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Abstract 

An increasing amount of task support resources has been placed online in a variety of 

forms such as help, references, wizards, cue-cards, examples, and interactive tutorials, to 

reduce users7 need for training and task support fiom human experts. However, typically, 

users have to leave their task context and search for task support with a query in a 

separate context on a trial-and-error basis. There are severai problems with this approach: 

Users may not be able to formulate proper queries; the process is often mùtless and 

h t r a t i n g  because users are left alone to navigate through the query result. Most 

importantly, when given a new system to use, users have little desire to leam if they can 

use methods that they aiready know, regardless of their eEcacy. 

The basic idea in this research is to provide relevant task support for a computer-based 

application in a proactive but non-obtmive manner. The task support system operates as 

an intelligent agent, which monitors the task progress and suggests relevant online 

resources continriously based on the user's task context. Advice and relevant domain 

knowledge are then displayed continuously in separate and persistently present advice 

windows side-by-side to the task window, and the display is updated at short intervals, 

without intefiering with the user's task. An artificial neural network is used to i den t e  

the current task with the user's task progress as input. The artificial neural network 

recognizes one or more plausible tasks to approximate a user's task so that a range of 

relevant advice can be offered for the user's selective use. 



A prototype, called Telephone Triage Assistant (TTA), has been built to support novice 

nurses in ident-g diseases based on a phone interview with a patient. The usability of 

T'TA has been assessed through a field study. Results show that, on average, 41 % of the 

subjects' task time was spent on TTA and up to 70% of their questions appeared to be 

influenced by TTA. AIthough the post-task questionnaire data shows that TTA was 

perceived easy to use and useful for the task, it also reveals that subjects' perception of 

the continuous update was barely positive. 

The proposed approach is expected to significantly alleviate the problems associated with 

conventional task support in the following ways: Users do not need to initiate search by 

themselves because relevant task support is presented to them at the moment of need. In 

addition, because of the continuous information update, advice to the user can be relked 

incrementally according to the task progress. Finally, users have full control over the task 

support with the options of either foIIowing up on the task support or ignoring it 

completely. The main thmst of the proposed approach is its potential for enhancing 

access to online resources and literally bringing them to knowledge workers' fmgertips. 
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1. Introduction 

Ln many organizations, nearly every type of work is facilitated by cornputers because 

cornputer technology exerts a strong impact on how well organizations compete with 

their rivals in today's complex business world. However, installing a computer system 

done does not necessarily lead to organizations' cornpetitive advantages (Landauer, 

1995; Rochlin, 1997). A more important factor is whether end-users are adequately 

trained and supported to use the computer technology to its fullest potential. A study by 

Anderson Consulting found that nearly 80% of management perceived the need to train 

and support end-users in the effective use of computer technology being one of the most 

cntical issues on their agendas (Winslow & Caldwell, 1992). 

Classroom training and field experts, which used to be the primary resorts for user 

training and support, are becoming more expensive but less effective. By removing end- 

usen fiom their workplace and putting them in training programs, organizations need to 

pay expensive training costs for the trainer, transportation, classroom, me&, housing, 

and tirne away fkom the office (Winslow & Caldwell, 1992). Moreover, if the training is 

not of imrnediate use, the knowledge acquired may be forgotten by the time it is fmdly 

needed on the job. End-users may realize that "iwo weeks after the training prograrn, 1 

could barely remember how to get to rny file directory" (Bullen & Bennett, 1996, p. 37 1). 

Meanwhile, good field experts are both hard to find and expensive to keep due to the high 

demand for these personnel and high turnover. 



In order to reduce the cost and need for training, more and more resources have been 

pIaced onluie in a variety of forms such as help, references, and tutorials. For example, 

the size of the online resources in the Microsoft Office suite is even larger than that of its 

core prograrns (Mansfield, 1994). However, a shift in the training medium alone may not 

offer a satisfactory solution to better support end-users' task in today's workplace. 

Whereas the size and contents of odine resources continue to grow, little attention has 

been directed to making online resources conveniently accessible. Conventional online 

help, for instance, is often referred to as an electronic version of a hard-copy manual 

referencing only the fact-oriented system functions (Ekerton, 1988). It does not help end- 

users to complete a task, although it might contain a great deal of information on how to 

work with each system fiinction. It is not uncornmon for end-users to have the feeling that 

"Online help is a bust. It never covers the exact problem I'm having and is written with 

iots of jargon" (Bullen & Bennett, 1996, p. 371). Furthermore, research has s h o w  that 

end-users are active leamers who "leam by doing" a computer-based task in the same job 

context rather than passivety reading documentation or following training materid 

(Carroll & Mazur, 1986). Consequently, most of the oniine resources are greatly under- 

utilized. 

This research makes a conceptual difference between availability and accessibility of 

online resources, which highlights the fact that most of the online resources are available 

to users in theory, but not really accessible. It is aimed at providing task support in an 

efficient and convenient rnanner, Le., narrowing the gap between availability and 

accessibility of online resources. In this dissertation, task support is considered either 



relevant domain knowledge tailored for the current task, or procedurai advice, automation 

and scaffolding tools such as wizards. This research is also idiuenced by the notion of 

Electronic Performance Support Systems (EPSS), which provide integrated, on-demand 

access to information, advice, leaming experiences, and tools to enable a high level of job 

performance with a minimum of support corn other people (Fischer & Hom, 1997; Gery, 

199 1). Whereas the underlying idea of EPSS sounds appealing, there is little guidance in 

the literahire to operationalize it. Moreover, there exists no genenc methodology for 

implementing task support systems. This research can be considered an effort to 

operationalize the on-demand task support by proposhg a genenc approach. 

The basic idea in the proposed approach is to offer relevant online resources to users in a 

proactive but non-obtnisive manner. The proposed approach involves a novel interface 

style and an architectural mode1 for identiQing and customizing relevant task support. A 

task support system operates as an intelligent agent, which monitors the task progress and 

suggests relevant online resources continuously based on the user's task context. Advice 

and relevant domain knowledge are displayed continuously in a separate and persistently 

present advice window side-by-side to the task window, and the display is updated at 

shoa intervals, without intedering with the user's task. An artificial neural network is 

used to identie the current task with the user's task process as input. The artificial neural 

network recognizes one or more plausible tasks to approximate, rather than to pinpoint, a 

user's task so that a range of relevant advice can be offered for the user's selective use. A 

prototype, called Telephone Triage Assistant (TTA), has been built to demonstrate the 

feasibility, style, and implementation strategy of the proposed approach. It supports the 



telephone triage task in a medical cd1 center. The usability of TTA has been evduated 

through a field study and the feedback was encouraging in general. 

The proposed approach is expected to significantly alleviate the problems associated with 

conventional task support in the following ways: Users do not need to initiate search by 

themselves because relevant task support is presented to them continuously. In addition, 

because of the continuous information update, advice to the user can be refined 

incrementally according to the task progress. Finally, users have full control over the task 

support with the options of either following up on the task support or ignoring it 

completely . 

This dissertation is stmctured as follows. Chapter 2 reviews pnor research to illustrate the 

inadequacy of existing approaches and identifies relevant techniques that are hstnunental 

to the proposed approach. Chapter 3 describes the proposed approach, which consists of a 

user interface based on persistently present windows on the side, and a task support 

engine using an artificial neural network. Chapter 4 describes details of a working 

prototype to illustrate the viability of the proposed approach. Chapter 5 descnbes a 

usability study of the prototype in a field setting, which involved novice nurses in a 

medical call center. Chapter 6 reports the results of the usability study. Finally, chapter 7 

concludes this dissertation with discussion, future research directions, and conclusions. 



2. Literature Review 

This chapter presents a comprehensive review of the task support literature drawing upon 

a wide range of work by both academic researchers and industrial professionals. It begins 

with a briefdiscussion of the basic ideas of task support systems, as part of the 

motivation for this research. Then, it examines the contributions and problems of odine 

task support in both user-initiated and system-initiated environments. Next, it reviews 

some techniques that emanated from a number of relevant disciplines and can be 

instrumental for this research. Findly, a summary of fmdings fiom the literature review 

concludes this chapter. 

2.1 Basic Ideas of Task Support Systems 

A task support system is an independent program or a module embedded in a host 

application to facilitate users' task cornpletion. In 1991, Gery first coined the term 

Electronic Performance Support Systern (EPSS) and envisioned it to be an integration of 

online support techniques, work-related software applications, and task automation tools 

(Gery, 1991). Although Gery and others (e-g., Desmarais, Leclair, Fiset, & Talbi, 1997; 

Dorsey, Goodrum, & Schwen, 1993; Fischer & Hom, 1997; Raybould, 1995) did not 

propose any specific methods to build such systems, there seems to be three underiying 

ideas: just-in-tirne support, just-enough support, and continuous performance 

development. These ideas appear desirable for any type of task suppoa, and each of them 

is discussed briefly in the following paragraphs. 



Just-in-time Support. Traditional task support such as Intelligent Tutoring Systems and 

Cornputer-Based Training often prepares users for a certain job and gives users a chance 

to practice the skills before actually using them. Just-in-time suppoa occurs on-the-job. 

Whenever a user needs to perform a specific ta& he or she is given the support to 

deveIop the cornpetence at the moment of need, Le., at the right time (Cole, Fisher, & 

Saltzman, 1997; Gery, 1995). It is believed that just-in-time support wouid be more 

effective than traditional task support approaches because users are not brought away 

fkom work. A good example of just-in-time support c m  be found fiom the odine help of  

PCAnywhere, an application for accessing a PC fkom a remote site. While setting up a 

connection, a user can get task-specific information with a single click on the Help 

button, right in the context of work (Figure 2-1). 

Figure 2-1. An Example of Just-in-time and Just-enough Support 



Just-enough Support. Just-enough support emphaskes dividing online resources into 

task-oriented modules sufficiently small to provide support information that is just 

enough for a user to complete the task on hand (Bezanson, 1995; Gery, 1995). The 

intention of just-enough support is to maintain the job context. If too rnuch material is 

provided but not of immediate use, the job context may be lost. In contrast, just-enough 

support presents only task-specific knowledge to retain the job context. The previous 

example in Figure 2-1 also exhibits the just-enough charactenstic as the user is given 

only enough information to complete the curent task. 

Continuous Performance Development. Much empiricai evidence has shown that most 

users handle their tasks on hand without necessarily optirnizing the solution (e-g., 

Desmarais, Larochelle, & Giroux, 1987; Eberts, Villegas, Phillips, & Eberts, 1992; 

Fisher, Lemke, & Schwab, 1985; Furman & Spyridakis, 1992). Once at work, users stop 

enhancing their skills prematurely and usually do not want to invest time in leaming new 

methods, which may be more efficient (Carroll & McKendree, 1987; Carroll & Rosson, 

1987). Continuous performance development aùns to make learning a less motivationally 

demanding task by reducing the cost of learning. Just-in-time and just-enough task 

support are expected to facilitate and result in continuous performance development. 

This research is influenced by the notion of EPSS and the three ideas described above. 

Whereas the ideas sound appealing, there is little guidance in the literature to 

operationalize them, e.g., when is just-in-time and how much is just-enough? Moreover, 



there exists no generic methodology for implementing task support systems. This 

research can be considered an effort to operationalize these ideas. 

2.2 Access to Online Resources 

Fundamentally, this research is about enhancing the accessibility of online resources- 

Access to online resources is typicaily either user-initiated or system-initiated. Two 

popular and reasonably representative systems, Windows Help System (WinHelp) and 

Office Assistant (OA), are discussed in this section together with their problems to 

illustrate the inadequacy of these two approaches. 

2.2.1 User-Initiated Support 

Windows Help System (WinKelp) is representative of user-initiated or passive support, 

and is the standard way to present online help in software applications nuining in the 

Windows environment (Hackos, 1997). Figure 2-2 shows a typical WinHelp window in 

Microsofi Word. 



Figure 2-2. WinHeIp in Microsoft Word 

Users can access online resources in three ways. First, users can navigate through the 

online resources using the Contents tab. An analogy of the Contents tab is the table of 

contents of a book. On the Contents tab, al1 of the subjects are grouped by similar task 

and are organized in a hierarchical layout. Second, users c m  also access the online 

resources through the Index tab. An analogy of the Index tab is the index at the back of a 

book. It helps users identie a specific topic quickly without navigating through the 

hierarchical structure of online resources. Third, users can also use the Find tab to search 

for task information. The Find function is more inclusive than the Index and can be used 

to search the contents. For instance, if a user has trouble printing a document and uses 

Print Problems as the keywords to find help, a total of 261 "relater topics are f o n d  

(Figure 2-3). Unfortunately, the result list is long and the user may need to refine the 



keyword and search again, or spend t h e  Iooking at the topics one by one. In the above 

example, a "related" topic is Adda Background Color but it rnay have nothing to do with 

the user's current tasks. However, as the words Print and Problems are used inside the 

document, it is displayed as a related topic. 

Figure 2-3. Results fiom the Find Function 

2.2.2 Problems with User-Initiated Support 

There are three problems with user-initiated support. First, users may not be able to 

formulate queries effectively, because not al1 users are able to give a precise and 

differentiating description of something they lack knowledge about or they do not know 



the technology used by a given system (Bhamani & John, 2000; Blair & Maron, 1985; 

Nickerson, 1999). The Index and Find functions of WinNelp require users to use 

keywords. If they cannot provide a precise keyword, they may not be able to use the 

functions. They may be forced to navigate through the Contents window topic by topic, 

until they find what they want. This is time-consuming and in the worst case, they may 

not be able to find anything usefùl. 

Second, user-initiated support systems are inefficient. In WinHelp, users ask a question, 

and then wait for the result. But once the query result is retunied, the job of the support 

system is done. Users are lefi alone to navigate through the result by themselves 

(Heanim & Frokjaer, 1996; Horvitz, 1999). If the query result is a long list (see Figure 2- 

3), they need to spend time manually filtering out the topics that are not related to their 

current task. Sometimes, they need to re-formulate the query iteratively until a 

satisfactory list is obtained. Therefore, this process cm be fniitless and fnistrating. 

Perhaps the most serious problem with user-initiated task suppoa is one of a behavioral 

nature: the constant conflict between leaming and working in work settings has been 

observed and characterized as the "production paradox:" Learning is inhibited by the 

overwhelming concem for throughput and working is inhibited by lacln of knowledge 

(Carroll & McKendree, 1987; Carroll & Rosson, 1987). When given a new system to 

learn, novice users' typical sentiment is that '9 want to do something, not leam to do 

everything" (Carroli & Rosson, 1987, p. 83). For more experienced users, the conflict is 

constant, too, between investing time in leaming versus throughput. They have litîle 



desire to explore new fiinctions or to search out new information if they can use methods 

they already know regardless of their efficacy. Consequently, more effective solutions are 

not Ieamed and productivity suffers. 

2.2.3 System-Initiated Support 

There is no sophisticated system-initiated or proactive task support in the literature. 

Microsoft's Office Assistant (OA) offers some system-initiated task support, but it is 

rather limited (Noteboom, 1998; Shneiderman, 1997). For example, OA in Microsoft 

Word'97 automates some simple and trivial tasks such as formatting and typùig, and 

spelling and grammar checks on the fly. It can also correct some common typographical 

errors such as [eh to the, automatically. Moreover, OA can help sirnplify tasks by offering 

wizards. For example, as soon as "Dear John" is typed, the OA icon will appear on the 

screen asking "get help with writing the letter?'If the user accepts OA's offer, OA will 

ask a series of questions (e.g., format of the letter, recipient, and sender information) and 

then execute the task for the user (Figure 2-4). The entered information will be 

automaticaily inserted into a letter template, which allows the user to focus on the content 

of the letter. In addition, OA also asks the user whether envelope and mailing label 

wizards should be invoked to help prepare the envelope and mailing label. For example, 

the envelope wizard asks the user for the size of the envelope and using the sender's and 

recipient's addresses to print an envelope accordingly. 



Figure 2-4. The Letter Wizard in OA 

2.2.4 Problems with System-Initiated Support 

There are three major problems with system-initiated support, too. First, correctly 

inferring a user's task is difficult without complicated algorithms (e.g., machine learning 

techniques) and detailed information about the user including the user's eye-movement, 

physical location, trace of pnor activities captured in log files, and task context (Agah & 

Tanie, 2000; Orwant, 199 1; Wolfe & Eichmann, 1997; Ye, 1997). Unfominately, the 

accuracy of these algorithrns remains a question and keeping al1 the user information 

seems impracticai (Agah & Tanie, 2000; Beaumont, 1994). As a resdt, 

products provide system-initiated support, aithough some of them, e.g., 

few software 

Microsoft's OA, 



provide limited system-înitiated support (Noteboom, 1998; Shneiderman, 1997). Whereas 

OA does occasionally volunteer information on applicable wizards (Figure 24), it is not 

needed most of the tïmes. The animated OA is distracting enough to force users to take 

bunediate action. Of course, proactive task support as such is ofien unwelcome, 

especially when OA misdiagnoses the intention of the user. For instance, automatically 

changing the lower case letter i to 1 can be obtnisive and annoying although this fiuiction 

cm be turned off. 

Second, even if the support system can successfully identie the relevant information 

users, software designers need to determine when the online resources should be 

delivered. If the information is not delivered at the right time to meet users' needs, it 

reduces the usefulness of the information and it may even annoy the users (Furman & 

Spyridakis, 1992; Shneiderman, 1997). Therefore, providing support in a system-initiated 

support environment introduces a new issue of timing. 

FinaIly, users in general like predictability and to be in control (Hook, 2000; 

Shneiderman, 1997). They do not like surprises to result fiom their actions, but prefer to 

be the final decision maker in their choices. Therefore, proactive support may be 

problematic because it creates surprises for users and users may feel they are losing 

control over their actions. 



2.3 Useful Techniques in Relevant Disciplines 

This section reviews techniques that contribute to the development of task support, 

including multiple windows, intelligent tutoring systems, intelligent agents, artificial 

neural networks, and user modeling. They are used in the proposed approach for task 

support and the development of the prototype in this research. 

2.3.1 Multiple Windows 

Prior research shows that people seldom complete one task in a continuous tirne fiame. 

Instead, they switch fiom application to application in response to events happening 

inside and outside the computing environment (Bannon, Cyber, Greenspan, & Monty, 

1983). Multiple windows support the way that people really work by allowing them to 

perform multiple tasks (e.g., running multiple applications) in parallel, and to view the 

results of one task while performing another. In a task support environment, at least two 

applications run concurrently: one allows the completion of the task on hand and the 

other provides relevant information to help accomplish the task. Therefore, the use of 

multiple windows seems to be a natural choice for providing task support. 

Card, Pavel, and Farrell (1984) outlined several areas in which multiple windows could 

be useful. First, multiple windows dlow more information to be displayed on a small 

computer screen. For example, a handheld computer uses overlapping windows to 

compensate for the small screen size. Second, multiple windows allow multiple sources 

of information to be accessed and combined. For example, text from several electronic 



messages may need to be accessed and combined into a new message. This operation is 

simplified if the sources of information are displayed simultaneously. Third, multiple 

windows allow multiple programs to be controlled. For example, a programmer may use 

one window for the output of cornputer program, another for the debugger, a third one to 

display and edit the program code, and a fourth one to monitor the memory usage. 

Fourth, multiple windows could be used to help users keep track of information likely to 

be used in the near fkture without interfering with their curent task. Examples include 

the system clock, calendar, and stock quotes. Finally, multiple windows could be used to 

display different representations of the sarne task and users could select the most 

appropriate representation to fit their needs. For example, in the TeSS text retneval 

system, users have two windows, each with a different representation of the information 

retrieval task: the query in logical expressions and in Venn diagram (Hertnim & 

Frokjaer, 1996). 

In a task support environment, the use of multiple windows cm enable users to access 

information fiom multiple sources. Multiple windows also allow for proactive display of 

potentially relevant information without interfering with the user's task. Furthemore, 

displaying proactive task support in persistently present windows on the side can reduce 

O btrusive and unnecessary windows management (e.g ., opening and closing windows) . 

Having persistently present windows on the side to display relevant advice is expected to 

be helpful to novice users. For experienced users, however, the advice should not be too 

distracting to them. In a different domain, research has found that experienced Web users 



are not distracted by anirnated graphics on the side (Diaper & Waelend, 2000). Therefore, 

using persistently present windows on the side to providing task support may suit a range 

of users. 

2.3.2 Intelligent Tutoring Systerns (ITs)' 

An ITS is a cornputer program that assesses the current state of a student's knowledge 

and provides instruction tailored to that individual's learning needs within an overall 

context of courses, syllabuses, and tutonal objectives (Burns & Capps, 1988; Burton & 

Brown, 1982; Sleeman & Brown, 1982). Its objective is the same as that of task support 

systems, which is to provide customized information to address users' needs. Therefore, 

certain characteristics of ITS rnay be desirable in task support systems. Some examples of 

well-known ITS are GUIDON (Clancey, 1983) and Lisp Tutor (Anderson, Corbett, & 

Reier, 1986). These ITS typically have four components: a user module, an expert 

module, a diagnosis module, and a user interface module. 

The user module stores information on how much the student knows about the concepts 

and relationships to be learned, and the student's ievel of knowledge and achievements. It 

ofien contains a history of tasks performed and the corresponding scores. The expert 

module, on the other hand, is a representation of the knowledge to be imparted. The 

knowledge to be taught is usually suppiied by domain experts. The diagnosis module 

arranges teaching strategy. It contains methods of how to p a s  expert knowledge to the 

student. It also initiates remedial actions and adapts the difficulty level of the subject on 

' ITS is used in both singular and plural foms  in this document. 



the basis of the student's previous performance. Finally, the user interface module cornes 

between the system and the student, managing al1 interactions- 

A more recent example is the Coach developed by IBM to teach Lisp programrning 

(Selker, 1994). Coach (Cognitive Adaptive Computer Help) uses a user module to 

e s h a t e  the student's level of experience with Lisp programming. The user module is 

represented by frames of keyword. For each fiame, it captures the student's experience 

such as how many times a keyword has been used, how long a keyword has not been 

used, and skill (e.g., novice, intermediate, and expert) with respect to a keyword. The 

expert module is also represented by h e s  of keyword. For each fiame, it has three 

components: an example, a description, and syntax of the keyword. For each component, 

it has three levels of detail: novice, intermediate, and expert, which correspond to the 

students' skill in the user module. The diagnosis module is implernented in production 

niles. It determines the student's skill with respect to a particular keyword and decides 

which level of detail of information would be most helpful. 

The user, expert, and interface modules in ITS provides an architectural fiamework 

which c m  be used in developing a task support system. For instance, user mode1 is one 

component of user module (which will be expiained later in this chapter). Online 

resources in a software application parallels to the knowledge in an expert module. An 

interface module can manage al1 interactions between the system and users. 



2.3.3 Intelligent Agents 

Intelligent agents are another promising technology that is useful for praviding task 

suppoa because one of the most important characteristics of intelligent agents is the 

ability to do things proactively on behalf of the user. A task support system could be 

analogous to an intelligent agent, which retrieves and presents information before the 

user requests it. 

There is no commody agreed definition of exactly what an agent is. Herein, an agent is 

loosely defined as a self-contained program capable of controlling its own decision- 

making and action, based on its perception of its environment, in pursuit of one or more 

objectives (Jennings & Wooldridge, 1996; Ndurnu & Nwana, 1997). The other way to 

determine agenthood is by examhhg the underpinning attributes of the program. Maes 

(1 994), and Ndumu and Nwana (1 997) highlighted four key attributes: (1) autonomy (i-e., 

the ability to tùnction largely independent of human intervention), (2) social ability (i-e., 

the ability to interact intelligently with and l e m  fiom other agents and/or users), (3) 

responsiveness and adaptiveness (Le., the ability to perceive the environment andior user 

and respond in a timely fashion), and (4) proactive provision (i.e., the ability to take the 

initiative whenever the situation demands). In a given problem domain, an agent might 

possess each attribute described above to a different degree and might sornetimes have 

extra attributes, such as personaiity in an interface agent and mobility in a communication 

agent. 



The proactive nature of intelligent agents can be demonstrated with Maxims (Maes, 

1994), which assiçts users in rnanaging their e-mail. It continuously "looks over the 

shoulder" of the user as the user handles his or her e-mail. As the user takes an action, 

Maxims mernorizes the situation and actions, and it will offer to take the same action 

when the situation occurs again. Whereas Ma-s can rernind the user of important 

events and automate some actions, it has several problems. First, if Maxims had 

misdiagnosed the intention of the user, the automation wodd be annoying. Second, when 

a new situation arises, Maxirns wiIl try to find a similar situation and recommend an 

action for the user to confirrn. Such confirmation helps prevent incorrect automation but 

it could be obtnisive. 

Lieberman (1997) developed an intelligent agent cailed Letizia at the Media Lab of MIT 

to help web users surf the web in a continuous and cooperative manner. Letizia provides 

proactive advice as it is the case with Maxims but at the same time it alleviates the 

obtrusiveness by using multiple browsers to display its suggestions without forcing the 

user to cornpiy. It records the URLs chosen by a user and reads the pages to compile a 

profile of the user's interests. The inference is done through a simple keyword-fiequency 

information retrievai measure to analyze the pages accessed. Based on this information, it 

then suggests a list of related web sites in a separate browser and displays the content of 

the selected web pages in another browser, like "channel surfing" (Figure 2-5). The user 

may either continue browsing the current page or follow up on Letizia's suggestions, 

which are displayed in the browser on the right. 



Figure 2-5. Letizia's Windows 

It appears that one way of providing proactive advice is to have the task support system 

operate as an intelligent agent, which monitors the user's task progress and suggests 

relevant online resources continuously based on the user's task context. Moreover, the 

Letizia style of displaying task information on the side seems to be advantageous. 

Whereas the advice may not always be usetùl, its use is optional and the cost to the user 

is minimal as no user effort is needed. In addition, using separate browsers to display task 

support does not interfere with the user's task and the user still has final control of the 

system. 



2.3.4 Artificial Neural Networks (ANPI)' 

Artificial Neural Networks (ANN) or neural networks are computer-based self-adaptive 

models that were first developed in the 1960s, but they becarne popular only in the mid- 

1980s after the development of the backpropagation algorithm (Rumelhart, Hinton, & 

Williams, 1986). Initially denved fiom neuroscientists' models of the human brain, ANN 

now encompass a wide variety of applications such as data analysis, pattern recognition, 

and voice recognition. 

ANN are a useful tool to infer users' tasks because of their modeling power, robustness, 

ability to recognize patterns and to work with incomplete or noisy data in particular 

(Rumelhart, Widrow, & Lehr, 1994). As a modeling tool, ANN do not require strict 

assumptions about the data as other methods do, e.g., statistical models (Sade, 1994). 

ANN's robustness &ses fiom its capability of learning fiom examples and representing 

knowledge implicitly in weights between nodes (Simpson, 1990). When an ANN is 

required to l e m  h m  examples of a new environment, re-training is ai1 that is needed. 

Explicit knowledge acquisition and knowledge representation, which are the bottlenecks 

of most knowledge-based systerns, are not required (Ye, 1 997). Moreover, ANN' s ability 

to recognize patterns also makes this technique attractive for task support. Searchg  for 

and filtering information can be considered a pattern recognition task (Eberts & Habibi, 

1995). ANN cm help identie common patterns based on data collected from users. For 

instance, ANN have been successfully applied to categorizing messages fiom electronic 

bulletin boards based on words from posted messages, c l a s s i ~ n g  meeting transcripts 

based on words fiom meeting transcripts in a group decision support environment, and 

' A N N  is used in both singular and plural forms in this document. 



sorting e-mail to different categories based on words fiom e-mail (Eberts & Habibi, 

1995). Finally, the ability of ANN to work with incompiete and noisy data is particularly 

useM and advantageous for providing task support because task support should occur 

before task completion, and novice users may not always be able to chart the correct 

course of action. In other words, input to a task support system is always incompiete and 

compromised by noise. 

ANN in Medical Diaposis. The application of ANN in medical diagnosis is reviewed in 

detail for two reasons: (1) the task may be representative of diagnostic tasks in general, 

and (2) the task domain of the prototype built in this research is medical diagnosis. 

A typical rnedical diagnostic process involves the following steps: (1) observation of an 

abnormal situation, (2) collection of symptoms, (3) identification of likely diseases, (4) 

observation and collection of M e r  information, and (5) final determination of likely 

diseases (Patel & Groen, 199 1 ; Patil, 198 8). Pnor research bas shown that task support 

would be helpfüi in the collection of symptoms and identification of possible diseases 

(Lindgaard, 1995; Patil, 1988). Physicians usually generate hypotheses (likely diseases) 

based on the observed symptoms. Therefore, in order to generate plausible hypotheses, 

they should know the symptoms well, have access to the knowledge of symptoms, and 

possess effective retrieval mechanisms. Furthemore, physicians tend to perform a 

relatively superficial search for a possible disease and ignore the possibility that the same 

symptoms are likely to occur in other diseases (Lindgaard & Triggs, 1990). Research has 

even found that physicians may not be able to generate a cornplete set of hypotheses 



when presented with certain symptoms (Schaafstal, 1993). If a single disease being 

diagnosed happens to be wrong, this may not be reaiized until compelling evidence 

convinces the physicians to pursue other diseases, which may have wasted much t h e .  In 

the worst case, wrong diagnosis and treatrnent may fiirther deteriorate the situation 

(Lindgaard, 1995). Therefore, task support such as presenting a range of likely diseases in 

a ranked order would be usefil. 

A search in MEDLINE~ for articles about ANN applications between the years 1 990 and 

2000 resulted in more than 800 citations (e.g., Ashutosh et al., 1992; Baxt, 1990; Maclin 

& Dempsey, 1993; Rogers, Ruck, & Kabrisky, 1994; Silva & Roque Da Silva, 1998). For 

instance, Baxt (2990) used the backpropagation algorithm with a three-Iayer ANN to help 

diagnose whether patients had coronary occlusion. A total of twenty nodes were used in 

the input layer. The input nodes were the patients' details (e-g., age and gender), 

symptoms (e.g., nausea and syncope), medical history (e.g., hypertension and cigarettes), 

and examination results such as pulse and edema. They were coded in a binary manner 

such that I indicated the presence of a fact and O the absence of it. Patients' age, blood 

pressure, and pain intensity were normalized and coded as values between 0.0 and 1 .O. 

There was only one output node. The value of the output was coded as O for the absence 

of coronary occlusion and 1 for the presence of it. Ten hidden nodes were used in the 

hidden layer. Three hundred and fif i  six patients' cases were collected. H d f  of them 

were used for training and the rest was used for testing. The results were encouraging. In 

the testing set, the ANN correctly diagnosed 56 of the 60 patients with coronary 

M E D L W  is the U.S. National Library of Medicine's database of references, which has more than 1 1 
miIIion articles published in 4300 biomedical journals. It can be accessed at http://medIine.cos.com. 



occlusion (92%) and 1 13 of the 1 18 patients without coronary occlusion (96%)). A sixni1a.r 

application of ANN was used to c l a s s e  hepatic masses in liver cancer into metastatic 

carcinoma, hepatoma, cavemous hemangioma, abscess, and cirrhosis (Maclin & 

Dempsey, 1993). 

Silva and Roque Da Silva (1 998) used an ANN in medical diagnosis using a partial list of 

symptoms, as is the case in the early stages of the evolution of a disease. There were 

twenty diseases (output) and one hundred and fi@ two symptoms (input). For each 

disease, a partial list of their symptorns was prepared, each containing 25%, 50%, and 

75% of the total set of symptoms. The symptorns in each partial list were chosen 

randomly. The partial lists of symptoms were input into the ANN. The average error was 

approximately 42% for the 25% partial lists, 15% for the 50% partial lists, and 1 2% for 

the 75% partial lists respectively. The results are important, as ANN seems to alleviate 

one of the difficuities exhibited by conventionai medical expert systems, which is dealing 

with incomplete data. In general, when a patient seeks medical help, not al1 of the 

symptoms characterizhg the disease have already manifested themselves. During the 

course of the disease, certain symptoms emerge earlier while others appear Iater. The 

earlier the detection of the disease, the higher the chances for the patient to receive 

appropriate treatment. Therefore, it is desirable to be able to diagnose the disease or 

likely diseases fiom a partial list of symptoms. 

In the development of a task support system in medical diagnosis, the same problem 

arises: Input to the task support system is always incomplete, and may be compromised 



by noise because a patient may not be able to clearly articulate syrnptoms or test results 

may be inaccurate. ANN seems to fit this situation because it can handle this challenge 

better than other techniques (Rogers et al., 1994; Silva & Roque Da Silva, 1998). 

ANN in Human-Computer Interaction @CI). ANN in HCI is described to show how 

ANN could help infer users' tasks based on their interaction with the cornputer. ANN 

have been used in HCI since the 1980s (Ye, 1997) and there are conferences on using 

ANN in HCI (e-g., Workshop on Pattern Recognition and Neural Networks in HCI, 

1991)- In addition, a special issue was devoted to ANN by the International Journal of 

Human-Computer Interaction in 1997 (cf. Ye, 1997). 

Villegas and Eberts (1994) studied the use of an ANN in identifying text-editing tasks 

based on users' activities using a text editor. More specifically, the ANN had six output 

nodes representing different text-edihg tasks such as addressing a memo and organizing 

lines in a memo, and 195 input nodes representing activities such as entering a date and 

copying a line. A three-layer network was used with five hidden nodes. The coding 

scheme was similar to the one used by Baxt discussed earlier except that "1" was used to 

indicate no activation and "1 0" high activation. In total, 41 82 cases were used in training 

and 5505 cases were used in testing. The ANN correctly recognized 96% of the cases in 

the testing sarnple. Villegas and Eberts' study is interesthg because it showed that using 

an ANN to infer users' tasks based on users' activities is fruitfhl. However, in ViIlegas 

and Eberts' work, task identification occurred after task completion. This can be extended 



to using an ANN during a task progress to infer users' tasks and provide online support to 

help a user accomplish the task. 

Relationship between Input and Output. In addition to previously discussed strengths 

of A m ,  a less commonly used one is the possibility to determine the relationship 

between the input nodes and output nodes based on the structural property of a trained 

ANN. In this subsection, a method for inferring the relationship is briefly discussed and a 

mathematical model for assessing the relationship between the input and output nodes of 

feedforward ANN is outlined. 

ANN have no explicit representation of declarative knowledge as in rule-based systems, 

fiom which explanations can be generated to justi% the reasoning process and outcome 

( C h d a k  & McDermott, 1985). However, in ANN, knowledge is implicitly encoded in 

weights between nodes and distributed al1 over the network. Much research has been 

carried out to extract knowledge fiom ANN (e.g., Diederich, 1992; F e l h a n  & Ballard, 

1982; Mozer & Smolensky, 1989). For instance, Diederich (1 992) proposed a model 

based on the structural property of an ANN to generate reasoning paths and explanation 

traces. The activation energy of node x is defmed as S, and is calculated as follows: 

where x,?s are the input values, q ' s  are the weights, and rn is the total number of input 

links to node xi. If Sx is greater than a predefined threshold in an inference, node xj will be 



marked as activated and recorded. If a user requires an explanation after an inference, a 

replay of activation patterns of activated nodes is shown to illustrate how the inference 

was made. Thus, an explanation is generated in this way. 

Another model for assessing the relationship between input nodes and outp'clt nodes of 

feedforward ANN, based on a simiiar idea, was developed (Chiu & Leung, 1996) and is 

briefly reviewed as below. Consider the sirnplest case of a two-layer feedforward ANN 

with rn nodes in the input layer and one node in the output layer. The output value is 

denoted as 

where f is defined as a non-linear differentiabie monotonically non-decreasing fünction, 

wj 's are the weights, and iq 's are the inputs. Since z is distributed among the inputs, a 

dependency relationship between input xj (> 0) and output z can be calculated as follows: 

where A(w) denotes the given feedforward ANN with the set of weights w = (wl, wz, ..., 

nt 

w,), C I w k x k  1 # 0, and 1 1 denotes the absolute value. For convenience, 4r ,v , (~ j~ )  is called 
k=1 



the 1-value between x, and z. The higher the 1-vaiue, the stronger the dependency of z on 

Xj (or input xj is strongly relevant to 2). 

For a fully connected feedforward ANN of (n-1) hidden layers (h) with intermediate 

nodes y and outputs z, a measure of dependence between the output z, on xj is then 

defined, based on the summation of the absolute relative weights of al1 the paths 

connecting the two nodes, as: 

The numerators inside the curly brackets correspond to the weighted path between an 

4,-, (*Il 
input node 9 and an output node zi. Note, a?$Li)~k(t~-i) 13 Cl ~ k ( t ~ - z ,  Y4~219-** 

k k 

a 4 i : ) ~ k ( 1 $  and z[4t))xkl are always larger than zero. The rationale of die above 
k k 

equation is that, first, an output value zi is distnbuted back to an input q according to the 

number of paths between the input node and the output node. Second, the 1-value is 

proportional to the ratio of the absolute value of the weighted term to the weighted sum 

of the inputs in each node that makes up the steps of the path. 



Evaluating the dependency relationship between an input node and an output node of an 

ANN using 1-values has been proven to be usefiil and reliable in identifying the relevant 

input with adficial images and biomolecular images (Chiu & Leung, 1996; Chiu & 

Leung, 1998). This method can be useful for task support if an ANN is used to infer the 

task based on already compfeted steps as input, it could help justi@ the inference or 

suggested actions. 

2.3.5 User Modeling 

A user mode1 is an explicit representation of the properties of a particular user (Jarneson, 

Paris, & Tasso, 1997). The goal of user modeling is to create systems that are adaptive to 

an individual's needs, abilities, and preferences. User models may improve the 

effectiveness of task support systems by providing customized information according to 

the user's level of understanding. Three exampies are reviewed herein, and their strengths 

and weaknesses are discussed. 

UNM Consultant (UC) is a natural-language online help system based on user modeling 

to advise users on using the UNIX operating system (Chin, 1986; Chin 1989). It uses 

stereotyping to categorize users' expenence fiom novice to expert, and task complexity 

fiom simple to cornplex. For instance, if a user is familiar with the use of the r~vho, an 

advanced c o r n a n d  in UNIX to list al1 users on the network, the user is most likely at the 

intermediate or expert Ievel. Therefore, UC assumes that the user knows al1 of the simple 

commands in UNlX (cg., Zs and ipr). Once the user's ski11 level is determined, the help 

information will be customized accordingly. The stereotyping of a user's expenence and 

complexity of UNIX system concepts reduces the overhead to "ask" what the user knows 



and does not know. However, the user mode1 in UC is for single session use without a 

long-tem memory. 

A more recent example, the Expert Finder (Vivacqua & Lieberman, 2000), classifies 

users' expertise by analyzing the usage of classes in users' Java programs based on a 

simple keyword-fiequency algorithm. The user model has a long-term memory and is 

updated by the Expert Finder periodically by reading through a user's Java programs. 

Table 2-1 shows an example of the user mode1 in Expert Finder. The information in the 

user model is used to find an expert whose expertise level is higher but close to the user's 

level to consult when problems mise. Vivacqua and Lieberman's model assumed that 

users would not forget anything that they had learned. This might not aiways be true. 

Area 1 Usage 1 Expertise Level 
i ava.io 1 10 1 Novice 

Table 2-1. An Exarnple of the User Mode1 in Expert Finder 

Strachan, Anderson, Sneesby, and Evans (2000) proposed an algorithm to update the user 

model in a commercial software system for financial management. A simplified version 

is outlined in Figure 2-6. This algorithm is usehl in a real-worId environment, which the 

time that information was last accessed and the nurnber of tirnes the information has been 

accessed can both be used to determine users' ski11 ievel. Strachan et al. also assessed the 

effectiveness of the user model by cornparhg users' expexience with versus without the 



user model. Forty-five subjects were involved in the evaluation, and using the software 

with user models had a positive effect on user satisfaction, ease of use, power and 

flexibility of the application. 

If the user has been away for 30 days, downgrade user's ski11 level by one level. 

Ifthe user has used the system long enough since the last update (e-g., 10 sessions), 
upgrade user's ski11 level by one level. 

Examine al1 functions used recently (e-g., within five sessions) by the user: 

If the user has used two functions more advanced than the user's skill level, 
upgrade user's skill level by one level. 

If the user has used two functions Iess advanced than the user's skill level, 
downgrade user's skill Ievel by one level. 

Figure 2-6. An Algorithm to Update a User Mode1 

2.4 Findings from the Literature Revie w 

This chapter has reviewed the basic ideas of task support in terms of just-in-time, just- 

enough, and continuous performance development principles. It has identified the 

inadequacy and diaculties associated with the existing task support. In addition, useful 

techniques to be used in the proposed approach for proactive task support are aiso 

reviewed. In surnmary, four major conclusions can be dmwn from this chapter. 

First, as mentioned exlier, user-initiated support is ineffective, inefficient, and leads to 

behavioral problems due to the "production paradox." On the other hand, system-initiated 



support is prone to error and Iacks user control. To overcome the deficiencies of user- 

initiated support, some degree of proactive task support is necessq  because it is 

effective for raising users' awareness of the availability and applicability of relevant 

online resources and for facilitating the accessibility of online resources at the point of 

need. Therefore, this research explores a middle-ground approach between the above two 

established approaches to rectifi the deficiencies of user-initiated task support and to 

overcome the difficulties associated with system-initiated task support. One possible 

middle ground between user-initiated and system-initiated task support is to use separate 

and persistently present windows to dispfay task support to avoid interfering with users' 

task. For instance, task support is displayed in separate windows side-by-side to users' 

primary task window. In this way, users can follow up on the task support or ignore it 

completely without interfering with users' prirnary task window. 

Second, to provide proactive task support, a system should operate as an intelligent agent, 

which constantly observes its master's work, to figure out how it can help, and whisper 

quietly whenever it finds something potentially usefùl. Therefore, certain general 

principles and techniques for developing intelligent agents can be used for task support. 

Third, a system must be able to identiQ a user's task in order to provide task support 

timely and proactively in keeping with the just-in-time principIe. The literature reviewed 

in this chapter shows that ANN seems to be an attractive technique for inferring a user's 

task based on incomplete and noisy data. 



Finally, a key dimension for providing just-enough task support is to use users' task 

experience to customize supporting information to be presented. User modeling, often 

used in Intelligent Tutoring Systems (ITS), c m  be applied here by customizing task 

support to address an individuai's needs, abilities, and preferences, based on the user's 

history of tasks perfonned and level of knowledge. 



3. Proposed Approach 

This chapter proposes a novel approach for providing proactive task support. It begins 

with a description of the scope and assurnptions of the proposed approach. Next, it 

describes the interaction style and an architecturai model. Then, it illustrates different 

components of the model and shows how they work together to achieve the objective of 

reducing the accessibility gap between users and online resources. Finally, a hypothetical 

example is constnicted to illustrate the function of the key components of the proposed 

model. 

3. '1 Scope and Assumptions 

Whereas this research airns at providing a generic approach to operationalizing just-in- 

time and just-enough task support, it begins with a particular type of tasks, namely 

diagnostic tasks. As described in Section 2.3, these tasks typically involve a process of 

collecting a set of symptoms, followed by infemng one or more likely problems, and 

finally detennining the problem(s) based on known relationships between the symptoms 

and problems. In this context, task support means providing access to contextualized task 

domain knowledge, providing advice to influence the direction of exploration to collect 

symptoms, and suggesting likely underlying problems based on confmed symptoms. 

There are severd reasons for choosing diagnostic tasks as the focus of this research. First, 

the problem-solving process type of tasks involves several discrete parallel steps. 

Therefore, the task process can be descnbed in ternis of completed parailel steps, and 



different problems in the sarne domain have a common set of basic steps. In other words, 

the task domain can be modekd with a system that has a finite set of input variables and a 

f i t e  set of output variables. Not al1 tasks have this characteristic, e.g., composing a 

computer program is a task that c w o t  be modeled by a system with a finite output, each 

of which corresponds to one program. 

Second, and less irnportantly, the order of the steps is not cntical for task completion, 

e.g., symptoms c m  be identified in several diEerent orders in the process of i den t iwg  

the sanie problem in a trouble-shooting task, although some orders may be more naturd 

or meaningful than others in practice. This characteristic makes the modehg simpler, but 

it is not an essential requirement for the proposed approach. Once again, computer 

programming does not have this characteristic as the sequence of statements can 

completely detennine the h c t i o n  of a program. 

Formally put, the assumptions about the task domain are: (1) a task should be composed 

of a senes of discrete parallel steps, and (2) the task domain involves a finite set of basic 

steps (input) and a finite set of solutions (outcorne). These assumptions make it easier for 

using ANN to identie users' task, and influence the type of support to be provided in this 

research. 



3.2 interaction Style 

Figure 3-1 shows a conceptual schema of the proposed task support approach. The task 

support system behaves as if it is a human assistant watching over the shoulder of the 

user to iden@ and suggest relevant online resources continuously based on the user's 

task progress. The task support is in the form of a List of relevant online resources such as 

help, wizards, job aids, and best practices. 

User 

Interacts wi th 
4 b Software Application 1 

User's interaction with the 
software application 

Online Task 
Support System 

1 Support 
information 

Online 
Resources 

Figure 3-1. Conceptual Schema of the Proposed Task Support System 

The user interface of the proposed approach makes use of persistently present windows to 

display task support. More specifically, task support is displayed in two windows, 
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Subject Window and Detail Window, which are side-by-side to the Task Widow where 

users perform their tasks (Figure 3-2). While a user works on his or her current task, 

relevant topics are dispiayed proactively in the Subject Window, without interfering with 

the user's prhary Task Window. The topics are revised continuousIy according to the 

user's progress and, more importantly, multiple items of advice for any given situation 

are displayed in the Subject Window sirnultaneously. The Detail Window shows the 

content of each advice, one at a time in the decreasing order of estimated relevance to the 

task, and the display is updated at short intervals. 

/ 
User's primary task in progress 

Relevant subjects displayed 
proactivel y and continuous fy 

Content of the current subject displayed 

Figure 3-2. User's View with Task, Subject, and Detail Windows 



In order to provide a flexible interaction style, users are given the possibility of closing 

the task support windows. This option can be disabled by an organization or a user 

depending on the purpose of the application or the circumstance. However, even if the 

task support windows are present persistently, users may not be distracted by the advice 

on the side over the long term, as the literature suggested in Section 2.3. 

The above style of user interface seeks to draw synergy between the user-initiated and 

system-initiated support. It may be considered a rniddle-ground approach, which is 

expected to significantly alleviate the inadequacy associated with passive task support 

discussed in Section 2.2. 

The proposed interface style based on the use of multiple and persistently present 

windows a3so addresses the three major difficulties associated with conventional 

proactive task support identified in Section 2.2. First, while it is still desirable to be able 

to infer a user's intended task as accurately as possible, this approach ailows for some 

margin for error in the inference because nothing is imposed upon the user. Irrelevant and 

erroneous help can be simply ignored. Therefore, it may be acceptable to identify several 

lilcely possibilities and provide task support sequentidly, instead of just the correct user 

intention. Users may be more tolerant because not only is the help unobtrusive but it also 

requires no search effort, e.g., burdening the user with numerous questions and then 

providing not necessarily useful information. The implication is that, by relaxing the 

objective function, the proposed approach bypasses the need for complicated algorithms 

aimed at accurate detection of users' intention, which is a bottleneck for proactive task 



support. Second, the challenge of providing support at the nght tirne is less of an issue 

since the support is given continuously and updated at short intervals according to the 

task progress. In other words, the idea of just-in-time task support is essentially 

operationalized by the continuous display and update. Finally, users have full control 

over the task suppoa, with the options of either following up on the task support or 

ignoring it completely. In short, this approach has the advantage of providing proactive 

and yet unobtrusive support to users. 

3.3 An Architectural Model 

Following the description of the interaction style of the proposed approach presented in 

the previous section, this section focuses on how to implement the task support engine of 

the proposed approach, and proposes an implementation strategy that can be applied to 

diagnostic tasks. The proposed architectural mode1 has four major components. They are 

the Advisory Module, Knowledge Nehvork (met)  , Performance-Tracking Module, and 

User Model (Figure 3 -3). 
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Support 

\ 
Online 
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Figure 3-3. The Proposed Architectural Model 

The online task support system works in the following manner: The Advisory Module 

captures the user's interaction with the host application. It maps the user's current step 

ont0 the online resources. If the Advisory Module recognizes a step, it will look up the 

user's ski11 level with regard to the step in the User Model and customize the advice to be 

displayed. The Advisory Module also sends the recognized steps to the Kno wledge 

Network (Khrer) which consists of a neural network and semantic network. The neural 

network infers the user's task (i.e., the likely problem in diagnostic tasks) based on the 

recognized completed steps as inputs, and suggests next steps. The semantic network 



identifies other steps which are closely associated with the current step. Then, the 

Advisory Module retrieves relevant task support based on the inferred task and suggested 

steps. The Advisory Module and KNet dso p a s  the user's actions taken and the suggested 

actions respectively to the Performance-Tracking Module. This information is analyzed 

to provide an ongoing performance evaluation of the task support system. 

Each of the four components is described in detail herein. The central component of the 

proposed approach is the Knowledge Network ( m e t )  as shown in Figure 3-44. It consists 

of a neural network and semantic network. The m e t  can be useful in supporting a 

diagnostic task in three ways: (1) suggesting Likely problems based on already c o b e d  

symptoms, and additional symptoms to be confirmed, (2) identiming symptoms that are 

cornrnonly associated with the ones that are already confirmed, and (3) identiQing 

potentially relevant symptoms in subsequent steps. It will be shown later that the first 

type of support is through the neural network and 1-value, the second type through the 

semantic network, and the third type through the integration of the neural network and 

semantic network by the 1-value. 

4 For simplicity, the hidden layer of the neural network is not shown. Furttiermore, the Iink "Contribute to" 
can also mean leading to the identification o f  a problem, not necessarily causing the problem. 



Neural 
network 

KU" 

+--- Associated with - Contribute to 

Figure 3-4. The Knowledge Network ( m e t )  

Odine resources c m  be decomposed into basic elements labeled knowledge units (KUs). 

For exarnple, in medical diagnosis, KUs can start with symptoms such as fever, pain, and 

vomiting; the contents of a KU in this case include the definition, medical textbook type 

of domain knowledge, and questions that a nurse should ask a patient. 

As mentioned earlier, the neural network is used to uifer the user's task and suggest 

potential subsequent steps. Neural networks are well suited for inferring users' tasks 

because of their modeling power, robustness, ability to recognize patterns and to work 



with incomplete or noisy data, as discussed in Section 2.3. The Stream of completed steps 

(Le,, recognized KUs) by a user is the input to the neural network, whereas an inferred 

task is the output form the network. The mapping between the input and output can be 

obtained through task analysis or learned by the nelaal network from past cases. Once a 

task is inferred, the neural network can suggest potential subsequent steps in decreasing 

order of estimated relevance to the task. The order is deterrnined by the relevance 

measure using I-value based on Equation 2 in Section 2.3. The detail of how to construct 

a neural network fiom past cases is given in the folIowirig chapter. 

KUs are connected to fonn a semantic network, as part of the KNet. Semantic networks 

have been used for a long tirne as a knowledge representation method. They usually 

consist of nodes, which represent objects, actions, or events, and links, which represent 

the relationship between nodes (Barr & Feigenbaum, 198 1 ; Chaniiak & McDermott, 

1985). Ln this research, the semantic network is used to mode1 the association arnong the 

KUs only. The connection link (or weight) between two nodes reflects their relevance 

with each other. However, it does not limit the grneralizability of the semantic network to 

represent more comprehensive and contextualized semantic information in a task domain. 

The semantic network is used to identiQ steps that are closely associated with the current 

steps. in order to suggest alternative paths or subsequent steps for a given path, it can be 

useful to identi& cornmonly associated steps. For instance, in medical diagnosis, nausea 

and vomiting are closely associated with each other although they may be symptoms of 

different diseases. Once one of them is identified, the identification or elimination of the 

other one through the semantic network c m  greatly help the diagnosis. 



The semantic network works in the following manner: There are two ways to activate the 

semantic network. First, a user's most recent step is mapped ont0 KUs. If there is a 

correspondhg one, activation is spread with an activation energy of 1 through the 

network fiom this mapped KU. The KUs connected nearby may be activated if the 

product of the activation energy and weight is larger than a predefined threshold. The 

activation mechanism is based on Jennings and Higuchi's (1993) approach, and is given 

in Figure 3-5. Thus, through the semantic network, task suppoa relevant to the current 

step can be identified. With the semantic network, control over the amount of relevant 

support can be adjusted as the initial activation energy diminishes and attenuates the 

M e r  it is propagated fiom its starting point. If the initial activation energy is high, more 

relevant KUs will be activated. If the initial activation energy is low, fewer relevant KUs 

will be activated. 

Map the KU to KNer 

Fire the mapped KU with an activation energy (e-g., 1 for recognized users' step 
or nomalized 1-vdue) to al1 its comected KUs 

Calculate and accumulate the energy level (Le., activation energy x weight) for 
each connected KUs 

Fire and spread the accumuiated activation energy to al1 connected KUs if the 
accumulated activation energy level is greater than or equal to the predefined 
threshold 

Repeat steps 3 to 5 until no KUs in the network have accumulated activation 
energy levels greater than or equal to the predefmed threshold 

Collect the set of fired (or activated) KUs 

Figure 3 -5. The Procedure to Control Spreading Activation 
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Second, the semantic network can also be activated by the 1-value fiom the neural 

network, based on Equation 2 in Section 2.3, which acts as the activation energy fiom the 

neural network "feeding" to the semantic network. The reason for feeding the 1-value to 

the semantic network is to identi& subsequent steps and their closely associated steps. 

The neural network and the sernantic network are integrated through the relevance 

measure using 1-value. The activation energy is normalized and coded as a value between 

O and 1 depending on the output fiom the neural network. The highest output value fiom 

the neural network has an activation energy of 1 feeding to the semantic network whereas 

the lowest output value is O. The activation energy is distributed and normalized among 

the subsequent KUs based on their 1-values. Similarly, the second highest output value 

fiom the neural network has an activation energy of less than 1 depending on its output 

value. The same activation mechanism outlined in Figure 3-5 is used. The higher the 

relevance between the KU and the task, the higher the 1-value and the higher the chance 

the KU is activated. A hypothetical example based on the KNet is given in the following 

section. 

The Advisory Module captures the user's task progress (interaction with a host 

application) in the Task Window. It maps users' steps to KUs in m e t ,  which identifies 

the user's current task and subsequent steps. It also compiles the suggested information 

into a list for display in the Subject Window, and this Iist is revised continuously 

according to the user's progress. The content of each online resource is dispiayed in the 



Detail Window for a predefined period of time, followed by the next one in decreasing 

order of ranked relevance. 

The Performance-Tracking Module provides an ongoing tracking and evaluation of the 

performance of the task support system. It is particularly important for any proactive task 

support, as it monitors whether advice suggested by the system is followed by users. If a 

piece of advice is repeatedly ignored, it should not be offered proactively in the fbture. I f  

users always respond to a given situation in a certain way, which is different fiom the 

system's advice, the performance-tracking module should help the system adjust and 

leam. For example, when advice is cornpiled and displayed in the Subject and Detail 

Windows, but it has no effect for several times, this scenario should be logged and a new 

d e  based on the user's behavior may be generated to overrule the previous advice. 

When a sirnilar situation occurs in the fiture, the new mle will be used. Furthemore, the 

performance-tracking module can use this information to evaluate the usefulness of the 

task support system by accurnulating evidence of reliability, i.e., the percentage of advice 

taken and the nurnber of new rules generated. If the reliability is low or the number of 

mies is high, it rnay indicate that the performance of the system has degraded and 

remedial actions should be taken, e.g., re-training of the neural network with new training 

sarnples. Finally, if the task support windows are closed by the user, the performance- 

tracking moduie c m  also be used to deterrnine when to re-open them proactively. 

Although the task support windows are meant to be present persistently, users may be 

given the option to close them as discussed in Section 3.2. However, even if the advice 

windows are closed, the inference continues behind the scene. Once a user's action 



deviates fium the recommended action by the system, the task support windows can be 

re-opened and stay on the side- Suppose a user chooses to close them again for several 

times, they should not be re-opened proactively in the future. This information, i.e., a 

user's consistent rejection of certain task advice, should also be stored in the user model. 

The User Mode2 is used to customize task support for addressuig each user's unique 

needs. It is part of the mechanism to operationalize the idea of just-enough task support. 

It is composed of records of the history of each user's expenence with the application 

being supported. A user's skill lwel with regard to each KU is updated continuously 

based on his or her usage of the KU based on Vivacqua and Lieberman's approach 

(2000). For each user, information such as the time a KU was Iast accessed and the totd 

number of times that the KU has been accessed is captured. Users' preferences (e-g., 

show multimedia demonstrations and show examples) are also stored. Re-categorization 

of users' skill level is done by a simple algorithm (see Figure 2-3) similar to Strachan et 

d.'s approach (2000). 

In summary, the proposed middle-ground approach is expected to alleviate the ( lifficulties 

associated with user-initiated and system-initiated task support. This approach prescribes 

that a proactive task support system should behave like an intelligent assistant, constantly 

observing its master's work, trying to figure out how it c m  help, and making suggestions 

whenever it fïnds something potentially useful. The suggested information, which is 

revised continuously according to the user's task progress, is displayed in separate 



windows, without interferhg with the user's task window. In short, the proposed task 

support approach provides task support proactively, unobtrusively, and continuously. 

3.4 A Hypothetical Example 

Whereas a prototype is presented in Chapter 4 to illustrate the proposed approach in 

detail, this section uses a hypothetical exarnple to demonstrate the KNet, a central 

component in the architectural rnodel. The example deals with trouble-shooting persona1 

cornputer (PC) problems, a typicd diagnostic task. The scope of this example is limited 

to five common PC problems associated with Power supply, Video card, Memory, Hard 

drive, and Moniror. For instance, a Power supply problem may exhibit symptoms such as 

no display, system Zock-up occasionaZZy, no fan noise, and error code occasionally. 

The KNet of this example is s h o w  in Figure 3-65 with the neural network on top, 

semantic network at the bottom. They are described in detail in the following paragraphs. 

The output of the neural network corresponds to the five PC problems, whereas the input 

consists of d l  of the known symptoms. If data is available, e-g., fiom archived files of a 

corporate helpdesk, the neural network c m  be trained. 1-values between the symptoms 

(input) and PC problems (output) can be calculated based on Equation 2 in Section 2.3 

(Tables 3 - 1 ). 

For simplicity, the hidden layer o f  the neural network is not s h o w  and the detail of how to construct a 
neural network is illustrated in the following chapter. Furthemore, the link "Contribute to" can also mean 
leading to the identification of a problem, not necessarily causing the problem. 



Figure 3-6. The KNet for PC Diagnosis 



PC Problems 
Power supply 

Table 3- 1. Sarnple 1-values between S ymptoms and Problems (hypothetical data) 

Video card 

The neural network can suggest the likely problems based on already confirmed 

symptoms and additional symptoms to be confinned. Suppose a PC exhibits a blank 

display and locks up occasionally, symptoms no display and lock-up occasionally are 

both turned on with 1 (cf. Baxt, 1990). Assume the neural network with this given input 

iders the most likely problem to be Power supply with a probability of 0.5 and the 

second most likely problem to be Video card with a probability of 0.4, m e r  questions 

can be formulated to determine whether the problem is caused by the Power supply or 

Video card. From Table 3-1, symptom error code occasionally has the highest 1-value 

among the symptoms of Power supply. This indicates that error code occasionaZZy is 

strongly related to the problem of Power supply. Therefore, the next question can be 

formulated based on this symptorn. The bold part in Figure 3-7 shows the activated 

portion of the M e t  after the likely problems are inferred. 

. 

1 

Symptoms 
No display 
Lock-up occasionally 

1-values 
O. IO 
O -25 

No fan noise 
Error code occasionally 
No dispiay 
Lock-up occasionally 
Funny coior 
Fixed spot on screen 

0.25 
0.40 
O. 10 
0.25 
0.25 
0.40 
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+----* Associated w ith 

Figure 3-7. Activated Portion of the KNet based on Initiai Input 

For the semantic network part in this exarnple, only an associated-with relationship is 

used to represent certain syrnptoms are correlated. The connection strength (Le., weight) 

between related symptoms in the semantic network can be deterrnined through either 

statistical methods, e.g., correlation matrix, or heuristics (Table 3-2). 



Table 3-2. Sample Weights between Related Syrnptoms (hypothetical data) 

Symptoms 
No fan noise 
Fixed spot on screen 

Error code occasionally 
Lock-up occasionally 

r' 

The semantic network can identifi other symptorns closely associated with the ones 

already confirmed. For the sarne scenario discussed in the preceding paragraphs, since the 

Related symptoms 
No spin noise 
No change on contrat 
adj ustment 
Error code persistently 
Lock-up persistently 

symptom lock-up occasionally is turned on with 1, this value (or activation energy) is 

Weight 
0.50 
0.50 

0.80 
0.80 

spread to its nearby syrnptoms through the semantic network. Its connected syrnptoms 

will be activated if the product of the activation energy and weight is greater than or 

equal to its threshold, Say 0.5. In this case, the product is 0.8 given that the activation 

energy is 1 and the weight between symptoms lock-up occasionally and lock-up 

persistently is 0.8. As a result, the symptom lock-up persistent& is also activated. This 

information may be helpful for helpdesk personnel to collecf thus should be brought to 

their attention by a task support system. The bold part in Figure 3-8 shows the activated 

portion of the m e t .  



Figure 3-8. Activated Portion of the m e t  based on Closely Associated Symptoms 

The 1-value aiso acts as the activation energy to feed fiom the neuraI network to the 

semantic network to identiQ potential subsequent questions to ask. Assume the output 

fiom the neural network is 0.5 for Power supply (Le., the probabiiity of having Power 

supply problem is 0.5) and 0.4 for Video card, then the nomalized activation energy 

feeding fiom Power supply will be 1 and from Video curd will be 0.8 (1 x 0.4 1 0.5). The 

activation energy fiom Power suppi'y is distributed to error code occasionally and no fan 

noise based on thek 1-values. In this case, the activation energy for error code 

occasionally is 0.62 (1 x 0.4 / (0.4 + 0.25)) and for no fan noise is 0.38 ( 1  x 0.25 l(0.4 + 



0.25)). Sirnilarly, the activation energy offixed spot on screen is 0.5 (0.8 x 0.4 / (0.4 + 

0.25)) andfùpmy color is 0.3 (0.8 x 0.4 / (0.4 t 0-25)). For these activation energy levels, 

and the corresponding weights fiom Table 3-2, the only activated symptoms are error 

code persistenrly and no change on contrast adjustment. In this way, subsequent 

questions c m  be f o d a t e d  to influence the identification of other potentiaiIy related 

symptoms. The bold part in Figure 3-9 shows the activated portion after the 1-values are 

fed to the semantic network. 

Figure 3-9. Activated Portion of the KNer using 1-values as Activation Energies 



In conclusion, this chapter proposes an approach to developing a task support system. It 

uses persistently present windows to display task support side-by-side to users' task 

window as the user interface and a KNet, i.e., a neural network and semantic network, to 

retrieve relevant task support in the task support engine. The latter is illustrated with a 

hypothetical example. To demonstrate the feasibility of the proposed approach, a 

prototype is described in the following chapter. 



4. Prototyping 

Based on the architectural mode1 and development methodology proposed in the previous 

chapter, a prototype, called Telephone Triage Assistant (TT'), was developed to assist 

novice nurses in idenwing the nature of patients' diseases and the appropriate treatment- 

This chapter documents the prototyping work by describing the background, conceptual 

design, system architecture, and hctionality. 

4.1 Background 

Teleplione triage is both challenging and critical. Nurses in the call center need to listen 

to, record, and interpret patients' symptoms, then make an assessrnent about the nature of 

the diseases, and recommend an appropnate treatment accordingly. The quicker the 

nurses c m  identiQ the disease by asking the right questions, the quicker the proper care 

c m  be suggested to the patient. Sornetirnes, in a life-threatening situation where t h e  is 

limited, it rnay help Save a life (Wheeler & Windt, 1993). It is, therefore, important for 

the nurses to (1) have access to relevant and up-to-date domain knowledge at the point of 

need, and (2) provide consistent and accurate answers and responses (Grossman, 1999; 

Handysides, 1 995). 

ABC Medical Cal1 Center (a pseudonym) in Maryland is part of one of the largest health 

care organizations in the United States with over 70 million insured individuals 

nationwide. The call center receives more than 500 calls a day. Nurses use a Disease 

Management System @MS) to document task information whilst interviewing patients. 



Since the resemher was not given the source code of the DMS, a prototype similar to the 

DMS was developed. The major fiuiction of the prototyped DMS was to record the 

patient's personal details, symptoms, chief cornplaint, and disposition (Figure 4-1). 

Figure 4-1. The Prototyped Diseases Management System @MS) 

The decision to involve ABC as the sponsoring organization was based on several 

factors. First, it was a convenient choice because the researcher used to work in the 

Software Development Department of ABC, and access to data and medical knowledge 

was secured. Second, ABC had been expanding lately, and many new nurses joined the 



organization. The management of ABC was concemed about the lack of experience of 

the new nurses and was studying various ways to ramp up their performance. One 

possible way identified by the management was to re-develop their DMS by adding more 

ccintelligence" and fiuictions. ABC expressed interest in this research and intent to support 

it. Third, the new nurses at ABC were seen as a pool of potential subjects to participate in 

a usability study because the target users of TTA were novice nurses. 

A prototyped Telephone Triage Assistant (TTA) was developed to support the triage task, 

i.e., identifjhg the name of diseases and the need for appropriate care by confimiing the 

presence of one or more symptoms with a patient. TTA influences a nurse's line of 

questioning through three types of task support: (1) showing diseases inferred by TTA, 

based on already confirmed symptoms, and additionai symptoms to be confirmed to 

complete the identification of the disease, (2) showing symptoms that are commonly 

associated with the ones already confirrned, dong with background knowledge relevant 

to the symptoms already confirmed by the nurse, and (3) showing potentially relevant 

syrnptoms in subsequent steps. In the telephone triage domain, KUs typicdly are 

symptoms such as fever, pain, and vomiting. The scope of TTA is modest and lirnited to 

recognizing and supporting nine presentations of Abdominal Problem: Aorfic Aneurysm, 

Appendicitis, Bowel Obstruction, Cholecystitis, Cholelithiasis, Constipation, 

Pancreatitis, Peritonitis, and Renal Calculi. Abdominal Probiem was chosen because it is 

one of the most cornmon cornplaints which patients have in ABC. 



4.2 System Architecture 

Figure 4-2 shows a conceptual schema of TTA. TTA behaves Iike an intelligent assistant, 

which constantly observes the nurse's interaction with DMS, and ûies to figure out how 

it can help by fiding and displaying potentiaily usehl information. 

tnteracts with 
Disease Management 

4 
System (DMS) 

Nurse 

Nurse's interaction with DMS 
(e.g., symptoms entered) 

Task support (e.g., disease 
inferred, symptoms to be 

confirmed, and hints) v 

Telephone Triage 
Assistant (TTA) On1 ine / - Support 1 Resources 
I information L 

Figure 4-2. Conceptual Schema of TTA 

TTA consists of three major components (Figure 4-3): (1) the advisory module, which 

monitors symptoms entered into DMS, and then compiles and displays task support 

information, (2) the KNet consisting of a neural network for inferring the likely diseases 



and suggesting additional symptoms to be confirmed, and a semantic network for 

suggesting other commonly associated symptoms and showing relevant domain 

knowledge based on the desired level of relevance, and (3) the user model which records 

each user's taçk experience. TTAYs architecture is based on the proposed architectural 

model described in Figure 3-3 except the absence of the performance-tracking module. 

The reason is that TTA is not expected for routine use or longitudinal usability study. 

TTA has two windows named Diseases/Symptoms Window @SW) and Detailed 

Description Window @DW) which are side-by-side to the task window of DMS. 
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Figure 4-3. The Architecture of TTA 



4.2.1 The Advisory Module 

The advisory module observes the task in progress but does not interfere with the DMS. 

Symptoms entered by the nurse are captured in an input queue for the neural network and 

the semantic network. It is dso  responsible for determiring the appropriate level of detaii 

at which Somat ion will be displayed based on user information (e-g., ski11 level). 

Ideally, less detailed idormation for novice nurses includes some routine questions such 

as region and intensity of pain whereas highly detailed information for experienced 

nurses includes more specialized information in medicine and surgery such as indications 

and contraindications of medicine. However, in this prototype, the less detailed 

information is iimited to definition and formation of pain whereas the highly detailed 

information is limited to follow-up questions. For instance, if a nurse has entered 

Abdominal Pain and she is a novice recognized by the system through ber user ID, the 

low level of detail of Abdominal Pain (e.g., definition and formation of pain) will be 

displayed. In a sirnilar situation, if the nurse is at the expert level, a high level of detail 

(e.g., follow-up questions) will be displayed only. 

4.2.2 The Neural Network 

The development of the neural network in the KNet has gone dirough the following 

typical steps: (1) identifjring the inputs and outputs of the network, (2) determining an 

architecture for the network, (3) training the network, and (4) testing the generalization 

and validity of the network. 



Inputs and outputs. Input to the neural network consists of the symptoms confinned 

through the ongoing telephone conversation. There are 33 possible symptoms (input) 

associated with the nine presentations (output) of Abdominal Problem. A node is turned 

on with a value of "1" or off with a value of "O" (cf. Baxt, 1990). For example, 

Cholelithiasis is associated with at least abdominal pain, backpain, musea, vorniting, 

right pain, dyspepsia, and jaundice as symptoms. Thus, if these input nodes are on, the 

output of Cholelithiasis will be on. 

Architecture. For simplicity, a feedfonvard, Mly-connected, backpropagation network 

is used (Simpson, 1990). The architecture of the neural network is detennined for the 

rnost part by the given 33 inputs and M e  outputs. The next step is to determine the 

number of hidden nodes in the hidden Iayer between the input layer and the output layer. 

Few guidelines exist for how many nodes to include in this hidden layer (Simpson, 1990; 

Smith, 1993). A general practice is to train the neural network with different nurnbers of 

hidden nodes and measure their performance, and finally choose the number of hidden 

nodes that yields a relatively good performance with the smallest number of hidden nodes 

(Smith, 1993). Tt will be shown in the following section that seven hidden nodes were 

used. Figure 4-4 shows the architecture. 
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Figure 4-4. The Neural Network Architecture Used in TTA 

Training. In ABC Medical Call Center, senior nurses are required to follow up with 

most of the cases by calling the patients, doctors, or hospitals to make sure the diagnosis 

was accurate and the recornmended treatment was appropriate. Once the case has been 

audited, it is archived by the DMS. In total, 1080 cases of past audited triage tasks 

involving Abdominal Problem were available. They were coilected by the ABC Medical 

Call Center over a six month penod. The data set was broken down to three sets 



following Masters' (1993) recommendation6: Eight hundred and eighty two cases were 

used for training the neural network, 100 cases were used for validation, and the 

remaining 98 cases were held back for testing. An example of the training set is shown in 

Table 4-1. The Training Data Set for the Neural Network 

L 

Table 4-2 shows the training result with regard to varying numbers of hidden nodes. 

Seven hidden nodes were considered optimal because of the relatively good performance 
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of the network in the training set with the smallest possible number of hidden nodes. In 

Masers recommends that the number o f  training cases should be at Ieast two times the nurnber of 
connections in the network. In this prototype, there were 294 connections with 33 input, seven hidden, and 
nine output nodes. Consequently, 882 (3 x 294) training cases were used. 
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training the neural network, the Iearning rate and the rnomentum values were both 

arbitrariiy set at 0.3. Every 1,000 iterations, the performance of the network was checked 

using the validation set to avoid overfitting (Le., the neural network mode1 fits too well 

with the training data without generalization to new data). It took 10,000 iterations for the 

network to achieve best performance on the validation set (Figure 4-5). 

2 ] kiled to convergent I -- 

Number 
of hidden 

nodes 

Table 4-2. Performance with DiEerent Number of Hidden Nodes 

Iterations Errors for 
training set 



- Enors for 
Training Set - Errors for 
Validation Set 

----- 

O i l  
O 5000 10000 15000 

lterations 

Figure 4-5. Number of Training Iterations Required without Overfitting 

Testing. The final step is to test the generalization of the neural network, i.e., its ability 

to infer the proper output when incomplete input is given. This is especidly important for 

proactive task support because the idea is to influence the nurse's line of questioning. 

Once the input is complete, i.e., a nurse has probably independently confrmed the 

presence of al1 symptoms to conclude about a particular disease, thus, there is little or no 

need for support. On the other hand, if there is too little input, e.g., if only one input is 

known for each test case, it is not sufficient to make a rneaningful inference. Therefore, 

the inference staas when two or more inputs are known (i.e., two or more input nodes are 

tumed on with a value of "1") while the others are unknown. Table 4-3 shows some 

results using the testing sample (98 cases). 



Table 4-3. Accuracy of inference for Incomplete Input 

Number of 
known input 

4.2.3 The Relationship between Diseases and Symptoms 

Most diseases have many dif3erent symptoms. To assist novice nurses in identiQing a 

disease quickly, it is important to suggest the right questions to ask about the critical or 

indicative symptorns, as is the case with most diagnostic tasks. Ttiis task can be 

facilitated by a model outlined in Section 2.3. The model is based on the structural 

property of the trained neural network of KNet for determining the relationship between a 

disease (output) and symptoms (input). For instance, abdominal pain, vomiting, fever, 

constipation, hypotension, and hyperactive bowel sound are al1 symptoms of BoweI 

Obstruction. Applying Equation 2 in Section 2.3 on the training sarnple, the average 1- 

value of each syrnptom was calculated and shown in Table 4-4. 

Percentage of correct 
identification of disease 



Table 44.1-value of Symptoms of Bowel Obstruction 

Symptoms of Bowel 
Obstruction 

Constipation 
Hyperactive bowel sound 
Abdominal pain 
Vomiting 
Hypotension 
Fever 

Suppose in a situation that Bowel Obstruction is inferred as a likely disease and 

abdominal pain and fever have been confirmed as symptoms. Then, constipation is the 

next symptom with the highest 1-value that shouid be confkmed with the patient. This 

information may help nurses formulate relevant questions and identiQ the disease in a 

timely manner. The 1-values of symptoms on the studied diseases are shown in 

parentheses in Table 4-5. 

1-value 

0.21 
0.20 
O. 17 
0.17 
0.16 
0.09 



Diseases 1 Symptoms 

-- -- -- p- -- 

Table 4-5.1-values Between Symptoms and Diseases 

Aortic 
aneu?ysrn 

Appendicitis 

Bowel 
obstruction 

Cholecystitis 

Cholelithiasis 

Const@ation 

Pancreatitis 

Peritoni f is 

Renal calculi 

4.2.4 The Semantic Network 

The semantic network of KNet used in TTA consists of a set of KU nodes with certain 

assigned threshold energy levels. Each link comecting two adjacent KU nodes has a 

weight or connecting strength. The higher the value of the weight, the greater the 

relevance between the two KUs. For example, nausea is closely related to vorniting as 

Pulsatile abdominal rnass (0 -2 1 ), S hock (0.20), Mottling 
(0.20), Back pain (0.16), Flank pain (0.12), Abdominal pain 
(0.1 1) 
Tachycardia (0.23), Anorexia (0.17), Peritoneal(O.l3), 
Abdominal pain (0.12), Right low pain (0.1 O), Pallor (0. IO), 
Fever (0.07), Nausea (0.06) 
Constipation (0.2 1 ), Hyperactive bowel sounds (0.20), 
Abdominal pain (0.17), Vorniting (0.171, Hypotension 
(0.1 6), Fever (0.09) 
Tachypnea (0.18), Right upper pain (0.14), Tachycardia 
(0. U), Back pain (0.12), Jaundice (O. Il), Fever (0.10), 
Abdominal pain (0 .O8), Vomiting (0 .O7), Nausea (0.06) 
Dyspepsia (0.23), Right pain (0. lg), Vomiting (0.12), 
Abdominal pain (0.1 1), Back pain (O .  1 l), Jaundice (0.08), 
Nausea (0.06) 
Headache (0 X ) ,  Restlessness (0.25), Discornfort (0.16), 
Fatigue (0.14), Back pain (0.1 1 ), Abdominal pain (0.04) 
Tachypnea (0.2 1 ), Upper pain (0.17), Tachycardia (0.1 5), 
Vomiting (0.1 l), Fever (0.1 l), Abdominai pain (O. 1 O), 
Hypotension (0.09), Nausea (0.05) 
Tenderness (0.26), Vomiting (O. 1 7), Fever (0.1 9, Rigidity 
(0.1 S) ,  Back pain (0.12), Abdominal pain (0.1 O), Nausea 
(O .OS) 
Diaphoretic (0.25), Lower pain (0.17), Dehydration (0.17), 
Pale (0.17), Vomiting (0.09), Nausea (0.07), Abdominal 
pain (0 .O6) 



they represent different stages in ejecting the contents of the stomach through the mouth. 

The individual weight is assigned based on the International Classification of Disease 

(ICD-9-CM) code7 together with the help fiorn a senior nurse in ABC. For instance, both 

nausea and vomiting are grouped with the ICD-9-CM code of 787.0 indicating that they 

are commonly associated with each other. In this case, 0.8 was assigned as the weight 

between nausea and vomiting. In some cases, according to the senior nurse, patients are 

confused about describing their pain such as backpain andflankpain, which they are not 

clinicaily related to each other. In this case, 0.5 was assigned to the weight between back 

pain andflankpain. Sirnilarly, al1 the weights among related symptoms in the semantic 

network can be assigned in this manner. 

The sernantic network works in the following manner: The initial activation energy is 

assigned a value of either "1" or "O" to indicate whether the user wants to see commonly 

associated symptoms or not. This is done by adjusting the slider on the DSW and will be 

illustrated in a Iater section. Whether a node is active or not depends on the activation 

energy and the weight. The node will be active if the result of multiplying the activation 

energy by the weight is greater than or equal to the threshold (0.5). Similarly, the node 

will be inactive if the result of multiplying the activation energy by the weight is less than 

the threshold (0.5). If the weight of the connection between two nodes is high (i.e., they 

are commonly associated symptoms) and one of them is activated, the chance is high that 

the other node is also active. On the other hand, if the activation energy is high (Le., the 

7 International Classification of Disease, 9th revision, was published by the World Health Organization 
(WHO). [CD-9-CM (Chical Modification) is a classification system that groups related disease and 
symptom entities for the reporting of statistical information. [t can be subscribed and accessed at 
http://www.icd-9-crn.org. 



nurse has selected to see more commonly associated syrnptorns), the chance is high that 

the other comected node is also active. 

There are two ways to activate the semantic network. First, when a symptom such as 

nausea is detected fiom a nurse's input to the DMS, the activation energy is spread 

through dl of its comected nodes such as vomiring by multiplying the activation energy 

with their respective weights. If the result for any adjacent node is greater than its 

threshold, that node will also be "fired." This firing process continues till the network 

settles down to an equilibrium state, i.e., there is no other node which multiplying the 

activation energy and weight yields a result greater than its threshold. At the completion 

of the process, the set of active (or fired) nodes will be considered rnost relevant to a 

nurse's diagnosis, thus presented to the nurse. For example, suppose that the thresholds of 

d l  the nodes are set at 0.5 and the weight between nausea and vomiting is 0.8. If the 

activation energy level set up by the nurse is 1 @y changing the slider to "More" in the 

DSW) and nausea is detected, the only activated node would be vomiting; decreasing the 

activation energy level to O (by changing the slider to "Few" in the DSW) would lead to 

no activated node. 

Second, the 1-value from the neural network discussed in the previous section is used as 

the activation energy fiom the neural network "feeding" to the semantic network. For 

instance, if Bowel Obsîrucfion is inferred as a likely disease and conf ï ï ed  symptorns are 

comtipation, hyperactive bowel sound, and abdominalpain (Table 4-4), then based on 

the remaining highest 1-value, vomiting shouid be the next symptom to be c o n f i e c i  with 



the patient. This would automatically trigger an activation energy of "1" to the semantic 

network as if vorniting were detected fiom the nurse's input. In this case, nausea will be 

activated and displayed because vomiting and naurea are closely associated symptoms 

and multiplying the activation energy and weight yields a resdt greater than the 

threshold. The basic idea is to remind the nurse that she needs to clariQ whether the 

patient has nausea or vornifing in her next question because they are closely associated 

symptoms, wiiich may lead to the identification of different diseases. 

In sumnaary, whenever a nurse enters a symptom in the DMS, the advisory module 

searches the database to decide whether any task support c m  be found fiom online 

resources. If the symptom matches a KU, the propagation wili spread to the comected 

KUs based on the activation energy and corresponding weights. In this manner, the 

semantic network identifies task-specific knowledge not only for the curent KU, but also 

for other closely associated and subsequent KUs. 

4.2.5 The User Mode1 

The user mode1 is composed of records of uses' details. A user's skill level is updated 

continuously as the user gains more experience. The last reference to a symptom and the 

number of references are captured. Such information is used, in a way similar to 

Vivacqua and Lieberman's approach (2000), by the advisory module to provide 

customized support suitable to a user's unique needs and preferences. Re-categorization 

of users' skill level is done by a simple aigorithm (Figure 4-6) similar to Strachan et al.'s 

approach (2000). AIthough this implementation of user modeling may not be suitable for 



ail domains, this is deemed appropriate for the prototype, as user modehg is not a main 

focus of this research. 

- - - - -- 

If the user has been away for 30 days, downgrade user's skill level by one level. 

Reset number of times used accordingly. 

If the user has used a KU for less than 20 times, set user's skill level to Novice. 

If the user has used a KU for less than 50 but more than 20 times, set user's skill level 
to intermediate- 

If the user has used a KU for more than 50 times, set user's skill level to Expert. 

Figure 4-6. The Algorithm to Update Users' Ski11 Level 

4.3 lmplementation 

The prototyped DMS and the advisory module were written in Visual Basic. Since the 

advisory module observes the task in progress but does not interfere with the DMS, it is 

consû-ucted as an out-of-process ActiveX semer. 

The neural network is written in Visuai Basic and the semantic network is implemented 

using a database table in Microsoft Access. After the neural network is trained, al1 the 

weights are captured in a text file. When TTA is invoked for the fust tirne, this text file 

(weights) will be read together with tables KU (input nodes) and Disease (output nodes) 

as shown in Figures 4-7 and 4-8 respectively. The core algorithm of how diseases are 

inferred by the neural network is shown in Appendix A. Figure 4-7 also shows an 



example of the semantic network. For instance, backpain (i.e., KUID = 2) is linked with 

flankpain (Le., LinkedKUID = 3) with a weight of 0.5 (Le., LinkedWeight = 0.5). 

Similarly, nausea is iinked with vomiting with a weight of 0.8 as discussed earlier. The 

core algorithm of how activation is spread across the semantic network is shown in 

Appendix B. 

1 
I i 
i 

Figure 4-7. Sarnple KUs 

5j Cholelithiasis 
6t &nsti~ation 
71 Pancreatitis 
8i Peritonitis 
91 Rend calculi 

Figure 4-8. SampIe Diseases 

The 1-values between diseases and symptoms are stored in a database table in Microsoft 

Access. Figure 4-9 shows an example to represent 1-values between Bowel Obstruction 



and its symptoms. For instance, the 1-value between BoweZ Obstruction (i.e., DiseaseID 

= 3) and abdominal pain (Le., KUID = 1) is 0.17. Each time when a likely disease is 

inferred, its corresponding symptoms will be displayed in descending order according to 

the 1-value. If a symptom has been confirmed, a check mark is displayed next to the 

symptom. If a symptom has the highest 1-value and has not been confimied, a question 

mark is displayed next to the symptom to remùid the nurse to formulate questions based 

on this s p p t o m  as it is highly relevant to the inferred disease. 

Figure 4-9. Sarnple 1-values between Bowel Obstruction and its S ymptoms 

The online resources contain definitions, examples, advice, references and follow-up 

questions, and are prepared using Microsoft Word document in rich text format. Figure 4- 

IO shows exan@es of Abdominal Pain and Anorexia. 



ABDOMINAL PAIN 

This is usually ill defined but cm be very unpleasant and is temed visceral pain. Pain 
is initially felt near the mid-line of the abdomen. 

Questions that can be asked: 

What makes it better or worse? 
1s the pain severehoderatehnild? 
What is the regiodradiation of the pain? 
How long does it last? 
Have you tried any treatment? 
Any past medical history (diabetes, hypertension, etc.)? 

It is the most common sign of dyspepsia due to gastritis and of cancer of the stomach. 
In some cases it is a manifestation of stress or stain such as domestic wony or 
difficulties at work. 

Figure 4-10. Exarnples of Online Resources 

The user model, following Vivacqua and Lieberman's approach (2000), is implemented 

using a Microsoff Access table as shown in Figure 4-1 1. Users' skill is categorized into 

three levels: novice, intermediate, and expert. When a user is working on a task for the 

first time, the user's skill level is assigned as novice. A user's skill level with respect to a 

KU is updated continuously as the user gains more expenence. For each KU and each 

user, information such as the time of last access to the KU and the number of times the 

KU has been accessed are captured. 



Figure 4-1 1. An Example of the User Mode1 

4.4 Illustration 

In this section, the triage process in which a novice nurse accomplishes her task with the 

help of TTA is illustrated step by step. First, the nurse logs in to the DMS and enters 

details of the caller. For example, Figure 4-12 shows a triage process that begins when 

the patient mentions that he has Abdominal Pain. The nurse enters Abdominal Pain in the 

symptoms box and T'TA is loaded automatically displaying related information 

proactively in the DSW and DDW on the right hand side. 



l hl3 IS usually III aehned but can De w y  
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What makes tt belter or worse7 
1s the pain seve~maderaIelmiid7 - m a t  is the regiadradiatian ofthe pain? - How long doac k tact? 
Hava ynii t r i ~ r (  any l r ~ a t r n ~ n l 7  
Anv p a n  medical history (diabetes. 
hypettension. etc)? 

Figure 4-12. Proactive Task Information based on Confirmed Symptom 

Assuming the nurse is a novice with respect to Abdominal Pain, the level of detail of 

medical information displayed in the DDW is autornatically chosen at low according to 

the user model. However, the nurse can always change the level of details by clicking on 

the slider of "Level of details" in the DDW. For instance, in the above case, T'TA 

suggests that the nurse ask further questions such as the severity, region, and duration of 

the pain. The answers fiorn these questions may quanti@ the pain and lead to fürther 

input to the DMS. In Figure 4- 13, the nurse enters severe in the Quality/Quantity box and 

lasi for more than 2 hours in the Comments box. She also enters Righi Low Pain as the 

patient mentions that the pain is iocalized in the Iower right region. 



Figure 4-1 3. Further Input based on TTA's Suggestions 

Based on the two symptoms entered, ?TA starts its inference through the neural network 

and a list of Iikely diseases and their corresponding symptoms are displayed in the DSW. 

In addition, a check mark is shown next to the confinned syrnptoms and a question mark 

is shown next to the symptoms with the strongest link to the disease. These are the 

symptoms that TTA suggests that the nurse confirm the presence with the patient (Figure 

4- 14). 



Figure 4-14. Likely Diseases and their Corresponding Symptoms IRferred by TTA 

In this case, TTA considers Appendiciris the most iikely disease and Bowel Obstruction 

the second. Now the nurse is advised to confirm whether the patient has Tachycardia or 

Constipation. Assuming she follows TTA's suggestion and confïrms the patient has 

Tachycardin, she enters a third symptom of Tachycardia as a confïrmed symptom. A 

check mark is shown next to Tachycardia and a question mark is shown next to Aiîorexia. 

The nurse continues to follow TTAYs suggestion and confirms that the patient has 

Anorexia. The Iine of  questioning and confirmation are formulated in this manner. When 

new symptoms are entered, the List in the DSW is updated accordingly to reflect the latest 

Uiference of TTA. The ùiformation in the DDW is also updated continuously. Suppose at 

this stage, the nurse has identified the likely disease is Appendicitis. She advises the 

patient to take appropriate treatment and the triage process is finished (Figure 4-1 5). Her 

task experience is recorded in the user model. 
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Figure 4- 15. TTA's Advice based on Confimied Symptoms 

Suppose in another case where the patient has Abdominal Pain and Righr Low Pain, TTA 

considers Appendicitis the most likely disease and Bowel Obstruction the second. 

Assuming the nurse does not follow 'T'TA'S suggestion of confirming the presence of 

Tachycardia or Constipation with the patient (Figure 4-14), as soon as the nurse enters a 

third symptom of Nausea as a confirmed symptom, Vomiting is also displayed in the 

DSW. It is because she has set "Relevant symptoms" to "More" using the slider in the 

DSW (Figure 4-16). This sets the initial activation energy to 1 in the semantic network. 

Since Vomiring and Nausea are commonly associated symptoms and they are connected 



in the semantic network, they are both displayed. In contrast, if "Relevant symptorns" is 

set to "Few" (i.e., initial activation energy bas been set to O), no propagation occurs. 

Therefore, only information on Nausea is displayed in the DDW. Suppose at this stage, 

the nurse has also identified the Iikeiy disease is Appendicitis. The triage process is 

f i s h e d  when appropriate advice is given to the patient. 

Figure 4-16. Commonly Associated Symptoms Displayed by TTA 

Suppose in a third case where the patient has Abdominal Pain, Dyspepsia, Right Pain, 

and Vomiting, TTA considers Cholelithiasis the most likely disease and Renal Calculi the 

second. A question mark is shown next to Back Pain suggesting that the nurse should 

confurn the presence of this symptom with the patient. At the sarne tirne, FIank Pain is 

also shown at the bottom of the Iist in the DSW (Figure 4- 17). It is because the 1-value, 

which is used to identify Back Pain as the next symptom to be confirmed, is fed io the 

semantic network that connects Back Pain and Flank Pain as cornmonly associated 



symptoms. Therefore, they both are activated and displayed in the DSW. In this way, 

subsequent questions about Back Pain and Flank Pain can be formulated. in this manner, 

the semantic network identifies the closely associated symptoms not oniy for the current 

symptom, but also for the suggested symptoms to be confirmed subsequently. 

chancter of lhe pain m y  be constam, as 
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What  is the regonlndmlion of the pan? 
H m  long does fi las17 
H m  you lried any Irealment? 
AJ-I~ p a a  medical hislov (diabetes. 
hypetiension. etc.)? 

Figure 4- 17. Commonly Associated Symptoms of Subsequent Symptoms 



4.5 Expecfed Benefits 

TTA is expected to help the telephone triage process in the following ways: First, 

displaying likely diseases inferred by TTA may help nurses generate a more complete set 

of likely diseases, which is a recognized limitation of the diagnostic process (Lindgaard, 

1995; Schaafistal, 1993). Having a list of likely diseases may help avoid the pre-mature 

determination of a single disease and remind nurses the possibility that the same 

symptoms are likely occur in other diseases. 

Second, showing codïrmed symptoms linked to a disease may reduce bias in a diagnosis. 

Bias occurs in medicai diagnosis in two ways: Nurses may tend to select data favoring a 

disease while ignore data which might be likely to contradict that disease. In addition, 

nurses may fail to change their opinion about a disease in the face of non-supporting or 

even contradictory data Cindgaard, 1995). Displaying a disease with its corresponding 

confimed symptoms may help de-bias the process. 

niird, to assist nurses in identifying a disease quickly, it is important tu suggest the right 

questions to ask about the critical or indicative symptoms. Displaying diseases with their 

corresponding symptoms may help nurses Save tirne in finding information and remind 

them of questions they need to ask to confirrn a disease in a timely manner. This is 

especially helpful in a life-threatening situation where time is limited. 

Finally, some symptoms are closely associated with each other although they may be 

symptoms of different diseases. TTA identifies the closely associated symptoms for the 



current symptoms and the suggested symptoms to be confirmed subsequentiy. Once one 

of them is identifie4 the identification or elimination of the other can help the diagnostic 

process. 



5. Evaluation Method 

A usability study in a field setting, involving novice nurses in the cal1 center performing 

their tasks using TTA, was chosen to evaluate the task suppoa features of the proposed 

approach (i.e., proactive advice and continuous update of information in a non-obtrusive 

xnanner). More specifically, the researcher wanted to answer the following questions: 

1. How can TTA help nurses identi& the disease? 

2. To what extent is TT.A used? 

3. What is the impact of ?TA on nurses' decision-making process? 

4. Are TTAYs task support features useful in practice? 

5. Are TTA's task support features easy to use in practice? 

6. What are nurses' attitudes towards TTA's user interface such as proactive 

advice and continuous update of information? 

This chapter provides details of the evaluation method that was used. 

5.1 Subjects 

A pre-test in a lab setting was conducted prior to the field study to detemillie the 

procedure and materials for the study, and the general acceptability of TTA. Three 

subjects, who were university students, took part in the pilot study. Based on the pre-test, 

some minor programming changes were made to TTA. 



The researcher contacted the management of ABC about the usability study, and received 

a positive response. Due to their heavy workload, the management was willing to assign 

only five nurses, representing one third of the practicing nurses at the cal1 center, to 

participate in the study. Since TTA, as a prototype, covers only Abdominal Problern 

related calls, it could not be used on a longitudinal basis. Therefore, the study was set up 

like a field experiment. The study was designed to last for two days. 

The clinical expenence of the five subjects ranged from one to three years, with a mean 

of two years. Three of the subjects were female and two were male. Al1 of them had a 

relatively high level of education (e-g., college degrees in nursing) and they were al1 

registered nurses of the State of Maryland. They had cornputer experience at a self- 

identified intermediate level. Their background information is summarized in Table 5-1. 

Gender 
academic 
qualification 
achieved 

2 M S -  I M 5 
B.S. 

Average 

Years of 
ciinical 
experience 

Years of 
experience 
in ER 

Table 5-1. Subjects' Background Information 

1 

The management of ABC helped the researcher send out a bnef description of the study 

to al1 subjects five days before the study (Appendixes C to E). It explained the nature of 

Years of 
experience in 
cal1 center 

Years of 
experience with 
cornputer-based 

1 
medical systems 

3 



the study. Emphasis was placed on the fact thai the study was intended to measure the 

effectiveness of TTA, and it was by no means a measure of subjects' medical knowledge, 

computer knowledge, or telephone interviewhg skill. A screen shot of TTA and 

instructions of  thinking aloud were included, to help subjects get familiar with the 

usability study in advance. In addition, the Chief Clinical Officer (CCO) and a senior 

nurse (SN) were dso invited to participate in an informal evaluation of TTA. 

5.2 Measurement 

As stated earlier, the primary objective of the field study was to investigate to what extent 

TTA was used and the impact of TTA on subjects' decision making process. The 

secondary objective was to investigate the usefulness and ease of use of ?TA in a field 

setting. 

To address the prirnary objective, subjects were asked to carry out some tasks as close to 

their normal practice as possible using TTA. From the task process (e.g., recording 

patient's personal details, asking questions, confimiing symptoms or disease, and making 

decisions), the extent of TTA's use and its impact were captured. Thinking aloud was 

chosen to be an instrument to investigate the cognitive process (Ericsson & Simon, 

1993). Subjects' thinking aloud can be described in three different levels: The first level 

of verbalization is sirnply the vocalization of oral encoding in which there is no 

intermediate process. The second level of verbalization involves description of the 

thought content. The third level of verbalization requires subjects to explain their thought 

process, which may require linking the information to earlier thoughts. Subjects were 



asked to provide a nrnning cornmentary on what they were attempting to do and what 

was going through their mind. The think-aloud instruction was: "Say out loud everything 

that passes through your mind for each step." There was also a supplementary instruction: 

" It does not matter if your sentences are not compIete. Just act as if you are alone in the 

room speaking to yourself loudly." Subjects were dso told that if they were silent for 

more than 15 seconds, they would be reminded to keep talking. 

The next question was how to record the comments made by the subjects while thinking 

aloud data when they were performing the tasks. The researcher had planned to use a 

video camera to capture the computer screen as well as the subjects' verbalization 

throughout the task process. However, the quality of the recording and the obtrusiveness 

of having a video camera behind the subjects were major concems. Finally, a software 

package called Lotus ScreenCam was used instead. It could nui as a background program 

and capture everything s h o w  on the computer screen, keyboard input, mouse movement, 

and subjects' diinking aloud. From the data, the researcher could also study how TTA 

helped the subject in each step throughout the triage process. For instance, the screen 

capture allowed the researcher to count the number of times the subject clicked on TTA's 

windows for retrieving information. The ody  shortcoming was that the overall system 

response was slightly slower than a computer without d n g  the ScreenCarn. 

To address the secondary objective of the study, a questionnaire based on Davis' (1989) 

perceived usefulness (six questions) and ease of use (six questions) was distributed to the 



subjects after the tasks. Four questions were added to check subjects' attitude towards 

TTA's inteiface (Table 5-2)- 

TTA's features 
Display reiated information 

Update information continuousiy 

Table 5-2. Questions that Addressing TTA's interface 

Questions 
The information provided by TTA reminds me other 
information that is relevant to the task. 
I have no trouble focusing on my work even though 
the contents of TTA's windows are updated 

Update S o m a t i o n  continuously 

Display a list of likely diseases 

The subjects were also asked to comment on the perceived benefits and shortcomings of 

TTA (Appendix 1). Finally, the subjects' background information such as educational 

background, clinical experience, and cornputer knowledge was collected. 

continuously. 
1 did not find the continuous information update by 
TTA distracting. 
TTA is useful despite that sometirnes it displays 
irrelevant information. 

5.3 Tasks 

The subjects were requested to perform two tasks. The first task was a typical and 

relatively simple task. The disease could be identified based on two or three of the 

symptoms outlined in Table 5-3. The second task was more challenging as it could take 

up to al1 of the symptoms in Table 5-3 to conclude the diagnosis. In both tasks, the 

subjects were required to identie a specific presentation of Abdominal Problem and to 

determine the appropriate disposition. Both tasks were provided by a senior nurse at the 

ABC Cal1 Center. The symptoms and diseases in each task are shown in Table 5-3. 



The diseases in Tasks 1 and 2 could occur in an adult of either gender according to the 

senior nurse. The patientlcaller was instructed to respond with "1 do not know" or "1 am 

not sure" when asked whether he or she had any symptoms other than the ones listed in 

Table 5-3. 

Task 
Likely disease 

Known symptoms 
for the patient 

1 
Appendicitis 

Severe abdominal 
pain for more than 
2 hours 
Pain is localized at 
the right low region 
Rapid heart rate 
Loss of appetite 
Feverof lOlF 
No past medicai 
history of any kind 

2 
C holeIithiasis 

Severe abdominal 
pain for more than 
2 hours 
Pain occurs aiso in 
back region 
Discornfort after 
eating 
Vomiting 
Past medical 
history of 
abdominal trauma 

Table 5-3. Disease and Symptoms for Tasks 1 and 2 

In order to simulate the tasks as close to reality as possible, a patientkaller was required. 

At first, a medical student in Canada was selected to play the part of the caller. But due to 

difficult coordination between long distance (e.g., the caller had to cal1 when the subject 

was ready to perform the task), this arrangement seemed to be inappropriate. Next, the 

background of the patient/caller was also considered. The conclusion was that the 

background should not be a factor especially the diseases in Tasks 1 and 2 could happen 

to anyone. Therefore, a reasonable scenario would be for the caller to play the role of the 

patient's roommate. In this way, the responses of "1 do not know" and ''1 am not sure" 



were more convincing. A staff  member at the call center played the role of a patient/caller 

calling the subjects. 

5.4 Data Collection Procedures 

The prototyped Disease Management Systern (DMS) and TTA ran on an IBM ThinkPad 

380D. It was connected to an extemal monitor, keyboard, and mouse so that the subjects' 

expenence wouid be similar to the normal use of their DMS. The computer was also 

connected to an Iomega Zip Drive so that data could be backed up imrnediately after 

every session. The usability study was conducted in a conference room in ABC Cd1 

Center. Figure 5-1 shows the major parts in the study and detail can be found in 

Appendixes C to J. 



Overview of 
the Study 

Demonstration 
of DMS & TTA 

Thinking Aloud 
Instruction and 

Exercises 1 
Exercises u 

Two Real 
Tasks 1 

Questionnaire u 
Subjects' 

Background 
Information I 

Figure 5-1. Major Parts in the Study 

The study began with a brief introduction by the researcher. The researcher established a 

rapport and credibility with the subjects by talking about his background and comection 

with ABC Cal1 Center. The nature of the research and the activities to be completed 

throughout the study were explained to the subjects. It was highlighted that three major 

types of support information would be introduced: 

1. likely diseases inferred by TTA based on already confirmed symptoms, and 

additiond symptoms to be confmed, 

2. symptoms that were commonly associated with the ones already confirmed, dong 

with background information about the confirmed s ymptoms, and 

3.  symptoms that were potentiaily relevant in subsequent steps. 



In the Dernonstration part, a twelve-minute automated multimedia demo recorded in 

Lotus ScreenCarn was played. It discussed the use of DMS and TTA. Ln some cases, the 

researcher also did a live demo aftenvards to dari@ some questions fiom the subjects. 

Next, the researcher explained the importance of thinking aloud during the experiments. 

In order to make sure the subjects understood the process of thinking aioud, a short 

question was included. The subjects were requested to think and talk aloud while 

performing the following addition: 476 + 688. This part took about 3 minutes. 

The next part was the Task Exercises. Subjects were given a worksheet containhg an 

exercise, which required them to enter symptoms, click on the list in the DSW, and find 

information in the DDW. The exercise involved a scenario with a patient experiencing 

Abdominal Pain, Back Pain, and Shock, because of a likely disease Peritonitis. It was 

provided by a senior nurse at the ABC Cal1 Center. The main goal of this exercise was for 

the subjects to get familiar with using the different functions of TTA. Table 5-4 outlines 

the major steps in the exercise. 



Display of  a confirmed 1 1 

Functions of DMS and TTA 

Input of  symptoms in DMS 

Display of  detailed description 
of a symptom 

Inference of Iikely disease 
based on two or  more 
symptorns 

~ ~ & ~ t o r n  by a check (4) and a 1 1 
symptom that should be 1 1 

I 

Actions performed by 
subjects 

Enter Abdominal Pain as the 
first symptom 
Click on Abdominal Pain in 
the hierarchicai list in TTA's 
DSW 
Enter Back Pain as the second 
symptom 

confirrned by a question mark 1 1 

. 

, 

Expected Outcome 

Change o f  the refreshing rate 

l Change of  the level of details 
I 

8 Input of the disposition in 
i DMS 

Abdominal Pain is displayed 
in the DSW of ?TA. 
Medical information of 
Abdominal Pain is displayed 
in the DDW of T'TA, 
TTA starts to display its 
inference by a list of likely 
diseases and their 
corresponding symptoms. 

Move the slider of Refreshing 
Rate to M ~ Y  
Move the slider of Level of 
Details to High 
Enter Peritonitis or drag and 
drop Peritonitis from the 
hierarchical list in TTA's 
DSW 

Checks (4) are displayed next 
to  the symptoms. 

Question marks (?) are 
displayed nedut to the 
symptoms. 
The contents are updated 
continuously in TTA's DDW. 
The contents are changed in 
TTA's DDW. 
Disposition is entered and the 
case is closed. 

Table 5-4. Some Functions, Actions, and Expected Outcome in the Exercise 

Subjects were encouraged to think aloud in this part. They were also reminded that they 

should become fûlly familiar and confident with the features of TTA before proceeding 

to the next part. Subjects were advised to take as much time as they needed and that they 

could ask whatever questions they had in their rnind. It took about fifteen minutes to 

twenty minutes to go through the exercise. 

Prior to the real task, the prototyped DMS and Lotus ScreenCam were loaded. The 

researcher also reminded the subjects to perform the task as close to their normal practice 



as possible, apart fiom thinking aloud and using ?TA. Then the researcher called the 

caller to signal the start of the triage process. The calier called in within fifteen seconds. 

The telephone conversation began with the subject asking for the details of the patient 

and caller. The cal1 ended when the subject entered the suspected disease as the Chief 

CompIaint, their advice to the caller as Disposition, and their justification for their advice. 

There were three instances when the caller faiIed to mention that he was the patient's 

roommate. The subjects spent about ten minutes on average on each task. 

Finally, subjects were instmcted to take a few minutes to fil1 out the questionnaire and 

background information sheet. The tirne taken to complete the study was about an hour 

for each subject. The CC0 and the SN were invited to participate in an informal 

evaluation of TTA. This evaluation resernbled the study mentioned above except that it 

did not involve performing the tasks. Instead, the main focus was on performing the task 

exercises. During the exercises, they thought aloud and gave comments frorn their 

perspectives. 



6. Results of the Usability Study 

The results of the study were analyzed based on subjects' thinking doud, cornputer 

screen captured by ScreenCam throughout the task process, and the completed 

questionnaires. This chapter describes the results and details of the data analysis. 

6.1 Thinking AIoud Data 

The thinking aloud data was categorized for anaiysis based on the context such as 

viewing the display of medical advice, identieing symptoms, and formulating the line of 

questioning. 

This section presents some representative examples of verbal protocols, dong with their 

contexts in terrns of the interaction among the patientlcaller, nurse, and TTA, regarding 

the display of medical information (e.g., likely diseases and follow-up questions) during 

the task process. These examples were grouped together to show that subjects considered 

information provided by TTA useful and informative. Table 6-1 shows that a subject 

asked follow-up questions based on those suggested by TTA in the DDW. For example, 

she asked about the nature and region of pain. The patient's response led to the 

identification of another symptom of Right Low Pain. She followed up on TTA's line of 

questioning, then commented, "The follow-up questions are informative." Similady, 

having gone through the sarne process, another subject commented, "The follow-up 

questions are comprehensive and we could add our best-practice guidelines and clinical 

pathway into the Detailed Description Window." 



Subject's Subject's Action WA's Detailed 
Caller Thinking Aloud Symptoms Description 

Window @SW) Window @DW) 
. . . Abdominal 
Pain .. . 

.-. Symptom is Entered Abdominal 
Abdominai Pain -.- Pain as the symptom. 

Abdominal pain Detailed 
was displayed. description of 

AbdominaI pain 
was displayed. 

Clicked on the DDW 
and scrolled down to 
view further details 
and questions. 

A Iist of questions 
was displayed. 

Mouse pointed to 
each question and 
asked the questions 
one by one. 

.. . What makes the 
pain better or  
worse? 

... not sure ... 
. . , 1s the pain 
severe, modente. or 
mild? 

. . . severe ... 
.., What is the 
region of  the pain? 

. .. lower right 
region ... 

.. . Symptorn is Enter Righr Low Pain 
Righr Low Pain ... as the symptom. 

Right Lorv Pain Detailed 
was displayed. description of 

Right Low Pain 
was displayed- 

. . . This is 
informative ... it 
reminds me what 
questions 1 should 
ask ... 

Table 6- 1. Verbal Protocols on Usefulness of TTA's Follow-up Questions 

Table 6-2 shows that the subject reviewed the idormation of Dyspepsia and Vomiting. 

She also clicked on the slider to view a more detailed description about Dyspepsia and 



Vorniting. Finally, she comrnented that the detailed description of symptoms and diseases 

in the DDW was usefid and new information was learned. 

rime Patient/ Subject's Subject's Action TTA's Diseases/ TTA's Detailed 
Caller Thinking Aloud Symptoms Description 

Window @SW) Window @DW) 
. . . discornfort 
after eating ... 
vomited .-. 

Entered Dyspepsia as Dyspepsia and 
the syrnptom. Vomiring were 
Entered Vomiting as dispiayed. 
the symptom. 

. . . Symptom may 
be Dyspepsia or 
Vomiring -. . 

Clicked on Dyspepsia 
in the DSW and 
viewed the detailed 
description in the 
DDW. 

. . . This is 
interesting and 
useful- ..- 1 have 
leamed some new 
things from the 
detailed description 

Clicked on the slider 
to view a more 
detailed information 
about Dyspepsia- 

Clicked on Vomiting 
in the DSW and 
viewed the detaiIed 
description in the 
DDW. 

Clicked on the slider 
to vicw a more 
detailed information 
about Vom iting. 

Detailed 
description of 
Dyspepsia was 
displayed. 

More detailed 
description of 
Dyspepsia was 
displayed. 

Detailed 
description of 
Vomiting was 
displayed. 

More detailed 
description of 
Vomiring was 
displayed. 

Table 6-2. Verbal Protocols on Usefûlness of TTA's DetaiIed Description of Symptoms 



Tables 6-3 to 6-5 present some examples that subjects could either adopt TTA's advice or 

ignore it. Table 6-3 shows that TTA identified Appendicitis and Bowel Obstruction as 

likely diseases based on the patient's syrnptoms. As soon as TTA displayed the inferred 

diseases, she moved the mouse to the DSW and clicked on Appendicitis and Bowel 

Obsfruction. Next, she moved the mouse to the DDW to view a more detailed description 

about Appendicitis and Bowel Obstruction. Finaliy, she appeared to agree with TTA's 

inference by telling the patient that the disease was Iikely Appendicitis or Bowel 

Obstruction. She dso comrnented that TTA could he1p determine the disease. 



Subject's Subject's Action TTA's Diseases/ TTA's Detailed 
Caller Thin king Aloud Symptoms Window Description 

@sW) Window (DDW) 
II .,. pain is 

at my 
right low 
region . . - 

... Symptom is Entered Righr Low Pain 
RightLowPain..- asthesymptom. 

Appendicitis was 
dispIayed as the most 
Iikely disease 
proactively, dong with 
its corresponding 
symptoms. 

Bo wel Obstruction 
was displayed as the 
second most likely 
disease befow 
Appendicitis. dong 
with its corresponding 
symptoms. 

Clicked on Appendicitis 
and its corresponding 
symptoms. 

Moved mouse to the 
DDW. Clicked on slider 
to view a more detailed 
description of 
A ppendicitis- 

Clicked on Bowel 
Obstmction and its 
corresponding 
symptoms. 

Moved mouse to the 
DDW. Clicked on slider 
to view a more detailed 
description of Bowel 
Obstruction. 

... The list is very 
good and cm help 
me determine the 
disease . . . 

.. . So you might 
have Appendicitis 
or Bowel 

DetaiIed 
description of 
Appendicitis was 
disptayed. 

More detailed 
description of 
Appendicitis was 
displayed. 

Detailed 
description of 
Bowel Obstruction 
was displayed, 

More detailed 
description of 
Bowel Obstruction 
was displayed. 

Table 6-3. Verbal Protocols on Usefulness of T'TA for Identifj4ng Diseases on Task 1 
(Subject 2 )  



Table 6-4 shows that the subject clicked on Peritoritis and Aortic Aneurysm immediately 

after TTA identified Peritoritis and Aortic Aneurysrn as likely diseases. Later, he moved 

the mouse to the DDW, but cornmented that the disease inferred by TTA did not match 

his own diagnosis, and then continued the task based on his own medical knowledge. He 

did not move the mouse to any of =A's Evindows after making his comment. 

Time Patient/ Subject's Subject's Action TTA's Diseasesl TTA's Detailed 
Caller Thinking Atoud Symptoms Description 

Window (DSW Window (DDW 
t I ... vomited ..- 

... Symptom is Entered C'omiting as 
Vornifing ... the symptom- 

Periforit is was 
dispiayed as the 
most likely disease 
proactively, dong 
with its 
corresponding 
symptoms- 

Aortic Aneurysm 
was disptayed as 
the second most 
likeiy disease 
below Peritoritis. 
and its 
corresponding 
symptoms. 

Clicked on Peritoritis 
and its corresponding 
symptoms. 

Clicked on Aortic 
Aneurysm and its 
corresponding 
symptorns. 

... It did not match 
rny own diagnosis 

Moved the mouse to 
the DMS. 

Detailed 
description of 
Perit orit is was 
displayed. 

Detailed 
description of 
Aortic Aneurysrn 
was displayed. 

Table 6-4. Verbal Protocois on Usefuiness of TTA for IdentiSling Diseases on Task 2 
(Subject 2) 



Table 6-5 shows that the subject moved the mouse on Appendicitis and then on its 

corresponding symptoms in the DSW. Under Appendicitis, most of the symptoms were 

checked. She appeared to agree with TTA's inference and entered Appendicitis as the 

Chief Complaint. She also comrnented that TTA could help Save time in finding the 

necessary medical information. 

Time Patient/ Subject7s Subject's Action TTA9s Diseases/ TTA's Detailed 
Caller Thinking Aloud Symptoms Description 

Window @SW) Window @DW) 
t~ ... Have you 

experienced loss o f  
appetite? . . . 

r i  ..- yes .-. Entered AnorexiP 
(loss of appetite) as 
the syrnptorn. 

Under 
Appendiciris, rnost 
of the syrnptoms 
were checked. 

... you rnight have Enter Appendiciris as 
Appendiciiis . . . the Chief Cornplaint. 
Chief compIaint ... 
Appendiciris . . . 

... It saves m e  tirne 
in finding the 
information myself 

Appendicitis w as 
displayed as the 
most Iikely disease 
proactivety. along 
with its 
corresponding 
symptoms. 

Table 6-5. Verbal Protocols on Usefulness of TTA for Identieing Diseases on Task 1 
(Subject 3) 



Table 6-6 shows that the subject clicked on ChoZeZithiasis in the DSW and then moved 

the mouse to the DDW. He appeared to agree with TTA's inference by entering 

Cholelithiasis as the Chief Cornplaint. 

Time Patient1 Subject's Subject's Action TTA's Diseasesl TTA's Detailed 
Caller Thinking Aloud Symptoms Description 

Window @SW) Window (DDW) 
1 

tl ... Have you Cholelithiaris was 
noticed anything displayed as the 
special about the most Iikely disease 
color of the skin? ... proactively, aIong 

with its 
corresponding 
syrnptoms- 

t2 . . . not sure-. . . . - your friend has Enter Choielithiasis 
past medical as the Chief 
history, so the Cornplaint 
chance of 
Choielithiasis is 

TabIe 6-6. Verbal Protocols on Usefûlness of TTA for Identifying Diseases on Task 2 
(Subject 4) 

Tables 6-7 and 6-8 present some examples that subjects appeared to use TTA to 

formulate their line of questioning. In Table 6-7, it shows that as soon as the subject 

entered Vomiting as a symptom, both Vomiting and Nausea were displayed in die DSW. 

Afier she had clicked on both Vomiting and Nausea, detailed descriptions of Vorniting 

and Nausea were displayed in the DD W. She used the information in the DDW that 

"Nausea does not always lead to Vomiting" to ask further questions for clarification. 

Finally, she confirrned that the patient did have Vomiting. 



Subject's Subject's Action 
Caller Thinking Aloud Symptoms Description 

Window @Sm Window @DW) 
I I  ... vomited ... 

. . yes 

... Symptom is Entered Vomiting as 
Vomiting -. - the symptom. 

... Hey, it also Clicked on Vomitirrg 
shows Nausea. Let and moved mouse to 
me click on each of the DDW. 
them .-. 

Clicked on Nausea 
and moved mouse to 
the DDW. 

.., Did you really 
vomit? ... 

... So it is not 

Both Vomiting and 
Nausea were 
displayed. 

Detailed 
description of  
Vom iting w as 
displayed. 

Detailed 
description of 
Nausea was 
dispIayed- 

Nausea ... 

Table 6-7. Verbal Protocols on Usefùlness of TTA for Iduencing the Line of Question 
(Subject 1) 

Table 6-8 shows that following TTA's suggestion to confirm the existence of 

Tuchycardia (rapid heart rate), which was indicated by a question mark next to 

Tuchycardia in the DSW, the subject asked whether the patient had a rapid heart rate. 

Later, TTA suggested confirrning the existence of Anorexia (loss of appetite), which 

prornpted him to ask whether the patient had any loss of appetite. Finally, he commented 

that the checks and question marks were helpfül. In a similar situation, another subject 

also followed ?TA'S suggestions to formulate her line of questioning. 



Time Patient/ Subject's Sn bject's TTA's Diseases/ TTA's Detailed 
CaHer ~ h i n k i n ~  Aloud Action Symptoms Window Description - 

@SM Window (DDW) 
Appendicitis was display ed as 
ttk most likely disease 
proactively, dong with its 
corresponding syrnptorns. 

There were checks next to 
Abdominal Pain and Right Low 
Pain. 

There was a question mark next 
to Tachycardia (rapid hem 
rate). 

t2 . . . Have you 
experienced rap id 
heart rate? . . - 

f 3 ... yes ... 
... Symptom is Entered 
Tachycardia . . . Tachycardia 

as the 
symptom. 

Appendicitis was displayed as 
the rnost Iikely disease. along 
with its corresponding 
syrnptoms. 

appetite? . . . 
t7 ... yes ... 
Cs ... Symptom is 

Anorexia .. . 

t9 

There were check next to 
Abdominal Pain. Righr Low 
Pain, and Tachycardia. 

There was a question mark next 
to Anorexia (loss of appetite). 

. . . Have yoc 
expetienced loss of 

Entered 
Anorexia as 
the symptorn. 

rlppendicitis was displayed as 
the rnost IikeIy diseass, along 
with its corresponding 
symptorns. 

There were checks next Io 
Abdominal Pain. Righi Low 
Pain, Tachycardia, and 
Anorexia. 

. . . The checks and 
question marks are 

Table 6-8. Verbal Protocols on Usefulness of TTA for Influencing the Line of Question 
(Subject 2) 



In summary, the verbal protocols show that the subjects appeared to respond positively to 

the way TTA displayed the information proactively. They recognized that the proactive 

display of information could help Save their time in finding information and remind them 

of questions they needed to ask (see Tables 6-1 and 6-5). Furthermore, subjects also 

appeared to be positive about TTA's determinïng likely diseases based on patients' 

symptoms and formulating the line of questioning (see Tables 6-3 and 6-8). Finally, when 

=A's advice was not deemed useful, the subjects continued the task execution based on 

their own medical knowledge as if TTA was not there (see Table 6-4). 

6.2 ScreenCarn Data 

Data captured by ScreenCarn provided some quantitative measure for analyzing: (1) to 

what extent TTA was used, and (2) what impact TTA had on the subjects' work, in 

addition to helping interpret the thinking aloud protocols. To answer the first question, 

two measures were taken: the total task time for the triage process (i-e., fiom the time 

when the first symptom was entered to the time when the chief cornplaint was entered) 

and the amount of time that the subject's mouse pointer was on either the DSW or the 

DDW. It is assurned that when the mouse pointer was moved to the TTA windows, the 

focus of the subject was also on TTA, or the thought of the subject was related to TTA. It 

is understood that this is only a rough proxy of TTA usage. The results are surnrnarized in 

Table 6-9. 



Subject 

-- 

Table 6-9. Total Task Tirne and Mouse-on-TTA Time 

I 1 

As shown in Table 6-9, on average, 4 1% of the subjects' time was spent using TTA in the 

diagnostic process. Therefore, it appears that TTA was indeed used to a significant 

extent. Note that al1 subjects spent less t h e  on TTA during Task 2 than they did in Task 

1. It turns out that the average was 105s (44%) for Task 1 versus 74s (37%) for Task 2. 

About 30% more time was spent on T'TA in Task 1 than in Task 2. A Wilcoxon test 

suggests that this difference is statistically significant at 95% (n = 5; a = 0.05). One 

explanation may be that TTA was still relatively new to the subjects when they 

performed Task 1, despite a generous allowance for training and tutonal tirne. Therefore, 

they spent more time exploring the information provided by TTA in Task 1 than in Task 

2. Another reason may be that Task 2 was more challenging (see Section 5.3). Results 

fiom ScreenCam showed that Choleithiasis was displayed in the DSW as one of the 

likely diseases only afler four or more symptoms had been entered in the DMS in Task 2. 

Task 

Average 1 219 90 1 41 

Total task time 
(s) 

Mouse-on-TTA 
time (s) 

Percentage of 
mouse-on-TTA 

time (Oh1 



Therefore, in Task 2 when the subjects found that the suggestions, based on two or three 

symptoms, provided by TTA did not match with what they were thinking, they rnight 

have just ignored the information provided by TTA and continued the task based on their 

own medical knowledge. This was confirmed by the thinking aloud data that subjects did 

not spend any time checking the information in the DDW when the inferred disease 

displayed in the DSW did not match with what they were thinking (see Table 6-4). 

However, if the novelty effect is taken out, 37% of task time on TTA could be more 

realistic and is still appeared to be quite sugnificant. 

The impact of TTA on the subjects' work was also exarnined in terms of the overlap 

between TTA's advice and the actual line of questioning. The total nurnber of questions 

asked by the subjects and the nurnber of questions that appeared to be prompted by TTA 

(ody if the current question matched the currentiy recomrnended question by TTA) were 

counted. For instance, when a question mark was shown next to Tachycardia and the 

subject did ask questions related to Tachycardia, these questions were considered to be 

influenced by TTA (Figure 6- 1). 



Figure 6-1. TTAYs Suggested Symptoms to be Confkmed 

On the other hand, if the subjects' questions deviated from the TTA's advice, it is 

assumed that they were based on their own medical experience and knowledge, rather 

than influenced by TTA. The results are summarized in Table 6-10. It is understood that 

this measure tends to over-estimate the influence of TTA for two reasons. First, without 

T'TA, the subjects could have independently corne up with the same line of questioning. 

Second, subjects might have used TTA for curiosity and exploration to see what would 

happen, which is likely to happen in the initiai use of any system. 



1 Subject 1 Task ) Total number of 1 Number of 1 Percentage of 
questions asked questions overlap (%) 

overlapped 
with TTA 

1 1 11 9 81 

Table 6-10. Total Number of Questions and Overlaps with TTA 

Table 6-10 indicates that on average 69% of the subjects' questions were consistent with 

T'TA'S prornpting. It could mean that TTA appeared to be influentid in the diagnostic 

process. A closer examination of Table 6-10 reveals that the degree of overlap in Task 1 

was always greater than or equal to that in Task 2. It t m s  out that the average number of 

questions which overlapped with TTA was 8 (76%) in Task 1 versus 6 (62%) in Task 2. 

The percentage was about 25% higher in Task 1 than in Task 2. A Wilcoxon test 

confirms that the difference is statistically significant at 99.5% (n = 5; cc = 0.005). The 

reason for the difference could be that in Task 1, the suggestions provided by TTA 

closely matched with what the subjects were thinking, and therefore, the suggestions 

were accepted. These nurnbers are consistent with Table 6-9, and support the 

interpretation for them. 



6.3 Questionnaire Data 

The results of the questionnaire are surnmarized in Tables 6-1 1,6- 12, and 6- 13. The 

answers to the questions were arranged on a seven-point scale (Appendix 1). Overall, the 

subjects perceived the ease of use of TTA to be high (Table 6-1 1). The average of the 

scores for dl subjects ranged fiom 5.0 to 6.2 and the overail average is 5.7', on a 7-point 

scale. 

Table 6-1 1. Resdts on Ease of Use of TTA 

The subjects' perception of the usefüiness of TTA was also high (Table 6- 12). The 

average of the scores for ail subjects ranged fiom 5.6 to 6.2 and the overall average is 5.8, 

on a 7-point scde. 

1 

8 During the usability study, subjects also pointed out some usability probIems in the interface design of 
TTA such as the lack of drop-down Iist and spell-check function. The high ease-of-use score could have 
been higher without these problerns. 
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Table 6-12. Results on Usefihess of TTA 

The subjects perceived the features (Le., proactively displaying related Uiformation, 

contuiuously updating information, and displaying a List of likely diseases) of T'TA to be 

satisfactory (Table 6-13). The average of the scores for d l  subjects ranged fiom 4.2 to 5.4 

15 
I 

6 
7 
5 
5 
5 
5.6 

L 

and the overall average is 4.8, on a 7-point scde. 

Question 
Subject 1 

Table 6-1 3. Results based on TTA's Features 

1 
6 

3 
6 

Question 

Subject 1 
Subject 2 
Subject 3 
Subject 4 
Subject 5 
A verage 

On average, questions 7 (Y have no trouble focusing on my work even though the 

contents of TTA's windows are updating continuously") and 14 ("1 did not find the 

continuous information update by TTA distracting") had a relatively lower score than the 

Subject 2 
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Subject 4 
Subject 5 
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2 ("The information 
provided by TTA 
reminds me other 
information that is 
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7 ("1 have no trouble 
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even though the 
contents of TTA's 
windows are updating 
continuousIyn) 
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oiher questions (4.2 and 4.4 respectively); they were close to neutral. The results fiom 

questions 7 and 14 indicate that the subjects had ambivalent feelings towards the 

continuous Information update. 

6.4 Anecdotes 

The Chief Clinical Officer (CCO) and Senior Nurse (SN) were invited to participate in an 

informal evaluation of TTA. They thought aloud and gave comments fiom their 

perspectives while going through the exercises. 

Tables 6-14 and 6-15 show some examples that ?TA helped them to formulate the line of 

questionhg during the task process. Table 6-14 shows that as soon as the SN entered 

Abdominal Pain as a symptom, Abdominal Pain was displayed in the DS W and its 

detailed description was displayed in the DDW. She read the follow-up questions in the 

DDW and comented ,  "1 like the questions here. It reminds me of questions 1 should 

ask." She continued, and entered Back Pain and Flank Pain as the next symptoms. 

Peritonitis was displayed in the DSW as the most iikely disease, dong with its 

corresponciing symptoms. Two of the symptoms were Fever and Vomiting- Aorric 

Aneurysm was also displayed in the DSW as the second most likely disease, dong with 

its corresponding syrnptoms. She clicked on Fever and then Vomiting under Peritonitis in 

the DSW and moved the mouse to the DDW. Then she said, "1 shouid confirm whether 

the patient has Fever and Vomiting." 



r m e  Participant's Participant's TTA's Diseases/ TTA's Detailed 
~hinkiag Aloud ~ c t i o n  - Symptoms Window Description Window - 

@SM @DW) 
Entcred Abdominal 
Pain as the symptom. 

Abdominal Pain w a . ~  
displayed. 

Clicked on the DDW 
and scrolled down to 
view further details 
and questions. 

Mouse pointed to 
each question and 
asked the questions 
one by one. 

.-- What makes the 
pain better or 
worse? 

... I like the 
questions here. It 
reminds me of 
question I should 
ask ..- 

Entered Back Pain 
and Flank Pain as 
symptorns. 

Peritoritis was displayed 
as the most likely disease 
proactively. along with 
its corresponding 
symptoms. 

.4ortic Aneurysm was 
displayed a s  the second 
most likely disease 
below Periroritis, and its 
corresponding 
symptoms. 

I shoutd confirm 
whether the patient 
has Fever and 

Clickrd on Periroritis 
and its corresponding 
symptoms. 

Clicked on Aorric 
Aneurysm and its 
corresponding 
symptorns. 

Detailed description of 
Abdominal Pain was 
displayed. 

A list of questions was 
dispIayed. 

DetaiIed description of 
Periroritis was displayed. 

Detaifed description of ifortic 
Aneurysm was dispiayed. 

Vomiting 

Table 6-14. Verbal Protocols on Usefulness of TTA for Fonnulating the Line of Question 
(SN) 



In a similar situation, shown in Table 6-15, the CC0 moved the moue to the DDW and 

read the follow-up questions for Abdominal Pain. Then she commented "Suppose I've a 

patient on the line, 1 can just ask the questions here." She continued with the exercise and 

entered Right Low Pain as the second symptom. Appendicitis was displayed in the DSW 

as the most Iikely disease, dong with its corresponding symptoms such as Tachycardia, 

Fever, and Nausea. Bowel Obstruction was dispIayed in the DSW as the second most 

likely disease, dong with its corresponding symptoms such as Const@ation. She clicked 

on Tachycardia, Fever, Nausea, and Constipation. Then she said, "If 1 believe the patient 

has Appendicitis, 1 can ask whether the patient has Tachycardia, Fever, and Nausea. But 

if I believe the patient has Bowel Obstruction, 1 can ask whether the patient has 

Constipation ." 



Participant's Participant's Action TTA's Detailed 
~ h i n k i n ~  Aloud Symptoms Window Description - 

@sw> window @DW) 
Entered Abdominal 
Pain as the sy mptom. 

-. . If 1 believe the patient 
has Appendicitis, 1 c m  
ask whether the patient 
has Tachycardia, Fever, 
and Nausea. But if 1 
believe the patient has 
Bowel Obstruction, 1 can 
ask whether the patient 
has Comti~ation. 

Abdominal Pain was 
displayed. 

Clicked on the DDW 
and scrolled down to 
view further details and 
questions. 

Mouse pointed to each 
question and asked the 
questions one by one. 

. .. What rnakes the pain 
better or worse? 

... Suppose I've a patient 
on the Iine, 1 can just ask 
the questions here . . . 

Entered Right Low Pain 
as the next symptom. 

Appendicitis was 
displayed as the most 
likely disease proactively. 
along with its 
corresponding symptoms, 

Bowel Obstruction was 
displayed as the second 
most likely disease below 
Appendicitis, and its 
corresponding syrnptoms, 

Clicked on Appendicitis 
and its corresponding 
syrnptoms. 

Clicked on Bowel 
Obstruction and its 
corresponding 
syrnptoms. 

Detailed description 
of Abdominal Pain 
was displayed. 

A list of questions 
was displayed. 

Detailed description 
of Appendicitis was 
displayed. 

Detailed description 
of Bo wel Obstruction 
was displayed- 

Table 6-15. Verbal Protocols on Usefüiness of T'T'A for Formulating the Line of Question 
KCO) 



Table 6- 16 shows an example that the C C 0  used TTA to identi@ the disease during the 

task process. As soon as Abdominal Pain and Right Low Pain were entered as symptoms, 

Appendicitis was displayed in the DSW as the most likeiy disease, along with its 

corresponding symptoms. Bowel Obstruction was displayed in the DSW as the second 

most likely disease, along with its corresponding syrnptoms. There were checks next to 

Abdominal Pain and Right Loiu Pain indicating thzt they were confimied symptorns. 

Then she commented, ''1 can continue to ask whether the patient has the other symptoms. 

By that tirne, 17d aiready know what disease the patient ha." 

TTA can also be used as an online training tool. For instance, according to the verbal 

protocol shown in Tables 6-2 and 6-1 8, two participants of the usability study highlighted 

the potential benefits of using ?TA as an online training tool. However, in general there 

is a difference between task support systems and online training tools (e.g., intelligent 

tutoring systems). For instance, online training tools typically focus on education while 

task support systems focus on task cornpletion. Therefore, a task support system Iike 

TTA can be used as a training tool like an intelligent tutonng system but not vice versa. 



Time Participant's Participant's TTA's Diseases/ TTA's Detailed 
~ h i n k ï n ~  Aloud Action Symptoms Window Description 

@sw) Window (DDW) 
Entered Abdominal 
Pain and Righr Low 
Pain as symptorns. 

Appendiciiis was disp1ayed 
as the most Iikely disease 
proactively, along with its 
corresponding symptorns. 

Clicked on 
Appendicitis and its 
corresponding 
symptoms. 

t4 Clicked on Bowel 
Obsfruction and its 
corresponding 
symptoms. 

t s . . , 1 can continue to ask 
whether the patient has 
the other symptorns. By 
that tirne, I'd already 
know what disease the 

Bowel Obstruction was 
displayed as the second most 
Iikely disease beIow 
Appendicitis, and its 
corresponding symptorns. 

There were checks nest to 
Abdominal Pain and Right 
Low Pain. 

Detailed description 
of Appendicitis was 
displayed. 

Detailed description 
of Bowel Obstruction 
was displayed. 

Table 6-16. Verbal Protocok on Usefiilness of TTA for Identieing of Disease (CCO) 

Tables 6-17 and 6-18 show the comrnents made by the CO0 and SN on the TTA's 

interface. Table 6-1 7 shows a situation that Peritonitis was suggested by TTA to be the 

most likely disease. Under Perifonifis, the confinned symptoms, which had checks next 

to them, were Abdominal Pain, Back Pain, and FIank Pain. The SN said, "1 like the 

checks. They are very clear and like a log of al1 the symptoms the patient has." 



Tirne Partici~ant's Participant's TTA's Diseases1 TTA9s Detailed 
~ h i n k i &  Aloud ~ c t i o n -  Syrnptoms Window Description Window 

@SW @Dw" 
t~ Entered Abdominal 

Pain. Back Pain, and 
Flank Pain as 
symptoms. 

Peritoritis was displayed 
as the most likely disease 
proactively, along with 
its corresponding 
symptoms. 

Aorric Aneurysm was 
displayed as the second 
most likely disease 
below Peritoritis. and its 
corresponding 
symptoms. 

There were checks next 
to Abdominal Pain, Back 
Pain. and Flank Pain. 

Clicked on Peritoritis 
and its corresponding 
symptoms. 

t4 Clicked on Aortic 
Aneurysm and its 
corresponding 
symptoms. 

ts ... 1 like the checks. 
They are very clear 
and Iike a Log of a11 
the symptoms the 

Detailed description of 
Peritoritis was displayed. 

Detailed description of Aortic 
Aneurysm was displayed. 

Table 6-17. Verbal Protocols on Usefulness of TTA's Interface (SN) 

Table 6-18 shows that when the CC0 was reading the follow-up questions aloud in the 

DDW, she commented, "1 like the windows (DS W and DDW) being up-front. The nurses 

do not need to go back and forth to find the information. They are also good for training. 

We could put our online training information here." 



Participant's Participant's TTA7s Diseasesl TTA7s Detailed 
Thinking Aloud Action Symptoms Window Description - 

@SM Window @DW) 
C I  Entered Abdominal 

Pain and Right Low 
Pain as symptoms. 

Appendicitis was dispiayed 
as the most likely disease 
proactively, along with its 
corresponding symptoms. 

Bowel Obstruction was 
displayed as the second most 
Iikely disease below 
Appendicitis. and iis 
corresponding qmptoms. 

There were checks nest to 
Abdominal Pain and Right 
Low Pain- 

4 .. . 1 Iike the windows 
being up-front. The 
nurses do not need to go 
back and forth to find the 
information. They are 
also good for training. 
We could put our online 
training information here 

Clicked on 
Appendicitis and its 
corresponding 
symptoms. Read the 
contents in the DDW. 

Clicked on Bowel 
Obstruction and its 
corresponding 
symptoms. Read the 
contents in the DDW. 

Detailed description 
of Appendicitis was 
displayed. 

Detailed description 
of Bowel Obstruction 
was displayed. 

Table 6-1 8. Verbal Protocols on Usefulness of TTA's Interface (CCO) 

In the informal evaluation of TTA, both the CC0 and SN appeared to find TTA useful in 

formiilating the line of questioning (see Tables 6-1 4 and 6- 15) and identiQing diseases 

(see Table 6-16). They aiso appeared to be positive about the features of the interface, 

such as proactive dispiay of information in the DSW and DDW side-by-side to the user's 



task window and the use of checks to hdicate the existence of confirmed symptoms (see 

Tables 6- 17 and 6-1 8). 

In summary, the subjects appeared to be positive about =A's proactive display of advice 

and its continuous update of information in a non-obtnisive manner. This is supported by 

the thinking aloud data. In addition, on average, 41% of the task time was spent on TTA 

and up to 70% of subjects' questions appeared to be influenced by ?TA. The post-task 

questionnaire data shows that TTA was perceived easy to use and usefid for the task. 



7. Discussion and Conclusions 

This concluding chapter discusses the contribution, scalability, generalizability, and 

limitation of this research, along with some directions for M e r  work. 

7.1 Contribufion 

This research contributes to the field of online task support by proposing a novel 

approach to providing proactive task support. The approach consists of a user interface 

based on persistently present windows on the side to display proactive advice, and a task 

support engine utilizing neural networks to approximate a user's intention. An 

architectural model, which integrates the user interface and task support engine, is also 

proposed. 

The proposed approach is significant for two reasons. First, it sounds appealing to 

provide task support in a just-in-time and just-enough manner in order to narrow the gap 

between the availability and accessibility of online resources. However, there is no 

generic methodology for implementing these ideas, although they fiequently appear in 

the literahire. In this research, the just-in-time requirement is reasonably satisfied by the 

use of continuous display of relevant task support in persistently present advice windows. 

It is generalizable and suitable for a broad range of tasks beyond diagnostic tasks. The 

just-enough requirement is satisfied by identifjhg the most relevant advice using a 

neural network based on a user's current task progress, and customizing the advice based 

on the user's profile and experience. The proposed approach seems to be generic, at least 



well suited for diagnostic tasks, and can be considered an effort to operationalize the just- 

in-time and just-enough requirements of task support. 

Second, to some extent, the proposed approach explores the middle ground between the 

two existing approaches of user-initiated and system-initiated task support: It offers 

relevant online resources to users in a proactive but non-obtrusive manner, to rect ie  the 

deficiencies of user-initiated support and to overcome the difficulties associated with 

system-initiated support. As discrissed earlier, user-initiated support is ineffective, 

inefficient, and prone to behavioral problems due to the ccproduction paradox ." Likewise. 

there are also problems associated with system-initiated support such as the difficulty 

with correctly inferring users' intention, obtmsiveness, and interference with users' task. 

The proposed approach identifies one or more plausible tasks to approximate a user's 

task so that a range of relevant advice can be continuously displayed and updated in a 

separate advice window side-by-side to the task window for the user's selective use. 

Therefore, the proposed approach is definitely proactive, but less obtnisive and 

interfering than the conventional system-initiated task support. 

The working prototype, T'TA, has illustrated the viability of the proposed approach, 

implementation strategies, and the function of the key components of the architectural 

model. The usability study in a field setting has shown that, on average, 41% of the 

subjects' task time was spent on TTA and up to 70% of their questions appeared to be 

influenced by TTA. Results fiom a post-task questionnaire also show that TTA was 



perceived easy to use and usefiil for the task. It seems that the proposed approach is 

feasible and reasonably effective for diagnostic tasks. 

7.2 Scalability and Generalizabilîty 

The scalability of the proposed approach c m  be examined by looking into the use of 

persistently present windows at the user interface, and the neural network, which is 

central to the task support engine. At the user interface, two extra advice windows are 

used persistently to display proactive advice. The idea seems generalizable to any 

application rather than diagnostic tasks only, and the only factor that may limit the 

scalability is the size of the computer screen, which may Lirnit the nurnber of windows 

concurrently opened by users. However, the main issue of interest is user preference and 

attitude to the interface style, which is an empincal question. 

In the task support engine, the scalability of the proposed approach is determined by the 

modeling power and robustness of neural networks in general. Each time a new task is to 

be supported (e-g., a new disease is added), a new output node needs to be added to the 

neural network, and the newal network needs to be re-trained. fncreasing the size of a 

neural network in this way has at least two problems. First, if the number of output nodes 

is large and only one of them is tumed on and the rest off to represent any given task (cf. 

Baxt, 1990), the output patterns would be similar to each other. For example, suppose 

that there are 20 output nodes. The corresponding output pattern for the third and fifth 

taskswouldbe(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),and(0,0,0,0,1,0,0, 



0,0,0,0,0,0,0,0,0,0,0,0, O), respectively. The values of 18 output nodes are exactly 

the same for both cases. This will produce a relatively small mean square error in 

training. Thus, an optimal solution may not be found (Masters, 1993). Second, in general, 

larger neural networks are more difficult to traing (Ballard, 1990; Jacobs & Jordan, 1992). 

Some researchers suggest that modularization is a possible way to solve the scalability 

problem in neural networks (e-g., Ballard, 1990; Battiti & Colla, 1994; Happel & Murre, 

1994). A module is a self-contained neural network with its own input, hidden, and 

output nodes, although two different modules may share some common input nodes. For 

instance, a modularization technique is to break up the data samples, and different 

modules are trained on different subsets of the data samples (Baxt, 1992). Different 

modules can be used to represent different tasks in this research, where the first module 

may be abdominalproblem, the second headache, and so on. In this way, not only can 

the neural network be scaled up fairly easily, it also alleviates the problems mentioned in 

the previous paragraph, as the network consists of modules of relatively simple networks 

instead of one huge cornplex network. However, having multiple networks designed to 

operate in parailel to produce multiple output merits fùrther investigation to avoid 

outputting too many results. Although it may be an issue at the level of system design to 

control the number of output or which modules of network are activated at when, this has 

to be addressed before modular neural networks c m  be used in practice. 

- .  

As a simple example, a standard backpropagation network of 30 input nodes, 20 hidden nodes, and 30 
output nodes has 1200 connections, Le., a total of 1200 weights need to be detemined in training. If the 
size of the network is doubled (Le., 60 input nodes, 40 hidden nodes, and 60 output nodes), the network 
will have 4800 connections (four times larger than the original network). 



The generalizability of the proposed approach can be examined by looking into the nature 

of the task domain within and beyond diagnostic tasks. The proposed mode1 should be 

generalizable to any diagnostic or trouble-shooting tasks. This has been shown in the 

hypothetical example of trouble-shooting for PC in Section 3.4, and medical diagnosis in 

Chapter 4. As specified in Section 3.1, this research assumes diagnostic tasks typically 

exhibit the following characteristics: (1) a task can be decomposed into a series of 

discrete parailel steps, and (2) the task domain involves a f i t e  set of basic steps (input) 

and a finite set of solutions (outcorne). The proposed approach may not be suitable for 

other task domains, which do not have the above characteristics. For example, a cornputer 

programming domain bas an uniimited number of tasks based on lunited statements and 

control structures. Therefore, in this case, the proposed approach, which can only support 

a limited number of pre-specified task scenarios, may not be usefûl. 

7.3 Limitations 

The limitations of this research are discussed fiom three perspectives: the user interface, 

task support engine, and usability stildy. With respect to the user interface, proactive task 

support is displayed in persistently present windows side-by-side to the user's task 

window, and revised continuously according to the user's task progress. Although TTA 

users perceived the proactive display useful, the post-task questionnaire data also 

revealed that their perception of the continuous update was barely positive. In other 

words, the content of proactive advice was welcome, but there was some ambivalent 

feeling towards the continuous update. Therefore, a major design challenge is to retain 



the proactive nature of TTA's advice, which appeared to be effective and influentid, but 

to reduce the potentially distracting effect of the contuiuous information update. 

The task support engine's weaknesses originate fkom the use of neural networks. First, 

the neural network does not recognize certain patterns of symptoms-diseases if they are 

missing in the training sarnples. Second, premature advice swings among different 

diseases in response to newly confumed symptoms before it eventually stabilizes on one 

or two diseases with enough confirmed symptoms. It confises the user and discredits the 

task support system. This scenario is more likely to occur for more challenging diagnostic 

tasks such as the Task 2 in the usability study, where TTA could not identify the likely 

disease until four or more symptorns were confiirmed. The proposed perfomance- 

tracking module can play a key role in any remedial measures- 

Finally, the usability study has three limitations. First, the data fiom the subjects' 

thinking aloud did not give much insight to their cognitive during the task execution 

processes (cf. Ericsson & Simon, 1993). This could be due to the way that nurses interact 

with patients over the telephone: Nurses are already busy talking to patients. They may 

have other valid reasons to reh-ain fiom revealing what exactly they have in their mind, 

e.g., the fact that they receive advice fiom the cornputer, or the severity of disease in 

order not to intemi@ patients' stress level. Therefore, thinking aloud tumed out to be 

incompatible with the task and the nurses' nomal work habits, resulting in little insight 

to the subjects' cognitive processes as to the extent to which they were influenced by 

TTA. Second, the small number of available subjects did not &ord controlled 



experiments or conclusions with statistical significance. Ideally, it would have been more 

interesting to compare the performance of subjects with TTA versus without TTA, and 

the performance of subjects with passive advice versus proactive advice. Third, the study 

was based on initial use of T'TA, which inevitably involved some novelty effect. 

7.4 Future Work 

Based on the results of this research, there are at least three avenues of exploration for 

future research. First, with regard to the user interface, different display strategies could 

be adopted to h d  a balance between retaining the proactive nature of task advice and 

keeping the distracting effect of the continuous update to a minimum. One possibility is 

to display advice only when its likelihood is greater than a threshold. The threshold could 

be set at a high level to reduce the chance of displaying irrelevant information, which 

may affect the credibility of the task support, and to reduce the fiequency of update. 

Another way to achieve the same goal is to display task support more conservatively, 

e-g., at a later stage, when the number of confirmed steps is greater than three or four. 

Hopefully, the increase of the nmber  of confirmed steps may improve the accuracy of 

the inference. The ideal balance is reached if task support is provided soon enough to 

help formulate the line of questioning, and late enough to minimize the distracting effect 

and maintain the credibility of the task support. Furthemore, it may be usefil to show the 

probabilities next to the diseases and syrnptoms to indicate their likelihood. With this 

information, nurses may stop asking unnecessary questions if one of the diseases is above 

a predefined probability (e.g., 0.8), which may help shorten the diagnostic process. 



Second, in the task support engine, the performance-tracking module can be irnptemented 

to evaluate the effectiveness of the task support system continuously (see Section 3.3). 

For exarnple, if users' actions do not seem to be influenced by task support for a given 

scenario consistently, this information should be captured and used for enhancing the 

performance of the system. This function c m  be extremely important for proactive task 

support as a distinct feature. 

Finally, a baseline measure can be performed to measure how nurses are asking questions 

without TTA in real life. By comparing the overlap between the actual line of questioning 

without TTA and with T'TA, the impact of TTA on nurses' decision making process can 

be measured. Moreover, the proposed approach can be applied to a different domain to 

test its scalability and generalizability. Although it is expected that the approach is well 

suited for diagnostic tasks, replicating TTA in a different domain would help confim the 

belief. Furthermore, it would be better if the replication allows a longitudinal usability 

study, which tracked the users' behavior over a longer penod of tirne. A longitudinal 

usability study in a field setting could offer insight to how users make use of an online 

task support system in an organization, and whether there are enough long-term benefits 

to j u s t e  the effort of developing such a system. A detailed cost benefit analysis is 

required to assess the potential of online task support as a credible alternative to 

conventional end-user training and support. 



7.5 Concluding Remarks 

This dissertation has identified the weaknesses in user-initiated and system-initiated task 

support, and proposed a novel approach that can alleviate the difficulties with these two 

approaches. The proposed approach has also operationalized the ideas of just-in-time and 

just-enough task support. Although the task domain of the prototype is medical diagnosis, 

the proposed approach is airned at a broad range of applications. The main t h s t  of the 

proposed approach is its potential for enhancing access to online resources and literally 

bringing them to the users' fingertips. 
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Appendix A: Algorithm of the lnference of Diseases by the 
Neural Network 



If  
there is new input (symptom) to the DMS 

check the online resources to see whether the symptom matches with any KU, 
If  

matched 
then 

display the KU in the DSW, 
display the detailed description of the KU in the DDW, 
take the activation energy from the slider on the DSW, 
activate the propagation network with the KU and activation energy (see 
Appendix B). 
If 

there are two or more matched KU to the DMS 
then 

reset all input vaiues of the neural network to "O", 
for al1 matched KU: 

set the corresponding input value of the neural network to 
cLl ,', 

compute the output values of the neural network for al1 diseases, 
sort the output values, 
select the largest output value (Le., the most likely disease 
inferred), 
select the second largest output vaIue (Le., the second most likely 
disease inferred), 
display the most likely and second most likely diseases in the 
DSW, 
display their corresponding syrnptoms ordered by 1-values in the 
DSW, 
for each symptom displayed in the DSW: 

the symptom has been confrnned (Le., input to the 
DMS) 

display a check mark next to the symptom. 

the symptom has not been confirmed and has had 
the largest 1-value among other unconfirmed 
symptoms 

display a question mark next to the symptom 



Appendix B: Algorithm of the Activation of the Semantic 
Network 



For d l  connected KUs: 
If 

the KU is not the sarne as the activated KU (Le., fonvard firùig only) 
then 

calculate: computed-energy = activation energy x weight between the KU 
and the activated KU, 
If 

computed-energy > threshold of the KU 
then 

display the KU in the DSW, 
set activation energy = computed-energy, 
repeat the process with the KU and the activation energy 



Appendix C: An Evaluation of the Telephone Triage Assistant 



An Evaluation of the Telephone Triage Assistant 

The objective of this research is to evaluate the effectiveness of some emerging 

computer-based techniques that can be applied to telephone triage. To this end, a 

prototyped Telephone Triage Assistant (TTA) has been developed to assist novice nurses 

in identieing the nature of diseases and the need for appropriate care based on the 

symptoms identified via a telephone interview- TTA supports the task by showing three 

types of relevant information for forrning the path of questioning during the interview: 

1. likely diseases inferred by TTA based on already confirmed syrnptoms, and 

additional symptoms to be confirmed, 

2. symptoms that are commonly associated with the ones that are already confirmed, 

along with background information about the confinned symptoms, and 

3. symptoms that are potentially relevant in subsequent steps. 

The scope of the curent version of TTA is modest and limited to nine presentations of 

Abdominal Pain such as Abdominal Aortic Aneurysm and Appendicitis, as the starting 

point. 

In the next half an hour, you wil: be trained to use TTA first, and given a couple of 

exercises to get familiar with TTA. Then, you will perform two telephone triage tasks 

using TïA. This process will be captured by the computer, including everything shown 

on the computer screen, your keyboard input and mouse movernent, and your thinking 

aloud, to be analyzed for M e r  improvement of TTA. At last, you will fil1 out a 

questionnaire about T'TA. 

All we are interested is the effectiveness of TTA. This study is by no means a measure of 

your medical knowledge, computer knowledge, or telephone interviewing skill. 



Appendix D: A Demo of TTA 



A Derno of TTA 

The researcher d l  give you a short demo of how to use TTA now. Please do not 

hesitate to ask should you have any questions. The following figure illustrates different 

components of TTA for your reference. 

Disease management system 
(Tas k W indow) 

(Inferred) Diseases/Symptoms 
W indow (TTA) 

lhir is usually III dohnod but can bo u o q  
unploacant and ic ionnod viscoral pain. Pain ic 
inliially fck ncar thc mid trnc of thc abdomcn. 

r ma niakas it batter or wone? 
Ir Llir vara aartr/ioudrrrlr/ritild? 
What is the regionlndiation of the pain? 
H m  lnng flnac it Ian7 
H m  ynii iilalr any rmairnnni7 
Any pact modrcal hictory (diabotos. 
hypoff ansion. 0tC.p 

Symptoms are 
entered here 

Detailed Description 
Window (TTA) 



Appendix E: Instructions for Thinking Aloud 



Instructions for Thinking Aloud 

We are interested in your running commentary on what you are attempting to do and 

what is going through your mind while you interact with the TTA. Therefore, we ask you 

to think aioud and taik aloud constantly- That is, Say out doud everything that passes 

through your mind for each step. 

It does not matter if your sentences are not complete. Just act as if you are done in the 

room speaking to yourself loudly. 

It is most important that you keep talking. If you are silent for more than 15 seconds, the 

researcher wiIl remind you to keep talking aloud. 

Before tuming to the real task, we will start with an exarnple. Please think aloud while 

you work on the following problem. 

Now think and tak  aloud while you calculate: 



Appendix F: Getting Familiar with TTA 



Getting Familiar with TTA 

You may now try out different functions of TTA. Take as much tirne as you need and 

feel fiee to ask any questions. To make sure you are fully familiar and confident with the 

features of TT& please go through the following scenario. Please also keep thinking 

aloud and talking aloud while working on this exercise. 

Enter Abdominal pain as the first symptom 

Click on Abdominal pain in the hierarchical list in TTA's Diseases/Symptoms 

Window 

Enter Backpain as the next symptom (notice ?TA starts to dispiay its inference when 

two or more symptoms have entered) 

Click on the other symptoms to view the detailed information in TTA's Detailed 

Description Window 

Notice a check (d ) indicates a symptom that has been confimed and a question mark 

(?) indicates a symptom that should be confirmed with the patient 

Move the slider of Refreshing rate to Max (notice the contents of TTA's Detailed 

Description window will be updated continuously) 

Move the slider of Level of details to High (notice the contents will be changed in 

=A's Detailed Description window) 

Enter Shock as the third symptom 

Enter Peritonitis to the Disposition in the Task Window (or Drag and drop Perïîonitis 

fiom the hierarchical list in TTA's Diseases/Symptoms Window to Disposition, by 

holding the Ctrl button on your keyboard). 



Appendix G: Telephone Triage Task 1 



Telephone Triage Task 1 

In the next few minutes, you will perform two telephone triage tasks. We would Iike you 

to make the process as close to your normal practice as possible, other than thinking 

aloud and using TTA. For each step, take as much time as you need, as task completion 

time is not a factor of evduation. 

1. Pick up the phone and carry out your telephone triage procedure as normal, Le., 

ask questions to identie a symptom, then enter it in the Task Window, and 

ask M e r  questions to i d e n w  and enter more symptoms until the likely disease 

is diagnosed 

2. Enter the Disposition in the Task Window according to your assessment 

3. Enter the Urgent/Emergent Reason, if any, in the Task Window 

4. Alert the researcher that you have completed the above steps. 



Appendix H: Telephone Triage Task 2 



Telephone Triage Task 2 

1. Pick up the phone and carry out your telephone triage procedure as normal, and in 

addition, 

1.1 ask questions to identifi a symptom, then enter it in the Task Window, 

1.2 check out the information in the hierarchical list of TTA's 

Diseases/Symptoms Window, 

1.3 check out the information in TTAYs Detailed Description Window, 

1.4 If you have reached a conclusion about the disease, move on to the next step. 

Otherwise, go back to 1.1. 

2. Enter the Disposition in the Task Window according to your assessrnent 

3. Enter the UrgentEmergent Reason, if any, in the Task Window 

4. Aiert the researcher that you have completed the task. 



Appendix 1: Questionnaire about TTA 



Questionnaire about TTA 

In the following questionnaire, TTA refers to the information displayed in the 

Disease/Symptorns Window and the Detailed Description Window. Please answer each 

question by circling the appropriate number. 

For example, if you strongly agree that "there is too much violence on TV prograrns," 

you might answer as follows: 

There is too much violence on lV programs. 

Strongly disagree 1 2 3 4 5 6 8 Strongly agree 

1. Using TTA in my job would enable me to accomplish tasks more quickly. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 

2. The information provided by TTA reminds me other information that is relevant to the 

tas k. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 

3. Using TTA would enhance my effectiveness on the job. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 

4. My interaction with TTA would be clear and understandable. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 

5. 1 would find TTA useful in my job. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 

6. Learning to use TTA would be easy for me. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 



7. 1 have no trouble focusing on rny work even though the contents of T A ' S  windows 

are updated continuously. 

Strongly disagree 1 2 3 4 5 6 

8. 1 would find it easy to find the information I want from TTA. 

Strongly disagree 1 2 3 4 5 6 

9. Using T A  would improve my job performance. 

Strongly disagree 1 2 3 4 5 6 

10. 1 would find TTA to be flexible to interact with. 

Strongly disagree 1 2 3 4 5 6 

11. It would be easy for me to become skillful at using TTA. 

StrongIy disagree 1 2 3 4 5 6 

12. Using TTA in rny job would increase my productivity. 

Strongly disagree 1 2 3 4 5 6 

13.1 would find TTA easy to use. 

Strongly disagree 1 2 3 4 5 6 

14. 1 did not find the continuous information update by TTA distracting. 

Strongly disagree 1 2 3 4 5 6 7 

15. Using TTA would make it easier to do my job. 

Strongly disagree 1 2 3 4 5 6 7 

Strongly agree 

Strongly agree 

Strongly agree 

Strongly agree 

Strongly agree 

Strongly agree 

Strongly agree 

Strongly agree 

Strongly agree 

16. TTA is useful despite that sometimes it displays irrelevant information. 

Strongly disagree 1 2 3 4 5 6 7 Strongly agree 



17. In your opinion, what are the benefits of TTA? 

18. In your opinion, what are the shortcomings of TTA? 



Appendix J: Background Information 



Background information 

1. What is your highest academic qualification achieved (e.g., Cert., B.S.. 
BSN, or M.S.)? 

2. Are you a Reyistered Nurse (RN) in the State of Maryland? (Please circle) 

Yes No 

3. How many years of clinical experience do you have? 

4. Have you worked in an ER before? If yes, for how long? 

5. Have you worked in a telephone triage cal1 center before? If yes. for how 
long? 

6. Have you used any cornputer-based disease management system before? If 
yes, for how long? 

7. How would you rank your skill with using Microsoft Windows? (Please circle) 

Novice 1 2 3 4 5 6 7 Expert 

8. How would you rank your skill with using Microsoft Windows-based 
applications such as Microsoft Word or Web browser? (Please circle) 

Novice 1 2 3 4 5 6 7 Expert 




