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Abstract

For a database system used in pay-per-use cloud environments, elastic scaling becomes an
essential feature, allowing for minimizing costs while accommodating fluctuations of load.
One approach to scalability involves horizontal database partitioning and dynamic migration
of  partitions  between  servers.  We  define  a  scale-out  operation  as  a  combination  of
provisioning a new server followed by migration of one or more partitions to the newly-
allocated server. 

In this thesis we study the efficiency of different implementations of the scale-out operation
in  the  context  of  online  transaction  processing  (OLTP)  workloads. We  designed  and
implemented three migration mechanisms featuring different strategies for data transfer. The
first one is based on a modification of the Xen hypervisor, Snowflock, and uses on-demand
block  transfers  for  both  server  provisioning  and  partition  migration.  The  second  one is
implemented in a database management system (DBMS) and uses bulk transfers for partition
migration,  optimized  for  higher  bandwidth  utilization.  The  third  one  is  a  conventional
application, using SQL commands to copy partitions between servers.

We perform an experimental comparison of those scale-out mechanisms for disk-bound and
CPU-bound configurations. When comparing the mechanisms we analyze their impact on
whole-system performance and on the experience of individual clients. 
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Chapter 1 

Introduction

Many  applications  naturally  have  highly  irregular  and  unpredictable  load  over  time.
Interactive  internet  services,  which  have  proliferated  over  the  last  few  years,  are  great
examples of such applications. Supporting a potentially fast usage growth rate as well as
accommodating unpredictable load spikes are technically challenging problems. An obvious
solution  is  to  over-provision  computational  resources  so  that  the  quality  of  service  is
maintained at  a satisfactory level  most  of  the time. As a result  of  overprovisioning,  the
average load level of servers in datacenters is commonly accepted to be less than 30% [1]
and sometimes claimed to be as low as 4% [2], causing economical as well as environmental
concerns. 

With the advent of commodity virtualization and, as a result, the ability to easily supply
computing power in the form of virtual machines (VM), the model of cloud computing has
been seen as a solution to the problem of effectively utilizing computing resources. The cloud
computing model enables flexible, on-demand resource allocation to users, with a pay-as-
you-go payment system. Since the cloud providers utilize big, shared pools of resources, the
combination of on-demand allocation with ability of rapid provisioning can theoretically help
to accommodate load spikes. This desirable property has been referred to as  elasticity of
services, a term that has been used extensively as a marketing buzzword. 

However,  the  success  of  the  cloud  computing  model,  particularly,  in reducing  resource
reservations, tends to be modest. In practice, overprovisioning has shifted to the customers of
"elastic" services, who use the most powerful configurations of virtual machines and keep
them running regardless of the actual load [3]. One reason for that is that the time required to
adapt is not small enough to react to a spike. The other possible reason is the difficulty of
dynamically scaling systems over many nodes. Hence, using the most powerful VMs helps to
keep  the  number  of  nodes  at  minimum,  and  constantly  running  them  avoids  dynamic
reconfigurations. 

Insufficient  ability to efficiently utilize dynamically-provisioned resources, or to  scale, is
attributed mostly to software components of  systems, with traditional  relational  database
systems being the particular culprit. The problem of database scalability arises because of the
significant amount of state,  typically located in permanent storage, that has to be moved
during  a  reconfiguration.  Additionally,  the  rich  semantics  of  transactional  relational
operations is harder to maintain over a dynamic, distributed system. 

Research in the area of database scalability and elasticity can be classified into three sub-
areas:

Fragmentation. To evenly distribute the load between nodes, it has to be split into fragments
that  can be processed independently as much as possible.  Traditionally,  fragmentation is
defined  manually  during  the  physical  design  phase.  However,  there  are  fully  automatic
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approaches  [28].  Unfortunately,  finding  an  exact  optimal  solution  is computationally
problematic, therefore statistical approximations and heuristics are used. 

Allocation policy. In order to react to the changes in the workload, there has to be a system
component to decide which data should be placed onto each processing node and when it
should be placed there.  The ultimate  goal  is  optimization  of  resource usage,  and hence
minimization of costs, while adhering to service level objectives [34]. 

Efficient  reconfiguration. When a decision to redistribute data between nodes has been
made, the system should perform a reconfiguration in an efficient manner [30]. We define
reconfiguration  as  a  three-step  process  including: provisioning of  computing  nodes,
migration of the state between nodes, and adjusting the routing of clients' requests to the new
locations of their data. Two common specific cases of reconfiguration include scale-out and
scale-in, which correspond to increases and reductions of processing power, respectively. The
current activity should be preserved as much as possible, with any possible disruption kept as
short and small as possible. Since reconfiguration itself incurs significant costs, and it likely
happens at the time when the system is overloaded, this problem is not trivial either. Data
migration is often the largest component of those costs because of the amount of database
state involved. The design choices for the reconfiguration algorithms influence not only the
efficiency of reconfiguration itself, but also the performance between reconfigurations, which
boils down to the issue of efficiency and processing costs. 

The first two subproblems have drawn more attention in the research community, compared
to the last  one.  Efficient reconfiguration  has been perceived as an implementation issue,
incurring a constant and inevitable cost, and not much worth investigating. This fact has
motivated us to study the problem of elastic reconfiguration. 

The goal of this thesis is to experimentally study the efficiency of several techniques for
reconfiguration of a  relational database. In particular, we focus on the  scale-out procedure
during which the number of processing nodes increases in response to increased load. We
define efficiency from two, partly conflicting, points of view: the provider's and the client's.
From the provider's perspective, an efficient system as a whole should produce more work
while consuming fewer resources, such as virtual machines, which are usually paid on per-
hour basis. From  a  client's view, a system should maintain predictable performance while
causing as little service disruption as possible.

We design and evaluate three approaches for database  scale-out. The first one is based on
system-level, application-independent cloning  of the whole virtual machine  with lazy on-
demand data transfers. Our implementation uses Snowflock [12] as a base for the scale-out
mechanism. Snowflock has minimal "hard" downtime for both the original node and the
cloned  one but  on-demand  data  transfer  can  incur  substantial  penalty  in  terms  of  both
throughput  and  degradation  of  service  quality.  In  addition  to  measuring  performance
characteristics and comparing them to other approaches, we discuss the practical issues of
using a virtual machine-based approach for dynamic database scale-out.

The second approach is implemented at the database management system (DBMS) level and
takes advantage of additional DBMS-specific information to better handle partitioning of the
data between nodes. We have developed a prototype for this approach, based on the MySQL
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open  source  DBMS.  Handling  database  partitions  dynamically  involves  taking  special
measures to ensure consistency between nodes. Our system also implements dynamic query
routing from the clients to DMBS with no intermediary router and with no modification of
applications. We refer to this as the DBMS-level approach in this thesis. 

Finally, we included for comparison a simple, application-level mechanism that uses normal
SQL queries to move data partitions between nodes. This approach requires no modifications
to the DBMS except adding partition locking and request routing, which are shared with the
DBMS-level mechanism. We refer to this as the application-level approach in this thesis.

The contributions of this thesis include:

• design  and  practical  implementations  of  the  Snowflock-based,  DBMS-level,  and
application-level scale-out mechanisms;

• an experimental  evaluation of  those  scale-out mechanisms,  studying their  relative
performance,  degree  of  service  disruption,  and  discussing  their  suitability  and
limitations. 
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Chapter 2 

Scale-out Mechanisms

2.1 System Overview

In our study we consider a transaction processing system distributed over a set of storage and
processing  nodes  in  the  shared-nothing architecture.  The  system contains  its  state  in  a
partitioned database which may be stored in main memory or in locally-attached disks. The
database conceptually  consists  of  many partitions  with  each of them being dynamically
allocated in one of the nodes. The partitioning is organized horizontally so all partitions share
the same schema and contain different portions of the same set of tables. Each node hosts one
database server process, which is responsible for a subset of database partitions. 

We chose the shared-nothing architecture because we believe it provides more opportunity
for optimization. Since more data are moved, the efficiency of any reorganization process
becomes more important. The problem becomes even more challenging because of different
types of memory (RAM and storage) involved. On the other hand, lack of slower centralized
shared storage makes it possible to maximize system throughput during normal operations
and to avoid the bottleneck of storage scalability. 

We assume that the workload is also partitioned such that each transaction is associated with
a single database partition. For example, in a Web application each remote user has their own
information as a part of the server database which is accessed only when the user works with
the  application.  The  absence  of  inter-partition  transactions  greatly  simplifies  our  design
because in any possible configuration partitions are not split between nodes. As a result, the
system does  not  have  to  process  distributed  transactions  involving  multiple  nodes.  The
processing load may consist of CPU processing and I/O bandwidth usage.  Although each
partition is associated with  a portion of  load,  some partitions may have more load than
others, and that load may vary over time. Therefore, a node having a constant capacity may
be able to handle different numbers of partitions at different times. When the load for the
partitions on a node becomes too high, the system may move one or more of the node's
partitions to a less loaded node along with the corresponding portion of the load, effectively
implementing load balancing. 

In the cloud computing scenario processing nodes can be allocated on-demand and paid per-
use.  Thus,  by  transferring  some  partitions  to  a newly  allocated  node  the  system  can
dynamically accommodate more load, i.e. it can scale out. The reverse scenario, scale-in, is
also possible when the partitions are consolidated into smaller number of nodes and extra
nodes are deallocated, reducing the operating costs. Ignoring a mechanism to start and stop
servers,  both scale-out and scale-in can be seen as two specific cases of load balancing.
Figure 1 illustrates the components of an example system performing scale-out from one to
two nodes, migrating one partition at a time. 
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We define two major operations which a scalability mechanism implements:  scale-out and
scale-in.  We will  use the more general  term  reconfiguration to  refer  to  either  scale-out
operation or scale-in operation. The scale-out operation consists of adding (provisioning) new
node(s)  to  the  system,  redistributing  part  of  the  database  to the  new  nodes (partition
migration), and adjusting client-server communication so the clients can work with the new
nodes (routing). The reverse operation, scale-in, includes steps to consolidate the  database
into a smaller number of nodes, redirect the clients, and finally  remove the  now-inactive
nodes from the cluster.  The scale-out and scale-in operations apply to the whole database
cluster, while migration is performed in each partition individually.  All the components of
scale-out  and scale-in operations contribute to the performance impact on the server and
client side, which should be accounted for when evaluating the mechanisms. 

In addition to partitioned data, the database may contain read-only tables, which are statically
replicated at each node. 
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Figure 1. Scale-out scenario with two servers. Partitions 5, 6, 7 are migrating from over-
loaded server A to new server B. 

A complete elastic database system likely includes a controller which decides on when the
system  reconfiguration  occurs  and  which  partitions are  to  be  transferred  during  this
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reconfiguration. Although the design of the controller is outside the scope of this work, we
assume that a reasonable controller might use the combination of reactive and predictive
algorithms to make its decisions. A reactive algorithm detects the overload conditions and
triggers a scale-out process that would result in an additional stress to already overloaded
system.  A predictive  approach  tries  to  make  reconfiguration  decisions  before  the actual
overload takes place, however, it may fail to do that precisely as it is not possible to predict
the future. 

In the following sections we provide general overviews of the three scale-out mechanisms. A
deeper discussion of specific implementation details of the DBMS-level and application-level
mechanisms will take place in Chapter 3. 

2.2 Snowflock-based Mechanism

The Snowflock-based mechanism implements scale-out operation using Snowflock cloning.
In this section we first present the description of the Snowflock architecture and its cloning
process, and then explain how cloning is used to scale-out a database. 

2.2.1 Snowflock Hypervisor

Snowflock  [12] is a modification of  the  Xen  [10] hypervisor, targeting instantaneous and
efficient multi-way cloning of a running VM. Snowflock uses the 'vfork' cloning semantics,
similar to the 'fork()' system call in UNIX operating systems, where 'v' stands for virtual. In
this model, a controlling application, running inside a VM, executes vfork() call, specifying
the number of requested cloned instances. As a result of the  vfork() call, the original VM
finds itself running independently and simultaneously as the specified number of VMs in
addition to the original VM. The underlying Snowflock architecture implements the vfork
operation by taking a snapshot of the state of the original VM instance at a point of time and
gradually transferring it to multiple cluster nodes. 

The cloning process starts by creating a new VM on one of the physical nodes of the cluster,
running under control of Snowflock. The allocation strategy may vary but in any case it
considers the original VM parameters (number of virtual CPUs and amount of memory) and
available resources in the participating nodes. The newly created VM consists of a Xen VM
descriptor only and does not have the actual content of the VM's memory and disk. Instead, a
special mechanism is set up  in the physical node of the clone  to request pages from the
original node when they are used. 

Snowflock then proceeds by creating a snapshot at the original node, containing both the
memory and disk state of the original VM. In order to continue execution of the original VM
while preserving the snapshot intact,  Snowflock uses Copy-on-Write (CoW) strategy. Any
modification of a memory or a disk block goes into a  differential file in which blocks are
allocated one by one for every modified block, using extra memory or disk space. In the
worst case, the CoW differential file may use the same amount of state (be that memory or
disk) as the original snapshot does. Because of CoW, the original VM may continue running
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after creating the snapshot, while the clones may later reference the VM state which existed
at the time of the snapshot. 

Finally, the clone VMs are allowed to run. Since they have no memory or disk state at this
time, the running clones generate "virtual page faults",  causing Snowflock to request  the
missing pages from the original VM snapshot. There is a performance impact initially as the
virtual faults are frequent. However, eventually the working set of the VM gets transferred,
allowing the clones to regain their normal performance. 

The version of Snowflock we used does not handle open network (TCP) connections in an
application-friendly way. The MAC and IP addresses of a cloned instance are updated by
Snowflock when it creates a new VM. However, the higher-level state of TCP connections,
which existed at the time of cloning, is not cleaned up. These connections continue to exist
without any communication until a TCP timeout terminates them. 

Snowflock uses a number of optimizations to achieve "instantaneous" initial VM cloning and
efficient migration of state afterwards. First, only a minimal amount of data is transferred at
the moment of  cloning itself.  Second, Snowflock uses a multicast  protocol to efficiently
distribute the pages among all the target nodes simultaneously, which is advantageous when
many  instances  are  involved.  Third,  the  Snowflock's on-demand  state  transfer
implementation avoids copying the pages of VM state that are written by the cloned VM
without  having  been  previously  read.  On-demand  state  transfer  combined with  the
optimizations described above are potentially effective for a wide class of applications.  In
particular, the applications which have little shared state between the original VM and the
cloned instances are able to run when only a fraction of total state has been transferred. 

2.2.2 Snowflock-based Scale-out

Snowflock-based  mechanism  implements  scale-out  by  cloning  a  database  node  and
separating the load between new nodes so each one handles only a part of the original load.
In our experiments we performed cloning during which one copy is created, but, in principle,
cloning into multiple copies is possible. 

In this mechanism provisioning of new processing nodes and data migration is implemented
by a Snowflock cloning operation.  The Snowflock cloning logically creates one or more
exact  copies of  the  whole source  DBMS state which existed at  the  moment  of  cloning.
Snowflock's on-demand data transfer mechanism will copy only data which is actually used
at the new node. Since the new node becomes responsible only for certain partitions, only
those partitions will  be physically transferred. The migrated partitions still  remain at  the
original  node after cloning. However, since they are not used, they will  be evicted from
memory by the buffer pool replacement algorithm. 

The portions of workload corresponding to the migrated partitions are also transferred to the
new nodes. This can be accomplished by the same routing technique (Section 2.5), used in
the DBMS-level and application-level scale-out mechanisms. However, due to the difficulty
in cleaning up the state of database connections after cloning, we modified the client  to
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disconnect  temporarily  from  the  migrating  partitions  for  the  duration  of  the  cloning
operation. 

Migration of arbitrary partitions between running servers is not possible in the Snowflock-
based mechanism for the following reasons. First, on-demand data migration is combined
with creation of a new VM in a single Snowflock operation (cloning). Second, after cloning a
node, the system cannot merge the changes made at the clone back to the parent because the
lower-level  hypervisor  does  not  possess  the  information  about  which blocks  of  storage
correspond to which logical partitions. As a result, only the scale-out operation is possible,
with no scale-in or finer-grained load balancing between working nodes. 

In order to avoid transferring data which do not belong to the migrating partitions, the data
and run-time state of different partitions must be separated into different physical transfer
units, which are memory pages and disk blocks. Physical separation of partitions on disk is
ensured by the MySQL partitioning storage engine, which places partitions into separate sub-
tables. However, some DBMS data structures both on disk and in the memory are shared
between  all  partitions  of  one  DBMS  instance.  The  examples  of  such  disk-based  data
structures are the transaction log and UNDO segments; numerous in-memory run-time data
structures are also shared. Therefore, the actual size of transferred data will be larger than the
size of the migrated partitions. This difference will affect the efficiency of the Snowflock
mechanism. 

2.3 DBMS-level Mechanism

This mechanism is implemented inside a DBMS (MySQL with InnoDB storage engine in our
case) and takes advantage of knowledge of the details of partitioned data physical placement.
The mechanism  imposes certain limitations on the workload. In particular, multi-partition
transactions are not allowed and the partitions affected by the scale-out or scale-in operations
are unavailable during these operations.  However, by disabling activity inside the migrated
partition and by using optimized bulk transfers, a high transfer rate can be achieved. 

The scale-out and scale-in operations consist of adding or removing processing nodes (node
provisioning) and migrating portions of database state between the affected nodes and the
rest of the cluster (partition migration). The implementation of node provisioning is shared
with the application-level mechanism and is discussed in Section 2.6.

The stages of the DBMS-level partition migration are shown in Figure 2. When an external
application, for example, a load-balancing controller, requests a partition to be moved from
one MySQL node to another, it sends a request to the current owner of the partition. The
current  owner  (the  source  node thereafter)  blocks  new transactions  from starting  in  the
affecting partition, and waits until  the active ones have completed. Then the source node
scans the buffer pool to find the pages from the partition, to be sent to the target node. At the
source node, the data is read in large blocks from the disk, and merged with any dirty pages
from the buffer pool. At the target node, the data blocks are adjusted to be consistent with the
running state of the database and are written to the disk, leaving some pages in the buffer
pool.  The source partition tablespace then is detached from the InnoDB database, its file is
deleted and space is reclaimed. Meanwhile, the received partition data file is attached to the
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InnoDB  database.  Finally,  the  source  instance  sets  the  redirection  information  for  the
partition and unlocks it, allowing any pending transactions to be redirected to the target.

Lock partition

Wait for transactions to complete

Run InnoDB history purging

Make a snapshot of BP pages

Delete tablespace

Read data, reset version numbers Write data file, put some pages in BP

Send BP state Receive BP state

Set redirection state and location

Unlock partition

Recreate tablespace

Source Target

Figure 2. Stages of DBMS-level partition migration. 

More detailed description of the DBMS-level mechanism will be presented in Section 3.2.

2.4 Application-level Mechanism

The  application-level  partition  migration is  implemented  with  an SQL script  which  is
executed by an external  application. The scripts make use of MySQL Federated Storage
Engine to establish a remote connection between the participating nodes (the source and
target) using the MySQL SQL interface. This way one of the MySQL instances can access
the  other's  tables.  The  application-level  scale-out  mechanism  uses  the  same  node
provisioning implementation as the DBMS-level mechanism. 

To migrate a partition, the script reads the rows of a partition from the source  node and
inserts them at the target  node; then it deletes the rows at the source node. Since the SQL
statements are executed at one of the nodes, data is transferred directly between them, not
involving the  host where the script is running. The  outline of the  migration procedure  is
depicted in Figure 3.
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Lock partition

Wait for transactions to complete

Run SELECT queries Run INSERT queries

Set redirection state and location

Unlock partition

Set up remote SQL connection

Run DELETE queries

Source Target

Figure 3. Stages of application-level partition migration. 

2.5 Routing and Locking

Both DBMS-level  and application-level  mechanism share the same routing and partition
locking architecture for pointing clients to the current owner of partitions and synchronizing
clients' operations with the reconfiguration activities. The clients trying to access a partition
that is no longer at the queried node are redirected to the new location by a special message.
This approach avoids having a dedicated router, which may become a bottleneck. However,
this  redirection  approach  loses  efficiency  when  clients  often  switch  between  partitions.
Additionally, it raises certain availability issues in some scale-in scenarios. 

To make sure a partition does not change while it is on the move, a simple exclusive/shared
locking mechanism is used. A transaction places a shared lock on an accessed partition and
the controller places an exclusive lock. Anyone trying to set an incompatible lock is forced to
wait. Given an in-order policy to grant locks (shared lock requests wait for previously-issued
exclusive  requests),  this  mechanism  delays  the  partition  migration  until  all  current
transactions have completed without allowing new transactions to  start.  Similarly,  newly
issued transactions are blocked until  partition migration has completed and then they are
redirected to the new location. 

We did not use this redirection mechanism for the Snowflock-based mechanism. Instead, we
modified  the  workload generator  to  disconnect  from the  migrating  partitions  before  the
cloning  and  reconnecting  immediately  afterwards.  The  IP  address  of  the  new  node  is

10



communicated to the workload generator by an external procedure which calls Snowflock
cloning routine. 

The details  of  partitioning implementation,  partition locking and request  routing will  be
further explained in Section 3.1.

2.6 Node Provisioning

In both DBMS-level and application-level scale-out mechanisms we used the same procedure
to initialize and terminate nodes. 

We assume that physical nodes are allocated from a larger pool of machines which can be
reused for various types of applications. Thus, a newly-allocated node has only a hypervisor
installed, and any other software or data (operating system, DBMS, initial database state) has
to be separately loaded and initialized. Since we use VMs as database nodes, the cost of node
provisioning should include the costs associated with bringing a VM into active state. These
costs  manifest  themselves  as  additional  delay  between  the  time a  physical  machine  is
allocated and the time database partition migration can start, as well as additional resource
usage of the machines that store the source data. 

We considered the following candidate ways for provisioning new nodes: 

1. Copying a VM disk image to the target physical server and cold-booting the operating
system and the DBMS in the VM. The cost of this method includes the cost to transfer the
disk image file, the size of which was about 1GB in our experiments, as well as the time
to boot the operating system and DBMS. 

2. Making a persistent snapshot of a booted but idle VM in advance, transferring the saved
state to the new host, and restoring the VM. The cost of this method is determined by
transferring both the disk image file and the memory state file, that would account for
about 5GB in total in our test configuration, and restoring the VM. This option is similar
to the previous one with the exception that the state of a running system is transferred.
Since the snapshot  does not  contain  data partitions,  it  may be created  as part  of  an
installation procedure and the cost of creating the snapshot may be ignored. 

3. Using Snowflock cloning to transfer the running state of the source VM. We considered
this method to be the most efficient due to Snowflock's ability to avoid transferring the
data pages which are not actually used at the new VM. The main portion of state which
will  be used in the new node is the state of the running operating system. Since  the
working set of the operating system is small and most likely to be already in memory, we
expected Snowflock to generate almost no disk transfers and memory transfers of a few
hundred megabytes.  In  this  method the original  DBMS is  under load at  the time of
cloning.  To  prevent  the  original  workload  from  executing  at  the  new node  and
propagating excessive data using the Snowflock on-demand mechanism, the DBMS is
forcibly terminated immediately after cloning, then the database is replaced with a new
copy which contains no partitions, and the DBMS is restarted. 

We chose the third method of new node provisioning because it requires least amount of data
to transfer.
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Chapter 3 

Scale-out Mechanism Implementation

In  this  chapter  we  present  design  decisions  used  in  the  implementation  of  scale-out
mechanisms summarized in  Chapter 2.  Most information in this chapter is related to the
DBMS-level mechanism because it required extensive modifications to the MySQL DBMS.
The information on partitioning, partition routing and locking is more general and applies to
all three mechanism. 

3.1 Common Features

The features described in  this  section are used in  the DBMS-level  and  application-level
scale-out mechanisms  implementations  for  managing  responsibility  for partitions  among
participating nodes. These features can also be used in the Snowflock-based mechanism as
well. However, in our experiments, the responsibility of nodes for partitions was controlled
by the client. 

3.1.1 MySQL Partitioning

We chose MySQL as a base system for  implementing a dynamic partitioning prototype.
MySQL includes a Partitioning Storage Engine (MySQL PE) [25] that was useful for our
implementation  because it  physically lays out partitions into non-overlapping blocks. The
MySQL PE works as an intermediate between the upper MySQL query execution layers and
any other storage engine. When a table is created using MySQL PE, the engine splits it
horizontally  into  a  predefined  number  of  subtables,  based  on  any  of  the  partitioning
algorithms available in MySQL PE (hash, key lists, or key ranges). Each subtable is stored as
a normal table using a lower-level storage engine.  In  our experiments we used InnoDB,
which provides full transactional capabilities, as a lower-level storage engine. InnoDB, in
turn, can be configured to store each table, along with its indexes, as a separate file, called a
tablespace internally. As a result,  each partition ends up as a  distinct set of disk blocks,
represented as a separate data structure in MySQL, allowing us to allocate and deallocate
partitions and use low-level binary copying mechanisms to efficiently transfer them between
servers.

PE defines partitions for each table individually, creating a set of underlying subtables with
names composed of the table name as a prefix and partition name as a suffix. There is no way
in MySQL PE to define logical database partitions, i.e. groups of table partitions that should
be handled together.  Moreover, there is no easily-available metadata for  an application to
determine the partitioning configuration, for example, the list of partitions for a table. To
simplify the configuration and control scripts, and to  avoid maintaining a data structure to
correlate logical partitions with their table counterparts, we required that all partitioned tables
have equal number of partitions as well as identical partition names. Thus, the set of the
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lower-level subtables is a Cartesian product of partitioned tables and logical partitions. An
example SQL script of a set of tables partitioned in this manner is shown in Figure 4 and the
graphical diagram of the same configuration is shown in Figure 5.

In addition to partitioned tables, we support constant, non-partitioned tables that are copied in
every server; however, those tables cannot be updated. For example, in TPC-C, the Item table
does not scale with the number of warehouses and is not updated by transactions, so we can
keep its read-only copy on each site. 

3.1.2 Partition Dictionary

To correctly handle the client interaction with partitions that might migrate between nodes, a
partition dictionary was added to MySQL PE. Each MySQL PE instance maintains a local
copy of this dictionary. The dictionary  is indexed by logical partition names and for each
partition it stores  a flag indicating whether  the partition is locally available, its last known
whereabouts if it has been migrated, and the partition lock (see  Section 3.1.4). Due to the
limited scope of this work, the dictionary implementation is incomplete in the following two
ways. First, it is non-persistent, meaning the servers participating in an elastic cluster can
only  start  with  a  predefined  partition  assignment.  In  our  experiments,  the  start-up
configuration  consists  of  a  single server,  which is responsible  for  the  whole  database.
Second,  the  dictionary  is  not  updated  transactionally  during  the  scale-out  or  scale-in
operations. As a result, the partition dictionaries in different nodes may become inconsistent
with each other regarding the information on actual partition locations, should a failure occur.

3.1.3 Partition Detection

A distributed system must choose the node to execute each transaction. In our execution
model, a transaction is permitted to access only the data contained in one partition in addition
to read-only non-partitioned tables. That fact greatly simplifies the node assignment as the
very first access to a partitioned table determines the "home" partition of a transaction. 

Determining the server at  which a transaction should be executed is a two-step process.
Firstly,  MySQL PE  identifies  the  partitions  which  are  accessed  by  the  query  using  a
technique called partition pruning. Secondly, the modified MySQL PE looks up the partition
dictionary (see Section 3.1.2) to determine the node which contains the identified partition. 

In order to implement automatic partition detection, we looked for the code fragments in the
MySQL PE which call the underlying storage engine for each partition. In each such code
fragment the partition identifier is  known; therefore,  we modified the code to check the
referenced partition's state in the partition dictionary. If the partition is present in the server
currently executing the transaction, we just  proceed with the query.  Otherwise, the local
server had handed the partition over to other server and it knows the address of the next
server that was responsible for the referenced partition after the migration from the current
node. In the latter case, the MySQL PE sets an error condition which is returned to the client
as a special  redirection  error  code with a corresponding  text  message encoding location
information (see Section 3.1.5 for more details). 
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MySQL partition pruning is an optimization technique used by MySQL PE to exclude non-
referenced partitions from a query execution.  We  assume the MySQL pruning algorithm
works correctly for the class of queries in our workload. However, since the partition pruning
algorithm in MySQL PE is merely an optimization technique, its goal is to eliminate most of
the  accesses  to  unreferenced  partitions,  without  guaranteeing  to  eliminate  all of  them.
Therefore, our assumption may easily not hold for other workloads and our reliance on the
MySQL  PE  partition  pruning  algorithm  for  correctness  can  lead to  issues  with  our
mechanism in that case. 

If  the  pruning  algorithm  fails  to  eliminate  an  unreferenced  partition  from  a  query,  the
transaction effectively becomes multi-partition. The effect of this failure is the same as with
true multi-partition transactions, which cannot be executed in our mechanism if the partitions
are actually located on different  nodes. In  this  case the client  will  receive  a redirection
message  and will  have  to  abort  the  transaction.  If  the  client decides  to  retry  redirected
transactions  using  new location  information,  it  will  follow  the  redirection  loop  without
making progress. We consider this problem as an inevitable effect of a automatic association
between transactions and partitions. 

An obvious way to avoid the problem would be explicit tagging of transactions with their
home partition number by an application. This can be done for all the transactions or only for
those containing  complex queries, for which automatic partition pruning fails. We believe
this method would be easy to use in real-world applications. However, we did not implement
it because the automatic approach suits the experimental requirements of this thesis. 

3.1.4 Partition Locking

In  our  simplified  approach  transactions  may  not  access  a  partition  while  it is  being
transferred. We enforce  this restriction by  associating each partition with a partition lock.
Partition locks reside in the partition dictionary. A partition lock can be locked in a shared (S)
or exclusive (X) mode. A user transaction that accesses the partition acquires an S lock on
this partition implicitly. A transaction  from the controller  that initiates  partition migration
acquires an X lock by calling a special SQL function. Any partition locks which a transaction
has acquired are kept until the transaction completes. 

As usual, S locks are compatible with other S locks and are incompatible with X locks. When
such a conflict  occurs,  the requesting transaction is suspended until  the blocking lock is
released. The conflict of an X lock request and an existing X lock does not occur because
there is only one controller which initiates scale-out  or scale-in operations and does not
initiate multiple operations over the same partitions simultaneously.  The scheduling policy
associated with partition locking does not permit a transaction with  an  S lock request to
proceed if a transaction with an X lock request is waiting. 

The partition locking implementation has the following effects:

1. A migration procedure requests  an  X lock  on a partition  and blocks until all active
transactions in that partition are complete. 
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2. Active  transactions  are  not  interrupted  and  are  allowed  to  complete  before  the
migration procedure starts executing.

3. New transactions in that partition are blocked while there is a migration procedure in
progress or waiting for existing transactions to complete.

When  a  transaction  unblocks,  the  state  of  a  partition  has  probably changed  and  the
transaction may receive the redirection error code. Since requesting a lock is the only time
when a transaction can receive a redirection error code, we can implement both locking and
redirection detection as a single procedure that is called from every partition access point.

3.1.5 Client-Server Protocol and Dynamic Routing

Since the distributed configuration of nodes changes during dynamic scale-out and scale-in,
each transaction should be able to reach the node which contains the data associated with the
transaction. Typically,  in  similar designs  applications connect to a middle-tier  router ([28],
[33]), which maintains the mapping information and dynamically dispatches transactions to
server nodes. This approach may limit the throughput of the system due to introduction of a
single  component  involved in  processing of  all  clients'  requests,  potentially  becoming a
bottleneck. Therefore we made the server nodes themselves responsible for maintaining the
routing  information, and  modified  the  client-server  protocol  to  enable  clients  to  switch
between the nodes with no or little modification of applications. Although reconnection is not
fully transparent  to  applications,  the  applications  which  abort  the  current  transaction  on
receiving an unknown error condition do not need any modification. 

In order to operate efficiently, the routing architecture depends on an application's temporal
affinity to database partitions because there is a cost associated with the switch. That is, the
transactions issued from an application using a single database connection should access the
same partition, or at least  the application should  switch partitions infrequently. We believe
this assumption holds in practice for partitioned applications; for example, a session in a web
application contains multiple user interactions accessing closely-related items. 

The routing mechanism operates as follows. Initially,  the system starts with a predefined
configuration  and  clients  are  provided  with  the initial  IP address  of  the  node  for  each
partition. This way clients can execute transactions until a reconfiguration occurs. Since the
reconfiguration  takes time during which the partition cannot be accessed, the source  node
delays execution of client's requests upon its detection of the client's access to the migrating
partition. The source node also naturally knows the address of the target server for partition
migration and it keeps this information for future reference. Once the migration is over, the
source node sends a special response message (redirection message), informing the clients of
the  fact  that  the  partition  moved and  including  the  IP address  of  the  target  node.  The
modified  MySQL  client  library  handles  the  redirection  message  by  closing  the  TCP
connection associated with the client's session and updating the server address, stored in the
session data structure. Finally, the client application receives an error condition, and aborts
the current transaction. The next transaction issued by the application in the same session
causes the client library to automatically reconnect, using the stored location information,
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which now points to the new server for the partition. The process of redirecting a client to a
new node after the accessed partition has been moved is illustrated in Figure 7.

In principle, automatic reconnection and transaction retry can be performed by the MySQL
client library  itself, without notifying the application, because a transaction which is fully
contained in a partition receives the redirection error in its first attempt to access data so no
transaction state has been updated before this error has been detected. However,  for the
purpose of the experiments of this thesis, such transparency was not required because the
benchmarking program we used already implements the proper error processing. 

In its current implementation, the partition location information is stored in the main memory
only and is not persistent. Consequently, the start-up configuration must  have a predefined
partition assignment,  for  example,  one server  containing the whole database.  A practical
implementation should store the location information persistently, for example, as part of a
database catalog.  The process of  handing over  the responsibility for  a partition between
nodes should use a distributed transaction to ensure consistency of that information in a case
of a failure during the migration. 

As long as the application have error processing logic that leads to a transaction abort after
receiving an unexpected error code, this mechanism does not require any modifications to the
application.  Thus,  the  changes  in  the  client-server  protocol  are  entirely  localized  in  the
database system-provided software. 

For  each partition each server  maintains information  about  whether the data is available
locally, and if not, the address of the server  which received the partition when it migrated.
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CREATE TABLE t1
(

id INTEGER PRIMARY KEY,
...

)
PARTITION BY LIST(id) (

PARTITION p1 VALUES IN (1),
PARTITION p2 VALUES IN (2),
PARTITION p3 VALUES IN (3),
PARTITION p4 VALUES IN (4));

CREATE TABLE t2
(

id INTEGER PRIMARY KEY,
...

)
PARTITION BY LIST(id) (

PARTITION p1 VALUES IN (1),
PARTITION p2 VALUES IN (2),
PARTITION p3 VALUES IN (3),
PARTITION p4 VALUES IN (4));

Figure 4. An example of two-table, four-partition configuration in MySQL. 



Each partition may migrate multiple times,  thus forming a chain of redirection pointers,
starting from the initial start-up node. During each migration, only the pointer to the final
destination changes, making sure the chain eventually leads to the actual  server for that
partition,  even  if  one  node  participates  in  migrations  multiple  times  with  different
destinations. As long as the servers in the redirection chain are not shut down, the client can
ultimately  reaches the actual  partition site,  assuming that  the  application can follow the
redirection chain at least as fast as the partition moves. 

A temporal affinity between the client connection and the home partition of its transactions is
desirable from the performance point of view as each reconnection takes time. However, the
affinity is not  required and  even in the worst case, when transactions in one connection
uniformly access all partitions, the redirection protocol preserves correctness, although, with
an impact on performance. We define correctness as the ability of the protocol to eventually
route the client to the processing node of the transaction, provided that all the nodes remain
operating. 

However, availability of service can be affected if some nodes are shut down, for example,
because of scale-in. Some of problems in this case are illustrated in Figure 6. Since the same
physical  node  both  provides  routing  information  to  clients  and  processes  transactions,
switching off one may create a gap in the redirection chain (Figure 6B). Thus, a client may be
given a node address which is not responding. We did not address this problem during this
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Figure 5. An illustration of the partitioning configuration in Figure 4.



thesis work. A simple but limited solution would be to impose a restriction on the scaling-in
policy so that nodes are released in the reverse order of the migration chain. Obviously, this
solution does not work if the migration chains are different for different partitions and there
is no single last node to stop (see Figure 6C). 

Another related issue that occurs even with no gaps in the redirection chain is that clients that
do not access any of the partitions for too long so may encounter a node that is not operating
and thus they can not get the correct address of the current partition home (Figure 6A). 

node2
node1 node2 node3

p1

p3
p2

node1 node2
p1
p2
p3

node1 node2
p1

p2

p3

A

B C

Figure 6. Reachability issues with scale-in scenario. A. A late client accesses the node that is
shut down. B. Redirection chain is broken by shutting down an intermediary node. C. Shut-
ting down any node will prevent some clients from reaching their partitions. 

A more complete solution would be a distributed mapping of partitions to node addresses,
shared between client and server nodes. Since migrations are relatively rare, for example,
compared to transaction processing, updating the state of this distributed map would not add
a significant delay to the rest of the migration process. 

There may be other possible approaches to handle the routing clients' requests to the nodes
responsible for the appropriate partitions.  The detailed analysis and comparison of those
approaches is outside the scope of this thesis. 

3.2 Features Specific to the DBMS-level Mechanism

In this Section we describe the details of the scale-out mechanism implemented at the DBMS
level.  This  mechanism takes  advantage of the DBMS's  awareness of  the  distribution of
logically-defined partitions over the data blocks (pages), permitting complete transfer of a
partitions between nodes for both scale-out  and scale-in scenarios.  The low-level  block-
oriented approach makes high throughput data transfers possible, leveraging the ability of
disks to efficiently schedule sequential I/O operations in the presence of the random I/O due
to normal load. 
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The DBMS-level mechanism involves both server-side and client-side modifications, as well
as a slight change in the client-server protocol itself.  Applications, however,  need not be
modified, as long as they follow reasonable error-handling practices. As expected, a DBMS-
specific solution depends on particular internal DBMS features, thus limiting its portability.
However, we believe this dependence is a good price for facilitating the partition placement
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Figure 7. Redirection sequence diagram.



information, thus enabling better performance and  flexibility of the scale-out and scale-in
operations. 

3.2.1 Low-Level Partition I/O

One of the design goals of the DBMS-level scale-out  mechanism was to achieve  a data
transfer rate that is  close to the physical limits of hardware in the presence of concurrent
load. We achieve this goal by using large blocks in the I/O operations for partition migration. 

Given  that  the  I/O  pattern  of  OLTP workload  is  mostly random,  large  I/O  sizes  are
particularly beneficial when the database resides on magnetic disks. Since the performance in
that case is limited by disk seeks, injecting a small number of large I/O requests does not
harm  the  normal  load  significantly.  At  the  same  time,  large I/O  requests  for  partition
migration can utilize most of the disk bandwidth. 

In the case of OLTP workload and magnetic disks, we believe the large block I/O is the main
factor leading to high efficiency of DBMS-level scale-out.

3.2.2 Dirty Page Handling

At the time of partition migration many pages in the source system buffer pool are dirty. One
approach would force the system to flush those pages to the disk so the files are up to date.
Our DBMS-level mechanism avoids this additional I/O by taking dirty pages directly from
the buffer pool. 

This optimization is implemented in a straightforward way: as the chunks of data are read
from the files, their range of page identifiers is looked up in the buffer pool to see if  it
includes any buffered pages and whether they are dirty. For any dirty pages found, the chunk
is patched using the buffered pages and the resulting patched chunk is sent to the target
system. 

3.2.3 Preserving Buffer Pool State

In the important case of a database that exceeds the main memory capacity,  the migration
algorithm writes the data files to the target system's local disks. The conventional approach,
in which data is copied by operating system commands and the DBMS is later started using
the newly received data, causes a potentially long period of degraded performance due to the
cold DBMS buffer pool. This problem can occur even if the DBMS uses the buffer pool of
the operating system because the block access pattern in the DBMS is different from the one
in the file copy operation. 

By implementing the data transfer operation inside the DBMS we can avoid the problem of
cold start  (with an empty buffer pool)  of the secondary system.  The target DBMS inserts
some of the received blocks into its buffer pool before writing them to the disk. The block
access pattern within a partition does not likely change after migration as both the data and
the client load are moved to the new location. This observation allows us to use the state of
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the buffer pool at the source DBMS to determine which data pages to keep in the target
DBMS buffer pool.

The capacity of  the target  node's buffer pool  may be less than the size of the partitions
allocated to this node, which is normal for disk databases. In that case the system should
decide which of the pages in the target buffer pool to replace by the pages of the newly
migrated partitions.  We call  this  problem the  buffer  pool  merging  problem.  Solving this
problem for the LRU replacement algorithm, used in InnoDB, is complicated by the fact that
the state of the LRU policy only contains estimations of relative probabilities of eviction for
pages. Therefore, the probabilities of pages from different LRU queues are incomparable,
and producing the combined LRU queue, which equally well approximates the replacement
preference for all pages, is not possible. 

We took the following simple approach to merging the buffer pools. The main assumption is
that the load on each partition is equal, so each partition needs the same amount of the buffer
pool memory to maintain the same miss ratio. Although this assumption does not hold in the
general case, it allows us to make an estimation of initial buffer pool allocation on the target
node. We determine the number of pages of a partition to inject into the target system buffer
pool nNEW by a linear proportion:

nNEW=nTOTAL∗
1

W CURRENT1 (1)

where nTOTAL is the target system buffer pool capacity (pages), and W CURRENT is the number
of partitions served by the target system before the migration. 

During the migration procedure a snapshot of the source system buffer pool page identifiers
is made. Those page identifiers are in the LRU order naturally so nNEW  page identifiers from
the hot (most recently used) side, belonging to the migrating partition, are transferred to the
target system before copying actual data pages. On the target system, when data pages are
received, those with identifiers in the list are inserted to the hot side of the LRU list. If the
buffer pool at the target has more available memory (the system is underloaded), the rest of
the received pages are inserted to the cold side of the LRU list. 

3.2.4 Consistency Issues

A single instance of the InnoDB storage engine handles all of the partitions on a server. The
InnoDB storage engine maintains information which is shared between different parts of a
database. This shared information includes both volatile main memory state and persistent
data on the disk. Only the persistent part is kept between server restarts, however, we would
like to perform  partition  migration while a server is online, thus the memory part is also
important to consider. During normal operations,  the shared state  is modified along with
partitions. Hence, if a partition is removed from a running  system and later injected to a
different one, the  consistency  between the shared state and the moved partition should be
preserved on both systems.  The consistency requirements are defined individually for the
following data structures:

21



1. The transaction log and recovery state, including the current LSN counter.

2. Record versioning state,  including  UNDO segments in the system tablespace and
transaction number counter.

3. Insertion buffer.

We  will  discuss  the  specific  consistency  requirements  for  each  case  below.  Generally
speaking,  the  migration  procedure  ensures  the  requirements by  either  partially  limiting
functionality, performing housekeeping activities before the migration, or modifying the data
in the partition during the transfer. 

3.2.5 Transaction Log and Recovery State

InnoDB uses the transaction log for REDO recovery after a system crash. Each modification
of a page in the buffer pool causes a log record to be appended to the log. The position of a
record is represented by a Log Sequence Number (LSN), which is a byte offset of the record
position in a conceptually infinite log file. Each persisted page in a data file contains an LSN
value which is a lower bound of the LSN of the log records that can potentially be applied to
this page during recovery. Since different server instances write their  own transaction logs
independently, their LSN numbers are not comparable and the stored LSN value in a  page
would become invalid if that page were migrated. 

Since active transactions are not allowed during migration and all dirty pages are included in
the copy, the log records in the source transaction log related to the migrated partition can be
ignored. Moreover, the migration procedure itself is synchronous, meaning the original copy
of  a  partition is  deactivated  only after  the  target  copy has  been  successfully  written  to
persistent storage, therefore the data pages can potentially be recovered after a crash during
migration. 

In the case when the LSN numbers in the pages originate from a different system which has a
separate sequence of LSN numbers and the corresponding log records, the following scenario
would lead to failed recovery: 

1. A page P is modified at server A and is written to disk, marked with LSNA. This
means that the log records with LSN ≥ LSNA must be applied during recovery should
server A crash.

2. P migrates to the server B, then is modified once more, marked with LSNB. Let LSNB

< LSNA. Upon writing modified P to disk, server B has to mark the page with its own
LSN number, even if it is less than the previous one, to ensure that its log records
with LSNB < LSN < LSNA are applied on potential future recovery.

3. P migrates back to server A. Now its LSN number is less than it used to be. If A
crashes, the recovery process will try to apply the log records to P which are too old
and may be removed from the log during a checkpoint. Recovery cannot proceed as it
thinks the log records are unavailable. 

To solve the problem of invalid LSN numbers in the data pages, the target system patches all
received data pages with the target's current LSN number. The target's current LSN number is
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read at the start of the migration process. Thus, after migration no preexisting log records can
be applied at the target to the newly migrated data as their LSN is always less than the LSN
of the data pages. 

3.2.6 Record History State

InnoDB contains  a  multi-version  implementation  of  transaction  isolation,  a  variation  of
snapshot isolation. Allowing multiple versions of a record to exist in the database requires
some form of garbage collection to remove the versions that are no longer relevant. InnoDB
separates the most recent version of a record, which is kept in the table itself, from older
versions, which accumulate in the UNDO segment. The UNDO segments are shared by all
tables in the database and are additionally used for UNDO recovery in the case of a system
crash or transaction rollbacks. InnoDB uses a global counter, stored persistently in the system
tablespace, to assign transaction sequence numbers (timestamps) to maintain their total order.
Every record in a data table is labelled by the sequence number of the transaction that created
this  record version,  as well  as  a  physical  pointer  to  the previous version in the UNDO
segment. 

Migrating an InnoDB table between systems poses two potential  issues. First,  like LSN
values,  transaction  numbers  and  pointers  to  UNDO  records  are  not  comparable  across
different systems and may cause confusion when tracking a record history in a partition that
has been moved. Second, the garbage collection implementation requires the current version
to be accessible, thus it cannot proceed if garbage from a partition remains after the partition
has been moved away. 

To handle these issues we rely on the absence of active transactions in the migrating partition
during the migration. This means there are no transactions which may look for old versions
of records in the partition. Therefore, the old versions in the UNDO segment may be safely
removed. At the same time, the garbage collection procedure in InnoDB writes to the current
version to remove its pointer to the history in the UNDO segment. If the partition containing
the current version is moved away by migration, garbage collection process will crash. While
it  may be possible to modify the garbage collection algorithm to remove record history
without accessing the current record, we chose a simpler approach which repeats garbage
collection at the source system until there are no more versions in the UNDO segment whose
transaction numbers are below the current transaction number value during the start of the
migration. This forced garbage collection may significantly delay the migration start if there
are long running transactions even in non-affected partitions because the current garbage
collection algorithm has to purge old versions for all partitions. A long-running transaction
prevents old versions in the UNDO segment from being collected, effectively stopping the
collection.  However,  this  is  generally  not  an  issue  for  short  transactions  in  the OLTP
workload. 

Another issue may happen at the target system after migration if  records keep the version
numbers and old version pointers which were valid in the source system. If the target system
decides to follow a migrated record's version history pointer, which is not meaningful at the
target  system, it  will  probably crash. To prevent  this  from happening, all  records in  the
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partition are scanned and their transaction numbers are replaced with a small number, such as
one.  This  approach  to  move  data  consistently  between  MySQL servers  is  the  same  as
described in [27] .

3.2.7 Insertion Buffer

InnoDB uses the Insertion Buffer as a technique to speed up random insertions to an index
which is too big to fit in the buffer pool. In the normal case each insertion would lead with
high probability to a buffer pool miss. InnoDB tries to avoid these misses by inserting the
record in the special data structure, called Insertion Buffer. It  is organized as a persistent
index, located in the system tablespace, with a record page number as a key. If during the
insertion to an index its leaf node is not in the buffer pool, the inserted record is instead put
into the Insertion Buffer. Delayed insertions are merged into the main index either later by a
background process or when the page is eventually loaded into the buffer pool due to a read
miss. 

When  the  Insertion  Buffer  contains  records  from a  partition,  migrating  the  partition  to
another  system will  cause missing records in  the partition index(es).  Since the Insertion
Buffer is an optimization technique and is not required for correct operations, and to keep our
prototype simple, we decided not to have a forced merging of Insert Buffer records to the
partition before its migration. Instead, we disabled the Insertion Buffer functionality. 
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Chapter 4 

Experimental Methodology

4.1 Overview of the Experiments

In the previous chapter we described the design of three scalability mechanisms. Now we
would like to investigate their efficiency. For the purpose of this thesis we define efficiency
as the ability to perform system reconfiguration (scale-out or scale-in) quickly while causing
little disruption to the client workload. Therefore, we would like to answer the following
questions during the experiments:

• How long does it  take for  the mechanism to complete the reconfiguration
process?

• What is the cost of the reconfiguration for each mechanism?

• What is the effect of the reconfiguration on the clients' experience? How deep,
and how long, is the disruption and how is it distributed among the clients?

• What  (if  any)  practical  issues  may  arise  when  using  the  scale-out
mechanisms?

When addressing the performance-related questions, we pay special attention to presenting
independent  views  of  the  system  performance  from  both  the  provider's  and client's
perspectives.  The provider  and the  clients  may have conflicting  optimization  goals.  For
example, in order to maximize overall throughput, the provider may choose not to execute
requests from certain clients. However, such a situation may be unacceptable from the client's
point of view.

We construct the client such that its request generation rate is independent of the ability of
server to execute  the  requests. When the server fails to fully handle the offered load, we
evaluate the degree of this failure by analyzing the difference between the offered load and
the actual load. 

In  most  of  the  experiments  we  study  one  scale-out  operation  performed  by  different
mechanisms, moving the database from one to two nodes and migrating half of the partitions
to a newly started node. Before the scale-out operation we allow the system to reach steady
state. We gather performance information before, during, and after scale-out to estimate its
effects on the system. The workflow of the experiments is coded in the controlling script,
which allocates certain fixed time intervals for each phase of the experiment. 

To illustrate a more general case of load balancing, we also included a scale-in experiment.
Unfortunately, the Snowflock-based mechanism does not provide the ability for migrating
partitions to already running nodes, and the application-level one is not efficient so we could
not perform a comparison of different approaches in this case. 
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Migrating database state in the shared-nothing architecture works over whole partitions and,
in most cases, involves moving data located on the persistent storage (disk in our case). We
would like to investigate how the involvement of the disk affects scale-out efficiency. Thus,
we perform the experiments in two distinct scenarios: disk-bound and processor-bound. In
the former scenario, the database working set size is larger than the size of the database
server  buffer  pool  and  the  workload  execution  causes  page  misses  in  the  buffer  pool.
Additionally, intensive update activity requires the server to flush dirty pages, consuming a
significant portion of disk bandwidth. As a result, the overall performance is limited by the
I/O system capacity.

In the CPU-bound scenario the server is configured to store the database entirely on a RAM-
disk. The database has to be small enough to fit in memory. The performance of the system,
including the scale-out itself, now does not depend on disk I/O, as accessing database pages
only involves memory-copying operations. Although using a RAM-disk seems to be less
natural than merely configuring a buffer pool large enough to contain the whole database, our
method eliminates physical I/O not only for reads but also for dirty page flushing, which
would still happen otherwise. Since the TPC-C workload is update-intensive, experiments
involving large buffer pools would still be I/O bound in that case. 

4.2 Workload

In this thesis we focused on online transaction processing (OLTP) workloads. We believe it is
more difficult to achieve good scalability for OLTP workloads as compared to analytical ones
as  the unit  of  work  in  OLTP is  smaller  and the amount  of  interaction between system
components is potentially higher. 

We  chose  a  TPC-C-like  workload  for  our  experiments.  TPC-C  [35] is  an  established
benchmark  for  evaluating  RDBMS  OLTP performance.  TPC-C  simulates  a  warehouse
transaction  processing system with  medium-length transactions.  TPC-C stresses   various
components of a system, including I/O and buffer pool, locking and concurrency control
algorithms. Despite being old and relatively simple, TPC-C is still a challenge for database
system implementers, particularly due to high I/O demand, and is widely used as a standard
OLTP workload. 

A TPC-C workload is defined as a mix of 5 different types of transactions:  New Order,
Payment,  Delivery,  Stock Level, and  Order Status.  Each transaction type occurs a certain
percentage of the time in the mix.  Throughput is expressed as the number of  New Order
transactions executed per minute. 

We used the open-source OSDL Database Benchmark 2 (DBT2) implementation [36] which
closely models the TPC-C specification. It should be noted that the TPC Council requires a
formal certification of any results that claim to represent any of the Council's benchmarks.
Therefore,  any  metrics  obtained  outside  of  the  certification  procedures  should  not  be
associated with the TPC-C benchmark and cannot be compared to other results. 

Our experimental workload differed from the TPC-C workload in the following respects:

• Transactions that can access remote warehouses are disallowed. 
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• We use fixed-size databases. 

• The method to control the transaction arrival rate differs significantly.

Those differences are described in detail in the following sections. 

4.2.1 Strictly Partitioned Workload

Each TPC-C warehouse is a separate partition in our database. Although the TPC-C workload
can be partitioned by warehouses for most of the transactions, the New Order and Payment
transactions  occasionally do  access  more  than  one warehouse.  Since  multi-partition
transactions cannot be executed by the modified MySQL PE, we changed the DBT2 input
data generator to use only one warehouse in all transactions. 

Since all  SQL queries in TPC-C include a warehouse number in their  search condition,
MySQL partition  pruning  algorithm, described in Section  3.1.3, has no difficulty correctly
associating transactions with their warehouses. 

4.2.2 Database Sizing

We used a fixed database size, which was primarily determined by the constraints of our
hardware configuration.  We tried to find the maximum size that permitted us to run the
experiments reliably in all configurations (disk-bound and CPU-bound). A serious limitation
was  imposed  by  the  Snowflock  snapshot  functionality,  which  requires  extra  space
reservations to store memory and disk snapshots, effectively making available only half of
the memory. 

Table 2 summarizes the space parameters for the initial state of the database.  In the disk-
bound experiments only half of the warehouses were actually accessed by the workload; we
show the numbers for the full database in parentheses. The reason for this was that our initial
intention was to increase the working set size twice at scale-out time so the ratio between the
total buffer pools size and the working set size did not change as a result of scale-out. That
scenario would correspond to the real-world case in which new users cause extra processing
and use additional data. However, we experienced difficulty running those experiments as the
scale-out under those setting was too slow, so we do not include them in this thesis. 

4.2.3 Controlling the Load

We conducted experiments with two types of load: flooding the server with transactions and
limiting the load so that there is spare capacity to accommodate the overhead of  scale-out.
We refer to the  former type as  maximum load and the  latter  one as  controlled load.  We
consider the maximum-load experiments as supplementary with their main purpose being to
determine the maximum possible system throughput. In the controlled-load experiments we
provide more results and analysis and believe it is more realistic because in real applications
there is always some degree of overprovisioning. 

In the controlled-load case, we used a significantly modified algorithm to control the rate of
transaction generation at the client side. The main difference between it and the one from the
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TPC-C specification  (and the original implementation in DBT2) is independence from the
server performance. In the TPC-C benchmark the transaction cycle executed by the client
contains  keying  and  think  times  added  to  the  response  time  of  the  actual  transaction
execution. In this approach, a slow server would not only cause the reported response times
to rise, but also increases the total length of the cycle, thus decreasing the rate at which the
client issues transactions.

In contrast, we used a open-loop approach, in which the response times do not affect the
transaction generation rate. This has several advantages. First, when evaluating the quality of
service as perceived by clients, it is more natural to assume the clients have their own idea
about the desired work intensity.  Knowing the transaction start times in advance makes it
easier to assess a possible disruption of service by comparing them to the actual transaction
execution.  Second,  our  approach  allows  us  to  set  a  desired  performance  level  in  a
straightforward manner in the experiments in which the server is not fully loaded. 

The workload generator uses multiple threads, which issue transactions independently from
each  other.  Each  thread  emulates  a  TPC-C  terminal.  Each  terminal  is  attached  to  one
warehouse for the duration of the experiment and maintains a separate database connection.
Each warehouse has a possibly variable number of terminals TPW(t), which was 4 for CPU-
bound experiments and 2 for the disk-bound  ones at the experiment start. These numbers
were chosen to be different from the TPC-C default value (10) in order to avoid having too
many  threads  in  the  server  and  limit  possible  contention,  as  MySQL uses  thread-per-
connection model. 

Each terminal continuously executes transaction cycles consisting of the following phases.

• Choosing  the  transaction  type,  calculating  start time,  generating  transaction
parameters.

• Deciding whether the transaction is too late to start.  If  it  is not, waiting until  the
execution is due.

• Sending the transaction to the server.

• Waiting for the server's response.

• Receiving the response and logging the transaction result.

We designed the  workload generation algorithm as follows.  Let  TPM REQ t   be the target
total offered transaction load, measured as a number of New Order transactions per minute
per warehouse. For the experiments with variable offered load, the change in the load level is
done by changing the number of terminals,  TPW t ,  dynamically starting and stopping
terminal threads in the workload generator. The load generated by each terminal is fixed for
the whole experiment and is determined by:

TPM REQ
TERM=

TPM REQ0

TPW 0
(2)

Here, the load is assumed to be distributed equally between the terminals. The initial values
for TPM REQ 0  and TPW 0  are passed to the workload generator as parameters. 

28



Conceptually, each terminal generates a separate schedule of start times for each transaction
type. The full schedule for a terminal is the superposition of the per-type schedules. Since the
scheduled transaction  start times do not  depend on the server  responses,  generating and
storing the whole schedule in advance is not necessary. Instead, each terminal keeps a vector
of absolute start times, one value for each type of transaction, and chooses the type with the
smallest value for execution. After the execution of a transaction, the next absolute time is
calculated for the same transaction type. In this calculation, only absolute times (since the
start of the experiment) are used, therefore, the schedule does not depend on server response
times  nor  does  it  drift  due  to  the  overhead  of  client-side  computations  and  transaction
parameter generation. The actual clock time is used to control  the delay before the next
transaction issue and to determine whether the transaction is late. 

Since the full  schedule is a  superposition of the schedules for each transaction type, the
individual  schedules  are  computed  first for  each  transaction  type
i∈{NewOrder , Payment , Delivery , StockLevel ,OrderStatus} .  Mean  transaction  cycle
duration  T i , in seconds, is computed using the requested throughput,  TPM REQ

TERM , and the
transaction mix ratios using:

T i=
60

TPM REQ
TERM ∗

N NewOrder

N i
 (3)

where  N i is  the  ratio  of  i-type  transaction  in  the  mix.  N i is  taken  from  the  TPC-C
specification [35] and its values are shown in Table 1.

Transaction type, i Relative ratio in the mix, N i

New Order 0.45

Payment 0.43

Delivery 0.04

Stock Level 0.04

Order Status 0.04

Table 1. Mix ratios for transaction types

Actual cycle durations are chosen randomly with negative exponential distribution limited by
ten means. 

T i= T i∗min−ln r ,10  (4)

where r is a uniformly distributed random variable taken from the range (0, 1).
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The time lines  of  the standard  TPC-C  transaction generation cycles  and our  transaction
generation cycles are presented in the Figure 8. In contrast to TPC-C, with its separate keying
and think times, there is one client-imposed delay between transactions used to enforce the
total cycle duration. 

At this point each client terminal has a schedule of start times for every transaction type. We
allow  a  transaction  to  start  slightly  later  than  its  scheduled  start  time  if  the  previous
transaction has not  completed  before  the next  one is  supposed to  start.  The reasons for
allowing delayed starts are explained in the next paragraph. If the transaction start time is
delayed too long, the transaction is skipped and reported as cancelled. Once a transaction is
submitted to the server, it is allowed to complete regardless of its actual execution duration.
Each terminal uses a single connection to server and since the connection only supports
synchronous transaction execution,  there is  at  most  one transaction in  progress  for  each
terminal. 

As  random start  times are  calculated  for  different transaction  types independently,  it  is
possible that start times of different transaction types fall into a time interval small enough
that the resulting transaction executions would overlap even under normal load. Additionally,
the exponential distribution may produce two consecutive start times of the same transaction
type within a short interval. In other words, the workload generation algorithm may produce
overlapping executions even when the server response time is normal. Those  overlaps are
random and their  probability  decreases quickly for  longer delays.  In contrast,  the server
inability to handle the requested load would lead to systematic violations and accumulation
of the delay.  Therefore, in order to distinguish workload-generation-imposed from server-
imposed delays, we allow transaction  start times  to be  delayed no longer than some small
time interval (tolerance) T TIMEOUT . In our experiments, T TIMEOUT  was chosen as 1 second for
CPU-bound  and  5  seconds  for  disk-bound  workloads,  which  is  sufficiently  small  in
comparison to the duration of the experiments so it does not lead to significant accumulation
of  late  transactions  when the  server  cannot  handle  them.  At  the same time,  the  chosen
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CPU-bound Disk-bound

W, Warehouses 8 30 (60)

Total data, GB 1.1 ~4.5 (8.4)

Partitioned data, GB 1 ~3.9 (7.8)

Non-partitioned data, InnoDB system tablespace,
metadata, GB

0.1 0.58

InnoDB transaction logs, GB 2 x 0.75 2 x 0.5

InnoDB buffer pool size, GB 1.5 1

Table 2. Database size parameters (total values for the loaded database in parentheses)



tolerance values are big enough so that we did not observe cancelled transactions when the
server is under normal load. Possible timing scenarios in workload generation are illustrated
in Figure 9.

4.3 Metrics

In our experiments we model a service provider environment. In this kind of environment the
provider  and  its  clients  have  their  own  views  and  objectives  regarding  the  system
performance. The provider's goal is to maximize profit, which we will assume is related to
the amount of work actually done for the clients minus the associated costs. The clients, in
turn, wish to receive the promised services with good quality. The exact definition of service
quality  varies; however,  it typically includes the amount of the service actually received,
service  availability and  service  responsiveness. An important  aspect of  the client-centred
measurement stems from the clients' independence, meaning  that each client  has its own
valuable  experience, which will  not be captured by simple aggregating metrics computed
over multiple clients.

To represent the interests of both the producer and the clients, we use two groups of metrics.
The first group corresponds to the provider's view and includes system throughput and the
cost  of  operations.  Assuming that  in a cloud environment  services are paid per use,  the
provider should maximize amount of work done using the smallest number of servers. Also,
assuming that the provider does not have limits in scalability and can adjust the number of
servers  quickly  in  response  to  a  change  in  clients'  demand,  the  load  level  of  servers
determines the provider's economic efficiency. For a given workload, the load level can be
expressed in terms of throughput per server. In the extreme case, targeting solely the provider
goal, the provider would load each server to its saturation. However, increasing the load level
of servers would lead to deterioration of the client  experience due to fluctuations in the
clients' demand and the lack of spare server capacity to accommodate those fluctuations. That
is why another group of metrics is needed.

For the second group of measurements, we focus on service interruption by calculating the
amount  of  time during  which  the  service  is  not  available.  We  also  measure  throughput
separately for different groups of clients. In particular, we differentiate between the clients
that  access  migrating partitions and the clients  that  access partitions that  remain on the
original host. 

4.3.1 Cost and Throughput Metrics

The main provider-centered metric is the total throughput TPM t  , measured in transactions
per  minute,  normalized per  warehouse,  defined in  each small  time interval  t during the
experiment:

TPM t=
∑
w=1

W

N NewOrder w , t t −∑
w=1

W

N NewOrderw ,t 

W∗ t

 (5)
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where 

N NewOrderw , t   is the number of New Order transactions executed in warehouse w
from the start of the experiment until the time t;

 t  is the length of the interval, for which the throughput is reported.  t  is assumed
to be a constant for an experiment. 

We define the cost of scale-out  as the amount of work that was not performed by a server
("lost work") because of the performance effects of the scale-out  procedure. The server's
inability to process the offered load is manifested as cancelled transactions due to scheduling
timeouts. Since the client tries to maintain the load independently of the server performance,
the number of cancelled transactions directly corresponds to the amount of "lost work". 

We compute the number of cancelled transaction  N CANCELLED  as a difference between the
offered load and the actual execution rate, assuming that the offered load does not change
during the interval t start≤tt end :

N CANCELLED=TPM REQt start∗t end−t start∗W−∑
w=1

W

N NewOrder w ,t end −N NewOrder w ,t start  (6)

where 
W is the number of warehouses;

TPM REQ t is  the  offered  load  from  each  client  (warehouse),  in  New  Order
transactions per minute;

N NewOrderw , t  is  the  actual  count  of  executed  transactions since the start  of  the
experiment for the warehouse w until the time t;

t end , t start are the start and end of the time interval for which the number of cancelled
transaction is calculated.

We convert  the number of cancelled transactions in all  clients, N CANCELLED ,  to the time-
domain metric T LOST , measured in minutes, by dividing this number by the normal offered
load. 

T LOST=
N CANCELLED

TPM REQt start ∗t end−t start∗W
 (7)

Intuitively, T LOST  measures the number of minutes of server time required to compensate for
the loss of productivity due to the impact of scale-out, assuming the server load is maintained
at the TPM REQ t start   level. 

4.4 Experimental Environment

The experiments are conducted on the Muscat cluster [37] at the University of Waterloo. We
use two identical cluster nodes, each of  which is an IBM BladeCenter LS-21  [38] blade
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server equipped with two dual-core AMD 2212 HE CPUs, clocked at 2.0 GHz, 10 GB of
RAM, and a locally-attached Seagate Savvio ST936701 10K rpm 36 GB SCSI disk [39]. The
connectivity includes two 1 Gbps network adaptors, only one of which was actually used. 

The  blades  are  booted  into  Snowflock  Xen VMM version  3.4  with  Debian  Linux  5.04
installed in both dom0 and domU in the virtual machines. The Linux operating system used a
Snowflock-specific Xen-enabled kernel based on version 2.6.18. Each VM is allocated with 1
virtual CPU and 4 GB of memory. In the disk-bound configurations the database is located in
the same virtual disk as the rest of the filesystem. 

The Snowflock resource allocator chooses the location of a newly cloned VM copy based on
the available resources of the cluster physical nodes. Our goal was to study scale-out between
physical nodes, therefore, we configured  the  Snowflock available resource limits on each
node to match closely the specification of the VM. Thus, a new cloned copy would always be
placed on  the second physical node of the cluster. 

The load generator  program, DBT2 driver,  was located at  the  same node  on which the
original VM was running. Since the VM only was allowed to use a single core, while there
are  four  total  cores  in  the  physical  server,  there  was  no  CPU contention  between  the
benchmark client and the database server. 

DBT2  driver was  configured  to  use  native  MySQL  connectivity,  implementing  each
transaction as server-side stored procedure. By doing this we minimized the overhead of the
client  processing  and  the  communication.  The  number  of  terminals attached  to  each
warehouse during normal load was 2 for the disk-bound and 4 for the CPU-bound setups.
Combined with the number of warehouses, this totals in 60 and 32 simultaneous connections
to the MySQL server.  Given the  thread-per-connection model  of  MySQL,  the degree of
parallelism inside the server was equal to these numbers. 

To keep the experiments short, we used prepopulated databases. Before each experiment, a
file image of the database directory was copied to the MySQL database directories in the
main VM. For each one of two database sizes we generated the database in two steps, saving
each step's results. First, we created the schema and loaded the non-partitioned table (Item).
The result of this  step was used to initialize the MySQL instance at the  new node for the
DBMS-level and application-level mechanisms. Next, we populated all partitioned tables and
kept the resulting image for the main node initialization. 

Several system  metrics  were collected  during  the  experiments.  In  particular,  we  used
standard  Linux  monitoring  tools  to  gather  CPU usage,  context  switch  counts, and  I/O
statistics for the virtual nodes and the hosts, as well as the MySQL processes (pidstat). The
network utilization was collected with the sar utility on all VMs and the hosts. Additionally,
the Xen-related metrics  were logged with  the xentop utility on the hosts.  The sampling
interval for all statistics was 1 second, however, the data were aggregated into larger intervals
for graph plotting. 
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Chapter 5 

Experiments and Results

5.1 Overview

In  this  section we present the experiments  and their  results.  We examined the scale-out
mechanisms in two use cases which differ by the primary bottleneck involved: disk-bound
and CPU-bound. The former case represents a realistic scenario of a shared-nothing database
application, while the latter case is included in order to show how the presence of disk I/O
bottleneck affects the scale-out process for the mechanisms in question. As was noted in the
Section 4.2.3, we ran the experiments with two types of load generation: maximum load and
controlled load. 

All  experiments  were conducted on two physical  servers.  The scale-out  operation in  all
experiments expanded the system from one to two nodes. The timeline of most experiments
consisted of the following steps: 

1. Starting a server on the initial node, containing all the partitions. 

2. A period with the initial number of client terminals. During this period, the system
warms up and reaches steady state. 

3. The number of client terminals is doubled. For the maximum load experiments, no
change in  the throughput metric, compared to the previous period, would show the
server was actually fully loaded. For the controlled load experiments, the offered load
is similarly doubled, and the initial configuration becomes overloaded. 

4. Scale-out from one to two nodes is initiated.

5. A period for scale-out operation to proceed. Eventually the system reaches another
steady state, now with two nodes. 

The disk-bound experiments with the DBMS-level mechanism also included the following
additional steps, demonstrating the scale-in process:

6. The number of terminals dropped twice to return to the initial number. This decreases
the load twice and the system becomes lightly loaded.

7. Scale-in operation initiated to move the system from two nodes to one node.

8. A period for the scale-in operation to proceed so that the system reaches steady state
with one node. The system and load configuration is now the same as it was initially.

The timeline of the experiments is illustrated in Figure 10. The lengths of intervals Ti, 1 ≤ i ≤
5 are determined by control script parameters and vary between disk-bound and CPU-bound
experiments. The variables ti, 1 ≤ i ≤ 5 indicate the start times of the corresponding periods. 
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Figure 10. Timeline of the experiments. 

According to out experimental methodology, we present a provider's and client's views on
system behavior during scale-out. Those views are presented in the Throughput Analysis and
Unavailability Analysis subsections, respectively. 

5.2 Disk-Bound Experiments

In this series of experiments we model a realistic scale-out scenario in which the total size of
the data partitions is larger than the available memory. We used the TPC-C dataset consisting
of W = 30 warehouses, which takes about 4.5GB of storage space. The database was placed
in the root filesystem of the VM image file. The MySQL buffer pool was configured to 1GB
so that about 1/4 of all data fits there. The MySQL instance was also configured to use Linux
Direct IO so data is not cached by the operating system file cache. In this settings we expect
significant random disk read and write activity on behalf of the MySQL server that would
affect the duration of partition migration and service disruption. 

The timing parameters of the controlling script  were set  according to  Table 3.  During the
overload period we increase the number of terminal threads two-fold, thus doubling the rate
of  transaction  requests.  However,  the  new  terminals  are  connected  to  the  same  set  of
warehouses as the existing ones. Thus, we keep the size of the working set the same. 

In addition to the scale-out we included in the experiment the scale-in process, in which the
system migrates the partitions from the second node back to the original one. In a real-life
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case the scale-in mechanism would be triggered by a control  module in response to the
insufficient load. The scale-in is not possible under the Snowlock-based mechanism as there
is no way to merge the states of VMs which will have diverged since the cloning. 

Period Duration,
minutes

Start time,
minutes

Comment

Initial warm-up period with one node T1 = 30 t1 = 0

Overload T2 = 15 t2 = 30

Scale-out to two nodes T3 = 60 t3 = 45

Reduced load T4 = 15 t4 = 105

Scale-in to one node T5 = 60 t5 = 120 Only for DBMS-
level mechanism

Table 3. Disk-bound experiment time parameters

The application-level mechanism performed very poorly in this experiment, taking more than
one hour to  completely migrate the half  of  the database in one direction.  Therefore we
decided  it  is  impractical  to  include  it  in  the  comparison.  Instead  we  focused  on  the
Snowflock-based and DBMS-level mechanisms.

During the first runs we observed severe performance degradation of Snowflock copy-on-
write disks after a new snapshot is created. In Snowflock, a new snapshot is created upon
starting the virtual  cluster and each time a new VM clone is created. Although taking a
snapshot at the cluster start is not technically required, it is useful for conducting multiple
tests with the same VM image, keeping the changes separately and discarding them after the
run. In Snowflock, snapshots are implemented by the Copy On Write (CoW) technique,  in
which write block requests are redirected to a separate file, called a CoW slice, while keeping
the original VM disk image intact. Immediately after a new snapshot is created, the virtual
disk could sustain only a few operations per second, with a throughput of about few hundred
kilobytes per second, even when the CoW slice and the original VM disk image were on the
same machine. This poor performance, which is two orders of magnitude worse than normal,
can be easily noticed, for example, when copying files to a VM. As I/O activity continues,
the performance improves and eventually it stabilizes at the normal level. 

After a little experimentation we found that the CoW disks were slow when the CoW slices
was stored as Linux sparse files and  had normal performance when  stored in preallocated
files. The exact mechanics of this slowdown are not clear, but we suspect this is due to the
high overhead of dynamically allocating new blocks in a sparse file in  the  Linux ext2fs
filesystem, causing many synchronous physical disk writes for each logical write. 

Despite the fact that there certainly must exist some I/O performance cost of updating a CoW
disk,  we  believe  the  observed  degree  of  the  degradation  in  the  current  Snowflock
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implementation is excessive and caused by inefficient implementation rather than the CoW
concept. Therefore, in effort to obtain more realistic data, we modified Snowflock scripts to
avoid this overhead. Originally,  Snowflock  created a temporary directory with a random
name  for  each  cluster  run  and  placed the  CoW  slices into  this  directory.  With  our
modifications  it  uses fixed  configured  paths to  the locations  of CoW slices.  Before  the
experiments we created the files in those locations with the size equal to the original image
size. This way, Snowflock picks up existing files to use as CoW slices and no random block
allocation takes place. 

Conceptually, these Snowflock modifications defeat the main goal of Snowflock, cheap and
fast VM cloning, as it becomes impossible to instantly allocate a large file. Moreover, the
space consumption becomes very high. In our opinion, both strategies of dealing with CoW
file allocation represent the extreme cases, therefore, we included both in our experiment
settings. The efficiency of the original (too slow) and the modified (too fast) configurations
corresponds to the upper and lower bounds, respectively, of the duration of scale-out and the
degree of service disruption. 

The maximum throughput of the server was determined by first running the experiment in the
maximum load setting. The achieved throughput was approximately 60 tpmC per warehouse
at 30 warehouses (corresponding to 1800 tpmC total for the server). Based on this number,
we chose 50 tpmC as a client-offered load level for our controlled load experiment, which is
about 85 percent of the maximum. 

Cost and Throughput Analysis

The graphs for total transaction throughput and network utilization are shown in Figure 11
and  Figure 12 respectively.  The system first achieves steady state approximately at t=15
minutes. During the excessive load period 30 ≤ t < 45 when the number of clients and the
offered load both doubled, the system becomes limited by server capability, therefore it can
accommodate  only  small  performance  increase.  At  the  time  t=45  minutes scale-out  is
initiated.

The original Snowflock implementation experiences a deep  throughput  drop and restores
very slowly, taking about 25 minutes until the original level and about 40 minutes until the
maximum level is reached. However, it still had not  finally reached the offered load level,
staying about 10% short of it. Later, from Figure 16 and Error: Reference source not found
we  will  see that the original  node performance is the culprit  while the migrating one is
restoring smoothly,  albeit  slowly,  and finally reaches the offered level  of  100 tpmC per
warehouse. Thus we can conclude that in the case of the original Snowflock implementation
the latency of remote block reads is not the main cause of the performance impact but the
degradation  of  physical  disk  I/O  performance  at the  original  node  due  to  CoW block
allocations is. When the factor of slow CoW block allocation is removed from the equation
with preallocated CoW slices, the system scales out much quicker even though the latency of
remote reads still affects it.
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Figure 11. Average transaction throughput per warehouse. 

The modified Snowflock mechanism takes about 12 minutes to fully scale out and, interest-
ingly, shows no overall degradation during the transition. There is degradation for the parti-
tions that are migrating, but the almost instantaneous acceleration of the non-migrating ones
compensates this.
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The  DBMS-level  implementation  is  the  quickest  to  scale  fully, taking  approximately  6
minutes, but has a short degradation initially that has its minimum at about t = (45 + 2)
minutes. To investigate the reasons of this degradation we examined the logs and analyzed
the durations  of  the  components of  the  scale-out process.  The  detailed  development  of
throughput and network traffic is shown in Figure 13. The logs showed that the VM cloning
took 29 seconds, reinitializing the database with new data files took 92 seconds, and starting
a new MySQL instance took 28 seconds. During database reinitialization, deleting old files at
the target took most time, followed by copying new files. Cloning, file deletion, and  file
copying steps affected the source node performance as its physical node was also used as a
data source for database files and the VM image. Both steps combined took almost exactly 2
minutes.  Then  a new MySQL  process started initializing locally,  easing the load on the
original node and allowing it to recover partially. The partition migration itself started soon
after that and was accompanied by fast performance recovery. From this timing information
we can conclude that the cost of bringing up a new node is the cause of the temporary
performance degradation. The whole DBMS-level  scale-out took about 8.5 minutes, which
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consisted of about 2.5 minutes to initialize a new MySQL instance and 6 minutes to move the
partitions,  i.e.  24  seconds  per  partition  on  average.  Interestingly,  the  full  performance
recovery was accomplished when only half of the migrating partitions had been actually
moved and enough capacity had been freed at the source node. 

The results of network traffic measurements are presented in Table 4. Although Snowflock-
based scale-out takes much more time than DBMS-level one, the amount of traffic (to the
point when system throughput has been mostly recovered) by Snowflock-based mechanism
is less. We can conclude that on-demand transfer approach is efficient in minimizing the
amount  of  transferred  data.  Therefore,  slowness  of  the  Snowflock-based  mechanism  is
determined by transfer latencies and not by bandwidth limitations. 

Mechanism Approx.
time to

gain 90%
of the final
through-

put,
minutes

OS cloning
and data-
base reini-
tialization
duration,
minutes

Data mi-
gration

duration,
minutes

OS cloning
and data-
base reini-
tialization

traffic, MB

Partition
data

traffic, MB

Total mi-
gration

traffic, MB

Original
Snowflock

40 N/A N/A ~1830 (until 90% of final throughput
is reached)

Modified
Snowflock

12 N/A N/A ~1850 (until 90% of final throughput
is reached)

DBMS-level 2 2.5 8.4 439 2195 2634

Table 4. Data transfer measurements.

We performed  the  analysis  of  the  lost work  during  the  scale-out  and  scale-in  periods
according to Section 4.3.1. Table 5 shows the amount of lost work during scale-out with the
following parameters: TPM REQ=100min−1 , t start=45min , t end=105min .

Mechanism Total number of not executed
New Order transactions since
scale-out begins N CANCELLED

Total amount of lost server
working time caused by
scale-out T LOST , minutes

Snowflock original 73202 24.4

Snowflock pre-allocated 10214 3.4

DBMS-level 5818 1.9

Table 5. Results of the lost work analysis (scale-out)
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Table  6 shows  the  results  of  the  lost  work  analysis  during  scale-in with  the  following
parameters: TPM REQ=50min−1 , t start=120min , t end=180min .

Mechanism Total number of not executed
New Order transactions since

scale-in begins N CANCELLED

Total amount of lost server
working time caused by
scale-in T LOST , minutes

DBMS-level 4603 1.5

Table 6. Results of the lost work analysis (scale-in)

Quality-of-Service Analysis

We analyzed service disruption for each warehouse by calculating the number of  5-second
intervals during which there are no transactions executed  at that warehouse. Although this
metric has some degree of subjectivity as it does not capture periods with partially (but still
significantly)  degraded  performance,  we believe it  can  illustrate  the degree  of  complete
service blackout.  A 5-second interval corresponds to approximately 10 transactions of all
types for the normal warehouse load (50 tpmC). We only analyzed the time period 45 ≤ t <
105 minutes (the scale-out period). The result is shown in the Figure 14. Due to very high
original Snowflock numbers, a logarithmic scale is used in y axis. 
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Figure 14. Downtime distribution for warehouses (scale-out, 45 ≤ t < 105 minutes)

The results  show that  the  very costly original  Snowflock  mechanism causes  substantial
downtime for every warehouse, with half  of  them experiencing more disruption than the
other half. The downtime for both preallocated Snowflock and DBMS-level mechanisms are
similar and are experienced by the migrating warehouses only. In the case of the modified
Snowflock-based mechanism, the  absence of downtime for the half  of the warehouses is
caused by the fact that the synchronous part of Snowflock cloning takes about 2 seconds and

42



is not counted as "downtime" in our test. For the migrating half, the downtime is determined
by the initial slow execution period at the secondary node when there are too many "virtual
page faults" (modified Snowflock) and by the one partition copy time (DBMS-level). 

The throughput graphs for the migrating and non-migrating warehouses are shown in Figure
15 and Figure 16, respectively. Although the warehouse unavailability times for the DBMS-
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Figure 16. Average throughput in the non-migrating partitions, per warehouse.
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level and the modified Snowflock mechanism are similar, the overall throughput of migrating
and non-migrating warehouses is different under the two approaches. In the DBMS-level
mechanism both  migrating and non-migrating show approximately the same performance
evolution during scale-out. 

In the Snowflock mechanism, the migrating part accelerates smoothly until  it  reaches the
target throughput level, faster for the preallocated implementation and slower for the original
one. The performance of the non-migrating part,  however,  is  drastically different  for the
original and modified Snowflock mechanisms. In the original one, performance improves
slowly and in a jagged way, never reaching the target performance during the 1 hour time
interval. On the contrary, the modified Snowflock mechanism restores the performance of the
non-migrating part almost instantly, even faster than the DBMS-level mechanism.

Based  on  these observations  we  can  conclude  that  the  original  Snowflock  performance
during scale-out depends on the factors of network latency and snapshot disk latency, the
latter being the major one. However, in the modified Snowflock mechanism, snapshot disk
latency no longer affects the performance. 

5.3 CPU-Bound Experiments

The goal of the second set of experiments is to study how the scale-out behaviour changes
without the impact of  disk I/O. In  this case the scale-out  process is competing with the
normal  load  for  CPU  cycles  and  memory  transfers.  We  compare  all  three  scalability
mechanisms here: Snowflock, DBMS-level, and application-level. For all three mechanisms
the system configuration is exactly the same, allowing us to compare the absolute numbers
obtained from measurements. The database server runs in a VM having 4GB of memory. 

To fit the database into memory, we chose the TPC-C scale factor W = 8. The initial size of
the database data files is approximately 1.2 GB. From 4GB of total VM memory we allocate
1.5GB to InnoDB buffer pool so InnoDB does not experience read misses. To avoid physical
writes of dirty pages we also put the database into a RAM-disk using a ramfs filesystem. In
Linux, ramfs filesystems use memory to store files without any disk backing. Although this
configuration is redundant in terms of memory usage, it completely eliminates physical I/O
as well as the overhead of memory copying from the RAM disk to the buffer pool. In total,
the data files and logs on disk and in the buffer pool consume about 3GB of memory, leaving
the rest for the operational overhead of both MySQL and operating system, and for data
growth. 

Each warehouse in this experiment had 4 terminals connected initially, therefore, the total
number of terminals was 32. During the period of increased load, the number of terminals
increased to 8 per warehouse, amounting to 64 in total. 

The  experiment  scenario  follows  the  same  timeline  as  the  disk-bound  one  with  timing
parameters specified in Table 7. 
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5.3.1 CPU-Bound, Maximum Load

The goal of the first experiment was to determine the maximum load level that one server can
handle. The load generator was configured to have no delays between transactions so the next
transaction  is issued  immediately after receiving the response for the completed one. This
mode of load generation, as well as running multiple threads in the server (32 threads in the
initial period), ensured that the server was flooded with transaction requests. 

During the maximum load runs, we observed some random oscillation of throughput during
the initial period (before scale-out) between two visibly stable levels of approximately 1000
and 1100 tpmC per warehouse for all types of  scale-out mechanisms. The switch between
levels occurred rarely so some runs maintained one of the levels for the entire duration of the
experiment while others switched once or twice. In total we performed 12 runs for three
mechanism types. To illustrate the oscillation behavior, we produced a histogram of average
throughput values over 1-minute intervals for of all runs, with 1 ≤ t < 10 minutes (initial
steady state). The histogram is shown in  Figure 17. The distribution exhibits two clusters
around of 1000 and 1130 tpmC per warehouse, with equal probability of throughput falling
into either of those clusters. 
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Period Duration, minutes Start time, minutes

Initial warm-up period with one node T1 = 5 t1 = 0

Overload T2 = 5 t2 = 5

Scale-out to two nodes T3 = 15 t3 = 10

Table 7. CPU-bound experiment time parameters
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The exact  cause of this  variation was not discovered. In order to  minimize its effect, we
picked runs which had throughput equal to 1130 tpmC during the initial steady state. We also
performed  the  same selection  of  runs  in  the  controlled  load  experiments,  based  on  the
throughput level during the overload period, when the throughput is limited by the server. 

The complete throughput graph is shown in the Figure 18. From the visual observations, we
chose the first two minutes as the warm-up time, the next three minutes as the first steady
state and the last five minutes as the second steady state. Although we might expect a small
instability of throughput due to contention in the engine  during the time interval 5 to 10
minutes, when the number of threads is being increased, it remained almost equally steady,
thus the contention factor is insignificant for those experiments. There is also no change in
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Figure 18. Comparative throughput graph for the CPU-bound experiment. 

Mechanism Steady state 1, t=2..5
minutes

Steady state 2, t=20..25
minutes

Snowflock 1119 1662

DBMS-level 1129 1658

Application-level 1116 1696

Average 1121 1672

Standard deviation 6.6 21

Table 8. Average total throughput during the initial and the final steady state periods (nor-
malized per warehouse), maximum load, tpmC.



the average throughput value, meaning the performance is fully determined by the server side
and it is at its maximum. 

The average throughput numbers for the corresponding steady state are summarized in the
Table  8,  we will  use  those number  as  a  base  for  the  controlled  load level  in  the  later
experiments. 

5.3.2 CPU-Bound, Controlled Load

In the next experiment we model a more realistic scenario by maintaining the workload at a
configured  level.  The initial  client-offered  load  is  lower than the  server  can  potentially
handle,  thus  leaving  some  spare  capacity  to  simulate  overprovisioning  of  computing
resources.  This  experiment  has  the  same  settings as  the  previous  experiment, with  the
exception of the load generation. 

We set the scheduled rate of client-generated transactions at 750 tpmC per warehouse, which
is  about  one  third  less  than  the  peak  rate  measure in  the  previous  "maximum  load"
experiment. During the excessive load period, we are running twice as many clients without
changing  the  database  size,  effectively  increasing  the  offered load  to  1500  tpmC  per
warehouse. 

Cost and Throughput Analysis

The transaction throughput and average response graphs are shown in Figure 19 and Figure
20 respectively.  At  t  = 5 minutes the offered load level is doubled, however, the system
throughput increases only by the amount of overprovisioned capacity. The response times
rise significantly, indicating that the offered load exceeds the server's capacity. 

The most interesting part of  the graphs are at 10 minutes and beyond, when the system
undergoes a transition period. We observe here that the Snowflock scalability mechanism can
recover most of the maximum throughput in about 1 minute, followed by the DBMS-level
mechanism (about 2 minutes) and the application-level mechanism (5 minutes).

For a reason that has not been determined, in both DBMS-level and application-level test
runs  the  Snowflock  cloning  process  took  longer  than  in  the  Snowflock  test  runs,  with
approximately 25 second delay between issuing the clone command by the control script and
actual  observable  network  and  performance  effects.  This  delay  did  not  occur  in  the
Snowflock scale-out process. 
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Mechanism N CANCELLED T LOST , seconds

Snowflock 8913 5.2

DBMS-level 10005 13.3

Application-level 22623 30.2

Table 9. Results of the lost work analysis, scale-out



To evaluate the cost of scale-out for a provider, we aggregated the total number of New
Order transaction cancellations N CANCELLED  starting at t=10 minutes,  when scale-out starts,
and converted this number to time units T LOST ,  normalizing by the initial  offered load,
according to (7). The resulting time quantities represent the  lost opportunity, the working
time of the server that could have been saved if  scale-out  was  "free". In the environments
where server time has a monetary cost, as in cloud platforms, those numbers can directly
translate into the monetary cost of scale-out. Table 9 shows the results of the computations
using the following parameters: TPM REQ=1500min−1 , t start=10min , t end=25min . 
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Figure 19. Average transaction throughput in the CPU-bound experiment, per warehouse.
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To study the efficiency of database state transfer we analyze the network traffic between the
physical hosts during the experiments. The network throughput graph is shown on the Figure
21.  The total traffic includes both the migrated data as well as the client-server protocol
messages  and there is  no  simple way to  precisely isolate the traffic  related  to  partition
migration. However, we expect that most of the throughput is used by the migration traffic. 

Figure  21 illustrates  the  network  throughput of  the  different scale-out mechanisms.  The
Snowflock mechanism has an initial surge of data with an exponential decay that, however,
does not fade completely but instead stabilizes after approximately 2 minutes with much
slower further decline. It is interesting to note that the total performance (in Figure 19) of the
system is mostly recovered within  these 2 minutes so we can conclude  that  the residual
network transfer at a moderate rate (~2MB/s) does not affect the performance. 
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Figure 21. Network throughput. For DBMS-level and application-level mechanisms, the first
peak corresponds to Snowflock-based OS state and empty database transfer and the further
high utilization levels are for the partition transfers. During the gap after the first peak the
MySQL is initializing at the new node. 

Both DBMS-level and application-level scale-out mechanisms show a similar (but smaller)
surge due to  the  Snowflock-implemented transfer of operating system state, followed by a
short pause when the secondary system starts up, followed by the partition migration traffic. 

The results of measuring the total amount of network traffic are shown in the table Table 10.
For  the Snowflock-based mechanism, the amount  of  data  was  measured up to  the time
reported in the second column, corresponding to 90% performance level. The data transfer in
this run continued through all 25 minutes of the test, exceeding 2GB in total, and has not
completed by then. For the DBMS-level and application-level mechanism the amounts in the
table were measured separately during the OS state and partition data transfers periods. Each
period was marked by timestamps in the log files. 
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From this table it can be seen that the Snowflock-based mechanism has the smallest amount
of data transferred. We can attribute this result to its on-demand copying strategy, and non-
uniform page access distribution in the TPC-C workload. 

Having the  migration  duration  and the  amount  of  data  transfer  from  Table  10,  we  can
calculate  the  average  network  utilization  during  this  time.  The DBMS-level  mechanism
achieves  the  highest  network  utilization,  reaching  6.2  MB/s. The  application-level
mechanism only used 1.6 MB/s on average, which indicates much higher internal costs of
processing the transferred data in MySQL. On the other hand, the application-level used
SQL-based messages for data transfer, which were about 40% more compact than binary
representation of InnoDB data pages, used by the DBMS-level mechanism. 

Mechanism Approx.
time to gain
90% of the

final
throughput,

seconds

OS cloning
and data-
base reini-
tialization
duration,
seconds

Data mi-
gration

duration,
seconds

OS cloning
and data-
base reini-
tialization

traffic, MB

Partition
data

traffic, MB

Total mi-
gration
traffic,

MB

Snowflock 60 N/A N/A ~400 (until 90% throughput is
reached)

DBMS-level 150 79 * 101 188 627 815

application-
level

280 72 * 233 179 380 560

* Including approximately 25 second delay before actual Snowflock cloning starts. 

Table 10. Data transfer measurements in the CPU-bound experiment.

Quality-of-Service Analysis

First, we present the distribution of downtime over warehouses in Figure 22. We obtain this
result similarly to the disk-bound experiments, using the time interval of 1 second. Therefore,
we counted the number of such intervals during which no transaction executed as the length
of  downtime.  Here  the  application-level  mechanism  imposes significant  downtime  for
warehouses, including those that are not migrating. In contrast, the Snowflock and DBMS-
level mechanisms cause unavailability only for the migrating warehouse. 

To further  study the impact of scale-out we plotted the  worst-case  throughput graphs in
Figure 23. The graph shows the throughput of the worst-performing warehouse in every 10-
second time slot. The graph shows that all mechanisms make some warehouses completely
unavailable with the application-level one having the longest periods of unavailability taking
almost all scale-out time. The DBMS-level one has shorter but repeating downtime periods.
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Finally, the Snowflock-based mechanism demonstrates the shortest downtime caused by the
synchronous phase of its cloning operation, taking only a few seconds. 
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Summarizing,  we  can  conclude  that  the  costly  application-level  mechanism  cause
significantly more transaction processing disruption than the DBMS-level and Snowflock-
based  ones.  The  latter  two  have  comparable  downtime  but  it  is  distributed  differently
between warehouses. The DBMS-level mechanism disables warehouses one by one, taking
more time in total, and the Snowflock-based mechanism stops all warehouses whose data is
being migrated simultaneously, but for a short time. 

51



Chapter 6 

Related Work

The work described in the thesis is related to research in the areas of distributed databases,
virtualization,  cloud  computing,  and  dynamic  resource  management.  In  this  section  we
provide a short review of those  areas as well as alternative approaches to our  problem  or
other similar problems.

6.1 Cloud Computing

This thesis was motivated by the problem of efficient reconfiguration of database services in
a cloud computing environment in response to changes in users' demand. Cloud computing
promises to provide  both  flexibility to users in consuming computing services and  more
efficient resource utilization for service providers. 

A variety of online services, which can be advertised as  cloud services, are offered on the
market. One example is Amazon AWS [4], which stands for Amazon Web Services. Amazon
has a wide offering of services, spanning multiple layers. The noteworthy examples include
IaaS-level Xen-based virtual machines dubbed Elastic Computing Cloud (EC2), persistent
Elastic Block Store (EBS) and Simple Storage Services (S3), and higher-level SimpleDB
key-value store and Relational Database Service (RDS). The latter [6] is the most relevant for
our study as it offers a locked-down modified MySQL database server, running on shared
hardware (most likely virtual), and utilizing a persistent distributed shared storage, similar to
EBS. The elasticity of RDS is limited to ability to scale-up and scale-down, migrating a
database instance between several offered "instance classes" of different computational and
storage capacities. According to RDS documentation [7], switching the instance type incurs a
"short downtime". Our approach, in which nodes are added or removed in the shared-nothing
architecture, is potentially more scalable because it is not limited by the capacity of a single
node. 

6.2 Virtualization

An  important  type  of  cloud  services,  called  infrastructure-as-a-service,  depends  on  the
concept of a virtual machine (VM) as a means to provision computational resources. Despite
being known for decades, for example in IBM's series of mainframes [8], the widespread use
of VMs has begun with the introduction of hardware virtualization technologies to the x86
processor architecture [9]. With hardware virtualization it has become possible to efficiently
run multiple instances of an operating system as an isolated virtual machine (VM) with no or
little modification on commodity servers. 

Each  VM  is  controlled  by  a  hypervisor.  Xen  [10] is  an  open-source  hypervisor
implementation,  widely  used  in  production  and  often  chosen  as  a  base  system  for
experimental research. A Xen extension [11] enables live migration of virtual machines with
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the disruption of service limited  to a few dozen or  hundred milliseconds.  Clark et al [11]
discusses in detail the strategies to copy the memory state, including  stop-and-copy, pre-
copy, and pure on-demand memory migration strategies. The pre-copy strategy transfers most
of the VM state concurrently with the running VM and suspends only for a short time to
complete the migration. The iterative pre-copy strategy provides the shortest downtime with
balanced total  migration time and overhead during the initial  stage of  the migration.  In
addition to management purposes, the live migration mechanism may be used to scale a
system or for load balancing within a cluster of virtual machines.  Short downtime is only
possible  when only a  small  amount  of  state,  usually contained in the main memory,  is
transferred. The implementation of migration at the very low level of  the  Xen hypervisor,
while  isolating an  application and OS from the migration process, has a VM as a minimal
unit  of  resource allocation.  In  hypervisor-based approaches,  making the partitioning unit
smaller than  a  VM  is  not  possible  as  the  only  way to  ensure  VM  consistency  during
migration,  without  knowing the details  of  the higher-level  application state,  is  to  take a
snapshot of a whole VM. The consequence of that coarsely granular service partitioning is
extra redundancy and higher  associated overhead.  On the other  hand,  the discussed live
migration strategies [11] can potentially be applied to upper levels of the software stack, such
as to a DBMS. 

The ability of a hypervisor to manipulate the state of VMs transparently to the applications
running inside them can be used to implement a coarse form of scalability. When a VM needs
more (or less) processing resources, the state of the VM is saved, transferred to another, more
(or less) powerful host, and the VM is restored. For example, Amazon calls this ability Auto
Scaling in their EC2 platform [5]. However, more advanced techniques are needed for more
transparent and efficient scalability. 

Snowflock  [12] is a virtual machine cloning mechanism based on the Xen hypervisor. In
contrast to the basic feature of hypervisors, Xen included, to save and restore a running VM,
Snowflock does multi-way live VM cloning in an efficient manner. The efficiency is defined
as the ability to instantly make clones without blocking copying of the whole VM state. The
resulting VMs have information about the CPU context but no memory or disk pages. The
remaining parts are transferred on-demand, as the clones try to run and cause virtual page
faults by touching memory pages, or perform disk I/O. To gain further efficiency Snowflock
employs multicast network transfers and several optimizations to avoid transferring parts of
memory that will not be used at the clone. Snowflock is best suited for ad-hoc computational
tasks that share little state between the original VM copy and the clones. 

In  this  thesis  we extensively used the concept  of  VMs.  However, we explored ways  to
manipulate partitions smaller than a VM. One of the studied mechanisms uses the Snowflock
hypervisor as a sole means to gradually migrate the database state between nodes in a cluster.
The other two mechanisms only provision empty VMs with Snowflock and migrate the state
as a separate step. 
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6.3 Parallel and Distributed Databases

Traditionally, the problem of  database scalability has been addressed by using parallel  and
distributed  systems. Horizontal partitioning is a long-known set of techniques to improve
performance of database systems  [20]. The degree of parallelism varied between different
approaches to partitioning. Distributing the database files between multiple disks within one
machine allows for  parallel  I/O while keeping the query processing centralized. Another
approach is increasing the number of processing nodes and distributing the query processing
among them. In that case the architectures of data distribution can be further classified into
shared-disk and shared-nothing [21].

The shared-disk architecture includes a single high-throughput I/O subsystem shared between
nodes in a coordinated manner [23]. The complexity of the shared storage subsystem results
in the higher data access latencies and the required coordination may impose a scalability
limit  on increasing the number of processing nodes. On the other hand, a  shared storage
system can more easily balance the load between the processing nodes as no persistent data
movement is required.

In the shared-nothing architecture each processing node has its locally-attached permanent
storage. This architecture tends to have a lower cost as there is no need for the specialized
high-throughput shared storage subsystem and it can be composed of components, combining
CPU(s),  local  memory,  and  disk(s)  in  one  standardized  package. The  shared-nothing
approach is hypothesized to have better potential scalability [21]. However, this approach has
the problem of efficient distribution  of  the data between nodes and  the need for complex
algorithms to optimize query execution.

Traditionally, in shared-nothing architectures the partitioning scheme was defined statically
during the physical design phase and changing it required a manual intervention and a costly
data reorganization. Examples of static distributed partitioning implementations include DB2
Parallel Edition [22] and federated servers (distributed partitioned views) in Microsoft SQL
Server 2005 [24]. 

MySQL  open-source  DBMS  contains  two  implementations  of  data  partitioning,  both
accessible with a single SQL interface. The first  one is a feature of  the  MySQL Cluster
storage  engine  and  the  second  one  is  a  separate  partitioning  storage  engine,  handling
partitioning atop of other storage engines [25]. The flexibility of MySQL to provide various
data  organization options stems from its  pluggable  storage engine architecture,  logically
separating the upper query-processing layer from lower levels via a data access interface.
There  a  number  of  storage  engines  available  for  MySQL,  including  some  developed
internally and some developed by third parties. 

MySQL Cluster  originated  as  an  Ericsson project  [29] aiming to  create  a  fast,  reliable,
replicated main-memory DBMS for the telecommunication industry.  The project supports
both horizontal and vertical table partitioning, with horizontal  partitioning using distributed
linear hashing and distributed B+tree as fragmentation algorithms. The choice of either one
apparently depends on the user's requirement to have an order-preserving indexing. Both
algorithms permit dynamic splitting and merging of fragments in response to node failures,
node addition, or load balancing due to a management request. During fragment splitting or
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merging, tuples are transferred one by one to prevent large-scale fragment locking. Any
active transactions are allowed to execute at the source node and tuple modifications are sent
to the target node along with the stored tuples in a block. Despite only having in-memory
data, fragment migration is referred to as costly operations, requiring care when planning the
cluster node configuration. 

MySQL Partitioning Engine (MySQL PE) [25] was developed to mimic the MySQL Cluster
partitioning  interface,  with  the  ability  to  use  any  other  MySQL storage  engine  as  an
underlying data storage. MySQL PE partitioning criteria  are based on hashing, ranges, and
lists of attribute values. MySQL PE interacts with the MySQL query optimizer to prune the
partitions that are not used by the query. The current implementation of MySQL PE supports
dynamic  reorganization  of  partitions  using  administrative  SQL DDL interface,  however,
those reorganizations involve costly data movements between the underlying tables.  The
major shortcoming of MySQL PE is that, despite the fact MySQL includes a storage engine
to access remote servers, it is not possible to implement a distributed partitioning using this
storage engine. Another potential deficiency is a lack of optimization when the number of
partitions is large, due to use of O(n) algorithms in MySQL PE, related to the number of
partitions, and significant overhead of processing inside MySQL PE itself [26].

In this thesis we used the shared-nothing approach for distributing the database between
cluster  nodes  in  the  DBMS-level  and  application-level  scale-out  mechanisms.  We  took
MySQL PE as a tool to implement partitioning and extended it with ability to dynamically
and efficiently move partitions between working servers. 

An optimized and feature-enhanced version of MySQL, XtraDB, was developed by Percona
[27]. XtraDB is  proposed as a better MySQL alternative for application hosting providers
implementing  SaaS  scenarios.  Besides  general  performance  improvements,  XtraDB  is
claimed  to  be  better  suited  for  multi-tenant  configurations  due  to  flexible  schema
management, advanced monitoring tools, and the ability to transfer tables between running
nodes. The latter feature is particularly relevant for our work and our database-level scale-out
mechanism used some ideas of InnoDB table data modification to allow their compatibility
between different servers. However, XtraDB does not include tools for doing scale-out itself,
which has to be implemented by users. The partitioning design and query routing in XtraDB
should also be provided by applications. 

Hauglid et al [34] proposed an algorithm for dynamic database fragmentation and for finding
an optimal  placement of  fragments over a set  of  cluster  nodes. The fragment  placement
decisions  are  based  on  a  simple  cost  model  using  a  statistical  analysis  of  row  access
frequencies.  The  cost  model  takes  into  account  the  frequency  of  remote  data  accesses,
including the cost of fragment migration, as a cost metric for minimization. Client queries are
presumed to be simple row operations (read, write) that originate from the same nodes where
the database is located. Depending on the relative frequencies of reads and writes, the system
may choose  to  create  multiple  replicas  for  a  fragment.  A read  request  has  the  cost  of
transferring a row from the closest node, which is a local node in the best case. A write
request has the cost of one or more transfers to each of the replicas. The costs of read and
writes are assumed to be constant  for every local  and remote operation,  which does not
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account for effects of caching and row placement locality. An important issue is the low-cost
online cost estimation algorithm that uses access statistics from all sites for the ranges of
fragmentation attribute to make decisions on optimal fragment placement. 

6.4 Scalable Non-Relational Data Services

The elasticity and scalability of traditional relational DBMS are usually perceived as limited.
Regardless of whether this public perception reflects the inherent architectural limitations or
just practical experiences with implementations that are often aged and inflexible, a number
of attempts have been made to design better data-management systems from scratch. These
newer distributed data stores emphasize elasticity, scalability, and fault-tolerance as primary
goals, while offering simple programming models, such as a key-value structured dictionaries
or  key-value stores. Typical  examples are BigTable  [17], HBase  [19],  Dynamo  [18],  and
Cassandra  [16].  Those systems are  typically intended to  provide only  weak consistency
guarantees, however, some of them allow a user to adjust the consistency level to some
extent. As a rule, distributed key-values stores can incrementally add and remove computing
nodes, either for planned maintenance or due to a node failure. Adding or removing a node
possibly causes a query to visit additional nodes while the background reconfiguration is in
progress.  However,  the  overhead  of  repartitioning  is  considered small  since  nodes  are
expected to arrive or depart in small numbers so only a small part of the system is affected at
a time. We focus on scaling out a relational database, which provides richer programming
model to applications compared to key-value stores. However, their internal mechanisms for
data distribution, request routing, and elastic reconfiguration may be of interest for DBMS
scalability mechanisms. 

6.5 Multi-tenant databases

As an alternative to addressing the scalability problem for an arbitrary application by means
of improving the underlying system software, some opportunities emerged with the approach
of service a collection of unrelated applications using a single system. The term multi-tenant
DBMS is used to describe systems in which a single instance of a DBMS hosts a number of
applications from independent users (tenants)  [14].  Multi-tenant databases align naturally
with the Software as a Service (SaaS) and cloud computing architectures,  promising the
benefits of denser consolidation and centralized management. The independence of tenants'
applications justifies the practical importance of a completely disjoint partitioning model in
which fragments may be moved between nodes more easily. We used the same approach to
partitioning in this thesis. A detailed discussion of the techniques of the dynamic migration of
disjoint partitions appears in [31]. It is worth noting that building multi-tenant systems atop
of  state-of-the-art  database  implementations  introduces some  challenges,  particularly,  in
terms of isolation, security, and resource scheduling in the presence of non-uniform resource
usage by different tenants [13], [15]. 

The issue of data migration efficiency was studied within the multi-tenant database context
[30]. In the paper, several classification schemes are proposed for migration scenarios. One
of  them describes  the  degree  of  service  interruption,  according  to  which,  the  proposed
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migration forms include  live,  synchronous,  and asynchronous.  Live  migration allows the
system to continue to service transactions with no unavailability window. With synchronous
migration a system performs most work in parallel  with current activities, incurring only
minimal interruption during the final switch. Finally, asynchronous migration stands for the
approach which blocks active transactions that may interfere with the migration process and
implies  the  longest  service  disruption.  With  live  migration  dismissed  as  practically
impossible to implement, synchronous migration is proposed as the preferred approach. The
characteristics of various migration types are summarized in Table 11. 

Form of
Migration

Downtime Interruption
of Service

External
Coordination

Operation
Overhead

Migration
Overhead

Live None Very Minimal Minimal Low/Moderate Minimal

Synchronous Minimal Minimal Moderate Minimal Moderate

Asynchronous Moderate Moderate High None High

Table 11. Summary of the forms of migration and the associated costs [30].

Multi-tenant models are also classified  [30] by the performance and service disruption for
clients; we summarize this classification in Table 12. Reading this paper raises the question
whether the attributed costs and the severity of  service disruption are determined by the
fundamental approach to elastic service organization or they are merely the result of using
particular, commonly used implementations. Addressing this question requires understanding
the reasons for various performance behaviours of scalable systems, which was a part of
motivation for our work. 

Two practical implementations of multi-tenant database migration were proposed recently
[32][33]. Those implementation addresses the very same problem as we did in this thesis,
elastic scale-out of a multi-tenant database. Zephyr [32] is a DBMS-level implementation for
live migration of tenants in the shared-nothing architecture. The support of active transactions
is an advantage over our work. Zephyr's migration algorithm combines bulk asynchronous
transfer of a tenant and synchronous on-demand transfers of the pages which were accessed
in the destination system. Another architectural difference is Zephyr's use of intermediary
query routers to maintain the locations of tenants and send transactions accordingly. Such
routers may need to be scaled out along with the database backends. Despite the claims that
Zephyr  implements  live  migration,  there  are  limitations  on  type  of  operations  that
transactions are allowed during migration. For example, upper levels of indexes cannot be
modified and pages which have already been transferred cannot be modified at the source
node. In both those cases transactions will have to abort. 

Another  related  approach to  live tenant  migration is  implemented in  a technique,  called
Albatross,  but for  shared-disk architecture  [33]. This approach uses the iterative copying
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algorithm. In this algorithm, a buffer pool snapshot, which may be not consistent, is sent first.
Then, the changes to the buffer pool since the time the snapshot was taken, including the
pages read from disk as well as modified by transactions, are sent. This step may be repeated
several times until the amount of sent data in each iteration stops decreasing. Finally, the rest
of the modifications are sent to the destination and the state of query routers is updated. This
is done synchronously, imposing a small unavailability window. 

Curino at al  [28] address the combination of three problems: automatic partitioning, live
migration, and dynamic resource allocation. The live migration part closely corresponds to
our research, however, only requirements and suggestions for implementation are proposed.
The  eventual  goal  is  to  allow frequent  migration  of  partitions  with  minimal  cost  while
allowing the usual workload to execute. The steps to achieve this goal included: partitioning
into smaller fragments; copying a snapshot of a partition during the active load and sending
the  change  logs  afterwards;  distributing  the  read-only  workload  between  replicas;  and
warming-up  stand-by  replicas.  An  on-demand  approach  is  also  considered  as  a  way to
minimize the cost of migration. In that case, the new node fetches data from the old one
while it is trying to execute the load, remembering the data it receives. We consider this
approach to be similar to the one studied in the thesis.

58

Model Type of
isolation

Runtime
overhead

(redundancy)

Service
interuption

during
migration

Cost of
migration

Shared hardware Virtual machine Moderate No/minimal Low

Shared instance Physical DBMS
copy

Minimal Minimal Minimal

Shared database Logical DBMS
schema

No Moderate High

Shared table Rows No Efficient migration is challenging
due to heavy coupling between
fragments

Table 12. Milti-tenancy models from [30] and their implications on migration



Chapter 7 

Conclusions and Future Work

In this thesis we studied the problem of scale-out of elastic transactional database services.
Our approach was limited by some constraints, particularly, the requirement of perfect data
partitioning and disabling transaction processing for affected partitions. During our study we
investigated the use of a hypervisor-based, on-demand block copying mechanism built using
Snowflock.  As  an  alternative,  we  developed  a  DBMS-level  mechanism  that  can  take
advantage of  the partition physical  locations and that  uses  bulk  data transfers  and other
optimizations. We built this mechanism into a major open-source database server, MySQL.

To show the relative efficiency of those two main  scale-out mechanisms, we performed a
series of experiments, comparing their performance characteristics, as well as the impact of
scale-out on client applications. In addition to the two main methods we included a simple,
application-based scale-out mechanism as a baseline. The application-level mechanism is the
simplest and is portable between database systems. However, the application-based method
was inferior in all our experiments, demonstrating the fact that the efficiency of a scale-out
mechanism is important for an elastic system. We suppose the application-level mechanism
can be improved, however, it might lose its simplicity and portability in this case. 

The experiments were conducted in CPU-bound and disk-bound settings. We found that the
presence of disk access latency is the key factor affecting the balance between the on-demand
transfers and bulk  transfers. In the CPU-bound experiments, the Snowflock-based method
showed  the  best  results  in  terms  of  throughput  and  the  DBMS-based  method  was  less
efficient.  In  terms  of  client-experienced  service  disruption,  those  two  methods  were
comparable, however, their impact was different. The Snowflock-based method caused short
downtime for all the migrating clients while the DBMS-based one affected one client at a
time but taking longer. This partition-wise downtime pattern may be preferable for some
applications,  for  example,  ones  that  prioritize  work  made by different  clients.  For  such
applications, the controller may choose to migrate partitions of lower-priority clients. In the
disk-bound setting the Snowflock-based method showed greater throughput loss as well as
service  disruption,  compared  to  the  DBMS-level  one.  The  main  contributing  factors of
Snowflock's poorer performance in the disk-bound case are its need to maintain consistent
snapshots of disk images while accommodating concurrent write activity and its dependence
on synchronous high-latency transfers of individual small disk blocks over the network. The
former factor was responsible for most of the performance impact in the original Snowflock
implementation. 

Despite the good performance of the Snowflock-based mechanism in some scenarios, we
believe the biggest issue with using a hypervisor-based mechanism is not the performance
characteristics,  which  are  reasonable  and  can  be  further  improved,  but  its  architectural
limitations stemming from the lack of information about the partitioning. As a result, only a
very restricted scale-out scenario is possible, in which an existing server is split. It is not
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possible to balance the load incrementally among running servers by migrating partitions
using  a  hypervisor-based  mechanism.  It  is  also  not  possible  to  implement  scale-in.  In
addition, Snowflock cannot allocate resources for snapshot maintenance in a partition-wise
way, instead it consumes unnecessary amount of memory and disk space for the whole server
snapshot, which is never reclaimed. 

Considering  the  relatively good results of the on-demand data approach of the Snowlock-
based mechanism in the CPU-bound setting and its deficiency in the presence of disk and
network  latencies, as well as its architectural shortcomings noted above, we can imagine a
future scale-out mechanism which leverages  both on-demand block transfers  and partition
awareness. We believe that combination is essential for efficient scale-out. Additionally, bulk
transfers can be utilized for low priority  transfers of data that are not accessed by the  on-
demand transfers. 

Another possible future direction would be elimination of the requirement to  block client
activity on affected partitions during partition migration.  We believe it  would be a very
important practical advantage. At the same time, there are no principal difficulties to develop
such live migration mechanism as the amount of data modifications during the migration is
usually small compared to the size of the database.
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