Dynamic Scale-out Mechanisms for
Partitioned Shared-Nothing Databases

by
Alexey Karyakin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2011

©Alexey Karyakin 2011

AUTHOR'S DECLARATION

| hereby declare that | am the sole author of this thesis. This is a true copytwdisein-
cluding any required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronically available to the public.

Abstract

For a database system used in pay-per-use cloud environmasti; staling becomes an
essential feature, allowing for minimizing costs whileaamodating fluctuations of load.
One approach to scalability involves horizontal database paindgi@nd dynamic migration
of partitions between servers. We define a scale-out operasora combination of
provisioning a new server followed by migration of one or more marsitto the newly-

allocated server.

In this thesis we study the efficiency of different implema¢ions of the scale-out operation
in the context of online transaction processing (OLTP) worklodus. designed and
implemented three migration mechanisms featuring diffeseategies for data transfer. The
first one is based on a modification of the Xen hypervisor, Snokyfand uses on-demand
block transfers for both server provisioning and partition nigna The second one is
implemented in a database management system (DBMS) andullsésansfers for partition
migration, optimized for higher bandwidth utilization. The third asea conventional
application, using SQL commands to copy partitions between servers.

We perform an experimental comparison of those scale-out meclsafusulisk-bound and
CPU-bound configurations. When comparing the mechanisms we ariagizempact on
whole-system performance and on the experience of individual clients.

Acknowledgements

I would like to thank Professor Kenneth Salem for being mgesvisor. | admire his
patience, that made the completion of this thesis possible, andyrateful for his thorough
critical comments, that helped me to make it more consistent.

I would like to thank Professor Ashraf Aboulnaga and Professor RamuiaBa for being my
thesis readers.

| am grateful to University of Waterloo for providing funding foi studies and being an
exciting place.

Table of Contents

AUTHOR'S DECLARATION. .. ettt ttttttttttee ettt e e e e aaaaaaeaaeeasassssnnsnsansssseseeeeeeenes i
Y 015 1 =T PP iii
ACKNOWIEBAGEIMENTS. ... et e e et e e e e e et e e e e e e e tb e e e e eeaaaaeaeaeeens v
LIST OF FIQUIES. ...ttt ettt ettt e e e e e e e e e e e e e e bbbt et e e e e e e e e e e e e e e eeaaeeeeeees Vil
S 0 1= Vil
(O gF=To 1 (=T g I [oY 0T (1 Tox 1T o AR 1
Chapter 2 Scale-0ut MECNANISIMIS.oiiiiiii e e e e e e e e e e e eaeeas 4
2.1 SYSTEIM OVEBIVIEW. .. it e ettt e et e e e e et e e e e e e et e e e e e ee s e e e e e e e e e e eaaaeeennas 4
2.2 Snowflock-based MeChaNISM.........ccooiiiiiiiir e e e e e 6
2.2.1 SNOWFIOCK HYPEIVISOTot e e aes 6
2.2.2 SNOWFIOCK-DASEd SCAIE-0OUL........uuuiiiiiiiie e 7
2.3 DBMS-IEVEI MECNANISIM.....eiiiiiiiiie et e e e e e e e e e e e e e e s e e e e e e e eeaeennn s 8
2.4 Application-level MeChaniSM............uuiiiiii e 9
2.5 ROULING @Nd LOCKING.....ciiiiiiiiiiiiiiiiii bbb eeenenes 10
2.6 NOUE PrOVISIONING. ... iiiiiiiiiei e ee ettt e ettt e e e e et e e e e et e et e e e e ee et e e e e e eeaaa e aeaeeessnnaeennaaes 11
Chapter 3 Scale-out Mechanism Implementation..............cuuuueiiiiiiiiiiiie e 12
3.1 COMMON FRATUIES. ...ttt et e e e e et et e e e e e ee e e et e e ean e e eaneeeens 12
3.1.1 MYSQL PartitiOnNiNg.......uiiiieiiiiii et e et e e e et e e e e e et e e e e e aa 12
3.1.2 PArtition DICHONAIY.......ceiiiiiiiiieeeeee ettt e e e e e e e e e e e e e e e e 13
3.1.3 Partition DEEECHION. .. .uuueiiieie et e e e et b bbb e e e e e e e e e e eaa s 13
3.1.4 PArtition LOCKING......uuuuuiiiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e e s e e e e e e e e enbanas 14
3.1.5 Client-Server Protocol and Dynamic ROULING...........coveeiiiiiiiiiieieeiiiie e 15
3.2 Features Specific to the DBMS-level MechaniSm...........ccccovvviiiiiiiiiiiiiiii e 18
3.2.1 LoOW-LeVel PArtition 1/O........oiiieiie e e et e e e e ean e 20
3.2.2 Dirty Page HandliNg........couuuiiiiiiis e e e 20
3.2.3 Preserving Buffer POOI STALe...........uuiiiiiiiiiiiieeeiee e 20
3.2.4 CONSISIENCY ISSUEBS......ciiiiiii i eee ettt e et e e e e e e e e e e e e et e eanns 21
3.2.5 Transaction Log and RECOVEIY SEAe...........ccooiiuiiiiiiiiiiiiiiiieeeee e 22
3.2.6 RECOId HiSTONY STALE......ceiiiiiiiiieeee ettt e e eeees 23
3.2.7 INSErtiON BUREI ... 24
Chapter 4 Experimental MethodoIOgY..........uuuiiiiiiiiiiiiiiieci e 25
4.1 Overview Of the EXPEIMENTS........ocuuiiii e e e e e e eaaa e aes 25

YA 014 [0 To IR 26

4.2.1 Strictly Partitioned WOrKIOad.............ooooiiiiiiiiiie e 27
4.2.2 DAtabaASE SIZING.....ceuiiiie it 27
4.2.3 CoNtrolling the LOAA.........uuuuiiiiiiiiiiiiiieee e 27
2 |V = 1 [S 31
4.3.1 Cost and Throughput IMETIICS.uuiie i e e a e 31
4.4 Experimental ENVIFONMENT..........oiiiiiiii ettt e e 32
Chapter 5 Experiments and RESUILS........ccooiiiiiiiii e 35
TR O V= V1 PSP 35
5.2 DisSk-BOUNA EXPEIMENTS.cciiiiiiii ettt e e e et e e e e e e e e e e eaaaas 36
5.3 CPU-BoUN EXPEIMENTS......ciiiiiiiii ettt e e et e e e e e et e e e e e e aaaa e e e eanaeees 44
5.3.1 CPU-Bound, MaxXimum LOA...........couuiiiiiiieieiieeie et ee e e st e et s e e e e e s e esana s 44
5.3.2 CPU-Bound, Controlled LOad.............oooiiiiiiiiiiiiiiiicee e a7
Chapter 6 REIALEA WOTK.........uueieieeiiiiiiieee ettt e e e e e e e e e e e e e e 52
(0 R o 1H o I @20 o] 11 1 11 o PSP 52
A1 (=42 L1 [o T 52
6.3 Parallel and Distributed Databases.............cooeviuiiiiiiiiiiii e 54
6.4 Scalable Non-Relational Data SEIVICES..........coooiiiiiiiiiiiiii e 56
6.5 MUItI-tENANT AAADASES.uvueiiiiiieiie aeeeeaees 56
Chapter 7 Conclusions and FULUIE WOTK...........coiiiiiiiiiiiiie et e e e e 59
BIBHOGraPNY ... 61

Vi

List of Figures

Figure 1. Scale-out scenario with two servers. Partitions 5, 6, 7 are nggratin

overloaded Server At0 NEW SEIVET B. ... e e e e e e e e e e e e e annns 5
Figure 2. Stages of DBMS-level partition migration.ccooeveeiiiiiiiiie e e 9
Figure 3. Stages of application-level partition migration.ccccccccvvieienniiniiieeneenn. 10

Figure 4. An example of two-table, four-partition configuration in MySQL. 16

Figure 5. An illustration of the partitioning configuration in Figure 4.....................uueees 17

Figure 6. Reachability issues with scale-in scenario. A. A late @egsses the node that is
shut down. B. Redirection chain is broken by shutting down an intermediary node. C.
Shutting down any node will prevent some clients from reaching their partitions....... 18

Figure 7. Redirection SEqQUENCE QIagram.........ccceiiiiuiiie et e e e et e e e e et e e e e eaa e e e e eesaaa e 19

Figure 8. Time lines of the transaction cycle: TPC-C (A) and our modif€2tT (B). The
shaded blocks correspond to processing time in the server and client.33

Figure 9. Transaction rate regulation. Normal execution (A). Small delay dubeduled
conflict, no cancellation (B). Big delay due to previous transaction (tx1) being too slow,

transaction tX2 IS CANCEIIEA (C).....uuuuruiiiiiiiiiiiiie e 33
Figure 10. Timeline of the eXPeriMENtS.t e 36
Figure 11. Average transaction throughput per warehouse.cccccooveiiiiiiiii i, 39
Figure 12. Network throughput between physical NOdES...........cccooeiiiiiiiiiiiiiiee e, 39
Figure 13. Detailed transaction and network throughput during DBMS-level scale-o040

Figure 14. Downtime distribution for warehouses (scale-out, 4§ 105 minutes)............. 42
Figure 15. Average throughput in the migrating partitions, per warehouse..................ccceuunen.. 43
Figure 16. Average throughput in the non-migrating partitions, per warehouse.......... 43

Figure 17. Distribution of throughput values of 1-minute intervals during the isiéatly

state period in all 12 maximum-load CPU-bound experimental runs.ccccceeiiiiiiiiininnnn. 45
Figure 18. Comparative throughput graph for the CPU-bound experiment.: 46.........
Figure 19. Average transaction throughput in the CPU-bound experiment, per warehouse....48
Figure 20. Average response times during the CPU-bound experiment...................48..........

Figure 21. Network throughput. For DBMS-level and application-level mechanisenfs;st
peak corresponds to Snowflock-based OS state and empty database transfer athethe fur
high utilization levels are for the partition transfers. During the gap afteirshedak the

MySQL is initializing at the NEW NOTE.uuiiiiiiiii e 49
Figure 22. Number of one-second time intervals when a warehouse is not availahle.51
Figure 23. Worst-case throughput in the CPU-bound experiment.ccccceeeeeivveiiiineeeeiineens 51

Vil

List of Tables

Table 1. Mix ratios for tranSaction tYPES........vieiiiiiiiie e 29.........
Table 2. Database size parameters (total values for the loaded databasehegeskent....30
Table 3. Disk-bound experiment time parameters..........ooivvuiiii i e
Table 4. Data transfer MEaASUIEMENTS.ovvvieeiiiiiiiiee e e e e e e e e e e et a e e e e e eeeaeaanaeeenes
Table 5. Results of the lost work analysis (SCal€-0UL)............uuuuiriiiiiiiiiiiiieeeee e
Table 6. Results of the lost work analysis (Scale-in)..........coouuuiiiiiiiiiiiiii e,
Table 7. CPU-bound experiment time Parameters...........ooooiiiiiiiiiiiiiiiiiiieeeee e e e e
Table 8. Average total throughput during the initial and the final steadypstatels

(normalized per warehouse), maximum load, tpmMC...........oooiiiiiiiiii e
Table 9. Results of the lost work analysis, scale-out................cooeiiiiiieiiiiii e, a7...
Table 10. Data transfer measurements in the CPU-bound experiment...................... 50.........
Table 11. Summary of the forms of migration and the associated costs [30]..............57
Table 12. Milti-tenancy models from [30] and their implications on migration............. 58

viii

Chapter 1

Introduction

Many applications naturally have highly irregular and unpredictabéel over time.
Interactive internet services, which have proliferated ower last few years, are great
examples of such applications. Supporting a potentially fast ugageh rate as well as
accommodating unpredictable load spikes are technically chiatepgoblems. An obvious
solution is to over-provision computational resources so that thetyquliservice is
maintained at a satisfactory level most of the time. Agsalt of overprovisioning, the
average load level of servers in datacenters is commonlptadc® be less than 30% [1]
and sometimes claimed to be as low as 4% [2], causing ecoalamsiwell as environmental
concerns.

With the advent of commodity virtualization and, as a result,atinbty to easily supply
computing power in the form of virtual machines (VM), the modetlotild computing has
been seen as a solution to the problem of effectively utilizing computing resotite cloud
computing model enables flexible, on-demand resource allocatiaeeis, with a pay-as-
you-go payment system. Since the cloud providers utilizeshigyed pools of resources, the
combination of on-demand allocation with ability of rapid provisioning can thealigthelp

to accommodate load spikes. This desirable property has beeredetfe aselasticity of
services, a term that has been used extensively as a marketing buzzword.

However, the success of the cloud computing model, particularlyedocing resource
reservations, tends to be modest. In practice, overprovisioning had shiftee customers of
"elastic" services, who use the most powerful configuratafngrtual machines and keep
them running regardless of the actual load [3]. One reason fasfthat the time required to
adapt is not small enough to react to a spike. The other [@ssdson is the difficulty of
dynamically scaling systems over many nodes. Hence, using the mostyb&iés helps to
keep the number of nodes at minimum, and constantly running them alymdsnic
reconfigurations.

Insufficient ability to efficiently utilize dynamically-prisioned resources, or szale, is
attributed mostly to software components of systems, witltimaal relational database
systems being the particular culprit. The problem of database $itplatises because of the
significant amount of state, typically located in perman¢éotage, that has to be moved
during a reconfiguration. Additionally, the rich semantics tdns$actional relational
operations is harder to maintain over a dynamic, distributed system.

Research in the area of database scalability and ehastan be classified into three sub-
areas:

Fragmentation. To evenly distribute the load between nodes, it has to bergplifragments
that can be processed independently as much as possible.ohahbitifragmentation is
defined manually during the physical design phase. However, #rerdully automatic

1

approaches [28]. Unfortunately, finding an exact optimal solutiorcasiputationally
problematic, therefore statistical approximations and heuristics ate use

Allocation policy. In order to react to the changes in the workload, there Haes &osystem
component to decide which data should be placed onto each gingcesde and when it
should be placed there. The ultimate goal is optimization sfuree usage, and hence
minimization of costs, while adhering to service level objectives [34].

Efficient reconfiguration. When a decision to redistribute data between nodes has been
made, the system should perform a reconfiguration in anegftichanner [30]. We define
reconfiguration as a three-step process includipgivisoning of computing nodes,
migration of the state between nodes, and adjustingdhieng of clients' requests to the new
locations of their data. Two common specific cases of reaanatign includescale-out and
scale-in, which correspond to increases and reductions of processing power, respectively. The
current activity should be preserved as much as possible, with angi@asruption kept as
short and small as possible. Since reconfiguration itself sn&ignificant costs, and it likely
happens at the time when the system is overloaded, this prableat trivial either. Data
migration is often the largest component of those costs becadlke amount of database
state involved. The design choices for the reconfiguraticorittigns influence not only the
efficiency of reconfiguration itself, but also the performabete/een reconfigurations, which

boils down to the issue of efficiency and processing costs.

The first two subproblems have drawn more attention in therddseammunity, compared
to the last one. Efficient reconfiguration has been perceigednaimplementation issue,
incurring a constant and inevitable cost, and not much worth ina#stig This fact has
motivated us to study the problem of elastic reconfiguration.

The goal of this thesis is to experimentally study theciefiicy of several techniques for
reconfiguration of a relational database. In particular, wasfamn thescale-out procedure
during which the number of processing nodes increases in respoirsgelased load. We
define efficiency from two, partly conflicting, points of wethe provider's and the client's.
From the provider's perspective, an efficient sysésm whole should produce more work
while consuming fewer resources, such as virtual machineshwangcusually paid on per-
hour basis. From a client's view, a system should maintagicpable performance while
causing as little service disruption as possible.

We design and evaluate three approaches for database scalbeotitst one is based on
system-level, application-independent cloning of the whole virtuahmacwith lazy on-
demand data transfers. Our implementation uses Snowflock [E]base for the scale-out
mechanism. Snowflock has minimal "hard" downtime for both the raignode and the
cloned one but on-demand data transfer can incur substantial penadyms of both
throughput and degradation of service quality. In addition to wnegs performance
characteristics and comparing them to other approaches, wesdibeupractical issues of
using a virtual machine-based approach for dynamic database scale-out.

The second approach is implemented at the database managgstent(®BMS) level and
takes advantage of additional DBMS-specific information tcebéi@indle partitioning of the
data between nodes. We have developed a prototype for this apfraseti,on the MySQL

2

open source DBMS. Handling database partitions dynamically involaking special
measures to ensure consistency between nodes. Our systempésuents dynamic query
routing from the clients to DMBS with no intermediary routed with no modification of
applications. We refer to this as th8MS-|evel approach in this thesis.

Finally, we included for comparison a simple, application-lewethanism that uses normal
SQL queries to move data partitions between nodes. This appezpstes no modifications

to the DBMS except adding partition locking and request routungch are shared with the
DBMS-level mechanism. We refer to this as épplication-level approach in this thesis.

The contributions of this thesis include:

* design and practical implementations of the Snowflock-based, DM and
application-level scale-out mechanisms;

* an experimental evaluation of those scale-out mechanismgjirgjutheir relative
performance, degree of service disruption, and discussing theabisty and
limitations.

Chapter 2

Scale-out Mechanisms

2.1 System Overview

In our study we consider a transaction processing system disttibuér a set of storage and
processing nodes in thahared-nothing architecture. The system contains its state in a
partitioned database which may be stored in main memary locally-attached disks. The
database conceptually consists of many partitions with eadheofi being dynamically
allocated in one of the nodes. The patrtitioning is organized horizontallyartéions share
the same schema and contain different portions of the same set of tables. Each sadehost
database server process, which is responsible for a subset of database partitions

We chose the shared-nothing architecture because we beliewwidgsr more opportunity
for optimization. Since more data are moved, the efficiencgngf reorganization process
becomes more important. The problem becomes even more challengimgdef different

types of memory (RAM and storage) involved. On the other handpfeslbwer centralized

shared storage makes it possible to maximize systemgtipat during normal operations
and to avoid the bottleneck of storage scalability.

We assume that the workload is also partitioned such thhttesnsaction is associated with
a single database partition. For example, in a Web applicatior&ache user has their own
information as a part of the server database which is adcessewhen the user works with
the application. The absence of inter-partition transactiongtlgrsinplifies our design
because in any possible configuration partitions are not sphieketnodes. As a result, the
system does not have to process distributed transactions involuhgplennodes. The
processing load may consist of CPU processing and 1/0O bandusdiye. Although each
partition is associated with a portion of load, some partitimay have more load than
others, and that load may vary over time. Therefore, a node hawogstant capacity may
be able to handle different numbers of partitions at differemtsi When the load for the
partitions on a node becomes too high, the system may move one emfmihe node's
partitions to a less loaded node along with the corresponding poftitve load, effectively
implementing load balancing.

In the cloud computing scenario processing nodes can be allocatksinamd and paid per-
use. Thus, by transferring some partitions to a newly addcaode the system can
dynamically accommodate more load, i.e. it sese out. The reverse scenarisgale-in, is
also possible when the partitions are consolidated into snrmalleber of nodes and extra
nodes are deallocated, reducing the operating costs. Ignoringhamssn to start and stop
servers, both scale-out and scale-in can be seen aspaeoics cases of load balancing.
Figure 1 illustrates the components of an example systerorpeny scale-out from one to
two nodes, migrating one partition at a time.

4

We define two major operations which a scalability mechanmplements:scale-out and
scale-in. We will use the more general termeconfiguration to refer to either scale-out
operation or scale-in operation. The scale-out operation consists of gotdwig ¢ning) new
node(s) to the system, redistributing part of the database tmetvenodes fartition
migration), and adjusting client-server communication so the clientsvcak with the new
nodes fouting). The reverse operation, scale-in, includes steps to consdiidat@atabase
into a smaller number of nodes, redirect the clients, and yfimathove the now-inactive
nodes from the cluster. The scale-out and scale-in operations tapfhig whole database
cluster, while migration is performed in each partitiodividually. All the components of
scale-out and scale-in operations contribute to the performermact on the server and
client side, which should be accounted for when evaluating the mechanisms.

In addition to partitioned data, the database may contain read-only, tabiels are statically
replicated at each node.

Controller

Server A jt ﬁ

N~
c
o

=

=
S
©
o

3 ServerB
| ol o o Z
§ & & s gl |
| & | | K= |
il S 18 |
A4 A
sl\a/ed %gaég-oﬁ{y\data shared\read- onIy data ‘
Wi | \

O/

g Clients

e~

Figure 1. Scale-out scenario with two servers. Partitions 5, 6, 7 are migrating from over-
loaded server Ato new server B.

A complete elastic database system likely includesntroller which decides on when the
system reconfiguration occurs and which partitions are to réesferred during this

5

reconfiguration. Although the design of the controller is outsidestiope of this work, we

assume that a reasonable controller might use the combinatigadive and predictive

algorithms to make its decisions. A reactive algorithm detde overload conditions and
triggers a scale-out process that would result in an additsireds to already overloaded
system. A predictive approach tries to make reconfiguratiansidaes before the actual
overload takes place, however, it may fail to do that prigceseit is not possible to predict
the future.

In the following sections we provide general overviews of the trake-out mechanisms. A
deeper discussion of specific implementation details of the DBMS-level andajmpitlevel
mechanisms will take place in Chapter 3.

2.2 Snowflock-based Mechanism

The Snowflock-based mechanism implements scale-out operationSrsiglock cloning.
In this section we first present the description of the Snowféwchitecture and its cloning
process, and then explain how cloning is used to scale-out a database.

2.2.1 Snowflock Hypervisor

Snowflock [12] is a modification of the Xen [10] hypervisor, &ngg instantaneous and
efficient multi-way cloning of a running VM. Snowflock uses tW@rk' cloning semantics,
similar to the ‘fork()' system call in UNIX operatingssyms, where/" stands fowirtual. In
this model, a controlling application, running inside a VM, execufiak() call, specifying
the number of requested cloned instances. As a result offidii€) call, the original VM
finds itself running independently and simultaneously as the sgkcifiember of VMs in
addition to the original VM. The underlying Snowflock architectum@lements the vfork
operation by taking a snapshot of the state of the original VMniostat a point of time and
gradually transferring it to multiple cluster nodes.

The cloning process starts by creating a new VM on one of thécphgedes of the cluster,
running under control of Snowflock. The allocation strategy may varyirbany case it

considers the original VM parameters (number of virtual CPUs armdist of memory) and

available resources in the participating nodes. The newlyect&d¥l consists of a Xen VM

descriptor only and does not have the actual content of the VM's mentbdys&. Instead, a
special mechanism is set up in the physical node of the ctomeqtiest pages from the
original node when they are used.

Snowflock then proceeds by creating a snapshot at the original nodtaining both the
memory and disk state of the original VM. In order to contiexecution of the original VM
while preserving the snapshot intact, Snowflock uses Copy-on-Y@ad&/) strategy. Any
modification of a memory or a disk block goes intditierential file in which blocks are
allocated one by one for every modified block, using extra memoisk space. In the
worst case, the CoW differential file may use the same anuiwstate (be that memory or
disk) as the original snapshot does. Because of CoW, the originah&pcontinue running

after creating the snapshot, while the clones may lateereferthe VM state which existed
at the time of the snapshot.

Finally, the clone VMs are allowed to run. Since they hawenemory or disk state at this
time, the running clones generate "virtual page faults”, cauSimgvflock to request the
missing pages from the original VM snapshot. There is a perfoaniangact initially as the

virtual faults are frequent. However, eventually the workingo$ehe VM gets transferred,
allowing the clones to regain their normal performance.

The version of Snowflock we used does not handle open network @d@Rgctions in an
application-friendly way. The MAC and IP addresses of a clonsthnce are updated by
Snowflock when it creates a new VM. However, the higher-lstage of TCP connections,
which existed at the time of cloning, is not cleaned up. Thesaections continue to exist
without any communication until a TCP timeout terminates them.

Snowflock uses a number of optimizations to achieve "instantangutiss"VVM cloning and
efficient migration of state afterwards. First, only animal amount of data is transferred at
the moment of cloning itself. Second, Snowflock uses a multwagocol to efficiently
distribute the pages among all the target nodes simultaneousty) isradvantageous when
many instances are involved. Third, the Snowflock's on-demande dta@nsfer
implementation avoids copying the pages of VM state that ateermviby the cloned VM
without having been previously read. On-demand state transfer comlbiitbedthe
optimizations described above are potentially effective for a wiags of applications. In
particular, the applications which have little shared staterdsn the original VM and the
cloned instances are able to run when only a fraction of total state has beenrgdnsf

2.2.2 Snowflock-based Scale-out

Snowflock-based mechanism implements scale-out by cloning a sdataib@de and
separating the load between new nodes so each one handles orlgfahmoriginal load.
In our experiments we performed cloning during which one copy a&extebut, in principle,
cloning into multiple copies is possible.

In this mechanism provisioning of new processing nodes and datationgis implemented

by a Snowflock cloning operation. The Snowflock cloniongically creates one or more
exact copies of thevhole source DBMS state which existed at the moment of cloning.
Snowflock's on-demand data transfer mechanism will copy onlyvdaitah is actually used

at the new node. Since the new node becomes responsible only &m partitions, only
those partitions will be physically transferred. The migtgpartitions still remain at the
original node after cloning. However, since they are not used, whieype evicted from
memory by the buffer pool replacement algorithm.

The portions of workload corresponding to the migrated partitiaslao transferred to the
new nodes. This can be accomplished by the same routing tech8egt® 2.5), used in
the DBMS-level and application-level scale-out mechanisms. Hewveue to the difficulty
in cleaning up the state of database connections after clonengnodified the client to

disconnect temporarily from the migrating partitions for the domatof the cloning
operation.

Migration of arbitrary partitions between running servers ispusisible in the Snowflock-
based mechanism for the following reasons. First, on-demandrdgtation is combined
with creation of a new VM in a single Snowflock operation (cloning). Secdied,cdoning a
node, the system cannot merge the changes made at the clone tha&ckgarent because the
lower-level hypervisor does not possess the information about wWilextks of storage
correspond to which logical partitions. As a result, only tteesout operation is possible,
with no scale-in or finer-grained load balancing between working nodes.

In order to avoid transferring data which do not belong to tigeatmg partitions, the data
and run-time state of different partitions must be sepaiateddifferent physical transfer
units, which are memory pages and disk blocks. Physical sepacdtpartitions on disk is
ensured by the MySQL partitioning storage engine, which plactsqre into separate sub-
tables. However, some DBMS data structures both on disk atite imemory are shared
between all partitions of one DBMS instance. The examples di digk-based data
structures are the transaction log and UNDO segments; ausmar-memory run-time data
structures are also shared. Therefore, the actual siensferred data will be larger than the
size of the migrated partitions. This difference will affdee efficiency of the Snowflock
mechanism.

2.3 DBMS-level Mechanism

This mechanism is implemented inside a DBMS (MySQL with InnsiiBage engine in our
case) and takes advantage of knowledge of the details of partitic@aephgaical placement.
The mechanism imposes certain limitations on the workload. Incylart multi-partition
transactions are not allowed and the partitions affected by#he-sut or scale-in operations
are unavailable during these operations. However, by disablingtydtiside the migrated
partition and by using optimized bulk transfers, a high transfer rate can beeathi

The scale-out and scale-in operations consist of adding or remowogsping nodes (node
provisioning) and migrating portions of database state betweerfftoted nodes and the
rest of the cluster (partition migration). The implementatiomade provisioning is shared
with the application-level mechanism and is discussed in Section 2.6.

The stages of the DBMS-level partition migration are shown inr€i@. When an external
application, for example, a load-balancing controller, requeststiigqmato be moved from
one MySQL node to another, it sends a request to the current ofitlex partition. The
current owner (thesource node thereafter) blocks new transactions from starting in the
affecting partition, and waits until the active ones have comenbléfhen the source node
scans the buffer pool to find the pages from the partition, 8ebeto the target node. At the
source node, the data is read in large blocks from the disk, agédneith any dirty pages
from the buffer pool. At the target node, the data blocks are adjustec¢tm&istent with the
running state of the database and are written to the dakintesome pages in the buffer
pool. The source partition tablespace then is detached froinrtbBB database, its file is
deleted and space is reclaimed. Meanwhile, the receivatiqgmadata file is attached to the

8

InnoDB database. Finally, the source instance sets the reafirectiormation for the
partition and unlocks it, allowing any pending transactions to be redirected togite tar

Source Target

Y

| Lock partition |

Y

| Wait for transactions to complete |

Y

| Run InnoDB history purging |

| Make a snapshot of BP pages |

v
| Send BP state | =) | Receive BP state |

| Read data, reset version numbers | > [Write data file, put some pages in BP |

\ Set redirection state and location \ | Recreate tablespace |

v

| Delete tablespace |

v

| Unlock partition |

Figure 2. Sages of DBMS-level partition migration.
More detailed description of the DBMS-level mechanism will be presentectimi$8.2.

2.4 Application-level Mechanism

The application-level partition migration is implemented with S@L script which is
executed by an external application. The scripts make use B8QMyFederated Storage
Engine to establish a remote connection between the patiigpaodes (the source and
target) using the MySQL SQL interface. This way one of th&®IL instances can access
the other's tables. The application-level scale-out mechanises tlee same node
provisioning implementation as the DBMS-level mechanism.

To migrate a partition, the script reads the rows of aitigar from the source node and
inserts them at the target node; then it deletes the rows abtinee node. Since the SQL
statements are executed at one of the nodes, data is trechsfeectly between them, not
involving the host where the script is running. The outline of thgration procedure is
depicted in Figure 3.

Source Target

'

\ Lock partition \

| Wait for transactions to complete |

| Set up remote SQL connection |

A
| Run SELECT queries | =) | Run INSERT queries |

'

\ Run DELETE queries \

!

| Set redirection state and location |

A 4
\ Unlock partition \ Y

Figure 3. Stages of application-level partition migration.

2.5 Routing and Locking

Both DBMS-level and application-level mechanism share the sawmténg and partition
locking architecture for pointing clients to the current owsfgpartitions and synchronizing
clients' operations with the reconfiguration activities. Thent trying to access a partition
that is no longer at the queried node are redirected to théonation by a special message.
This approach avoids having a dedicated router, which may becbotdemeck. However,
this redirection approach loses efficiency when clients of@iich between partitions.
Additionally, it raises certain availability issues in some scaleenarios.

To make sure a partition does not change while it is omthes, a simple exclusive/shared
locking mechanism is used. A transaction places a shared logk ancessed partition and
the controller places an exclusive lock. Anyone trying to seh@mpatible lock is forced to
wait. Given an in-order policy to grant locks (shared lock regueait for previously-issued
exclusive requests), this mechanism delays the partition moigraintii all current
transactions have completed without allowing new transactionsatb Similarly, newly
issued transactions are blocked until partition migration loaspketed and then they are
redirected to the new location.

We did not use this redirection mechanism for the Snowfloskdaechanism. Instead, we
modified the workload generator to disconnect from the migyapartitions before the
cloning and reconnecting immediately afterwards. The IP addreshe new node is

10

communicated to the workload generator by an external proceducé walls Snowflock
cloning routine.

The details of partitioning implementation, partition locking aaduest routing will be
further explained in Section 3.1.

2.6 Node Provisioning

In both DBMS-level and application-level scale-out mechanisms ee the same procedure
to initialize and terminate nodes.

We assume that physical nodes are allocated from a largeppowchines which can be
reused for various types of applications. Thus, a newly-allocetdd has only a hypervisor
installed, and any other software or data (operating system, DBMSI database state) has
to be separately loaded and initialized. Since we use VMstalsad® nodes, the cost of node
provisioning should include the costs associated with bringing antactive state. These
costs manifest themselves as additional delay between theatipi®ysical machine is
allocated and the time database partition migration tamt, s well as additional resource
usage of the machines that store the source data.

We considered the following candidate ways for provisioning new nodes:

1. Copying a VM disk image to the target physical seare cold-booting the operating
system and the DBMS in the VM. The cost of this method includes the cost to trhasfer t
disk image file, the size of which was about 1GB in our experisna@s well as the time
to boot the operating system and DBMS.

2. Making a persistent snapshot of a booted but idle VM in advaaosfdrring the saved
state to the new host, and restoring the VM. The cost of tatkad is determined by
transferring both the disk image file and the memory dtltethat would account for
about 5GB in total in our test configuration, and restoring the s option is similar
to the previous one with the exception that the staterohi@ng system is transferred.
Since the snhapshot does not contain data partitions, it may aedras part of an
installation procedure and the cost of creating the snapshot may be ignored.

3. Using Snowflock cloning to transfer the running state of theceoudM. We considered
this method to be the most efficient due to Snowflock's abditgvoid transferring the
data pages which are not actually used at the new VM. The podion of state which
will be used in the new node is the state of the running opgratistem. Since the
working set of the operating system is small and most likebetalready in memory, we
expected Snowflock to generate almost no disk transfers antry transfers of a few
hundred megabytes. In this method the original DBMS is under dbatie time of
cloning. To prevent the original workload from executing at the meae and
propagating excessive data using the Snowflock on-demand mechémsmDBMS is
forcibly terminated immediately after cloning, then theablase is replaced with a new
copy which contains no partitions, and the DBMS is restarted.

We chose the third method of new node provisioning because it requstareaunt of data
to transfer.

11

Chapter 3

Scale-out Mechanism Implementation

In this chapter we present design decisions used in the ireptation of scale-out
mechanisms summarized in Chapter 2. Most information indmagpter is related to the
DBMS-level mechanism because it required extensive motiifiato the MySQL DBMS.
The information on partitioning, partition routing and locking isrengeneral and applies to
all three mechanism.

3.1 Common Features

The features described in this section are used in the DIBXM$ and application-level
scale-out mechanisms implementations for managing responsilafitypdrtitions among
participating nodes. These features can also be used in thel@ebdsed mechanism as
well. However, in our experiments, the responsibility of nodegéotitions was controlled
by the client.

3.1.1 MySQL Partitioning

We chose MySQL as a base system for implementing a dgnpantitioning prototype.
MySQL includes a Partitioning Storage Engine (MySQL PE) [B3} was useful for our
implementation because it physically lays out partitions into norlapgng blocks. The
MySQL PE works as an intermediate between the upper MySQl guecution layers and
any other storage engine. When a table is created usiBQMYE, the engine splits it
horizontally into a predefined number of subtables, based ono&rmhe partitioning
algorithms available in MySQL PE (hash, key lists, or kges). Each subtable is stored as
a normal table using a lower-level storage engine. In opererents we used InnoDB,
which provides full transactional capabilities, as a lower-lstetage engine. InnoDB, in
turn, can be configured to store each table, along vétimitexes, as a separate file, called a
tablespace internally. As a result, each partition ends up as andis8et of disk blocks,
represented as a separate data structure in MySQL, afjavd to allocate and deallocate
partitions and use low-level binary copying mechanisms to efiligi transfer them between
servers.

PE defines partitions for each tabiglividually, creating a set of underlying subtables with
names composed of the table name as a prefix and partition name &s dlseifé is no way

in MySQL PE to defindogical database partitions, i.e. groups of table partitions that should
be handled together. Moreover, there is no easily-availabtadate for an application to
determine the partitioning configuration, for example, the lispafitions for a table. To
simplify the configuration and control scripts, and to avoidntaining a data structure to
correlate logical partitions with their table counterparts, we redjtivat all partitioned tables
have equal number of partitions as well as identical partitimmes. Thus, the set of the

12

lower-level subtables is a Cartesian product of partitionel@gadnd logical partitions. An
example SQL script of a set of tables partitioned in thismaais shown in Figure 4 and the
graphical diagram of the same configuration is shown in Figure 5.

In addition to partitioned tables, we support constant, non-partitioned tables thapiatkic
every server; however, those tables cannot be updated. For example, in TieQt&nttable
does not scale with the number of warehouses and is not updateshgactions, so we can
keep its read-only copy on each site.

3.1.2 Partition Dictionary

To correctly handle the client interaction with partitions thaght migrate between nodes, a
partition dictionary was added to MySQL PE. Each MySQLifance maintains a local
copy of this dictionary. The dictionary is indexed by logicattipan names and for each
partition it stores a flag indicating whether the partitisriacally available, its last known
whereabouts if it has been migrated, and the partition lock &s&tion 3.1.4). Due to the
limited scope of this work, the dictionary implementation is incetepin the following two
ways. First, it is non-persistent, meaning the serverscjgating in an elastic cluster can
only start with a predefined partition assignment. In our exmmts, the start-up
configuration consists of a single server, which is responsitetife whole database.
Second, the dictionary is not updated transactionally during the-adaler scale-in
operations. As a result, the partition dictionaries in differeates may become inconsistent
with each other regarding the information on actual partition locations, should a deiture

3.1.3 Partition Detection

A distributed system must choose the node to execute eaxdadt®n. In our execution
model, a transaction is permitted to access only the data contained intitreparaddition

to read-only non-partitioned tables. That fact greatly simplifiee node assignment as the
very first access to a partitioned table determines the "home" partitionapisadtion.

Determining the server at which a transaction should be ecgsita two-step process.
Firstly, MySQL PE identifies the partitions which are asmzl by the query using a
technique callegbartition pruning. Secondly, the modified MySQL PE looks up the partition
dictionary (see Section 3.1.2) to determine the node which contains the identifiedrpartiti

In order to implement automatic partition detection, we lookedhe code fragments in the
MySQL PE which call the underlying storage engine for qaatttition. In each such code
fragment the partition identifier is known; therefore, we medifthe code to check the
referenced partition's state in the partition dictiondryhé partition is present in the server
currently executing the transaction, we just proceed with they.g@herwise, the local
server had handed the partition over to other server and it kinenvaddress of the next
server that was responsible for the referenced partition taftemigration from the current
node. In the latter case, the MySQL PE sets an error comavtich is returned to the client
as a speciatedirection error code with a corresponding text message encoding location
information (see Section 3.1.5 for more details).

13

MySQL partition pruning is an optimization technique used bysMl PE to exclude non-
referenced partitions from a query execution. &¥sume the MySQL pruning algorithm
works correctly for the class of queries in our workload. Howevere shre partition pruning
algorithm in MySQL PE is merely an optimization techniquegdal is to eliminatenost of
the accesses to unreferenced partitions, without guaranteziegjntinate all of them.
Therefore, our assumption may easily not hold for other workloadewanceliance on the
MySQL PE partition pruning algorithm for correctness can l¢adissues with our
mechanism in that case.

If the pruning algorithm fails to eliminate an unreferenceditpmn from a query, the

transaction effectively becomes multi-partition. The effedhdf failure is the same as with
true multi-partition transactions, which cannot be executed in eashamism if the partitions
are actually located on different nodes. In this case tieatclill receive a redirection

message and will have to abort the transaction. If the ctlenides to retry redirected
transactions using new location information, it will follow thedirection loop without

making progress. We consider this problem as an inevitaladet eff a automatic association
between transactions and partitions.

An obvious way to avoid the problem would be explicit tagging afigactions with their
home partition number by an application. This can be done foreaitahsactions or only for
those containing complex queries, for which automatic partition pgufails. We believe
this method would be easy to use in real-world applications.eMervwe did not implement
it because the automatic approach suits the experimental requirementshafdisis t

3.1.4 Partition Locking

In our simplified approach transactions may not access aigartithile it is being
transferred. We enforce this restriction by associatingy @actition with a partition lock.
Partition locks reside in the partition dictionary. A partition loak be locked in a shared (S)
or exclusive (X) mode. A user transaction that accesses ttigopaacquires an S lock on
this partition implicitly. A transaction from the controllérat initiates partition migration
acquires an X lock by calling a special SQL function. Any partitocks which a transaction
has acquired are kept until the transaction completes.

As usual, S locks are compatible with other S locks and are incompatible \@itksX When
such a conflict occurs, the requesting transaction is suspeamdiédhe blocking lock is
released. The conflict of an X lock request and an existimgck does not occur because
there is only one controller which initiates scale-out or secaleperations and does not
initiate multiple operations over the same partitions simuttasly. The scheduling policy
associated with partition locking does not permit a transactitim an S lock request to
proceed if a transaction with an X lock request is waiting.

The partition locking implementation has the following effects:

1. A migration procedure requests an X lock on a partition anck®lantil all active
transactions in that partition are complete.

14

2. Active transactions are not interrupted and are allowed topletenbefore the
migration procedure starts executing.

3. New transactions in that partition are blocked while theremgyaation procedure in
progress or waiting for existing transactions to complete.

When a transaction unblocks, the state of a partition has prolehalyged and the
transaction may receive the redirection error code. Sirqueeséing a lock is the only time
when a transaction can receive a redirection error coeleaw implement both locking and
redirection detection as a single procedure that is called from evetjopaaticess point.

3.1.5 Client-Server Protocol and Dynamic Routing

Since the distributed configuration of nodes changes during dynamézadadnd scale-in,
each transaction should be able to reach the node which cah&idata associated with the
transaction. Typically, in similar designs applications conte@ middle-tier router ([28],
[33]), which maintains the mapping information and dynamicakypaliches transactions to
server nodes. This approach may limit the throughput of thensydiie to introduction of a
single component involved in processing of all clients' requestenfuty becoming a
bottleneck. Therefore we made the server nodes themselves respdémsibhintaining the
routing information, and modified the client-server protocol tobknalients to switch
between the nodes with no or little modification of applications. Althougtnresction is not
fully transparent to applications, the applications which abwat current transaction on
receiving an unknown error condition do not need any modification.

In order to operate efficiently, the routing architecture ddpeon an application's temporal
affinity to database partitions because there is a cost asmbaevith the switch. That is, the
transactions issued from an application using a single databasection should access the
same partition, or at least the application should switch paditinfrequently. We believe

this assumption holds in practice for partitioned applicatiarsgXample, a session in a web
application contains multiple user interactions accessing closelgdetams.

The routing mechanism operates as follows. Initially, theesysttarts with a predefined
configuration and clients are provided with the initial IP adklres the node for each
partition. This way clients can execute transactions umglcanfiguration occurs. Since the
reconfiguration takes time during which the partition cannot lbessed, the source node
delays execution of client's requests upon its detection ofidm's access to the migrating
partition. The source node also naturally knows the address of ¢fe¢ sarver for partition

migration and it keeps this information for future referenagcedthe migration is over, the
source node sends a special response message (redirection megsagé)g the clients of

the fact that the partition moved and including the IP addregbeottarget node. The
modified MySQL client library handles the redirection messageclosing the TCP

connection associated with the client's session and updating Wiee address, stored in the
session data structure. Finally, the client applicationivesean error condition, and aborts
the current transaction. The next transaction issued by thecatppti in the same session
causes the client library to automatically reconnect, udiegstored location information,

15

CREATE TABLE t1

(
id | NTEGER PRI MARY KEY,

)
PARTI TI ON BY LI ST(id) (

PARTI TI ON p1 VALUES I N
PARTI TI ON p2 VALUES I N
PARTI TI ON p3 VALUES I N

I'N

(
E
PARTI TI ON p4 VALUES (

CREATE TABLE t2

(
id | NTEGER PRI MARY KEY,

)

PARTI TI ON BY LI ST(id) (
PARTI TI ON p1 VALUES IN (1)
PARTI TI ON p2 VALUES IN (2)
PARTI TI ON p3 VALUES I N (3)
PARTI TI ON p4 VALUES I N (4)

Figure 4. An example of two-table, four-partition configuration in MySQL.

which now points to the new server for the partition. The prooes=directing a client to a
new node after the accessed partition has been moved is illustrated in7-igure

In principle, automatic reconnection and transaction retrybeaperformed by the MySQL
client library itself, without notifying the application, becawséransaction which is fully
contained in a partition receives the redirection erratsifirst attempt to access data so no
transaction state has been updated before this error hasdéweted. However, for the
purpose of the experiments of this thesis, such transparencypotvaequired because the
benchmarking program we used already implements the proper error processing.

In its current implementation, the partition location informatiostaged in the main memory
only and is not persistent. Consequently, the start-up configunaitist have a predefined
partition assignment, for example, one server containing the watbbase. A practical
implementation should store the location information persistefailyexample, as part of a
database catalog. The process of handing over the responsiility artition between
nodes should use a distributed transaction to ensure consistehey iofdrmation in a case
of a failure during the migration.

As long as the application have error processing logic thdsle a transaction abort after
receiving an unexpected error code, this mechanism does not require any tnmakficathe
application. Thus, the changes in the client-server protocol ranelg localized in the
database system-provided software.

For each partition each server maintains information about wh#tkedata is available
locally, and if not, the address of the server which receivedoartition when it migrated.

16

Tables

t1 t2

A
—

o
i]

A .
«[Logical
—71 partition
8 names
j
o
i]

InnoDB table partitions

Figure 5. An illustration of the partitioning configuration in Figure 4.

Each partition may migrate multiple times, thus forminghain of redirection pointers,
starting from the initial start-up node. During each migrgtonly the pointer to the final
destination changes, making sure the chain eventually leade tactual server for that
partition, even if one node participates in migrations multiplees with different
destinations. As long as the servers in the redirection @nainot shut down, the client can
ultimately reaches the actual partition site, assuming ti&atapplication can follow the
redirection chain at least as fast as the partition moves.

A temporal affinity between the client connection and the homeipartf its transactions is
desirable from the performance point of view as each reconnection takes However, the
affinity is not required and even in the worst case, when transactions in one connection
uniformly access all partitions, the redirection protocol presaerrectness, although, with
an impact on performance. We define correctness as the albititg protocol to eventually
route the client to the processing node of the transaction, prothidedll the nodes remain
operating.

However,availability of service can be affected if some nodes are shut down, domnpbe,
because of scale-in. Some of problems in this case areatkostin Figure 6. Since the same
physical node both provides routing information to clients and preseBsnsactions,
switching off one may create a gap in the redirection chain (Figure 6B). Ttlientanay be
given a node address which is not responding. We did not addregsaibism during this

17

thesis work. A simple but limited solution would be to impasestriction on the scaling-in
policy so that nodes are released in the reverse order ofigination chain. Obviously, this
solution does not work if the migration chains are differendftferent partitions and there
is no single last node to stop (see Figure 6C).

Another related issue that occurs even with no gaps in the redirection<tizat clients that
do not accesany of the partitions for too long so may encounter a node that is not operating
and thus they can not get the correct address of the current partition home (Rigure 6

777777777777777777777777777777

N nodel node2
p2 pl P

- p3 L. " /p2

»

‘X\nodez
g nodel node2 node3 © \\: g

‘ pl
‘ i p2 p3
p3

C

Figure 6. Reachability issues with scale-in scenario. A. A late client accesses the node that is
shut down. B. Redirection chain is broken by shutting down an intermediary node. C. Shut-
ting down any node will prevent some clients from reaching their partitions.

A more complete solution would be a distributed mapping of partiton®de addresses,
shared between client and server nodes. Since migrationglatigely rare, for example,
compared to transaction processing, updating the state of gstnduted map would not add
a significant delay to the rest of the migration process.

There may be other possible approaches to handle the routing'aleentests to the nodes
responsible for the appropriate partitions. The detailed asalysi comparison of those
approaches is outside the scope of this thesis.

3.2 Features Specific to the DBMS-level Mechanism

In this Section we describe the details of the scale-out mechamplemented at the DBMS
level. This mechanism takes advantage of the DBMS's awarenese distribution of
logically-defined partitions over the data blocks (pages), pemgnicomplete transfer of a
partitions between nodes for both scale-out and scale-in ggend@he low-level block-
oriented approach makes high throughput data transfers possiblaglagethe ability of
disks to efficiently schedule sequential /0O operations in theepoesof the random 1/0O due
to normal load.

18

MySQL server (source) MySQL server (target)

Application MySQL connection

| |
| |
| |
A |
|
1

|
|
|
|
txl.query |
|
query |
» |
E_REDIRECT(target address) U |
e e e e — |
I I
I I
error Close current connection. I
Kem—————- | Set server address to'target address'. !
: Clear 'in_transaction" flag.. :
txLrollback | |
|
|
K ——— — |
| .)) |
| | Reconnect if connection does not exist . I
tx2:query | |
1 P |
e connect |
P - »l
A 1]
|
|
query]
»l
e — e ———————— u
6— —————— " I
| |
| |
tx2:query | |
[l |
query |
»l
kr—————— ———— —————————————————— u
K ———— |
| |
L | |
|

Figure 7. Redirection sequence diagram.

The DBMS-level mechanism involves both server-side and clidetrapdifications, as well
as a slight change in the client-server protocol itself. Appbns, however, need not be
modified, as long as they follow reasonable error-handling pesctis expected, a DBMS-
specific solution depends on particular internal DBMS featuhes, limiting its portability.
However, we believe this dependence is a good price for fanijttte partition placement

19

information, thus enabling better performance and flexibilitythef scale-out and scale-in
operations.

3.2.1 Low-Level Partition I/O

One of the design goals of the DBMS-level scale-out mechamasto achieve a data
transfer rate that is close to the physical limits of hardwa the presence of concurrent
load. We achieve this goal by using large blocks in the I/O operations forguantiigration.

Given that the 1/O pattern of OLTP workload is mostly randomgelaVO sizes are
particularly beneficial when the database resides on magnsiti& dince the performance in
that case is limited by disk seeks, injecting a small nurobdarge 1/0 requests does not
harm the normal load significantly. At the same time, lav§® requests for partition
migration can utilize most of the disk bandwidth.

In the case of OLTP workload and magnetic disks, we betlevéarge block 1/O is the main
factor leading to high efficiency of DBMS-level scale-out.

3.2.2 Dirty Page Handling

At the time of partition migration many pages in the soursgéesy buffer pool are dirty. One
approach would force the system to flush those pages toskealithe files are up to date.
Our DBMS-level mechanism avoids this additional 1/0O by takingygdges directly from
the buffer pool.

This optimization is implemented in a straightforward wag:the chunks of data are read
from the files, their range of page identifiers is looked uphm buffer pool to see if it
includes any buffered pages and whether they are dirty. Forinyalges found, the chunk
is patched using the buffered pages and the resulting patbhe#f s sent to the target
system.

3.2.3 Preserving Buffer Pool State

In the important case of a database that exceeds the main yneapacity, the migration
algorithm writes the data files to the target system'd ldisks. The conventional approach,
in which data is copied by operating system commands ardBMS is later started using
the newly received data, causes a potentially long period ofdestyerformance due to the
cold DBMS buffer pool. This problem can occur even if the DBM&subke buffer pool of
the operating system because the block access patternDBMS is different from the one
in the file copy operation.

By implementing the data transfer operatinside the DBMS we can avoid the problem of
cold start (with an empty buffer pool) of the secondary sysiEhe target DBMS inserts
some of the received blocks into its buffer pool before writivegt to the disk. The block
access pattern within a partition does not likely change atfigration as both the data and
the client load are moved to the new location. This observallmnsaus to use the state of

20

the buffer pool at the source DBMS to determine which data pagksep in the target
DBMS buffer pool.

The capacity of the target node's buffer pool may be less Heasize of the partitions
allocated to this node, which is normal for disk databasethalncase the system should
decide which of the pages in the target buffer pool to replacéndypages of the newly
migrated partitions. We call this problem theffer pool merging problem. Solving this
problem for the LRU replacement algorithm, used in InnoDBompdicated by the fact that
the state of the LRU policy only contains estimationsetstive probabilities of eviction for
pages. Therefore, the probabilities of pages from different gRélues are incomparable,
and producing the combined LRU queue, which equally well approxirttagesplacement
preference foall pages, is not possible.

We took the following simple approach to merging the buffer pools.iidia assumption is

that the load on each partition is equal, so each partition Hemdame amount of the buffer
pool memory to maintain the same miss ratio. Although this gsgamdoes not hold in the

general case, it allows us to make an estimation of libititier pool allocation on the target
node. We determine the number of pages of a partition to infjecthe target system buffer
pool Ny by a linear proportion:

1

CURRENT +1

Nyew =N *
NEw = TotaL * (2)
where Ngra is the target system buffer pool capacity (pages), Bh@rzent is the number

of partitions served by the target system before the migration.

During the migration procedure a snapshot ofshece system buffer pool page identifiers
iIs made. Those page identifiers are in the LRU order natwalfygy page identifiers from
the hot (most recently used) side, belonging to the migratingtymartiare transferred to the
target system before copying actual data pages. On tet &ystem, when data pages are
received, those with identifiers in the list are insertethéohot side of the LRU list. If the
buffer pool at the target has more available memory (themyisteinderloaded), the rest of
the received pages are inserted todid side of the LRU list.

3.2.4 Consistency Issues

A single instance of the InnoDB storage engine handles all gfatigions on a server. The
InnoDB storage engine maintains information which is shared betdifferent parts of a
database. This shared information includes both volatile mainonyestate and persistent
data on the disk. Only the persistent part is kept betweearsestarts, however, we would
like to perform partition migration while a server is onlitleys the memory part is also
important to consider. During normal operations, the shared istatedified along with
partitions. Hence, if a partition is removed from a runningesygsand later injected to a
different one, the consistency between the shared state amdotresl partition should be
preserved on both systems. The consistency requirements areddeidividually for the
following data structures:

21

1. The transaction log and recovery state, including the current LSN counter.

2. Record versioning state, including UNDO segments in the syktblespace and
transaction number counter.

3. Insertion buffer.

We will discuss the specific consistency requirements foh emse below. Generally
speaking, the migration procedure ensures the requirements higy pdrtially limiting
functionality, performing housekeeping activities before theratign, or modifying the data
in the partition during the transfer.

3.2.5 Transaction Log and Recovery State

InnoDB uses the transaction log for REDO recovery after &msystash. Each modification
of a page in the buffer pool causes a log record to be appenttezlltm. The position of a
record is represented by a Log Sequence Number (LSN), whichyite offset of the record
position in a conceptually infinite log file. Each persisted pagedata file contains an LSN
value which is a lower bound of the LSN of the log records thapotntially be applied to
this page during recovery. Since different server instancese thxir own transaction logs
independently, their LSN numbers are not comparable and the stokeddl$e in a page
would become invalid if that page were migrated.

Since active transactions are not allowed during migration &udtgl pages are included in
the copy, the log records in the source transaction log deiatine migrated partition can be
ignored. Moreover, the migration procedure itself is synchronousningg the original copy
of a partition is deactivated only after the target copy been successfully written to
persistent storage, therefore the data pages can poteh&algcovered after a crash during
migration.

In the case when the LSN numbers in the pages originate from a differtem sylsich has a
separate sequence of LSN numbers and the corresponding log records, the followarig sce
would lead to failed recovery:

1. A page P is modified at server A and is written to dmlrked with LSN. This
means that the log records with L&N.SN. must be applied during recovery should
server A crash.

2. P migrates to the server B, then is modified once monkehavith LSN;. Let LSN;
< LSNa. Upon writing modified P to disk, server B has to markphge with its own
LSN number, even if it is less than the previous one, to ertbatdts log records
with LSNs < LSN < LSN, are applied on potential future recovery.

3. P migrates back to server A. Now its LSN number is leas tt used to be. If A
crashes, the recovery process will try to apply the log dsctar P which are too old
and may be removed from the log during a checkpoint. Recovery cannot pasaeed
thinks the log records are unavailable.

To solve the problem of invalid LSN numbers in the data pagesatget system patches all
received data pages with the target's current LSN number. The taugetist LSN number is

22

read at the start of the migration process. Thus, after migratiorearigting log records can
be applied at the target to the newly migrated data aslLiBélris always less than the LSN
of the data pages.

3.2.6 Record History State

InnoDB contains a multi-version implementation of transaction tisolaa variation of
snapshot isolation. Allowing multiple versions of a record tstexi the database requires
some form of garbage collection to remove the versions that domger relevant. InnoDB
separates the most recent version of a record, which is képe itable itself, from older
versions, which accumulate in the UNDO segment. The UNRfInests are shared by all
tables in the database and are additionally used for UND&veey in the case of a system
crash or transaction rollbacks. InnoDB uses a global counter, storestgr@hgiin the system
tablespace, to assign transaction sequence numbers (timestamps)téon their total order.
Every record in a data table is labelled by the sequence number of tlaeticanthat created
this record version, as well as a physical pointer to the quswersion in the UNDO
segment.

Migrating an InnoDB table between systems poses two pdtessiaes. First, like LSN
values, transaction numbers and pointers to UNDO records areongiarable across
different systems and may cause confusion when trackingoedr@istory in a partition that
has been moved. Second, the garbage collection implementajioresethe current version
to be accessible, thus it cannot proceed if garbage from aguarémains after the partition
has been moved away.

To handle these issues we rely on the absence of active transastthe migrating partition
during the migration. This means there are no transactions whighoatafor old versions
of records in the partition. Therefore, the old versions in th®0MNegment may be safely
removed. At the same time, the garbage collection procedure iDBwwoites to the current
version to remove its pointer to the history in the UNDO segnikthe partition containing
the current version is moved away by migration, garbage collectimess will crash. While
it may be possible to modify the garbage collection algorithmetoove record history
without accessing the current record, we chose a simpler appndach repeats garbage
collection at the source system until there are no more versitims WNDO segment whose
transaction numbers are below the current transaction number valng the start of the
migration. This forced garbage collection may significanthagehe migration start if there
are long running transactions even in non-affected partitionsubedhe current garbage
collection algorithm has to purge old versions for all partitidn®ng-running transaction
prevents old versions in the UNDO segment from being collectisttieely stopping the
collection. However, this is generally not an issue for shamstctions in the OLTP
workload.

Another issue may happen at the target system after migi&tienords keep the version
numbers and old version pointers which were valid in the soustersylf the target system
decides to follow a migrated record's version history pointeiciwis not meaningful at the
target system, it will probably crash. To prevent this from haipge all records in the

23

partition are scanned and their transaction numbers are replaced mi atsmber, such as
one. This approach to move data consistently between MySQErseiv the same as
described in [27] .

3.2.7 Insertion Buffer

InnoDB uses the Insertion Buffer as a technique to speed up randertians to an index
which is too big to fit in the buffer pool. In the normal caseh insertion would lead with
high probability to a buffer pool miss. InnoDB tries to avdidse misses by inserting the
record in the special data structure, called InsertioneBuff is organized as a persistent
index, located in the system tablespace, with a recayd pamber as a key. If during the
insertion to an index its leaf node is not in the buffer pooljrikerted record is instead put
into the Insertion Buffer. Delayed insertions are mergéal the main index either later by a
background process or when the page is eventually loaded into thepgmdfelue to a read
miss.

When the Insertion Buffer contains records from a partitioigrating the partition to

another system will cause missing records in the partitidex(es). Since the Insertion
Buffer is an optimization technique and is not required for correct operatiotgo keep our

prototype simple, we decided not to have a forced merging oft IBséer records to the

partition before its migration. Instead, we disabled the Insertion Buffetifunality.

24

Chapter 4
Experimental Methodology

4.1 Overview of the Experiments

In the previous chapter we described the design of three sitglabdchanisms. Now we
would like to investigate their efficiency. For the purpose o thesis we define efficiency
as the ability to perform system reconfiguration (scalesowcale-in) quickly while causing
little disruption to the client workload. Therefore, we wouke Ito answer the following
guestions during the experiments:

. How long does it take for the mechanism to complete the recortimura
process?

. What is the cost of the reconfiguration for each mechanism?

. What is the effect of the reconfiguration on the clients’ experience? How deep,

and how long, is the disruption and how is it distributed among the clients?

. What (if any) practical issues may arise when using $oale-out
mechanisms?

When addressing the performance-related questions, we payl gigméon to presenting
independent views of the system performance from both the provider'sclemd's
perspectives. The provider and the clients may have conflictingniaption goals. For
example, in order to maximize overall throughput, the provider chapse not to execute
requests from certain clients. However, such a situation may be unacceptabtecfi@imnt's
point of view.

We construct the client such that its request generationsratelependent of the ability of

server to execute the requests. When the server failslyohfamdle the offered load, we

evaluate the degree of this failure by analyzing the diff@rdetween the offered load and
the actual load.

In most of the experiments we study one scale-out operation pedoby different
mechanisms, moving the database from one to two nodes and mituafiog the partitions
to a newly started node. Before the scale-out operationlowe Hie system to reach steady
state. We gather performance information before, during, #iad stale-out to estimate its
effects on the system. The workflow of the experiments isccauehe controlling script,
which allocates certain fixed time intervals for each phase of the exgrgrim

To illustrate a more general case of load balancing, seiatluded a scale-in experiment.
Unfortunately, the Snowflock-based mechanism does not provide thiy &bilimigrating
partitions to already running nodes, and the application-level ora efficient so we could
not perform a comparison of different approaches in this case.

25

Migrating database state in tHeared-nothing architecture works over whole partitions and,
in most cases, involves moving data located on the persisbeaget(disk in our case). We
would like to investigate how the involvement of the disk affecidesout efficiency. Thus,
we perform the experiments in two distinct scenarios: disk-bamadprocessor-bound. In
the former scenario, the database working set size is I#rgarthe size of the database
server buffer pool and the workload execution causes page misgée ibuffer pool.
Additionally, intensive update activity requires the server tahfldisty pages, consuming a
significant portion of disk bandwidth. As a result, the overallgreréince is limited by the
I/O system capacity.

In the CPU-bound scenario the server is configured to stodathbase entirely on a RAM-
disk. The database has to be small enough to fit in memloeyp&rformance of the system,
including the scale-out itself, now does not depend on disk I/@;@sssing database pages
only involves memory-copying operations. Although using a RAM-detns to be less
natural than merely configuring a buffer pool large enough to contain the whole datalvase
method eliminates physical 1/0 not only for reads but alsadiidy page flushing, which
would still happen otherwise. Since the TPC-C workload is upd&tasive, experiments
involving large buffer pools would still be 1/0 bound in that case.

4.2 Workload

In this thesis we focused on online transaction processing (OLTP) workibad=lieve it is

more difficult to achieve good scalability for OLTP workloads as comparadalytical ones
as the unit of work in OLTP is smaller and the amount of iotiena between system
components is potentially higher.

We chose a TPC-C-like workload for our experiments. TPC-§ [8 an established
benchmark for evaluating RDBMS OLTP performance. TPC-C siemila warehouse
transaction processing system with medium-length transactio?S-C stresses various
components of a system, including I/O and buffer pool, locking anduo@mcy control
algorithms. Despite being old and relatively simple, TP@-Gtill a challenge for database
system implementers, particularly due to high /0 demandjsanidely used as a standard
OLTP workload.

A TPC-C workload is defined as a mix of 5 different tymdstransactionsNew Order,
Payment, Delivery, Sock Level, and Order Satus. Each transaction type occurs a certain
percentage of the time in the mix. Throughput is expressed asuthber of New Order
transactions executed per minute.

We used the open-source OSDL Database Benchmark 2 (DBT2nmaplation [36] which
closely models the TPC-C specification. It should be notedttieat PC Council requires a
formal certification of any results that claim to regget any of the Council's benchmarks.
Therefore, any metrics obtained outside of the certificatioscqoiures should not be
associated with the TPC-C benchmark and cannot be compared to other results.

Our experimental workload differed from the TPC-C workload in the followingeets:

* Transactions that can access remote warehouses are disallowed.

26

* We use fixed-size databases.
* The method to control the transaction arrival rate differs significantly.
Those differences are described in detail in the following sections.

4.2.1 Strictly Partitioned Workload

Each TPC-C warehouse is a separate partition in our database. AlthoudtCte&workload
can be partitioned by warehouses for most of the transactien®{ew Order and Payment
transactions occasionally do access more than one warehouse. Siltc@arition
transactions cannot be executed by the modified MySQL PE, weetidhe DBT2 input
data generator to use only one warehouse in all transactions.

Since all SQL queries in TPC-C include a warehouse numbérein search condition,
MySQL partition pruning algorithm, described in Section 3.1.3, hadiffioulty correctly
associating transactions with their warehouses.

4.2.2 Database Sizing

We used a fixed database size, which was primarily méated by the constraints of our
hardware configuration. We tried to find the maximum size geamitted us to run the
experiments reliably in all configurations (disk-bound and CPU-boénskrious limitation
was imposed by the Snowflock snapshot functionality, which resjuextra space
reservations to store memory and disk snapshots, effectivtingravailable only half of
the memory.

Table 2 summarizes the space parameters for the initial stahe database. In the disk-
bound experiments only half of the warehouses were actually addesskee workload; we
show the numbers for the full database in parentheses. Tloa fleashis was that our initial
intention was to increase the working set size twice &t-sxd time so the ratio between the
total buffer pools size and the working set size did not changer@sult of scale-out. That
scenario would correspond to the real-world case in whichusens cause extra processing
and use additional data. However, we experienced difficulty running éxpsgiments as the
scale-out under those setting was too slow, so we do not include them in this thesis.

4.2.3 Controlling the Load

We conducted experiments with two types of load: flooding thees@&vith transactions and
limiting the load so that there is spare capacity to actodate the overhead of scale-out.
We refer to the former type asaximum load and the latter one asontrolled load. We
consider the maximum-load experiments as supplementary with tagirpurpose being to
determine the maximum possible system throughput. In the cedtlothd experiments we
provide more results and analysis and believe it is morestieddecause in real applications
there is always some degree of overprovisioning.

In the controlled-load case, we used a significantly mod#igdrithm to control the rate of
transaction generation at the client side. The main differbetween it and the one from the

27

TPC-C specification (and the original implementation inTRBis independence from the
server performance. In the TPC-C benchmark the transactme eyecuted by the client
contains keying and think times added to the response time oadiual transaction
execution. In this approach, a slow server would not only causepbeted response times
to rise, but also increases the total length of the ctlules decreasing the rate at which the
client issues transactions.

In contrast, we used a open-loop approach, in which the respares do not affect the
transaction generation rate. This has several advantageswhies evaluating the quality of
service as perceived by clients, it is more natural tanasshe clients have their own idea
about the desired work intensity. Knowing the transaction staeéstin advance makes it
easier to assess a possible disruption of service by corggaem to the actual transaction
execution. Second, our approach allows us to set a desiredrnpamnfe level in a
straightforward manner in the experiments in which the server is not fully loaded.

The workload generator uses multiple threads, which issue ¢taomsaindependently from

each other. Each thread emulates a TPC-C terminal. Emochinal is attached to one
warehouse for the duration of the experiment and maintains a teegatabase connection.
Each warehouse has a possibly variable number of ternfiRst), which was 4 for CPU-

bound experiments and 2 for the disk-bound ones at the experiméniTeEse numbers
were chosen to be different from the TPC-C default value (l0)der to avoid having too
many threads in the server and limit possible contention, aSQUyuses thread-per-
connection model.

Each terminal continuously executes transaction cycles consisting ofltverig phases.

* Choosing the transaction type, calculating start time, rgéng transaction
parameters.

* Deciding whether the transaction is too late to startt i§ inot, waiting until the
execution is due.

» Sending the transaction to the server.
* Waiting for the server's response.
* Receiving the response and logging the transaction result.

We designed the workload generation algorithm as follows. TR ,(t) be the target

total offered transaction load, measured as a number of New tadsactions per minute
per warehouse. For the experiments with variable offered loadhdmge in the load level is
done by changing the number of terminal&W (t) , dynamically starting and stopping
terminal threads in the workload generator. The load gendgtedch terminal is fixed for

the whole experiment and is determined by:

TPM (0)
TPM TERM _ REQ 2
R TPW(0) @
Here, the load is assumed to be distributed equally betweerrminals. The initial values
for TPM o, (0) and TPW(0) are passed to the workload generator as parameters.

28

Conceptually, each terminal generates a separate schediéetdfmes for each transaction
type. The full schedule for a terminal is the superposition of th&ype schedules. Since the
scheduled transaction start times do not depend on the serpenses, generating and
storing the whole schedule in advance is not necessary. Insgeddterminal keeps a vector
of absolute start times, one value for each type of transaaton¢hooses the type with the
smallest value for execution. After the execution of a tramsgdhe next absolute time is
calculated for the same transaction type. In this calomlatnly absolute times (since the
start of the experiment) are used, therefore, the schedule dogspeoid on server response
times nor does it drift due to the overhead of client-side computadod transaction
parameter generation. The actual clock time is used tootdhe delay before the next
transaction issue and to determine whether the transaction is late.

Since the full schedule is a superposition of the schedules forteadaction type, the
individual schedules are computed first for each transaction type
ie[NewO[der , Payment , Delivery , SockLevel ,OrderSatus} . Mean transaction cycle

duration T;, in seconds, is computed using the requested througmﬁllm,gég'v', and the

transaction mix ratios using:

60 N newor
TN 3)
TPM geq i
where N;is the ratio ofi-type transaction in the mix.N;is taken from the TPC-C
specification [35] and its values are shown in Table 1.

T=

Transaction type, i Relativeratioin themix, N,
New Order 0.45
Payment 0.43
Delivery 0.04
Stock Level 0.04
Order Status 0.04

Table 1. Mix ratios for transaction types

Actual cycle durations are chosen randomly with negative expohéistigbution limited by
ten means.

T,=T *min(—Inr,10) (4)

wherer is a uniformly distributed random variable taken from the range (0, 1).

29

CPU-bound Disk-bound

W, Warehouses 8 30 (60)
Total data, GB 11 ~4.5 (8.4)
Partitioned data, GB 1 ~3.9 (7.8)
Non-partitioned data, InnoDB system tablespace, |0.1 0.58
metadata, GB

InnoDB transaction logs, GB 2x0.75 2x05
InnoDB buffer pool size, GB 15 1

Table 2. Database size parameters (total values for the loaded database in parentheses)

The time lines of the standard TPC-C transaction generagiolescand our transaction
generation cycles are presented in the Figure 8. In contrast to TP(i@swieparate keying
and think times, there is one client-imposed delay betwassdctions used to enforce the
total cycle duration.

At this point each client terminal has a schedule of stadst for every transaction type. We
allow a transaction to start slightly later than its siched start time if the previous
transaction has not completed before the next one is supposedttdliséareasons for

allowing delayed starts are explained in the next paragraphe ltransaction start time is
delayed too long, the transaction is skipped and reporteahadled. Once a transaction is
submitted to the server, it is allowed to complete regssdbé its actual execution duration.
Each terminal uses a single connection to server and sinceotimection only supports

synchronous transaction execution, there is at most one tramsactprogress for each
terminal.

As random start times are calculated for different trarmadypes independently, it is
possible that start times of different transaction typddsrfd a time interval small enough
that the resulting transaction executions would overlap even undealnoad. Additionally,
the exponential distribution may produce two consecutive start tifrthe same transaction
type within a short interval. In other words, the workload geiwmratigorithm may produce
overlapping executions even when the server response time is ndhmak overlaps are
random and their probability decreases quickly for longer delaysomtrast, the server
inability to handle the requested load would lead to systenaatiations and accumulation
of the delay. Therefore, in order to distinguish workload-generatiposed from server-
imposed delays, we allow transaction start times to be dklaydonger than some small
time interval (tolerance) ryyeour - In our experiments] veour Was chosen as 1 second for
CPU-bound and 5 seconds for disk-bound workloads, which is sufficientigl in
comparison to the duration of the experiments so it does notdeaghificant accumulation
of late transactions when the server cannot handle them. Atathe 8me, the chosen

30

tolerance values are big enough so that we did not observdledricansactions when the
server is under normal load. Possible timing scenarios in workjea€dration are illustrated
in Figure 9.

4.3 Metrics

In our experiments we model a service provider environment. In this kind obemeént the

provider and its clients have their own views and objectives degprthe system

performance. The provider's goal is to maximize profit, whvehwill assume is related to
the amount of work actually done for the clients minus the assoaatts. The clients, in
turn, wish to receive the promised services with good qualityeXhet definition of service
quality varies; however, it typically includes the amount of theicseractually received,
service availability and service responsiveness. An importanttaspehe client-centred
measurement stems from the clients' independence, meaningatthatclient has its own
valuable experience, which will not be captured by simple aggnggatetrics computed
over multiple clients.

To represent the interests of both the producer and the cliemtsseMwo groups of metrics.
The first group corresponds to the provider's view and includesrsylsteughput and the
cost of operations. Assuming that in a cloud environment servieepaad per use, the
provider should maximize amount of work done using the smallest nwohbervers. Also,
assuming that the provider does not have limits in scalabiltlycan adjust the number of
servers quickly in response to a change in clients' demaedoad level of servers
determines the provider's economic efficiency. For a given worktbadpad level can be
expressed in terms of throughput per server. In the extreme casengasgéely the provider
goal, the provider would load each server to its saturation. Howeverasgiog the load level
of servers would lead to deterioration of the client expegedue to fluctuations in the
clients' demand and the lack of spare server capacity to accommodate thaos@idhs That
Is why another group of metrics is needed.

For the second group of measurements, we focus on serviaeiptitan by calculating the

amount of time during which the service is not available. Vé® aheasure throughput
separately for different groups of clients. In particular, differentiate between the clients
that access migrating partitions and the clients that aquasgions that remain on the
original host.

4.3.1 Cost and Throughput Metrics

The main provider-centered metric is the total through@¥ (t) , measured in transactions
per minute, normalized per warehouse, defined in each smmal ititervalt during the
experiment:

W

()

W
NNewOrder<W’t+At)_z NNewOrder(W’t)
w=1

TPM (t)=2= Wint

31

where

N neworder (W, 1) is the number of New Order transactions executed in warelouse
from the start of the experiment until the titne

At is the length of the interval, for which the throughput is reportetlis assumed
to be a constant for an experiment.

We define the cost of scale-out as the amount of work that waseniormed by a server
("lost work™) because of the performance effects of the smatlgorocedure. The server's
inability to process the offered load is manifested asatkuctransactions due to scheduling
timeouts. Since the client tries to maintain the load indegetly of the server performance,
the number of cancelled transactions directly corresponds to the amount of "lost work".

We compute the number of cancelled transactgwceeo as a difference between the
offered load and the actual execution rate, assuming that féaredioad does not change
during the intervalt 4, <t <t 4:

w
NCANCELLED=TPM REQ(tstart)*(tend_tstart)*W_ Zl< N NewOrder(W !tend)_ N NewOrder (W ’tstart)) (6)

where
W is the number of warehouses;

TPM (1) is the offered load from each client (warehouse), in NewdeO
transactions per minute;

N verorder (W, 1) is the actual count of executed transactions since the staite of
experiment for the warehouseuntil the timet;

tea Leat @re the start and end of the time interval for which the nummbeancelled
transaction is calculated.

We convert the number of cancelled transactions in all clieMSwce . en, t0 the time-
domain metric T o5r, measured in minutes, by dividing this number by the noriifiedeal
load.

N
CANCELLED
T

05T = T oo (et) *(L — Lo #W 0

Intuitively, T osr measures the number of minutes of server time required to corneéarsa
the loss of productivity due to the impact of scale-out, assuming the seadds Imaintained
at the TPM e (tgo) level.

4.4 Experimental Environment

The experiments are conducted on khascat cluster [37] at the University of Waterloo. We
use two identical cluster nodes, each of which is an IBsld&Center LS-21 [38] blade

32

Server

Client

Server

Client

Response time

Cycle time

A

P

Figure 8. Time lines of the transaction cycle: TPC-C (A) and our modified TPC-C (B). The
shaded blocks correspond to processing time in the server and client.

t)il Diz Dis Schedule
| | |
A .
W 2 | o3 | Actual execution
tXll th2 tx|3 Schedule
| | |
B .
R o3 | Actual execution
tx2 dela
+«l<7 y
tx|1 Diz tx|3 Schedule
C ! | ' .
Actual execution
T R
tx2 dela
—p y
tx2

Figure 9. Transaction rate regulation. Normal execution (A). Small delay due to scheduled
conflict, no cancellation (B). Big delay due to previous transaction (tx1) being too slow,
transaction tx2 is cancelled (C).

33

server equipped with two dual-core AMD 2212 HE CPUs, clocke2itatGHz, 10 GB of
RAM, and a locally-attached Seagate Savvio ST936701 10K rpm 36 GBd&EK [39]. The
connectivity includes two 1 Gbps network adaptors, only one of which was actually used

The blades are booted into Snowflock Xen VMM version 3.4 witlbi&re Linux 5.04
installed in both domO and domuU in the virtual machines. The Linuratpg system used a
Snowflock-specific Xen-enabled kernel based on version 2.6.18. Each VM isedlodg#t 1
virtual CPU and 4 GB of memory. In the disk-bound configurations the datablsated in
the same virtual disk as the rest of the filesystem.

The Snowflock resource allocator chooses the location of a newlydcldviecopy based on
the available resources of the cluster physical nodes. Our goal was tedlelput between
physical nodes, therefore, we configured the Snowflock availabtauree limits on each
node to match closely the specification of the VM. Thus, a new clonednmygyg always be
placed on the second physical node of the cluster.

The load generator program, DBT2 driver, was located atséime node on which the
original VM was running. Since the VM only was allowed to usengle core, while there
are four total cores in the physical server, there was R Contention between the
benchmark client and the database server.

DBT2 driver was configured to use native MySQL connectivitgplementing each
transaction as server-side stored procedure. By doing this wenizedl the overhead of the
client processing and the communication. The number of termintdshed to each
warehousealuring normal load was 2 for the disk-bound and 4 for the CPU-bound setups.
Combined with the number of warehouses, this totals in 60 and 8&ameous connections

to the MySQL server. Given thiaread-per-connection model of MySQL, the degree of
parallelism inside the server was equal to these numbers.

To keep the experiments short, we used prepopulated dataBakae each experiment, a
file image of the database directory was copied to the My8&é&base directories in the
main VM. For each one of two database sizes we gedeifsealatabase in two steps, saving
each step's results. First, we created the schema atetllttee non-partitioned table (Item).
The result of this step was used to initialize the MyS@itance at the new node for the
DBMS-level and application-level mechanisms. Next, we populatgzhgltioned tables and
kept the resulting image for the main node initialization.

Several system metrics were collected during the expetandn particular, we used
standard Linux monitoring tools to gather CPU usage, contextlswaounts, and 1/O
statistics for the virtual nodes and the hosts, as weheadlySQL processes (pidstat). The
network utilization was collected with the sar utility dn\é@Ms and the hosts. Additionally,
the Xen-related metrics were logged with the xentop utiitythe hosts. The sampling
interval for all statistics was 1 second, however, the data were agggtéga larger intervals
for graph plotting.

34

Chapter 5

Experiments and Results

51 Overview

In this section we present the experiments and their reSMédsexamined the scale-out
mechanisms in two use cases which differ by the primaryebettk involved: disk-bound
and CPU-bound. The former case represents a realistic sceharghared-nothing database
application, while the latter case is included in ordeshtow how the presence of disk I/O
bottleneck affects the scale-out process for the mechanisguesgtion. As was noted in the
Section 4.2.3, we ran the experiments with two types of load gf@rermaximum load and
controlled load.

All experiments were conducted on two physical servers. Thi-put operation in all
experiments expanded the system from one to two nodes. Thaémémost experiments
consisted of the following steps:

1. Starting a server on the initial node, containing all the partitions.

2. A period with the initial number of client terminals. Durirngstperiod, the system
warms up and reaches steady state.

3. The number of client terminals is doubled. For the maximum |gpdrienents, no
change in the throughput metric, compared to the previous period, wouldtlshow
server was actually fully loaded. For the controlled load exgmaris) the offered load
is similarly doubled, and the initial configuration becomes overloaded.

4. Scale-out from one to two nodes is initiated.

5. A period for scale-out operation to proceed. Eventually themystaches another
steady state, now with two nodes.

The disk-bound experiments with the DBMS-level mechanism aldaded the following
additional steps, demonstrating the scale-in process:

6. The number of terminals dropped twice to return to the imtiedber. This decreases
the load twice and the system becomes lightly loaded.

Scale-in operation initiated to move the system from two nodes to one node.

8. A period for the scale-in operation to proceed so that themystaches steady state
with one node. The system and load configuration is now the same as it was initially.

The timeline of the experiments is illustrated in FigureTl® lengths of intervalg, 1<i <
5 are determined by control script parameters and vary betgeibound and CPU-bound
experiments. The variablgs1<i <5 indicate the start times of the corresponding periods.

35

steady state 1 steady state 2
warm-up \)verload scale-out underload scale-in

AN

\ B

events I I I I
t =0 ot ot
1 L2 13 4 5
: - P P
periods o o o
T 1 T, 1 T, 1 T, 1 T, 1
offered load |« e —m— -
normal | . increased ! § normal §
of servers = e - »a ~
one | two ; one ;

Figure 10. Timeline of the experiments.

According to out experimental methodology, we present a providet'slent's views on
system behavior during scale-out. Those views are presentedThrtughput Analysis and
Unavailability Analysis subsections, respectively.

5.2 Disk-Bound Experiments

In this series of experiments we model a realisticesoat scenario in which the total size of
the data partitions is larger than the available memory. We us@@P@®«C dataset consisting
of W = 30 warehouses, which takes about 4.5GB of storage space. abasgatvas placed
in the root filesystem of the VM image file. The MySQL buffeol was configured to 1GB
so that about 1/4 of all data fits there. The MySQL instancea¥gasconfigured to use Linux
Direct IO so data is not cached by the operating systernddbe. In this settings we expect
significant random disk read and write activity on behalfhef MySQL server that would
affect the duration of partition migration and service disruption.

The timing parameters of the controlling script were sebraoog to Table 3. During the
overload period we increase the number of terminal threads twattiols doubling the rate
of transaction requests. However, the new terminals are cednéttthe same set of
warehouses as the existing ones. Thus, we keep the size of the working set the same.

In addition to the scale-out we included in the experimensthée-in process, in which the
system migrates the partitions from the second node back toigfreabone. In a real-life

36

case the scale-in mechanism would be triggered by a contdllenin response to the
insufficient load. The scale-in is not possible under the Snowlostebmechanism as there
IS no way to merge the states of VMs which will have diverged since the cloning.

Period Duration, | Start time, Comment
minutes minutes

Initial warm-up period with one node 1 ¥30 =0

Overload =15 £=30

Scale-out to two nodes s E 60 t =45

Reduced load J4=15 t =105

Scale-in to one node s F 60 t=120 Only for DBMS-
level mechanism

Table 3. Disk-bound experiment time parameters

The application-level mechanism performed very poorly in this experitaitig more than
one hour to completely migrate the half of the database in onetidlire Therefore we
decided it is impractical to include it in the comparison. dadt we focused on the
Snowflock-based and DBMS-level mechanisms.

During the first runs we observed severe performance degradatiSnowflock copy-on-
write disks after a new snapshot is created. In Snowflock, asneyshot is created upon
starting the virtual cluster and each time a new VM clonerested. Although taking a
snapshot at the cluster start is not technically required, useéful for conducting multiple
tests with the same VM image, keeping the changes sdpaatediscarding them after the
run. In Snowflock, snapshots are implemented by the Copy Or {(@dW) technique, in
which write block requests are redirected to a separate filedalCoW slice, while keeping
the original VM disk image intact. Immediately after a newapshot is created, the virtual
disk could sustain only a few operations per second, with a throughahbtwof few hundred
kilobytes per second, even when the CoW slice and the origMadisk image were on the
same machine. This poor performance, which is two ordersaghitude worse than normal,
can be easily noticed, for example, when copying files aAs I/O activity continues,
the performance improves and eventually it stabilizes at the normal level.

After a little experimentation we found that the CoW disksenstow when the CoW slices
was stored as Linux sparse files and had normal performanee stbred in preallocated
files. The exact mechanics of this slowdown are not chedrywe suspect this is due to the
high overhead of dynamically allocating new blocks in a sphlsean the Linux ext2fs
filesystem, causing many synchronous physical disk writes for eachllagitza

Despite the fact that there certainly must exist some I/O ipeafoce cost of updating a CoW
disk, we believe the observed degree of the degradation in ulrent Snowflock

37

implementation is excessive and caused by inefficient impla&tien rather than the CoW
concept. Therefore, in effort to obtain more realistic dammodified Snowflock scripts to
avoid this overhead. Originally, Snowflock created a tempodigctory with a random
name for each cluster run and placed the CoW slices intoditestory. With our
modifications it uses fixed configured paths to the location€a@f#V slices. Before the
experiments we created the files in those locations withitleeegjual to the original image
size. This way, Snowflock picks up existing files to us€a$V slices and no random block
allocation takes place.

Conceptually, these Snowflock modifications defeat the main @o@howflock, cheap and
fast VM cloning, as it becomes impossible to instantly ae®a large file. Moreover, the
space consumption becomes very high. In our opinion, both stratégiealing with Cow
file allocation represent the extreme cases, therefoeeincluded both in our experiment
settings. The efficiency of the original (too slow) and tinedified (too fast) configurations
corresponds to the upper and lower bounds, respectively, of the durati@esbgtand the
degree of service disruption.

The maximum throughput of the server was determined by first running the experinfent in t
maximum load setting. The achieved throughput was approximately & pemwarehouse

at 30 warehouses (corresponding to 1800 tpmC total for the séBasgd on this number,
we chose 50 tpmC as a client-offered load level for our olbedr load experiment, which is
about 85 percent of the maximum.

Cost and Throughput Analysis

The graphs for total transaction throughput and network utilizatiershown in Figure 11
and Figure 12 respectively. The system first achievesdgtstate approximately at t=15
minutes. During the excessive load period<30< 45 when the number of clients and the
offered load both doubled, the system becomes limited by seapability, therefore it can
accommodate only small performance increase. At the time trihbites scale-out is
initiated.

The original Snowflock implementation experiences a deep throughputadwpestores
very slowly, taking about 25 minutes until the original level abdut 40 minutes until the
maximum level is reached. However, it still had not finagched the offered load level,
staying about 10% short of it. Later, from Figure 16 and Errefei®@nce source not found
we will see that the original node performance is the culprit whide migrating one is
restoring smoothly, albeit slowly, and finally reaches thereft level of 100 tpmC per
warehouse. Thus we can conclude that in the case of the ogioalflock implementation
the latency of remote block reads is not the main cause gfetfiermance impact but the
degradation of physical disk 1/0O performance at the origmade due to CoW block
allocations is. When the factor of slow CoW block allocatioremoved from the equation
with preallocated CoW slices, the system scales out muchegegkn though the latency of
remote reads still affects it.

38

load increases load decreases

scale-out starts scale-in starts (DBMS-level only)
125 T T T
L Snowflock(original)
c i Snowflock(modified) —---- 1
‘E 100 ¢ : G T DBMS-level]
E L - /I offered load =+]
9 [: /]
= 75 : 7 3
Qo i -
aga ; Nz 2n/ [f/d X ‘
g [[\«.,,‘,_,\ H P N
- 50 7 \\/l» e \ ._V_ B
e [| \ /
Z 5| A
S L’
L
0 L L

0 15 30 45 60 75 90 105 120 135 150 165 180
Elapsed time t, min

Figure 11. Average transaction throughput per warehouse.

The modified Snowflock mechanism takes about 12 minutes to fully scale out andj-interes
ingly, shows no overall degradation during the transition. There is degradation fortthe pa
tions that are migrating, but the almost instantaneous acceleration of the natingignes
compensates this.

load increases load decreases
scale-out starts scale-in starts (DBMS-level only)
9 T T . T]
Snowflock(original) 3
o 8 Snowflock(modified) —----- 3
g - DBMS-level
R]
S 5
3
£ 4 ‘l
< 3
o
2 2 k
7] S—ho
< 1 RS AR
obe vl iy el wirtrstirsis S | N [A S R
0 15 30 45 60 75 90 105 120 135 150 165 180

Elapsed time t, min

Figure 12. Network throughput between physical nodes

39

The DBMS-level implementation is the quickest to scale fulking approximately 6
minutes, but has a short degradation initially that has its mmiratiabout t = (45 + 2)
minutes. To investigate the reasons of this degradation we m@uthe logs and analyzed
the durations of the components of the scale-out process. The detaikdpdeent of
throughput and network traffic is shown in Figure 13. The Ibgsved that the VM cloning
took 29 seconds, reinitializing the database with new dattélgk 92 seconds, and starting
a new MySQL instance took 28 seconds. During database reinitializagleting old files at
the target took most time, followed by copying new filesorig, file deletion, and file
copying steps affected the source node performance as iisgh@de was also used as a
data source for database files and the VM image. Both stepisined took almost exactly 2
minutes. Then a new MySQL process started initializing lpcabsing the load on the
original node and allowing it to recover partially. The partitioigration itself started soon
after that and was accompanied by fast performance recéwem this timing information
we can conclude that the cost of bringing up a new node is the cauke temporary
performance degradation. The whole DBMS-level scale-out took &@Buhinutes, which

Snowflock cloning (29 s)

Replacing database at target (92 s)

MySQL initialization at target (28 s)

Partition migration (15 partitions, 357 s)

20
P] DBMS-level ——
= I
g 15 fo
[oR L
z L
2 i M |
g 10f
I I
= i
5 o5 e
= i
Z 0 L .
150

DE;MS-IeveI —

o | - JX \ [\[\ J\VAAVWNTGV“AE""A";;' §
Wwwwd\va

45 50
Elapsed time t, min

TPM(t), NewOrders/min

Figure 13. Detailed transaction and network throughput during DBMS-level scale-out.

40

consisted of about 2.5 minutes to initialize a new MySQL instance and éesitoutnove the
partitions, i.e. 24 seconds per partition on average. Interagtitigd full performance
recovery was accomplished when only half of the migratingtipat had been actually
moved and enough capacity had been freed at the source node.

The results of network traffic measurements are present&abie 4. Although Snowflock-
based scale-out takes much more time than DBMS-level on@ntbent of traffic (to the
point when system throughput has been mostly recovered) by Sokwtised mechanism
is less. We can conclude that on-demand transfer approaghcient in minimizing the
amount of transferred data. Therefore, slowness of the &ukafased mechanism is
determined by transfer latencies and not by bandwidth limitations.

Mechanism | Approx. | OScloning| Datami- | OScloning| Partition | Total mi-
timeto | anddata- | gration | and data- data gration
gain 90% | basereini- | duration, | basereini- |traffic, MB | traffic, MB
of thefinal | tialization | minutes | tialization
through- | duration, traffic, MB
put, minutes
minutes
Original 40 N/A N/A ~1830 (until 90% of final throughput
Snowflock is reached)
Modified 12 N/A N/A ~1850 (until 90% of final throughput
Snowflock is reached)
DBMS-level 2 2.5 8.4 439 2195 2634

Table 4. Data transfer measurements.

We performed the analysis of the lost work during the scale-odtsa&ale-in periods
according to Section 4.3.1. Table 5 shows the amount of lost work dwalegout with the
following parametersTPM g =100min~", ty,,=45min, t,,=10Emin,

Total amount of lost server
working time caused by
scale-out T osr, Minutes

Total number of not executed
New Order transactions snce
scale-out begins N canceien

M echanism

Snowflock original 73202 24.4
Snowflock pre-allocated | 10214 3.4
DBMS-level 5818 1.9

Table 5. Results of the lost work analysis (scale-out)

41

Table 6 shows the results of the lost work analysis dusgate-in with the following
parametersTPM geo=50min~", ty,,=12Cmin t,,=18Cmin.

M echanism Total number of not executed | Total amount of lost server
New Order transactionssince | working time caused by
scale-in begins Neancerien scale-in T osr, minutes

DBMS-level 4603

15

Table 6. Results of the lost work analysis (scale-in)

Quality-of-Service Analysis

We analyzed service disruption for each warehouse by calgldite number of 5-second
intervals during which there are no transactions executed tatvéitahouse. Although this
metric has some degree of subjectivity as it does not captuoelpeavith partially (but still
significantly) degraded performance, we believe it can rdistthe degree of complete
service blackout. A 5-second interval corresponds to approximafetyansactions of all
types for the normal warehouse load (50 tpmC). We only analyeetinte period 45t <

105 minutes (the scale-out period). The result is shown in theeFigurDue to very high
original Snowflock numbers, a logarithmic scale is usegdanis.

10000 T T T fII kl(T I)I T
%) Snowflock(modified) ez
5 DBMS-level mmm=m
%] L E
2 1000
o
<
(3]
3
X
> b B K Kl
a L B kKK EE kK ki
K3 R ¥ K3 ol o
o FEEEEKE KK K
K EEEEEK kK K K
K EKEEBEEEEKE SHN SOl &
= (B EEEEKEE D EE
= (K EEREEEKEE 5 3
| K K < K J Ky -
10 K EEEEEKEK KKK
HEEEEEEEK H KK
2 R EEKEE KK SOl BN X
J KKK KKK sl K
K E EHEEEEE KKK
a EKEE EEEEEEK N KK
KK EEEEEK KK K
% HE K EEE KKK
SN SOE SO SN SEE Bl K3 ol OB <Ol PN o
o [4 K [[K &
1 I M M M M SN NEN NSE NSN NSE NS8 NSH NN NSE NSE 6N <ON 200 sOE BN SHE BN 80 <5 00 <BE <00 S0E

9 1011121314151617 1819202122 2324 2526272829 30
Warehouse #, ordered by downtime

Figure 14. Downtime distribution for warehouses (scale-out, 45 <t < 105 minutes)

The results show that the very costly original Snowflock mesharcauses substantial
downtime for every warehouse, with half of them experiencing rd@miption than the

other half. The downtime for both preallocated Snowflock and DB&8Hmechanisms are
similar and are experienced by the migrating warehouses lanllge case of the modified
Snowflock-based mechanism, the absence of downtime for the h#ieolarehouses is
caused by the fact that the synchronous part of Snowflock clcatkeg tibout 2 seconds and

42

load increases load decreases

scale-out starts scale-in starts (DBMS-level only)
125 T T T
Snowflock(original)
Snowflock(modified) —---- 1
100 - : ST st DBMS-level .
:: ’[/’ ! Offered |oad]
1

LR

75 | : t
- / H :
y o - f\w;,-\ II / \LWNJ:\

TPM(t), NewOrders/min

0 15 30 45 60 75 90 105 120 135 150 165 180
Elapsed time t, min

Figure 15. Average throughput in the migrating partitions, per warehouse.

IS not counted as "downtime" in our test. For the migrating ttafdowntime is determined
by the initial slow execution period at the secondary node whea #ne too many "virtual
page faults" (modified Snowflock) and by the one partition copy time (DBME&HI.

The throughput graphs for the migrating and non-migrating warehoresses@wvn in Figure
15 and Figure 16, respectively. Although the warehouse unavailabitigg for the DBMS-

load increases load decreases
scale-out starts scale-in starts (DBMS-level only)
125 T T T
Snowflock(original)
c Snowflock(modified) —---- 1
g 100 [: P i AtV A S DBMS-level -
E : | offered load =«]
% 75 I B ,l' W\v/\/\/ N N :“
= AW “I /\/ 1
[] \:\%»'1 H
2 50 --NWW 7 — —
= |
& 25 | /;, . \VAVAVAVA/\
|
O.... PR PR PR PR PR PR PR PR PR PR PR
0 15 30 45 60 75 90 105 120 135 150 165 180

Elapsed time t, min

Figure 16. Average throughput in the non-migrating partitions, per warehouse.

43

level and the modified Snowflock mechanism are similar, the overallghpat of migrating
and non-migrating warehouses is different under the two approdch#se DBMS-level
mechanism both migrating and non-migrating show approximately the garformance
evolution during scale-out.

In the Snowflock mechanism, the migrating part accelest&sothly until it reaches the
target throughput level, faster for the preallocated implertientand slower for the original
one. The performance of the non-migrating part, however, is chligtdifferent for the
original and modified Snowflock mechanisms. In the original gegformance improves
slowly and in a jagged way, never reaching the target peafazenduring the 1 hour time
interval. On the contrary, the modified Snowflock mechanism restores thenpanioe of the
non-migrating part almost instantly, even faster than the DBMS-level misoha

Based on these observations we can conclude that the original I&towErformance

during scale-out depends on the factors of network latency andhshajsk latency, the

latter being the major one. However, in the modified Snowflockhaweism, snapshot disk
latency no longer affects the performance.

5.3 CPU-Bound Experiments

The goal of the second set of experiments is to study how tlee@dabehaviour changes
without the impact of disk I/O. In this case the scale-ootgss is competing with the
normal load for CPU cycles and memory transfers. We comaplréhree scalability
mechanisms here: Snowflock, DBMS-level, and application-levelafFahree mechanisms
the system configuration is exactly the same, allowingpusoipare the absolute numbers
obtained from measurements. The database server runs in a VM having 4GBasfmem

To fit the database into memory, we chose the TPC-C &atler W = 8. The initial size of
the database data files is approximately 1.2 GB. From 4GB of tttah¥mory we allocate
1.5GB to InnoDB buffer pool so InnoDB does not experience read missasoid physical

writes of dirty pages we also put the database into a RAK-using a ramfs filesystem. In
Linux, ramfs filesystems use memory to store files withamy disk backing. Although this
configuration is redundant in terms of memory usage, it completiehynates physical 1/0

as well as the overhead of memory copying from the RAM digke buffer pool. In total,

the data files and logs on disk and in the buffer pool consume about 3G&vairy, leaving

the rest for the operational overhead of both MySQL and operagstgns, and for data
growth.

Each warehouse in this experiment had 4 terminals connedtiedlyintherefore, the total
number of terminals was 32. During the period of increased lbadaumber of terminals
increased to 8 per warehouse, amounting to 64 in total.

The experiment scenario follows the same timeline as thebdiskd one with timing
parameters specified in Table 7.

44

Period Duration, minutes | Start time, minutes
Initial warm-up period with one node 1EDH t=0
Overload T.=5 =5
Scale-out to two nodes sE 15 t=10

Table 7. CPU-bound experiment time parameters

5.3.1 CPU-Bound, Maximum Load

The goal of the first experiment was to determine the maximum load levelrghaerver can
handle. The load generator was configured to have no delays between transactions>do the
transaction is issued immediately after receiving the respmnstae completed one. This
mode of load generation, as well as running multiple threads isetlrer (32 threads in the
initial period), ensured that the server was flooded with transaction requests.

During the maximum load runs, we observed some random osciltetiinoughput during
the initial period (before scale-out) between two visibbkt levels of approximately 1000
and 1100 tpmC per warehouse for all types of scale-out meclsanis®m switch between
levels occurred rarely so some runs maintained one of the levetsefentire duration of the
experiment while others switched once or twice. In totalpegormed 12 runs for three
mechanism types. To illustrate the oscillation behavior, we pesblachistogram of average
throughput values over 1-minute intervals for of all runs, with tLl< 10 minutes (initial
steady state). The histogram is shown in Figure 17. Thebdistn exhibits two clusters
around of 1000 and 1130 tpmC per warehouse, with equal probability of throdghipgt
into either of those clusters.

[EnY
N

[
N

10
>
S g
(O]
=
o 6
o
-
4
2
0
O O O O O O O O O O O O O O o o o o o o o o o
N O© I~ 00 O O 4 &N M < I O© N~ 0 O O 4 N O < I O M~
o O O O O O O o o o O O OO O d d A A «AdA A «H «
T a4 A A A A A A Hd H A H Hd H
tpmC, 1/min

Figure 17. Distribution of throughput values of 1-minute intervals during the initial steady
state period in all 12 maximum-load CPU-bound experimental runs.

45

load increases scale-out starts

1750 ——————— — —— TS P e e T S ver
: EUSSATLSSTass
1500 b ‘ I
= I
£ 1m0 f .
g ,,/_“A“‘—/"_‘/UQ«W:‘.W
S 1000 | I
2 [
z 750 F---
S 500
o :]
D) Snowflock 1
[DBMS-level 1
0 L applicaltion-level ————— 1

0 5 10 15 20 25
Elapsed time t, min

Figure 18. Comparative throughput graph for the CPU-bound experiment.

The exact cause of this variation was not discovered. In orderinimize its effect, we
picked runs which had throughput equal to 1130 tpmC during the initialystéstd. We also
performed the same selection of runs in the controlled loperiements, based on the
throughput level during the overload period, when the throughput is limited by the server.

The complete throughput graph is shown in the Figure 18. Fronigha observations, we
chose the first two minutes as the warm-up time, the theg&e minutes as the first steady
state and the last five minutes as the second steadyAthtaigh we might expect a small
instability of throughput due to contention in the engine during ithe interval 5 to 10
minutes, when the number of threads is being increased, itmednaimost equally steady,
thus the contention factor is insignificant for those experimdiitsre is also no change in

M echanism Steady s_tate 1,t=2.5 Steady sta_lte 2,1=20..25
minutes minutes
Snowflock 1119 1662
DBMS-level 1129 1658
Application-level 1116 1696
Average 1121 1672
Standard deviation 6.6 21

Table 8. Average total throughput during the initial and the final steady state periods (nor-
malized per warehouse), maximum load, tpmC.
46

the average throughput value, meaning the performance is fully determitiesl dBrver side
and it is at its maximum.

The average throughput numbers for the corresponding steady stataramarized in the
Table 8, we will use those number as a base for the contraetl level in the later
experiments.

5.3.2 CPU-Bound, Controlled Load

In the next experiment we model a more realistic scenarimdgtaining the workload at a
configured level. The initial client-offered load is lower rihthe server can potentially
handle, thus leaving some spare capacity to simulate overprovisi@iincomputing
resources. This experiment has the same settings as theugresiperiment, with the
exception of the load generation.

We set the scheduled rate of client-generated transacti@b® #mC per warehouse, which
is about one third less than the peak rate measure in #&woys "maximum load"

experiment. During the excessive load period, we are running &genany clients without
changing the database size, effectively increasing the offerad to 1500 tpmC per
warehouse.

Cost and Throughput Analysis

The transaction throughput and average response graphs are shogurén1Bi and Figure

20 respectively. At = 5 minutes the offered load level is doubled, however, the system
throughput increases only by the amount of overprovisioned capabgyréEponse times
rise significantly, indicating that the offered load exceeds the servpdsita

The most interesting part of the graphs are at 10 minutedbeywhd, when the system
undergoes a transition period. We observe here that the Snowflock lggatadchanism can
recover most of the maximum throughput in about 1 minute, followethd DBMS-level
mechanism (about 2 minutes) and the application-level mechanism (5 minutes).

For a reason that has not been determined, in both DBMS-Iegea@plication-level test
runs the Snowflock cloning process took longer than in the Snowflatkra@s, with

approximately 25 second delay between issuing the clone commahne bgnitrol script and
actual observable network and performance effects. This d#thynot occur in the
Snowflock scale-out process.

M echanism N cancerLen T osr, SECONdS
Snowflock 8913 5.2
DBMS-level 10005 13.3
Application-level 22623 30.2

Table 9. Results of the lost work analysis, scale-out

47

To evaluate the cost of scale-out for a provider, we aggregatemtdienumber of New
Order transaction cancellation cancelep Starting at t=10 minutes, when scale-out starts,
and converted this number to time unilsosr, normalizing by the initial offered load,
according to (7). The resulting time quantities representdsieopportunity, the working
time of the server that could have been saved if scale-asit"iree”. In the environments
where server time has a monetary cost, as in cloud plafdimase numbers can directly
translate into the monetary cost of scale-out. Table 9 showsh#s of the computations
using the following parameter§PM peo=1500min"", tg,=1Cmin, t.,,=25min.

load increases scale-out starts

1750 [|
c 1500 : /\/ chfwcﬁé&’*w*ﬂgﬁﬁ
£ 1250 | /
E [.s e \/ ,
S 1000 | _;yl" ™ o~
% 3] \‘_\ ,\\,I
z 750 Frepmsme e - ‘
c /N" \\/\\l‘
S 500 [, |
& : Snowflock
20 ' _— DBMS-level R
: application-level —----
0 ; offclered [oad -seeeeees
0 5 10 15 20 e

Elapsed time t, min

Figure 19. Average transaction throughput in the CPU-bound experiment, per warehouse.

load increases scale-out starts
1.4 T
Snowflock
1.2 DBMS-level 3
: n application-level —----
1
] 1 e
g II \’I ‘l 4
8= 0.8 /’\ 1 \ 1y
% rﬁ}ﬂ\m\\/ N\ v/ V/ “
[
S 0.6 !
% |} \\/4\
3} \
o 0.4 Vf\ .
\/\ \
\
0.2
\ (Ve S S N = NN
(0]
(o] 5 10 15 20 25

Elapsed time t, min

Figure 20. Average response times during the CPU-bound experiment

48

To study the efficiency of database state transfer we zméte network traffic between the
physical hosts during the experiments. The network throughput grapbws ®n the Figure
21. The total traffic includes both the migrated data as althe client-server protocol
messages and there is no simple way to precisely istilatdraffic related to partition
migration. However, we expect that most of the throughput is used by the migrafion traf

Figure 21 illustrates the network throughput of the different scalevmdahanisms. The
Snowflock mechanism has an initial surge of data with an expahdetay that, however,
does not fade completely but instead stabilizes after approxyrateinutes with much

slower further decline. It is interesting to note that the fmdalormance (in Figure 19) of the
system is mostly recovered within these 2 minutes so wecoaclude that the residual
network transfer at a moderate rate (~2MB/s) does not affect the performance

load increases scale-out starts

14

Snowflock]

e L —— s DBMS-level 1
application-level ——---]

10 | i .

Network throughput, MB/s

0 5 10 15 20 25
Elapsed time t, min

-~

Figure 21. Network throughput. For DBMS-level and application-level mechanisms, the first
peak corresponds to Showflock-based OS state and empty database transfer and the further
high utilization levels are for the partition transfers. During the gap after the first peak the
MySQL isinitializing at the new node.

Both DBMS-level and application-level scale-out mechanisms shewnilar (but smaller)
surge due to the Snowflock-implemented transfer of operating systtdm) followed by a
short pause when the secondary system starts up, followed by the partiticromigadfic.

The results of measuring the total amount of network trafécshown in the table Table 10.
For the Snowflock-based mechanism, the amount of data was meagutedthe time
reported in the second column, corresponding to 90% performanceTlegalata transfer in
this run continued through all 25 minutes of the test, exceedingi@@®al, and has not
completed by then. For the DBMS-level and application-level nmestmathe amounts in the
table were measured separately during the OS state arttbpatéta transfers periods. Each
period was marked by timestamps in the log files.

49

From this table it can be seen that the Snowflock-based meohaias the smallest amount
of data transferred. We can attribute this result to its omade copying strategy, and non-
uniform page access distribution in the TPC-C workload.

Having the migration duration and the amount of data transfer frable 10, we can
calculate the average network utilization during this time. DiBMS-level mechanism
achieves the highest network utilization, reaching 6.2 MB/s. @apelication-level

mechanism only used 1.6 MB/s on average, which indicates muchr imgémnal costs of
processing the transferred data in MySQL. On the othed,hide application-level used
SQL-based messages for data transfer, which were about 408ccoropact than binary
representation of InnoDB data pages, used by the DBMS-level mechanism.

Mechanism | Approx. |OScloning| Datami- | OScloning| Partition | Total mi-
timetogain and data- | gration | and data- data gration
90% of the | basereini- | duration, | basereini- |traffic, MB| traffic,
final tialization | seconds | tialization MB
throughput,| duration, traffic, MB
seconds seconds
Snowflock 60 N/A N/A ~400 (until 90% throughput is
reached)
DBMS-level 150 79 * 101 188 627 815
application- 280 72* 233 179 380 560
level

* Including approximately 25 second delay before actual Snowflock cloning starts.

Table 10. Data transfer measurementsin the CPU-bound experiment.

Quality-of-Service Analysis

First, we present the distribution of downtime over warehousegure=22. We obtain this
result similarly to the disk-bound experiments, using the time interval ofoh@et€herefore,

we counted the number of such intervals during which no transaotemuted as the length
of downtime. Here the application-level mechanism imposes ®ignif downtime for

warehouses, including those that are not migrating. In contr@s&nowflock and DBMS-
level mechanisms cause unavailability only for the migrating warehouse.

To further study the impact of scale-out we plotted woest-case throughput graphs in
Figure 23. The graph shows the throughput ofwthiest-performing warehouse in every 10-
second time slot. The graph shows that all mechanisms malevgarehouses completely
unavailable with the application-level one having the longest periodisaviilability taking

almost all scale-out time. The DBMS-level one has shorterdpgating downtime periods.

50

Finally, the Snowflock-based mechanism demonstrates the shdotestime caused by the
synchronous phase of its cloning operation, taking only a few seconds.

70 T T T T T T T
Snowflock
w60 L DBMS-level —]
9}‘ application-level ===
3 50F 1
<
o 20 - _
(U B -
=
>
2 30 |
(O]
£
2 20 4
3
8 10} I I I |
0 L - -
1 2 3 4 5 6 7 8

Warehouse #, ordered by downtime

Figure 22. Number of one-second time intervals when a warehouse is not available.

load increases scale-out starts

1750
1500 .]
: NP BRGNS
% 1250 f / / |
S :
£ 1000 s \f " /\,\ "V .
: SV .'
2]
i 750 /4‘/’“‘\04»/«:\«_' /\\ |
s \!
= 500 \‘ ‘ ‘, -
- \I ' N Snowflock]
250 ‘ ot DBMS-level]
V VAA Ty application-level -----]
0 ‘l,’ “// ‘\ ,' ‘o of‘f(l-:ared load seerreeees
i ° 0 15 20 25

Elapsed time t, min

Figure 23. Wor st-case throughput in the CPU-bound experiment.

Summarizing, we can conclude that the costly application-lewechanism cause
significantly more transaction processing disruption than tB&®&-level and Snowflock-
based ones. The latter two have comparable downtime but itstisbdied differently
between warehouses. The DBMS-level mechanism disables warelomesby one, taking
more time in total, and the Snowflock-based mechanism stopsi@houses whose data is
being migrated simultaneously, but for a short time.

51

Chapter 6
Related Work

The work described in the thesis is related to resaartme areas of distributed databases,
virtualization, cloud computing, and dynamic resource managenerthis section we
provide a short review of those areas as well as alternativeampes to our problem or
other similar problems.

6.1 Cloud Computing

This thesis was motivated by the problem of efficient reconfiguradf database services in
a cloud computing environment in response to changes in use@de@ioud computing

promises to provide both flexibility to users in consuming computergicees and more

efficient resource utilization for service providers.

A variety of online services, which can be advertised as dewdces, are offered on the
market. One example is Amazon AWS [4], which stands forZanaVeb Services. Amazon
has a wide offering of services, spanning multiple layers.rndteworthy examples include
laaS-level Xen-based virtual machines dubbed Elastic Computing CQHC®), persistent
Elastic Block Store (EBS) and Simple Storage Services, @8) higher-level SimpleDB
key-value store and Relational Database Service (RDS). Thel@tiethe most relevant for
our study as it offers a locked-down modified MySQL databasesiserunning on shared
hardware (most likely virtual), and utilizing a persistent thsted shared storage, similar to
EBS. The elasticity of RDS is limited to ability toade-up and scale-down, migrating a
database instance between several offered "instance classbferent computational and
storage capacities. According to RDS documentation [7], swgdhe instance type incurs a
"short downtime". Our approach, in which nodes are added or removed matkd-s0thing
architecture, is potentially more scalable because it iimied by the capacity of a single
node.

6.2 Virtualization

An important type of cloud services, called infrastructasea-service, depends on the
concept of a virtual machine (VM) as a means to provision cortigudh resources. Despite
being known for decades, for example in IBM's series of naairds [8], the widespread use
of VMs has begun with the introduction of hardware virtualizateshmologies to the x86
processor architecture [9]. With hardware virtualizationais become possible to efficiently
run multiple instances of an operating system as an isolataedl machine (VM) with no or
little modification on commodity servers.

Each VM is controlled by ahypervisor. Xen [10] is an open-source hypervisor
implementation, widely used in production and often chosen as @ $ggem for
experimental research. A Xen extension [11] endlesnigration of virtual machines with

52

the disruption of service limited to a few dozen or hundred madads. Clark et al [11]
discusses in detail the strategies to copy the memory, stateding stop-and-copy, pre-
copy, andpure on-demand memory migration strategies. The pre-copy strategy transfers most
of the VM state concurrently with the running VM and suspends famlya short time to
complete the migration. The iterative pre-copy strategy proviteeshortest downtime with
balanced total migration time and overhead during the irstiade of the migration. In
addition to management purposes, the live migration mechanismbenaged to scale a
system or for load balancing within a cluster of virtual maesi Short downtime is only
possible when only a small amount of state, usually containddeirmain memory, is
transferred. The implementation of migration at the very lievel of the Xen hypervisor,
while isolating an application and OS from the migration prqodess a VM as a minimal
unit of resource allocation. In hypervisor-based approaches, ghéken partitioning unit
smaller than a VM is not possible as the only way to ensie cdnsistency during
migration, without knowing the details of the higher-level applicastate, is to take a
snapshot of a whole VM. The consequence of that coarsely graeuarespartitioning is
extra redundancy and higher associated overhead. On the otherthemtiscussed live
migration strategies [11] can potentially be applied to upper levéle software stack, such
as to a DBMS.

The ability of a hypervisor to manipulate the state of VMedparently to the applications
running inside them can be used to implement a coarse form of scalability. Whemeeds
more (or less) processing resources, the state of the VM is sarexddetred to another, more
(or less) powerful host, and the VM is restored. For examptenizon calls this abilityiuto
Scaling in their EC2 platform [5]. However, more advanced techniqueseeded for more
transparent and efficient scalability.

Snowflock [12] is a virtual machine cloning mechanism based orXémehypervisor. In
contrast to the basic feature of hypervisors, Xen includeshwe and restore a running VM,
Snowflock doesnulti-way live VM cloning in an efficient manner. The efficiencydsfined

as the ability tanstantly make clones without blocking copying of the whole VM state. The
resulting VMs have information about the CPU context but no memodyskrpages. The
remaining parts are transferred-demand, as the clones try to run and cawsdual page
faults by touching memory pages, or perform disk 1/0O. To gain furtiffesiency Snowflock
employs multicast network transfers and several optimizatmasoid transferring parts of
memory that will not be used at the clone. Snowflock is besidstor ad-hoc computational
tasks that share little state between the original VM copy and the clones.

In this thesis we extensively used the concept of VMs. Howveve explored ways to
manipulate partitions smaller than a VM. One of the studiechamsms uses the Snowflock
hypervisor as a sole means to gradually migrate the databsséetween nodes in a cluster.
The other two mechanisms only provision empty VMs with Snowflocknaigdate the state
as a separate step.

53

6.3 Parallel and Distributed Databases

Traditionally, the problem of database scalability has been agdrds/ using parallel and
distributed systems. Horizontal partitioning is a long-known seedfiniques to improve
performance of database systems [20]. The degree of paralledried between different
approaches to partitioning. Distributing the database filesdset multiple disks within one
machine allows for parallel /O while keeping the query pssgy centralized. Another
approach is increasing the number of processing nodes and distritnaiggery processing
among them. In that case the architectures of data distribcdiome further classified into
shared-disk andshared-nothing [21].

The shared-disk architecture includes a single high-throughput I/O subsysteoh lstiaveen
nodes in a coordinated manner [23]. The complexity of the sharedjsteubsystem results
in the higher data access latencies and the required coardimadly impose a scalability
limit on increasing the number of processing nodes. On the btdrel, a shared storage
system can more easily balance the load between the girer@®des as no persistent data
movement is required.

In the shared-nothing architecture each processing node hasally-bttached permanent
storage. This architecture tends to have a lower cost asisheceneed for the specialized
high-throughput shared storage subsystem and it can be composed of components, combining
CPU(s), local memory, and disk(s) in one standardized pacKHye. shared-nothing
approach is hypothesized to have better potential scalability [21]etwthis approach has

the problem of efficient distribution of the data between nodestl@deed for complex
algorithms to optimize query execution.

Traditionally, in shared-nothing architectures the partitioning sehwas defined statically
during the physical design phase and changing it required a mataraéntion and a costly
data reorganization. Examples of static distributed partitionipdementations include DB2
Parallel Edition [22] and federated servers (distributatitipened views) in Microsoft SQL
Server 2005 [24].

MySQL open-source DBMS contains two implementations of datatipamg, both
accessible with a single SQL interface. The first ona i®ature of the MySQL Cluster
storage engine and the second one is a separate partitioniagestmgine, handling
partitioning atop of other storage engines [25]. The flexiboiftyySQL to provide various
data organization options stems from its pluggable storage engihgeeture, logically
separating the upper query-processing layer from lower |lev@la data access interface.
There a number of storage engines available for MySQL, includinge stewveloped
internally and some developed by third parties.

MySQL Cluster originated as an Ericsson project [29] agmio create a fast, reliable,
replicated main-memory DBMS for the telecommunication ingudthe project supports
both horizontal and vertical table partitioning, with horizontalipaning using distributed
linear hashing and distributed B+tree as fragmentation #igasi The choice of either one
apparently depends on the user's requirement to have an order-pesedéxing. Both
algorithms permit dynamic splitting and merging of fragmentsesponse to node failures,
node addition, or load balancing due to a management request. Dragngeht splitting or

54

merging, tuples are transferred one by one to prevent largefsagiaent locking. Any
active transactions are allowed to execute at the sourceanddeple modifications are sent
to the target node along with the stored tuples in a blockpit@esnly having in-memory
data, fragment migration is referred to as costly operatreqsiring care when planning the
cluster node configuration.

MySQL Partitioning Engine (MySQL PE) [25] was developed taninithe MySQL Cluster
partitioning interface, with the ability to use any otheySWL storage engine as an
underlying data storage. MySQL PE partitioning criteria aetban hashing, ranges, and
lists of attribute values. MySQL PE interacts with the I@QySquery optimizer tqrune the
partitions that are not used by the query. The current implementdtMpSQL PE supports
dynamic reorganization of partitions using administrativel S0DL interface, however,
those reorganizations involve costly data movements between theyingiadbles. The
major shortcoming of MySQL PE is that, despite the fact My3@ludes a storage engine
to access remote servers, it is not possible to implemdistrebuted partitioning using this
storage engine. Another potential deficiency is a lack of opitoiz when the number of
partitions is large, due to use of O(n) algorithms in MySeH, related to the number of
partitions, and significant overhead of processing inside MySQL PE itself [26].

In this thesis we used the shared-nothing approach forbdisirg the database between
cluster nodes in the DBMS-level and application-level scaleroeithanisms. We took
MySQL PE as a tool to implement partitioning and extendedtlit ability to dynamically
and efficiently move partitions between working servers.

An optimized and feature-enhanced version of MySQL, XtraDB, developed by Percona
[27]. XtraDB is proposed as a better MySQL alternative foriegipbn hosting providers
implementing SaaS scenarios. Besides general performance imerdge XtraDB is
claimed to be better suited for multi-tenant configuratiahse to flexible schema
management, advanced monitoring tools, and the ability to tratadfies between running
nodes. The latter feature is particularly relevant for our work and ourada&tdevel scale-out
mechanism used some ideas of InnoDB table data modificatialtote their compatibility
between different servers. However, XtraDB does not includs fooldoing scale-out itself,
which has to be implemented by users. The partitioning desigguerg routing in XtraDB
should also be provided by applications.

Hauglid et al [34] proposed an algorithm for dynamic database fragtieenand for finding

an optimal placement of fragments over a set of cluster nddhesfragment placement
decisions are based on a simple cost model using a sthtetialysis of row access
frequencies. The cost model takes into account the frequencgnuite data accesses,
including the cost of fragment migration, as a cost metric for mintrarzaClient queries are

presumed to be simple row operations (read, write) that oridiratethe same nodes where
the database is located. Depending on the relative frequencessdsfand writes, the system
may choose to create multiple replicas for a fragmentedd rrequest has the cost of
transferring a row from the closest node, which is a local modbe best case. A write

request has the cost of one or more transfers to each of timseflhe costs of read and
writes are assumed to be constant for every local and reopet@tion, which does not

55

account for effects of caching and row placement localityimyportant issue is the low-cost
online cost estimation algorithm that uses access statisom all sites for the ranges of
fragmentation attribute to make decisions on optimal fragment placement.

6.4 Scalable Non-Relational Data Services

The elasticity and scalability of traditional relational DBMI® usually perceived as limited.
Regardless of whether this public perception reflects theanharchitectural limitations or
just practical experiences with implementations that are @fteed and inflexible, a number
of attempts have been made to design better data-manageysms from scratch. These
newer distributed data stores emphasize elasticity, sliglabnd fault-tolerance as primary
goals, while offering simple programming models, such as a key-value stdidigtionaries
or key-value stores. Typical examples are BigTable [17], HBase [19], Dynamo [28H
Cassandra [16]. Those systems are typically intended to provigewaak consistency
guarantees, however, some of them allow a user to adjust thistenog level to some
extent. As a rule, distributed key-values stores can incratheatdd and remove computing
nodes, either for planned maintenance or due to a node failure. Aaldieghoving a node
possibly causes a query to visit additional nodes while the backgreoodfiguration is in
progress. However, the overhead of repartitioning is considemeall since nodes are
expected to arrive or depart in small numbers so only a snmabbfpihe system is affected at
a time. We focus on scaling out a relational database hwgrimvides richer programming
model to applications compared to key-value stores. Howevar,intexinal mechanisms for
data distribution, request routing, and elastic reconfiguratiag be of interest for DBMS
scalability mechanisms.

6.5 Multi-tenant databases

As an alternative to addressing the scalability proldleman arbitrary application by means
of improving the underlying system software, some opportunities ethaiigie the approach
of service a collection of unrelated applications using a seygtem. The terrmulti-tenant
DBMS is used to describe systems in which a singlennstaf a DBMS hosts a number of
applications from independent users (tenants) [14]. Multi-tenanbatsa align naturally
with the Software as a Service (SaaS) and cloud computahgtectures, promising the
benefits of denser consolidation and centralized managemenindd@endence of tenants'
applications justifies the practical importance of a completajidit partitioning model in
which fragments may be moved between nodes more easily. &lehes same approach to
partitioning in this thesis. A detailed discussion of the techniques of/tteardc migration of
disjoint partitions appears in [31]. It is worth noting thatiding multi-tenant systems atop
of state-of-the-art database implementations introduces somengesd| particularly, in
terms of isolation, security, and resource scheduling in themresf non-uniform resource
usage by different tenants [13], [15].

The issue of data migration efficiency was studied withen multi-tenant database context
[30]. In the paper, several classification schemes are progosenigration scenarios. One
of them describes the degree of service interruption, accordivghicch, the proposed

56

migration forms includdive, synchronous, and asynchronous. Live migration allows the
system to continue to service transactions with no unavaijatiiitdow. With nchronous
migration a system performs most work in parallel with currentvaies, incurring only
minimal interruption during the final switch. Finallgsynchronous migration stands for the
approach which blocks active transactions that may interferetagt migration process and
implies the longest service disruption. With live migration dés®d as practically
impossible to implement, synchronous migration is proposed asdferrpd approach. The
characteristics of various migration types are summarized in Table 11.

Form of Downtime | Interruption | External Operation Migration

Migration of Service |Coordination| Overhead Overhead
Live None Very Minimal| Minimal Low/Moderate Minimal
Synchronous| Minimal Minimal Moderate Minimal Moderate
Asynchronous Moderate Moderate High None High

Table 11. Summary of the forms of migration and the associated costs [30] .

Multi-tenant models are also classified [30] by the perforeeaand service disruption for
clients; we summarize this classification in Table 12.dReathis paper raises the question
whether the attributed costs and the severity of service disnuptie determined by the
fundamental approach to elastic service organization oraheynerely the result of using
particular, commonly used implementations. Addressing this questjuires understanding
the reasons for various performance behaviours of scalable systdrnich was a part of
motivation for our work.

Two practical implementations of multi-tenant database magravere proposed recently
[32][33]. Those implementation addresses the very same probleme a@sd in this thesis,

elastic scale-out of a multi-tenant database. Zephyr §32]DBMS-level implementation for
live migration of tenants in the shared-nothing architecture. The support of activeticarssa
is an advantage over our work. Zephyr's migration algorithm comtinklk asynchronous
transfer of a tenant and synchronous on-demand transfers of thewyagesvere accessed
in the destination system. Another architectural differesc8ephyr's use of intermediary
query routers to maintain the locations of tenants and sensht@ons accordingly. Such
routers may need to be scaled out along with the databasentsckeespite the claims that
Zephyr implements live migration, there are limitations @pet of operations that
transactions are allowed during migration. For example, uppelslefendexes cannot be
modified and pages which have already been transferred chermbdified at the source
node. In both those cases transactions will have to abort.

Another related approach to live tenant migration is implerdeirtea technique, called
Albatross, but forshared-disk architecture [33]. This approach uses the iterative copying

57

M odel Type of Runtime Service Cost of
isolation over head interuption migr ation
(redundancy) during
migration
Shared hardware Virtual machine Moderate No/minimal Low
Shared instance Physical DBM3/inimal Minimal Minimal
copy
Shared database Logical DBMS$No Moderate High
schema
Shared table Rows No Efficient migration is challenging
due to heavy coupling between
fragments

Table 12. Milti-tenancy models from [30] and their implications on migration

algorithm. In this algorithm, a buffer pool snapshot, which may be not consistent, issent fir
Then, the changes to the buffer pool since the time the snapshoakeas ihcluding the
pages read from disk as well as modified by transactioeseat. This step may be repeated
several times until the amount of sent data in each iterstiips decreasing. Finally, the rest
of the modifications are sent to the destination and the altapgery routers is updated. This
is done synchronously, imposing a small unavailability window.

Curino at al [28] address the combination of three problems: autopetiitioning, live
migration, and dynamic resource allocation. The live migratioh gdasely corresponds to
our research, however, only requirements and suggestions for iengkgian are proposed.
The eventual goal is to allow frequent migration of partitionth vainimal cost while
allowing the usual workload to execute. The steps to achimevgadal included: partitioning
into smaller fragments; copying a snapshot of a partition dih@gctive load and sending
the change logs afterwards; distributing the read-only workloadelet replicas; and
warming-up stand-by replicas. An on-demand approach is alsodeocedias a way to
minimize the cost of migration. In that case, the new nod#hdstdata from the old one
while it is trying to execute the load, remembering the diateceives. We consider this
approach to be similar to the one studied in the thesis.

58

Chapter 7

Conclusions and Future Work

In this thesis we studied the problem of scale-out of el&stitsactional database services.
Our approach was limited by some constraints, particuldmyrequirement of perfect data
partitioning and disabling transaction processing for affeggetitions. During our study we
investigated the use of a hypervisor-based, on-demand block capgtitanism built using
Snowflock. As an alternative, we developed a DBMS-level meisin that can take
advantage of the partition physical locations and that uses budktideisfers and other
optimizations. We built this mechanism into a major open-source database sg&eéi,..M

To show the relative efficiency of those two main scale-oethanisms, we performed a
series of experiments, comparing their performance chasditigeras well as the impact of
scale-out on client applications. In addition to the two nma@thods we included a simple,
application-based scale-out mechanism as a baseline. The applieael mechanism is the

simplest and is portable between database systems. Howevampplication-based method
was inferior in all our experiments, demonstrating the facttti@tefficiency of a scale-out
mechanism is important for an elastic system. We supposepltieation-level mechanism

can be improved, however, it might lose its simplicity and portability in thes cas

The experiments were conducted in CPU-bound and disk-bound seiilagsund that the
presence of disk access latency is the key factor affecting the balancerbgteven-demand
transfers and bulk transfers. In the CPU-bound experimentsSribeflock-based method
showed the best results in terms of throughput and the DBM$-bastéhod was less
efficient. In terms of client-experienced service disruptitmse two methods were
comparable, however, their impact was different. The Snowfloskebenethod caused short
downtime for all the migrating clients while the DBMS-based affected one client at a
time but taking longer. This partition-wise downtime patterayrbe preferable for some
applications, for example, ones that prioritize work made bferdifit clients. For such
applications, the controller may choose to migrate partitionsveér-priority clients. In the
disk-bound setting the Snowflock-based method showed greater througbpusl| well as
service disruption, compared to the DBMS-level one. The main ilcotihg factors of
Snowflock's poorer performance in the disk-bound case are itstmardintain consistent
snapshots of disk images while accommodating concurrent wiigyaaend its dependence
on synchronous high-latency transfers of individual small disk bloeks the network. The
former factor was responsible for most of the performance impabe original Snowflock
implementation.

Despite the good performance of the Snowflock-based mechanism inssemarios, we
believe the biggest issue with using a hypervisor-based meghanisot the performance
characteristics, which are reasonable and can be furthepvegr but its architectural
limitations stemming from the lack of information about thetifpaning. As a result, only a
very restricted scale-out scenario is possible, in whiclexasting server is split. It is not

59

possible to balance the load incrementally among running sdoyensigrating partitions
using a hypervisor-based mechanism. It is also not posgblienplement scale-in. In
addition, Snowflock cannot allocate resources for snapshot mainteinaageartition-wise
way, instead it consumes unnecessary amount of memory and disk spaeewhbole server
snapshot, which is never reclaimed.

Considering the relatively good results of the on-demand data appobdbe Snowlock-
based mechanism in the CPU-bound setting and its deficiantheipresence of disk and
network latencies, as well as its architectural shortcgsnimoted above, we can imagine a
future scale-out mechanism which leverageth on-demand block transfeemd partition
awareness. We believe that combination is essentialffoieat scale-out. Additionally, bulk
transfers can be utilized for low priority transfers of daiat tare not accessed by the on-
demand transfers.

Another possible future direction would be elimination of the requargnto block client
activity on affected partitions during partition migration. Wdidwe it would be a very
important practical advantage. At the same time, there apeimapal difficulties to develop
such live migration mechanism as the amount of data modificatimmsg the migration is
usually small compared to the size of the database.

60

Bibliography

[1] Luiz André Barroso and Urs Holzle. The case for energy-proportional cargputi
IEEE Computer, vol. 40, 2007.

[2] Green Procurement Initiative. Nine lessons in greening IT.
http://www.greeninggreatertoronto.ca/pdf/GGT-Green-Exchange-Ifigumnpdf.

[3] RightScale. More Servers, Bigger Servers, Longer Servers, and 10xtof Tha
http://blog.rightscale.com/2010/08/04/more-bigger-longerservers-10x/.

[4] Amazon Web Services. http://aws.amazon.com/.
[5] Amazon EC2 Auto Scaling. http://aws.amazon.com/autoscaling/.
[6] Amazon Relational Database Service. http://aws.amazon.com/rds/.

[7] Amazon Relational Database Service. User Guide.
http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/.

[8] Melinda Varian. VM and the VM Community: Past, Present, and Future eRsimc
University. SHARE 89, 1997.

[9] Intel® Virtualization Technology: Hardware support for efficient @ssor
virtualization. Intel® Technology Journal. Volume 10, Issue 03, 2006.

[10] Paul T. Barham, Boris Dragovic, Keir Fraser, Steven Hand, TimothwiriglAlex
Ho, Rolf Neugebauer, lan Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proc. ACM Symp. on Operating Systems Principles (SQ8063.

[11] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, lan Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation - Volume 2 (NSDI'05), Vol. 2. USENIX
Association, Berkeley, CA, USA, 2005.

[12] H. Andres Lagar-Cavilla, Joseph Whitney, Adin Scannell, Philip Faickiephen
M. Rumble, Eyal de Lara, Michael Brudno, M. Satyanarayanan. SnowFlock: Rapid
Virtual Machine Cloning for Cloud Computing. 3rd European Conference on
Computer Systems (Eurosys), Nuremberg, Germany, 2009

[13] B. Reinwald. Database support for multi-tenant applications. In IEEESNop on
Information and Software as Services, 2010.

[14] D. Jacobs and S. Aulbach. Ruminations on multi-tenant databases. In
Datenbanksysteme in Biro, Technik und Wissenschatft (BTW), pages 514-521, 2007.

[15] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and tiageRit
2008. Multi-tenant databases for software as a service: schema-mapping technique
In Proceedings of the 2008 ACM SIGMOD international conference on Management
of data (SIGMOD '08). ACM, New York, NY, USA, 1195-1206.

[16] Cassandra: A highly scalable, eventually consistent, distributad{sed key-value
store, 2010. http://incubator.apache.org/cassandra/.

61

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Dekdfédilach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. ACM Trans. Compait. Z8y 2,
Article 4 (June 2008), 2008.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosstiall, a
Werner Vogels. Dynamo: amazon's highly available key-value store. In Biogee
of twenty-first ACM SIGOPS symposium on Operating systems princiSi@eSP
'07). ACM, New York, NY, USA, 2007.

[19] HBase: Bigtable-like structured storage for Hadoop, HDFS.
http://hadoop.apache.org/hbase/.

[20] S. Ceri, M. Negri , G. Pelagatti, Horizontal data partitioning in datatl@sign,
Proceedings of the ACM SIGMOD international conference on Management of data
1982.

[21] David DeWitt and Jim Gray. 1992. Parallel database systems: the futig of
performance database systems. Commun. ACM 35, 6, 1992.

[22] C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padmanabhan, G. P.
Copeland, and W. G. Wilson. 1995. DB2 parallel edition. IBM Syst. J. 34, 2, 1995.

[23] Oracle Corporation. Oracle9i Real Application Clusters Concepeageel (9.0.1),
Part Number A89867-01.

[24] Understanding Federated Database Servers. MSDN Library.
http://msdn.microsoft.com/en-us/library/ms187467.aspx.

[25] MySQL 5.1 Reference manual. Partitioning.
http://dev.mysgl.com/doc/refman/5.1/en/partitioning.html.

[26] Peter Zaitsev. How many partitions can you have?
http://www.mysqlperformanceblog.com/2009/12/05/how-many-partitions-can-you-
have/.

[27] Baron Schwartz, Vadim Tkachenko. Percona Server with XtraDB for &&ftas-a-
Service Application Databases. A Percona White Paper, 2010.

[28] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: a
workload-driven approach to database replication and partitioning. Proc. VLDB
Endow. 3, 1-2, 2010.

[29] Mikael Ronstrom. Design and Modelling of a Parallel Data Serverglec®m
Applications. PhD thesis. Link6ping University, Sweden. 1998.

[30] Aaron Elmore, Sudipto Das, Divyakant Agrawal, Amr El Abbadi. Who's Dgvi
this Cloud? Towards Efficient Migration for Elastic and Autonomic Multitena
Databases. Technical Report 2010-05, CS, UCSB, 2010.
http://www.cs.ucsb.edu/research/tech_reports/.

62

[31] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, Amr El Abbadi. Lisdbase
Migration for Elasticity in a Multitenant Database for Cloud Platforfeshnical
Report 2010-09, CS, UCSB, 2010. http://www.cs.ucsb.edu/research/tech_reports/.

[32] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbagihyte live
migration in shared nothing databases for elastic cloud platforms. In Procegdings
the 2011 international conference on Management of data (SIGMOD '11). AGM, N
York, NY, USA, 2011.

[33] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadia#kbss:
lightweight elasticity in shared storage databases for the cloud usngplia
migration. Proc. VLDB Endow. 4, 8, 2011.

[34] Jon Olav Hauglid, Norvald H. Ryeng, and Kjetil Narvag. DYFRAM: dyita
fragmentation and replica management in distributed database systenils. Distr
Parallel Databases 28, 2-3, 2010.

[35] Transaction Processing Performance Council. TPC BENCHMARK™ C. Sthnda
Specification. Revision 5.11, 2010. http://www.tpc.org/tpcc.

[36] OSDL Database Test 2 (DBT-2). http://osdldbt.sourceforge.net/.

[37] CERAS IBM Blade Centre at UW.
http://www.cs.uwaterloo.ca/cscf/research/cerasblade/cerasblatie.htm

[38] IBM BladeCenter LS21.
http://publib.boulder.ibm.com/infocenter/bladectr/documentation/index.jsp?
topic=/com.ibm.bladecenter.Is21.doc/bls_Is21 product_page. html.

[39] Seagate Savvio Specifications. Seagate Publication Number DS1563-4. 2006.

63

