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Abstract 

We present a nen- family of search directions and of corresponding algorithms to solve conic 

!inear programs. The implementation is specialized to semidefinite programs but the algorithms 

described handle both nonnegative orthant and Lorentz cone problems and Cartesian products 

of these sets. The primary objective is not to develop yet another interior-point aigorithm with 

polynomial time cornplexity. The aim is practicaI and addresses an often neglected aspect of the 

current research in the area. accuracy. Secondary goals, tempered bÿ the first, are numerical 

efficiency and proper handling of sparsity. 

The main search direction, cailed Gauss-Xewton, is obtained as  a least-squares solution to 

the optimality condition of the log-barrier problem. This motivation ensures that  the direction 

is well-defined everywhere and that the underlying Jacobian is well-conditioned under standard 

assumptions. Moreover, it is invariant under afEne transformation of the space and under orthog- 

onal transformation of the constraining cone. The Gauss-Newton direction, both in the special 

cases of Iinear programming and on the central path of semidefinite progrâms, coincides with the 

search directions used in practical implementations. Finally, the hlonteiro-Zhang family of search 

directions can be derived as scaied projections of the Gauss-Newton direction- 
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Chapter 1 

Semidefinite Programming 

The expression used as the title of this chapter appeared in the early nineties [4, 411 and is 

attributed to Xlizadch [2], aithough some of the roots are older. Barely ten years after the devel- 

opment of linear programming, some researchers were thinkuig of generalizations to symmetric 

matrices [9]. Even older is the history of Linear Matriv Inequalities, a ciose parent of importance 

to control theorists, Yakubovich during the sivties [87, 881, and even Lyapunov at the beginning 

of the last century (See the historical section of the Handbook of Semidehite Prograrnming [85] 

and the bibliography therein for details.) 

Semidefinite Programming, as a topic of optimization, is barely ten years old 1831 and sits a t  

the bouridary between linear and nonlinear programming. T h e  functions involved in a standard 

fonriulatio~i are linear. This similarity n-ith linear prograrnming explains why several semidefinite 

algorithnis arosc as extensions of standard linear prograrnming aigorithms [3]. But the cone 

constrairit. riiaincaining nonnegative eigenvalues of the variable matrices, is on the other hand, 

nonlinear. lloreover, the major applications of semidefinite programming are relaxations of non- 

Iinear programs and nonlinear control problems and the solution techniques by interior-points 

metbods are nlodernizations of classicai results of nonlinear programming [24]. 

The first chapter introduces the probiem ana the major concepts (primal-dual pair, optirnaiity 

conditions. feasible set, interior, central path, barrier) in a classical manner. Every result derived 



CH-4PTER 1. SEkID E F N T E  PRO G R ~ L \ I M I ~ ~ G  

in this chapter is well-known and included here to contextualize the workl express the basic 

definitions, and estabiish the notation. 

We use sernidefinite programrning as the prototypical exarnple of cone Linear programs becailse 

it offers the right level of generality The two other self-dual cones of any practical value at this 

tirne: the nonnegative orthant and the Lorentz cone, have specialized algorithms. kloreover, they 

are easily embedded in semidefinite cones as we will see in Chapter 4 where we discuss implemen- 

tation and n-here we explain how our algorithrns handle problems over Cartesian products of the 

three cones. 

The main objective of this work is to  introduce a new search direction based on the solution 

of a least-squares problem and to implement an interior-point algorithm that takes admntage of 

the strengths of this direction- Historically, interior-point algorithms for sernidefinite programs 

were first developed by estending algorithms for linear programs. They were then given strong 

and more general foundations by the work of Nesterov and Nernirovskii [63]. More recentl-; an 

abstract approach to interior-point algorithms based on Euclidean Jordan algebras [7] has pro- 

duced unified convergence results bu showinp how one can extend "word-by-word" certain iinear 

prograrnming algorithms to sernidefinite problems, a t  the cost, we should note, of syrnmetrizing 

the complementarity condition. Xnother generalization of linear programming to conic programs, 

via the v-space approach. is developped in [82]. By contrast, we mocivate the search direction from 

a classical nonlinear perspective. We investigate the main characteristics of the search direction, 

compare and contrast with the best practical directions. The final experiments exhibit a robust 

and accurate algorithm- 

1.1 Standard Dual Pair 

The problem, in the formulation Ive cal1 the pr-imal, is 

( a  min {(c, X) 1 A[X) = b, X E ST), 



where b E Rm, the standard Euclidean space; Sn is the space of real sq-minetric matrices of order 

n equipped with the inner product 

. . 

(X, Y) := trace (XY) = XijYii. 

For X, Y E Bmx n, the inner product is (X, Y) := trace (XtY) and [[XII denotes the Frobenius norm, 
I 

the norm induced by the inner product, (IIXil := (X, X)'). The constraints are espressed by a 

linear operator A, 

A :  S R +  R r n  A(X) := [..il 
constructed from symmetric matrices Ai, for 1 5 i 5 m. Finally, S :  C Sn represents the  cone of 

positive semidefinite matrices, the closure of S y +  c S y ,  the cone of positive definite matrices. A 

set C is a cone if 

The following properties are useful. 

a Sn, bas non-empty interior; 

ST contains no lines; 

Sn, equals its polar cone, (Y 1 (Y, X) 3 0,VX E Sn,}. (Piote: this is either called self-duality or 

self-polarity.) ; 

ST is homogeneous: for any pair X i  , X7 E S3+,  there is an element of the automorphism 

group of S: that will map XI to Xz. 

The last two properties are equivalent to what Xesterov and Todd [62], called self-scaled. This is 

crucial to the development of an abstract approach to interior-points dgorithms using self-scaled 

barriers. This equivalence of self-polarity and hornogeneity to self-scalability was noticed by Guler 



[39j who also pointed out that homogeneous self-polar cones had been classified by certain Jordan 

algebras. 

Few cones possess all the s above propertie. Only three have found significant practical appli- 

cations at this tirne: 

The Lorentz cone, an extension of relativistic space-time: IL: := { x  E Rn+' [ xo >: 

The positive semidefinite cone: 9: := {X E Sn 1 Vx E En, xtXx 2 O): 

The nonnegative orthant: ET := {x E Rn 1 x 2 O). 

The other cones are the positive semidefinite macrices with compIex or n-ith quaternion entries 

and an exceptional one, as well as direct sums of d l  of these cones. 

We denote the prima1 feasible region of (1-1) by 

and the stn'ctly feasible prima1 region by 

This is also known as the  interior, though it should properly be called the relative interior. 

Problem (1.1) arises naturally in Control Theory [15, 831 but came to prominence as a relax- 

ation of hard Combinatorid Problems [31], after the introduction of the LovAsz theta function 

[53], the Stable-Set relaxation of Lovhz and Schrijver [52], and the breakthrough approximation 

of the Maxcut problem by Goemans and \Trilliamson [32]. Another application of semidefinite 

programming is the convex approximation of continuous non-convex problems. We briefly return 

rio this topic in chapter 5 .  



Since the prima1 probkm (1.1) is convex, the techniques of conves duaiity described by Rock- 

afeIIar [ T l ?  701 apply and R-e can derive a dual prograrn via the Lagrangean function, 

T ( X , y )  := (C,X) t (y, b -A(X)), 

n-here the second inner product is the standard inner product on Rm, namely 

Following RocMellar ([XI] section 4), a dual problem is given by 

{ { y }  Y XES, = mai{min~{(C.X) i (y ,b -AIX))}}  Y XES, 

where A* is the adjoint operator of A, defined by 

This definition of A' results from the following 

Since the inner minimizarion minxf sl ((C - A* (y ) .  X) +(y, b)} is bounded only if C--d'(y ) E S:, 

the inner product (C - A*(y ) ,  X) attains its minimum at  zero and we can simplify the drial 

prograrn to  

(ouai) mau A * ( ~ ) + Z = C . Z E S ~ } .  



In program (1.2), which we cal1 the dual, we introduced a slack variable Z ro obtain an equdity, 

the customary traasformation. i lTe denote the dval feasible region by 

and the strictly feasible dval region by 

Under the Slater conves constraint qualification for both problerns. (3!+ f 0 and F:+ f O), 

it is well-known that the optimal values of the primal and dual problems are equal and attained, 

a result we derive from our treatment of the central path. Moreover the set cf optimal solutions 

of both primal and dual problem is bounded. We therefore obtain a complementarity condition: 

Let X E FP and [y, Z) E rD and consider 

The I a ç t  inequality is obtained from XI Z E S a  and self-polarity of SIZ,. For triple (X' , y*, 2' ), a n  

optimal solution to a primd and dual pair with no duality gap, we therefore have that (Z', X') = O 

and write a set of equations describing optimal solutions (X,y, 2) E Sn, x Wm x S:, 

A(X) = b, (primal feasibility); 

A' (y) +- Z = Cl (dual FeasibiIity); 

(Z, X) = O, (complementarity). 

Note that the complementarity equation could as well be written as ZX = 0. 



1.2 Derivatives 

Before we go further in the development of semidefinite programming theory, n-e need to fis the 

concepts and the notation for the derivative of matris functions. For abstract spaces, the reader 

is referred CO Wouk [86], and more specifically for matris functions, Graham [26] or Magnus and 

Neudecker [53]. 

Consider a function F : V -t W where, in Our case, the spaces V and W usually are symmetric 

matris spaces, standard Euclidean vector spaces (Rn) or Cartesian products of those inner product 

spaces. Whenever we speak of the derivative of such a function we mean the Fréchet deritztive 

of F evaiuated at v. the unique Iinear operator we denote iaF(v)l, satisfying, for al1 d € V, 

We use the notation [aF(v)] to highlight the operator nature of the derivative ([DF(v)] : V t W). 

The second derivative is often defined as a map V + IV -t WI but, foiiowing [86], we choose to 

view the second derivative as an operator [ ~ ' F ( v ) ]  : V  x V -+ W satisfying, for d l  d E V, 

Higher derivatives are defined and denoted sirnilarl- The ith-derivative, is denoted (9 ' ~ ( v ) ] .  

For a function F : U x V + W we use the following notation for the parcial derivative of F with 

respect to \miable u E U (respectively, variable v E V) 

to indicate the linear operators such that 



In the special case of particular interest where F is a functional (F : V i E), the first derivative 

is an element of the dual space and we use the gradient notation, VF(v), to identify the unique 

element of the prima1 space V satisfying, for every d E V. 

Similady for the second derivative, 

(d. v 'F (v )~ )  = [Zl'~(v)l(d. d). 

Ln the practical matter of calcülating derivatires, it is sometimes eaçier to compute VF(v) than to 

find an expression for the operator [DF(v)l. As an emmple, consider the standard barrier function 

for the cone of semidefinite matrices, 

By a result of Lewis [SI], for a spectral function F : Sn t l2, the values of which can be elcpressed 

as F(X) = f(A(X)) for some function f : Rn i IR, and eigentdue function A : Sn + Rn, the 

gradient can be found via 

VF(X) = UtDiag (Vf(A 

In this case, 

(X)))U,  where UtDiag (A(X 

= -f (h(XI 1, where f ( x ]  := log x i .  



The gradient is therefore given by 

For future reference, the derivative, obtained from (1.4), and the gradient of FtX) = -logdet(X) 

are 

[PF(X) ] I - )  = -(x-' , (-)), OF(X) = -x-'. (1 -5) 

Some more involved calculations [72] produce the second derivative and Hessian. Their expressions 

) = (Y ,x - 'YX- ' )  = I I Y X - ' I ( '  2 O. Moreover if Y # O ,  

[~ 'F (x ) ] (Y ,  Y} = I ~ Y x - ' I I '  > O. This means that F(X) = - logdet(X) is a strictly convex function 

on its domain. 

More properties of this barrier derive from its derivatives, but the above suffices for Our 

esposition. 

1.3 Central Path 

Since the work of Fiacco and hlcCormick [24] on barrier techniques, later specialized by Nes- 

terov and Nemirovskii [63] to self-concordant barriers, the preferred algorithrns for our problem 

fall within the class of interior-point methods. These bear a striking resemblance to homotopy 

methods of differentiai equations- 

Using a barrier on the cone S:,, for esarnple - logdet(X), we construct a family of strictly 



conves primai-dual pairs pararneterized by the scalar p > 0, 

inf {(c,x) - plogdet(X) 1 A(X) = b.X E 9:). (LTa) 

sup {(b. IJ) + ~ l o g d e t ( Z )  / A*(y) + Z = C. Z E s:} .  (1-Tb) 

These two programs are dual in the sense of Fenchel, as n-e non- proceed to eshibit. .A concise 

version of this derivation is found in [51]. Consider the following transfomation of the primal, 

where 

f  (X) := (C, X) - L(X), L(X) := plogdet(X), g (v) := i{bl (v), 

the Last equation representing the indicator function of the set (b). More generall'; the indicator 

function of a set C is 

O i f x ~  C, 
ic (x) := 

(+a otherwise. 

We calcuiate Fenchel conjugates, 

L'(Z) := sup {(z. X) - plogdet(X) 1 X E 52); 

g ' ( ~ )  := SUp {(z, Y) - i { b ) ( ~ )  1 Y E ~ 3 ~ )  

= sup ((2, b) 1 Y E Rrn } 
= (z. b); 

f =  (Z) := sup {(z. X) - (C, X) - L(X) 1 X E 8:) 

= sup {(z - C, X) - L(X) 1 X E s:) 
= L-(Z-C).  



Using these conjugates, we eqress  a dual program, 

Consider the inner supremum, 

Its optimaiity conditions yield 

Since we have a closed form for the solution of the inner supremum, we simpl&- (1-8), 

L ( A  (y - C) = sup {(-A= (y ) - Cl X) i p log det (X) [ X E $ 2 )  

= ( -dœ(y)  - Cl p(clœ(y) + c)- ' )  f plogdet(v(A0(y) i c)-' ) 

= -pn + plogdetIp(Ag (y )  f c)-' ) 

= - p ~ ~ i p n l o g p - p l o g d e t ( A œ ( y ) + C ) .  

We discard the constant term to obtain a simpiified dual program, 

v (D)  = - inf {-vlogdet(d=(y 1 t C) i (y, b) 1 y E IBm} 

= s ~ p { p l o ~ d e t ( t l * ( ~ ) + ~ )  -(y,b)  1 y E E t m )  

= s u p { p l o g d e t ( ~ - d ~ ( y ) )  +(y ,b)  1 y E B ~ )  

= sup{(y,b)-plogdet(Z1 I A œ ( y ) + Z - C = O . y  E R ~ , Z E I ~ ) .  

where we introduced the dual slack Z to make esplicit the implicit cone constraint and to highlight 

the primal-duaI symmetry. We now see that the two families of barrier problems (1.7) introduced 

in this section are indeed dual to each other. 



The solutions to the pair of programs (1.9), parameterized by p1 is of crucial importance to 

the development of interior-point algorichms. We explore them further. 

(P,) inf { ( c ,  X) - plogdet!X) 1 A{X) = b) ,  

(D,) sup{(b,y) i p l o g d e t ( Z )  1 ci*(y) + Z  =CI. 
W e  observed before that the objective function of the primal is strictiy conves, %hile that of the 

dual is strictly concave. From this convesit_v, we c m  show [5Ï] that the esistence of interior points 
- 
X E F!, anci (iJ,Z) E 3% irnplies that  the primal-dual pair (1.9aJ.gb) has a unique solution for 

each p > O. To see this, consider that for each feasible X, 

Therefore (f, X) 

(Z. x) 

and (C, X) differ by a c onstant. Moreover. since X is feasible we c m  restrict the 

primal feasible set without dect ing the optimal solution to obtain 

min {(z,x) - plogdet(X) / A(X) = b, ( Z , X )  - plogdet(X) 5 ( f , X )  - p logde t (~ )} .  

Since the feasible set of tiiis program is compact, nTe conclude that (1.9a) attains its optimal 

solution (and we justifiably write min instead of inf). Moreover, since the objective function is 

strictly convex, this solutiori is unique. 

A similar argument r~iay be developed for (1.9b). Therefore under the Slater constraint qual- 

ification, the pair of progranis (1.9) has a unique solution for each barrier parameter CL > O. We 

stress that it is possible CO espress this solution using the optimality conditions of either programs. 



For e~arnple, from the Lagrangeans, 

( X  := (C,X) - plogdet(X) i (y, b -Aix)), 

YD(X,y,Z) := (b ,y )+pIogde t (Z} t (X ,C-Z-A ' (y ) ) ,  

we express the optimality conditions of the pararneterized primal family as 

and of the dual farnily as 

C-Z-Aœ(y) 

O = ~ ~ D ( X , Y , Z ) =  b -A(X)  - [ pz- x 

Without transforming the solution set we add Z := pX-' to (1.10) to obtain from either of the 

log-barrier problems, 

The reader must be careful here. In a sense, the optimal solutions of (2.9a) are equ iden t  to the 

optimal solutions of (1.9b) since both are described by (1.12). But an implementation based on an 

attempt to solve (1.9a) by some iterative scheme leads to what is known as a primal interior-point 

method and is less desirable than an approach based on (1.12). 

For al1 p > 0, the set of unique solutions to (1.12), which we denote (X,, y ., 2,) is called the 



primai-dual central path. (See Figure 1.1.) Xote that  

This last relation provides one link between the solution to our probiem (1-1.1-2) and the parame- 

terized farniiy of prograrns (1.9a71.9b). -4s the parameter p tends to 0, the sequence of solutions to 

(1.12) converges to  a point n-here the complemencarity equation (1.3~) is satisfied and the original 

problem is solved. This is the basis of ail primal-dual path-follon-ing interior-point algorithms. 

Figure 1-1: Centrai Path 

They solve, more o r  less accurately, the system (1.12), or an algebraically equivalent formulation 

of this system, for decreasing values of p. 

1.4 Nonlinearity and Smoothing 

The perturbed complementaritg equation (1.12~) is n ~ i t t e n  in terms of an inverse matrk.  An 

aigebraically equivalent formulation may be preferable. In practice, two transformations are used- 

The first one is to transform (1.12~) by a multiplication by X to obtain 

This transformation is not inconsequential. Informally, it reduces the nonlinearity of the system 

with the aim of accelerating Kewton-lihe methods. More precisely, it enlarges the radius of 



quadratic convergence, 

Consider a function F to u-hich we apply a Newton-like method to find v* such that Ftv*) = 0. 

llre know ([20] Theorems 5.2.1 and 10.2.1) that the radius of quadratic convergence is bounded bj- 

a measure of the relative noniinearity of F given by &. In this elpression k is a smali constant 

that depends on the method used (Xewton or Gauss-Sewton, for example), the scalar P provides 

a bound, 

I I D F ( V - I I - ~  11 5 P, 

and y is a Lipschitz continuity constant for [9F(v)]  in a baü around v'. To obtain an equivaient 

eqxession more s ip i fkan t  to numerical analysts, we take CT;;~[~F(V*)] for /3 and, for y, we take 

maso,,[3F(v)l in the neighborhood of v'. Thus, we obtain a bound closely related to the 

condition number of the  Jacobian, 

With this espression in mind consider, in turn, both formulations of the complementarity condition 

(1.12~. 1.13) as we approach the optimal solution. In the first case, say F(X, Z) := Z - pX-' , we 

have 

[9F[X, Z)l(dx, dz) = d z  + fl-' ~ X X - ' .  

-4s the optimal solution X* is almost always rank deficient, the n o m  of X-' can be arbitrarily 

large and we cannot bound a,,. This implies that the proven radius of quadratic convergence 

is esceedingly small. 

On the other hand, for the espression that we claimed to be less nonlinear, narnely F(X, Z) = 

ZX - FI, we can compute the derivative as 

and we bound cr,, bu I f  Zll i- IIXII. Therefore, fcr problems where the Jacobian is of full rank (a 

condition, as we will later see, resulting from standard assumptions) and where we can therefore 

bound onin, we obtain a nonzero radius of quadratic convergence. 



The second reasoo to formulate the complementarity as (1-131, even more directly related 

to the condition number, is that, in the Iimit, an ill-conditioned system may prevent accurate 

solutions. This has been the bane of barrier niethods and a reason of their disappearance in the 

simies, before the current revivd. While it is known that the Iog-barrier ill-conditioning does not 

affect interior-point solutions of standard linear prograrns, it seems clear that current state-of-the- 

art  semidefinite programming codes are deeply affected by this ill-conditioning. Since accuracy 

of the solutions is the major focus of our work, we mil1 return in more detail to the conditioning 

problem. 

For future reference, after chis transformation. the sequence of s-stems to solve for decreasing 

values of p defining the central path becomes 

1.5 Smoothing and Symmetrization 

The transformation of Z = pX-' into ZX = pI has one unfortunate consequence: The residual 

(ZX - pI) is not symmetric unless X and Z commute and therefore a Newton step is not possible 

on the system (1.14) since it is overdetermined. 

From the start, possibly influenced by the success of linear programming codes where this 

problern does not arise, practitioners have eliminated the problem by symmetrization. The AH0 

direction, for esample, projects both sides of the complementarity equation onto the subspace of 

symmetric matrices with the aid of the operator 

From a point, (Xk, y k, Zk), and a parameter p > O the optimality conditions for the param- 

eterized family are symmetrized. linearized and a Xewton system is solved for (dx, du, dz). We 



cal1 this set of equations the Umcaled Symmetrïc System? 

The direction (dx, d, , dr ) obtained from (1.15) is knon-n as the A H 0  direction [ L i _ ] ,  experimencaiiy 

one of the directions leadhg to the most accurate solutions [?SI of problem (1.1J.2). A11 the 

Monteiro-Zhang family of directions [601, which includes most directions extensively used and 

analyzed, can be obtained from scaling the cone [Ï8] then solving (1.15): Consider an element of 

the automorphism group of Sn expressed by the non-singuIar mat rk  P and let 

This can be viewed as m-orking on the scaled prima1 problem 

to which corresponds the scaled dual problem 

This dual can also be obtained from (1.2) by the transformation 

The symmetric direction for the family of parameterized programs in this transformed space is 
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therefore given by 

In this sense, the symmetric system (1.15) is the basic direction-finding paradigm for the Monteiro- 

Znang famil-  The popular path-folIowing algorithms differ -by the scding matriu P. The first 

directions, historically, are listed in Table (1 -1) dong tvith the implementations using them. These 

directions were not discovered via the scaling approach but it provides a unifying view. 

Table 1.1: Instances of Monteiro-Zhang scaling mat r i -  P of equation (1.16)- 

P 
1 
z9 

[xt (xizx+ )-+xi]+ 

Table 1.2: Major Semidefinite Solvers 

Direction 
AH0 [4] 

HKM [41, 48, 561 
NT [62] 

CSDP 
SDPA 

SDPPACK 
SDPT3 
SeDuMi 

Solvers 
SDPPack,SDPA4,SDPT3 

CSDP,SDPA,SDPT3 
SDPA,SDPT3,SeDuhli 

http://wn-~.nmt.edu/'borchers jcsdp.htm1 [13: 141 
http://www-neos.mcs.anI.gov/neos/sol~ [26, 28, 271 
http://cs.nyu.edu/cs/faculty/overton/sdppac/sdppahtml [.LOI 
htr;p://~t'~i"zi'.rnath.cmu.edu/'reha/sdpt3.html [8l] 
http://wwiv2.unimaas.nl/'sturm/research.html[77] 



1.6 Generic Symmetric Algorit hm 

Frorn the development above nre state Xlgorithm 1-6-1, a generic approach to solve primai-dual 

semidefinite pairs using the symrnetric form of the optimality conditions. This is not meant as 

an implementation but rather as a birds-eye rien', able to describe di currently popuIar search 

direction-based algonthms. 

Algorithm 1.6.1 Generic Incerior-Point for h4onceiro-Zhang family 
Given E > 0; {Tolerance) 
Given X, y,  Z; {Must satis@ some condition) 

I 2 .X ) .  
P =  rn , {Initial barrier parameter) 
while p > E do 

Choose scaling P; {Possibly dependent on X, 2)  
Choose centrality O < -r c 1 ; (According t o  some condition)) 

(Z.X\. 
P + T  I T ' ,  {Update target) 
Solve ( 1.20) ; {Scaled ,4110 direction) 
~ h o o s c  step length or; {To maintain positive definiteness) 
X = X t d x ; y  = y +  d , ; Z = Z t d z ;  {Update iterate) 

e n d  while 

ité have described path-~~~~~~~~ing algorithms based on the Monteiro-Zhang family of directions 

from this admittedly high-level view to highlight the close kinship of ail popular search directions 

in semidefinite prograrnming. It may be worth noting that hfonteiro and Zhang do not provide the 

only unifying view. There have been other successful attempts, notably Monteiro and Tsuchiya 

1581 and Kojima. Shindoh, Hara [48]. \ le chose to highlight Monteiro-Zhang because it includes al1 

the inlporta~it directions currently in use whether they are important for theoretical or practical 

reasoris- 

An oh-ious question arising from this approach concerns the properties that  can be inferred 

froni their cspression [TB].  Another is whether a different basic paradigm can yield another farnily 

of directions with their own properties, strengths and uveaknesses. This is pertinent since it is 

sr;ill unclcar which direction, among the Monteiro-Zhang family or elsewhere, is "best". Even the 

measure of efficienc~ is debatable since the algorithms n5th the lower polynomial bound on the 

number of iterations are often sIower thari the algonthms used in practice. 

The work described iri the following chapters is such a new paradigm. The main direction- 



finding system, which we introduce in the nest chapter and cd1  the Gauss-'l'ewton direction, is 

to be viewed as the A H 0  direction, that is, as t h e  unscaied basic approach, to which any of the 

scalings of the hgonteiro-Zhang family can be applied. Work on such a scaling has already started 

[4T] and a polytime algorithm has been demonstrated. We are concerned here with the unscaled 

approach, its own merits and cornparison a-ith XHO, 



Chapter 2 

Gauss-Newton Direct ions 

We non- proceed to describe the fundamental search directions we intend to  use as the b a i s  of Our 

interior-point aigorithms. R e d 1  the pararneterized family of programs whose soIution set define 

the central path 

and their associated smoo thed optimality conditions, 

It is important to remark, once again, that F, maps Sn x Rm x Sn to Sn x Rm x W. 



2.1 Over-Determined Systems 

The goal of a pach-following algorithni is to approsimatelj- follon* the  central path determined 

by F,(X,y, 2) = O. This is a nonlinear and over-determined system of equations. In a classical 

setting, it would generally be solved by a globally convergent minimization algorithm applied to 

the  norm of F,. We proceed to describe this classical approach. 

To simpIify the  notation, let 

v := Sn XErn X Sn, 

v := (X, y, Z) E 'Sr. 

Consider the norm 

ivhere eadl iriner product is the appropriate one, the trace inner product for the matrices Fd and 

Fc, and the Euclidean inner product for the vector f,. Observe that 

A solutiori to F,(v) = O is therefore a solution to  min cp(v), a nonlinear lest-squares problem. To 

deriw an algorichrn for the latter, i t  is usual to scart from a linearization of F, at  a given point v,  

and then proceed to find the best solution of tliis linearization in the least-squares sense, that is, 

to find a solution d, := (dx, d,, c i z )  of the problern 
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We c d  the vector dv implicitly defined by (2.4) the Gauss-Newton direction. 

From the definition of the Gauss-Xewton direction (2.4) the over-determined linear system we 

intend to solve in a least-squares sense is 

I , and F, = 

W e  interchangeably use two operator formulations for this system, 

where the  operators 2 and X are defined by 

Z : S n + M n ,  S(M):=ZM and X :  X(M):=MX. 

Using the now commori notation for pseudo-inverses, we succinctly express the Gauss-Kewton 

direction d, as 

( Gauss-Newt on direction) d, = -MF,(v)]~F,(v). (2-8) 

Where A~ is the Moore-Penrose inverse of A,  the unique operator satisfying the four condit,ions 

1- A A ~ A  = A, 

2. A ~ A A +  = A+, 



This is also called the (1 ,LI 3,4)-inverse by Ben-Israel and Grevitille [IO], still the authority on the 

subject. 

The pseudo-inverse notation has the advantage of eqxessing not just a least-squares solution 

to (2 .5) ,  but, when the Jacobian is rad-deficient, espressing the solution of minimum norm, the 

solution to 

min { lldvll 1 d. E a r g m i n { ~ ~ ~ ~ ~ , ! v i l d ~  + F,(v)!( ( d, E 8 7 ) ) .  (2.9) 

To prepare the way for an implementation, we aIso use an equivalent matrix formulation for 

the over-determined sptem,  

[Jgd dv = 

d, := svec(dx) 

d, := svec (dz)  

fd := svec ( F d )  

f, := avec (Fc ) . 

The operator svec ( - )  : Sn - IRt(") multiplies the off-diagonal elements by fl and then stacks, 

column by column, the upper triangle of a symmetric ma t rk  into a vector of size equd  to the 

triangular nurnber of n, 



Its inverse operator is smat ( - )  : t Sn- For example, if X E Sn, n = 3, 

The fi scaling ensures that a-e maintain the metric. (X. Z) = (svec (Xi , svec (Z)). More formally, 

define the index function 1, and its inverse 

so that if X E Sn and svec (X) = x, then for any 1 5 i < j 5 n ,  we have the component identities 

7 

The corresponding operator, avec (-1 : W + Rn- , stacks the column of any mat+ into a 

vector. We define the index function 1, and its inverse 

k-1 k-7 
k n )  := ( k - n  l n 1 ~ 1 ~ 1 + 9 ~  - 

so that if X E P/I[" and avec (X)  = x, then for any 1 5 i 5 j 5 n ,  we have the component identities 

The binary operator 43 : Sn x Sn i IWP' 'ln), the asymmetrîc Kronecker product, is defined 

by the identity 

avec (AXB) = (A 0 B)svec (X) . 

The rnatrk A 0 B is of size n2 x t(n) and we find each entry by using bases for the domain and 
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CO-domain. Let a basis for Sn be 

n-here ek  is a vector in Rn with a I in position k and zeros elsewhere. To find entry (k, 1) of 

A @ B, where 1 = I , ( i ,  j ) ,  and k = Z,(i,î, n), we first consider the case i + j. By definition of 0,  

ejei)B) 

- - - eL avec (AeieiB + Aei e;B) a 

where the notation Ai is meant to indicate column j of matris A, and Ai: is row i. With similar 

calculations for the case i = j. ive obtain the kl component as 

We later need the follo~virig bounds. 

Lemma 2.1.1 For any matriz X E Sn, [II O XII = IIX S 111 = J+IIXII 5 ~ ~ I I X I I ~ -  

Proofi The first equality is cIear since the entries of IIX 2 III are permutations of the entries of 

111 8 XII. For the second ccluality. let 
tlnl 



be a decomposition of X into an orthonormal basis of Sn. Then 

where we used the the orthogonality of the matrices {Ei 0 1) and that  (Ei 0 1, Ei 8 1) = W .  - The 

last inequality is derived from a standard resuk, [lXll 5 fillx1 l t  ([43], page 313). 

Proof: Again the first equality is clear. For the inequality, 
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The last equdity is derived from lismat (vf I I  = I ~ v I I .  O 

The matrix-vector formulation (2.10) of the Gauss-Ken-ton system highlights the fact that the 

left-hand side Jacobian ma t rk  Jgn operates on a vector space isornorphic to Sn x IRm x Sn. 

If a feasible initial vector vo = (Xo, yo, Zo) is provided, then feasible iterates based on a 

constrained least-squares problem may be considered. In con t r a t  to (2.91, the defining problem 

for this direction is a constrained least-squares problem, 

We will cd1 the solution to (2.14) the Feasible Gauss-Newton direction. Prima1 and duai feasibility 

are maintained and we find the constrained least-squares solution to the linearization of the 

smoothed complementarity equation- 

If the system (2.7) is non-singular, an assumption we will justify shortly, we can find the Gauss- 

Newton direction by solving the normal equations. This is not what should be done nurnericaily for 

accurate solutions since the condition number usually worsens, but it provides a mathematically 

useful expression. The normal equations are 

In equ iden t  operator notation, 

where the adjoint operators are 





Using these espressions. it is possible to implement a Gauss-sen-ton based algorithm chat is both 

fast and spares memory. It cornpetes with the best current solvers in terrns of efficiency. But 

Our aim is to obtain as rnuch accuracy as possible, a goal the normal equation approach cannot 

achieve. 

2.2 Properties of the Directions 

Before m-e use the  Gauss-Newton directions in an aigorithm, we consider the propenies that 

motivate its use. 

2.2.1 Well-Defined 

To deveiop algorithms based on the Gauss-Yewton directions, we need to provide conditions under 

which these directions are properly defined. 

Lemma 2.2.1 Let A,,,, B, ,, be matrices with m 3 n and p 5 n. Also let the columns of PB 

be a basis for the nullspace of B. If the mat* APB is of full rank then the optimal solution of 

min [[Ax - bl[ 1 Bx = { O> 

is x = P ~ { A P ~ ) ~ ( A P ~ ) } - '  (APB)b  = P B ( A P B ) ~ ~ .  

Proof: Let v' be the optimal value of the above program and let x = PBy, Shen 

vœ = min(1lAx - b[l i Bx = 0) 

= rnin(l1APsy-b/l) 

= min { y t ( ~ ~ e ) t ( A P B ) y  - 2 b t ( A P ~ ) y  + btb} . 



Since APB is of f d l  rank then (APB)'(APB) is positive definite. the objective function is therefore 

strictly conves and the optimization problem lias a unique solution 

The result foLlows by the transformation x = PBy.  0 

From Lemma 2.2.1 we obtain that the Gauss-Newton direction is weU-defined for strictly 

feasible points under a weak assurnption on the primai constraint, that A is surjective. This 

assumption, for theoreticai purposes, is made without loss of generality since surjectivity of A 

is equivalent to the matrices A l , .  . . , A, being linearly independent, a condition we enforce by 

pre-processing of the problem at  the onset. 

Lemma 2.2.2 If A is  surjective, the Gauss-Newton direction obtazned fi-orn (2.9) m s t s  and is 

unique for al! X E S:+. Z f $:+. (The Jacobian is  fdl-rank) 

Proof: We show that [BF,(v)] is full-rad by considering its kernel. We espress [9FF(v)]dV = O 

as 



From (2.21a) we obtain dr = -A*(d,) and by (2.24c), Zdxx-' = Aœ(dU) .  Non- 

The last equation implies dx = O since both X and Z are full rank. Substituting baclr into (2.24~) 

we get dz = O. Finally, the surjectivity of A yields d, = O. The result follow-s by Lemrna 2.2.1 

with the identification B = O and A = [9F(v)]. 0 

Xote that dx and dz are always uniquely determined and du is uniquely determined if A 

is surjective. Failing this condition we rnay define the search direction as the best least-squares 

soIution of (2.9) to  regain uniqueness. 

Note also that the result requires only positive definite X and Z. This is in contrast to the A H 0  

direction, which may fail to exist, though sufficient conditions for existence are  known- Monteiro 

and Zanjacorno [59], for example, show that the AH0  direction is well-defined if l l ~ f  XZ? - pIII 5 

$; while Shida, Shindoh, and Kojima [73] show that ZX t XZ E $: is sufficient. 

Corollary 2.2.3 if A is surjective, the feasible Gauss-Newton direction obtained from (2.14) 

exàsts and is unique for all X E $ni+, Z E S:+. (The projected Jacobian as full-rant.) 

Proofi Consider Lemma 2 2 . 1  and identify 

Let PB be the projection ont0 the nullspace of B. We only need to show that APB is full rank. 

By way of contradiction, assume that APsy = O with y # O. Then PBy # O since PB is full-rank 



and therefore 

contradicting Lemma 2 - 2 2  

In addition to the existence of the direction n-hen X and Z are positive definite, it seems 

important for accurate solutions that the non-singularity result holds in the Iimit. This is true of 

the AH0 direction but not of NT or HKM whose Jacobians become increasingly ill-conditioned 

as we approach the optimal solution. 

To guarantee this desired behavior, we need additionai ctssumptions, on the optimal solution, 

of uniqueness and strict complementarit. This is not done without loss of generality; these 

assurnptions i d 1  fail on some practical problems. Yet, with probability one, randomly generated 

programs eshibit the required condition as n-as shonm by Alizadeh, Haeberly and Ovenon [5]  (See 

also [65] for more generic properties of conic programs). 

Lemma 2.2.4 If rl is  su  jective and the optimal primai-dual solution (X', y', 2') is unique and 

strictly cornplementary ( r d  ( X *  ) i rank iZ* ) = n),  then [ZIF, jv)] ut 1 = O is  non-singviar. 

Proofi Since Z' and X' commute (Z'X' = O = (Z'X' ) = X'Z'), they share an orthonormal 

matris of eigenvec~ors Q such that QZ'Qt = Dz and QX'Qt = D x  where Dz, Dx are diagonal. 

11-e coristruct a permutation matris P such that 

and P D x P t =  

M'tierc Dr, a~ici DX3 are ~f same size- W e  assumed here tliat the rank of 2' was a t  leas  as large 

as the rank of X'. The case m-here the rank of X' is larger is similar. Let 



where A is the corresponding operator to obtain a systern equident  to (2.24), name')' 

The respective solutions (dx. d,. dz) to  (2.24) and (z. d,. &) to (2.25) are reiated by 

Consider an espansion of (Z-Zic), 

- - - 
Therefore D zl d i  = 0, =hich implies d i  1 = O and similarly dz33 = O, dx 1 2 = 0, dx2> = 0. 

From the upper right block, 
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- - 
From (2.2%) and (2.25b) we obtain orthogooalicy of the prima1 and dual steps, ( a r ,  dx) = 0. 

Therefore 

- 
trace (dz  

1 ,  1 1, 1 S. 1 1 -  
- - -2 {trace (~i;,dz~~~;:~;f d z 1 3 ~ $ 3  ;trace (D:jdzz3D;~D~~dz23Di;j)  

' 1 

- - - - 
From the 1 s t  equation we get dz13 = 0. dtZ3 = O and, sirnilarly dx31 = 0, dx3> = O. Finallx 

the structure of any solution to (2.25) is 

-- 
and therefore dzdx = O. 

Assume that ive have such a solution, (di,  d,, d t ) .  Then 

Then (Z' f P'Q'GQ?, y id,, X' ~ P ~ Q G Q P )  is also a solution to the prïmal-dual pair, assurned 

to be unique. The only solution to (2.25) and to the equivalent systern (2.24) is therefore O and 

the projected Jacobian is fuIl-rank. 0 



Kote that the optimal solution must be unique and strictly c~mplementarj-~ and that A must 

be surjective for the above result to hold. If this fails, the Jacobian is rank-deficient. Consequently, 

if we intend to solve dificult problems accurately n*e need to consider the possibility of multiple 

optimal solutions and therefore of s inp la r  Jacobians. In practice, surjectivity of A is guaranteed 

by pre-processing, for esample by doing a rank-revealing QR decomposition of A. Moreover, if 

the impiementa~ion is rneant to handle problems with multiple solutions, the obc-ious approach is 

to look for the best least-squares solution to the sub-problem, via a rank-revealing decomposition 

of the operator [ZlF,(v)l. We n-il1 return to this issue when we discuss irnplementation. 

The results of this section imply that the Gauss-Xewton direction, similarly to AH0 and in 

contrast to almost al1 other directions obtained from a symmetric scaled system [TB] :  is well- 

de f i~ed  as we approach and also a t  the optimal solution. This continuity propertÿ allon-s the 

implementation. if properly done, to  obtain accurate solutions, especialIy in view of the distance 

to singularity of t he  Gauss-Xewton system. Section 2-2.4 further explores this aspect of the linear 

system defiriing the Gauss-Semton direction. 

2.2.2 Merit Function 

The merit function tve use, not only to derive the Gauss-Newton direction but also to gauge the 

progress of any dgorithm is the squared norm of the infeasibility and of the cornplementarity, 
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Follotving Our definition of derivatives, we can calculate the 6rst and second derivatives of cp by 

expanding cp (v + d, ) around v ,  

From this expansion n-e obtain the folIon-ing derivatives, 

We nom- specialize these expressions to each part of Our merit function. First to the infeasibility 

measures, starting xith prima1 infeasibility, 



And to complementarity, 

2.2.3 Descent 

We present here a classicd result that is found, informally stated, in Dennis and Schnabel [20] 

but which we include here because our setting is more generd and because it provides the original 

motivation for the use of the Gauss-Newton direction to solve semidefinite programs. 

Lemma 2.2.5 The Gauss-Newton direction d,, defined by (2.9) is a strict descent direction for 

the merit finction <p (v)  = $ (F,(v), F, (v)) if and only if F,(v) is not perpendzcular tu the range 

of DF,(v)l- 

Proof: We cornpute the derivative of f in the direction of d, as 
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Kow we observe that [ZIF, ( ~ ) ] [ D F ,  (v)lt  is the orthogonal projection ont0 the range of [ZIF, (v)] .  

It is therefore idempotent and we can n-rite 

Therefore [D<p(v)]d < O if and only if [DF,(v)]i9F,(v)]tF.[v) # O and the result folfou-S. 0 

Ln particular, Lemrna 2.2.5 States that if [9Fp(v)]  is full rank then [Dcp(v)]d, < O and d, is a 

direction of strict descent. The feasible direction aIso enjoys a simiiar property. 

Lemma 2.2.6 The feasible Gauss-Newton direction d, defined b y  (2.14) is a descent direction 

for the merit function cpc (v)  = 4 - (F,, Fc) . 

Proof: Using the notation and the resuIt of Lemrna 2.2.1, say PB is the projection ont0 the 

nullspace of the operator corresponding to the feasibility A' (d, ) + dz = O, A ( d x )  = O. Then the 

feasible Gauss-Ken-ton direction is expressed by 

Sirnilady to Lemma 2.2.5, ive have 

&loreover, [9f, (v ) ]  d ,  < O if and only if PB ([DF, (v)]PB )+IF, (v) # O. 



We e-qect the following to be a building tooi for the global convergence analysis of any 

algorithm based on the Gauss-Xewton direction. 

Corollary 2.2.7 IfA is surjective. then bath the Gauss-Newton direction defined by  (2.9) and t h e  

feasible Gauss-Newton direction defined by ( 2 . l i )  arc directions of strict descent for al1 X E S?,, 

Z E Sn_ for, respectiuely. $(F,(V). F, (v)) and 4 (F, ( v ) ,  Fc (v)). 

Proof: From femmata 2.2.5 and 2.2.6 we have descent if the Jacobian is full-rank. From Lemmata 

2-2.3. 2.2.3 and the hypotheses n-e have the required full-rank property. 0 

In sumrnary, if A is surjecti\-e, and we may assume it is, the Gauss-Seuton direction is a strict 

descent direction until stationarity of the ment function is attained. 

2.2.4 Conditioning of the Jacobian 

In this section ive investigate the behavior of the singular values of the Gauss-Sei\-ton Jacobian, 

first, n-c compare them to the corresponding singular values of the ,%HO Jacobian to estimate the 

relative distance of boch systcms to singularitl Then m-e firid espressions for their rate of change 

with respect to the barrier parameter p. 

Consider the following equivalent forrn of the over-determined system (2.6), 

where 

1 
H(M)  :zT[M +- Mt], (synmetric part); 

+ 

1 
K( M )  :=?[PA - Mt!, (skew-symmetric part). 

k 



Xote that the first three equa~ions (2.29a-2-29c) correspond to the symmetric (or i lHo) system- 

Corresponding to the matrix formulation (2.10) we write 

for some permutation P of the ronrs, and n-here Tg, is the Jacobian of the Gauss-Newton system, 

Jaho is the Jacobian of the sjmmetric (.%HO) system and Jk is the part of J,, corresponding to 

the skew-syrnmetric cornponent of the cornplernentarîty equation- To simpiify the notation later. 

let 

Xote that J g n  is (fi x fi), Jaho is [fi x fi), and Jk  is (r x fi). We also use the following notation 

for the ordering of the singular values of a matnv Jmx,,  with m 3 n 

From (2.31) and the above notation for singular values, we can write the follon-ing relation. 

Lemma 2.2.8 The singular ualues of J,, and Jaho satisfg the followzng inequality for 1 5 k 5 fi, 

Proof: Follows directly frorn Coroilary 3.1.3 of Horn and Johnson [44]. C! 

The principal implication of the result is that the Gauss-Newton Jacobian is no closer to 

singularity than the A H 0  Jacobian is since o,,i, ( J , , )  2 omin ( Jah, 1. We nom- consider the largest 

singular value and obtain an upper bound. 
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Lemma 2.2.9 The laigest sinçular value of the Gauss-Newton Jucobian is bounded. Specifically, 

%,(Jgn) 5 J & r ~ a h o )  + ~ & , c J k ) -  

Proof: Ki th  the above reIations (2.31) betn-een J g n ,  P. laho. and Jk: 

Therefore ornmax(Jgn) 5 Jck,iJaho) + ~ ~ & , ( J i i i -  O 

We can now investigate the condition number of the Gauss-Kewton systern. Say we have a 

sequence dk) := (XI*) , Z"') E S:+ x W" x S:,. Let be J,, a s  defined in (2.10) with 

X, Z replaced with xck!, z ( ~ )  and let J œ  be the Jacobian at  the optimal solution. 

Assumptions 2.2.1 We have an index set denoted by  k and 

(X' , y', 2' ) is the unique, strïctly complementaq optimal solution. 

We use the notation utk) instead of v, to indicate a sequence not restricted to the centrai path. 

First, a simple technical result. 

Lermna 2.2.10 Under Assumptions 2.21, 

2. { [ l J ' w ) l l }  is bounded. 
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Proof: Result 2 foIlows directly from 1 and the fact that II J' II is bounded. We proceed to show 

2. Since x ( ~ )  -+ X* and Z'kl -+ Z', for any E > 01 there is a k such chat for any k 2 k, 

With this choice of k 3 E, 

And we obtain the required bound. O 

Lemma 2.2.11 Under -4ssumptions 2.2.1, The condition number of the Gauss-Newton Jacobian 

I C ( J ' ~ ) )  := umii(r'L') satisfis K ( J ( ~ ' )  + i c ( J9)  < m. 
~ r n r n I l ' k ' )  

By Lemma 2.2.2, the operator J I k )  is of full rank which irnplies that the smallest singular d u e  

is bounded away from zero. By Lemma 2-2-10, the largest singu1a.r value is bounded away from 

infinity Cl 

By Lemmata 2.2.2 and 2.2.4: we know that the Gauss-Keu-ton system is non-singular and bas 

a bounded condition number as we approach the optimal solution. This behavior is shared with 

the -%HO direction but  not n-ith XT or HKM, as any random esample shoivs. The condition 

number of the KT and HKM systems, even on small, random problems, grows drarnaticdl. 

To see why the condition number might affect accuracy, ive restate here the results of Gu [38!. 

Consider symmetric systems, under finite precision arithmetic and assume a backward-stable 

algorithm for the solution of the direction-finding systern (1.20). The numerical solution to  

(1.20) is the exact solution to a nearby problem, 

h 

( J ,  - 6J,)dv = -If + h f ) ,  



where J, is the scaled Jacobian and n-here the perturbations vary ~ i t h  the choice of directions 

and the solution technique. In al1 cases. the cornputed solution and the exact solution d, mal- 

differ by 

Therefore if 116 J ,11 = f2( amin( J s ) ) ,  the computed direction may be completely different from the 

exact direction and the algorithm will stop making progress. A better condition number allows 

more accurate solutions. This is the accepted esplanation for the fact that the .%HO direction 

obtains much more accurate solutions than HKM and XT. For the Gauss-'l'en-ton direction, 

the perturbation analysis is slightly different and me return to it in chapter 4 when we discuss 

implernentation but again, there is a dependence on tc(Jgn) and the better the condition number, 

the more accurate the solution. 

Moreover the condition nurnber of the Gauss-Sewton system on most problems is smdler than 

the condition number of the A H 0  system- Informally, this is not surprising. Recall that, since 

both Jacobians have bounded norms, conditioning problems rnay occur only n-hen the smalkst 

singular value gets too srnall. Consider a problem where the smallest singular value is, in the Iimit, 

very small and recail that the difference between the two systems is that the &eu--symmetric part 

of the cornplementarity equation is deleted in XHO. For any matrk A, 

Unless by some coïncidence, the skew-symmetric part affects only the larger singuIar values, then 

the smallest singular value of the Gauss-Newton system is strictly larger than the -4HO smdlest 

singular d u e  and the condition number is correspondingly smailer. 

Xon-, we consider some instances vi-here the Gauss-Xewton direction coincides with other 

directions. 



2.2 -5 Coincidences 

Recdl thac semidefinite programming can be vien-ed as a superset of Iinear prograrnming. If the 

data involve only diagonal matrices (Ai,  C), the prirnal-dual pair is an espression of a standard 

linear program. Therefore, given a point (X, y ,  2) where the matrices are diagonal and restricted 

to be diagonal, one would hope that the Gauss-Newton direction coincides with the usual Iinear 

programming primal-dual direction. This n-as shomn to be true for al1 of the Monteiro-Zhang 

farniiy by Todd [78]- This is d s o  the case for the Gauss-Xewton direction. 

Lemrna 2.2.12 Given constraint matrices Ai linearly independent and diagonal, objective func- 

tion m a t k  C diagonal, and a curen t  iterate (X,y, Z )  with diagonal X E 52 ,  and Z E S:,, 

the Gauss-Newton direction d, = (dx, d,, dz j has dx and dz diagonal. hdoreover, the vector 

(diag f dx), d, , diag ( d z ) )  solves the standard pnmal-dual Linear Programrning system, namely 

Proof: From the solution to  (2.36) n*e construct dx = Diag ( c i , ) ,  dz = Diag (d,), clearly a 

solution to the corresponding Gauss-Sewton system (2 .5)  since the residuals are zero. S.ioreover, 

since the solution to the Gauss-Newton system is unique by Lemma 2.2.2, this choice of dx, d, ,  dz 

is the Gauss-Xewton solution. Therefore the Gauss-Sewton direction coincides with the standard 

primal-dual linear programming direction. Y 

On the central path of semidefinite programs, the Gauss-Kewton direction coïncides with othcr 

n-ell-known directions. 

Lemma 2.2.13 Suppose that A is surjective, that X ,  y ,  Z is on  the central path with Fd = 0, 

f, = O and ZX - pI = O; > O .  Suppose that the new target for the barrier parameter is TV, 

where O < T < 1 . Then the Gauss-iVewton direction fiom (2.5) coincides with the HKM direction. 



Proof: Following [41, 48, 561 we express the HKM direction in its simplest form as the solution 

of (7.37) foiiowed by symmetrization dx = i ( d x  + dX1. 

The first equation (2.3Ïa) yields 

dz = -A'(dy). 

This expression for dz implies that it is symrnetrïc since the Ai are symmetric. R e  solve for dx 

from the Iast equation (2.37~) to get 

This, in turn, implies symmetry of dx and the next step of an HKhl approach, narnely the 

symmetrization dx = (dx t dX)/2, is not required. Therefore, the solution to (2.37) is a solution 

to the ,AH0 system n-here equation (2.37~) is replaced by 

(This implies the known result that AH0 and HKM coincide on the central path.) For the HKM 

direction to be equal co the Gauss-Newton direction, we have to check the additional condition 



that the skew-symmetric part is zero. 

-A'(d, )X + XA' (du ) 

And therefore the solution to (3.37) is a valid solution to the Gauss-Kewton system, which is 

known CO be unique. 

Since it tvas shom-n b ~ -  Todd [X] that rnost directions (including AHO, YS and HIiSI) coincide 

on the ceritral path. from Lemma 2-2-13 we can non- add the Gauss-Xewton direction to this 

list- This is the oniy case u-here the Gauss-Sewton direction coincides R-ith other directions of 

~ h e  Moriteiro-Zliang famil-  In general, the Gauss-Ken-ton direction is different from al1 other 

directions. 

2.2.6 Invariance 

Todd 1781 also introduced two concepts of scale-invariance R-ith respect to the cone of positive 

definite rriatrices. This is different from the classical concept of scale-invariance with respect to 

the affiric spacc defined by the constraînt equations. X method for defining a search direction is P- 

scale-inz:ancr~rt if the direction at any iterate is the same as would result from scaiing the probleni 

and the iterate bu an arbitrary non-singular P, using the method to  determine the direction. and 

then scalirig back. 

Iri niorv detail. say that from an iterate (X, y ,  Z), and data Ai, Cl b, a mechod finds a direction 

i dx, d,, dz ). Xlso, given a scaling matrLx P, the same method? applied to a problem frorn iterate 
2 - - 

(PXPL, 9, P-'zP-' ) and data P - t A i ~ - ' ,  P-~CP- '  finds direction (dx, du,  dz), then the direction - - -  
is P-~cale-iiivarianr if the directions agrre, that is: if (PdxPt, d, , P- '~=P- '  ) = ( dxl du ,  d r ) -  It is 

Q-scaie-tnvariant if the same relation hoIds when P is restricted to orthogonal matrices, PPt  = 1. 

As this concept applies to the Gauss-Xewton direction, we have the following resuh. 



Lemma 2.2.14 (Q-scale invariance) Let (dx, dy , dz) be the Gauss-fletuton direction obtained at 

point (X, y ,  2) f Sn,+ x IRm x Syc .  Consider the scaled primai-dual pair, (1.17-1.18) obtained 

from (1.1 6): (1.19) for some orthogonal P. Then the scaled vector (PdxPt ,  y ,  P - ~ ~ ~ P - '  ) is the 

Gauss-Newton direction a t  the itemte (z, îj, 2)  for the scaled pmliem. 

ProoT: The Gauss-Ken-ton direction may be computed frorn the Xormal Equations since the 

Jacobian is of fuil rank by Lemma 2.2.2. The defining equations for the scaled problem therefore 

are 

In the follon-ing. [(Ai, B)ji indicates che vector in IR" made from the inner products. - - -  
Substitute the scaled vecror (dx, du,  dz)  = (PdxPt ,  y ,  P-tZP-' ) into the left-hand side of 

(2.39a) to get 



- - -  - - -  
Therefore (dx , d, , dz) satisfies (2.39a). Substitute (dx, du, dz) into the Ieft-hand side of (2.39b) 

to get, for 1 5 j 5 m, 

- - -  
Therefore (dx, d, , dZ 1 satisfies (2.39b). 

- - -  
Finally. substitute (dx, du, dz) into the left-hand side of (2.39~) to get. 

- - -  
Therefore (dx, d,, dz) satisfies (3.39~) and we conclude that the Gauss-Xewton direction is Q- 

scaIe invariant. 0 

While nOe are describing properties initidiy investigated by Todd. i t  is fair to remark that the 

Gauss-Newton direction is not P-scaie invariant as any random example shows. Yet, on a related 

matter, one additional property of the Gauss-Xewton direction is worth mentioning: it is int-ariant 

under affine transformation of the variables. This is the classical invariance with respect to the 



space. 

Theorem 2.2.15 The Gauss-Newton direction. at any point vc f V is invariant under a f i n e  

transformation of the variables w = H(v) -t h where H : V -+ V zs non-szngular. 

Proof: The Gauss-Sen-ton step in v-space. from current point v,, is gïven by (2.8), 

Using the affine scaling tv = Htv) ; h, n'e define 

arid ubtain 

!9,,G(w)I = [~,,F,(H'- '  (W - h))] = [~,F,(v)]H-'  

The Gauss-Sen-ton step, in tv-space is 

Since !û,F,iv, l i  is of full rank. { [ ~ , F , ! V ~ ) ] H - ' } ~  = H[BVF(vc)]t and 

The Gauss-Sewton step is therefore invariant under affine transformations of the space. 0 

This l u t  property is not shareci by the -4HO direction since, for example, H may map v to 

a point IV wiiere the AH0 direction is not defined. Xote also that this last invariance does not 

imply that scaiing the rom of the operator will leave the steps unchanged. Scaling the feasibility 



rows by a large factor, for example, would favour feasibility over complementarity and would 

bring the Gauss-Xewton iterates closer to the AH0 iterates. This is not a useful goal; it hinders 

convergence in most cases. To find a scaling of the rows producing more accuracy bu reducing 

the condition number or allowing faster convergence, on the other hand, can be useful and we are 

currently investigating that issue- 

In this chapter m--e have studied some properties of the Gauss-Xewton directions. We have seen 

that they differ from the symmetric directions of the  Monteiro-Zhang farnily. especially in terrns of 

the distance to singularity of the Jacobian matris- This feature suggests that the directions should 

be used to obtain accurate solutions to semidefinite programs. Ive non- develop such algorichms. 



Chapter 3 

Convergence 

In this chapter we discuss convergence issues of algorithms based on the Gauss-Newton directions. 

First, from a classical stand-point, we consider global convergence via sufficient decrease of a 

merit function. The results of this approach do not Iead to a proof of polynomiai convergence. 

We inchde them because the aigorithm described here is very close to what n-e do in practice, 

because the results require only weak conditions of the problem data and because we hope to 

eventudly obtain a proof of polynomiai convergence using this Line of reasoning. We then briefiy 

discuss asymptotic convergence. Finails the major part of the chapter takes steps towards a 

polytime convergence proof for an infeasible interior-point algorithm based on the Gauss-Xewton 

direction. 

We recal! the probIem of interest, the semidefinite program pair 

(primai) min {(c. X) 1 A(X) = 6. X E s:), 

and 

(Dual) nmu {(b. y) 1 Aœ(y ) f Z = C, Z E S: 1 . (3-2) 

We also recall the merit function, the combined norm of the infeasibility and of the complemen- 



3.1 Classicd Convergence 

The algorithms we consider in this section fa11 into the frarnework of Algorithm 3.1.1: Starting 

from a possibly infeasibie point, (XO, y', Z0 ) = ( 1, O, 1), compute the Gauss-Sewton direction and 

take a step in that direction, reduce the target parameter and iterate- ft7e assume that the Iength 

of the step is dictated by a iine search routine that finds the minimum of the merit function in 

the direction $\-en n-ithout violating the semidefinite constraint. It may be possible to replace 

this exact line search with an approximate Iine search satisfying the Armijo-Gofdstein or Wolfe 

conditions. The reduction in the barrier parameter ensures that the merit function is decreased 

a t  every iteration. 

Algorit hm 3.1.1 Generic Gauss-Kem-ton based interior-point code 
Given E > O {Tolerance) 
k := 0; x ( k 1  := 1; Z( k) := 1; y [k l  := 0; p(k) := ( Z ' t ' . X ' k '  ) =1 ;  

n 

while -Converged(k, dk), k', E )  do 
d(kl = -[53FP(d k! ) ] ~ F ~ ( V [ ~ )  ); {Gauss-Newton) 

:= LineSearch(v[ k i ,  dl k), Cl(w 1; (Decrease cp) 
) := TargetSelect(vf k l ,  dIkl ,  or(k), k l  ); {See Algorithm 3.1.2) 

,(k+l) . - V ~ k ~  . - + CC[k~d(k) ;  {Ken* iterate) 

k:= k t  1; 
end while 

The numerical convergence criteria shouId be based on the merit function, the iterates and on 

the central path target. Follon-ing standard practice ([30], Section 8.2.3.2) we assume that the 

user provides a \value E indicating the desired accuracy. The convergence test ensures 



The first two conditions imply convergence of the merit function  dues and convergence of the 

iterates. The third condition implies that ive have reduced the cornplementarity to the required 

toierance. Xote that there is no need to scale the merit function before comparing to E since we 

are solvïng a least-squares problem with zero residual, 

Assurnptions 3.1.1 Throughout this section, the following conditions are assumed to hold: 

a The operator A is surjective. 

There as a point v' E V such t h t  cp(v',O) = 0. 

The first condition. for theoretical purposes, is made \vithout loss of generaiity since n-e can in 

principle eliminate redundant constraints before attempting to soive the optimization problem. 

The second condition implies that the primal-duai pair has an optimal solution n-ith no duality 

gap. Xote that nTe do riot insist that the optimal solution be strictty complementaq- or even 

unique- Xor do we require a Slater point. 

The first requirernent for gIoba1 convergence is that the search direction be a descent direction 

for the merit function. This \\-a settled by Lemma 2.2.5. We need non. CO quantify the decrease 

in the merit function. To that end we need a few technical results. 

Lemma 3.1.1 The gradient of the merit function <p is Lipschitz continuous. 

Proof: Since cp is at Ieast tu-ice continuousIy differentiable we obtain a Lipschitz constant L 

sat isfying 

l f ~ r p ( v i ,  PI 1 - ~ V ( V I ,  C L ~ ) I ~  5 L [I(vi, PI 1 - (VI, F L Z ~ I ~  

by taking the norm of the second derivative in the appropriate intemal, 

where the derivatives are defiricd in Section 22.2. 

Using the Lipschitz coristantl we express the decrease as a function of the direction. 



Lernma 3.1.2 Assume that the maximum feasible step in the Gauss-Newton direction at iterate 

(v ,  p) is d ,  then 

min cp(v f a d ,  pI 5 q (v ,  p) i 5, 
a € [ O . l I  

where 6 < O is giuerr by 

where L is defined as in (3.4) 

Proof: Since d is a descent direction by Lemma 2-25,  

Minimize the right hand-side of (3.6) n-ith respect to a E [O, I l ,  a quadratic form. There are two 

possibIe solutions: 

O Case [Bcp(v, p)]d + ~ l l d l l ~  > O, and the minimum occurs a t  the boundary, cx' = 1 - 

Case [9cp(v, p)]d ; ~lldll ' < O, and the minimum occurs at a station- point, when 

Substitute or' back and minimize the left hanci-side of (3.6) .  3 

At this point we have a decrease of the rnerit function from q(v ,  p) to q ( v  + dv,  p). The ne.xt 

step of Algorithm 3.1.1 reduces the carget parameter by some fraction. To maintain part of the 

decrease we just obtained, we need to bound the reduction in the barrier paramecer. 

Lemma 3.1.3 Given any iz > O , if T is chosen according to 



Proof: From the definition of cp, 

We need E > f(-r) := (1 - ~ ) t r a c e ( Z X  - ~ 1 )  + &tl  - T)'p2n. 'lote that f is a strictly conves 

quadratic function and that  f ( 1 )  = O. Thereiore, by the intermediate value theorem, there are 

two solutions to f (T) = E ,  one on the interval T < 1 and the other on the other side. l e  distinguish 

two cases since we are interested only in values of T E [O, 11. 

Case ptrace (ZX - P I )  + 4p-n 5 E -  Then any d u e  T > O mil1 suffice. 

Case ptrace (ZX - pl) f 5 > E .  Then we solve f (T)  = e, 

- - - trace (ZX - PI) (trace (ZX - ~ 1 ) ) ~  - 2 n ~  
2k J 

w Pn 

Since we are interested only in the Iarger of the two zeroes, we need 

trace fZX - VI) , (ptrace (ZX - pl)  jZ - 2ne 
1 - T 5 -  - 

Pn Pn 

The combination of both cases yields the clairned result. 

From the analysis above v.-e obtain a strict decreaçe a t  eveq  step of the Algorithm. 



CoroUary 3.1.4 Between step k and kf 1 of Aigorithm 3-1.1, the decrease of the ment function 

satisfies 

q ( , , ( k r l  1 ,  CLlk+l 1 ) 5 P ( ~ ' )  + y ,  

for some y < 0. 

Proof: From Lemma 3.1.2 we obtain 

for some 6 < O. IJ'e choose .r to keep a fraction of this decrease, say one half of the decrease. to 

obtain 

Ik) (kl q , ( ~ ( ~ + l ) , . r ~ ~ ( ~ ' )  5 <piv p ) +Y, 

where y = $5 - by choosing T according to Lemma 3.1.3, identifying E n-ith -+5. t7 

We are non- in a position to describe the TargetSelect routine of the Algorithm 3.1.1. This is 

done in Aigorithm 3.1.2. Here we cornpute the real decrease in the merit function instead of the 

estimated decrease. 

Algorithm 3.1.2 Barrier parameter update 

function p( kT ' = TargetSelect (d '1, d( "1 ,  a' pl ')) ; , := l (<p (v'k) d ('1 , p(k))  - cp (v[~), p ( k ' ) )  ; {Keep half of decrease) 
~ h o & e  T according to Lernma 3.1.3 
C L i k i l  1 -- .- TFLl kl. 

t {Xew target) 

The nest step in obtaining a global convergence result £rom this Iine of reasoning wouId require 

obtaining a lower bound for 5 defined in (3-5) either as a constant terrn or as a fraction of the 

current value of the current merit function. This surely involves restricting the iterates to some 

neighborhood of the central path but Our work has yet lo produce the required bound. This is 

n-hy we approach polytime convergence from a different point of view in the nest section. 



3.2 Polytime Convergence 

In contrast to the approach above, the path taken herc does not produce a practical algorithm. 

We include it because the main result highlights a dependence of the convergence rate on the 

conditioning of the Jacobian and also because of the questions it raises. 

This is the first attempt at a proof of polytime convergence of which we are an-are for the 

Gauss-Newton direction. -4lthough an aigorithm based on a projected and scaied Gauss-Nenrton 

direction %-as demonstrated in [4 f ] .  The approach is not usuai- The iterates are not esplicitly 

maintained feasible. nor even positive definite: rather, we maintain the weaker condition that  

the Jacobian of the optimality conditions is of full rank. Moreover. Our measure of distance to 

the central path combines feasibility and cornpiementarity. The main result appears in Theorem 

3.2.13. 

A strictly feasible or so-called interior point vo = (Xo, yo, Zo)  is such that 

Assurnptions 3.2.1 Throughout this section, the follozuzng conditions are assumed to hold: 

O There is a point vO satisfying condition 3.7. 

a The operator A is surjective. 

a The  optimal solution to the prirnal-dual pair (3.1-3.2) is unique and satisfies strict comple- 

rnentarity (i-e. Z f X E $y+). 

Under -4ssumptions 3.2.1, for evex-y p > O, there is a unique solution in Sn,+ x IRm x S:+ to 

F,(X, y ,  Z) = O, which we denote by (X,, u,, 2,). This set of solutions is called the central path. 

The Iimit point of the central path corresponding to t O is the solution of the semidefinite pair 



(3.1-3.2). At the start of the algorithm, n-e need a point on the central path or close to it. This 

point ma!- be obtained via a self-dual embedding of the program. U7e will not pursue this further. 

The interested reader may consult [67, 68. IS]. 

To simplify the statements of the algorithm and of the iollowing results we define 

Z X - F I  J 

/l'(y) f Z - C  1 

(central path defining function) (3.8a) 

(merit vector function) (3.8b) 

The algorithm described in this section approsimately foilows the central path by atternpting 

to soIve F,(X,y, Z) = O for decreasing values of p. This is comrnon to al1 path-following algo- 

rithms. The novelty of the  approach described here is to treat this approsirnation subproblem as 

a nonlinear equation and to apply cIassical tools. 

One difference from standard practice resulting from this point of view is the relation between 

the iterates and the barrier parameter: The scalar p is not updated using the iterates as is usually 

(Z X) the case (p = T*), but rather it is reduced by a factor r < 1 at every step (p t ~p). 

Ln consequence, the initial point (Xo, yo, Zo) depends on pot rather than the reverse. Another 

important difference is that no attempt is made to dampen the step to maintain the iterates 

n-ithin the cone of positive definite matrices- The algorithm maintains only the weaker full rank 

condition on the Jacobian. The cone constraint is satisfied if we start dose to an interior point 

because every iterczte remains within the radius of convergence of the target path point. 

TO simplify the espressions throughout, Ive define, for any subscript L, 



CEAPTER 3. CO1\l'VERGEhrCE 

We dso  define canonicai central path points v, and v,, such that 

F,(v,) = O, f,,(v,,) = O- 

. - 

Algorithm 3.2.1 Gauss-Newton infeasible short-step 
Given > 0; {Initial barrier parameter) 
Given E > O; 
Find Xo; go;  Zo; 
X  = Xo;y = yo:z = zo; 
CL = PO; 
Choose O < ?r < 1; 
whiIe m a s  {TV, llFTW(v)(1} > E do 
d, = -DFT,(v1ltF,,(v; 1 
X=Xtdx;y = y t d , ; Z = Z ; d z ;  
C' := 'tp; 

end while 

(Merit function tolerance) 
- {Slust satisfj- (3.30)) 

{Initial iterate) 
(Initial barrier parameter) 

(Chosen according to (3.27) ) 

{Gauss-Ken-ton direction) 
{Update iterate) 
{'IJpdate target) 

3.2.1 Merit Function and Central Path 

This section describes some reIations between the value of Our chosen merit function IIFTwll and 

the distance of the iterate to the central path. Kote that we do not assume that the iterates are 

primal or dual feasible. Our measure of distance to the central path combines estimates of both 

infeasibility and complementarity. The section aiso describes the progress of the Gauss-?;ewton 

direaion in minimizing llFT,l(. The results are of a technical nature and used as building blocks 

of the nest section. 

lire begin this section nith a well knon-n result about approsimations of inverses, often referred 

to as the Banach Lernma. For a proof see [45]. 

Lemma 3.2.1 Suppose M E and IIMII < 1 .  Then 1 - M is non-singular and 



Since the Gauss-Newton direction is ob tained from an over-determined system of equations, 

pseudo-inverses allow succinct espressions of the solution. Samely, the least squares solutiori 

to [9F,,(v)]d, = -FTm (v )  is d, = -[SF,,(v)! FT,(v)? n-here (-If indicates the Moore-Penrose 

inverse. 

To generalize to Gauss-Kewton some results weil-known about Se\vton's method [46] rr-e require 

a bound on the norm of the pseudo-inverse. 

Lemma 3.2.2 Suppose that A E Rmxn and B E RnXm, where m 2 n: and assume that BA is 

non-singular. Then 

WII 5 I I [ B A ) - ~ B I I -  

Proof; Define the singular value decompositions A = UAIrAVi and B = UeZBVi.  Then 

Sirice Q L Q  = 1, we ha~-e Q: Q 1 + Q:Q3 = 1 and therefore 1 Q: Q 1 .  This implies that  al1 the 

singular i-aliies of Q 1 are at most 1 ; and al1 the singuiar values of Q;' are at least 1. Therefore 

which is the required bound on the norm of the Moore-Penrose inverse. 



From Lemma 3.2.1 and Lemma 3.2.2, n-e obtain the folloa-ing result about approximation of 

pseudo-inverses. 

Lemma 3.2.3 Suppose that is an approximation to the pseudo-inuerse of A in the sense that 

[ [ I - ~ A [ I  < 1. Then 

Proof: Consider that [ I I  -%II < 1 is the required condition of Lemma 3.2-1. Therefore we write 

where the first inequality is obtained from Lernma 32.2. 0 

Essentidly from this bound on the norm of approsimate pseudo-inverses we establish a relation 

between the distance to the centra1 path of an iterate (X, y ,  Z) and the current value of Our merit 

function tlF,,(X, y ,  Z)I[ .  To simplify the result we first establish Lipschitz continuity of the first 

derkative- 

Lemma 3.2.4 The operator [9F,,(v)j is Lipschitz continuous with constant i with respect to v.. 

Proof: From the definition of [9FTW(v)], we obtain, 

Direct calculations, with d, = (dx, du, dz!.  yield 
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Hence a constant of 1 nili suffice. 

Lemma 3.2.5 Under Assumptions 3.2.1, there is at for ali 

Ilforeover, we c m  cltoose any 3 satisfying 

v such that 1 1 1  

where amin denotes the smallest singular value of [9F,,lv,,)i. 

Proof: Since [DF,,(v)] is Lipschitz continuous nith constant 1, using the  reverse triangle in- 

equality we get 

to obtain (3.9a). For the second result (3.9b), take i5 small enough so tha t  



From the last inequality we get 

Shen, from Lemma 3.2.3 with the identification A = [9F,,(v)] and = [3F,,(v,,)jt, and from 

(3.13) tve obtain 

Our second required inequality. For the tbird inequalicy ( 3 . 9 ~ ) ~  we use the Fundamental theorem 

of calculus to express 



T&e norrns on both sides to get 

Where the last inequdity follows from (3.13). Therefore 

The fourth inequality (3.9d) is obtained similarly. U'e use the assumption FT,(vT,) = O and the 

bound (3.9a) to get 

Kow n-e need to restricr 6 usirig (3.11) and (3.12). Take 

to cornplete the result- 



Corollary 3.2.6 Under Assumptions 3.2.1, let 6 > O be small enough to  satisfy the conclusions 

of Lemma 3.2.5. Then  for nll v,v, such that [ I V  - v,,[l < 5 .  llvc - vTPll < 6, 

where K = I~[~FT,(vT,)]l[l~[9FTm(vTFr)]tll is the condition number of the Jacobian matriz at the 

central path point. 

Proof: By Lemrna 3-23,  inequalities (3.9d) and (3.9c), 

The other inequality is similar. 

Corollary 3.2.7 Under Assvmptions 3.2.1, let 6 > O be small enough to  satisfy the conclusions 

of Lemma 3.2.5. Then  for ail v such that [ I V  - v,,ll < 6, the Jacobian [9FTP(v)] is  of full column 

rank. 

Proof: From (3.9b), ive see that the smallest nonzero singular value of [9F,,(vj] is bounded 

below on the entire neighborhood about v,,. Therefore, no nonzero singular value approaches O- 

a 

From these relations between the central path and Our merit function, we obtain a radius of 

quadratic convergence to a point on the central path as well as a decrease of the merit function. 

Theorem 3.2.8 Let amin be the smallest singular value of [~F,,(v,,)l. Under Assumptions 

3.2.1 there is a 6 > O such that for al1 v, such that [[v, -v,,ll < 6, the  Gauss-Newton step 



and 

Moreover, we can choose any 6 < +, - Hence the Gauss-*Newton iteration converges quadratically 

to the central path. 

Proof: Let 6 be smdl enough so that the hypothesis of Lemrna 3.23 holds, i.e. 6 < *. 
First we express the error on the iterate both before and after the step. then by the fundamen- 

ta1 Theorem of calculus and the fact that i9FTv(vC)J is of fulI column rank (and hence that 

[~FT,(v,)ItW,,(vc II = 11, 

Take norms on both sides and use the Lipschitz continuity of [BF,,(v)l to get 

Now use Lernma 3-2.5, inequalitÿ (3.9b) to get 

the required reduction of the error. C 

The nest result relates the reduction in the error to the reduction in the merit function. 

Corollary 3.2.9 Let anin and cm, be, respectively, the smallest and largest singular value of 

[ ( v )  Under Assumptions 3.2.1 there is a 6 > O where for al1 v, such that Ilv, -v,,ll < 6 ,  

the next iterate, v+ = vc - [ rùFTFL(~C)] fFTCL(~C) ,  satisfies 



Moreover, we can choose any 6 such that 

Proof: Consider the inequality (3.9d) at the point v+ to ottain 

Son- assume that 5 satisfies the condition of Theorem 3.2.8 and apply the result as well as 

inequality ( 3 . 9 ~ )  at the point v, to get 

Therefore n-e need [ /  (v, - v,, ) 11 < 6 ,  with (3 as defined in (3.14), to obtain the required decrease. 

O 

3.2.2 Smallest Singular Value 

The behavior of the smallesc singular value, because of its appearance in every bound, is of concern 

to  us. We depart frorn the main goal of the section to explore this behavior. On the central path 

vF = ( X W l  y c i l  Zp), the singular value of interest is defined by 

where s = (S,,s,,S=) E SrX x Rn x Sn. 1% are interested in the rate of change of this singular 

value as p changes- Ive thcrefore define the perturbed problem 



The perturbation is implicit: X,, y ., Z, change if p + CL- E. By a result of Fiacco [23] (Corollq- 

3 - 4 2 ) ?  the change in the optimal value of (3.16) is given by 

This implies. in our case. 

1% need an eqxession for the derivatives [3,Z(O)], [9,X(O)] which we obtain from the Emplicit 

Function TIieorem cited here with the required generality (1861. Theorem 12.4.1 and Corollary 1). 

Theorem 3.2.10 Consider a vector function F : X x Y i Z defined on  a bail 

and satisfying 

~ ( x O , y " )  = O :  

[D,F(x, y)] ens t s  on Rr and i s  continuous in both x and y ;  

F(x, y )  2s continuous on a,; 

[ B ~ F ( X ~ , ~ ~ ) ~ - '  d t s  in Z i Y; 

[ ~ , F ( x ,  y) ]  ezïsts on R, and is continuous ut (xO, y'!. 

Then there exists positive numbers ro,rl and a continuous map G : X i Y o n  [lx - xOll 5 ro 5 r  

satisfying 

IlGrx) -yOll 5 ri 5 r; 



a Ffx, G(xj) = 0;and 

We will identify x with e and y with v = (X, y, Z) in the function 

A - ( y )  + Z -  C 

F ( X , Y . Z , E ~ : =  

ZX - (p f €11 

to obtain tha t  there is a G : R -t Sn x Em x Sn with 

nTe have the derivatives 

and 

1-=l 
W e  therefore obtain the required implicitly defi~ed derivative as 



Xote that because of the structure of the last operator [g .F(X, ,  y,, Z,, O)], we only need the top 

and bottom right blocks of the inverse. Alternatively we only need to solve 

The solution is 

From (3.19) and the derivatives (3.20) above, we obtain 

It would be interesting to investigate further this derivative, to find out where it is positive, 

negative and zero. K e  only have tentative numerical results that seem to indicace that the 

smallest singular value is a pseudo-conve.. function but a complete theoretical description is yet 

to corne. 

3.2.3 Convergence of the Algorithm 

At this point we have established al1 the necessary relations between our merit function and the 

discance between an  iterate and the central path- We non- describe the convergence of -4lgorithrn 

3.2.1. For reference, we repeat the definitions of the two canonical points v ,  and v,, on the 



central path. These points satisfy 

~ ' h e  general idea of the algorithm is that, £rom a iterate vk , .'close enough" to v,: wïthin the 

radius of quadratic convergence, n-e choose a target on the centrai patli v,, in such a way that 

the nex-t iterate v k + l ,  obtained from the Gauss-Ken-ton direction, is now "close enough" to v,, 

for the process to be repeated. The key point is not that the convergence is quadracic, since we 

never let the process run to convergence? but rather that the iterates remain close to the central 

path and that we c m  esrimate the distance from an itcrate to its target. 

The proof is in three parts. First we estimate the distance between two points on the central 

paths in terms of the required radius of convergence. 

Lemma 3.2.11 Let o,i, and a,, be, respectively, the smallest and largest singular values of 

W T J v T J j .  

1. If we chaose O < T < 1 such that 

which implies v, is within half of the radius of quadratic convergence of v,,- 



2- If we choose O < T c 1 such that 

I n  this case v, i s  v i t h i n  half of the radius of guaranteed constant decrease of the m e n t  

fvnction in (3.14) in Corollary 3.2.9. 

Proof: First note that a straightforward ca1cuIation baseci on the definition of v, (3.22) yieids 

By Lemma 3.2.5. inequality (3.9d) 

Let -r satisfy (3.25) to get 

which, by Theorem 3.2.8, yieids one half of the quadratic radius of convergence. The proof of 

part 2 of the lemma is simifar- 0 

We now estimate the distance to the new target after a Gauss-Sewton step. 

Lemma 3.2.12 Let a,:, and a,,, be, respectively, the smallest and largest singular values of 
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[9FT,(v,,)]. Suppose that the point v, is well-centered in the sense that 

and we choose T to satisfy 

as in Lemma 3-2-11. Then, after one Gauss-Newton step, the new point v+ wi!l be within haif the 

radius of convergence of v,,, i. e- 

Moreouer: the merit filnction i s  reduced 

Proof: 

By hypothesis and by Lemma 32-11, 

Therefore 

which is w-ithin the radius of quadïatic convergence of v,,. -4fter one Gauss-Newton step, bu 
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Theorem 3.2.8, n-e get 

Therefore the new point is within half the radius of convergence of v,, and the procedure is 

repeated. 

The constant reduction of the merit function folion-s Erom Corolary 32.9. 0 

11-e non- present the main result of this chapter, the polynornial convergence proof (dependent 

on the smallest singular nlue)  of Algorithm 3.3.1. The dependence on the smallest singuIar d u e  

is both interesting since we should espect convergence to depend on such a parameter, yet it is 

also sornen-hat unsatisfying since we cannot estimate this vaIue while the algorithm is esecuting. 

Ilé could have formulated the proof in terms of the smallest singular value of the current central 

path target but here. the dependence is on the smallest singuIar values over d l  centrai path points. 

Theorem 3 -2 -13 Suppose that we are yiven an initiai ban-ier parameter estimate p o  > O ,  positive 

tolerance E > O and 20, Xo E Sn++ such that vo = (Xo, yo, Zo ) is a well-centered starting point: vo 

is witfrin hnlf the quadratic convergence radius of v,, in Theorem 3 - 2 8  

and vo is u d h i n  half the radius for guaranteed constant decrease of the men't function giuen in 

where O < a,,;,, (respectiuely o,,) is smniler than the smallest (respectively larger than the largest) 

singular ualue of FLp0 (v,,,), for al[ $ < w < 1 .  We also choose T > : - and satis/ying 13-27) 

(for p = E )  in Lemmn 3-2-12, Then the Algorithm 3.2.1 converges to V, which 2s E-optimal in the 



iterations. 

Proof: By Lemma 3.2.5, 

which results in the desired bound on 11 v k  - v+ ,, 11, if II F+ ri, (vk) 11 5 E. R o m  the constant 

decrease guarantee n*e get (we add and subtract the multiple of the identity in the third term in 

the norm) 
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We can assume 

CONITRGENCE 

-r > 4 since that represents the worst case behavior. Then 

ahere  the last inequality follows for r > F. Therefore? ive obtain  IF,^,, (v r )  11 9 E by choosing 

This guarantees that we are close to the central path. We aiso need the barrïer parameter to be 

close to zero, i-e. po-rk < E .  This is equivalent to  

log -5- 
uo k? - 

l0g-r ' 

which yields the required bound on the niimber of iterations. 

Xote that, while the iterates are likely to remain n-ithin the positive definite cone during most 

of the progress of the algorithm, since we do not enforce this condition, there is the possibility 

that, a t  termination, the cone comtraint is violated by E. This departs from standard practice 

where the cone constraint is always satisfied, but is within the spirit of an E-optimal solution: The 

cone constraint and the affine constraints are treated in a similar rnanner and will be satisfied to 

the same tolerance. 

One question of interest a t  this point is whether we can pre-condition the probIem to raise the 

smallest singdar value to an arbitrary value before solving. This would complete the convergence 



proof but. more importantly. n-ouId turn Algorithm 3.2.1 into somethirig of practical d u e .  

3.3 Asymptotic Convergence 

We are also able to  speciaiize a standard result pertaining to the asymptotic convergence rate 

of the Gauss-Sewton rnethod- This descibe the convergence to the solution n-hen the barrier 

pararneter is O. 

Theorem 3.3.1 Assume a primal-du@pair witfi a unique. strïctly cornplernentary, optimal so- 

lution, denoted by v'.  Then for each c E (1, oo), there is an E > O such that, from do) satisfijing 

- vœ!l < E, the sequence generated b y  the Gauss-Akwton method converges to v' and obeys 

where IlJ(v)ll 5 a in the ê-neighborhood of v' and uihere Umin represents the smallest singular 

value of Jiv'). 

Proof: The proof relies on [20], Theorem 10.2.1. W e  give here only the details pertaining to 

our case. First by Lemma 3.2.4, we have a Lipschitz constant of 1. By continuiq* of [DF(v)J, the 

Jacobian is bounded in a region around v' and we obtain the required a. Also, by the assumptions 

and Lerririia 2.2.4 the srnailest singular d u e  is bounded away from zero- From these we obtain 

(3.32) aiid convergence. O 

This l ac  result suggests that, n-hatever upper-level algorithm we use, if we use the Gauss- 

Keu-ton as the search direction, then as soon as we estimate amin; we can compute the radius of 

superliricnr convergence and, once within it, we can set the barrier parameter to  zerg. ignore the 

corie colistrairic and Iet the algorithm converge to the optimal solution. 



Towards a Long-Step Algorithm 

The Gauss-Newton direction for solving sernidefinite programs \vas introduced in [49] without a 

proof of convergence but with esperinientai results that n-arranted more research. Then, in [Aï], 

a scded version of the direction 1%-as used in an algorithm shown to be polyriomiaily convergent. 

The algorithm and the convergence proof presented in this chapter are new in that the direction 

is used without a.ny scaling and the algorithm never e-uplicitly forces the iterates to remain within 

the positive definite cone. 

The dependence on the smallest sinplar value of the Jacobian for choosing -r. though unsur- 

prising in the context, shouId Se relaxed to some other. more easily estimated function of the data. 

But the ultimate goal of this avenue of research is to establish convergence of a practical infeasible 

algorithm using long steps, that is, not restricced to a narrow neighborhood of the central path. 

This is stiIl the objecr: of investigation. 

The merit function quaritifies an absolute distance of the iterates to feasibility and to corn- 

plementarity. Moreoverr it is a simple matter to favour, for esample, primai feasibility or even 

a subset of the constraints. by weighting the corresponding norm of the merit function. This 

leads to a weighted least-squares probIem and such preprocessing can be done if the application 

suggests such an approach. 

On the other hand, it may be chat a relative measure of infeasibility and complementarity is 

more appropriate. In this case we could preprocess the problem data to ensure that the norms 

of matrices Ai and of C are of the same order of ma,@tude. This could be done if one suspects 

that they have been scaled inappropriately and is done in some irnplementations. 

Sone of these transforrnacions of the merit function profoundly affect what we have done in this 

chapter. They could be accommodated in the same frarnework. The appropriate scaling probably 

depends on whether one is iriterested in theoretical ccnvergence or good practical behavior. 



Chapter 4 

Implement at ion and Experiment s 

We non- consider the heart of al1 algorithms based on the Gauss-Kewton direction, the numerical 

solution of the system (2.10), n-hich we repeat here for convenience 

The operator J is the matris representation of the Jacobian. It has dimension in x n, where the 

row dimension is Tn := t(n) + m + n2, the column dimension is n := t(n) + m + t(n) and where 

t(n) := n(n f  1 ) /2 -  These last parameters are m, the number of constraints in the prima1 problem 

and n, the dimension of the matrices in the prima1 space. 

4.1 Accuracy and Stability 

Where the Gauss-Xewton approach best demonstrates its strength is when the problerns to solve 

a e  small, dense and require accurate solutions. In those cases, short of a rank-revealing factoriza- 

tion, one of the best practicd method for least-squares is a QR factorization with colurnn pivoting 



The orthogonal ma t rk  Q is the product of Kouseholder reflections and the permutation matris 

P is chosen so that for each refiection, we permute to pivot on the column of Iargest n o m -  After 

the factorization ive also obtain bounds on the smallesc and largest singular values of J (221, cited 

in [Il], 

IRITI 5 cm,tJi I J n l R ~ r  1, I R , d  5 c m i n ( J )  1 7 ' - " l ~ ~ n i .  

In practice, the lower bound on Cmin is mudi better than the theoreticai bound and it is usual to 

use Rnn as an approximation. 

If, a t  a certain stage (sa? r) of the factorization. we detect that the pivot element gets too small 

(smaller than some tolerance), we conclude that J is rank deficient and we have the numerical 

rank, r. 11-e then find the Gauss-Kewton step using this factorization: 

- - 
h = ~ ~ ( - f ) ,  Rd, = h, d, = Pd,. 

Of course, ive do not actually form Q. The Householder reflections are kept in factored form in 

the space allocated to J and applied to the right hand-side as they are computed. 

If the resuIting step d, does not Iead to an accurate solution of the semi-normal equation, we 

assume that we terminated the factorization too late and the numerical rank is smaller than r. We 

drop one more column of R and re-compute the step- This, admitted1- heuristic approach, does 

not cost much since the lwger cost is in the factorization n-hich we do only once. The full procedure 

is described in Algorithm 4.1.1. It requires 2R(m - fi/3) fiops for the QR factorization, the most 

costly subroutine, and 0 (nt) for al1 other operacions (triangular solve and various rnatrix-vector 

multiplications). 

To quanti& the accuracy of the algorithm, we first assume that the construction of J and of f 

does not introduce errors of order worse than machine-epsilon since it involves only matrix-vector 



Algorithm 4.1.1 Dense sol\-er for Gauss-Xen-ton direction 
Given E > O; {Tolerance) 
Given J; f; {Current Jacobian and right-hand side) 
r := f i ;  (Assume full-rank) 
[P, Q, R, Tl := qr( J ,  r); - {Factor and return rank) 
h = -/y 
h:= -Qff; {Apply Householder to right-band side) 
repeat - 

Solve Rr,,,i:rdv = hi:,; (Solve non-singular block) 
z := zeros(1 : fi - r); - {Fill for zero singuiar values) 

dv := P [T] ; {Permute back) 

r : = r - 1 ;  - {Decrease numerical rank) 
until illRtRd, - hl[ < E )  

products. Throughout this section we n-il1 denote machine-epsilon by 

where the approsirriate value is valid for al1 tests ive report here. 

Factorization via Householder transformations is backn-ard-stable because multiplication by 

orthogonal matrices is backisard-stable and we know the resulting decomposition to satisfy 

Q R  = A f 6J ,  where [[6Jl1 = O ( & ) [ [  111. 

Using QR decomposition by Householder reflections and column pivoting, we can be more precise. 

We know from [SOI thar the cornputed solution d; to (4.1) is the exact solution to a nearby least- 

squares problem, namely 

where 

J c 1 ,  i]EfII 5 c~llfl[, c = (615 - 3n;4i)n. (4.2) 

To quantify the error on a s e p ,  following [42], we can elcpress the relative error in the solution 
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Perhaps more telling is the bound obtained by Demmel [19], 

II b - dvll ( 2 4  J i  : K2( t, -- 
tldvll cos e 

where the bracketed term can be viewed as the condition number 

and n-here 

sin 8 = Il Jv + fll 
llfll ' I l  JI1 ' llfll 

for the least-squares problem 

< Ok) .  

The angle 0 is betn-een the residud and the right-hand side, n-hile E is a relative measure of the 

perturbation in the involved quantities. 

Xote that the dependence on KI( J )  is not a concern in Our case, for the residual tends t o  zero 

as we approach the optimal solution and therefore tan 8 also tends to zero. The direction couId be 

inaccurate far from optimaiity, but that is where inaccurate solutions are not problematic. The 

direction becomes more accurate as we need it to be. 

To compare this result n-ith what is obtained for symmetric directions, we state an impor- 

tant theorem of Gu [38], the first, to our knowledge, to consider the  floating-point accuracy of 

semidefinite soivers using syrnmetric directions. He obtains, for the -4WO direction, 

n-here the error satisfies 

The E,  3 terms are defined using the syrnmetric Iir~necker product, 



The structure of the bounds (4.4.4.3) is similar escept that the error term 6Jaho is potentidly 

much larger than 5 J; contrast (4.2) and (4.5)- Moreover. since K( J )  for Gauss-Xewton is usuaJ1~- 

smdler than ~ ( f ~ ~ ~ ) ,  we conclude that  the bound on the error is no larger for Gauss-Ken-ton 

than for AHO. 

Table 4.1 shows the ratio of both condition numbers for well-conditioned randorn problems. 

Each entry in the table is the worst case of random problems mith the number of constraints 

varying from Lt(n) /Zj  to t (n)  - 1. 

Table 4.1: Comparaison of condition nurnbers of the AH0 and GK systems. 

The Gauss-Sewton direction should not run into any problems until E K (  J )  = R( 1 j which will 

happen, if a t  alI, closer to the optimal solution than for AHO. This is confirmed by numerical 

experimentation. Of course, this argument describes the accuracy possible in the computation 

of the step and not the accuracy of the solution of the optimization problem. An analysis of 

the accuracy of the whole iterative process described in algorithm 4.1.1 remains to be done. But 

an accurate step computation is one elernent esplaining the accuracy of the solutions eshibited 

throughout this chapter. 

4.1.1 Well-Conditioned Problems 

For the first set of experiments, exemplified by Table 4.2, we have used a simple random problem 

generator. The problems are al1 nyell-conditioned and have strictly complementary unique optimal 

solutions, In al1 cases, Algorithm 4.1.1 was able to solve so that  infeasibility measure and the 

cornplernentarity gap are srndler than IO-''. The number of iterations is onIy we3kly dependent 

on the size of the problems. IlTe first display the progress of one solution, in some detail, to relate 

the decrease in the infeasibility and in the complernentarity gap. Not surprisinglq., infeasibility 
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decreases faster than complementarity since the corresponding equations are linear. 

Iter 
1 
2 
3 
4 
5 
6 - 
1 

8 
9 
10 
1 I 
12 
13 
14 - 

Table 4.2: One instance of well-conditioned probIem. n = 15, m = 30. 

The more interesting aspect of the accuracy of the Gauss-Xewton direction is esernplified 

in Table 4.4 where we contrast the infeasibility mas(llFdll, liF,II) and the complementarity gap 

(2, X) /n obtained from various directions. Larger numbers are better. Table 4.4 results were 

obtained by averaging the outcomes of 100 random instances of each type of problems generated 

by the SDPT3' version 2-1 [79] random problem generator (norrnally distributed data from the 

MATLAB command randn). The implementation was SDPT3, to which we added the Gauss- 

Newton direction, and which we instrumented to  let the algorithm run until no more progress 

was possible. The test problems are of four different classes described in TabIe 4.3 where B is the 

weighted adjacency matrix of a graph and where the indices i, j, in the case of Lo\5sz 8 function, 

loop on the vertices corresponding to each edge of a graph. 

We note that the Gauss-Xetvton direction was, in every case, capable of a more accurate 

solution than al1 other directions, even the direction GT, developed specifically for that purpose 

[go]. LVe include symrnetric directions other than -AH0 to highlight the empiricd resuIt first 

noticed by Todd, Toh and Tütüncü [Tg], and ofteir exhibited aftenvards, that among symmetric 

directions, AH0 is the more accurate, From this point onward, we d l  rnostly restrict our 



Random : min {(c,x) 1 A ( X )  = b . ~  E S?) 

Yorm min. : m 
min { l l ~ o  + xi,, xiBi[l 1 x E IEm) 

Mascut : (B - Diag Be, X) 1 Diag (X) = e/4, X E 9: 

L o v ~ z ~ :  ( C , X ) I ( I . X ) = ~ . C ~ ~ ~ + ~ ~ ~ ~ = O , X E S ~  

Table 4.3: SDPT3 test problems. 

cornparisons to A H 0  but the  reader shouId keep in mind that other directions would, in general, 

Table 4.4: Solutions of SDPT3 test problems. Average of one hundred random instances. 

4 

random 14.7 9.1 10.6 9.5 13.3 12.0 10.7 5.5 12.5 14.4' 

4.1.2 111-Conditioned Problems 

norm min. 
Mascut 
LovaSz8 

For the second series of test, we generate iii-conditioned problems in the following manner: First 

we create an orthogonal m a t r k  Q,  then from a chosen rank 1 < r < n, we generate positive 

diagonai matrices D,, D, of dimension r x r and (n - r) x (n - r) respectively from which we 

15.0 9.9 10.9 15.3 14.8 13.8 12-7 10.1 14.4 14.9 
15.7 9.6 1 0 6  14.8 1 5 8  1 12.4 9.3 14.4 15.5 
14.7 9.2 9.2 13.9 14.8 14.2 13-7 12.8 14.1 15.3 

obtain 

X- = Q 

We also generate a random y* and 

A~ = Q~ 



for random Uk,Vk, Lk where l[Lk1lz x IO-'*. Then n-e form b = Asvec (X*) ,  and C = Z' t 

smatrk[Aty'j. From [6], n-e knon- that this procedure wi!l, in generai, create instances n-ich ill- 

conditioned Jacobians a t  the solution. RTe report on 30 random instances for each of the Larious 

dimensions and ranks and average the results in Table 4.5. The dimensions are chosen so that 

the reader can compare these numbers with those in [38]. The hfeasibilitj- column corresponds 

to the average of -loglo rnas(llFdll,llf,[l) and the Gap column corresponds to the average of 

- log,, (2, X ) / n .  Vie notice that for the ill-conditioned problems of Table 4-5. the Gauss-Newton 

Table 4.5: Solutions of ill-conditioned problems- Average of fifty random instances. 

direction was in ail cases more accurate than XHO. Moreover, the nurnber of iterations to attain 

this accuracy n-as less than -4HO. This is esplained by the margina! progress that A H 0  does in 

the last iterations while the progress of the Gauss-Newton direction is not affecteci by this kind 

of ilI-conditioning. 

r f n 
3 10 
6 , 20 

4.1.3 When Slater's Constraint Qualification Fails 

-!HO 
m 
9 

24 

Even if we assumed that  the problems, up to non*, had strictly feasible points, there are ckisses 

of practical problems where this assumption fails. RecentIy Gruber and Rendl[37] developed a 

robust algorithm specificalIy designed for these probiems. Since the requirements for the Gauss- 

Xewton direction do not include strict interior points, we attempted the same problems. The first 

esample problem is 

rnax {C,X) diag(X) = e,(J.X) = a , X E  9:). { 1 (4.6) 

GX 

FI-here e is the dl-ones vector and J is the all-ones rnatrii;. For positive \dues  of the parameter 

or, the problem has strictly feasible prima1 points but this interior region shrinks to the ernpty 

set as a is reduces to zero. The first set of experiments reported by Gruber and Rend1[37] uses 

a = IO-'. 

iter. Infeas. Gap iter. Lnfeas- Gap 
18 1 2  15.1 13 14.3 15.4 
22 12.1 14.6 17 13.8 16.3 

L 



Table 4-6: Problem (4.6) n-ith or = IO-' and accuracy set to  IO-^- 

We have done the same experiment and report the result in Table 4.6- Each column, after the 

first two indicating the dimension, represects the worst case of each of twenty random cxperiment 

for the corresponding entry. We have set the required accuracy a t  1 a s  they did. The important 

point to note is that their number of iterations is never less that 114 (see Table 2 of [37]). Our 

result of less than 25 iterations compares very favourably and illustrates a strength of the Gauss- 

Xewton approach: since feasibility is not gïven precedence over complernentarity, the near-absence 

of feasible points inside the cone is of no consequence. We had to make no modifications to the 

implementation for these or any other problems. 

The second esperiment is generated for the sarne problem but with a = O. Ln this case, there 

is no strictly interior prima1 point. We report the results in Table 4.7. To contrast with Gruber 

and Rendl's result, the reader needs to be aware that their aigorithm averaged 115 iterations(see 

Table 3 in [37]). 

* 
IlfpII 

5.594166e-11 
4.882512e-15 
9-367561e-15 
7.334760e-15 

Table 4.7: Problem (4.6) with a = O and accuracy set to IO-'. 

(Z8 X> 
5.842689e-07 ' 
7.906645e-O? 
2.190'712e-06 
2.30107le-06 

Even more telling is that whiIe Gruber and Rendl needed to relax the accuracy requirements 

to solve the problems without interior points, and even tlien the algorithm failed two instances, 

the Gauss-Xewton algorithm can reach any required Ievel of accuracy for these problems. We ran 

the e~periment a third time, with a = O, requesting increased accuracy and report the results in 

Table 4.8. 

n 
10 
20 
30 
40 

.. 

iter 
24 
25 
22 
23 

m 
11 
21 
31 
41 

tlFdIl 
9.296152e-13 
2.2600-52e-12 
4.211995e-12 
1.8 16565e-12 

iter 
23 
22 
25 

n 1 m I i fd l i  
2.377587e-12 
2.479800e-12 
5.153522e-12 

10 
20 
30 

d 

IlfpII 
4.076899e-08 
1.516398e-08 
5.729514e-08 

11 
21 
31 

(2, X> 
9.096929e-06 
1.050569e-06 
1.416319e-06 



- --  

Table 4.8: Problem (4.6) n-ith a = O and increased accuracy. 

n j rn 1 
50 1 51 1 

Gruber m d  Rendl then moved on to problems n-here both primai and duai feasible sets fail 

to have interior points: 

r n a x { ( ~ , ~ )  1 ( v ~ v i . ~ )  =o.(v~v:.x) = 1.25 i m , ~  E d n ) ,  (1.7) 

i=n-1 where the vectors vi, with 1 < i < i are chosen randornly but orthogonal and C = x i = ,  aiviv:, 

iter 1 ltFdll 
32 1 3.4GÏ449e-12 

for some random positive vector a. 

m ! j  iter 1 llFdll tlfpIi Il (2. X) II 
9 / /  7 [ 8.01576%-11 8.009760e-11 5.080324e-06 

IFp il 

Table 4.9: Problem (4.7) with accuracy set to  IO-^. 

(Z. X> 

I v e  report t h e  result in Table 4.9. We never needed more than 8 iterations while Gruber and 

Rendl ((3Ïj. Table 4 j  report an average of 52 iterations to attain the same accurac.  

6.469784e-15 1 -1233752e-14 

4.1.4 DIMACS Challenge Problems 

Morc rcccritly. because of the DIMACS Challenge" a new set of test problems surfaced that proved 

ver- difficult to solve for al1 curent implementations. 4mong them is a series of HOC control 

problenis of low dimension and srnall feasibIe region, and mhose Jacobians are rank deficient a t  

the optimal solution. Our dgorithm \vas not designed for this type of problems, yet it performed 

surprisingly wll. Table 4.10 contrasts Our results with the best result avaiIable at this time taken 



£rom benchmarks run by Hans Mittelmann (http://plato.la.asu.edu/errors.html). 

Table 4.10: HO" control problems. 

Even though Our implementation did not do as =el1 as SeDuMi in this case, it is worth noting 

that these outstanding results of SeDuMi are the product of a nurnber of years of tuning the 

implementation to handle ill-posed problems- We have only a research-level implementation with 

no special handling of such difficult cases. That we can produce these approsimate solutions 

attests to the robustness of the Gauss-Newton direction. 

4.2 Sources of Sparsity 

There are three sources of zeroes in the solution of the semidefinite program pair. The first 

and simplest to handle arises directly from the dornain of the primal variables. For simplicity 

of exposition, until now we assumed that the primal domain was S:, the cone of semidefinite 

matrices of order n. Yet, for a number of applications the domain actually is a Cartesian product 

of semidefinite cones, $2' x . . . x S?IL1 where ni + . . . i- n k  = n. A typical exarnple cornes from 

Hm-control where the problem to solve has the fonn 

r n i n { ~ ( C i . X j )  / x ( A i j , X i )  = b i , l  5 i 5 mlXj  ES:',^ 5 j 5 k). 
j = 1 j = l  

After transformation of the problem iiito our standard formulation, the resulting primai variable 

(an embedding of S n1 x . . . x Snk into Sn, n = nl + . . . -+ n k  via X = Xi €3 . . - 9  Xk) has a b10ck 

diagonal structure. 
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The domain might also be a product of semidefinite cones, Lorentz cones and nonnegative 

orthants constraints, al1 of which can be embedded in a semidefinite cone. We have already 

seen, for esample, that a standard linear program requiring x E c m  be solved via X E ST 

and X diagonal. If we use a projection Px that only estracts the diagonal eIements, then the 

resultùig system solved at each iteration is esactl:: the size one espects for a Iinear program, 

namely (nf m f  n) x j n t r n f n ) .  

In the case of a Lorentz cone of order n (denoted IL:), 

the embedding is 

The operator corresponding to Diag in the stafidard linear programming case is Arrow in the case 

of the Lorentz cone. Again, most entries are zeros. 

To handle this first source of zeros we wiii use two related projections 

n-here nz(x) is che number of nonzero elements of x = svec (X) ,  the upper triangular part of X and 

nz(zx) is the number of nonzeros of ZX considered as a non-symmetric rnatriu, (The projection 

corresponding to Px in Sn-space will be denoted Px.) These projections are constructed at the 

start of the algorithm, frorn the structure of the domain of the prima1 variables. For exarnple, Say 



the domain is S: x x IR+ and 

The projected prima1 feasibility equation and corresponding equation of (4.1) a re  now 

We have obtained a system where the number of variables accurately represents the original 

problem. The embedding into a Iarger semidefinite cone has not cost us anything in terms of 

memory. 

The secorid source of zeros arises from the sparsity pattern of the matrices Ai and C and the 

duai feasibility equation, XE, Aiyi + Z = C. If ali Ai and C are sparse or  more preciseIx if 

the union of the sparsity patterns of these matrices is sparse then Z must also be sparse. This is 

especially truc in the case of relaxation of combinatorial problems. A typical example, that also 

happens to  bc one of the  t e s t  relaxations for the bfaxcut problem [8] yields a pattern as in Figure 

4.1 wherc t h  nonzeros cover only 25% of the m a t r k  2. 

Ive n-il1 Iiandle these zeros ~ i t h  the same type of projection, detected at the  start of the 

aIgorithn1 by considering the  union of the sparsity patterns of al1 Ai and of C. We want Pz to be 



Figure 4.1: Sla~cut relaxation dual variable Z sparsity structure. 

a zero-one matris and have the rn.z.xïmum number of zeros subject to 

p- : ~ t i n )  ~ n z l z i  - P,svec (H) = svec (H)  , H = C, Ai, 1 5 i < m. (4-9) 

With this constraint, nziz) indicates the number nonzero elements of z = svec (Z), the upper tri- 

angular part of Z. (The corresponding projection in Sn-space u-ill be denoted p,.) The projected 

dual feasibility equation corresponding equation of (4.1) are 

With this projection, we climinate some columns from the Gauss-Newton system (corresponding 

to the zero cornponents of 2) and we eliminace some rows (corresponding to constraints on these 

zeros) . 

ITye note that P, projects ont0 a subspace of the co-dornain of Px and therefore z has at least 

as many zeros as x. This iniplies that we can project the complementarity equation using Ex and 



This eliminates some more rom-s from the system. For esample, if the original system is a standard 

linear program, the resulting Jacobian is of size (n i- m i- n! x In + m + n), as one would expect 

for a Iinear program- 

We try to exploit the sparsity of z and of the Ai as much as possible- This is the subject of 

the nest  section. Before m-e end this section, we mention the Iast source of zeros in the problem, 

the asymmetric Kronecker products Z 8 1 and I G X. The resulting matrices ha\-e a t  most n3 

nonzeros (if X and Z are dense) while being of dimension n' x t(n). This is illustrated in Figure 

4.2 

Figure 4.2: Sparsity structure of [Z 8 I I I  8 XI (n = El- 

It would also be possible to handle this sparsity via projections if we were to solve the system 

by a QR factorization of l. But since we intend to solve the system in two steps, for d, first, 

then for d,, d,, the nonzero pattern gets more complex. We therefore opted for a sparse rnatrix 

structure, using compressed columns to which we will apply permutations to minimize fil1 during 

the factorization phase. 



Aber the projections, the system (4.1) becomes 

where J, is ofsize ( n z ( z ) +  m+nz(zx)) x ( nz (x ) im inz (z ] ) ,  and we are solving for P,d,, d,, P,d,. 

To visually contrzst the original Jacobian and the reduced Jacobian under the effect of the pro- 

jections, see Figure 4.3 

Figure 4.3: Sparsity structure of full and of reduced Jacobian (Maxcut instance). 

4.3 Separability for Sparsity 

Consider in (4.10) that the first two columns of j, especially if A is sparse, will be very sparse. If 

there is a way to first solve for d,, takng advantage of this sparsity, then back solve for d, , d,, 

it might prove advantageous to do so. We first describe how to  separate in more general terms. 



Consider K E Rhx y L E RhX : h E Rh where h > k +- 1 and the optimization problem 

Lemma 4.3.1 The least-squares solution to  (4.11) can be eqressed  by 

1, W* = -[(I - L L t ) ~ ] t h ,  

2. Z- = - L ~ ( ~ ; K W * ) .  

Proof: S a -  w' is the Bk part of the optimal solution. Shen 

ivhere k = Kw' +- h. The solution of which is given by 2. Substituting back we get 

the solution of m-hich is given by 1. 0 

This approach is inspired bu [33, 3-11 where partial separability was used to isolate variables 

involved in linear blocks from those involved in nonIinear blocks. The motivation, in Our case, is 

different: some of the t-ariat~les are subjected to dense operators, others to sparse operators. We 

are trying t o  isolate theni alid treat them differently. 

Since, for the class of probiems we have in mind, Z and A are sparse, and correspondingly dz 

is sparse, we make the following identification between the columns of Jp from (4.10) and Lemma 

4.3.1, defining new symbols to simplify the notation: 



- - 
andd, :=dg, fp  :=f,. 

4.3.1 Solution via Pseudo-Inverse 

For the sake of completeness, give an eqression for the pseudo-inverses and the s~mboIic 

solution of the systern. We need ~t and 1 - L L ~ .  

Lernrna 4.3.2 For L d e f i e d  as in (4.121, 

Proofi Since the Jacobian is of fuIl column rank, then L is aiso full column rank. To satisfy the 

Moore-Penrose equations, we need only to show LtL = 1 and L L ~  = ( L L ~  jt. Both equations are 

readily verified by simple rnatrix multiplication. O 

To solve (4.10) using the technique of Lemma 4.3.1 we need to solve in a least-squares sense 

a systern of size (nz(z)  + m + nz(zx) ) x nz(z) , thin and built from sparse operators, 

We solve (4.14) by a QR factorization via column-oriented Householder reflections. Before the 

factorization, we need to solve 



a very sparse system, to  obtain U and V needed t o  get 

- - -  
Once u-e have dl, we c m  obtain dx, d, via 

This approach has not proved to be very accurate for hard problems, probably? in part, because 

of the construction of AAt i zzt, a-hich is &in to  the normal equations. Nevenheless. for well- 

conditioned, sparse problern, it can be very fast- The factorization of (4.15), can conceivable be 

done bj- an dou-ndatingjupdating procedure, making the code faster but n-e have not investigated 

this factorization. 

For a production version of our code, we might use this fast approach for the initial iterations 

and then, if memory permits, use the approach described in the next section to  obtain the required 

4.3.2 Solution via Householder Reflections 

There is a nurnericdiy better approach for the solution of (4.10) using the technique of Lemma 

4.3.1. Xote that we require Lt as well as 1 - LLt. Since L is of full column rank, we could use the 

identity 

L* = (L'L)-' L=. 

But this would unnecessarily worsen the condition number in the case where the columns of L are 

nearly dependent. -4 better approach is to compuce L = Q L R r  to obtain 



and therefore 

L L ~  = Q ~ R ~ R L ' Q ~  = QrQL. 

The numerous cancellations are the key to the accuracy of the result. 

The second requirement is to efficiently compute ( I - LLt ] K = ( 1 - Q r Q k ) K .  Say that  Q L = 

Pl Pz - - - PL ahere the Pi are Householder matrices Pi = I - pvivk. Then 

The reffections Pi are stored and applied in factored form without ever being forrned, in the 

standard manner, 

(1 - B W ~ ) K  = K - ~ v ( K ~ v ) ~  

and the application of Pi is later denoted by ApplyHouse in dgorithm descriptions. The overall 

procedure of the sparse solver for the Gauss-Newton direction is given bu Algorithm 4.3.1- 

The computational cost of this dgorithm, as indicated belon- its description, c m  be bounded 

by the cost of the two QR factorizations. The bound is an overestimate of the flop count since 

it does not take into account the sparsity of the Jacobian, but only the sparsity of the X and 

Z matrices. On the other hand it does not account for the memory accesses incurred by this 

approach. 

Since L is very sparse but K, and more so (1 - Q r Q L ) K  is denser, we treat these two parts 

separately, with the first using a sparse rnatrix structure, and the second a dense rnatrix structure 

which we cd1 K in the algorithrnic description 4.3.1. 

There is one more advantage of this technique. Since the sparsity pattern of L is the same 

at  every iteration, we can spend some time at the beginning to find an adequate fill-rninimizing 

ordering- 

Of course, this particular handling of sparsity via a tnTo-step QR factorization would defeat 

the purpose of finding accurate solutions if stability of the usual QR algorithm was Iost. Following 



AIgorithm 4.3.1 Sparse solver for Gauss-Sen-ton direction - 

Given f ;  J [LK]; K := K; f := f; {Current right-hand side and Jacobian) 
Constmct L; 
Factor Q r-Rr = L; 
Sa\-e and discard RL; 
for i =  1, ..., Ldo - 

K := AppIyHouse(Pi, K); 
end for 
for i=1 ,  ..., 1 do - 
K := -4pplyHouse(Pi, K); 

end for - - 
K := K - K; 
Discard Q L; - - 
Factor Q K R K  = K; 
f o r i = l f  1, ..., ltkdo - 

f := -4pplyHouse(Pi, f j; 
end for 
SoIve ÜK dz = 7; 
f := f + Kd,; 
for i =  1, ..., Ldo 

f := ApplyHouse(Pi, f ) ;  
end for 
Discard RK, QK; Retrieve R r  ; 

S O ~ W  RL [k] = -t 

{Qr = P i  - -  -PL) 

QR cost = 2 b ( x )  i m i nz(z)12 [nz(r) + m -+ nr(zx) - (=(XI + m i nz(z)/3 

Total cost = O([nz(x) i- m i nz(z)l2 [nz(rx) + ml) 



the p i o n e e ~ g  n-ork of Gu [38] we can show that this is not the case. The critical element is our 

methods of computing (1  -LLt )K. This is not an orthogonal matrix? yet there is a way to compute 

the product that maintains the accuracy of a product of orthogonal matrices instead of a general 

matrix product. 

Lemma 4.3.3 The calcdations of ( 1 - L L ~  )K in Algorithm 4.3.It  under the usval floating-point 

mode1 of arithmetic, scitisfies 

Proof: We are computing this matrk product via the identity 

where the Pi are Househoider reflections. If we apply the sequence of reflections by the usuai 

P iK = (1 - piviv: )K = K - Pivi(vEK), then it is known (Lemma 3.1 and Theorem 3.5 of [19]) that 

the sequence of products satisfies f i lPr . .  . PiK) = PL. .  . Pi(K t E), where IlEl[ 5 k t lKl l .  Since we 

are sirnply applying twice the number of reflections, we obtain the result. 0 

Lemma 4.3.4 (Backward stability.) The solution obtained by algonthm 4.3.1 satisfies 

Proof: This is a consequence of Lemrna (4.3.3) and the standard proof of backward stability of 

lest-squares solution via QR factorization (See, for example C2], Theorem 19.3). 0 



4.4 Solution via Givens Rotations 

Long after me had implemented the previous approaches, it occurred to us that a row-by-row 

factorization might be as effective in solving equation (4.10), especially after a re-ordering of the 

columns to produce the equivalent sustem 

-4 factorization via Givens rotation is usually twice as expensive as via Householder reflections 

but the particular structure of the matris in equation (4.16) suggest that we do not need to 

start the factorization until the first row corresponding to the operators 2 and X, a substantiai 

saving, Moreover we need not construct the whole operator before begïnning the factorization. 

As described in [%], we can form the operator on-demand, row by rom* and never have to store 

more than one row. An added advantage is that we need not store the rotations, only the resuit 

of the factorization. 

We implemented this procedure and the preliminary results were indistinguishable in term 

of accuracÿ from our previous implementation. But the most appeaiing aspect of this approach 

is the potential for parallelism. The same sparsity pattern repeats itself a t  every n rows of the 

operator because of the Kronecker products. This ïmpIies that up to a number of rows could be 

processed at the same time since their rotations are independent. -4s a simple example consider 

the product of 2 x 2 matrices, 

It is clear that FI-e could rotate the second and fourth in parallel on different processors. A related 



but more sophisticated idea was developed and implemented by Chu and George [16,17] for dense 

matrices: On p processors, for a rnatrk~ n-ith m rows, they allocate m/p consecutive rows to each 

processors. Independently and in parailel. tiiese horizontal blocks are reduced to triangular forrn 

by Givens rotations. During a second phase, where d l  the interprocessor synchronization cost is 

incurred, the blocks are further reduced to obtain a triangular rnatriu. The scheme is rneant to 

reduce both the synchronization cost between processors and the idle tirne. Such a scheme could 

easily be specialized to matrices formed by Kronecker products. We have not yet completed such 

a parallel implementation but it seerns that the factorization of operators built from Kronecker 

products wodd benefit greatly from their parallel structure. 

4.5 Benefits 

In sunimary, Ive have three different implementations of an algorithm aimed at  accurate solutions 

of semidefinite prograrns. The first. for small and dense problems, obtains very accurate solutions 

to al1 problerns in a wide range, from n-ell-conditioned to problems without Slater points. The 

second implernentation, for larger sparse data, decomposes the problem, a t  each inner iteration, 

into systems of order of the nonzeros in their corresponding variables. The third implementation, 

still under development, tries to leverage the structure on Kronecker products on parallel archi- 

tectures. Iri al1 cases, the inner routine is backward stabIe and d l  implementations start from 

possibly infeasible points and are therefore practical. On the negative side, the algorithms are 

more costly to run than usual symmetric direction algorïthms, an unsurprising tradeoff. consid- 

ering tlieir robustness. 



Chapter 5 

Sequent ial Quadrat ic 

Programming 

Until nonr we have used classical tools of nonlinear programming to deveIop and analyse a modern 

problem in linear optimization. In a reversal of roles, we now attempt to use semidefinite pro- 

gramming as the subproblem solver in a nonlinear optimization toolbox. This should be viewed 

as an application of semidefinite programming. 

A proven approach for the unconstrained minimization of a function f : Rn + iR is to build and 

solve a quadratic model a t  a local estimate x ( ~ ) ,  Xewton's method. In this chapter we propose a 

direct esxension of this modeling approach to constrained minimization: A local quadratic mode1 

of both the objective function and the constraints is built: since this model is too hard to solve, it is 

relaxd using the Lagrangean dual, which is then solved by semidefinite programming techniques. 

The key idea in this approach is to use the latest technique of cone linear programming to obtain 

a better mode1 than is usual in SQP methods and the key ingredient is the equ idence  between 

the Lagrangean and semidefinice rela~ations. 

-4s illustration of how semidefinite programs is used CO good effect, recall the well-known 

Rayleigh-Ritz quotient to obtain the smallest eigenvaiue of a symmetric matrix A. An equivalent 



fonndation yieids (for see [43]) 

One approach to prove this result involves Lagrange rnultipliers: the optimal x must be a station- 

ary point of the Lagrangean L(x, A )  = xtAx - X(xtx - 1 ). This shows chat the optimal x is an 

eigenvector; and substitution into the objective function shows that the corresponding eigenvdue 

is the srnaIIest. But nou-, consider instead, xtAx = trace (xtAx) = trace IAxxt ) and Iet X := xxt . 

il7e n-rite the program (5.1) as 

min (A,X)  (1,X) = l , X  0 , X  =xxt , { 1 1 
where (A, B) = trace(AtB), the trace inner product; A O (resp. A + O) denotes positive 

sernidefkiteness (resp. positive definiteness): and A B denotes A - B y O. The symmetric 

matris space Sn is equipped with the Lowner partial order. 

Xote that the rank one conscraint (X = xx') is redundant because we have only one constraint 

[Ml. W e  therefore drop it and construct the dual to obtain 

which obviously has Al  (A)  as optimal value- Since the dual has a strictly interior point, the primal 

attains the sarne value and we get the Rayleigh-Ritz resuit. h this manner we use semidefinite 

programming to construct and so1ve Lagrangean reIa.xations. 

In this chapter, we wish to illustrate some of the strengths, both theoreticai and practical, 

of considering semidefinite relaxations of quadratic programs as the tool of choice for solving 

Lagrangean relaxations tbat &se from quadratic models of general nonlinear programs. 



CILaPTER 5. SEQ UENTLAL Q UADR4TIC PROGR&JLIMIArG 

5.1 The Simplest Case 

LMoving up in comptesity we consider the unconstrained problem 

When possible, the method of choice for this problem is Newton's method, which minimizes a 

quadratic model of the objective function. To ensure a solution (or convexïty) of the model, 

Newton's met hod is often irnplemented wi thin a Trust-Region, or Restricted-S tep approach. This 

very efficient l-ariation proceeds from an initial estimate of the solution: develops a second-order 

model of the objective function deemed valid in a region around the estimate: and finally salves 

the rnodel (the trust-rcgion subprobiem) 

The rnodel is constructed from Q = ~ ' f ( x (  " 1 )  (or an approsirnation of the Hessian), b = ~f ( x '  k l )  

and the parameter 6 represents the radius where the model is deemed valid. The trust-region may 

be scaled or even arise from a non-convex quadratic. A solution d is then used as the step to the 

next estimate X [  k+' ' = x ( ~ )  + d. 

One of the interesting properties of ( 5 .2 ) ,  first shown in Stern and Wolkowicz [75] using semi- 

definite programrning, is that even though generally non-conves, the problem exhibits no duality 

gaps. The Lagrangean dual of (5-2) is written as 

a nonlinear. concave semidefinite program, where ( - ) t  is the Moore-Penrose generalized inverse. In 

addition. the Lagrangean dual has been shown 1691 e q u i d e n t  to the following linear semidefinite 

program, 
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we take the d u d  of the above linear semidefinite prograrn (5.4) to get a semidefinite program 

equit-aient to (5.2), 

m i n { ( ~ o . ~ )  1 (E0.Y) = l,(Pi.Y) 5 6 ' , ~  O).  (5.5) 

The programs are equivalent in the sense that the optimal d i r e s  are equal and that the optimal 

solution to (5-2) c m  be extracted from the optimal solution to  (5 .5) -  The variable in this 

program, Y, belongs to the cone of syrnmetric positive semidefinite matrices of dimension 

1 )  x (nf 1) .  Xlso, 

latter 

(n + 

The reader will note that (5.5) may be obtained as we did for the  for the Rayleigh-Ritz prograrn, 

by homogenization of (3-3): transformation to matrix space and then by dropping the rank one 

constraint. (We abuse the terrn homogenization to mean elimination of the Iinear t e m s  from a 

quadratic function.) \le will do this in detail for a more general program later on. 

This pair of linear primai-dual semidefinite programs (5.5, 5-4) have strict interior points. 

Therefore the optimal values are equal; moreover, they are attained. Finally, part of the first 

column of the prima1 semidefinite solution, the matrix Y, is feasible for (5.2). And, possiblp with 

an additional displacement chosen in the nullspace of the Lagrangean, this first column yields the 

same objective value for (5.2) as its dual optimal. By this procedure, usually h o w n  as lifting of 

(5.2) to the cone of semidefinite matrices and projecting back (by the first column), we see that 

there are no duality gaps for (5.2). This is made precise in [75]- 

Theorem 5.1.1 The optinial solution t o  (5.2) and to  i t s  Lagrangean dual problem (5.3) are 

attained and the correspondirrg objective values are equal. 

The interesting aspect of this theorem is that the Lagrangean d u d  is shown equivalent to a semi- 

definite program and its optimal d u e  is deduced from this latter program. Therefore, interior- 

point dgorithms, as developed in the previous chapters, rnay be used to solve (5.2), even if the 

objective function and the feasible set are non-conves. The result has been e-xtended to upper and 
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lower bounded trust-region subproblems but, interestingly, not to a finite nurnber of constraints. 

With as few as two constraints, a duality gap may appear [S9, 901. 

5.2 Multiple Trust-Regions 

Consider nonr a quadracic objective function constrained b! y multiple quadratics, 

min { x t ~ ~ x  f Zbkx - no 1 xtQkx + 2bkx - ar $0,1 5 k < m.x E Rn . 1 (5 -6) 

AS soon as two or more trust-regions are considered, the necessary and sufficient conditions that 

hold for one trust region maj- no longer be sufficient for (3.6). This is reflected in the duality gap 

exhibiteci by some instances of multiple trust-region prograrns. 

To directly derive the  relaxations. we introduce the vector y = (xo xIt. çtè then require x$ = 1 

or, in terms of the neAr variable, y 'Eoy = 1, to get a homogeneous program equ iden t  to (5.6), 

min ytPoy y ' ~ ~ y  =1.ytpky 5 0 . 1  < k < r n , y  ER"+'), 1 (5.7) 

The homogenization simplifies the notation and opens the way to the semidefinite reIaxation. We 

rewrite (5.7) using m a t r k  variables, 

min (Y.Po) (Y.Eo) =l,(YIPk) 5 0 . 1  5 k s r n , ~ = y y ' ) .  { 1 

The rank-one constraint is relaxed to a semidefinite constraint; a procedure that  yields the La- 

grangean relaxation. Mter  some rearrangement of terms, the Lagrangean duai of (5.7) reads 



For the inner minimization to be bounded we must now have 

rn m 

PO + XcPk + hoEo y 0. which implies Qo i hrQc t O. 
k= 1 k= 1 

This, by the wa'; is n-here the duality gap arises. The standard n e c e s s q  optimaiity conditions 

for (5 .6)  do not require the Hessian of the Lagrangean to be semidefinite. But the Lagrangean 

dual program we are deriving here requires the same Hessian to be semidefinite. We therefore 

cannot espect the prima1 variables corresponding to an optimal duai solution to bel in general, 

optimal for (5 -6). 

To complete the derivation, we note that the minimum over y will be attained a t  y = 9 from 

which we get the dual program 

We have non- justified the daim of equivalence of the  Lagrangean and semidefinite relaxations 

since dropping the rank-one condition on the homogenized prima1 (5.2) or taking the semidefinite 

dual of (5.8) will result in the followïng, which we d l  therefore simply refer to as the relaxation 

of (5.6), 

(Eo ,Y)=l l (Pk ,Y)  5 0 , l  5 k 5  m . ~  ?O). (3 -9) 

This resulting semidefinite reIaxation of (3.7) is equivdent to the one considered in the literature 

[74, 15, 661. 

The optimal value of the relaxation provides a lower bound for (5.6). We now need an appros- 

imation for the optimum x.  Feasibility properties of the first column of the semidefinite relaxation 

were first shomn by Fujie and Kojima [25] for an equivalent problem with linear objective function. 

For an alternate view of this result, see [l], from tvhich we extract the next results. Consider the 

feasible set of the nonIinear program (5.6), 
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the feasible set of the semidefinite program (5.9), 

F:=(Y ~ O I  ( E ~ , Y ) = I . ( P ~ . Y )  C0.1 5 k <  mj; 

and the projector map, 

P R : S ~ ~ R ~ ~  P R ( Y ) = P R  

Theorem 5.2.1 Suppose that Y is a feasible solution of (5.9). The projected vector, x = PR(Y):  

is then feasible for al1 conuez constraints of (5.6). 

Proof: Since we are concerned only n-ith conves constraints, we mal- consider only those where 

Qk O and compute 

Since Y O implies X - xx t  O,  we obtain 

And therefore x  is feasible for al1 conves constraints of (3.6). O 

This feasibility of the first column is interesting to consider in more detail. First, in the case 

of a problem where t he  quadratic constraints are convex (but maybe the objective is not) there 

is an obvious way to improve this first column solution B-hen it is not optimal. 

, .n  optimal pair Y.A to the semidefinite relaxation, if Y is not rank one, will in general map 

to a vector x for which complernentaity fails but improving the objective value while remaining 



feasible is then easy- 

Lemma 5.2.2 Consider an instance of (5.6) with conuex constraints. if the semidefinite prima1 

optimal solution Y is not rank one, let X = PR(Y),  (part of the first column of Y)- Then there is 

a X chosen in iVF(Qo f hkQk), the nullspace of the Lagrangean, such that x = X + i5, is feasible 

and vil1 irnprove the prima1 objective value of (5.6). 

The idea is to choose a displacement along the nullspace of the Lagrangean until one or more 

slack constraints is satisfied with equality. The d u e  of the objective function is lowered since 

and therefore (k i Z)tQo(ji + X) < X t Q o X .  n 

Consider nom- a more general case where the constraints may not be conves. Kote that Theorem 

5.2.1 implies that the projected first column x is feasible for any nonnegative combination of 

constraints, 

which results in a conves function. Thus we obtain feasible points for convex combinations of 

constraints of (5.6) as in (5.10) from feasible points Y of the reIavation (5.9), even when these 

are not rank one. Therefore the relaxation provides a convex approximation to the feasible set f. 

However, it actually provides a better approximation than this would initiaily Iead us to believe. 

Let us define a valid inequality for (5.6) as 

X ~ ( X ' Q ~ X  + 2bkx - ar) < O. where Qo i h r ~ c  O, h 2 O. (5.11) 

These inequalities, an infinite number of them, are not, in general, convex. (Simply consider (5.2) 

where the objective is strictly c0nve.x while the constraint is not.) However, they provide geometric 
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insight into the semidefinite relaxation. The set of vectors satisfying ail valid inequalities, 

establishes a relation between the set of projected columns of semidefinite solutions and sorne 

intersection of the original constraints. 

We nom- use the geometric descriptions sketched above to provide an a p p r o - d a t e  solution to 

(5.6) from the optimum of (5.9). We use the k s t  column of the optimum Y but then we use the 

properties of the t-aiid inequdities (5.11) to improve this column by rnoving onto a boundaq of 

a valid inequalit- 

In the general case of a non-convex feasible region, we obcain a step, which, unlike Lemma 

5-22 ,  attains complementary slackness, though not necessarily feasibility. Again, the value of the 

objective function is improved. This additionai step is a generalization of an idea introduced by 

Moré and Sorensen [61] to  solve (5.2) and there is an esplicit expression for the step as there is for 

(32) ,  given here in Lemma (5.2.3). We give the technical construction of the step in the following 

Iemma and its d u e  in Corollaq- 5.2-4. 

Lemrna 5.2.3 Suppose that h and Y = 1: are feasible for (5.9) and its d u d  Let 

and suppose that they satisfy ZY = 0.  

Let the matnk Y be factored as 

where T zs (n + 1 ) x r and full column rank r 2 2. Let the m a t r û  S be r x ( r  - 1 ) and full column 

rank with R I S )  = Ar(T1,:). i-e. with range space given by the orthogonal cornpiement to the first 
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row of T .  Define 

R := TS, P := 1 hkpr, c := y'%, 
k€Z 

Choose v such that 

and define 

Rv # O  and vtKv 2 0 ,  

a := V~R'PRV, b := Z V ~ R ~ P ~ .  

Then, for z defined as foliou~s, we have 

and 

Moreouer, if we define 

and 

wtPw = 0, and Z w  = 0. 

Proof: That (5.13) holds and Zw = O follows directly £rom construction of R and the assurnption 

of complementary slackness, ZY = O. Note that ZY = ZITt = O impiies ZT = O. We still need to 
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show the equdity of the quadratic form in (5.15). Xom- 

wtfjtv = YtPY f d v t ~ V y  i CX'V~R~PRV. 

(Ive assume that  a IV esists to make this quadratic O. This may be seen from the ordinaq trust- 

region subproblem with the given h defining the single constraint.) The discriminant for this 

quadratic in oc is defined in (5.14), where 

Therefore, the discriminant is nonnegative, and the quadratic has a real solution a as given by 

the standard formula. II 

lXre non- make esplicit the value of the previous lemma in finding an approsimate solmion to 

(5.6). 

Coroliary 5.2.4 S~uppose that Y,Z ,h ,w  are defined as in Lemma 5.2.3 aboue. Then the La- 

grangeail dual bound is attained b y  w as well as cornplementary slackness. 

Proof: That complementarity is attained is seen directly from the second equation of (5.13). 

And from both equations we obtain 

Therefore, wtPow = qo(x t orz) = -ho, the dual Lagrangean bound- 

5.3 Approximations of Nonlinear Programs 

We assume the reader is familiar with Sequential Quadratic Programming, denoted SQP. We recall 

only the main features and refer the reader to [76] and [12] for details. The usual justifications 



for the application of SQP to the noniinear prograrn 

stem from applying Xewton's method to obtain stationarity of its Lagrangean Tix,  A )  := fo(x)  i- 

Aifi(x): 

We will sometimes use the notation f ( x )  := [f 1 (x)  . . . f, (x ) ]  and for the matrix of a11 gradients, 

[Vfl (x) . . .Vf,(x)],  we n-il1 use f'(x). An iterative attempt a t  the non-linear system above by 

Xewton's method \lth some simplification involving d = xIki1 ) - x ( ~ '  and SA = hIk+l f  - h l k ) .  

will produce the first-order Xewton step, 

This system produces a direction d and a new vector of Lagrangean multiplier estimates h l k f  

The key justification for SQP is that the system of equations (5.3) may be derived as the first-order 

necessary conditions of the quadratic prograrn 

Stationarity of the Lagrangean of (5-26)  yields the first iine of (5.3), and feasibility yields thc 

second line. This is why SQP is viewed as an extension of Newton's method to constrained 

optimization. 

It is nonT standard procedure to estend the derivation seen above to the inequality constrained 
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program, 

min fo(x) fi(x) < 0.1 5 i 5 m , x  E lia" , { 1 1 
and obtaui the subprablem, 

In summaq-, from the Taylor first-order expansion of 2 ( x ,  A), we obtain the standard SQP 

subproblem, n-hich approsimates the objective Function to second order yet approsimates the 

constraints only to first order. Consider rion- a second-order Taylor eqansion of 2 ( x ,  A), 

where we have grouped the third-order derivatives under the name Hj because we intend to 

neglect theni. Consider aiso replacing ' T ' ~ ' ( x [ ~ ~ ,  A ( " ) )  by 'iiz2?(x( kl, A( k+i ) ) - We then obtain an 

approximation of the necessary op timality conditions which sits between a first and a second-order 

es~ansion and is obtained by solving 

min fo(xIk)) i- VfO(x(k))td + + d t ~ ' f o ( x ( k ) ) d  - 
s-t-   fi(^(^') + V f i ( ~ ( k ) } t d  + $ d ' ~ ~ f i ( x ( ~ ' ) d  5 0, 1 < i 5 m (5.19) 

dtd 5 s', 

without the additional trust-region, which is added to ensure a bounded solution. 

Such a straightforward subproblem has often been considered, but has, just as often, been 

discarded as unsolvable. One notable exception is an algorithm by hiaany [54] developed, in- 

terestinglu enough, because the standard SQP approach failed on the highly nonlinear orbital 

trajectory problerns they were studying [21]. Because (5.19) is a closer approximation to the 

original problem (5.17) than the quadratic program, Ive espect it to be a better subproblem to 

soIve in a sequentid programming approach and, in fact we have the following, 



Leninia 5.3.1 Assume that xfkl  is feasible for (5.17). If the (5.19) svbproblem is solved by d = O 

with multipliers A, then the pair of vectors xik' and h satisfles the first-order conditions and 

second-order conditions of (5.17). Conuersely, if xlk! and A satisfy the first and second-order 

necessary conditions of (~7.17)~ then the pair of vectors d = O, A satisfy the first and second-order 

conditions of (5.19). 

This implies that the (5.6) subproblem does better than the (5.16) subproblem since they both 

solve the first-order conditions but only the former guarantees second-order optimality conditions. 

This is espected of a trust-region approach- 

1s a!so does better by providing second-order multiplier estimates in the sense that the multi- 

pliers A l k i  ' l obtained from (5.19) satisfy 

If we are close to the solution we therelore obtain, directly from the solution of the subproblem, 

not only a good search direction in prima1 space, but better multiplier estimates than provided 

by the standard (5.16) subproblem. (For more details on second-order multiplier estimates, see 

P O ]  -1 

5.4 Quadratically Constrained Programming 

Sote t h .  for sirnplicit; we assume that our constraints are nonlinear. Linear constraints have to 

be trcatctf diffcrently, essentidly squared [66]. Equivalentlj-. linear constraints may be eliminated 

or niaplmi to a linear constraint in matrLv space. 

Horriogrriization of (5.19), obtained by adding a component do to the vector d, together R-ith 

the constraint dg = 1,  yield the semidefinite relaxation, 



and R-here Eo and Pr  have their usual definitions, 

and Y t O. 

But this relaxation may be infeasible if the current estimate is too far from the feasible region. 

To overcome this difficulty in SQP, Vardi [84] suggested a heuristic shift of the linear constraints. 

We do a related shift of our second-order constraints by allowing the additional component do 

to take values between zero and one. That is, we change dg = 1 to dg 5 1. This additional 

relaxation allows for a feasible subproblem. Of course we would n-ant do to be as close to 1 as 

possible and examination of the subproblem shows that it automatically tries to make do "large". 

We need no heuristic to choose a Vardi-type parameter. 

The duai program to (5.20) is then 

Solving the primal-dual pair (5.20),(5.21), in the case of gap-free (5-17), is enough since, as 

we have seen, the first column is optimal for the quadratic approximation. But, in general, Ive 

need an appropriate merit function to ensure sufficient decrease at each step and guarantee global 

convergence of the algorithrn, whether we use a line search or a trust-region strateo. 

After solving the (5 .6)  subprobiem for a direction d # 0, the ne.* iterate is obtained by 

x [ ~ + ' )  = x ( ~ )  i d. This new point serves for the espansion of a new problem by second-order 

polynomials and we iterate until the subproblem yields d = O. As with any trust-region based 

dgorithm, we adjust the trust-region radius according to the ratio of predicted improvement 
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to  actuai improvement. At the end, we have a sotution satisfying both first and second-order 

conditions of (5.17). Somewhat more formallq-, Algorithm 54.1 describes the approach. 

Algorithm 5 -4.1 Sequentid Quadratically Constrained Promamminn 

Given fi, Vfi, litfi, x(O) {Functions and derilacives ) 
wen E G' (S teplengt h tolerance) 

k := O {Iteration count ) 
repeat 

Y E argmin((Po, Y) : (Pi, Y) 5 0, (Eo, Y) = 1, Y y 0); (Solve semidefinite pair) 
A"+" E ~ W & X { - h o  : Po L 1 hPi + AOEO t 0, A E P x %y}; 
d := PR(Y); (Pro ject  do^-n by first colurnn) 
, p t l i  .- -- X ( k l  , d: {Sen- point ) 

(Decrease ratio) 

6 = 6/4 (Bad model, shrink trust-region) 
else 

if (rk > g )  and - = 6 then 
{Good model, expand trust-region) 

Find maximal d E ni-('V244) such that 
k) := + d; 

return(x( k), A( k;) 

(Bump iteration) 
( Attaïned optimality ) 

f ( ~ ( ~ )  t d) 5 O 
{Nullspace move) 

(Primal iterate and multiplier) 

If the (5.19) subproblem is convex, or more generdly, if it  is an instance nithout duality gaps, 

then solving the semidefinite rela~ation,  which mas be done efficiently, wiIl be enough since the 

pr imd semidefinite soIution will be rank one. We w-il have a pair of primal-dual vectors satisfj-ing 

the  sufficient conditions for optimdity of (5.6). 

This takes care of the conve-K case and of many non-conves cases. In other cases, we move 

d o n g  the nulkpace of the Lagrangean until we hit one of the constraints. This nullspace-restricted 

step improves the objective value even if it does not lead t o  an optimal solution. 
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Example 5.4.1 nlustrative cornparison of SQP and SQ'P. 

3 min {-xi - xz 1 x l  - x r  5 O, x: i XI - 1 5 O) 

Figure 5.1: Iterations of SQP o n  Example 5.4.1, Figure 5.2: Iterations of SQ'P on the same ex- 

from initial point ( f :) t. A s  the first i temtion ample. The horizontal scale is changed to high- 

dernonstrates. the direction giuen by the QP sub- light the  value of the direction prouided by the 

probiern can l e  poor. semidefinite subpro blem- 

5.5 Conclusion 

Efficient approaches to unconstrained optimization based on Neri-ton's method al1 involve local 

quadratic rriodcls of the objective function. Yet for constrained optimization, the extension of 

Se\vton's rriettiod, SQP, uses linear approximations. Some second-order information is included 

in the modcl, but in an aggregate form. 

In this cfiapter we have outlined an approach that deals more closely with the t m e  quadratic 

niodel of t h  problem at hand. One of the key features is the relationship between the Lagrangean 

and Semidefinite rela-sations which leads to what \ve have calIed the SQ2P algorithm for general 

nonlinear programs. 
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This algorithm builds second-order approsimations of both the objective function and the 

constraints and then solves the Lagrangean relaxation of this quadratic mode1 via semidefinite 

programming- The approach provides a stronger relaxation than the standard quadratic program 

used in SQP methods; a t  e v e q  step it provides better multiplier estimates; it handles potential 

infeasibility of the subproblem in a straight-fonvard manner; finails it aims at solutions satisfying 

both first and second-order optimality conditions. Many implementation issues still need to be 

resolved but the recent advances in numerical solutions of Iarge semidefinite prograrns encourage 

further study- 

As a final noce, we should make clear chat it may turn out that the semidefinite relasation is 

not esactly the right one to use for efficiency reasons. But the point remains that we are nowadays 

in a position to do better than the linear relaxations so popular during the seventies and eighties. 

Because we had a t  our disposais good linear programming solvers. the world seemed Iinear or, 

at least, mathematicai models tned to  make it so. We nom- have good solvers for quadratic 

prûgrams, either via semidefinite relaxations or, possibIy via some second-order cone relaxation, 

and ive should make full use of these new tools. 



Chapter 6 

Future Directions of the 

Gauss-Newt on Direct ion 

Starting from the optimality conditions of the log barrier problem associated with the standard 

Iinear semidefinite program, we used the classical tool box of applied mathematicians and numer- 

ical analysts to obtain a family of search directions and interior-point algorittims. This approach 

led us to consider the least-squares solution of the Iinearized and smoothed optimality conditions. 

Vie obtained a solution, which we cal1 the Gauss-Newton search direction, that is different from 

search directions previously considered. 

The Gauss-Newton direction was shown to be n-ell-defined and to guarantee descent of a d i d  

rnerit function; computed on the prototypical cases of a standard linear program and on the 

central path of a semidefinite program, it coincides with the major primal-dual search directions; 

under usual assumptions, the defining system of equations is fuli rank and is at least as far from 

singularity as the best practical directions known until nonr; finally it is invariant under both 

&ne transformation of the space and orthogonal transformation of the underlying cone. 

From this direction we have e-xhibited an accurate algorithm for solving semidefinite programs 

with an implementation aimed a t  srnall dense problems and another aimed at  large sparse prob- 

Lems. 
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Our approach might be construed as a step backm-ard since the subprobIem we are solving 

a t  every step is larger than the subproblem solved bl- al1 other dgonthms. kët the weaknesses 

of current implementations based on other directions, their failure to accurately solve even well- 

conditioned problems to machine precision, for example, should convince the reader that the last 

word has not been written from a practitioner7s point of vïew and that our approach is d i d  even 

if more costly in its current implementation. 

The main objective of Our work was to develop a robust aigorithm. one that wouId reliably and 

accurately solve any problern in a wide famil- -4long the way, we tried with limited success to 

develop a proof of polynomial convergence of the algorithm. Wthin  our scope, the esperimental 

results and the bounds of Chapter 4 should convince the reader that nre have attained our objec- 

tive. We restricted ourselves to feasible problems and therefore one obvious avenue of research is 

to eqdore the behavior of the direction on infeasible problems. 

At the onset of our research, after the introduction of the Gauss-Ken-ton direction, n-e believed 

that the nest interesting question !vas to apply the scalings of the Monteiro-Ztiang family ta 

the the iterates and explore the characteristics of the resulting scaled Gauss-Xemton directions. 

This might still be interesting and was done for the Nesterov-Todd scaiing [47] but much more 

interesting questions arise when we consider that al1 the Monteiro-Zhang farnily can be obtained 

by applying projections to the Gauss-Xewton system. 

For a simple emmple, as we described i equation (2.31), the A H 0  system can be obtained by 

projecting away the skew-symmetric part of the Gauss-Newton Jacobian and the corresponding 

right-hand side, 

Jaho = Prgn, faho = Pfgnl where P = [I O! , 

and where the identity and the zero are of appropriate dimension. The other directions in the 

farnily trade the identity for another matris that  depends on the current iterate. 

Because this operator is applied before solving Jd = -f, in a mind attuned to the needs of 

numerical linear algebra, it is suggestive of a pre-conditioner, but a pre-conditioner chosen for ail 

the wrong reasons, namely to create a squczre system, oblivious to the increase in the condition 

number. Are we not emulating the sixties where every least-squares problem was transformed via 
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the normal equation to a square system? 

If we \<en- the relation between the Gauss-Xen-ton and evev  other direction as the result 

of some pre-conditioning, the interesting questions obvious1~- become: What are the right pre- 

conditioners for a given farnily of problems? How c m  we obtain more accuracy, simpler systems, 

sparser systems? Should we not apply an iterative scheme until we get close to  the optimal 

solution? For theoretical reasons. we also might be interested in finding justifications for the 

pre-conditioners that yield the AH0 or YT directions. It might even be possible to find some 

optimization problems for n-hich those pre-conditioners are the solutions. 

-Usa on the computationd side, we intend to re-implement Our algorithm using the latest 

parallel numerical linear algebra techniques. Since the principal operator is built from Kronecker 

products, an inherently parallel structure, we expect major gains from this area of research, 

On a more prosaic note, we intend to develop interfaces to the major databases of problems, 

transforming a research project into a useful tool for the optimization community 
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