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Abstract

The growing need for designing and implementing reliable voice-based

human-machine interfaces has inspired intensive research work in the

field of voice-enabled systems, and greater robustness and reliability

are being sought for those systems. Speech recognition has become

ubiquitous. Automated call centers, smart phones, dictation and tran-

scription software are among the many systems currently being de-

signed and involving speech recognition. The need for highly accurate

and optimized recognizers has never been more crucial. The research

community is very actively involved in developing powerful techniques

to combine the existing feature extraction methods for a better and

more reliable information capture from the analog signal, as well as

enhancing the language and acoustic modeling procedures to better

adapt for unseen or distorted speech signal patterns. Most researchers

agree that one of the most promising approaches for the problem of

reducing the Word Error Rate (WER) in large vocabulary speech

transcription, is to combine two or more speech recognizers and then

generate a new output, in the expectation that it provides a lower error

rate. The research work proposed here aims at enhancing and boost-

ing even further the performance of the well-known Recognizer Out-

put Voting Error Reduction (ROVER) combination technique. This

is done through its integration with an error filtering approach. The

proposed system is referred to as cROVER, for context-augmented

ROVER. The principal idea is to flag erroneous words following the

combination of the word transition networks through a scanning pro-

cess at each slot of the resulting network. This step aims at eliminat-

ing some transcription errors and thus facilitating the voting process
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within ROVER. The error detection technique consists of spotting

semantic outliers in a given decoder’s transcription output. Due to

the fact that most error detection techniques suffer from a high false

positive rate, we propose to combine the error filtering techniques

to compensate for the poor performance of each of the individual

error classifiers. Experimental results, have shown that the proposed

cROVER approach is able to reduce the relative WER by almost 10%

through adequate combination of speech decoders. The approaches

proposed here are generic enough to be used by any number of speech

decoders and with any type of error filtering technique. A novel voting

mechanism has also been proposed. The new confidence-based voting

scheme has been inspired from the cROVER approach. The main idea

consists of using the confidence scores collected from the contextual

analysis, during the scoring of each word in the transition network.

The new voting scheme outperformed ROVER’s original voting, by

up to 16% in terms of relative WER reduction.
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Chapter 1

Introduction

1.1 Background and Motivation

During the past two decades, the automatic speech recognition technology has

evolved to the point where a large number of speech-enabled commercial ap-

plications are now widely deployed and are becoming increasingly robust and

accurate[2]. Speech recognition has become ubiquitous: applications ranging

from systems for name-dialing[3, 4, 5], travel reservations[6, 7], automated direc-

tory assistance[8], dictation[9, 10], smart phones[11, 12, 13], Global Positioning

System navigation, in-car infotainment systems[14, 15], meetings, podcasts, and

broadcast news transcription[16, 17, 18], to name a few. Novel speech recognition

applications are being developed at an increasing pace, especially motivated by

the recent boom in mobile personal devices. The fact that these systems are

working very satisfactorily for millions of people on a daily basis, is a testimony

to the technological advances made in the field of automatic speech recognition

to date.

However, even though the current technology seems to have matured, the prob-

lem of Large Vocabulary Continuous Speech Recognition (LVCSR) is far from

being completely resolved. LVCSR relates to all aspects of speech recognition

in the domain of spontaneous, human-human conversational speech (as opposed

to planned, read, or human-machine dialog). In the field of LVCSR, the voice-

enabled systems can fail for several reasons: channel distortion caused by back-

ground noise, or corruption of the transmission channels, accented speech, varia-
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1.2 Objectives

tion of the speaking style, speech overlapping, poor signal quality, ill-structured

sentences, spontaneous and casual speech, etc. The need for highly accurate and

optimized speech decoders has never been more crucial. The research community

is actively involved in developing powerful techniques and solutions to resolve

the high error rate in LVCSR. These solutions include the combination of the

existing feature extraction techniques towards a more reliable information cap-

ture from the analog signal[19, 20, 21], hierarchical language modeling through

the use of several dedicated and domain-specific grammars[22, 23], and acoustic

models adaptation[24], among others. Currently most researchers agree that one

of the most promising directions towards reducing the Word Error Rate (WER)

in LVCSR applications is through a combination of decoder outputs. The idea is

to compile two or more speech recognizers’ outputs into a composite new tran-

script, in the hope that this yields a lower error rate. One of the earliest successful

attempts dates back to 1997, when Jonathan Fiscus, from the National Institute

of Standards and Technology (NIST), proposed the NIST Recognizer Output

Voting Error Reduction (ROVER) system[25]. Because of its simplicity and its

outstanding performance, ROVER is considered in the literature as the baseline

technique in decoder combination. All the research work that followed in this

field, compared every new proposed technique to ROVER’s performance. Quite

a bit of work and enhancement has been done around the original ROVER sys-

tem. However, after a while, it appears that ROVER performance has reached a

plateau and it has become quite difficult to achieve a substantial WER reduction.

Our main goal in this research work is to produce an even more powerful approach

with the aim of enhancing and improving the original ROVER performance by

producing the lowest possible WER.

1.2 Objectives

The following objectives have been targeted for the research reported in this

thesis:

Objective 1 A novel framework to improve on the performance of the original

ROVER system. The framework is generic in terms of recognizers, and is

2



1.3 Contributions

application domain independent.

Objective 2 Scalable framework in terms of the number of decoders to be com-

bined together.

Objective 3 Implementation and assessment of the proposed framework against

existing approaches.

Objective 4 A novel voting scheme for the ROVER procedure

1.3 Contributions

The thesis makes several contributions while meeting the objectives stated in

Section 1.2.

• This thesis proposes a novel approach to improve the ROVER procedure.

The ROVER procedure consists of two main processes. First, the output

from different speech decoders are combined together into a network of

tokens. Second, a voting algorithm browses the composite network to select

the winner token at each location. Our proposed approach is to implement

a contextual analysis procedure right after the first process of building the

composite network. This analysis aims at filtering transcription errors from

the different speech decoders in order to facilitate the voting stage. The

proposed approach is called cROVER, where c stands for context.

• The proposed approach is generic and does not make use of any internal

information about the speech decoders. Similarly to ROVER, the newly

designed combination procedure is independent of the speech domain and

application.

• The cROVER approach is as scalable as the original ROVER procedure. In

fact, the proposed approach did not alter the inner mechanism of ROVER,

allowing it to keep the same characteristics.

• Three aggregation schemes were proposed to combine several automatic

error detection techniques.

3



1.4 Organization

• A novel scoring scheme has been proposed. The confidence-based voting

mechanism relies on confidence scores collected during the contextual anal-

ysis. The new scoring technique is a weighted combination of the original

ROVER’s score and the confidences from the contextual analysis of the

transcription output.

1.4 Organization

The rest of the thesis is organized as follows:

Chapter 2 provides some background material on automatic speech recognition

and a review of literature on the speech decoders’ combination in large

vocabulary transcription applications. The chapter also provides a review

of the automatic error detection techniques.

Chapter 3 describes our proposed approach to improve the original ROVER

system. The chapter starts by detailing the rationale behind the proposed

approach. It then describes the proposed context-augmented ROVER,

cROVER. A case study illustrating the approach is then provided. The

chapter concludes with a description of a novel voting scheme for ROVER.

Chapter 4 presents a set of experiments to validate the performance of the pro-

posed cROVER approach. First the experimental framework is presented,

followed by the assessment of the error filtering techniques used in the case

study presented in the previous chapter. The approach is then validated

on two test sets. An analysis of the computational requirements of the

proposed approach is then presented. The chapter concludes with an as-

sessment of the novel voting scheme for ROVER.

Chapter 5 concludes this thesis with a summary of the work presented along

with the future direction of research.

Appendices A, B, C, and D provide the numerical values of the error rates

in terms of the relative and absolute reduction, for the cROVER approach

and the new voting scheme.

4



1.5 Conclusion

1.5 Conclusion

This chapter has discussed the motivation and specified the objectives of this the-

sis. It has highlighted the impact of the recent advances in the automatic speech

recognition, in terms of the successful deployment of commercially robust and

reliable speech-enabled applications. The chapter also identified a set of research

issues involved in LVCSR. The objectives as well as the contributions made in

this research work were summarized.

The next chapter provides a survey of the literature pertinent to this work. It

specifically highlights related research work on speech decoder combination, and

automatic error detection in LVCSR systems.
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Chapter 2

Literature Review

In this chapter, we start with a brief description of automatic speech recognition

technology, followed by the current performance of LVCSR in different applica-

tions, namely read, broadcast, meeting, and conversational speech. The latest

advances in decoders’ combination and automatic error detection are detailed in

the remainder of the chapter.

2.1 Automatic Speech Recognition Fundamen-

tals

In this section, a broad description of automatic speech recognition major com-

ponents is presented.

2.1.1 Speech Recognition: How Does It Work?

In very general terms, speech recognition produces the text of an uttered sen-

tence from the continuous acoustic signal of a speaker. In a nutshell, the typical

process of speech recognition can be divided into several stages, as shown in Fig-

ure 2.1. The front end of the speech recognizer is a module that transforms the

speech waveform into a sequence of discrete observations, called feature vectors.

These acoustic features are obtained in such a way as to preserve all the rele-

vant information from the original signal. The next step is the transformation

of these acoustic features into a time-sequenced lattice of phones. An important

6



2.1 Automatic Speech Recognition Fundamentals

Speech
Signal

Processing

Phonetic

Recognition

Word

Recognition

Acoustic

Models

Lexicon

Language
Model

Text

Feature vectors

Phone lattice

Figure 2.1: Bottom Up Approach For Speech Recognition

knowledge source is needed at this stage, namely the acoustic model. This is a

statistical representation of the sounds which make up each word. The speech

recognizer relies on this model to be able to transform the feature vectors into

phonemes. Now that we have a lattice of phones in hand, the process of re-

constructing the uttered words begins. As in the previous step, some additional

sources of knowledge are needed. The lexicon is a set of words transcribed into

their phonetic forms. The language model, or grammar in the case of isolated

word recognition, is a key component. A grammar is a set of word patterns used

to guide the recognizer as to what to expect from the speaker. By using the

lexicon and the language model, the word recognition module walks through the

phone lattice and constructs words. A more detailed description of both acoustic

modeling and language modeling follows.

2.1.2 Acoustic Modeling

Acoustic Modeling (AM) of speech typically refers to the process of establish-

ing statistical representations for the feature vector sequences computed from

7



2.1 Automatic Speech Recognition Fundamentals

the speech waveform. Several techniques are commonly used for this. The Hid-

den Markov Model (HMM)[26] is one of the most common types of acoustic

model. Other acoustic models include segmental models, suprasegmental models

(including hidden dynamic models), neural networks, maximum entropy models,

(hidden) conditional random fields, etc.

Acoustic modeling also encompasses “pronunciation modeling”, which describes

how a sequence or multi-sequences of fundamental speech units (such as phones

or phonetic features) are used to represent larger speech units such as words or

phrases, which are the object of speech recognition. Acoustic modeling may also

include the use of feedback information from the recognizer to reshape the feature

vectors of speech in order to achieve robust performance in noisy speech recogni-

tion problems[27].

Acoustic modeling is arguably the central part of any speech recognition system.

For any given acoustic observation X = X1X2 . . . Xn, the goal of speech recog-

nition is to find out the corresponding word sequence Ŵ = w1w2 . . . wn that has

the maximum posterior probability P (W |X) as expressed by Equation 2.1:

Ŵ = argw maxP (W |X) = argw max
P (W )P (X|W )

P (X)
(2.1)

Since the maximization of Equation 2.1 is carried out with the observation X

fixed, the above maximization is equivalent to maximization of the following

equation:

Ŵ = argw maxP (W )P (X|W ) (2.2)

The practical challenge is how to build an accurate acoustic model, P (X|W ),

which can truly reflect the spoken language to be recognized.

2.1.3 Language Modeling

A language Model (LM) gives the probabilities of sequences of words. Language

models are often used for dictation applications. A special type of language model

is a regular grammar, which is used typically in desktop command and control

or telephony IVR-type applications. The language model provides a description

8



2.2 Current LVCSR Performance

of the language. It is also a way to compute the P (W ) in Equation 2.1. Assume

W = w1 . . . wk. Then P (W ) can be computed by Equation 2.3:

P (W ) = P (w1 . . . wk) = P (w1)P (w2|w1) . . . P (wk|w1 . . . wk−1) (2.3)

Estimating P (wl|w1 . . . wl−1) for all the possible words and sentences in a given

language is practically impossible. One approach to reducing this difficulty would

be to approximate P (wl|w1 . . . wl−1) by P (wl|wl−K+1 . . . wl−1) for a fixed value of

K. This means that we only care about the K previous tokens. This type

of language model is commonly called a K-gram language model, where K is

generally either 2, 3 or 4. These probabilities are estimated during the training

of the language model, which requires a large set of text data.

2.2 Current LVCSR Performance

The need for designing and developing highly robust, accurate, and efficient

speech decoders is critical to the widespread adoption of a large number of

commercial applications. These applications include, among others, automated

call centers, broadcast news transcription, voice-activated car accessories, large-

vocabulary voice-activated cell phone dialing, and navigation. The current ad-

vances in LVCSR have ensured a big deployment of these commercial applications.

The fact that these services are being used on a daily basis by millions of people

throughout the world is a testimony that the current state of the art in speech

recognition has reached a high degree of maturity.

Figure 2.2 reports the NIST Speech To Text (STT) benchmark test history for all

NIST standard test frameworks in LVCSR, including read, conversational, and

meeting speech[28]. The benchmark test history begins from the early nineties up

to 2009. WER is reported for each standard test framework through the years,

illustrating the advances in the field and therefore the impact on the WER reduc-

tion. Impressive achievements can be seen in the read speech type of applications,

where the current WER is within the same range as human error in transcription.

However, for conversational, broadcast, and meeting speech, the error rates are

still far from the human range. This can be explained by the fact that several
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2.3 Decoders’ Combination for LVCSR

problems in LVCSR are still not resolved. These problems include channel dis-

tortion caused by background noise, or corruption of the transmission channels,

large variety of accents, variations in speaking style, speech overlapping, poor sig-

nal quality, badly structured sentences, spontaneous speech, etc[29]. Researchers

are actively working on tackling these issues at different levels, namely the front

end signal processing, the acoustic and language modeling, and the search mecha-

nism. Researchers are also actively investigating several post-decoding strategies

to improve and tune the final systems’ output. These strategies include system

combinations, as well as automatic error detection and correction. Since the scope

of our work lies in this field, a detailed review of these post-decoding techniques

is presented in Sections 2.3 and 2.4, where a review of the recent advances in

systems’ combination and automatic error detection is presented.

2.3 Decoders’ Combination for LVCSR

In recent years, it has become common practice to reduce WER by combining the

outputs from several recognition sites[30]. This section is meant to be a survey of

the latest techniques in the field of system combination toward improving recog-

nition performance in LVCSR, where the most significant work and development

witnessed in the last two decades is presented.

2.3.1 The ROVER System

Recognizer Output Voting Error Reduction, also known as ROVER [25], is a sys-

tem developed at NIST in 1997 to produce a composite of decoders’ output when

the outputs of multiple ASR systems are available. The goal of the combination is

to produce a lower error rate in the final composite output. This is done through

a voting mechanism to select the winner word from among the different decoders’

output. The voting schemes relied on the frequency of occurrence as well as on

the decoders’ confidence scores. ROVER is considered in the literature to be the

baseline technique in system combination. All the research work that follows it

has evaluated the new proposed technique and compared it to the performance

of ROVER.
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The proposed ROVER technique in [25] has been evaluated on the LVCSR HUB-

5E of 1997 testing paradigm[31]. Up to 5 ASR outputs have been combined, and

the three voting schemes yielded similar WER reductions (the slight difference

between the voting algorithms was judged to be insignificant) for the chosen eval-

uation corpus.

ROVER’s Shortcomings

Even though the improvement in terms of WER, obtained by using the ROVER

technique can be considered outstanding throughout the literature, a few prob-

lems still need to be investigated. In fact, the ROVER scoring approach can only

succeed if and only if the errors produced by each ASR system are different from

one system to the other. Otherwise, the combination will yield the same WER

since there is no point in voting between erroneous outputs at each location. The

ASR systems to be combined must output different errors, at each position, from

each other. Therefore, a careful selection of the different systems to combine is

critical to ensure a rich selection for the voting algorithms at each slot in the

Word Transition Network (WTN).

It is also worth mentioning that the iterative combination of word transition net-

works does not guarantee the optimal composite output. In fact, the order of

combination is important and affects the end result. It is thus worth looking for

techniques to optimize the building of the composite word transition network. In

[32], it has been reported that the best results are obtained when systems are

ordered by increasing WER. This observation is empirical though, and has been

observed after exhaustive experimentation.

The fact that ROVER relies on word level confidence values in the voting pro-

cess, makes it a vulnerable technique. In fact, it is not safe to assume that the

word level confidences are reliable. Much research is still underway into trying

to come up with a robust and effective technique to provide a decent confidence

measure for LVCSR. Even in [25], neither algorithm that relies on a confidence

score achieved a significant error reduction compared to the frequency-based vot-

ing algorithm.

Another limitation of the original ROVER is the usage of only 1-Best word se-

quence. Even if each participating ASR system is providing N -Best output,

12



2.3 Decoders’ Combination for LVCSR

ROVER is unable to make use of this information due to the inherent nature of

its combination process.

Finally, ROVER is unable to outvote the erroneous ASR systems when only one

single ASR is providing the correct output. The proposed scoring schemes make

it difficult to boost a single ASR output since both occurrence and confidence are

used to score each word at a specific location.

2.3.2 The After-ROVER Era

Most HMM-based speech recognition systems use the sentence level Maximum

A-Posteriori (MAP) criterion to select the best word sequence. However, this

criterion is only optimal if we want to minimize the Sentence Error Rate (SER),

whereas the actual goal in speech recognition development is usually to reduce

the word error rate. The general framework [33] for a minimum WER decoder

can be provided through Bayes decision rule with a Levenshtein cost function L

as shown by Equation 2.4.

{wN
1 }opt = argmin

wN
1

{∑
vM1

L(wN
1 , v

M
1 )p(vM1 |xT1 )

}
(2.4)

with a word sequence wN
1 and the posterior probability p(vM1 |xT1 ) for word se-

quence vM1 given the acoustic observation xT1 . The Levenshtein distance measures

the amount of difference between the two sequences of strings. Judging from

Equation 2.4, it is basically impossible to apply this framework for large vocab-

ulary continuous speech recognition systems due to the large search space. The

Confusion Network (CN) and minimum Time Frame Error (fWER) decoder are

two approaches using different approximations in order to achieve the minimiza-

tion of word error rate on word lattices[33, 34]. Both approaches have achieved

relative improvements of up to 5% in terms of WER[32].

CN and fWER constitute the roots of two of the (after-ROVER) most com-

mon approaches to system combination, namely Confusion Network Combination

(CNC) and fWER-based combination. Most of the research work in the area of

system combination focused on either improving ROVER, or providing different

variants of either CNC or fWER-based combination techniques. What follows is

a review of the most important work in this direction.
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2.3.3 Confusion Network Combination

A confusion network[34] is a very compact representation of the most likely word

hypotheses in the lattice generated by the Viterbi algorithm. It is a directed graph

where all the outgoing arcs of a given node have the same target node. The pro-

cess to convert a word lattice into a confusion network is two-staged. First, all the

links that correspond to the same word and overlap in time are combined and the

word graph is updated accordingly. Second, the remaining links corresponding

to different words are grouped in confusion sets. The order of grouping is ruled

by the phonetic similarity, the time overlap and the posteriors of the words[35].

For each word, the posterior is the weighted average of the individual slot-wise

posteriors. This procedure is repeated till the lattice structure becomes linear,

and thus the confusion network is obtained. In CN decoding, the words with the

highest posteriors are selected as winners.

The main idea of confusion network combination is to align multiple confusion

networks which have been built from the individual lattices. This combination

results in a new confusion network with updated word posteriors at each slot.

The fact that CNC is converting the word lattices into a linear confusion network

makes it suitable to take into account alternative hypotheses (NBest), which rep-

resented one of the main limitations in the original ROVER. Other advantages

of using CNC include the availability of word-posterior probabilities, and the

inherent lower WER because of the usage of CN - which as we have described

earlier, is a technique to optimize WER rather than SER. Besides, at each slot

in the confusion network, there are many more hypotheses than with ROVER.

Combination will then lead to a much lower oracle WER[36].

Even though the CNC seems to be addressing some of the limitations of the orig-

inal ROVER, the experimental results that we have found in the literature were

rather disappointing. In [35], experimental results were presented based on the

CU-HTK conversational telephone speech evaluation system. The improvement

over the single best compared to ROVER is very small, even negligible. In [33],

the experimental results were conducted on the European Parliament Plenary

Sessions (EPPS) of 2005 for both English and Spanish. However, the improve-

ment of system combination using CNC is not substantial compared to ROVER-
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2.3 Decoders’ Combination for LVCSR

and fWER-based system combination. In [32], extensive experiments have been

carried out to compare CNC, ROVER, and fWER, using the EPPS 2006 En-

glish corpus. It has been found that when more than two participating sites are

involved in the combination, ROVER tends to achieve better performance. How-

ever, when only two outputs are combined, CNC achieves a lower WER compared

to the original ROVER. But as in earlier research work, the improvement is little.

The authors in [32] highlighted a very important feature of ROVER, which is the

ability to provide robust combination with more than two ASR system outputs.

Based on these observations, it appears that it is quite difficult to achieve signif-

icant improvement using confusion network combination. We think that this is

due to the fact that CN decoding is already optimizing WER, therefore a combi-

nation based on this type of decoding is unlikely to produce a substantial boost,

as each of the ASR systems is already providing near optimal output.

2.3.4 fWER-based Combination

Minimum frame WER decoding is another approximation of Equation 2.4 to

achieve the minimization of word error rate in speech decoding. Confusion net-

works achieve this goal by changing the structure of the initial word lattice and

collapse it into a linear graph where the search space is reduced and computation

time is limited. However, the fWER decoding approach aims at changing the

computationally expensive Levenshtein distance L in Equation 2.4 by another

cheaper cost based on the covered time frames[37]. The authors in [37] have

proved that the fWER decoding leads to a minimization of WER.

One of the main advantages of this new cost function is that there is no need for

word sequences alignment, which makes it computationally cheap. The fWER

decoding approach preserves the lattice structure and the word boundaries, com-

pared to CN, which collapses the lattice structure to a linear network. This saves

a post-processing stage to produce the word time boundaries.

fWER decoding can be easily extended from a single word lattice to multiple

word lattices output from several ASR systems. The idea to use fWER decod-

ing to perform system combination is similar to the one that used CN for CNC.

The fWER based combination was first proposed in [33]. Experiments have been
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carried out on the EPPS 2005 Spanish and English corpora. Even though the

proposed approach seemed to be well formulated, it did not provide substantial

improvements compared to both ROVER and CNC. The authors claimed that

this might be due to the fact that all the combined systems were internal, and

thus not different enough from each other. In other words, most of the recognition

errors were common among all the combined systems, and therefore it was diffi-

cult to obtain a significant reduction in WER after combination using ROVER,

or CNC, or a fWER-based technique.

In [32], a thorough comparison of the three combination techniques has been at-

tempted as described earlier. A fWER based technique didn’t achieve reliably

superior performance compared to both ROVER and CNC. Experiments showed

the same level of performance as CNC. Both CNC and fWER failed to outper-

form ROVER when more than two Automatic Speech Recognition (ASR) systems

outputs were combined.

2.3.5 Soft Computing Towards Enhancing ROVER and

CNC

Since 2006 a new trend in research has emerged, aimed at enhancing the existing

system combination techniques using tools of supervised learning. In this section,

we report briefly on some of these efforts. The first attempt led by Zhang in [38]

proposed an enhancement to the original simplistic voting mechanism in ROVER,

using neural networks-based classifiers. The proposed scoring algorithm is a two-

stage process. First, a trained neural network attempts to determine whether the

current node in the word transition network is an insertion error. When the cur-

rent node is classified as a non-insertion, each word is scored based on a variety of

features that are extracted from multiple information sources. The word that gets

the highest score is chosen as the decoding result. To train the neural network,

the authors in [38] have used several features, including the average frequency

of occurrence of real words and filler model, the language model back-off mode,

the utterance level posterior, etc. This proposed technique has been evaluated on

the continuous speech recognition task in a meeting environment using the ICSI

Bro series of meetings. It has been shown that this enhanced ROVER scoring
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mechanism boosts the performance by a reduction in WER of 2.18%.

In [39], the authors proposed a similar approach to boost ROVER-based combina-

tion. They called the new system iROVER, for improved ROVER. The authors

used the Boostexter classifier trained on a set of features from the ASR system

lattices, in order to select the ASR system most likely to be correct at each loca-

tion in the word transition network. Six features were used to train the classifier

to pick up the correct word at each location. These features include character

length, frame duration, frames per character, top error words in the development

set, character distance between systems, etc. This team of researchers evaluated

iROVER on the EPPS 2006 English corpus. The improvement compared to the

original ROVER on this corpus was the largest known by 2007.

Exhaustive experiments were carried out in [36] to prove that using supervised

learning tools can indeed improve ROVER and CNC-based system combination.

The idea is to train a classification technique at each location, to decide which

of the provided alternatives is most likely correct. Three different classifiers were

used, namely Boostexter, random forests, and maximum entropy models. Several

feature sets were attempted as well. For each word hypothesis, a set of features

are computed including acoustic and language model scores, word duration, and

whether the word is in a list of the ten, twenty or one hundred words causing

the most errors. For the CNC, the features used to train the classifiers included

CN confidence, CN slot entropy and confidences based on frame wise posterior

probabilities across all systems. Experiments were carried out on the EPPS 2007

English corpus. The results of combination of up to four lattice sets were pre-

sented. It was shown that improvement over highly optimized ROVER and CNC

baselines is rather small, and the authors raised an important question, which is

whether or not the limit of improving combination with classification has been

already reached.

Based on the previous review of some of the efforts towards reducing WER by

systems combination, we can conclude that quite a bit of research work still can

be done. We have noticed that it is more and more difficult to outperform the

improved ROVER and the highly optimized confusion network and fWER-based

combination techniques. This situation led the authors in [36] to think that cur-

rent approaches have reached a plateau and are unable to achieve any substantial
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improvement. However, we don’t think that this is totally true. In fact, only a

limited number of classification techniques has been investigated. There are sev-

eral other tools that can be used to better address the problem of selecting the

best system at each location. Among them, we can cite support vector machines,

neural networks, decision trees, etc.

Further, most of the experiments reported in the literature, have been conducted

by the same research team ([32, 33, 36, 39]) and with the very same testing cor-

pus, namely the EPPS English corpus. Most of the proposed techniques have

not been tested with many different corpora. Ideally, these approaches are to be

tested on a standard NIST Hub testing paradigm, so that other researchers are

able to test with the same data and compare their reported results. We definitely

think it would be really beneficial to replicate all the experiments already pre-

sented on different corpora and to check whether all the claims still hold.

Another crucial item, is the importance of combining sites that are different

enough. Reporting combination results using internal systems is not relevant.

As we have already stated, the technique of combining ASR systems to improve

recognition relies on the fact that the combined systems have different errors from

each other. This will ensure that the oracle error will be very low which allows

the different combination approaches to work on a bigger margin of WER. This

is one of the biggest constraints of this research direction. Therefore, the choice

of ASR systems to be combined and reported in experiments is to be carefully

studied. Otherwise, wrong conclusions will be drawn and research leads will be

wasted.

Speaking of the latest work involving the use of tools of soft computing to boost

ROVER, CNC, and fWER-based combination, several features have been inves-

tigated to train the different classifiers. Among these features, we can cite con-

fidence information, frame duration, character length, word length, and acoustic

and language models scores. We think that there are plenty of features that

could be used, especially in the case of CNC and fWER where we have most of

the lattice information available. Besides, there has been intensive research work

towards combining features to boost accuracy in speech recognition.

In the same spirit of using new sources of information to help select reliable fea-

tures for the training of the soft computing tools, we would like to mention a
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very promising direction: that is using the context and semantics in the process

of combination. Researchers have been persistent over several decades in trying

to involve semantics to optimize WER in LVCSR. Several approaches and tech-

niques have been developed and promising performances were achieved. These

attempts ranged from using the language model statistics to computing semantic

similarities and using phonetic similarities, to accurately detect and sometimes

fix the recognition errors in a given transcription.

The next section reviews the latest advances in automatic error detection in

LVCSR.

2.4 Automatic Error Detection in LVCSR

The advancements in the signal processing field, along with the availability of

powerful computing devices, have led to the achievement of decent performance

in the speech transcription field. However this performance could only be ob-

tained under restrictive conditions, such as broadcast speech data, noise-free en-

vironments, etc. Making speech recognition effective under all conditions is the

ultimate goal, which can be achieved if we are able to minimize or even elim-

inate and/or correct most of the recognition errors. In general, there are five

recognition errors that can arise in a decoder’s transcription output:

• Insertion errors: a new word, not part of the reference utterance, is inserted

in the transcription output.

• Deletion errors: a word in the reference utterance is missing in the tran-

scription output.

• Merging errors: two or more words are erroneously merged together in a

new single word (wreck a nice → recognize)

• Splitting errors: a word in the original utterance is split into two or more

words in the transcription output (baby → bay be)

• Substitution errors: a word is replaced by another (for → four)
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In large vocabulary speech transcription, these recognition errors can be caused

by a variety of factors. The most common of these causes are:

• Out Of Vocabulary (OOV) terms are words that are missing from the lan-

guage model and therefore are falsely mapped to (relatively close in pro-

nunciations) vocabulary words.

• The Viterbi decoding procedure includes some heuristics to trade off be-

tween speed and accuracy. Therefore, potential correct hypotheses can be

pruned at early stages and be eliminated from the search space, leading to

the propagation of an erroneous hypothesis to the final output.

• Grammar and language model building procedures are not perfect. This

leads to misguiding the Viterbi search while processing an acoustic utter-

ance. This is besides the fact that it’s impossible to build a generic language

model that can model all the typical usage of the language for various ap-

plications.

• The acoustic model is meant to map the acoustic features of the speech

signal to phonemes. However, deficiencies in the training stage and missing

pronunciations can hinder this mapping, causing false mappings in the final

recognizer’s output.

• Noisy environments can deteriorate the original speech signal, leading to

wrong mappings of the signal to a phoneme, or even the loss of the whole

noisy portion of the signal.

Since there is no foreseeable solution to counteract all of these factors, researchers

investigated ways to automatically detect possible recognition errors and elimi-

nate them or even attempt to correct them. There exists two main approaches

to error detection in large vocabulary continuous speech recognition: meth-

ods that are recognizer-independent, and others that are recognizer-dependent.

Recognizer-dependent techniques tend to rely heavily on the internal decoder’s in-

formation, thus making them tied to the recognizer’s implementation[40, 41, 42].

In this research work, we are only interested in recognizer-independent (generic)

approaches for error detection. In this type of approach, the speech decoder is
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a black box. Details on recognizer-dependent error detection approaches can be

found in [43]. Throughout the literature, we could distinguish two main directions

under the recognizer-independent approaches: probabilistic and non-probabilistic

techniques.

2.4.1 Non-Probabilistic Approaches

The most common non-probabilistic technique is pattern matching. The idea is

to identify and collect error patterns that occur in the speech transcription. A

database of common error patterns is created from transcripts relevant to the

application domain. Rules are then used to compare the decoder’s output to the

patterns stored in the database. This technique suffers from many issues. First,

pattern matching is unable to cope with unseen patterns. Second, for a broad do-

main, it’s quite difficult to collect all possible error patterns due to the language

variation[44]. Finally, pattern matching is susceptible to false positives in cases

where correct words occur in a known error context[41]. In [44], a database of

common errors and their correction in Japanese has been created. Whenever an

error is spotted in the transcription output, it was replaced by the corresponding

correction in the database.

Concepts comparison is another non-probabilistic approach used to identify out-

liers in a given utterance. A similarity score is derived between concepts to

measure the degree of relatedness between them. Conceptual similarity can gen-

erally be determined, given a hierarchical knowledge base, using either edge- or

node-based similarities. These techniques are usually used in the fields of data

mining, vocabulary development, and decision support, but they have been also

applied to the field of automatic error detection in the decoders’ output in order

to spot semantic outliers. [45] exploited the hierarchical structure of the Uni-

fied Medical Language System, and the fact that similar concepts are closer to

each other, in order to derive an edge-based metric. The authors in [46] used

weighted projections of two concepts to compute the semantic distance through

a vector distance measurement. Edge-based approaches assume that the links

between concepts represent uniform and symmetric distances, but that is not

always true[47]. Researchers tend then to include a weighting factor to reflect
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the information content of a node (the concept). The authors in [47] proposed

an approach to compute this informational content of a given concept, using

information theory. Further details can be found in [43].

2.4.2 Probabilistic Approaches

According to [48], speech recognition errors tend to occur in regular patterns

rather than at random. In fact, if we are given a large enough training data

from a certain domain, the collected frequencies can be very well extended be-

yond the training corpus to cover the whole domain. These techniques are also

called corpus-based techniques, because they rely on large textual corpora in

order to collect frequencies and mine for knowledge to spot outliers in a given

transcription output. The most commonly used techniques in this regard are

Co-occurrence relations, Latent Semantic Indexing (LSI)[49] and Point-wise Mu-

tual Information[50] (PMI)-based error detection. The co-occurrence relations

are used to determine the frequency of a word in a given context[26]. These word

and context statistics are then used in order to determine how likely a given word

is to occur in a specific context. The authors in [51] used this approach to spot er-

rors in a given query. LSI is an information retrieval tool that relies on the terms

co-occurrences to identify the degree of similarity between them. It represents

the terms and documents in a reduced dimensionality, without losing much of the

relationship information between them. Each term is represented with a limited

set of features, that are used afterwards to compute distances between terms. LSI

was first applied to the field of error spotting in [49] by exploiting this semantic

analysis. Experiments showed that it’s possible to achieve high recalls, but with

a low precision rate. PMI computes similarity scores between terms using word

frequencies from a given corpus. Those similarity scores are used to identify a

semantic outlier in a given context of terms. PMI was first applied to the field of

automatic error detection in [50]. Most of the error detectors have achieved high

precision and low recall rates. This is a common issue in the field of automatic

error detection in speech transcriptions. Only a few attempts already have been

successful in combining error detection techniques to improve both precision and

recall ratios. The authors in [52, 53] relied on a direct aggregation scheme, in
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which only one single heuristic is needed to tag a given word as an erroneous

output.

2.5 Conclusion

This chapter has highlighted the basics of automatic speech recognition tech-

nology, specifically the front end processing module, as well as the acoustic and

language modeling components. Then a brief survey of research on systems’ com-

bination has been provided. Advances and recent work on the ROVER procedure,

as well as the confusion network and fWER-based combination were presented.

The chapter has reviewed the latest work in automatic error detection in LVCSR

transcriptions, especially approaches that are speech decoder-independent. The

following chapter describes our proposed approach to improve the ROVER com-

bination procedure, using techniques from the automatic error detection field.
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Chapter 3

Proposed Approach: cROVER,

the Context-Augmented ROVER

In this chapter, we start by presenting the original ROVER system. The motiva-

tions behind our approach to improve on the current ROVER are then presented.

The new approach is then described in details, followed by a case study using two

widely-known error detection techniques. The chapter concludes with a novel

voting mechanism for the original ROVER. The new voting mechanism is an al-

ternative to the current ROVER’s voting schemes, and has been inspired by our

proposed approach to augment ROVER with automatic error filtering.

3.1 The ROVER Procedure

ROVER is a two-step process, as shown in Figure 3.1. First, it combines the mul-

tiple outputs into a single, minimal cost word transition network, WTN, through

dynamic programming. Once this alignment is done, the resulting network is

browsed by a voting process which selects the best output sequence (with the

highest votes). Since implementing an algorithm to optimally align more than

two WTNs is difficult, an approximate solution has been proposed using the

traditional two-dimensional dynamic programming alignment procedure. The

approximation works by iteratively merging the composite WTN with the next

linear word hypothesis, till all decoders’ outputs have been merged in the com-

posite final WTN.
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Three voting mechanisms have been presented in [25], two of which involved the

use of word level confidence values. At each location in the composite word

transition network, a score is computed for each word using Equation 3.1.

Score(w) = α(
N(w, i)

Ns

) + (1− α)C(w, i) (3.1)

where i is the current location in the WTN, Ns is the total number of combined

systems, N(w, i) the frequency of word w at the position i and C(w, i) is the

confidence value for word w at the position i. The parameter α is set to be the

trade-off between using word frequency and confidence scores. In the case there is

an insertion or deletion, the NULL transition, noted as @, in the word transition

network, will have the confidence conf(@). A training stage is therefore needed

to optimize both the α parameter and the NULL transition confidence value. This

is commonly done through grid-based searching.

• Frequency of Occurrence:

In this voting schema, the word confidence values are not used, and therefore

α is set to 1. Only occurrence information is used to select the winning word

at the given location in the word transition network. According to [25], this

scoring leads to a major problem: ties tend to occur very frequently. There

is no way to determine any reliable knowledge source to break them, and

thus ties are broken randomly.

• Frequency of Occurrence and Average Word Confidence:

This voting schema has been introduced to overcome the problem of ar-

bitrarily broken ties. Both the occurrence and the confidence values are

used in the scoring of each word at a given location in the word transition

network. For each word, the overall confidence is obtained by averaging the

confidence values of all the occurrences of that word at the same location.

• Frequency of Occurrence and Maximum Confidence:

The scoring is very similar to the earlier schema. However, instead of using

the average confidence, the maximum value is selected as the composite

confidence for each word at a specific location in the word transition net-

work. It is worth mentioning that both parameters have to be optimized

for each voting schema.
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3.2 Motivations behind cROVER

3.2 Motivations behind cROVER

Researchers have attempted to improve on the performance of the original ROVER

for several years now. As detailed in Section 2.3.5, these attempts, such as the

use of new features and machine learning tools to select the winner word at each

slot of the transition network, have achieved some WER reduction. However, it

appears that ROVER performance has reached a plateau and that it has become

quite difficult to achieve a substantial WER reduction. Nevertheless, we strongly

believe that improving ROVER is still possible, and even more practical than

improving CNC and fWER-based combination. In fact, these combination pro-

cedures cannot guarantee any large WER reduction because the baseline systems

are already very optimized. Per our discussion in Section 2.3.2, CN and fWER

are approximations to a different paradigm in the speech recognition, aiming at

reducing the WER directly. However, ROVER works on baseline systems, aiming

at reducing the SER instead of the WER. That’s where we see the potential. It

is therefore easier to improve and tune ROVER, rather than optimizing CNC

or fWER-based combination. For this reason, we have chosen to focus on the

ROVER system, since we strongly believe that there is still room for research

and improvment.

We have noticed upon our review of automatic error detection in LVCSR, that

researchers are still struggling to come up with a decent approach that works rea-

sonably well. In fact, the problem of erroneous transcriptions has been around

since the very first days of speech recognition technology, and we are still unable

to efficiently spot errors in the decoders’ outputs. Current error detectors suffer

from low precision and/or low recall rates. So the question that kept arising,

was how to make use of what has been done so far in this area without having

to suffer from this poor performance. The answer to this question can be found

right in the next question: why do we have to apply the error detector on the

whole transcription output? If we know exactly when to involve the error classi-

fier to check whether the word in question is an error or not, we would be able to

achieve better performance and avoid falsely tagging correctly recognized words

as erroneous outputs. Based on our review of the current advances in automatic

error detection in Section 2.4, we have decided that the probabilistic approaches
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to errors detection in LVCSR are the most suitable for large vocabulary, domain-

independent applications. In fact, it is almost impossible for pattern matching

techniques to collect all types of errors when dealing with applications of this

nature.

Based on the conclusions and motivations presented above, our research work

objectives are aimed at augmenting the original ROVER with an error detection

approach, in order to reduce the WER of the composite WTN. The next section

describes this proposed approach.

3.3 cROVER: the Context-augmented ROVER

In this section, we describe our proposed approach to improve ROVER’s perfor-

mance. We called it cROVER, where the c stands for context[61, 63, 64]. The

idea is to embed a contextual analysis within the ROVER procedure to eliminate

as many errors as possible.

3.3.1 Objectives

As described in Section 2.3.1, ROVER is a two-step procedure. First, a composite

WTN is built from the outputs of different decoders. Then a voting algorithm

browses the WTN to select the winner word at each slot. It is worth mentioning

here that all errors are being propagated through the composite WTN, which led

us to think of involving an automatic error detection technique before reaching

the voting step. The objective of cROVER is to eliminate erroneous words from

the composite WTN in order to guarantee a smoother selection of the winner

token at each slot.

3.3.2 cROVER Architecture

The architecture of the cROVER procedure is shown in Figure 3.2. The aug-

mented ROVER with error filtering works as follows: first, the building of the

WTN from the outputs of different decoders. Second, an error filtering stage is

introduced to the newly built WTN to eliminate erroneous words. Finally, the

voting algorithm browses the newly updated WTN to select the winner word at
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each slot of the WTN. Now the question is how to apply the error filtering on

the composite WTN? As discussed in Section 3.2, the error filtering shouldn’t be

applied on the whole transcription to minimize false tagging correctly transcribed

words as errors. Therefore, upon building the WTN, the error detector is only

applied on the slot with discrepancies between the different speech decoders. In

other words, when all recognizers agree on the same word at a specific slot, there

is no need to check whether the word in question is an error or not. In the sam-

ple example shown in Figure 3.2, error detection is only applied on the second

and third slot of the composite WTN. For this reason, we start by building the

WTN before involving the contextual analysis, in order to spot the slots with

discrepancies. Once such a slot has been detected, the error classifier is involved.

If an arc (word) in the slot is tagged as an erroneous token, the arc in question

is removed and replaced by the NULL transition. The NULL transition is later

on handled by the voting algorithm as a deletion.

The architecture we have described so far is generic. That is, any error detec-

tion approach, whether probabilistic, non-probabilistic, or hybrid, could be used.

The approach is independent from the error filtering procedure. The next sec-

tion provides details about this error spotting stage. The focus will be on the

probabilistic based approaches, per our discussion in Section 3.2.

3.3.3 Automatic Error Detection

The low recall and precision ratios of the current automatic error detection tech-

niques in speech transcription led us to investigate ways to improve both of these

ratios[62]. The idea is to combine different error detection approaches in the hope

that the new technique achieves higher recall, without degrading the precision ra-

tio. The ultimate goal is to be able to improve both ratios simultaneously upon

the combination of the error detection techniques. The implicit assumption in

this thinking, is that the error detection techniques have to have different perfor-

mance in terms of these two ratios. In other words, when one approach achieves

high recall and low precision, the other technique to be combined with it, needs

to achieve high precision and low recall to ensure improvement in both ratios with
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the new technique. The logic of our proposed approach is to preserve each tech-

nique’s advantage or powerful characteristics in the final combination. Figure 3.3

describes the flow of the error detection combination approach. All probabilistic

based approaches rely on thresholding a confidence score to decide whether or

not a given word is an error or not. However, the scale of each error detection

technique’s confidence score is different. Therefore a score normalization stage is

needed to standardize all confidence scores from the various detection techniques

to lie between zero and one. Equation 3.2 is used to normalize the confidence

scores, where X is the score to be normalized, and min, respectively max, is the

minimum, respectively maximum, value of the technique’s confidence score.

Xscaled =
X −min
max−min

(3.2)

Once all the confidence scores have been normalized, a score combination formula

is then applied to build a new score. The classification threshold, K, is then

applied to this new score to detect erroneous output. Two score combination

formulas were used, namely Weighted Average (WA) and Harmonic Mean (HM),

as shown in Equations 3.3 and 3.4, where Scorei refers to the confidence score

of the ith error detection technique, N is the total number of combined error

detection techniques, and αi are weighting scales to each technique in such a way
N∑
i=1

αi = 1

ScoreWA =
N∑
i=1

αiScorei (3.3)

ScoreHM =
N

N∑
i=1

1

Scorei

(3.4)

The weighting factors play an important role in realizing a trade off between vari-

ous detection techniques to optimize recall and precision ratios. These coefficients

need to be optimized a priori during training. Besides the two score aggregations,

we have also used direct combination, which means that a given token in a tran-

script is tagged as an error if at least one of the error detectors tags it as an error.
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Implicitly, this type of combination is in favor of the recall rate because it only

takes one decision to classify a given word as an erroneous output. Algorithm 1

summarizes the combination procedure for N different speech transcription error

detection techniques.

Algorithm 1 Combination of Error Detection Techniques

1: Compute the score of the word w, Scorei, for each technique.

2: Scale the confidence score to the [0,1] interval, using Eq.3.2.

3: if Direct Combination then

4: if ∃Scorei ≤ K then

5: Tag the word w as an error.

6: end if

7: else

8: Compute the new confidence score, Scorecomb, using Eq.3.3 or Eq.3.4.

9: Tag the word w as an error if Scorecomb ≤ K.

10: end if

In Step 4 and 9 of Algorithm 1, the threshold parameter K is to be optimized

through a training stage. It is used to control the error detection rate. The

higher K is, the more aggressive the error filtering, and vice versa. If K is quite

low, more erroneous words slip past the combined error detector. Figure 3.4

reports a detailed architecture of the cROVER technique, when augmented with

a combination of error detection approaches. The n error classifiers cooperate

together to decide whether or not an arc in a given WTN slot is correct or not.

Based on this cooperative decision, the arc in question can be deleted and replaced

by the NULL transition if the token has been flagged as an error. Otherwise, the

arc is left unchanged.

3.3.4 Error Filtering Integration within ROVER

ROVER works as follows: first, the output of the different recognizers are com-

bined into a composite transition network through a dynamic programming align-

ment procedure. Then a voting schema is applied at each slot of the network,

to select the best hypothesis and build a new transcription output. The problem
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with this process is that errors contained in each recognizer output are kept in

the composite network, which may trick the voting algorithm and lead to errors

propagating into the final composite output. We introduce a pre-filtering stage

right after the different outputs are aligned, and then eliminate the errors to fa-

cilitate the voting. This way we are hoping for fewer mistakes in the final output.

To do this, each word’s surrounding context at each slot in the WTN is used,

to determine whether that word is a semantic outlier and therefore should be

deleted. The augmented ROVER with error filtering is detailed in Algorithm 2.

Algorithm 2 Augmenting ROVER with Error Detectors

1: Create the composite WTN by aligning the WTNs from the different recog-

nizers.

2: for all slots with discrepancies in the composite WTN do

3: Apply the error filtering.

4: Remove the detected erroneous words from the slot, and replace them with

the NULL transitions.

5: end for

6: Apply voting on the new WTN.

Once the composite WTN is built, and instead of applying the voting mechanism

at each slot, a pre-filtering stage is introduced. At each slot with discrepancies, the

error detector is used to spot errors. If a token is flagged as an error, the algorithm

updates the slot by removing the arc of the erroneous word, and replacing it by

a NULL transition. This simulates a deletion, and the ROVER voting schema

handles it accordingly. Once all slots are pre-processed, the voting algorithms are

used to select the most appropriate token at each slot in the new network.

The next section presents a case study of the whole approach with two widely-

used probabilistic error detection techniques: Point-wise Mutual Information, and

Latent Semantic Indexing-based approaches.
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3.4 A cROVER Implementation with Probabilistic-

based Approaches

In this section, we present a case study of the newly proposed cROVER. The ex-

ample describes the integration of ROVER with two widely-known error detection

techniques, namely, PMI- and LSI-based detectors.

3.4.1 PMI-based Error Detection

The PMI-based error detector aims at spotting outliers in a given decoder’s out-

put. A word is tagged as an outlier if the score computed by the PMI-based

procedure is lower than a given threshold. The PMI-based detector computes a

confidence score through the aggregation of PMI scores of word pairs in the given

transcription. Before we go into detailing this procedure, let us first define a few

terms:

• The neighborhood N(w) of a word w is the set of context tokens around w

that appear before and after it. This concept is defined within a window of

tokens. For instance, a neighborhood with a window of 2 around w implies

two left side context tokens, and two right side ones, along with the word

w itself.

• Pair-wise Semantic Similarity S(wi, wj) is a measure of how similar and how

close in meaning wi and wj are. In a nutshell, the PMI score in Equation

3.5 is defined as the probability of seeing both words (wi and wj) together,

divided by the probability of observing each of these words separately.

PMI(wi, wj) = log

(
P (wi, wj)

P (wi).P (wj)

)
(3.5)

Given a large textual corpus with size N tokens, the probabilities introduced

in Equation 3.5 can be computed using Equations 3.6, where c(wi) and
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c(wi, wj) are the frequency counts collected from the corpus.

P (wi) =
c(wi)

N
(3.6)

P (wi, wj) =
c(wi, wj)

N

The process of detecting an error using the PMI-based technique[50] is detailed

in Algorithm 3.

Algorithm 3 PMI-based Error Detection

1: Identify the neighborhood N(w).

2: Compute PMI scores PMI(wi, wj) for all pairs of words wi 6= wj in the

neighborhood N(w), including the token w. Scale up the PMIs in such a way

that they are all non-negative.

3: Compute Semantic Coherence SC(wi) for every word wi in the neighborhood

N(w), by aggregating the PMI(wi, wj) scores of wi with all wj 6= wi.

4: Define SCavg to be the average of all the semantic coherence measures SC(wi)

in N(wi).

5: Tag the word w as an error if SC(w) ≤ K.SCavg.

K is a filtering parameter to control the tolerance of the algorithm for recog-

nition errors.

In Step 2 of the algorithm, the scaling is done through normalization of the PMI

scores. Different window sizes have been used for the first step. In other words,

the left and right context are expanded to evaluate the impact on the performance

of the error detection. This parameter is key, since all the PMI scores heavily

depend on its value. In Step 3 of the algorithm, the semantic coherence has been

computed using different aggregation variants:

• Harmonic mean: SC(wi) =
n∑

i 6=j

1

PMI(wi, wj)

• Arithmetic mean: SC(wi) =
1

n

∑
i 6=j

PMI(wi, wj)
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• Maximum: SC(wi) = max
i 6=j

PMI(wi, wj)

• Sum: SC(wi) =
∑
i 6=j

PMI(wi, wj)

The filtering parameter K, is used to control the error detection rate. This switch

is to be handled with care, as it has a direct impact on the false positive rate of

the error classifier. The higher K is, the more aggressive the error detection, and

vice versa. If K is set quite low, more erroneous tokens slip past the detector,

and are tagged as correctly transcribed.

3.4.2 LSI-based Error Detection

LSI determines the similarity between terms by analyzing their co-occurrences

within several documents. LSI assumes that when words co-occur together within

the same set of documents, these words are generally semantically related to one

another. The LSI procedure mines for features that highlight the similarities

between words. These features are obtained by applying a dimensionality re-

duction technique to a high dimensional word-feature matrix. Given a large

textual corpus, a term-document matrix is built where rows stand for words,

and columns stand for documents. The value in the cell (i, j), wi,j, holds the

weighted frequency of occurrence of word i in the document j. These weights are

a combination of local and global weighting schemes, as shown in Equation 3.7.

wi,j = localweight(i, j) ∗ globalweight(i) (3.7)

The local weights are used to reflect the importance of a word in a given docu-

ment, whereas the global weighting calibrates its importance across all the doc-

uments. Several combinations of local and global weighting methods have been

used throughout the literature[43], and the authors found that the combination of

entropy (as global weighting) and the logarithm term frequency (as local weight-

ing) produced the best performance on information retrieval tasks. In this re-

search work, we have used this specific combination as shown by Equation 3.8

and Equation 3.9, where freq(i, j) denotes the frequency of occurrence of term

i in document j, N is the total number of documents constituting the corpus,
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H(d) is the entropy of document distribution, and H(d|i) is the entropy of the

term i across all documents.

localweight(i, j) = log(1 + freq(i, j)) (3.8)

globalweight(i) = 1− entropy(i) (3.9)

= 1− H(d|i)
H(d)

= 1−

−
N∑
j=1

P (i, j) ∗ log(P (i, j))

log(N)

= 1 +

N∑
j=1

P (i, j) ∗ log(P (i, j))

log(N)

Singular Values Decomposition (SVD) is applied on the large term-document

matrix. This is carried out to reduce dimensionality of the term and document

vectors. Since the term-document matrix is very sparse and its rank is much more

lower than its actual dimensionality, it is safe to represent the terms and docu-

ments vectors in a much lower dimensional space with little loss of information. In

other words, if two terms are similar in the original highly dimensional space, they

will still be semanticaly close in the reduced space. This new reduced space is ba-

sically obtained by selecting the first several dimensions of the SVD-decomposed

matrix, since the eigenvalues are sorted by order of importance. Therefore the

first few dimensions hold much of the information, and we can then derive reli-

able similarity measures between terms using only these dimensions. The most

commonly used measure between vectors is the cosine metric, which basically

measures the overlap along each dimension. The cosine similarity is computed

using Equation 3.10, which is the angle between the two vectors u and v.

cos(u, v) =
< u, v >

||u|| ∗ ||v||
=

n∑
i

(ui ∗ vi)√√√√ n∑
i

u2i ∗

√√√√ n∑
i

v2i

(3.10)

39



3.4 A cROVER Implementation with Probabilistic-based Approaches

Now that we have collected the most significant word features (through the SVD

decomposition), and selected a metric to measure the similarity between any two

words (through the cosine similarity measure), all that remains is to compute

the semantic similarity score of a given word in an utterance of length M . Two

different aggregations have been used: the Mean Semantic Scoring (MSS) and the

Mean Rank of the Semantic Scores (MR)[49]. MSS and MR scores are computed

as shown in Equation 3.11 and Equation 3.12 respectively.

MSSi =
1

M

M∑
j=1

cos(wi, wj) (3.11)

MRi =
1

M

M∑
j=1

RANK(cos(wi, wj)) (3.12)

The cos(wi, wj) is computed using Equation 3.10. The rank of the semantic

score shown in Equation 3.12 is computed as follows. First, the set of semantic

scores Li is computed. Li is the set of cosine scores between the word wi and

all the remaining words wj in the corpus. The MRi score is then the mean of

the rank of each cos(wi, wj) score in the set of Li. The LSI-based error detection

works as follows: given a recognizer’s transcription output, a word is tagged as

erroneous if and only if its MSS (respectively MR) is below a threshold K. The

error filtering procedure applied on a word wi in a given transcription output, is

detailed in Algorithm 4.

Algorithm 4 LSI-based Error Detection

1: Compute cosine scores between wi and all other words in the transcription

output.

2: Compute MSSi score (Equation 3.11) or MRi score (Equation 3.12).

3: Tag the word wi as an error if MSSi ≤ K or MRi ≤ K.

The threshold K is to be optimized through a training stage. It is used to control

the error detection rate. The higher K is, the more aggressive the error filtering,

and vice versa. If K is quite low, more erroneous words slip past the error

detector.
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3.4.3 Combination of Error Detectors

Both error detectors compute a confidence score, on which a threshold parameter

K is applied to identify whether the token is an error or not. Before we are able

to identify the composite decision of these two error classifiers, these scores need

to be scaled to lie within the same range, as demonstrated by Equation 3.2. Once

normalization is done, the aggregation of the two confidence scores can be done

either through score weighting or harmonic averaging, as shown by Equations

3.3 and 3.4 respectively. The aggregated score can now be thresholded to decide

whether or not the token is a recognition error. Obviously, this threshold needs to

be optimized through a training stage. If the direct combination scheme is used,

score aggregation is not required. Upon score normalization, each technique’s

score is thresholded, and a word is tagged as an error if at least one of the

techniques classifies it as an error.

3.4.4 cROVER with PMI and LSI Classifiers

Figure 3.5 reports the whole system architecture once both PMI- and LSI-based

error detectors are integrated within the ROVER procedure. Two knowledge

sources are required by the error filtering techniques, namely a textual corpus

to extract the unigrams and bigrams counts for the PMI-based classifiers, and

a term document matrix for the LSI-based classifier. Once the composite WTN

network is built, it is browsed slot by slot to identify discrepancies. For each

token in a given slot, the error filtering techniques compute a confidence score,

which will then be normalized. Then depending on whether or not the direct

combination is used, these scores are aggregated together. If the final decision

tags the token as an error, the arc representing this token is removed and replaced

by the NULL transition. Otherwise, the arc is left unchanged, and the same

procedure is repeated on the remaining arcs of the slot. Once all arcs have been

processed, the procedure is then reiterated on the next slot with discrepancies.
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3.5 New Voting Mechanism for ROVER

The proposed cROVER approach has inspired us to investigate a new scoring

mechanism for ROVER. The new voting scheme consists of using the confidence

scores collected during the contextual analysis (error filtering stage within the

cROVER procedure) to compute the word scores at each slot of the WTN. This

section starts by highlighting the voting issues of the ROVER procedure. It then

proceeds with the description of the new scoring scheme.

3.5.1 Issues Related to ROVER’s Voting

The original ROVER voting mechanisms have several shortcomings. The fact

that two of the ROVER schemes rely on the speech recognizers’ confidence score,

make the whole procedure vulnerable. Issues in the confidence measures of speech

recognizers are far from being solved. In our experiments, for example, we were

quite unable to use them as they turned out to be all equal to one (especially

the scores coming from the most widely-deployed and trusted commercial engine,

Nuance N9). Furthermore, the frequency-based voting scheme proposed in [25]

suffers from the random tiebreaker problem. In fact, ties tend to occur frequently,

and the only way to resolve this issue, is to randomly select a winner whenever

these ties occur.

In this section, a novel voting algorithm for the ROVER combination procedure

is proposed. The voting mechanism relies on the contextual analysis that has

been used, in the cROVER framework.

3.5.2 Confidence-based Voting Algorithm

The confidence-based voting scheme for the original ROVER consists of trading

off between the original ROVER’s scoring and the confidence score obtained upon

the error filtering procedure. In other words, we are computing a new confidence

measure besides the ones coming from the speech decoders. These new confidence

scores are obtained through a contextual analysis using a confidence-based error

filtering technique.

The original ROVER’s scoring, given by Equation 3.1, is a weighted sum of
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both the frequency of occurrence and the speech decoder’s confidence scores. We

are proposing to alter this equation to take into account the confidence scores

computed during the contextual analysis. Equation 3.1 is used to compute a

score for each word at each slot in the composite WTN.

Score(w) = β

[
α(
N(w, i)

Ns
) + (1− α)C(w, i)

]
+ (1− β)Err(w, i) (3.13)

Err(w, i) is the aggregated score from different error detection algorithms as-

signed to the word w at slot i, and β is a parameter to balance between the

original ROVER scores and the composite error filter scores. Similarly to the

original α parameter, the β factor needs to be optimized through training.

Following the same logic as the cROVER approach, the newly proposed voting

algorithm is only applied on nodes with discrepancies. This is done to limit the

incidence of false positives of the error filtering techniques. It is worth mention-

ing here, that we do not require the decision from each error classifier; only the

scores are used in this voting scheme. In other words, the threshold factor K is

irrelevant in this voting scheme.

The confidence-based voting scheme is described in algorithm 5.

Algorithm 5 ROVER’s New Confidence-based Voting Scheme

1: for all nodes i in the composite WTN do

2: if ∃ Discrepancies then

3: Compute ROVER’s original score using Eq. 3.1.

4: Compute the score Err(w, i) .

5: Aggregate both scores, using Eq. 3.13.

6: else

7: Compute ROVER’s original score using Eq. 3.1 .

8: end if

9: The winner word is the word with the highest aggregated score.

10: end for

Algorithm 5 is used once the composite WTN is built from the different decoders’

outputs. Similar to ROVER’s original voting schemes, if ties occur, the algorithm

will choose randomly one single best word. Line 7 is for nodes with only one single
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token in all arcs, as well as the NULL transition. This special type of transition

has a predefined confidence score, that is optimized beforehand through training,

as proposed in [25].

Several error filters can be used in Step 4 of Algorithm 5. Similar to what has been

proposed in the cROVER approach, error filters are combined together through

three aggregation schemes, specifically, direct combination, and weighted and

harmonic aggregations. In the voting framework, only harmonic and weighted

aggregations are used. When multiple error detection techniques scores are avail-

able, these scores are aggregated using Equation 3.3 or 3.4.

It is worth mentioning that the proposed voting scheme only works with error de-

tection techniques that rely on thresholding a confidence score to decide whether

or not a given word is an erroneous decoder’s output. Therefore the voting scheme

does not extend to all error detection techniques, such as pattern matching-based

error filters for example.

The solution proposed in the original ROVER[25], to solve the problem of arbi-

trary broken ties, is to introduce the confidence scores from the speech decoders in

the scoring formulas. That way, ties occur considerably less frequently. Our pro-

posed confidence-based voting scheme outperforms the original ROVER voting in

two ways. First, if the speech decoders’ confidence measures are unavailable, the

scores from the contextual analysis (error classifiers) compensate for these missing

confidences, and thereby considerably lower the risk of ties during voting. Second,

even when decoders’ confidences are available, our proposed voting scheme lowers

even further the risk of ties, as well as the risk of using the unreliable decoders’

confidences, because of the second set of confidences that are introduced from

the contextual analysis. For these reasons, the new voting scheme is more robust

than the original ROVER voting schemes.

3.6 Conclusion

This chapter proposed a novel approach to improve on the original ROVER per-

formance. Automatic error filtering techniques have been integrated within the

ROVER procedure to filter out erroneous words at each slot of the compos-

ite WTN. An implementation using two probabilistic error detection techniques,
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3.6 Conclusion

namely, LSI, and PMI-based detectors, has been presented. The chapter con-

cluded with a novel voting scheme for the original ROVER procedure inspired

from the proposed cROVER framework. Semantic scores from the error filtering

techniques were used during the voting stage to select the correct word at each

slot. The next chapter reports the experimental framework as well as the results

and analysis of the case study presented in this chapter.

46



Chapter 4

Performance Evaluation

This chapter focuses on the performance evaluation of the proposed approach to

augment ROVER with a contextual analysis through the use of automatic error

detection techniques. The chapter starts by describing the experimental frame-

work, followed by the assessment of the error filtering techniques. The assessment

of the cROVER procedure is carried out using two different test sets. The chapter

then proceeds with a study of the cROVER computational requirements. Exper-

iments pertaining to the assessment of the novel voting procedure are described

at the end of the chapter.

4.1 Evaluation Criteria

In the area of LVCSR, researchers usually rely on the WER metric[54]. Let N be

the total number of tokens in a reference transcript. D is defined as the number

of deleted tokens from the recognition, I is the number of insertion and S is the

number of substitutions. The WER is then defined by Equation 4.1, as:

WER =
D + S + I

N
(4.1)

Obviously, the lower the error rate, the better the recognition. A sample example

is provided below in Figure 4.1. In this example, there are four words in the

reference transcript (N = 4). After aligning the hypothesis with the reference,

through dynamic programming, we notice that only one single word has been
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4.1 Evaluation Criteria

S I I D S

Wreck a nice beach correctly

Recognize the speech correctly

Hypothesis

Reference

Figure 4.1: How to Compute the WER?

recognized properly (specifically the word “correctly”). Substitutions, deletions,

and insertions are shown in the figure by S, D and I respectively. There are two

substitutions (S = 2), one deletion (D = 1) and two insertions (I = 2). The

resulting WER in this example is 125%.

In order to assess the performance of the error detection module, metrics from

the machine learning theory were used. The F-measure, the precision, and the

recall were reported. For a two-class problem (Error/Correct), we can define

the following quantities: true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN), as illustrated in Table 4.1.

Reference

Error Correct

Hypothesis
Error TP FP

Correct FN TN

Table 4.1: Two-Class Classification Terminology

The precision and recall, can then be defined as in Equations 4.2 and 4.3 respec-

tively,

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

The F-measure, also called the F1 score, is nothing else but the harmonic average

of the precision and the recall ratios, as shown in Equation 4.4.

F1 = 2 .
P recision . Recall

Precision+Recall
(4.4)
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4.2 Experimental Setup

4.2 Experimental Setup

In this section, we provide details on the experimental framework used to assess

the cROVER approach. The baseline WER were obtained using the NIST imple-

mentation of ROVER, within the Speech Recognition Scoring Toolkit (SCTK)[55].

The tool has been later modified and upgraded to integrate the automatic error

filtering stage within the ROVER procedure.

4.2.1 Automatic Speech Decoders

The experiments were conducted using recognition outputs obtained from two

widely-known automatic speech decoders. The first is the latest version of Nuance

Communication Speech recognizer (Version 9.0). This commercial decoder is state

of the art in terms of performance and technology, and is currently deployed in

hundreds of call centers around the globe. This engine comes with its own highly

enhanced acoustic models. We have built our own language models, compatible

with this engine.

The second speech decoder we have used is the Carnegie Mellon University (CMU)

Sphinx 4, which is a speech recognition system written in Java. This engine has

been designed to be very flexible and thus became an excellent platform for speech

research. In fact, any front end processing can be used thanks to the plugin-based

design of this open source decoder. Furthermore, acoustic models and language

models can be of any formats. This is a major advantage because it does not

constraint researchers to limited predefined formats.

4.2.2 Testing Sets

In terms of data, we have considered the English Broadcast News Speech (HUB4)

[56] testing framework. This corpus is composed of both speech data (LDC98S71)

and transcripts (LDC98T28). It is a total of 97 hours of 16000 Hz recordings from

radio and television news broadcasts. Transcriptions of this HUB4 corpus have

been used to train the language model for all the baseline systems except the

Sphinx 4, where another freely available language model has been used. From
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4.2 Experimental Setup

now on, the language model trained using the LDC98T28 is referred to as LM-

98T28. For Nuance V9.0, the default acoustic model for US English has been

used, along with the LM-98T28 trained with the decoder’s statistical language

modeling toolkit. With Sphinx 4 three different language models have been used:

the LM-98T28 defined earlier, an open source model for broadcast news tran-

scriptions from CMU[57], referred to as LM-BN99 hereafter, and a third language

model created from the English Gigaword corpus[58], referred to as LM-GIGA

hereafter. The vocabulary size of LM-GIGA and LM-BN99 is 64, 000 words. The

LM-98T28 vocabulary size was limited to just 20, 000 words due to the constraints

of Nuance V9. In terms of Sphinx 4 acoustic modeling, the already trained HUB4

model provided on the Sphinx download site has been used.

Without access to the HUB4 evaluation corpus, it was decided to select two sub-

sets of the LDC98S71 training data, for evaluation purposes. The first set, Set

1, consisted of 2 hours and 36 minutes of speech data, whereas the second set,

Set 2, consisted of 8 hours and 30 minutes. The average sentence length in both

testing sets is 55 words. Both testing sets were not included in the data used to

train the language models.

In order to simulate speech decoders’ outputs from several sites, we have created

different combinations of speech decoders and language models. A total of four

configurations has been set up:

• s4-LM-98T28: Sphinx 4 with the LM-98T28 language model.

• s4-LM-BN99: Sphinx 4 with the LM-BN99 language model.

• s4-LM-GIGA: Sphinx 4 with the LM-GIGA language model.

• v9-LM-98T28: Nuance v9 with the LM-98T28 language model.

In the first experiments with the Set 1 test set, we chose to use the following

decoder configurations: s4-LM-98T28, s4-LM-BN99 and v9-LM-98T28, whereas

in the second experiments with the Set 2 test set, the following configurations

were used: s4-LM-98T28, s4-LM-BN99, and s4-LM-GIGA. In both experiments,

all two- and three-recognizer combinations were carried out. Table 4.2 reports

these settings for both the first and second experiments. These IDs will be used
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4.2 Experimental Setup

ID Decoders’ Combination Configuration

S
E

T
1

C1 v9-LM-98T28 - s4-LM-98T28

C2 v9-LM-98T28 - s4-LM-BN99

C3 s4-LM-98T28 v9-LM-98T28

C4 s4-LM-98T28 - s4-LM-BN99

C5 s4-LM-BN99 - s4-LM-98T28

C6 s4-LM-BN99 - v9-LM-98T28

C7 v9-LM-98T28 - s4-LM-98T28 - s4-LM-BN99

C8 v9-LM-98T28 - s4-LM-BN99 - s4-LM-98T28

C9 s4-LM-98T28 - v9-LM-98T28 - s4-LM-BN99

C10 s4-LM-98T28 - s4-LM-BN99 - v9-LM-98T28

C11 s4-LM-BN99 - s4-LM-98T28 - v9-LM-98T28

C12 s4-LM-BN99 - v9-LM-98T28 - s4-LM-98T28

S
E

T
2

C1 s4-LM-GIGA - s4-LM-98T28

C2 s4-LM-GIGA - s4-LM-BN99

C3 s4-LM-98T28 s4-LM-GIGA

C4 s4-LM-98T28 - s4-LM-BN99

C5 s4-LM-BN99 - s4-LM-98T28

C6 s4-LM-BN99 - s4-LM-GIGA

C7 s4-LM-GIGA - s4-LM-98T28 - s4-LM-BN99

C8 s4-LM-GIGA - s4-LM-BN99 - s4-LM-98T28

C9 s4-LM-98T28 - s4-LM-GIGA - s4-LM-BN99

C10 s4-LM-98T28 - s4-LM-BN99 - s4-LM-GIGA

C11 s4-LM-BN99 - s4-LM-98T28 - s4-LM-GIGA

C12 s4-LM-BN99 - s4-LM-GIGA - s4-LM-98T28

Table 4.2: Decoders’ Combinations ID for Set 1 and Set 2

later on in this chapter instead of the whole configuration to make the plots

more reader friendly. Note here that the combination order matters. This is an

inherent problem from the ROVER composite WTN-building stage as discussed

in Section 2.3.1. For example, the combination with id C3 for Set 1 in Table 4.2,

means that when building the composite WTN, we start with the WTN, output

of s4-LM-98T28 first, then we align the second WTN, output of V9-LM-98T28,
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4.2 Experimental Setup

on top of the first WTN.

It is worth mentioning that because of the use of different LMs, a normalization

step is required to standardize the output of the different speech decoders. In

other words, the same word can be written in different manners and therefore

all these forms have to be unified under a single form. This is a tedious task,

which if not done properly, can lead to wrong WER figures, when the outputs of

all decoders are aligned against each other as shown in Figure 4.1. Examples of

these issues include:

• CNN can be written as c. n. n. (three distinct letters), c.n.n. (one single

word), cnn (one single word), c n n (three letters), etc. All of these forms

must be converted to one single form.

• Vote, voTe, vote, etc should all be considered as the same word.

• It’s, its and it s have been all considered as the same word (even though it

is not quite true).

4.2.3 PMI-based Error Detector

The PMI-based error detection technique used in this paper requires uni-gram and

bi-gram frequency counts. These counts need to be collected from a very large

textual corpus. This was first investigated using the Wikipedia XML dumps;

however, after collecting bi-gram counts, 39% of the bi-grams were not found.

This led to considering a much larger corpus. But collecting word counts from

big corpora is not an easy task, in terms of memory, storage and processing

power requirements. In fact, the corpus by itself would require several terabytes -

therefore, we had to look for a pre-compiled collection of word and bi-gram counts.

Google Inc.’s trillion-token token corpus (LDC2006T13) was the solution[59].

This is a dataset of six DVD-ROMs, totaling 24 GB of compressed n-gram counts.

These n-gram counts were generated from approximately one trillion word tokens

of text from publicly accessible Web pages. The length of the n-grams range from

uni-grams to five-grams. For the purposes of this paper, only the 13.5 million

uni-grams and the 314.8 million bi-grams were used. With the Google corpus,

only 13% of the bi-grams sought were not found.
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4.3 Automatic Error Filtering Assessment

4.2.4 LSI-based Error Detector

The term-document matrix, required by the LSI based approach, has been built

using the latest Wikipedia XML dump. A total of 3.2 million documents, and

100, 000 unique terms have been identified. Obviously, the matrix is very sparse

because not all the tokens exists in all the documents of Wikipedia. The SVD

decomposition on such a large sparse matrix has been carried out using the

SVDLIBC[60] library from the Massachusetts Institute of Technology. Out of the

100, 000 tokens identified on Wikipedia, only the feature vectors of 5000 words

were needed in the experiments carried out on Set 1 and 2.

4.3 Automatic Error Filtering Assessment

The PMI- and LSI-based error detectors, as well as their combinations’ have

been experimented with using Set 1. The output from different recognizers has

been aligned against the transcript, then errors were manually spotted to serve

as the testing set for the first class (Error). Correctly recognized tokens were

also identified to serve as the testing set for the second class (Correct).

4.3.1 PMI-based Error Filtering

The PMI-based error detection requires the optimization of a few parameters.

These parameters include the filtering parameter K, the aggregation method

(arithmetic mean, summation, maximum and harmonic mean) used to compute

the semantic coherence score from the PMI measures, and the size of the con-

text window (the neighborhood). To optimize these parameters, a grid search

was carried out. The filtering parameter ranged from 0.1 to 5 with different in-

crements, and the window size ranged from a single token either side, up to as

many as twenty neighbours to either side. The grid search totaled 5040 different

configurations. It is worth noting that when the size of the window increases,

it necessarily implies heavy computations - but since the intended application

(speech transcription) is usually carried out off-line, it was felt there was no need

to take care of the on-line and real time issues. This is detailed later in Section

4.6 of this chapter.
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4.3 Automatic Error Filtering Assessment

Figure 4.2 reports the behavior of the F-measure in terms of the filtering switch

K and for a few window sizes. All the aggregation methods’ plots have been in-

cluded in each subplot. Note that these plots included a limited range and set of

values for the different parameters, to make them reader-friendly. The first thing

to notice here is that the best aggregation method depends on the window size.

In fact, for a larger window size, the maximum aggregation method outperforms

all the other methods, whereas for smaller window sizes, the harmonic mean guar-

antees better F-measure scores. Besides, for bigger windows, the summation and

the harmonic mean aggregation perform very similarly. It can be concluded as

well that the PMI-based classifier performs better with larger window sizes. In

fact, this observation is in concordance with expectation, because the PMI scores

rely heavily on the surrounding context. Therefore the larger the context, the

more reliable the classification can be. It is easier to flag semantic outliers when

the surrounding context is large enough.

4.3.2 LSI-based Error Filtering

We have experimented with several word feature vector dimensions: 50, 100, 200,

300, 400, and 500. All the performance results reported below have been obtained

using the logarithm base 2 in Equation 3.8 and Equation 3.9. The LSI-based

error filtering technique requires the optimization of the threshold parameter K

as well as the term features’ dimensionality, that is the length of the feature

vector representing each word in our corpus. Figure 4.3 reports the F-measure of

the error filtering classifier with both aggregations, MSS and MR, as a function

of the threshold K as well as the feature vectors dimensionality. We notice that

the bigger the dimensionality, the higher the F-measure is, mainly for the MSS

aggregation schemes. However, the larger the dimensionality is, the slower the

detection. Speeding up this process is not the subject of this research work. In

other words, the error filtering improves as the amount of information representing

each word gets larger. This is expected since the LSI-based error detector relies

on the similarity between words which is measured by using the feature vectors

representing each word. This behavior is not manifested with the MR aggregation

though. It appears that when we convert the semantic scores (cosine measures)
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4.3 Automatic Error Filtering Assessment

Figure 4.3: F-measure as of function of K and dimension

to ranks, this dependency to the dimensionality is somehow lost. In fact, we can

observe that almost all dimensions lead to the same F-measure score. Also the

increase in the F-measure is smoother with MR than with MMS. This is actually

better for us, because it gives us a larger range to select the threshold K. The

filtering threshold K is used to control the degree of filtering. That is, as it

gets bigger, the filtering becomes more prone to errors and the precision starts

decreasing drastically. This is demonstrated in Figure 4.3, where the F-measure

reaches a steady state when K becomes large. Therefore, we have to select a

threshold to better trade-off between the precision and recall.

4.3.3 Combination of Error Detectors

In this section, we study the impact of the combination of error detection tech-

niques, namely weighted average, harmonic average and direct combination. Five

hundred-feature vectors long have been selected to represent the tokens in the LSI
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4.4 cROVER Assessment with Set 1

based error detection technique. A neighborhood of twenty words has been se-

lected to compute the PMI scores, and the maximum aggregation schema has

been used to aggregate these scores. Figure 4.4 shows the precision vs recall

graph for the different error classifiers.

The precision vs recall graph in Figure 4.4, highlights the effect produced by

combining error detectors. In fact, all three combination scenarios outperform

the individual error detection technique. The graph also shows that we cannot

guarantee decent recall if precision is high with each individual error classifier.

However, when we combine the classifiers, we could improve the recall ratio with-

out sacrificing too much precision. Our main goal in error detection, is to capture

as many errors as possible without falsely tagging correct tokens as erroneous out-

put. Therefore, we want high precision with as high recall as possible. It appears

now that when error detectors are combined, it is possible to achieve a better

trade off between the recall and precision. The next sections tackle the impact

of augmenting ROVER with the contextual analysis to filter out errors.

4.4 cROVER Assessment with Set 1

In this section, we study the performance of cROVER using the first testing set.

It is worth mentioning that both speech decoders’ confidence scores were not re-

liable, and therefore we have decided not to use them during the voting stage of

the original ROVER process. In fact, almost all the confidence values were equal

to 1 for both decoders. Therefore, if these scores were used during the voting

procedure, no change in the voting outcome was recorded. For this reason, we

only used the frequency-based voting algorithm in the reminder our experiments.

A subset of Set 1, specifically 10% of the data, has been used to optimize the

filtering threshold K. The neighborhood has been fixed to twenty words in the

left and right context, and the maximum aggregation was used during the com-

putation of the semantic coherence scores. For the LSI based error filtering, the

dimensionality of the feature vectors were set to 300. That is, every word is rep-

resented by a feature vectors of 300 float values.

The baseline WER for the different decoder’ combinations is shown in Table 4.3.

The combination IDs for Set 1 have been defined previously in Table 4.2. Note
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4.4 cROVER Assessment with Set 1

Figure 4.4: Error Filtering Combination: Precision vs Recall Graph for all Com-

binations of Error Filters
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4.4 cROVER Assessment with Set 1

ID WER (%)

C1 18.94

C2 19.55

C3 19.56

C4 20.36

C5 24.67

C6 24.45

C7 16.79

C8 16.92

C9 18.21

C10 18.78

C11 19.02

C12 18.56

Table 4.3: Set 1: ROVER’s Baseline WER

that decoders’ combinations C1 to C6 are binary combinations (only two decoders

were combined), whereas experiments C7 to C12 involve trinary combinations.

It is worth mentioning that these WER were lower than the WER of each single

decoder; in other words, the ROVER process always yielded a lower WER for

two and three decoders’ combinations. These error rates are already very low.

In fact, in the context of broadcast news LVCSR transcription, the current state

of the art in terms of WER ranges between 15% to 30%. The lower end of this

range can only be achieved with a limited vocabulary size of up to 10, 000 words.

As explained in the previous chapter, the cROVER approach aims at augmenting

the original ROVER process with a pre-filtering stage to remove the erroneous

words in the composite WTN. Three error detectors were experimented with

namely, the PMI-based detector, LSI-based detector with the MSS aggregation

scheme, and the LSI-based detector with the MR aggregation scheme. Figures 4.5

reports the absolute WER reduction achieved with the cROVER when only two

decoders are combined (experiments C1 to C6). The corresponding numerical

values can be found in Appendix A.

Figure 4.6 reports the absolute WER reduction achieved with the cROVER when
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4.4 cROVER Assessment with Set 1

all three decoders are combined (experiments C7 to C12). The corresponding nu-

merical values can be found in Appendix A. In Figures 4.5 and 4.6, the X axis is

for the experiment ID, and the Y axis is for the percentage of the WER reduction.

For each of the experiments (C1 to C12), we have reported the absolute reduction

achieved when ROVER was augmented with the PMI-based error filtering, the

MSS-based error filtering (LSI), the MR-based error filtering (LSI), and with the

three types of combinations of two error detectors, (namely weighted, harmonic

and direct type of error filtering combination schemes), respectively. In order

to make the plots more reader friendly, we have divided each of the figures into

three subplots, namely, subplot (a), (b), and (c). In subplot (a), we reported the

absolute reduction when the PMI- and MSS-based error classifiers were used. In

subplot (b), we reported the absolute reduction when the PMI- and MR-based

error classifiers were used. In subplot (c), we reported the absolute reduction

when the MSS and MR based error classifiers where used.

The first conclusion we can draw, is that cROVER outperformed the original

ROVER for all the experiments. There is some WER reduction in all configura-

tions, with two and three decoders’ combinations. The analysis of the absolute

WER reduction plots is quite tedious, because we have to always keep in mind the

baseline percentage when reading the absolute reduction from the plots. In order

to highlight further findings, we have decided to plot the relative WER reduction

instead because it encapsulates both the baseline WER of each experiment and

the absolute WER reduction. Figure 4.7 reports the relative WER reduction

when the output of two decoders were combined (experiments C1 to C6). The

corresponding numerical values can be found in Appendix A. Figure 4.8 reports

the relative WER reduction when the output of three decoders were combined

(experiments C7 to C12). The corresponding numerical values can be found in

Appendix A. In Figures 4.7 and 4.8, the Y axis now represents the relative WER

reduction instead. Every thing else in these figures is the same as in Figures

4.5 and 4.6 in terms of the X axis and the reported values for each combination

configuration.

When two decoders’ outputs are combined (Figure 4.7), the highest relative WER

reduction has reached 9.57%, specifically in experiment C6 subplot (a) of Figure
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4.5 cROVER Assessment with Set 2

4.7, when PMI- and MSS-based error filtering were combined through the har-

monic aggregation scheme. It is worth mentioning, though, that when the baseline

WER is low, it is more difficult to achieve a big WER reduction. This explains

why the reduction for both C2 and C4 is the lowest, because the baseline WERs

were already quite low.

We now discuss the impact of combining error detectors. In most experiments

(C1 to C6) and in the three subplots of Figure 4.7, the aggregation of error clas-

sifiers yielded a bigger WER reduction compared to the ROVER baseline WERs.

The direct and the harmonic score aggregation schemes usually yielded better

results. However, in some cases, the difference between all three aggregations is

not significant. This is because when the WER reduction is not substantial, the

number of errors that are being processed is smaller, and therefore it is difficult

to see significant difference between the single error classifier and their combina-

tion. To summarize, it is possible to achieve a higher WER reduction, through

cROVER, when combining different automatic error detection techniques.

When three decoders’ outputs were combined (Figure 4.8), we still see a WER

reduction compared to the ROVER baseline, but it is not as substantial as the

reduction recorded when two decoders were combined. The highest relative WER

reduction has reached 5.04%, specifically in experiment C11 subplot (a) of Figure

4.8, when PMI- and MSS-based error filtering were combined through the direct

aggregation scheme. Furthermore, the three aggregation schemes of the error

detectors yield approximately the same WER reduction in all experiments.

4.5 cROVER Assessment with Set 2

To validate our findings in Set 1, we have created a larger test set, Set 2. This

set is 3.5 times larger than Set 1. A subset of Set 2, specifically 10% of the

data, has been used to optimize the filtering threshold K. The neighbourhood

has been fixed to twenty words in the left and right context, and the maximum

aggregation was used during the computation of the semantic coherence scores.

For the LSI-based error filtering, the dimensionality of the feature vectors were

set to 300.

The baseline WER for the different decoders’ combinations is shown in Table
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4.4. Notice how the WER is higher than Set 1, because all the LMs used in this

ID WER (%)

C1 37.12

C2 36.45

C3 37.32

C4 35.51

C5 32.45

C6 33.10

C7 31.69

C8 31.39

C9 31.45

C10 31.15

C11 31.06

C12 31.30

Table 4.4: Set 2: ROVER’s Baseline WER

experiments have a vocabulary size of 64, 000. The LM-98T28 used in Set 1 is

different because the training data used to create this language model is not the

same one used to train the grammar of Set 1. The combination IDs for Set 2

have been defined previously in Table 4.2. Similar to Set 1, the decoders’ com-

binations C1 to C6 are binary combinations (only two decoders were combined),

whereas experiments C7 to C12 are trinary combinations. Furthermore, these

baseline WER were lower than the WER of each single decoder; in other words,

the ROVER process always yielded a lower WER for two and three decoders’

combinations.

Figure 4.9 reports the absolute WER reduction achieved with the cROVER when

only two decoders are combined (experiments C1 to C6). The corresponding nu-

merical values can be found in Appendix B. Figure 4.10 reports the absolute

WER reduction achieved with the cROVER when all three decoders were com-

bined (experiments C7 to C12). The corresponding numerical values can be found

in Appendix B. The plots are similar to the ones in Set 1, in terms of axis rep-

resentation and subplots division. Similar to the findings with Set 1, cROVER
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4.5 cROVER Assessment with Set 2

outperformed the original ROVER in all the experiments. There is some WER

reduction in all configurations, with two and three decoders’ combinations. To

continue our analysis, let us first present the relative WER reductions plots. Fig-

ure 4.11 reports the relative WER reduction when the output of two decoders

were combined (experiments C1 to C6). The corresponding numerical values can

be found in Appendix B. Figure 4.12 reports the relative WER reduction when

the output of three decoders were combined (experiments C7 to C12). The cor-

responding numerical values can be found in Appendix B. When two decoders’

outputs are combined (Figure 4.11), the highest relative WER reduction reached

7.82%, specifically in experiment C2 subplot (a), when PMI- and MSS-based er-

ror filtering were combined through the weighted aggregation scheme.

In terms of the impact of combining error detectors, the aggregation of error clas-

sifiers yielded in some cases a bigger WER reduction compared to the ROVER

baseline WERs. However, in most cases, the difference between all three aggre-

gations were not significant.

When three decoders’ outputs were combined (Figure 4.12), we still see a WER

reduction compared to the ROVER baseline, but it is not as substantial as the

reduction recorded when two decoders were combined. The highest relative WER

reduction has reached 3.39%, specifically in experiment C12 subplot (b), when

PMI- and MR-based error filtering were combined through the weighted aggrega-

tion scheme. Furthermore, the three aggregation schemes of the error detectors

yield mostly the same WER reduction in all experiments. This is due to the low

WER reduction, which lead to a smaller margin to work with in terms of error

processing.

cROVER’s Summary of Findings:

Based on the findings highlighted in Figures 4.7, 4.8, 4.11, and 4.12, we can draw

the following conclusions:

• The cROVER proposed approach always outperformed the original ROVER.

In fact, cROVER always achieved some WER reduction in all experiments.

This reduction is substantial when the baseline WER is high.
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4.5 cROVER Assessment with Set 2

F
ig
u
re

4
.1
1
:

S
et

2:
R

el
at

iv
e

W
E

R
R

ed
u

ct
io

n
w

it
h

2-
d

ec
o
d

er
C

om
b

in
at

io
n

70



4.5 cROVER Assessment with Set 2

F
ig
u
re

4
.1
2
:

S
et

2:
R

el
at

iv
e

W
E

R
R

ed
u

ct
io

n
w

it
h

3-
d

ec
o
d

er
C

om
b

in
at

io
n

71



4.6 cROVER Computational Requirement

• In some cases, the impact of automatic error detection combination yielded

a larger WER reduction. This is mainly true when the WER reduction is

larger. However, in general, all three aggregation schemes achieved similar

performance in most cases.

4.6 cROVER Computational Requirement

In this section, we describe the CPU time and memory requirements of both

ROVER and cROVER in order to highlight the impact of the contextual analysis

integration within the original ROVER. The reported figures have been collected

while testing the proposed approach with both sets, 1 and 2. Experiments were

run on an Intel Core i7 930 at 2.8GHz, with 6GB of RAM (Linux Kernel 2.6.32).

Each error detection classifier has its own proprietary knowledge source require-

ments, and therefore in this section, we will only discuss requirements of the

PMI- and the LSI-based error detectors. If cROVER is to be used with another

error filtering approach or to be run on different hardware setting, this compu-

tational requirement study won’t hold. cROVER requirements highly depend on

the approach used during the contextual analysis.

4.6.1 Memory Requirements

In terms of memory, there exist two cases: either load all the knowledge sources

in the memory (in our case, all bigrams and unigrams from the Google corpus, as

well as all the words features extracted from Wikipedia), or load only the required

data based on the used language model. The second case indeed significantly

reduces the memory required during the error filtering stage. However, it’s not

always possible to predict all the pairs of words that will be generated by the

decoders. Even when we know all the words in the language model, building all

the possible pairs from the set of unique words will result in a huge set, very close

in size to the whole dataset in the case of large language models. In conclusion,

the memory requirement of cROVER is at the worst case equal to the size of the

dataset composed of bigrams and unigrams in the case of PMI error filtering, or

all the word feature vectors in the case of LSI filtering. These datasets can total
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4.6 cROVER Computational Requirement

in size several gigabytes, which might even introduce a noticeable overhead in the

CPU time usage.

4.6.2 CPU Time

Each experiment has been repeated fifty times, and CPU times were then aver-

aged to compensate for the fluctuations in CPU time readings. Furthermore, only

the required bigram counts and word features have been loaded into the memory.

Table 4.5 reports the CPU time of the original ROVER with both sets, when two

and three decoders’ outputs are combined. Table 4.6 reports the CPU usage of

Table 4.5: Original ROVER CPU time in seconds

Set 1 Set 2

2 Decoders 0.25 1.48

3 Decoders 0.56 2.72

ROVER when augmented with the PMI-based error filtering. Experiments were

run on Set 2, and the context window size ranged from one single word to 50

words. The CPU usage was averaged on the six different combinations of two

decoders, as well as on the six different combinations of three decoders. We can

observe that the CPU usage slightly increases with the size of the context window.

This can be explained by the fact that more PMI score computation is required

at each slot of the WTN when the left and right context is larger. Tables 4.7

Table 4.6: cROVER-PMI: Set 2 Average CPU time in seconds

N(w) 1 5 10 15 20 30 40 50

2 dec. 7.622 7.672 7.710 7.739 7.760 7.830 7.870 7.870

3 dec. 10.261 10.298 10.402 10.504 10.701 10.782 10.797 11.793

and 4.8 report the CPU usage of ROVER when augmented with the LSI-based

error filtering, with both aggregations (MSS and MR). The word feature vectors

dimension ranged between 50 and 500 features. The CPU usage was averaged

on the six different combinations of two decoders, as well as on the six different

combinations of three decoders. We notice here that the CPU time increases with
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4.6 cROVER Computational Requirement

the increase of the feature vector length, especially due to the cosine similarity

score computations.

Table 4.7: cROVER-MSS: Set 1 Average CPU time in seconds

Dimensions 50 100 200 300 400 500

2 decoders 0.6880 0.6910 0.7366 0.7603 0.7976 0.8103

3 decoders 1.4450 1.4510 1.5516 1.5743 1.5990 1.6266

Table 4.8: cROVER-MR: Set 1 Average CPU time in seconds

Dimensions 50 100 200 300 400 500

2 decoders 0.4936 0.4980 0.5000 0.5060 0.5100 0.5206

3 decoders 0.9330 0.9400 0.9513 0.9633 0.9613 0.9743

Figure 4.13 shows the difference in CPU time between the original ROVER and

the context augmented ROVER. It can be concluded that the PMI-based error

filtering required much more CPU time than the LSI filtering.

The analysis above shows that there is indeed an overhead when augmenting

ROVER with any error filtering stage. However, the research’s main goal was

not to optimize the cROVER, but rather to propose and assess the approach in

terms of WER reduction. Therefore, during the implementation of the system,

issues related to optimization and speed were not tackled because they have not

been considered as part of the work scope. Obviously, there are several approaches

that can be used to optimize the CPU usage as well as the memory requirements.

For instance, caching could be used to store probabilities or PMIs of bigrams.

The system should first look into the cache for the already-seen word pairs before

querying the large knowledge repositories (unigram and bigram counts, or word

feature vectors). Furthermore, multi-threading design could guarantee, at some

level, to a faster parallel processing of several slots in the word transition network.

This approach may even be used to speed up the original ROVER as well.
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4.6 cROVER Computational Requirement

Figure 4.13: CPU Time increase compared to ROVER
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4.7 New Voting Mechanisms for ROVER

4.7 New Voting Mechanisms for ROVER

In this section, we study the performance of the proposed confidence-based voting

scheme compared to ROVER’s original voting schemes. It is worth mentioning

that only the frequency based voting mechanism was used as a baseline to assess

the new voting algorithm. This is due to the same reasons explained earlier,

specifically the lack of reliable decoder confidence scores. Similarly to cROVER,

the novel voting scheme has been evaluated using LSI- and PMI-based error

detection techniques.

4.7.1 Voting Assessment with Set 1

A subset of the first testing set has been used to optimize the β parameter in

Equation 3.13. The PMI context window has been set to twenty words. For

the LSI- filtering, the dimensionality of the feature vectors has been set to 300.

The baseline WER for the original ROVER’s frequency-based voting is shown in

Table 4.3. The combination IDs for Set 1 have been previously defined in Ta-

ble 4.2. Figure 4.14 reports the absolute WER reduction achieved with ROVER

when the new confidence-based scoring is used, and when only two decoders were

combined (experiments C1 to C6). The corresponding numerical values can be

found in Appendix C. For each experiment, we have reported the WER reduc-

tion when scores from single error filters, as well as a weighted combination,

and a harmonic combination of these confidence scores, were used in Equation

3.13. Figure 4.15 reports the absolute WER reduction achieved with ROVER

when the new confidence-based scoring is used, and when three decoders were

combined (experiments C7 to C12). The corresponding numerical values can be

found in Appendix C. The first conclusion we can draw so far, is that the new

voting scheme is not able to outperform the original ROVER voting scheme in all

experiments. In Figure 4.14 for example, the ROVER voting outperformed the

new voting scheme in experiments C2 and C4. As discussed earlier, the analysis

of the absolute WER plots is not straightforward because we have to relate the

WER reduction percentages to the WER baseline reported in Table 4.3; we have

therefore plotted the relative WER reduction instead. Figure 4.16 reports the

relative WER reduction achieved by the new voting scheme when outputs of two
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4.7 New Voting Mechanisms for ROVER

decoders are combined. The corresponding numerical values can be found in Ap-

pendix C. Figure 4.17 reports the relative WER reduction with the new voting

scheme when outputs from the three decoders are combined. The highest relative

WER achieved for two decoders is 16.16%, specifically with experiment C6, when

PMI and MR scores were combined using the weighted aggregation scheme (sub-

plot (b)). However, in some cases, the new voting scheme increased the relative

WER by almost 8%. When three decoders were combined together, the WER

reduction didn’t exceed 7%. In some experiments, there has been no change at all

compared to the original ROVER scheme, and in some others, a slight increase

in WER has been recorded. It is also worth mentioning that the combination

of error detection techniques, through weighted and harmonic aggregations, has

not achieved a significant WER reduction compared to individual error filters.

The new voting scheme outperformed the cROVER in some cases, but this WER

reduction is not consistent throughout the whole set of experiments. In other

words, in some experiments, the achieved WER reduction exceeds cROVER re-

ductions, but in several cases, the WER increased. The cROVER approach has

always outperformed the original ROVER, in all experiments and in both testing

sets. This can be explained by the fact that confidence scores from the different

error filters are not reliable. In other words, correct words can have very low

confidence scores, while, erroneous outputs might get high scores from the differ-

ent error detectors. This is in concordance with the fact that the current error

filtering procedures suffer from low recall and precision rates.

The fact that the cROVER approach is relying on these confidence scores, and is

still able to outperform the new voting algorithm can be explained by the usage

of the threshold. In fact, the pruning threshold K, is optimized during a train-

ing stage. Therefore, the resulting threshold takes into account this fluctuation

in the confidence scores. The choice of K encapsulates the information related

to the confidence scores coming from different error filters. This information is

missing in the new voting scheme because of the direct use of raw scores from

error classifiers.
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4.7 New Voting Mechanisms for ROVER

4.7.2 Voting Assessment with Set 2

The confidence-based voting scheme has also been assessed on the second test

set. 10% of the set has been used to optimize the β weighting factor of Equation

3.13. The same configurations as for set 1 have been used for the PMI and LSI

error detectors. The baseline WER for the ROVER system with the frequency-

based voting scheme was reported in Table 4.4. The experiment IDs for Set 2

are defined in Table 4.2. Figure 4.18 reports the absolute WER reduction when

ROVER is used with the new voting scheme, and when two decoders’ outputs

are combined. The corresponding numerical values can be found in Appendix D.

Figure 4.19 reports the absolute WER reduction achieved with ROVER when the

new confidence-based scoring is used, and when three decoders were combined

(experiments C7 to C12). The corresponding numerical values can be found in

Appendix D. Similarly to our findings with Set 1, the new scoring mechanism

does not always outperform the original ROVER scoring system. In some of the

experiments (specifically combinations C5 and C6, in Figure 4.18), the original

ROVER voting outperforms our proposed one. In Figure 4.19, the new voting

procedure outperforms the original ROVER, but in most of the experiments, the

reduction in WER is small. To continue with the analysis of the results, we re-

port the relative WER reduction. Figure 4.20 reports the relative WER reduction

achieved by the new voting scheme when outputs of two decoders are combined.

The corresponding numerical values can be found in Appendix D. Figure 4.21

reports the relative WER reduction with the new voting scheme when outputs

from the three decoders are combined. The highest relative WER reduction has

been achieved when two decoders were combined, Figure 4.20, and the MSS and

PMI scores were aggregated using harmonic combination scheme, subplot (a),

experiment C4. The reduction reached 9.77%. Similarly to Set 1, the difference

in terms of WER, between using scores from individual error detectors, and their

aggregations, is not significant. WER reduction when three decoders were com-

bined is small.
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4.8 Conclusion

New Voting Scheme Summary of Findings:

• Unlike the cROVER approach, the new voting scheme does not guarantee

a lower WER in all the experiments. In some combinations, the original

ROVER voting outperformed our confidence-based voting scheme. The

cROVER approach achieves consistent WER reduction through all experi-

ments with both testing sets.

• With the proposed confidence-based voting, the impact of aggregating con-

fidence scores from several error filters is not significant.

• In some experiments, the new voting scheme achieved a lower WER than

cROVER.

• Similar to cROVER, reducing the WER when three decoders are combined

is more difficult.

• The voting scheme is vulnerable due to the use of unreliable confidence

scores from error classifiers. cROVER seems to be more robust, because

of the use of a decision threshold, optimized through a training stage. The

choice of this parameter was revealed to be crucial, because it encapsulates

the fluctuations in confidence scores from several error decoders. These

scores’ fluctuations are certainly caused by the low recall and precision rates

of the classifiers, where correct words have very low confidences, whereas

erroneous tokens have high scores.

4.8 Conclusion

This chapter has presented a set of experiments carried out to evaluate the

cROVER proposed approach, as well as the confidence-based voting scheme.

The error detection techniques were first evaluated, followed by the assessment

of cROVER on two datasets. The proposed approach achieved nearly 10% in

relative WER reduction, when two decoders were combined, and up to a 5% re-

duction when three decoders were combined. cROVER consistently outperformed
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4.8 Conclusion

the original ROVER technique, in all the experiments and with both datasets.

In some cases, the combination of several error detection techniques has led to

an even lower WER.

An analysis of the hardware requirement of cROVER has been presented. Aug-

menting ROVER with automatic error detection mechanisms was revealed to add

an overhead in processing and memory requirements. It is worth repeating that

the research work’s main goals did not involve optimization of the proposed ap-

proach, in terms of CPU and memory consumption.

The chapter concluded with the assessment of the proposed scoring scheme. Un-

like the cROVER, the improvment in terms of WER reduction was not consistent.

In some cases, the reduction reached up to 16% in terms of relative WER, beating

the cROVER’s lowest WER, but in other cases, the WER has not changed and

even increased in a few experiments.
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Chapter 5

Conclusion

Several objectives were set up for the research presented in this thesis.

Objective 1 A novel framework to improve on the performance of the original

ROVER system. The framework is generic in terms of recognizers, and is

application domain independent.

Objective 2 Scalable framework in terms of the number of decoders to be com-

bined together.

Objective 3 Implementation and assessment of the proposed framework against

existing approaches.

Objective 4 A novel voting scheme for the ROVER procedure

The research work presented in this thesis fully observes these objectives. This

thesis presented an approach, called cROVER, where the c stands for context.

The idea is to embed a contextual analysis within the ROVER procedure in or-

der to eliminate as many errors as possible. The augmented ROVER with error

filtering works as follows: first, the WTN is built from the outputs of different

decoders. Second, an error filtering stage is introduced on the newly built WTN

to eliminate erroneous words. Finally, the voting algorithm browses the newly

updated WTN to select the winner word at each slot of the WTN. The error

filtering has not been applied on the whole transcription to minimize falsely tag-

ging correctly transcribed words as errors. Therefore, upon building the WTN,
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the error detector is only applied on to those slots with discrepancies between

the different speech decoders. To tackle the problem of the error detection’s poor

performance in terms of recall and precision, the authors combined different error

detection approaches, in the hope that the new technique achieves higher recall,

without degrading the precision rate. Three different combination schemes were

presented, namely direct combination, and score aggregation through harmonic

and weighted averaging.

The cROVER approach is a novel approach, and to the author’s knowledge there

has been no similar work. Furthermore, the proposed method is recognizer-

independent, and most importantly domain-independent. This is a crucial char-

acteristic that we worked hard to preserve. In fact, in the speech recognition

field, it is always difficult to propose a novel framework that is generic, especially

in terms of the domain. Usually, there are constraints and requirements related

to the domain or to the nature of the application. During our research, we tried

several approaches and tools to tune and further improve the proposed approach,

but this has come at the cost of sacrificing the recognizer and domain-independent

feature. The author made this as one of the fundamental objectives of the thesis,

to preserve this feature. As far as the scalability is concerned, there has been

no alteration to the original WTN building stage, and therefore cROVER is as

scalable as the original ROVER. Obviously there is the cost of the error filtering

stage, which has been discussed at the end of the thesis. The assessment of the

proposed framework, has been carried out through the use of the widely-used

probabilistic error detection approaches, namely PMI- and LSI-based techniques.

Both techniques were combined and integrated within ROVER. Exhaustive ex-

perimentation showed that cROVER was able to achieve in some scenarios up

to 9.57% in terms of relative WER reduction, when two decoders are combined,

and up to 5.04% when three decoders are combined together. Experiments also

showed that it is possible to reduce the WER even further when error detection

techniques are combined. However, based on the experiments carried out on two

separate testing sets, there has been no significant difference between the different

aggregation schemes.

An analysis of the computational requirements of the cROVER approach has

been presented. Results showed that the integration of a contextual analysis
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5.1 Future Directions

within the ROVER process caused an overhead in terms of CPU and memory

usage. However, since the main goal of this work did not involve any numerical

or implementation optimization of the cROVER approach, the authors are con-

vinced that this overhead can be reduced drastically once factors pertaining to

reducing the hardware requirements, are taken into consideration.

A novel voting scheme has been proposed. The new confidence-based scoring

involves confidences from the contextual analysis, and aggregates them in a

weighted manner with the original ROVER scoring. Experiments have shown

that it is possible to outperform the original ROVER’s voting schemes, reaching

up to 16% of relative WER reduction. However, this improvment has not been

consistent in all the experiments, unlike the cROVER approach, which outper-

formed the ROVER technique in all configurations and with both testing sets.

The author concludes that the new voting scheme is vulnerable because it relies

on the contextual analysis’ confidence scores.

5.1 Future Directions

The work in this dissertation paves the way for the usage of more error detec-

tion techniques in speech transcription. We have achieved notable performance

improvment when integrating an error filtering stage within the original ROVER

procedure. However, the current state of the art in this field is far from commer-

cial usefulness. Having said that, we feel that combining several error classifiers

is a promising direction towards improving the recall and precision rates. Three

simple schemes have been attempted in this thesis. Experiments showed it is pos-

sible to outperform individual error detectors by aggregating them. Therefore, a

more thorough study is needed to identify different aggregation schemes. In this

same direction of thought, it might be more adequate to rely on machine learning

tools towards a more intelligent combination of error classifiers. Neural networks

or support vectors machines can be used to learn which error detector is efficient

for different types of tokens (stopwords, verbs, nouns, etc).

In this thesis, we did not make suggestions as to how the proposed approach

can generalize to non-confidence-based error detectors, such as pattern matching.

The main focus was instead on finding techniques which rely on the thresholding
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of a confidence score to decide whether or not a given token is an error. The sim-

plest way of doing this is to rely on the direct combination scheme we proposed

in this work. If at least one of the classifiers tags the given token as an error,

the composite decision would be then to classify the word as erroneous output.

However, it is crucial to investigate novel ways to do hybrid combination between

probabilistic and non-probabilistic techniques. This can be interesting especially

in the limited domain and vocabulary applications, where non-probabilistic ap-

proaches (mainly pattern matching techniques) perform quite well given the fact

that all possible errors can be exhaustively recorded due to grammar constraints

and limited vocabulary size.

As far as the ROVER voting mechanisms are concerned, we also see it is impor-

tant to investigate more voting algorithms. The fact that the original ROVER

voting schemes rely on the speech recognizers’ confidence score makes the whole

procedure vulnerable. Issues in the confidence measures of speech recognizers are

far from being solved. In our experiments, for example, we were quite unable to

use them as they turned out to be all equal to one (especially the scores com-

ing from the most widely-deployed and trusted commercial engine, Nuance N9).

Our proposed voting scheme that relied on confidence scores collected from error

detection techniques, proved to be not as robust as the original ROVER voting,

even though in most cases, it outperformed it and yielded a lower WER. A more

intelligent voting might need to be investigated. The use of machine learning

tools might be beneficial to decide, at each slot of the WTN, the winner word.

The idea is to come up with a set of features that are reliable enough to lead to

a decent selection of the winner token. A sample set of features, can for example

involve the frequency of occurrence, the word type (stopword, verb, noums, etc),

decoders’ and error classifiers’ confidence scores, etc.

As discussed in the beginning of this thesis, researchers are tackling the problem

of LVCSR from several aspects, including the front end signal processing, the lan-

guage and acoustic modeling, the search, and the post-processing field, including

decoders’ output combination and automatic error spotting and correction. The

current status of LVCSR performance seems to have reached a plateau in terms

of WER, and the next big thing in this area would be to achieve a WER reduc-

tion between 10% and 20%. We strongly believe that this can only be possible
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if all the advances at different levels (front end, post-processing, language and

acoustic modeling) are combined together in a cooperative manner, in order to

take advantage of all the power of the individual techniques and compensate for

their shortcomings.
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Appendix A

cROVER WER Numerical

Values for Set 1

This appendix reports the numerical values for the relative and absolute WER

reduction percentage for Set 1, in table A.1 and A.2 respectively. Each column

holds the WER reduction when ROVER is augmented with an error detector.

When error detectors are combined, the aggregation scheme is first specified,

then the WER reduction percentages for all combinations pairs are reported.
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Appendix B

cROVER WER Numerical

Values for Set 2

This appendix reports the numerical values for the relative and absolute WER

reduction percentage for Set 2, in table B.1 and B.2 respectively. Each column

holds the WER reduction when ROVER is augmented with an error detector.

When error detectors are combined, the aggregation scheme is first specified,

then the WER reduction percentages for all combinations pairs are reported.
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Appendix C

Confidence-based Voting WER

Numerical Values for Set 1

This appendix reports the numerical values for the relative and absolute WER

reduction percentage for Set 1, in table C.1 and C.2 respectively. Each column

holds the WER reduction when the confidence based voting algorithm is used.

When error detectors are combined, the aggregation scheme is first specified, then

the WER reduction percentages for all combinations pairs are reported.
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Appendix D

Confidence-based Voting WER

Numerical Values for Set 2

This appendix reports the numerical values for the relative and absolute WER

reduction percentage for Set 2, in table D.1 and D.2 respectively. Each column

holds the WER reduction when the confidence based voting algorithm is used.

When error detectors are combined, the aggregation scheme is first specified, then

the WER reduction percentages for all combinations pairs are reported.
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