in petrochemical and nuclear power generation industries. 

Both the experimental and the FEA (finite element analysis), i.e. computational 

simulation, approaches were taken in the studies which addressed the influences of the 

welding fixture, the welding sequence, and the welding process on the distortion caused 

by stainless steel nozzle-to-shell welding. The investigations employed single and multi-

nozzle weld test models (called mockups in the thesis) or FEA models. Manual GTAW 

(gas tungsten arc welding) and SMAW (shielded metal arc welding) processes were 

selected to represent the most common practice for stainless steel nozzle welding. The 

FEA simulations were conducted with ABAQUS program using sequentially coupled 

transient analysis method with lumped weld passes to achieve high computing efficiency. 

The investigations on the effect of the welding fixture concluded that the contour 

fixtures introduced in the thesis be effective for reducing the welding distortion for both 
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the single and the multi-nozzle welding. The contour fixtures tend to localize the welding 

distortion, hence yield less impact on the global distortion of the whole weld structure. 

The rib-bar fixture, a more common fixture type for multi-nozzle welding, was found 

resulting in a big jump in the shell plate distortion when the fixture was removed. 

The studies on the influence of the welding sequence revealed that a progressive 

approach was more favorable for distortion control under the given nozzle-to-shell weld 

structure configurations. The best sequence suggested is to start welding at one nozzle, 

firstly on shell OD (outside diameter) side then on ID (inside diameter) side, then proceed 

to next neighboring nozzle. The effect of the welding direction of each weld pass was 

found affecting only the nozzle angular distortion. 

The experimental data showed that the manual GTAW process developed much 

higher shell plate distortion than the SMAW process. The reason would be that a higher 

percentage of the welding heat had been consumed on the base metal. The influence of 

the weld bead size didn’t appear to be significant. In the FEA study on the effect of the 

size of the lumped weld pass, the increase in weld bead size even resulted in a decrease in 

weld distortion. From the FEA simulation point of view, using large lumped pass would 

be a highly efficient choice without compromising too much in the precision of the 

distortion prediction. The FEA study confirmed that a decrease in cooling time after 

welding would result in more welding distortion. 

The large scale multi-nozzle mockup with rib-bar fixture demonstrated a 

maximum out-of-plane shell distortion of 16.4mm after the welding of 10 nozzles with 

GTAW+SMAW process, which suggests that additional measures should be developed to 

further control the welding distortion. 
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Chapter 1 Introduction 
 

Stainless steel’s high resistance to corrosion, excellent formability, as well as its 

pleasant appearance make it an ideal material for many applications, such as kitchen 

cookware, appliances, surgical instruments, food processing equipments, hygienic 

equipments, storage tanks, petrochemical and nuclear power generation equipments [1~3]. 

The austenitic stainless steels, known as 300 series, are the most common ones, making 

up over 70% of the total stainless steel production [2]. 

During metal welding, the weld and the base metal materials around the weld are 

locally heated by the welding heat source. The temperature distribution around the weld 

joint is not uniform and changes as the welding progresses. Non-uniform stresses and 

strains are therefore developed during this process, resulting in plastic deformation and 

residual stresses after the welding is completed. The weldment shrinkage and various 

types of distortions are hence produced [4,5]. For austenitic stainless steels, due to their 

high thermal expansion coefficient and low thermal conductivity (Table 1-1), the welding 

distortion will be notably larger than that with carbon and low alloy steels [1]. 

Table 1-1 Physical Properties of Carbon and Austenitic Stainless Steels [1] 
 

Austenitic
Stainless Steel Carbon Steel

Thermal Conductivity 
(W/m-K),100oC

18.7~22.8 60

Mean Coeff. of Thermal Expansion 
(�m/(m-oC),0~538oC

17~19.2 11.7

Electrical Resistivity 
(n�-m)

690~1020 120

Melting Temperature Range 
(oC)

1400~1450 1538
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For pressure vessels, the nozzle-to-shell-

can or nozzle-to-head weld joints are normally, in 

the sense of welding distortion, the most complex 

weld structures among the vessel major welds. 

Even higher complexity would be found when a 

nozzle intersects with the shell surface at an angle, 

in which case we would see a saddled weld seam 

path with a typically varying weld groove cross-section.  

The control of the nozzle welding distortion would be very challenging when the 

shell can is of large diameter and thin wall and a high density of nozzles are to be welded 

onto the shell. Unfortunately there have been very limited studies that can be refereed to. 

Almost all the welding distortion studies were based on either flat metal plates with butt 

or fillet joints, or tubes / nozzles with girth groove welds (refer to Chapter 2), not to 

mention that a large portion of those studies were lab-based, not related to actual weld 

products. No published literature has been found addressing the nozzle-to-shell welding 

distortion. Although some general concepts may be extracted from available research 

results, such as that the fixture could help to reduce the distortion, the effective solution 

for specific application has to be developed on a case by case basis, through experiments 

or computational analyses under specific material and structural configurations [6]. It is 

therefore important to investigate and understand the distortion behaviors during the 

stainless steel nozzle-to-shell welding process. 

Generally speaking the control of the welding distortion can be realized through 

pre- and post-weld application of mechanical loads or thermal heat, and careful design of 

Nozzle

Shell Can 
Plate
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the weld joint, the welding constraints (fixtures, clamping), the welding sequences, and 

the welding procedure [4,6,7]. In other words, there are three types of distortion control 

approaches: pre-weld control such as pre-straining, in-process control such as the 

application of welding fixture, and post-weld control such as thermal straightening. In the 

case of stainless steel multi-nozzle welding where the weld joint structures are more 

complicated than plat plate or tube girth joints, the pre-weld control would be hard to 

apply except for the optimization of the weld joint design. The post-weld control 

approach would also be hard to do due to the stainless steel’s unique thermal properties 

(Table 1-1).  The studies of this thesis were therefore focused on aspects of in-process 

distortion control, involving welding fixture, sequence and process. 

The objectives of the studies on stainless steel nozzle welding distortion are as 

follows, 

• Comparative evaluation of existing and new welding approaches/techniques in 

terms of welding distortion,  so that an optimal welding procedure could be 

developed to minimize the shell and nozzle distortions 

• Assessment of the actual distortion level so that proper actions could be 

determined to maintain the welding distortion within tolerable limits 

• Application of finite element analysis (FEA) method for prediction of nozzle 

welding distortion. This would be an important technological advance for 

efficient study of the nozzle welding distortion. 

Both nozzle weld model (called mockup in the thesis) tests and FEA simulations 

were carried out for the distortion studies. The FEA method provides an excellent 

opportunity that the evaluation of multiple process variations could be completed within 
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restricted time frame and limited budget. Sometimes conducting an experiment may not 

be possible due to such as the material availability, in which case the computational 

approach would be the most effective solution [8]. Because of the structural complexity of 

the nozzle-to-shell welds, the lumped pass transient analysis technique [6,7,9] has been 

employed to simplify the FEA computation. The lumped pass technique was further 

simplified in the thesis for the analyses of multi-nozzle large weld structures. 

To represent the possible manufacturing conditions, the manual gas tungsten arc 

welding (GTAW) and shielded metal arc welding (SMAW) processes had been chosen 

for the mockup tests, which bring in an uncertainty in terms of process consistency. In 

other words, even under nominally the same welding condition, the welding distortion of 

the mockup sample would often to some extent be different from the distortion of the 

actual product. The main focus of the thesis was therefore placed on the relative 

comparison of the distortions under different welding conditions. For the same reason 

plus the use of lumped pass technique, it is hard to develop a FEA heat source model to 

precisely reflect the multi-pass manual welding process. The distortion values from FEA 

simulations were hence used primarily for relative comparisons among FEA results. 

Nevertheless, the direct comparisons between the FEA and the experimental results were 

made where such a comparison is appropriate. 

The thesis starts with a literature review on welding distortion theory, researches 

and findings. Chapter 3 describes the experiment mockup designs, the test procedures, 

the distortion analysis method, and the techniques employed in the FEA simulation 

studies. The studies on the influences of the welding fixtures were summarized in 

Chapter 4. Chapter 5 presents the findings of the studies on the influences of different 



Chapter 1  Introduction                 
         

5 

welding sequences. The impacts of different welding processes, weld bead sizes and 

cooling conditions are presented in Chapter 6. The experimental results of multi-nozzle 

weld mockup are listed in Chapter 7. The conclusions from the experimental and the FEA 

simulation studies are given in Chapter 8. 
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Chapter 2 Literature Review 

 

The welding distortion as the most visible quality issue of a welded structure has 

drawn continuous attention. Large amount of research works were carried out to study the 

distortion behaviors under various welding application conditions in order to find out 

effective measures to minimize the welding distortion. Early welding distortion studies 

were conducted through welding experiments. Over the past thirty years or so, along with 

the emerging and maturing of the finite element analysis technology and the rapid growth 

of the computer computing power, more and more efforts have been devoted to the 

computational simulation of the welding process to predict the welding distortions [5~43]. 

Very often the FEA studies were accompanied by supporting experiments. A few 

publications were also found using artificial neural networks for welding distortion 

studies [44~46]. This chapter summarized the welding distortion basics, the application 

areas of the welding distortion studies, the influences of the welding procedure variables, 

and the available FEA techniques for welding distortion prediction. 

2.1 Welding Distortion Concepts, Mechanisms and Control 

2.1.1 Welding Distortion Concepts and Mechanisms 
 

The non-uniform temperature distribution created by the welding process results 

in non-uniform residual stresses and deformations in the weldment. In the case of flat 

plate weld joints, the weldment deformation is composed of three basic elements (Figure 

2-1) [4,8,10], 
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• Transverse shrinkage 
• Longitudinal shrinkage 
• Angular change 

 

 
Figure 2-1 Fundamental Dimensional Changes in Weldments [4] 

 
Depending on the specific structure characteristics, these basic deformations 

would develop into different types of distortions. The longitudinal shrinkage could cause 

bending distortion along the weld seam direction, or buckling distortion when with thin 

plate. The buckling distortion is due to the compression stress in the region just beside the 

weld seam (Figure 2-1 (B)). Typical examples were given by Reference [47], showing 

the buckling of an overlap joint welded with 1mm thick DP600 steel plates, and the 

bending of a T-joint welded with 6mm thick S355 plates. Some literatures mentioned 

about out-of-plane deformation [28,48]. It is a term applicable for all types of welding 

distortions except the plate shrinkages. 

Apart from the thermal expansion / contraction, the phase transformations of the 

weld and the heat affected zone (HAZ) during the heating and cooling processes also play 
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an important role in determining the welding residual stresses and distortions. As shown 

in Figure 2-2, when a carbon steel base metal is heated above A1 (cementite 

disappearance temperature) temperature, the pearlite–ferrite microstructure which is of 

body centered cubic (BCC) structure gradually transforms into austenite microstructure 

which is of face centered cubic (FCC) structure , resulting in reduction of the material 

volume. During rapid cooling, the austenite with FCC structure changes to martensite 

with a body centered tetragonal structure, and the volume increases. For carbon and low 

alloy steels, the higher the carbon or carbon equivalent content, the more impact the 

phase transformation will have on the welding residual stress and the distortion. An 

example was given in Reference [12] showing that a compressive stress had been 

produced in the weld fusion zone in the welding direction, where tensile stress would 

normally be expected. It confirms clearly the influence of the material phase 

transformation. However, for austenite stainless steels, no such phase transformation will 

take place. 

 
Figure 2-2 Schematic Diagram of Volume Change Due to Phase Transformation [12] 
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2.1.2 Control of Welding Distortion 

Pre-weld Distortion Control 
 

The pre-weld distortion control techniques are applied before the start of the 

welding process. Two basic approaches as follows were recommended [4,6], 

• Optimization of weld joint design to reduce the weld size and balance the 

weld groove geometry to avoid over-deposition of the weld metal on one side 

of the workpiece or structure 

• Bend the workpieces or set the workpiece orientations in a direction opposite 

to the predicted or known welding distortion, to counterbalance the 

consequence of the welding process.  

The typical examples of the second approach include pre-straining [4,7], pre-

bending [6,13], and workpiece presetting [4]. These methods are applicable to relatively 

simple weld structures where the welding distortions are of simple shape (for example 

bending, rather than buckling) so that the pre-weld forming or setting of the workpieces 

could be realized [4]. 

Regarding the weld joint design, the first rule is that the weld seam size shall be 

minimized to scale down the driving force of the welding distortion. Examples are the 

reduction of the number of weld passes [49], the use of narrow groove design [50]. It was 

also highlighted by some studies that the initial weld groove gap, usually called root gap, 

has a significant effect on the final welding distortion, therefore shall be reduced if 

feasible [4,32]. 

It is commonly understood that for butt welding of thick plates the double V or 

double U groove design, as compared to single V or single U, would help to reduce the 
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welding distortion. Reference [4] presented a few research results revealing that, to 

achieve minimum distortion on a butt weld joint, the ideal ratio between the groove 

depths of the first and the second welded sides depended on the actual joint configuration 

and plate thickness. For example, with 19mm thick plate, the ideal ratio of the groove 

depths between the first and the second welded sides was 7:3, while with 32mm thick 

plate, the ideal ratio was found to be 1:1. However, for butt weld of a washer shape flat 

plate, the ideal ratio was 11:6 when the plate thickness was 19mm. 

In Process Distortion Control 
 

Various techniques have been investigated for distortion control during the 

welding process, such as the application of fixture or clamping, the optimization of 

welding sequence, mechanical tensioning, thermal tensioning, pre-cambering, preheat, 

and vibratory weld conditioning [4,6,7,51,52]. They can in fact be separated into two 

categories: 

• External methods: use external mechanical device/load or thermal power to 

create resistance to the shrinkages of the weld metal 

• Internal method: sequence the deposition of the weld beads so that the 

resistance to weld metal shrinkages could be generated through the 

interactions between the weld beads 

Among the above the most common distortion control methods are fixture design 

and weld sequence optimization. The mechanical tensioning and thermal tensioning 

techniques were proposed for longitudinal weld seams [52]. The pre-cambering technique 

requires that the workpieces be elastically bent then welded [6]. After the welding the pre-

camber is released and the fabricated structure springs back to its final shape. This is 
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similar to the mechanical tensioning, except that the pre-cambering method is more 

dedicated to bending or angular distortion. 

The influences of the welding process type and parameters were also investigated, 

addressing heat source density, heat input, welding travel speed, and weld bead size 

[3,4,6,21,37,38,50,53]. All these factors are related to the heat source characteristics. For 

stainless steel welding, reference [1] recommended to use heat sink to take away part of 

the weld heat in order to reduce the welding distortion. 

Post-weld Distortion Correction 
 

Two approaches are available for correcting the welding distortions produced by 

welding [4,6,7,48], 

• Mechanical straightening 

• Thermal or flame straightening 

The purpose of straightening operation is to remove the distortion by producing 

adequate plastic deformation in the distorted member or section [4]. It is apparent that this 

type of correction is not always possible or allowed. The best practice would be to 

optimize the weld joint design, apply sufficient constraint through fixture or clamping, 

and optimize the welding sequence. 

2.2 Application Areas of Welding Distortion Studies 
 

Most of the welding distortion studies were based on butt or fillet welds of flat 

metal plates [3~5,9,13~18,21,24,27,28,31,35,38,41,47,48,50,53~55]. The typical applications include 

shipbuilding [5,32,35,41,48,53], automobile [31,32,41], trains and bridges [37]. The plate 

thicknesses in these studies were mostly 1~12mm. The rests of the distortion studies were 

conducted with tubular/pipe butt joints, or plate/flange to pipe girth welds [5,9,19,22,23,29,51]. 
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The welding processes involved in the welding distortion studies include gas 

tungsten arc welding (GTAW), pulsed GTAW, gas metal arc welding (GMAW), pulsed 

GMAW, laser beam welding (LBW), submerged arc welding (SAW), and electron beam 

welding (EBW). No literature was found addressing the effect of manual welding 

processes on welding distortion, such as shielded metal arc welding (SMAW) or manual 

GTAW. Besides, although there were a few references heading into multi-pass welding 

distortion [19,41,50,56], the knowhow obtained has been very limited regarding the welding 

distortion behaviors specific for multi-pass welding. 

Regarding the base metals, the mostly investigated materials were low carbon and 

high strength low alloy (HSLA) steels [4,12,21,22,31,35,41,42,47,48]. The next mostly studied 

material type was stainless steel [3,26,41,42,49,56~59]. 

2.3 Welding Distortion Studies on Influences of Welding 

Procedure Variables 

2.3.1 Studies on Influences of Welding Constraints 

Many researches were conducted to investigate the influences of the weld fixtures 

or clamping on the welding distortion [1,4,6,7,13,14,30,41,47,49,53,55,57,59,60]. Tack weld was also 

categorized into this group [4,57]. The studies demonstrated that the application of welding 

constraints had effectively reduced the welding distortion, especially for angular 

distortion [13,59]. Reference [47] even investigated into the effects of specific clamping 

technique details like the clamping time, the clamp release time, and the clamp 

preheating. 
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While restricting the welding distortion, the fixture or clamping also resulted in 

higher internal plastic deformation and higher residual stress [4,47]. This might become a 

concern for some applications. Reference [1] also pointed out that, for metal plates 

thicker than 6.35mm, other distortion control measures such as the optimization of weld 

bead deposition sequence may be required in addition to the application of the weld 

fixture/clamping. 

2.3.2 Studies on Influences of Welding Sequences 
  

The influences of the welding sequence on welding distortion have attracted the 

attentions of many researchers [1,6,7,11,13,18,20,41,44,53,57,61~63]. The studies involved the 

sequencing of different weld seams, different weld passes/segments of the same weld 

seam, and different welding directions. Reference [6] proposed to classify these 

sequencing types as local (e.g. back stepping) and global sequencing. A common 

characteristic of these studies is that, the sequencing solutions were very much 

application-oriented. For example, the best welding sequences (sequence “d” in Figure 2-

3) concluded from reference [62] would be valid only for the flat plate T-joint structure 

under the analysis conditions. In other words, there is no universal solution in terms of 

welding sequence. Dedicated studies are necessary for specific welding applications.  

2.3.3 Studies on Influences of Welding Process  

Comparative studies on the effects of different welding processes on welding 

distortion were presented in reference [38], involving GMAW, pulsed GMAW, SAW, 

Fronius cold metal transfer process, and LBW. The laser (LBW) and pulsed GMAW 

processes were found the best for welding distortion control. Reference [50] also 
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concluded that, at given welding heat input, the pulsed GMAW process created less 

welding distortion than the GMAW process. The effects of the pulse frequency, 

amplitude and duration of the pulsed GTAW process were studied in reference [3] for the 

welding of austenite stainless steels. An explanation of the advantage of the pulsed 

welding process was that the higher frequency enhances the energy density of the 

welding heat source, thereby reduces the welding distortion [3]. 

 

 

Figure 2-3 T-Joint Weld Structure and Weld Sequences [62] 

 

For given welding process, the heat input (welding power per unit length of weld) 

is usually considered the deterministic factor for the weld quality including welding 

distortion. The studies on the effect of the heat input suggested that the heat input be 

reduced in order to achieve low welding distortion [38,53,55]. However, it should be aware 

that this conclusion was only based on single-pass welding. The situation would become 

complicated when dealing with multi-pass welding. 
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Studies were also carried out by some researchers on the influences of the 

welding speed on welding distortion [6,21]. An in-depth study on the influence of welding 

speed was conducted in reference [64], through applying the same heat input but different 

welding speeds. It was revealed that the welding speed had clear impact on transient 

temperature field, microstructure grain size and workpiece material hardness. Although 

the welding distortion was not addressed in reference [64], it would be expected that the 

welding distortion would change along with the changes of the temperature field. 

Reference [37] described a study with double-sided double arc welding process. 

The effects of the arc distance and welding parameters were investigated. 

For multi-pass welding, it was found that using larger-sized weld electrodes 

(accordingly, larger weld bead size) would result in a decrease in the overall weldment 

transverse shrinkage [4]. Figure 2-4 shows the gradual increase of the transverse shrinkage 

along with the deposition of each additional weld pass, indicating that the first a few 

passes play the major role in determining the welding distortion [4]. The larger the size of 

the initial passes, the less the final overall welding distortion. 

 
Figure 2-4 Increase of Transverse Shrinkage along with Addition of Weld Passes [4] 
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2.4 Finite Element Method for Welding Distortion Simulation 

2.4.1 Basic Concepts and Techniques 

The application of the finite element method for predicting the welding distortion 

relies on the following information, 

• Temperature-dependant material properties 

• Weldment structure and weld joint design 

• Boundary conditions: fixtures / clamping / forces, workpiece and ambient 

temperatures, cooling condition 

• Welding heat: heat input, weld speed, thermal cycle 

• Weld sequences 

The numerical simulation involves the interaction of thermal, mechanical and 

metallurgical phenomena. The welding process has transient characteristics where a local 

heated zone travels through an elastic structure, causing heating up, melting, solidifying, 

and cooling down, often accompanied by complex microstructure changes [5]. The 

welding power was thus called transient moving heat source. A finite element analysis of 

the welding process can be based on a 3D FEA model of the weld structure, using 

nonlinear transient analysis techniques incorporating the interactions of all phenomena at 

every analysis time step. For a complex weld structure, this is going to be very time 

consuming. Some early researches found out that the heat transfer analysis could be 

separated, or normally called uncoupled, from the stress-strain analysis without hurting 

the analysis quality [8]. In other words, the thermal analysis is performed first, followed 

by the structural analysis using the temperature predicted in thermal analysis as the 

thermal load in conjunction with any additional mechanical loads or constraints [6]. This 
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technique is called sequentially coupled thermal and structural analysis, or sequentially 

coupled thermal, metallurgical and structural analysis when phase transformations are 

involved [6,8,12]. It has become the standard approach for welding process simulations and 

been implemented into major FEA software packages for welding. 

Before starting the FEA prediction of the welding distortion, the critical step is to 

establish an appropriate heat source model. The heat source model reflects the combining 

effect of the welding heat input, the welding speed, and the power source heat density 

and distribution. The double ellipsoid model, proposed by Prof Goldak, is the mostly 

employed one (Figure 2-5) [8]. Its heat flux features Gaussian distribution. In the welding 

FEA software SYSWELD, standard heat source models for GTAW and GMAW 

processes are provided [42,43]. Calibration of the standard models is required in order to 

match the actual application, using either the heat input and the welding travel speed, or 

the information of the thermal cycle or weldpiece microstructures / hardness [43]. 

 

 
 

Figure 2-5 Double-ellipsoid Heat Source Model [8] 
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2.4.2 FEA Software 
 

There are currently three major FEA software platforms employed for welding 

distortion simulations, 

• ABAQUS, working together with dedicated ABAQUS subroutines or 

extensions [6,7,9,12,21,32,39,47,55]  

• SYSWELD, an independent software for welding process simulation [41-43] 

• ANSYS [18,20,23,57] 

SYSWELD was developed by ESI Group and AREVA for numerical simulation 

of welding and heat treatment processes [41]. An outstanding feature of SYSWELD is its 

capability in handling CCT (continuous cooling transformation) diagrams of carbon and 

low alloy steels [42], based on which the simulation of phase transformation is performed. 

The outputs of a SYSWELD analysis include temperature field, distortions, residual 

stresses, microstructures, hardness, and plastic strains. 

The most successful welding simulation tool on the ABAQUS platform is the 

Virtual Fabrication Technology (VFT) modeling procedure, developed by Battelle 

Memorial Institute in conjunction with Caterpillar Incorporated [7]. With the VFT tool, 

ABAQUS is able to accurately model complex welding procedures. Graphical User 

Interface is provided for the assignment of welding paths, parameters and material 

properties [9]. These data are imported from Comprehensive Thermal Solution Procedure 

(CTSP) and user material subroutine UMAT35. For large fabricated structures, very 

coarse meshes are suggested for global distortion predictions [6]. But this is inadequate for 

thermal gradients and cooling rates during the welding process. CTSP was thus 

developed for global distortion prediction of production components. Apart from the 
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applications at Caterpillar, VFT has been used in the US shipbuilding and power 

generation industries. The addition of VFT to ABAQUS has resulted in 58~85% of 

saving in computing time [9]. 

2.4.3 Simplifications for Welding Distortion Simulation 
 

Because of the complexity of welding processes and welded structures, the 

computing time for numerical prediction of the welding distortion is still a challenge. 

Various efforts have been made to simplify the FEA analysis. Typical simplification 

techniques are summarized in this section.  

FEA Model Design and Meshing 
 

It has become a common practice for large weld structure that the weld seam and 

nearby regions are treated as 3D solid model and the area of a large plate away from the 

weld as shell model, as shown in Figure 2-6 [39,41]. Full analysis was performed on the 

local 3D model for weld joints, and simplified analysis on the shell model. High density 

meshes were created at the weld seam. The further away from the weld, the coarser 

meshing [5,18].  

 

 
 

Figure 2-6 Typical FEA Model and Meshing [39] 
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Block Dumping Technique 
 

Block dumping technique was introduced to speed up the FEA computation and 

has now become a widely accepted approach [7]. It is also called lumped pass analysis 

when the dumped block is a complete weld pass. During block dumping analysis, the 

whole weld metal of the selected weld pass or segment is added and heated up 

simultaneously. Then the analysis will move on to the next weld pass or segment. In 

other words, it reduces the number of solution steps by grouping a few element-wise 

steps into one step [6]. For example, with a moving heat source the analysis of one weld 

pass may take dozens of steps. While with block dumping approach the analysis could be 

completed in one step. The saving in computing time is apparently high. However, the 

challenge is how to develop an equivalent heat input and heating duration for the lumped 

step. One approach recommended in reference [6] is to match the size of the heat affected 

zone (HAZ) by comparing the lumped heating with the ordinary moving arc solution. It 

was claimed by reference [7] that, with the block dumping technique, the ABAQUS-

based VFT tool can model extremely large and complicated structural fabrications used 

in pressure vessels, nuclear piping and ship components. 

One reported concern with the block dumping approach was that the block 

addition of large amounts of hot metal to a cold model tends to cause convergence issues 

with the VFT program, which would result in analysis failing to complete [9]. 

The studies in reference [19] introduced a variation of the block dumping method. 

In stead of using fixed size block, a series of variable length heating blocks were added to 

a multi-pass joint per schedule shown in Figure 2-7. In comparison to the analysis with a 

moving heat source, the computing time was cut down from 200 hrs to 91 hrs. With 
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heating blocks of fixed length of the whole circle, the computing time dropped down 

dramatically to only 3.2 hrs. It should be aware that a large saving in computing time 

would usually be accompanied by less precise prediction. This may not be a concern for 

studies based on relative comparison, but might become a problem if the focus is on the 

absolute value of the predicted distortions. 

 

 
 

Figure 2-7 Multi-pass Welding Simulation with Varied Length of Dumped Heating Blocks [19] 
 
Simplified Two Stage Analysis Based on Inherent Strain Theory 
 

The inherent strain theory was established based on an assumption that the 

complex nonlinear thermal, metallurgical and elastic-plastic processes occur only at the 

weld seam and on the immediate neighboring base metals. All remote areas experience 
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only elastic loads. The inherent strain was defined as the residual plastic strain of the 

weld joint [29]. Assuming the inherent strain is the initial strain, the welding distortion can 

easily be calculated with elastic FE analysis, omitting the complicated thermal elastic-

plastic analysis. The following procedure was therefore proposed [29,31,32,35], 

• Stage I: estimate the inherent strains for different typical weld joints, using 

thermal elastic–plastic finite element method 

• Stage II: use the inherent strains obtained from Stage I to predict the welding 

distortions of large welded structures with elastic finite element method 

Reference [13] introduced a technique called Iterative Substructure Method 

(ISM), with which the distortion prediction was composed of two steps, dealing with 

respectively a large structure linear problem and a small nonlinear region with moving 

heat. It falls in the same philosophy of the inherent strain theory. 

Shrinkage Volume Method 

A very simple FEA method - linear elastic shrinkage volume method was 

developed by Prof Tsai [16,34]. It is a steady-state finite-element approach that assumes 

that the main driving force for distortion is linear thermal contraction of the weld metal as 

it cools from elevated to room temperature. This contraction is resisted by the 

surrounding parent metal, resulting in the formation of internal forces. The parent metal 

distorts to accommodate these shrinkage forces until equilibrium is achieved. No thermal 

or metallurgical analysis is required by this method. 

2D FEA Models for Simple Weld Structures 
 

For welding of flat plate butt joint, a simplified 2D thermal and plane-strain 

elastic-plastic model was employed in reference [38]. The 2D model was orientated in a 

plane transverse to the welding direction. The stress field from the 2D analysis was then 
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applied to a 3D elastic model to predict the welding distortion. This approach is similar to 

the techniques using inherent strain theory, except that the 2D model is applicable only to 

simple weld structures. In reference [14], a 2D cross-section thermal model was used for 

thermal transient analysis of plate butt weld. 

2.5 Summary 
 

Welding distortions are caused by non-uniform temperature distribution during 

welding process and often with contribution from phase transformations. The transverse 

shrinkage, longitudinal shrinkage and angular change are the basic deformations which 

work together to produce various types of welding distortions. 

The researches on welding distortion were mostly based on flat plate butt/fillet 

welds or tube/pipe/nozzle girth welds, involving various types of welding processes. No 

study was found on manual SMAW or manual GTAW. Most studies dealt with single 

pass weld only. 

Various types of distortion control techniques were investigated. The pre- and 

post-weld distortion control methods (except joint design) were primarily applied for 

simple weld structures. Major in-process distortion controls were realized through 

fixture/clamping, welding sequence, and welding process selection and heat control. 

The influences of the welding sequence on welding distortion were studied under 

specific application conditions. No universal solution was proposed. 

Related researches suggest that the welding distortion could be reduced through 

the application of high power density welding process such as laser welding. For multi-

pass weld joint, large weld bead size was found resulting in less final welding distortion. 
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The sequentially coupled thermal and structural transient analysis was the mostly 

employed technique for the finite element simulation of the welding distortions. The 

simplification of the FEA simulation was found necessary for complex weld structures. 

The most common simplification techniques include the use of shell model for remote 

area on the weld plate, block dumping or lumped pass method, and inherent strain theory. 

Simplified FEA analysis was usually accompanied by lower prediction precise. 
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Chapter 3 Design of Experiments and FEA Studies 

3.1 Introduction 

Based on the purposes of the studies on 

stainless steel nozzle welding distortion the 

following types of tasks were proposed, 

1) Relative comparison of welding 

technique options or possibilities 

through FEA analysis, involving 

fixture designs, welding sequences, 

weld bead sizes and cooling times 

2) Experimental comparison of welding 

technique options or possibilities, 

especially those that are difficult to 

establish relevant FEA models. Areas 

of focus include welding processes, fixture, welding directions, and weld bead 

sizes 

3) Determination of the level of the actual welding distortion through nozzle weld 

mockups 

In reference to typical pressure vessel applications, it was determined that all 

experimental mockups and FEA models be designed to represent stainless steel nozzle-

to-shell welding with the following dimensions, 

Nozzle

Shell 
Can
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• Shell can: 7500mm outside diameter, 31.75mm thickness 

• Nozzle: 290mm outside diameter, 25.4mm wall thickness 

• Nozzle spacing on shell can: 380mm 

3.2 Mockup Designs 

Two levels of mockups were designed,  

• Single nozzle mockups for comparison between different welding techniques, 

so that optimal welding procedure could be developed to produce minimum 

welding distortion 

• Multi-nozzle large mockups for determining the level of shell distortion that 

reflects the effect of constraint conditions and the interaction between the 

welding of different nozzles. 

The shell plate material is SA-240 Type 304L and the nozzle SA-182 Grade 

F304L. 

3.2.1 Single Nozzle Weld Mockups 
 

Stainless steel plates of 900mm x 900mm in dimensions were used for single 

nozzle weld mockup. The plate was pressed to the shape of the shell can of 7500mm OD 

(outside diameter), representing a cut-off section of the shell, with one straight edge in 

parallel to the shell axis. The nozzle axis intersects with the plate at the plate surface 

center, with the nozzle end at shell ID (inside diameter) side being saddled to flush with 

the plate. 

Three types of single nozzle weld mockups were designed, 

1) Nozzle axis normal to the shell plate surface 
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2) Nozzle intersects with the plate at 45o angle, in which case unbalanced 

welding distortion would normally happen, causing nozzle angular distortion. 

3) Nozzle intersects with the plate at 45o angle, with a carbon steel (A36 

material) contour fixture being tightened with four bolts onto the ID side of 

the shell plate (Figure 3-1). The contour fixture is a 50.8mm thick strongback 

with surface profile matching the shell can ID surface. This is a very typical 

fixture for small weldment to restrict the welding distortion. Stainless steel 

washers were placed in between the shell plate and the contour fixture to 

prevent contamination from carbon steel. Stainless steel plate strongback 

could be another option but would be more expensive, and prone to distortion 

under welding heat. 

Most of the single nozzle mockups belong to the last two types, as they represent 

the worst case scenarios regarding welding distortion.  

900 x 900 mm

    

Figure 3-1 Single Nozzle Weld Mockup with Contour Fixture 

330mm

Nozzle

Shell 
Plate

Contour 
Fixture 
Plate

Bolt
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3.2.2 Multi-nozzle Weld Mockup 
 

The multi-nozzle weld mockup was built 

on a 2000mm x 2000mm stainless steel plate 

that was pressed to the shape of the shell of 

7500mm OD, with one edge in parallel to the 

shell axis. A series of nozzle openings was 

designed with 11 at the middle to be welded with nozzles. The gap between neighboring 

nozzles is 90mm, corresponding to a nozzle spacing of 380mm. The nozzle bottom was 

saddled to flush with the shell ID surface.  

The nozzle at the center was with J groove and welded without fixture in order to 

examine the worst case scenario of welding distortion. The other nozzles were with 

double bevel groove and welded with a rib-bar fixture attached to the ID side of the shell 

plate (Figure 3-2). The rib-bar fixture is a typical design for the welding of large pressure 

vessel assemblies. They were made of A36 carbon steel. The 76.2mm thick rib 

strongbacks were braced with three pieces of 114.3mm diameter tubes. 

3.3 Weld Preparation 
 

The studies of this thesis used three types of weld groove designs, 

1) Modified double J groove (Figure 3-3)  

This is a complicated groove design, used for single nozzle welding studies. 

The groove details were engineered as such that equal cross-section area be 

maintained all way around the nozzle weld seam, specifically for the cases 

Nozzle

Shell 
Plate

Rib

Round 
Bar
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where the nozzle is on a shell surface location of such as 45o slope. To achieve 

this, the bevel angle and the width of the root flat portion of the groove have 

to be adjusted along with the location of the weld cross-section. The purpose 

of the special design is to eliminate the chance of unbalanced weld distortion 

due to the variation in weld seam cross-section area. It can also better 

facilitate the potential automation of the welding process. Figure 3-3 shows 

the groove design data when the nozzle is normal to the shell plate. 

Besides, the unique concept of locating the machined portions of the groove 

on both the shell plate and the nozzle has greatly simplified the machining 

process. Otherwise a complex 5 axes CNC machine would be required in 

order to machine the shell ID side of the prep. 

2) Modified double bevel groove (Figure 3-4) 

This groove design was primarily used for multi-nozzle welding studies, with 

intention of reducing the development cost. For the same reason for the 

modified double J groove, the shell ID side of the prep was machined on the 

nozzle bottom end, while shell ID side on the shell plate.  

3) J groove (Figure 3-5) 

J groove was used for the welding of the center nozzle in the multi-nozzle 

weld mockup. 
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Figure 3-2 Multi-nozzle Weld Mockup with Rib-Bar Fixture 
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Figure 3-3 Modified Double J Groove When Nozzle Normal to Shell Plate 
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Figure 3-4 Modified Double Bevel Weld Groove Design 
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Figure 3-5 J Type Weld Groove Design 

 

3.4 Experimental Procedure 

Manual GTAW and SMAW are the most commonly used welding processes for 

nozzle-to-shell weld seams, therefore were selected for the studies of this thesis. 

However, as it is known, the heat input and the welding thermal cycle by these processes 

are hard to keep consistent. It was expected that, because of the size of the nozzle weld in 

the study which requires dozens of weld passes, the impact of the variation in heat input 

etc could be statistically balanced out. This would be of even less concern for multi-
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nozzle weld mockup. For the selected comparative studies of this thesis the impact would 

also be minor. 

The following was the general procedure of mockup tests, 

a) Shell plate forming and cut 

b) Cut of shell openings for nozzle welds 

c) Weld prep machining 

d) Attaching / welding fixture to workpiece and pre-weld measurement of shell 

plate surface profile. For single nozzle mockup with fixture, the measurement 

was performed before attaching the fixture. For multi-nozzle mockup with 

fixture, the measurement was conducted after the fixture had been welded 

onto the shell plate. 

e) Welding 

f) Post-weld measurement of shell plate surface profile and shell plate distortion 

analysis. For single nozzle mockup with fixture, the measurement was 

performed after the removal of the fixture. For multi-nozzle mockup with 

fixture, the measurement was conducted with the fixture staying on the shell 

plate. 

3.4.1 Single Nozzle Welding Procedure 
 

The welding procedure for specific mockup varies from case to case. The 

procedure details will be given under corresponding sections of the thesis. One common 

requirement applied across all cases is on the interpass temperature, 176.7oC max. 
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3.4.2 Multi-Nozzle Welding Procedure 
 
Welding Sequence 

Figure 3-6 shows the nozzle welding sequence of the multi-nozzle weld mockup. 

Nozzle #1 (with J groove) was welded from the shell OD side. The welding of nozzles 

#2~#11 (with double bevel groove) was started from the shell OD side, and the shell ID 

side was welded after the OD side of all nozzles had been completed. 

 

8 6 11

4 2 1 3 5

10 7 9

 
 

Figure 3-6 Multi-nozzle Mockup Nozzle Welding Sequence 
 
Welding Procedure 

• No preheat, interpass temperature 177oC max 

• Welding parameters recorded from the mockup tests are listed in Table 3-1 

Table 3-1 Multi-nozzle Mockup Welding Parameters 
 

Weld Pass Process Electrode
Electrode Size 

(mm) Current (A) Voltage (V)
Speed 

(cm/min)

All GTAW ER308L 2.4 170 19~22 7.5~10

Root GTAW ER308L 2.4 130~150 12~16 2.5~5
Others SMAW E308L 3.2 115~135 21~25 10~30
Others SMAW E308L 4 140~160 25~30 25~35

Nozzle #1 Welding

Nozzle #2~#11 Welding
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3.5 Measurement of Welding Distortion 

3.5.1 Measurement of Single Nozzle Weld Mockup 

The reference coordinate system for single nozzle mockup distortion 

measurement is shown in Figure 3-7. Measurements were taken before and after welding,  

• On shell OD side of the mockup plate surface along EF and OA, to obtain the 

distortion data 

• On nozzle top surface, combined with the measured plate surface data, for 

determining the nozzle angular distortion in YZ plane. See Figure 3-7 for the 

definition of nozzle angle in reference to the shell plate. 

O
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Z
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A

X axis: pass through point O, the 
middle point of shell OD surface edge 
MN, and in parallel to line MN 

Y axis: pass through point O and point 
A which is on shell OD surface edge 
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Z axis: toward shell OD side

E & F: middle points of shell OD edge 
BM and CN
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Figure 3-7 Coordinate System for Measurement of Single Nozzle Mockup Profile 

 

The measurement was conducted with high precision portable CMM device 

FARO-ARM Platinum (Figure 3-8) manufactured by FARO Technologies, Inc. Punch 

marks were created on the shell plate surface at locations to be measured, so that the pre-

�
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weld and post-weld measurements could be taken from the same points and the distortion 

values be calculated afterwards. 

 

Figure 3-8 Single Nozzle Weld Distortion Measurement with FARO-ARM Platinum 
 

3.5.2 Measurement of Multi-nozzle Weld Mockup 

The reference coordinate system for multi-nozzle mockup distortion measurement 

is shown in Figure 3-9.  

 

Figure 3-9 Coordinate System for Measurement of Multi-nozzle Mockup Profile 
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The shell plate distortion after the welding of the center nozzle (nozzle #1) was 

measured with high precision portable CMM device FARO-ARM Platinum. Punch marks 

were created on the shell plate surface at locations to be measured, so that the pre-weld 

and post-weld measurements could be taken from the same points and the distortion 

values be calculated afterwards. 

The shell plate surface profiles before and after the welding of nozzle #2~#11  

were obtained using laser scan device Handyscan 3DTM EXAscan (Figure 3-10). A 3D 

model of the shell plate was established based on the laser scan data. The welding 

distortion information was then extracted by comparing the shell plate 3D models 

obtained before and after welding. This was performed automatically with the inspection 

software for the laser scan device. The four corners of the shell plate were used as 

reference points for aligning the pre- and post-weld measurement data. 

 

       
 

Figure 3-10 3D Laser Scan of Multi-nozzle Mockup Plate 
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3.6 Analysis of Welding Distortion 

The nozzle-to-shell welding distortion was evaluated using the following 

indicators, 

1) Max Z Distortion: c = b –a 

Refer to Figure 3-11 for the definitions of a, b and c 

2) RMS (Root Mean Square) Z Distortion: 
( )

n
ZZZ n

22
1

2
0 )(...)( ∆++∆+∆

 

Refer to Figure 3-12 for the meanings of the symbols in the formula above 

3) X Direction Shrinkage and Y Direction Shrinkage (Figure 3-13) 

4) Nozzle Angle Change 

Refer to Figure 3-7 for the definition of nozzle angle 

 

a b

c

Dotted curve: pre-weld surface profile
Solid curve: post-weld surface profile

a: lowest value of negative displacement 
along Z axis 
b: highest value of positive displacement 
along Z axis
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Figure 3-11 Sketch for Definition of Max Z Distortion 
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Dotted curve: pre-weld surface profile
Solid curve: post-weld surface profile
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Figure 3-12 Sketch for Definition of RMS Z Distortion 
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Figure 3-13 Definition of Plate Shrinkages in Single Nozzle Weld Mockup 
 
 

3.7 Design of FEA Studies 

3.7.1 Types of FEA Models 

The shell plates and the nozzles in FEA studies were designed to the same 

dimensions as that in experimental mockups. Two groups of FEA models were 

developed. 

FEA Model Group A – single nozzle on small shell plate 
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The nozzle with 45o nozzle angle is welded to a 900mm x 900mm plate. This type 

of FEA models was used for investigations on the effects of fixture, weld pass deposit 

sequence, weld bead size, and cooling time. Most of them were configured with a contour 

fixture, as shown in Figure 3-13. This is a modified version of the contour fixture used in 

mockups, consisting of a 50.8mm thick 900mm x 700mm carbon steel plate and a 

3.175mm thick stainless steel washer in between the stainless steel shell and the carbon 

steel fixture plate. The three components are tied together at interfaces. 

   

Figure 3-14 Single Nozzle FEA Model with Contour Fixture 
 

FEA Model Group B – multi-nozzle on 

large shell plate 

The nozzles are welded onto a 

2000mm x 2000mm shell plate for 

studies on the effects of different fixture 

designs, nozzle sequences, and weld 

pass deposit sequences. The fixture designs involved under this FEA model category will 

be described in detail in Chapter 4. 
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3.7.2 FEA Simulation Techniques 

Software package ABAQUS was employed for the FEA studies, using nonlinear 

sequentially coupled thermal-structural transient analysis method [6,8]. Lumped weld pass 

method, a type of block dumping techniques [7], was used to model the deposition of filler 

metal and the welding thermal cycle. The use of lump pass has made the FEA tool 

efficient enough for its application to the simulation of the nozzle-to-shell welding 

process, especially for multi-nozzle welding. In the thermal transient analysis, a time-

varying heat flux was applied to each pass to melt the filler metal and some base metal. It 

was followed by cooling for certain time before the next pass starts. Then the nonlinear 

elastic-plastic structural analysis was performed using the temperature field calculated in 

the thermal transient analysis. 

Techniques for FEA Model Group A  

Based on the symmetric characteristics of the model structure, only half of the 

model was used for FEA calculation, as shown in Figure 3-14. It is a 3D model with fine 

elements at and around the weld seam and coarse elements at the far ends of the nozzle 

and the plate. During the simulation process, each weld pass was dumped into the weld 

groove as a whole pass, i.e. lump pass. 

Techniques for FEA Model Group B 

This group of FEA models involve 7~11 nozzles with a shell plate much larger 

than those in the model group A. They are 3D models with up to 266,000 elements after 

meshing. The shell, nozzles and filler metal are modeled with solid elements, and the ribs 

and bars with shell and beam elements. For simplification, all the weld passes on shell 

OD side are lumped into one pass and all the ID passes are lumped into another pass. 
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With the combined lump pass approach, a complete run of the group B models took 

between 32 to 67 hours with 8 CPUs. 

      

Figure 3-15 Single Nozzle FEA Model Simplification and Meshing 
 
 

3.7.3 FEA Distortion Analysis 

The nozzle welding distortion results from the FEA prediction were represented 

in reference to coordinate systems similar to those for nozzle welding mockups (Figures 

3-7, 3-9), so that the comparison between mockup and FEA results be possible. Apart 

from the colored distortion plots for visual comparison, the Max Z Distortion defined 

earlier was also calculated based on the predicted distortion data, as an indicator of the 

overall distortion for each FEA model. 
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Chapter 4 Effect of Fixtures on Nozzle Welding 
Distortion 

 
 

Fixtures are the most common solution for welding distortion control [4,6]. The 

FEA method has provided an excellent tool for comparing the effectiveness of different 

welding fixture designs. The studies in this chapter consist of FEA analyses of the 

distortions caused by single and multi-nozzle welding with different types of fixtures. A 

single nozzle weld mockup was made to check the actual distortion amount and to 

evaluate the results from FEA studies. 

4.1 Single Nozzle Weld Mockup with Contour Fixture 

The mockup with contour fixture was tested against a mockup without fixture. 

• Welding conditions: nozzle angle 45o, modified double J groove, SMAW 

process, shell ID side was welded first, uphill welding direction 

• Welding parameters: see Table 4-1 

 

 

Figure 4-1 Completed Single Nozzle Weld Mockup Welded with Contour Fixture 
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The mockup was measured 

• After tacking the nozzle but before attaching the fixture and welding 

• After welding, cooling down, then taking off the fixture 

The measured mockup plate surface profiles are shown in Figures 4-2 and 4-3. 

Welding distortions were summarized in Table 4-2, which indicates that the distortion 

with contour fixture was only about 60% of the distortion when without fixture. The 

angular distortion was reduced to 35% of the level when without fixture. The ratio of Y 

Direction Shrinkage was not calculated because the difference between the two mockup 

cases is very minor. 

Table 4-1 Welding Parameters for Mockup Study on Fixture 
 

Condition

# of Weld 
Passes

Heat Input 
(kJ/cm)

Travel Speed 
(cm/min)

Estimated 
Total Heat 

Input (Mega J)
No fixture 26 19.7 8.4 57.2

With contour fixture 28 15.7 10.2 49.3  

 
Table 4-2 Single Nozzle Weld Distortion from Mockup Study on Fixture 
 

MAX Z 
Distortion 

(mm)

RMS Z 
Distortion 

(mm)

X Direction 
Shrinkage 

(mm)

Y Direction 
Shrinkage 

(mm)

Nozzle Angle 
Change (deg)

No fixture 11.53 3.78 3.20 0.28 3.4
With contour fixture 6.99 2.01 2.16 0.36 1.2

Distortion Ratio
(With / without fixture) 61% 53% 67% - 35%  
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Shell Surface Profile - SMAW No Fixture
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Figure 4-2 Single Nozzle Weld Mockup Distortion – No Fixture 
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Shell Surface Profile - SMAW with Contour Fixture
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Shell Surface Profile - SMAW with Contour Fixture
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Figure 4-3 Single Nozzle Weld Mockup Distortion – Contour Fixture 
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4.2 Simulation of Single Nozzle Welding with Contour Fixture 

The FEA model with modified contour fixture (Figure 3-13) was compared 

against a model without fixture. 

• Welding conditions: nozzle angle 45o, modified double J groove, shell ID side 

welded first 

• Welding parameters: 36 weld passes. The FEA heat flux was worked out to 

match the heat input of 13.8 KJ/cm and weld travel speed of 7.6 cm/min. The total 

heat input is about 55 Mega J. 

The predicted shell plate distortions (after removal of fixture for the case with 

contour fixture) are shown in Figures 4-4 and 4-5. A comparison of the distortions of the 

two FEA cases is presented in Table 4-3, which shows that the Max Z Distortion with 

contour fixture will be about 58% of the distortion when without fixture, very close to the 

ratio of 61% obtained from the mockup tests in Section 4.1. This would indicate that the 

modified contour fixture in the FEA model be effective for the simulation of the contour 

fixture used in the mockup. The absolute levels of the predicted Max Z Distortion appear 

to agree very well with the mockup results (Table 4-2), confirming the validity of the 

FEA approach. 

Table 4-3 Single Nozzle Weld Distortion from FEA Study on Fixture 
 

Condition
Displacement 

Min (mm)
Displacement 

Max (mm)
Max Z Distortion 

(mm)
Distortion 

Ratio
No fixture -3.585 5.974 9.559

With contour fixture -2.265 3.242 5.507 58%  
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Figure 4-4 Predicted Single Nozzle Weld Distortion – No Fixture 
 
 

 

Figure 4-5 Predicted Single Nozzle Weld Distortion – Contour Fixture 
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4.3 Simulation of Multi-Nozzle Welding with Different Fixtures 

 A common practice for preventing welding distortion of a pressure vessel shell 

can is to install a supporting ring toward the inside surface of the shell can. An equivalent 

fixture design, rib-bar fixture (Figure 4-6), was developed for the multi-nozzle weld 

mockup and evaluated here with FEA method against other fixture designs proposed in 

this thesis. 
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Figure 4-6 Multi-nozzle Weld Sequence with Rib-Bar Fixture – FEA Study 
 
 
 
 
 



Chapter 4  Effect of Fixtures on Nozzle Welding Distortion    
                     

49 

4.3.1 Fixture Design Types 

Three fixture designs were studied, 

1) Rib-bar fixture (Figure 4-6) 

2) Contour fixture with full surface contact (Figure 4-7), representing a tight 

fit between the fixture and the shell plate. The 50.8mm thick carbon steel 

contour fixture is attached under the ID surface of the shell plate, with 

openings at the locations of nozzle #1~#7 in Figure 4-6. A 3.2mm thick 

stainless steel shim is placed between the contour plate and the shell plate. 

The purpose of the stainless steel shim is to prevent chemical contamination 

from the carbon steel. 

3) Contour fixture with ring shape partial surface contact (Figure 4-8), 

representing a less tight fit between the fixture and the shell plate by using 

bolts.  Stainless steel washers of 296.4mm ID, 347.2mm OD and 3.175mm 

thickness are placed around the nozzle openings in between the carbon steel 

contour plate and the shell plate. The complete FEA model is shown on the 

right in Figure 4-8. On the left, the shell is removed to reveal the circular 

washer rings. 

All the FEA multi-nozzle weld models use double bevel weld groove design, with 

the shell OD side of the groove being welded first. 

The apparent benefits of contour-type fixture design include:  

- Possibility of reducing / eliminating welding between the fixture and the shell, 

avoiding thermal impact on the shell plate (distortion, residual stress, concern 

of chemical contamination)  
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- More space on shell ID side for welding operation access 

- Higher possibility for using automatic welding equipments because of the 

improved clearance inside the shell can 

- Flexibility in fixture setup (the same fixture curvature, applicable anywhere 

on shell ID) and possibly less setup time for welding operation 

The influence of the contour-type fixture on the shell distortion in multi-nozzle 

welding was studied and the analysis results were summarized in the following section. 

 

Contour 
Fixture Plate

 

Figure 4-7 Multi-nozzle FEA Model with Full Contact Contour Fixture 
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Contour 
Fixture Plate

Contact 
Washer Ring

 

Figure 4-8 Multi-nozzle FEA Model with Ring Contact Contour Fixture 

4.3.2 Effect of Fixture Design on Welding Distortion 

The predicted welding distortions from different fixture designs are shown in 

Figures 4-9, 4-10 and 4-11. A comparison of the distortion data is listed in Table 4-4. 

Table 4-4 Multi-nozzle Weld Distortion from FEA Study on Fixtures 
 

Displacement 
Min (mm)

Displacement 
Max (mm)

Max Z 
Distortion 

(mm)

Distortion 
Ratio

Displacement 
Min (mm)

Displacement 
Max (mm)

Max Z 
Distortion 

(mm)

Distortion 
Ratio

Rib-bar fixture -16.4 1.7 18.1 -16.1 12.5 28.6
Contour fixture 
with complete surface contact

-13.6 0.2 13.8 76% -15.4 0.3 15.7 55%

Contour fixture 
with ring-style surface contact

-22.1 0.1 22.2 123% -12.7 3.2 15.9 56%

With Fixture After Fixture Removal

 

General distortion characteristics 

In comparison to the rib-bar fixture design, an outstanding characteristic of the 

distortions with contour fixtures is that the distortion distribution is localized (Figures 4-

10 & 4-11), especially before the removal of the fixtures. In other words, the contour 
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fixture design appears able to restrict the welding distortion to local area. This would be 

beneficial for the distortion control of large weld structures. 

Distortions before taking off the fixtures 

The least distortion was produced with full contact contour fixture, about 76% of 

the distortion in welding with the rib-bar fixture. However, the model with ring contact 

contour fixture did show a higher level of distortion than the model with rib-bar fixture. 

This is because the ring style connection was provided by a 3.175mm thick, 25.4mm 

wide stainless steel washer, which may not be strong enough. Nevertheless, unlike rib-bar 

fixture, the distortion with ring contact contour fixture has been well kept locally around 

the welded nozzles (Figure 4-11), suggesting less concern of the impact of the distortion 

on remote areas. By reinforcing the connection strength between the fixture and the shell, 

the magnitude of the distortion would be reduced and the distortion distribution would be 

compressed further toward the center, leaving less impact on remote areas. 

Distortions after taking off the fixtures 

The most apparent phenomenon as suggested by the FEA results in Table 4-4 is 

that both the models with contour fixture ended up with much less distortion than the 

model with rib-bar fixture. In other words, after the removal of the fixture, both cases are 

much better than the rib-bar fixture design for distortion control.  

Regarding the distortion distribution, the stronger the connection between the 

contour fixture and the shell, the more localized the distortion (compare Figures 4-10 & 

4-11). On contrary, the application of rib-bar fixture has developed a skewed distribution 

(Figure 4-9), with high levels (in positive and negative directions) away from the welded 

nozzles, suggesting distortion impact on remote areas.  
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Distortion change when taking off the fixture 

Table 4-4 shows that there was a big distortion jump after taking off the rib-bar 

fixture, indicating the release of a high magnitude of welding residual stress. From the 

production distortion control point of view, it would mean that the rib-bar fixture should 

be kept in place until the assembly of the nozzle-to-shell weld subassemblies has been 

completed. However, for contour fixture with complete surface contact, the distortion 

increase was very small, suggesting that the fixture could be taken off before the final 

assembly of the nozzle-to-shell weld subassemblies. More interesting is that, after the 

removal of the contour fixture with ring-style surface contact, the distortion even showed 

a large decrease. In other words, the fixture should be removed before the final assembly 

of the nozzle-to-shell weld subassemblies. This type of findings is very valuable for 

proper scheduling of the manufacturing process in order to achieve low welding 

distortion, effective and efficient fixture tooling, and high productivity. 
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Fixture Design
– Rib-bar

Before fixture removal

 

 

Fixture Design
– Rib-bar

After fixture removal

 

Figure 4-9 Predicted Multi-nozzle Weld Distortion – Rib-Bar Fixture 
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Fixture Design
– Contour fixture with 
complete surface contact

Before fixture removal

 

 

Fixture Design
– Contour fixture with 
complete surface contact

After fixture removal

 

Figure 4-10 Predicted Multi-nozzle Weld Distortion – Full Contact Contour Fixture 
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Fixture Design
– Contour fixture with ring 
surface contact

Before fixture removal

 

 

Fixture Design
– Contour fixture with ring 
surface contact

After fixture removal

 

Figure 4-11 Predicted Multi-nozzle Weld Distortion – Ring Contact Contour Fixture 
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4.4 Summary 

The influence of fixtures on the welding distortion of stainless steel nozzle-to-

shell-can weld assemblies was investigated through finite element analyses and mockup 

tests, involving the welding of single and multiple nozzles. 

Both the FEA simulations and .the mockup tests of single nozzle welding, with 

similar total heat input, revealed that the level of the welding distortions with contour 

fixtures was about 60% of the level of the distortions without fixture under the given 

structure and welding conditions. The agreement between the FEA and the mockup 

results appears to confirm that the modified contour fixture employed in the FEA 

simulation is an effective representation of the contour fixture used in the mockup test. 

The comparison of the absolute values of the welding distortion confirmed also that the 

FEA methods were able to give fairly precise prediction of the welding distortion. 

The FEA simulations of multi-nozzle welding with different fixture designs 

indicated that the welding distortions with contour fixtures were more localized than the 

distortion with rib-bar fixture. After the removal of the fixtures, the distortions associated 

with contour fixtures were less than the distortion with rib-bar fixture. However, when 

the shell plate was not tied tightly with the contour fixture (ring-style surface contact), the 

distortion before the removal of the contour fixture was found higher than the distortion 

with rib-bar fixture. The stronger the link between the shell plate and the contour fixture, 

the less the distortion before the removal of the fixture. 

The fixture removal schedule shall be evaluated on a case by case basis in order to 

achieve minimum final welding distortion. Under the given structure and welding 

conditions in this chapter, the rib-bar fixture has to be kept in place until the completion 
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of the final nozzle-to-shell weld assembly, while the contour fixtures appeared better to 

be removed right after the completion of a nozzle weld subassembly. 
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Chapter 5 Effect of Welding Sequence and Direction 

on Nozzle Welding Distortion 

 

Welding distortion control through proper design of the welding sequence has 

been proved to be effective in the fabrication of sheet metal structures, primarily for 

carbon or mild steels [1,6,7,18,20,53,61~63]. However, it is still an under-developed area for 

stainless steel complex structures. The studies in this aspect were carried out mainly 

using FEA method, except the experimental mockup for study on the impact of the 

welding direction when the weldment is in out-of-flat welding position. 

5.1 Simulation of Multi-nozzle Welding with Different Nozzle 

Welding Sequences 

Two welding sequences as shown in Figure 5-1 were studied. 

1) Progressive nozzle weld sequence 

2) Jumped nozzle weld sequence 

Both cases use rib-bar fixture and modified double bevel weld groove (Figure 3-

4). Each nozzle is welded first from the shell OD side. As the boundary conditions for the 

FEA simulation, the displacements at the four corners of the shell plate were set to zero 

along the nozzle axial direction. In other words, the four corners were taken as the 

reference points for the evaluation of the shell distortion.  
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The FEA simulation results are shown in Figure 5-2 and 5-3. The comparison 

between the weld distortions of the two cases is listed in Table 5-1, which indicates that 

for the given components and joint configurations the progressive welding sequence is 

better for distortion control (22% less distortion when with fixture, 12% less after fixture 

removal). An explanation for this would be that, with the jumped weld sequence, the first 

a few nozzles are welded with less constraint from their surrounding structures, hence 

have developed a higher level of distortions. The data in Table 5-1 also confirmed the 

finding from the FEA simulation results listed on Table 4-4, i.e. a large distortion jump 

after taking off the rib-bar fixture. 

8 6 11

4 2 1 3 5

10 7 9

       

4 10 5

2 8 1 9 3

6 11 7

 

  Progressive Sequence    Jumped Sequence 

Figure 5-1 Multi-nozzle Welding Sequences – FEA Study 
 
 
Table 5-1 Multi-nozzle Weld Distortion with Different Nozzle Weld Sequences 
 

Displacement 
Min (mm)

Displacement 
Max (mm)

Max Z 
Distortion 

(mm)

Displacement 
Min (mm)

Displacement 
Max (mm)

Max Z 
Distortion 

(mm)
Progressive Weld Sequence - I -20.9 1.4 22.3 -23.7 13.7 37.4
Jumped Weld Sequence -25 2.1 27.1 -24.5 17.5 42

Distortion Ratio
(Jumped / Progressive)

122% 112%

With Fixture After Fixture Removal
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Progressive Weld 
Sequence - I

Before removal of rib-bar 
fixture

Max: 1.41
Min: -20.9

 

 

Progressive Weld 
Sequence - I

After removal of rib-bar 
fixture

Max: 13.65
Min: -23.68

 

Figure 5-2 Multi-nozzle Weld Distortion – Progressive Nozzle Weld Sequence 
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Jumped Weld 
Sequence

Before removal of 
rib-bar fixture

Max: 2.14
Min: -24.95

 

 

Jumped Weld 
Sequence

After removal of 
rib-bar fixture

Max: 17.53
Min: -24.53

 

Figure 5-3 Multi-nozzle Weld Distortion – Jumped Nozzle Weld Sequence 
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5.2 Simulation of Nozzle Welding with Different Weld Pass 

Deposit Sequences 

5.2.1 Effect of Weld Pass Deposit Sequence in Single Nozzle Welding 

Due to the structural characteristics of the nozzle-to-shell weld joint, the weld 

pass deposit sequence will certainly affect the welding distortion. Four cases listed below 

were studied on the effect of weld pass deposit sequence, 

1) No fixture, shell ID side is welded first 

2) No fixture, shell OD side is welded first 

3) With contour fixture, shell ID side is welded first 

4) With contour fixture, shell OD side is welded first 

All cases above have a nozzle angle of 45o, and are with modified double J 

groove. Altogether 36 weld passes are deposited to the weld groove. The heat input is 

13.8 KJ/cm, weld travel speed 7.6 cm/min, and interpass temperature 177oC maximum. 

The predicted shell plate distortions (after removal of fixture for the cases with 

contour fixture) are shown in Figures 5-4 and 5-5. A comparison of the distortions of the 

four FEA cases is presented in Table 5-2, which shows that much less distortion will be 

developed by welding the shell OD side first, especially when a fixture is applied. The 

distortion in the later case is only 31% of the case when the shell ID side is welded first. 

The reason for the distortion behavior revealed by the FEA results above can be 

explained by Figure 5-6. For all cases in nozzle-to-shell welding, the shell plate region 

around the weld seam will be pulled toward the nozzle due to the shrinkage of the weld 

metal and the heat affected zone, ending up with the sinking of the nozzle toward the 
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shell can centerline. Figure 5-6 (a) shows the residual stress distribution after the welding 

of a single nozzle without fixture. Clearly it demonstrated that the outside portion of the 

shell plate had experienced higher tensile stress than the inside portion. The conceptual 

sketch of stress distribution in Figure 5-6 (b) should apply to all cases listed above. When 

the welding starts from the shell ID side, the shrinkage of the weld metal would 

experience less resistance than the level when the welding starts from the shell OD side. 

The first few weld passes will play a major role in determining the final amount of 

welding distortion. 

Table 5-2 Single Nozzle Weld Distortion with Different Weld Pass Deposit Sequences 
 

After fixture removal
Displacement 

Min (mm)
Displacement 

Max (mm)
Max Z Distortion 

(mm)
Distortion Ratio

No fixture
Weld shell ID side then OD side -3.585 5.974 9.559
Weld shell OD side then ID side -2.7 3.757 6.457 68%

Contour fixture
Weld shell ID side then OD side -2.265 3.242 5.507
Weld shell OD side then ID side -0.5866 1.126 1.7126 31%  
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Figure 5-4 Single Nozzle Weld Distortion – Weld Pass Sequence – No Fixture 

Weld shell OD side first 
No fixture 

Weld shell ID side first 
No fixture 
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Figure 5-5 Single Nozzle Weld Distortion – Weld Pass Sequence – Contour Fixture 
 
 

Weld shell ID side first 
With contour fixture 

Weld shell OD side first 
With contour fixture 
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(MPa)

 
(a) Predicted Residual Stress Distribution – Welding Shell ID Side First, No Fixture 

 
 

(b) Conceptual Sketch of Stress and Deformation in Single Nozzle Welding 
 

Figure 5-6 Stress and Deformation in Single Nozzle Welding 
 

 
 



Chapter 5  Effect of Welding Sequence and Direction on Nozzle Welding Distortion    
                      

68 

5.2.2 Effect of Weld Pass Deposit Sequence in Multi-nozzle Welding 

Combining the results of Sections 5.1 and 5.2.1, there would be two basic options 

for welding multiple nozzles to a shell can,  

1) Progressive weld sequence I: following such as the progressive sequence in 

Figure 5-1, each nozzle is welded firstly on the shell OD side then on the shell 

ID side, followed by the welding of the next nozzle. 

2) Progressive weld sequence II: the shell OD side of all nozzles is welded by 

following the progressive sequence in Figure 5-1, then the shell ID side is 

welded following the same sequence.  

From the production point of view option II would be preferred. The reason is 

that, when there are dozens or even hundreds of nozzles to be welded, this would greatly 

reduce the amount of work for flipping the shell plate to facilitate the welding of every 

nozzle, hence effectively increase the productivity. However, this has to be evaluated to 

see whether there would be any major impact on the welding distortion.  

A FEA study was therefore conducted to compare the two options. Both cases are 

with rib-bar fixture and double bevel weld groove. The FEA simulation results are shown 

in Figure 5-2 for the first case and in Figure 5-7 for the second case. The comparison 

between the two cases is listed in Table 5-3, which reveals that about 36% more 

distortion will be developed by option II. This sounds somewhat in contradiction with the 

single nozzle welding FEA results introduced in Section 5.2.1. The main cause possibly 

has come from the interaction between the neighboring nozzles due to the small nozzle 

spacing. The completion of the shell ID side of the neighboring nozzles would have 

created significantly higher resistance to the welding deformation of the next nozzle so 
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that the overall distortion of option II turned out to be less than the overall distortion of 

option I. 

Table 5-3 Multi-nozzle Weld Distortion with Different Weld Pass Deposit Sequences 
 

Displacement 
Min (mm)

Displacement 
Max (mm)

Max Z Distortion 
(mm)

Distortion 
Ratio

Progressive Weld Sequence - I -20.9 1.4 22.3

Progressive Weld Sequence - II: 
welding shell ID side after 
completion of welding all nozzles 
from shell OD side 

-29.3 1 30.3 136%

With Fixture

 

 

Progressive Weld 
Sequence - II

Before removal of rib-
bar fixture

Max: 0.95
Min: -29.3

 

Figure 5-7 Multi-nozzle Weld Distortion – All OD Then All ID Welds 
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5.3 Single Nozzle Weld Mockup with Different Welding 

Directions  

When the nozzle is not normal to the 

shell surface, it would be expected that the 

welding direction of the weld pass will affect 

the final angular distortion of the nozzle. Two 

single nozzle mockups were hence designed to 

investigate the influence of the welding 

direction, 

1) All weld passes are welded in uphill direction 

2) Weld passes on shell OD side are welded in uphill direction, and weld passes 

on shell ID side in downhill direction. Refer to Figure 5-8 for the actual 

orientation of the mockups during welding. 

       

Figure 5-8 Mockup Orientations in Welding of Shell ID and OD Sides 

Welding 
Direction

Weld shell ID side Weld shell OD side 
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Both mockups are with modified double J groove and without fixture. Manual 

GTAW process was used in the tests. The shell ID side was welded first. Welding 

parameters are listed in Table 5-4. 

The mockup plate surface profiles were measured before and after welding. The 

results are shown in Figures 5-9 and 5-10. Welding distortions were summarized in Table 

5-5, which shows that the welding direction had very little influence on the out-of-plane 

plate distortions or the plate shrinkages, but did show some influence on the nozzle 

angular distortion. The second mockup (shell OD side welded uphill, ID side downhill) 

developed less nozzle angular distortion, likely because the shorter/upper side of the 

nozzle was in this case always welded later than the longer/lower side. In general, the 

welding direction is not an important factor in nozzle-to-shell welding except when the 

nozzle angle becomes a critical quality index. 

Table 5-4 Welding Parameters for Mockup Study on Welding Direction 
 

Weld Direction
# of Weld 
Passes

Heat Input 
(kJ/cm)

Travel Speed 
(cm/min)

Estimated Total Heat 
Input (Mega J)

Uphill 38 27.6 7.6 117.0
Shell OD side: uphill

Shell ID side: downhill 40 25.6 6.4 114.4  

  

Table 5-5 Single Nozzle Weld Distortion from Mockup Study on Welding Direction  
 

MAX Z 
Distortion 

(mm)

RMS Z 
Distortion 

(mm)

X Direction 
Shrinkage 

(mm)

Y Direction 
Shrinkage 

(mm)

Nozzle Angle 
Change (deg)

Uphill 17.68 5.33 4.95 0.66 4.7
Shell OD side: uphill

Shell ID side: downhill 17.30 5.26 4.52 0.56 3.9

Distortion Ratio
(Uphill / (OD uphill & ID downhill) 98% 99% 91% - 83%  
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Figure 5-9 Single Nozzle Weld Mockup Distortion – All Uphill 
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Shell Surface Profile - GTAW
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Shell Surface Profile - GTAW
(shell OD side uphill, shell ID side downhill)
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Figure 5-10 Single Nozzle Weld Mockup Distortion – OD Uphill ID Downhill 
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5.4 Summary 
 

FEA simulations and mockup tests were carried out on the influence of the 

following factors on the welding distortion of stainless steel nozzle-to-shell-can weld 

assemblies,  

1) Nozzle welding sequence in multi-nozzle welding 

2) Weld pass deposit sequence in both single and multi-nozzle welding 

3) Welding direction in single nozzle welding when the nozzle intersects into the 

shell plate with a nozzle angle of 45o. 

The FEA simulation results suggested that a progressive nozzle welding sequence 

would develop less welding distortion than a jumped sequence (Figure 5-1). Under the 

given structure and welding conditions, the welding distortion with progressive sequence 

was 22% less than the distortion with jumped sequence before the removal of the 

fixtures, and 12% less after the fixture removal. 

The impact of the weld pass deposit sequence on the nozzle welding distortion 

was found significant. The FEA results of single nozzle welding without fixture showed 

32% less distortion when the nozzle was welded from the shell OD side first as compared 

to the case when the nozzle welding was started from the shell ID side. When the nozzle 

welding started from the shell OD side, the distortion of single nozzle welding with 

contour fixture was 69% less as compared to the case when the nozzle welding was 

started from the shell ID side. For multi-nozzle welding under the given structure and 

welding conditions, the FEA simulation results suggested complete the welding of each 

nozzle, firstly on the shell OD side then on the shell ID side, then proceed to the next 

nozzle. However, the optimal weld pass deposit sequence for multi-nozzle welding may 
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change depending upon such as the nozzle spacing which would affect the interaction 

between the nozzles. 

The influence of the welding direction on nozzle welding distortion appeared 

insignificant in the single nozzle mockup tests, except on the nozzle angle when the 

nozzle is on a 45o slope on the shell plate. 
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Chapter 6 Effect of Welding Process on Nozzle 

Welding Distortion 

 

All the studies introduced in Chapters 4 (fixture) and 5 (welding sequence) are 

based on an assumption that the compared cases use the same welding process. The 

studies in this Chapter address the welding process aspect, involving the type of welding 

process, the weld bead size, and the cooling time or interpass temperature. Single nozzle 

weld mockups or FEA models were employed in these studies. 

6.1 Single Nozzle Mockups with Manual GTAW and SMAW 

Processes 

As the most common processes for stainless steel nozzle welding, the manual 

GTAW and SMAW processes were compared regarding their welding distortions. 

Mockup was made for each process, with nozzle angle at 45o and modified double J weld 

groove. No fixture was attached to the mockups. Uphill welding direction was chosen 

and the welding was done first on the shell ID side. Welding parameters are listed in 

Table 6-1. 

Table 6-1 Welding Parameters for Mockup Study on Welding Process 
 

Weld 
Process

# of Weld 
Passes

Heat Input 
(kJ/cm)

Travel Speed 
(cm/min)

Estimated Total 
Heat Input 
(Mega J)

GTAW 38 27.6 7.6 117.0
SMAW 26 19.7 8.4 57.2  
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The measured mockup plate surface profiles before and after welding are shown 

in Figures 4-2 (SMAW) and 5-8 (GTAW). Welding distortions were summarized in 

Table 6-2, which indicates that the distortion from SMAW process was only about 

65~70% of the distortion from manual GTAW. The ratio of Y Direction Shrinkage was 

not calculated because the difference between the two mockup cases is very minor. 

An outstanding observation from the welding parameters in Table 6-1 is that the 

manual GTAW process consumed much higher total energy than the SMAW process. 

This is because the total heat input of manual GTAW process heavily depends upon the 

skill of individual welders. The extra heat consumed by manual GTAW process would 

have been transferred into the base metal, thus causing more shell plate distortion. 

Skillful welder would be able to deposit more weld metal with given welding parameters, 

ending up with less total heat input, thus less weld distortion. This would be especially 

evident when facing difficult-to-weld applications such as the welding of nozzle on a 45o 

slope on a shell can. The welders of average skill had been chosen for the mockup 

welding. 

Another common observation from the mockup distortion data in Tables 4-2, 5-5 

and 6-2 is that the distortion ratios of MAX Z Distortion and RMS Z Distortion between 

the two cases in comparison are fairly close. In Table 6-2 the ratios are 65% for MAX Z 

Distortion and 71% for RMS Z Distortion. It could therefore be concluded that using 

MAX Z Distortion or RMS Z Distortion for the evaluation of the nozzle-to-shell welding 

distortion be equally effective. 
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Table 6-2 Mockup Welding Distortion – Different Welding Processes 
 

MAX Z 
Distortion 

(mm)

RMS Z 
Distortion 

(mm)

X Direction 
Shrinkage 

(mm)

Y Direction 
Shrinkage 

(mm)

Nozzle Angle 
Change (deg)

GTAW 17.68 5.33 4.95 0.66 4.7
SMAW 11.53 3.78 3.20 0.28 3.4

Distortion Ratio
(SMAW / GTAW) 65% 71% 65% - 72%  

6.2 Single Nozzle Mockups with Different Weld Bead Sizes 

A common practice for distortion control is to use small weld beads and apply 

low heat input [38,53,55]. This would work fine when it is possible to reduce the weld seam 

size. When facing a large weld seam of which the pre-determined weld groove has to be 

filled up, the smaller weld bead size would mean more weld passes. Some research data 

showed that, for multi-pass weld seam, larger weld bead resulted in less final distortion 

[4]. However, it is unknown whether this observation would be applicable to nozzle-to-

shell welding. Mockups were therefore designed to evaluate the impact of the weld bead 

size on stainless steel nozzle-to-shell welding distortion.  

• Welding conditions: nozzle axis normal to shell surface (Figure 6-1), 

modified double J groove, no fixture, manual GTAW process, shell ID 

side welded first 

• Welding parameters: see Table 6-3 

The measured mockup plate surface profiles are shown in Figures 6-2 and 6-3. 

Welding distortions were summarized in Table 6-4, which indicates that the distortions of 

the two cases were very close (0.36 ~ 0.51mm difference), with most of the values by 

large weld bead slightly higher. The two mockups have similar level of total heat input 

(Table 6-3). In summary, under the given joint configuration and welding condition, the 
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variation in weld bead size didn’t cause apparent impact on the stainless steel nozzle-to-

shell welding distortion. 

 

Figure 6-1 Mockup for Study on Effect of Weld Bead Size 
 

Table 6-3 Welding Parameters for Mockup Study on Weld Bead Size 
 

Weld Bead Size

# of Weld 
Passes

Heat Input 
(kJ/cm)

Travel Speed 
(cm/min)

Estimated 
Total Heat 

Input (Mega J)
Small 35 17.7 10.2 56.7
Large 26 26.8 10.2 53.9  

 

Table 6-4 Mockup Welding Distortion – Different Weld Bead Sizes 
 

MAX Z 
Distortion 

(mm)

RMS Z 
Distortion 

(mm)

X Direction 
Shrinkage 

(mm)

Y Direction 
Shrinkage 

(mm)
Small weld bead 10.06 4.19 1.42 0.18
Large weld bead 9.70 4.62 1.93 0.61
Distortion Ratio

(Large / Small bead) 96% 110% 136% 343%  
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Shell Surface Profile - GTAW Small Weld Bead
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Figure 6-2 Single Nozzle Weld Mockup Distortion – Small Weld Bead 
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Shell Surface Profile - GTAW Large Weld Bead
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Shell Surface Profile - GTAW Large Weld Bead
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Figure 6-3 Single Nozzle Weld Mockup Distortion – Large Weld Bead 
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6.3 Simulation of Single Nozzle Welding with Different Lump 

Pass Sizes 

The simulation study on the effect of the weld bead size on welding distortion was 

initiated with the intention for the application of high deposition rate processes, such as 

the use of large filler size, or even switching from GTAW or SMAW to SAW process. 

• Welding conditions: contour fixture, nozzle angle 45o, modified double J 

groove, shell ID side welded first 

• Welding heat input: the relevant FEA analyses were designed as such that, 

with different weld bead sizes, the heat flux will just be enough to melt the 

weld bead and its immediate adjacent base metals.  

The predicted shell plate distortions after fixture removal are shown in Figures 6-

4 to 6-7. A comparison of the distortions of the four FEA cases is listed in Table 6-5, 

which shows that generally speaking less welding distortion will be developed with larger 

weld beads. This agrees with the results of similar studies introduced in Ref [4]. The 

reasons why they appear a little conflicting with the mockup test results in Section 6.2 

might include, 

• The difference between the weld bead sizes of the FEA cases are larger than 

that in the mockups, therefore able to better reveal the influence of the weld 

bead size  

• The nozzle in the FEA analysis is on a 45o slope, which may magnify the 

impact of the weld bead size as compared to the case of the mockups where 

the nozzles were normal to the shell 

Nevertheless, the FEA simulation results suggest at least two things, 
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• Combined with the mockup results in Section 6.2, it could be concluded that 

large weld beads wouldn’t have unfavorable major impact on the welding 

distortion of the given weld joint configuration under the given welding 

conditions 

• Using large lumped passes in representation of an actually small-bead multi-

pass process could produce reasonably close distortion prediction. This is very 

important for the application of FEA technology on large weld structures 

having large quantity of welds, because otherwise the FEA model would 

become very complicated and the FEA analysis would be very time-

consuming, sometimes impossible. 

 
Table 6-5 Predicted Welding Distortions with Different Weld Bead Sizes 
 

After Fixture Removal
Number of Weld Passes 

(with contour fixture)
Displacement 

Min (mm)
Displacement 

Max (mm)
Max Z Distortion 

(mm)
Distortion 

Ratio
Weld passes: 17 on ID, 19 on OD -2.265 3.242 5.507
Weld passes: 6 on ID, 6 on OD -1.891 2.514 4.405 80%
Weld passes: 2 on ID, 2 on OD -2.076 2.96 5.036 91%
Weld passes: 1 on ID, 1 on OD -1.616 2.465 4.081 74%  
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Figure 6-4 Predicted Welding Distortion – 36 Weld Passes 

 

 
Figure 6-5 Predicted Welding Distortion – 12 Weld Passes 

 
 



Chapter 6  Effect of Welding Process on Nozzle Welding Distortion  
                     

85 

 
Figure 6-6 Predicted Welding Distortion – 4 Weld Passes 

 
 

 
Figure 6-7 Predicted Welding Distortion – 2 Weld Passes 
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6.4 Simulation of Single Nozzle Welding with Different Cooling 

Times 

The cooling time of each weld pass is another important factor that will affect the 

final welding distortion. This is related to the interpass temperature. Longer cooling time 

will result in a lower interpass temperature. Normally the low interpass temperature 

would help to reduce the welding distortion. The question is, for stainless steel nozzle-to-

shell welding with the given dimensions, to what an extent the cooling time would affect 

the distortion. FEA simulation was thus conducted under the following conditions, 

• Nozzle angle 45o, modified double J groove, with contour fixture 

• Shell ID side is welded first, 36 weld passes in total  

The predicted welding distortions (after removal of fixture) together with the 

history of the interpass temperature are shown in Figures 6-8 to 6-10. The interpass 

temperature has been taken from a node on the FEA model that is 18mm below the shell 

OD surface and 22mm away from the weld prep root nose. A comparison of the 

distortions of the three FEA cases is presented in Table 6-6, showing an apparent trend 

that shorter cooling time, i.e. higher interpass temperature, has resulted in slightly higher 

welding distortion. Nevertheless, the impact of cooling time or interpass temperature on 

shell plate distortion doesn’t seem to be high. 

Table 6-6 Predicted Welding Distortions with Different Cooling Times 
 

Cooling Time (sec)
Average Interpass 

(degC)
Total Weld 
Time (hrs)

MAX Z Distortion 
(mm)

Distortion Ratio

800~1000 100 9.4 5.507
600~800 125 7.5 5.618 102%
200~400 200 3.3 6.352 115%  
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Figure 6-8 Weld Distortion and Interpass Temperature - Long Cooling Time 

Cooling time: 
800~1000sec

Cooling time: 
800~1000sec
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Figure 6-9 Weld Distortion and Interpass Temperature - Mid Cooling Time 

Cooling time: 
600~800sec

Cooling time: 
600~800sec



Chapter 6  Effect of Welding Process on Nozzle Welding Distortion  
                     

89 

 

 

Figure 6-10 Weld Distortion and Interpass Temperature - Short Cooling Time 
 

Cooling time: 
200~400sec

Cooling time: 
200~400sec
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6.5 Summary 
 

The influence of welding process on the welding distortion of stainless steel 

nozzle-to-shell-can weld assemblies was investigated through mockup tests and finite 

element analyses of single nozzle welding, with variations in welding process type, weld 

bead size and cooling time. 

The mockups welded with manual GTAW and SMAW processes showed that the 

welding distortion produced with SMAW process was only about 2/3 of the distortion 

produced by manual GTAW. Manual GTAW is a low efficient process, with much heat 

being absorbed by the base metal resulting in large welding distortion. 

The influence of weld bead size on nozzle welding distortion was found 

insignificant in the mockup tests where the nozzles were normal to the shell plate surface 

and the size of the larger weld bead was about 35% bigger than the size of the smaller 

bead. While in the FEA simulations where the nozzles were on a 45o slope and the sizes 

of the larger weld beads were 3~18 times of the size of the smallest bead, a general trend 

of distortion decrease was observed along with the increase in weld bead size. It could be 

concluded that applying large weld bead wouldn’t have detrimental impact on the 

welding distortion of the nozzle-to-shell weld assembly. The FEA results also support 

that using very large lumped weld pass to simulate an actual multi-pass welding 

application wouldn’t cause too much difference in the predicted welding distortion. In the 

FEA cases studied, the predicted distortion with two very large lumped passes was 74% 

of the predicted distortion with 36 small lumped passes. But the saving in FEA 

computing time was very significant. 
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The FEA simulations of single nozzle welding with different cooling times 

demonstrated the influence on the welding distortion. The corresponding inter-pass 

temperatures varied from about 100oC when with long cooling time to about 200oC when 

with short cooling time. The FEA case with 200oC inter-pass temperature resulted in 15% 

more distortion than the case with 100oC inter-pass temperature. 
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Chapter 7 Welding Distortion in Multi-nozzle Weld 

Mockup 

 

7.1 Introduction 

The main purpose of carrying out a multi-nozzle weld mockup test was to find out 

the actual level of the welding distortions under typical welding conditions. As 

introduced in Section 3.2.2, the multi-nozzle mockup test was performed in two stages. In 

the first stage, the nozzle at the shell plate center was welded without fixture (Figure 7-1 

(a)). Manual GTAW process and J groove were used for the center nozzle welding. This 

represents a condition where a high level of welding distortion would be developed. In 

the second stage, a rib-bar fixture (Figure 3-2) was attached to the shell plate and 10 

nozzles were welded around the center nozzle using double bevel groove design. SMAW 

was employed as the main welding process except for root pass where manual GTAW 

method was used. All the nozzles were welded firstly from the shell OD side (Figure 7-1 

(b)) following progressive welding sequence shown in Figure 3-6. Then the shell plate 

was flipped over to weld all the nozzles on the shell ID side following the same welding 

sequence. Refer to Section 3.4.2 for specific welding procedure details. Stage 2 

represents the most common production condition. 

7.2 Distortion after Welding of Center Nozzle without Fixture 

A series of punch marks were created on the shell plate surface as shown in 

Figure 7-2, to facilitate the surface profile measurement with FARO-ARM device. The 
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shell plate surface was measured before and after the welding of the center nozzle. The Z 

direction welding distortions along X and Y axes were plotted in Figure 7-3. Based on the 

measurement data, the Max Z Distortion was found to be 16.8mm. 

 

      

 (a) Completion of Stage 1    (b) Stage 2 Welding on Shell OD Side 

Figure 7-1 Welding of Multi-nozzle Weld Mockup 
 
 

X

Y

 
 

Figure 7-2 Shell Surface Measurement Map 
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Welding Distortion Caused by Center Nozzle without Fixture
(Along Y Axis)
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Figure 7-3 Distortion after Welding of Center Nozzle without Fixture 
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7.3 Distortion after Welding of Multiple Nozzles with Fixture 

The shell OD side of the nozzle-to-shell weld assembly was scanned with laser 

scan device Handyscan 3DTM EXAscan before and after the welding of nozzles #2~#11 

(Figure 7-4). A series of data at locations shown in Figure 7-4 were extracted from the 

shell surface 3D model established after the laser scan, based on which Figures 7-5, 7-6 

and 7-7 were obtained. 

The Z direction displacement data of the shell surface (Figure 7-5) revealed a 

Max Z Distortion of 16.4mm. The maximum distortion occurred around nozzles #4 and 

#5 (the dark blue areas in Figure 7-4) which were least constrained by the fixture and the 

nozzle-shell structure around them. Comparing Figure 7-4 with the FEA result in Figure 

5-7 a high similarity could be found. Both cases took the same welding sequence. 

The maximum plate shrinkage, about 6mm, took place in Y axis direction around 

the plate center (Figure 7-7) for which the major reasons may include, 

• More nozzles were welded along Y direction 

• Naturally the distortion in Y direction is easier because of the shell curvature 

• Low constraint from the fixture and the shell plate itself 

Regarding the plate shrinkage in X direction (shell can axial direction), no clear 

trend can be found from Figure 7-6. This would be likely because the shrinkage was too 

small to be effectively detected by the measurement device employed. It suggests that, 

under the given mockup configuration, the shrinkage in shell can axial direction was 

negligible. 
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Figure 7-4 Welding Distortion Data Matrix of Multi-nozzle Weld Mockup 
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Distortion in Z Direction - Multi-nozzle Weld Mockup with Fixture
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Distortion in Z Direction - Multi-nozzle Weld Mockup with Fixture
(Data points along Y)
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Figure 7-5 Distortion in Z Direction - Multi-nozzle Weld Mockup with Fixture 
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Figure 7-6 Distortion in X Direction - Multi-nozzle Weld Mockup with Fixture 
 

Distortion in Y Direction - Multi-nozzle Weld Mockup with Fixture
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Figure 7-7 Distortion in Y Direction - Multi-nozzle Weld Mockup with Fixture 
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7.4 Summary 

Large scale multi-nozzle weld mockup tests were designed to investigate the 

possible level of welding distortion under typical conditions of stainless steel nozzle-to-

shell welding applications. The mockup tests were conducted in two stages, focusing 

firstly on the worst case scenario (no fixture, manual GTAW process, J groove) then the 

most common welding practice (rib-bar fixture, mainly SMAW process, double bevel 

groove, completing all nozzle welding from the shell OD side then proceeding to the 

shell ID side). 

The welding (without fixture) of the center nozzle on the mockup plate produced 

a Max Z Distortion of 16.8mm, which would not be tolerable for most of the pressure 

vessel applications. Solutions have to be worked out to restrict the stainless steel nozzle 

welding distortion. 

The multi-nozzle welding test under the most common welding conditions 

described above demonstrated a much better performance in terms of distortion control. 

After the welding of 10 nozzles, a Max Z Distortion of 16.4mm was developed, even less 

than the distortion of the first stage where only one nozzle was welded. The maximum 

plate surface shrinkage of 6mm was found in the direction across the shell can axis. No 

apparent shrinkage was found in the shell axis direction. The test results confirmed that 

the fixture design, the welding procedure, and the weld groove design of the second stage 

mockup test was effective in reducing the stainless steel nozzle welding distortion. 
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Chapter 8 Conclusions 

 

Systematic studies were carried out through experiments and finite element 

analyses on the distortions developed in stainless steel nozzle-to-shell-can welding. The 

influences of welding fixture, welding sequence and welding process on the welding 

distortion were investigated in a comparative approach. Large nozzle-to-shell welding 

mockup was made under typical welding conditions to evaluate the actual level of the 

welding distortion. Major conclusions from these studies are as follows, 

1. The contour fixture introduced in the thesis could effectively reduce the shell 

plate distortion. The results from single nozzle mockup tests and FEA (finite 

element analysis) simulations showed that the welding distortion was reduced by 

about 40% when the contour fixture was used. It was confirmed that the FEA 

models and techniques were effective for comparative study as well as for 

prediction of the nozzle welding distortion. 

2. The comparison of different fixture designs suggests that, after the fixture 

removal, the contour fixtures would leave much less distortion than the 

conventional rib-bar fixture. The contour fixture will restrict the welding 

distortion to local area, resulting in less impact on the global distortion of a large 

weld structure. When rib-bar fixture is selected, it should be kept in place until all 

subassemblies are welded together, otherwise the shell pate of the welded 

subassembly would spring back to create significantly larger distortion. 
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3. Under the given shell-nozzle structure configuration, the nozzles shall be 

progressively welded onto the shell, starting from one nozzle then proceeding to 

its immediate neighboring nozzles. 

4. For single nozzle welding with double-J groove, about 30~70% less distortion 

would be developed when the shell OD (outside diameter) side is welded first. 

From the distortion control point of view, the multi-nozzle welding under the 

conditions given in the thesis shall proceed one nozzle by one nozzle, each from 

shell OD side to ID (inside diameter) side, rather than finishing the shell OD side 

of all nozzles then proceeding to their ID side. 

5. The influence of the welding direction of each weld pass on the shell distortion 

didn’t appear to be significant, except when the nozzle angular distortion is 

concerned. 

6. The distortion caused by SMAW (shielded metal arc welding) process was much 

less than the manual GTAW (gas tungsten arc welding) process, about 2/3 under 

the test conditions in the thesis. 

7. The influence of the weld bead size on the shell distortion didn’t seam to be 

significant under the given nozzle weld joint configuration and welding condition. 

This suggests that using larger filler size or higher power welding process 

wouldn’t create unfavorable consequence in terms of welding distortion. 

8. For FEA simulation of large weld structures, using a lumped pass much larger 

than the actual weld bead size would effectively reduce the computation time, 

with reduced level of the estimated distortion. The extreme case in the studies 

showed a reduction in distortion by 26%. 
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9. The cooling time after welding, or the inter-pass temperature, will slightly affect 

the shell plate distortion. 

10. The multi-nozzle weld mockup with rib-bar fixture demonstrated a maximum out-

of-plane distortion of 16.4mm after the welding of 10 nozzles by GTAW (for root 

pass) plus SMAW processes. This was about the same level when GTA welding 

only one nozzle to the center of the same shell plate with J-groove and without 

fixture. However, additional measures would be required to further reduce the 

welding distortion. 
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