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Abstract 

The nonlinear bilevei programming problem is a constrained optimization problem defined 

over two vecton of unknowns, z and y. Feasibility constraints on (2, y) include the 

requisement that y is a solution of another optimization problem, caiied the innet problem, 

which P parametMzed by o. The bilevel problem is very dïificult to solve, and few 

dgorithms have been published for the nonlinear problem. Therefore, instead of solving 

the bilevei problem directly, a "simpler" , . related problem is solved. This problem is 

defined by replaQng the solution constraint in the bilevel problem with a set of conditions 

which must be satisfied at a minimum point of the inner problem. The resulting one 

level mathematical program is solved using an exact penalty huiction technique, which 

involves finding solutions to a series of unconstrained problems. These problems are 

usuaiiy nonconvex and nonrnerentiable. Each problem is solved within a trust region 

fiamework, and specialized techniques are developed to oveniorne cüfüculties due to the 

nondifferentiabilitieo. A unique approach is deveioped to resolve degeneracy in the penalty 

function problems. The algorithm is proven to converge to a minimum point of the penalty 

function. Testing results are presented and analyzed. 
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Chapter 1 

Introduction 

The bilevel programming problem is a constrained optimization problem defbed over 

two vectors of unknowns, o and y. Among the constraints is a requirement that y is a 

solution of another optimization problem, called the inner or Iower level problern. The 

inner problem, which is defined oves both sets of unlcnowns, is parametenzed by z and is 

optimized only with respect to y. Thus, the bilevel p r o g r d g  problem involves two 

connected hierardllcal levels of optimization. 

Mathematically, the bilevel problem can be described as follows for z E PZ" and 

y E Rm, where n and m are positive integeri. Define P = (1, - - -, p}  and T = (1, - , t )  

for nonnegative integers p and t. 

%P: min F(z,y) subject to G~(z ,J )  2 O, i E  T, and y E R ( 4 ,  
=a 

where 

and 
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Assume that ail huictions in z and y are continuous and twice dinerentiable over Rn*. 

A point (2, y) is feasible for BP if it satisfies G<(Z, y) 2 0 for aU i E T, as weil as the 

solution constraint y E R(z) .  Note that feasibility of (s, p) for BP irnplies the feasibility of 

y for LLP(z). No assumption is made regarding the existence or uniqueness of a solution 

of LLP(z) . If LLP(z) has no solution for some z, then thete exists no y such that (a, y) 

is feasible for BP. For a given z, R(z)  is a multiple-valued function of o. The set may be 

empty, contain a single element, or contain more than one dement. Thus, at a feasible 

point (2, y), y is an implicit function of z- 

A global solution of BP is a feasible point which minimises the value of the objective 

function F ( z ,  y) over the set of dl feasible points of BP. The bilevel problem is usually 

nonconvex as a result of the solution constraint. Consequently, bilevel problems often 

have local solutions in addition to any global solutions. 

Most tesearch to date has concentrated on the linear bilevel problem, in which ali the 

functions are Iuiear over Rn+m. Even in this testricted form, the problem is oRen very 

difocult to solve due to the solution constraint and the resulting nonconvex feasible region. 

Ben-Ayed and Blair [15] proved that the linear bilevel problem is NP-hard. Nonlinearity 

in the objective and constraint functions complicates matters significantly. Whiie there 

exist a l g o r i t h  for the nonhear case of bilevd programming, to date all techniques 

for which extensive numericd results have been presented have assumeci specid forms 

for the bilevel problems being solved (including, for example, üaear constraints, convex 

problems, or separable quadratic objective fundioas). This thesis describes a theoretical 

and practical algorithm for solving nonlinear bilevel problems, and presents extensive 

numerical results dong with convergence results. 

Chapter 2 presents a more detailed description of the bilevel problem, including some 

applications and properties. It also indudes a description of several approaches which 
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have been used to solve bilevel problems. 

Due to the difiiculty in directty solving the nonlinear bilevel problem, the proposed 

algorithm instead solves a related probkm. By replacing the solution constraint with 

a set of conditions that must be satisfied by a solution of LLP(z), a one level problem 

is defined. This related problem is actually equivalent to the bilevel problem under a 

stated set of conditions. Bowever, these conditions are not usudy satisfied. The related 

problem, Iüe the bilevel problem, ïs generaily nonconvex, and it may be dificuit to fhd an 

initial feasible point. Thexefore, an tl exact penalty hinction is used t o  solve the related 

pro blem. This technique involves solving a series of unconstrained optimization pro blems. 

Chapter 3 defines the related problem and describes the penalty function algorithm. It 

also indudes a description of the trust region technique used to solve the unconstrained 

penalty function problems. Chapter 4 focus& on the resolution of several problems which 

arise when the theoretical algorithm of Chapter 3 is actualiy implemented. In Chapter 

5, the algorithm is proven to converge to a minimum point of the penalty hinction. 

As a result of the structure of the related problem, standard degeneracy resolving 

techniques proved inappropriate. Chapter 6 describes the nature of degeneracy in the 

penalty function and details the method developed to recover fiom the difnculties it 

causes. The technique, which is one of the major contributions of this thesis, is alço 

proven to work. 

The aigorithm impiementation was tested on a variety of bilevel problems found in 

the literature. In addition, it was testeci on some larger büevel problems whidi were 

generated by the technique of Calamai and Vicente 1281, and on some original nonlinear 

problems. The algorithm was quite successful in identifying local solutions of both iinear 

and nonünear büevel problems. Detailed results and andysis are presented in Chapter 7. 

A listing of the test ptoblems is included in Appendix A. 



This dissertation condudes with Chaptu 8, which s~unariaes the major contributions 

of this research and diacwses possible fiutun work. Appendix B indudes a listing of some 

of the notation used throughout this work. 



Chapter 2 

Bilevel Programming 

This chapter provides an overview of bilevd programming. Needed terminology is in- 

troduced Li Section 2.1, foilowed in the next two sections by descriptions of applications 

and of problems related to biievel ptogrammuig. Two example problems are discussed 

in Seetion 2.4, and some general characteristics of bîlevel programming are presented 

in Section 2.5. The chapter concludes with a summary of &thg methods for solving 

bilevel problems and a bnef overview of the pmposed technique. 

2.1 Introduction 

The f o 1 1 0 ~ g  definitions are required. Note that the notation of the introduction is 

contuiued. 

Definition 2.1 

1. The outer or upper level problem is 

ULP: min F(2,  y) subject to Gi(z, y) 2 O, i E T. 
**Y 



2. The inner or Zower Zevel pmblem, pammeterized by z, is 

3. R(2). the set of solutions of LLP(z), i6 called the mtional mudion set of o. If 

contoks b t h  local and glohl  solutions of the fouter Ievel pmbkml. 

4. The solution cmrstmint on y is the constmint y E R(2). 

5. The induced Tegion is the set of feasible points of the bllevel pmblem. 

Z= ((2, y) E Rn+m : Gi(zI y) > O for i E T ,  and y E R(z) ) .  

6. The wduced or relaxed pmblem is 

RBP: min F(2,y)  subjectto Gi(z ,y )zO,  i c T  
=,Y 

w(z,y)LO, %P. 

7. A solution of the bilevel problem is a solution of 

min F(z ,  y) abject  to (2, y) E Z. 
=,Y 

This definition includes both locol and globul solutions of the pro blem. 

2.2 Applications 

The earliest explkit use of the büevel problem as denoted by BP in Chapter 1 dates 

from 1977, in the work of Candler and Norton [30]. The authors use a bear bilevel 

problem to s i d a t e  the relationship between the actions of the goveniment and farmers 

'Some definitions of biievel problemrr (for example, [7], f131, and [67]) include an aasumption that the 

inner pmblem LLP(t) is convex and has a unique global solution for each femile value of z. We feel 

that the nonlinearity of LLP(z) warrants the indusion of its local solutions in R(z) .  
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in a Mexican agricultural system. The upper level variables model various decisions made 

by the govenunent: for example, leveis of subsidics on fertiiizer, prices for dinerent crops, 

and water taxes. The Iowa level variables correspond to the actions of the farrners, and 

indude the amount of fertilizet and water used, and the amounts and types of crops 

planted. The gavement attempts to  achieve some goal (for example, minimizing their 

erpenditures or maximizing production of various crops). At the same tirne, the farmers 

attempt t o  maximize their own profits. Candler and Norton note that problems of this 

type were traditiondly solved using one level iinear programs. However, such models do 

not truly reflect the dependencies within the relationship between the actions of the two 

parties, particularly when they have codicting goals- 

Bilevel programming has since been used to solve other problems fiom the field of 

economics (see [29] and [43]). Many other sources have yielded applications a9 neil. Two 

examples are noted below. 

a Network Design Problems. In [54], LeBlanc and Boyce use a bilevel problem to 

model a netnork of roads, as an aid in decicüng which roads should be upgraded 

in order to improve network performance. Some roads can be added or improved 

in an attempt to reduce network congestion, but the drivers who use the network 

wii i  aiways attempt to achieve their goal (for example, to take the shortest route 

between two points). Proposed improvements of various routes are reflected in the 

upper level variables, and the lower level variables correspond to the actual routes 

taken by the network users. 

Other authors (see [16] and [56]) have &O considerd this type of application. 

Environmental Policy. Koistad D2] describes how bilevel progamming caa be used 

to mode1 environmental regdation. In order to achieve pollution concentration 

standards while minimizing social casts, the governmeat sets emissions taxes on 
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pohters fiom industry. The tax levcls are the upper level variables. hdustry rnay 

react in mang ways in order to maximize profits, and these reactions correspond 

to the lower level variables. Industcy's level of emissions may increase or temain 

unchanged if the tax level is too Ion, or it rnay decrease if the tax is restrictive. 

However, if the tax is too high, industry cutbacks and a subsequent increase in 

unempioyment rnay result . 

In [9], Bard desaibes another application of bilevel programming in evaiuating 

environment al policy. 

The reader is referted to Anandalingham and Riesz [?], Kolstad [52], Niehoils [58], and 

Vicente and Calamai [66] for more examples of applications of bilevel programming. 

2.3 Related Problems 

W e  research into the bilevel problem BP is quite recent, t here has been active research 

for rnany years into equivaient and related problems. 

The continuow max-min problem (for example, see [42]) is a special case of BP, in 

which the upper and lower level objective fmctions satisfy f (z, y) = - F ( z ,  y). This 

problem has been studied in many forms (linear and nonlinear, unconstrained and con- 

strained). Techniques used to solve max-min problems WU not generally be applicable 

tu bilevel problems. However, an algorithm which solves BP can also solve ma-min 

problems. 

Static constrained Stackelberg problems (defmed as duopoly problems in [68]), whi& 

mode1 two person games as optimization problems, are actualiy bilevel problems. Mu& 

of the literature (for example, [2], [6], and [59]) on bilevel problems refers to the problems 

being studied as Stackelberg problems. 



Large scale linear problems are sometimes solved using decomposition techniques (see 

[27]). These techniques involve ident-g sets of variables of the linear problem which do 

not interact with each other. Subproblems are defined for each of these sets of variables. 

The objective fwctions of the subproblems are derived fkom the objective function of 

the original problem. These problem look very sirnilar to bilevel problems: the reduced 

(lower level) problems are solved, and are then combined into a single solution by the 

original (upper level) problem. However, as noted in [29] and [52], there are several im- 

portant distinctions between decomposition problems and true bilevel problems. AU the 

variables are actually controlied by one entity in the decomposition problems, ualiLe the 

bilevel problems. Also, while the objective functions in BP may be codicting or nonco- 

operative, the objective hinetions in the decomposition problems are always cooperative 

since they are derived from the single objective function of the original problem. Kowever, 

the relationship between the decomposition techniques and bilevel problems indicate tbat 

a general technique for bilevel programmiag might be usefui in solving some large scale 

nonLintzar optimization problems. Converseiy, a decomposition technique could serve as 

motivation for a new algorithm for bilevel programming. In fact, in [5], Aiexandrov and 

Demis describe a decomposition technique for soiving nonllliear programs, and in [4], 

they present a theoretical fiamework for solving unconsttained bilevel problems based on 

t heir earlier work. 

Amther problem whicb is closely relateci to BP was posed in the eady L970's, by 

Bracken and McGU ([23], [24], [25], and [26] ) and Geo- and Hogan [45]. These 

problems are called optimal value bilevel problems, and can be written as follows. 



Note that the optimal d u e  of the Lower tevel problem is referenced in the upper level 

fiuictions, not the solution of the lower problem. As a result of this ciifference, OVBP 

has one sîgnificant propem that BP, in generaf, does not. Btacken and McGill 041 
verified that if the uppet and lower level problems are both convex, then OVBP is also 

convex. Consequently, optimal value bilevel problems are usuallp easier to solve than 

bilevel problems Iike BP. 

The generaiized bilevel problem (see [7]) is an extension of the bilevel problem BP, in 

which LLP(x) is replaced by a variational inequality (that is, an innnite set ofconstraints), 

as stated below. 
GBP : min F ( z ,  y) 

=*If 

s-t- 22 E X, y E Y 

and f(z,y)(9'-g) 2 O, VI/'€ Y- 

Under appropriate asçumptions, the variational inequality is equivalent to a mathematical 

program. Therefore, any technique to solve GBP can also be used to solve BP. However, 

because not every variational inequality corresponds to a mathematical program, tech- 

niques designed for solving BP may not be appropriate for solving GBP. 

2.4 Exemple Problems 

Two s m d  bilevel problems are presented to illustrate some properties of bilevei programs. 

Consider the foUowing bilevd problem. 

BPI:  min ( z+ l )y  subjectto O < z < 2 a n d y ~ R , ( t ) ,  
z.9 

where 

RI ( z )  = {y E R : y solves LLPi(s)) 
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and 

LLPi(+): min z - y  subjectto 2 + y s 2 a n d  - 1 < y < 1 .  
Y 

To determine the induced region of BPI, we must examine the lower level problem 

carehilly. Let pl(z) be the feasible region of LLPi(z), for any value of t. The set is 

iliustrated in Figure 2.1 and is deseribed mathematicdy as, 

NOW, LLPi (z) is simply 

min -y subject to y E pl(*). 
Y 

The argmin solution of this problem, 



Figure 2.2: Ri(~) (connected iine segments), for 2 E R 

is the rational reaction set of the bilevel problem BPI, for x E R, and is shown in Figure 

2.2. With this simplification, the feasible or induced region of the bilevel problem is 

as Uustrated by the two comected Luie segments in Figure 2.3. Note that even with a 

univariate, convex linear problem as the lower level problem, the induced region of BPI 

is not convex. Therefore, BPI, now stated, 

is nonconvex and may have multiple local minima. Figure 2.4 displays several contour 

lines of the objective funetion along Rth Z. Rom the diagram, it is dear that feasible 

descent is possible fiom any point along the line segments, except A = (0, l)  and B = 

(2,O). Therefore, bath A and B are L o d  solutions of BPI. Because the objective function 

value is lower a t  B than A, the point B is the global solution of BPI. 

Note that rewriting BPI by rnoving a Iower level constraint to the upper level of 

the bilevel problem signincantly changes the structure of the bilevel problem. Consider 



Figure 2.3: Ti (comected Iine segments), Feasible region of BPI 

Figure 2.4: Contours (dashed lines) of the Objective Function 
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Figure 2.5: p2(2 )  (shaded region) and R2(2) (y = l), for z E R 

moving the lower Ievel constraint 2 + y 2. 

where 

&(2) = {y E R : y solves LLP2(z)) 

and 

LLP2(z): r$n z - y  subjectto - 1 < y s l .  

Using similar andysis for BPI as used above for BPI, p i ( z ) ,  the feasible region of 

LLP2 (2) , and R2 (2) , the rational reaction set of LLP2 (2) satise 

for ail 2 E B. These sets are diustrated in Figure 2.5. The feasible region, lz, for BP2 

(as shown by the solid iine segment in Figure 2.6) is significantly dinerent from Tl. 
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Figure 2.6: Z2 (solid Line segment), Feasible Region of BPI 

The set I2 is convex and BP2 is a conp.ex biievel problem. Note that the global solution 

of BPI, is not in the induced region of BPz , and therefore is not even feasible for BP2. 

Recaiiing the contours of the objective function shown in Figure 2.4, the point A, a 

local solution of BPI, is the global solution of BPa. 

Even though the same fùnctions define both BPI and BPa, the problems are signifi- 

cantly dinesent and have different solution sets. 

2.5 Characteristics of the Bilevel Problem 

Some of the properties exhibited by the example biievel problems BPI and BPa are 

characteristic of bilevel problems in generai, while others are not. 

BPI is not convex, despite the convexity of LLP1(z) for ail feasibIe 2. Whüe BPa 

is a convex probiem, most bilevel problems are mt convex due to the solution 

constraint. 



The solutions of BPI and BP2 occur at vertices of the feasible region of the reduced 

problem. Ali iinear bilevel problems have this propezty, and, as wil l  be seen in 

Section 2.6.1, i t  is the basis for many algorithms designed to solve this specid case 

of bilevel p r o g r d g .  However, this property is not wually present in nonlinear 

problems, for which there may be no vertices in the feasible region. 

The rational reaction sets of LLPl and LLP2, for feasible values of z, are singletons 

corresponding to unique global solutions of the lower level problems. This is not 

generally the case for a noniinear lower Ievel problem, which may have multiple 

global and local minima. Combining this fact with the fist property above, local 

solutions are possible at both 1eveis of the problem. 

Some definitions of the bilevel problem (for example, [62]) assume that the solution 

set of the lower level problem is a singleton for dl feasible z. We consider that 

to be a very strong assumption, and it is not made here. Consequently, ne must 

acknowledge the possibility of Iocal solutions. 

Although not evidenced by the problems BPI and BPa, another conceni in solving 

any optimization problem is the possibility of degeneracy. As with the issue of 

local solutions, degeneracy may be present a t  both levels of the bilevel problem. 

Degeneracy is the focus of Chapter 6. 

2.6 Solution Techniques 

Many algonthms have been proposed for solving the bilevel programming problem. Most 

of these algorithms have been designed for specid cases of the problem. While some of 

the techniques used are suitable for only the form of the problem being considered by the 

authors, othenr use ptiaQples that are applicable to  more general bilevel problems. The 



Mnous algorithms can be classSed2, according to the solution approach used, into one 

of the foliowing groups: 

Extreme point search or vertex enurneration algorithms; 

0 Descent direction algorithms; 

0 Linear complementarity algorithms; 

Branch and bound dgorithrns; 

0 Penalty function algorithrns- 

The basic motivation and structure of the algorithms in each class are described in this 

section. 

This section is not meant to provide a complete review of ail published algonthms for 

bilevel programming. Rather, it is intendeci as a briefintroduction to existing approaches 

to the problem, so that our proposed algorithm can be viewed in context with other 

solution methods. 
4 

2.6.1 Extreme Point Search Algorit hms 

The famiiy of algotithms referred to as extreme point search or vertex enurneration al- 

gorithms are used to solve linear bilevel problems. They are motivated by a theoretical 

resdt of Bialas and Karwan [21]. We shall considu the Linear problem k the following 

form: 
LBP : min F ( z , y ) = a T x + b T y  

=,y 

subject to y E R(+) = (y E Rm : y solves LllP(z)), 

~ h e  Aiexaubv-Dennis [4] algorith, noted on page 9 of this text, dow not fit into just one category. 



where 

LW(=) : f ( y )  = cTy subject to + B~~ 2 d. 

Bialas and Karnran showed tbat a solution of LBP must be a vertex, or extreme point, 

of the feasible region (in terms of z and y) of the lowet level pmblem. Thetefore, it must 

be a vertex of the siniplex 

While a solution of LBP must be a vertex of p, not all vertices of p are feasible for LBP. 

The goal of extreme point search algorithms is to examine al1 vertices (2, y) of p to 

identify a vertex which is fearible for LBP (for which y solves LW(2)) and which mini- 

mizes F(z ,  y) over aii feasible points. However, as the region p may have an exponential 

number of vertices, simple enuneration of the vertices is too expensive- The various ex- 

treme point search algorithms use different techniques to efficiently s e a r a  the vertices. 

Some of the proposed search techniques (for example, [31], [39], and [59]) examine only 

vertices wbich are feasible for LBP. However, the method we shall examine, proposed by 

Bialas and Karwan (211 and described due to its simpîicity, iterates over infeasible points 

and terniinates as soon as a feasible point is identifid 

The algorithm begins by finding a global solution (zl, y') to the reduced problem 

If (d , is not in the induced region, iteration k, for k = 1,2, -, ptoceeds in the 

following manner. 

Let vk be the vertices visited in itetations 1,2, -, k - 1, and let W* be the vertices 

of p which are neighbors of the points in vk. 
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0 Define the new point (ék+', ~ + ' )  by solving the linear problem 

LPk : min F ( t ,  y) subject to ( x ,  y) E wk \ vk. 
*,Y 

a Update the iteration count k = k + 1, 

Repeat untiI$ solves LLP(Z&). 

This algonthm, which identifies the globaI solution of LBP, is calied the Kth best algo- 

rithm because it terminates d e r  K iterations, where (zK, yK) corresponds to the Kth 

lowest value of F over the simplex p. 

The theory behind extreme point search algorithms caxmot be extended to more gen- 

eral bilevel problems- Because nonlineat single leve1 problems do not generaily have 

solutions at vertices, the motivating theory is not applicable, in general, to nonlinear 

problems. However, Nichoiis [58] has developed a grid search algorithm (based on the ver- 

tex enmeration technique) for a specific, two variable nonIinear bilevel problem. Because 

of the very specialized form of the problem, which was designedh to represent the complete 

operations of an alumuium smelter, the author was able to divide the constraints into 

different groups (linear, convex quadratic, concave quadratic and those involving inverses 

of the t a o  variables). Each group of constrirints was handled individually. Cmently, it 

is not known whether thio technique can be extended to the more generai forms of bilevel 

problesns considered here- 

2.6.2 Descent Direction Algorit hms 

Descent direction algorithms view the bilevel programming problem BP solely in tenns 

of the upper Ievel variables 2 E Rn. The Iower Ievel variables y are considered only in 

relation to the upper level variables. Sine  g is constrained to  be a solution of LLP(z) 



at a feasible point (2, y), y is an implicit fmction of z. It is assumed that the rational 

reaction set R(2) contains a single entry for each feasible t. For convenience, we shaU 

denote this solution y'(z) to emphasise the dependence of y on 2. 

Starting from a feasible point z E Rn, descent direction algorithms attempt to fhd a 

direction w E lU" dong which the objective fundion of the bilevel pmblem W decreased. 

A step a > O is calcdated dong the descent direction and a new point (z + av) is 
chosen which provides reasoaable deerease ia the objective and which is feasible for the 

bilevel problem. Feasibility requires calculating yœ(z + aw ) . The process continues until a 

descent direction cannot be defined and the curent point is a local solution of the bilevel 

problem. 

The various descent direction algorithms which have been proposed have the basic 

structure ou thed  above, but diner in the way that the descent direction is calcdated. 

One major concern facing researdierp ushg descent algorithms is the availabüity of the 

gradient of the objective fuaction V, F(x,  yœ(z)) at a feasible point. Using the chain d e  

for differentiation, 

While V.F(z, y) and V, F ( z ,  y) are assumed to exist, the gradient V, y*@) may not exist, 

and even if it does, rnay be difficult to calculate. Assuming that the gradient exists, some 

descent direction algonthms (for example, the techniques Qted in [52] and [53]) have 

concentrated on ways to approximate V,y*(z) . 

Savard and Gauvin [62] have proposed a different approach to the problem of definhg 

a descent direction. Instead of caldating or estimating V,y'(z) and ushg this vector 

to define a descent direction, the authors propose calculating the actual steepest descent 

direction for the nonlineat bilevel problem. They describe a hear-quadratic bilevel prob- 

lem (in which all h c t i o n s  are linear except for the lowa levei objective hinction whi& 



is quadratic) whose solution is the steepest descent direction for BP. The structure of 

the hem-quadratic bitevel proble& cari be exploiteci sa that it  is easier to solve than the 

nonlincar bilevel problem. 

Once a descent direction w ha9 beeo defineci for the bilevel pcoblem, regardless of the 

mariner in which it was definedl a positive step size a must be determined such that an 

acceptable deuease is obtained in the objective. At the same time, the new point must 

be feasible. The new point (=(or), y@)) must be calculated, where 

x ( a )  = z+a t  

y (a) = ir'(2 + at). 

Therefore, for each trial d u e  of a considered, LLP(x(a)) must be solved. Solving these 

problems considerably raises the cost of perforxning the descent direction caiculation in 

the upper level variable space. 

These algorithms have been described for nonlinear problems. Numerical results for a 

few large-scale nonhear bilevel problems have been quoted in [53], but the other descent 

direction techniques have cited results for only a few small problems. 

2.6.3 Linear Complementarity Algorithms 

Because biievel problems are so diaicuit to solve, many techniques for solving them at- 

tempt to do so by solving a series of sirnpler, one levei probluna. Linear complementarity 

algorithms use this general appcoach to solve linear bilevel problems of the form 

LBP+ : min F(z ,  y) = aTz + bTy 
=,Y 

subject to y E R(z)  = {g E Rm : y solves LUP+(z)) 

where 

L ~ + ( z )  : f (y) = cTY subject to ~~2 + ~~y 2 d,  2, y 2 O. 



The representative algorithm described here k due to JGdice and Faustino [51], and is an 

improvement of the algorithm proposed by Bialas and K a m a n  [21]- 

The initiai step in the JudiceFaustino algorithm iovolves defining an equivalent one 

level problem by replacing the solution constraint connecting the upper and 10- levei 

problems with conditions that must hold at solutions of the prima1 and dual forms of the 

iower level problem, 

1-LBP+ : min F(2,  y) sub ject to (2, y, A, a, P )  E KKT , 
=,YJ,W~ 

where 

Note that KKT includes points which sati* the Karush-Kuhn-Tudter necessary op ti- 

mality conditions for the lower level ptoblem. 

The vector A, the Lagrange multipfiers for the lower level problem, is the soIution 

of the dual of the lower level problem. The vectors a and P are the slack variables 

for the p h a l  and dual problem, respective1 y. Note that the complementary slackness 

conditions for the primal and dual problems are the third set of coasttaints listed in KKT. 

The problem 1-LBP+ is not a linear problem. It is a nonconvar problem in which dl but 

the complementary slackness conditions are linear . 

Linear complementarity algorithms have been used to identify solutions of linear and 

quaciratic problems by finding points which satisty a set of conditions which must hold at 



a solution. To use hear cornplernentarity techniques to solve 1-LBP+ (and therefore to 

solve LBP+) , the authors introduce a variable w and convert the objective function into 

a constraint - 

oTo + bTy 5 W .  

The bilevel problem is now a problem in w: 

P, : min w subject to  (2, y, A, a, @) E T(w), 

T ( w )  = ((2, y, A, a , ~ )  E KKT : w - aTz - bTy 2 O). 

Linear complementarity techniques are used by the authors to fiad a feasible point in 

Y (w)  , for any value of W .  

If T(w) is empty, then w is a lower bound on the value of F(z ,  y) a t  a global solution 

of LBP+. Inueasing the value of w and invoking a complementarity algorithm to fhd a 

feasible point of T(w), for the new value of w ,  either fin& a feasible point of LBP+ or 

further inneases the lower bound on the solution. If there is a feasible point in T(w)  for 
- 

the curent value of w ,  then w is an upper bound on the optimal objective function value 

of LBP+. By decreasing w in this case, this upper bound can be reduced. Modifyllig w 

in the msnner desaibed here wil l  reduce the gap between the upper and lower bounds 

on the solution of LBP+ . This is the technique used by the authors to  find an eglobal 

solution of LBP+ (see [SI] for an explmation of this term). 

Unlike the extreme point search algorithms, the linear complexnentarïty dgorithms 

do not exploit the fact that the solution of the linear biievel problem occurs at a vertex of 

the feasible region of the lower level problem. Combined with the fact that the Karush- 

Kuhn-%&et (KKT) conditions (urcluding the complementary slackness conditions) are 

linear for a quaciratic problem, this means that this approach can also be used to wlve 



büevel probletm whose uppa levei objective is linear and whose lower level problem is a 

convex quaciratic problem. 

2.6.4 Branch and Bound Algorithms 

Like hear complementarity algorithms, brandi and bound a lgor i th  involve solving a 

series of "simpler" problerns rather than solWig the bilevd problem directly. Once again 

the KKT necessary conditions are useci to define a one level optknization problem, 

BPKKT: min F(z,y) subjectto Gi(z,y)>O 
%Y,A 

where 

is the Lagrangian function of the lower level problem defined at 2, A is the associated 

vector of Lagrange multipIiers, and 

for M = (1, - - -, m}, is its gradient with respect to the vector y. As mentioned previously, 

the complementary sladmess conditions are generdy nonlinear and nonconvex, and it 

follows that BPKKT is as weli. 

Because the complementary slaehiess conditions are generally the m a t  difticult con- 

straints to satisfy in solving BPRKT, brandi and bound algorithms attempt to defer 

introdufing those conditions into the solution process for as long as possible. This goal 



is achieved by building a tree of problems derïved Çom BPKKT- At the root, or initiai 

node, of the tree is the problem 

Po : min F(z ,  y) subject to  Gr(2, y) 2 0, i E T, 
GYJ 

V y  &,Y, A) = O, 

g i b  Y) 1 0, i E P, 

Xi 1 O, i r P, 

whi& is B P K ~ T  without the complementary slackness conditions. This problem is solved 

and the solution is used to construct the subtree in the foliowiag mafuzer. 

Assume that the problem at  node k, denoted Pk, has been solved. 

0 If the complementary slackness condition Xjgj(z, Y) = O is violated, then two cbil- 

dren of node k are dehed. One of the children, node hl, contains problem Pk with 

the added constraint A j  = O. The other child, at node ka, contains f i  plus the 

constraint g j ( z ,  y) = O. Therefore, any solution of the problems at  nodes El and k2 

satisfies the j th complementary sladuiess condition. . 

0 If there is no solution to the problem at  node k, then the subtree rooted at node k 

is not expanded further because aii problems in the subtree would be infeasible. 

0 If the solution to the problem at node k satisfies di the complementary slackness 

conditions, then a solution of BPKK~ ha9 been identified. Its objective h c t i o n  

value is compareci to the best solution found so far. Because the solution just found 

is also a solution of the problems defineci a t  the childten of the current node, the 

tree is not expanded furthet. The subtree will not yield a better solution of BPKKT 

than the current point. 

The various brandi and bond algorithms (as found in [3], [12], [XI], [a], [43], [Ml, 

and [59]) use dürerent search order d e s  for expanding the tree. Some use depth first 



se=& procedures and others use breadth fist procedures. No individual approach seems 

better in general, although some may be more suited to diEerent problems or solution 

goals- 

Although the brandi and bound technique is applicable to the noniinear bilevel pro- 

grsmming problem, most of the algorithrns have been designed for b a r  or quadratic 

problems. Ody [3] and [41] consider the noniinear problem, and both of them place 

restrictions on the nonlinear bilevel problem behg solved. Without these restrictions, 

the amount of work required to solve one nonlinear problem in the search tree may over- 

whelm the simpkity of the algorith, and the technique may not be usefd for a general 

nonlinear bilevel problem. 

2.6.5 Penalty Eiinction Aigorithms 

Many resesrchers have used penalty functiom to define "simpler" problems in order to 

fmd a solution of BP. Unlüre the 0th- dasses of a l g o r i t h  described here, there is not 

a common general approach shared by all the pendty function algorithms. 

Several techniques exiot in which the lower level problem is replaced by a series of 

unconstrained penalty function problems. In [l], the authors use the solution of the 

penalty function subproblern to define the gradient V,yœ(z) (see Section 2.6.2) to be 

used within a descent direction algorithm. In [2], the same authors instead replace the 

lowet level problem with the stationarity condition of the unconstrained penalty function 

problem defined in their earlier work. In [SOI, the authors combine a weighted penalty 

funetion for the Iowa level ptoblem with the upper level objective h c t i o n  to define a 

second penalty fwiction which is minimized to h d  a solution of BP. These techniques 

have been designed to solve nonlinear problems, and numerical results are presented are 

for sever al smail problems. 



ui [6], Anandahgham and White introduce, for the h e m  bilevel problem, a penalty 

function which consists of the upper level objective h c t i o n  and a weighted penalty t m  

for the solution constraiat. The penalty term is the duality gap between the the prima1 

and dud versions of the lower levei problem. By wrying the weight and miaimizing the 

penalty hc t ion ,  a solution of the linear bilevel problem can be found. The function is 

proven to be exact by showhg that there exists a h i t e  d u e  of the penalty parameter for 

w hich some solution of the penalty function is also a solution of the iinear bilevel problem. 

Marcotte and Zhu [57] propose a similar penalty function technique for the more general 

bilevel problem GBP described in Section 2.3. The constraint sets are assumed to be 

convex and some additional conditions are placed on the form of the problem. The new 

penalty hinction (which again is based on the duality gap of the lower lerd problem) is 

proven to be exact. Theoretical results ark illustrated with two small examples, but a 

complete algorithm is not presented. 

For the linear case, Bi, Calamai and Conn ([17] and [19]) convert the bilevel problem 

to a one level problem using the KKT necessary conditions, as done previously in defmïng 

BPKKT. An exact tl penalty function is defined based on the new one level problem. 

A minimum of the one level problem is found by modifying the penalty parameter and 

solving a series of unconstrained penalty fiinction problems. Conditions are presented for 

which this minimum is also a minimum of the bilevel problem- Since these solutions may 

be local minima, the authors also include a globalization step based on objective function 

cuts to complete their algorithm. Numerical results are presented for linear problems. 

In [55], Luo et al. describe a Merentiable exact penalty function for the nonlinear 

bilevel problem whose lower level problem is a quadratic problem. Whiie the technique 

seems promising, no numerical results are presented. 

In [63] and [64], Scholtes et al. analyze and solve mathematical programs with equilib- 



rium constraints. The authors present a series of optimality conditions for these problems, 

and present a trust region aigorithm for solving them which uses exact, piecewise smoo th 

penalty hinctions. The algorithm presented is theoreticai and is incomplete with regatd 

to the solution of the trust region subprobiemp. 

2.7 A New Algorithm 

In [20], Bi, Calamai, and Conn introduce the idea of extendhg their Linear technique to 

nonlinear problems. In this thesis, this concept is M y  deveioped. Subsequent chapters 

describe in detaii the one level problem that is solved instead of the bilevel problem, dong 

Kith the penalty fùnction used, and the techniques used to solve the penalty function 

subproblems. Convergence and numerical resdts are present ed. 



Chapter 3 

The Proposed Algorithm 

3.1 Introduction 

An algorithm is proposed whidi solves nonlinear bilevel problems by solvulg a "sirnpler" 

problem instead. The technique of Bi, Calamai and Conn for hear büevel problems (as 

outiined in the previous chapter) is extendeci to the nonlinear case. The bilevel problem 

BP is transfonned intg a related, one level problem. A solution of the one level problem 

is obtained using an exact penalty function algorithm. 

This chapter includes the derivation of the related problem, dong aith a description 

of some of the advantages and disadvantages of solving this problem instead of the original 

bilevel problem. The choice of a penalty function technique, in general, and the LI penalty 

function, specïfîcaliy, is motivated. A top level view of the penalty function algorithm for 

solving the related problem is then presented. The temainder of this chapter discusses 

the trust region framework used to solve instances of the penalty tunction subproblem. 
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The bilevei problem BP is a very dïlncult problem to solve. Consider the process involved 

in identifpuig a feasible point (z, y): 

1. Find z E IL" such that the fearible region of the lower level problem 

p ( ~ ) = { y ~ R * : g ~ ( ~ , y ) > o ,  ~ E P )  

is not empty. 

2. Solve the lower Ievel problem, 

LLP(x): min f(x,y) subjectto y € & )  
Y 

to dehe the rationd reaction set R ( x ) .  

3. Ensure that z is feasible for BP by v e r e n g  that 

3y E R(z)  SU& that Gi(2,y) 2 O, i E T. 

Minimizing the objective function F(z ,  y) over ail feasible (z, y) requires significantly 

more work. 

Because of the difIiculty in solving BP directly, we propose transforming it into a one 

level pro blem, and then soiving the new problem using standard optimization techniques. 

Initially, for presentation purposes, agmme that LLP(z), ior ail feasible z, is a con- 

v a  p r o b b  o v a  Rm, with a convex objective hction f (2,  y) and concave constraint 

functions gi(x1 y), for i E P. With this asrumption and under an appropnate comtraint 

qualification1, the KKT optimality conditions for the lower level problem at x are both 

'For esample, in this pmblem. Skter's condition requhs that p(z ) .  the feasiïle region of LLP(z), ia 

nonempty for ail feasl'ble z. 
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necessary and suffiCient for identiEying global solutions of LLP(z). In other words, R(z)  , 

the set of solutions of LLP(z) , is equivalent to K (2) , where 

K ( z )  = {y E Rm : 3A E RF' such that (y, A) s a t i e  the KKT 

optimality conditions K l X 4  for LLP(z)), 

and 

KI. A solution y of LLP(2) must be feasible: gi(z, y) > 0, for i E P.  

K2. The Lagrange multipliers X are nonnegative: A; 2 O, for i E P.  

K3. The complementaty slackaess conditions are satisfied: Xigi(zl y) = 0, for i E P. 

K4. The point y, with the multipliers A, is a stationary point, with respect to y, of the 

Lagrangian funetion for LLP(z) , that is, c(x , y, A) = O, where 

for i E M = (1, . -, m). 

Therefore, under the stated assumptions, BP is equident to the problem 
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Note that the equïvalence wi l l  not hold unless the optimal point satisfis a constraint 

qualification for the Iower levei problem. It is possible that a lowet level problem will €ail 

to sati* a constraint qualification for all z. 

Due to the relationship between BP and BPKKT, ne can solve BP by soloing BPKKT 

instead. Because B P K K ~  is a one-level problem, traditional techniques for solving non- 

linear problems can be appiied to h d  a solution of BP. 

To identiEy a feasible point of B P K ~ T  (and thetefore of BP) , we just need to find 

(2, y, A) E which satisfies the constraints of BPKKT. However, this apparent 

simplification may be misleading- While BPKKT is a one level problem, it is stili a àifücuit 

problem to solve- Consider that s a t i e g  q(z, y, A) = O inv01ves identifpùg a stationary 

point of the Lagrangian function of LLP(+) . Also, even if the upper level problem of BP 

is a convex problem, the complementary slackness conditions are generaliy nonconvex 

and noalinear. Therefore, B P ~ T  is usualiy a nonconve problem. Findy, note that 

BPKKT is defmed over n + rn + p variables and has t + rn f 3p constraints, which rnay 

be a signEcant increase over the nurnber of variables and constraints in BP. 

We now remove the assumption that LLP(z) is convex, and examine how the absence 

of this assumption aikts the reiationship between BP and BPKKT- As stated previously, 

conditions KI, K2, K3, and K4 identity a global solution of the convex problem LLP(z). 

Without the assumption of convexity, these conditions must stU be satistîed at any 

local solution of LLP(z). However, if a value (y, A) is identifiecl whkh satisfies these 

conditions, the point may be eithet a local minimiser, maximieu or saddle point of 

LLP(2). Therefore, the conditions are neeeslary at a solution of LLP(z), but are not 

sufncient to identify a solution of LLP(z). Problems BP and B P K K ~  are not genedy  

equivalent without the convexity assumption. 
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While not equivalent, BP and B P K K ~  are still doseiy related. Any solution of BP 

must be a solution of BPKK~,  and dl feasible points of BP are feasible points of BPnKT- 

While the converse is not truc, some solutions of BPKKT WU be solutions of BP, and 

some feasible points of B P K ~ T  wiU be fwible points of BP. However, a feasible point of 

BPKKT for which (y, A) is a saddle or maximum point of LLP(z) is not feasible for BP. 

The foliowing result summarizes the relationship between BP and B P K ~ T -  

Observation 3.1 The following relationships hold kttueen BP und B P K ~ :  

I f  LAP(2) i s  convez ouer Rm, for dl feasible s E Rn, thm BP and BPMT are 

equivalent. 

Zf LLP(z) is not convez ouer Rm for some feusible 2 E PZ", then 

- T, the iinduced region of BP, is contained in S, the feasible mgion of BPKKT , 
that is, 1 E S. 

- The solution set of BP is  contained in the solution set of B P K ~ T .  

- If, for some feasible 2 E an, LLP(z) has saddle points or local mMma, then 

d e  feasible rrgion of BPKKT contains points which a n  not feasible for BP, 

that ïs, s g z. 

- The solution set of B P K K ~  L not necessarily contained in the solution set of 

BP. 

Due to the strong relationship between BP and B P K K ~ ,  we solve BP by solving 

B P K ~ ~  instead. However, it is understood that solutions of BPKnr may be found which 

are not feasible for BP. 

As mentioned above, B P K K ~  is o nonlinear, nonconvex problem, which may itsdf be 

difEcdt to solve, and which may have many more variables and constraints than BP. In 
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order to reduce the number of constraints in the one lerel probiem, we note the folîoning 

equioalence. 

Lemma 3.2 The set 

((2, y, A) E an*+* : KI, K2, and K3 am sutisjtec# 

is equivalent to the set 

((2, y, .\) E : min(gi(z,y), k) = 0, for i E P}.  

Proof: The result foiiows ixnmediately. O 

Using the relationship in Lemma 3.2, BPKKr can be written equivalently, but more 

compactly, as a problem with n + m + p variables and t + m + p constraints. 

min(gi(2,y)th) = O ?  i E  P, 

4 2 ,  Y, A) = 0, i f M -  

If, for some i E P, gi(z, y) = Ai, the mlli funetion is nondinerentiable at (2, y, A). The 

loss of dinerentiability is a direct result of reducing the number of constraints in BPKKT 

using the equivalence stated in Lemma 3.2. 

3.3 Solving the Tkansformed Problem 

As mentioned above, BPc is a m c u l t  problem to solve. In the most general case, it 

is nonlinear, nonconvu and nondinerentiable, and finding a feasible point is nontrivial. 

When solving BPc, the proposed algorithm avoids the difficuity of finding an i ~ t i a l  fea- 

sible point by allowing the iterates to be infeasible. The algorithm attempts to minimise 
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the objective function and move ton& feasibiüty at the same tirne. A penalty function 

Bamework, based on the ideas in Conn [36], is used to achieve this goal. 

A penalty function for BPc combines the objective function F ( z ,  y) with a weighted, 

nonnegative penalty for infeasibiiity, 

where p > O is called the penalty parameter, and v ( t  , y, A) is the unscaled, nonnegative, 

penalty associated with the curent point. The parameter p is used to balance the possibly 

confîicting goah of mhimizing F(2, y )  and obtaining feasibility (whieh is attained by 

reducing u(z, y, A) to zero). 

in the el pendty function for BPc, each constraint contribates one term to the penalty 

v(z ,  y, A), as detailed in Table 3.1. The penalty terms are simpb the magnitude of the 

Table 3.1: Composition of the Cl Penalty T e m  

violation of the constraint. The larger the violation becomes, the larger the penalty term 

becomes. If any constraint is satisfied, then the corresponding penalty term is zero. 

These penalty terms may be nondifferentiable at some points (s , y, A). If, for i E T, 

Gi(z, y) = O (i.e. an upper level constraint is exactly satisfied), then the corresponding 

penalty term is nonMerentiable with respect to (z, y, A). For the remaining constraints, 

if the argument of the absolute value b c t i o n  is zero, then the pendty term is again 
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nondifferentiable. Note that this type of nondiftétentiability is in addition to the non- 

Merentiability inherent in the constraints for i E P. However, the nondinerentiabiiities 

introduced by the ei penalty t-s ace simil& in nature to the colutraint nondiffizren- 

tiabilities. This sunilaritg is a major reason for the use of the el penalty function to 

solve BPc. The traditionai techniques for handluig the ti nondinerentiabiüties (see, for 

example, [14]) can be generalized to handle the constraint nondifferentiabilities. 

Let vl (2, y, A) be the sum of aii  the (1 penalty terms, 

and let p,( t ,  y, A) be the l1 penalty function 

Consider the problem 

for Mixent values of p. 

a If p is relatively srnail compared with F/ y, it may be possible to obtain unbounded 

descent in p, because a decrease in F(z ,  y) dominates the infeasibility penalty. 

Similarly, a local niinimizer of p, may be infeasible for BPc . Assuming a solution of 

BPc exists, increasing the value of p decreases the possibiiïty that p, is unbounded 

below or that a local minimizer exists which is infeasible for BPc. 

0 if p is relatively large compared with F/ul, decnasing the value of F(z,  y) is not 

as desirable when minimizing p, as decreasing the penalty terms. Therefore, the 

observed decrease in F ( t ,  y) may be very slow in relation to the rate at which a 

feasibie point is approached. This rnay result in slow convergence of the algorithm 

to a solution of BPc, even when dose to feasibility. 
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Also note that as p becornes increapingly larger, the implementation of an algorithm 

to mlliimiae p, may begin to experience numerical diSculties. Smali changes in 

the penalty tuma ase magnifieci within p, and smdl changes in F(E* 9)  become 

numericaliy insignificant, resulting in a l o s  of precisiun. 

Ideaiiy, the value of p balances the goal of minimuhg F(2,  y) ait  h the goal of at taining 

feasibility. 

Resuits are now presented which motivate the penalty function algonthm. The theo- 

rem praents a property of the dinerentiable problem BPKKT. The corollary extends the 

property to BPc , the nondinerentiable problern being solved. 

Both results make a nondegeneracy asswnption- Some additional terminology is re- 

quired to f d y  define the meaning of nondegeneracy in this context, so the definition is 

delayed until Section 3 -5.2- 

Theorem 3.3 Assuming that B P K K ~  is a nondegenemte pmblem, thete ezists a finite 

value of p' > O such that, for p > p', there is a local rninimize'r of 

tienoted (op, y:, A;), which i s  also a local minimiier of BPKKT. 

Proof: This is a restatement of Theorem 1 in Pietrzkowski[60]. Note that qfi is the el 
penalty function d e e d  fiom BPKKT in the same way that p, is defined fkom BPcD with 

one penalty term for each constraint. Ci 

Corollary 3.4 Assuming that BPc L a nondegenemte problem, therie ezists a finite ualue 

pu > 0, such that for p > p*, thcm is a local minimùer of p,, denoted (z,, yp, A,), ruhich 

is a&o a local rninirnizer of BPc. 
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Proof: This result foIiows Unmediately nom the above theorem, the equiualence of 

B P K ~ ~  and BPc, and the resdting equidence of q, and p,. Q 

This result must be interpreted comctly. First, note that the critical value of the 

penalty parameter, p', is a h i t e  d u e .  Therdore, the Ci penalty hinction is an exact 

penalty hinction. Unfortunately, the actuai value ofp' depends on vaiues at a solution of 

BPc, and are not known a priori. However, even if p' is known expiicitly, solving PF(pœ) 

may not aiways identify a local solution of BPc. While there exists a local solution of 

p,. which is ais0 a local rninirnizer of BPc, the penalty function may have other local 

solutions (which may or may not be solutions of BPc) or may even be unboudeci. 

Despite the limitations exprensed above, Corollary 3.4 provides a very important re- 

sult. Solving PF(p), for p > p*, rnay provide a solution of BPc, and therefore, may 

provide a solution of BP- However, since p- is uaknown, this suggests solving several 

PF(p) problems, for an increasing sequence of values of p, until a solution of BPc is 

identified. This proposal is presented more formally in the next section. 

3.4 Penalty Funct ion Algorit hm 

Algorit hm 3.1 (Penalty Funct ion Framework) 

1. Set ha, an upper bound on p. 

2. Clroose initial values (zO, y', p) and po E (O, b]. Set k = O. 

3. If e<h > b, then stop wïthout identifying o solution of BPc . 

4. Solve PF(p), for p = pk, stcrrting from (zk, 3k, A&). 

5. Evaluate the solution ( x L + l ,  A ~ + ~ )  : 
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(b) If (zkil, ff ', A*+') is infeasible foi BPc, then update > pk and set 

k = k + 1. Repeat from Step 3- 

(c) If P f i )  U unbounded, then (zk+', yk+l, AL+') i, the Lat point rwched before 

the unbundedness was detected trpdate > #, and set k = k + 1. Repeat 

jkm Step 3, 

Note the use of h, to prevent p fiom becoming too large in the solution process. The 

value of h, is implementation dependent- 

The foliowing outcomes of Algorithm 3.1 are possible: 

01. A local solution of P F ( ~ ~ )  is feasible for BPc . 

02 .  A local solution of PF(@-') is infeasible for BPc and > b,. 

03. The problem PF(#-') is unbounded belon and Irh > hm. 

It iç possible that the feasible region of BPc is empty, or that BPc is unbounded belaw. 

These possibilities can account for the final two outcomes listeci above. However, it is 

&O possible that BPc ha9 feasible, bounded, local solutions, but the dgorithm termi- 

nates with either outcorne 0 2  or 03. The performance of the algorithm is influenced by 

the initial choices (zO, Ao) and $. Dinerent outcomes rnay be observed for dinetent 

starting values. For this reason, whenever either of the final two outcomes are observed, 

new choices of (zO, y', A') and f l  are made, and the entire process is repeated fiom Step 

2 of the algorithm. 



CHAPTER 3. THE PROPOSED ALGORITHM 40 

If the algorithm terminates wïth outcome 01, then (z,, y,, A,) is a local solution of 

BPc. If (y,,, A,) is a Iocd solution of LLP(z,), then a Locd solution of BP has been 

identified. O t h e d e ,  (y,, &) is a o d e  or maximum point of LLP(z,), and the point 

(t,, y,, 2,) is not a solution of BP. In this case, a new starting point and penalty parameter 

value can be chosen, and the process repeated ftom Step 2. 

3.5 Solutions of the Penalty Fuiction Subproblems 

Before describing the proposed algorithm for solving PF(p), for a k e d  value of p, the 

structure of the penalty function is investigated and necessary conditions at a local min- 

imum of p, are developed. These conditions identify possible solutioas of PF(p), and 

will be used to develop tennination criteria for the PF(p) algofithm. They are also used 

constnictively in the dgorithm, as describeci in the next chapter. 

The following definitions are required before proceeding hrther. 

1. Let w E nnfm+P represent the vector (zT, A=)*- 

2. The variable & can be written in temas of w as follows: 

3. For any w E Rnfmh, 
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4. For any v E il?, 

3.5.1 Examinhg the Structure of the Penalty Function 

The foilowing result is used to simplify the value of p,(w + ad) for an arbitrary direction 

d E m"'m+p. 

Lemma 3.5 For any d E Rn*+p, t h e  &ts a value ai > O such that the following 

conditions are al1 sattrfKd for a E [O, cri]: 
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For i E Tf(w) ,  neg[Gi(w + ad)] = nedG<(w)]. 

For i E PA(w), &(w + ad) < gi(w+ad). 

a For i E <(w), sigr&(w + ad)] = sigr&(w)]. 

F m  i E P,(w), gi(o + d) < &(w + a d ) .  

F m  i E <(ut), s igai(w + ad)] = sig*(w)]. 

For i E -(tu), signlmin(X<(w + ad),gi(w + ad))]  = signIXi(w)]. 

For i E Mf(w) ,  sign[ci(w f ad)] = sign[ci(w)]. 

Proof: W e  consider the fust case in detail. 

For i E T'(tu), consider the funftion Gi(w) # O. The continuity of Gi ensures that 

either there &ts & > O such that 

neg[Gi(w + ad)] = neg[Gi(w)] for O 5 a < &, and G;(w +&d) = 0, 

üeg[Gi(w + ad)] = neg[Gi(w)] for dl a > 0. 

Let a? = & in the first situation, and af = oo, in the second. The value of al must 

satisfy ai < a? for ali i E T r ( w ) .  Because a? is aonzero, an acceptable value of ai 

always exists. 

By analyzing the remairing functions 

g;(w + ad) - &(w + ad) 
X<(W + ad) 
si (w + 4 

a d  ei(w + ad) 

for i E PA(w) u P,(w), 

for i E <(w) U c ( w )  

for i E $(w) u Qw) 

for i E M r ( w ) ,  
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in a similar mannet, further conditions are piaced on al- 

Any ai which satisfies the required conditions is sulficient for the resuit to hold. O 

The foliowhg simplification is made throughout the rest of the thesis. 

Notation 3.1 For convenience, the argument w b omitted from the penalty t e m  index 

sets. Unless ezplicitiy stated othenoise, the point w is  the intended argument. 

Using the above result, we can separate the huiction p,(w + ad) into two parts based 

on the dinerentiability of penaity terms at a = 0. 

Lemma 3.6 For an arbitmq diwction d E Rn+"+P, and a E [O, ai], 

where d(w + ad) is a diflintiable finction over the interval a E [O, ai], and r)(w + ad)  

is not diferentiable at a = 0. 

Proofi Using the remit in Lemma 3.5, we can write, fot a E [O, a& 

For i E Pz, note that 

Now, contiming with a E [O, al], 
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where 

is a continuous, dinkrentiable function over the interval a E [O, al], and 

While ~ ( w  f crd) is nondiffaentiable at a = O, some of the te- may be differentiable 

for a > O, depending on how th& values change along the direction d.  O 

The two functions 6 and 9 wiil be used to  obtain further information about the penaity 

- 
3.5.2 First Order Necessary Optimaiity Conditions 

The following definitions are requked in the proof of the next result. 

1. The vector *(ut) = V,6(w), 
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is calfed the gmdient of the d i f m t i u b l e  pad, or simply the gmdient, of the penalty 

finction at W .  The matriz B(w) = ~ z b ( w )  Y the Hessian of the diferentiable part 

of PW 

2. The function g U called the nondi&rentiable part of the penalty fundion. 

3. The actiudy matriz A(w) consists of the gmdients of the defning t e m  in the 

function i )  at w, that is, A(w) contains of the follomhg columnr. 

4. Ifthe cofum7~~ of d(w)  are lineariy independent, then the point w Y a nmdegenemte 

or regular point. I f  all points are nondegenemte points, t h m  the penalty finetion 

subpmblem i.s a nondegencmte problem. 

5. The columns of the mat* Z(w) fom an orthogonal ba& for the space orthogonal 

to the spce  spanned by the gradients of the activities, that U, 

d(w)*Z(w) = O and Z ( W ) ~ Z ( W )  = 1. 

6. If Z(w)  and y(w) sat t fy  Z ( W ) ~ ~ ( W )  = 0, then w rP a stationary point for the 

penalty function p,. 

7. For any diflerentiable function h : EWmh -t R, point w E RnfmCp, direction 

d E R"+~+P and step size a > 0,  the Genemlàied Rayleigh Quotient is  given bg 

~ ( h ,  w, ad) = - (h(w + 4 - h(tu) - adTvh(w) )  . 
a* lldll2 
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This value u a m e m r e  of the curwutun of the finction h ut w for positive steps a 

dong the direction d.  

Again, for convenience, the foiiowing notations1 simplification is introduced. 

Notation 3.2 The argument of the vector y(w) and the matrices B(w), A(w) and Z ( w )  

will be omitted Unless stated otherraise, the c u m t  point w is  the intmded argument. 

We next establish a set of conditions which must be satisfied by a minimum point of 

the penaity function. 

Lemma 3.7 If w is not a stationary point of p, and p, is bounded, then for d, = -2zTy, 
there b t s  a. > O such that pJw + ad,) < p,(w), for O < a < a.. 

Proof: The differentiable and nondifferentiable parts of p,(w + ad) wiU be considered 

separately- 

W e  Test examine, in greater detaii, the differentiable part of p,, for O < a 5 ai. 

Next, consider the nondiflerentiable part ofp,. Each set of terms in r)  can be consid- 

ered separately. For i E Pt 
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because G;(w) = O (nom i E To) and ~ v G ~ ( w )  = O (since dfd = - l T ~ ~ T ~  = O). It 

s idatly follows that 

for i E u e, &(tu + ad.) = O 

foriE e u e ,  g;(w+ad.) = $ a 2 1 K l w ( 9 i ,  w, 4) 

for i E PL, 

for i E Mo,  CI(^ + 4) 
Therdore, for O < a 5 al, we can write 

?(w + ad,) = 

where we define, for the nondinerentiable huiction 9, 

Let ("1 d) = 52 (6, W ,  + Q,(w, ad.). Since p, is assumed to be bounded, fi,, is 

bounded as well. NOW, it foliows fiom Lemma 3.6, that, for O 5 a 5 ai, 

There d t s  a. € (O, ai), such that , with respect to a above, the first order term domi- 

nates the second order term for a < a.. Since the first order term is negative, it fdows 

that p,(w + crd.) c p J w )  for O < a < a.. O 

CoroUaty 3.8 If w LP a minimum point of p,, then w is a stationary point of p,. 

Proof: Follows immediately from the above lemma, since descent in p, is not possible 

from a minimum point W .  O 
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1. At a stationary point of p,, the vector Q satishng A* = y ii called the wector 

of Lagmnge multipliers- These multiplkrs MU be iefenenced os illustmted in Table 

Multiplier 

Table 3.2: Notation for Lagrange Mdtipliers 

3. The set PL at w is fùrther mfined. 
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4. A stationary point w of p, ù called a jïrst order point of p, i f  the Joltounng conditions 

are al1 satisfied- 

5. A multiplier Oi LP said to be in kilter i f  it falk un-thin the eorresponding mnge 

required of a first order point. 

Lemma 3.9 If w U ri nondegenemte stationary point of p, but is not o first order point 

and p, ù bounded, then there exists a constant a~ > O and a direction do which satisjies 

at Zeast one of the follovling conditions 

A A i f g j  E 2 : @; 6 [O,,], then d~ satisfis A ~ ~ D  = -sign[Ii]ej, 
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Proof: Note that the assumption of nondegeneracy ensures the existence of at Ieast one 

such dropping direction dD. In all cases in which a single activity is being dropped, we can 

mite that ~~d~ = a j e j  for some mj  = Il and 

W e  consider, in detail, the ikst case listed 

fiom the active set for some j E To. For O 5 a 

some cardinal unit vector e j  E 

above, namely that Gj is being dropped 

5 al, fkom Lemma 3.5, we have that 

since Gd* = -sign[qy]~F. The terms in 11 must be examined individudy. Note that 

Since p, is bounded, the f2 terms are bounded as weii. Therefore, there utists a* E (O, al) 

such that for O 5 a 5 a,, the fist order tesm dominates the value of Gj, 
- 

For i E To \ ( j ) ,  ~ T , v G ~ ( w )  = O by the dennition of dD. Similady, first order change 

in the other activities is zero dong b, 
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Therefore, for O a 5 q, 

where 

Using Lemma 3.6, for O 5 5 az, 

Consider, if < O, then 

Otherwise, for gr > p, 

In &ber case, the first ocder term is negative, and there exists cro E (O, q), such that, for 

O 5 CE < aD, the fust order term dominates in p,(w + adD).  Therefore, for O < u < a ~ ,  

Dropping directions dD which satisfy any of the other conditions iisted above are 

shown to be descent directions for p, nom w in a similar marner. The detait are 
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Corobmy 3.10 If w is a nondegenemte minCrnurn point of p,, then w is a first oder  

point of p,, 

Proof: Follows immediately fiom the above lemma suice descent in p, is not possible 

from a minimum point w- 0 

3.5.3 Second Order Necessary Optimality Conditions 

is  called the Hessian of the Lagrungtcrn finction at W .  

2. If w is  a f irst oder point of the penaity function ond Z ~ H Z  is  positive semidefinite, 

thm w t a second order point of p,. 

The material presented here is greatly influenced by the work of Coleman and C o n  

[35] in developing the necessary second order optimality conditions for the li penalty 

function for nonlinear programming. 

Let wo be a minimum point of p,. To establish a set of second order conditions 

that must be satisfied at wo, a new, differentiable nonlinear problem Po is d&d. The 

objective fùnction qo(w) is defined usiag the activity sets at wo. 
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Next, we define a set of constraints, also using the activity sets comesponding to wO. 

Let 

So = {w E B P r n + p  : Gi(w) 2 O f o r i ~ T + u T O  

Gi(w) 5 0 for i E T-), 

SA = {u, E : &(w) 2 0 for i E Pz 

&(ut) = O for i E Pjo 



for à E 

for i E Pg 

for i E P; 

for i E P,}, 

for i E P+ 
for i E PI 
for i E PO, 

for i E Pg 

for i € p- u P;}, 
for i E M+ 

for i E Mo 

for i E M-), 

and 

Lemma 3.11 Them exists N(wO),  a srnail neighborhood of wO, in which the sets So and 

Sh aie equivolent, where 

Proofi Foiiows fiom the coatinuitg of the functions and their Aues  at wo. O 
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Next, consider the followïng dinerentiable nonlinear problem Po and its relatioaship 

to the penaity function- 

P o :  qo(w)s.t-wES& 

Lemma 3.12 The point wo is a I d  minimizer of p, if and only if it is aLso a local 

minimuer of Po. 

Proof: For w E So and therdore for w E Son N(wo), qo(w) = p,(w). Rom Lemma 3.11, 

it also follows that, for m E So n N(wO),  qo (w) = p,(w). If there exists a feasible point 
7 

with a smalIer value of qo within Sk n N(wo), then this point also gives a lower value of 

pLI. Similady, if there exists a point with a lower d u e  of p,, in this region, then it also 

gives a lower value of qo. Therefore, the local minima of the two problems in this region 

must coincide. O 

The next resdt foiiows fkom the equivaience established above. 

Corollaty 3.13 If wo is a nondegenemte local minimum of p,, then 

1. the necessary f is t  order conditions are satisfied, and 

2. for all d E No 
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it follotus that 

Prbof: The fhst result was estabiished in Corollaqr 3.10 and the second result foIIows 

from the necessarg optimality conditions for the nonlinear problem Po. Note that the 

definition of H(w') diners nom Definition 3.4 in the use of P' rather than c. This 
change is possible because = U Pz. The set is empty since wo satisfies the 

first order necessazy conditions. O 

Therefore, if wo ïs a nondegenerate local minimum ofp,, it is a second order point of 

p, since 

0 A(w0)* = y nith the multipiien I in kilter, and 

0 Z ~ H ( W O ) Z  is positive semidefinite. - 

A stricter set of second order necessary optimality conditions is estabiished .by ex- 

aminiag the value of p,(wO) to determine when a second order descent direction can be 

defined. 

Lemma 3.14 Let wo 6e a mndegenemte first order point of the penalty function. If 

the= ais& a dirwtwn z in the redufed -ce which i s  a diration of negative cuniature 

/or the matriz Z ~ B ( Z ) Z ,  t h m  d = Zr LP a desrnt dimctiOll for fi,  w h e ~  
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and 

Proof: Assume that a is small enough so that the second order terms dominate the 

higher order terms. The differentiable and nondifferentiable parts of the penalty function 

at wo + ad can be erpressed as foiiows. 
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T herefore, 

where 

Note that the two definitions of &(z) are equivaient . A direction of negative ceutvture 

for ZT B ( r )Z  provides descent in p,. O 

Corollary 3.15 If wo is a nondegenmte local minimum of p,, then the mat* Z ~ B ( Z ) Z  

is positive semidefinite, 

The matrix ~ ( z )  defined above can have more than one value, since it is defined 

using the 8i and values which depend on r.  Note that each 8i and 19; c m  have two 

valus, where, for simpiicity n e  depart h m -  the definition of sign[O] on page 41 and let 

sign[O] = 1. Therefore, in theory, there are an erponentid (though finite) nwnber of 

values of B possible. It is aloo possible that some of these combinations of 0 and 6 have 

no meaning. For example, if V2G<(w0) = O for some i E TO, then the d u e  Bi = 1 will 

never be rneaningful in the context in which it is wed here. 

The second order optimality conditions proven so far are summatized below. 

1. Two sets of second order conditions which must be satisfied at a Iocal minimum of 

p, have been proven. The first one, that Z ~ H Z  is positive semidefinite, is easily 
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v d e d .  The second one, that Z ~ B Z  is positive semidefinite for each meaningful 

rnatrix is more difncult to establish. W e  can check that each Z ~ B Z  is positive 

semidehite, but it may be more U c u i t  to deterniine if a particular B malces sense 

in terms of the given situation. 

2. We have established a condition under which a descent direction can be defineci f h m  

wo, a nondegenerate h t  order point of the pendty fbction which is not a second 

order point. If we have identüied a meaninghil B for which Z ~ B Z  îs indefinite, 

a direction of negative curvature can be caldated. Bowever, that direction must 

correspond to the correct d u e s  of B and d to guarantee descent in the penalty 

f'ction. 

The foilowing relationships illustrate that the two sets of optimality conditioas are 

no t generally equident . 

Lemma 3.16 ~f zT HZ is positive semidefinie, then zT B z às also positive semidefinite 

for a21 meoningfii B. 

Proof: Assume that Z ~ H Z  is positive semidennite for any direction z in the reduced 

space. Let d = Zz. NOW, using the existing definitions of Bi and Bi, consider 

for i E e, recd that -p 5 9; p, 
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h either case, (PI + p $ i ) P ~ 2 g i d  2 0. 

for i € Pg, ZIS for i E Tol it ~OUOWS th& (Y-* - p 9 i ) d r ~ 2 g i d  2 0. 

for i E e, as for i E To, it f o b w s  that (%: - p&)Bi )dT~~~~d  2 O. 

for i é MO, as for i E el it follows that (*: + p d i ) P ~ 2 e i d  2 O. 

The sum of ail these t ~ a s  must be nonnegative, Le. B ( Z )  is positive semidefinite. CI 

A corresponciing result equating the definitenes for d meaningfbi zT B (z) z with the 

definiteness of cannot be estabhhed. Honever, a result relating the definiteness 

of all possible values of zT& to that of Z ~ H Z  can be proven. Let B be any possible 

value of B. 

where each 8; E {O, 1) and eadi Bi = f 1. Note that there are 2K possible d u e s  for BI 

where 

K = ITol + lql+ le1 + IPZI + IPI- 

The set of rnea,ningfid values of B is a subset of the set of possible d u e s  of B. 

Le- 3.17 I' Z%Z is positive semidefiite for al1 ZK com6inations of Bi and di, thm 

Z* HZ i9 positive senaidemte. 
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Proof: For any value of B and direction d = Zr, it f o h s  that 

In particular, it must be true for the foilowing choice of ei and t9i: 

* for i € PO,, Bi = p ~ ~ [ d T ~ 2 g i d l i  

for i E P:, Bi = pos[dT~*~;dj, 

for i E Mo, 1 9 ~  = -s ign[dr~*~d].  

For this choice of B and 9 it is easy to determine that the right hand side above must 

be nonnqative, Le. that  PH^ 2 0. Thus. we have proven that is positive 

semidefinite. 0 

The requirement that Z ~ B Z  is positive semidefinite for aii values of B is significantly 

stronger than the requirement that @ BZ is positive sddefinite for dl mcaningfid values 

of 8. For the latter, the denniteness is only over those z in the reduced space which 

correspond to meaninghil values of B. Meaanhile, the former requires the definitenes 

over ali z in the reduced space for each B. Howevet, the condition on B is easier to check 

than the condition on B. 

If PKZ is indefinite, and z, a direction of negative cutvature for Z ~ H Z ,  is &O a 

direction of negative curvature for Z* B ( z ) ~ ,  then d = Zr is a descent direction for p, 

from wo. Such a condition is easily checkeà. If z does not correspond to a direction of 
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negative cwature  for zTB(z)z, then the algorithm may not be able to find a descent 

direction for p,. Problems of this nature, as described by Coleman and Conn in [33] 

and [35], are associated with penalty bctions and 0th- methods for solving nonünear 

optbization problems. 

3.6 Motivating Theory for Solving the Subproblem 

Because of the complicated structure of the penalty huiction, it is preferable to deal with 

a simplified version of the tunction whenever possible. This simplüied, or model, function 

should be eaçier to minimize than the penalty function- The model function should also 

be a good approximation of the penalty function, in a region about the m e n t  point, 

so that a direction which decreases the model function will also dectease the penalty 

fuaction. 

The idea just described is the basic motivation of trust region algorithms. Whüe 

origindy used in uncons trained optimization, trust region algorithms (for example, see 

1401) are being used increa~ingly for constrained optimization, and have been shom to - 
have good convergence results (both in theory and practice). for nonconvex problems. 

The performance of these algorïthms on nonconvex problems is the primary teason that 

a tmt region algorithm is behg proposed to solve PF(p). 

Solving PF(p) within a trust region fiamework involves modehg the change in the 

penalty funetion nom the current point w dong a direction d, using a "simpler" funetion 

#(c i ) .  By restricting the nom of direction d when analyzing O(d) ,  the model fùnction can 

be minimiad over a region in which the model function is believed to be a good estimate 

of p,(w + d). The trust region subprobIem, centered at point w ,  is therdore 

TR(w, A) : 9 #(d) subject to lldlls Al 
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where A is the ment trust region radius. 

A solution of TR(w, A), denoted d ~ ,  is then used to evaluate the performance of the 

model. The actud decrease in the penalty function dong clT, 

x=(~T) =PP(W) -P~(w f d ~ ) t  

is compared to the dwease predicted by the model, 

a If the actual and predicted decreases are in very dose agreement, then the modd 

function is assumed to provide a very good approximation of the penalty funetion 

over the current trust region. Therefore, the trial point w + d~ is accepted as the 

new current point. A h ,  the p e h a n c e  of the model function over the curent 

region indicates that the modd funetion may be a good approximation over a larger 

region. The trust region radius at the new point is therefare increased fiom its 

current d u e .  

If the actual and predicted decreases are in reasonably dose agreement, then the 

model fwirtion is assumed to provide a reasonable approximation of the penalty 

function over the m e n t  trust region. Therefore, while w + dT W accepted as the 

new curent point, the trust region radius at the ncw point is kept at its cunent 

d u e .  The performance of the model, whüe acceptable, did not indicate that the 

model hinction would provide a good approximation for the penalty huiction over 

a liuger region. 

a If the actud and predicted decreases are in poor agreement, tben the model function 

does not provide a good approximation of the penaity function over the current trust 

region. The triai point w + d~ t rejected, and the curent point is maintained. Due 



to the poor performance of the model, the trust region radius is reduced from its 

current value. Because the model function should be a better estimate of the penaity 

fuoction over a smaller region, the trust region subptoblun is solved again fiom the 

current point with a reduced value of A. This proces is repeated until the model 

provides an acceptable approximation of the penalty hinction. 

By its definition, direction dT provides descent in the model fonction. Therefore, 

xp (dT) > O is always satiSfied- Note that if the direction d~ provides no decrease in the 

penalty huiction (that is, the actuai decrease value is negative), the final situation listed 

above will be satisfied. Therefore, when the step d~ is accepted, it always decrea~es the 

penalty function- 

3.7 Modehg the Penalty Function 

For aa arbitrary direction d,  the model huiction # should be "simpler" than the penalty 

function, while reflecting, as much as possible, the value in the penalty function dong d.  

Deenition 3.5 The model function 4 is defined by replacing each component function of 

the penalty funcfion by its quadmtic Taylor5 expansiun appmximation, and by retaining 

the penalty tenn structure of p,. 
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Note that # is a piecewise quadratic fuction, which models the shape of the penalty 

fwiction up to second order changes. 

This choice of model funetion has the desirable pmperty that 4(O) = p,(w). Also, 

the gradient of the Mérentiable part of 4 at zero is y, the gradient of the Merentiable 

part of p, at W .  Similady, the Hessian of the dinisentiable part of #(O) is 8, the Hessian 

of the diffkrentiable part of p, at W .  Like the penalty funetion, the model b c t i o n  has 

points of nondinerentiability. 

To simplify the process used to solve the trust region subproblems TR(w, A), the 

& norm is used in the distance constraint. With this choice of norm, the constraint, 

lldllm 5 A, is equivaient to placing simple bounds on the components of the descent 

direction, that is, -A 5 4 < A, for i = 1 : n + rn +p. Consequently, solving TR(w, A), 

for fixed values of w and A, involves minimizing a piecewise quadratic fimction over 

simple bounds- 

3.8 Terminating the Algorit hm 

The trust region slgonthm for solving PF(p) can be terminated in one of two ways: 

1. A decision that the curent point w is a possible solution of PF(p). 

2. A decision that the problem PF(p) is unbounded. 

As proven in Corollary 3.13, a local minimum of the penalty fûnction must be a 

second order point ofp,. Thercfore, when the current point satisfies ail the conditions of 

a second order point, the algorithm concludes that it is a possible solution of the problem, 

and terminates. If w is feasible for the one level problem BPc, as defined on page 34, 
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then Aigorithm 3.1 is aIso terminated. Otherwise, the penalty parameter p is increased 

and a nem penalty fùnction snbpro&rn is solved. 

Detecting the unboundedness of PF(p) within a trust region fiamework is somewhat 

more complicated than nithin a step length based algorithm. In the latter, if a step of 

unbounded length continues ta decrease the objective fuaetion, the problem ïs unbounded. 

However, in the trust region fiamework, the length of the step at  each iteration is lïmited 

by the distance constraint of the subproblun TR(w, A). In addition, an upper bound 

A,, is often placed on the size of the trust ngion radius to avoid numerical ditnculties 

associateci with a very Iarge value of A. 

Within the proposed algorithrn, a heurirtic algorithm is used to determine unbound- 

edness. It is concluded that the current penalty function subpcoblem PF(p) is unbounded 

below if both of the foliowing conditions are observed. 

1. A sequence of b,, consecutive, very successfd iterations are observed, for the 

algorithm parameter b,,. 

2. Over this sequence of iterations, the contribution of the penalty terms within the 

penalty fuaction, 

was not decreased. 

The conditions above detect a sequence of iterations over whidi the penalty hinction is 

decreased signincantly without the penalty tums being decreased. This suggests that 

decreases in the hinction F are outweighing the penalty for infeasibility, and that the 

penalty function is becoming unbounded. In this case, the trust region aigorithm should 

retum a result of unboundedness, dong with the last point w encountered before the 

sequence of iterations describeci above. 
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3.9 'Ikust Region Algorithm for the Subproblem 

Note that Step 6 in the foiIowing dgorithm nül be discussed in the next chapter, dong 

wit h O t her algorit hmic rehements. 

trust mgion acceptance values bl and bz satisfying 0 < b1 < b2 5 1, 
1 

unbundness count 6, > 0,  

0 and the maximum trwt region mdius sise A, > 0. 

2. For the starting point wo pmuïded by Algorithm 3.1, select Au E ( O ,  A,-]. 

3. Set k = 0. 

4- Identàh activities ut tuk and fonn dk, the actiuity matriz consisting of the gmdients 

of the actfuities at wk- 

5. Check for termination condition: Ifwk is a second order point o h ,  then temainate 

uàth w, = wk. 

6. Find a ~solutionH 4 of 

TR(W', A*) : min #k(d) abject t~ lldllm 5 A'. 
d 

7. Evaluate a direetion 4: 

(a) Cahlate = p,(wk) - pp (wk + 4). 
(b) Calahte $ = &(O) - 4'(4).  
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(c) tfd/$> b2, thm set wk+l = wk + c i $  and Akf l =  m i o ( 2 ~ ~ ,  A-). 

(d) If 5 d/$ < 62, thm set d+' = wk + 4 and = ~k 

(e) Othe*, set A' = hk/2- Repeat starting ot Step 6. 

itemtionr k - 1, + 1, - - -, k were uety successfui, and 

a over itnntions k - b,, + 1, - - - , k, @,(wN1) - ~ ( t & l ) ) / ~  is not reduced, 

then termtnate due to unboundedne~s~ and set ur, = w k - b .  

9. Set k = k + 1. Repeat from Step 4 .  



Chapter 4 

Implementation Concerns 

4.1 Introduction 

To develop an dect ive  implementation of Algorith 3.2, the trust region algorithm te- 

quires some modifications fkom the stated description. These modifications, the focus of 

this chaptet, d e c t  three areas of the algorithms: 

a Step 6: the calcuiation of the "solution" dT of the trust region subproblem TR(w , A), 

a Step 7: the evaluation of the direction dT within the trust region framework, and 

O Step 4: the identification of activities throughout the process. 

These changes and the reasons they were required are described in this chapter. 



4.2 Solving the Tkust Region Subproblem 

Each iteration of Aigorithm 3.2 requires the solution of at least one instance of the trust 

region subproblem 

for the curent point W. Finding d ~ ,  a local solution of TR, invulves minimiging a piece- 

wise quadratic function subject to simple bounds on the unluiowns, This solution process 

is, by far, the most tirne consuming step of the algorithm for solving PF(fi). 

Dennis and Sdinabel (in Section 6.4 of [do]) have shown that it is not necessary to solve 

trust region subproblems exactly to get acceptable convergence results for trust region 

algorithms- In Chaptw 5, we estabiish a similar result for our algorithm. The approximate 

solutions developed in this chapter satisfP. the conditions required for convergence, as 

stated in the followïng chapter. 

The choice of an approximate solution at  the current point w depends on how w is 

classified relative to a minimum point of p,. 

The foilowing condition is assunied to be ttue throughout this work, and for the 

problems solved by the algorithm. Section 8,7 in [46] discusses issues relating to scaling. 

Assumption 4.1 The bileuel progrumrning p b l e m  and àts cumponent finctions am as- 

surned to be welt-scaled. 

4.2.1 Classifying the Current Point 

The necessary optimaiity conditions for a minimum point of PF(p), as exptessed in Corol- 

laty 3.13, are used to clasifp. the current point W .  Before proceeding further, note that 

the folIowing assumption applies to the entue chapter. 
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Assumption 4.2 The penalty fifution subpvblem id nondegenemte. 

Definition 4.1 The values of 7,  A, Z and H ,  as defined pevz'ously, are al1 calculated at 

the c u m t  point W. 

1. A type one point U a point which is classified as &eing fur f i m  a stationaty point 

of the penalty function. 

Recall that stationary points satisb zTy = O. Let A > 0 be the algorithm tolemnce 

for detemining closeness to a stationary point. The e u m n t  point w is chsified as 

a type one point i f  i l e l l z  > A. 

2. A type two point is a point which is class#ed as being close to a stationary point of 

the penalty function wirich is not also a first onfer point of p,. 

Recall that first O& points are stationary points which, along =*th multipliers 4!, 

sutisfy the conditions stated in Definition 3-94. The current point w is classified 

as a type two point i f  I I Z ~ - ~ ( ( ~  5 A, and the multiplier estirnates, 9, calculated 

at w uiohte some of the conditions for a first order pint of the penalty function. 

The vector P, tohich a ~ ~ m a t e r  the multipliers ut the nearby stationary point, V 

obtained as a least squares solution to the system of epuatiow A* = y. 

3. A type three point is a point which is classified as being close to a first d e r  point 

of the penalty funetion which is  not a second order point of p,. 

Recall that second O& points are first order points at which the r~duced Hessian 

mot* zTl?2 is positive semidefinite. The current point w is  classified as a type 

thme point if I ( Z ? ( ~ ~  5 A and the multiplier estimates defined at w satisb al1 the 

conditions necessary ut a firat onier point, but the matriz Z ~ H Z  is not positive 

semidefinite. 



4- A type four point is a point which is classified as king close to a second order point 

of the penalty fundion. 

The c u m t  point w U classified as a type four point i f  l l ~ ~ ~ l l  5 A, the mufti'Iie~ 

estimates defined ut w satisfy a11 the conditions necessary ut a fist O& point, and 

the matriz Z ~ E Z  is positive semidcfnite- 

CoroUary 3.13 indicates that a type four point may be dose to a minimum point of 

the penalty funetion. It is uniïJce1y that any of the 0th- types of points are dose to a 

minimum point of p,, if properly dassified. 

The remahder of this section describes the desired properties of an approxhate 

solution of the trust region subproblem at each of the four types of points. A technique 

is presented in esch case to  find a direction- with these praperties. 

4.2.2 Approximating Solutions at Type One Points 

Because a type one point w appears to be far fiom a stationary point, an approximate 

trust region solution at w,  denoted di ,  should decrease the model function and satiofy 

the trust region constraint, whüe trying to move towards a stationary point. In order to 

achieve the latter goal, the m e n t  activities at w should be maintaincd at w + di, with 

the possibility that additional activities are picked up at w + dl .  

The activities at w are stili active at w + di (within the model), if di E Wi (ru),  where 



Considering only directions d E Wi(w), the mode1 hc t ion  #(d) can be rerrritten. 

Defining pl(d) = O(d) for d E Wi(w), it foliows that 

To maintain feasibility and provide descent, di E Wi shouid satisTy (pl (di) < O and 

Ildlllo. 5 A. in addition, dl shodd be relatively easy to calculate. Unfortunatdy, the 

quadratic constraints in Wl(w) are nontrivial to satisty exactly and the set 

may be empty. Therefore, the linear approximation ~~d~ = O of the constraint set is 

used instead, and the second order changes in the active penalty terms are ignored. 

Any direction d that satisfia dTd = O can be written as  d = Z r  r h u e  A=Z t 0, for 

some z E Rg-"., where q = n + m + p  and na is the number of active peaalty tecms at w 

(which W the number of columns in A). Therefore, n e  restrict our attention to directioas 

in this reduced space. We wish to find ri such that rpl(Zzl) < O and IIZzl(/, < A. Note 
& 



that the ttust region distance constraint is now in the form of general iinear constraints 

which can aiways be satisfied. 

The foiiowiag result assirts in the calculatioa of an a p p r o b t e  solution di. 

Lemma 4.1 For any z E Rqena, t h e  ex&s a3 > O such Mat, for O <_ 

ProoZ: Choose <ra s m d  enough so that aU the foiiowing conditions are satMed for 

O 5 a 5 as, 

for i E T', 



O for i f M', 

The result follows immediately fiom the continuity of the inactive penaity terms over the 

i n t d ,  and from the definitions of y. and B at W .  O 

We d now consider zc = -zTTl the direction of steepest descent for pl in the 

reduced space. 

Definition 4.2 The step d, = -aJf ly  )Fom w is called the genemlued Cauchy step 

of the trust region model. The step a, L the fwst k a l  minimum of <pl(aZz,) m*thin the 

trust region, that is the first local solution of the univariate minimUntion pmblem 

min v(arZzC) subject to O < cr 5 an, 
a 

where o~ = A/((Zz&, . The point ut + d, is  called the genemlized Cauchy point. 

The d u e  of- can be calculateci in a straightforward manner. The function (pi (crZz,) 

is a piecenise quadratic function over the i n t e d  a E (O, an], when ab = A/~JZZ,J[~. 

Let pi, - - -& be the breakpoints, distinct values of a over (O, CEA] at which the shape 

or dinerentiability of p changes. Thetefore, the Pi terms axe positive values of a which 

satisfy one of the following equations: 
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for ie  P*uz=pFglJPL, 

T T &(tu) + or, 2 VA&) = O, 

Without loss of generaliQ, assume that the breakpoints satisfy 

Due to the piecewise quadratic nature of pi, we can write 

over the interval a E (&, fi+i) for i = O : t .  Rom Lemma 4.1, it foilows that 

The values of +y1, for j = 1,2,3 and i = O : t - 1, can be calculated h m  r$ by noting 

the changes in the penalty t u m s  at 

The generalised Cauchy step can be identined by analyzing (pl orer eacb (fi, 
interval. If 
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then z, j5 not a descent direction over the interval a E (8i,/3c+i). Therefore, no further 

analysis is necessary, since ar, = /3; corresponds to the fkst minimum dong t,. When zc is 

a descent direction in the current interval, then fbrther action is requïred- The minimum 

of the quadratic term @<(a) occnrs at a- = -t i /r; .  If a- E fi, then oc = a- 

corresponds to a minimum of (p dong rc. O t h e d e ,  the next intervai (&+i,fli+a) is 

examineci. If r, is a descent direction over (A, an), but the minimum of &(a) does not 

lie in the interval, then we set a. = an. Note that, since +! is always negative, a, always 

has a positive value. 

While dl = d, is an acceptable trust region direction, it may be possible to find a 

direction that  gives better descent. Let the matrix A, be the activity matrix a t  w aug- 

rnented with the gradients (aiready evaluated at w )  of the activities pidced up (within the 

model) at w +de. The values of y, and Bc are defined fiom y and B using the derivatives 

evaluated at  w for the new activities. Also, determine a mat& Zc correspondhg to 4- 

Motivated by the theory explained in Section 4.2.5, the trust region step wi l i  be improved, 

if the mat& Z:B,Z. is positive semidefinite, by using the quasi-Newton step d+ = Zz+, 

where z+ is a least squares solution of 

T Z:B,&Z+ = -Z,Y.. 

If the direction d, + d+ satisfies 

Pd4 f d+) < PlWC) and lldc + &Ilcm < 4 

(that is, if d+ further decreascs the model huiction and d, + cf+ Lies w ithin the current 

trust region), then accept di = dc + d+ as the approximate trust region solution at the 

curent type one point. Otherwise, dl = d, is viewed as the apptoximate trust region 

solution. 



4.2.3 Approximating Solutions at Type Two Points 

The multiplier estimates a t  w, a type two point, suggest that a nearby stationary point is 

not a &st order point of the penalty fûnction, and therefore, not a solution of PF(p). An 

approximate trust region solution at  w,  denoted 4, shouid deaease the mode1 function 

and satisty the tmt region constraint, whiie moving away fiom this neighborhood. In 

order to achieve the latter goal, the aetivïtie~ whose multipliers are out of lalter (that 

is, the multipliers that violate the conditions for a Grst order point) are exarnined. A 

subset of these activities, denoted V, wïl l  be dropped and the remaiaing activities wii l  be 

maintained. Direction d2 should be d&ed accordùigly. 

Let the set Vs, for an activities index set S, denote the activities in S which are in 

D. In particular, let Vp% denote the indices i E for which both A;(w) and gi(w) are - 
being dropped along d2. Assume that both & and gi are being dropped only if both 4; 

and P: are in kiiter, but their sum is not. &O, let D& denote the indices i E PI for 

which &(w) is being dropped and gi(w) maintained along da. Similarly, define the set 

D& for the opposite situation. 

and 



The requirernent for i E Dpo is not strictly necessary, but it reduces the number of - 
directions which wiU be considered as approximate t m t  region solutions. It fotces the 

activity gi - to be rnaintained (wïthin the model) dong the direction d2 when both & 
1 

and gi are being dropped. 

The mode1 function can be written over fewer temis by considering ouiy d E W2(wt D). 

We denote #(d) wïth d restncted to W2(w, V) as pM(d). 

where 



No te that Ws(w, D)  has the same fom as Wi (w)  , defineci for type one points, with So, 

Q*, QI, QL, Qz and No replaàng p, e, e, iE, and A@', respectively. As weil, 

<pz (d)  for d E W2(w, V )  , and pl (d) for d E Wi(w), have simüar forms, with S', QI and 

N' replacing T', Pi u P, and M', respectivelp. 

As was the case for type one points, even if { d  E Wz (w , D) : I[dll.. 5 A) is nonempty, 

satisfying d E l&(co,Z)) can be time consumuig. Again, a fùst order approximation is 

used, and higher order change in the maintained activities is ignored. 

Let AD be the activity matrix A with the columns correspondkg to the gradients of 

the activities in 2) removeci. The matrix &, satisfping A$& = O and z:& = I =an 

be defined from Z using AD. It will have nv = q - na + (DI, or (DI more columns than 

2, where na is again the number of columns in A. Linearizing the coastraints defming 

d E Wz(w, D) yields &d = O, or equivalently, that tbere exists z E RnD such that 

d = ZDZ. Thus, we are looking for z in the reduced space such that * 2 ( Z p ~ )  < O and 

IIZIT4I- 5 A- 

The appcoximate solution to the trust region subproblem is defined using the condi- 

tions stated in Lemma-3.9, which details hoa to define a descent direction for p, fiom a 

nondegenerate, stationary, non-first order point by dropping a single activitg. Thii result 

can be generalieed to dropping multiple activities from a type two point to fuid a descent 

direction for 9 2 .  

First, we state fonnaliy some assumptions which are placed on the choice of D. 

Assumption 4.3 Both and gi, for some i E e, a 4  in V only if Q; and are in 

kilter, but Y: + Y is not. h addit ia ,  while both moy be dmppeà, the difierence gi - A; 

d l  be maintained dong the dmpping dkction. 

Before v e r w g  that multiple activities c m  be dropped from the current type two 



point, preliminary resdts and definitions are needed. 

Lemma 4.2 There exists pl > O srna11 enough such that a12 the follourïng conditions are 

satisfied for a E [O, a4] and any direction ds  . 

and 



and 

Proof: Foiîows imrnediately fiom the continuitq of the hinetions. O 



De&iition 4.3 Direction do, defined undm Assumption 4.3, U the d i i ~ e t i a  

where q satiifes 

for 4i), the matriz A Mth the p d m d i  q corpesponding to activity i E Z) removed The 

coeflieents vi sot- 

whem ci = f l as indicated in  the proof of krnmu 3.9 for each activity i E 2> being 

dropped 

Notation 4.1 For simplicity, the summation z-Es, for a set S ,  wiZZ occasionally be 

~Pit terr  as Cs when it is clear that the summation L over index i E S. 

Lemma 4.3 The dii.edion dI and the gmdient 7 defned at w satUfy 

where 

, = {i E VPf : = O). 

Proof: Since Y' is a least squares solution to the system A9 = y, there &ts a vector 

such that 
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By the definition of dn, it foiiows that 

Lemma 4.4 Direction dv, as dejined in Defnrition 4.3, provides descent for pl. 

Proof: Using Lemma 4.2, we have, for O < a < a4, 
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Combining the 

ip2(adv) = 

above expression with Lemma 4.3, we have that 

Consider, for i E DTo, 
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S;m;iarly, for 

where 

By examining each fli separately, a d  recalling that each multiplier being considered 

is out of kiltet, it is easily shown that d > O. There exists us E @,a4) su& that 

9 2  (a&) < ~ ~ ( 0 )  for a E (O, US) - Therdore, the direction dp is a descent direction for 

the mode1 fimction pz at type two points, O 
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The approximate trwt regian solution dz is thecefore denned to be d2 = &=da, where 

9 > O is the first local minimum of the univariate problem 

min y(adv) subject to O < a  A/[(dv([,. 
a 

The value of av can be detetmined by the same method used to caiculate a, for type 

one points. 

4.2.4 Approximating Solutions at Type Three Points 

By definition, a type three point appears to be close to a h t  order point which is not a 

second order point. The multiplier estimates Y indicate that the current activities may 

be active at a solution of PF(F). Recall that Wl was dehed for type one points as the set 

of directions dong which the current activities are maintained. Thmefore, if me require 

that d3 E Wi for the approximate trust region dlection d3, the activities are maintained 

and the trust region objective function reduces to @(cf) = pl (d)  . 

As +th the ptevious dasses of points, considering onlp d E .Wl(w) requires satisfying 

quadratic consttaints e*actly, which, if possible, can be very costly. Once again, n e  

simply require that the iinear approximation dTd = O be satisfied while teduchg (pJ(d)- 

Working in the reduced space ansociated *th m a t e  2, we wish to find a direction z 

which approxixnately solves 

Rom Lemma 4.1, ne can -te, for any direction z in the reduced space, and for small 

steps a > 0, 

For type three points, the value of zTY satiaftes llflvll A at W. At a type one point, the 

Cauchy direction z = -zTY provides rearonable descent for the mode1 kct ion.  However, 



this direction could be of negiigible size at a type three point. Therefare, second order 

information about w m u t  be used in defining the approàmate trust region solution 4. 

Motivateci by the results of Coroiiary 3.13 and Lemmas 3-14, 3.16 and 3.17 for the 

penalty fmction, a direction r, of negative curvatue of the reduced Hessian of the 

Lapaagian Z ~ E I Z  be used to dehe  d3. The direction d = Z h  may provide second 

order descent in 503, but rnay not provide b t  order descent. Define d, = u&t, where 

o, = f 1 is defined so that U , Z ~ Z ~ ~  < O if zTy is nonzero- If zTY = O, then either 

value of b,: is acceptable. 

Defiae-d3 = ~ c r , Z &  where ar, > O is calculated as  the mùiimum of the univariate 

problem 

min a ~ ( a ~ ~ Z ~ )  subject to O < u 5 A/llZ&lle. 

As explained on page 62 in Section 3.5.3, it is possible that Z ~ H Z  is indefinite and 

does not provide descent. In this event, the algorithm currently terminates at such a 

point. In theory, using the result presented in Lemma 3.14, it is possible to find a descent 

direction if one exists. Such a technique was not investigated flltther. 

4.2.5 Approximating Solutions at Type Four Points 

As with type three points, the multiplier estimates a t  a type four point w Uidicate that 

a fist  otder point appears to be nearby. However, unlike at a type three point, the 

curvature of the reduced Hessian of the Lagrangian at w ,  Z ~ H Z ,  is positive semidehite, 

which indicates that the nearby second order point may be a minimum point of the 

penalty function. 

If the current point is really close to a second ordu point of p,, then a Newton 

step shouid be taken. When started dose to a solution, Newton's method will converge 

quickly to that solution. 
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A Newton step is composed of two orthogonal parts, the horizontal and vertical steps. 

The horizontal step maintains the cment  activities, up ta first order change, 

ping to the tme minimum of a quadratic approximation of the ~ ~ e n t i a b l e  

while step- 

part of the 

penaltp hct ion.  This step, dh, satisfies dh = -Zzk, where a is the solution ofsystem 

zTaz* = -zTy. 

The step can be written as 

Because of the nonlinearity of the functions cornprishg the penalty function, it is 

rinlikely that the activities at w are stiU active at w +dh. We shaii define a step 4, called 

the vertical step, which is designed so that the activities at w (which the multipliers 

indicate may still be active at the nearbf stationary point) are once again active at 

w + dh + d,,. Let t ( w )  be a vector of the active penalty terms at  w,  ordered as in A. 

Therefore, E(w +dh) and c(w+ dh+&) are these terms eduated  a t  w +dh and tu+&+&, 

respectively. The Newton step solution ta the system of equations [(w + dh + 4) = O is 

the step d satisfying 

((w f &) + d T v ~ ( w  + dh) = 0- 

Because of the cost of evaluating aii the gradients at w + dh, the matrix is approximated 

by its value at w ,  A(w).  Therefore, we define the vertical step d, as the solution of the 

system 

A(w)*& = - t (w + 4,)- 
This direction can be calcdated as 

Therefore, a t  point w, the step dh, d, and dnr are calcdated. The step dN is consid- 

ered a successfùi trust tegion step if 
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1. it falls within the cwent  ttust region, and 

2. it deereases the penalty function from W .  

Note that the second conditions tequires a dectease in the penalty function, rather than 

a deaease in the model fuction dong with a strong correspondence between the model 

and penalty functions. If w is truly close to a solution, the quaciratic mode1 is a very 

good approximation of the penalty function, so an explicit cornparison is not necessary. 

Another way of viewing this requirement is that, near a solution, the mode1 hinction used 

is the actual penalty hc t ion .  

If the Newton step is unsuccessful (either because the step is too long or because it 

provides no decrease in the penalty function) , then the aigorithm condudes that w is not 

as close to a solution as  originaiiy thought, and the point was rnisdassified. In this case, 

the value of the doseness tolerance A is reduced, and the point is reclassified. If the step 

fded because the trust region radius was too small, the reduction of the tolerance WU 

still aUow the aigorithm to approach a solution. 

4.2.6 Comments on the Approximate Solutions 

The approximate trust region solutions, as described in this section, are chosen so that 

they teduce the appropriate model function without too many expensive computations. 

Hopefdy, at  the same time, they mill decrease the penalty function. 

The goais for the approxtnate solutions are basicdy as Eoliows. 

When fat from a stationary point, the approximate solution is simply the generalized 

Cauchy point. The direction is deRned using h t  order information, but the step 

size caledation involves first and second order information at  the curent point. 
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Using this simple ùirection, psogress is likeiy to be made towards a stationary 

point, 

Once the current point appean to be dose to a stationary point, the muitiplier 

estimates become important. They indiate whether the m e n t  active set matches 

the active set at sorne second order point of the penalty frinction. If the curent set of 

activities is not such a set, then the approximate trust region solution is detennined 

via a dropping direction that is chosen t o  move away from the subspace defined by 

the current activities. Again, first order information is used to define the dropping 

direction, and first and second order idonnation is used in the cdculation of the 

step size, Progress towards a différent stationary point is likely to be observed, 

When the current point appears to be dose to a fist order point, the approximate 

solution is chosen so that it stays within the subspace defined by the activities. By 

doing so, the lineariaation of the activities are maint aineci almg the approximate 

solution. However, at type three points, while the active set seems to be correctly 

identified, the point w in not in a region of positive c m t u r e .  Thetefore, the 

approximate trust region solution is based on a direction of negative cunmture 

for the reduced Hessian of the Lagrangian at ru. While maintaining the current 

activities (to iùst order change), progress is likely to be made towards a region in 

which the reduced Hessian is positive semidefinite. 

0 When the cumnt point appears to be close to a second order point, a full Newton 

step is attempted. This direction attempts to move towards the minimum of the 

differentiable part of the penalty function and to maintah the current activities at 

the new point. If the Newton step fails, the algorithm concludes that the current 

point is not as close to a solution as thought, and w is reclassified. 
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4.3 Eduating the Tkust Region Direction 

In the previous chapter, it was stated that a direction d~ is an acceptable trust region 

direction if there is tessonable agreement between the actud decrease observed dong d~ 

in the penalty funetion and the deaease predicted by the model. Stated mathematicdy, 

it is required that 

x=(~T)/x~(~T) > KI 

for an algorithm parameter tc1 E (O, 1), where 

for the model function p at points of type one, two, or three. Recali that with an 

appropriate updating of the activity index sets, pz for type two points is of the same 

form as rpi, and (q . Therefore, p is used to si@ the mode1 fuction for these types of 

points. 

The method used to d&e dT ensures that xP(dT) > O is always satidied. It follows 

that an acceptable trust region direction always reduces p, since x,(dT) > O must also be 

sattfied by an acceptable direction. While any amount of decrease may seem reasonable, 

a certain level of decrease must be observed in practice to guaraatee the convergence of 

the algorithm to even a stationary point. 

Therefore, d~ must pass an additional test before it can be considered an acceptable 

direction. It must provide suscient descent (as dehed in [46], page 100) in the penalty 

function . 

Detinition 4.4 Let ri E (0,1] be on algorithm pummeter. A dimction d provides sufi- 

cient descent in the penalty finction if 
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Note that the d u e  of rl determitles how much ''suffiuent decreasen is required for the 

direction. If rl is very srnail, oniy a s m d  amount of decrease is actualiy required- As rl 

approaches one, more decrease is required for sufncient descent. 

if d~ does not satWfy suincient descent in the penalty fûnction, then it Q r e c l d e d  as 

an unacceptable trust region direction, In this case, the trust region radius A is reduced 

and the algorithmic process continues from the current point 

4.4 Recognizing Activit ies 
1 

The activities at a given point w correspond to the penalty tums which are nonMeren- 

tiable at w ,  In practice, many problems can aise using this precise definition of activities. 

The foiiowing points should be considered. 

Because the penalty terms are generdy nonlinear, it may take many iterations 

befote any of the terms are identicdy zero. 

When the magnitude of a penalty term is very small but nonzero, the term is 

differentiable at the curent point. Eowever, due to the continuity of the fiinctions 

defining the penalty terms, there is a small region about the current point which 

contains at least one point of nondifferentiability. 

a The approximate trust region direction dT was defhed so that the activities would 

still be active at the new point. Unfortunately, due to the noniinearity of the penalty 

terms, it is unlilrdy that this goai is achieved. 

Consider the foliowing situation aciapted from Conn (in [36]). For simpliüty, assume 

that the penalty fûnction has the form 
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Figure 4.1: Motivation for eActivities 

This objective h c t i o n  corresponds to a bilevel problem with tao upper levei constraints 

and an empty Iowa level problem (ie. a standard noniïnear optimization problem). 

The folloning comments make rderence to Figure 4.1. Assume that w', at which 
- 

Gl(wW) = G2(wW) = O, is a global solution of the penalty funaïon. Note that the sudace 

between AB and CD corresponds to the region in which Gl(w) = 0, and the surface 

between AB and EF is the cegion in which G2 (w)  = O. Consider miniminhg pp, using 

the algorithm described thus far, starting fiom the point wl, at which neither of the 

penalty terms is active. Minimization leab to the Cauchy point w2 = wi + a;$, where 

4 = -71 = - ( W w 1 )  - lrnegP1 ( ~ l ) I V ~ l ( ~ l )  - wegro, (w2)lVG(ov,)) - 

At w2, G2 (w2) = O iP satisfied, so A = [VGa(w2)]. Continuhg the minimisation 6rom w2 

leads to wa = w2 + +di, where = with Z ~ A  = O and 

Y2 = W w )  - ~ ~ e ~ [ G 1 ( ~ 2 ) 1 ~ ~ 1 ( ~ 2 )  
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Now, whiie G1(w3) = 0, Gj is no longer active, even though b, was chosen orthogonal to 

VG2 ( ~ 2 )  - 
The minimization process wiü continue to zigzag between the two constraint surfaces, 

wïth the magnitudes of both Gi(w) and 4 ( w )  becoming srnalia. Bowever, we aül not 

readi a point at which both fiinctions are exactly satisfied at the same tirne. To reach 

w', we need to project pardel  to AB but a descent direction is never chosen in this 

direction. Therdore, we wil l  never actually reach the solution tur, although it dl be 

reached, theoreticdy, in the Mt, 

The described behavior, which occurs in part because of the problems dwussed above, 

illustrates the need for recognizing near activities as well as exact or true activities. 

Therefore, we introduce the concept of eactivities, for some c > 0. 

1. For two values a and /3, we define the following equiualence: 

2. The constmilzt set P is dinded into three se&, for any value of c: 

P )  = {à E P &(w) &gi(<u)) 

PA (r) = {i E P \ (€) : &(w) < gi(w)} 

P&) = Ci E P \ P= ( r )  : gi(w) < &(w)). 

3. The following index sets define the €-active penalty fermas, 
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4 The following indez sets define the E-inactiue penalty ternrc. 

The use of eactivities, rather than exact activities, has severai important benefits. 

It means that penalty terms wiU be treated as activities more quiddy, +inactive penalty 

temu are dearly Merentiable in a larger region about the anrefit point than exact 

activities, and the current eactivities are much more Lüely to be eactive a t  a new point 

than exactly active. By addressing these conceras, the behavioc demonstrated in Figure 

4.1 will be avoided. After a finite number of initial steps fiom toi, the values of both Gi 

and GZ wül be s m d  enough to be considered &active. At that tirne, the correct active 

space would be identifid and w' reached because of the horizontal and vertical steps. 

The h t i n g  tmt region algorithm does not require many agnificant changes due to 

the introduction of eactivities. Most of the changes simply involve replacing the exact 

activity sets with the defined sactivity rets. However, note that the addition of the 

activity tolersnce é involves another parameter in the process of dassi&ing points into 

the four groupings. This issue is dealt with in the next section. 

The vertical step, uscd in defining d~ at type four points, is of added importance 

when eactivities are used. This step was previously described as a way of mitigating the 



higher order change in the exact activities dong the horizontal component of the Newton 

direction. As can now be seen, the step is also needed to bring the eactivities doser 

to exact activities. If a penalty term is t d y  active at a minhum point of the penalty 

function, then it must eventually be exactly active within the algorithm as well. Because 

this is ody important when approaching a solution, ne do not consider vertical steps at 

any other stage of the aigorithm. 

4.5 Reclassifying the Current Point 

As mentioned above, the algorithm parameters A and E influence the classification of the 

curent point w as a type one, two, three or four point. The value of A is used directly 

in the classification process, The value of E determines which activities are considered 

active, and hence determines the values of A, Z and y. 

Let ruS be the neacest stationary point of the penalty hinction in relation to W .  

If l l ~ ~ ~ l l ~  < A, then the algorithm uses the information a d a b l e  a t  w to approxi- 

mate the values of the Lagrange multipliers at wS. These approximations may be very 

inaccurate because w is not dose enough t o  urS (if the d u e  of A is too large). Alterna- 

tively, the estimates could be poor because the set of E-activities at w does not correspond 

to the exact activities at wS. If some of the exact activities at wS are not eactive at 

w because their values are too large, then subsequent iterations wiU likely reduce theh 

values so they WU be considered cactive at W. A more dangerous situation i s  that te- 

are considered eactive at w when they are not active s t  wS because the d u e  of E is too 

large. The idocmation at w may be so dinetent fiom the idormation at wS that the 

multiplier estimates reveal no usefd idormation about the behavior of the activities at 

ws- 



If l l ~ ~ ~ l l ~  > A even though the information at w may be rery usefid in predicting 

the multiplier &es at wS, the al&thm WU not attempt to calculate the multiplier 

estimates. The value of É or A may be too s m d  to correctiy classifjr w ,  but the generalized 

Cauchy direction will stiii provide descent in the model function. T h d o r e ,  the iterate 

will eventually be classiiied as close to stationary. 

inaccurate information about wS deriveci fkom w when A or c is too large may cause 

some problems within the aigorithm. It could mean that a dropping direction, a direction 

of negative curvature, or a Newton direction does not provide any descent in the model 

huiction. This behavior would be detected by examining the solution of the univariate 

step length optimization probiem. If a step of zero length is the solution at  a type two, 

three, or four point, as described in the previous sections, then the a l g o n t h  concludes 

that A or c is too large, and reduces both Aues. 

If either E or A is too s m d ,  ùicteasing its value may improve the speed of convergence, 

but it is unlikely to change the outcorne. Thecefore, the algorithm does not attempt to 

detect this situation. 

It is important to note that A and e are reduced and w reclassified only when there 

is an indication that the current point is not classified correctly. In ail other situations 

in which the approximate trust region direction is uuacceptabfe, the radius is decreased 

and the algorithm continues fiom the current point. 

4.6 Restatement of the Algorithm 

The changes described in the previous sections are encorporated into the trust region 

algorithmstated below. A greater level of detail is hcluded than in the previous statement 

of the algorithm. 
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Algorit hm 4.1 (Revised Rust Region Ramework) 

1. Choose algorithm pamrneters: 

0 trust region acceptance values b1 and satUfyng O b1 < b2 < 1, 
unboundness count bm- > 0, 

the maximum trust region mdius sue A,, > 0,  und 

0 su@ent denare  constant rl E (0,1]. 

2. Chmse initial starting values for algorithm tolmnces: 

closeness tolemnce ho > 0 ,  and 

activïty tolemnce co > 0. 

3. For starting p i n  t wo pmvided by Algorithm 3.1, select Ao E ( O ,  Am=]. 

4. Set k = O. 

5. Identify the E-activities at w' and form qk, the s-uctivity m a t e  consi~ting of the 

gmdients of the E-actïvities- 

6. Let (' be the vector of values of the eactivities, ordmd as in 4'. 

7. Caldate  zk satisfying (zL)=zk = I and (A')~z' = 0. 

8. Calculate and ~ % t  wk: 
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1 T  h If ll(Z') 7 I I 2  > nt, then wk Y a Qpe One Point, 

Else 

- P h i  a Zeast squares solution to ~~q~ = Ir- 

- If 3j such thot 9f is out of kilter, then wk U a ripe Two Point. 

- Else 

* Calculate H~ at wk: 

* If ( ~ * ) ~ l I ~ d  is indefinite, then wk i3 a Type TIrree Point, 

* Else 3 às a Ifipe FOUT Point. 

10. Check for temination conditions: 

If wk iP a -Type Four Point ut urhich (zklTyk = O and P = O ,  then 

teminate the algorithm: wk sathfies the necessary bptimality conditions 

for a minimum point of p,. Set wcu, = wk. 

11. Calculate 4, an appmzimate solutMn of the trust region subpmblem 

If wk L a ripe Two Point, then 

- Choose a nonempty set 2) of rsctiuz'ties to be droppd from among those 

whose multiptim arr out of kàlter. 
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- Updote the constmint sets uring the dmpping set D. 

For type one, tgpe two, and type three points, define the rnodel function at tu", 



a Ifwk ts a One Point, Ihm 

- d$ = -Z'(Z~)~~~ and 4 > O iS the first Iocai minimum of 

- Augment with the gmdients (evaluuted at ruk) of the penalty terms 

tuhich am €-active at wk + a$dE but not at wk. Denote the augmented 

matriz by A:. 

- Define 2: satisfying (Z:)*Z: = I and (Z:)=&~ = 0- 

- Define by m o v i n g  from $ the cotnponents duc to the neru c-adiuities. 

- Sirnilady define B: h m  B'. 

- If ( Z ! ) ~ B ~ Z :  às positive semidefinie, then 

L T  k * Calculate z$, a least squares solution to ( z : ) ~  B ~ z F ~  = - (2;) 7, . 

* II atd: + ~ 3 $  lies tuithin the trust regiott -und fùrther demases @, 

then cl$ = c$dt + ~ t r f ,  
* Else = a!&. 

- Eke = a;$. 

a If wk i s  a ripe Two Point, then 

- 4 = & n ( l / ~ ~ ~ ) ~ i ~ ,  tuhere ni = f 1 from Lemma 3.9 depends on the 

type of E-activity being dmpped and q ii the ith column of A:. The vector 

satisfies ( Z ! ) ~ I ;  = 1, (z ' )~$  = O ,  and (A+)*$ = O, tuhete ~b is 

mut& Ak &th remoued. 

- Calculate 4, the first local minimum of T&(&). 

- ~f 4 > O ,  then d$ = 44. O t h d e ,  go to Step 15. 
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0 1f tuk ii a Thne Point, then 

- Caldate  zk,, a dimctiun of negative cÿrvuture of (zk)* H ~ z ~ .  

- Choose & = &l such that 8m((~L)T&)Tyk 0- 

- Calculate c&, the fi~st local minimum of T & ( u ~ Z L z ~ ) .  

- r f  & > O, then d$ = &&&zk&. OthenMse, go to Step 15. 

1f wk U a lSlpe Four Point, then 

- Calculate dk = - (zk) ((zk) fiC(zk))-1 ( z k ) T î k .  

- Caicurate dk = - ( A ~ )  ((A*) =A~)-L~(~L + $) . 
- Calcukte dN = dh + 6. 
- Evaluate df : 

* Calculate dC = rl (d&)Tyk. 

k dk * r fp , (w + .) - P , ( W ~ )  5 sk and (Id&II, 5 bk, then wk+' = wk + d L .  

Go to 14. 

* EZse Go to 15. 

12. Evolwte the direction 4: 

If d/$ > b2 and 5 sk, then upàate 

- wk+l = wk + 4. 

- If 11411.. 2 )A', then = m i n ( 2 ~ ~ ,  A,,), 

- Else A'+I = Ak. 



- b k + 1  = AL- 

O t h e e e ,  A" ~ ~ / 2  and mpat  from Step 11. 

13. I/ Pl@) appeots tu k unbunded, Le. 

itemtions k - b ,  + 1, - - - , k w m  uery successjkl, und 

over itemtMw k - b,, + 1, - - , k, pp(wi+l) - F(wi f l )  Y not reduced, 

then terminate due to unboundedness, and set w, = wLLa=. 

15. Reduce 8 und 3. Repeat h m  Step 5. 

Convergence resuits for this aigorithm are presented in the next chapter. 



Chapter 5 

Convergence of the Algorithm 

5.1 Introduction 

In this chapter, common convergence analysis assumptions and severai additional as- 

sumptions specific to the bilevel penalty function are used to establish that Algorithm 

4.2 converges to a minimum point of the penalty fiinction. 

For convenience, the fo110wing definitions are repeated fiom Chapter 4. 

O A type one point is dassified as being fat from a stationary point. 

0 A type two point is dassified as being close to a stationary, non-first order point. 

0 A type three point is dassified as being dose to a k s t ,  non-second order point. 

0 A type four point is dassified as bWg dose to a second order point. 

The convergence of the algorithm is established through a series of intemediate re- 

sults, modeled after the convergence proafs presented in [34], [37] and [38]. 
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1. When startecl far from a stationary point, the iterates generated by the algorithm 

approach a stationary point after a h i t e  number of iterations, and the current 

point is eventually classified as a type two, three, or four point. 

2. If the sequence of iterates is approaching a stationary, non-first order point, the 

current point is classiîied as a type two point after a finite number of iterations. 

The algorithm eventuaiiy identifies a successful dropping direction. 

3. If the sequence of iterates is approadiing a first order point, the cwent point is 

classified as a type three or four point after a finite number of iterations. 

4. If the sequence of iterates is apptoadiüig a second order point, then the current 

point is classüied as a type four point after a =te number of iterations. The 

algorithm eventually accepts a Mi Newton step. 

5. Eventuaily, aii iterations take s u c c ~  Newton steps and convergence to a second 

order point of the penalty function is assured. 

5.2 Assumptions and Terminology 

The following assumptions and terminology are needed throughout this chapter. 

1. The functions F(w) ,  Gi(w) for i é T, gi(w) for i E P, and ~ ( w )  for i E M, are 

twice continuowly diflerentiable. 

2. The set 

= {w E Rn+m+P : pJw)  < pg(w0)), 

for any statling value w0 E Rtn+'"+~, i s  compact and hcu a nonempty interior- 
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It is nectssary to introduce a meanirement of the curvature, or second order diange, 

of the penalty and mode1 functions used in the aigorithm. The measure used for diner- 

entiable functions Ïs extended to handle nondinerentiabilities, 

1. T h e  Genemlized Rayleigh Quotient provides a rneasure of second and higher order 

change in a function f ut a point w along o step as. It is giuen by 

n(h w ,  as) = - * ( f (w + as) - f ( w )  - asTvf(w)) - 
i i ~~ l l ;  

for some z E N(w , as) = {w' : Ilw - w'll 5 11 w - asll) .  r f  f iS a quadnztic finction, 

then V 2  f iS a constant. 

2. The memure of curvature of the penalty function p, at w along the step ad  Lr defined 

wing the rneosums of curuature of ito individual fùnctions, 
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3. The menarre of eumature for the pieceroise puadmtic mode1 fiindion vk defined at 

wE a h g  a step adk is defined wing second o d e r  change in the penalty t m ,  

for i E Tt (€1 ), 

for i E Pi(€) u<(E)), 

for i E M f ( 3  
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4. Let /3iL be the 4 distinct breakpoints of pk dong d$. As in Sectim 4.2.2, assume 

that 

Defie the second o d e  change in aiong d! ut eueh hakpoint as 

s * k  & 
fl?=nk(ru ,B,d,), for j =  1 :se +1, 

In particula~, note that 

5.   et be the sk distinct breakpoints ofpk dong the approzimate trust mgion solution 

dk, as for @$- above. Similarly define the second d e r  change in (pC along dk at each 

breakpoint as 

k k ' k k  c! = Q (W i f i j d  ), for j = 1 : sk. 

6. Define the follouing cutvature rneasurements. 

The following assumption is similar to Assumption A5.4 in [38]. 

Assumption 5.2 The curvature rneasurements satisfy the following condition ouer d l  

Thus, there &ts a finite d u e  Far > 1 such that 5 FU for al1 iterations k, i.e. rk 

is bounded above (by PU) and below (by one). 
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5.3 Convergence to a Near Stationary Point 

The first stage of the convergence proof establishes that the aigorithm converges to a near 

stationary point, as defined below- 

D a t i o n  5.2 A near staîâonary point i s  a type two, thme, or type four point, as defined 

at the beginning of this chapter. 

The result is proven in three distinct parts, as describecl below. 

1. A lower bound is established for the change in the penalty hc t ion  fiom a type one 

point wk to a new point wk + dk, where dk is a successhil trust region dwction. 

2. By examining the Merence between the values of the model function and the 

penalty function at wk + dk, and by establishing a lower bound on the size of the 

trust region radius over a sequence of type one points, the decrease in the penalty 

function is proven to be bounded away fiom zero. 

3. The algorithm is then proven to appcoach a near stationary point. 

5.3.1 A Bound on the Penalty Function Deaease 

This section is modeled after Section 3.1 ("Obtaining a sdicient decrease in the model") 

in [38]. To estabbh a lower bound on the decrease in the penalty function dong the 

trust region direction dk deftied h m  a type one point wk, it is first neceswy to obtain 

a lower bound on the decrease in the model fwiction cpk almg dk. Because dk is chosen 

so that it provides at l e s t  as much decrease in (pk as the generaked Cauchy step a!$, 

the bound can be obtained by analyzhg the Cauchy step. 

For a disection df = - ( ~ ~ ) ~ d ~ ~ ,  the step a! can bc defined in one of three ways: 
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a a! = E (O,P:), where is the minimum point of the quadratic fonn 

qo(4 =  ad:) for a E (O. ~ 9 ;  

Lemma 5.1 Given Assumptions 5.1 and a type one point wk, if a$ = E (O, ,Of), 

then 

Proofi Recail fkom Lemma 4.1 and the definition of that for cr E (O, @) , 

The minimum of g occurs at en = 1/~:. Therefore, since ap E (0, pf), 

Therefore, 

Lemma 5.2 Giuen Assumptions 5.1 and a type one point ruL, if a: = f l f  = ai, then 

I. k k  l k T ,  cpk(o) - P (44) L 511(2 Y llAk- 
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> - a i  * akf2: 5 1. Therefore, 

Lemma 5.3 Givm Assumptions 5.1 and a type one point, wk, if a: 2 /3f, then 

Consider the tao  cases for $2:. 
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The above three results are eombined into a single observation and used to establish 

several other bounds. 

L e m m a  5.4 Given Assumptions 5.1 and a type one point wk, 

Proof: The conditions of one of the Lemmas 5.1, 5.2, and 5.3 must be satisfied for any 

type one point and direction df. Therefore, these three results can be combined. O 

Corollary 5.5 Given Assumptions 5.1 and a type one point tuk, the appmximate trust 

region dimction dk W e d  at wk satisfies 

Proofi The resdt foiiows immediately from the previous lemma and the fact that dk is 

aceepted as the approximate trust region solution at wk only if &dk) < v k ( e d t ) .  a 

CoroUary 5.6 Given Assumptions 5.1 and c type m e  point wk, if dk îs a successfui trust 

region dkction, then 
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Proof: The resdt foiiows immediately froom Coroiiary 5.5 and the fact that dk is a 

successfii descent direction ody if 

5.3.2 Eivther on the Penalty Eiinction Decrease 

In this section, the lower bound established in Coroilarp 5.6 is shown to be bounded 

away fiom zero. To ptove this resuit, bounds are first established on @', the smaiiest 

breakpoint along d:, on the absolute dinaence between the value of the mode1 funftion 

at dk and the pendty function value at wE + hl and, ftiallyl on the size of the trust 

region radius oves a sequence of type one points. 

A lower bound on P[ is established fist. 

Lemma 5.7 Given Assurnptions 5.1 and a type one point, the Jrst breakpoint /3f along 

the Cauchy direction d: before the trust region boundary LP encountend is bounded away 

front zero, 

Proof: Assume the contrary, that there exists a subsequence of iterations {k) such that 

For each iteration i, @ is the point along dk a t  which some €-inactive pendty term 

changes shape, that is, there exist d u e s  uk, and rt.' such that 

where 

uk is the value of an &active pendty term (i.e. I U ~ I  > 3, 



0 uk is the rate of the k t  ordu change dong the direction d? , and 

zkî is the rate of the second order change dong the direction d? . 

Note that by Assumptions 5.1, there exists MW > O such that luk[ < M, and Mz > O 

such that I& 1 5 M.. 

Consider the foilowing cases, on any iteration &. 

When P> corresponds to any of the above cases, for s p d c  indices or in the M t ,  then 

& is bounded below by the constant rnin(~/M,, &/M.)). Because of out assumption, 

the iterations in the subsequence {k) cannot belong to any of the cases above. Thetefore, 

if ~f is positive and real, then 

for al1 finite values of and in the limit as i + oo. 

S ince 
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it foUows that 
-y.i Jm- 

Iiminf 
22k 

= o. 
i+m 

Because 10' 1 5 Mz, it foiiows tbat 

Foilowing dong, we necessarily have that 

ki 2- 0 Lim .ùif ( ~ ~ i ) ~  = Lim -inf ((v ) 4 u " 4  
1-b- t+OO 

RecaIi that I U ~ I  > for al1 k. Since fi = O impiies pp > e/Mv, this contradicts (5.1). 

Therefore, there erists a constant dg such that 

on aU iterations. Ci 

Next, an upper bound on the absolute dinerace between the penalty funetion d u e  

at the point wk f dk, for a trust region direction dk, and the modei iùnction value vk(dk) 

is developed. 

Lemma 5.8 Given Assumptionr 5.1 and an appmximate trust mgion solution dk at u 

type one point wk, there exists a constant go > O such that 

Proofi This result is inopireci by Lemma 3.9 in [3q. Assume that [ldkll is smaii enough 
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that the foilowing conditions are all  satisfied. 

£'or i E Tf(e)  : ûeg[Gi(d+ dk) J = neg[Gà(wk)] 

for i E <(E) u p i o ( ~ )  : &(wL + dk) < gi(wk + dk) 

for i E 5 ( E )  u e(~)  : g i ( ~ k  + dk)  < &(wk + dk) 

for i E < ( E )  : S ~ & ( W ~  + dk)] = sign[si(wk)] 

for i E PL(€) : sign[min(&(wk + dk) , gi(wk + dk))] = sign[&(wk)] 

for i E Mf(c) : ~ i g n [ ~ ( w ~  + de)] = ~ i ~ n [ ~ ( u r ~ ) ] .  

From Lemma 4-1, we can write 

Also, since dk maintaias aIl the current eactivities up to first order, 

&(w" dk)  = A@) + ( d k ) T ~ & ( w C )  = k ( w k ) ,  for i E E. 

The following notation shaif be used- 

For i E Tt(€), pi = I E ~ [ G ~ ( W ~ ] .  

For i E E(s), a; = sign[&(wk)]. 

For i E e(c), uif = sign[gi(wk + dk)]. 

For i E (E) , ai = sign[&(wk)] a d  pi+ = negki(uk + dk) - &(wk + dk)] . 

a For i E (€1, 



For i E M'(E), Ui = ~ i ~ n [ ~ ( w ~ ) ] .  

For i E W(E) ), uaif = ~ i g n [ ~ ( w ~  + dk)]. 

Using thk notation, 
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Therefore, it follows that 

where 

Applying the triangle inequaüty, 

Looking more dosely at q, it foiiows that 

where Assumption 5.1 guarantees the existence of the constant L. 

The second expression tc2 requires a more detailed analysb. 
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For i E TO(c), Let xi = IGi(wk)llpi+ - pi[- Each i E To(c) must satisfp at least one of 

the foiiowing conditions: 

2- p: = 1 (or Gi(w + d )  < 0 )  and p; = O (or Gi(w) >_ O). Since 

it foliows that 

and, since the second order change is negative, 

3. p: = O (or G ; ( d  + dk) 2 0) and pi = 1 (or G~(w' )  < O). Followuig a similm 

reasoning to that used above, 

Divide Ta(€) into three distinct sets, Ti, T2 and T3, co~~espondjng to the cases described 

above. Then, 
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1 < 2 1 1 d k ~ ~ $ ~ h e ( ~ 2  u T3) max ln(Gi, wL, dk)l 

where t is the number of upper levd constraints in the bilevel ptoblem and LG is a 

constant boundhg the maximum cutvature of aU the functions Gi. The existence of LG 

is guaranteed by Assumptions 5.1. 

Ushg similar analysis, it can be shown that 

where Lg and L,, giving the maximum curvature of aU gi for i E P, and ci, for i E M ,  

respectively, exist by Assumption 5.1. 

Next, examine the remaining sum. over (c) , more closely. Let, for i E 2 (c) , 

Consider the foiiowing cases for i E P!!(E). 

1. If U: = a;, then 

using the same analysis as above. 
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We now Look fbrther at the possibilities for t h  case. 

(a) If pi+ = O and pi = 0, then it foKows that 

and sign[Ai(wk + dk)] = -sign[&(wk)]. However, since )ri(wk + dk) = &(tuk), 

this condition cannot be satisfied. Thetefore, thk case is empty. 

(b) I fp$ = O and pi = 1, then sign[&(wk)] = -~ i~n[~~(w') ] .  In thip case, 

since gi(wk) and &(wk) are of opposite signs. Since gi(wk + dk) - &(ruk + dk) 
and g;(wk) - &(wk) are of dinerent signs, it foIIows that 

and 

(c) If = L and pi = O, tben ~ ign[~~(w'  + dk)] = -sign[~;(tu*)]. Again, n e  have 

that 

xi = 1gi(wk) + &(wk) 1 

Considet the taro possibilities for signbï(wb)]. 
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i. s ~ ~ I I ~ ( w ~ ) ]  = s~&~(w' + dL)] = -sign[~~(to~)]: as in the above case, 

ü- .ign[9c(wk)] = -signbs(wk + dk)] = sign[&(wk)]: since gi(wk) has a dif- 

ferent sign than gi(wk + dk) , it foUows that 

Therefore, 

Cornbining aii the cases above, we get that 

Therefore, it follows that 
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where 

Combining this resdt with (5.2), and P 2 1, we have 

where 

A lower bound on can now be established, assuming that A satiaies the following 

assumption, which is similar to an assumption stated in equation (104) on page 446 in 

[381. 

Assumption 5.3 The algorithm parameter A is small enough that the following condi- 

tion is satisfied: - 

Lemma 5.9 Given Assumptionr 5.1 and 5.3, and a type one point tuk, for al2 denations 

k, there ensts a condant 6 > O such that, 

A%* 2 6. 

Proof: This proof uses the technique of Lemma 7 (page 446) in 
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Assume that the lemma is not true, i.e. that there exists an index J su& that 

~ ~ 7 '  < 8. (5-4) 

The definition of d and bnmption 5.3 ensure that Ao7O 2 6, so J 2 1. Without l o s  

of generality, assume thet J is the srndest index sattfPing (5.4). i.e. A'+ 2 6 for 

since p,(w J-') = p J - l ( ~ ) .  Using the resuits of CoroUary 5.5 and Lemma 5.8, Assumption 

5 -3, and the fact that wk is a type one point, it follows that 

Consider the foilowing: 

z J - ' ~  '-' < r J ~ J - l  since rJ-' 5 rJ - 
5 27  'A' since A J-' 5 2~ even if iteration is unsuccessful 

< 26 fiom (5.4) 

5 A since d A/2 tkom (5.3). 

Sbce d/rJ-l > - A ~ - ' ,  

Consider the two possibilities for the min tenn separately. 
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Therefore, in either case, cJ-' < 1 - ba, or 

Le. iteration J - 1 is very successful and AJ-' < A ~ .  Sol 

J J A ~ - ' T ~ - '  5 ~ ~ r ~ - ~  5 A r < 6, 

which contradicts the fact that J is the smaiiest index satisfying (5.4). The re~ult follows 

imaiediatdy from the contradiction. O 

The results just estabüshed are non used to provide more idormation about the 

decrease in p, fkom a type one point. 

Le- 5.10 Given Assumptionr 5.1, 5.2, and 5.3, if, for al[ k, wk is a type one point, 

then for any successful trust mgion dimction dk, the= e&ts a positive constant 4 such 

that 

p,(wk + dk)  - p,(wk) 2 8,. 

Proofi It foiiows from Corollary 5.5, Lemma 5.9, and wkl a type one point, that 
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From Assumption 5.2, is bounded above by a constant +, so 

If iteration k is a succesdd iteration fiom a type one point wk, the decrease in the 

penalty hiiiction dong the trust region direction is bounded away from zero. If all the 

iterations .correspond to type one points, oniy a finite nnmber of successful iterations are 

possible, since, by Assumption 5.1, p, is bounded below. This result is proved formaiiy 

in the next section. 

5.3.3 Approarhing a Near Stationary Point 

Before proving that the iterates approach a near stationary point, further notation and 

intermediate results are required. We &st show that there exists at les t  one subsequence 

of iterates which approaches a near stationary point. After tao technical results are 

developed for the algorithm, it is establiçhed that if there are only a nnite number of 

succwfui iterations, the algorithm must approach a near stationary point. A similar 

resuit is then established for an innnite number of successful iterations, providing the 

desired result . 

Definition 5.3 Define the follotmng sets  

S = {k : itemtion k W successfuI) 

S = {k : itemtion k U u~zsuccessful). 
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Lemma 5.11 Given Assumptions 5.1, 5.2, and 5.3, if, for a21 k, wk Is o type one point, 

then 

Proof: The proof uses the technique of Theorem 8 (page 447) in [38] and proceeds by 

contradiction. 

Assume that the result does not hold and ~ ~ e ~ ~ l l ~  > A for aU iterations k. 

On a successhil iteration k E S, n e  have, fiom Coroilary 5.6, that 

where wk+l = wk + dk. From Assumption 5 -1, p, is bounded below, 

üm (p,(wk) - p,(w"") = O 
k-mo 

and since g~,(w') - p,(wk+l) 2 O for di 6,  

Therefore, using Assumption 5.3, Lemma 5.9, and 2 1, ne have 

Therefore, LES L / T ~  < +oo. 

Let y2 ~z (0 , l )  and y3 > 1 be the modification constants for the trust region radius, 
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and let p, a positive integer, satisfy y&-1 < 1. In Algorithm 4.1, 7 2  = ) and i.3 = 2, 

and any p 2 3 is suitable. 

Let Sk = IS n {O, - - - , k - 111 be the number of s u c c d  iterations in the &st k 

iterations. Define the following, mutudy disjoint sets which span ail the iteration indices, 

JI = {k : k < pSk) and Jt = {k : k > pSk). 

Fust, consider the sum LE, l / ~ ,  and define the two subsequences of indices: 

EC1, the indices of J1 in increasing otder, 

K2, the indices of S in Uicreasing order, with each index repeated p times. 

Note that the jth components of the two sequences satisfy Kj 2 Z; and that X2 has at 

hast  as many compoaents as K?. Therefore, r'C:. 2 &- Lookuig at the sums, 

Next, consider the sum &j2 l/n. First, for any k E J2, 
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since Sk < k / p ,  y2 < 1, and 7 3  2 1- Therdore, using Cemma 5-9, 

Combining the information about the two swns, 

which coatradicts Assumption 5.2. Therefbre, the result is proven. O 

We have just established that there exists a subsequence of the iterates which con- 

verges to a near stationary point. To establish that al l  iterates will converge to such a 

point, it is necessary to introduce two other resdts. 

Lemma 5.12 Given Assumptions 5.1 and { q j )  an infinite subsequence of the itemtes, if 

there e t s  tû such that 

- 

then 

Proofi Assume for convenience and without Ioss of generdity that each eactive penalty 

term (mith d u e  q) satisfies luil < s or [y-1 > E ,  that is, that none of the activities have 

magnitude of uaetly E. Note that if there d t s  i such that luil = c, then E can be siightly 

increased without offecting the division of the pend@ terms into eactive and einactive 

tenns. 
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By the continuity of the underlying hinctions comprishg the penalty function, we 

have that 

Consequently, for j > J, the eactive and cinactive sets of penalty terms are correctly 

identified as those at 9. Combining this resuit with gradient limits defined above, it 

foliows that 

It simiiarly follows that 
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Combining these results, we get that 

and the result is proven. a 

CoroIhuy 5.13 Given Assun@ons 5.1, two infinite sequences { q j )  and {ri}, and 

Proof: Rom the given idormation, there exists 6 such that 

Therefore, from the previous result, 

and the result foiiows immediately. O 

Lemma 5.14 Given Assumptions 5.1 and 5.2, if S is a finite set, then them ez5st-s 6 

such that 

Proof: Since S is finite, there u i s t s  an index K > O such that all iterations 6 2 K must 

be unsuccessfd, i.e. 

=,"K+1=&+2 = ..., 
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and 

Since A~ is ceduced on unsuccdd iterations, it aIso foUows that 

Assume that & is a type one point, i.e. I I ( z ~ ) ~ ~ ~ ( I ~  > A. Therefore, fiom Lemma 

5.9, ne  h o w  that ~~q 2 6, for some constant 8. Since ?- is bounded above and belon, 

A' is bounded away fkom zero, which contradicts (5.5) above. Therefore, 6 is not a type 

one point, so l(2T312 5 A. O 

Findy, it is non shown that the sequence of iterates defined by Algorithm 4.1 converge 

to a near stationaty point. 

Lemma 5.15 Giuen Assumptions 5.1, 5.2, and 5.3, if S is an infinite set, then 

Proof: This proof uses the technique of Lemma 3.15 (page 182) in [3?], and proceeds 

by contradiction. Assume that the result is not true, i.e. there exists a subsequence of 

successful iterates, denoted {q j ) ,  for which 

is satisfied by the entire subsequence. 

However, fkom Leauna 5.11, 

w hich 

there exiots a subsequence of iterates, denoted { r j ) ,  for 
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Note that +j is the srnailest indu greater than qj for which the above conditions are 

sat isfied. 

Consider the set Ki = {k E S : qj 5 E 5 rj - 1). Since qj E &, the set is nonempty. 

R e d ,  nom Corollary 5.6, that for k E Kj with j latge enough and by Assumption 5.3, 

Since p, is bounded below by Asswnption 5.1, 

and, t herefore, 

Since SC is bounded above and A* is a constant, for j and k large enough, must be 

the minimum t m -  Therefore, 

Now, 
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Since 

iim (pp(wqj) -pp (wFj ) )  = O ,  
j-00 

it foiiows that 

and from CoroUary 5 -13, 

Therefore, for any positive d u e  p, there exists j large enough such that 

Now, for large enough j, 

Since there are appropriatdy large (but fiaite) values of j for which the above condition 

holds for any positive d u e  of pl it must necessarily be true that, for large enough j, 

q 2' qi ll(Z 7 Il2 5 Al 

which contradicts the initial assumption in the proof- Therefore, that assumption wap 

invalid, and the tesult follows. [3 

The n& result finaily estabiishes convergence of the algorithm to a stationary point. 
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Lemma 5.18 Given Assumptâons 5.1, 5.2, and 5.9, the itemtes defined by Algonthm 4.1 

s a t e  

If S is finite, the resuit follows from Lemma 5.14. Otherwise, wk, and therefore 

J ( ( z ~ ) ~ ~ ~ ~ ( ~ ,  wiU only change values on successful iterations, and 

and the resdt follows fiom Lemma 5.15. 

5.4 Convergence to a First Order Point 

The goal of tbis section is to prove that the algorithm wiU eventuaüy approach a tirst 

order point of the penalty function. This is established by examining how the algonthm 

handles type two points. Recail that a type tao  point appears to be close to a stationary, 

non-fkst order point. 

The proof requires several steps. 

If the algorithm is approaching a stationary, non-first order point, then the iterate 

WU eventually be classified as a type two point. 

Given a type two point, there is a lower bound on the decrease in the mode1 function 

along a dropping direction, and hence on the decrease in the penalty fùnction for a 

successfiil trust region dropping step. 

Over a sequence of type hm points, the trust region radius is bounded away from 

zero, so a s u c c d  iteration will eventually be performed. 

The penalty function decrease on successfd iterations is  bounded away fiom zero. 
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5. Dropping steps cannot be performed infiniteiy ofien. 

The results presentd here are modeied after those in the previous section, and are inspired 

by Theorern 1 in [34]. 

5.4.1 Approadiing a Type Two Point 

In this section, an eariier result, Lemma 5 -12, is used to establish that , if the algorithm is 

approaching a stationary, non-est order point, then the algorithm nül eventuaily classe 

the iterate as a type two point. 

In t heory, a mdtipiier is out of kilter when it falls anywhere outside its optimal range. 

However, in practice, mithin the algorithm, a multiplier is considered out of Uter  only 

when it is safely out of Irilter. For the necessary optimality range [-p, pl, the multiplier 

estimate is considered in kilter if it is in the range [-(l+Pr)p, (l+Pr)C<1, for an algorithm 

tolerance Be. Similarly, if the necessary optimality range is [O, p] tthen the multiplier is 

considered in kilter if it lies in the range [-/3*, (1 + Pr)d. This generalization is used in 

an attempt to avoid dropping an activity whose multiplier is near one of the endpoints of 

the optimality ranges and its estimate is slightly out of Lilter simply because the iterate 

is not yet close enough to the stationary, non-fûst order point. 

Therefore, in ordet for a iterate to be c l d e d  as a type two point, the out of U- 

ter multiplier must be safely out of kilter. This leads to the hiiowing definitions and 

assumptions before we restate the result. Note that the fîrst assumption is also used in 

Theorem 1 in [34]. 

Assumption 5.4 Assume that the numkr of stationary, non-Frst order points U finite. 

Definition 5.4 Let !@ mfer to the multiplie+s ut a stationary, non-fist order point ûi. 
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1. Let & h the smallest magnitude by which o multip~ier @ is out of kilte~ ot a 

stationary, non-first order point. 

The foUoning assumption on the toleance fie is required as wd. 

Assurnption 5.5 Assume that the tolerance flPI satisfies < dmult. 

L e m m a  5.17 Gfven Assumptions 5.1 - 5.5, if there exists a subsequence {q j }  for which 

~ ~ ( ~ q j ) ~ ~ q j l ( ~  5 A and i.Pj3= wqj = <t, for a stationary, non-first ode? point TÛ, then, 

w" for some k, vil1 be eventually classiifid as a type two point. 

Proof: R o m  Lemma 5.12, it foihws that the set of eactivities at wqj wiU eventudy 

match the set of exact activities at tu. Therefore, it toiiows that 

where d and 4 are eduated at tt, and 

!VQj -+ !B. 

Siace at least one of the multipliets at iir is out of Iàlter, it must be true that, fot j large 

enough, a component of W j  must bbe out of kilter as weii. Non, since 9% + @, after a 

finite number of iterations, some multiplier estimate wili be safelp out of kiiter, due to 

Assumption 5.5. Therefore, this iterate wili be classifieci as a type two point. O 

5.4.2 A Bound on the Model hnction Decrease 

For convenience, superscript k indicating the iteration number is ornittecl because the 

results presented ded with a single iteration. 
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The model funaion deaease dong dropping direction db is examined, where dv is 

assurned to satisfg the foilowïng condition. 

Assumptioa 5.6 Dmpping diection dp  is defirvd to dmp 4 single actiuity. It satiofies 

Adn = - sign[* i]eit multiplier Y is safely out of kifter. In particular, assume b a t  

dD sattsfies 

dp  = - s ~ ~ ~ [ ~ ~ ] z ~ z ~ v o ~ ,  

when Vaj  is the p d i e n t  of the c-actiuàty king dmpped, 4- i s  A utith Vaj removed, and 

Zi satisfi.. Zj = [ZZ] and A F Z ~  = O. 

The value of the model function dong dD is examined next. The eactivity sets 

uidicated below correspond to the m e n t  iterate, and have not been updated to retlect 

the change due to the dropped activity. This explaias the need for the inclusion of the 

term A m  (a), which is defined below, on the 1 s t  line, 
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The foiiowhg assumption on the step sue a is made so that the modd function (and 

later the penalty function) can be examined more easily. 

Assumption 5.7 We shall consider only cr ai, where al ii the first breakpint along 

dD associated uitii the inactivities at W .  

Under this assumption, which was inherent in part 1 of the proof of Theorem 1 in [34], 

the mode1 fuoction can be written more compactly. 

The term A m  DI defined by rernoving the dropped activity from its active set and placing 

it in the appropriate inactivity set. Its specifics are iisted below. 

Deiînition 5.5 The value of the jhction Am depends on the type of actiwàty that was 

dmpped in defiing &. 
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a If j E PO,(€) and $(w) is  being dmpped, then 
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Each case is investigated individually. The results presented in Lemmas 5.18 - 5.22 

are inspireci by part 1 of the proof of Theorern 1 in (341. 

Lemma 5.18 Given Assumptions 5.1 - 5.7, i f  d p  = - S ~ ~ ~ [ ~ ? ] % $ V G ~ ( W )  for some 

j E To(c), then 



where 

and 

Proof: From above, we have that 

Note that, for some u in the reduced space, 

and $ v G ~ ( w )  = -sign[~F]. Thuefote, 

Examining the first terms on the right hand side yields 



and 

The resuit follows immediately. CI 

Lernma 5-19 Given A ~ i w n p t i ~ ~  5.1 - 5.7, if dp = - s ~ ~ ~ [ ~ ~ z ~ ~ v ~ ~ ( w )  for some 

j E (c), then, 

where 

and 

Note that, for some u in the reduced space, 
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and $ Vg j ( ~ )  = -sign[g]. Thereiore, 

Examining the tesms on the right hand side yields 

and 

Therefore, 

Lemma 5 -20 Given Assumptions 5.1 - 5.7, if dD = - S ~ ~ ~ ~ ] Z ~ ~ V A  j ( ~ )  for some 

i E (4, t h a ,  

where 

6,; = - a 

and B I @ )  = B(w). 

Proof: The result is proven using the same technique as for j E e(3. a 

R e d  that P"=(E) = =(r) u P ~ ( É )  where the f indicates the common sign of A(w) 

and gj(w). For our purposes here, the sets must be separated, just as they were in 

detennining optimality conditions. 
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ulhem 

and 

Proof: The result is proven using the same technique as for j E T0(e). CI 

L e m  5-22 &en Assumptions 5.1 - 5.7, if dI = - s ~ ~ $ ~ Z ~ ~ V ~ ~ ( ~ )  for some 

whem 

and 

Proof: The result is proven uoing the same tedinique as for j E c. O 

h t h e r  assumptions s p d c  to the bilevel penalty fuction are required for the anal- 

pis of the convergence of the algorithm. These assurnptions do not appiy to the imple- 

mented aigorithm. 

Assumption 5.8 At any type two point w ,  assume that 
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a the set ( )  = 0, and 

0 the set -(c) = 0. 

The first condition is a required condition at a nondegenerate minimum point of the 

penalty function. Essentidly, we are assuming that this type of constraint is never violated 

at a stationa.ry, non-first order point. RecaU that if the set is not empty, there is a range 

of values for which a dropping àïrection can satisfy one of two conditions for descent. 

Requiring E(E) = 0 removes an ambiguity &om the proving process. 

The second condition is equivalent to requLing strict complementanty in the lower 

level problem of the original bilevel problem. This condition is requïred for many algo- 

rithms for bilevel problems. 

Therefore, we c m  summarize our results as follows. 

Corollary 5.23 Given Assurnptions 5.1 - 5.8, if w is a type two point, then dmpping 

direction d~ must satisfy 

where Jej is the magnitude by which the multiplier cmsponding to dB is out of Ifilter. 

Proof: FoUows immediotely fiom the above results. O 

For convenience, ne introduce the function @(a). 

Definition 5.6 For O 5 a 5 al, 

Additional terminology is now requUed for second otder information. Note the similarities 

between the following set of definitions and those in Defmition 5.1. 



C W T E R  5. CONVERGENCE OF THE ALGORITHM L49 

Definition 5.7 For any iterntion k,  the follounng tenninology i s  inhoduced for second 

o d e r  change in 8, 

1. Let 

2- Define the mazimum over a ~ZS 

3. Define a maximum t e m  over al1 previow iterations as 

The next assumption on the curvature of the modd funetion dong a dropping direction 

is analogous to Assumption 5.2 for curvature dong the gencralized Cauchy direction. 

Assumption 5.9 The following condition on the curuature measurernents, over al1 der- 

A consequence of this assumption is that 4 is bounded above, i.e. there &ts em > O 

such that 6 5 qu f ~ f  ai i  El in addition to being bounded below by one (by dennition). 

Using t hese definitions , 
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Next, look at do more dosely. Let Vaj denote the gradient of the eactivity that is 

dropped dong dI . Note that Z T Z ~  = 1. 

R e d  that Zj = [Zz], where Z ~ V  czj = O and tT+ = 1. Therefore, 

Because the individual functions comprishg the penalty functions are assumed to be 

well-behaved and the penalty function is assumed to be bounded over the interval in 

Assumption 5.2, it is reasonable to fiuther assume the foiiowing: 

Assumption 5.10 The n o m  of the gmdients of the individual fmctions are bunded 

above. 
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De0nition 5.8 Let A, be Zaqe enough so that IIVU~((~ < A, is true for al1 actiuities 

over al1 iterations- 

Lemma 5.24 Given Assumptioiis 5.1 - 5.1 0, for o type two point w,  it folloros that 

~ ( 0 )  - v(ed11 h h (4, 

Proof: FoUows irnmediately fiom the definitions of 8, A, and r ~ .  

Next, to determine the step to taLe dong the dropping direction, consider solvùig the 

foilowing univariate problun, a sirnpiified version of the trust region subproblem 

TH1: m i n d I ( a ) s . t . O ~ a ~ o ~ a n d o < A / J l d ~ l l m .  

Very small d u e s  of a provide a decrease in 6, so the minimum cannot occur at cu = 0, 

Therefore, the minimum wii l  occur at w, corraponding to one of the following situations: 

1. at the unconstrained minimum of 19, Le, at 

2. at the upper bound al, or 

3. at the tmt region upper bound aa = A/lldIllm. 

The following resnlts echo results presented in the fkst stage of the convergence proof 

(in Lemmas 5.1, 5.2 and 5.3). 
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L e m m a  5.25 Gien Assumptions 5.1-5-1 0, if  the solution of TBf occurs ut = amin, 

then 

Proof: Foliows directlp fiom substituting into 9. O 

Lemmn 5.26 Giuen Assumptions 5.1-5.10, if the solution of TE1 occurs at = al, 

then 

Proofi Substituting into 9 gives 

Since a, e [O, ai], it foUows that a- > al, 
- 

T herefore, 

Lemnia 5.27 Giuen Assumptions 5.1-5.10, if the solution of TH1 occurs at = a*, 

then 

Proof: Follows immediately from substituting as into 9 and noting that > a*. O 

Combining the three previous tesults gives the following. 

Corobry 5.28 Gàuen Assumptions 5.1-5.1 0, 
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Proof: Foilows immediately by noting that one of the conditions listed Lemma 5 .%,5 -26 

and 5 -27 must be satisfied. O 

Proofi Follows imrnediatelg from Coroilary 5.28 and Lemma 5.24. O 

Now, let ez, be the step dong dv taken to the minimum of p(adI). 

Coroiky 5.30 Given Assumptions 5.1-5.10, 

Proof: Rom the dennition of a ~ ,  (p(aDdv) < r p ( 9 ) -  The result foilows immediateiy 

horn Coroiîary 5 -29. O 

All the above results have been presented for the curent iteration, so the superscript 

k indicating the iteration number has been omitted. For darity, 1 wiU non restate the 

above resuIt with the required superscript, 

Corollary 5.31 Given Assumptionr 5.1 - 5.10, if k Y a successfil trust mgion itemtion, 

where bl is  the algorithm pommeter useà to determine a successfid trust region itemtion. 
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5.4.3 A Bound on the Thst Region Radius 

This section will proceed very much like Section 5.3.2 in the fùst stage of the convergence 

resdts .  In fact, some of the r d t s  fiom that section apply directly to the cuitent 

situation. 

Lemma 5.32 Giuen Assumptions 5.1 - 5.10, there d t s  6, > O such that f o ~  al1 item- 

tions from type two points, 

Proofi The proof of Lemma 5.7 applies here as well. 

Lemma 5.33 Given Assumptions 5.1 - 5.10, for al1 type two points wk,  there exists a 

constant 92 > O such that 

Proof: The reader is refmed to the proof of Lemma 5.8. With the appropriate correc- 

tions to the +active and euiactive sets to refiect the &ange in the dropped activity, the 

same proof is applicable to the current situation. 0 

The next result is analogous to Lemma 5.9 for the case of type one points. An 

additional assumption on BI, similar to Assumption 5.3, is required b t .  

Assumption 5.11 The dgonthm parurneter p. is s m d  enough that the following con- 

dition W satisfied: 
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Lemma 5.34 Giuen Assumptionr 5.1 - 5-11, and a sequence of type two points ruk, thew 

exikts a constant > O such that, 

Proof: This proof uses the same technique used for Lemma 5.9. Dehe  & as 

Assume that the l e m a  is not true, i-e. that thue &ta an indu J such that 

The definition of 6 -  and Assumption 5.11 ensure that A0P 2 &, , so J 2 1. Without 

105s of generality, assume that J is the smaiiest index satisfying (5.7)' i.e. 2 dD for 

k = O :  J - 1 ,  

d-' e J - 1  = -- 
l x -  '1 

since p,(wJ-l) = #-'(O). Using the presented results and assumptions, it foUows that 

Consider the foilowing: 

J < ? J A . T - ~  ,J-l < TJ - 
< ~ T ~ A ~  since 5 2~~ even ifiteration is unsuccessful - 
< nom (5.7) 

< B./A, h m  (5.6). 
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Consider the tno possibilities for the min term separately. 

Therefore, in either case, cJ-' 5 1 - b2,  or 

i.e. iteration J - 1 is very successfitl and A~-' 5 A '. So, 

J J 5 5 A T < b, 

which contradicts the fact that J is the smaliest index satisfping (5.7). The r e d t  foliows 

irnmediately fiom the contradiction, 0 

5.4.4 A Bound on the Penalty Function Decrease 

W e  can non prove the foilowing result. 

Lemma 5.35 Given Assumptions 5.1 - 5.11, fm any successfil itemtion /rom a type two 

point, the= e+ists 4 > O such that 
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Proofi In Corollary 5.31, it was established that 

NOW, fiom the definition of os, Assumption 5.9, and Lemmas 5.32 and 5.34, it foilows 

that 

5.4.5 Approaching a First Order Point 

This section laps the groundwork for the final stage of the convergence proof, which is 

presented in the subsequent section. 

L e m m a  5.36 Giuen Assumptions 5.1-5.1 1, only a finite number of dmpping steps d l  

be perfomed. 

Proof: Since p, is assumed to be bounded belon, and the deaease in the penaity function 

is bounded away hom zero on a successful trust region step, there can only be a finite 

nuber of successful dropping steps. 

Since the tnwt region radius is reduced for uaouccesoful trust region steps and it has 

been established that A is bounded away fiom zero, it foilows that there can only be a 

finite number of u a s u c c d  dropping steps. CI 

Lemmn 5.37 Given Assumptions 5.1 - 5.11, the a l g o d u n  will eventually a p p m c h  a 

first order point. 

Proofi There are only a nnite number of stationary, non-first order points (by As- 

surnption 5.4) and there can only be a finite number of dropping steps. Therefore, aRer 

some point, the algorithm wïU no longer approach a stationary, non-first order point. 
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By Lemma 5.16, the iterates d l  approach a different stationary point. Eventually, the 

stationary point will be a fint order point. O 

Lemma 5.38 Civen A s m p t M ~  5.1 - 5.11 and constant values of the algodhm pa- 

m e t e r s  a and A, al2 itemtes wilt eventually be type thwe or type four points. 

Proof: fiom previous resdts, the algorithm WU eventually approach a f irst  order point. 

Using the same technique as in the proof of L e m a  5.17, it foilows that the multiplier 

estimates at the iterates will eventuaily approach the multiplius at the fkst order point. 

Lnitiaily, an out of kilter estimate may be obtained, but eventuaiiy the estimate wiil Lie 

in the range to be considered in kilter, due to the use of the bound P*, O 

5.5 Convergence to a Second Order Point 

To establish that the aigorithm wiU eventually converge to a second order point of the 

penalty hinction, the foiiowing renilts must be proven. 

1. The algorithm will eventuallp attempt a Newton step. 

2. A Newton step wil l  eventuaiiy be successfui. 

3. The algorithm toietances E and A, which are reduced when an iterates has been 

Melassifiecl as close to a stationary point, will only be reduced a h i t e  number of 

times . 

4. Eventually, all iterations are Newton steps. 
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5.5.1 Approaching a Type Four Point 

Rom Section 4.2.5, mail that the Newton step satisfies dN = + 6, where 

q = -z(zTaz)-9Tr 

and d,, = -A(A~A)-'@(w + dh). 

It has aireaciy been estabiished that, for constant values of é. and A, the algorithm 

will eventuaüy approach a first order point. This point may be a second order point (a 

possible solution of the penalty function) or a sadde point. 

As in Coleman and Conn [34], the foilowing definition and assumption are nquired. 

Definition 5.9 A second orde+ point w is  a strict second order point if none of the 

muitipiiers lie at their optimal boundary and i f  the reduced Eessian is positive definite. 

Assumption 5.12 Assume that all first ordet points of the penalty finction are strict 

second order points. 

Note that this assumption is made for the purposes of theoreticai analysis of t he algorit hm, 

and is not applied to the irnplemented algorithm. 

Corollary 5.39 Giuen Assumptàow 5.1 - 5-12, when upplulcrching a strict second order 

point, the algonthm (ma eventually attempt a fil1 Newton step. 

Proof: From Assumption 5.12, when the current iterate is dose to a first ordet point of 

p,, it is actudy close to a strict second order point, and the reduced Hessian is positive 

definite. Therefore, type three points are assumeci to be never encorntueci. Combiouig 

this observation wîth Lemma 5.38, the algorithm will eventually classif4f an iterate as a 

type four point, and the Newton step wi l l  be attempted. 0 
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Due to the positive dehiteness of the reduced Eessian near a strict second order 

point, an assumption on the size of the inverse of the reduced Hessian, as in Lemma 1 in 

[34], can be made. 

Assumption 5.13 Assume thot the= erist strictly positive constants b f  and b B  such 

that for uny dimction h, 

And, in purticular, assume that I I ( Z ~ H Z ) - ' ~ ~ ~  5 Sm for some constant bz > O. 

1 

At a type four point, the algorithm calculates the Newton step dru = dh + 4. if it 

satisfies < A and pro"de suffiCient deaease in p,, then it is accepted as the trust 

region direction and the new iterate is calculateci. Otherwise, the tolerances E and A are 

reduced and the currmt iterate is reclassified because it is not as dose to a second otder 

point of pp as origindy thought. 

5.5.2 Success of the Newton Step 

In this section, the value of p,(w + dh + dv) is analyzed to determine if a fidi Newton 

step wiU be successfd wben dose to the strict second order point 6- This derivation is 

pattemed a f k  the corresponding step in Coleman and Corn [34]. 

For simpiicity, the foiiowing definition is formalized. 

Definition 5.10 The point w i s  enough' to a minimum point 6 when the jollowing 

conditions are sutisfied. 

1. Assumption 5.13 is satisfied. 

2. The set of eactiuities at w is composed of the set of exact activities ut W. 
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3. The step dh + 4, is small mough so that no bmkpoints are passed from u, to 

w+dh+&-  

L e m m a  5.40 Giuen Assumptiom 5.1 - 5-13, when a type jbur point w ù Wose enough ' 

to 6, the* ezists a positive constant L such that p 

Proofi This proof uses the technique of and terminology fiom the proof of Lemma 1 

in [34]. R o m  Definition 5.10, we can write the folloning. Note that y and B are the 

gradient and Hessian, respectiveiy, of the dinerentiable part of p,(w). 

We will need to consider the component parts of p,(w + dh +- 6) in more detaü. 

Consider the foiiowing: 
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The above information, along with the definition of H, is now ail combined in the 

following. 
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Next , examine the changes in activities in more detail. Before looking at the individual 

cases, note the foilowïng. 
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Let y = neg[Gi(w)]. Nor, we have that 

Therefore, 
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where ei = sign[q (w)]  . 

Combining dl the above idormation, and grouping similar ter= we get the fouowing 

result . 
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For any of the activities q, let rr = @v2a&u)dh. Then, using this definition, we ean 

mite 

and 

where t = Hz(@ + r ) .  Since r T ~ 2 r  is o(lldhl14), it can be induded in the o(lldhll*) term. 

Therefore, 

where the sums are over aii the activities. 



a 

Therefote, 

Using a similar technique, it can be verified that 

So, we can now mite 

For each activity el defme the fimction 

Now, 
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Returning to the activities, we get the following results, 

Thesefore, in either case, 

For i E PI(€), as above, it can be shown that 
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For i E Pg (€1, 

Rewriting the difference in the penalty ninetion, ne get 

whete 

Nowt as w -t 6, C ( w )  -t 0- Also *; - PCi # O and 4 +Pei # O because CI is a strict 

second order point. Therefore, there exists > O su& that nhen enoughal, 

Therefore, 
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and 

Theretore, when close enough, there u i s t s  positive constants Li and L2 such that 
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Defining L = &(LI, L2) gives the desired result. O 

Corollary 5-41 Given Assumptions 5.1 - 5.13, if a type four point w is "c'close enough" 

to 61 then pP(w + h + 4) < &(w)- 

Proof: This follows immediately from the above lemma, and the faet that if w is not 

itself a strict second order point, then either I ( @ I I  # O or llyzlJ # O. O 

Lemma 5.42 Giuen Assumptions 5.1 - 5.13, if  the itemte ut is close enough to w, then 

dN = dh + d. udf  euentually be uccepted by the algorithm- 

Proofi To prove this tesuit, we need to establish the f'oiiontig points. 

a The Newton step eventudy provides sufnaent decrease in the penalty fbction. 

Rom Coroiiary 5.41, d~ eventuaily decreases the penalty hct ion.  Therefore, it 

rernains to show that this decrease is sufiicient, in the sense described in Section 

4.2. For sufncient deerease, it is tequired that 

Now, looking at the nght hand side in the same way that the proof above was 

established, we have that 
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for a positive coustant M. As long as C 2 r lM (which is reasonable since rl  is 

assigned a s m d  d u e  in out implementation), it foliows that 

Therdore, d~ wilill eventually provide suf6cient decrease in the penalty function. 

0 The Newton step eventudy faiis wïthin the trust region. 

As the iterates are approaching a second order point, the Newton direction is de- 

creasing in siae. Recaii that near a solution, a quadratic mode1 is a good predictor 

of the penalty function, and the trust region radius WU not be reduced, dthough 

it may be increased. Therdore, eventuaiiy, I(dNlIm 5 A wi l l  be sati&ed. 

Therdore, a Newton step WU be accepted by the algorithm. O 

5.5.3 Decreases of the Algorithm Tolerances 

It will non be ptoven that the activity tolerance c and the closeness tolerance A are only 

decreased w i t h  the aigorithm a nnite number of times. A similar resdt was presented 

in parts 5 and 6 of Theorem 1 in [34]. An alternate way of stating this result ïs that 6 

and A are bounded below by some positive constants, or that 

Lemma 5.43 Given Assumptionr 5.1 - 5-19, the sequence of itmtions produccd by the 

algorithm mwt satisfy 
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Proof: The proof will proceed by contradiction. Assume that 

Since Ak is decteased wbenever k is decreased, it foiiows that 

Assume that 

Le. that there d t s  some constant ba > O such that 11 ( z ~ ) ~ ~ ~ ~ I  > bZ. This implies that 

beyond some point, aU the iterates ase type one points. However, in t h  situation c and 

A are not deueased. Therefore the asaumption was incorrect, and 

Since ( ~ ( Z ' ) ~ ~ ' I (  is approadiing zero, the iterates are a p p r o h g  a stationary point. 

Now, in stage two of the convergence proof, it  was establishexi that oniy a finite number 

of stationary, non-first order points &t. Thedore, it foUows that in the limit, the 

iterates must approach a stationary point which is a fist order point, and hence a strict 

second ordet point. As weli, the algorithm will identify the correct set of activities, and 

wiil attempt the hill Newton step. It was just establirhed above that such steps wi i l  be 

succwhil when close enough to the strict second order point 6. Therefore, & wiii not 

be repeatedly reduced, and the assumption that it tends to zero is incorrect. O 

5.5.4 ~ehavior Near a Second Order Point 

Lemrna 5.44 Given Assumptions 5.1 - 5.13, if h does not tend to zero, then eventually 

all the iterations are successfùl Newton steps. 
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Proof: W e  have already estabüshed that o d y  a finite number of s u c c d  steps can be 

taken fiom type one or type two po&s, and that the algorithm wii i  eventually approach 

a stationary point. Rom earlier discussions, it follows that the final stationary point 

approached must be a second order point. Since 8 is not repeatedly reduced, fidi Newton 

steps are t a h  until convergence. O 

5.5.5 Convergence of the Algorithm 

Corollary 5.45 Given Assumptions 5.1 - 5-13, the algorithm tMll converge to a strict 

second order point of the penult y finction. 

Proof: Wben very close to a second otder point, the aigorithm has correctly identified the 

active set, and is essentidy Newton's algorithm applïed to an unconstrained minimization 

problem. Thetefore, convergence to a strict second order point wi l I  be observed. O 



Chapter 6 

Degeneracy in the Penalty 

Funct ion 

6.1 Introduction 

In previous chapters, we have assumeci that all points encountered by the algorithm were 

nondegenerate. However, in practice, the use of eactivities may result in a large number 

of penalty terms being considtred active. Consequently, there is an increased possibility 

of linear dependencies among the gradients of the active penalty terrns, that is, that some 

points will be degenerate. Of course, even for exact activities, degeneracy is possible. 

In this chapter, we discuss some of the problerns caused by degeneracy. Several 

traditional techniques for resolving degencracy in one levei mathematical programs are 

summarized, dong with some difIiculties encountered when applying those techniques to 

the bilevel problem penalty function. Finaliy, a new technique for resolvhg degeneracy 

in our problem is described and proven to work for exact activities. An extended version 

of the technique for eactivities is used within the implemented version of the algorithm. 
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6.2 Problems Caused by Degeneracy 

Degeneracy reters to the situation in which the gradients of the active terms at the 

current point are not iïnearlg independent. When the current point appears to be far 

nom a stationary point, the trust region direction is chosen to maintain ail activities 

up to  fist order change. The presence of degeneracy does not alter this stage of the 

algorithm Ui any way. In &ect, the degeneracy is irrelevant. However, whm the current 

point appears to be close to a stationary point, it is necessary to estimate the values of 

the Lagragian d t i p l i e r s  by solving, in a least squares sense, the system of equations 

where ail terms are eduated at the current point. At a degenerate point, A is not fuli 

column rank, so the system rnay not have a unique solution. Corresponding to each basic 

subset of the columns of A, there is a unique set of multipiiers. However, there rnay be 

an exponential number of choices of basic subsets. This nonuniqueness of the activities 

causes several problems in out aigorithm. 

The numerous chaices of bases may lead to an incorrect ciassification of the status 

of the current point. For example, if a particular set of multipliers includes out 

of kiiter d u e s ,  then a dropping direction is indicated. However, there may exist 

a choice of basis whose multipliers are aii in Itilter, which suggests that aii the 

activities should be rnaintained. 

Even if the point is correctly ciassifieci as being near a stationary non-ftst order 

point, the nonuniqueness of the sets of multipliers may lead to attempting to drop 

some activities which are actually active at a solution. 

Changes in the activities whose gradients are in the current bais may result in 

changes in some of the nonbasic activities as weil. Thetefore, a dropping direction 
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defmed ftom the curent basis may not be a descent direction for the entire penalty 

fiuictioa- 

Note that it is possible to correctly dassiry a dropping situation in the presence of de- 

generacy, and then to define a dropping direction which provides descent. However, the 

presence of degeneracy complicates the decision making process. 

6.3 maditional Degeneracy Resolving Techniques 

Consider solving the lineat optimization problem 

LP : min cTz set. ~~2 2 f. 
=€Rn 

The necessary conditions at a nondegenerate solution of L P  include the existence of a 

unique set of mdtipliers A 2 O satisfping AX = c, where A, the activity mat& at o , 

contains a subset of the columns of G. 

These necessary conditions can be extendeci to the case of degeneracy. The uniqueness 

requirement for X is replaced by the requirement that there exists at least one nonnegative 

solution A to the underdetermined system AA = c. An obvious technique to resolve the 

uncertainties caused by degeneracy is to examine aii basic subsets of A to determine 

optimality or a dropping direction. The foiiowing presents this algorithmic ftamework. 

Algorit hm 6.1 (Traditiod Degeneracy Resolving Algorit hm) 

REPEAT 

1. P a r t i t h  the columns of A to f o m  two matrices AB and AN which satisJy 

Range[AB] = Rang.[A] and [AB, AN] = A. 
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a UNTIL xT = (A:, A:) U in kitter 

a OR UNTIL a feasible descent direction for CP is  ident2fied. 

Given the matrix A, there may be an exponential number of choices of Ag. Therefore, 

rather than enurnerathg aii possible bases, most degeneracy resolving algonthms attempt 

to effiuently search the possibilities. Tno difkent techniques for generating matrices AB 

are described below. 

6.3.1 Perturbation 

The perturbation technique for resolving degeneracy in LP involves transforrning, or 

perturbing, the degenerate problem LP into a closely related nondegenerate problem 

LP(e), for some vector E having smail positive components. For example, consider the 

constraints 

where the fist three constraints are active at a common, degenerate point, denoted Dl 

in Figure 6.1. This feasible region is slightly modified to 
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where €1, €2, €3, and €4 are very gmali positive values, on the order or magnitude of ten 

timeç machine epsilon. The very small values are required so that the feasible regions of 

LP and CP(e) are closely related. 

ClIo 

Figure 6.1: Original Feasible Region 

Figure 6.2: Perturbed Feasible Region 

The degenerate vertu Dl bas beea trandormed into tluee nondegenerate points Pl, 

P2, and P3, as shown in Figure 6.2. The activity matrices at these points correspond t o  

the possible basis matrices at Dl in the original psoblem. If the lineat program algorithm 
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determines that the multipliers at either of the perturbed vertices sat* the necessary 

optimaiity conditions for LP(E), then Dl satisfis the necessary conditions for a solution 

of LP. However, if any of the 0th- vertices of the perturbeci problem are reached, that 

is, if the fourth constraint is reached from PL, P2, or P3, then degeneracy bas been 

resolved, and the linear program algorithm can proceed fiom the corresponding point in 

the unperturbeci problem. 

6.3.2 Ryan-Osborne Approach 

In [61], Ryan and Osborne study the issue of resolving degeneracy in linear programs of 

the form 

LPl: min cTz subject to A ~ Z  = f and z 2 0. 
z€R" 

A point is optimal for this problem if there exists X 2 O and 4 such that 

where .,@ 70 a submatrix of the identity mat* corresponding to elements of a which have 

value zero at the curent point. Note that there is no restriction on the value of the ik 

multipliers because these constraints must rernain active for feasibility. 

The mat& A is divided into a basic subrnatrix Ag and a nonbasic submatrix AN. 

Correspondingly, the variables are divided into a basic index set Sg and a nonbasic index 

set SN. Let zg and z~ denote the basic and nonbasic variables. Note that z~ = O is 

always satisfied. Let 

S$ = { i  E SB : Zi = 0). 

The curent point is d e g ~ e r a t e  if S: # B. 

Ryan and Osborne define a subproblem of LP1 which is used to resolve degeneracy at 

x. The inactive anci nondegenetate part of the problem can be ignored because d e g ~ e r a c ~  
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ïs a local issue. Therdore, the authors desaibe the subproblem SPI. 

SPI :  min cTz subjectto A=Z= f and+; 1 0 , i ~ S ~ ~ S g .  
Z E R ~  

If there &ts a direction of recesion, that is, a direction of unbounded feasible descent, 

for SPI fkom z, then this direction is also a feasible descent direction for LPI fiom z. 

Meanwhik, if the cwent point is optimal for SPI, then it is optimal for the original 

problem. Eowever, the ment point is a degrnerate point for SPI as well as LP1. 

A direction d is a direction of rectssion for SPI nom t if and ody if it sathfies the 

following conditions: 
1 

e T d < 0 ,  ~ = d = 0 ,  a n d d ; ~ ~ f o r i ~ ~ ~ ~ ~ &  

These conditions are independent of the vector b and the value of z. Thetefore, the 

authors describe another problem similat  to SPI, but using a set of random values. Let 

r irhEs; 
2; = 

xi otherwise, 

where each ri can take any positive d u e .  Now, consider the problem 

SP2: min cTy subject to A * ~ =  f a d y i  ~ O , ~ E S ~ U S ~ ,  
u€Rn 

where p = f + ~ ~ r .  Note that y = zr is a feasible point for SP2. 

Any direction d is a direction of recession for SP2 fiom y if and only if it is a direc- 

tion of recession for SPI fiom 2, and therefore, a direction of feasible descent for LP1 

fiom 2. Conversely, if no direction of recession exists for SP2 starting Born y, then an 

optimal solution, induding an optimal set of muitiplien, can be obtained for SP2. These 

rnultipliers correspond to a choice of basis for the original problem LPl at z. 

When solving SP2 starting fiom y, at Least one nondegenerate step c m  be taken. A 

huther level of degeneracy may be encountered in the solution process, depending on the 
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random values used in definhg SP2. If this situation arises, then the same process can 

be hvoked recursively. Note that since an initiai step is taken away frorn z', any other 

degenerate points encountered will have fewer activities, and the recursion process will 

be finite. 

6.4 Examples of Degeneracy in the Penalty Function 

The techniques describeci above for resoiving degeneracy are based on the premise that 

the uniqueness requinment for mdtipiiers in the necessary conditions at a nondegenerate 

point can be replaced by the existence of such multipliers at a degenerate point- The 

examples in this section show that a similar correspondence between necessary conditions 

at nondegenerate and degenerate solutions of the biIevel penalty funetion does not d t .  

Consider example problem BP2 fiom Chapter 2. With the penaity parameter p fixed 

at one, the unconstrained function 

is rninimized. It can be shown that p ( z ,  y, A) > 1. Consider the foilowing points. 

At the point w l  = (0, 0,1, O), the activity mattu is 
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where = {l) # 0. Accordhg to the nondegenerate necessary conditions, a drop 

ping direction can always be defined in this case. However, ru1 is both degenerate 

(since rank[A] = 3) and optimal for p (since p(wl) = 1). Dropping gl - XI = O 

inaeases some of the other active peualtg terms so much that the pendty function 

b Încreased (even for very srnaii steps) due to the iinear dependenaes among the 

gradients in dB. Therdore, the requirement that = 0 does not extend to the 

degenerate case. 

At the poht w2 = (2/3, -1/3,0, O), the activity matrix, 

has five columns, but is of rank four. Any choice of four of the columns forrns a 

baois for the tull activity matrix. Consider the foliowing: 

- U Vgl is in the bask m a t e  (as it is for four of the five choices for AB), 

then the multipliers for that basis are Vf = -1 and zero for ail the other 

basic activities since Vgl = -y. The nondegenerate optimal range for 4: is 

!k: E [O. 11, so these multipiiers are not in kilter accotding to the d e s  derived 

assuming nondegeneracy- 

- If Vgl is not in the basis, the ody choice of basis is 

The multiplius for this basis satisty 
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The multiplier Qt = -1 violates the nondegenaate neceroary condition that 

r: E [O, 11. 

Therefore, any choice of dB a t  wz resuits in a violation of the necessary optimality 

conditions deriveà for nondegenerate points. However, this degenerate point is a 

minimum point of p(2, y, A) since p(w2) = 1. 

These two cases show that at a degenerate solution of the penalty fuiiction, 

0 the set need not be empty. 

0 there may not exiçt a basis of the activity mat* which defines a set of multi- 

pliers which are in kiiter accordùig to the necessary conditions derived assuming 

nondegeneracy, 

6.5 Problems Applying the Tkaditional Techniques 

The two degeneracy resolving techniques described previously depend on the existence of 

a basis mat& for the activities which defines a set of multipliers satisfyirig the necessary 

conditions derived assuming nondegeneracy. Therefore, they wi l i  not be appropriate for 

resolving degeneracy in out penalty huiction. 

A problem which ariçes when applying the perturbation technique is that smail 

changes to the constraints may significantiy alter the set of necessary optimaîity con- 

ditions at a nondegenerate point. Consider the unperturbed situation &(w) = gi(w) = 0. 

The nondegenerate necessary conditions require that O 9: 5 pl O < Q: < p, and 

q: + 9: < p. If, as a resuit of some perturbation, &(w) is considered active and less 

than inactive gi(w) in the perturbed space, the necessary nondeguierate condition for o p  

timaiity is -p _< p. Clearly, there are values for the multipliers for which ne would 
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conclude t hat the perturbed pmblem satisfies the necessary nondegenerate conditions, 

while the unperturbed problem does not. The muhipliers obtained from the perturbed 

problem may neither satidy the nondegenerate necessary conditions not defme a descent 

direction for the penalty function. 

When attempting to apply the Ryan-Osborne technique to resolvhg degeneracy in 

the penalty h c t i o n ,  we were able to verify that a direction of tecession for a iinear 

problem defined at the degenerate point (puturbed or not) was a direction of descent for 

the penaltp function at the degenerate point. Eowever, it was not possible to equate the 

cases of finding a solution for the perturbed iinear problem and the current point being 

a first order point of the penalty function. 

A new approach is required to resolve degeneracy in the penalty b c t i o n  p,. 

6.6 Resolving Degeneracy in the Penalty hnction 

To determine if descent fiom a degenerate point is possible, changes in the nonbasic 

activities must be considered in relation to changes in the basic activities. 

Algorithm 6.2 (Framework for Resolving Degeneracy in p,) 

1. Construct a h i c  actiuity mat* AB from the activity m a t e  A: 

Incfude V&(w) for i E U e, Vgi(w) - VAi(w) for i E c. 
Fil1 AB fmm the nmaining activities, until mnqAB] = mnKA] and AB h m  

mnqd] wlumns. 

2. Fi« the comsponding nonbasic activity mat* AN with the gmdienb of the nonbusic 

actitn'ties. 
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3. Solue for 9: ABY = y, when 7 às the gmdient of the differentiable p d  of p, at 

the c u m t  point. 

4 Ezpress the gmdimts of the nonh ic  activiçies in t m  of the gmdimts of the h i c  

adivities by soloing for the mat& K in the system of equatiuns AB r = AN- 

5. Express first oder  change in the nonbosic actimtiw in temu of the basic actiuities. 

6. E~press first oder change in the penalty finction in terms of the change in the basic 

actiuities using Q and S. 

7. Derive a set of necessary conditions on 9 und n to guamntee that the fist ordet 

change in the penalty finction is nonnegutiue along any direction d .  

These steps are now examined in greater detail. 

6-6.1 Building the Basic and Nonbasic Matrices 

Because the gradients VAi (w ) are identity columns, the gradients of the activities listed 

in the fist part of Step 1 above f o m  a linearly independent set. Consequently, the 

submatrix of A consisting of these activities ha9 full r d  and this submatrix defines the 

initial colunans of AB- The basis is Wed out by examining the runaining graâients in 

the follorring orda: V g i ( ~ )  for i E f?, Vgi(w) for i E e, VGi(w) for i E To, and 

Vq(w) for i E Mo. A candidate gradient a is added to the cment basis mat* dB if 

it is judged that the addition of the vector increases the tank of AB. If q lies in the 

range of the current basis math,  thm the current nonbasic matrix gets augmented with 

a. O t h e d e ,  a is placed in the curent basic matrix. Algorithm 6.3 details the process. 
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Algorithm 6.3 (Building the Basic Activity Matrix) 

REPEAT 

1. Examine candidate gmdicnt a, which ik not current(y in either AB or AN. 

2. Salue, in a Zeast squares sense, dB+ = at to determine the dationship htween 

a and AB. 

3. C o M o t e  the residual vector r = de$ - a. 

4. P r  = O ,  then AN = [AN, a], else dB = [ABl a]. 

UNTIL Ran@îB] = Ranqd]. 

In practice, the test on r in Step 4 above is typicaiiy relaxed to account for roundoff error. 

The choice of d g  and AN may not be unique. However, as long as they are defined 

using the proces described in Algorithm 6.2, the conditions developed in the r a t  of the 

chapter are applicable. 

Additional notation is requited to specify the composition of the basic and oonbasic 

matrices. 

Definition 6.1 Given AB and AN, the follolmng sets a m  defined. 

a Let B (To) be the set of indices i E To for which VGi (w)  is in dB. 

a Let N(To) = To \ B(To) h the indices of the nonhàc octivities in To. 

0 Let B ( e )  R the set of indices i E for which Vgi(w) is in AB. 

Let N(c) = \ B(c) be the indices of the nonbasic actiuities in c. 
a Let B(-)  be the set of indices i E for which Vgi(w) and VAi(w) are in AB. 
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Let N ( e )  = \ B ( 2 )  be the indices i E for which only V&(w) i s  in AB. 

O Let B(Mo) be the set of indices i E Mo for which Vq(w) is in dB. 

O Let N(Mo) = Mo \ B(Mo) be the indices of the nonbanc act iMt iu  in Mo. 

6.6.2 Solving for the Multipliers 

Both sets ofmultipliers and rs can be efficiently eornputed using a single factorbation of 

AB - Let Q be an orthogonal matrix and R be an upper triangular mat* which sati* 

dg = QR. The vector P is the solution of the triangular system R!E = QTy.  The 

rnatrix nr is the solution to the system Rn = Q ~ A ~ ,  whidi is easily detemllned eolumn 

by column by solving trïangular system of equations. However, esch column in n can be 

computed in Step 2 of Algorithm 6.3 (when r = O) by simply augmenthg that solution 

with zeros. 

The vector Q and the rnatrix s are unique for any given choice of Ag and AN. 

De6inition 6.2 The components of the m a t e  K need to b accessed for basic and non- - 
basic actiuities. 

1. For the nonbasic activities, let 

O @, for i E N(To), refkr to the column of K comesponding to the multipliers 

rolating the dependence of VGi(w) on the basic activitiesl 

a sf, for i E N ( c )  U IV(-), =fer to the column of ir comsponding to the 

multipfiers wlating the dependence of Vgi(w) on the h i c  activities, 

0 ic:, fm i E N(Mo) ,  =fer to the cdumn of ic comsponding to the rnultipliers 

'~Zating the dependence of VQ(W) on the h i c  actitn-ties. 
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2- For the basic octivities, let 

s[Gj], for j E B(P), mfer to the mur of K corresponding to the muitiplims 

=lutin9 the dependence of the nonbasic activtvtties on VGj(w)- 

' [ A j ] ,  IO+ j E U I?, ~ f e t  to the nn. of ri comsponding to the rnultipZie~s 

relating the dependence of the nonbusic activities on VXj(w)-  

'~h - u, for j E l?, mfer to the ma of rs comsponding to the multipliers 

rrlating the dependmec of the n o n h c  activàties a Vgj(w) - VA j ( ~ ) .  

'bj], for j E B ( e )  U B(P!), refrr to the nno of r comsponding to the 

multipliers refuting the dependence of the nonbusic activities on Vgj(ü>)- 

6[cj], for j E B(Mo), =fer to the mw of n coniesponding to the multipliers 

reInting the dependence of the nonbasic actiuities on VC~(W). 

3. For a nonbasic activity and a busic octivity bit icr[bj] is the multiplier relating 

the dependence of on b j .  

6.6.3 First Order Change in the Nonbasic Activities 

The first order change in any nonbasic activity can be expresred in te= of the first order 

change in the basic activities. For i E N(TO) and any direction d, 
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where each of the siimmations is over the index j -  

Fust order changes in the remahhg nonbasic activities can be similady expressed 

6.6.4 Fust Order Change in the Pendty Fiinction 

Recaii fiom Lemma 3.6 that, for any direction d and step O 5 a < ai, where ai is the 

fkst breakpoint of an inactivity dong d ,  

where b is the differentiable part of p, at w (which is dinerentiable over a E [O, cri)) and 

I) is the corresponding nondinerentiable part of p,. At a degenerate station- point w,  

we can write, using the measure of curvature introduced in Section 3.5.2, 
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where the individual summations are over index i. 

So, for O < a  <ai, 

where %,, (w , ad) = R (6, w ,  ad)  + PR,, (w , ad). 

6.6.5 Deriving First Order Optimaity Conditions 

A set of first order optimality conditions which must be satisfied at a degenerate minimum 

of p, are derived using the above expression for p,(w + c d ) ,  whue O a < ai, and are 

presented in three separate groupings. 
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Definition 6.3 A direction d is a first 0 7 t h  descent direction for the penalty function i f  

the f i t  order change in the d i f f i t i o b k  par$ of p, along d Q r n  the m r m t  point hus 

a negatitre uaiue, 

Group One 

In this section, a set of necessary optimaiity conditions at a degenerate ftst order point 

of the penalty funetion are obtained by analyaing the effect on p, of dropping a single 

basic aetivity. 

0 F O P ~ E -  = ~ U P G ,  let 

For j E B ( e ) ,  let 
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For j E B(Mo) , let 
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lemma 6.1 If w is a stationory, degenemte point of p,, then any d i r e c h  d satisfing 

~ S c i  = ue?, for s o m e  j E B(TO). is a first oder  descent diection for p. fmm tu if and 

only if 

(i) a < O and !PF --uY > p 

or (ii) a > O and lljC + lrvy < 0. 

Proofi For O a < al, fbm equation (6.1), 

~ i t h o u t  loss of generaüty, assume that a = f 1. Thuefore, cornider the hoo cases 

separately. 
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Therefore, first order descent is possible if and only if 9 - puy > p. 

Therefore, fist order descent is possible if and ody if 17 + < 0. O 

Lemma 6.2 If w is  a stationwy, degenemte point of p,, then any direction d satisfying 

dg d = for some j E Pg , ts o f is# order descent dirretion for p, from u, if and 

only if 
8-A (i) # < O  and *;-*-puj > p  

or (ii) a > O and Y!-* + &-* < 0. 

ProoE Andogous to the pwof of Lemma 6.1. a 

Lemma 6.3 If w is a stationary, degenemte point of p,, then any direction d satisfying 

&d = ce$, for some j E B(l?E), tr ta first oder  descent dilwtion for p, from w if and 
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only 

(i) O < O und 83 -pi; > p 

or (ii) # > O  und @ t + p v i  <O.  

Proof: Analogous to the proof of Lemma 6.1. O 

Lemma 6.4 r f  w k a stationary, degenemte point of p,, then any direction d satisfyifcg 

d g d  = ne;, for s m e  j E B ( e ) ,  is a f i t  order descent direction for p, /tom w if  and 

only i f  

(i) a < û and *! -jdj > p 

or (ii) u > O  and q ! + l r c f < O .  

Proofi Analogous to the proof of L e m s  6.1. O 

Lemma 6.5 If w tr a stationary, degenaote point ofp,, then m y  direction d satisfying 

A; d = ue$ for some j E e, is a first o d e r  descent direction for p, from w if and only 

6 

(i) a < O and 9; -PU; > p 

or (ii) o > O and *t ++ut < -p. 

Without l o s  of generaiity, assume that o = f 1. 



CHAPTER 6. DEGENERACY LN THE PENALTY FUNCTION 

X Therefore, fist order descent is possible if and ody if - puj > p. 

Therefore, first order descent is possible if and only if !Et + +vf < -p. O 

Lemma 6.6 If w Ls a stationary, degenemte point of p,, then any d k t i o n  d satisfying 

A$ d = ce:, for sorne j t~ B (e), is a /int ode+ descent dkc t ion  for p, frmn w if and 

only if 

(i) o < O and -p$ > p 

or (âi) a > O and 9; + pu; < -p. 

Proof: Analogous to the proof of Lemma 6.5. O 



Lemma 6.7 If w is a stationary, degenemte point of p,, then any direction d satisfyng 

A$ d = ce;, for some j E B(M'), & a fint d e r  descent direction fm p, fmm w if and 

only if 

(i) o < O and 4f -pus > p 

or (ii) a > O and *: + pu; < -p. 

Proofi Analogous to the proof of Lemma 6.5. Cl 

Lemma 6.8 I f w  is a stationary, degenenzte point of p,, then any direction d satisfying 

A ~ I  = ce!-*, for some j E P?, is a first order descent dimction f a r  p, from u, if and 

onZy if 

(à) a < O and - > -p 

or (ii) a > O and + p$-A < O. 

Proof: For O 5 a < al, 

Without loss of generality, assume that a = f 1. 
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Tberefore, k t  order descent is possible odp if and only if *!-A - > -p- 

Therefore, fitst order descent is possible only if and only Y ~ f - *  + pu:-* < 0. O 

Lemma 6.9 If w is a stationary, degenemte point of p,, then any dieetion d satiafying 

dgd = cet ,  for some j E N ( e ) ,  k u first order descent dirpction for p, fmm w i f  and 

only i f  

(i) u < O and $ - PU: - f i  max(1, w$[Aj]) > O 

or (q O > O und 9; + FU? + P I  min(1, wf[A j ] )  l)l < O. 

Proof: For O 5 a < al, 

Without loss of generality, assume that cr = f 1. 
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Therefore, first order descent is possible if and only if 

Thetdore, k t  order descent is possible if and ody if 
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Group Two 

In this section, a set of necessary optimality conditions are derived by ana 

The following definitions involving sums of generalized multipliers are requUed. 

De0nition 6.5 For j E B ( e ) ,  

Lemma 6.10 If w tr a stationary, degenemte point of p,, then an y direction d satisfying 

dg d = a(e$ + G ) ,  for some j E B(f?), ïs a first ode+ descent direction for p, fmm w 

if and only if 
( i )  @ < O  and ! @ ; + ~ ; - ~ U ; + ~ > J J  

or (ii) o > O  and Y; + Y! + < -p. 

Proof: For O 5 a < al, 
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Without Loss of generalityI assume that o = f 1. 

Therefore, first order descent is possible if and oniy if 



CHAPTER 6. DEGENERACY IN THE PENACTY FUNCTlON 

Therefore, first oràer descent is possible if and onIy if 

Lemma 6.11 If ru i s  a stationary, degenemte point of p,, then any dimction d satisfing 

dgd = u(et  - e!), for some j E B(P!!), U a first orùer descent direction for  p,, /rom tu 

if and only if 

( i)  a < 0 and 9; - sp - > p 

or  (ii) s > O and %; - + < -p. 

Proof= For O 5 a < al, 

Without 105s of generality, assume that u = f 1- 

1. a = -1: 

p,(w + ad) = 
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Therefore, fb t  order descent is possible if and ody if 

*; - 9; - p;-O > p. 

Therefiore, fist order descent is possible if and only if 

Group Three 

In this section, consider the &ect on the penalty hinetion of dropping, for some j E 

B(l?!), both Xj(w) O and gj(w) = O when ldi~Aj(~)I # 18vgj(~)l- Through 

andysis, a set of neassary conditions at a degenerate minimum point of p, wïIi be 

derived. 

The foliowing group of definitions are required. These dennitions concem the shape 

of the penalty function along directions d as desaibed above. The shape changes as the 

dinerentiability of the penalty terms changes. 
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- [ A  ] ] if it lies in (0 ,  1) 
i~ N(To) :  r:b] = 

2- Lef ki be the n u m k  of distinct breakpoints in the intmal (0, l), and let these 

distinct breakpoints, denoted ttb] for 1 = 1, - - , kj h indeied to sot- 

In addition, define the additMnal bmakpoints ti ÿ] = O and t:: = 1. 

3. Fbr each I = O : kj', define &l as followsr 
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4. For each l =  O : k;, define quantiries and #j] as follows: 

These t e m  are used to e z p ~ s s  Me first order change in the penalty finction, in 

t e m  of the first order change in the h i c  and nonbasic actiuities. 

5. For each 1 = O : k j ,  dejine the interuab Ab] and as follows: 

T71ü1 = (t:bl. t:,,[il) n Ab]- 
- 

The firrt interual gives the region in which first orde+ demase in attained for a tenn 

tielated to the penalty funetion. The second intenial, which intersects the fist region 

with the breakpoint interval in which the term às equivalent to p,, gives the mnge of 

values for tuhich p s t  ordei descmt is  actually possible in the penalty fknction. 

Lemma 6.12 If w is a degencmte, stationary point, then Were e&ts a first- order descent 

direction d for p, fmm w satisfying d s d  = uAe; + u,ef for UA < a, < O if and only if 

th- ezists 1 E {O : ki:,!) such that ,331 # B. 

Proofi Consider any direction d satiswg d g d  = uAt$ +a& Cor UA < a, < O. Without 

10s of guierality, assume that a* = -1 and u, = -r for sorne r E (0,l) .  Then, for 
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For any r E (tik], t;+&]), I = 0 : k:, 

and t herefore 

If r E .?$j], then the coefncient of (-a) ir positive. However, this value provides the fist 

Therefore, if = 0 for aU 1, then h t  ordei descent in p, is not possible for any 

UA < ug < O. Bowever, if there erists some 1 E {O : kt) such that T b ]  # 0, then for 

any r E Tl a direction d satisfying ~ g d  = -(et + re;) provides first order descent in p, 

from W. O 

The meanings of the te- d e h e d  below, and in ail simiiar definitions, are analogous 

to the rneanings of the related terms in Definition 6.6. 
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i € N ( i ! ? ) :  <6j] = [ Gbj]/G[A if it lies in (O, 1) 

~zh]/ (cF[A if it lies in ( O ,  1) 
i~ N ( W ) :  r;b] = 

2. Let et! be the nurnber of distinct bmukpomts in the interval (0, L), and let these 

distinct bmukpints, denoted t:b] for I = 1, - - - , k;, be indezed to satisfy 

In addition, define ti ü] = O and t$+,[j] = 0. 

3. For each 1 = O : kji2, define db] as follows: 

4- For each I = O : k!, define the quantities t i ÿ ]  and r:~] os follow: 
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5. For each I = O : k;, de f i e  the intervais GE] and K i w  as follows: 

1 / 1 3  if+iül>O 
(-00~00) ifrib] = O and r;[l] < O 

Lemma 6.13 If w is a degenerute, stationary point, then there ezists a first order descent 

dixction d for pp fiwn w safisfying d g d  = aAe$ + a& for < O < o, and loAl < [o,l 

if and only if the= ezkb Z E {O : k!} such that GE] # 0. 

Proof: Consider any direction d satis-g d $ d  = aAe; + cg$ for o~ < O < a, and 

I V  < u . Without Loss of generality, assume that u, = 1 and UA = -r for some 

r E (0, l) .  Then. for O < a  < ai, 
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and t herefore 

Thetefore, if Ki = 0 for all 2, then first order descent in p, is not possibte for any 

UA < O < u, where [UA( < ( ~ ~ 1 -  However, if there exists some 1 E {O : k!) su& that 

Krb] # 0, then for any s E q, a direction d satisfying ~ g d  = ( - r e i  + e:) provides first 

order descent in p, fiom w- 0 

Definition 6.8 For j E B ( e )  : 

4[Aj]/nz[si] àf it lies in (O, 1) 
i~ N ( M O ) :  +;Ji'] = 
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2. Let k; be the n u m k  of distinct breakpoints in the i n t d  (O, l), and let Wese 

distinct bmakpoints, denoted t;b] for 1 = 1, - - - ,q, be irzdexed to sut* 

In addition, define the bokpoints tgb] = O and t b  = 1. 

3. For each I = O : k:, define d ÿ ]  as fo~~ows: 



5. For each 1 = O : k!, deme the intervals Nrb] and Nt[j] as follows: 

Lemma 6.14 If w is a degenerute, stutionary point, UIen the- &ts a fnrt order descent 

direction d for p, fnmi w sdisfyng A$ d = u ~ e i  + coq for UA < O < a, and 1 url > lug] 

if and only if the= Quts 1 E (O : k;) such that Nrb] # 0. 

Proofi Consider any direction d satisfying N;fd = oAe$ + ugeT for ar < O < og and 

IuAI > laol Without loss of generdity, assume that UA = -1 and o, = r for some 

T E  (0, l) .  Then, for O 5 s < cri, 
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and thedote 

If T E Nl[j], then the coefficient of (-CI) is positive- However, t&is value provides the first 

order rate of change in p, only for r E (SÿI, tf+1[31). 

Thetefore, Y N;' = 0 for aii 1, then first order descent in p, is not possible for any 

UA < O < a, and lur 1 > Iuol- However, if there exists some I E {O : k;} such that 

b] # 0, then for any r E N;' , a direction d satisfying dg d = -(et - r*) provides nrrt 

order descent in p, fiom W .  

Definition 6.9 For j E B(P!): 

1- Define breakpoints r4bJ as follozosr 

- x [ A  ] i f  it lies in ( O ,  1) 

1 othertaise 

- ~fW/lcz[A if it lies in (O, 1) i € &V(M0) : T?E] = 

2. Let k! be the number of distinct bmabints in the intetual ( O ,  l), and let these 

distinct bn&wints, denoted tfb] for 2 = 1, - - , Yb], & indetcd to sathfi 

In addition, define the breakpoints ttp] = O and t$+lü] = 1. 
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3. For each I = O : k;, defne $Dl as follows: 

4. For each 1 = O : k!, define the puantities pib] and pi b] as follocos: 

5. For each 1 = O : k!, deme the intemais Qib] and Qrb] os follaos: 

Lemma 8.15 If w is a degrnerute, staLOtionary point, then t h e  aUb a first oder  descent 

dkct ion  d for p, from w satisfying dgd = a& + ugq f o ~  O < o~ < a, i /  and onlg i f  

the= e x k a  t E {O : k;) such that Qi[ j ]  # 0. 
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Proofi Consider any direction d satisfying ~ g d  = uAe;+u& for O < UA < o,. Without 

bss of gmedity, assume that ug = 1 and UA = r for some r E (0,l). Then, for 

and therefore 

If r E a b ] ,  then the coefficient of a is negative. However, this d u e  provides the first 

order rate of diange in p, only for r E (tfb], tti'+,ü]). 

Therefore, if Qi = 0 for ail 1, then f h t  order descent in p, is not possible for any 

O < UA < cg. However, if thue exists some 1 E {O : kt) su& that Qib] # 0, then for any 

r E Q;, a direction d sstisfying ~ g d  = (re? + e!) pro"des iirst order descent in p, fiom 

D a t i o n  6.10 For j E B ( e ) :  
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- $[si]/~f[A~] if it lies in ( O ,  1) 
i~ N ( M O ) :  rtH - 

1 otherwise, 

2. Let k; 6e the n u m k  of distinct breakpoints in the interval (0 ,  l), and let these 

distinct bmtakpoints, denoted tf be indexed to s a t a  

In addition, define the breakpoints tiü] = O and t$+, [j] = 1. 

3. For each l = O : k;, define eLlj] as follows: 

4- For e u h  I = O : k:, define the quantifies n : ~ ]  and ngü] as follows: 
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5. For each 1 = O : k; , defne the intemais Riü] and RtE] us follows: 

kmma 8-16 Ifu, is a degenemte, shtionary point, then there e m t s  a first o h  descent 

direction d for p,, h m  w satisfying ~ g d  = uAet  + u& for a, < UA < O if and only if 

the= enSts 1 E {O : k;) such that # 0. 

Proofi Consider any direction d satisfying ~ g d  = uA$ + u,eT for u, < o~ < O. Without 

loss of generality, assume that o, = -1 and UA = -r for some T E (0,l). Then, for 

O 5 a < al, 
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and thetefore 

If r E 7Zflj], then the coefiicient of (-a) is positive. However, this value provides the k s t  

order rate of change in p, only for r E ($LI, t&,[j]). 

Therefore, if = 0 for aU 1, then first order descent in p, is not possible for any 

UA < o, < O. However, if there exists some 1 E {O : kj) such that %[il # 0, then for 

any T E 'Ri, a direction d satisfying ~ g d  = -(te: + e:) provides e s t  order descent in p, 

from W .  O 

Definition 8.11 For j E B ( e ) :  - 

[ A ]  i f i f  ZiCsin(0,l) 
i é  N(PO,) : r:L] = 

4 [A j] /.;[pi] if it lies in (O, 1) 
i c  N(@) : Z:Ü] = 
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2. Let k; be the number of distinct bmakpoints in the intervol (0, l), and let these 

distinct breakpoints, denoted tFb] for 1 = 1, - - - , k;, be k d e d  to satisfy 

In addition, define the bmkpoints tO[jl= O and t$+,ü] = 1. 

3. For each I = 0 : y, defie dlj] us follotus: 

4 .  For each 2 = O : k!, define the quantitics m:b] and rnblj] as folloios: 
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5- For each I = O : $, dejke the interuab Slb] and Scÿ] as follrns: 

Lemma 6.17 If w i s  a degenmte, stationcary point, then the= e&ts a first order descent 

direction d for p,, fmm w satisfying dg d = aAet + a& for cg < O < UA and ]cg 1 < (Q 1 

if and only if t h m  ezists 1 E {O : k!) such that S;ü] # 0. 

Proof: Consider any direction d satisfyllig ~ z d  = uAej + ugc: for og < O < UA and 

u < u Without loss of generality, assume that o~ = 1 md ug = -T for some 

E (0 , l ) .  Then, for O 5 a < ai, 
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and t herefore 

If T E &El, then the coefnuent of o is negative. Howevu, this value provides the Grst  

order rate of change in p, only for r E ( tf[ j] ,  t&&]). 

Therdore, if Si = 0 for aIi I ,  then first ordu descent in p, is not possible for any 

o, < O < CA wbere lu,l < ICA[. However, if there exkits some 1 E {O : k!} SU& that 

S i ÿ ]  # 0, then for any r E Si, a direction d satisfying ~ g d  = (et - rq) provides first 

order descent in p, trom W .  0 

Definition 6.12 For j E B(P!!): 

tcf[9i)/nf[AJ if it lies in (O, 1)  
i~ N ( T * ) :  ~;7ü] - 

otherwrSe 

- { ~ b j ] / ~ [ * j ]  i f i t  l i es in(0 , i )  
i E N ( C ) :  q7u'] - 

othetraise 

Glpi]/4[Aj] i f i t  I ies in(0, l )  
i~ N ( E )  : = 

u : ~ / ~ [ A J  if it lies in (O, 1) 
i €  N ( W ) :  r-b] = 

2. kt k: be the n u m k  of distinct breakpoints in the interual ( O ,  l), and let these 

distinct bf~~kpoints, dmoted t[ü] for I = 1, -, k;, k indezcd to sot- 

In addition, dejine the breakpoints tiljJ = O and t:;+Jj] = 1. 
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3. For each 1 = O : k:, define elb] M follows: 

4. For each 1 = O : k;, define the quantities (I*ÿ] and (',b] os follaos: 

5. For each 1 = O : k;, define the intervals Ulb]  and U i b J  as followr 

Lemma 6.18 Ifw is a degenemte, statàonary point, then thme czists a fiMt omler descent 

direction d for p, from w satisrfyig Agd = u ~ e i  + u& for no < O < a~ and laol > loAl 
i f  and only i f  them ezLrts 1 E { O  : k;iT) such that U'ÿ] # 0. 



Proofi Consider any duection d satisfping Asd = uAe$ + u& for ug < O < and 

iool > lql. Without loss of genedity, assume that u, = -1 and UA = r for some 

r E (O, 1). Then, for O 5 a < ai, 

If r E Ut Cjl, then the coefficient of (-a) is positive. However, this d u e  provides the first 

order rate of change in p, only for r E (trb], t L b ] ) .  

Therefore, if 24; = 0 for al1 1, then fùs t  order descat in p, is not possible for any 

cg < O < UA and luol > lu~l. However, if there ePsts some I E @ : k:) such that 

U;b] # 0, thm fot any T E UT, a direction d satisfying ~ g d  = -(-re? + $) provides 

first order descent in p, fkom W. 0 

Deiinition 6.13 For j E B ( e ) :  
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- 4 [ x i l / . i O 1 9 j l  if it lies in (O, 1) 

1 othertlrise 

2. Let Ji$ be the number of distinct breakpoints in the interval (0, l), and let these 

distinct bnakpoints, denoted t;lj] for 1 = 1, - - , k;, k i n d w d  to satisfy 

In addition, define the breakpoints t:m = O and t!f+lb] = 1. 

3- For each f = O : k!, definc 2 [j] as follows: 

4. For each Z = O : k!, define the quantities tLA[j] a d  $H OS foltocos: 
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5. For each t = O : k:, define the interuais Vlü] and Vib] as follows: 

Lemma 6.19 If w U a degenemte, stationary point, then t h e  &b o firat o d e r  descent 

direction d for p, from ut satismng ~ g d  = uAei + aQeT for O < a, < UA if and only if 

there &ts 1 E {O : k;) such that V;ü] # 0. 

Proof: Consider any direction d satisEping ~g d = are? + %ef- for O < a, < o ~ .  Without 

loss of generali~, assume that a* = 1 and mg = s for some r E (0,l) .  Then, for 



and therefore 

If T E VIE],  then the coef6cient of o ïs negative. Howeva, this value provides the fist 

order rate of change in p, only for r E (tfü], tF+l+lÜ]). 

Therefore, if V i  = 0 for ail 1, then first order descent in p, is not possible for any 

O < u, < UA. Howevu, if there exists some 1 E ( O  : k!} such that V i b ]  # 0, then for any 

s E V;, a direction d satisfping ~ g d  = (e i  + tq) provides first order descent in p, from 

W .  O 

6.7 First Order Optimality Conditions 

Corollary 6.20 If w is a degenemte, fint oder  point of the penalty function p,, Wen 

the foiiotmng conditions mwt a22 be satisfied. 
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Proofi Foliuws immediateiy fiom the resdts presented in the previous section. O 

Note that, in the absence of degeneracy, the matrut r is exnpty and the conditions listed 

above reduce to the first order nscessary conditions previously defined in Corollary 3.10 

and Dennition 3.3.4 for a nondegrnerate xninimum point of the penalty function. Aiso, 

if a set of multipliers P satïdj6ng the nondegenerate necessary optimality conditions are 

deked at a degenerate point of p,, thm the above conditions are automatically satisfied 

for some choice of AB. Therefore, the r multipiiers need only be calculated when the 

multipliers Y do not satiafy the nondegenerate necessary conditions and do not dehe  a 

descent direction for the penalty function. 
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6.8 Implemented Version 

Our degeneracy resolving technique has been described for exact activities. With ap- 

propriate modifications to the activity sets, thiç technique is implemented for eactivities 

exactly as it is described hem. It has been v d e d  that the technique WU either find 

a descent direction or verifg that the degenerate point satides the necesçary optimality 

conditions. With the introduction of eactivities, an additional possibility arises. As de- 

scribed in Section 4-5, it is now possible that the ment point has been miçcIassified as 

dose to a stationary point of the penalty function. As a result, the dropping direction 

retumed by the degeneracy resolver may not be a descent direction for the mode1 func- 

tion. In this case, the algorithm wiil reduce the values of E and A, and continue fiom the 

reclassified point. 

6.9 Conclusion 

In this chapter, the problems inherent in applying traditional techniques to resolving 

degeneracy in the penalty h c t i o n  pp have been explaineci. In addition, we have derived 

a set of first ordu necessary conditions for a degenerate solution of p,. These conditions 

apply regatdless of the actual choice of the activity basis matrix AB as long as the rules 

described in this chapter for constructing AB are followed. 

The calcdation of the vector 9 and mat* rr for any specific choice of dB and AN 

and the checking of ail the conditions Listed above are finite processes. In any partic- 

ular instance of degeneracy in the penalty function, the method of perturbation or the 

technique of Ryan and Osborne rnay resolve the problem more quickly than the multi- 

plier method, or rnay fail completely. Unlike these tebiques,  the multiplier method wiii 

always resolve degeneracy in p, in a finite number of steps. 



Chapter 7 

Testing results 

7.1 Introduction 

The penalty function algorithm described in Chapters 3 and 4 fot fincihg a solution 

of the one Level problem BPc was implemented in Matlab. The degeneracy resolving 

tedinique described in Chapter 6 was also implemented. The code was tested on a set of 

bilevel programming problems f h d  in the literature, as well as several original nonlinear 

problems. In this section, 1 wïU discuss the test problems and describe how the testing 

was performed. The remainder of the chapter is concemed with the presentation and 

analysis of the results. 

7.1.1 Test Problems 

The test problems are listed in Appendir A dong with their sources and hona solutions. 

The majority of the problems wece found by examining the bilevel programming literature. 

These problems have generally been used to illustrate proposed algorithm for biievel 

problems, and therdore, most are quite srna& with only a few upper and lower level 



variables and consttaints. Also, since most of the literature to date is concerned with 

iinear biievel problems, the majority of the problexns presented in the literature were 

hear problems. While several quadratic problcms were fomd, on1y three nonquadratic 

nonlinear problems were located. Thetefore, several new nolilinear problems, some with 

unknown global solutions, were developed. 

In [28], Cdamai and Vicente described a method for generating random iinear and 

quadratic bilevel problems wïth hown global solutions. The problems are separable, 

but with a simple matrix trandomation, nonseparable quadratic bilevel problems can 

be generated. Seven untraasformed and five t r d o m e d  problems, of ParJuig sizes, are 

used in the testing process. 

For ail but one of the test problems from the Iiterature, at l e s t  one global solution 

is knoion. In addition, becauoe most of the problems are small, it war usudy possible 

to anaiyze them to determine other local and global solutions. The goal of out research 

was to deveiop an algorithm which could be used to h d  solutions of bilevel pmgramming 

problems. Therefore, the Mplemented code was tested on problems with lcnown solutions 

so tha t  its performance could be evaluated with regard to this criteria. In addition, it was 

necessaty to introduce new nonhear problems so that more results could be obtained. 

7.1.2 Code and Algorithm Parameters 

The algotithms were implemented and tested using Matlab version 4.2~. Throughout the 

testing process, emphasis wa9 placed on ensuring that the code was perfonning correctly 

rather than on improving the speed of convergence. Theref'ore, little attempt was made 

to find the %est" initial d u e s  of the algorithm variables or parameters. The values used 

for the starting point wo and the initial penaltp parameter Iro are considered in the next 

section. The remaining algorithm variables and parameters used the same initial values 
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for all test problems, as hdicated b b .  These values should p d o r m  ceasonabiy weU 

for weli-scaled problems. 

The foliowing initial values are used throughout the testing process. 

8, the initial activity tolerance, has d u e  0.1. 

A', the initial doseness toletance, has d u e  0.2. 

A', the initiai trust region radius, has d u e  rnin(A-, 0.1 x (1y0112), where y0 is 

the gradient of the M'tiable part of the penalty htnction at wo. However, if 

([yollz < 1, then Ao = 1. 

The aigorithm parameters, as specified in the statement of Algorithm 4.1, are as- 

signed the folIowing d u e s .  Some of the vdues are based on the numericd experience of 

0th- researchers, and the remaining values' (for example, à-, A,,, and ih,) seem 

reasonable for the problems being solved. 

bl , the tolerance for a succespiut trust region direction, has value IO-'. 

0 b2 ,  the tolerance for a very suceeSSfd trust region direction, has value 0.75. 

rl , the sufficient decrease toletance, has vaiue Iow4. 

a b,, the iteration count correspondhg to unboundedness, has value 4. 

Am,, the maximum dowable trust region radius, has vaiue 20. 

a h, the maximum dowable d u e  of the penalty parameter, has vaiue 106. 

it,,, the maximum aiiowable number of iterations before unsuccessf;ul termination 

of the dgorithm, has d u e  500 for nonluiear problems, and d u e  100 for the other 

problems. The larger d u e  was d for the nonlinear problems because they are 

generally more difEcult ta soive. 



A point is accepted as a second ordet point of the penaltp h c t i o n  if the fo110wing 

conditions are satidied at the current point. 

all activities have d u e s  a satisfgllrg la[ 5 5 x L O - ~ ,  

the multipliers Lie very dose to the optimal ranges for second order points stated 

in CoroUary 6.20. For example, if the optimal range is [pi, pz], where pl  # O, then 

the actud multipliers must lie in the range [(l - €)pl, (1 + €)p l ]  where = 0.0 1. If 

PI = O, then the actud multiplier must lie in the ranp [-c, (1 + €)hl, and 

O the reduced Hessian CHZ is positive semidefinite. 

A point is accepted as a second order point of the one leoel form of the bilevel problem if 

it satisfies the above conditions for a second order point of p, and it is essentially feasible 

for BPc, i.e. if 

Ip,(w) - F(w)( 5 5 x 10-5. 

7.1.3 Testing Process 

The test problems Iisted in Appendix A were each run for ten Merent combinations of 

starting point wo and initial penalty parameter po- These values were chosen for ail the 

test probluns, and no attempt was made to find the best starting point for individual 

problems. The tested values, conesponding to the tes& presented later in the chapter, 

are iisted in Table 7.1, where q = n + rn + p is the number of variabIes in the penalty 

function. R e d  that n is the number of upper level variables, m is the nwnber of lower 

level variables, and p is the number of lower levd constraints. 
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- 
4 
1 

1 

1 

1 

1 

10 

100 

1000 

LOO 

10 - 
Table 7.1: Starting Values 

Note that 

0 zeros(q) is the zero vector in Bq, 

0 mes(q) is the vGtor in coasisting of dl onen, and 

randn(q) is a vector in RQ consisting of q normaily distnbuted random values. 

The tenn "problem instance" will be used to refer to a test problem in combination with 

one of the above (wo, a) combinations. 

7.2 Presentation of the Results 

The test problems üsted in Appendix A are divided into four groups: linear, quadratic, 

generated, and more gmeral nonünear bilevel problems. Accordingly, the results are 



presented in four separate tables. In each of the result tables, the foliowing idormation 

is presented. 

The name of the problem, as üsted in Appendu A, generally corresponds to the 

initiais of the authors of the source papes. It is stated in the column titled uProbn - 

The number of variables in the one level fonn of the bilevel problem is indicated in 

the column titled "q" . 

a The average number of iterations until termination of the implemented algorithm 

is indicated in the column titled " # -  This is the average over aU ten instances, 

regardless of whether the algorithm actuaiiy converges or not. 

a The average number of times that the penalty parameter was inaeased for each of 

the ten problem instances is indieated in the column titled "pfn. R e d  that the 

parameter p is increaoed if the dgorithm indicates that p, L becoming unbounded, 

or if the algorithm converges to a point satisfying the necessary conditions for a 

second order point of p, which is infeasible for the one level problem. Each time p 

is increased, it is multipüed by the factor 10. 

0 The average number of times that the degeneracy resolving routine was invoked for 

each of the ten problem instances is indicated in the column titled "6". The routine, 

as described in Chapter 6, is invoked if the dgorithm encounters a degenerate point 

a t  which nome of the multipliers t are out of kiiter but the cdculated droppuig 

direction is not a descent direction. 

The algorithm can terminate in several dinerent ways. 

- The ha1 point satisfies the necessary conditions for a second order point of 

the one level form of the bilevel problem and the objective function d u e  at 
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the point matches the objective fwiction value of the known global solution 

of the bilevel problem. The number of times during the ten test trials that 

the algorithm terminates at  such a point, classifieci as a global solution, is 

indicated under the outcome column titled "G" , 

- The final point satisfis the necessary conditions for a second order point of 

the one le& form of the bilevel ptoblem, but the objective fimction value at  

the point exceeds the objective function d u e  of the known global solution of 

the bilevel problem. The number of times during the ten test trials that the 

algorithm ternùnates at such a point, clasçified as a local solution, is indicated 

under the outcorne column titled "L" - 
- The final point satisfies the necessary conditions for a second order point ofp, 

for p = b, but is not feasible for the one level form of the bilevel problem. 

The nurnber of times during the ten test trido that the algorithm terminates 

at such a point, classiiied as a truiy infeasible solution, is uidicated under the 

outcome colunn tit Ied "In , 

- The algorithm fails to converge within it,, iterations. The amber  of times 

that this outcome was observed is indicated in the coluaui titled ''IN". 

- The algorithm terminates because p, appeared to be unbounded for p = b. 

The number of tinies that this outcome was observed is indicated in the column 

titled "Un. 

7.3 Results and Comments 

Throughout the analysîs of the results, the performance of our algorithm WU nat be com- 

pared to existhg bilevd problem algorithms. There are severai reasons for this decision. 

Our algorithm has been designed to solve nonlinear bilevel ptoblems, and therefore, is 
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not expected to perfom as well for special forms of the problem as algorithms designed 

for those forms. For example, linear bilevel a l g o r i t h  exploit the special properties of 

linear büevel problems and include actions to fmd global, rather than local, solutions. 

Our algorithm does not inelude such special steps. In addition, at  the t h e  of testing, 

there are no 0th- algorithms in the literature for which extensive test results have been 

presented for nonünear biievei problems. Finally, the performance of the algorithm is 

likely far fkom optimal because no analpis has been performed to determine the best 

starting values of the algorithm variables and parameters, as noted on page 231. 

7.3.1 Linear Problems 

The testing procas for the linear bilevel test problems, as summarized in Table 7.2, 

iilustrated the following points. 

a The algorithm identified a global solution of the bilevel problem for 18 of the 23 

problems with known global solutions. More speeificaily, it found the global solution 

in 105 or 46% ofthe 230 associateci problem instances. For the ten problem instances 

for BCC5, for which the global solution is not knorm, the algorithm temilliateci hdf 

of the t h e  at the b a t  local solution provideci by the authors. 

The algorithm identified a local or global solution of the bilerel problem for dl 24 

problems, or 153 (64%) of the 240 problem instances. 

A truiy infeasible point of the penalty funetion was identified in 21 of the 24 prob- 

Lems or 107 (36%) of the problem instances. 

a The degeneracy resolving routine was invoked for 7 of the problems, or 15 (6%) of 

the 240 problems instances. In several cses, the routine was invoked multiple times 

for a single problem instance. 
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0 A solution of the penalty fuction was s u c c ~ y  identified for all problem in- 

stances. 

0 The algorithm convergeci within 44 iterations for ali problem instances. 

The a lgo r i th  performed extremely well in identirjring local or global solutions of 

the linear biievel test problems, as there were no problems for which a solution was not 

identified. Also, the pdonnance of the aigorithm in identifgiag global solutions wag quite 

good. The use of multiple starting points was a helptùl tool in identifying global solutions 

for a Large majority of the problems. Even without special action within the aigorithm 

for spedic starting points, global solutions were identified for one-third of ail problem 

instances. This behavior is very encouraging. Of course, in generd, such solutions are 

probably not globally convergent. 

Aside fiom their use in finding global solutions, multiple starting points must be used 

within the bilevel algorithm due to the possibi l i~ of identifping truiy infeasible solutions. 

The number of problem instances which terminateci at a truly infeasible point justifies 

their use, 

Although d y  a smalî percentage of problem instances encountered a point for whidi 

the degeneracy resolving routine was invoked, onequarter of the problems did require 

its use. This illustrates the importance of the degeneracy resolving technique developed 

specificdy for the bilevel pendty hc t ion .  

Although all the problems in this group have a smaii number of variables, the three 

highest average number of iterations to convergence correspond to the three largest prob- 

lems, as indicated by the value of q. The problems with more than 10 variables are the 

only probtems which, on average, required more than 20 iterations. This suggests that 

the nunnber of iterations may increase with the problem size. 
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- 
Prob - 
AW1 

B l  

B2 

8 3  

BAB1 

BAB2 

BCCl 

BCC2 

BCC3 

BCC4 

BCCS 

BF1 

BF2 

BK1 

BK2 

CF1 

CTl 

Dl 

D2 

F1 

HJSl 

HJS2 

3SWl 

rMvi  - 
Table 7.2: Results for LLiear Problems 
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7.3.2 Quaciratic Problems 

The test resdts summarized in Table 7.3 iiiuotrate the following points. 

0 The algonthm identified a global solution for eleven of the twelve quadratic bilevel 

test problems, or 63 (53%) of the 120 problem instances. 

a A local or global solution is identified for all problems, or 97 (81%) of the 120 

pro blem instances. 

A t d y  iafeasible solution was Located for 8 of the test problems, or 23 (19%) of 

the problem instances. 

a The degeneracy resolving routine was invoked for seven of the test problems, or 37 

(31%) of the problems instances. 

A solution of the penalty function was successhilly identified for ail problem in- 

stances. 

The algorithni convergecl within 26 iterations for ali problem instances. - 

The algonthm performed exceptionally well in identifging the global and local solu- 

tions of this set of quadratic bilevel problems. While this may, in part, be due to the 

simpücity of the test problems, it is still very encouraging to see for our general nonlinear 

bilevel pro blem algorit hm. 

The number of truly ideasible points encountered by the elgorithm even in these cases 

again justifies the use of multiple problem instances in the testing proces. Similarly, 

the high number of degenerate points eacountued show the necessity of the degeneracy 

resolving routine. The overall results also indicate the efFectiveness of the routine. 



I___ 

Prob - 
AS1 

AS2 

B4 

BF3 

BF4 

GSi 

Ul 

SGl 

VSJl 

vu2 

Y21 

YZZ2 - 

- 
I'+ - 

O 

0.5 

0.6 

0 -9 

1.2 

O 

0 -5 

0.5 

O -4 

O.? 

O 

0.5 - 
Table 7.3: Results for Quadratic Problems 

Once again, the largest problems, as indicated by the d u e  of q, generaliy require 

the highest average number of iterations to convergence. The five largest problems (with 

q 2 8) requke more than 12 iterations on average, while none of the srnaller problems 

require more than 10 iterations. However, since the problems are so smaii, this clifference 

may not t d y  be sigaificant. 

7.3.3 Generated Problems 

The testing nsuits for the set of generated probluri9 are summarizcd in Table 7.4, and 

illustrate the foIIowing points. 



A global solution of the bilevel problem is correctly identified for 10 of the 23 test 

problems, or 30 (23%) of the 130 problem instances. 

A local solution of the bilevel problem is correctly identifieci for ail 13 test problems, 

or 88 (68%) of the problem instances. 

a A truly infeasible solution of the penalty h c t i o n  was idcntified for 12 test problems, 

or 42 (32%) of the problem instances. 

0 Seven of the problems, or 11 (8%) of the problem instances, required the use of the 

degeneracy resolving routine. 

A solution of the penalty fiinction was successfully identified for ail problem in- 

stances. 

r The algorithm converged within 63 iterations for al1 problem instances, and in less 

than 50 iterations foc al1 but two, 

Again, the algorithm performed quite well in identifying global and local solutions of 

these test problems. T h e .  problemç, by theh nature, generaliy have more local solutions 

than the previous cases. So, while the high number of local solutions encountered was 

not surprising, the strong pecformance of the algorithm in identifying global solutions 

was an encouraging result, and was supportai by the performance of the aigorithm on 

the previous set of quadratic problems, 

The numbet of iterations required for convergence is generdy higher for this set of 

test ~roblems than for the previous two sets of probluns, rdecting the larger sise of 

the problems and their inaeased complexity. Note that the larger untraasformed and 

transformeci problerns do not always require a higher average number of iterations for 

convergence, While the largest problems seem to generally require more iterations for 

convergence, this is not necessarily true for specifk problems. 
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Prob 

U1 

u2 

u3 

U4 

u5 

U6 

U? 

US 

Tl 

T2 

T3 

T4 

T5 

Table 7.4: Resdts for Genetated Problems 

7.3.4 NonlUiear Problems 

Only three nonlinear bilevel test problems were found in the literature. As this number 

was insufneient for our testuig purposes, several new problems were designed. The global 

solutions of some of these problems, as indicated in Appendix A, are not known. Note that 

the problems tested hue are smaii, in terms of the number of variables in the penalty 

function. The time and space limitations imposed by Matlab and, in patticular, the 

current implernentation of the algorit hm maLc solving much larger probluas impractical. 

The results for the problems trom the literature (problems B5, EB1 and YZZL) , along 

with the new problems, are summarized in Table 7.5. The petformance of our algorithm 
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in solving these nonlinear biievel problems cannot be judged relative to any othet solution 

techniques. A literature search f&d no comparable results for other methods. 

0 For the thirteen problems with k n o m  global solutions, the algorithm identified 

a global solution in 27 (20%) of the 130 problem instances. Note that the algo- 

rithm identified a global solution in a similar percentage of cases for the generated 

pmblems, which are the most complicated of the other problems tested here. 

A global or local solution was identined for all the problems, and in 95 (63%) of the 

L50 problem instances. Again, this compares very weIl with the observed results 

for both the linear and generated problems. 

A truly infeasible solution was identified for 12 of the problems, and in 24 (16%) of 

the problem instances. 

The degenetacy resolving technique was invoked for five of the test problems, or 19 

(13%) of the problem instances. 

For 26 (17%) of the problem instances (corresponding to 12 of the test problems), 

the algorithm failed to convergs to a solution of the penalty function within it,, 

iterations. For the nonlinear problems, the maximum iteration count ailowed was 

it,, = 500. 

0 The problem instance was found to be unbounded in 11 (7%) of the problem in- 

stances, or for five of the problems. 

e Of the 124 problem instances which converged to a local or global solution, a truly 

infeasible point, or were judged to  be unbounded, 20 (16%) required more that 100 

iterations. 

- One problem instance (85) converged d e r  498 iterations. 
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- S u  problern instances (Ccl, Cc3, two of Cel, h o  of Ce3) teqaired between 

300 and 399 iterations. 

- S u  problem instances ( h o  of Cb3, one of Cd, Cc3, Ce1 and Cgl) required 

between 200 and 299 iterations. 

- Seven problem instances (two of CM, one of Ccl, CC3, two of Ce3, and one 

of Cg3) requùed between 100 and 199 iterations. 

In the noniinear results table, the two numben ii(i2) under the column titled "#(#,) " 

indicate i l ,  the average number of iterations to termination over aU ten problem instances, 

and &, the average number of iterations to termination when the it,, instances are 

omitted. 

Two m e s  of resdts were observed for the nonlinear problems which were not ob- 

served for any of the pretiious test problems: unboundedaess (column "Un) and failure to  

converge nithin itmm iterations (colnmn "M"). In the original discussion of the penalty 

function technique in Chapter 3, unboundedness was discussed as a possible outcome of 

the penalty function technique, even if the problem being solved was not unbounded. 

The technique used to detect unboundedness is described in Section 3.8. It is likely that 

a more detailed check for unboundedness could be developed which would eliminate some 

of the unboundedness outcomes. However, this issue wiil not be investigated fiuther here. 

As noted above, thete were 26 instances in which the aigoritlm failed to converge 

or to reach an unboundeàness decision within tb, = 500 iterations, The behavior of 

the algorithm for these instances is diScussecl below. Two diaerent patterns of behavior 

accounted for most of these outcomes. Note that these patterns of behavior were generally 

established within the &st 100 to 200 iterations of the algorithm. 

1. The algorithm made steady, but very smaU progress towards a stationary point of 

the penalty huiction. Over these iterations, the iterates were dl type one points, 



- 
Ptob - 
B5 

EBI 

Y221 

Cal 

Ca3 

Cbl 

Cb3 

Cc1 

cc3 

Cd1 

Cd3 

Ce1 

Ce3 

cg1 

cg3 
I___ 

Table 7.5: Results for Noniinear Problems 

and the generalized Cauchy direction provided acceptable (though usudy relatively 

poor) trust region descent. In some cases, the direction provided very good descent. 

GeneralIy, however, the trust region radius A was relatively s m d  when the pattern 

was establùhed, and was not increased or decreased very much over the subsequent 

iterations. 

This was the pattern ofbehavior obsnoed for the i&,- outcornes for problems YZZ1 

(two instances), Cbl (two instances), Cb3 (thne instances), Cc3 (one instance), Cd1 

(2 instances), Cd3 (one instance), Ce1 (two instances), Cg1 (one instance) and Cg3 



(one instance). 

2. m e r  the trust region radius was reduced to a relatively small due, the iterate was 

danufed as dose to a stationary, non-Gst order point. A dropping direction was 

calculated, and it prooided a s m d ,  but acceptable descent in the penalty function. 

Because the step taken, while a reaunable tcust region direction, was smaii, the 

dropped ractivities remained active. The next iteration again tried to dmp the 

same set of aetivities, and the proces was repeated. 

This pattern of behavior w s  observed for Cc1 (one instance), Cc3 (one instance), 

Cd3 (two instances), Ce3 (two instances) and Cg1 (one instance). 

The remaining four cases fail for different, but related reasmns. For ail cases, after the 

preliminary stages of the algori th ,  the iterates were close to a stationary point of the 

penalty function. However, the algorithm did not always recognize this property, as 

described below. 

rn In problem B5, the algorithm actually approached a second order point of the 

penalty huietion relatively quickly. The iterate was correctly classified as a type 

four point, and the iùil Newton step was attempted. However, the step failed. 

Note that the step would have been aeeepted if the curent value of the penalty 

parameter p had been significantly smaller. The algorithm tolerances c and A 

were reduced, and the iterate was then misclassified as fat from stationacity. Ail 

subsequent descent directions were generalized Cauchy steps fiom type one points. 

Acceptable decrease was observed, but the deaease was actuaiiy quite smaii. 

For the remaining instance of problem Cc3, the iterates were actuéùly close to 

stationarity, but because of previous decreases of c and A, some were classined 

as type one points, and some were classified as type two points. In the former 
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situations, the generalized Cauchy step provided good, but not v n y  good, descent. 

In the latter situations, the dropping step was successhil, but the dropped activities 

remaiaed eactive. In essence, both patterns of behavior described above were 

observed here- 

For the remabhg case of Cd3, the iterates were close to a first, non-second order 

point, and were cotrectly dassiîïed as type thtee points. The calculated àirections of 

negative curvature provided very smali, but stU acceptable descent in the penalty 

function. The trust region radius was near its minimum value. It is possible that 

a direction of negative cutvatue like those discussed in Section 3.5.3 would have 

been beneficial in this case, 

0 For the remaining case, one instance of Cg3, an iterate was correctiy dassified as 

close to a second order point. A bill Newton step was attempted and accepted. 

However, as  a result of the step, one of the activities aas no longer considered 

active at  the next iterate. This new point was incorrectly dassined as far fiom a 

stationary point, and vety smaii generalized Cauchy diteckions provided acceptable 

descent in the penaity hc t ion ,  as discussed above. 

The nonconvergent problem instances illastrate the need for multiple starting values when 

using our algorithm to solve bilevel problems. 

The number of iterations required for convergence to a solution or to detect unbound- 

edness is greater for these nonlinear problems than it is for the linear, quadratic and 

generated problems. This is to be expected due to the difficulty inherent in the nonlinear 

problem when compared to the simpler forms of the probluno. In some cases, the Uiuease 

is quite large. 

R e c d  that the d u e  of i&,- was inaeased for the nonlinear problems to 500 fiom 

100. This action was benencial since the aigorithm converged for more problem instances 
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than it would have with the smaller value of the algorithm parameter. Eowever, at the 

same time, it resdts in the average number of iterations required untü termination of the 

algonthm to be skewed upwards by the instances whiçh require more iterations. Table 

7.6 presents suxnmatized information in the spirit of Table 7.5, and corresponds to the 

performance of the aigonthm when the value of i&- is reduced to 200. The number of 

instances which converged to a Local or global solution are grouped together in the table 

under the column UL". Note t hat the average number of iterations presented is calculated 

by ignoting the it- outcornes. 

Prob - 
B5 

EBI 

YZZl 

Cal 

Ca3 

Cbl 

Cb3 

cc1 
cc3 

Cd1 

Cd3 

Ce1 

Ce3 

cg1 

cg3 - 
Table 7.6: R d t s  for Nonlinear Problems when it,, = 200 



The new table illustrates the following points. 

The algorithm locates a local or global solution for all the problems, and for 83 

(55%) of the ptoblem instances. This is compared to 63% for the larger value of 

it-- 

The algorithm converges to a truly infeasible solution of the penalty function in 20 

(13 %) of the instances, compared to 16% previously. 

The aigorithm concludes that 8 (5%) of the problem instances are unbounded, down 

slightly from 7% previously. 

0 The algorithm terminates unsuccessfdy after itmu = 200 iterations for 39 (26%) 

of the problem instances, compared to 17% after ik, = 500 iterations. 

In addition to these points, note that the average number of iterations is, with a few 

exceptions, well within the range to be expected, based on the sesults presented for the 

linear, quadratic, and generated test problems, combined with the increased cüfEcuity 

of solving the nonlinear problems. Of course, this came at a cost of fewer convergent 

problem instances. However, in terms of the amount of computing work in the extra 300 

iterations, it may actually be prderable to use the smaller value of i&=. An alternate 

approach to consider is to define another problem instance whenever the current instance 

fails to converge within the smaller value of &,. 

7.4 Overd  Comments 

The algorithm pdorxm quite w d  ovuall on the four sets of test problems. While the 

results of the nodinear test problems may seem somewhat disappointhg on fbt  glance 

due to the number of nonconvergent instances, the algorithm actually performed very well 
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in achieving the stated goal of locating Local and global solutions of both the nonlinear 

bilevel problems and the "simplern forms of the biievel problun. 

Consider the following points resdting fiom the anaiysis of the test nsuits. 

The use of muitiple problem instances in solvhg a speeinc problem is justifieci by 

the results, due to the abundance of truly ùifeasible solutions and of local solutions. 

Analyzing the individual problem to choose a stsrting point and Uutial penalty 

parameter may improve the performance of the algorithm in locating solutions, and 

may reduce the number of problem instances to  considqr. 

0 The implemeoted version of the degeneracy resolving technique is very useful and 

aecessary. 

As expected, it appears that larger problems require more iterations before conver- 

gence, and each iteration g e n d y  requires more work than for srnalier problems. 

0 The results presented for the linear, quadratic, and generated problems would not 

have been significantly different if the value of it,, had been reduced to 50 fiom its 

tested value of LOO, as just two instances would have failed to converge. The results 

presented in Table 7.6 ülustrate that, while the convergence results for the nonlinear 

problems are improved if it,, takes vaiue 500 rathcr than 200, the improvement 

may not be significant enough to the user to j u s t e  the extra computational work 

inuolved. 

A "best" value for itm-, as with most other algorithm parameters, depends on 

the individual bilevel problem and the user's objectives. This indicates that Tur- 

ther study of these parameters may result in a better overail performance of the 

algorithm. 



Chapter 8 

Conclusion 

The thesis concludes with a list of contributions of the research dong with an indication 

of possible furthet work in the field. 

8.1 Contributions 

We believe this work ptovides several significant contributions to the field of bilevel pro- 

gramming in the areas of algorithm development , aigorit hm convergence, and tesiting . 

Algorithm Development. 

An algorithm has been designed for the nonlinear bilevel program~ling problem. As 

explained in Chapter 2, most algorithms in the literature have been describeci for 

simpler forms of the bilevel problem. Our algorïthm, which implements an uact Ci 

penalty function technique within a t m t  region fiamework, places few restrictions 

on the problem fonn. 

The combination of the penalty function and the trust region techniques is particu- 

lady appropriate to the bilevel problem. The penalty function technique is designed 



to handle the nondifferentiabilities of the compact form of the reiated problem, and 

assists in attaining both feasibility and optimalitp- The multiple starting points as- 

sociated with the penalty h c t i o n  technique f ' t a t e s  the discovery of both global 

and local solutions. At the same t h e ,  the trust region technique enables the algo- 

r i t h  to concentrate on a Iocalized, simplifieci version of the penalty fuaction. This 

approach is benefici J in handling the nonconvdties of the bilevel problem, as well 

as assistuig overd  convergence. 

In addition, the algorithm indudes a new technique, pro- to work both in theory 

and in practice, for resolving degeneracy in the penalty function. This is particularly 

signüicant because traditional degeneracy resolving techniques were inappropriate 

for this problem. 

Algorithm Convergence. 

Under a set of assurnptions standard to convergence analysis and a few assumptions 

specific to the bilevel problem, the proposed algotithm is proven to converge to a 

strict second order point of the penalty fimction for the compact form of the bilevel 

problem. These assumptions are stronger than wouid be applied to the problem in 

practice, but it is significant to note the strong theoretical nature underlying our 

technique. It provides a basis for its aectiveness for the more general problem. 

Note that, under an appropnate constraint qualification, as stated in Chapter 2, if 

the bilevel problem is convex, it is equivalent to its related compact form. In this 

case, the penalty fùnction technique solves the bilevel problem directly. Eowever , 
the convexity assumption on the bilevel problem is stronger than genetdy desired. 

For the more general case, the solution of the penalty function may still be a solution 

of the related compact problem, and hence of the biievel problem itseif'. 



CHAPTER 8. CONCLUSION 

The numerical results presented here are the most extensive round to date for the 

noniinau problem. They verify the eftectiveness of the algorithm in identifying locd 

and global solutions of the biievel problem, both in the simplu and more general 

forms. The collection of test ptoblems can be used for cornparLon purposes for 

newer algorithms, 

8.2 Further Work 

For d of the areas of contributions to the study of bilevel programmllig, there are some 

issues of research which remain open. 

Algorithm Development. 

Thue are h o  issues currently unresolved in the development of the algorithm. 

- It is possible, as desaibed in Section 3.5.3, that the current iterate does not 

satisfy the necessary second otder conditions for a solution because the reduced 

Hessian is indefinite. However, a direction of negative curvature may fail to 

provide descent in the mode1 or-penalty fmctions. As explaineci in the text, 

there are directions of descent at the point, but a practical tedinique for iden- 

tifying such directions is required. Whiie this situation was not encountered 

much during the testing proceas and r a s  therefore not investigated further, it 

would be usefirl to resolve this issue. 

- As described in Section 7.3.4, a more detailed technique for identifsing when 

the penalty fwiction is becoming unbounded nithin the trust region fiamework 

would likely improve the observed pedormance of the algorithm. 
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Aigorithm convergence. 

As describeci above, a set of assumptions, some stronger than others, are imposed 

on the problem to prove the theoretical convergence of the algorithm. It is of 

patticular interest to deterniine if any of the assumptioas specific to the bilevel 

problem (stated in Assumptions 5.8) can be removeci and convergence stül proven. 

This would match the theoretical resuits more doseiy with the practical convergence 

of the aigorithm. 

O Testing. 

The testing results provided for this algorithm are more complete than for other 

techniques. Bowever, it would be useful to have more results for larger nonlinear 

bilevel problems. It would also be interesthg to solve some practical applications 

whose solutions are not known a pnori. Due to time and space limitations, this 

wodd require a new implementation of the algorithm outside the MatIab environ- 

ment. 

In addition, a thorough analysis of the algorithm tolerances and parameters, both 

for al1 problems in general and for individual problems, would )ikeiy result in im- 

prooed numetical performance. 



Appendix A 

Test Problems 

The following problems have been found @ the Iiterature, or are originated here. The 

name attached to the problem signiIies the original source. 1 have inciuded any known 

solutions with the problem statement- In a few cases, the solutions given by the authors 

did not match those found by the algorithm. In cose of conflict , the solution that could be 

vefied (both by using the implemented aigorithm and by aadphg the biievel problem) 

is the one Zisted, If the authors gave a different solution which could not be veriiied, 

then it is not Listed below. kicluded with the solution is F', the value of the upper level 

objective function at the solution. 

We recùgnize th&, with the exception of the problems generated by the technique of 

Calamai-Vicente as described below, the ptobIems presented here are very small. This 

reflects the complexity of these dasses of problems. 
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A.1 Linear Problems 

1. Problem: AW1 fiom [6]. 

min -(z + 3y) 
=a 

s.t. x > O and y solves 

LLP(z): min 3y 
Y 

s.t. 10 5 z +2y 38 

-18 5 2 -2y 5 6 

22 y y 1 21 

Y ?  0 

Solutions: 

(a) Global: z' = 16, y' = Il, F* = -49. 

(b) Local: z* = O, y' = 5, F = -15. 

2. Problem: B1 fÎom [8]. 

and y solves 

LLP(z) : min -@yi - a) 
Y 

s.t. 2zi - y1 + y2 1 2i 

21-3zz-f-yz ' 2 

YltY2 L O 

Solutions: 

(a) Global: t' = (1, O), y' = (f, l), F = -1:. 
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3. Problem: B2 from [IO]. 

Solutions: 

4. Problem: B3 fiom [IO]. 
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5. Problem: BAB1 &om [15]. 

SA. z 2 O and y salves 

LLP(2) min y 
Y 

s.t. 42 + 3y 2 19 

2+2y < 11 

31fy 1 13 

Y L  0 

Solutions: 

6. Problem: BAB2 from [15]. 

min 
*,Y -(+ + 631 + y2) 

Solutions: 

(a) Global: t* = 1, y' = (0, l), F' = -2f. 

7. Probiem: BCCl fiom [18]. 

min -y s-t-ysolvcs 
*,Y 
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Solutions: 

8. Problem: BCC2 nom [La]. 

min -y s . t . y s o l ~ w  
%Y 

Solutions: 

9. Problem: BCC3 fiom [la]. 
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Solutions: 

10. Problem: BCC4 fkom [18]. 

Solutions: 

(a) Global: 2' = 0, y' = (0, O), F = 0. 
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Solutions: 

(a) Global: Unknoam. 

Solutions: 
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q , x 2  2 O and y solves 

LLP(z) : min -8g 
Y 

Solutions: 

14. Problem: BK1 [22]. 

S-t- 2 2 0 and y solves 

LLP(z) : min y 
Y 

s-t. 10 5 x +2y _< 38 

-18 5 Z - 2 y  < 6 

22 - y 21 

Y 2  0 

Solutions: 

(a) Global: 2' = 16, y' = 11, F* = -11. 

(b) Local: te= O, y* =s, p = -5. 

15. Problem: BK2 (221. 
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sot- ~ ~ O a n d y s o l v e s  

LLP(z) : min - y2 
YB 

s-t- + y1 + y2 < - 3 

2+y1-y2 2 1 

2-Yi-Pz 2 -1 

= - Y I + Y ~  5 1 

Yl tY2  1 0 

1 
Y2 l 5 

(a) Global: z' = g, y * = (l,f), F‘ = -2. 

(b) Global: z' = a, y* = (1,2 - a) for any a E ($,2), F = -2. 

(c) GLobal: z' = 2, y* = (1, O), F' = -2. 

16. Problem: CF1 fiom [32]. 
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18. Problem: Dl [39]. 

min -2 s.t.ys01ves 
ZlY 

Solutions: 

2 (a) Global: z* = 35, y' = (O$), F' = -3%. 

19. Problem: D2 fiom [39]. 

min z + y  s.t.ysolves =,u 
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Solutions: 

(a) Global: a' = 6, y- = 1, F = 7. 

(b) Global: te = 1, y* = 6 ,  Fe = 7. 

20. Problem: Fl from [42]. 

min -y 
=,tl 

s-t. 2 ~ 0 a n d y s o l v e s  

LLP(z) : ln$ y 

Solutions: 

(a) Global: z* = 3, y- = 2,  Fœ = -2. 

(b) Local: o* = O, y* = 1, F* = -1. 

21. Problem: HJS1 fiom [48]. 
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Solutions: 

2 (a) Global:'zœ = (5, $), y' = (O, ), $),p = -las- 

(b) Local: E* = (;, $), y* = (0,0, O), Fœ = -58. 

22. Problem: HJS2 from 1471. 

s.t. z 2 0 and y solves 

LLP(z) : min -y 
Y 

Solutions: 

(a) Global: z* = 2, y* = 6, F* = 32. 

(b) Lod: 2' = 306, y' = 45, F- =52). 

23. Problern: HSWl fkom [49]. 

min o+Sy s.t. y solves 
=,y 
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Solutions: 

24. Problem: TMVl fiom [65]. 

A.2 Quadratic Problems 

1. Problem: AS1 fiom [2]. 

min 
*?Y 
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s.t. Z > Y  

O s z s 1 5  

and y solves 

LLP(o) : min ( s + 2 y -  30)2 
Y 

s-t. z + y  5 20 

0 5 ~ 5 2 0  

Solutions: 

(a) Global: z' = 10, y* = 10, F = 100. 

2. Problem: AS2 fkom [2]. 

min 
=a 

set. 

and 

Solutions: 

(a) Global: 2' = (0,0), 9' = (-10, -IO), F = 0. 

(b) Local: su = (25,30), y* = (5, IO), E" = 5. 

3. Problem: B4 fiom [II]. 
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Solutions: 

4. Problem: BF'3 from [12]. 

Solutions: 

(a) Global: z* = ( i ,  a) ,  y* = (oJ), p = 12. 

5. Problem: BF4 Erom [lY. 
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6. Problem: GSl fiom [44. 

and 

2 + (y - 10)' 

O < z < 1 5  

y solves 

LLP(z) min (z + 2y - 30)' 
=,Y 

s.t- z + y 5 20 

O ~ y ~ 2 0  

Solutions: 

7. Problem: IAl from [50]. 
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2 ~ 2  - x2 5 10 

Solutions: 

8. Problem: SG1 from [62]. 

YllY2 1. O 

Solutions: 

9. Problem: VSJl fiom [67]. 
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Solutions: 

10. Problem: VSJ2 Corn [67]. 

and y solves 

LLP(z): min )y2+y-x1y+3z2y 
Y 

s.t. O 5 y < L 
Solutions: 

11. Problem: Y21 hom [69]. 

min = + y  
=>Y 

s.t. - 1 L X < l  

and y solves 

CLP(2) : min y2 - 2sy 
Y 

5-t. -1 y 5 1 
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(a) Global: 2' = -1, yœ = -1, F= = -2. 

12. Problem: YZZ2 from [TOI. 

min z2 - 2y. 
=a 

s-t. 2~Oandyso lves  

LLP(+) : min ]$ - 22 y 
Y 

s.t- 2 2 - y 5 0  

Y ?  

Solutions: 

(a) Global: z* = 2, y- = 4, FR = -4. 

(b) Local: t' = O ,  yu = O ,  =O.  . 

A.3 Generated Problems 

Because of the numerous global and local solutions to these problems, their sohtioas are 

not stated here. Rather, the reada is referred to [28] for details- 

A.3.1 Untransformed Problems 

s-t. ysolves 
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where 

n2 = the number of upper level variables 

ny = the number of lower level variables 

rn = min(=,  YI 

P E HEm, 

Each combination of d u e s  for nz, ny and p defines a dinerent biievel ptoblem. The 
7 

following values dehe the test problems 

1. U1: nz = 5, ny = 5, and p = [l, 1, a,  2,3]- 

2. U2: nz = 5, ny = 10, and p = [l!, 15,2,3f, 531. 

3. U3: nz = 10, ny = 10, and p = [mes(7) ,2 ,2 ,7] .  

4. U4: nz = 15, ny = 10, and p = [ones(4), 1$, 2 x ones(3), 5,9]. 

5. U5: na = 15, ny = 20, and p = [ones(3), l$ x mes(6) ,  2 x ones(4), 3ones(2)]. 

6. U7: nz = 50, ny = 10, and p = 2[5 x ones(4), ?,8,9,13,18,23]. 

7. U8: nz = 10, ny = 60, and p = [8/5 x ones(5), 3 x ones(5)I. 

The untransformed problem can also be wtitten in matrix fom, 
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whese 

min 
Y 

-1 i f l < i = j i m  
Sw E R"=Xng satisfies (S,), = 

1 i f l < i = j < m  
S, E RnuXw satisfies = 

1 i f i ~ i = j ~ m  
P. É BmX- and (Pz), = 

l i f i ~ i = j < m  
P, E Atmxnv and (P,), = 

Using a matrix transformation, this separable quadratic büevel problem can be trans- 

forrned into a nonseparable quadratic problem. 

Let v, E R"+ and v, E F be any two vectors satisfying usv, = 1 and vFv, = 1. 

Define Householder matrices H, and Hv using these vectors, 
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and let 

Also, let D be a positive dennite diagonal mat&, and deiine M = HDH. 

For convenience, we shall denote the variables in the ttdormed problem as t, and 

whese 

Therefore, we can mite the trdormed problem as 

LLP(t.) : m~ j j : j MSM 
t w 

Dinerent choices of na, ny, p, v,, v,, and D define distinct nouseparable quadratic 

biievel problems. The five test problems are defhed with the following d u e s .  In all 

cases, let 
Wtu, v, = - wu and v,= - 

llw* Il llwvll ' 
where w, and w, are given belon. 

1. Tl: nz = 4, ny = 2,  p = [lt, 31, dàag(D) = 10 x ones(n), and 
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2. T2: nx = 5, ny = 5, p = [1, 1 f ,  l:, 2,3], diug(D) = 10 x ones(n), and 

3. T3: nz = 5, ny = 10, p = [l, 1,1$2,2], dâag(D) = ones(n), and 

= [l, 2, -3,0t O] 

tu, = [2,1,0,-2t-3,0,0,1,-1,4]. 

4. T4: nz = 10, ny = 5, p = [ones(4) , 21, diag(D) = ones(n, I), and 

ws = [-5,4,-3,-2,-1,0,1,2,3,4] 

wv = [O, 1,0, -1,ol. 

5.  T5: nz = 10, ny = 15, p = [l, 1,1, %, i, $, g, 3,5,7], diag(D) = 10 x ones(n), and 

1. Problem: B5 from [IO]. 
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Solutions: 

2. Problem: EB1 Irom [41]. 

(a) Global: z* = 1, y- = (O,O), F* = -1. 

3. Problem: YZZ1 fiom [?O]. 

min (z-~)~+z~(~+l) 
=.v 

s-t. - 1 ~ z g  

and y sotves 

LLP(z) : min y sin(?) 
Y 

s-t. - 1 s y g  

Solutions: 

(a) Global: z* = 1, y' = -1, E" = 0. 

(b) Local: t' = O, y' = o for -1 < < 1, Fœ = 1. 
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4. Problem: Ca Series of Problems - Cal (nz = 1) and Ca3 (nz = 3). 

and y solves 

Solutions: 

1 (b) Local: (2: = -5, y: = gè) or (2; = -2, y: = -1) for i = 1 : nz. 

5. Problem: Cb Series of Problem - Cbl (nx = 1) and Cb3 (nz = 3). 

and y solves 
nz 

LLP(2) : min z z i y i  
Y id 

Solutions: 

(a) Global: Unknown. 

6. P-roblem: Cc Series of Problems - Cc1 (no = 1) and Cc3 (nt = 3 ) .  

min Czfvi 
=,y cl 
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and y solves 

Solutions: 

(a) Global: (z;, yi) = (-a, -n), FR = -&z. 

7. Problem: Cd Series of Problems - Cd1 (nt = 1) and Cd3 (nx  = 3). 

min 
=vu 

s.t. 

and 

Solutions: 

y solves 

(a) Global: xi' % 1.3527, y; = 21, for i = 1 : nz, Fm = -1-4337nz. 

8. Problem: Ce Series of Problems - Ce1 (nz = 1) and Ce3 (nz = 3). 

and y s o h  
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9. Problem: Cg Series of Problems - Cg1 (nt = 1) and Cg3 (nz = 3). 

and y salves 

Solutions: 
- 

(a) Global: a: = 5, y; E (1,3), for i = 1 : nz, F = -507 #m. 
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Notation 

Commonly used expressions fiom the text are listed below, dong with the section in 

which they are defined. Terms which are used only within the section in which they are 

defined are not inciuded here. 

Section Meaning 

Step size for which conditions of Lemma 3.5 are satisfied. 

S tep size for which conditions of Lemma 4.1 are satisfied. 

Step to first minimum of dong de. 

Step to fist minimum of 9 2  dong d ~ .  

Step to first minimum of ipg dong &. 

Step to first minimum of 9 4  along d ~ .  

Algorithm toîerance for a mdtiptier to be considered in kilta. 

Positive breakpoints of pl dong 4. 

Positive breakpoints of pl along trust region direction &. 

Gradient of differentiable part of p, at r. 



Dinerentiable part of p, at w 

Trust region radius. 

AIgonthm constant: maximum vaiue of A. 

Algorithm parameter: activity tolerance. 

Generdised Rayleigh Quotient for at &ik. 

Nondifkrentiable part of p, at w 

+a) for a E (a-,Pi,l)- 
Multiplien telating grdients of nonbaoic and basic activities. 

Multiplier relating nonbasic activity rq and basic activity b j .  

Lagrange multiplius associated with LLP(z) . 
Aigorithm parameter: closeness tolerance. 

Penalty parameter- 

Algorithm constant: maximum vaiue of p. 

CoefEcients (one for each dropped activity) used in denning dp .  

Vector of values of the activities at W .  . 

Feasible region of LLP(x). 

3 3  value ansociated with dropping directions in Theorem 3.9. 

*l value used in &- - 

Maximum measure of c m t u r e  at type two point wk dong 6. 
Méuimum m e m e  of curvature at type one point wk dong dk. 

Maximum value of oves aii iterations k. 

Piecewise quadratic mode1 function of p, dehed at W .  

Modifieci version of q5 actuaiiy used in aigorithm. 

Model hinction at a type one point for directions in 5. 

Model huiction at a type two point for directions in 5. 

Model function at a type three point for directions in 5. 
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Actud decrease in p, dong d~ kom W. 

Predicted decrease in p, dong d~ fiom W .  

Vector of Lagrange mdtipliers. 

Lagrange multiplier associateci with activity ai. 

Generalized Rayleigh Quotient for h fkom w to w + ad. 

Meapure of second order change in p, fiom w to w + ad. 

Measure of second order change in q fkom w to w + ad. 

Generaliaed Rayleigh quotient for & dong 4. 
Generalized Rayleigh quotient for (p: at w + ~ t d $ .  

Activity matrix at w ,  

Subrnatrix of A whose columns form a bais for A 

Submatrix of A consisting of the columns not in Ag. 

Algorithm constant: used to evaluate a successful dT. 

Algorithm constant: used to ePaZuate a very successful dT- 

Aigorithm constant: unboundedness check. 

Indices in 2 for whidi both VAi and Vgi are in A g .  

Indices of activities in set S whose gradients are in AB. 

Hessian of dinerentiable part of p, at W .  

Hessian of p,(wo + ad) for e s t  order point wo and d = Zr. 

Bilevel problem. 

Compact form of B P K K ~ .  

One level problem teiated to BP. 

Partial derivative with respect to yi of the Lagragian function of LLP(z). 

ApproPmate trust region direction at a type one point. 

Approximate trust region direction at a type hiro point. 

Approximate trust tegion disection at a type three point- 



Generdized Cauchy step. 

Dropping direction (see ais0 Section 4.2.3). 

Horizontal part of Newton step. 

A direction of negative cunmtue for H. 

Newton direction. 

'Ihist region direction (see also Section 4.2). 

Vertical part of Newton step. 

indices in for which Ai and 9; are dropped along d I .  

Indices in PO, for which A i  (but not gi) is dropped along dB. 

Indices in for which gi (but not Ai) is dropped dong d I .  

Indices of activities in set S which are dropped dong dn. 

Lower levd objective function in BP. 

Upper levd objective function in BP. 

Lower Ievel constraint fuctions in BP. 

Upper level constraint functions in BP. 

Hessian of Lagtangian fuction at W .  

Generalized Bilevd Problem 

Induced (feasible) region of BP. 

I n t d  used in generalized necessary optimality conditions. 

Intervals uscd in generalized necessary opthaiity conditions. 

Lagragian function of LLP(z). 

Linear biîevel problem, 

Lower level problem in BP, parameterized by z. 

Nwnber of Iower level variables in BP. 

(1, -lm}. 

M \ Mo(€)* 



M \ Mo(w). 

{i E M :  G(W) i O).  

(i E M :  G(W) =O). 

Number of upper level variables in BP. 

Indices in for which only O& is in Ag. 

Indices of activities in set S whose gradiats are in AN. 

I n t d  used in generalued necessary optimality conditions. 

Number of lower level constraints in BP. 

el penalty function for BPc. 

P, - - - 9  P I -  
{i E P : &(w) + gi(w)). 

( i  E P : &(w) = gi(w)). 

&(€) \ E! (6) - 
P=(w) \ po_(w) 

{ i  E c ( w )  : k ( w )  > 0 ) -  

{i E z ( w )  : k ( w )  < O}. 

{i E P,(€) : &(ut) O or g&) 0). 

{i E P : &(w) = gi(ru) = 0). 

{i E P \ P,(€) : k ( w )  < O). 

{i E P : &(w) < gi(w))-  

P'(4 \ 4(4- 
{i E q ( w )  : &(w) # O). 

{i € PA(€) : Ai O}. 

(i E PA@) : A&") = 0). 

{i E P \ P= (c) : gi(w) < 0). 

{i E P : g i ( ~ )  < &(ai)). 
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PX4 \ q 4  - 
{i E P'(w) : gi(w) # 0). 

{i € P&) : g; O}. 

{i E Pg (w) : gi(w) = 0)- 

Penalty function subprobIe~n. 

Number of variables in BPc, 

Intervals used in generalized necesçary optimality conditions. 

Algorit hm parameter: d c i e n t  decrease coefficient - 
Rational teaction set of x. 

Intervals used in generalized necessary optimality condit ions. 

Numbec of upper Ievd constraints in BP. 

(1, - - , t ) .  

T \ ~ ~ ( 3 .  
(i E T : G&u) # O). 

{i E ï' : Gi(w)  O}. 

( i  E T : G;(w) = 0)- - 
! h s t  region subprobiem at w with radius A. 

Value used in developing necessary optimality conditions. 

Intemais wd in devdoping necessarp optimality conditions. 

Value used in deveioping necessary opthality conditions. 

Intervals used in generaiized necessary optimaiity conditions. 

(2, y, A) E Rn+"L+p. 

Directions which maint* aii the activities within the model. 

Directions which maintain the desireci activities within the model. 

Directions which maint-ah aU the activities within the model. 

Directions wbich maintain aii the activities within the model. 
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ZC 4.2.2 The steepest descent direction (in the teduced space). 

&at= 4.2.4 Direction of negative CUftratue for Z ~ H Z  at a type three point. 

a4 3.5.2 Orthogonal matrix which satisnes @A = O at W .  

Z ~ B Z  3.5 2 Reduced Hessian of the Lagrangian fimction. 
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