An {; Penalty Function Approach to the Nonlinear Bilevel

Programming Problem

Lori Michelle Case

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 1997

@©Lori Michelle Case 1997

i~

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services services bibliographiques

395 Wellington Street 385, rue Wellington

Ottawa ON K1A ON4 Otawa ON K1A ON4

Canada Canada Your i@ Votre réfdrence

Cur filg Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant d la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése 3 la
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve la propriété du
copyright in his/her thesis. Neither droit d’auteur qui protége sa thése. Ni
the thesis nor substantial extracts 1a thése ni des extraits substantiels de
from it may be printed or otherwise celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.
0-612-21334-X

Canada

The University of Waterloo requires the signatures of all persons using or photocopying

this thesis. Please sign below, and give address and date.

iii

Abstract

The nonlinear bilevel programming problem is a constrained optimization problem defined
over two vectors of unknowns, z and y. Feasibility constraints on (z,y) include the
requirement that y is a solution of another optimization problem, called the inner problem,
which is parameterized by z. The bilevel problem is very difficult to solve, and few
algorithms have been published for the nonlinear problem. Therefore, instead of solving
the bilevel problem directly, a “simpler”,.related problem is solved. This problem is
defined by replacing the solution constraint in the bilevel problem with a set of conditions
which must be satisfied at a minimum point of the inner problem. The resulting one
level mathematical program is solved using an exact penalty function technique, which
involves finding solutions to a series of unconstrained problems. These problems are
usually nonconvex and nondifferentiable. Each problem is soived within a trust region
framework, and specialized techniques are developed to overcome difficulties due to the
nondifferentiabilities. A unique approach is developed to resolve degeneracy in the penalty
function problems. The algorithm is proven to converge to a minimum point of the penalty

function. Testing results are presented and analyzed.

iv

Acknowledgements

I am grateful for the financial support provided by NSERC, the Government of On-
tario, the University of Waterloo, and ITRC/ICR.

[am very grateful to my supervisors, Dr. Paul Calamai of the Department of Systems
Design Engineering, and Dr. Andrew Conn of T.J. Watson Research Center, New York,
for their help over the course of my research. I thank them especially for their faith in

me, and for their ability to help me believe in myself.

Special thanks go to my family and friends for their love over these many years. [
would most like to thank my husband, Greg, whose friendship, support and strength
has been unwavering and much needed, and my daughter, Ellen, for motivating me to

complete this work.

This work is dedicated to the memory of my parents.

Contents

1 Introduction 1
2 Bilevel Programming 5
2.1 Imtroduction. e 5
2.2 Applications. 6
23 RelatedProblems 8
24 ExampleProblems 0 ... 10
2.5 Characteristic; of the Bilevel Problem e e e e e e e e el 15
2.6 Solution Techniques 16
2.6.1 Extreme Point Search Algorithms 17

2.6.2 Descent Direction Algorithms 19

2.6.3 Linear Complementarity Algorithms 21

2.6.4 Branch and Bound Algorithms, 24

2.6.5 Penalty Function Algorithms, 26

27 ANewAlgorithm. 28

vi

3 The Proposed Algorithm

31

3.2

33

34

3.5

3.6

3.7

3.8

39

41

4.2

Introduction
OnSolving BP
Solving the Transformed Problem
Penalty Function Algorithm
Solutions of the Penalty Function Subproblems
35.1 Examining the Structure of the Penalty Function
3.5.2 First Order Necessary Optimality Conditions . .
3.5.3 Second Order Necessary Optimality Conditions

Motivating Theory for Solving the Subproblem
Modeling the Penalty Function
Terminating the Algorithm

Trust Region Algorithm for the Subproblem

Implementation Concerns

Introduction
Solving the Trust Region Subproblem
4.2.1 Classifying the Current Point
4.2.2 Approximating Solutions at Type One Points .

4.2.3 Approximating Solutions at Type Two Points .
424 Approximating Solutions at Type Three Points

4.2.5 Approximating Solutions at Type Four Points .

vii

426 Commentson the Approximate Solutions 91

4.3 Evaluating the Trust Region Direction 93
4.4 Recognizing Activities 94
4.5 Reclassifying the Current Point 98
4.6 Restatementof theAlgorithm 99
Convergence of the Algorithm 106
51 Introduction e 106
5.2 Assumptions and Terminology 107
5.3 Convergence to a Near Stationary Point 111
5.3.1 A Bound on the Penalty Function Decrease 111
5.3.2 Further on the Penalty Function Decrease 115
5.3.3 Approaching a Near StationaryPoint 128
5.4 Convergence to aFirst OrderPoint 137
5.4.1 Approachinga Type TwoPoint 138
5.4.2 A Bound on the Model Func.tion Decrease 139
5.4.3 A Bound on the Trust Region Radius 154
5.4.4 A Bound on the Penalty Function Decrease 156
5.4.5 Approachinga First Order Point 157
5.5 Convergence to a Second Order Point 158
5.5.1 Approachinga TypeFourPoint 159
5.5.2 SuccessoftheNewtonStep 160

see

5.5.3 Decreases of the Algorithm Tolerances 172

5.5.4 Behavior Near a Second Order Point 173
5.5.5 Convergenceofthe Algorithm 174

6 Degeneracy in the Penalty Function 175
6.1 Introduction. i e 175
6.2 Problems Caused by Degeneracy 176
6.3 Traditional Degeneracy Resolving Techniques 177
6.3.1 Perturbation 0. 178
6.3.2 Ryan-Osborne Approach 180

6.4 Examples of Degeneracy in the Penalty Function 182
6.5 Problems Applying the Traditional Techniques 184
6.6 Resolving Degeneracy in the Penalty Function 185
6.6.1 Building the Basic and Nonbasic Matricess 186
6.6.2 Solving for the Multipliers 188
6.6.3 First Order Change in the Nonbasic Activities 189
6.6.4 First Order Change in the Penalty Function 190
6.6.5 Deriving First Order Optimality Conditions 191

6.7 First Order Optimality Conditions 226
6.8 Implemented Version 228
69 Conclusion e e e e 228

7 Testing results
7.1 Introduction.
711 TestProblems ce
7.1.2 Code and Algorithm Parameters
713 TestingProcess,
7.2 PresentationoftheResults
73 Resultsand Comments.
7.3.1 LinearProblems
7.3.2 QuadraticProblems,
7.3.3 Generated Problems‘
7.34 Nonlinear Problems

74 OverallCommentst i i it i e e e e e e e e e e e

8 Conclusion
8.1 Contributions L. i e

82 Further Work L i e e e e e e e e e e e e e e

A Test Problems
Al LinearProblems
A2 QuadraticProblems,
A3 Generated Problems,,

A.3.1 Untransformed Problems

229

229

229

230

232

233

235

236

239

240

242

249

251

251

253

255

A32 Transformed Problems i ueneewno.

A.4 Nonlinear Problems

B Notation

Bibliography

..............................

282

289

List of Tables

3.1

3.2

7.1

7.2

73

7.4

7.5

7.6

Composition of the £; Penalty Term 35
Notation for Lagrange Multipliers. 48
Starting Values oo, 233
Results for Linear Problems _....._........ 238
Results for Quadratic Problems 240
Results for Generated Problems _...._ ..., 242
Results for Nonlinear Problems R 245
Results for Nonlinear Problems when . =200 -. 248

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

4.1

6.1

6.2

p1(z) (shaded region),forze R 11
R)(z) (connected line segments),forz € R 12
I; (connected line segments), Feasible region of BP; 13
Contours (dashed lines) of the Objective Function 13
p2(z) (shaded region) and Ry(z) (y=1),forze R. 14
Z, (solid line segment), Feasible Regionof BP; 15
Motivation for e-Activities, 95
Original Feasible Region 179
Perturbed Feasible Region 179

Chapter 1

Introduction

The bilevel programming problem is a constrained optimization problem defined over
two vectors of unknowns, z and y. Among the constraints is a requirement that y is a
solution of another optimization problem, called the inner or lower level problem. The
inner problem, which is defined over both sets of unknowns, is parameterized by = and is
optimized only with respect to y. Thus, the bilevel programming problem involves two

connected hierarchical levels of optimization.

Mathematically, the bilevel problem can be described as follows for z € IR™ and
y € IR™, where n and m are positive integers. Define P = {1,---,p} and T = {1,--%,t}

for nonnegative integers p and t.
BP : rrzngl F(z,y) subjectto Gi(z,y)})>0,i€ T, and y € R(z),
where

R(z) = {ye R™:y solves LLP(z)},

and

LLP(z) : myin f(z,y) subjectto gi(z,y)>0,i€P.

1

CHAPTER 1. INTRODUCTION 2

Assume that all functions in z and y are continuous and twice differentiable over JR**™.

A point (z,y) is feasible for BP if it satisfies G;(2,y) > 0 for all i € T', as well as the
solution constraint y € R(z). Note that feasibility of (2, y) for BP implies the feasibility of
y for LLP(z). No assumption is made regarding the existence or uniqueness of a solution
of LLP(z). If LLP(z) has no solution for some z, then there exists no y such that (z, y)
is feasible for BP. For a given z, R(z) is a multiple-valued function of z. The set may be
empty, contain a single element, or contain more than one element. Thus, at a feasible

point (z,y), ¥ is an implicit function of z.

A gloBal solution of BP is a feasible point which minimizes the value of the objective
function F(z,y) over the set of all feasible points of BP. The bilevel problem is usually
nonconvex as a result of the solution constraint. Consequently, bilevel problems often

have local solutions in addition to any global solutions.

Most research to date has concentrated on the linear bilevel problem, in which all the
functions are linear over IR™*™. Even in this restricted form, the problem is often very
difficult to solve due to the solution constraint and the resulting nonconvex feasible region.
Ben-Ayed and Blair [15] proved that the linear bilevel problem is NP-hard. Nonlinearity
in the objective and constraint functions complicates matters significantly. While there
exist algorithms for the nonlinear case of bilevel programming, to date all techniques
for which extensive numerical results have been presented have assumed special forms
for the bilevel problems being solved (including, for example, linear constraints, convex
problems, or separable quadratic objective functions). This thesis describes a theoretical
and practical algorithm for solving nonlinear bilevel problems, and presents extensive

numerical results along with convergence results.

Chapter 2 presents a more detailed description of the bilevel problem, including some

applications and properties. It also includes a description of several approaches which

CHAPTER 1. INTRODUCTION ' 3

have been used to solve bilevel problems.

Due to the difficulty in directly solving the nonlinear bilevel problem, the proposed
algorithm instead solves a related problem. By replacing the solution constraint with
a set of conditions that must be satisfied by a solution of LLP(z), a one level problem
is defined. This related problem is actually equivalent to the bilevel problem under a
stated set of conditions. However, these conditions are not usually satisfied. The related
problem, like the bilevel problem, is generally nonconvex, and it may be difficult to find an
initial feasible point. Therefore, an ¢; exact penalty function is used to solve the related
problem. This technique involves solving a series of unconstrained optimization problems.
Chapter 3 defines the related problem and describes the penalty function algorithm. It
also includes a description of the trust region technique used to solve the unconstrained
penalty function problems. Chapter 4 focuses on the resolution of several problems which
arise when the theoretical algorithm of Chapter 3 is actually implemented. In Chapter

5, the algorithm is proven to converge to a minimum point of the penalty function.

As a result of the structure of the related problem, standard degeneracy resolving
techniques proved inappropriate. Chapter 6 describes the nature of degeneracy in the
penalty function and details the method developed to recover from the difficulties it
causes. The technique, which is one of the major contributions of this thesis, is also

proven to work.

The algorithm implementation was tested on a variety of bilevel problems found in
the literature. In addition, it was tested on some larger bilevel problems which were
generated by the technique of Calamai and Vicente [28], and on some original nonlinear
problems. The algorithm was quite successful in identifying local solutions of both linear
and nonlinear bilevel problems. Detailed results and analysis are presented in Chapter 7.
A listing of the test problems is included in Appendix A.

CHAPTER 1. INTRODUCTION 4

This dissertation concludes with Chapter 8, which summarizes the major contributions
of this research and discusses possible future work. Appendix B includes a listing of some
of the notation used throughout this work.

Chapter 2

Bilevel Programming

This chapter provides an overview of bilevel programming. Needed terminology is in-
troduced in Section 2.1, followed in the next two sections by descriptions of applications
and of problems related to bilevel programming. Two example problems are discussed
in Section 2.4, and some general characteristics of bilevel programming are presented
in Section 2.5. The chapter concludes with a summary of existing methods for solving

bilevel problems and a brief overview of the proposed technique.

2.1 Introduction

The following definitions are required. Note that the notation of the introduction is

continued.
Definition 2.1

1. The outer or upper level problem is

ULP: nzliJl F(z,y) subjectto G;(z,y)>0,i€T.

CHAPTER 2. BILEVEL PROGRAMMING 6

2. The inner or lower level problem, parameterized by z, is
LLP(z) : min f(z,y) subjectto gi(z,y)>0,i€P.

3. R(z), the set of solutions of LLP(z), is called the rational reaction set of z. It

contains both local and global solutions of the lower level problem!.
4. The solution constraint on y is the constraint y € R(z).

5. The induced region is the set of feasible points of the bilevel problem.

I={(2,9) e R**™:Gi(2,y) >0 forieT, and y € R(z)}.

6. The reduced or relazed problem is

RBP: llzll.;l F(z,y) subjectto Gi(z,y)>0, i€T

gi(z,y) 20, i€P.
7. A solution of the bilevel problem is a solution of
nzn;;l F(z,y) subject to (2,y) € T.

This definition includes both local and glabal solutions of the problem.

2.2 Applications

The earliest explicit use of the bilevel problem as denoted by BP in Chapter 1 dates
from 1977, in the work of Candler and Norton [30]. The authors use a linear bilevel

problem to simulate the relationship between the actions of the government and farmers

!Some definitions of bilevel problems (for example, [7], [13], and [67]) include an assumption that the
inner problem LLP(z) is convex and has a unique global solution for each feasible value of z. We feel
that the nonlinearity of LLP(z) warrants the inclusion of its local solutions in R(z).

CHAPTER 2. BILEVEL PROGRAMMING 7

in a Mexican agricultural system. The upper level variables model various decisions made
by the government: for example, levels of subsidies on fertilizer, prices for different crops,
and water taxes. The lower level variables correspond to the actions of the farmers, and
include the amount of fertilizer and water used, and the amounts and types of crops
planted. The government attempts to achieve some goal (for example, minimizing their
expenditures or maximizing production of various crops). At the same time, the farmers
attempt to maximize their own profits. Candler and Norton note that problems of this
type were traditionally solved using one level linear programs. However, such models do
not truly reflect the dependencies within the relationship between the actions of the two

parties, particularly when they have conflicting goals.

Bilevel programming has since been used to solve other problems from the field of
economics (see [29] and [43]). Many other sources have yielded applications as well. Two

examples are noted below.

e Network Design Problems. In (54], LeBlanc and Boyce use a bilevel problem to
model a network of roads, as an aid in deciding which t;)ads should be upgraded
in order to improve network performance. Some roads can be added or improved
in an attempt to reduce network congestion, but the drivers who use the network
will always attempt to achieve their gc-)al (for example, to take the shortest route
between two points). Proposed improvements of various routes are reflected in the
upper level variables, and the lower level variables correspond to the actual routes

taken by the network users.
Other authors (see [16] and [56]) have also considered this type of application.
e Environmental Policy. Kolstad [52] describes how bilevel programming can be used

to model environmental regulation. In order to achieve pollution concentration

standards while minimizing social costs, the government sets emissions taxes on

CHAPTER 2. BILEVEL PROGRAMMING 8

polluters from industry. The tax levels are the upper level variables. Industry may
react in many ways in order to maximize profits, and these reactions correspond
to the lower level variables. Industry’s level of emissions may increase or remain
unchanged if the tax level is too low, or it may decrease if the tax is restrictive.
However, if the tax is too high, industry cutbacks and a subsequent increase in

unemployment may result.

In [9], Bard describes another application of bilevel programming in evaluating

environmental policy.

The reader is referred to Anandalingham and Friesz [7], Kolstad [52], Nicholls [58], and

Vicente and Calamai [66] for more examples of applications of bilevel programming.

2.3 Related Problems

While research into the bilevel problem BP is quite recent, there has been active research

for many years into equivalent and related problems.

The continuous max-min problem (for example, see [42]) is a special case of BP, in
which the upper and lower level objective functions satisfy f(z,y) = —F(z,y). This
problem has been studied in many forms (linear and nonlinear, unconstrained and con-
strained). Techniques used to solve max-min problems will not generally be applicable
to bilevel problems. However, an algorithm which solves BP can also solve max-min

problems.

Static constrained Stackelberg problems (defined as duopoly problems in [68]), which
model two person games as optimization problems, are actually bilevel problems. Much
of the literature (for example, [2], [6], and [59]) on bilevel problems refers to the problems
being studied as Stackelberg problems.

CHAPTER 2. BILEVEL PROGRAMMING . 9

Large scale linear problems are sometimes solved using decomposition techniques (see
[27]). These techniques involve identifying sets of variables of the linear problem which do
not interact with each other. Subproblems are defined for each of these sets of variables.
The objective functions of the subproblems are derived from the objective function of
the original problem. These problems look very similar to bilevel problems: the reduced
(lower level) problems are solved, and are then combined into a single solution by the
original (upper level) problem. However, as noted in [29] and [52], there are several im-
portant distinctions between decomposition problems and true bilevel problems. All the
variables are actually controlled by one entity in the decomposition problems, unlike the
bilevel problems. Also, while the objective functions in BP may be conflicting or nonco-
operative, the objective functions in the decomposition problems are always cooperative
since they are derived from the single objective function of the original problem. However,
the relationship between the decomposition techniques and bilevel problems indicate that
a general technique for bilevel programming might be useful in solving some large scale
nonlinear optimization problems. Conversely, a decomposition technique could serve as
motivation for a new algorithm for bilevel programming. In fact, in [5], Alexandrov and
Dennis describe a decomposition technique for solving nonlinear programs, and in [4],
they present a theoretical framework for solving unconstrained bilevel problems based on

their earlier work.

Another problem which is closely related to BP was posed in the early 1970’s, by
Bracken and McGill ([23], 24], [25], and [26]) and Geoffrion and Hogan [45]. These

problems are called optimal value bilevel problems, and can be written as follows.
OVBP: min F(z,v(z)) subjectto Giz,v(z))20, i€T,

where

v(z) = min f(z,y) subjectto gi(z,9)20, i€P.

CHAPTER 2. BILEVEL PROGRAMMING 10

Note that the optimal value of the lower level problem is referenced in the upper level
functions, not the solution of the lower problem. As a result of this difference, OVBP
has one significant property that BP, in general, does not. Bracken and McGill [24]
verified that if the upper and lower level problems are both convex, then OVBP is also
convex. Consequently, optimal value bilevel problems are usually easier to solve than

bilevel problems like BP.

The generalized bilevel problem (see [7]) is an extension of the bilevel problem BP, in
which LLP(z) is replaced by a variational inequality (that is, an infinite set of constraints),

as stated below. N
GBP: nzli’}l F(z,y)

st. z€X,yeY

and f(z,9)(y —y) 20, V¥ €Y.
Under appropriate assumptions, the variational inequality is equivalent to a mathematical
program. Therefore, any technique to solve GBP can also be used to solve BP. However,
because not every variational inequality corresponds to a mathematical program, tech-

niques designed for solving BP may not be appropriate for solving GBP.

2.4 Example Problems
Two small bilevel problems are presented to illustrate some properties of bilevel programs.
Consider the following bilevel problem.
BP; : rinyn (z+1)y subjectto 0<z<2andye€ Ry(z),

where

Ri(z) = {y € IR : y solves LLP;(z)}

CHAPTER 2. BILEVEL PROGRAMMING 11

Figure 2.1: p)(z) (shaded region), for z € R

and

LLP,(z): rn;n z—~y subjectto z+y<2and -1<y<l1.

To determine the induced region of BP;, we must examine the lower level problem
carefully. Let p;(z) be the feasible region of LLP,(z), for any value of z. The set is

illustrated in Figure 2.1 and is described mathematically as,

- [-1,1] ifz<1
p(z) =4 [-1,2-2] ifl<z<3
) if3 <z

Now, LLP,(z) is simply

n}lin —~y subject to y € py(2).
The argmin solution of this problem,

{1} ifz<1
Ri(z)=4 {2-2} ifl<z<3

e otherwise,

CHAPTER 2. BILEVEL PROGRAMMING 12

'
W

’

N

L]

-
e
nN
m -~y

Figure 2.2: Ry(z) (connected line segments), for z € R

is the rational reaction set of the bilevel problem BP,, for z € R, and is shown in Figure

2.2. With this simplification, the feasible or induced region of the bilevel problem is
Li={(z,y) e R*:0<z<2and y € Ry(z)},

as illustrated by the two connected line segments in Figure 2.3. Note that even with a
univariate, convex linear problem as the lower level problem, the induced region of BP;

is not convex. Therefore, BP;, now stated,
ll:lidll (z+ 1)y subjectto (z,y)eI;

is nonconvex and may have multiple local minima. Figure 2.4 displays several contour
lines of the objective function along with Z. From the diagram, it is clear that feasible
descent is possible from any point along the line segments, except A = (0,1) and B =
(2, 0). Therefore, both A and B are local solutions of BP;. Because the objective function

value is lower at B than A, the point B is the global solution of BP;.

Note that rewriting BP; by moving a lower level constraint to the upper level of

the bilevel problem significantly changes the structure of the bilevel problem. Consider

CHAPTER 2.

BILEVEL PROGRAMMING 13
y
1
T a . \ + x
-3 2 -1 1 2 3
-1 ¥

Figure 2.3: 7, (connected line segments), Feasible region of BP;

Figure 2.4: Contours (dashed lines) of the Objective Function

CHAPTER 2. BILEVEL PROGRAMMING 14

Figure 2.5: pa(z) (shaded region) and R;(z) (y =1),forz € R
moving the lower level constraint z +y < 2.
BP, : 1;1%1 (z+ 1)y subjectto z+y<2 0<z<2 andy€ Ry(z),

where
R2(z) = {y € R : y solves LLP3(z)}
and

LLP,(z) : ntm z—y subjectto -1<y<1.

Using similar analysis for BP; as used above for BP,, pa2(z), the feasible region of
LLP;(z), and R;(z), the rational reaction set of LLP;(z) satisfy

{yeR:-1<y<1}
{1},

p2(z)
Ra(z)

il

for all z € IR. These sets are illustrated in Figure 2.5. The feasible region, I,, for BP,
(as shown by the solid line segment in Figure 2.6) is significantly different from 7.

I, = {(zy):0£2<2, 2+y<2 y€ Ryz)}

CHAPTER 2. BILEVEL PROGRAMMING ~ 15

y
A Q————
efm— 4 b b + x
3 2 - 1 2 3
a4+

Figure 2.6: I, (solid line segment), Feasible Region of BP,

L. {(z,9):0<z<2, z24+y<2 y=1}

i

= {(z9¥):0<z<1, y=1}
The set Z; is convex and BP; is a convex bilevel problem. Note that the global solution
of BP, is not in the induced region of BP,, and therefore is not even feasible for BP;.

Recalling the contours of the objective function shown in Figure 2.4, the point A4, a

local solution of BP,, is the global solution of BP,.

Even though the same functions define both BP, and BP,, the problems are signifi-

cantly different and have different solution sets.

2.5 Characteristics of the Bilevel Problem

Some of the properties exhibited by the example bilevel problems BP; and BP, are

characteristic of bilevel problems in general, while others are not.

@ BP; is not convex, despite the convexity of LLP,(z) for all feasible z. While BP,
is a convex problem, most bilevel problems are not convex due to the solution

constraint.

CHAPTER 2. BILEVEL PROGRAMMING 16

e The solutions of BP; and BP; occur at vertices of the feasible region of the reduced
problem. All linear bilevel problems have this property, and, as will be seen in
Section 2.6.1, it is the basis for many algorithms designed to solve this special case
of bilevel programming. However, this property is not usually present in nonlinear

problems, for which there may be no vertices in the feasible region.

e The rational reaction sets of LLP; and LLP,, for feasible values of z, are singletons
corresponding to unique global solutions of the lower level problems. This is not
generally the case for a nonlinear lower level problem, which may have multiple
global and local minima. Combining this fact with the first property above, local

solutions are possible at both levels of the problem.

Some definitions of the bilevel problem (for example, [62]) assume that the solution
set of the lower level problem is a singleton for all feasible z. We consider that
to be a very strong assumption, and it is not made here. Consequently, we must

acknowledge the possibility of local solutions.

o Although not evidenced by the problems BP; and BP;, another concern in solving
any optimization problem is the possibility of degeneracy. As with the issue of
local solutions, degeneracy may be present at both levels of the bilevel problem.

Degeneracy is the focus of Chapter 6.

2.6 Solution Techniques

Many algorithms have been proposed for solving the bilevel programming problem. Most
of these algorithms have been designed for special cases of the problem. While some of
the techniques used are suitable for only the form of the problem being considered by the

authors, others use principles that are applicable to more general bilevel problems. The

CHAPTER 2. BILEVEL PROGRAMMING 17

various algorithms can be classified?, according to the solution approach used, into one

of the following groups:

e Extreme point search or vertex enumeration algorithms;
o Descent direction algorithms;

e Linear complementarity algorithms;

e Branch and bound algorithms;

e Penalty function algorithms.

The basic motivation and structure of the algorithms in each class are described in this

section.

This section is not meant to provide a complete review of all published algorithms for
bilevel programming. Rather, it is intended as a brief introduction to existing approaches
to the problem, so that our proposed algorithm can be viewed in context with other

solution methods.

2.6.1 Extreme Point Search Algorithms

The family of algorithms referred to as extreme point search or vertex enumeration al-
gorithms are used to solve linear bilevel problems. They are motivated by a theoretical
result of Bialas and Karwan [21]. We shall consider the linear problem in" the following
form:

LBP: min F(z,y) = aTz + Ty

zy

subject to y € R(z) = {y € R™ : y solves LIIP(z)},

2The Alexandrov-Dennis [4] algorithm, noted on page 9 of this text, does not fit into just one category.

CHAPTER 2. BILEVEL PROGRAMMING 18

where
LlIP(z) : ngn f(y) =cTy subjectto ATz + BTy >d.
Bialas and Karwan showed that a solution of LBP must be a vertex, or extreme point,

of the feasible region (in terms of z and y) of the lower level problem. Therefore, it must

be a vertex of the simplex
p={(z,y) € R**™ : ATz + BTy > d}.

While a solution of LBP must be a vertex of p, not all vertices of p are feasible for LBP.

The goal of extreme point search algorithms is to examine all vertices (z,y) of p to
identify a vertex which is feasible for LBP (for which y solves LIIP(z)) and which mini-
mizes F(z, y) over all feasible points. However, as the region p may have an exponential
number of vertices, simple enumeration of the vertices is too expensive. The various ex-
treme point search algorithms use different techniques to efficiently search the vertices.
Some of the proposed search techniques (for example, [31], {39], and [59]) examine only
vertices which are feasible for LBP. However, the method we shall examine, proposed by
Bialas and Karwan [21] and described due to its simplicity, iterates over infeasible points

and terminates as soon as a feasible point is identified.

The algorithm begins by finding a global solution (z!, y!) to the reduced problem
LP, tiu;l F(z,y) subjectto (z,y)€p.

If (z!,¥") is not in the induced region, iteration k, for k = 1,2,---, proceeds in the

following manner.

o Let V* be the vertices visited in iterations 1,2, - -+, k—1, and let W* be the vertices

of p which are neighbors of the points in V.

CHAPTER 2. BILEVEL PROGRAMMING 19
e Define the new point (z¥*!, y*+1) by solving the linear problem
LP:: min F(z,y) subjectto (z,y) € Wk\ V%

e Update the iteration count k =k + 1.

e Repeat until y* solves LLP(z*).

This algorithm, which identifies the global solution of LBP, is called the Kth best algo-
rithm because it terminates after K iterations, where (z¥, y¥) corresponds to the Kth

lowest value of F over the simplex p.

The theory behind extreme point search algorithms cannot be extended to more gen-
eral bilevel problems. Because nonlinear single level problems do not generally have
solutions at vertices, the motivating theory is not applicable, in general, to nonlinear
problems. However, Nicholls [58] has developed a grid search algorithm (based on the ver-
tex enumeration technique) for a specific, two variable nonlinear bilevel problem. Because
of the very specialized form of the problem, which was designed to represent the complete
operations of an aluminum smelter, the author was able to divide the constraints into
different groups (linear, convex quadratic, concave quadratic and those involving inverses
of the two variables). Each group of constraints was handled individually. Currently, it
is not known whether this technique can be extended to the more general forms of bilevel

problems considered here.

2.6.2 Descent Direction Algorithms

Descent direction algorithms view the bilevel programming problem BP solely in terms
of the upper level variables z € IR™. The lower level variables y are considered only in

* relation to the upper level variables. Since y is constrained to be a solution of LLP(2)

CHAPTER 2. BILEVEL PROGRAMMING 20

at a feasible point (z,y), y is an implicit function of z. It is assumed that the rational
reaction set R(z) contains a single entry for each feasible z. For convenience, we shall

denote this solution y*(z) to emphasize the dependence of y on z.

Starting from a feasible point z € IR™, descent direction algorithms attempt to find a
direction w € IR™ along which the objective function of the bilevel problem is decreased.
A step a > 0 is calculated along the descent direction and a new point (z + aw) is
chosen which provides reasonable decrease in the objective and which is feasible for the
bilevel problem. Feasibility requires calculating y*(z + aw). The process continues until a
descent direction cannot be defined and the current point is a local solution of the bilevel

problem.

The various descent direction algorithms which have been proposed have the basic
structure outlined above, but differ in the way that the descent direction is calculated.
One major concern facing researchers using descent algorithms is the availability of the
gradient of the objective function V.F(z,y"*(z)) at a feasible point. Using the chain rule

for differentiation,
VF(z,y™(2)) = V2F(z,y) + V,F(z,y)V2y"(2)-

While V. F(z, y) and V F(z, y) are assumed to exist, the gradient V.y*(z) may not exist,
and even if it does, may be difficult to calculate. Assuming that the gradient exists, some
descent direction algorithms (for example, the techniques cited in [52] and [53]) have

concentrated on ways to approximate V. y*(z).

Savard and Gauvin [62] have proposed a different approach to the problem of defining
a descent direction. Instead of calculating or estimating V.y*(z) and using this vector
to define a descent direction, the authors propose calculating the actual steepest descent
direction for the nonlinear bilevel problem. They describe a linear-quadratic bilevel prob-

lem (in which all functions are linear except for the lower level objective function which

CHAPTER 2. BILEVEL PROGRAMMING : 21

is quadratic) whose solution is the steepest descent direction for BP. The structure of
the linear-quadratic bilevel problem can be exploited so that it is easier to solve than the

nonlinear bilevel problem.

Once a descent direction w has been defined for the bilevel problem, regardless of the
manner in which it was defined, a positive step size a must be determined such that an
acceptable decrease is obtained in the objective. At the same time, the new point must

be feasible. The new point (z(a), y(a)) must be calculated, where
z(a) = z+at
y(@) = y'(z+at).
Therefore, for each trial value of a considered, LLP(z(a)) must be solved. Solving these

problems considerably raises the cost of performing the descent direction calculation in

the upper level variable space.

These algorithms have been described for nonlinear problems. Numerical resuits for a
few large-scale nonlinear bilevel problems have been quoted in [53], but the other descent

direction techniques have cited results for only a few small problems.

2.6.3 Linear Complementarity Algorithms

Because bilevel problems are so difficult to solve, many techniques for solving them at-
tempt to do so by solving a series of simpler, one level problems. Linear complementarity
algorithms use this general approach to solve linear bilevel problems of the form
LBP, : min F(z,y) =aTz + bTy
subject to y € R(z) = {y € R™ : y solves LIIP(z)}

where

LIP,(z) : ngn fy) =cTy subjectto ATz +BTy>d, =z,y >0.

CHAPTER 2. BILEVEL PROGRAMMING 22

The representative algorithm described here is due to Jidice and Faustino [51], and is an

improvement of the algorithm proposed by Bialas and Karwan [21]-

The initial step in the Jidice-Faustino algorithm involves defining an equivalent one
level problem by replacing the solution constraint connecting the upper and lower level
problems with conditions that must hold at solutions of the primal and dual forms of the

lower level problem.
1-LBP, : 13‘in‘e F(z,y) subjectto (z,y,A a,8)€ KKT,
THY s ARy,
where .

KKT = {
—-d+ ATz+ BTy =
c—- B\

278 = AT

)

0
o o W 8

Y

z,y,\apf
}-

Note that KKT includes points which satisfy the Karush-Kuhn-Tucker necessary opti-

mality conditions for the lower level problem.

The vector A, the Lagrange multipliers for the lower level problem, is the solution
of the dual of the lower level problem. The vectors a and 3 are the slack variables
for the primal and dual problems, respectively. Note that the complementary slackness
conditions for the primal and dual problems are the third set of constraints listed in KKT.
The problem 1-LBP, is not a linear problem. 1t is a nonconvex problem in which all but

the complementary slackness conditions are linear.

Linear complementarity algorithms have been used to identify solutions of linear and

quadratic problems by finding points which satisfy a set of conditions which must hold at

CHAPTER 2. BILEVEL PROGRAMMING 23

a solution. To use linear complementarity techniques to solve 1-LBP ;. (and therefore to
solve LBP,), the authors introduce a variable w and convert the objective function into
a constraint .

aTz+ Ty <w.

The bilevel problem is now a problem in w:
P,: min w subject to (2,9, «a,8) € T(w),
where
Tw) = {(z.v.\ a.B)e KKT :w—a¥z - bTy >0}

Linear complementarity techniques are used by the authors to find a feasible point in

T(w), for any value of w.

If T(w) is empty, then w is a lower bound on the value of F(z,y) at a global solution
of LBP, . Increasing the value of w and invoking a complementarity algorithm to find a
feasible point of Y(w), for the new value of w, either finds a feasible point of LBP4 or
further increases the lower bound on the solution. If there is a feasible point in T{w) for
the current value of w: then w is an upper bound on the optimal objective function value
of LBP,. By decreasing w in this case, this upper bound can be reduced. Modifying w
in the manner described here will reduce the gap between the upper and lower bounds
on the solution of LBP,. This is the technique used by the authors to find an eglobal

solution of LBP, (see [51] for an explanation of this term).

Unlike the extreme point search algorithms, the linear complementarity algorithms
do not exploit the fact that the solution of the linear bilevel problem occurs at a vertex of
the feasible region of the lower level problem. Combined with the fact that the Karush-
Kuhn-Tucker (KKT) conditions (excluding the complementary slackness conditions) are

linear for a quadratic problem, this means that this approach can also be used to solve

CHAPTER 2. BILEVEL PROGRAMMING 24

bilevel problems whose upper level objective is linear and whose lower level problem is a

convex quadratic problem.

2.6.4 Branch and Bound Algorithms

Like linear complementarity algorithms, branch and bound algorithms involve solving a
series of “simpler” problems rather than solving the bilevel problem directly. Once again

the KKT necessary conditions are used to define a one level optimization problem,

BPgkr : gn} F(z,y) subjectto Gi(z,y)>0 teT,

and Vy L(z,¥,A) =0,

gi(zry) ZO’ ieP,
Aigi(z, !I) = ol 1€ P!
A: >0, ieP,

where
P
L(z,9,2) = f(z.9) — Y_ Migilz, ¥)
=1

is the Lagrangian function of the lower level problem defined at z,) is the associated
vector of Lagrange multipliers, and
8
V, Lz, 9.3) = (- Llz 0)
Yi ieM
for M = {1,---,m}, is its gradient with respect to the vector y. As mentioned previously,
the complementary slackness conditions are generally nonlinear and nonconvex, and it

follows that BPgxr is as well.

Because the complementary slackness conditions are generally the most difficult con-
straints to satisfy in solving BPxxr, branch and bound algorithms attempt to defer

introducing those conditions into the solution process for as long as possible. This goal

CHAPTER 2. BILEVEL PROGRAMMING 25

is achieved by building a tree of problems derived from BPxxr. At the root, or initial

node, of the tree is the problem

B gny"xi F(z,y) subjectto G;(z,y)2>0, teT,
Vy L(z,y,2) =0,
gi(z.9) 2 0, i€ P,
A; >0, i€ P,
which is BPg g without the complementary slackness conditions. This problem is solved

and the solution is used to construct the subtree in the following manner.

Assume that the problem at node k, denoted Py, has been solved.

o If the complementary slackness condition A;g;(z,y) = 0 is violated, then two chil-
dren of node k are defined. One of the children, node k;, contains problem P;. with
the added constraint A; = 0. The other child, at node k;, contains P plus the
constraint g;(z,y) = 0. Therefore, any solution of the problems at nodes k; and k,

satisfies the jth complementary slackness condition.

e If there is no solution to the problem at node k, then the subtree rooted at node &

is not expanded further because all problems in the subtree would be infeasible.

o If the solution to the problem at nodé k satisfies all the complementary slackness
conditions, then a solution of BPxxr has been identified. Its objective function
value is compared to the best solution found so far. Because the solution just found
is also a solution of the problems defined at the children of the current node, the
tree is not expanded further. The subtree will not yield a better solution of BPxxr

than the current point.

The various branch and bound algorithms (as found in (3], [12], [13], [41], [43], [48],
and [59]) use different search order rules for expanding the tree. Some use depth first

CHAPTER 2. BILEVEL PROGRAMMING 26

search procedures and others use breadth first procedures. No individual approach seems
better in general, although some may be more suited to different problems or solution

goals.

Although the branch and bound technique is applicable to the nonlinear bilevel pro-
gramming problem, most of the algorithms have been designed for linear or quadratic
problems. Only (3] and [41] consider the nonlinear problem, and both of them place
restrictions on the nonlinear bilevel problem being solved. Without these restrictions,
the amount of work required to solve one nonlinear problem in the search tree may over-
whelm the simplicity of the algorithm, and the technique may not be useful for a general
nonlinear bilevel problem.

2.6.5 Penalty Function Algorithms

Many researchers have used penalty functions to define “simpler” problems in order to
find a solution of BP. Unlike the other classes of algorithms described here, there is not
a common general approach shared by all the penalty function algorithms.

Several techniques exist in which the lower level problem is replaced by a series of
unconstrained penalty function problems. In [1], the authors use the solution of the
penalty function subproblem to define the gradient V_y*(z) (see Section 2.6.2) to be
used within a descent direction algorithm. In [2], the same authors instead replace the
lower level problem with the stationarity condition of the unconstrained penalty function
problem defined in their earlier work. In [50], the authors combine a weighted penalty
function for the lower level problem with the upper level objective function to define a
second penalty function which is minimized to find a solution of BP. These techniques
have been designed to solve nonlinear problems, and numerical results are presented are

for several small problems.

CHAPTER 2. BILEVEL PROGRAMMING ' 27

In [6], Anandalingham and White introduce, for the linear bilevel problem, a penalty
function which consists of the upper‘ level objective function and a weighted penalty term
for the solution constraint. The penalty term is the duality gap between the the primal
and dual versions of the lower level problem. By varying the weight and minimizing the
penalty function, a solution of the linear bilevel problem can be found. The function is
proven to be exact by showing that there exists a finite value of the penalty parameter for
which some solution of the penalty function is also a solution of the linear bilevel problem.
Marcotte and Zhu [57] propose a similar penalty function technique for the more general
bilevel problem GBP described in Section 2.3. The constraint sets are assumed to be
convex and some additional conditions are placed on the form of the problem. The new
penalty function (which again is based on the duality gap of the lower level problem) is
proven to be exact. Theoretical results are illustrated with two small examples, but a

complete algorithm is not presented.

For the linear case, Bi, Calamai and Conn ([17] and [19]) convert the bilevel problem
to a one level problem using the KKT necessary conditions, as done previously in defining
BPxxr. An exact £, penalty function is defined based on the new one level problem.
A minimum of the one level problem is found by modifying the penalty parameter and
solving a series of unconstrained penalty function problems. Conditions are presented for
which this minimum is also a minimum of the bilevel problem. Since these solutions may
be local minima, the authors also include a globalization step based on objective function

cuts to complete their algorithm. Numerical results are presented for linear problems.

In [55], Luo et al. describe a differentiable exact penalty function for the nonlinear
bilevel problem whose lower level problem is a quadratic problem. While the technique

seems promising, no numerical results are presented.

In [63] and [64], Scholtes et al. analyze and solve mathematical programs with equilib-

CHAPTER 2. BILEVEL PROGRAMMING 28

rium constraints. The authors present a series of optimality conditions for these problems,
and present a trust region algorithm for solving them which uses exact, piecewise smooth
penalty functions. The algorithm presented is theoretical and is incomplete with regard

to the solution of the trust region subproblems.

2.7 A New Algorithm

In [20], Bi, Calamai, and Conn introduce the idea of extending their linear technique to
nonlinear problems. In this thesis, this concept is fully develgped. Subsequent chapters
describe in detail the one level problem that is solved instead of the bilevel problem, along
with the penalty function used, and the techniques used to solve the penalty function

subproblems. Convergence and numerical results are presented.

Chapter 3

The Proposed Algorithm

3.1 Introduction

An algorithm is proposed which solves nonlinear bilevel problems by solving a “simpler”
problem instead. The technique of Bi, Calamai and Conn for linear bilevel problems (as
outlined in the previous chapter) is extended to the nonlinear case. The bilevel problem
BP is transformed into a related, one level problem. A solutiog of the one level problem

is obtained using an exact penalty function algorithm.

This chapter includes the derivation of the related problem, along with a description
of some of the advantages and disadvantages of solving this problem instead of the original
bilevel problem. The choice of a penalty function technique, in general, and the ¢; penalty
function, specifically, is motivated. A top level view of the penalty function -algorithm for
solving the related problem is then presented. The remainder of this chapter discusses

the trust region framework used to solve instances of the penalty function subproblem.

29

CHAPTER 3. THE PROPOSED ALGORITHM 30

3.2 On Solving BP

The bilevel problem BP is a very difficult problem to solve. Consider the process involved

in identifying a feasible point (z,y):
1. Find 2 € IR" such that the feasible region of the lower level problem
p(z) ={y€ R™ : gi(z,y}) 2 0, i € P}
is not empty.
2. Solve the lower level problem,
LLP(z): mym f(z,y) subject to y € p(z)
to define the rational reaction set R(z).
3. Ensure that z is feasible for BP by verifying that

Jy € R(z) such that Gi(z,y) >0, i€ T.

Minimizing the objective function F(z,y) over all feasible (z,y) requires significantly

more work.

Because of the difficulty in solving BP directly, we propose transforming it into a one

level problem, and then solving the new problem using standard optimization techniques.

Initially, for presentation purposes, assume that LLP(z), for all feasible z, is a con-
vex problem over IR™, with a convex objective function f(z,y) and concave constraint
functions g;(z, y), for ¢ € P. With this assumption and under an appropriate constraint

qualification!, the KKT optimality conditions for the lower level problem at z are both

'For example, in this problem, Slater’s condition requires that p(z), the feasible region of LLP(z), is

nonempty for all feasible z.

CHAPTER 3. THE PROPOSED ALGORITHM 31

necessary and sufficient for identifying global solutions of LLP(z). In other words, R(z),

the set of solutions of LLP(z), is equivalent to K(z), where

K(z) = {ye€R™ : 3 € RP such that (y,)) satisfy the KKT
optimality conditions K1-K4 for LLP(z)},

and

K1. A solution y of LLP(z) must be feasible: g;(z,y) > 0, for i € P.
K2. The Lagrange multipliers A are nonnegative: A; > 0, for i € P.
K3. The complementary slackness conditions are satisfied: A;gi(z, y)=0, forie P.

K4. The point y, with the multipliers), is a stationary point, with respect to y, of the

Lagrangian function for LLP(z), that is, c(z, y, A) = 0, where

a
ci(zr ¥, A) = %L(z,y,)\)

- an—i(F(z,y)-/\Ty(zay))

a d
= +—F(z,y)- Aig—gi ’
7. F (@9 ; 5 %@ 9)
= 0,

forie M ={1,---,m}.

Therefore, under the stated assumptions, BP is equivalent to the problem

BPgkr : 311‘1\ F(z,y) subjectto Gi(z,y)>0, i€eT,
%i(z,9) 20, {i€P
A >0, ic P,
Aigi(z,9) =0, i€ P,
c(z, v,) =0, ie M.

CHAPTER 3. THE PROPOSED ALGORITHM 32

Note that the equivalence will not hold unless the optimal point satisfies a constraint
qualification for the lower level problem. It is possible that a lower level problem will fail

to satisfy a constraint qualification for all 2.

Due to the relationship between BP and BPg kT, we can solve BP by solving BPxxr
instead. Because BPxxr is a one-level problem, traditional techniques for solving non-

linear problems can be applied to find a solution of BP.

To identify a feasible point of BPxx7 (and therefore of BP), we just need to find
(z,¥,A) € R™*™+P which satisfies the constraints of BPxxr. However, this apparent
simplification may be misleading. While BPx k7 is a one level problem, it is still a difficult
problem to solve. Consider that satisfying c;(z,y, A) = 0 involves identifying a stationary
point of the Lagrangian function of LLP(z). Also, even if the upper level problem of BP
is a convex problem, the complementary slackness conditions are generally nonconvex
and nonlinear. Therefore, BPxxr is usually a nonconvex problem. Finally, note that
BPgxr is defined over n + m + p variables and has £ + m + 3p constraints, which may

be a significant increase over the number of variables and constraints in BP.

We now remove the assumption that LLP(z) is convex, and examine how the absence
of this assumption affects the relationship between BP and BPx k7. As stated previously,
conditions K1, K2, K3, and K4 identify a global solution of the convex problem LLP(z).
Without the assumption of convexity, these conditions must still be satisfied at any
local solution of LLP(z). However, if a value (y,]) is identified which satisfies these
conditions, the point may be either a local minimizer, maximizer or saddle point of
LLP(z). Therefore, the conditions are necessary at a solution of LLP(z), but are not
sufficient to identify a solution of LLP(z). Problems BP and BPg kT are not generally

equivalent without the convexity assumption.

CHAPTER 3. THE PROPOSED ALGORITHM 33

While not equivalent, BP and BPgxr are still closely related. Any solution of BP
must be a solution of BPxxr, and all feasible points of BP are feasible points of BPx k.
While the converse is not true, some solutions of BPxxr will be solutions of BP, and
some feasible points of BP g7 will be feasible points of BP. However, a feasible point of
BPgxr for which (y, A) is a saddle or maximum point of LLP(2) is not feasible for BP.

The following result summarizes the relationship between BP and BPkxr.

Observation 3.1 The following relationships hold between BP and BPkgr:

@ If LLP(z) is convez over IR™, for all feasible z € IR™, then BP and BPkkr are
equivalent.

® If LLP(z) is not convez over IR™ for some feasible z € IR™, then

— Z, the induced region of BP, is contained in S, the feasible region of BPxkr,

that is, TC S.
— The solution set of BP is contained in the solution set of BPxyr.

— If, for some feasible z € IR", LLP(z) has saddle points or local mazima, then
the feasible region of BPxyT contains points which are not feasible for BP,
that is, SZ T.

— The solution set of BPx kT ts not necessarily contained in the solution set of

BP.

Due to the strong relationship between BP and BPgxx7r, we solve BP by solving
BPxxr instead. However, it is understood that solutions of BP i x7 may be found which

are not feasible for BP.

As mentioned above, BPx kT is a nonlinear, nonconvex problem, which may itself be

difficult to solve, and which may have many more variables and constraints than BP. In

CHAPTER 3. THE PROPOSED ALGORITHM 34

order to reduce the number of constraints in the one level problem, we note the following

equivalence.

Lemma 3.2 The set
{(z,v,A) € R™™*P : KI1, K2, and K9 are satisfied}
is equivalent to the set

{(zv v, A) € RM™AP min(_q;(z, y): Ai) =0, for i€ P}-

Proof: The result follows immediately. O

Using the relationship in Lemma 3.2, BPxx7 can be written equivalently, but more

compactly, as a problem with n + m + p variables and t + m + p constraints.

BP¢: mn‘l\ F(z,y) subjectto Gi(z,y) >0, teT,
Z,Yr

min(gi(zr y)r ’\t) =0, i€ P,

ci(z,y,A) =0, teEM.

If, for some i € P, gi(z,y) = X, the min function is nondifferentiable at (z,y,A). The
loss of differentiability is a direct result of reducing the number of constraints in BPx k7

using the equivalence stated in Lemma 3.2.

3.3 Solving the Transformed Problem

As mentioned above, BP¢ is a difficult problem to solve. In the most general case, it
is nonlinear, nonconvex and nondifferentiable, and finding a feasible point is nontrivial.
When solving BP¢, the proposed algorithm avoids the difficulty of finding an initial fea-

sible point by allowing the iterates to be infeasible. The algorithm attempts to minimize

CHAPTER 3. THE PROPOSED ALGORITHM 35

the objective function and move towards feasibility at the same time. A penalty function

framework, based on the ideas in Conn [36), is used to achieve this goal.

A penalty function for BP¢ combines the objective function F(z,y) with a weighted,

nonnegative penalty for infeasibility,
ru(z,v,A) = F(z,y) + pv(z,y,),

where g > 0 is called the penalty parameter, and »(z, y, A) is the unscaled, nonnegative,
penalty associated with the current point. The parameter g is used to balance the possibly
conflicting goals of minimizing F(2,y) and obtaining feasibility (which is attained by

reducing v(z, y, A) to zero).

In the ¢; penalty function for BP¢, each constraint contributes one term to the penalty

v(z,y,A), as detailed in Table 3.1. The penalty terms are simply the magnitude of the

Constraint Penalty Term

1€ T, Gi(zv y) 2 0 - min(Gi(z’ y)1 0)
i € P, | min(g;i(z, y), \s) =0 | | min(g:(z, ¥), M)|
i€ M, c(z,y,A)=0 lei(z, y, A)|-

Table 3.1: Composition of the ¢; Penalty Term

violation of the constraint. The larger the violation becomes, the larger the penalty term

becomes. If any constraint is satisfied, then the corresponding penalty term is zero.

These penalty terms may be nondifferentiable at some points (z,y,A). If, fori € T,
Gi(z,y) = 0 (i.e- an upper level constraint is exactly satisfied), then the corresponding
penalty term is nondifferentiable with respect to (z,y, A). For the remaining constraints,

if the argument of the absolute value function is zero, then the penalty term is again

CHAPTER 3. THE PROPOSED ALGORITHM 36

nondifferentiable. Note that this type of nondifferentiability is in addition to the non-
differentiability inherent in the constraints for ¢ € P. However, the nondifferentiabilities
introduced by the ; penalty terms are similar in nature to the constraint nondifferen-
tiabilities. This similarity is a major reason for the use of the £; penalty function to
solve BP¢. The traditional techniques for handling the ¢; nondifferentiabilities (see, for

example, [14]) can be generalized to handle the constraint nondifferentiabilities.

Let #1(z,y, A) be the sum of all the £; penalty terms,
n(z,y,d) = - 2 min(Gi(z, y),0) + Z [min(g:(z, y), A)| + 2 lei(z, y, M),
ieT ieP ieT
and let p,(z,y, A) be the {; penalty function

Pu(z,9,A) = F(z,y) + pri(z, 9, A)-

Consider the problem
PF(p): min p,(z,y,1),
zy,A

for different values of u.

e If p is relatively small compared with F/1,, it may be possible to obtain unbounded
descent in p, because a decrease in F(z,y) dominates the infeasibility penalty.
Similarly, a local minimizer of p,, may be infeasible for BPc. Assuming a solution of
BP¢ exists, increasing the value of u decreases the possibility that p, is unbounded

below or that a local minimizer exists which is infeasible for BP¢.

e If i is relatively large compared with F/v;, decreasing the value of F(z,y) is not
as desirable when minimizing p,, as decreasing the penalty terms. Therefore, the
observed decrease in F(z,y) may be very slow in relation to the rate at which a
feasible point is approached. This may result in slow convergence of the algorithm

to a solution of BP¢, even when close to feasibility.

CHAPTER 3. THE PROPOSED ALGORITHM 37

Also note that as x becomes increasingly larger, the implementation of an algorithm
to minimize p, may begin to experience numerical difficulties. Small changes in
the penalty terms are magnified within p, and small changes in F(z,y) become

numerically insignificant, resulting in a loss of precision.

Ideally, the value of x4 balances the goal of minimizing F(z,y) with the goal of attaining
feasibility.

Results are now presented which motivate the penalty function algorithm. The theo-
rem presents a property of the differentiable problem BPg k1. The corollary extends the
property to BP¢, the nondifferentiable problem being solved.

Both results make a nondegeneracy assumption. Some additional terminology is re-
quired to fully define the meaning of nondegeneracy in this context, so the definition is

delayed until Section 3.5.2.

Theorem 3.3 Assuming that BPxxr is a nondegenerate problem, there ezists a finite

value of p* > 0 such that, for p > u*, there is a local minimizer of

Qn(zu Y, ’\) = F(zv y) —H E min({)» Gt'(zry)) — z min(ov gi(zl y))
ieT ieP

—4 Z min(ol At) + I_‘ Z I’\igi(zl 3[” + 12 Z lcf(z) Yy A)[1

ieP iep ieM
denoted (23, y%, M%), which is also a local minimizer of BPxgr-

Proof: This is a restatement of Theorem 1 in Pietrzkowski[60]. Note that g, is the ¢,

penalty function defined from BPxxr in the same way that p, is defined from BP¢, with

one penalty term for each constraint. O

Corollary 3.4 Assuming that BPc is a nondegenerate problem, there erists a finite value
#" > 0, such that for p > u~, there is a local minimizer of p,,, denoted (z,,y,, \,), which

is also a local minimizer of BPgc.

CHAPTER 3. THE PROPOSED ALGORITHM 38

Proof: This result follows immediately from the above theorem, the equivalence of

BPkkr and BPc, and the resulting equivalence of g, and p,. O

This result must be interpreted correctly. First, note that the critical value of the
penalty parameter, u*, is a finite value. Therefore, the {; penalty function is an exact
penalty function. Unfortunately, the actual value of u* depends on values at a solution of
BPc, and are not known a priori. However, even if ~ is known explicitly, solving PF(u")
may not always identify a local solution of BPc. While there exists a local solution of
Py Which is also a local minimizer of BP¢, the penalty function may have other local

solutions (which may or may not be solutions of BP¢) or may even be unbounded.

Despite the limitations expressed above, Corollary 3.4 provides a very important re-
sult. Solving PF(u), for 4 > p°, may provide a solution of BP¢, and therefore, may
provide a solution of BP. However, since u~ is unknown, this suggests solving several
PF(p) problems, for an increasing sequence of values of u, until a solution of BP¢ is

identified. This proposal is presented more formally in the next section.

3.4 Penalty Function Algorithm
Algorithm 3.1 (Penalty Function Framework)

1. Set ppax; an upper bound on u.

2. Choose initial values (z°,3° A% and u® € (0, prpax)- Set k = 0.
3. If u* > tmax, then stop without identifying a solution of BPc.
4. Solve PF(p), for u = p*, starting from (z*, y&, \¥).

5. Evaluate the solution (zF+1, y*+1 \k+1):

CHAPTER 3. THE PROPOSED ALGORITHM : 39

(a) If (2%, y*+1, A*+1) is feasible for BPc, then stop with a solution of BPc,

(31:1 Yu, '\n) = (zk+1, yk+1' I\H.l) -

(b) If (z%+1, y**1, A&+1) is infeasible for BPc, then update p**! > u* and set
k =k + 1. Repeat from Step 3.

(c) If PF(u) is unbounded, then (2*+!,y*+! AF+1) is the last point reached before
the unboundedness was detected. Update p*+! > p*, and set k = k+1. Repeat
from Step 3.

Note the use of ., to prevent g from becoming too large in the solution process. The

value of pfmay is implementation dependent.

The following outcomes of Algorithm 3.1 are possible:

O1. A local solution of PF(u*) is feasible for BP¢.
02. A local solution of PF(i*~!) is infeasible for BP¢ and g* > prpay-

03. The problem PF(u*~1) is unbounded below and g* > pimas.

It is possible that the feasible region of BP¢ is empty, or that BP¢ is unbounded below.
These possibilities can account for the final two outcomes listed above. However, it is
also possible that BP¢ has feasible, bounded, local solutions, but the algorithm termi-
nates with either outcome O2 or O3. The performance of the algorithm is influenced by
the initial choices (z°,y% A°) and x°. Different outcomes may be observed for different
starting values. For this reason, whenever either of the final two outcomes are observed,
new choices of (2%, ¥°, A°) and u° are made, and the entire process is repeated from Step

2 of the algorithm.

CHAPTER 3. THE PROPOSED ALGORITHM 40

If the algorithm terminates with outcome O1, then (z,, yu, A,) is a local solution of
BPc. If (yu, Ay) is a local solution of LLP(z,), then a local solution of BP has been
identified. Otherwise, (y,, A,) is a saddle or maximum point of LLP(z,), and the point
(Zi1 Yu: 2u) is not a solution of BP. In this case, a new starting point and penalty parameter

value can be chosen, and the process repeated from Step 2.

3.5 Solutions of the Penalty Function Subproblems

Before describing the proposed algorithm for solving PF(u), for a fixed value of y, the
structure of the penalty function is investigated and necessary conditions at a local min-
imum of p,, are developed. These conditions identify possible solutions of PF(yu), and
will be used to develop termination criteria for the PF(u) algorithm. They are also used

constructively in the algorithm, as described in the next chapter.

The following definitions are required before proceeding further.
Definition 3.1

1. Let w € R™™*P represent the vector (2T, yT, AT)T.
2. The variable A; can be written tn terms of w as follows:
Ai(w) = Wagmis = wTen+m+i|

where epym4i, for ¢ € P, ts the (n + m + i)th column of the identity matriz in

Rrm+,
3. For any w € R™"™*?,

T’(w) = {ieT:Giw)=0}

CHAPTER 3. THE PROPOSED ALGORITHM 41

T'(w) = T\T°(w)

Py(w) = {i€ P:(w) < gi(w)}
PY(w) = {ie P\(w): \(w)=0}
P(w) = Pi(w)\ P(w)

By(w) = {i€ P :gi(w) < M(w)}
Fl(w) = {i€ Py(w):gi(w) =0}
Py(w) = Py(w)\ Pi(w)

P_(w) = {i€ P :xiw)=gi(w)}
Pl(w) = {i€ P_(w):(w)=gi(w) =0}
PL(w) = P(w)\ Pi(w)
M°(w) = {ie M:ci(w)=0}
M'(w) = M\M°(w).

{. Foranyve R,

1 fv>0
T 1 ifv<0
signfv]=4¢ -1 ifv<0 and negiv] = { - .

0 otherwise
0 otherwise

Also, define pos[v] = neg[—v].
3.5.1 Examining the Structure of the Penalty Function

The following result is used to simplify the value of p,(w + ad) for an arbitrary direction
de Rn+m+p.

Lemma 3.5 For any d € R™™*? there ezists a value @y > 0 such that the following

conditions are all satisfied for a € [0, ay]:

CHAPTER 3. THE PROPOSED ALGORITHM 42

o For i € T'(w), negGi(w + ad)] = nefGi(w)].

o For i€ Py(w), Ai(w + ad) < gi(w + ad).

e Foric Fy(w), signi(w + ad)] = sign[Ai(w)].

e For i€ Py(w), gi(w+ ad) < \i(w + ad).

o For i € Fy(w), signlgi(w + ad)] = sign[g:(w)].

o For i€ PL(w), signimin(Ai(w + ad), gi(w + ad))] = sign{A;(w)].

e For i € M'(w), sign[c;(w + ad)] = signfc;(w)].

Proof: We consider the first case in detail.

For ¢ € T'(w), consider the function G;(w) # 0. The continuity of G; ensures that

either there exists &; > 0 such that
neg(G;(w + ad)] = neg[G;(w)] for 0 < a < &;, and G;(w + & d) =0,

Qr

neg[G;(w + ad)] = neg[G;(w)] for all a > 0.

Let af = &; in the first situation, and af = oo, in the second. The value of a; must
satisfy a; < af for all i € T'(w). Because af is nonzero, an acceptable value of ay
always exists.
By analyzing the remaining functions

gi(w + ad) - Ai(w+ ad) for i € Pa(w) U Py(w),

Ai(w + ad) for i € Py (w)U PL(w)

gi(w + ad) for i € Py(w) U PL(w)

and ¢;(w+ ad) for i € M'(w),

CHAPTER 3. THE PROPOSED ALGORITHM 43

in a similar manner, further conditions are placed on a;.
Any a; which satisfies the required conditions is sufficient for the result to hold. O

The following simplification is made throughout the rest of the thesis.

Notation 3.1 For convenience, the argument w is omitted from the penalty term indez

sets. Unless ezplicitly stated otherwise, the point w is the intended argument.

Using the above result, we can separate the function p,(w + ad) into two parts based

on the differentiability of penalty terms at a = 0.

Lemma 3.6 For an arbitrary direction d € R™"t™*? and a € [0, ay),

Pu(w + ad) = §(w + ad) + pn(w + ad),

where 6(w + ad) is a differentiable function over the interval a € [0, o}, and n{w + ad)

ts not differentiable at a = 0.

Proof: Using the result in Lemma 3.5, we can write, for a € [0, ay],

puw+ad) = Flw+ad) - p Y min(Gi(w+ad),0)
€T’

~p 3 min(Gi(w+ ad),0)+p 3 [X:(w+ ad)|

ieT? iEP)

+1 Y lgi(w + ad)|+ p Y | min(Ai(w + ad), gi(w + ad)))|

l.EP' i€P= .
+1 Y le(w+ad)|+p Y la(w+ ad).
ieM’ ieM°
For i € P, note that
min(A(w + ad),g:(w+ ad)) = X(w+ ad) + min (0, g:(w + ad) - M(w + ad)).

Now, continuing with a € [0, a;],

pu(w+ad) = &(w+ ad)+ pn(w + ad),

CHAPTER 3. THE PROPOSED ALGORITHM 44

where

é(w+ad) = F(w+ad)-p) negGi(w)]Gi(w + ad)
. ier
+u Y sign{A(w)]Ai(w + ad) + p Y signfgi(w)]g:i(w + ad)
i€P] ieP,
+p Y sign[Ai(w)]Ai(w + ad) + p Y, sign[ci(w)]ei(w + ad)

i€PL iceM’

is a continuous, differentiable function over the interval a € [0, a;], and

nw+ad) = -3 min(Gi(w+ad),0)+ 3 M(w+ad) + T |g:(w + ad)|

€T’ iePy i€P]

+) sign[Ai(w)] min(0, gi(w + ad) - A(w + ad))
i€PL

+ 3 |min(Ai(w + ad), gi(w + ad))| + Y |ei(w + ad)|.
iepP2 iEM?

While n(w + ad) is nondifferentiable at a = 0, some of the terms may be differentiable

for a > 0, depending on how their values change along the direction d. O

The two functions d and n will be used to obtain further information about the penalty

function along w + ad.

3.5.2 First Order Necessary Optimality Conditions
The following definitions are required in the proof of the next result.
Definition 3.2

1. The vector y(w) = Vé(w),

Yw) = VF@)-p Y negGu(w)]VGi(w) +p 3 signfAi(w)]VA{w)

€T’ 13 24
+p Y signig:(w)]Vai(w) + p Y signdi(w)]Vi(w)
. i€P; i€PL
+p Y signfci(w)]Vey(w),

ieM’

CHAPTER 3. THE PROPOSED ALGORITHM 45

is called the gradient of the differentiable part, or simply the gradient, of the penalty
function at w. The matriz B(w) = V2,§(w) is the Hessian of the differentiable part

of Pu-
2. The function 1 is called the nondifferentiable part of the penalty function.

3. The activity matriz A(w) consists of the gradients of the defining terms in the

function n at w, that is, A(w) contains of the following columns.

Vi(w), fori€ Py u P2
Vgi(w), forie PPuP?
Vgi(w) - VAl(w), forie PL
VGi(w), forieT°

and Vei(w), fori € MO.

4. If the columns of A(w) are linearly independent, then the point w is a nondegenerate
or regular point. If all points are nondegenerate points, then the penalty function

subproblem is a nondegenerate problem.

5. The columns of the matriz Z(w) form an orthogonal basis for the space orthogonal

to the space spanned by the gradients of the activities, that is,

A(w)TZ(w) =0 and Z(w)TZ(w) = I.

6. If Z(w) and y(w) satisfy Z(w)Ty(w) = 0, then w is a stationary point for the

penalty function p,,.

7. For any differentiable function h : R™**™*? IR, point w € R™"*™*?, direction

d € R™*™*? and step size a > 0, the Generalized Rayleigh Quotient is given by

Q(h, w, ad) = (h(w + ad) - h(w) — ad"Vh(w)) .

-2
o?||dli3

CHAPTER 3. THE PROPOSED ALGORITHM 46

This value ts a measure of the curvature of the function h at w for positive steps a

along the direction d.
Again, for convenience, the following notational simplification is introduced.

Notation 3.2 The argument of the vector y¥(w) and the matrices B(w), A(w) and Z(w)

will be omitted. Unless stated otherwise, the current point w ts the intended argument.

We next establish a set of conditions which must be satisfied by a minimum point of

the penalty function.

Lemma 3.7 Ifw is not a stationary point of p, and p,, is bounded, then ford, = —227+,

there ezists a, > 0 such that p,(w + ad,) < p,(w), for0 < a < a,.
Proof: The differentiable and nondifferentiable parts of p,(w + ad) will be considered
separately.
We first examine, in greater detail, the differentiable part of Pufort<a<a.
S(w+ad) = O(w)+adl Vi(w)+ %Jud,uga(a, w, ady)
1
= pu(w) - av" 227y + ;0¥|d,|300, w, ad,)

1
= pulw) - all 271l + 30714120, w, ad,).

Next, consider the nondifferentiable part of p,,. Each set of terms in 7 can be consid-

ered separately. For i € T9,

Gi(w+ad,) = Gi(w) +adfVGi(w) + 2o I30UG:, v, ody)

52?4 I3Gr w, ady),

CHAPTER 3. THE PROPOSED ALGORITHM 47

because Gi(w) = 0 (from i € T°) and dTVG;(w) = 0 (since dTA = —yTZ22TA =0). It
similarly follows that

forie PRUPS, X(w+ ad,) = 0

fori€ P, U P2, gi(w+ad,) = §?||d,||3Q(g;, w, ad,)

for i € PL, gi(w+ad,) - Mi(w+ad,) = 3a?||d,|I3Q(g: — i, w, ad,)
for i € M°, ci(w + ad,) = 3?d.|3Q(e;, w, ad,).

Therefore, for 0 < a < a;, we can write
1. 2
Nw+ad,) = Ea 2411220 (w, ad,),

where we define, for the nondifferentiable function 75,

Q(w,ad)) = - min(QGi,w,ad,),0) + Y |Q(g:;, w, ad,)|
1eTo z’ePg
+) sign[A(w)] min(0, Q(g: - A;, w, ad,))
icPL
+ Y | min(0, (g:, w,ad)) + Y [Qci, w, od,).
i€P2 iEM?

Let Q,(w, ad,) = Q(8, w, ad,) + Qy(w, ad,). Since p, is assumed to be bounded, Q,, is

bounded as well. Now, it follows from Lemma 3.6, that, for 0 < a < ay,
1
Pu(w + ad,) = p,(w) — || 27 1|1} + Eazlld-ﬂgﬂp,.(w, ad,).

There exists a, € (0, a;), such that, with respect to a above, the first order term domi-
nates the second order term for a < a,. Since the first order term is negative, it follows

that p,(w + ad,) < py(w) for0 < a < a,. O
Corollary 3.8 If w is @ minimum point of p,, then w is a stationary point of Pu-

Proof: Follows immediately from the above lemma, since descent in p, is not possible

from a minimum point w. O

CHAPTER 3. THE PROPOSED ALGORITHM : 48
Definition 3.3

1. At a stationary point of p,, the vector ¥ satisfying A¥ = v is called the vector
of Lagrange multipliers. These multipliers will be referenced as illustrated in Table

3.2.
Multiplier Corresponding Column of A
34 icT° VGi(w)
¥ |iePQuPL Vi(w)
¥ liePPUP? Vai(w)
W iepL Vgi(w) - VAi(w)
L H ie M° Vei(w).

Table 3.2: Notation for Lagrange Multipliers

2. Let ef € R™™P, for i € T°, refer to the identity column corresponding to the
location of VGi(w) in A. Similarly define the identity columns e} € R™"*™P (for
i€ PRUPL), ef € R (ic POUPE), & € R™™* (fori e PL), and
ef € R™™*P (for i e M°).

3. The set PL at w is further refined.

P = {iePL:x(w)>0}
P2 = {iePL:)M(w)<0} = PL\PL.

CHAPTER 3. THE PROPOSED ALGORITHM 49

4. A stationary pointw of p,, is called a first order point of p,, if the following conditions
are all satisfied.

0 < ¥ < p forieT®,
-4 < ¥ < p forie B,
-p £ ¥ < p forie P,

0 < ¥t < g friekr,

0 < ¥V < pu foriePL,

V2 +¥ < p, forie PL,
- < ¥ < p, forie M
PE =0

5. A multiplier ¥; is said to be in kilter if it falls within the corresponding range

required of a first order point.

Lemma 3.9 If w is a nondegenerate stationary point of p, but is not a first order point
and p,, ts bounded, then there ezists a constant ap > 0 and a direction dp which satisfies

at least one of the following conditions

o if 3j € T°: 9§ ¢ [0, 4], then dp satisfies ATdp = —sign[¥F]ef,
e if3jec PP \F;‘ ¢ [—u, p], then dp satisfies ATdp = -sign[‘l’?]e},
o if 3j € P{: W) & [—p,pl, then dp satisfies ATdp = —sign[¥9]e,

if 3j € PX : 99> > —p, then dp satisfies ATdp = —sign[¥9 4 pje?™,

7

if 3j € Pt : %97 < 0, then dp satisfies ATdp = —sign[¥7~*]ed ™,

if3j€ Pz 'I'g"‘\ ¢ [0, u], then dp satisfies ATdp = —sign[\fg_’\]eg")‘,

o if 3j € P2 : ¥} ¢ [0, 4], then dp satisfies ATdp = —sign[¥2]e},

CHAPTER 3. THE PROPOSED ALGORITHM 50

o if3j € P1: 9] ¢[0,p), then dp satisfies ATdp = —sign[¥7]ed,
o if3j € P2 : ¥} + W9 > p, then dp satisfies ATdp = —sign[¥} + ¥4 — p(e} + &),

e if3je M° : WS € [—u, 4], then dp satisfies ATdp = ~sign[¥3e;,
such that p,(w + adp) < pu(w) for0 < a < ap.

Proof: Note that the assumption of nondegeneracy ensures the existence of at least one
such dropping direction dp. In all cases in which a single activity is being dropped, we can

write that ATdp = o;e; for some o; = +1 and some cardinal unit vector e; € R™*™+P,

We consider, in detail, the first case listed above, namely that G; is being dropped

from the active set for some j € T°. For 0 < a < a;, from Lemma 3.5, we have that

1
S(w+adp) = pu(w)+adhy + 5a*ldol3S, w, adp)
= pu(w) + adbA¥ + 2a"|dp|[3R(6, w, adp)

1
= pul(w) - ¥+ §a2IIdDII§9(5, w, adp),
since dA¥ = —-sign[\]??]\lf?. The terms in 7 must be examined individually. Note that

Giw+adp) = Gjw) +ad™VG;(w) + Sa?lldpl3A(G;, w, adp)

. 1
= asign[¥5] + 5% |ldplBA(G;, w, adp).

Since p,, is bounded, the Q terms are bounded as well. Therefore, there exists a; € (0, a;)

such that for 0 < a < a3, the first order term dominates the value of Gj, -
neg[G;(w + adp)] = neg[~sign[¥F]] = neg(—¥{].

For i € T°\ {j}, d5 VGi(w) = 0 by the definition of dp. Similarly, first order change

in the other activities is zero along dp.

CHAPTER 3. THE PROPOSED ALGORITHM

Therefore, for 0 < a < ay,

n(w + adp)

where

Q'I(wt adD) =

. . 1
= —amin(-sign[¥F],0) + 50*|ldp|[2(w, adp)

= a(l ~negl¥F]) + 2o’ ldp|i0(w, adp),

—neg[G;(w + adp)|Q(G;, v, adp)

~ Y min(Q(Gi w,adp),0)+ Y 19(g: w, adp)|
i€TO\ (5} icP?

+ Z sign[A;(w)] min(0, Q(g; — Xi, w, adp))
iePL

+ Y [min(0, Q(g:, w, adp))| + 3 19(e;, w, adp)|-
iep2 ieM®

Using Lemma 3.6, for 0 < a < a3,

1
Pu(w+adp) = pu(w)+a(~1¥7] +p — pneg¥7]) + 50*|[dp|[3Qp, (w, adp),

where Q,, (w, adp) = (4, w, adp) + pQ,(w, adp).

Consider, if ¥§ < 0, then

1
pu(w + adp) = pu(w) + a‘I’JC‘; + ':'z‘az”angﬂpu (w, adp).-

Otherwise, for \I’JG > B,

1
Pu(w + adp) = pu(w) + (s - ¥7) + 5a*||dp|[3, (w, edp).

In either case, the first order term is negative, and there exists ap € (0, a3}, such that, for

0 £ @ < ap, the first order term dominates in p,(w + adp). Therefore, for 0 < a < ap,

pu(w + adp) < pu(w).

Dropping directions dp which satisfy any of the other conditions listed above are

shown to be descent directions for p, from w in a similar manner. The details are

omitted. O

CHAPTER 3. THE PROPOSED ALGORITHM 52

Corollary 3.10 If w is @ nondegenerate minimum point of p,, then w is a first order

point of p,.

Proof: Follows immediately from the above lemma since descent in p, is not possible

from a minimum point w. O

3.5.3 Second Order Necessary Optimality Conditions
Definition 3.4

1. The matriz H, defined at w,

H = B- Z ¥EViG(w) - Z ¥IVig(w) —~ Z \I'?’szge(w)

i€T? i€P? (=3 8
~ Y ¥Vig(w) - Y ¥Vie(w),
i€P? ieM®

is called the Hessian of the Lagrangian function at w.

2. Ifw is a first order point of the penalty function and Z¥ HZ is positive semidefinite,

then w is a second order point of p,,.

The material presented here is greatly inﬁuenced by the work of Coleman and Conn
[35] in developing the necessary second order optimality conditions for the ¢; penalty

function for nonlinear programming.

Let w° be a minimum point of p,. To establish a set of second order conditions
that must be satisfied at w%, a new, differentiable nonlinear problem P; is defined. The
objective function go(w) is defined using the activity sets at w°.

w(w) = Fw)—p Y Glw)+p I Mw)—p Y Mw)+p Y g(w)

€T~ ieP} iePy ieP}

CHAPTER 3. THE PROPOSED ALGORITHM 53

1Y gi(w)+e Y Mw)—p Y A(w)

ieP; iept iePs
Y aw)-u Y ew), (3.1)
ieM+ {EM-
where
T~ = {ieT :Gi(w° <0}

Tt = {ieT':Gi(u°) >0}
Py = {ie P :)(w") >0}
Py = {ieP{: XN(w’) <0}
Ff = {iePF,:g:(w°) >0}
Py = {iePF,:gi(v°) <0}
PI = {ie PL:)\(u") =g’ >0}
PZ = {i€ PL:\(w°) =g(v®) <0}
M* = {ie M :c(w®) >0}

M- = {ie M :¢(w°) <0}.

Next, we define a set of constraints, also using the activity sets corresponding to w®.

Let
Sg ={we R**™*?: Gi(w)>0 forie T+UTO
Gi(w) <0 foriec T},
Sy={we R : \(w)>0 forie P}
Ai(w) =0 for i € P
Ai(w) <0 fori € P

and Ai(w) < gi(w) forie P},

CHAPTER 3. THE PROPOSED ALGORITHM 54

Sg={we R"*"™**? . g(w)>0 foric P}
-g;(w) =0 forie P?
gi(w)<o0 fori€ Py

and g;(w) < \i(w) for i € F,},

=={weR™™*?: A\(w)>0 forie P}
Mi(w) =gi(w)=0 foriec P2
gi(w)=0 forie P2
Ai(w) <0 for i€ PZ

and gi(w) > Ai(w) for i€ P¥ U P},

Se={we R™™*?: cj(w)>0 forie Mt
ci(w) =0 for i € M°
c(w) <0 forte M_},

and

So=SgUSAUS,US_US..

Lemma 3.11 There ezists N(w®), a small neighborhood of w°, in which the sets Sq and

So are equivalent, where

o={ we R*t™tP .

Gi(w) 20, fori € TO,
Ai(w) =0, forie P)UPL
gi(w) =0, forie PJUPS,
gi(w) - Ai(w) >0, forie PXuUPz,
ci(w) =0, forie M%).

Proof: Follows from the continuity of the functions and their values at w°. O

CHAPTER 3. THE PROPOSED ALGORITHM 55

Next, consider the following differentiable nonlinear problem P, and its relationship

to the penalty function.

Py: min go(w) s.t. we Sg-

Lemma 3.12 The point w® is a local minimizer of p, if and only if it is also a local

minimizer of P,.

Proof: For w € Sy and therefore for w € SoN N(w°), ¢o(w) = p,.(w). From Lemma 3.11,
it also follows that, for w € §§ N N(w?), go(w) = pu(w). If t;hete exists a feasible point
with a smaller value of g within S§ N N(w?), then this point also gives a lower value of
Pu- Similarly, if there exists a point with a lower value of p, in this region, then it also
gives a lower value of ¢o. Therefore, the local minima of the two problems in this region

must coincide. O

The next result follows from the equivalence established above.
Corollary 3.13 If w® is a nondegenerate local minimum of Pu, then

1. the necessary first order conditions are satisfied, and

2. for dld € Ny

No= {de R+m+p.

dTVGi(uw°) =0 forieT®
dTV(uw®) =0 forie PQUP2
dTVg;(w®) =0 forie P2u P2

dT (Vg:(w®) ~ VAi(w®) =0 forie P.
dTVe;(w®) =0 for i € M°}

CHAPTER 3. THE PROPOSED ALGORITHM 56

it follows that
dTH(w%)d > 0,

where

Hw% = B(w% -~ Z ¥EVG;(w®) — E ¥Vig(w’) ~ Z ¥IVig:(w®)
ieTo i€P? iep2

=Y W0 (0) - Y #V2e(w0).
t€PL ieM?®

Proof: The first result was established in Corollary 3.10 and the second result follows
from the necessary optimality conditions for the nonlinear problem P,. Note that the
definition of H(w?) differs from Definition 3.4 in the use of P- rather than P.. This
change is possible because P = P} U PZ. The set P} is empty since w® satisfies the

first order necessary conditions. OO

Therefore, if w® is a nondegenerate local minimum of Py, it is a second order point of

P, since
o A(w®)¥ = v with the multipliers ¥ in kilter, and
o ZTH(w)Z is positive semidefinite.

A stricter set of second order necessary optimality conditions is established by ex-
amining the value of p,(w®) to determine when a second order descent direction can be

defined.

Lemma 3.14 Let w® be a nondegenerate first order point of the penalty function. If
there ezists a direction z tn the reduced space whichk is a direction of negaiive curvature
for the matriz ZTB(z)Z, then d = 2z is a descent direction for p,, where
B(z) = B-p Y 6:VGi(v°)+p Y 9:V35:(u°) —p Y 6,V%g;(w®)
i€TO ieP i€Ps

-1 Y 0;V2gi(w°) + 5 ¥ 0;V2c:(w®)
iePz ieM®

CHAPTER 3. THE PROPOSED ALGORITHM 57

and

o for i€ T, 6; = neg(d® V3G;(w°)d]

o forie P, ¥; = sign[dT Vg;(u®)d],

e forte PZ, 6; = neg[drvzgi(wo)d]

o fori€ P2, 6; = negld? V?g;(w®)d]

e for i € M°, ¥; = sign[dTV3c;(w)d].

Proof: Assume that a is small enough so that the second order terms dominate the

higher order terms. The differentiable and nondifferentiable parts of the penalty function

at w? + ad can be expressed as follows.

8(w° + ad)

(v’ + ad)

i

§(w°) + adTy + ';'aszBd +o(lll?)

1
Pu(w®) + ;a*d" Bd + ofa||*)

12 (- Y min(0,dTV2G;(w°)d) + Y [dTV2g;(w°)d]

2 €T i€Py
- Y min(0,dTV?g;(v%)d) ~ ¥ min(0, dTV2g;(w°)d)
ieP= ieP?
+ > (dTV’ce(w°)dl) + o(llel?)
ieM0
1
Eaz (- .Z 6;dTV?G;(w°)d + .Z 9:dTV2g;(w°)d
i€T? ieP?
- 20 6:d"Vig(u')d ~ §7 6:d"V3gi(w0)d
ieP= ieP2

+ Y o;dfvzci(w°>d) + o(llalf®).

iEM®

CHAPTER 3. THE PROPOSED ALGORITHM 58

Therefore,

Pu(v’ +ad) = §(w’+ad)+ un(v’ + ad)
= pu(w®) + 5" B(z)d + oflal’),

where

Bz) = H+ Y (¥ - ub)VGi(w®) + 3 (¥ + s Vgi(w°)

€T i€P)
+ 3 (B~)V () + Y (¥ — p;) V2g:(w®)
iePs ieP?
+ Y (%5 4 pu9:)Viei(uw).
ieMo

Note that the two definitions of B(z) are equivalent. A direction of negative curvature

for 2T B(z)Z provides descent in p,. O

Corollary 3.15 Ifw? is a nondegenerate local minimum of Py, then the matriz ZTB(2)2

is positive semidefinite.

The matrix B(z) defined above can have more than one value, since it is defined
using the 6; and ; values which depend on z. Note that each 6; and ¥; can have two
values, where, for simplicity we depart from-the definition of sign[0] on page 41 and let
sign[0] = 1. Therefore, in theory, there are an exponential (though finite) number of
values of B possible. It is also possible that some of these combinations of # and ¥ have
no meaning. For example, if V2G;(w°) = 0 for some i € T, then the value 8; = 1 will

never be meaningful in the context in which it is used here.

The second order optimality conditions proven so far are summarized below.

1. Two sets of second order conditions which must be satisfied at a Jocal minimum of

P, have been proven. The first one, that ZT HZ is positive semidefinite, is easily

CHAPTER 3. THE PROPOSED ALGORITHM 59

verified. The second one, that ZTBZ is positive semidefinite for each meaningful
matrix B is more difficult to establish. We can check that each Z7BZ is positive
semidefinite, but it may be more difficult to determine if a particular B makes sense

in terms of the given situation.

2. We have established a condition under which a descent direction can be defined from

0, a nondegenerate first order point of the penalty function which is not a second

order point. If we have identified a meaningful B for which ZTBZ is indefinite,

w

a direction of negative curvature can be calculated. However, that direction must
correspond to the correct values of § and ¥ to guarantee descent in the penalty

function.

The following relationships illustrate that the two sets of optimality conditions are

not generally equivalent.

Lemma 3.16 If ZTHZ is positive semidefinite, then ZT BZ is also positive semidefinite
for all meaningful B.

Proof: Assume that ZT HZ is positive semidefinite for any direction z in the reduced

space. Let d = Zz. Now, using the existing definitions of 6; and ¥;, consider

o for i € T9, recall that 0 < ¥F < g,

— if §; = 0, then ¥F > 0 and dTV3Gd > 0,

_ if8; =1, then ¥5 — puf; = ¥S — 4 < 0 and dTV?Gd < 0.
In either case, (¥§ — u;)dTV?Gid > 0.

@ for i € P?, recall that —u < ¥7 < g,

CHAPTER 3. THE PROPOSED ALGORITHM : 60
— if 9; = -1, then ¥ + pud; = ¥¢ — 4 < 0 and T V34 d < 0,
— if 9; = 1, then ¥¥ + pd; = B¢ 4 p > 0 and d¥V2g:d > 0.
In either case, (¥7 + ud;)d¥ V3g,d > 0.
e for i € P, as for ¢ € T?, it follows that (\Ff"‘\ — pu8;)dTV3g:d > 0.
o for i € P2, as for i € T?, it follows that (¥¢ — uf;)dTV2g;d > 0.
o for i € M°, as for i € P?, it follows that (%5 + p¥;)dTV3c;d > 0.

The sum of all these terms must be nonnegative, i.e. B(z) is positive semidefinite. O

A corresponding result equating the definiteness for all meaningful Z7 B(z)Z with the
definiteness of ZT HZ cannot be established. However, a result relating the definiteness
of all possible values of 27 BZ to that of ZTHZ can be proven. Let B be any possible
value of B,

B = H+) (¥ —pd)V2Gi+ Y (¥ +pd:)Vig:+ 3 (¥07 — ub)V3g;

ieT iepy ieP=
+ 2 (¥ —) Vi + Y (%5 + o) Vi
i€P2 i€M®

where each 6; € {0,1} and each 9; = +1. Note that there are 2X possible values for B,

where

K =|T% + |PJ| + |P2| + |PZ| + | MC).

The set of meaningful values of B is a subset of the set of possible values of B.

Lemma 3.17 If 2TBZ is positive semidefinite for all 2K combinations of 6; and ¥9;, then

ZTHZ is positive semidefinite.

CHAPTER 3. THE PROPOSED ALGORITHM 61

Proof: For any value of B and direction d = Z2z, it follows that

dTHd > Y (6:ip— ¥F)dTV?Gid - Y (9eps + ¥)dTV2gid + Y (bip ~ ¥9)dTV2gid

€T’ i€Py ieP2
+ 3 (Oep—¥N)ATVEgd ~ Y (dip + ¥E)dTVPeid.
tePz ieMO

In particular, it must be true for the following choice of §; and ¥;:

e for i € T?, 6; = pos[dTV?G.d),
o for i € P2, ¥; = —sign[dT V3g;d],
e for i € P2, 6; = pos[dTV?g;d],
@ for i € PZ, 0; = pos[d? V3g;d],

® for i € M®, ¥; = —sign[dT V3c,d].

For this choice of § and 9 it is easy to determine that the right hand side above must
be nonnegative, i.e. that dTHd > 0. Thus, we have proven that ZTHZ is positive

semidefinite. O

The requirement that Z7BZ is positive semidefinite for all values of B is significantly
stronger than the requirement that 27 BZ is positive semidefinite for all meaningful values
of B. For the latter, the definiteness is only over those z in the reduced space which
correspond to meaningful values of B. Meanwhile, the former requires the definiteness
over all z in the reduced space for each B. However, the condition on B is easier to check

than the condition on B.

If ZTHZ is indefinite, and z, a direction of negative curvature for ZTHZ, is also a
direction of negative curvature for 27 B(z)Z » then d = Zz is a descent direction for p,

from w®. Such a condition is easily checked. If z does not correspond to a direction of

CHAPTER 3. THE PROPOSED ALGORITHM 62

negative curvature for ZTB(z)Z, then the algorithm may not be able to find a descent
direction for p,. Problems of this nature, as described by Coleman and Conn in [33]
and [35], are associated with penalty functions and other methods for solving nonlinear

optimization problems.

3.6 Motivating Theory for Solving the Subproblem

Because of the complicated structure of the penalty function, it is preferable to deal with
a simplified version of the function whenever possible. This simplified, or model, function
should be easier to minimize than the penalty function. The model function should also
be a good approximation of the penalty function, in a region about the current point,
so that a direction which decreases the model function will also decrease the penalty

function.

The idea just described is the basic motivation of trust region algorithms. While
originally used in unconstrained optimization, trust region algorithms (for example, see
[40]) are being used increasingly for constrained optimization, and have been shown to
have good convergenc; results (both in theory and practice) for nonconvex problems.
The performance of these algorithms on nonconvex problems is the primary reason that

a trust region algorithm is being proposed to solve PF(pu).

Solving PF(u) within a trust region framework involves modeling the change in the
penalty function from the current point w along a direction d, using a “simpler” function
#(d). By restricting the norm of direction d when analyzing ¢(d), the model function can
be minimized over a region in which the model function is believed to be a good estimate

of p,(w + d). The trust region subproblem, centered at point w, is therefore

TR(w, A) : xq‘in ¢(d) subject to ||d|| <A,

CHAPTER 3. THE PROPOSED ALGORITHM 63

where A is the current trust region radius.

A solution of TR(w, A), denoted dr, is then used to evaluate the performance of the

model. The actual decrease in the penalty function along dr,

Xa(dr) = pu(w) — pu(w + dr),

is compared to the decrease predicted by the model,
Xp(d1) = $(0) — é(dr).

o If the actual and predicted decreases are in very close agreement, then the model
function is assumed to provide a very good approximation of the penalty function
over the current trust region. Therefore, the trial point w + dr is accepted as the
new current point. Also, the performance of the model function over the current
region indicates that the model function may be a good approximation over a larger
region. The trust region radius at the new point is therefofe increased from its

current value.

® If the actual and predicted decreases are in reasonably close agreement, then the
model function is assumed to provide a reasonable approximation of the penalty
function over the current trust region. Therefore, while w 4 dr is accepted as the
new current point, the trust region radius at the new point is kept at its current
value. The performance of the model, while acceptable, did not indicate that the
model function would provide a good approximation for the penalty function over

a larger region.

o If the actual and predicted decreases are in poor agreement, then the model function
does not provide a good approximation of the penalty function over the current trust

region. The trial point w +d7r is rejected, and the current point is maintained. Due

CHAPTER 3. THE PROPOSED ALGORITHM 64

to the poor performance of the model, the trust region radius is reduced from its
current value. Because the model function should be a better estimate of the penalty
function over a smaller region, the trust region subproblem is solved again from the
current point with a reduced value of A. This process is repeated until the model

provides an acceptable approximation of the penalty function.

By its definition, direction dr provides descent in the model function. Therefore,
xp(dT) > 0 is always satisfied. Note that if the direction dr provides no decrease in the
penalty function (that is, the actual decrease value is negative), the final situation listed
above will be satisfied. Therefore, when the step dr is accepted, it always decreases the

penalty function.

3.7 Modeling the Penalty Function

For an arbitrary direction d, the model function ¢ should be “simpler” than the penalty

function, while reflecting, as much as possible, the value in the ﬁenalty function along d.

Definition 3.5 The model function ¢ is defined by replacing each component function of
the penalty function by its quadratic Taylor’s ezpansion approzimation, and by retaining

the penalty term structure of p,.

8(d) = F(w)+adTVF(w)+ -;-drsz(w)d
~' 3" min(Gi(w) + d7VGi(w) + %df VGi(w)d, 0)
ieT
1 3 [min(u(w) +47V N (w), 9:(w)+ 4 VG i(w) + 287V gi(w)d)|
t€P

+1 3 les(w) + d¥Vei(w) + %ﬂvzq(w)d|.
ieM

CHAPTER 3. THE PROPOSED ALGORITHM 65

Note that ¢ is a piecewise quadratic function, which models the shape of the penalty

function up to second order changes.

This choice of model function has the desirable property that ¢(0) = p,(w). Also,
the gradient of the differentiable part of ¢ at zero is v, the gradient of the differentiable
part of p, at w. Similarly, the Hessian of the differentiable part of ¢(0) is B, the Hessian
of the differentiable part of p, at w. Like the penalty function, the model function has

points of nondifferentiability.

To simplify the process used to solve the trust region subproblems TR(w, A), the
¢, norm is used in the distance constraint. With this choice of norm, the constraint,
lldl« < A, is equivalent to placing simple bounds on the components of the descent
direction, that is, ~-A < d; < A, for i =1 :n + m + p. Consequently, solving TR(w, A),
for fixed values of w and A, involves minimizing a piecewise quadratic function over

simple bounds.

3.8 Terminating the Algorithm

The trust region algorithm for solving PF() can be terminated in one of two ways:

1. A decision that the current point w is a possible solution of PF(y).

2. A decision that the problem PF(u) is unbounded.

As proven in Corollary 3.13, a local minimum of the penalty function must be a
second order point of p,,. Therefore, when the current point satisfies all the conditions of
a second order point, the algorithm concludes that it is a possible solution of the problem,

and terminates. If w is feasible for the one level problem BP, as defined on page 34,

CHAPTER 3. THE PROPOSED ALGORITHM : 66

then Algorithm 3.1 is also terminated. Otherwise, the penalty parameter u is increased

and a new penalty function subpmﬁlem is solved.

Detecting the unboundedness of PF(u) within a trust region framework is somewhat
more complicated than within a step length based algorithm. In the latter, if a step of
unbounded length continues to decrease the objective function, the problem is unbounded.
However, in the trust region framework, the length of the step at each iteration is limited
by the distance constraint of the subproblem TR(w, A). In addition, an upper bound
Amax is often placed on the size of the trust region radius to avoid numerical difficulties

associated with a very large value of A.

Within the proposed algorithm, a heuristic algorithm is used to determine unbound-
edness. It is concluded that the current penalty function subproblem PF(g) is unbounded

below if both of the following conditions are observed.

1. A sequence of byax consecutive, very successful iterations are observed, for the

algorithm parameter bg,,,.

2. Over this sequence of iterations, the contribution of the penalty terms within the
penalty function,

(Pu(w) ~ F(w))/p

was not decreased.

The conditions above detect a sequence of iterations over which the penalty function is
decreased significantly without the penalty terms being decreased. This suggests that
decreases in the function F are outweighing the penalty for infeasibility, and that the
penalty function is becoming unbounded. In this case, the trust region algorithm should
return a result of unboundedness, along with the last point w encountered before the

sequence of iterations described above.

CHAPTER 3. THE PROPOSED ALGORITHM 67

3.9 Trust Region Algorithm for the Subproblem

Note that Step 6 in the following algorithm will be discussed in the next chapter, along

with other algorithmic refinements.

Algorithm 3.2 (Trust Region Framework)

1. Choose algorithm parameters

& trust region acceptance values b; and b, satisfying0< b; < b, <1,

.

@ unboundness count by > 0,

e and the mazimum trust region radius size Ay > 0.
2. For the starting point w® provided by Algorithm 3.1, select A° € (0, Amax]-
3. Setk =0.

4. Identify activities at w* and form A, the activity matriz consisting of the gradients

of the activities at w®.

5. Check for termination condition: Ifw”® is a second order point of p,,, then terminate

with w, = w*.
6. Find a “solution” d% of
TR(w*, A¥) : ugn ¢*(d) subject to ||dl|oc < A*.

7. Evaluate a direction d%:

(a) Calculate x& = p,(w*) — pu(w* + d&).
(b) Calculate xE = ¢*(0) — ¢*(d}).

CHAPTER 3. THE PROPOSED ALGORITHM

(c) If XE/xE > by, then set w**! = w* + db and AF*! = min(2A%, Apas)-
(d) If by < xE/XE < by, then set w**! = wF + d& and A%+l = A

(e) Otherwise, set A* = A*/2. Repeat starting at Step 6.
8. If PF(u) appears to be unbounded

® iterations k — byax + 1, - - -, k were very successful, and

e over iterations k — byay + 1, - - -, k, (pu(w**) — F(w™1))/p is not reduced,
then terminate due to unboundedness, and set w, = w*~ms,

9. Set k =k + 1. Repeat from Step 4.

68

Chapter 4

Implementation Concerns

4.1 Introduction

To develop an effective implementation of Algorithm 3.2, the trust region algorithm re-
quires some modifications from the stated description. These modifications, the focus of

this chapter, affect three areas of the algorithms:

o Step 6: the calculation of the “solution” dr of the trust region subproblem TR(w, A),
e Step 7: the evaluation of the direction dr within the trust region framework, and

e Step 4: the identification of activities throughout the process.

These changes and the reasons they were required are described in this chapter.

69

CHAPTER 4. IMPLEMENTATION CONCERNS 70

4.2 Solving the Trust Region Subproblem

Each iteration of Algorithm 3.2 requires the solution of at least one instance of the trust

region subproblem
TR(w,A): min §(d) subject to |ldfle < oo,

for the current point w. Finding dr, a local solution of TR, involves minimizing a piece-
wise quadratic function subject to simple bounds on the unknowns. This solution process

is, by far, the most time consuming step of the algorithm for solving PF(y).

Dennis and Schnabel (in Section 6.4 of [40]) have shown that it is not necessary to solve
trust region subproblems exactly to get acceptable convergence results for trust region
algorithms. In Chapter 5, we establish a similar result for our algorithm. The approximate
solutions developed in this chapter satisfy the conditions required for convergence, as

stated in the following chapter.

The choice of an approximate solution at the current point w depends on how w is

classified relative to a minimum point of p,,.

The following condition is assumed to be true throughout this work, and for the

problems solved by the algorithm. Section 8.7 in [46] discusses issues relating to scaling.

Assumption 4.1 The bilevel programming problem and its component functions are as-

sumed to be well-scaled.

4.2.1 Classifying the Current Point

The necessary optimality conditions for a minimum point of PF(g), as expressed in Corol-
lary 3.13, are used to classify the current point w. Before proceeding further, note that

the following assumption applies to the entire chapter.

CHAPTER 4. IMPLEMENTATION CONCERNS 71

Assumption 4.2 The penalty function subproblem is nondegenerate.

Definition 4.1 The values of v, A, Z and H, as defined previously, are all calculated at

the current point w.

1. A type one point is a point which is classified as being far from a stationary point

of the penalty function.

Recall that stationary points satisfy ZTy = 0. Let A > 0 be the algorithm tolerance
for determining closeness to a stationary point. The current point w is classified as

a type one point if ||ZTy|l> > A.

2. A type two point is a point which is classified as being close to a stationary point of

the penalty function which is not also a first order point of p,,.

Recall that first order points are stationary points which, along with multipliers ¥,
satisfy the conditions stated in Definition 3.5.4. The current point w is classified
as a type two point if ||ZTv|l2 < A, and the multiplier estimates, ¥, calculated
at w wviolate some of the conditions for a first order point of the penalty function.
The vector ¥, which approzimates the multipliers at the nearby stationary point, is

obtained as a least squares solution to the system of equations A¥ = v.

3. A type three point is a point which is classified as being close to a first order point

of the penalty function which is not a second order point of p,,.

Recall that second order points are first order points at which the reduced Hessian
matriz ZTHZ is positive semidefinite. The current point w is classified as a type
three point if ||ZT4||z < A and the multiplier estimates defined at w satisfy all the
conditions necessary at a first order point, but the matriz ZTHZ is not positive

semidefinite.

CHAPTER 4. IMPLEMENTATION CONCERNS 72

4. A type four point is a point which is classified as being close to a second order point
of the penalty function.
The current point w is classified as a type four point if ||ZTv|[» < A, the multiplier
estimates defined at w satisfy all the conditions necessary at a first order point, and

the matriz ZTHZ is positive semidefinite.

Corollary 3.13 indicates that a type four point may be close to a minimum point of
the penalty function. It is unlikely that any of the other types of points are close to a

minimum point of p,,, if properly classified.

The remainder of this section describes the desired properties of an approximate
solution of the trust region subproblem at each of the four types of points. A technique

is presented in each case to find a direction with these properties.

4.2.2 Approximating Solutions at Type One Points

Because a type one point w appears to be far from a stationary point, an approximate
trust region solution at w, denoted d;, should decrease the model function and satisfy
the trust region constraint, while trying to move towards a stationary point. In order to
achieve the latter goal, the current activities at w should be maintained at w + d;, with

the possibility that additional activities are picked up at w + d;.

The activities at w are still active at w + d; (within the model), if d; € W) (w), where

Wi(w)={ deR*mtr;
dTVGi(w) + %drsz‘-(w)d =0, ieTO
dTVAi(w) =0, ie PPUPS,
dTVg;(w) + %d’fvzg.»(w)d =0, ie PFUP?,

CHAPTER 4. IMPLEMENTATION CONCERNS 73

dT(Vgg(w) -~ VAi(w)) + %drvzg;(w)d= 0, ie P.,

T Vei(w) + —;-d“' Vici(w)d =0, i€ M°}.

Considering only directions d € W;(w), the model function $(d) can be rewritten.
Defining ¢1(d) = ¢(d) for d € W) (w), it follows that

id) = Flu)+d"VF(w)+ d"V*P(w)d

~ ¥ min(Gi(w) + dTVGi(w) + %dTV"'G.-(w)d, 0)
€T’

Y min(y(w) + dTVA(w), gi(0) + T Vs(w) + 547 V2gi(w)d)]

ieP;uP;
¥ min(0, () + &7V gs(w) + 2 Vgi(w)d)
i€Py
- Y min(Ai(w) + dTVA:(w),0)+ 5 3 [As(w) + dTVA(w)|
ieP? i€PL
+p Z lei(w) + dT Ve (w) + -;—dTvzq(w)d[.
ieM’

To maintain feasibility and provide descent, d; € W should satisfy ¢;(d;) < 0 and
lldille € A. In addition, d; should be relatively easy to calculate. Unfortunately, the

quadratic constraints in W, (w) are nontrivial to satisfy exactly and the set
{de Wi (w) :|ld]le < A}

may be empty. Therefore, the linear approximation ATd; = 0 of the constraint set is

used instead, and the second order changes in the active penalty terms are ignored.

Any direction d that satisfies ATd = 0 can be written as d = Zz where AT Z = 0, for
some z € JR?9"™, where ¢ = n+m+p and n, is the number of active penalty terms at w
(which is the number of columns in A). Therefore, we restrict our attention to directions

in this reduced space. We wish to find z; such that ¢,(Zz) < 0 and [|Zz; || < A. Note

CHAPTER 4. IMPLEMENTATION CONCERNS 74

that the trust region distance constraint is now in the form of general linear constraints

which can always be satisfied.
The following result assists in the calculation of an approximate solution d;.
Lemma 4.1 For any z € JRY™™=, there ezists az > 0 such that, for 0 < a3,

e1(aZz) = ¢1(0) + azT (Z2Ty) + %azzT(ZTBZ)z.

Proof: Choose aj small enough so that all the following conditions are satisfied for

0L a<as,
eforieT,
neg[Gi(w) + a2 2TVG;(w) + %azzrzrsz.-(w)Zz] = neg[G;(w)],
e fori € P,UF,

sign[g:(w) — M(w) + 2T 27 (Vgs(w) — VAs(w)) + %azzTZz'Vzg;(w)Zz]

= sign[gi(w) - Ai(w)],
o foric PLUPL,
sign[Ai(w) + az” 2T V()] = sign\(w)),
o fori€ P,
sign[gi(w) + azT 2T Vg;(w) + %a’zTZTV’yi(w)ZZI = sign{gi(w}],

e fori € P},
gi(w) + azT 2TV g (w) + %azzTZTVZg,-(w)Zz > 0,

CHAPTER 4. IMPLEMENTATION CONCERNS 75

o foric Pg,
Ai(w) + azT2TOA(w) > 0,

o foric M’,
. 1 .
sign{c;(w) + azT 2T Ve;(w) + §a2szTv=c,.(w)zz] = sign[e;(w)]-

The result follows immediately from the continuity of the inactive penalty terms over the

interval, and from the definitions of ¥ and B at w. O

We will now consider z. = —ZT7, the direction of steepest descent for ¢; in the

reduced space.

Definition 4.2 The step d. = ~a.ZZTy from w is called the generalized Cauchy step
of the trust region model. The step a. is the first local minimum of p1(aZz.) within the

trust region, that is the first local solution of the univariate minimization problem

utin plaZz,) subjectto 0< a< aa,
where ap = A/||Zz||«- The point w+ d. is called the generalized Cauchy point.
The value of . can be calculated in a straightforward manner. The function ¢;(aZ. z.)
is a piecewise quadratic function over the interval a € (0, as), where @y = A/||Zz.||o0-
Let Bi,---B: be the breakpoints, distinct values of a over (0,as] at which the shape

or differentiability of ¢ changes. Therefore, the g; terms are positive values of a which

satisfy one of the following equations:

e forieT,

Gi(w) + azT ZTVG;(w) + %azzg'zf V?Gi(w)Zz. = 0,

CHAPTER 4. IMPLEMENTATION CONCERNS 76

e forie P{UP,UP?UPL,
Ai(w) + azf 2TV (w) =0,

o foric P,UP,UPJUPL,

9:(w) + azf 2TV g;(w) + %azszTVz i(w)Zz. =0,
o fori€ PLUF,,
1
(gi(w) — Ai(w)) + 2T 2T (Vgi(w) — VAi(w)) + EazzZZTVZg.-(w)ch =0,

o forz e M,

ci(w) + azl ZTVei(w) + —;-azzz' 2TV (w)Zz. =0.

Without loss of generality, assume that the breakpoints satisfy
0=00<B1<--<Pe <Pisy1 =aa.
Due to the piecewise quadratic nature of ¢,, we can write
i i, Lo,
pi(aZz;) =1y +ary + 3*¥ 3= 6i(a)
over the interval a € (8;,B8i41) fori=0:¢. From Lemma 4.1, it follows that
r? = ¢(0), r§ = —a||2Tv||2 and * = z72TBZz..

The values of rj-“, for j =1,2,3and i =0:¢ - 1, can be calculated from r;: by noting

the changes in the penalty terms at §;,,.

The generalized Cauchy step can be identified by analyzing ¢; over each (Bi, Bivr)

interval. If
der

=r i >0
aQ a=f; 2+ﬂ‘ 3=

CHAPTER 4. IMPLEMENTATION CONCERNS 7

then z. is not a descent direction over the interval a € (8;,Bi+1)- Therefore, no further
analysis is necessary, since a. = f; corresponds to the first minimum along z.. When 2z, is
a descent direction in the current interval, then further action is required. The minimum
of the quadratic term 6;(a) occurs at amin = —r§/ri. If amin € (Bi, Bi+1), then a. = amin
corresponds to a minimum of ¢ along z.. Otherwise, the next interval (8;y1,0:42) is
examined. If z. is a descent direction over (8;, aa), but the minimum of 6;(a) does not
lie in the interval, then we set a. = aa. Note that, since rJ is always negative, a. always

has a positive value.

While d; = d. is an acceptable trust region direction, it may be possible to find a
direction that gives better descent. Let the matrix A. be the activity matrix at w aug-
mented with the gradients (already evaluated at w) of the activities picked up (within the
model) at w +d.. The values of 7. and B. are defined from v and B using the derivatives
evaluated at w for the new activities. Also, determine a matrix Z. corresponding to A..
Motivated by the theory explained in Section 4.2.5, the trust region step will be improved,
if the matrix Z7 B.Z. is positive semidefinite, by using the quasi-Newton step d; = Zz,,

where z, is a least squares solution of
Z¥B.Z.z, = -27..
If the direction d. + d; satisfies
p1(de + dy) < ¢1(dc) and [|de + diflw < A,

(that is, if dy further decreases the model function and d. + d,. lies within the current
trust region), then accept dy = d. + d; as the approximate trust region solution at the
current type one point. Otherwise, d; = d,. is viewed as the approximate trust region

solution.

CHAPTER 4. IMPLEMENTATION CONCERNS - 78
4.2.3 Approximating Solutions at Type Two Points

The multiplier estimates at w, a type two point, suggest that a nearby stationary point is
not a first order point of the penalty function, and therefore, not a solution of PF(z). An
approximate trust region solution at w, denoted dj, should decrease the model function
and satisfy the trust region constraint, while moving away from this neighborhood. In
order to achieve the latter goal, the activities whose multipliers are out of kilter (that
is, the multipliers that violate the conditions for a first order point) are examined. A
subset of these activities, denoted D, will be dropped and the remaining activities will be

maintained. Direction d; should be defined accordingly.

Let the set Dg, for an activities index set S, denote the activities in S which are in
D. In particular, let Dpo denote the indices i € P2 for which both Ai(w) and g;(w) are
being dropped along d2. Assume that both A; and g; are being dropped only if both ¥
and ¥ are in kilter, but their sum is not. Also, let 'Dgg denote the indices i € P2 for
which);(w) is being dropped and g;(w) maintained along d,. Similarly, define the set

D%, for the opposite situation.

Ideally, d; € Wa(w, D), where

Wy(w,D) ={ de R+,

dTVG;(w) + 1dTV?G;(w)d = 0, i€ S,

dTV 2 (w) = 0, i€QQUQL,
ATV gi(w) + 47 V2g:(w)d = 0, ieQpuQLl,
dT(Vgi(w) — VAi(w)) + 3dTV3gi(w)d = 0, ieQL,
dTVei(w) + 1dTV2ci(w)d = 0, ieN° }

and

S% = T°\ Do

CHAPTER 4. IMPLEMENTATION CONCERNS 79

Q% = (P\Dm)UDp
QF = (P;\Dp)UDpe
QL = (PL\Dp)UDp
QL = P2\(Dps UDps UDE)

N° = MO%\Dpp.

The requirement for ¢ € Dpo is not strictly necessary, but it reduces the number of

directions which will be considered as approximate trust region solutions. It forces the

activity g; — A; to be maintained (within the model) along the direction d; when both A;

and g; are being dropped.

The model function can be written over fewer terms by considering only d € W(w, D).

We denote ¢(d) with d restricted to Wy (w, D) as ¢,(d).

p2(d) =

where

F(w) + dTVF(w) + %dTVZF(w)d
— " min(Gi(w) + T VGi(w) + %d’-’ V2G,(w)d, 0)
i€s’

+p ZQ | min(Ai(w) + 4TV i(w), gi(w) + dT Vgi(w) + %dTvzg,-(w)d)l
i€Qy

. 1
—p Y, min(0, gi(w) + dT Vgi(w) + -idTV’ye(W)d)
i€Q}

—p Y min(A(w) + d"VA(w),0) +p > [Mi(w) +dTVA(w)|

1€Qg i€qQL

1
+p Y Jei(w) + dTVes(w) + -idTvzq(w)dl.
€N’

S’ = T'UDgpe
Q = P)"UPy’U'Dp_:__U'ngUDp:

N' = M'UDpp.

CHAPTER 4. IMPLEMENTATION CONCERNS 80

Note that W,(w, D) has the same form as W;(w), defined for type one points, with S°,
2 Q5 QL, QL and N replacing T°, P{, P2, P, P2 and MP, respectively. As well,

¢2(d) for d € Wz(w, D), and ¢,(d) for d € W) (w), have similar forms, with S’, Q; and
N’ replacing T, P{ U P, and M’, respectively.

As was the case for type one points, even if {d € W, (w, D) : |[[d]lc < A} is nonempty,
satisfying d € W;(w, D) can be time consuming. Again, a first order approximation is

used, and higher order change in the maintained activities is ignored.

Let Ap be the activity matrix A with the columns corresponding to the gradients of
the activities in D removed. The matrix Zp, satisfying A},'Zp =0 and Z%Zp = [can
be defined from Z using Ap. It will have np = ¢ — n, + |D|, or |D| more columns than
Z, where n, is again the number of columns in A. Linearizing the constraints defining
d € Wy(w,D) yields ALd = 0, or equivalently, that there exists z € R™ such that
d = Zpz. Thus, we are looking for z in the reduced space such that ¢,(Zpz) < 0 and
128 2llec < A

The approximate solution to the trust region subproblem is defined using the condi-
tions stated in Lemma-3.9, which details how to define a descent direction for p, from a
nondegenerate, stationary, non-first order point by dropping a éingle activity. This result
can be generalized to dropping multiple activities from a type two point to find a descent

direction for .

First, we state formally some assumptions which are placed on the choice of D.

Assumption 4.3 Both X; and g;, for some i € P2, are in D only if ¥} and ¥¢ gre in
kilter, but ¥} 4 ¥ is not. In addition, while both may be dropped, the difference g; —);

will be maintained along the dropping direction.

Before verifying that multiple activities can be dropped from the current type two

CHAPTER 4. IMPLEMENTATION CONCERNS 81

point, preliminary results and definitions are needed.

Lemma 4.2 There ezists ag > 0 small enough such that all the following conditions are

satisfied for a € [0, ay] and any direction dp.

eicT'
neg(Gi(w) + adbVGi(w) + % 24T92G (w)dp) = negGi(w)]
e ¢ DTo.‘
neg{adLVGi(w) + %azd% V2G;(w)dp] = negdbVGi(w)]
eic P{UP;:
nefi(1) ~ Mi(w) + adB (Vgi(w) ~ VAi(w)) + 5BV gi(w)do]
= neglgi(w) — Mi(w)]
e i€ P;:
sign{Ai(w) + adp VAi(w)] = sign[A:(w)]
s i€ Py
sign[g;(w) + ad} Vgi(w) + %azdgvzyi(w)d‘b] = sign[gi(w)]
etc PLU Dp: :
sign[Ai(w) + adp VAi(w)] = sign[i(w)]
etc Dp_l__ :
sign[Ai(w) + adp VAi(w) +
min(0, ad}(Vg:(w) - VAi(w)) + 502 dE Vigi(w)dp)] = signide(w)]
and

neslad} (Vai(w) ~ VAi(w)) + 70*dE V2gi(w)dp] = negldB(Vai(w) - V()]

CHAPTER 4. IMPLEMENTATION CONCERNS

o (S Pf\) \ DP: -
1
9:(w) + adp Vgi(w) + 3 2d5V2g:(w)dp > 0

et ng e
gi(w) + ad} Vgi(w) + %a’d%'vz i(w)dp > adb VAi(w)
and
signfad} VAi(w)] = sign[dDV Ay (w)]
e t¢C P: \ Dpo
Ai(w) + adf VAi(w) > 0
e1e€D pg:
adf Vgi(w) + 502 a5V g(w)dp < Nw) + adb VAi(w)
and
signjadh Vi(w) + o’ db Vg (w)dp] = signdhVgi(w)]
e ic Dj‘,_.;_ :
neglad], Vi(w)] = negdf v A;(w)]
eic ﬁ?,g :)
neladh Vgi(w) + 5a*d5Vg:(w)dp] = neddbVi(w)]
eitc M':
: T l 2 re2 .
sign[ei(w) + adpVei(w) + 5o dp V2 ei(w)dp) = signfe:(w)]
e € DMO :

signadd Vei(w) + 50*dbVeei(w)dp] = signldfVei(w))

Proof: Follows immediately from the continuity of the functions. O

CHAPTER 4. IMPLEMENTATION CONCERNS 83

Definition 4.3 Direction dp, defined under Assumption {.3, is the direction

dp = Z viz;
€D

where z; satisfies

z?z;:l, zfZ =0 and z¥ i =0,

for Ay;y, the matriz A with the gradient a; corresponding to activity i € D removed. The
coefficients v; satisfy

T
v = oi/al z,

where o; = *1 as indicated tn the proof of Lemma 3.9 for each activity i € D being

dropped.

Notation 4.1 For simplicity, the summation 3} ; s, for a set S, will occasionally be

written as Y, g when it is clear that the summation is over indez i € S.

Lemma 4.3 The direction dp and the gradient v defined at w satisfy

by = -2 [¥FI- T -9~ - Y @ H-Yo
Do

D:g ”;.g Dp- Dpt \‘D‘; + D'; +
AL HEDM SEDM-EE HEDIE) A
Dpo ng Dpo Do

where

Dg,g = {i € DP,.I . ‘I’g_'\ = 0}.

Proof: Since ¥ is a least squares solution to the system AW¥ = v, there exists a vector £

such that

CHAPTER 4. IMPLEMENTATION CONCERNS

By the definition of dp, it follows that

By =

—

—

——

> vzl (A¥ + Z§)

21,: vizl A¥ + Y vzl 2¢
}1',: vizl A¥ + o’

;;(cr-/ 7 a;) (2l a;)el ¥
D

Y —sign[TF]EF + 3 —sign[WN¥} + Y —sign[¥7]¥7
Dro DA DT

e e
+ Y —sign[#MNEP 4+ Y sign[@E 4 Y —1-0
Doz D+\D%, Do,
+ Z —sign[E{]¥¢ +) —sign[P]¥} + Y (~¥} - &)

+ E —sign[¥5]¥§

- Z 1| - Z LAEDIL BN - B S| -t B P

p? D Doy \P%, DO

L] P Pt
ML HEDML HE Z(‘I‘A +¥) - ¥ o
ng ‘D,,o Dy

Lemma 4.4 Direction dp, as defined in Definition 4.3, provides descent for 3.

Proof: Using Lemma 4.2, we have, for 0 < a < ay,

pa(adp) = F(w)-l-azd%VF(w)-i-%a’d%VZF(w)dp

3 negGlw)|(Gi(w) + adf VGi(w) + 39*d5VG:(w)do)

-» 3 negldf VG (w)](2df VGi(w) + 5 325 V2Gi(u)dy)
Dra

+1) sign[Ai(w)](Ai(w) + adf VAi(w))
Pl

84

CHAPTER 4. IMPLEMENTATION CONCERNS

+# 3 sigalsc()](9:w) + adh Vgi(w) + 30?dE Vgi(w)dp)

Py

+8 Y sigaAi(w)]\(w)

Dpé

+p) sign[A;(w)Ineg[d5 (Vgi(w) — VAi(w))]

D’zé

(adB(Vgi(w) ~ VA(w)) + sa?d5 V2gi(w)dp)

+ Y sign[dp Vi(w)]adp Vi (w)
D

+1 Y signldb Vg (w)|(adb Vgi(w) + 3o*dh V7g:(w)do)
ng 5

-1 E neg[ctgvf\,-(w)]adTVz\;(w)
D‘\

4 Y negld} Vi(w)l(ad Vai(w) + za?dE Vg:(w)d)

2
Do

+p Y signhi(w)](A(w) + adp VAi(w))
PL\Dp,

+p Y sign[d} Vi(w)]ad] VAi(w)

Pp
+1 Y signlei(w)](c:(w) + adf Vei(w) + s a*dE Vei(w)dp)
M'

+1 Y sign[df Vex(w)|(adf Vei(w) + a?df Viei(w)dp)

Do

1
#2(0) + adly + So?df Bodp

—pa Z min(0, d’?VGl(w)) - ba z min(d%:\.-(w), 0)
Dro D;\’g

—pa Y min(0, d5Vg;(w))
P
+pa Y sign[Ai(w)] min(0, df(Vgi(w) — VAi(w)))

Dpr

85

CHAPTER 4. IMPLEMENTATION CONCERNS

+pa E |45V gi(w)| + pa }: [dB VAi(w)]|

Po
+pa Z: [V Ai(w)] + pa Z |dB Vei(w)|,
Dpo

where

Bp = B-p Z neg(d5 VGi(w)|V2Gi(w) ~ i Y, negldh Vg:(w)]V3g:(w)
Die

+u Z stgn[»‘-(tﬂ)]nes[dg(vm('v) Vi (w))]V2gi(w)

+u E sign[d}, Vg (w)]V2g:(w) + Z sign[dp Vei(w)] Vci(w).
Po

Combining the above expression with Lemma 4.3, we have that

1
p2(adp) = ¢2(0) + Eazngpdp

—a ; (1€F] + pmin(0, dEVG;(w)))
T°
—a ¥ (19| + pmin(0, <3 V2 (w)))

A
Des

—a Z (1%?] + £ min(0, d5 Vg:(w)))
- P

-a Z (1%¢] + pmin(0, &5 (Vgi(w) — VA:i(w))))

P

~a Y (1% - pmin(0, d5(Vgi(w) — VAi(w))))

,,+\D°
—a Z(I‘I"l - #lngy;(W)l) -a Z(I‘I”‘l — uldpVAi(w)])
Po P“

-a E(‘I"‘ + ¥ - pldf VA (w)]) - @ 2 (151 - uld} Vei(w))).

Dpo

Consider, for ¢ € Do,
BVGi(w) . = Y v;zTVGi(w) = %z VG;i(w)
j€D
= (0:/z] VGi(w))zfVGi(w) = o; = —sign[¥F].

86

Cal

CHAPTER 4. IMPLEMENTATION CONCERNS

Similarly, for
i€ ’D;‘,g : dEVay(w)
i€ Dy : d5V gi(w)
i€Dp-: 43 (Vg:i(w) ~ VAs(w))
i€ Dps \ D}y 0 d5(Vgi(w) — VAi(w))
ieDd, : B (Vgi(w) - VAs(w))
i€ Dpo: d5Vgi(w)
i€ Dpg : dE Vi (w)
i€ Dpo : dBV \i(w)
i€ Dpypo: d5Vei(w)

Therefore, for a € [0, ay):

~sign[¥}]
—sign[¥7]
—~sign[¥{~
~sign[¥7]
-1
—~sign[¥]]
—sign[¥}]

—sign[¥}] = —1

!

—sign[¥{].

1
p2(adp) = @2(0) ~—ad + 50243941:,

where

9 = 3 (1¥F] - upos[¥F]) + 3 (1%}] — ppos[¥2]) + 3 (1¥¢| ~ ppos[¥2])
Dyo DA D?

P

+ 3 (977 - ppos[EE)+ Y (1M + ppos[EA) + S

”p; DP; \D;_j;

F 0¥ -)+ S -)+ Y (B4 ¥ —)+ 3 (1% -)
Dpo Dpo Ppo Dyo

A

9
= Z ;.
i€eD

0
»,

87

By examining each ¥; separately, and recalling that each multiplier being considered

is out of kilter, it is easily shown that 9 > 0. There exists a5 & (0, ay) such that

¢2(adp) < 2(0) for a € (0, as). Therefore, the direction dp is a descent direction for

the model function ¢ at type two points. O

CHAPTER 4. IMPLEMENTATION CONCERNS 88

The approximate trust region solution d; is therefore defined to be d; = apdp, where

ap > 0 is the first local minimum of the univariate problem

min p(adp) subject to 0< a < A/|ldp]les-

The value of ap can be determined by the same method used to calculate a, for type

one points.

4.2.4 Approximating Solutions at Type Three Points

By definition, a type three point appears to be close to a first order point which is not a
second order point. The multiplier estimates ¥ indicate that the current activities may
be active at a solution of PF(y). Recall that W, was defined for type one points as the set
of directions along which the current activities are maintained. Therefore, if we require
that d3 € W, for the approximate trust region direction d3, the activities are maintained
and the trust region objective function reduces to ¢3(d) = ¢;(d).

As with the previous classes of points, considering only d € W) (w) requires satisfying
quadratic constraints exactly, which, if possible, can be very costly. Once again, we
simply require that the linear approximation ATd = 0 be satisfied while reducing ¢3(d)-
Working in the reduced space associated with matrix Z, we wish to find a direction z

which approximately solves
min ¢3(Zz) subject to [[Zz]|c < A.

From Lemma 4.1, we can write, for any direction z in the reduced space, and for small
steps a > 0,

p3(aZz) = ¢3(0) + azT 2Ty + %a’zTZTBZz.

For type three points, the value of ZTy satisfies ||Z7|| < A at w. At a type one point, the

Cauchy direction z = — 27+ provides reasonable descent for the model function. However,

CHAPTER 4. IMPLEMENTATION CONCERNS 89

this direction could be of negligible size at a type three point. Therefore, second order

information about w must be used in defining the approximate trust region solution ds.

Motivated by the results of Corollary 3.13 and Lemmas 3.14, 3.16 and 3.17 for the
penalty function, a direction z,. of negative curvature of the reduced Hessian of the
Lagrangian ZT HZ will be used to define ds. The direction d = Zz,. may provide second
order descent in @3, but may not provide first order descent. Define d,.. = o,,.Zz,,. where
One = 1 is defined so that OnezL.ZTy < 0 if 2T+ is nonzero. If ZTy = 0, then either

value of o, is acceptable.

Define d3 = a,.0n.Zz,. where ay,,. > 0 is calculated as the minimum of the univariate
problem

n}zin P(a0ncZzn:) subject to 0 < a < A/||Zznc)loo-

As explained on page 62 in Section 3.5.3, it is possible that ZTHZ is indefinite and
dnc does not provide descent. In this event, the algorithm currently terminates at such a
point. In theory, using the result presented in Lemma 3.14, it is possible to find a descent

direction if one exists. Such a technique was not investigated further.

4.2.5 Approximating Solutions at Type Four Points

As with type three points, the multiplier estimates at a type four point w indicate that
a first order point appears to be nearby. However, unlike at a type three point, the
curvature of the reduced Hessian of the Lagrangian at w, ZT HZ, is positive semidefinite,
which indicates that the nearby second order point may be a minimum point of the

penalty function.

If the current point is really close to a second order point of p,, then a full Newton
step should be taken. When started close to a solution, Newton’s method will converge

quickly to that solution.

CHAPTER 4. IMPLEMENTATION CONCERNS - 90

A Newton step is composed of two orthogonal parts, the horizontal and vertical steps.
The horizontal step maintains the current activities, up to first order change, while step-
ping to the true minimum of a quadratic approximation of the differentiable part of the

penalty function. This step, d, satisfies d;, = —Zz;,, where z; is the solution of system
ZTHZz=-2%4.

The step can be written as

dn=-2(ZTHZ)'2%.

Because of the nonlinearity of the functions comprising the penalty function, it is
unlikely that the activities at w are still active at w4 dj,. We shall define a step d,,, called
the vertical step, which is designed so that the activities at w (which the multipliers
indicate may still be active at the nearby stationary point) are once again active at
w +d, +d,. Let §(w) be a vector of the active penalty terms at w, ordered as in A.
Therefore, §(w+dy) and §(w+dp+d,) are these terms evaluated at w+dj, and w+dp+dy,
respectively. The Newton step solution to the system of equations §(w +dy +d,) =0 is
the step d satisfying

(w+dp) +d¥VE(w +di) = 0.

Because of the cost of evaluating all the gradients at w + dj,, the matrix is approximated
by its value at w, A(w). Therefore, we define the vertical step d, as the solution of the

system

A(w)Td, = ~§(w + d).
This direction can be calculated as
d, = —A(w)(Aw)TA(w)) ¢(w + dy).

Therefore, at point w, the steps dj, d, and dy are calculated. The step dy is consid-

ered a successful trust region step if

CHAPTER 4. IMPLEMENTATION CONCERNS 91

1. it falls within the current trust region, and

2. it decreases the penalty function from w.

Note that the second conditions requires a decrease in the penalty function, rather than
a decrease in the model function along with a strong correspondence between the model
and penalty functions. If w is truly close to a solution, the quadratic model is a very
good approximation of the penalty function, so an explicit comparison is not necessary.
Another way of viewing this requirement is that, near a solution, the model function used

is the actual penalty function.

If the Newton step is unsuccessful (either because the step is too long or because it
provides no decrease in the penalty function), then the algorithm concludes that w is not
as close to a solution as originally thought, and the point was misclassified. In this case,
the value of the closeness tolerance A is reduced, and the point is reclassified. If the step
failed because the trust region radius was too small, the reduction of the tolerance will

still allow the algorithm to approach a solution.

4.2.6 Comments on the Approximate Solutions

The approximate trust region solutions, as described in this section, are chosen so that
they reduce the appropriate model function without too many expensive computations.

Hopefully, at the same time, they will decrease the penalty function.

The goals for the approximate solutions are basically as follows.

e When far from a stationary point, the approximate solution is simply the generalized
Cauchy point. The direction is defined using first order information, but the step

size calculation involves first and second order information at the current point.

CHAPTER 4. IMPLEMENTATION CONCERNS 92

Using this simple direction, progress is likely to be made towards a stationary

point.

® Once the current point appears to be close to a stationary point, the multiplier
estimates become important. They indicate whether the current active set matches
the active set at some second order point of the penalty function. If the current set of
activities is not such a set, then the approximate trust region solution is determined
via a dropping direction that is chosen to move away from the subspace defined by
the current activities. Again, first order information is used to define the dropping
direction, and first and second order information is used in the calculation of the

step size. Progress towards a different stationary point is likely to be observed.

® When the current point appears to be close to a first order point, the approximate
solution is chosen so that it stays within the subspace defined by the activities. By
doing so, the linearization of the activities are maintained along the approximate
solution. However, at type three points, while the active set seems to be correctly
identified, the point w is not in a region of positive curvature. Therefore, the
approximate trust region solution is based on a direction of negative curvature
for the reduced Hessian of the Lagrangian at w. While maintaining the current
activities (to first order change), progress is likely to be made towards a region in

which the reduced Hessian is positive semidefinite.

e When the current point appears to be close to a second order point, a full Newton
step is attempted. This direction attempts to move towards the minimum of the
differentiable part of the penalty function and to maintain the current activities at
the new point. If the Newton step fails, the algorithm concludes that the current

point is not as close to a solution as thought, and w is reclassified.

CHAPTER 4. IMPLEMENTATION CONCERNS 93

4.3 Evaluating the Trust Region Direction

In the previous chapter, it was stated that a direction dr is an acceptable trust region
direction if there is reasonable agreement between the actual decrease observed along dr
in the penalty function and the decrease predicted by the model. Stated mathematically,
it is required that

Xa(d1)/xp(d1) > 51

for an algorithm parameter «; € (0,1), where

Xa(d1) = pu(w) — pu(w + dr) and x,(dr) = ¢(0) — ¢(d7)

for the model function ¢ at points of type one, two, or three. Recall that with an
appropriate updating of the activity index. sets, 2 for type two points is of the same
form as ¢;, and 3. Therefore, ¢ is used to signify the model function for these types of
points.

The method used to define dr ensures that x,(dr) > 0 is always satisfied. It follows
that an acceptable trust region direction always reduces p,, since x,(dr) > 0 must also be
satisfied by an acceptable direction. While any amount of decrease may seem reasonable,
a certain level of decrease must be observed in practice to guarantee the convergence of

the algorithm to even a stationary point.

Therefore, dr must pass an additional test before it can be considered an acceptable
direction. It must provide sufficient descent (as defined in [46], page 100) in the penalty

function.

Definition 4.4 Let r; € (0,1] be an algorithm parameter. A direction d provides suffi-

ctent descent in the penalty function if

pu(w+d) - Pu(w) < fldT‘Y-

CHAPTER 4. IMPLEMENTATION CONCERNS 9%

Note that the value of r; determines how much “sufficient decrease” is required for the
direction. If r, is very small, only a small amount of decrease is actually required. As r;

approaches one, motre decrease is required for sufficient descent.

If dr does not satisfy sufficient descent in the penalty function, then it is reclassified as
an unacceptable trust region direction. In this case, the trust region radius A is reduced

and the algorithmic process continues from the current point.

4.4 Recognizing Activities

The activities at a given point w correspond to the penalty terms which are nondifferen-
tiable at w. In practice, many problems can arise using this precise definition of activities.

The following points should be considered.

e Because the penalty terms are generally nonlinear, it may take many iterations

before any of the terms are identically zero.

e When the magnitude of a penalty term is very small but nonzero, the term is
differentiable at the current point. However, due to the continuity of the functions
defining the penalty terms, there is a small region about the current point which

contains at least one point of nondifferentiability.

e The approximate trust region direction dr was defined so that the activities would
still be active at the new point. Unfortunately, due to the nonlinearity of the penalty
terms, it is unlikely that this goal is achieved.

Consider the following situation adapted from Conn (in [36]). For simplicity, assume

that the penalty function has the form

Pu(w) = F(w) — pmin(G(w), 0) ~ pmin(G2(w), 0)-

CHAPTER 4. IMPLEMENTATION CONCERNS 95

Gl(w) D

Figure 4.1: Motivation for e-Activities

This objective function corresponds to a bilevel problem with two upper level constraints

and an empty lower level problem (i.e. a standard nonlinear optimization problem).

The following comments make reference to Figure 4.1. Assume that w*, at which
Gi(w") =Ga(w™) = O,_is a global solution of the penalty function. Note that the surface
between AB and CD corresponds to the region in which G;(w) = 0, and the s;urface
between AB and EF is the region in which Gz(w) = 0. Consider minimizing p,, using
the algorithm described thus far, starting from the point w;, at which neither of the
penalty terms is active. Minimization leads to the Cauchy point w; = w; + afd5, where

di = -1 = — (VF(w1) - pneg[G1(w1)]VG1(w;) — pneg[G2(w2)]VGa(w,)) .

At wy, Ga(w;) = 0 is satisfied, so A = [VG;(w)]. Continuing the minimization from w,

leads to w3 = w, + a§d§, where d§ = ~Z22Z%y, with 2T A =0 and

Y2 = VF(w) - pneg[G, (w7)]VGy(w;).

CHAPTER 4. IMPLEMENTATION CONCERNS 96

Now, while G1(w3) = 0, G is no longer active, even though d§ was chosen orthogonal to

VG2 (wz).

The minimization process will continue to zigzag between the two constraint surfaces,
with the magnitudes of both G;(w) and G2(w) becoming smaller. However, we will not
reach a point at which both functions are exactly satisfied at the same time. To reach
w”™, we need to project parallel to AB but a descent direction is never chosen in this
direction. Therefore, we will never actually reach the solution w=, although it will be
reached, theoretically, in the limit.

The described behavior, which occurs in part because of the problems discussed above,
illustrates the need for recognizing near activities as well as exact or true activities.

Therefore, we introduce the concept of e-activities, for some € > 0.
Definition 4.5

1. For two values a and B, we define the following equivalence:

a=fela-p<e

2. The constraint set P is divided into three sets, for any value of e:

P_() = {ie P:A(w)=g:(w)}
Pr(e) = {i€ P\ P=(e) : Mi(w) < gi(w)}
Py(e) = {i€ P\ P=(€): gi(w) < Ai(w)}-

3. The following indez sets define the e-active penalty terms.

T%) = {ieT:Giw)=0}
Pl(e) = {ie Pa(e):Mi(w)=0}

CHAPTER 4. IMPLEMENTATION CONCERNS 97

Pe) = {i € Pyle): gsw) £ 0}
P = {i€ Po(9): Mi(w) 20 or gi(w) 0}
P = P=(e)\Po(e)

il

M%) = {ieM:c(w)=0}.
4. The following indez sets define the e-inactive penalty terms.
T'(€) = T\T%e)
Pi(e) = P\ PR(e)
Py(e) = P\ F(e)
M'(e) = M\M).

The use of e-activities, rather than exact activities, has several important benefits.
It means that penalty terms will be treated as activities more quickly, e-inactive penalty
terms are clearly differentiable in a larger region about the current point than exact
activities, and the current e-activities are much more likely to be e-active at a new point
than exactly active. By addressing these concerns, the behavior demonstrated in Figure
4.1 will be avoided. After a finite number of initial steps from w;, the values of both G
and G, will be small enough to be considered e-active. At that time, the correct active

space would be identified and w* reached because of the horizontal and vertical steps.

The existing trust region algorithm does not require many significant changes due to
the introduction of e-activities. Most of the changes simply involve replacing the exact
activity sets with the defined e-activity sets. However, note that the addition of the
activity tolerance € involves another parameter in the process of classifying points into

the four groupings. This issue is dealt with in the next section.

The vertical step, used in defining dr at type four points, is of added importance

when e-activities are used. This step was previously described as a way of mitigating the

CHAPTER 4. IMPLEMENTATION CONCERNS 98

higher order change in the exact activities along the horizontal component of the Newton
direction. As can now be seen, the step is also needed to bring the e-activities closer
to exact activities. If a penalty term is truly active at a minimum point of the penalty
function, then it must eventually be exactly active within the algorithm as well. Because
this is only important when approaching a solution, we do not consider vertical steps at

any other stage of the algorithm.

4.5 Reclassifying the Current Point

As mentioned above, the algorithm parameters A and ¢ influence the classification of the
current point w as a type one, two, three or four point. The value of A is used directly
in the classification process. The value of ¢ determines which activities are considered

active, and hence determines the values of A, Z and v.
Let w® be the nearest stationary point of the penalty function in relation to w.

If |Z7v|l2 < A, then the algorithm uses the information available at w to approxi-
mate the values of the Lagrange multipliers at wS. These approximations may be very
inaccurate because w is not close enough to w> (if the value of A is too large). Alterna-
tively, the estimates could be poor because the set of e-activities at w does not correspond
to the exact activities at wS. If some of the exact activities at w° are not e-active at
w because their values are too large, then subsequent iterations will likely reduce their
values so they will be considered e-active at w. A more dangerous situation is that terms
are considered e-active at w when they are not active at w° because the value of € is too
large. The information at w may be so different from the information at w® that the
multiplier estimates reveal no useful information about the behavior of the activities at

wS.

CHAPTER 4. IMPLEMENTATION CONCERNS 99

If ||ZTv|l2 > A even though the information at w may be very useful in predicting
the multiplier values at w®, the algorithm will not attempt to calculate the multiplier
estimates. The value of € or A may be too small to correctly classify w, but the generalized
Cauchy direction will still provide descent in the model function. Therefore, the iterate

will eventually be classified as close to stationary.

Inaccurate information about w® derived from w when A or ¢ is too large may cause
some problems within the algorithm. It could mean that a dropping direction, a direction
of negative curvature, or a Newton direction does not provide any descent in the model
function. This behavior would be detected by examining the solution of the univariate
step length optimization problem. If a step of zero length is the solution at a type two,
three, or four point, as described in the previous sections, then the algorithm concludes

that A or € is too large, and reduces both values.

If either € or A is too small, increasing its value may improve the speed of convergence,
but it is unlikely to change the outcome. Therefore, the algorithm does not attempt to

detect this situation.

It is important to note that A and € are reduced and w reclassified only when there
is an indication that the current point is not classified correctly. In all other situations
in which the approximate trust region direction is unacceptable, the radius is decreased

and the algorithm continues from the current point.

4.6 Restatement of the Algorithm

The changes described in the previous sections are encorporated into the trust region
algorithm stated below. A greater level of detail is included than in the previous statement
of the algorithm.

CHAPTER 4. IMPLEMENTATION CONCERNS 100
Algorithm 4.1 (Revised Trust Region Framework)

1. Choose algorithm parameters:

e trust region acceptance values b; and b, satisfying 0 < b; < by <1,
@ unboundness count b,y > 0,
o the mazimum trust region radius size Apax > 0, and

o sufficient decrease constant ry € (0, 1].

2. Choose initial starting velues for algorithm tolerances:

o closeness tolerance A° > 0, and

e activity tolerance &® > 0.
3. For starting point w® provided by Algorithm 3.1, select A® € (0, Amax)-
{. Set k=0.

5. Identify the e-activities at w* and form AL, the e-activity matriz consisting of the

gradients of the e-activities.
6. Let £* be the vector of values of the e-activities, ordered as tn Ai .
7. Calculate Z* satisfying (Z2*)T2* = I and (AX)TZ2* = 0.
8. Calculate v* and B* at w*: |

7 = VF-p Y negGilVGi+p Y signM]VAi+p 3 sign(e:]Va:
T'(e) P(e) Pjle)
+8 Y signM]VAi+p Y signe)Ve:
PL(e) M'(e)
B* = VPF-p) negfGiVGi+p Y sign[gi]Vigi+u Y sign[e;]V3e;.
Ti(e) i) MT(e)

CHAPTER 4. IMPLEMENTATION CONCERNS 101

9. Classify w*:

o If [[(Z%)Ty*||l; > A%, then w* is ¢ Type One Point,

o Else
— Pind a least squares solution to AXW* = v*.
— If 3j such that ¥% is out of kilter, then w* is ¢ Type Two Point.
— Else

+ Calculate H* at w*:

H* = B*- Y 9fv%G:- Y ¥V - Y ¥ ivig

T(e) Pg(e) PL(e)
- z \Egvzg;— Z ‘I’SVzc;.
Pl(e) MO (e)

* If (Z*)T H*Z* is indefinite, then w* is a Type Three Point,

+ Else w* is a Type Four Point.
10. Check for termination conditions:

If w* is a _Type Four Point at which (Z*)Ty* = 0 and €& = 0, then
terminate the algorithm: w® satisfies the necessary optimality conditions

for a minimum point of p,. Set w, = wk.
11. Calculate d!f., an approzimate solution of the trust region subproblem
TR(w*, AF) : min ¢ (d) subject to |[df|w < AF.

o Ifw* is a Type Two Point, then

— Choose a nonempty set D of e-activities to be dropped from among those

whose multipliers are out of kilter.

CHAPTER 4. IMPLEMENTATION CONCERNS 102

— Ubpdate the constraint sets using the dropping set D.

T'(e) = T'(e)UDr-

T%e) = T°e¢)\ Dre

P{(e) = Pi(UDp;U{i€Dpe : ¥} >0}

Py(e) = Py(eUDpo(qU{i € Dhy, - ¥ > 0}
P = (P \Dpoy) U {i € Dpuy,y : ¥ < 0}
Pl(e) = (PJ(\Dpyq)) U{i € Dpoy,y: & <0}
PL(e) = (PL(\Dpr()UDpa(q

Pl(e) = Pe\ (ng(z) UD3o(y UD%g(g;)
M'(= M'()UDyoq
M%) = M°(€)\ Daroy)-

o°® For type one, type two, and type three points, define the model function at w*,
letting Py(€) = Py (€) U P, (e),

¢*(ad) = F+ad’VF+ -;-azdrszd

- Y min(G: + adTVG; + -;-azdrsz;d, 0)
T'(e)
—p Z min(G;, 0)
T9(c)
. 1
+p Y [min(X; + adTV);, g; + ad' Vg; + 3 2472 g:d)|
Py (e)
] 1
+u Y |min(d;, g; + ad™ Vg + Sa*dT 9 gid)|
P3(e)

+p Y |min(X; + adTVA;, g;)|
PS(e)

+# Y N +adT VA + min(g; — A;, 0)| + g Y, | min(X;, g:)]
PZ(e) P2(e)

CHAPTER 4. IMPLEMENTATION CONCERNS 103

1
+# Y la+ed Vet a?d Viedl+p 3 el
M!(e) M%)
o If w* is a Type One Point, then

— d5 = ~Z¥(Z%)Ty* and ok > 0 is the first local minimum of

TR, (d¥) : min ¢F(adk) subject to 0 < a < AF/||d¥||oo-

— Augment A¥ with the gradients (evaluated at w*) of the penalty terms
which are e-active at w* + afd* but not at w*. Denote the augmented
matriz by AX.

— Define Z¥ satisfying (Z%)T 2k = I and (Z*¥)TAk =0.

— Define v¥ by removing from v* the components due to the new e-activities.

— Similarly define B from B.

— If (Z*)T Bk Z* is positive semidefinite, then

* Calculate zi, a least squares solution to (Z5)T Bk Zkzk = —(Z5)T%.
* If akd® + ZE2% lies within the trust region and further decreases ¢*,
then df. = ofdt + ZEz%,
* Else df. = akdk,
~ Else d% = okdk.
o If w* is ¢ Type Two Point, then

— d% = Tiep(1/a¥ z)0:2;, where o; = £1 from Lemma 3.9 depends on the
type of e-activity being dropped and a; is the ith column of A%. The vector
zF satisfies (z5)TzF = 1, (Z*)T2% = 0, and (A5)Tz¢ = 0, where AF is
matriz A¥ with a; removed.

~ Calculate o, the first local minimum of TR, (d%).

~ If ok > 0, then d% = afd%. Otherwise, go to Step 15.

CHAPTER 4. IMPLEMENTATION CONCERNS 104

e If w* is a Type Three Point, then
~ Calculate 2%, a direction of negative curvature of (2¥)T H: Z*.
~ Choose of, = +1 such that o%,((Z%)T 2L)T < 0.
~ Calculate o, the first local minimum of TR, (0% 2525).
~ Ifak, > 0, then d% = a¥_ ok Z*zk.. Otherwise, go to Step 15.
@ If w* is a Type Four Point, then
— Calculate df = —(Z*)((Z*)T H*(Z*))~1(Z2F)Ty.
— Calculate df = ~(AF)((AF)TA*) 165 (w* + d¥).
— Calculate dy = dy + d,.
— Evaluate d¥:
* Calculate s* = r (d%)T+".
* If pu(w* +df) —pu(w*) < s* and ||df || < A¥, then wh*! = wh+df,.
Go to 14.

+ Else Go to 15.
12. Pvaluate the direction d?j

e Calculate x£ = p,(w* + d5) — p,.(w*).

o Calculate x* = o*(d%) — £*(0).

o Calculate s* = ryyTd%.

® If x5 /xE > by and x% < ¥, then update
— wk-H. — wk + d%-
— If ||d4)lc > LA*, then AR = min(2AF, Apnag),
— Else A¥! = A,

o Ifby < x5/xE < b2 and Xk < s*, then update

CHAPTER 4. IMPLEMENTATION CONCERNS

—_ wk+1 —_ wk + d%',
— Ak = Ak,
e Otherwise, A* = A%/2 and repeat from Step 11.

13. If PF(u) appears to be unbounded, i.e.

® iterations k — bax + 1, - - -, k were very successful, and

® over iterations k — byax + 1, -- -, k, pu(wtl) — F(w™!) is not reduced,
then terminate due to unboundedness, and set w,, = wFbmax_
14. Update &+ = &, A¥+! = A* and k = k + 1. Repeat from Step 5.

15. Reduce € and A*. Repeat from Step 5.

Convergence results for this algorithm are presented in the next chapter.

105

Chapter 5

Convergence of the Algorithm

5.1 Introduction

In this chapter, common convergence analysis assumptions and several additional as-
sumptions specific to the bilevel penalty function are used to establish that Algorithm

4.1 converges to a minimum point of the penalty function.

For convenience, the following definitions are repeated from Chapter 4.

e A type one point is classified as being far from a stationary point.
e A type two point is classified as being close to a stationary, non-first order point.

A type three point is classified as being close to a first, non-second order point.

A type four point is classified as being close to a second order point.

The convergence of the algorithm is established through a series of intermediate re-

sults, modeled after the convergence proofs presented in [34], [37] and [38].

106

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 107

1. When started far from a stationary point, the iterates generated by the algorithm
approach a stationary point after a finite number of iterations, and the current

point is eventually classified as a type two, three, or four point.

2. If the sequence of iterates is approaching a stationary, non-first order point, the
current point is classified as a type two point after a finite number of iterations.

The algorithm eventually identifies a successful dropping direction.

3. If the sequence of iterates is approaching a first order point, the current point is

classified as a type three or four point after a finite number of iterations.

4. If the sequence of iterates is approaching a second order point, then the current
point is classified as a type four point after a finite number of iterations. The

algorithm eventually accepts a full Newton step.

5. Eventually, all iterations take successful Newton steps and convergence to a second

order point of the penalty function is assured.

5.2 Assumptions and Terminology

The following assumptions and terminology are needed throughout this chapter.
Assumption 5.1

1. The functions F(w), Gi(w) for it € T, gi(w) for i € P, and c;i(w) fori € M, are

twice continuously differentiable.

2. The set
FO={we R™™ : p,(v) < pu(v")},

or any starting value w® € R™™+P {s compact and has a nonempty interior.
Y pLy

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 108

It is necessary to introduce a measurement of the curvature, or second order change,
of the penalty and model functions used in the algorithm. The measure used for differ-

entiable functions is extended to handle nondifferentiabilities.

Definition 5.1

1. The Generalized Rayleigh Quotient provides a measure of second and higher order

change in a function f at a point w along a step as. It is given by

Q(f, w, as) = r—2-— (flw + as) ~ f(w) ~ asTV f(w)) .

[asll3
If f ts twice continuously differentiable, then this ezpression can be rewritten as

sTV2f(z)s
sl

for some z € N(w,as) = {v' : |[w - v'|| < ||w - as||}. If f is a quadratic function,

Qf,w,as) =

then V2f is a constant.

2. The measure of curvature of the penalty function p, at w along the step ad is defined

using the measures of curvature of its individual functions,

Qp(w,ad) = QF w,ad)-p) pi(a)QG;i, v, ad)

ieT
+1 Y oi(a)pi(@)gi, w,ad) + 4 Y ai(@)Qci, w, ad),
icP ieM
where
i€T, pi(a) = negGi(w+ ad)]

ieP, oi(a) = signmin(\i(w + ad),gi(w + ad))]
ri(a) = neglgi(w + ad) - Ai(w + ad)]
ieM, oia) sign[c;(w + ad)].

Il

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 109

3. The measure of curvature for the piecewise quadratic model function ¢* defined at

w* along a step ad* is defined using second order change in the penalty terms,

Q*(w*,ad*) = (&)TVIF(u*)d* —p Y oi(ad®)(d¥)TV2Gi(w)d*
T'(e)

-1 Y ei(ad®)(d*)T V2g;(w*)d*
L5

+6 Y si(ad®)ei(ad*)(d)TVPgi(wF)d"

P‘((e)UP;(c)
+u Y si(ad®)(d)TVie(wk)d",

M:(e)
where
o forie T'(e),
ex(ad®) = negiGi{u*) + a(d)TVGi(w*) + 2o* ()T V?Gi(u*)d,
e for i€ P,
ei(ad®) = neglgi(w*) + a(d*T Tgi(w®) + 302(#)T Vgi(wH)d,
@ for i € P;(€) U Fy(e),

si(ad’) = signmin(Ai(w*) + a(d*)TVA(w*),
9:(0¥) + (@) TVgi(w*) + 30P(@)T V2gi(wH)d")]
ei(ad®) = neggi(w*) — Mi(w*) + a(d*)T (Vai(w*) - Vi (w¥))
+ 307 V2i(w*) Y,
@ for i € M'(e)

si{ad®) = signles(w*) + a(d)T Vei(w*) + 20 (@) V2ei(wh)d].

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 110

4. Let B% be the s& distinct breakpoints of ¢* along d. As in Section {.2.2, assume

that

13 k
0=ﬂ§<ﬂf<”’<ﬁfg<ﬁ.g+l=aA.

Define the second order change in ¢* along d* at each breakpoint as
Qf = Q*(w*, ﬁfd:’), forj=1:s5+1,

In particular, note that

ok = (72424 B 25 (Z4)T+*
' 1(Z*)Tv*II2 '

5. Let ﬂ;‘ be the s* distinct breakpoints of ¢* along the approzimate trust region solution
d*, as for ﬂ;‘ above. Similarly define the second order change in ¢* along d* at each
breakpoint as

Cf = Qk(wk,ﬂ;-‘dk), forj =1:s".

6. Define the following curvature measurements.

QF = max %]
i=lsk41
k k
= max [(;
(j=1:s%41 ICJ I

i

™ = 1+max(@,¢).
j=l:k
The following assumption is similar to Assumption A5.4 in [38].

Assumption 5.2 The curvature measurements satisfy the following condition over all

iterations k,
o0

1
z;-;:-!—oo.
k=1

Thus, there exists a finite value 772% > 1 such that r* < r™3% for all iterations k, i.e. 7F

is bounded above (by 7™**) and below (by one).

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 111

5.3 Convergence to a Near Stationary Point

The first stage of the convergence proof establishes that the algorithm converges to a near

stationary point, as defined below.

Definition 5.2 A near stationary point is a type two, three, or type four point, as defined
at the beginning of this chapter.

The result is proven in three distinct parts, as described below.

1. A lower bound is established for the change in the penalty function from a type one

point w* to a new point w* + d*, where d* is a successful trust region direction.

2. By examining the difference between the values of the model function and the
penalty function at w* + d*, and by establishing a lower bound on the size of the
trust region radius over a sequence of type one points, the decrease in the penalty

function is proven to be bounded away from zero.

3. The algorithm is then proven to approach a near stationary point.

5.3.1 A Bound on the Penalty Function Decrease

This section is modeled after Section 3.1 (“Obtaining a sufficient decrease in the model™)
in {38]. To establish a lower bound on the decrease in the penalty function along the
trust region direction d* defined from a type one point w*, it is first necessary to obtain
a lower bound on the decrease in the model function ¢* along d*. Because d* is chosen
so that it provides at least as much decrease in ¢* as the generalized Cauchy step a*dF,

the bound can be obtained by analyzing the Cauchy step.

For a direction df = —(Z%)T Z*y*, the step o* can be defined in one of three ways:

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 112

o af = o™ € (0,Bf), where o™ is the minimum point of the quadratic form

go(@) = ¢*(adf) for a € (0, BF);
o af = Bf = of, when there are no breakpoints along d* in the interval (0, o%);

o of > BF, when there is at least one breakpoint 8; € (0, ak).

A lower bound is obtained for ¢*(0) — ¢(a*d*) by examining each way that af can be
defined.

Lemma 5.1 Given Assumptions 5.1 and a type one point w®, if o* = of® € (0, 8%),
then
g Zk T. k|2
#H(0) - oH(okat) > IEL TR

Proof: Recall from Lemma 4.1 and the definition of Qf that for a € (0, 85),

o(a) = ¢*(ady) = ¢*(0) - all(Z*)T7 I + 3o?(v4)T 25(24)T B* Z(2*) T
g T k2, 1
= ¢5(0) ~ all(Z*) Ty 13 + Eazll(z")r'r""iﬂ'f»

The minimum of gq occurs at affi® = 1/Q¥. Therefore, since o € (0, 5f),

. N X 1 Zk T k|2
wleh) = pagndt) = ot - FIELTE
1

Therefore,
koo ke 1Z9TYRB 11257113
(‘4 (0) U4 (acdc) - 2911: 2 2.’.& '

since |¥| < r* and Qf > 0. O

Lemma 5.2 Given Assumptions 5.1 and a type one point w*, if ¥ = gf = aﬁ, then

1
#*(0) - ¢5(ald?) 2 F1I(Z*)"7"]l2a*

CHAPTER 5. CONVERGENCE OF THE ALGORITHM
Proof: Since o@® ¢ (0, 4%), then either " < 0 or o™ > of.
o ot < 0= QF <0 and 1(e%)?]|(Z2*)T75|[2Q% < 0. Therefore,

¢H(0) — gt(abdt) = oHI(ZTHIE ~ S(abI(ZH T30k

> afll(2*) v 12
A*I(Z4)TvRII3
lldEll oo

Since [|¢%lco < lld¥]lz = [[(Z%)71*|l2, it follows that

.

(0) - ¢(akdf) > lI(2*)T7"1.8" > EII(Z")T‘Y"HzA‘-
°
o afi* > of = ok OF < 1. Therefore,

¢4(0) - gHehd) = ablI(Z%) MU - 3(b)Z) T I3
= (2775 - 305 1I(24) 7135 0%)
> akIZ I - 5okl Z4
= ZahlZY T3

- AMI(Z5) T
2(|d¢l

SZTF AR o

v

Lemma 5.3 Given Assumptions 5.1 and a type one point, w*, if of > B, then

: : 1 . 3
¢"(0) - ¢*(akdf) 2 S1I(Z°) " I38r -

Proof: Since af > 8, p*(akd¥) < ¢*(8fdE). Therefore,

#*(0) — P*(akdE) 2 ¢*(0) - ¥ (81 L) = BYINZ*)TYII3 ~ %(ﬁf)’ll(z")"'f"ll‘z‘ﬂf-

Consider the two cases for QF.

113

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 114
o If Qf < 0, then (87)?[(2*)Ty*|I39} < 0, and
: .) I
©*(0) — ¢ (akd¥) > BEN(ZM)TYHIE > EII(Z‘)Tv"Iliﬂ{‘-
o If ¥ > 0, then offi® > gF, AFQE < 1, and

#*(0) — p*(akdf)

(A

1
BEIZ*Y M3 - 5AI(ZH T Y118
> SIZYTMEsE o

The above three results are combined into a single observation and used to establish

several other bounds.

Lemma 5.4 Given Assumptions 5.1 and a type one point w*,
.)) Zk) Tk Ak
H0) - o (obe) > 22 Ml min (LELTIE, o 741t

Proof: The conditions of one of the Lemmas 5.1, 5.2, and 5.3 must be satisfied for any

type one point and direction d*. Therefore, these three results can be combined. O

Corollary 5.5 Given Assumptions 5.1 and a type one point w*, the approzimate trust

region direction d* defined at w* satisfies
1) Zk T
#H0) — #4(#) 2 Il min (IELT L o, u(z'=)Tv'=nzﬂf) :

Proof: The result follows immediately from the previous lemma and the fact that d* is

accepted as the approximate trust region solution at w* only if ¢¥(d*) < ¢*(a®d¥). O

Corollary 5.6 Given Assumptions 5.1 and a type one point w®, if d* is a successful trust
region direction, then

k\T . .k
Pu(w) ~ pults® +) 2 3811(2*)7 ¥l min (Mﬁl-”i A, II(Z")T'r"IIzﬁ{‘) :

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 115

Proof: The result follows immediately from Corollary 5.5 and the fact that d* is a

successful descent direction only if

pu(w®) ~ pu(w* + d*) > bi($*(0) ~ ¥*(@¥). O

5.3.2 Further on the Penalty Function Decrease

In this section, the lower bound established in Corollary 5.6 is shown to be bounded
away from zero. To prove this result, bounds are first established on 8%, the smallest
breakpoint along d¥, on the absolute difference between the value of the model function
at d* and the penalty function value at w* + d*, and, finally, on the size of the trust

region radius over a sequence of type one points.

A lower bound on Bf is established first.

Lemma 5.7 Given Assumptions 5.1 and a type one point, the first breakpoint A% along
the Cauchy direction d* before the trust region boundary is encountered is bounded away

from zero.

Proof: Assume the contrary, that there exists a subsequence of iterations {k;} such that
lim inf 8% = 0. (5.1)

=0

For each iteration k;, f;° is the point along d% at which some e-inactive penalty term

changes shape, that is, there exist values u**, v and z* such that
u¥ 4 Bl + g225 =0,
where

@ % is the value of an einactive penalty term (i.e. |[uki] > ¢),

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 116

e v¥i is the rate of the first order change along the direction d¥, and

@ z*i s the rate of the second order change along the direction d’;’-’.

Note that by Assumptions 5.1, there exists M, > 0 such that [v*| < M, and M; >0
such that [z%] < M.

Consider the following cases, on any iteration k;.
e if 25 = 0 then By" > 0 satisfies uki +ﬁ{°‘v"" =0, iLe.
B = —ui [o5 = [uN/]0%] > e/ M,

o if v* = 0 then 85 > 0 satisfies u® + 225 =0, i.e.

BY = \[—ukif2% = \Jluk|/|25] > \Je/M..

o if v¥ £ 0, 25 # 0, and BY is positive and real, if (v5)? — 4u¥ 2% =0, then

T el \ﬁllu"illz’-’i \/Iu’“']
.B:" - —2:k.- - 2[21:;[= 2lzk-" Jl_z— F

When 8,* corresponds to any of the above cases, for specific indices k; or in the limit, then

,6{‘" is bounded below by the constant min(e/M,, /¢/M.). Because of our assumption,
the iterations in the subsequence {k;} cannot belong to any of the cases above. Therefore,

if ﬁ’f‘ is positive and real, then
oM £0, 25 #£ 0 and (%)% — 4ulizR > 0,

for all finite values of k; and in the limit as { — oo.

Since

lim inf A% =0,

=300

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 117

it follows that

—v5i B, [(vk)2 — qukizk
lim inf \/() =0.

i~+oo 2zki

Because |z%| < M, it follows that

=300

lim inf (—-v"‘ + \/(v"t‘)2 - 4u"-'z"-') =0.

Following along, we necessarily have that

lim jnf —v* = lim inf +,/(v%)? — 4ukizh

=00 t—Cco

& lim inf (v%)? = lim inf ((*)? - aukiz®)

1~—+0C

& lim inf 4u®z5 =0.

1—r00

Recall that |u*| > @for all k;. Since z* = 0 implies B;* > ¢/M,, this contradicts (5.1).

Therefore, there exists a constant dg such that
8% > g

on all iterations. O

Next, an upper bound on the absolute difference between the penalty function value
at the point w* 4 d*, for a trust region direction d*, and the model function value ¢*(d*)
is developed.

Lemma 5.8 Given Assumptions 5.1 and an approzimate trust region solution d* at a

type one point w*, there ezists a constant gy > 0 such that
[pu(w* +d°) - ¢"(d*)] < qo(A%)*r.

Proof: This result is inspired by Lemma 3.9 in [37]. Assume that ||d*|| is small enough

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 118

that the following conditions are all satisfied.
for i € T'(e) : neg[G;:(w® + d*)] = neg[G;(w*)]
for i € P{(e) UP{(e) : M(w*+d*) < g:(w* + d¥)
for i € Pj(e)UPMe): gi(w* +d*) < Ai(w* 4 d¥)

for i € Fy(e) : sign{g;(w* + d*)] = sign[g:(w*)]
for i € PL(e): sign[min(A;(w* + d¥), gi(w* + d*))] = sign[A:(w*)]
foric M'(e) : signfe;(w® + d*)} = sign[c;(w*)].

From Lemma 4.1, we can write
PE) = 0+ ()T + (T BE
= pulwh) + (@)T7* + ZlldHE04 ().
Also, since d* maintains all the current e-activities up to first order,
Ai(w® + d*) = hi(w*) + (d4)TVA(w*) = A(w®), fori € B,
The following notation shall be used.
o For i € T'(¢), pi = neg[Gi(w")].
e For i € T e), p} = neg[Gi(w* + d¥)].
® For i € P(¢), o; = sign[X;(w®)].
e For i € Pj(e), o; = sign[g;(w*)].
® For i € P(¢), o} =sign[gi(w* + d¥)].
® For i € PL(¢), o; = sign[\(w¥)] and p} = negg(w* + d*) - \;(uw* + d¥)].
e For i € P2(¢),

o; = sign[min(\;(w*), gi(w*))], and o} = sign[min(X:(w* + d*), g;(w* + d¥))],

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 119
pi = neglgi(w*) — M(w®)], and pf = negloi(w* + &) — Ai(u® +).
®For i € M'(€), o; = sign[c;(w*)].

®For i € M°(¢), o} = sign[e;(w* + d*)].

Using this notation,

Puwt+d%) = F(u*)+ (@ VF(wb) + LI IBR(F, v, &)

1 3 pG(w*) + ()T VGi(w) + L3RG, vk, d4)
T'(e)

~n ¥ pF(Gi(w*) + Sl IERAG:, w, &)
To(e)

+u Y oi(i(w®) + (@) TVME) + 8 T [Au(wh)]
) P

1 Y alas(wh) + (7 V() + 311300 w*,)
Pi(e)

1 ¥ o (a(w®) + I IBR(: w*, 89)
P(e)

Y 0:((w) + (@9 TV

PL(e)

+ o (g:(w) — Nw) + 21d*30(s:, w*, ¢4)))
1 Y [min(u(w), g(0*) + 21dE0g:, w*, &)
Pl(e)

Y aileiw) + (@) Veilw) + I 130es, wk,)
M'(e)

| Y
+p Y, oF (co(w”) + Z|[d4)12Q(cs, w*, d¥))
Mi(e) 2

= pulw!) + (@77* + S0, (", &)
~1 Y, Giw*)(pf — pi) + 1Y gi(w*) (o} ~ o3)
Te P

+p Y- ou(gi(w) ~ Mi(w*)) (o7 "P‘)
PL(e)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM

+o Y (A(w*)(oF - o) + (g:(w") - M(@N)(oF pF - 0ini))

Pi(e)

+p Y. c(w*)(of - o).
M)

Therefore, it follows that
Pll(wk + dk) - ¢(dk) = ‘l(wkr dk) + ”‘Z(Wkl dk)t
where

m(wh,d) = ZldE@(*, &) - 0¥(d)
ra(wh,d%) = - 3 Giw*)pf - p)) + Y gi(w)(eF - o)
Te) P(e)

+ Y a(gi(w®) — X(w®))(oF - p2)

PL(9)

+ Y (@) (oF - @) + (g:(w®) - M(w*))(aFpf — 0ipi))

P2(e)

+ Y awh)(ef - o).

M9 (¢)

Applying the triangle inequality,

lpu(w® + d¥) = ¢(d*)] < [ry(w*, &) + plxz (w*, @)].

Looking more closely at x;, it follows that

ma(wt @) < SIIROD(0k,)] + 95 < SIEIRE +74),

where Assumption 5.1 guarantees the existence of the constant L.

The second expression &3 requires a more detailed analysis.

Ika(w,d)l < 3 IGi(wM)llof - pil + Y lgi(w®)llof - oy

T%(e) PR(e)

+ Y lgi(w*) — A(wP)llof ~ pil
PL(e)

120

(5.2)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 121

+ Y () oF - o) + (gi(w") — Me(w®))(oF oF - :00))]
i€P2(e)

+ Y la(wb)llof - el
M%(e)
For i € T%e), let x;: = |Gi(w®)||p} — pi|- Each i € T%(¢) must satisfy at least one of
the following conditions:
L. pf =pi= xi =0.
2. pF =1 (or Gi(w + d) < 0) and p; = 0 (or Gi(w) > 0). Since

Gi(w* + d*) = Gi(w) + %ﬂd‘:"iﬂ(&-, w¥, d¥) <0,

it follows that
LI 30(G, wk,) < ~Gi(w®),

and, since the second order change is negative,
: 1 e ke
Ge(wh)l < SI*IZIRG:, w, &)

3. pF = 0 (or Gi(w* + d*) > 0) and p; = 1 (or Gi(w*) < 0). Following a similar
reasoning to that used above,
1 oy 1
Gi(vF) > -§]|d'=n§n(c.-, w*,d"), and |Gi(uv*)| < 131G, wk, d)[.

Divide T9(¢) into three distinct sets, T}, T> and T3, corresponding to the cases described

above. Then,

Z Xi = ZX:- +Zx.-+ ZX:’
To(e) T T T
Y IGi(w*) + 3 1Gi(wh)]
T2 Ts

IN

I I0(Gs w) + T 10Gaw, ¢9)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 122

A

S| 3Size(T, U Ts) max|Q(G:, w*, &)
)
< Elld‘llgwc,
where t is the number of upper level constraints in the bilevel problem and L¢g is a

constant bounding the maximum curvature of all the functions G;. The existence of Lg

is guaranteed by Assumptions 5.1.

Using similar analysis, it can be shown that

% £ Nd¥3LgSize(Py(e))

P)(e)
1 .
Yox < §||dk"§Ly51ze(P'=(€))
FL(e)
Y xi < Nld*I3LSize(MO(€)) = ||@*|[ZLcm,
MO(e)

where L, and L., giving the maximum curvature of all g; for ¢ € P, and ¢;, for i € M,

respectively, exist by Assumption 5.1.
Next, examine the remaining sum, over P2(¢), more closely. Let, for i € P2(e),
xi = W(ut)oF - o) + (si(w*) ~ N(wh))(oF pf - oipi)l.
Consider the following cases for i € P2(¢).

1. If 6 = o, then
xi = |[A(w®) -0+ (9:(w") — A(w*))os (o} ~ pi)|
= |gi(w*) = X(wh)llpf - pil-
(a) If pf = p;, then x; = 0.
(b) I pf # p;, then
1
xi = lgi(w*) — Mi(w®)} < EIId"IEIW(yi, w*, d¥)],

using the same analysis as above.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 123

2. If o = —oy, then

I

2X:(w*)oF + (g:(w*) — A(w®)of (o} — pi)

= [2X(w) + (9:(w) — Ae(w))(pf — p3)l-

Xi

We now look further at the possibilities for this case.
(a) If pf = 0 and p; = 0, then it follows that
min(A;(w”* + di), gi(w® +d*)) = Ai(uw* +d¥)
min(A(w"), gi(w*)) = Ai(w"),

and sign[\;(w* + d*)] = —sign[X;(w*)]. However, since X;(w* + d¥) = \;(w*®),

this condition cannot be satisfied. Therefore, this case is empty.
(b) ¥ p} =0 and p; = 1, then sign[\;(w*)] = —sign[g;(w*)]. In this case,
X = |9:(w") + M(w)] < lg:(w®) + ()] = lgi(w®) - Me(w®),

since g;(w*) and \;(w*) are of opposite signs. Since g;(w* + @) — A;(w* + d¥)
and g;(w*) — \;(w*) are of different signs, it follows that

l9:*) — Ms(w¥)] € SR w,]

and
xi < e300 vk, &4l
(c) If pf =1 and p; =0, then sign[g:(w* + d*)] = —sign[A;(w*)]. Again, we have
that
X = lg(w*) + Ai(w®)]-

Consider the two possibilities for sign[g;(w*)].

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 124
i. signg:(wF)] = sign[g;(w* + d*)] = —sign[\i(w*)]: as in the above case,
2 1l :
X < 1g:(w®)] + M) = lgi(w®) — Xe(w*)] < SlId*]31Q(gs, wF, d¥)].

ii. signfg:(w*)] = —sign[g;(w* + d*)] = sign[\;(w*)]: since g;(w*) has a dif-
ferent sign than g;(w* + d¥), it follows that

l9:)] < AIEIRg:, w,).

Therefore,

[Ai(w®) — gi(w®) + 2g:(w*)
[Ai(w*) — gi(w)| + 2|gi(wF)|

2310 0s, ¥, &) + 141302 gs, ¥, &)

Xi

IN A

I

S IEI0 sz, w*, &)
(d) ¥ pf =1 and p; =1, then sign[g;(w* + d*)] = —sign[g;(w*)] and
x: = 2lgi(w®)| < [|d*]3192(gs, w*, d¥)|,

since g;(w* + d*) and g;(w*) are of different signs.

Combining all the cases above, we get that

Y x: < S|ldH|3L,Size(P(e)).
Pe

Therefore, it follows that
1 . 1 .
Ika(w,)| < GlldIELat + 1dIZ L Size(P7(e)) + 5 lld*3L,Size(PL (<))
3
+3 1813 Size(P2(e)) + l|d*ELem

41”‘!""22‘:

iN

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 125

where

1 3
Q= ELGt + Epfzg + L.m.

Combining this result with (5.2}, and 7 > 1, we have

pu(w® +d%) ~ *(@) < U1d¥13 (L + 7% + par)

(n+m+)12, (L+ 75+ pq)

In

< (n+m+p)(ARLTE + 75 + pqr)

qo(A%)*r%,

where

go=M+m+p)(L+1+pqn). O

A lower bound on A can now be established, assuming that A s.atisﬁes the following

assumption, which is similar to an assumption stated in equation (104) on page 446 in

[38].

Assumption 5.3 The algorithm parameter A is small enough that the following cond:i-
tion is satisfied: -

/3
. 4gr°A° _ [go(r°A%)2\"
0A0
A<mm(2fA,1_bz,2(1=%; o).

Lemma 5.9 Given Assumptions 5.1 and 5.3, and a type one point w*, for all iterations

k, there ezists a constant & > 0 such that,

Akr* > 6.

Proof: This proof uses the technique of Lemma 7 (page 446) in [38]. Define § as

. l . 1-b, A(l—'bz)
é§ = 2Anun(1, T o7 . (5.3)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 126

Assume that the lemma is not true, i.e. that there exists an index J such that
Alr! <4 (5.4)

The definition of § and Assumption 5.3 ensure that A% > 4§, so J > 1. Without loss
of generality, assume that J is the smallest index satisfying (5.4), i.e. A*r* > § for
k=0:J-1.

Define £7-1 as follows:

-1
EJ——I = d- -1
Xt
p,‘(ﬂ!]-l + dJ—-l) __p“(wl—l)
-1
P @D - 0
p“(w.f—x +dJ—l) - (pJ""(d""'l)
(PJ-l(dJ_l) — ‘PJ—I(O)

since p,(w'~1) = ¢’~1(0). Using the results of Corollary 5.5 and Lemma 5.8, Assumption

5.3, and the fact that w* is a type one point, it follows that

g1« 2go(A71)2 71 2q0(A7)21
= Amin(zAy, AT, A6 T Amin(zRy, AT, A%)

Consider the following:

r/-1AT-1 < £JAT-1 gince 7l < 7
< 2r7A7 since A7 < 2A7 even if iteration is unsuccessful
< 25 from (5.4)
< A since § < A/2 from (5.3).

Since A/77-1 > AT-Y

2qo(A"—1)21’J°1 4qu""16

eJ-l <
S Amin(A7T,A%) = Kmin(ATT, %)

Consider the two possibilities for the min term separately.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 127

° AJ——I S AZ:
1 _ 4906 _ 4go A(1 -b,)
J—1 < < —— — -— -
§ = A — A 490 1-b
e A2 < AL
J-1 J-l,J=-1 2 3(1 —
g oA T ApdT T T Baod SpAT(l-bd)

A3 - A T A 8¢

Therefore, in either case, £/~ <1 — by, or

-1 -1 xg—l
S Y S1-b = Ty 12— 1= S5y 2 by,
Xp Xp Xp

i.e. iteration J — 1 is very successful and A7-! < A7. So,
AJ—L’.J—I < AJTJ—I < AJTJ < 8,

which contradicts the fact that J is the smallest index satisfying (5.4). The result follows

immediately from the contradiction. O

The results just established are now used to provide more information about the

decrease in p, from a type one point.

Lemma 5.10 Given Assumptions 5.1, 5.2, and 5.3, if, for all k, w* is a type one point,
then for any successful trust region direction d*, there ezists a positive constant 8, such
that

I’u(u’lc +d*) — Pu (w*) > dp-

Proof: It follows from Corollary 5.5, Lemma 5.9, and w*, a type one point, that

Ptx(“"'e + dk) - p“(w")

v

k\T .2
2511(2%) ¥ min (M—L—*ﬁ ak, ll(Z")T‘r"llzﬂ'f)

v

1 (A ks
EblAmm(;I,A ,Aﬂl)
1 . (A O

EbIArmn ('T—L:, ;I' Aﬂf) .

v

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 128

By Lemma 5.7, 8% > 8, so

1 . (A ¢
Pu(w”* +d*) - p,(w*) > shAmin| —, Tk,AJ.s)

From Assumption 5.2, 7* is bounded above by a constant 7™2%, so

]
Pu(wF +d*) — p,(w*) > —-blAmm(— m“,AJ‘;) = dp. a

If iteration k is a successful iteration from a type one point w*, the decrease in the
penalty function along the trust region direction is bounded away from zero. If all the
iterations correspond to type one points, only a finite number of successful iterations are
possible, since, by Assumption 5.1, p, is bounded below. This result is proved formally

in the next section.

5.3.3 Approaching a Near Stationary Point

Before proving that the iterates approach a near stationary point, further notation and
intermediate results are required. We first show that there exists at least one subsequence
of iterates which approaches a near stationary point. After two technical results are
developed for the algorithm, it is established that if there are only a finite number of
successful iterations, the algorithm must approach a near stationary point. A similar
result is then established for an infinite number of successful iterations, providing the

desired result.

Definition 5.3 Define the following sets:

S = {k: iteration k ts successful}

S = {k: iteration k is unsuccessful}.

|

|

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 129

Lemma 5.11 Given Assumptions 5.1, 5.2, and 5.3, if, for all k, w* is a type one point,
then -
lim inf (|Z87ellz < A.
k—r00

Proof: The proof uses the technique of Theorem 8 (page 447) in [38] and proceeds by

contradiction.
Assume that the result does not hold and ||ZT+;||; > A for all iterations k.

On a successful iteration k € S, we have, from Corollary 5.6, that
1 .
Pulw®) = Pu(w™) 2 26:1(Z25) 1Ml min((Z4) Ty Ml /75, A, 124 11260),
where wi) = wi + di.. From Assumption 5.1, p,, is bounded below,
Jim (p,(u*) ~ pu(w*)) =0
—>c0
and since p,(w*) — p,(w*+*) > 0 for all £,
Y (Pu(w") - pu(w**1)) < +o0.

keS

Therefore, using Assumption 5.3, Lemma 5.9, and 7* > 1, we have
1

Z(Pu(wk) ”Pu(wk+1)) 2 251 E Amin(A/'r", Ak, Aﬁf)
kes kes

1
=b : _rk k a2
3 1Ak§esmm(A/ , A%, A%)

v

—1-b1A > min(A/7*, 8/7F, A% /7)
2 keS

(AY4

«1-61A min(A, 4, A%) Y 1/7%.

2 kes

v

Therefore, 3 es 1/7% < +o00.

Let 7, € (0,1) and 3 > 1 be the modification constants for the trust region radius,
ie.

forkeS: A1 <12Arandforke S: Ariy < 734,

N T ———

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 130

and let p, a positive integer, satisfy v3v2~! < 1. In Algorithm 4.1, v; = 1and 93 =2,

and any p > 3 is suitable.
Let S = [SN{0,---,k — 1} be the number of successful iterations in the first &
iterations. Define the following, mutually disjoint sets which span all the iteration indices,

Jy={k:k <pSi}and J; = {k: k> pSi}.

We will examine the sums ;. ;1/m. for J = J; and J = J5.

First, consider the sum 3 ;c 7, 1/7k, and define the two subsequences of indices:

e K1, the indices of J; in increasing order,
e K2, the indices of S in increasing order, with each index repeated p times.

Note that the jth components of the two sequences satisfy K} > K? and that K? has at

least as many components as K!. Therefore, 5 > 55 Looking at the sums,

Z /% = z 1/7% < 2 1/r* =PZ 1/7* < +o0.

ke keK! kek? kes

Next, consider the sum }_;.; 1/7. First, for any k € J,

7285 ifk-1€8

Ak <
A1 fk-1€S
A2 fk-1,k-2€8
< § 73A?% ifk-1k-2€8
v273A%? otherwise
< nSatA
< .),:-k/p,y;/p Ao

I

(7375_1) k/pAO)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 131

since S < k/p, 72 < 1, and 3 > 1. Therefore, using Lemma 5.9,
/7% < A% /8 < (15)HPAY /8.

Since 7315"1 <1,
A 3 —I\k
PIR Vighs ‘32 Y (1387 P < +oo.

keJz kely
Combining the informatijon about the two sums,

St = T 1+ T 1/7% < oo,
k=1 keJy kel

which contradicts Assumption 5.2. Therefore, the result is proven. O

We have just established that there exists a subsequence of the iterates which con-
verges to a near stationary point. To establish that all iterates will converge to such a

point, it is necessary to introduce two other results.

Lemma 5.12 Given Assumptions 5.1 and {¢;} an infinite subsequence of the iterates, if
there erists w such that
lim w¥% = w,
j~oo
then
lim [i(2%) %l = 12742,
F—oc

where Z = Z(w), and ¥ = y(i).

Proof: Assume for convenience and without loss of generality that each e-active penalty
term (with value u;) satisfies |u;| < € or [u;] > ¢, that is, that none of the activities have
magnitude of exactly €. Note that if there exists 7 such that |u;| = ¢, then e can be slightly
increased without affecting the division of the penalty terms into e-active and e-inactive

terms.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 132

By the continuity of the underlying functions comprising the penalty function, we
have that
,li_{n Gi(w%) =Gy(w) and l_x’m VGi(w%) =VGi(w) forieT
I J—»o0
PN RPN . TN — Tl on .
,-11.% 9i(w%) = gi(w) and jlgg Vgi(w¥%)=Vgi(w) foriecP
lim A\ (w%) = A(@) and lim VA (w%) = VX(w) forie P
j—o0 j—roo
lim ¢;(w%) = ¢;(w) and lim V¢ (w¥%) = Ve (w) forie M.
oo j—co
Therefore, it follows that there exists an integer J > 0 such that for all j > J, all the

following conditions are satisfied.

e For i € T%e), |Gi(w%)| < € and for i € T'(¢), [Gi(w%)] > ¢,

e For i € Py, A;(w%) < g;(w%). Then for i € P)(e), |\i(w%)| < € and for i € P(e),
[As(w¥%)| > e

e For i € Fy, g:(w¥) < Mi(w%). Then for i € P}(e), [9:(w%)] < € and for i € P,(e),

|g:(w)| > e.

e For i € P_(¢), |gi(w%) — A(w%)| < €. Then, for i € P2(¢), |[A(w%)] < € or
lg: (w#}| < ¢, and for i € PL(¢), [Ai(w%)| > € and [g:(w%)| > €.

e For i € M(¢), |c;(w%)] < € and for € M'(€), |ei(w%)] > €.

Consequently, for j > J, the e-active and e-inactive sets of penalty terms are correctly
identified as those at w. Combining this result with gradient limits defined above, it

follows that

lim y% = 5.
J~o0

It similarly follows that

lim A% = Aand lim 2% = Z.

J~o0 J—rco

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 133

Combining these results, we get that
. 2 \T il — 1| 5T 4
Lim [i(2%) %12 = 127 71l2

and the result is proven. O

Corollary 5.13 Given Assumptions 5.1, two infinite sequences {q;} and {r;}, and

lim Jlw% — w"|[=0,

J—yoo
then
. 9 YTt — (7\Tarill —
Jim [1(2%)7% ~ (275)7y5]| =o0.

Proof: From the given information, there exists 1 such that

Iim w¥ = w = lim w'i.

J—+o0 J~o00

Therefore, from the previous result,
im [[(Z%YT 4%, = (1274, = 1i ATori
Jim J(Z%)" %] = 12732 = lim [[(Z77)" ™12,

and the result follows immediately. O

Lemma 5.14 Given Assumptions 5.1 and 5.2, if S is a finite set, then there ezists W

such that

lim v* =,
k—o00

and [[ZT7]|2 < A.

Proof: Since § is finite, there exists an index K > 0 such that all iterations £ > K must

be unsuccessful, i.e.

K _ ., K+

wk =w K42

=w =y,

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 134

and

lim w* = wX.
k-pco

Since A* is reduced on unsuccessful iterations, it also follows that

lim AF = o. (5.5)

k—oo

Assume that w¥ is a type one point, i.e. [[(Z%)Ty¥X|[; > A. Therefore, from Lemma
5.9, we know that A*rX > § for some constant §. Since 7* is bounded above and below,
AF is bounded away from zero, which contradicts (5.5) above. Therefore, @ is not a type

one point, so [|ZT4|l2 <A. O

Finally, it is now shown that the sequence of iterates defined by Algorithm 4.1 converge

to a near stationary point.

Lemma 5.15 Given Assumptions 5.1, 5.2, and 5.3, if S is an infinite set, then

3 kT &k <
lim (24772 < A.

Proof: This proof uses the technique of Lemma 3.15 (page 182) in [37], and proceeds
by contradiction. Assume that the result is not true, i.e. there exists a subsequence of

successful iterates, denoted {g;}, for which
1(Z%)Ty%)l2 > A

is satisfied by the entire subsequence.
However, from Lemma 5.11, there exists a subsequence of iterates, denoted {r;}, for
which
. N T
Jim [I(Z7)"]2 < A-

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 135

Therefore, for large enough values of 7,

"(Zk)T‘Yk“Z > A k=¢lj:9j+1,"""j— 1
I(Z#)Ty"ill. < A
Note that r; is the smallest index greater than g; for which the above conditions are
satisfied.
Consider the set Kj ={k € S : g; < k < r; — 1}. Since ¢g; € K;, the set is nonempty.

Recall, from Corollary 5.6, that for £ € K; with j large enough and by Assumption 5.3,

Pu(w®) = pu(w**t) > %bxll(z“)r*/kllzmin(ll(Z")T‘r"llz/f".A"- (257" 11287)

> -21-61A min(A/7*, A%, A2).

Since p,, is bounded below by Assumption 5.1,
kﬁm (Pu(wk) - Pu(wk+1)) =0,
—po0

and, therefore,

lim min(A/7*, A%, A%) =0.
keK; i k~roo

Since 7* is bounded above and A? is a constant, for j and k large enough, A* must be

the minimum term. Therefore,

Ak < 2 (p, (wh) - pu(wt*Y)).

- A
Now,
ri—1 ry—1
ot —uile = fu%— ¥ wk+ Y - wif
k=q;+1 k=g;+1
ri—1
< ¥ et - vty
k=q;
< Y lld*eo

kek;

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 136
< 3 af
EEK,’

E?I,;,.(””('"k) — pu(w**Y)

-,,;zx(p,.(wﬁ) ~ pu(w™)).

AN

il

Since

lim (p,(w¥) ~ pu(w'¥)) =0,

J—Hoo
it follows that
lim |[w% - w'|[=0,
J—cc
and from Corollary 5.13,
Jim |i(2%)Tv% — (Z75) Tyl = 0.
Therefore, for any positive value p, there exists j large enough such that
1(Z2%) 4% — (Z27)Ty"3|2 < p-
Now, for large enough j,
1(Z2%) %) = ((Z2%)Ty% — (Z7)T v +(Z7) v

1(Z2%) 9% = (Z7)Ty"ill2 + (Z75) 7" lla

IA

< p+A
Since there are appropriately large (but finite) values o-f 7 for which the above condition
holds for any positive value of p, it must necessarily be true that, for large enough j,
1(2%)T%]l2 < A,

which contradicts the initial assumption in the proof. Therefore, that assumption was

invalid, and the result follows. O

The next result finally establishes convergence of the algorithm to a stationary point.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 137

Lemma 5.16 Given Assumptions 5.1, 5.2, and 5.3, the iterates defined by Algorithm 4.1
satisfy
. kT, k
lim (2572 < A

If S is finite, the result follows from Lemma 5.14. Otherwise, w*, and therefore
I1[(Z*)T4*||2, will only change values on successful iterations, and
- T ky 1 KTk
kl_l{g N(Z%)" " iz “l‘é’.%"(z) 77l

and the result follows from Lemma 5.15. O

5.4 Convergence to a First Order Point

The goal of this section is to prove that the algorithm will eventually approach a first
order point of the penalty function. This is established by examining how the algorithm
handles type two points. Recall that a type two point appears to be close to a stationary,

non-first order point.
The proof requires-several steps.
1. If the algorithm is approaching a stationary, non-first order point, then the iterate

will eventually be classified as a type two point.

2. Given a type two point, there is a lower bound on the decrease in the model function
along a dropping direction, and hence on the decrease in the penalty function for a

successful trust region dropping step.

3. Over a sequence of type two points, the trust region radius is bounded away from

zero, so a successful iteration will eventually be performed.

4. The penalty function decrease on successful iterations is bounded away from zero.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 138
5. Dropping steps cannot be performed infinitely often.

The results presented here are modeled after those in the previous section, and are inspired

by Theorem 1 in [34].

5.4.1 Approaching a Type Two Point

In this section, an earlier result, Lemma 5.12, is used to establish that, if the algorithm is
approaching a stationary, non-first order point, then the algorithm will eventually classify

the iterate as a type two point.

In theory, a multiplier is out of kilter when it falls anywhere outside its optimal range.
However, in practice, within the algorithm, a multiplier is considered out of kilter only
when it is safely out of kilter. For the necessary optimality range [~x, 4], the multiplier
estimate is considered in kilter if it is in the range [—(1+8y)s, (1+B8¢)#], for an algorithm
tolerance By. Similarly, if the necessary optimality range is [0,] then the multiplier is
considered in kilter if it lies in the range [—8y, (1 + f¢)p]. This generalization is used in
an attempt to avoid dropping an activity whose multiplier is near one of the endpoints of
the optimality ranges and its estimate is slightly out of kilter simply because the iterate

is not yet close enough to the stationary, non-first order point.

Therefore, in order for a iterate to be classified as a type two point, the out of kil-
ter multiplier must be safely out of kilter. This leads to the following definitions and
assumptions before we restate the result. Note that the first assumption is also used in

Theorem 1 in [34].

Assumption 5.4 Assume that the number of stationary, non-first order points is finite.

Definition 5.4 Let ¥ refer to the multipliers at a stationary, non-first order point 1.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 139
1. Let by be the smallest magnitude by which a multiplier ¥ is out of kilter at a
stationary, non-first order point.
2. Let 6,14, a finite value, be the minimum of by over all stationary, non-first order
ponts.

The following assumption on the tolerance By is required as well.

Assumption 5.5 Assume that the tolerance By satisfies By < 8,,,,14-

Lemma 5.17 Given Assumptions 5.1 - 5.5, if there ezists a subsequence {q;} for which
1(2%)Ty%||2 < A and limj_, w% = 1, for a stationary, non-first order point , then,

w®, for some k, will be eventually classified as a type two point.

Proof: From Lemma 5.12, it follows that the set of e-activities at w% will eventually
match the set of exact activities at 1. Therefore, it follows that
A%(e) - A and 7% — 7,
where A and # are evaluated at @, and
¥i V.
Since at least one of the multipliers at W is out of kilter, it must be true that, for j large
enough, a component of ¥% must be out of kilter as well. Now, since ¥% — ¥, after a

finite number of iterations, some multiplier estimate will be safely out of kilter, due to
Assumption 5.5. Therefore, this iterate will be classified as a type two point. O

5.4.2 A Bound on the Model Function Decrease

For convenience, superscript k indicating the iteration number is omitted because the

results presented deal with a single iteration.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 140

The model function decrease along dropping direction dp is examined, where dp is

assumed to satisfy the following condition.

Assumption 5.6 Dropping direction dp is defined to drop a single activity. It satisfies
Adp = —sign[¥;]e;, where multiplier ¥; is safely out of kilter. In particular, assume that
dp satisfies

dp = —sign[¥;1Z;Z] Va;,

where Va; is the gradient of the e-activity being dropped, A; is A with Va; removed, and
Z; satisfies Z; = [Z2] and A;'PZ,' =0.

The value of the model function along dp is examined next. The e-activity sets
indicated below correspond to the current iterate, and have not been updated to reflect
the change due to the dropped activity. This explains the need for the inclusion of the
term Agp(a), which is defined below, on the last line,

oladp) = F(w)+azd%'VF(w)+%azdgsz(w)dp

~p Y min(Gi(w) + adh VGi(v) + a*d5V?G;(w)d, 0)
i€T(¢c)
~p Y. min(G;i(w),0)
1€T(e)
+u Y. |min(Ai(w) + adh VA(w),
i€P] (e)UP)(e)
gi(w) + adf Vgi(w) + a*df Vig;(w)dp)|

+p Y, |min(Ai(w), gi(w) + ad} Vei(w) + o’ df V2 gi(w)dp)|
i€P(e)

+u Y. |min(Ai(w) + adp VAi(w), gi(w))|
i€PY(e)

+# Y. |min(A:(w), gi(w) + adp Vei(w) + o?d} Vigi(w)dp)|
i€PY(e)

+8 Y 1A(w) + dbp VA(w) + min(0, gi(w) - Ai(w))]
i€PL(e)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 141

4+p Y [min(A(w), g:(w))]
iEPL(¢)

+# Y |o(w) + adp Ve(w) + a?df Viei(w)dp
i€EM'(e)

+#1 Y le(w)|+ pAep(a).
ieM°
The following assumption on the step size a is made so that the model function (and

later the penalty function) can be examined more easily.

Assumption 5.7 We shall consider only a < ay, where a; is the first breakpoint along

dp associated with the itnactivities at w.

Under this assumption, which was inherent in part 1 of the proof of Theorem 1 in [34],

the model function can be written more compactly.
) 1
p(adp) = ¢(0)+adpy+ Eazng(w)dv + plApp(a).

The term Agp is defined by removing the dropped activity from its active set and placing

it in the appropriate inactivity set. Its specifics are listed below.

Definition 5.5 The value of the function App depends on the type of activity that was

dropped in defining dp .

o Ifj € T%G¢), then

Agp(@) = min(Gs(w),0) - min(Gs(w) + ad] VG;(u) + 3o’ d5V*G;(w)dp, 0)
= (55(0) - 5(a))Gj(w) — as;(2)dE VG;(w)
—--;—azc,-(a)dgszj(w)dg‘

where ¢j(a) = neg[G;(w) + adjVG;(w) + 1a?d} V?G;(w)dp).

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 142

e Ifj € P{(e), then
Agp(a) = ~([Aj(w)| - [Aj(w) + ad] VAj(w)])
= ~(A(w)(e;(0) - oj(a)) ~ agj(a)dp VA;(w)),
where gj(a) = sign[A;(w) + adb VA;(w)].
o Ifj € P2(¢), then
App(a) = —(g;(w)| - lg5(w) + adf Vg;(w) + 50?5 Vg, (w)dp)
= ~(9:(0)(es(0) — () — aes(a)dB Va;(w) ~ B Vg;(w)dp),
where g;(a) = sign[gj(w) + ad} Vg;(w) + La?dEV2g;(w)dp).
o Ifj € P_(¢€), then
App(a) = —g;j(min(0, gj(w) ~ A;(w))
~ min(0, gj(w) — Aj(w) + ad}(Vg;(w) ~ VAj(w))
+ 50*V2g;(w)ds))
= —e;j((gi(w) = Xj(w))(55(0) ~ s5(a)) — as;(@)d5(Vg;(w) — VA;(w))
~3953(0)dBV2g;(w)do),
where
sila) = neglgi(w) — A;(w) + adp(Vgj(w) — VAj(w)) + %azdgvzyj(w)dvl
o; = sign[rj(w)].
e If j € P%(€) and Aj(w) is being dropped, then
App(a) = —(lmin(A;(w),g;(w))| - |min(d; + adb VA;(w), gi(w)))
= —(2j(w)(ei(0) — ej(a)) + (gj(w) ~ Ai(w))(2;(0)s;(0) — ej(a)si(a))
— agj(a)sj(a)dh VA j(w)),

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 143

where

ei(a) = signimin(A;(w) + adp VA j(w), gj(w))]
() = nedg;(w) - Ai(w) - adb VAs(w)].
o Ifj € P2(¢) and g;(w) is being dropped, then
App(@) = ~(Imin(Ai(w),gs(w))
~ [min(x, g5(w) + ad} Vg;(w) + 7o*d5 V%g;(w)dp))
= —(2(ej(0) — gj(a)) + (g5(w) — A;(w))(ei(0)5;(0) — ej(a)sj(a))
+ agi{a)si(2)d5 Vas(w) + 5ae;(a)ss(o) a5 Vg (w)dp),
where
0i(@) = signfmin(¥;(w), g;(w) + adhV;(w) + za?dEVg;(u)dp)]
(@) = nedg;(w) ~ Ay(w) + adhV;(w) + 5 d5V?g;(w)ds)]
o If j € M%), then
App(@) = ~(les(w)] ~ les(w) + adh Ves(w) + s db Ves(u)dp)
= ~(cj(w)(e;(0) ~ ej(e)) — aej(@)dp Vej(w)
- 30%03(a)dB Vg;(w)dp),
where g;(a) = signfc;(w) + ad} Ve;(w) + jo?d} Vie;(w)dp).

Each case is investigated individually. The results presented in Lemmas 5.18 - 5.22

are inspired by part 1 of the proof of Theorem 1 in [34).

Lemma 5.18 Given Assumptions 5.1 - 5.7, if dp = -—sign[\I',G]ZjZ}' VG;(w) for same
i € T%(¢), then
1
¢(0) ~ p(adp) 2 adys - 50!2411;39(&)413.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 144

where

oo = [EE| if¥¢ <0
W) ge £ 4G

and

Bp(a) = B(w) - usi(«)V3Gj(w).

Proof: From above, we have that
p(adp) —p(0) = uG;(w)(s;(0) — sj(a)) + (dhy — us;(@)dp VGj(w))
1
+§a2d%3p(a)dp.
Note that, for some u in the reduced space,

dS(A¥ + Zu)
= d5A¥ +0

= —sign[¥5]¥5

&

= —|¥§
and d5VG;(w) = ~sign[¥§]. Therefore,
pladp) —¢(0) = wuG;(w)(s5(0) - sj(a)) - a(|¥5| ~ psj(a)sign[¥5])
+%a2d£Bp(a)d-p.
Examining the first terms on the right hand side yields

0 if ¢;(0) = gj(a)
G;(w)(s(0) ~sj(@)) = Gj(w) ifg(0)=1

-Gj(w) ifg;(0)=0
< 0

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 145

and

¥~ psj(a) > ¥ —p HEF >p
[¥F] + usj(a) > (%51 if¥F <.

5] - psj(a)sign[¥F] = {

v

6,,_6.
Therefore,
1
p(adp) —(0) < —aJ,? + Eazngp(a)dp.
The result follows immediately. O
Lemma 5.19 Given Assumptions 5.1 - 5.7, if dp = —sign[\Ilg]ZjZ}' Vgi(w) for some

i € PY(e), then,
#(0) - p(adp) > adys ~ 7a*d} Bp(a)dy,

where

Sy = ¥F| - p

and

Bp(a) = B(w)- pej(a)Vigj(w).
Proof: From above, we have that

pladp) —¢(0) = -—pgi(w)(ei(0) ~ ei(a)) + a(dDy — poj(e)dbVg;(w))

1
+§azd%3‘p(a)dp.
Note that, for some u in the reduced space,

dpy = dj(AY + Zu) = dj A¥ = —sign[¥7]¥? = -]

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 146

and d},Vg;(w) = —sign[¥]. Therefore,

pladp) ~p(0) = -—pg;(w)(e;(0) — ej(a)) — al|¥5| ~ pe;(a)sign[¥F)
+-;-a=dga,,(a)d,.
Examining the terms on the right hand side yields
0 if pi(0) = ej(a)

9;(w)(ej(0) - gj(a)) = 2G;(w) if ¢;(0) =1

-2Gj(w) if g;(0) = -1
> 0,

and

13| - nes(a)sign[¥]] > [Wj[- 4= dgs.

Therefore,

1
pladp) —p(0) < —adys +502¢£Bv(a)dv-‘3

Lemma 5.20 Given Assumptions 5.1 - 5.7, if dp = ——sign[‘lf;]Z,-Z}' VAj(w) for some
j € Pi(e), then,
(0) - p(adp) 2 adgs - -;-azng,(a)d,,
where
Sgr = |¥j| ~p

and Bp(a) = B(w).

Proof: The result is proven using the same technique as for j € Pg(e). a

Recall that P~ (e) = PX(€) U P=(€) where the + indicates the common sign of A(w)
and g;j(w). For our purposes here, the sets must be separated, just as they were in

determining optimality conditions.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 147

Lemma 5.21 Given Assumptions 5.1 - 5.7, if dp = —.~:‘ign['2‘}"\]Z,-ZJT (Vgj(w) -
VAj(w)) for some j € P=(e), then,

1
#(0) ~ p(adp) > adgs-r ~ gazngo(a)do,

where

é

} Fa! e <0

Y e g—.
¥ —p zf\Fg'\>p,

and

Bp(a) = B(w)— psj(a)Vig;(w).
Proof: The result is proven using the same technique as for j € T%€). O

Lemma 5.22 Given Assumptions 5.1 - 5.7, if dp = —sign[¥5]Z;2T Vci(w) for some
JE MO(C), then,
1
¢(0) ~ p(adp) > ady: — Eazd%Bv(a)dv,

where

S = 1951 - 4
and

Bp(a) = B(w) - pej(a)Vicj(w).

Proof: The result is proven using the same technique as for j € P?. O

Further assumptions specific to the bilevel penalty function are required for the anal-
ysis of the convergence of the algorithm. These assumptions do not apply to the imple-

mented algorithm.

Assumption 5.8 At any type two point w, assume that

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 148

o the set PX(e) =0, and

o the set P2(e) = 0.
The first condition is a required condition at a nondegenerate minimum point of the
penalty function. Essentially, we are assuming that this type of constraint is never violated
at a stationary, non-first order point. Recall that if the set is not empty, there is a range

of values for which a dropping direction can satisfy one of two conditions for descent.

Requiring P (€) = @ removes an ambiguity from the proving process.

The second condition is equivalent to requiring strict complementarity in the lower
level problem of the original bilevel problem. This condition is required for many algo-
rithms for bilevel problems.

Therefore, we can summarize our results as follows.

Corollary 5.23 Given Assumptions 5.1 - 5.8, if w is a type two point, then dropping

direction dp must satisfy
1
¢(adp) ~ ¢(0) 2> ady; — Eazdgﬂv(a)dv.

where g, is the magnitude by which the multiplier corresponding to dp is out of kilter.

Proof: Follows immediately from the above results. O
For convenience, we introduce the function &(a).
Definition 5.6 For0 < a<a,

8(a) = ady; — %azdgapdp.

Additional terminology is now required for second order information. Note the similarities

between the following set of definitions and those in Definition 5.1.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 149

Definition 5.7 For any iteration k, the following terminology is introduced for second

order change in 6.

1. Let
d}Bp(a)dp

k _—
(0, adp) = =510

2. Define the mazimum over a as

Qp = max %6, adp).

0<a<la;

3. Define a mazimum term over all previous iterations as
1’1’; =14+ l{l?kx Q%.

The next assumption on the curvature of the model function along a dropping direction

is analogous to Assumption 5.2 for curvature along the generalized Cauchy direction.

Assumption 5.9 The following condition on the curvature measurements, over all iter-

ations, ts assumed to be true:

1
2. x =+oo.
k=1 ™

A consequence of this assumption is that 75 is bounded above, i.e. there exists 3% > 0

such that 7§ < 7= for all k, in addition to being bounded below by one (by definition).

Using these definitions,
1
#(0) — p(adp) > ady; - Eazngp(a)dp

1

= ady; - 5a’|ldp|130(¢, adp)
1

> ady; - 5o’|ldpll3%0
1

> ady; - 5“2"40”%1'17-

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 150

Next, look at dp more closely. Let Va; denote the gradient of the e-activity that is
dropped along dp. Note that 27 Z; =I.

lidoll} = dpdp
= (-sign[¥;]Z;Z] Va;)T (—sign[¥;]Z;2] Va;)
= (+1)*ValZ;27 2;27Va;
= Vaj 2;Z] Va;
= 112§ Va;li3.

Recall that Z; = [Zz], where ZTVa; = 0 and 27z = 1. Therefore,

2

lldpll; =

]
b
d
£
| S |

T
LZ Vdj

(z7Va;)?

< M2l I1Vasliz

il

I Va;ll3.

Because the individual functions comprising the penalty functions are assumed to be
well-behaved and the penalty function is assumed to be bounded over the interval in

Assumption 5.2, it is reasonable to further assume the following:

Assumption 5.10 The norms of the gradients of the individual functions are bounded

above.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 151

Definition 5.8 Let A, be large enough so that |Vajllz < An is true for all activities

over all iterations.

Lemma 5.24 Given Assumptions 5.1 - 5.10, for a type two point w, it follows that
#(0) — ¢(adp) > ¥p(a),

where

1
Ip(a) = ady; — EazA,znurp.

Proof: Follows immediately from the definitions of 4, 4,, and 7p. O

Next, to determine the step to take along the dropping direction, consider solving the

following univariate problem, a simplified version of the trust region subproblem
TH1: mindp(a)s.t. 0 <a<a; and a < A/||dp|lco-

Very small values of a provide a decrease in ¥, so the minimum cannot occur at a = (.

Therefore, the minimum will occur at ag, corresponding to one of the following situations:

1. at the unconstrained minimum of ¥, i.e. at

amin = A?.n fv]
2. at the upper bound a;, or

3. at the trust region upper bound aa = A/||dp||co-

The following results echo results presented in the first stage of the convergence proof

(in Lemmas 5.1, 5.2 and 5.3).

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 152

Lemma 5.25 Given Assumptions 5.1-5.10, if the solution of TH1 occurs at @y = Qmin,

then

1 dg;
> = e
Io(®) 2 3 4y

Proof: Follows directly from substituting a; into 9. O

Lemma 5.26 Given Assumptions 5.1-5.10, if the solution of THI occurs at ag = ay,
then
1
1’?(06) 2 Ealaij-
Proof: Substituting ay into ¥ gives
L 2,2
I(ag) = ardg; — -ialA,,;rp.

Since amin € [0, ay], it follows that ami, > a,

¥ 2
a; < B ‘sz’ = d0g; > AL, Tp.
Therefore,
dp > ayd L 8y. = L I} a
D 2 A10y; — Eal ¥; = 5“1 ¥ -

Lemma 5.27 Given Assumptions 5.1-5.10, if the solution of THI occurs at ay = ap,

then
Adg;
24m

dp(ag) >

Proof: Follows immediately from substituting ay into 9 and noting that a;,;, > aa. O

Combining the three previous results gives the following.

Corollary 5.28 Given Assumptions 5.1-5.10,

1 . 6’,’ A
99(a0) 2 goe; min (5", 5)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 153

Proof: Follows immediately by noting that one of the conditions listed Lemma 5.25, 5.26
and 5.27 must be satisfied. O

Corollary 5.29 Given Assumptions 5.1-5.10,

1 . [de; A
P(0) ~ p(aodn) 2 gdu, min (ot an,).

Proof: Follows immediately from Corollary 5.28 and Lemma 5.24. O

Now, let ap be the step along dp taken to the minimum of ¢(adp).

Corollary 5.30 Given Assumptions 5.1-5.10,
1 Oy; A
01~ wlas) 2 L, min (22,)
#(0) — p(ap) > d%; yrreal
Proof: From the definition of ap, ¢(apdp) < ¢(ag). The result follows immediately
from Corollary 5.29. O

All the above results have been presented for the current iteration, so the superscript
k indicating the iteration number has been omitted. For clarity, I will now restate the

above result with the required superscript,
k

0% k
©*(0) — *(abdp) > 5{', (Amfk,al,:m))

Corollary 5.31 Given Assumptions 5.1 - 5.10, if k is a successful trust region iteration,

then

pu(w*) - p, (W"-F—tlz'°d§‘a)>lbns'c min %, af e Al
(3 (] D .—.2 ii Amrk) 1,A4n

where by is the algorithm parameter used to determine a successful trust region iteration.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 154
5.4.3 A Bound on the Trust Region Radius

This section will proceed very much like Section 5.3.2 in the first stage of the convergence
results. In fact, some of the results from that section apply directly to the current

situation.
Lemma 5.32 Given Assumptions 5.1 - 5.10, there ezists §, > 0 such that for all itera-
tions from type two points,

of > 4,
Proof: The proof of Lemma 5.7 applies here as well. O

Lemma 5.33 Given Assumptions 5.1 - 5.10, for all type two points w®, there ecists a

constant g2 > 0 such that
pu(w* + ab dp) ~ ¢*(apdp)| < 2(A%)*75.

Proof: The reader is referred to the proof of Lemma 5.8. With the appropriate correc-
tions to the e-active and e-inactive sets to reflect the change in the dropped activity, the

same proof is applicable to the current situation. O

The next result is analogous to Lemma 5.9 for the case of type one points. An

additional assumption on Gy, similar to Assumption 5.3, is required first.

Assumption 5.11 The algorithm parameter By is small enough that the following con-

dition is satisfied:

. 4A,,g,1°A° 2¢2
OAO m 00
ﬂq.<mm(5a,2AmfA,—-——————1_bz , 2A%r __l—bz .

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 155

Lemma 5.34 Given Assumptions 5.1 - 5.11, and a sequence of type two points w*, there

ezists a constant ép > 0 such that,

Akl > ép.

Proof: This proof uses the same technique used for Lemma 5.9. Define §p as

1, (1 1-8 [1-8
= 2"“““‘(14.,,'2‘4...412'\/) 56)

Assume that the lemma is not true, i.e. that there exists an index J such that

Alr! < ép. (5.7)

The definition of dp and Assumption 5.11 ensure that A%r% > ép, so J > 1. Without
loss of generality, assume that J is the smallest index satisfying (5.7), i.e. AFrE > ép for
k=0:J-1.

Define £7-1 as follows:

P
pu(w’ ! +dp7h) — p(wt) 1I
- ¢’-t(dp™") ~ ¢7-1(0)
Pu(w! "t +d57t) — o7 (dp Y
¢7(dp™!) - ¢7=1(0)
since p,(w’!) = ¢’/~1(0). Using the presented results and assumptions, it follows that

1

g1 < 2¢(87)2yt 2g2(A7)2t)
By min (8=, 4774 of 1) o min Ry, 82,6,

Consider the following:
/1At < AT since Pl < Y
< 2r7A7 since A7-1 < 2A7 even if iteration is unsuccessful
< 26p from (5.7)
Pe/Am from (5.6).

IA

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 156

Since B¢ > 7/-1A7-14,, and r71AT-! < 26p,
5-7“1 < 2qz(AJ-1)2.rJ-l < 4quJ'151) .
~ Bemin (42,8,) ~ B min (42,5,)

Consider the two possibilities for the min term separately.

o AT-1/A, <4,

4An 320D < 4Anq: Pe(l —b2) —1—by

J—-1
&s Be ~ Bs 4Ang

e d, < A""“/Am:

48710y _ 4QATIr] Y6 8g263 8gp (1—52)B%
< < <2720 _q _p,.

g1
= Beba ~ Bwda = By T B} 8a

Therefore, in either case, §/~! < 1 —b,, or

- -1
gﬁ?'l
Xp

J~1 J~-1
Sl-byX __1>p, 1% >,
Xp Xp

i.e. iteration J — 1 is very successful and A7~! < A”7. So,
AJ—ITJ-I < AJ.',J-I < AJTJ < bp,
which contradicts the fact that J is the smallest index satisfying (5.7). The result follows

immediately from the contradiction. O

5.4.4 A Bound on the Penalty Function Decrease
We can now prove the following result.

Lemma 5.35 Given Assumptions 5.1 - 5.11, for any successful iteration from a type two

point, there ezists 85 > 0 such that

Pu(wk) - Pu(wk + a%dﬂ) 2 J’b

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 157

Proof: In Corollary 5.31, it was established that

k
1 L Ak
k k. _k Eo. 3
pl‘(w) -pﬂ(w +avd%) 2 Eblaijmm (szn.;%'al' Am) -

Now, from the definition of 8y, Assumption 5.9, and Lemmas 5.32 and 5.34, it follows

that

Pu(wk) ~ pu(w”* + o dp) > ‘;‘blﬂimin (A,’f:g‘“' da, L) =dp.0

5.4.5 Approaching a First Order Point

This section lays the groundwork for the final stage of the convergence proof, which is

presented in the subsequent section.

Lemma 5.36 Given Assumptions 5.1-5.11, only a finite number of dropping steps will

be performed.

Proof: Since p, is assumed to be bounded below, and the decrease in the penalty function
is bounded away from zero on a successful trust region step, there can only be a finite

number of successful dropping steps.

Since the trust region radius is reduced for unsuccessful trust region steps and it has
been established that A is bounded away from zero, it follows that there can only be a

finite number of unsuccessful dropping steps. O

Lemma 5.37 Given Assumptions 5.1 - 5.11, the algorithm will eventually approach a

first order point.

Proof: There are only a finite number of stationary, non-first order points (by As-
sumption 5.4) and there can only be a finite number of dropping steps. Therefore, after

some point, the algorithm will no longer approach a stationary, non-first order point.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 158

By Lemma 5.16, the iterates will approach a different stationary point. Eventually, the

stationary point will be a first order point. O

Lemma 5.38 Given Assumptions 5.1 - 5.11 and constant values of the algorithm pa-

rameters € and A, all iterates will eventually be type three or type four points.

Proof: From previous results, the algorithm will eventually approach a first order point.
Using the same technique as in the proof of Lemma 5.17, it follows that the multiplier
estimates at the iterates will eventually approach the multipliers at the first order point.
Initially, an out of kilter estimate may be obtained, but eventually the estimate will lie

in the range to be considered in kilter, due to the use of the bound 8g. O

5.5 Convergence to a Second Order Point

To establish that the algorithm will eventually converge to a second order point of the

penalty function, the following results must be proven.

1. The algorithm will eventually attempt a Newton step.
2. A Newton step will eventually be successful.

3. The algorithm tolerances € and A, which are reduced when an iterates has been
misclassified as close to a stationary point, will only be reduced a finite number of

times.

4. Eventually, all iterations are Newton steps.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 159

5.5.1 Approaching a Type Four Point

From Section 4.2.5, recall that the Newton step satisfies dy = dj, + d,,, where

dy = -Z(ZTHZ)'2%y
and d, = -A(ATA)'&(w +dp).

It has already been established that, for constant values of ¢ and A, the algorithm
will eventually approach a first order point. This point may be a second order point (a

possible solution of the penalty function) or a saddle point.

As in Coleman and Conn [34], the following definition and assumption are required.

Definition 5.9 A second order point w is a strict second order point if none of the

maultipliers lie at their optimal boundary and if the reduced Hessian is positive definite.

Assumption 5.12 Assume that all first order points of the penalty function are strict

second order points.

Note that this assumption is made for the purposes of theoretical analysis of the algorithm,

and is not applied to the implemented algorithm.

Corollary 5.39 Given Assumptions 5.1 - 5.12, when approaching a strict second order

point, the algorithm will eventually attempt a full Newton step.

Proof: From Assumption 5.12, when the current iterate is close to a first order point of
Pu, it is actually close to a strict second order point, and the reduced Hessian is positive
definite. Therefore, type three points are assumed to be never encountered. Combining
this observation with Lemma 5.38, the algorithm will eventually classify an iterate as a

type four point, and the Newton step will be attempted. O

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 160

Due to the positive definiteness of the reduced Hessian near a strict second order
point, an assumption on the size of the inverse of the reduced Hessian, as in Lemma 1 in

[34], can be made.

Assumption 5.13 Assume that there exist strictly positive constants bfl and b such

that for any direction h,
by IIRNZ < AT(ZTHZ) " h < b ||

And, in particular, assume that ||(ZTHZ) ||z < iz for some constant 8z > 0.

4

At a type four point, the algorithm calculates the Newton step dy = d, + d,,. If it
satisfies [|dn||cc < A and provide sufficient decrease in p,,, then it is accepted as the trust
region direction and the new iterate is calculated. Otherwise, the tolerances ¢ and A are
reduced and the current iterate is reclassified because it is not as close to a second order

point of p, as originally thought.

5.5.2 Success of the Newton Step

In this section, the value of p,(w + di + d,) is analyzed to determine if a full Newton
step will be successful when close to the strict second order point w. This derivation is

patterned after the corresponding step in Coleman and Conn [34].

For simplicity, the following definition is formalized.

Definition 5.10 The pointw is “close enough” to a minimum point w when the following

conditions are satisfied.

1. Assumption 5.13 is satisfied.

2. The set of e-activities at w is composed of the set of ezact activities at .

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 161

3. The step dy + d, is small enough so that no breakpoints are passed from w to
w+dp + dy.

Lemma 5.40 Given Assumptions 5.1 - 5.13, when e type four point w is “close enough”

to W, there ezists a positive constant L such that

pu(w+di+dy) —pu(w) < —~L(IZ%7I + 12ll)-

Proof: This proof uses the technique of and terminology from the proof of Lemma 1
in [34]. From Definition 5.10, we can write the following. Note that v and B are the

gradient and Hessian, respectively, of the differentiable part of p,(w).

Puo+dntdi) = pu(w)+(dn+)Ty + 2 (dn+ d)TB(dn +) + ollldn + 1)

—p Y (min(0, Gi(w + di + dy)) ~ min(0, Gi(w)))
TO(e)

+# Y (IM(w + dn + du)l ~ |Ai(w)])
(@)

+# Y (lgi(w + dy + d,)] ~ |ge(w)])
PI(e)

T —p Y (min(0, gi(w + di + dy) — Ai(w + di, + dy))
P (e)

~min(0, g:(w) — A:(w)))
+2 Y (le(w + dn + dy)| — |es(w)]).

MO(e)
We will need to consider the component parts of p,(w +d), + d,) in more detail.
Consider the following:
diy = -1;Hz'vz
dTy = dT(AY + Zu)
= dTA¥ +dT2u

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 162

= dTAY + &(w +dp)T(ATA) AT Zu

= dTA¥+0

= ~&(w+dy)T(ATA)TATAY

= ~®(w+dy)T¥

= - 2 ¥ ®;(w +dp)

= =Y i(aiw) + df Vas(w) + 3dEVaidh) + o [[nl?)
~ 3" ¥ilas(w) + 54F Vasdh) + oflldnll?)

~ 3 ¥ (Gilw) + 5 V2Gi(w)dn) — T W Ni(w)
T9(e) Ple)

1
- D ¥(g:(w) + Ed{V’ i(w)dp)
0
Pg ()

- 3 B (0i(w) ~ () + 5 VP ai(w)d)
P2(e)

I

]

- T (i) + 5 Vei(w)dn) + o),
Mo(e)

(d+d)TB(d+d) = 3dEBdi+dfBd, + 3B,

The above information, along with the definition of H, is now all combined in the

following.
Pulw+dy+d) —pu(w) = —vZHz7'vz— 3 ¥EGi(w)- Y ¥rAi(w)
Toe) Pl(e)
- Y Wgi(w)— Y ¥ (gi(w) ~ Mi(w))
Pl(e) P=(¢)
c 1 T
- Z ¥ici(w) + Ethdh

M(¢)
+4EBdy + 5T Bd, + of|l4nlP) + ofldn + 1)

—p Y (min(0, Gi(w + d + d,)) — min(0, Gi(w)))
T(¢)

CHAPTER 5.

CONVERGENCE OF THE ALGORITHM 163

+o Y (Mi(w + di + do)l = [Mi(w)])

P(e)

+8 Y (lg:(w + dn +)| - [gi(w)])
PY(e)

~p Y (min(0, gi(w + d + dy) — Mi(w + dy + dy))
P= (e)

~ min(0, gi(w) — Ai(w)))

+p Y (lei(w + dn + dy)| = [ei(w)]).
M%)

Next, examine the changes in activities in more detail. Before looking at the individual

cases, note the following.

o icT%e)

ATd, = -ATZ(2T2)'2Ty = 0
ATd, = -ATAATA) '$(w +dp)
= ~<§(w+dh)

= ~8(w) - df A~ LAEV*E(w)dn + o(ll)

= ~&(w) — sdEV*E(w)dn + of dnll®).

Gi(w+dn+d) = Gilw)+(dn+) VGi(w) + 3 (dr +)T V*Giluw) (dh +)

+o(llda + dull?)
Gi(w) + dTVGi(w) + TVGi(w) + %d{vzc:;(w)d,,
+dEV3Gi(w)dy + 2dE V2, + oflldn + i)
= Gi(w) +0 - Gifw) - 3dFV*Gi(w)dn + zdEV*Gi(w)d
+dEV2Gi(w)dy + %df V2Gi(w)d,
+o(lldn + du|[*) + o([|dn]?)
= dIVGilw)dy + 5dV3Gilu)dy + ofllds +) + o Idkll®).

i

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 164

Let ¢; = neg[G;(w)]. Now, we have that

)" min(0, Gi(w)) — min(0, Gi(w + dx. + d,))
%) .

< 3 aGiw) + VG w)d, + 3dEVGi(w)dy] + oldh + dol[%) + o dslF)
T%e)
< T sGiw)+ X VG + 3 3 [dEV2Ci(w)dy] + oflldn + du?)
T(e) T(e) TO(¢)
+o([ldall?).
e i€ P(e)
Piw +dn+d)| = [Mi(w) +dEVAiw) + dTVi(w) + 0]
= aw) +0 - h(w)]
= 0.
Therefore,

Y Mwtdit+d) -)] = Y ~|a(w)]

P3(e) P ()

= -) ei(w),

Pl(e)

where p; = sign[A;(w)].

® i€ P)(e),
Y lgi(w+ dn + do)| - gi(w)|
P (e)
1
< Y Vgl +5 Y [Vig(w)d - Y eigi(w)
P(e) Pi(e) Pl(e)

+o(lldn + du1?) + o([Idll?),

where ¢; = sign[g:(w)].

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 165

e i € P=(e), let ¢; = neglg;(w) — Ai(w)]-

Y min(0, gi(w) — Ai(w)) — min(0, gi(w + dh + du)) — Mi(w + di + dy))

Pz ()
< Y aloilw) ~ M(w)) + 1E V2 gs(w)d, + 5T Vgi(u)d
P=(e)
+olldn + du) + oldnll?)
< X o) - M)+ ¥ V@)l + 5 T 1479%(0)d
P=(e) P= (¢} PZ(e)
+o(lldn +) + o(lldnll?)-
o ic M%&)
Y- ledw + dy + dy)| — lei(w)]
M?(¢)
< X Vel + s 3 Vi a@)d] - Y enw) +
M?®(e) MP(e) M(e)

+o(|ldn + duli®) + o(lldali*),

where p; = sign[c;(w)].

Combining all the above information, and grouping similar terms we get the following

result.
pu(w+dn+dy) ~pu(w) = —vZH vz - Y (¥ ~ psi)Gi(w)
TO(e)
= Y (¥ + pe)Ai(w) - Y (¥ + poi)gi(w)
PQ(e) P}(e)
= 3 (¥ - ps) (gi(w) ~ As(w))
P=(e)
~ Y (¥ + pes)ci(w)
MO(c)

+diBdy +p Y |V Gi(w)dy| + 1 Y |dE Vg:(w)d,|
To(e) P2(e)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 166

1 Y | Vigi(w)de] + 0 Y |df Vici(w)d,|
PZ(e) M(e)

1
+5 | dEBd, +p Y 14T ViGi(w)d,|
2 T%e)

+1 Y 1TV giw)d]+ Y [dTV2gi(w)d,|
P2(e) PZ(¢)

+r) ldfvzc;(w)d',]) + o(l[dn + dulI%) + o(lldxil?)-
MPO(e)

For any of the activities a;, let ## = df V2a;(w)d;,. Then, using this definition, we can
write
B(w+ di) = B(w) + 57 + ofldull})
and
du = —ACAT A) 7B + 2]+ d(ldhl).

Define H; = BA(ATA)™! and H, = (ATA) AT H;. Therefore,

dTBd, = (~A(ATA) 1 [&+ %r])TB(~A(ATA)"1['§ + -21-1']) + o(lldli?)
= (577 +) H(& + 1) + ofdul)
= $TH,® + 8" Hyr + 37T Hyr + ofldall)
= STH®+r) + ;7 Har'+ o)

1
= ®Tt4+ ZrTHzr + o(lldn]|?),

where ¢t = H,(® +r). Since rTHyr is o(}|d|[%), it can be included in the o(||dp|[?) term.
Therefore,

%Id?,'BduI < |87t + o(lldnl®)
3 3 las(w)! - tsw)| + o),

A

 where the sums are over all the activities.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM
Define H; = V2a; A(ATA)"! and H; = (AT.A)~! AH; for each activity. Let
v (w) = H;[®(w) +], and &; = z lu;’(w)l
J

Therefore,
3 1V, | < 2 3 laz(uw)l - [ax(w)] + o 1),

Using a similar technique, it can be verified that
|diBd,| < Z [ye(w)] - lai(w)] + o(ildnl?)
SVl < 3 las(w)l - 5w+ oflidull?)
where yT = df Hy, s/ (w) = df H; and 5;(w) = T; |si(w)|.
So, we can now write

pu(w + dp + dy) — pu(w)

< —17H Y1z - Y (BF - psi)Gi(w) — 3T (B2 + pes)Ai(w)
T(e) Pl(e)
= 3 (¥ + pegi(w) ~ > (B ~ i) (g:(w) — Ai(w))
P2{e) PZ(e)
= Y (% + poi)ci(w)

M°(e)

+ 3 ()| lasCw)] + 1 T las(w)| - [s(w)l + 5 3 las(w)] - ls(w)|
+gn T las(w)l - [} + o(ldn + dull) + ol dall)
For each activity a;, define the function
& = sl + w5l + gits] + Zplae].

Now,

167

CHAPTER 5. CONVERGENCE OF THE ALGORITHM

Pu(w+dn+dy) —pu(w) = “YgHEI‘YZ
+ Y (&(w)|Gi(w)] - (¥ - ue:)Gi(w))

T(e)

+ Y (G(w)Mi(w)] — (B} + pe)Ai(w))
PS(e)

+ Y (&(w)lge(w)] — (¥ + psi)gi(w))
PY(e)

+ 3 (&(w)lgi(w) — s(w)| ~

P=(e)

(B2 ~ psi)(g:(w) — i(w)))

+ Y (&(w)led(w)| — (¥ + pes)ei(w))
MO(e)

+o(lldn + du|I?) + o(lldaif*).
Returning to the activities, we get the following results.
e For i € T%), if Gi(w) < 0, then
—(¥f - p)Gi(w) = (1 - ¥F)Gi(w) = —|p — ¥F| - |Gi(w)|.
If Gi(w) > 0, then
~(¥F - i) Gi{w) = ~¥FGi(w) = ~[¥F] - |Gi(w)!.
Therefore, in either case,
~(¥f - p)Giw) = —|¥F - psil - [Gi(w)].
e For i € P)(¢), as above, it can be shown that
—(¥2 + pe)hi = =¥} + peil - | Ai(w)).

e For i € P{(e),
—(¥ + pei)g: = —|¥] + peil - |gi(w)l.

168

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 169
@ For : € PZ(e),
—(¥ ~ pe)(ge(w) - Mi(w)) = —[¥0™ = py| - ge(w) — Ae(w)].-

e For i € M%(e),
—(¥; + pei)A = —|¥5 + pei] - |ei(w)]-

Rewriting the difference in the penalty function, we get

pu(w+dn+d,) —pu(w) = -vzHz'yz +((w)

o(lldn + dy||?) + o(lidnll?),

where

Cw) = 3 (&(w) - ¥F - psil)|Gi(w)]

T%e)

+ 3 (&lw) — 192 + poil) [As(w)|

P(e)

+) (&(w) ~ %2 + poil)|giw)|

Pi(e)

+ Y (Gi(w) ~ [¥77* ~ psil)gi(w) ~ Mi(w)]

PZ ()

+ Y (E(w) ~ %5 + pedl)lei(w)]-

M(¢)
Now, as w — w, §(w) — 0. Also ¥; — ug; # 0 and ¥; + up; # 0 because w is a strict ~

second order point. Therefore, there exists 3 > 0 such that when “close enough”,
C(w) < ~55 | (w);.
Therefore,

Pu(w+dn+dy) —pu(w) < ~vZHz'vz — 85l®(w)lly + ollldn + dul?) + o(lldnll?).

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 170
When “close enough”, the norm of Hz is bounded above and below by constants.
From Assumption 5.13,
VEHz vz 2 b llvzIl® = 87127 A
Combining everything, we have that
Pulw+dn+do) —pu(w) < ~b711Z27 I} - SallB(w)lls + o(lldn + du|[?) + o(l[dnl[?).

Examining the lengths of the horizontal and vertical steps, and using Assumption 5.13,
Idall3 = didn = vZ(Hz") (Hz")1z < llvzI3IHZE < 620127113

and

lldr + dull = lldnll3 + lldull3 < dE2zNZT7I12 + lIdu]13.

Now, there exists 4, > 0 such that

(8 + 37)7(ATA) (& + 37) + ofldnlY
18 + 3rIPILAT Al + o(ldnll)

SAlBI2 + oril* + o(lnll*)

all®1 + o(lldAll*)

4/l 8| + & l|dnl[®

S| + 6|27 1|

lldwli3

| AN VAR VAN

A

Therefore, o(||dn + du]|?) + o(||dkl|?) < S.4||Bl|? + &, ||ZT ¥|[?, for some positive constants
d,,, and d4. We can assume that ||$]| < |||, because & contains the values of the

e-activities.
Therefore, when close enough, there exists positive constants Ly and L, such that

Pu(w+dn+dy) —pu(w) < —(LillZT|i + L2||S|l1)
= —min(Ly, L2)(|2T7]2 + ||®]],)-

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 171

Defining L = min(L;, Lz) gives the desired result. O

Corollary 5.41 Given Assumptions 5.1 - 5.13, if a type four point w is “close enough”
to w, then p,(w +dp + d,) < pu(w).

Proof: This follows immediately from the above lemma, and the fact that if w is not

itself a strict second order point, then either ||®]| # 0 or ||yz|| # 0. O

Lemma 5.42 Given Assumptions 5.1 - 5.13, if the iterate w is close enough to w, then

dy = dp + d, will eventually be accepted by the algorithm.

Proof: To prove this result, we need to establish the following points.

e The Newton step eventually provides sufficient decrease in the penalty function.

From Corollary 5.41, dy eventually decreases the penalty function. Therefore, it
remains to show that this decrease is sufficient, in the sense described in Section

4.2. For sufficient decrease, it is required that
Pu(w + dy) — pu(w) < rdfy.

Now, looking at the right hand side in the same way that the proof above was

established, we have that

Gy = dfy+dly
> —13Hzyz - ¥lai(w) + %dﬁ"rz
= -5 HErz~ Y %)
> —56¥llvzl} ~ ull @)l

= ~M(IZT7l5+ 1)

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 172

for a positive constant M. As long as L > r{M (which is reasonable since r; is

assigned a small value in our implementation), it follows that

pu(w+dn) —pu(w) < ~L(I1277) + [[8]l1)
< —riM(|Z7y|3 + 11 ll1)
< —ndir.

Therefore, dy will eventually provide sufficient decrease in the penalty function.

o The Newton step eventually falls within the trust region.

As the iterates are approaching a second order point, the Newton direction is de-
creasing in size. Recall that near a solution, a quadratic model is a good predictor
of the penalty function, and the trust region radius will not be reduced, although
it may be increased. Therefore, eventually, ||[dx|lc < A will be satisfied.

Therefore, a Newton step will be accepted by the algorithm. O

5.5.3 Decreases of the Algorithm Tolerances

It will now be proven that the activity tolerance ¢ and the closeness tolerance A are only
decreased within the algorithm a finite number of times. A similar result was presented
in parts 5 and 6 of Theorem 1 in [34]. An alternate way of stating this result is that ¢
and A are bounded below by some positive constants, or that

lim & 4 0 and lim A* 4 0.

k=00 k—oo
Lemma 5.43 Gtiven Assumptions 5.1 - 5.13, the sequence of iterations produced by the
algorithm must satisfy

lim & 4 0 and Jim AR Ao,

ko0

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 173

Proof: The proof will proceed by contradiction. Assume that
lim € — 0.
k—roo

Since A* is decreased whenever € is decreased, it follows that

lim A*¥ > 0.

k—oo

Assume that
- kT K
Jim [[(Z%)7y4] 0,
i.e. that there exists some constant 8z > 0 such that ||(Z*)Tv¥|| > §z. This implies that
beyond some point, all the iterates are type one points. However, in this situation € and

A are not decreased. Therefore the assumption was incorrect, and
. T,k
lim [I(2%)744| > .

Since [[(Z¥)Tv*|| is approaching zero, the iterates are approaching a stationary point.
Now, in stage two of the convergence proof, it was established that only a finite number
of stationary, non-first order points exist. Therefore, it follows that in the limit, the
iterates must approach a stationary point which is a first order point, and hence a strict
second order point. As well, the algorithm will identify the correct set of activities, and
will attempt the full Newton step. It was just established above that such steps will be
successful when close enough to the strict second order point w. Therefore, ¢ will not

be repeatedly reduced, and the assumption that it tends to zero is incorrect. O

5.5.4 Behavior Near a Second Order Point

Lemma 5.44 Given Assumptions 5.1 - 5.13, if €& does not tend to zero, then eventually

all the iterations are successful Newton steps.

CHAPTER 5. CONVERGENCE OF THE ALGORITHM 174

Proof: We have already established that only a finite number of successful steps can be
taken from type one or type two points, and that the algorithm will eventually approach
a stationary point. From earlier discussions, it follows that the final stationary point
approached must be a second order point. Since ¢* is not repeatedly reduced, full Newton

steps are taken until convergence. O

5.5.5 Convergence of the Algorithm

Corollary 5.45 Given Assumptions 5.1 - 5.13, the algorithm will converge to a strict

second order point of the penalty function.

Proof: When very close to a second order point, the algorithm has correctly identified the
active set, and is essentially Newton’s algorit-hm applied to an unconstrained minimization

problem. Therefore, convergence to a strict second order point will be observed. O

A d anl

Chapter 6

Degeneracy in the Penalty

Function

6.1 Introduction

In previous chapters, we have assumed that all points encountered by the algorithm were
nondegenerate. However, in practice, the use of e-activities may result in a large number
of penalty terms being considered active. Consequently, there is an increased possibility
of linear dependencies among the gradients of the active penalty terms, that is, that some

points will be degenerate. Of course, even for exact activities, degeneracy is possible.

In this chapter, we discuss some of the problems caused by degeneracy. Several
traditional techniques for resolving degeneracy in one level mathematical programs are
summarized, along with some difficulties encountered when applying those techniques to
the bilevel problem penalty function. Finally, a new technique for resolving degeneracy
in our problem is described and proven to work for exact activities. An extended version

of the technique for e-activities is used within the implemented version of the algorithm.

175

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 176
6.2 Problems Caused by Degeneracy

Degeneracy refers to the situation in which the gradients of the active terms at the
current point ;u:e not linearly independent. When the current point appears to be far
from a stationary point, the trust region direction is chosen to maintain all activities
up to first order change. The presence of degeneracy does not alter this stage of the
algorithm in any way. In effect, the degeneracy is irrelevant. However, when the current
pOil.lt appears to be close to a stationary point, it is necessary to estimate the values of

the Lagrangian multipliers by solving, in a least squares sense, the system of equations
A¥ =7,

where all terms are evaluated at the current point. At a degenerate point, A is not full
column rank, so the system may not have a unique solution. Corresponding to each basic
subset of the columns of A, there is a unique set of multipliers. However, there may be
an exponential number of choices of basic subsets. This nonuniqueness of the activities

causes several problems in our algorithm.

® The numerous choices of bases may lead to an incorrect classification of the status
of the current point. For example, if a particular set of multipliers includes out
of kilter values, then a dropping direction is indicated. However, there may exist
a choice of basis whose multipliers are all in kilter, which suggests that all the

activities should be maintained.

o Even if the point is correctly classified as being near a stationary non-first order
point, the nonuniqueness of the sets of multipliers may lead to attempting to drop

some activities which are actually active at a solution.

e Changes in the activities whose gradients are in the current basis may result in

changes in some of the nonbasic activities as well. Therefore, a dropping direction

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 177

defined from the current basis may not be a descent direction for the entire penalty

function.

Note that it is possible to correctly classify a dropping situation in the presence of de-
generacy, and then to define a dropping direction which provides descent. However, the

presence of degeneracy complicates the decision making process.

6.3 Traditional Degeneracy Resolving Techniques

Consider solving the linear optimization problem
LP: min Tz st. GTz > f.
z€
The necessary conditions at a nondegenerate solution of LP include the existence of a
unique set of multipliers A > 0 satisfying AA = ¢, where A, the activity matrix at =z,

contains a subset of the columns of G.

These necessary conditions can be extended to the case of degeneracy. The uniqueness
requirement for A is replaced by the requirement that there exists at least one nonnegative
solution A to the underdetermined system A\ = c. An obvicus technique to resolve the
uncertainties caused by degeneracy is to examine all basic subsets of A to determine

optimality or a dropping direction. The following presents this algorithmic framework.

Algorithm 6.1 (Traditional Degeneracy Resolving Algorithm)

® REPEAT

1. Partition the columns of A to form two matrices Ag and Ay which satisfy

Range[Ap] = Range[A] and [Ap, An] = A.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 178
2. Solve AgAp =c¢ for \p.
8. Set Ay =0.
e UNTIL AT = (A}, Af) is in kilter
® OR UNTIL a feasible descent direction for LP s identified.
Given the matrix A, there may be an exponential number of choices of Ag. Therefore,
rather than enumerating all possible bases, most degeneracy resolving algorithms attempt

to efficiently search the possibilities. Two different techniques for generating matrices Ag

are described below.

6.3.1 Perturbation

The perturbation technique for resolving degeneracy in LP involves transforming, or
perturbing, the degenerate problem LP into a closely related nondegenerate problem

LP(e), for some vector ¢ having small positive components. For example, consider the

constraints
Cl: bfz—f > 0
Cc2: bg'z-jfg >0
C3: tlz2—-f > 0
C4: blz—f, > 0,

where the first three constraints are active at a common, degenerate point, denoted D1

in Figure 6.1. This feasible region is slightly modified to

Cl: ble-fi—¢, > 0
Cc2 : bg'z -fh—e2 >0
C3: blze—fa~e3 > 0
Cq: blz—fo—eq > 0,

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 179

where €1, €3, €3, and &4 are very small positive values, on the order or magnitude of ten
times machine epsilon. The very small values are required so that the feasible regions of
LP and LP(¢) are closely related.

Cl=0

\

C2=0
DI \)

Cé=0

C3=0

Figure 6.1: Original Feasible Region

Cl'=0

P3
C2'=0
PI \
C4'=0

C3'=0

Figure 6.2: Perturbed Feasible Region

The degenerate vertex D1 has been transformed into three nondegenerate points P1,
P2, and P3, as shown in Figure 6.2. The activity matrices at these points correspond to

the possible basis matrices at D1 in the original problem. If the linear program algorithm

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 180

determines that the multipliers at either of the perturbed vertices satisfy the necessary
optimality conditions for LP(¢), then D1 satisfies the necessary conditions for a solution
of LP. However, if any of the other vertices of the perturbed problem are reached, that
is, if the fourth constraint is reached from P1, P2, or P3, then degeneracy has been
resolved, and the linear program algorithm can proceed from the corresponding point in

the unperturbed problem.

6.3.2 Ryan-Osborne Approach

In [61], Ryan and Osborne study the issue of resolving degeneracy in linear programs of

the form

LP1: min ¢Tz subject to ATz = fand z >0.

zclR
A point is optimal for this problem if there exists A > 0 and ¥ such that

A¥ + 7% =,

where J° is a submatrix of the identity matrix corresponding to elements of z which have
value zero at the current point. Note that there is no restriction on the value of the ¥

multipliers because these constraints must remain active for feasibility.

The matrix A is divided into a basic submatrix A and a nonbasic submatrix 4y.
Correspondingly, the variables are divided into a basic index set S and a nonbasic index
set Sy. Let zg and z) denote the basic and nonbasic variables. Note that zy = 0 is
always satisfied. Let

Sy ={ieSp:z:=0}.

The current point is degenerate if S§ # 0.

Ryan and Osborne define a subproblem of LP1 which is used to resolve degeneracy at

z. The inactive and nondegenerate part of the problem can be ignored because degeneracy

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 181

is a local issue. Therefore, the authors describe the subproblem SP1.

SP1: min cfz subject to ATz=fandz;20,i€SNusg.

zeR"
If there exists a direction of recession, that is, a direction of unbounded feasible descent,
for SP1 from =z, then this direction is also a feasible descent direction for LP1 from z.
Meanwhile, if the current point is optimal for SP1, then it is optimal for the original

problem. However, the current point is a degenerate point for SP1 as well as LP1.

A direction d is a direction of recession for SP1 from z if and only if it satisfies the

following conditions:

-

cTd <0, ATd=0, and d; > 0 for i € Sy U S§-

These conditions are independent of the vector & and the value of 2. Therefore, the
authors describe another problem similar to SP1, but using a set of random values. Let
r; ifie S

z; otherwise,

where each r; can take any positive value. Now, consider the problem

SP2: Ty subject to ATy=fandy; >0,ic SyuU S%,

yglﬁl"
where f* = f + ATr. Note that y = 27 is a feasible point for SP2.

Any direction d is a direction of recession for SP2 from y if and only if it is a direc-
tion of recession for SP1 from z, and therefore, a direction of feasible descent for LP1
from z. Conversely, if no direction of recession exists for SP2 starting from y, then an
optimal solution, including an optimal set of multipliers, can be obtained for SP2. These

multipliers correspond to a choice of basis for the original problem LP1 at =.

When solving SP2 starting from y, at least one nondegenerate step can be taken. A

further level of degeneracy may be encountered in the solution process, depending on the

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 182

random values used in defining SP2. If this situation arises, then the same process can
be invoked recursively. Note that since an initial step is taken away from 2", any other

degenerate points encountered will have fewer activities, and the recursion process will

be finite.

6.4 Examples of Degeneracy in the Penalty Function

The techniques described above for resolving degeneracy are based on the premise that
the uniqueness requirement for multipliers in the necessary conditions at a nondegenerate
point can be replaced by the existence of such multipliers at a degenerate point. The
examples in this section show that a similar correspondence between necessary conditions

at nondegenerate and degenerate solutions of the bilevel penalty function does not exist.

Consider example problem BP; from Chapter 2. With the penalty parameter u fixed

at one, the unconstrained function

p(z,¥,A) = 2z24+y~min(0,z+2y)+|z-y+A - A~ 1|+

| min(l — 2z ~ y, A;})] + | min(z + y + 1, As)|

is minimized. It can be shown that p(z,y, A) > 1. Consider the following points.

e At the point w; = (0,0, 1,0), the activity matrix is

VGI VC]_ V91 - VA; sz
1 1 -2 0
A = 2 -1 ~1 0],
0 1 -1 0
i 0 -1 0 1]

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 183

where PY = {1} # 0. According to the nondegenerate necessary conditions, a drop-
ping direction can always be defined in this case. However, w; is both degenerate
(since rank[A] = 3) and optimal for p (since p(w;) = 1). Dropping g; — A\; = 0
increases some of the other active penalty terms so much that the penalty function
is increased (even for very small steps) due to the linear dependencies among the
gradients in Ap. Therefore, the requirement that P¥ = 0 does not extend to the

degenerate case.

¢® At the point w; = (2/3,-1/3,0,0), the activity matrix,

r 7
VG]_ VCI V91 Vll sz

1 -2 0 0

0
0
1

1

2 0
o 1 0 1
L 0 g J

has five columns, but is of rank four. Any choice of four of the columns forms a

basis for the full activity matrix. Consider the following:

— If Vg, is in the basis matrix (as it is for four of the five choices for Ag),
then the multipliers for that basis are ¥§ = —1 and zero for all the other
basic activities since Vg; = —v. The nondegenerate optimal range for ¥{ is

¥¢ € [0, 1], so these multipliers are not in kilter according to the rules derived
assuming nondegeneracy.

— If Vg is not in the basis, the only choice of basis is
AB = [VGl, Vcl, VA1, VA:].
The multipliers for this basis satisfy

\I:[\YIG‘ i: ‘Fi\v \Fa\] = [1! 1! “'11 1]-

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 184

The multiplier ¥} = —1 violates the nondegenerate necessary condition that

¥} e(0,1].

Therefore, any choice of Ap at w, results in a violation of the necessary optimality
conditions derived for nondegenerate points. However, this degenerate point is a

minimum point of p(z, y, A) since p(w;) = 1.
These two cases show that at a degenerate solution of the penalty function,

o the set P¥ need not be empty.

o there may not exist a basis of the activity matrix which defines a set of multi-
pliers which are in kilter according to the necessary conditions derived assuming

nondegeneracy.

6.5 Problems Applying the Traditional Techniques

The two degeneracy resolving techniques described previously depend on the existence of
a basis matrix for the activities which defines a set of multipliers satisfying the necessary
conditions derived assuming nondegeneracy. Therefore, they will not be appropriate for

resolving degeneracy in our penalty function.

A problem which arises when applying the perturbation technique is that small
changes to the constraints may significantly alter the set of necessary optimality con-
ditions at a nondegenerate point. Consider the unperturbed situation ;(w) = g;(w) = 0.
The nondegenerate necessary conditions require that 0 < ¥ < u, 0 < ¥ < y, and
¥} + ¥¢ < p. If, as a result of some perturbation, A;(w) is considered active and less
than inactive g;(w) in the perturbed space, the necessary nondegenerate condition for op-

timality is —p < ¥ < p. Clearly, there are values for the multipliers for which we would

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 185

conclude that the perturbed problem satisfies the necessary nondegenerate conditions,
while the unperturbed problem does not. The multipliers obtained from the perturbed
problem may neither satisfy the nondegenerate necessary conditions nor define a descent

direction for the penalty function.

When attempting to apply the Ryan-Osborne technique to resolving degeneracy in
the penalty function, we were able to verify that a direction of recession for a linear
problem defined at the degenerate point (perturbed or not) was a direction of descent for
the penalty function at the degenerate point. However, it was not possible to equate the
cases of finding a solution for the perturbed linear problem and the current point being

a first order point of the penalty function.

A new approach is required to resolve degeneracy in the penalty function p,,.

6.6 Resolving Degeneracy in the Penalty Function

To determine if descent from a degenerate point is possible, changes in the nonbasic

activities must be considered in relation to changes in the basic activities.

Algorithm 6.2 (Framework for Resolving Degeneracy in p,)

1. Construct a basic activity matriz Ap from the activity matriz A:

e Include Vi(w) for i € P{ U P2, Vgi(w) — VAi(w) forie P..
e Fill Ag from the remaining activities, until rank[Ag] = rank{A] and Ag has

rank{A] columns.

2. Fill the corresponding nonbasic activity matriz Ax with the gradients of the nonbasic

activities.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 186

3. Solve for ¥: Ap¥ = v, where v is the gradient of the differentiable part of p,, at

the current point.

4. Ezpress the gradients of the nonbasic activities in terms of the gradients of the basic

activities by solving for the matriz k in the system of equations Agpx = An.
5. Ezpress first order change in the nonbasic activities in terms of the basic activities.

6. Ezpress first order change in the penalty function in terms of the change in the basic

activities using ¥ and x.

7. Derive a set of necessary conditions on ¥ and k to guarantee that the first order

change in the penalty function is nonnegative along any direction d.

These steps are now examined in greater detail.

6.6.1 Building the Basic and Nonbasic Matrices

Because the gradients VA;(w) are identity columns, the gradients of the activities listed
in the first part of Step 1 above form a linearly independent set. Consequently, the
submatrix of A consisting of these activities has full rank and this submatrix defines the
initial columns of Ag. The basis is filled out by examining the remaining gradients in
the following order: Vg;(w) for i € P2, Vg;(w) for i € P2, VG;(w) for i € Ty, and
Vei(w) for i € Mp. A candidate gradient a is added to the current basis matrix Ag if
it is judged that the addition of the vector increases the rank of Ag. If @; lies in the
range of the current basis matrix, then the current nonbasic matrix gets augmented with

a. Otherwise, a is placed in the current basic matrix. Algorithm 6.3 details the process.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 187
Algorithm 6.3 (Building the Basic Activity Matrix)

® REPEAT

1. Ezamine cendidate gradient a, whick is not currently in either Ag or Ax.

2. Solve, in a least squares sense, Agy = a, to determine the relationship between

a and Apg.
3. Calculate the residual vector r = Agy —a.

4- Ifr=0, then Ay = [AN: a]l else Ag = [AB, a]~

@ UNTIL RankAg] = RankA].

In practice, the test on r in Step 4 above is typically relaxed to account for roundoff error.

The choice of Ap and Ax may not be unique. However, as long as they are defined
using the process described in Algorithm 6.2, the conditions developed in the rest of the

chapter are applicable.

Additional notation is required to specify the composition of the basic and nonbasic

matrices.
Definition 6.1 Given Ag and Ay, the following sets are defined.

o Let B(T) be the set of indices i € Ty for which VGi(w) is in Ag.

o Let N(To) = To \ B(To) be the indices of the nonbasic activities in Ty.
o Let B(PY) be the set of indices i € P? for which Vgi(w) is in Ap.

@ Let N(P]) = P} \ B(PY) be the indices of the nonbasic activities in P2.

o Let B(P2) be the set of indices i € P2 for which Vg;(w) and VA;(w) are in Ap.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 188

@ Let N(P2) = P2\ B(P2) be the indices i € P2 for which only VA (w) is in Ap.
e Let B(M,) be the set of indices i € My for which Ve;(w) is in Ag.

o Let N(My) = Mg \ B(Mp) be the indices of the nonbasic activities in My.

6.6.2 Solving for the Multipliers

Both sets of multipliers ¥ and x can be efficiently computed using a single factorization of
Apg. Let Q be an orthogonal matrix and R be an upper triangular matrix which satisfy
A = QR. The vector ¥ is the solution of the triangular system R¥ = QTy. The
matrix & is the solution to the system Rx = QT Ay, which is easily determined column
by column by solving triangular system of equations. However, each column in x can be
computed in Step 2 of Algorithm 6.3 (when » = 0) by simply augmenting that solution

with zeros.

The vector ¥ and the matrix x are unique for any given choice of Ap and Ay.

Definition 6.2 The components of the matriz K need to be accessed for basic and non-

basic activities.
1. For the nonbasic activities, let
o k&, for i € N(T®), refer to the column of k corresponding to the multipliers

relating the dependence of VG;(w) on the basic activities,

e &, for i € N(P))U N(P2), refer to the column of k corresponding to the

multipliers relating the dependence of Vg;(w) on the basic activities,

e i, for i € N(MP®), refer to the column of & corresponding to the multipliers

relating the dependence of Vei(w) on the basic activities.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 189

2. For the basic activities, let
e k[G;], for j € B(T?), refer to the row of K corresponding to the multipliers
relating the dependence of the nonbasic activities on VG;(w).

o x[A;], for j € PQU P2, refer to the row of & corresponding to the multipliers

relating the dependence of the nonbasic activities on VI j(w).

e x{g; — Aj], for j € PL, refer to the row of x corresponding to the multipliers

relating the dependence of the nonbasic activities on Vgj(w) — VA;(w).

e k[g;], for j € B(P:) U B(P2), refer to the row of k corresponding to the

multipliers relating the dependence of the nonbasic activities on Vg;(w).

e xfcj], for j € B(MP), refer to the row of k corresponding to the multipliers

relating the dependence of the nonbasic activities on Ve;(w).

3. For a nonbasic activity n; and a basic activity b;, s*[bj] is the multiplier relating

the dependence of n; on b;.

6.6.3 First Order Change in the Nonbasic Activities

The first order change in any nonbasic activity can be expressed in terms of the first order

change in the basic activities. For i € N(T°) and any direction d,

dTUG(w) = dTApsf

Y kE1G;1dTVG;(w) + Y «FN;1dTVA;(w)

fl

B(T9) P
+_ 6895 ~ L1dT(Vgi(w) - VA;w)) + 3 #flg;1d7Vg;(w)
PL B(PY)
+ Y kEDAVA(w) + Y «fg;1dT Vgj(w)
P2 B(P2)

+ Z K;G [Cj]dT Vc,-(w),
B(M?)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 190

where each of the summations is over the index j.

First order changes in the remaining nonbasic activities can be similarly expressed

using x.

6.6.4 First Order Change in the Penalty Function

Recall from Lemma 3.6 that, for any direction d and step 0 < a < a;, where oy is the

first breakpoint of an inactivity along d,
Pulw + ad) = 8(w + ad) + pn(w + ad)

where 4 is the differentiable part of p, at w (which is differentiable over a € [0, a;)) and
7 is the corresponding nondifferentiable part of p,,. At a degenerate stationary point w,

we can write, using the measure of curvature introduced in Section 3.5.2,

1
Swtad) = pu(w)+ad®y+ Sa?|d3R, u,ad
= pu(w)+adTART + %az (2923, w, ad),

fw+ad) = - min(Gi(w+ad),0)+ 3 [A(w+ad)[+ Y lg:(w + ad)|
T° PO P?

A g

+ Y _ sign[A:(w)] min(0, g:(w + ad) ~ Mi(w + ad))
PL

+Y_ | min(X(w + ad), gi(w + ad))| + Y [ei(w + ad)|
PS MO

= -Q-Zmin(dTVG.-(w), 0) +a Y [dTVA(w)|+a Y |[dT Vgi(w)|
T P po

+a Y sign[Ai(w)] min(0, dT(Vgi(w) — VAi(w)))
PL

+a Y | min(d"Vi(w), dTVgi(w))| + a Y |dT Ve;(w)|
P M
+5021dIE(w, ad)

= —a ¥ min(dVGi(w),0)-a ¥ min(dApxE,0)

B(T°) N(T?)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 191

+a) |V +a Y [dTVg(w) +a Y [dTApx]]
R B(P?) N(P?)

+aPZsign[,\;(w)] min(0, dT (Vgi(w) - VAy(w)))

+a Y |min(dTVA(w), dTVgi(w))|
B(P2)

+a Y |min(d"V(w), dTApk?)]|
N(FP2)

ta 3 V) +a Yo (47 Anxi] + sa?lld]i0(w, od),
B(M?) N(M?)

where the individual summations are over index 3.

So,for0 < a < ay,

pu(w+ad) = p.(w)+adTAp¥ —ap Z min(d? VG;(w), 0)
B(TY)

~ap Y min(dTApxf,0) +ap Y [dTVA(w)|
N(T°) PO

+ap Y |[dTVgi(w)| +ap Y |dTApx]]

B(PY) N(PY)

+ap 2 sign[Ai(w)] min(0, d7(Vg;(w) — VAi(w)))
PL

+ap Y |min(dTVAi(w), & Vgi(w))|
B(P2)

+ap Y |min(d"VAi(w),dTAsr!)| +ap Y [dTVei(w)]
N(P2) B(M°)

1
tau Y 14" Apki] + 50|30y, (w, ad). (6.1)
N(M?)

where Qp,(w, ad) = Q(4, w, ad) + uQ,(w, ad).

6.6.5 Deriving First Order Optimality Conditions

A set of first order optimality conditions which must be satisfied at a degenerate minimum
of p, are derived using the above expression for p,(w + ad), where 0 < a < a;, and are

presented in three separate groupings.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 192

Definition 6.3 A direction d is a first order descent direction for the penalty function if
the first order change in the differentiable part of p, along d from the current point has
a negative value.

Group One

In this section, a set of necessary optimality conditions at a degenerate first order point
of the penalty function are obtained by analyzing the effect on p, of dropping a single

basic activity.
Definition 6.4

e For j € B(T"), let

o4 Y G+ X 1xGHll

N(P9) N(M®)
of = ¥ max(xfGi,0)+ T max(xf[Gy],0)+¢f
N(T?) N(PR)
of = - Y min(xf[G,0)- 3 min(x¥[G;],0) +¢F.
N(T) N(FP2)

e Forje PL=PIUPZ, let

¢ = Y g -Mll+ Y IsEles — Al

N(P2) N(M?)
W = Y max(efle; =20+ Y max(efle; - 21,0) +¢2
N(T®) N(P2)
vJ’.“\ = - Z min(xg; — A;],0) — Y min(x?[g; - .1']:0)""(?-‘\
N(T®) N(P2)

. }"orj € B(P2), let

¢ = X NI+ Y ks

N(F}) N(M°)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION

[

]

i

Y max(xf(A1,00+ 3 max(x[A;,0) + ¢}

M) N(P2)

- ¥ min(xf0,0) = 30 min(=f[],0) +¢}
N N(P2)

Y g+ Y Ikl

N(F3) N(M?)

E max(xf[g;],0) + D max(xZ[g;],0) + ¢

MT N(P2)

- 3 min(«¥g;],0)~ 3 min(xf[g;],0) + ¢
N N(P2)

D DI+ X (el

N(P?) N(M?)

Z max(xZ[A], 0) + 2 max(x{[A;],0) + G’\
N(T9) N(P2)

- Y min(xf[2;],0)— S min(«{[);],0) + ¢
N(T%) N(PL)

Y Ielgill+ X Inflesll

N(F3) N(M?®)

Y max(sf[g;],0)+ Y max(x[g;],0) + g

N(T) N(P2)

~ Y min(xf[g;],0)~ Y min(x[g;],0) +¢?

N(T) N(P2)

> Islell+ 3 Ingles]l

N(P2) N(M?)
3" max(xflc;],0)+ Y max(x?[c;],0)+ (S
N(T®) N(P2)

~ Y min(xfe;), 00— 3 min(wfle;],0)+ G5

N(T?) N(F2)

193

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 194

e Forje N(P2), let

G Y I+ D Ikl

I

» N(P?) N(M°)

uw} = Y max(xfA],0) + Y max(s?[\],0) +¢}
N(T9) NP}

¥ = - ¥ min(fPL,0)— T min(sfAs],0)+ 2.
N(T?) N(P2\(G}

Lemma 6.1 If w is a stationary, degenerate point of Py, then any direction d satisfying
ALd = ae_?, for some j € B(T?), is a first order descent direction for Pu from w if and

only if
(i) <0 and @?-pu? >p

or (i) o>0 and ¥§ -wa <0.
Proof: For 0 < a < ay, from equation (6.1),

pu(w+ad) = pu(w)+ ao(e?)T‘I' ~ apmin(e, 0) - au z min(a(e?)rn? ,0)

+ap Y |o(eF) Tkl + ap Y | min(0, o(ef)T)|
N(P8) N(P3)
.1
+ap Y o(ef)T“il'*"z'az“d“;nmn(wrad)
- N
= Pu(w) +a0¥? — apmin(s,0) ~ ap Y min(oxT(C;],0)
+ap Y |of|<f[Gj]l ~ ap Y min(ex?[G;),0)
N(F2) N(F2)
. 1
rou T lolInIGsl+ 2atlldi30, (v, ad).
N(MO)

Without loss of generality, assume that & = +1. Therefore, consider the two cases

separately.

l. o= -1:

Pu(w+ adj = pu(w) - a‘I? +ap+ap Z mu(n?[Gj]’ 0)
N(T9)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 195

+ap Y |Gl +ap Y max(<{[G;],0)

N(P) N(P2)
1
+ap Y, [=¢Gill + 5o ldl30p, (v, ad)
N(M)

1
= pu(w) — o¥7 +ap +apuf + 20|43, (v, ad)

1
= pu(w) — a(¥§ — pu§ —p) + ‘2'0!2"‘1”%911..(‘", ad).
Therefore, first order descent is possible if and only if ¥§ — puf > p.

2. o= +1:

pu(w+ad) = pu(w)+a¥ -ap ¥ min(xF[G;],0)
N(T?)

+ap Y |Gl —ap Y min(xf[Gj],0)
N(F}) N(F2)

c 1
+au 3 RG]l + 5o dlEy, (w, ad)
N(M)

1
= pu(w) +a(¥§ + wf) + 02l dI3R,, (w, od).

Therefore, first order descent is possible if and only if ¥§ + pvf < 0. O

Lemma 6.2 If w is a stationary, degenerate point of p,, then any direction d satisfying
ALd = a'eg"\, for some j € PZ, is a first order descent direction for p, from w if and

only if
(i) <0 and ¥~ pud™t>,

.. -A -2
or (i) >0 and ¥ 4pvit<O.

Proof: Analogous to the proof of Lemma 6.1. O

Lemma 6.3 If w is a stationary, degenerate point of p,,, then any direction d satisfying

ALd = oe}, for some j € B(P2), is a first order descent direction for p, from w if and

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 196

only if
(}) 6<0 and ¥} —pu}>p

or (i) ¢>0 and ¥}+pv}<O.

Proof: Analogous to the proof of Lemma 6.1. O

Lemma 6.4 If w is a stationary, degenerate point of p,, then any direction d satisfying
ALd = oel, for some j € B (P2), is a first order descent direction for p,, from w if and

only if
(i) ¢<0 and ¥ —pul>p

or (i) ¢>0 and ¥I+uvd<0.

Proof: Analogous to the proof of Lemma 6.1. O

Lemma 6.5 If w is a stationary, degenerate point of p,,, then any direction d satisfying
ALd= ae_’}, for some j € P}, is a first order descent direction for p, from w if and only
if ' .
(i) ¢<0 and ¥} —pu}>p
or (i) >0 and ¥} +pv} < —p.

Proof: For0 < a < ay,

pu(w+ad) = pu(w)+ao¥)} —ap Y min(exf[A;],0) + aplo|
N(TY)

+ap 3 lollfA]l —ap Y min(0, oxf[))))
N N(P2)

+ap Y lolisiAsll+ 3a? dI3, (w, ad).
N(M?%)

Without loss of generality, assume that ¢ = +1.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 197
1. o= -1:

Puw+ad) = p,(w)~a¥}+ap Y max(xf);],0)+ ap
N(T?)

+ap Y (k) +ep Y max(xf[A;],0)
N(P9) N(P2)

. 1
top 3 Il + 50?130, (v, ad)
N(M®)

1
= pu(w) - a¥} + opu +ap+ 5o d]E0,, (w, ad)

1
= pu(v) - (¥] ~ puj — p) + 50’|ld|[30p, (w, ad).
Thefefore, first order descent is possible if and only if 'I';‘ ~ pu? > p.

2. o =+1:

pu(w+ad) = pu(w)+a¥} -ap Y min(xf[A;],0)+ap
N(T9)

+ap Y [KZ\]l - ep Y min(xf[Aj],0)
N(PS) N(P2)

c 1
rau 3 KA+ 307ldIE0, (w, ad)
N(M?°)

1
= pu(w)+a(¥] +uv} +) + 5a?[1d]30y, (v, ad).

Therefore, first order descent is possible if and only if \1'3\ + ;w} < —p. Q

Lemma 6.6 If w is a stationary, degenerate point of p,, then any direction d satisfying
ALd = oel, for some j € B (FY), is a first order descent direction for p,, from w if and

only if
() o<0 and ¥ —pul>p

or (i) ¢>0 and ¥!4pv!<—p

Proof: Analogous to the proof of Lemma 6.5. 0O

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 198

Lemma 6.7 If w is a stationary, degenerate point of p,,, then any direction d satisfying

AL d = o¢5, for some j € B(MP), is a first order descent direction for p, from w if and

only if
(1) o<0 and ¥;—pui>p

or (i) >0 and Wi+puvi< -—p.

Proof: Analogous to the proof of Lemma 6.5. O

Lemma 6.8 If w is a stationary, degenerate point of p,, then any direction d satisfying
Agd = a'e‘;"\, for some j € PX, is a first order descent direction for p, from w if and

only if
(i) <0 and ¥ —pud™* >y

or (ii)) 0>0 and ‘Ig—x +;m§—“ < 0.
Proof: For 0 < a < oy,

Pu(w+ad) = pu(w)+ac¥?* —ap 3 min(exf(g; - A;],0)

N(T°)
+ap Y lof|?[g; ~ Aj]l + apmin(0, o)
N(PQ)
—ap Y min(0,oxl[g; — Aj]) +ap Y lollsflg; — Aj]|
N(P2) N(M?)

1
+39°1d38y,, (w, ad).

Without loss of generality, assume that o = £1.

1.0=-1:

-A
Pu(w+ad) = p,(w)—a¥i " +ap Y, max(xflg; —1;],0)
N(T?)

+ap Y [#flg; — M)l —ep+ap Y max(sZ[g; — A;],0)
N(P?) N(P2)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 199

+ap Y kg5 — :]I+-a2lldll 28, (w, ad)
N(M?)

- - 1
= Pulw) — a(¥]7* — pul™ + g) + 50?|d]30,, (w, ad).

Therefore, first order descent is possible only if and only if '!‘}"'\ - pug—‘\ > —pu.

2. o= +1:

pu(w+ad) = py(w)+a¥? —ap Y min(xflg; ~ A;],0)

N(T9)
+ap 3 [w2gi~ Ajll —ap Y min(xf[g; — Aj],0)
N(P2) N
+ap Y |kfg; - :]|+‘°t2||d|| 2, (w, ad)

N(M?)
- - 1
= pu(w) + (B + uvf ™) + 5o |dIEy, (w, od).

Therefore, first order descent is possible only if and only if T‘}"\ + ;wf"\ <0.0

Lemma 6.9 If w is a stationary, degenerate point of p,, then any direction d satisfying
ALd = cre}, for some j € N(P2), is a first order descent direction for Pu from w if and

only if
(i) o<0 and ¥} - pu} - pmax(l, wi[A;]) >0

or (i) o>0 and ¥}+ pv}+ plmin(l, wir])| < 0.
Proof: For 0 < a < oy,

pu(w+ad) = p,,(w)+aa\If;3-ap Z min(ax&[);],0)

N(T®)
+ap Y lofllAll—ap Y min(0, oxE[);))
N(P?) NP2\ {5}
+ap|min(e, s\ +ap Y |of|<d] :]l+ o?||d||3Qp, (w, ad).
N(M®)

Without loss of generality, assume that o = +1.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION

1.

o=-1:

pu(w + ad)

Pu(w) — a¥} +ap 3 max(xf[A;],0)

N(T®)
+ap Z [<Z[A5]] + ap E max(0, x[A;])
N(P?) N(PZNG}
+ap|min(-1, —xI\;]) +ap Y =M

N(MP)
30 dl3, (0, od)
pu(w) — a¥} + apu} + ap| — max(1, &Z[;])|
+50d[30,, (9, ad)
Pul(w) — (¥} — pu)} - pmax(1, £2[A;]))

1
+5?lldl30, (w, ad).

Therefore, first order descent is possible if and only if

.o=+1:

pu(w +ad)

\1'3\ - pu; ~ pmax(1, c¥[A;]) > 0.

Pu(w) + ¥}~ ap Y min(<FD],0)

N(T?)
t+ap Y |KAll~ap Y. min(0,sF[);])
N(PP) N(PE\(3}
+ap|min(L, &I +ap Y [
N(M0)

452243y, (w, ad)
Pu(w) +a(¥} + o} + | min(L, <Z[A,])]

1
+3921d39,, (v, ad).

Therefore, first order descent is possible if and only if

¥} + pv} + plmin(1, 2] < 0. O

200

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 201

Group Two

In this section, a set of necessary optimality conditions are derived by analyzing the
effect on the penalty function p, of dropping both A;(w) = 0 and g;(w) = 0, for some
i € B(PZ), when [dTV);(w)| = |[dTVg;(w)|.

The following definitions involving sums of generalized multipliers are required.
Definition 6.5 For j € B(P2),

o= S KT+ Al + YD (ke] + wElgs]l

N(P9) N(M?)
w7 = Y max(ef\]+#flgl, 00+ Y max(xf[A;] + x¥(g;],0) + (0
N(T) N(P2)
v;-\""’ = -) min(x£[);] + «E[g;],0) - Y min(oc?[l\j]+n€[gj],0)+g~\+g
N(T®) N(P2)
G o= 3 Il = Rllall+ 3 IsED] - wélasll
N(PD) N(M?)
wj? = Y max(ef[\] - (gl 0)+ Y max(xf[A;] - x[g;],0) + {7
N(T®) N(P2)
v = -) min(sf\] - £f[g;], 00— 3= min(xZ[A;] - &2[g;],0) + ;7.
N(T?) N(P2)

Lemma 6.10 If w is a stationary, degenerate point of p,, then any direction d satisfying
AZd = a’(e} + €?), for some j € B (PL), is a first order descent direction for p, from w
if and only if
() ¢<0 and ¥ +¥ —pu}t?>p
or (i) 0>0 and ¥+ +pv}t? < —p

Proof: For0 < a < a,

pu(w+ad) = pu(w)+ao(¥}+¥)—ap Y min(o(xF\]+xF(g;]),0)
N(T®)

+ap Y |ollafA]+ &¥g;]l + aulo|
N(Pg)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 202

—ap Y min(o (I + #¥[g]), 0)
N(F2)

C| (-4 1
+ap Y |olingAs] + nlasll + 3 130y, (w, ad).
N(M°)
Without loss of generality, assume that o = +1.

1. o=-1:

Pu(w+ad) = p,(w)—a(¥} +¥)) +ap Y max(xf[)\;]+ «Flg;],0)
N(T“)

+ap Y (&A1 + &2(g;)l + ap
N(F?)

+ap 3 max(\] + #fg;],0)
N(P2)

1
+ap 3 IsiA] + sElgi]l + 523y, (w, ad)
N(MP)

fl

1
Pu(w) - o(¥} +) + apu; ™ + ap + So?||d|30, (v, ad)
1
= pu(w) — (¥} + ¥ — pu}tT —p) + §a2||du§n,,,(w, ad).
Therefore, first order descent is possible if and only if
¥+ ¥ -}t > g
2. 0= +1:

Pulwtad) = pu(w)+a(®+¥%) —ap Y min(xF[\;] +xFlg;],0)
N(T9)

+ap Y [RIA]+ R2lgi]l + ap
N(PY)

—ap Y min(x?[\j]+ «¥[g;],0)
N(P2)

c c 1
rap T KD+ silosll + 52lldif, (w, ad)
N(M09)

1
= pa(w)+o(¥] +) + auv;™ + ap + 2o?|ld|f0,, (v, ad)

1
= pu(w) + (¥} + ¥ + po}*? 4+ p) + 5az=||aq|§n,,,,(w, ad).

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 203

Therefore, first order descent is possible if and only if
A g Atg
¥+ ¥ +pv;T? < —p a
Lemma 6.11 If w is a stationary, degenerate point of p,,, then any direction d satisfying

AZLd = a(e} — ¢%), for some j € B(PL), is a first order descent direction for p, from w

if and only if
(i) 0<0 and ¥} —¥—pu}®>p

or (ii) ¢>0 and ¥} -¥ -{-pv}"" < —p.
Proof: For0 < a < ag,

pu(w+ad) = p,(w)+ aa(‘F} ~¥) —ap E mjn("("ia['\i] ~ x{(951),0)

N(T?)
+ap Y |olifA;] - &¥(gi]l + aplo]
N(P])
~an 3> min(o(xi\] - KZlg;]),0)
N(P2)
tap Y lolinfih] - silasll + o2 ld3, (w, ad).
N(MP°)

Without loss of generality, assume that o = +1.

1. o= -1:

Pu(w+ad) = pu(w) - o(¥} - ¥9) +ap Y max(sf[A;] - xF[g;],0)

N(T)
tap Y [s¢[Aj] - K2g;ll + aps
N(P?)
+ap Y max(s?[A;] - ¥[g;],0)
N(P2)
1
+ap Y [&E[A;] — w5l +§a2lldll§9p..(w, ad)
N(M®)

- 1
= Pu(w) ~ (¥} — ¥) + apu; ™" + ap + 7 |d|30y, (w, ad)

- 1
= Pulw) ~ (¥} - ¥ — pu; ™" ~) + 50’ ||d3Qy, (w, ad).

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 204
Therefore, first order descent is possible if and only if
'l'!_‘,‘ - ‘Ig - ‘uu?"’ > u.
2. o=+1:

Pu(w+ad) = pu(w)+a(¥; ~¥) ~ap Y min(xF[A;] - «Fg;], 0)

N(TY)
+ap Y |&I[Aj] - &gl + ap
N(P?)
~ap Y min(x¥[A;] - «{[g;],0)
N(P2)
c e 1 2 2
tap Y IméAs] - wilgsll + (123D, (w, ad)
N(MP°)

- 1
= pu(w)+a(¥} - ¥) +apv} " +ap+ 5 1l3p, (0, ad)

- 1
= pu(w) + a(¥] — ¥ +pu;™ + p) + 5a||d]3Q, (w, ad).
Therefore, first order descent is possible if and only if

¥ - +;w?"’ <-p. O

Group Three

In this section, consider the effect on the penalty function of dropping, for some j €
B(P2), both A\j(w) = 0 and g;(w) = 0 when |{dTV);(w)| # |d¥Vg;(w)|. Through
analysis, a set of necessary conditions at a degenerate minimum point of p, will be

derived.

The following group of definitions are required. These definitions concern the shape
of the penalty function along directions d as described above. The shape changes as the
differentiability of the penalty terms changes.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 205
Definition 6.6 For j € B(P2):
1. Define breakpoints r'[j] as follows:

iENT):]

i

1 otherwise

{ ~ KE\)/xElg;] if it lies in (0,1)

i€ N(P%): ti[j] ~ wI[A)/wEe;] if it lies in (0,1)

il

1 otherwtse
PeN(EY:] = { xI[\j]/x2lg;s] if it lies in (0, 1)
1 otherwise

i€ N(M°): rl[j] = {" x§[Aj)/welg;] if it lies in (0,1)

1 otherwzse.

2. Let k} be the number of distinct breakpoints in the interval (0,1), and let these
distinct breakpoints, denoted t}[j] forl =1,---; k} be indezed to satisfy
0<tifi]l <---<thfil< 1.
7
In addition, define the additional breakpoints t}[j] = 0 and tz, abdl=1

3. For each l =0 : k}, define £![j] as follows:

pos(kf[A;]] if rili] < ¢}[4]
pos[&[g;]]. otherwise
sign[sl[N;]] i 7] < (4]
{ sign[x?[g;]] otherwise
{ posled[Asl] if 73] < #1]

feN(@TO): &) = {
feN(P): &l =

ie N(P2): &l =
pos[rd[g;]] otherwise

sign[s[A]] i 7ild] < ¢ (4]

sign[xZ[g;]] otherwise.

i€ N(M®): €] =

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 206

4. For eachl =0 : k}, define quantities s\[j] and s,[j] as follows:

Ul = B -p 3 &N - Y &6 - n Y ElleD)

N(TO) N(PS) N@Y)
-1 Y &R~ n
N (M)
sl = ¥—pn Y E[lsflel-p Y €Ul —n Y &lilxl;]
N(T?) N(P}) N(PZ)
-u Y &lxdg;]-
NGM)

These terms are used to ezpress the first order change in the penalty function, in

terms of the first order change in the basic and nonbasic activities.
5. For each 1= 0 : k}, define the intervals Ji[j] and J;’[j] as follows:

[(~oco0,—si[il/sifd]) i shlsi] <O
(~shlil/slil o) Fsfi]>0

Jl] = ¢
(—o0, 00) if s£[i]=0 and s} [j] > 0

| @ otherwise,

T = @l 0 Al
Tke first interval gives the region in which first order decrease in attained for a term
related to the penalty function. The second interval, which intersects the first region
with the breakpoint interval in which the term is equivalent to p,, gives the range of

values for which first order descent is actually possible in the penalty function.

Lemma 6.12 Ifw is a degenerate, stationary point, then there ezists a first-order descent
direction d for p, from w satisfying ALd = v,\e} + a,eg for ox < 04 < 0 if and only if

there ezists | € {0 : k}} such that J;"[j] # 0.

Proof: Consider any direction d satisfying ALd = tue:- +a’,e§ for o) < 0, < 0. Without

loss of generality, assume that ox = —1 and 0, = —7 for some 7 € (0,1). Then, for

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 207

0<a<a,

Pu(w+ad) = pu(w)- (¥} +7¥) +ap Y max(xf[\]+7xF(g;],0)

N(T®)
+ap 3 [KIA;]+ rellgs]l + ap
N(P})
+ap Z max(x?[A;] + 7.¥[g;],0) + au Z [=E[A;] + Trilg5]l
N(P2) N (M)
1,

+50%d]30y, (v, ad).
For any 7 € (t][5], t},,[i]), L =0 : &},

i€ N(T%: possf[A]+ maflgs]] = &l

i€ N(F)): signls{[Aj]+7allg;]] = &l

i€ N(PY): pos[a{[\] +7xllg]l = &l

i€ N(M°): sign[si[Aj]+7oflgs]]l = &L,
and therefore

; PR §
pu(w+ad) = pu(w) - a(si[i] +rs[i]) + 3 1l13, (w, ad).

If 7 € Ji[7], then the coefficient of (—a) is positive. However, this value provides the first
order rate of change in p, only for = € (¢} (], £}, ,[5])-

Therefore, if J;" = @ for all /, then first order descent in p, is not possible for any
ox < o5 < 0. However, if there exists some / € {0 : k}} such that J;[j] # 0, then for
any T € Ji", a direction d satisfying ALd = -(e} + 7ef) provides first order descent in p,

from w. O

The meanings of the terms defined below, and in all similar definitions, are analogous

to the meanings of the related terms in Definition 6.6.
Definition 6.7 For j € B(P2):

1. Define breakpoints r2[j] as follows:

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 208

I

/€N if it lies 4
eN@): {n?[y,]/m[z\,] f it lies in (0,1)

1 otherwise

ie N(P):

1 otherunse

2] - {nqu:-]/nf[A,-] if it lies in (0, 1)

ie N(PY): 2[j]

1 otherwise

{ WL 1/REINs] if it lies in (0,1)

i€ N(M% : +2[j]

1 otherwise.

{ ki[g;1/.E[A;] if it lies in (0,1)

2. Let k% be the number of distinct breakpoints in the interval (0,1), and let these

distinct breakpoints, denoted t;[j] forl =1,---, k2, be indezed to satisfy
0<8]l<---< ti“}'[j] <L
In addition, define t3[j]=0 and t,zc? abl=0.
3. For each l =0 : k2, define #'[j] as follows:

feN@):] o { neglwClosll i 72 < #10)
pos(€[);]] otherwise
sign{nflgs]] i R2li] <[]
—sign[x{[A;]] otherwise
neglrl[g;]] if 72[j] < ¢f[4]
pos{l[);]] otherwise
sign{egloil] o 7F] < £[4]

—sign(sf[Aj]] otherwise.

ieN(P):]

i€ N(M°): =lj]

i€ N(PY): =lfj] = {

4. For each ! =0 : k%, define the quantities ri[j] and ri[j] as follows:

Ml = ¥ Y wlefN+e Y AR -r YD wlagA]

N(T) N(P3) N(P2)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 209

+8 Y wi[leir] —p

N(M?)
il = ¥W-u Y ollilcflal+p Y wililelles] —p Y wililslles]
N(T9) N(P) N(P2)
+u Y, wililxslgi]-
N(M?®)

5. For each I = 0 : k2, define the intervals Ki[j} and K{[j] as follows:

[(oo, i1/l il <0
il =) GGl gei >0
(—o0,) ifri[i]=0and rl[j]<0

0 otherwise,

\

Kilil = (€[] th. 0D nKdi]-

Lemma 6.13 Ifw is a degenerate, stationary point, then there erists a first order descent
direction d for p, from w satisfying .A.gd = a,\e;‘} +04ed for oy < 0 < gy and [oa] < [ay]

if and only if there ezistsl € {0 : k;} such that Kj[j] # 0.

Proof: Consider any direction d satisfying ALd = oxe} + o7 for oy < 0 < 0, and
loal < |og]- Without loss of generality, assume that o; = 1 and o) = -t for some

7€ (0,1). Then, for0 < a< o,

Pu(w+ad) = pu(w)+a(~7¥} + %) ~ap Y min(~rxf[A;] + xF[g;],0)

N(T9)
+ap Y | = oA+ wflgi]l + apr
N(P2)
—ap Y min(-7xf[A;] + &¥[g;],0)
N(P2)

c 1
+ap Y |- gl + Elgi)l + Ea’udll%ﬂp,, (w, ad).
N(MO)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 210

For any 7 € (¢[j], t,1[7]), I =0 : k3,

i€ N(T%: neg[-mal[M]+flg;]] = =ilj]
tEN(P)): sign[-7xl[N] +aPes]] = wi[j]
i€ N(P2): neg[-mrl[\]+Aflg]] = =ij]
i€ N(M®) : sign[-rei[A;] +x5lo]] = =i4],

and therefore
. . 1
Pu(w+ad) = pu(w)+a(~rri[j] +ri[i]) + Eazlldlliﬂp,.(w, ad).

If T € Ki[j], then the coefficient of « is negative. However, this value provides the first

order rate of change in p, only for v € (t,z[J], tlz+1[j])-

Therefore, if Kj = @ for all I, then first order descent in p, is not possible for any
oy < 0 < g, where [0)| < |o,|. However, if there exists some ! € {0 : kZ} such that
Ki[j] # 0, then for any € K], a direction d satisfying AZd = (~re} + €7) provides first

order descent in p, from w. O
Definition 6.8 For j € B(P2):

1. Define breakpoints 73[j)] as follows:

ieNT%:] = xE[2;)/kElg;] if it lies in (0,1)
1 otherwise

N1/ 0.1 if it hoc 5
i NED): i) = | WO/Rile] it liesin (0,1)
1 otherwise
ie N(PY: #2[] = k{[A;)/n?lg;] if it lies in (0,1)

1 otherwise
K)/nslas] i it lies in (0,1)
1 otherwise.

ie N(M°): 3[j]

P e S NS N—_

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 211

2. Let k} be the number of distinct breakpoints in the interval (0,1), and let these

distinct breakpoints, denoted t3[j] forl =1,--- k2, be indezed to satisfy

=
0<ti’[1']<»--<ti;[j]<1.
In addition, define the breakpoints t3[j] = 0 and t:f nll=1
3. For eachl=0: k2, define ¢'{j] as follows:

Ny wi] {pastnﬂx,-n if 2l < 0]

neg(xflg;]] otherwise

NSy wip < | N Rl <)
?) -sign[rlg;]] otherwise

e NEe): iy o | PN TR < 0
- ' neg{x?[g;]] otherwise

fe NGO s whi] = {s«'gn[nstx,-n if 7303] < 03]

—sign[x(g;]] otherwise.
4. For each 1 =0:k}, define the quantities ¢\[j] and g}[j] as follows:

albl = ¥-p Y FGEN] - Y il - Y ok

N(T®) N(FQ) N(P2)
-1 Y =ilsiA] - p
N(MO) .
el = ¥-p Y @ililsflol-p Y olilllg]~n 3 wiilnlly;]
N(T°) N(P?) N(P2)

—u Y il

N(M?O)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 212

5. For each 1 =0 : k2, define the intervals Ni[j] and N[*[j] as follows:

[(~o0, dlil/al6]) i dLli]> 0
(dil7)/ a3l o0) ifdilil <0
(—00,) ifgi(i]=0 and ¢}[ji] > 0

0 otherwise,

Mlj] =

\

MU = (&6 800 Ml

Lemma 6.14 If w is a degenerate, stationary point, then there ezists a first order descent
direction d for p, from w satisfying ALd = cne? + oyl for oy < 0 < g, and |a)| > |oy]

if and only if there ezists | € {0 : k3} such that N[[j] # 0.

Proof: Consider any direction d satisfying NFd = oxe} + o ef for oy < 0 < g, and
loal > logl. Without loss of generality, assume that oy = ~1 and o; = r for some

7 €(0,1). Then,for 0 < a < ay,

Pulw+ad) = pu(w)— (¥} ~7¥)) +ap Y max(xf[A;] - 7xF(g;],0)

N(T?)
Fap Y |s2A;] - 7ellgs]l + ap
NP :
+ap Y max(kf(A;] - 7ag;],0) +ap Y [KA;] - TeSles]l
N(P2) N(M®)

1
+50?d]30, (w, ad).

For any 7 € (t?[J]: t?.;.;[j])' 1=0: k?'

i€ N(T°%: poslk€[Aj] - 7xflg;]] = wifj]
i€ N(F?): sign[sfl\j] - rallgj]] = wiff]
i€ N(P2): poslif[\]~allgs]] = wifs]
i€ N(M%): sigalri[\;] - 7a5[g;]] 1,

)

fl
3]

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 213

and therefore
Pulw+ad) = pu(w)~ alghli] - rli) + se?lldI3Ny, (w, ad).

If r € Ni[j], then the coefficient of (—a) is positive. However, this value provides the first

order rate of change in p,, only for € (¢8[5], &}, [4])-

Therefore, if A" = @ for all I, then first order descent in p, is not possible for any
ox» < 0 < gy and 0] > |oy|. However, if there exists some [€ {0 : k3} such that
Nr[i]# 0, then for any T € A", a direction d satisfying Afd = —(e} ~ Te?) provides first

order descent in p, from w. O
Definition 6.9 For j € B(P2):
1. Define breakpoints T4[j] as follows:

ieN(T): 1] =
1 otherwise

{ — KClgil/nEIN] i it lies in (0,1)

ie N(P)): 5]

1 otherwise

{— k2[g;)/K2\] if it lies in (0, 1)

ie N(P2): =[j]

1 otherwise

{ ~ Wlgl/RIA] i it lies in (0,1)

xilg;l/xi[A;] if it lies in (0,1)

1 otherwise.

ie N(M°%): 7i[j]

i
Y N
!

2. Let Ic} be the number of distinct breakpoints in the interval (0,1), and let these
distinct breakpoints, denoted t{{j] forl =1, -, k}[j], be indezed to satisfy

0 < tf[j] < ---<t:;[j]<1.

In addition, define the breakpoints t§[j] = 0 and t’::' abl=1

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 214

3. For each 1 =0 : k!, define p'[j] as follows:

_ { nedwflasl) if 74(7] < £l

i€ N(T%): pifj]
neg{xC[Aj]] otherwise

feNEy: Al = {sfgn[nf[y;]] if 7404 < 4]

sign{wd[A;]] otheruise
_ {nee[n‘.-’[y;]] if 7317] <]

neg(rf[\;]] otherwise

i€ N(PY): pili]

CeN): AL = {sfgn[xsmn if 7217] < ¢f1]

sign[xi[A;]] otherwise.
4. For eachl =0 : k}, define the quantities pi[7] and p;[j] as follows:

il = ¥ —p Y dllsfNI+u Y AU -1 Y PR

N(T?) N(PY) N(F2)
+1) PR+ p
plil = ¥ -p Y AlRElg]+r Y, Alilslle] — 6 Y Ail<dle;]
N(T9) NP2) . N@R)
+u Y pililniles)-
N(MO)

5. For each l = 0 : k¥, define the intervals Qi[j] and Q;[j] as follows:

[(~o0, L1/ 81> 0

| (Elil/pilileo) Al <0

(00,) if pAli] =0 and pi[5] < 0
0 otherwise,

Qilil = (€l b0l

Q] =

Lemma 6.15 Ifw is a degenerate, stationary point, then there ezists a first order descent
direction d for p, from w satisfying ALd = ase} + g el for 0 < o) < g, if and only if
there ezists | € {0 : k3} such that Q[[j]# 0.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 215

Proof: Consider any direction d satisfying ALd = oxe} + g€ for 0 < i < 0,. Without
loss of generality, assume that ¢, = 1 and ¢, = r for some 7 € (0,1). Then, for

0<a<a,

pu(w+ad) = p,(w)+a(r¥®} +¥%) —ap Y min(rxF[A;] + £F[g;],0)

N(T°)
+ap Y [rei[A] + K2lgj]l + apr
N(FQ)
—ap Y min(ref(A;] 4+ wfg;,0) +ap Y IraS(A;] + AZlg;ll
N(P3) N(M0)

1

+502 4130y, (0, ad).
For any € (t{[4], t¢ i), 1=0: k},

i€ N(T% : neg[raf[\]+flg;]] = pili]

i€ N(F)): sign[ra{[\j]+flg;]] = pili]

i€ N(P): neglrel[M]+flg]] = pili]

i€ N(M°) : sign[raf[A]+algsll = Al
and therefore

. . 1
Pu(w+ad) = pu(w)+ a(rpi[i] + pjli]) + 31112, (, ad).

If € Qij], then the coefficient of « is negative. However, this value provides the first
order rate of change in p, only for = € (¢tf[5], ¢f,,[4])-

Therefore, if @ = @ for all /, then first order descent in p,, is not possible for any
0 < o < 0,. However, if there exists some [€ {0 : k}} such that Qf[j] # @, then for any
T € Qf, a direction d satisfying AZd = ('re} + eg) provides first order descent in p, from

w. O
Definition 6.10 For j € B(P2):

1. Define breakpoints r°[j] as follows:

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 216

— <Clad/xCIN if it lie ¢

ie N(T%: 7[j] = { kZ[g;1/kZ[A;] if it les in (0,1)
1 otherwise

ieN(F): 7] = {‘ 2[g;)/x2[A;] if it lies in (0,1)
1 otherwise

ie N(PY): 5[j] = {— w2lg;l/RIN;] if it lies in (0,1)
1 otherwise

e NMO): 5] = {- wslosl/ns] if it s in (0,1)
1 otherwise.

2. Let k} be the number of distinct breakpoints in the interval (0,1), and let these

distinct breakpoints, denoted t; be indezed to satisfy
0<ti] < -~-<t2§[1’]< 1.
In addition, define the breakpoints t3[j] = 0 and ti? abl=1
3. For each l =0 : k%, define g'[j] as follows:

{ poswflg;ll if wFl) < 1]

i€ N(T%: oifj] =
pos(k€[);]] otherwise

ieN(Fp): ellf] =
sign[c?[A;]] otherwise

) { posiuflall i T¥l1] < £50]

{ sign[n?lg;s]] if 75(7] < 4]

i€ N(P2): eily]
pos[k[);]] otherwise

i€ N(MO) : Qf.[j] = { Sign[n'i:[gi]] if T;S[J] < tls[j]
sign{si[A;]] otherwise.

4- For eachl = 0 : k3, define the guantities n)[j] and n}[j] as follows:

nll = ¥ ~p Y Ul -p Y Al 6 X olHIxIA]

N(T%) N(Pg) N(P2)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 217

~1 Y aililsir)

N(M®)
ngli] = ¥ —p 3 alilkflol-u Y dlillla]—n Y ellilsdes]
N(T°) N(FD) N(P2)
—p Y eililxglas] - -
N(pO)

5. For eachl =0 : k%, define the intervals Ry[j] and R}[j] as follows:

[(~o0, —nd[jl/nl[i]) ifni[i] <0
(~n[il/mkil o) ifnilj]> 0
(~00,) if n}[j]1 = 0 and nl[j] >0

-

Rifj] =

| 0 otherwise,

Rilj] = (&), 8101 N Rild).

Lemma 6.16 Ifw is a degenerate, stationary point, then there ezists a first order descent
direction d for p, from w satisfying ALd = a',\e} + ageg for oy < o) < 0 if and only if

there ezists | € {0 : k3} such that Ry[j] # 0.

Proof: Consider any direction d satisfying ALd = oxe} + €7 for o, < 0y < 0. Without
loss of generality, assume that o, = —1 and o), = —7 for some 7 € (0,1). Then, for

0$a<a1,

Pu(wtad) = pu(w)~a(r¥} +¥) +ap 3 max(rafr;]+ #€g;],0)

N(T0)
+ap Y [re\] + wllgj]l + apn
N(P?)
+apu Z max(rxf[A;] + x¥[g;],0) + ap z [rai[As] + ~¢lgs]l
N(P2) N(M°)

1
+502l1dI30, (w, ad).

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 218

For any 7 € (][], ¢5,,[7]), [=0 : &3,

i€ N(T°: pos[ral[A;] +,fle]l = olls]
i€ N(P]): sign[rel[M]+xf[gill = elld]
i€ N(P2): pos{rel[A] +#flgi]] = eili]
i€ N(M°): sign[rai[\]+xflgs]] = ellil,

and therefore
. . 1
pu(wtad) = pu(w) - alralj]+nlfi]) + 5a?ldlED, (w, ad).

If 7 € R[], then the coefficient of (—a) is positive. However, this value provides the first

order rate of change in p, only for r € (¢{[5], £}, [7])-

Therefore, if Ry = @ for all I, then first order descent in p,, is not possible for any
ox < g5 < 0. However, if there exists some [€ {0 : k}} such that Rj[j] # 0, then for
any T € Ry, a direction d satisfying A5d = -—(re? + &) provides first order descent in p,

from w. O
Definition 6.11 For j € B(PL):

1. Define breakpoints t°[5] as follows:

ie N(T%: "?[J'] - "? {51/ "? [g;1 if it lies in (0,1)
1 otherwise
ie N(Pg) . 18] = xZ[Aj]/xilg;] i it lies in (0, 1?
1 otherwise

feN(PY): 7S] K2\;)/8le;] if it lies in (0,1)

I
PR S S NS W,

1 otherwise
eN1/xSla:l if it lies ©

ie N(M?%: 18] = ";[;1/xila;] if it lies in (0,1)
1 otherwise.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 219

2. Let k¢ be the number of distinct breakpoints in the interval (0,1), and let these
distinct breakpoints, denoted tf[j] forl =1,---, kS, be indezed to satisfy

0<gfj]<---<td[i] < 1.
?
In addition, define the breakpoints t[j] = 0 and tfs _ [j]=1.
7

3. For each 1 =0 :k%, define o'[j] as follows:

feNEO: o] = {neg{:c?[a,-u if 18031 < 1]

posix&(g;]] otherwise
signe{[N]] i 7f15) < £ (4]
—sign[l[g;]] otherwise

EN(F): o] = {
P {negwp« if 7¥17] < £503]

i€ N(P9):
€) pos[r?[g;]l otherwise

signixiNill i 5] <[]

—sign[kf[g;]] otherwise.

ie N(M%): of[j] =

4. For each l = 0: k%, define the quantities m![j] and m![j] as follows:

ml] = B -p Y N +u Y ol p 3 olilnIA]

N(T°) N(P?) N(P2)
B Y allilesA;)
N(MO)
mgli] = ¥ ~p Y ol[iIx€lgl+ 0 Y ollilellgl - n Y ollixes]
N(T°) N(P$) N(P2)

p Y ollilkile;] - 1

N(MP)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 220

5. For each | = 0 : k%, define the intervals Si[j} and S;[j] as follows:

[(—o0,mi[j]/milf]) ifmifi]<0
(mi[j]/milil,00) iFmili]> 0

Sili] =
(—o0, 0) if mb[j]=0 and m}[j] <0

0 otherwise,

Silil = (@l) NSl

Lemma 8.17 Ifw is a degenerate, stationary point, then there erists a first order descent
direction d for p, from w satisfying Agd = a’;e} + a'geg for o, <0< gy and |oy| < |a)\]

if and only if there ezists I € {0 : k3} such that S;[j] # 0.

Proof: Consider any direction d satisfying AZd = oae} + oge for o, < 0 < o and
|ogl < loa|. Without loss of generality, assume that oy = 1 and o, = —7 for some

T € (0,1). Then, for 0 < a < o,

pu(w+ad) = pu(w)+a(¥} —r¥) —ap Y min(sF[A;] - 7x§[g;], 0)

N(T®)
tap Y In8[A;] — rellg;]l + apr
N(P3)
—ap 3 min(x?[Aj] = 76[g;,0) +ap Y |kE[A;] - reE(g;]l
N(P2) N(MO)

1
30?3, (w, ad).
For any 7 € (t?[j],t?+1[i]), [=0: kzs"

i€ N(T°): neglef[A;] - 7aflg;]] = ol[]
ie N(F;): sign[s{[N;] —7aflg]] = o]
i€ N(P2): neg[s{[\]-7xllg;]] = ol[f]
i€ N(M°): sign[sf[\j] - rxglg;]] = o],

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 221

and therefore
. . 1
Pu(w +ad) = pu(w) +a(my[j] - rmolj]) + Sa’||dlI3Qp, (w0, od).

If 7 € Sij], then the coefficient of a is negative. However, this value provides the first

order rate of change in p, only for 7 € (¢§[j], ¢, ,(])-

Therefore, if S; = @ for all I, then first order descent in p, is not possible for any
0; < 0 < o) where |o,| < |o\|. However, if there exists some I € {0 : Ic?} such that
Silil # 9, then for any 7 € Sf, a direction d satisfying ALd = (e} - Te7) provides first

order descent in p, from w. O
Definition 6.12 For j € B(P2):

1. Define breakpoints t7[j] as follows:

sGle)/k€N;] if it lies in (0,1
TtEN(TY: 1] = Tloil/sE) of (0,1)
otherwise

1
i€ N(P%): tI[j] = xilgil/ni[A;] if it Lies in (0,1)

otheruise

1
ie N(P): +7[4] 2{g;1/"2[\;] if it lies in (0,1)

otherwise
feNO): o] = | W/ i it les in (0,1)
1 otherwise.

]
D e Y et Y SIS N
-

2. Let k} be the number of distinct breakpoints in the interval (0,1), and let these
distinct breakpoints, denoted t][j] for 1 =1, -+, kI, be indezed to satisfy

0<tflil<---<th[i]<1.
3

In addition, define the breakpoints ti[j] =0 and t, [j]=1.
3

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 222

3. For eachl =0: k}, define ¢![f] as follows:

~ { pos(nflajll i 7704 < ¢][j]
- neg(xC[A;]] otherwise
sign[sflg;]] i 7{[5] < ¢][4]
—sign[ki[A;]] otherwise

i€ N(T%: <i[j]
i€ N(P): o] = {

N if Tl < €75
feNEY): d] = {pos[nﬂa,n f 771j] < 4]

neg(r?[)\;]] otherwise
sign{rle;]] if 77 (5] < t][4]
—sign[xf[A;]] otherwise.

ieNMO): o] = {

4. For each l = 0 : k], define the quantities &[] and £[4] as follows:

41 = ¥-u Y dilsfi-p Y DI ~u Y sk

N(T0) N(P?) N(F2)
—p Y, oIk
N(MO)
Gl = ¥-p Y Hilsflal—u Y dilkllel-n Y <Hilx%g;]
N(T) N(P?) N(PR)
~p Y cillxilgs]) - p
N(3o)

5. For each I =0 : kI, define the intervals Ui[j] and U} [j] as follows:

[(o0, &[1/80]) if] >0
(&H)/8[)) ifl]<0

Ul3] =
(Ul ﬁ (—o00,00) if&[j] =0 and &lil1>o0

| @ otherwise,

Uil = (0l a0 Nl

Lemma 6.18 Ifw s a degenerate, stationary point, then there ezists a first order descent
direction d for p, from w satisfying ALd = a’;e,"- + a,e‘} fora; <0< o) and |o,| > |a,|
if and only if there exists | € {0 : k]} such that U [§] # 0.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 223

Proof: Consider any direction d satisfying Ajd = oxe} + 0,7 for 0, < 0 < 0, and
logl > loa|. Without loss of generality, assume that ¢, = ~1 and o) = 7 for some

T €(0,1). Then, for 0 < a < a,

pu(w+ad) = pu(w)—a(—7¥} +¥)) +ap Y max(-rxF[A] +«Fg;],0)

N(T?)
+ap Y |-~ rel(A]+Algi]l + ap
N(P?)
+ap Y max(~relA]+aflo]0) +ap Y7 |nE(A] — 7aflail]
N(P) N(M?)

1

+§azlld||§9p.. (w, ad).
For any = € (¢][5],¢],,[i]), I =0: K,

1€ N(T%: pos[-mf[\]+xFg;]] = sifj]

i€ N(Fg): sign[-o{[Aj]+aflgi]] = <lj]

i€ N(P2): pos[-ra{[\j]+wllgi]l = «f[j]

i€ N(M®): sign[~mai[\]+sflgi]l = <fld],
and therefore

. . 1
pulw+ad) = pu(w) - a(~r&li]+) + sa?lld3p, (w, ad).

If 7 € L4(7], then the coefficient of (—a) is positive. However, this value provides the first
order rate of change in p, only for 7 € (¢][j],¢],,[5])-

Therefore, if Ui = @ for all [, then first order descent in p, is not possible for any
73 < 0 < 0x and |o,| > |oa|. However, if there exists some [€ {0 : k7} such that
U (7] # 0, then for any T € Uy, a direction d satisfying ALd = —~(—7e} + €}) provides

first order descent in p,, from w. Q

Definition 8.13 For j € B(P2):

1. Define breakpoints 8[j] as follows:

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 224

FAj1/xClgs] if it lies in
ie N(T%: 78] cF[\j1/xFlgs] if it lies in (0,1)

i
et e,
|

1 otherwise
ieNPFY):] = { ~ &I[A;l/K8lej] i it lies in (0, 1)
1 otherwise

i€ N(PY): 78[4] &2[A;])/"2g;] if it lies in (0, 1)

I
e\,
)

1 otherwise
fe NMO):] = — &i[A;1/KE[g;] if it lies in (0,1)
1 otherwise.

2. Let k} be the number of distinct breakpoints in the interval (0,1), and let these
distinct breakpoints, denoted t}[j] for l =1, ---,k§, be indezed to satisfy

0 < t8[j] < »--<t:;[j] <l

In addition, define the breakpoints t§[j] =0 and tf, [j]=1.
3. For each l = 0 : k}, define x![j] as follows:

negs€(A11 o T85] < (4]

neg(xlg;]] otherwise
sign[n][Aj]] if 7P[5] < £2(4]
sign[s?[g;]] otherwise
negx([M]] if TP[4] < ¢F[5)
neg(x?[g;]] otherwise
d] = 4 Sl 7] <l

' signiclgs]] otherwise.

i€ N(T): xli]

teNP]): xili] = {

i€ N(P2): xj]

ie N(M°):

4. For eachl =0 : k%, define the quantities t\(j] and ti (7] as follows:

AUl = B -u ¥ N +e 5 R -n 3 b

N(T) N(FD) N(P2)

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 225

Y xilileilA]

N(M?®)
] = ¥-p Y X0lflol+n Y XUl -6 Y K9]
N(T") N(P?) N(P2)
v Y, xlililes] + p.
N(M?)

5. For eachl = 0 : k}, define the intervals Vi[j] and V;[j] as follows:

[(~o0,—Gil/ALH]) (i >0
(-8l o) iftlil<o

vi[j] =
(~o0,00) 8] = 0 and] < 0
| 0 otherwise,
Uil = @) bl n il

Lemma 6.19 Ifw is a degenerate, stationary point, then there ezists a first order descent
direction d for p, from w satisfying Agd = a,\ej-‘ + a,e‘} for 0 < o, < oy if and only if
there ezists | € {0 : k%} such that V[j] # 0.

Proof: Consider any direction d satisfying Agd = a',\e;-‘-{»a,eg for 0 < 0, < o). Without
loss of generality, assume that ¢y = 1 and o, = 7 for some r € (0,1). Then, for

0S&<d1,

Pu(w+ad) = pu(w)+a(¥} +7¥) ~ap Y min(xf[\;] + 7xFg;], 0)

+ap 3 |2 + re2(gi]l + aur
N(P?)

—ap Y min(sf[As] +7a9;],0) +ap Y |xE[Aj]+ Tglg]|
N(P2) NMo)

1
+30°d30,,(w, ad).

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 226

For any 7 € (t,’[]], tls«H[jD! l=0: ’¢§'

i€ N(T%: neg[sfA]+7aflgi]] = xili]
i€ N(F)): sign[sl\]+7ellg]l = xili]
i€ N(P2): neglsl[\]+7x{[g;]] = xili]
i€ N(M°): sign[si{A]+7ailos]] = i,

and therefore
. . 1
Pu(w+ad) = pu(w)+a(tili]l+ U] + 5aldl3%y, (w, ad).
If v € Vi[j], then the coefficient of « is negative. However, this value provides the first
order rate of change in p,, only for 7 € (][5}, £, ,[i])-

Therefore, if V[= 0 for all [, then first order descent in p, is not possible for any
0 < 0, < o). However, if there exists some ! € {0 : k§} such that V;{j] # 0, then for any
7 € V}, a direction d satisfying ALd = (ej} + ref) provides first order descent in p, from

w. O

6.7 First Order Optimality Conditions

Corollary 6.20 If w is a degenerate, first order point of the penalty function p,, then

the following conditions must all be satisfied.

jEB(T): ¥§ —puf <p and ¥§ + pv§ >0,
jER: ¥} - puf <yp and ¥} + pv} > —p,
FjEB(P)): ¥ —pul<yp and 99+ pvd > —p,
jeEPZ: 'I"}-'\ - ;mg"\ <p and \F?“\ + pv_’,-'_k >0,

jerr: ¥ -pd <oy and ¥ 4w 20,

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 227

j€B(PY): ¥}—pu}<p and ¥} +pv} >0,
and ¥ —pul <p and ¥+ pv] >0,
and ¥+ - pu?"" <gp and ¥} +¥9 4+ ;w;"" > ~pu,
and A S ,uu;‘—’ <gp and W} - ¥+ ;w;" > ~u,

jE€N(PL): ¥}~ pu} —pmax(L,xiA;]) <0 and
¥} + pv} + p| min(1L, £¥[A;])] > 0,
FEBM®): ¥—puS<p and W7+ pvj > —p,
and for all j € B(FP2),

Tl = 0 for 1=0:k}
K; (5] 0 for 1=0:4,
NGl = 0 for 1=0:8,
2ris] 0 for 1=0:k}
R 7] 0 for 1=0:k,
St i 0 for 1=0:k,
Uil = 0 for 1=0:K],
Vilil = 0 for 1=0:k

Proof: Follows immediately from the results presented in the previous section. O

Note that, in the absence of degeneracy, the matrix « is empty and the conditions listed
above reduce to the first order necessary conditions previously defined in Corollary 3.10
and Definition 3.3.4 for a nondegenerate minimum point of the penalty function. Also,
if a set of multipliers ¥ satisfying the nondegenerate necessary optimality conditions are
defined at a degenerate point of p,, then the above conditions are automatically satisfied
for some choice of Ag. Therefore, the £ multipliers need only be calculated when the
multipliers ¥ do not satisfy the nondegenerate necessary conditions and do not define a

descent direction for the penalty function.

CHAPTER 6. DEGENERACY IN THE PENALTY FUNCTION 228

6.8 Implemented Version

Our degeneracy resolving technique has been described for exact activities. With ap-
propriate modifications to the activity sets, this technique is implemented for e-activities
exactly as it is described here. It has been verified that the technique will either find
a descent direction or verify that the degenerate point satisfies the necessary optimality
conditions. With the introduction of e-activities, an additional possibility arises. As de-
scribed in Section 4.5, it is now possible that the current point has been misclassified as
close to a stationary point of the penalty function. As a result, the dropping direction
returned by the degeneracy resolver may not be a descent direction for the model func-
tion. In this case, the algorithm will reduce the values of € and A, and continue from the

reclassified point.

6.9 Conclusion

In this chapter, the problems inherent in applying traditional techniques to resolving
degeneracy in the penalty function p, have been explained. In addition, we have derived
a set of first order necessary conditions for a degenerate solution of p,. These conditions
apply regardless of the actual choice of the activity basis matrix Ap as long as the rules

described in this chapter for constructing .Ap are followed.

The calculation of the vector ¥ and matrix s for any specific choice of 4 and Ay
and the checking of all the conditions listed above are finite processes. In any partic-
ular instance of degeneracy in the penalty function, the method of perturbation or the
technique of Ryan and Osborne may resolve the problem more quickly than the multi-
plier method, or may fail completely. Unlike these techniques, the multiplier method will

always resolve degeneracy in p,, in a finite number of steps.

Chapter 7

Testing results

7.1 Introduction

The penalty function algorithm described in Chapters 3 and 4 for finding a solution
of the one level problem BPcs was implemented in Matlab. The degeneracy resolving
technique described in Chapter 6 was also implemented. The ccsde was tested on a set of
bilevel programming problems found in the literature, as well as several original nonlinear
problems. In this section, I will discuss the test problems and describe how the testing

was performed. The remainder of the chap-ter is concerned with the presentation and

analysis of the results.

7.1.1 Test Problems

The test problems are listed in Appendix A along with their sources and known solutions.
The majority of the problems were found by examining the bilevel programmingliterature.
These problems have generally been used to illustrate proposed algorithms for bilevel

problems, and therefore, most are quite small, with only a few upper and lower level

229

CHAPTER 7. TESTING RESULTS 230

variables and constraints. Also, since most of the literature to date is concerned with
linear bilevel problems, the majority of the problems presented in the literature were
linear problems. While several quadratic problems were found, only three nonquadratic
nonlinear problems were located. Therefore, several new nonlinear problems, some with

unknown global solutions, were developed.

In [28], Calamai and Vicente described a method for generating random linear and
quadratic bilevel problems with known global solutions. The problems are separable,
but with a simple matrix transformation, nonseparable quadratic bilevel problems can
be generated. Seven untransformed and five transformed problems, of varying sizes, are

used in the testing process.

For all but one of the test problems from the literature, at least one global solution
is known. In addition, because most of the problems are small, it was usually possible
to analyze them to determine other local and global solutions. The goal of our research
was to develop an algorithm which could be used to find solutions of bilevel programming
problems. Therefore, the implemented code was tested on problems with known solutions
so that its performance could be evaluated with regard to this criteria. In addition, it was

necessary to introduce new nonlinear problems so that more results could be obtained.

7.1.2 Code and Algorithm Parameters

The algorithms were implemented and tested using Matlab version 4.2c. Throughout the
testing process, emphasis was placed on ensuring that the code was performing correctly
rather than on improving the speed of convergence. Therefore, little attempt was made
to find the “best” initial values of the algorithm variables or parameters. The values used
for the starting point w® and the initial penalty parameter u° are considered in the next

section. The remaining algorithm variables and parameters used the same initial values

CHAPTER 7. TESTING RESULTS 231

for all test problems, as indicated below. These values should perform reasonably well
for well-scaled problems.

The following initial values are used throughout the testing process.
@ @, the initial activity tolerance, has value 0.1.
@ A%, the initial closeness tolerance, has value 0.2.

@ A°, the initial trust region radius, has value min(A™*=, 0.1 x [[v°||z), where 0 is
the gradient of the differentiable part of the penalty function at w°. However, if
7%z < 1, then A® =1.

The algorithm parameters, as specified in the statement of Algorithm 4.1, are as-
signed the following values. Some of the values are based on the numerical experience of
other researchers, and the remaining values (for example, byax, Amax; and #tymax) seem

reasonable for the problems being solved.

@ b, the tolerance for a successful trust region direction, has value 10~4.

e b, the tolerance for a very successful trust region direction, has value 0.75.
@ r,, the sufficient decrease tolerance, has value 10~4.

e boax, the iteration count corresponding to unboundedness, has value 4.

@ Apax, the maximum allowable trust region radius, has value 20.

® fimax, the maximum allowable value of the penalty parameter, has value 10°.

@ it,,.., the maximum allowable number of iterations before unsuccessful termination
of the algorithm, has value 500 for nonlinear problems, and value 100 for the other
problems. The larger value was used for the nonlinear problems because they are

generally more difficult to solve.

CHAPTER 7. TESTING RESULTS 232

A point is accepted as a second order point of the penalty function if the following

conditions are satisfied at the current point.

o IZ77ll2 £ 5 x 1075,
e all activities have values « satisfying [af < 5 x 10~%,

e the multipliers lie very close to the optimal ranges for second order points stated
in Corollary 6.20. For example, if the optimal range is [p;, p2], where p; # 0, then
the actual multipliers must lie in the range [(1 - £)py, (1 + £)p2] where £ = 0.01. If
p1 =0, then the actual multiplier must lie in the range [—£, (1 + £)p2], and

e the reduced Hessian ZTHZ is positive semidefinite.

A point is accepted as a second order point of the one level form of the bilevel problem if
it satisfies the above conditions for a second order point of p, and it is essentially feasible
for BPg, i.e. if

[pu(w) — F(w)| < 5 x 10~%.

7.1.3 Testing Process

The test problems listed in Appendix A were each run for ten different combinations of
starting point w® and initial penalty parameter x°. These values were chosen for all the
test problems, and no attempt was made to find the best starting point for individual
problems. The tested values, corresponding to the results presented later in the chapter,
are listed in Table 7.1, where ¢ = n + m + p is the number of variables in the penalty
function. Recall that n is the number of upper level variables, m is the number of lower

level variables, and p is the number of lower level constraints.

CHAPTER 7. TESTING RESULTS 233

w? K
1 zeros(g) 1
2 ones(q) 1
3 —ones(q) 1
4 5 x ones(q) 1
5 | —10 x ones(g) 1
6 randn(q) 10
7 | 5 x randn(q) 100
8 | —5 x randn(q)- | 1000
9 | 10 x randn(q) 100
10 | —10 x randn(q) { 10

Table 7.1: Starting Values

Note that

e zeros(q) is the zero vector in IR?,
e ones(q) is the véctor in IR? consisting of all ones, and

¢®randn(g) is a vector in IR? consisting of ¢ normally distributed random values.

The term “problem instance” will be used to refer to a test problem in combination with

one of the above (w?, u°) combinations.

7.2 Presentation of the Results

The test problems listed in Appendix A are divided into four groups: linear, quadratic,

generated, and more general nonlinear bilevel problems. Accordingly, the results are

CHAPTER 7. TESTING RESULTS 234

presented in four separate tables. In each of the result tables, the following information

is presented.

o The name of the problem, as listed in Appendix A, generally corresponds to the

initials of the authors of the source paper. It is stated in the column titled “Prob”.

® The number of variables in the one level form of the bilevel problem is indicated in

the column titled “¢".

e The average number of iterations until termination of the implemented algorithm
is indicated in the column titled “#”. This is the average over all ten instances,

regardless of whether the algorithm actually converges or not.

e The average number of times that the penalty parameter was increased for each of
the ten problem instances is indicated in the column titled “g*”. Recall that the
parameter u is increased if the algorithm indicates that p, is becoming unbounded,
or if the algorithm converges to a point satisfying the necessary conditions for a
second order point of p, which is infeasible for the one level problem. Each time p

is increased, it is multiplied by the factor 10.

o The average number of times that the degeneracy resolving routine was invoked for
each of the ten problem instances is indicated in the column titled “6”. The routine,
as described in Chapter 6, is invoked if the algorithm encounters a degenerate point
at which some of the multipliers ¥ are out of kilter but the calculated dropping

direction is not a descent direction.
e The algorithm can terminate in several different ways.

—~ The final point satisfies the necessary conditions for a second order point of

the one level form of the bilevel problem and the objective function value at

CHAPTER 7. TESTING RESULTS 235

the point matches the objective function value of the known global solution
of the bilevel problem. The number of times during the ten test trials that
the algorithm terminates at such a point, classified as a global solution, is

indicated under the outcome column titled “G".

— The final point satisfies the necessary conditions for a second order point of
the one level form of the bilevel problem, but the objective function value at
the point exceeds the objective function value of the known giobal solution of
the bilevel problem. The number of times during the ten test trials that the
algorithm terminates at such a point, classified as a local solution, is indicated

under the outcome column titled “L™.

— The final point satisfies the necessary conditions for a second order point of p,,
for i = pmax, but is not feasible for the one level form of the bilevel problem.
The number of times during the ten test trials that the algorithm terminates
at such a point, classified as a truly infeasible solution, is indicated under the
outcome column titled “I”.

—~ The algorithm fails to converge within it,,., iterations. The number of times
that this outcome was observed is indicated in the column titled “M”.

— The algorithm terminates because p,, appeared to be unbounded for g = firay-
The number of times that this outcome was observed is indicated in the column

titled “U”.

7.3 Results and Comments

Throughout the analysis of the results, the performance of our algorithm will nat be com-
pared to existing bilevel problem algorithms. There are several reasons for this decision.

* Our algorithm has been designed to solve nonlinear bilevel problems, and therefore, is

CHAPTER 7. TESTING RESULTS 236

not expected to perform as well for special forms of the problem as algorithms designed
for those forms. For example, linear bilevel algorithms exploit the special properties of
linear bilevel problems and include actions to find global, rather than local, solutions.
Qur algorithm does not include such special steps. In addition, at the time of testing,
there are no other algorithms in the literature for which extensive test results have been
presented for nonlinear bilevel problems. Finally, the performance of the algorithm is
likely far from optimal because no analysis has been performed to determine the best

starting values of the algorithm variables and parameters, as noted on page 231.

7.3.1 Linear Problems

The testing process for the linear bilevel test problems, as summarized in Table 7.2,

illustrated the following points.

e The algorithm identified a global solution of the bilevel problem for 18 of the 23
problems with known global solutions. More specifically, it found the global solution
in 105 or 46% of the 230 associated problem instances. For the ten problem instances
for BCC5, for which the global solution is not known, the algorithm terminated half
of the time at the best local solution provided by the authors.

e The algorithm identified a local or global solution of the bilevel problem for all 24
problems, or 153 (64%) of the 240 problem instances.

® A truly infeasible point of the penalty function was identified in 21 of the 24 prob-

lems or 107 (36%) of the problem instances.

o The degeneracy resolving routine was invoked for 7 of the problems, or 15 (6%) of
the 240 problems instances. In several cases, the routine was invoked multiple times

for a single problem instance.

CHAPTER 7. TESTING RESULTS ' 237

e A solution of the penalty function was successfully identified for all problem in-

stances.

e The algorithm converged within 44 iterations for all problem instances.

The algorithm performed extremely well in identifying local or global solutions of
the linear bilevel test problems, as there were no problems for which a solution was not
identified. Also, the performance of the algorithm in identifying global solutions was quite
good. The use of multiple starting points was a helpful tool in identifying global solutions
for a large majority of the problems. Even without special action within the algorithm
for specific starting points, global solutions were identified for one-third of all problem
instances. This behavior is very encouraging. Of course, in general, such solutions are

probably not globally convergent.

Aside from their use in finding global solutions, multiple starting points must be used
within the bilevel algorithm due to the possibility of identifying truly infeasible solutions.
The number of problem instances which terminated at a truly infeasible point justifies

their use.

Although only a small percentage of problem instances encountered a point for which
the degeneracy resolving routine was invoked, one-quarter of the problems did require
its use. This illustrates the importance of the degeneracy resolving technique developed
specifically for the bilevel penalty function.

Although all the problems in this group have a small number of variables, the three
highest average number of iterations to convergence correspond to the three largest prob-
lems, as indicated by the value of ¢g. The problems with more than 10 variables are the
only problems which, on average, required more than 20 iterations. This suggests that

the number of iterations may increase with the problem size.

CHAPTER 7.

TESTING RESULTS

Prob [g | # |t | §d |G| LI
AW1 | 8 113305 0 1L{3 16
B1 8 1120104 | 0 | 5({ 0|5
B2 711.1}105|05{6 113
B3 7123|105 0 | 7! 0|3
BAB1 | 6 [88 (02]02|5 |0 !5
BAB2 | 7 |131|05| 0 | 4|0 |6
BCCi1| 8|98 (02] 0 6 |0 (4
BCC2 [7 |92 (03| 0 |05 (s
BCC3|5 |79 0 0 {10{ 0 (O
BCC4| 8 12404 (01| 8 |0 |2
BCC5 |16 {30014 O 713
BF1 | 8 |124]12]03]6 |0 |4
BF2 7104|1002} 2216
BK1 8 1102| 0 01| 0 {7 |3
BK2 [10)139(06)04]| 9|0 |1
CF1 |5 (11.0(05| 0 [9|01
CT1L |11]264|12| 0 |0 |10(0
D1 8 |122} 0 0l10[01]0
D2 61791 0 0 14.10]6
F1 6 | 78 104 0 | 2|53
HIS1 (11247 (12 0O 0|6 |4
HIJS2 | 7111505 0 0|19
HSW1 |6 |112(05] 0 | 3|1 {6
TMV1 |7 |146{08]| 0 8|0 |2

Table 7.2: Results for Linear Problems

238

CHAPTER 7. TESTING RESULTS 239
7.3.2 Quadratic Problems

The test results summarized in Table 7.3 illustrate the following points.

e The algorithm identified a global solution for eleven of the twelve quadratic bilevel

test problems, or 63 (53%) of the 120 problem instances.

® A local or global solution is identified for all problems, or 97 (81%) of the 120

problem instances.

® A truly infeasible solution was located for 8 of the test problems, or 23 (19%) of

the problem instances.

o The degeneracy resolving routine was invoked for seven of the test problems, or 37

(31%) of the problems instances.

® A solution of the penalty function was successfully identified for all problem in-

stances.

® The algorithm converged within 26 iterations for all problem instances.

The algorithm performed exceptionally well in identifying the global and local solu-
tions of this set of quadratic bilevel problems. While this may, in part, be due to the
simplicity of the test problems, it is still very encouraging to see for our general nonlinear

bilevel problem algorithm.

The number of truly infeasible points encountered by the algorithm even in these cases
again justifies the use of multiple problem instances in the testing process. Similarly,
the high number of degenerate points encountered show the necessity of the degeneracy

resolving routine. The overall results also indicate the effectiveness of the routine.

CHAPTER 7. TESTING RESULTS 240

Prob | ¢ | # |pt]| 6 |G|L]I
AS1 |5 |78 |0 {04307
As2 [10]122(05| 0 | 4|6 |0
B4 |6 (100]|06]| 0 | 4|3 |3
BF3 | 8 14709059 1|0
BF4 | 8 |157|12]27|9 |0 |1
Gs1 (5780 0901
IA1 [10]132({05]| 0 |46 (0
SG1 |10 |154(|05] 0 | 5] 4|1
vsi1| 5|71 |04al04a]|5]| 23
vsJ2 [5| 73 |o7]04a| 4|2 |4
YZ1 | 4|45 |0 |os|7]|0 |3
Yzz2| 4 | 7.7 05|12 0100

Table 7.3: Results for Quadratic Problems

Once again, the largest problems, as indicated by the value of ¢, generally require
the highest average number of iterations to convergence. The five largest problems (with
g > 8) require more than 12 iterations on average, while none of the smaller problems
require more than 10 iterations. However, since the problems are so small, this difference

may not truly be significant.

7.3.3 Generated Problems

The testing results for the set of generated problems are summarized in Table 7.4, and

illustrate the following points.

CHAPTER 7. TESTING RESULTS 241

e A global solution of the bilevel problem is correctly identified for 10 of the 13 test

problems, or 30 (23%) of the 130 problem instances.

® A local solution of the bilevel problem is correctly identified for all 13 test problems,

or 88 (68%) of the problem instances.

e A truly infeasible solution of the penalty function was identified for 12 test problems,
or 42 (32%) of the problem instances.

¢ Seven of the problems, or 11 (8%) of the problem instances, required the use of the

degeneracy resolving routine.

® A solution of the penalty function was successfully identified for all problem in-

stances.

e The algorithm converged within 63 iterations for all problem instances, and in less

than 50 iterations for all but two.

Again, the algorithm performed quite well in identifying global and local solutions of
these test problems. These problems, by their nature, generally have more local solutions
than the previous cases. So, while the high number of local solutions encountered was
not surprising, the strong performance of the algorithm in identifying global solutions
was an encouraging result, and was supported by the performance of the algorithm on

the previous set of quadratic problems.

The number of iterations required for convergence is generally higher for this set of
test problems than for the previous two sets of problems, reflecting the larger size of
the problems and their increased complexity. Note that the larger untransformed and
transformed problems do not always require a higher average number of iterations for
convergence. While the largest problems seem to generally require more iterations for

convergence, this is not necessarily true for specific problems.

L

CHAPTER 7. TESTING RESULTS 242

Prob | ¢ # (put] d |G|L|I
Ul | 25114514062 |5|3
U2 30 | 14008 0 [1}6|3
U3 50 [18014017 (3]0
U4 |55 (199 |10{ 0 |5 (|32
Us 80 (24813105 |0 (6|4
U6 |125 (256 ({1.1({04| 2|62
U7 [90 20112} 0 |1(6|3
U8 (10015822 0 (1|36
T1 12 {11513 0 j1]4|5
T2 25 1214131103 0}4]6
T3 30 |144)10| 0 |0 |82
T4 | 30 |13.7]|06}01]|9}0]1
TS 55 |320}22]|03|1})4|5

Table 7.4: Results for Generated Problems

7.3.4 Nonlinear Problems

Only three nonlinear bilevel test problems were found in the literature. As this number
was insufficient for our testing purposes, several new problems were designed. The global
solutions of some of these problems, as indicated in Appendix A, are not known. Note that
the problems tested here are small, in terms of the number of variables in the penalty
function. The time and space limitations imposed by Matlab and, in particular, the

current implementation of the algorithm make solving much larger problems impractical.

The results for the problems from the literature (problems B5, EB1 and YZZ1), along

with the new problems, are summarized in Table 7.5. The performance of our algorithm

CHAPTER 7. TESTING RESULTS : 243

in solving these nonlinear bilevel problems cannot be judged relative to any other solution

techniques. A literature search found no comparable results for other methods.

e For the thirteen problems with known global solutions, the algorithm identified
a global solution in 27 (20%) of the 130 problem instances. Note that the algo-
rithm identified a global solution in a similar percentage of cases for the generated

problems, which are the most complicated of the other problems tested here.

® A global or local solution was identified for all the problems, and in 95 (63%) of the
150 problem instances. Again, this compares very well with the observed results

for both the linear and generated problems.

@ A truly infeasible solution was identified for 12 of the problems, and in 24 (16%) of

the problem instances.

@ The degeneracy resolving technique was invoked for five of the test problems, or 19

(13%) of the problem instances.

@ For 26 (17%) of the problem instances (corresponding to 12 of the test problems),
the algorithm failed to converge to a solution of the penalty function within it,;a,
iterations. For the nonlinear problems, the maximum iteration count allowed was

ttmax = 500.

e The problem instance was found to be unbounded in 11 (7%) of the problem in-

stances, or for five of the problems.

e Of the 124 problem instances which converged to a local or global solution, a truly
infeasible point, or were judged to be unbounded, 20 (16%) required more that 100

iterations.

— One problem instance (B5) converged after 498 iterations.

CHAPTER 7. TESTING RESULTS 244

— Six problem instances (Ccl, Cc3, two of Cel, two of Ce3) required between
300 and 399 iterations.

— Six problem instances (two of Cb3, one of Ccl, Cc3, Cel and Cgl) required
between 200 and 299 iterations.

— Seven problem instances (two of Cb3, one of Ccl, CC3, two of Ce3, and one

of Cg3) required between 100 and 199 iterations.

In the nonlinear results table, the two numbers 4, (i;) under the column titled “#(#.)”
indicate iy, the average number of iterations to termination over all ten problem instances,
and i, the average number of iterations to termination when the it,,,, instances are

omitted.

Two types of results were observed for the nonlinear problems which were not ob-
served for any of the previous test problems: unboundedness (column “U”) and failure to
converge within it,,,, iterations (column “M"). In the original discussion of the penalty
function technique in Chapter 3, unboundedness was discussed as a possible outcome of
the penalty function technique, even if the problem being solved was not unbounded.
The technique used to detect unboundedness is described in Section 3.8. It is likely that
a more detailed check for unboundedness could be developed which would eliminate some

of the unboundedness outcomes. However, this issue will not be investigated further here.

As noted above, there were 26 instances in which the algorithm failed to converge
or to reach an unboundedness decision within it,,., = 500 iterations. The behavior of
the algorithm for these instances is discussed below. Two different patterns of behavior
accounted for most of these outcomes. Note that these patterns of behavior were generally

established within the first 100 to 200 iterations of the algorithm.

1. The algorithm made steady, but very small progress towards a stationary point of

the penalty function. Over these iterations, the iterates were all type one points,

CHAPTER 7. TESTING RESULTS 245

Prob | ¢ #(#c) pt | & |GIL|I|U|M
B5 | 8| 1201(77.9) |o6| 0 |7]2|0]0]|1
EB1 | 8 11.8 1.2{ 04 {6 |0l4]0] O
YZZ1 | 4 | 110.5 (13.1) | 0.1 0 312(13!0] 2
Cal | 3 89 0.5 0 3{710]l0]0
Ca3 | 9 13.0 0.5 0 2i8|0)0¢}0
Cbl | 4 | 135.3 (44.1) | 23| 0 a|1]3]|2
Cb3 | 12 | 235.0 (121.4) | 3.0 0 211,413
Cecl | 5| 1353(948) |14 46 [2|5|1]1]1
Ce3 |15 |238.8 (116.9) |1.9) 9.4 |0 [5]|1]| 1| 3
Cd1 3 | 109.3 (11.6) | 0.2 0 116|110 2
Cd3 | 9 | 211.7(19.5) | 0.3 0 0|5({1(0] 4
Cel | 4 [2125(1407){06| 05 |1 (5|20 2
Ce3 | 12| 197.9(97.4) |21 1622 |3(3] 0] 2
Cgl | 4 | 139.0(488) {08! O 0j6}2]0] 2
Cg3 | 12| 149.7 (62.1) | 2.4 0 0|214]2]| 2

Table 7.5: Results for Nonlinear Problems

and the generalized Cauchy direction provided acceptable (though usually relatively
poor) trust region descent. In some cases, the direction provided very good descent.
Generally, however, the trust region radius A was relatively small when the pattern
was established, and was not increased or decreased very much over the subsequent
iterations.

This was the pattern of behavior observed for the i, outcomes for problems YZZ1

(two instances), Cb1 (two instances), Cb3 (three instances), Cc3 (one instance), Cd1

(2 instances), Cd3 (one instance), Cel (two instances), Cgl (one instance) and Cg3

CHAPTER 7. TESTING RESULTS 246

(one instance).

2. After the trust region radius was reduced to a relatively small value, the iterate was
classified as close to a stationary, non-first order point. A dropping direction was
calculated, and it provided a small, but acceptable descent in the penalty function.
Because the step taken, while a reasonable trust region direction, was small, the
dropped e-activities remained active. The next iteration again tried to drop the

same set of activities, and the process was repeated.

This pattern of behavior was observed for Ccl (one instance), Cc3 (one instance),

Cd3 (two instances), Ce3 (two instances) and Cgl (one instance).

The remaining four cases fail for different, but related reasons. For all cases, after the
preliminary stages of the algorithm, the iterates were close to a stationary point of the
penalty function. However, the algorithm did not always recognize this property, as

described below.

¢ In problem B35, the algorithm actually approached a second order point of the
penalty function relatively quickly. The iterate was correctly classified as a type
four point, and the full Newton step was attempted. However, the step failed.
Note that the step would have been accepted if the current value of the penalty
parameter g had been significantly smaller. The algorithm tolerances ¢ and A
were reduced, and the iterate was then misclassified as far from stationarity. All
subsequent descent directions were generalized Cauchy steps from type one points.

Acceptable decrease was observed, but the decrease was actually quite small.

e For the remaining instance of problem Cc3, the iterates were actually close to
stationarity, but because of previous decreases of € and A, some were classified

as type one points, and some were classified as type two points. In the former

CHAPTER 7. TESTING RESULTS 247

situations, the generalized Cauchy step provided good, but not very good, descent.
In the latter situations, the dropping step was successful, but the dropped activities
remained e-active. In essence, both patterns of behavior described above were

observed here.

@ For the remaining case of Cd3, the iterates were close to a first, non-second order
point, and were correctly classified as type three points. The calculated directions of
negative curvature provided very small, but still acceptable descent in the penalty
function. The trust region radius was near its minimum value. It is possible that
a direction of negative curvature like those discussed in Section 3.5.3 would have

been beneficial in this case.

e For the remaining case, one instance of Cg3, an iterate was correctly classified as
close to a second order point. A full Newton step was attempted and accepted.
However, as a result of the step, one of the activities was no longer considered
active at the next iterate. This new point was incorrectly classified as far from a
stationary point, and very small generalized Cauchy directions provided acceptable
descent in the penalty function, as discussed above.

The nonconvergent problem instances illustrate the need for multiple starting values when

using our algorithm to solve bilevel problems.

The number of iterations required for convergence to a solution or to detect unbound-
edness is greater for these nonlinear problems than it is for the linear, quadratic and
generated problems. This is to be expected due to the difficulty inherent in the nonlinear
problem when compared to the simpler forms of the problems. In some cases, the increase
is quite large.

Recall that the value of it,,, Was increased for the nonlinear problems to 500 from

* 100. This action was beneficial since the algorithm converged for more problem instances

CHAPTER 7. TESTING RESULTS 248

than it would have with the smaller value of the algorithm parameter. However, at the
same time, it results in the average number of iterations required until termination of the
algorithm to be skewed upwards by the instances which require more iterations. Table
7.6 presents summarized information in the spirit of Table 7.5, and corresponds to the
performance of the algorithm when the value of it is reduced to 200. The number of
instances which converged to a local or global solution are grouped together in the table
under the column “L”. Note that the average number of iterations presented is calculated

by ignoring the it,,,, outcomes.

Prob | #. | L [I|U|M
B5 |254| 8 (0|02
EB1 |118| 6 (4|0 |0
YzZ1{131| 5 |30 2
Cal |89 |10]/0]|0]0
Ca3 |13.0]10(0]0] 0
Cbl [441]| 4 (1|32
Cb3 [666| 2|03 |5
Ccl (456 | 6 {1103
Cc3 |428| 4 1|05
cdi [1n6|7|1|0}2
Cd3 [195| 5 [1]|0 |4
Cel {126] 5 [0]0]s
Ce3 |827| 4 |2|0] 4
Cgl (2245 (2{0]3
Cg3 (621 2 |4]|2]2

Table 7.6: Results for Nonlinear Problems when it,., = 200

CHAPTER 7. TESTING RESULTS 249
The new table illustrates the following points.

e The algorithm locates a local or global solution for all the problems, and for 83
(55%) of the problem instances. This is compared to 63% for the larger value of
tnax-

o The algorithm converges to a truly infeasible solution of the penalty function in 20

(13 %) of the instances, compared to 16% previously.

¢ The algorithm concludes that 8 (5%) of the problem instances are unbounded, down

slightly from 7% previously.

e The algorithm terminates unsuccessfully after it;,,x = 200 iterations for 39 (26%)

of the problem instances, compared to 17% after it,,, = 500 iterations.

In addition to these points, note that the average number of iterations is, with a few
exceptions, well within the range to be expected, based on the results presented for the
linear, quadratic, and generated test problems, combined with the increased difficulty
of solving the nonlinear problems. Of course, this came at a cost of fewer convergent
problem instances. However, in terms of the amount of computing work in the extra 300
iterations, it may actually be preferable to use the smaller value of it,,,x. An alternate
approach to consider is to define another problem instance whenever the current instance

fails to converge within the smaller value of #t;,ax.

7.4 Overall Comments

The algorithm performs quite well overall on the four sets of test problems. While the
results of the nonlinear test problems may seem somewhat disappointing on first glance

due to the number of nonconvergent instances, the algorithm actually performed very well

CHAPTER 7. TESTING RESULTS 250

in achieving the stated goal of locating local and global solutions of both the nonlinear
bilevel problems and the “simpler” forms of the bilevel problem.

Consider the following points resulting from the analysis of the test results.

® The use of multiple problem instances in solving a specific problem is justified by

the results, due to the abundance of truly infeasible solutions and of local solutions.

® Analyzing the individual problem to choose a starting point and initial penalty
parameter may improve the performance of the algorithm in locating solutions, and

may reduce the number of problem instances to consider.

e The implemented version of the degeneracy resolving technique is very useful and

necessary.

® As expected, it appears that larger problems require more iterations before conver-

gence, and each iteration generally requires more work than for smaller problems.

o The results presented for the linear, quadratic, and generated problems would not
have been significantly different if the value of it,»x had been reduced to 50 from its
tested value of 100, as just two instances would have failed to converge. The results
presented in Table 7.6 illustrate that, while the convergence results for the nonlinear
problems are improved if ity takes value 500 rather than 200, the improvement
may not be significant enough to the user to justify the extra computational work

involved.

A “best” value for itnax, as with most other algorithm parameters, depends on
the individual bilevel problem and the user’s objectives. This indicates that fur-
ther study of these parameters may result in a better overall performance of the

algorithm.

Chapter 8

Conclusion

The thesis concludes with a list of contributions of the research along with an indication

of possible further work in the field.

8.1 Contributions

We believe this work provides several significant contributions to the field of bilevel pro-

gramming in the areas of algorithm development, algorithm cbnvetgence, and testing.

e Algorithm Development.
An algorithm has been designed for the nonlinear bilevel programming problem. As
explained in Chapter 2, most algorithms in the literature have been described for
simpler forms of the bilevel problem. Our algorithm, which implemer;ts an exact {;
penalty function technique within a trust region framework, places few restrictions
on the problem form.
The combination of the penalty function and the trust region techniques is particu-

larly appropriate to the bilevel problem. The penalty function technique is designed

251

CHAPTER 8. CONCLUSION 252

to handle the nondifferentiabilities of the compact form of the related problem, and
assists in attaining both feasibility and optimality. The multiple starting points as-
sociated with the penalty function technique facilitates the discovery of both global
and local solutions. At the same time, the trust region technique enables the algo-
rithm to concentrate on a localized, simplified version of the penalty function. This
approach is beneficial in handling the nonconvexities of the bilevel problem, as well

as assisting overall convergence.

In addition, the algorithm includes a new technique, proven to work both in theory
and in practice, for resolving degeneracy in the penalty function. This is particularly
significant because traditional degeneracy resolving techniques were inappropriate

for this problem.

e Algorithm Convergence.

Under a set of assumptions standard to convergence analysis and a few assumptions
specific to the bilevel problem, the proposed algorithm is proven to converge to a
strict second order point of the penalty function for the compact form of the bilevel
problem. These assumptions are stronger than would be applied to the problem in
practice, but it is significant to note the strong theoretical nature underlying our

technique. It provides a basis for its effectiveness for the more general problem.

Note that, under an appropriate constraint qualification, as stated in Chapter 2, if
the bilevel problem is convex, it is equivalent to its related compact form. In this
case, the penalty function technique solves the bilevel problem directly. However,
the convexity assumption on the bilevel problem is stronger than generally desired.
For the more general case, the solution of the penalty function may still be a solution

of the related compact problem, and hence of the bilevel problem itself.

CHAPTER 8. CONCLUSION 253

e Testing.

The numerical results presented here are the most extensive found to date for the
nonlinear problem. They verify the effectiveness of the algorithm in identifying local
and global solutions of the bilevel problem, both in the simpler and more general
forms. The collection of test problems can be used for comparison purposes for

newer algorithms.

8.2 Further Work

For each of the areas of contributions to the study of bilevel programming, there are some

issues of research which remain open.

@ Algorithm Development.

There are two issues currently unresolved in the development of the algorithm.

— It is possible, as described in Section 3.5.3, that the current iterate does not
satisfy the necessary second order conditions for a solution because the reduced
Hessian is indefinite. However, a direction of negative curvature may fail to
provide descent in the model or penalty functions. As explained in the text,
there are directions of descent at the point, but a practical technique for iden-
tifying such directions is required. While this situation was not encountered
much during the testing process and was therefore not investigated further, it

would be useful to resolve this issue.

—~ As described in Section 7.3.4, a more detailed technique for identifying when
the penalty function is becoming unbounded within the trust region framework

would likely improve the observed performance of the algorithm.

CHAPTER 8. CONCLUSION 254

e Algorithm Convergence.

As described above, a set of assumptions, some stronger than others, are imposed
on the problem to prove the theoretical convergence of the algorithm. It is of
particular interest to determine if any of the assumptions specific to the bilevel
problem (stated in Assumptions 5.8) can be removed and convergence still proven.
This would match the theoretical results more closely with the practical convergence
of the algorithm.

o Testing.

The testing results provided for this algorithm are more complete than for other
techniques. However, it would be useful to have more results for larger nonlinear
bilevel problems. It would also be interesting to solve some practical applications
whose solutions are not known a priori. Due to time and space limitations, this
would require a new implementation of the algorithm outside the Matlab environ-

ment.

In addition, a thorough analysis of the algorithm tolerances and parameters, both
for all problems in general and for individual problems, would likely result in im-

proved numerical performance.

Appendix A

Test Problems

The following problems have been found in the literature, or are originated here. The
name attached to the problem signifies the original source. I have included any known
solutions with the problem statement. In a few cases, the solutions given by the authors
did not match those found by the algorithm. In case of conflict, the solution that could be
verified (both by using the implemented algorithm and by analyzing the bilevel problem)
is the one listed. If the authors gave a different solution which could not be verified,
then it is not listed below. Included with the solution is F*, the value of the upper level

objective function at the solution.

We recognize that, with the exception of the problems generated by the technique of
Calamai-Vicente as described below, the problems presented here are very small. This

reflects the complexity of these classes of problems.

255

APPENDIX A. TEST PROBLEMS 256
A.1 Linear Problems

1. Problem: AW1 from [6].

min - ~(z+ 3y)

st. 2z >0 and y solves
LLP(z) : mvin 3y

st. 10 < z+2y 38

IN

~-18 < 2-2%

IA
o

22—y 21

IA

<
Y
(=]

Solutions:

(a) Global: 2= =16, y* =11, F* = —49.

(b) Local: 2= =0, y" =5, F* = —15.
2. Problem: B1 from [8].

min -2z, + 22+ }'yl

z.y 2

s.t. 2z, + 22 <2

2,222 0
and y solves _
LLP(z) : n}lm —~(4n ~ ¥2)
st. 25 -y +y > 21
2 —-3z2+y: < 2
yy2 2 0

Solutions:

(a) Global: z* =(1,0),y" =(3,1), F* = -13.

APPENDIX A. TEST PROBLEMS

3. Problem: B2 from [10].

o ety

s.t. z >0 and y solves

LLP(z) m!}n -y
st. z+13y
==y
z+ 3y
z~2y
y
Solutions:
(a) Global: z* = §, y~ =22, , F~ = 3L
(b) Local: z= =7¢,y" =12, F~ =84
4. Problem: B3 from [10].
_ min —(5z+y)
s.t. z > 0 and y solves

LLP(z) : min y
st. z+3y
-y
z+ 1y
z2-2y
y

Solutions:

(a) Global: z= =7}, y* =13, F* = -373.

NN WY

v

AN IA IV IV

v

257

APPENDIX A. TEST PROBLEMS 258

5. Problem: BAB1 from [15].

ety

s.t. z >0 and y solves

LLP(z) n;in y

st. 4z+3y > 19
z+2y < 11
3z+y < 13
y 2 0
Solutions:
(a) Global: z*=1,y" =5, F* = —6.
6. Problem: BAB? from [15).
i ~(1lt +6y1 + ¥2)
o gz +onty
st. 0<=z <1 and ysolves
LLP(2) : min ~(s1 +5yz)
st. z4+3ym+y2 < 5
22+y+3y: < 5
1. ¥2 Z 0
Solutions:
(a) Global: z* =1, y" =(0,1), F* = —2L.
7. Problem: BCC1 from [18].
min -y s.t. y solves

zy

APPENDIX A. TEST PROBLEMS

LLP(z) : n}lm

s.t.

Solutions:
(a) Global: z- =1, y* =4, F* = —4.
(b) Local: z= =6, y" =3, F~ = -3.

8. Problem: BCC?2 from [18].

min - s.t. y solves
o y y

LLP(z) : mvin y
s.t. 10
~18

Solutions:

(a) Global: z* =16, y* =11, F* = ~11.

(b) Local: 2*=—-4,y* =7, F* = —-T.

9. Problem: BCC3 from [18].

y
22+ y
z-—-2y
z+y
2z -y
z+3y
y

< z+2

22—y

min 24+y s.t. ysolves

£

vV IA N IV IV

IN

< -2

Oy o0 0w w0

FAN VAN

IA

38

21

259

APPENDIX A. TEST PROBLEMS

LLP(z) : m;n -y
s.t. 4z + 3y

v

2+2y <
Iz+y

IN

Solutions:

(a) Global: 2= =4,y =1, F*=5.

(b) Local: 2 =1, y" =5, F*=6.
10. Problem: BCC4 from [18].

min - z+y
s.t. z >0 and y solves
LLP(z): min —(y ~y,)
st. z-iy-in
z+ 12y + Ly
.,y

y2
Solutions:
(a) Global: z* =0, y~ = (0,0), F* =0.
11. Problem: BCCS5 from [18].

rg‘iyn ~92z; — 323 + 523 — 224 — Ty; — 30y; — 13y,

s.t. 21,%2,23,24 2 0

and y solves

19
11
13

AV VAN AV
© = o

IN

260

APPENDIX A. TEST PROBLEMS ' 261

LLP(z) : m;n —(3y1 — ¥2 — 5¥3)

st. Zytdzs+4z3—zi-yi+yp+ys < 1
zy1—23-1024+2y; —4y2+ys > -2

321 -52,+4y1 —2y2~y3 < 2

Zi+y 2> -1

z22+y: 2 -1

z3+ys 2 -4

yyys 2 0

Solutions:

(a) Global: Unknown.

(b) Local: z* = (0, %,0,0), y~ = (%, 2, 0), F~ = -49.5263.

12. Problem: BF1 from [12].

. 1
z% —(22y — 25 - '2'!!1)

s.t. 21+ 22 S 2

z1,z2 > 0 and y solves

LLP(z) : myin —(4y1 — v2)

st. 22, -yi+y: > 2';-
oy —~ 322 + Y2 S 2
Y, ¥y2 Z 0

Solutions:
(a) Global: z* = (2,0), y" = (3/2,0), F~ = —3%.
13. Problem: BF2 from [12].

% —(22; — z, — 8y)

APPENDIX A. TEST PROBLEMS 262

st. 2z +2,<2

23,22 2> 0 and y solves

LLP(z) : lrtm —8y

st. zZy+2z:+y < 3
-y < 0
z1+2;-y > -1
y 2 0
Solutions:
(a) Global: 2~ =(1,1),y* =1, F* =T. k
(b) Local: 2= =(0,0), y* =1, F~ =8.
14. Problem: BK1 [22].
min -~y
s.t. z >0 and y solves
LLP(z) : n§’m y
s.t. 10 < z+2y < 38
-18 < z-2y < 6
2z2-y < 21
y 2 0

Solutions:

(a) Global: z* = 16, y* =11, F* = —11.

(b) Local: 2* =0, y* =5, F* = ~5.
15. Problem: BK2 [22].

min = —(z +y,)

APPENDIX A. TEST PROBLEMS 263

s.t. 22> 0 and y solves

LLP(z): min -y,

y20
st. z+y1+y2 < 3
z+y~y2 2 1
z-n-y2 > -1
z-np+y2 < 1
yv.y2 > 0
v2 < %

Solutions:

(a) Global: 2= = 3, y* = (1, 1), F~ = -2.
(b) Global: z* = e, y* = (1,2 - a) for any a € (2,2), F~ = -2.

(¢) Global: z= =2, y* =(1,0), F* = -2.
16. Problem: CF1 from [32].

1121%1 z—4y s.t. ysolves

LLP(z) : myin y

st. 2z +5y 108

IN

2z-3y < -4

v
=

zT-—-y
Solutions:
(a) Global: z= =19, y* =14, F~ = -37.

17. Problem: CT1 from [31].

!ggln . ~82) — 4z, + 4!!1'- 40y; — 4ys

APPENDIX A. TEST PROBLEMS 264

s.t. 21,22 > 0 and y solves

LLP(z): min y, + 92 +2y3

st. 42 -2y1+4y2—ys < 2
422 +4y1 -2y —y3 < 2
n-y2-y3 > -1
y.¥2,93 2 0
Solutions:
(a) Global: 2* = (0, 53), " = (0,3, 3), F~ = —29}.
(b) Local: z* = (3,0), y" =(1,0,2),, F* = —16.
18. Problem: D1 [39].
111131 —-z s.t. y solves
LLP(z) : min -y,
st. 32+2y1—y2 < 5
3z2+y1 -2y, 2 -2
21 +3y, < 18
vy 2 0

Solutions:
(a) Global: z* =32, y~ = (0,6), F~ = -32.
19. Problem: D2 from [39).

min =z +y s.t. ysolves

APPENDIX A. TEST PROBLEMS

LLP(z) : m‘}n -y

s.t. Tz+y

v

z+ 3y

v

5z + 3y

I

5z + Ty

IA

Solutions:

(a) Global: 2= =6,y =1, F~=17.

(b) Global: z= =1,y =6, F*=17.
20. Problem: F1 from [42].

min -
.y y

st. 2z >0 and y solves
LLP(z): myin y

st. z4y2>1

z—-y<l1

0<y<2

Solutions:
(a) Global: 2= =3,y" =2, F* = -2.
(b) Local: 2~ =0,y" =1, F* = -1.

21. Problem: HJS1 from [48].

nzu;fl —(821 + 4z, — 4y, + 40y2 + 4ys)

s.t. z)+22,-y3<13

and z1,22 2> 0 and y solves

13

33
47

265

APPENDIX A. TEST PROBLEMS 266

LLP(z): min 2y +y+2ys

st. 4z -2y +4y:~y3 < 2
422 +4y1 - 2y2~y3 < 2
n-y2-ys > -1
Yy.y2,ys =2 0
Solutions:
(a) Global:'z™ = (3, ¢), ¥" = (0,},8),F- = ~182.
(b) Local: z= = (3, 2), vy~ =(0,0,0), F~ = —53.
22. Problem: HJS2 from [47].
Uzlgl z+ 5y
s.t. z >0 and y solves
LLP(z) : n;m -y
st. 3z-2y > -6
z+4y < 48
z-8y < 9
z+y > 8
y 2 0

Solutions:

(a) Global: z* =2, y" =6, F* = 32.

(b) Local: z* = 30%-, Yy = 431,-, F*= 52%.
23. Problem: HSW1 from [49)].

min z+5y s.t. ysolves

APPENDIX A. TEST PROBLEMS 267

LLP(z) : m!}n -y

st. 32-2y > -6
Iz+4y < 48
2z-5y < 9

z+y > 8
y 2 0

Solutions:

(a) Global: z* =12, y* =3, F* =27.
(b) Local: z* =2, y* =6, F* = 32.

24. Problem: TMV1 from [65].

min 3z, + 222+ ¥ + ¥2
=20,y
s.t. 1y t+zt23t+24<4
Z:,%2,23, 24 2 0
and 1y solves

LLP(z) : n}’m 1 + 2

s.t. 3z; +52;+6y; +2y2 > 15

Y

.y =2 0

Solutions:

(a) Global: z* = (0,3), y* = (0,0), F~ =6.
A.2 Quadratic Problems
1. Problem: AS1 from [2].

min z? + (y - 10)?

Y

APPENDIX A. TEST PROBLEMS 268

s.t. 2>y
0<z<15
and y solves
LLP(z): mym (z + 2y - 30)?
st. z4+y<20
0<y<20

Solutions:
(a) Global: z* =10, y* = 10, F* = 100.
2. Problem: AS2 from [2].

min 2z, + 223 — 3y; — 3y, — 60
st. i+ za4y -2y <40
0< 2,2, <50
and y solves
LLP(z) : min (g — 2y +20)° + (y; - 22 +20)°

st. 10 < v, ¥ 20

A

10
10

z) -2y,

v

v

z2 —2y2

Solutions:

(a) Global: z* = (0,0), y* = (10, -10), F* = 0.

(b) Local: z* = (25,30), y* = (5,10), F* =§.
3. Problem: B4 from [11).

.)2 2
1221 (z~5)+(2y+1)

APPENDIX A. TEST PROBLEMS

s.t. 2 >0 and y solves
LLP(z) : min (y-1)*-3zy

st 3z-y 3

v

3
z—;y

IN

IN

4
z+y 7
0

Y

y
Solutions:
(a) Global: z* =1, y* =0, F* = 17.

(b) Local: 2= =5, y* =2, F* = 25.
4. Problem: BF3 from [12].

Hzl%l z1(2y1 +3y2) + 22(4y1 + ¥2)
s.t. z1+2z2=1

z;,22 > 0 and y solves

LLP(z) : min —(y1(z1 +322) + y2(d21 + 22,))

st. y1+y: = 1

Solutions:
(a) Global: z* = (1,3),y"=(0,1), F* = 1L
5. Problem: BF4 from [12].

min —(z1(y1 + 3y2) + z2(4y1 + 242))

Y

s.t. 1 +22=1

z;,22>0and y solves

269

APPENDIX A. TEST PROBLEMS 270

LLP(z): min n(2z1 + 322) + y2 (421 + 22)

)

st. n+y 1
y, ¥2 2 0

Solutions:
(a) Global: 2= = (3,5), y=(1,1-7) (for 0 <y < 1), F~ = -2L.
6. Problem: GS1 from [44].

min z*+ (y - 10)?

z.y
s.t. 0<z<15
and y solves

LLP(z) min (z + 2y - 30)2

st. z+y<20

0<y<20
Solutions:
(a) Global: 2= =2, y" =14, F* = 20.
7. Problem: [A1 from [50].

Iili;l 2z; + 223 — 3y; — 3y, — 60

s.t. 14224+ -2y <40
0<z <50
0< 2, <50

and y solves

APPENDIX A. TEST PROBLEMS 271

LLP(z): miny (y — 21 +20)% + (y2 — z2 + 20)?

st. -10 < y,y2 < 20
2y -2y < 10
2y ~2z2 < 10

Solutions:

(a) Global: z* = (0,0}, y~ = (—10, -10), F* =0.
(b) Global: z*= = (0, 30), y* = (—10,10), F~ = 0.
(c) Local: z* = (25,30), y" = (5,10), F~ =5.
(d) Local: z= = (20,0), y= = (0, —10), F* =10.

8. Problem: SG1 from [62].

. 2 2
min (z-1)*+2yf — 22

s.t. 2z >0 and y solves

LLP(z) : [Jl)i(l)l 2y, - 4)2 +(2y2 — 1)+ zy;

s.t. 4z +5y; +4y, < 12
—4z -5y;1 +4y;, < ~4
-4 +5y; < 4
Ay S < -4
vy 2 0

Solutions:

(a) Global: z* =14, y* = (§,0), F~ = —11L.

(b) Local: z*=0,y"=(1,0), F- =1.
9. Problem: VSJ1 from [67].

.1 1 1
min ‘2-(81 - 0.8)2 + 5(32 - 0-2)2 + E(y = 1)2

=y

APPENDIX A. TEST PROBLEMS 272

s.t. 0<2,2,<1
and y solves
LLP(z): ubm 3 +y -y + 22,y
st. 0<y<1

Solutions:

(@) z==(3.3),y"=0, F- =1L

(b) Local: 2= =(1,0), y~ =0, F* =0.54.

10. Problem: VSJ2 from [67].

&y

. 1 1
min —(z; ~ 1)+ -l-(zz - 0.4)% + ~(y — 0.8)?
2 2 2
s.t. 0<z,2,<1
and y solves
LLP(z) : min W Hy-ziy+ 320y
st. 0<y<1

Solutions:

(a) Global: 2= = (1,2), y* =0, F = -

(b} Local: z* = (1,0),y" =0, F* = 2.
11. Problem: YZ1 from [69).

“,‘,i}‘ z+y
s.t. -1<2<1
and y solves
LLP(z) : min y? - 2zy
st. -1<y<1

Solutions:

APPENDIX A. TEST PROBLEMS 273

(a) Global: 2 = -1, y* = -1, F~ = ~2.
12. Problem: YZZ2 from [70].

in | gl
o oo

s.t. z 2> 0 and y solves
LLP(z) : u}’m y? - 2zy
st. 22-y<0

y20
Solutions:
(a) Global: z* =2, y" =4, F* = —4.

(b) Local: 2*~=0,y" =0, F~=0. -

A.3 Generated Problems

Because of the numerous global and local solutions to these problems, their solutions are

not stated here. Rather, the reader is referred to [28] for details.

A.3.1 Untransformed Problems

) 1/2= 2 ny 2
min 5(§(=i~1) +§yf)
s.t. y solves
LLP(z) : min X7, (3% — wz:)
st. 2z -y <1, i=1,---,m

1S¢i+9i$ﬂi, i=1!"’1ml

APPENDIX A. TEST PROBLEMS 274

where

nz = the number of upper level variables
ny = the number of lower level variables
m = min(nz,ny)

p € R™,

and p; >1fori=1,---,m.

Each combination of values for nz, ny and p defines a different bilevel problem. The

following values define the test problems.

1. Ul: nz =5,ny=5,and p=[1,1,%,2,3].

2. U2: nz =5,ny =10, and p=[1},1%,2,35,54].

3. U3: nz =10, ny = 10, and p = [ones(7), 2,2, 7].

4. U4: nz =15, ny = 10, and p = [ones(4), 15,2 x ones(3),5,9].

5. US: nz = 15, ny = 20, and p = [ones(3), 1} x ones(6), 2 x ones(4), 3ones(2)].
6. U7: nz =50, ny = 10, and p = }[5 x ones(4),7,8,9,13,18,23].

7. U8: nz =10, ny = 60, and p = [8/5 x ones(5), 3 x ones(5)].

A.3.2 Transformed Problems

The untransformed problem can also be written in matrix form,

T
11| 2 z z z
min 5 A RS
' y y y

APPENDIX A. TEST PROBLEMS

r T
z z
LLP(2) : m;n % S
L y J y
F
z
st. A <b
| ¥
where
—ones(nz zeros(nz,nz) .
c= () € R™, S= () i € R™*",
zeros(ny) Sz, Syy
. -1 fl1<i=j<m
Sz,, € IR"F*™ satisfies (Szy){j =
0 otherwise,
1 fl1<i=j<m
Syy € R™™™ satisfies (S,)i; =
0 otherwise,
ones(m) P, -PF,
b - - o E Rsma A — Pz Py € Ramxs(nz-(—ny)l
—ones(m) -P. -P,

- 1
P, € R™"= and (P,)i; = {

1 ifl
P, € R™*™ and (B,)i; =
0

fi<i=jij<m

otherwise,

<i=j<m

otherwise.

275

Using a matrix transformation, this separable quadratic bilevel problem can be trans-

formed into a nonseparable quadratic problem.

Let v; € R™ and v, € R™ be any two vectors satisfying vIv, = 1 and vg' v, = 1.

Define Householder matrices H, and H,, using these vectors,

H, = I,._,—2v,vf
H, = In,,—2vvvz'

APPENDIX A. TEST PROBLEMS 276

and let

H, ,
He zeros(nz, ny)] .

zeros(ny, nz) H,

Also, let D be a positive definite diagonal matrix, and define M = HDH.

For convenience, we shall denote the variables in the transformed problem as ¢, and

MR

Therefore, we can write the transformed problem as

t,, where

T

t, t:
min %- MM J+JM[&}+%l
i ty ty ty
s.t. t, solves
T
tz
LLP(t;) : uzm -;- = MSM ,:
Y ty t,
tz
s.t. AM <b
[%}

Different choices of nz, ny, p, vz, v,, and D define distinct nonseparable quadratic
bilevel problems. The five test problems are defined with the following values. In all

cases, let
Vp=—— and v,=——
5 el Y lwyll’

where w, and w, are given below.

1. TL: nz =4, ny = 2, p = (1}, 3], diag(D) = 10 x ones(r), and

[0.9,0.4,0.4,0.1]

we

w, = [0.8,0.6].

APPENDIX A. TEST PROBLEMS

2. T2: nz2=5ny=5,p=[1,1

1 143
ole

W

wy

2, 3], diag(D) = 10 x ones(n), and

1
ﬁ[gv 01 31 3| 1]

1
—|0,8,6,0|.
10[01 16 0]

3. T3: nz =5, ny =10, p =[1,1,1%, 2, 2], diag(D) = ones(n), and

We =

wy=

[1,2,~3,0,0]

[2,1,0,~2,-3,0,0,1,-1,4].

4. T4: nz =10, ny = 5, p = [ones(4), 2], diag(D) = ones(n, 1), and

wy =

Wy-'-"—

['_51 41 -'31 —21 "11 0: 11 2; 31 4]

[0,1,0,-1,0].

277

5 Ts: nz=10,ny =15, p=1,1, 1,%, '5!, %, %, 3,5,7], diag(D) = 10 x ones(n), and

wy = ones(nz)

]

Wy

A.4 Nonlinear Problems

1. Problem: B5 from [10].

min
z,y

s.t.

—'23% - 322 - 4y1 + y%

z%+22:$4

z > 0 and y solves

LLP(z) : min y? — 5y,

s.t.

22 -2z, +2} -2+ w2
z2+ 3y - 4y2
y

1,0,0,0,1,0,-1,~-1,-1,0,0,0,2,0,0].

v v

v

APPENDIX A. TEST PROBLEMS 278

Solutions:

(a) Global: 2= = (2,0), y* = (1, 1), F* = -14.36.

(b) Local: z* =(0,2), y* = (1, £), F* = -12.6787.

2. Problem: EBL1 from [41].

!Izl’lgl ~z+y1+ ¥
s.t. ~-1<z<1

and y solves

LLP(z) : n}lm Y2

v

IA
- - o

st ¥2— 52y
0 < u

-1 < Y2

A

Solutions:
(a) Global: z= =1, y* = (0,0), F* = ~1.
3. Problem: YZZ1 from [70].

; 2, .2
min (z-1)°+2z%(y+1)
s.t. -1<=z<1

and y solves
LLP(z) : n},in ysin(5F)
st. —-1<y<1

Solutions:

(a) Global: 2* =1,y* = ~1, F* =0.

(b) Local: 2*=0,y*=afor -1 <a<l, F"=1.

APPENDIX A. TEST PROBLEMS

4. Problem: Ca Series of Problems - Cal (nz = 1) and Ca3 (nz = 3).

-
wh o LwE o+l
=1

s.t. -2<2z;<1, t=1l:n=z
and y solves
ne
LLP(z) : min igl(yf - z:%:)
st. y2e, t=1:nz
Solutions:
(a) Global: 2; = -2,y = ~1fori=1:nz, F* = -nz.

(b) Local: (2;=—}, 97 =~ or(z; =-2, 9 =-1) fori=1:nz.
5. Problem: Cb Series of Problems - Cbl (nz = 1) and Cb3 (nz = 3).

nz
min 3 (2} +ziy +zaf +47)

i=1

s.t. -10 < z; <10, t=1:nz
2 ap- 2 ;o ~1 -
zitaiyi +y; 22, t=1:nz

and y solves

ne
LLP(z) : m;n gz;y;

st. 0<zig?+z:+y? <10, i=1:nz.

Solutions:
(a) Global: Unknown.
(b) Local: (z;,%) = (0,v2) for i = 1 : nz, F* = 2v/2na2.

6. Problem: Cc Series of Problems - Ccl (nz = 1) and Cc3 (nz = 3).

nz

: 2
min E T Ys
v b

=1

279

APPENDIX A. TEST PROBLEMS
st. —w<z; <, i=1l:n2

z;siny; > 0, t=1:nz

ne
. mi 2
LLP(z) : min i-z_lz;y,

st. —w<yu<m ti=1l:nz

yicosz; > 0, t=1:n=z.

Solutions:
(a) Global: (z;, %) = (-, —7x), F* = ~x°nz. .

7. Problem: Cd Series of Problems - Cdl (nz = 1) and Cd3 (nz = 3).

ne

. 2 2

min ;(3? v — 2}y — 22¢ + 2))
=

st. 224y2<8, i=1:nz

and y solves

LLP(z) : m#n ;(yg - ::i)2

s.t. yi+2zy: > 0, i=1:n=z.

Solutions:
(a) Global: 27 = 1.3527, y? = 2, fori =1 : nz, F* = —1.4337nz.

8. Problem: Ce Series of Problems - Cel (nz = 1) and Ce3 (nz = 3).

ne
f;ﬁ;l Y (-2 - w)
i =1
st. 9y -~ z?y,- >0, t=1:nz

and y solves

280

APPENDIX A. TEST PROBLEMS

Solutions:

ne
LLP(z) : mx}n Zz,—y‘-’
i=1
st. >0, i=1l:nz
i=1:nz.

Y —22: -y +22>0,

(a) Global: (z;,y:) = (-3,2), F* = —20n=z.

9. Problem: Cg Series of Problems - Cgl (nz = 1) and Cg3 (nz = 3).

min
2y
s.t.

and

Solutijons:

ne
) (32} — 4627 + 25522 — 600z;)
i=1
0 <zi(z; —w) <12, t=1:nz
y solves
ne
LLP(z) : min Y " (3uf — 20y? + 1247 + 96y;)
i=1
st. (2:-2)(w: —-1) >0, i=1:nz
i=1:nz.

(z: —4) (% —3) >0,

(a) Global: z; = %, yre{,3},fori=1:nz, F*= _507.1.2.,.3_

281

Appendix B

Notation

Commonly used expressions from the text are listed below, along with the section in

which they are defined. Terms which are used only within the section in which they are
defined are not included here.

Expression
ag
a;
a.

ap

ay
Be
B:

Bi
7(w)

Section Meaning

3.5.1
4.2.2
4.2.2
4.2.3
4.24
4.2.5
5.3.2
4.2.2
5.2

3.5.2

Step size for which conditions of Lemma 3.5 are satisfied.
Step size for which conditions of Lemma 4.1 are satisfied.
Step to first minimum of ¢; along d..

Step to first minimum of ¢, along dp.

Step to first minimum of ¢; along d,,..

Step to first minimum of ¢4 along dy.

Algorithm tolerance for a multiplier to be considered in kilter.
Positive breakpoints of ¢; along d..

Positive breakpoints of ¢, along trust region direction d*.
Gradient of differentiable part of p,, at w.

282

APPENDIX B. NOTATION 283

é(w)
A
Amax
€

G
7(w)
b:(a)

w7 [b;]

§(w)
p(z)

351
3.6
3.8
4.4
5.2
3.5.1
4.2.2
6.6
6.6.2
264
4.2.1
3.3
34
423
425
3.2
35.2
4.24
54.1
5.2
5.2
3.7
4.3
4.2.2
4.2.3
424

Differentiable part of p, at w

Trust region radius.

Algorithm constant: maximum value of A.

Algorithm parameter: activity tolerance.

Generalized Rayleigh Quotient for ¢¥ at B}‘d".
Nondifferentiable part of p, at w

¢(ad) for a € (B;, Bis1)-

Multipliers relating gradients of nonbasic and basic activities.
Multiplier relating nonbasic activity n; and basic activity b;.
Lagrange multipliers associated with LLP(z).

Algorithm parameter: closeness tolerance.

Penalty parameter.

Algorithm constant: maximum value of u.

Coefficients (one for each dropped activity) used in defining dp.
Vector of values of the activities at w.

Feasible region of LLP(x).

+1 value associated with dropping directions in Theorem 3.9.
+1 value used in d,..

Maximum measure of curvature at type two point w* along d%.
Maximum measure of curvature at type one point w* along d*.
Maximum value of 7* over all iterations k.

Piecewise quadratic model function of p, defined at w.
Modified version of ¢ actually used in algorithm.

Maoadel function at a type one point for directions in 7;.

Model function at a type two point for directions in 73.

Model function at a type three point for directions in 73.

APPENDIX B. NOTATION

Xa(d7)
Xp(dr)

¥

L 53

Q(k, w, ad)
Qp, (w, ad)
Q,(w, ad)
Q3

o

A(w)

Ap

AN

b1

b2

bmax
B(F2)
B(S)
B(w)
B(2)

BP

BPc
BPkkT
ci(2,,)
dy

d;

ds

3.6
3.6
352
35.2
3.5.2
3.5.2
352
54.1
5.2
3.5.2
6.3
6.6.1
3.9
3.9
3.8
6.6.1
6.6.1
3.5.2
353

3.2
2.6.4
3.2
4.2.2
423
424

284

Actual decrease in p, along dr from w.

Predicted decrease in p, along dr from w.

Vector of Lagrange multipliers.

Lagrange multiplier associated with activity a;.
Generalized Rayleigh Quotient for h from w to w + ad.
Measure of second order change in p, from w to w + ad.
Measure of second order change in 7 from w to w + ad.
Generalized Rayleigh quotient for ¢5 along d%,.
Generalized Rayleigh quotient for ¢} at w + 85d¥.
Activity matrix at w.

Submatrix of A whose columns form a basis for A.
Submatrix of A consisting of the columns not in Ag.
Algorithm constant: used to evaluate a successful dr.
Algorithm constant: used to evaluate a very successful dr.
Algorithm constant: unboundedness check.

Indices in P2 for which both V); and Vg; are in Ag.
Indices of activities in set S whose gradients are in Ap.
Hessian of differentiable part of p, at w.

Hessian of p,(w? + ad) for first order point w® and d = Z=.
Bilevel problem.

Compact form of BPgxr.

One Jevel problem related to BP.

Partial derivative with respect to y; of the Lagrangian function of LLP(z).
Approximate trust region direction at a type one point.
Appraximate trust region direction at a type two point.

Approximate trust region direction at a type three point.

APPENDIX B. NOTATION : 285

d. 4.2.2 Generalized _Cauchy step.

dp 3.5.2 Dropping direction (see also Section 4.2.3).

dy 4.2.5 Horizontal part of Newton step.

dnc 4.24 A direction of negative curvature for H.

dy 4.2.5 Newton direction.

dr 3.6 Trust region direction (see also Section 4.2).

d, 425 Vertical part of Newton step.

Dpo 423 Indices in P2 for which); and g; are dropped along dp.
Do 4.2.3 Indices in P2 for which \; (but not g;) is dropped along dp.
Dg,g 4.2.3 Indices in P2 for which g; (but not J;) is dropped along dp.
Ds 423 Indices of activities in set S which are dropped along dp.
f(z,v) 21 Lower level objective function in BP.

F(z,y) 2.1 Upper level objective function in BP.

g9(=,y) 21 Lower level constraint functions in BP.

G(z,y) 2.1 Upper level constraint functions in BP.

H 3.5.2 Hessian of Lagrangian function at w.

GBP 23 Generalized Bilevel Problem

T 2.1 Induced (feasible) region of BP.

T*[7] 6.6.5 Intervals used in generalized necessary optimality conditions.
K*[4] 6.6.5 Intervals used in generalized necessary optimality conditions.
L(z,y,N) 2.6.4 Lagrangian function of LLP(z).

LBP 2.6.1 Linear bilevel problem.

LLP(z) 2.1 Lower level problem in BP, parameterized by z.

m 21 Number of lower level variables in BP.

M 264 {1,---,m}.

M'(e) 44 M\ M.

APPENDIX B. NOTATION 286

M'(w)
M°(¢)
M°(w)
(3
N(P2)
N(S)
N[l
P

Pu
P

P_(¢)
P(w)
P_(e)
PL(w)
PX(w)
P (w)
P2(e)
P2(w)
Pr(¢)
Py(w)
Pi(¢)
P{(v)
Pi(¢)
P(w)
Fy(e)
Fy(w)

35
4.4
3.5
2.1
6.6.2
6.6.2
6.6.5
2.1
3.3
2.1
4.4
3.5
44
3.5
3.5.2
3.5.2
4.4
3.5
4.4
3.5
4.4
35
4.4
3.5

3.5

M\ M%(w).

{i e M : c;(w) =0}

{ie M:ci(w)=0}.

Number of upper level variables in BP.
Indices in P2 for which only V); isin Ap.
Indices of activities in set S whose gradients are in Ay
Intervals used in generalized necessary optimality conditions.
Number of lower level constraints in BP.
¢, penalty function for BP¢.

{1,---,p}.

{i € P: \i(w) = gi(w)}.

{i € P: \i(w) = gi(w)}.

P_(e) \ P2(e)-

P-(w)\ P2(w)-

{i € PL(w) : Xi(w) > 0}.

{i € PL(w) : Mi(w) < 0}

{i € P=(¢) : i(w) = 0 or g;(w) = 0}.

{i € P: di(w) = gi(w) = 0}

{ie P\ P(¢) : Mi(w) < 0}.

{i € P: A(w) < gi(w)}.

Py(e) \ PY(e)

{i € Pr(w) - A(w) # 0}

{i€ Pi(e) : X = 0}.

{i € A(w) : M(w) =0}.

{i e P\ P=(¢) : gi(w) < 0}.

{i € P: gi(w) < Ai(w)}.

APPENDIX B. NOTATION 287

Fy(e)
Py(w)
B3 ()
F3(w)
PF(n)
q
Q*[7]
Lo
R(z)
R*[7]

44
3.5
44
3.5
3.3
4.2.2
6.6.5
4.3
2.1
6.6.5
2.1
2.1
4.4
3.5
4.4
3.5
3.6
6.6.5
6.6.5
6.6.5
6.6.5
3.5
422
423
424
425

Py(e) \ B(e)-

{i € Py(w) : gs(w) £0}.

{i € P,(¢): 9: = 0}.

{i € Py(w) : gi(w) = 0}.

Penalty function subproblem.

Number of variables in BP¢.

Intervals used in generalized necessary optimality conditions.
Algorithm parameter: sufficient decrease coefficient.

Rational reaction set of 2.

Intervals used in generalized necessary optimality conditions.
Number of upper level constraints in BP.

{1,---,t}.

T\ T%e).

{i € T : G;(w) # 0}.

{i e T : Gi(w) = 0}.

ii €T : Gi(w) = 0}.

Trust region subproblem at w with radius A.

Value used in developing necessary optimality conditions.
Intervals used in developing necessary optimality conditions.
Value used in developing necessary optimality conditions.
Intervals used in generalized necessary optimality conditions.
(z, v, ,\) € Rt '
Directions which maintain all the activities within the model.
Directions which maintain the desired activities within the model.
Directions which maintain all the activities within the model.

Directions which maintain all the activities within the model.

APPENDIX B. NOTATION 288

Z(w)
ZTHZ

4.2.2
4.2.4
35.2
3.5.2

The steepest descent direction (in the reduced space).

Direction of negative curvature for ZT HZ at a type three point.
Orthogonal matrix which satisfies Z7A = 0 at w.

Reduced Hessian of the Lagrangian function.

Bibliography

[1] E. Aiyoshi and K. Shimizu. Hierarchical decentralized systems and its new solution
by a barrier method. IJEEE Transactions on Systems, Man, and Cybernetics, 11:444—~
449, 1981.

[2] E. Aiyoshi and K. Shimizu. A solution method for the static Stackelberg problem
via penalty method. IEEE Transactions on Automatic Control, 29:1111-1114, 1984.

[3] F. Al-Khayyal, R. Horst, and P. Pardalos. Global optimization of concave functions
subject to quadratic constraints: an application in nonlinear bilevel programming.

Annals of Operations Research, 34:125-147, 1992.

[4] N. Alexandrov and J. Dennis. Algorithms for bilevel optimization. Research Re-
port CRPC-TR94474, Center for Resea&ch on Parallel Computation, Rice University,
1994.

[5] N. Alexandrov and J. Dennis. Multilevel algorithms for nonlinear optimization.
ICASE Report 94-53, Institute for Computer Application in Science and Engineering,
NASA, 1994.

[6] G. Anandalingam and D. White. A solution method for the linear static Stackelberg
problem using penalty functions. IEEFE Transactions on Automatic Control, 35:1170~
1173, 1990.

289

BIBLIOGRAPHY 290

[7] G. Anandalingham and T. Friesz. Hierarchical optimization: An introduction. An-

nals of Operations Research, 34:1-11, 1992.

[8] J. Bard. A grid search algorithm for the linear bilevel programming problem. In Pro-

ceedings of the 14" Annual Meeting of the American Institute for Decision Science,

volume 2, pages 256-258, 1982.

[9] J. Bard. Regulating nonnuclear industrial waste by hazard classification. Journal of

Environmental Systems, 13:21-41, 1983/84.

[10] J. Bard. Optimality conditions for the bilevel programming problem. Naval Research

(11]

(12]

(13]

(14]

[15]

[16]

Logistics Quarterly, 31:13-26, 1984.
J. Bard. Convex two-level optimization. Mathematical Programming, 40:15-27, 1988.

J. Bard and J. Falk. An explicit solution to the multi-level programming problem.
Computers & Operations Research, 9:77-100, 1982.

J. Bard and J. Moore. A branch and bound algorithm for the bilevel programming
problem. STAM Journal on Scientific and Statistical Computing, 11:281-292, 1990.

R. Bartels, A. Conn, and J. Sinclair. Minimization techniques for piecewise differen-
tiable functions: The £; solution to an overdetermined linear system. SIAM Journal
on Numerical Analysts, 15:224-241, 1978.

0. Ben-Ayed and C. Blair. Computational difficulties of bilevel linear programming.
Operations Research, 38:556-560, 1990.

O. Ben-Ayed, D. Boyce, and C. Blair. A general bilevel linear programming for-
mulation of the network design problem. Transportstion Research B, 22B:311-318,
1988.

BIBLIOGRAPHY 291

[17] Z. Bi. Numerical Methods for Bilevel Programming Problems. PhD thesis, Depart-
ment of Systems Design Engit{eering, University of Waterloo, 1992.

[18] Z. Bi, P. Calamai, and A. Conn. An exact penalty function approach for the linear
bilevel programming problem. Department of Systems Design Engineering, Univer-

sity of Waterloo.

(19] Z. Bi, P. Calamai, and A. Conn. An exact penalty function approach for the linear
bilevel programming problem. Technical Report #167-0-310789, Department of
Systems Design, University of Waterloo, 1989.

[20] Z. Bi, P. Calamai, and A. Conn. An exact penalty function approach for the nonlinear
bilevel programming problem. Technical Report #180-0-170591, Department of
Systems Design, University of Waterloo, 1991.

[21] W. Bialas and M. Karwan. On two-level optimization. JEEE Transactions on Au-
tomatic Control, AC-27:211-214, 1982.

[22] W. Bialas and M. Karwan. Two-level linear programming. Management Sciences,

30:1004-1020, 1984.

(23] J. Bracken, J. Falk, and J. McGill. The equivalence of two mathematical programs

with optimization problems in the constraints. Operations Research, 22:1102-1104,

1974.

[24] J. Bracken and J. McGill. Mathematical programs with optimization problems in
the constraints. Operations Research, 21:37-44, 1973.

[25] J. Bracken and J. McGill. Defense applications of mathematical programs with

optimization problems in the constraints. Operations Research, 22:1086-1096, 1974.

BIBLIOGRAPHY 292

{26] J. Bracken and J. McGill. A method for solving mathematical programs with non-
linear programs in the constraints. Operations Research, 22:1097-1101, 1974.

[27] R. Burton and B. Obel. The multilevel approach to organizational issues of the firm

- a critical review. Managemnent Science, 5:395-414, 1977.

[28] P. Calamai and L. Vicente. Generating quadratic bilevel programming problems.
ACM Transactions on Mathematical Software, 20:103-119, 1994.

[29] W. Candler, J. Fortuny-Amat, and B. McCartl. The potential role of multilevel pro-
gramming in agricultural economics. American Journal of Agricultural Economics,

63:521-531, 1981.

[30] W. Candler and R. Norton. Multi-level programming and development policy. Staff
Working Paper 258, World Bank, 1977.

[31] W. Candler and R. Townsley. A linear two-level programming problem. Computers
& Opergtions Research, 9:59-76, 1982.

[32] Y. Chen and M. Florian. The nonlinear bilevel programming problem: a general for-
mulation and optimality conditions. Technical Report CRT-794, Centre de Recherche
sur les Transports, 1991.

(33] T. Coleman and A. Conn. Second order conditions for an exact penalty function.

Mathematical Programming, 19:178~185, 1980.

[34] T. Coleman and A. Conn. Nonlinear programming via an exact penalty function:
Global analysis. Mathematical Programming, 24:137-161, 1982.

[35] T.F.Coleman and A.R. Conn. Second order conditions for an exact penalty function
and applications. Research Report CORR 78-27, Department of Combinatorics and

Optimization, University of Waterloo, 1978.

BIBLIOGRAPHY 293

[36] A.Conn. Constrained optimization using a nondifferentiable penalty function. SIAM
Journal on Numerical Analysis, 10:760-784, 1973.

[37] A. Conn, N. Gould, A. Sartenaer, and Ph. Toint. Global convergence of a class of
trust region algorithms for optimization using inexact projections on convex con-

straints. SIAM Journal of Optimization, 3:164-221, 1993.

[38] A. Conn, N. Gould, and Ph. Toint. Global convergence of a class of trust region algo-
rithms for optimization with simple bounds. SIAM Journal on Numerical Analysis,

25:433-460, 1988.

[39] S. Dempe. A simple algorithm for the linear bilevel programming problem. Opti-
mization, 18:373-385, 1987.

(40] J. Dennis, Jr. and R. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice Hall, Inc., 1983.

[41] T. Edmunds and J. Bard. Algorithms for nonlinear bilevel mathematical programs.
IEFEFE Transactions on Systems, Man, and Cybernetics, 21:83-39, 1991.

(42] J. Falk. A linear max-min problem. Mathematical Programming, 5:169-188, 1973.
{43] J. Fortuny-Amat and B. McCarl. A representation and economic interpretation

of a two-level programming problem. Journel of the Operational Research Society,

32:783-792, 1981.

(44] J. Gauvin and G. Savard. The steepest descent method for the nonlinear bilevel

programming problem. Ecole Polytechnique de Montréal.

[45] A. Geoffrion and W. Hogan. Coordination of two-level organizations with multiple
objectives. In A.V. Balafrishnan, editor, Technigques of Optimization, pages 455-466.
Academic Press, New York and London, 1972.

BIBLIOGRAPHY 294

[46] P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press Inc.
(London) Ltd, 1981.

[47] P. Hansen, B. Jaumard, and G. Savard. A variable elimination algorithm for bilevel
linear programming. Research Report # 17-89, Rutcor, 1989.

[48] P. Hansen, B. Jaumard, and G. Savard. New branching and bounded rules for
linear bilevel programming. SIAM Journal on Scientific and Statistical Computing,
13:1194~1217, 1992.

[49] A. Haurie, G. Savard, and D. White. A note on: An efficient point algorithm for a
linear two-stage optimization problem. Operations Research, 38:553-555, 1990.

[50] Y. Ishizuka and E. Aiyoshi. Double penalty method for bilevel optimization problems.
Annals of Operations Research, 34:73-88, 1992.

[51] J. Jidice and Faustino. The solution of the linear bilevel programming problem by
using the linear complementarity problem. Departamento de Matematica, Universi-

dade do Coimbra.

[62] C. Kolstad. A review of the literature on bi-level mathematical programming. Tech-
nical Report LA-10284-MS, UC-32, Los Alamos National Laboratory, 1985.

(53] C. Kolstad and L. Lasdon. Derivative evaluation and computational experience
with large bi-level mathematical programs. BEBR Faculty Working Paper 1266,
College of Commerce and Business Administration, University of Illinois at Urbana-

Champaign, 1986.

[54] L. LeBlanc and D. Boyce. A bilevel programming algorithm for exact solution of
the network design problem with user-optimal flows. Transportation Research B,
20B:259-265, 1986.

BIBLIOGRAPHY 295

[55] Z. Luo, J. Pang, and S. Wu. Exact penalty functions for mathematical programs
and bilevel programs with analytic constraints. Preliminary Version, February 1993.

[56] P. Marcotte. Network design problem with congestion effects: a case of bilevel

programming. Mathematical Programming, 34:142-162, 1986.

[57] P. Marcotte and D. Zhu. Exact and inexact penalty methods for the generalized
bilevel programming problem. GERAD, June 1993.

(58] M Nicholls. The application of non-linear bi-level programming to the aluminum
industry. Journal of Global Optimization, 8:245-261, 1996.

[59] G. Papavassilopoulos. Algorithms for static Stackelberg games with linear costs
and polyhedra constraints. In Proceedings of the IEEE Conference on Decision and
Control, pages 647-652, New York, 1982. IEEE.

[60] T.Pietrzykowski. An exact potential method for constrained maxima. STAM Journal
on Numerical Analysis, 6:299-304, 1969.

[61] D. Ryan and M. Osborne. On the solution of highly degenerate linear programmes.
Mathematical Programming, 41:385-392, 1988.

[62] G. Savard and J. Gauvin. The steepe;t descent direction for the nonlinear bilevel

programming problem. Operations Research Letters, 15:265-272, 1994.

[63] H. Scheel and S. Scholtes. Mathematical problems with equilibrium constraints:
stationarity, optimality and sensitivity. Preprint submitted to Elsevier Preprint,

July 1996.

[64] S. Scholtes and M. Stéhr. Exact penalization of mathematical problems with equi-

librium constraints. Spring, 1996.

BIBLIOGRAPHY 296
(65] H. Tuy, A. Migdalas, and P. Virbrand. A quasiconcave minimization method for
solving linear two-level programs. Journal of Global Optimization, 4:243~263, 1994.

[66] L. Vicente and P. Calamai. Bilevel and multilevel programming: A bibliography
review. Journal of Global Optimization, 5:291-306, 1994.

[67] L. Vicente, G. Savard, and J. Juidice. Descent approaches for quadratic bilevel
programming. Journal of Optimization Theory and Applications, 81:379-399, 1994.

[68] H. von Stackelberg. The theory of the Market Economy. Oxford University Press,
London, 1952.

[69] J. Ye and D. Zhu. Optimality conditions for bilevel programming problems. GERAD,
July 1993.

[70] J. Ye, D. Zhu, and Q. Zhu. Generalized bilevel programming problems. GERAD,
August 1993.

