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Abstract

With the growth of multimedia services, it is essential to find new transmission schemes

to support higher data rates in wireless networks. In this thesis, we study networks in

which the Channel State Information (CSI) is only available at the destination. We focus

on the analysis of three different network setups. For each case, we propose a transmission

scheme which maximizes the average performance of the network.

The first scenario, which is studied in Chapter 2, is a multi-hop network in which the

channel gain of each hop changes quasi-statically from one transmission block to the other.

Our main motivation to study this network is the recent advances in deployment of relay

nodes in wireless networks (e.g., LTE-A and IEEE 802.16j). In this setup, we assume that

all nodes are equipped with a single antenna and the relay nodes are not capable of data

buffering over multiple transmission blocks. The proposed transmission scheme is based

on infinite-layer coding at all nodes (the source and all relays) in conjunction with the

Decode-and-Forward (DF) relaying. The objective is to maximize the statistical average

of the received rate per channel use at the destination. To find the optimal parameters

of this code, we first formulate the problem for a two-hop scenario and describe the code

design algorithm for this two-hop setting. The optimality of infinite-layer DF coding is

also discussed for the case of two-hop networks. The result is then generalized to multi-hop

scenarios. To show the superiority of the proposed scheme, we also evaluate the achievable

average received rate of infinite-layer DF coding and compare it with the performance of

previously known schemes.

The second scenario, studied in Chapter 3, is a single-hop network in which both nodes

are equipped with multiple antennas, while the channel gain changes quasi-statically and

the CSI is not available at the source. The main reason for selecting this network setup

is to study the transmission of video signals (compressed using a scalable video coding
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technique, e.g., SVC H.264/AVC) over a Multiple-Input Multiple-Output (MIMO) link. In

this setup, although scalable video coding techniques compress the video signal into layers

with different importance (for video reconstruction), the source cannot adapt the number

of transmitted layers to the capacity of the channel (since it does not have the CSI in

each time slot). An alternative approach is to always transmit all layers of the compressed

video signal, but use unequal error protection for different layers. With this motivation, we

focus on the design of multilayer codes for a MIMO link in which the destination is only

able to perform successive decoding (not joint-decoding). In this chapter, we introduce

a design rule for construction of multilayer codes for MIMO systems. We also propose a

algorithm that uses this design rule to determine the parameters of the multilayer code.

The performance analysis of the proposed scheme is also discussed in this chapter.

In the two previous scenarios, the ambiguity of the source regarding the channel state

comes from the fact that the channel gains randomly change in each transmission block and

there is no feedback to notify the source about the current state of the channel. Apart from

these, there are some scenarios in which the channel state is unknown at the source, even

though the channel gain is fixed and the source knows its value. The third scenario of this

thesis presents an example of such network setups. More precisely, in Chapter 4, we study

a multiple access network with K users and one Access Point (AP), where all nodes are

equipped with multiple antennas. To access the network, each user independently decides

whether to transmit in a time slot or not (no coordination between users). Considering

a two-user random access network, we first derive the optimal value of network average

Degrees of Freedom (DoF) (introduced in Section 4.1). Generalizing the result to multiuser

networks, we propose an upper-bound for the network average DoF of a K-user random

access network. This upper-bound is then analyzed for different network configurations to

identify the network classes in which the proposed upper-bound is tight. It is also shown

that simple single-stream data transmission achieves the upper-bound in most network

settings. However, for some network configurations, we need to apply multi-stream data

transmission in conjunction with interference alignment to reach the upper-bound. Some

illustrative examples are also presented in this chapter.
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Chapter 1

Introduction

The rapid development and diffusion of multimedia applications motivate many researchers

to study new and efficient schemes for data transmission. The importance of such studies

is further enhanced when we aim to provide the multimedia services to mobile users via

wireless channels where the channel gains are subject to change over time.

The studies related to the analysis of wireless networks with time-varying channels

can be categorized based on their assumption regarding the amount of knowledge that the

source and the destination have from the channel condition at each time slot. For instance,

some studies assume both source and destination have access to the complete Channel State

Information (CSI), while some other investigations assume that the destination knows the

complete CSI, but only some partial CSI is available at the source.1 Given the CSI at each

time slot, the source can use this information to find the optimal transmission strategy.

The problem of determining the optimal transmission strategy becomes more challeng-

ing, if the source does not have information regarding the channel state of each time slot.

In fact, there are many important practical applications, including TV broadcasting and

satellite communications, in which there is no feedback channel and therefore the channel

state information is only available at the destination and the source does not have access

to the received Signal to Interference plus Noise Ratio (SINR). One common assumption in

these cases is that although the source does not have the CSI in each time slot, it knows the

1One possible technique to estimate the channel state at the destination is that the destination measures
the amplitude and phase of a pilot signal (transmitted by the source) and computes the channel gain by
comparing these values with the initial amplitude and phase of the pilot signal at the transmitter side.
Feeding-back this information to the source provides a knowledge of the channel state at the source.

1



statistics of the channel gain of the link. This is not an unrealistic assumption, since the

environment that the source is going to be deployed is usually known a priori. Therefore,

it is possible to first evaluate the statistics of the channel gain in that environment, and

then use this information to design an efficient transmission scheme.

In this thesis, we investigate three important network configurations. To cover a broader

range of applications, we study two different classes of networks. In the first class, we

analyze networks in which the channel gains are changing quasi-statically from one trans-

mission block to the other and since there is no feedback link, the source does not have

access to the channel state information. In this class, we study a multi-hop network in

Chapter 2 and a Multiple-Input Multiple-Output (MIMO) network in Chapter 3. In the

second class, we analyze a network in which the channel gains remain fixed in different

transmission blocks; however, the amount of interference on the desirable signal is chang-

ing from one transmission block to the other. Therefore, the source does not have access

to the CSI (at the receiver) in each block. More precisely, in Chapter 4, we investigate a

synchronous K-user random access network in which all users work in a similar frequency-

band and the channel gains are fixed. However, due to the random access mechanism,

the number of active users (and consequently the amount of interference) is changing in

different transmission blocks. In this chapter, We aim to propose a transmission scheme

that achieves the network average DoF (introduced in Section 4.1), where the users and

the AP are equipped with M and N antennas, respectively.

In the following, we present a more detailed explanation of each chapter.

1.1 Transmission over Multi-hop Single-antenna Net-

works

As the first example of scenarios in which the channel state information is not available at

the source, in Chapter 2, we study the transmission of data over a multi-hop network with

quasi-static fading channels. It is assumed that CSI of each hop is only available at its

corresponding receiving node and the relays are not capable of data buffering over multiple

transmission blocks.
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1.1.1 Related Work

The concept of relaying is first introduced by Van der Meulen in [1]. Following [1], Cover

and El Gamal introduce two different coding strategies for a single-relay network with a

direct link between source and destination [2]. In the first strategy, known as Decode and

Forward (DF), the relay decodes the message and cooperates with source to send it in the

next block. In the second strategy, known as Compress and Froward (CF) (also called

Quantize and Forward), relay does not decode the message, instead, it compresses the

received signal and forwards it to the destination in the next transmission block. Reference

[2] proves the optimality of DF strategy in a single-relay network where the signal received

at the destination is a degraded version of the signal received at the relay. Following

[2], [3–6] investigate another relaying strategy called Amplify and Forward (AF). In AF

relaying, the relay amplifies the received signal (without decoding it) and retransmits it to

the destination.

Several studies analyze the performance of relaying in different network topologies [4–8].

Considering a single-relay network, references [4] and [5] present a single-letter expression

for the maximum achievable rate of AF relaying using a simple linear scheme. Reference [6]

shows that AF relaying achieves the capacity in Gaussian parallel single-antenna relay

networks. The extension of [6] to the case of multiple-antenna Rayleigh fading is presented

in [7] and [8].

Recent work also explores different transmission schemes for networks in which the

CSI is only available at receiving nodes. The majority of these studies focus on Diversity-

Multiplexing Trade-off (DMT) [9–14]. Other related studies focus on maximizing the sta-

tistical average of the rate per channel use at the destination [15–23]. In a pioneering work,

Shamai finds the optimum strategy for a single-hop network where the CSI is available only

at the receiver, and where the channel gain is quasi-static. The solution presented in [15]

is based on replacing the receiver by a continuum of virtual receivers, each corresponding

to a specific realization of the channel gain. Relying on an analogy with a degraded broad-

cast channel, reference [15] shows that an infinite-layer coding scheme with a proper power

distribution maximizes the statistical average of the received rate at the destination.

There are several extensions of [15]. References [16–18] study the performance of differ-

ent transmission strategies where some partial channel state information is available at the

source. Reference [19] proposes the application of multilayer coding in a multicast network
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which has some QoS constraints. Reference [20] combines multilayer coding with a Hybrid

Automatic Retransmission Request (HARQ) mechanism and shows that it results in high

rates and low latency in a point-to-point link. References [21, 22] extend [15] to the case

of MIMO channels.

Another important extension of [15] is studied in [24], where Steiner et al. present

the two-hop extension of [15] in which they study a single-relay network (no direct link

between source and destination) and the relay receive and transmit links are orthogonal to

each other. In [24], it is assumed that the relay node is not capable of data buffering over

multiple coding blocks and the CSI is only available at the receiver side of each link. The

objective in [24] is to design a transmission scheme which maximizes the statistical average

of the received rate per channel use at the destination. To this end, [24] studies different

multilayer coding schemes in which the relay operates in different modes, including DF,

AF, and CF. As discussed in [24], because of the high complexity of the infinite-layer

DF coding scheme, only finite layer codes are considered in their proposed DF strategies.

Reference [24] shows that, in the high SNR regime, AF relaying outperforms all other

investigated transmission schemes. However, the authors note that, in spite of having

the best performance among the compared strategies, AF relaying is not claimed to be

optimal [24].

1.1.2 Motivations and Summary of the Main Contributions

Considering a two-hop network, results of [24] show the superiority of AF coding with

respect to other schemes proposed in [24]. However, since the performance of infinite-

layer DF coding scheme is not evaluated in [24], the question arises of whether or not the

infinite-layer DF coding achieves a higher expected rate when compared to AF relaying.

In this chapter, we aim to answer this question and find the optimal performance of

infinite-layer DF coding scheme for two-hop networks. The results are then used to find a

transmission strategy for multi-hop networks. The main contributions of this chapter can

be summarized as the following:

• The statistical average of the received rate per channel use at the final destination

of a multi-hop network is formulated as an optimization problem.
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• An algorithm is introduced to solve the introduced optimization problem and de-

termine the optimum parameters of the proposed transmission scheme for two-hop

networks.

• The optimality of infinite-layer DF coding is discussed for two-hop networks.

• The generalized design algorithm is proposed for construction of multilayer codes for

multi-hop networks.

1.2 Transmission over Single-hop Multi-antenna Net-

works

With the growth of MIMO systems, it is essential to study the transmission of scalable

video codes over MIMO systems. Similar to single antenna systems, multilayer coding is

one of the main candidates for data transmission where unequal error protection is required

for different parts of the transmitted message. In Chapter 3, we investigate the design of

multilayer codes for single-hop MIMO links in which the channel state information is only

available at the destination.

1.2.1 Related Work

Different video coding techniques, including MPEG-4 and H.264/AVC, have been recently

introduced to provide efficient compression techniques for video content [25, 26]. Scalable

Video Coding (SVC) is an extension of these coding schemes which compresses the video

signal into different enhancement layers of temporal, spatial, or quality resolution. For

instance, a SVC H.264/AVC stream consists of one base-layer and several enhancement

layers [27,28]. If a user is able to receive the base-layer it can reconstruct the video stream

with a minimum required Quality of Service (QoS). Reception of each enhancement layer

allows the user to improve the temporal, spatial, or resolution quality of the video stream.

One important application of scalable video codes is in scenarios where the aim is to

transmit a video stream in a network with different link capacities. In such a network,

all layers are transmitted only if the link has a capacity higher than the total rate of the

compressed stream. Otherwise, the truncated version of the stream (with a lower rate) is
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transmitted through the link which allows the user to still decode the video (with a lower

quality) [28, 29].

Focusing on wireless applications, scalable video codes can be used in a scenario in

which there is one source broadcasting a video signal to several users, e.g., TV broadcasting

and satellite communications. More precisely, in this application the source transmits a

codeword and each user receives a noisy version of the codeword. The Signal to Noise

Ratio (SNR) of the received signal at each user depends on the location of the user as well

as its channel state in that transmission block. If we broadcast a message with a fixed

rate, only a subset of users will be able to decode the message. Although this transmission

scheme is useful in some applications, it is not appropriate for video transmission. This

is due to the fact that there is no possibility of partial decoding of the transmitted data;

therefore, even though the video is compressed using a scalable video coding standard, the

destination can decode all or none of the layers.

An alternative scheme for layered data transmission is to use unequal error protec-

tion for different layers of the video stream [30–32]. For instance, it is possible to encode

each layer of the video stream separately and then superimpose the resulting codes while

we assign different coding redundancy and/or different powers to the layers which re-

quire different error protections. As an example, compared to the enhancement layers, we

can assign a higher coding redundancy and/or higher power to the base-layer of a SVC

H.264/AVC stream. By this, we can make sure that all users are able to decode at least

the base-layer while some users can improve their video quality by decoding a number

of enhancement layers. Multilayer coding is one method to implement such transmission

schemes. In this chapter, we aim to present an algorithm to design multilayer codes which

in turn leads to construction of more reliable codes for transmission of layered data such as

SVC H.264/AVC. We rely on Information theoretic arguments to provide an upper-bound

on the possible benefits, which in turns will provide insight into the practical construction

of such codes.

To investigate the optimal design of multilayer codes in MIMO systems, [21] and [22]

study the extension of [15] for MIMO systems where the CSI is only available at the

destination and the objective is to maximize the average received rate at the destination.

Shamai et al. in [21] show the analogy between multilayer coding for the MIMO setup

and a general broadcast channel. Furthermore, they formulate the achievable average

received rate at the destination as an optimization problem. This optimization problem
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can be used to determine the parameters of the multilayer code which maximizes the

average received rate at the destination. Unfortunately, as stated in [21], the proposed

optimization problem does not appear to have a straightforward solution. Therefore, [21]

proposes some suboptimal multilayer transmission schemes and analyzes their performance.

In a follow up study, [22] investigates the performance of some other suboptimal MIMO

schemes including finite-layer coding strategies.

1.2.2 Motivations and Summary of the Main Contributions

In this chapter, we intend to continue the study of multilayer coding for MIMO systems in

order to develop a transmission scheme which can be used for transmission of layered data

such as SVC video streams. To this end, we follow the network structure of [21] and [22]

where we have a single-user network and nodes are equipped with multiple antennas. The

channel is assumed to be quasi-static and the CSI is only available at the destination.

The objective is to determine the optimal design of a multilayer code which maximizes

the average received rate at the destination. We limit our studies to the cases in which

the destination is only able to perform successive decoding (not joint decoding). It should

be noted that the proposed coding strategy might be not optimal for a destination which

has the joint decoding capability, but this issue is not studied in this thesis. The main

contributions of this chapter can be summarized as the following:

• It is shown that the design of the optimal multilayer code is not unique (if we consider

single antenna systems ).

• A design rule for construction of optimal multilayer codes for MIMO systems is

introduced (as mentioned earlier, assuming successive decoding).

• An algorithm (based on the proposed design rule) is proposed to determine the

parameters of the multilayer code.

• The performance of multilayer coding strategy is analyzed for networks with different

fading statistics.

• A transmission scheme (based on multilayer coding) is presented to improve the

performance of a typical cellular network which aims to broadcast layered data (e.g.

a video signal coded using a scalable video coding standard) to all users.
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1.3 Transmission over MIMO Random Access Net-

works

In this chapter, we study a synchronous K-user random access network in which the

channel gains between the users and the Access Point (AP) are fixed (which are known by

the users2) and users work in a similar frequency-band. There is no central controller in

this network, and at the beginning of each time slot, all users independently decide (with

probability ρ) whether or not to transmit in that time slot. In this network, the Signal

to Interference plus Noise Ratio (SINR) of one user’s signal at the AP depends on both

the channel gain of the user-AP link, as well as the number of active users in that time

slot (if more than one user become active in a time-slot, they interfere with each other).

Therefore, although the channel gains are fixed and the source knows this value, it does not

have access to the complete CSI (it does not know the number of active users in each time

slot). In Chapter 4, we investigate the transmission over such random access networks,

where nodes are equipped with multiple antennas.

1.3.1 Related Work

One of the main responsibilities of the medium access control layer in each network is to

present an algorithm which coordinates how the network users should access the shared

wireless medium. Some of these methods, including the Time and Frequency Division

Multiple Access schemes, select a number of the network users in each time slot and allow

them to send data in that time slot. These methods, therefore, require a central control unit

which manages the users’ transmission in each time slot. In addition, in these mechanisms,

there should be a feedback channel to notify users regarding the bandwidth/time they

should transmit their data. The other group of medium access mechanisms does not have

this central brain and each user decides independently to whether or not to transmit in one

time slot. These techniques are usually categorized in the group of random medium access

mechanism. ALOHA [33], CSMA, and CSMA/CD [34] are some examples of random access

mechanism. The main difficulty of the random medium access mechanism is that users

do not have information about the number of active users in each time slot. Therefore,

2Since the channel gains are fixed there is no need to have a feedback channel to constantly report the
channel gain to the source.
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they cannot adapt their transmission rate to the number of active users. The goal of the

random access mechanism is usually to maximize the average performance of the network.

After selecting the active users in each time slot (either by a central controller or using

a random access mechanism), users and the AP can be modeled as a Multiple Access

Channel (MAC). The capacity region of a K-user MAC is the set of all non-negative

K-tuples (R1, R2, · · · , RK) that satisfy [35]:

∑

j∈Q
Rj ≤

1

2
log2


1 +

∑
j∈Q

Pj

N0


 , ∀Q ⊆ {1, 2, · · · , K}, (1.1)

where Pj and N0 are the jth user’s transmission power and the noise spectral density,

respectively. Different schemes have been proposed in order to achieve all points on the

boundary of the capacity region. For instance, [36] proposes a scheme based on joint

encoding/decodig for all K users. Reference [36] also presents a technique in which time

sharing and user interference cancelation (successive decoding) can be applied to reach

a particular point on the boundary. Centralized/ distributed rate splitting techniques

are another methods of achieving the boundary of the MAC capacity region [35], [37].

Note that all of these schemes assume a fixed network setup, i.e., the active number of

users and the channel gains between the users and the AP are constant during the whole

communication.

Several studies also investigate the performance of non-static networks. For instance,

[38] studies a K-user MAC while the channels are subjected to a quasi-static fading, i.e.,

the channel gains are only constant during one transmission block and they change inde-

pendently from one transmission block to the other. In another pioneering work, Medard

et al. analyze the achievable rate of a random access network and model the random access

network as a Multiple Access Channel (with fixed channel gains), where in each time slot,

each user (user i) become active with the probability of ρi [39]. A user’s transmitted data

in [39] consists of several layers of coded information with different coding rates. Therefore,

if the complete message is not decodable (due to the interference), the AP is still able to

decode parts of the transmitted data (according to the number of active users).

Following [39], Minero et al. in [40–42] propose a new upper-bound for the total ex-

pected rate of a random access channel where users and the AP are single antenna units.

Applying multilayer coding techniques, [42] presents a transmission scheme which achieves
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within
√
3
2

bit of the maximum total expected rate of a symmetric two-user random access

networks. Generalizing to a symmetric K-user random access network, the authors also

propose an achievability scheme which is within one bit of the upper-bound of the maxi-

mum total expected rate. Interestingly, this scheme is very simple such that each user only

needs to send one stream of data (does not need to apply multilayer coding).

1.3.2 Motivations and Summary of the Main Contributions

Reference [42] only discusses networks in which nodes are equipped with a single antenna.

In this chapter, we extend the results of [42] to networks with multiple antennas. We

focus on the symmetric K-user random access networks in which the users and the AP are

equipped with M and N antennas, respectively. Our aim is to find the optimal network

average Degrees of Freedom (DoF) (introduced in Section 4.1) where all users have the same

probability of activation, ρ. The main contributions of this chapter can be summarized as

the following:

• The optimal network average DoF is determined for all setups of symmetric two-user

random access networks, i.e. different selections of M , N , and ρ.

• An upper-bound for the network average DoF of symmetric K-user random access

networks is determined for different selections of M , N , and ρ.

• A simple single-stream transmission scheme is proposed that achieves the introduced

upper-bound where: i) N ≤ M , ii) KM ≤ N , and iii) M < N < KM and ρ ≥ ρj2−1

(ρj2−1 is defined in Section 4.4.1). Thus, we have the optimal network average DoF

in these scenarios.

• A new transmission scheme based on multi-stream data transmission and interfer-

ence alignment is proposed. The achievable network average DoF of this trans-

mission scheme is higher compared to the single-stream data transmission, where

M < N < KM and ρ < ρj2−1. It is also proved that this scheme achieves the cor-

responding upper-bound for some classes of random access networks. Thus, we have

the optimality result for these network setups. It should be mentioned that there are

some network configurations in which the proposed scheme cannot reach the upper-

bound. Further investigation is required to close the gap between the upper and the

lower bounds in these situations.
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Chapter 2

Transmission over Multi-hop

Single-antenna Networks

In this chapter1, we study transmission over a multi-hop network in which information

is transmitted from a source via a number of relays to a destination. It is assumed that

channels are quasi-static fading with additive white Gaussian noise and that all nodes

poses a equipped with a single antenna. The Channel State Information (CSI) of each

hop is available only at the corresponding receiver and relays are not capable of data

buffering over multiple transmission blocks. The objective is to maximize the statistical

average of the received rate per channel use2 at the destination. We start the analysis, in

Section 2.2 and Section 2.3, by considering a two-hop network in which both the source

and the relay use infinite-layer coding for data transmission and the relay is operating in

decode and forward mode. This section also presents an algorithm to optimally distribute

the available source and relay powers to different layers of their corresponding codes. Next,

Section 2.4 shows how this transmission technique can be generalized to a multi-hop setting.

Assuming Rayleigh fading, in Section 2.5, the performance of the proposed coding scheme

is evaluated for a two-hop network and the results are compared with the performance of

previously known strategies.

1The work in this chapter is partially reported in [43, 44].
2In this thesis, the statistical average of the received rate per channel use is referred to as average

received rate.

11



2.1 Preliminaries

This section provides a review of key studies on the application of the multilayer codes in

single-hop scenarios.

2.1.1 Single-hop Rate-Limited Broadcasting Strategy

Consider a single-hop network with one source and one destination where both nodes are

equipped with a single antenna. Let integer i represent the time instant. In this network,

we have:

yi = hxi + ni, (2.1)

where {xi} and {yi} denote samples of the transmitted and received signals, respectively.

Furthermore, {ni} are samples of the independent and identically distributed (i.i.d.) addi-

tive white Gaussian noise which are zero-mean complex Gaussian, CN (0, 1). The source-

destination channel gain changes quasi-statically and is denoted by h. It means that the

value of h remains fixed during one transmission block and changes independently from

block to block. It is also assumed that the source transmission rate in each block is limited

to Γin and the CSI in each transmission block is only available at the destination; however,

both the source and destination know the probability density function (pdf ) of the channel

fading power, i.e., l = h2.

The aim is to design a transmission scheme such that it maximizes the average received

rate at the destination. This problem is first studied in [15] where the authors proposed a

scheme called the broadcast approach.

In the broadcast approach, the transmitted signal x is a multilayer code which consists

of the superposition of continuum of layers of Gaussian coded information. According

to the channel gain, in each block, the destination decodes up to a certain layer of the

code. Note that the remaining code layers generate interference at the receiver. Defining

ρ(a,Γin)da as the portion of the normalized source power which is assigned to the code
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layer a, the differential data rate of each code layer is computed in [21] as:

ζ(a,Γin)da = log

(
1 +

aρ(a,Γin)da

1 + aI(a,Γin)

)
(2.2)

(a)
=

aρ(a,Γin)

1 + aI(a,Γin)
da,

where

I(a,Γin) =

∫ ∞

a

ρ(γ,Γin)dγ, (2.3)

and (a) follows from the assumption of infinitesimal rate assignment. Denoting the channel

fading power l = |h|2, [21] shows that in each channel state l, the destination receiving rate

can be computed as:

R(l,Γin) =

∫ l

0

ζ(a,Γin)da, (2.4)

Let fL(·) and FL(·) denote the pdf and the cumulative density function (cdf ) of the

channel fading power, respectively. The average received rate at the destination can be

written as:

Ravg =

∫ ∞

0

fL(l)R(l,Γin)dl (2.5)

=

∫ ∞

0

fL(l)

∫ l

0

aρ(a,Γin)

1 + aI(a,Γin)
dadl

=

∫ ∞

0

[
1− FL(a)

] aρ(a,Γin)

1 + aI(a,Γin)
da.

The objective is to find ρ(·,Γin) such that the average received rate at the destination

is maximized. Following [24], we have:

R∗
avg = max

ρ(·,Γin)

∫ ∞

0

fL(l)

∫ l

0

aρ(a,Γin)

1 + aI(a,Γin)
dadl (2.6)

s.t.

∫ ∞

0

ρ(l,Γin)dl = P1, (2.7)

∫ ∞

0

aρ(a,Γin)

1 + aI(a,Γin)
da ≤ Γin. (2.8)
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where P1 denotes the total source transmitted power.

As shown in [24], the optimal solution of the above optimization problem satisfies:

I∗(l,Γin) =

∫ ∞

l

ρ∗(γ,Γin)dγ =





P1 l < lb

1−FL(l)+λ−lfL(l)
l2fL(l)

lb ≤ l ≤ le

0 le < l

, (2.9)

where lb, le are selected such that I∗(lb,Γin) = P1 and I∗(le,Γin) = 0, respectively. The

parameter λ is computed such that the rate condition is satisfied.

Assuming a Rayleigh fading channel, i.e., FL(l) = 1− e−l, we have [24]:

I∗(l,Γin) =





P1 l < lb

λ
l2e−l +

1
l2
− 1

l
lb ≤ l ≤ le

0 le < l

. (2.10)

The values of λ, lb, and le are computed by solving the following system of equations:





Γin = 2 log(le)− le − (2 log(lb)− lb),

I∗(lb,Γin) = P1,

le = 1−W (−λe),

(2.11)

where W (x) is the Lambert W-function which is the inverse of the function wew.

2.1.2 Single-Hop Broadcasting Strategy

Shamai et al. in [15] and [24] also consider the application of multilayer codes for single-hop

networks with no rate limitation at the source. The formulation of the average received

rate at the destination is similar to the previous case for Γin = ∞. For instance, (2.2)-(2.4)

can be written as:

R(l,∞) =

∫ l

0

aρ(a,∞)

1 + aI(a,∞)
da. (2.12)
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For simplicity of notation, henceforth we use R̃(l) = R(l,∞). Similarly, expression (2.6)

simplifies to:

R∗
avg = max

ρ(·,∞)

∫ ∞

0

fL(l)

∫ l

0

aρ(a,∞)

1 + aI(a,∞)
dadl (2.13)

s.t.

∫ ∞

0

ρ(l,∞)dl = P1.

The optimal solution of (2.13) satisfies [15]:

I∗(l,∞) =

∫ ∞

l

ρ∗(γ,∞)dγ =





P1 l < lb

1−FL(l)−lfL(l)
l2fL(l)

lb ≤ l ≤ le

0 le < l

, (2.14)

where lb and le satisfy I∗(lb,∞) = P1 and I∗(le,∞) = 0, respectively. The total rate

transmitted over different layers of the optimal multilayer code is equal to:

R∗
T =

∫ ∞

0

aρ∗(a,∞)

1 + aI∗(a,∞)
da. (2.15)

It is important to note that that in the case of Γin ≥ R∗
T , the optimization problem

in (2.6) is simplified to (2.13). Although this statement can be verified mathematically,

the intuitive explanation is insightful. To explain, note that R∗
T in (2.15) shows the total

rate transmitted using the optimal multilayer code when there is no rate constraint at the

transmitter. This means even though the available rate at the source is more than R∗
T , the

source needs to transmit only R∗
T bits of information in each block. Hence, if Γin ≥ R∗

T ,

the rate constraint would not become active and the optimum solutions of (2.6) and (2.13)

will be equal.

Example: For the case of Rayleigh fading where F (l) = 1− e−l, we have:

I∗(l,∞) =





P1 l < lb

1
l
− 1

l2
lb ≤ l ≤ le

0 le < l

, (2.16)

where lb =
√
1+4P−1
2P

and le = 1. Furthermore, the maximum average received rate at the
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Figure 2.1: Two-hop network model

destination is:

R∗
avg =

∫ le

lb

[
2

l
− 1

]
e−ldl, (2.17)

2.2 Network Model

Our network model, in this chapter, is the same as [24]. We first focus on a two-hop setting

and then, in Section 2.4, generalize the results to multi-hop cases.

In a two-hop setting, the relay retransmits the data received from the source to the

destination and the destination can only receive data via the relay. All nodes are single

antenna and the two hops are orthogonal with the same bandwidth, Fig. 2.1. Therefore,

we have:

source to relay: yr = h1xs + ns, (2.18)

relay to destination: yd = h2xr + nr,

where xs and xr denote the source and the relay transmitted vectors in one transmission

block of length N . yr and yd represent the received vectors in one transmission block

at the relay and at the destination, and h1, h2 are the source-relay and relay-destination

channel gains. Elements of the noise vectors, ns and nr, are zero-mean complex Gaussian

i.i.d. with unit variance, CN (0, 1).

As in [24], in this work, it is assumed that:

1. The channel gains of both hops are quasi-static. In other words, channel gains remain

fixed during one transmission block and change independently from block to block.

2. The source and the relay power constraints are expressed as E [|xs|2] = P1 and

E [|xr|2] = P2, respectively, where xs and xr show an arbitrary element of xs and xr.
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3. The relay is not capable of storing data over multiple transmission blocks. Therefore,

in each transmission, the relay can only retransmit the data that it has received from

the source-relay link. This means if the relay transmits with rate R < Γin (where

Γin is the rate that the relay has received from the source-relay link) any remaining

data cannot be stored at the relay and should be discarded.

4. The source has no information about either of the channel gains, the relay knows

only the channel gain between itself and the source, and the destination knows both

channel gains. 3

5. The channel fading powers of the first and the second hops are defined as l1 = |h1|2
and l2 = |h2|2, respectively. It is assumed that the source and the relay both know the

pdf of channel fading power for both links. fL1(l1) and fL2(l2) denote the pdf of the

channel fading powers of the source-relay and the relay-destination links, respectively.

2.3 Multilayer Coding Scheme for Two-hop Networks

Before discussing the details of the design of infinite-layer code for a two-hop network with

DF relaying, in Section 2.3.1, we study a preliminary example. In this example, we study

the design of the optimal multilayer code for a two-hop network in which the channel fading

of the source-relay and the relay-destination have two states. The analysis presented in

this example is much simpler compared to the case of a network with continuous channel

fading powers.

Following Section 2.3.1, we formulate the average received rate at the destination of

a two-hop network which uses infinite-layer DF coding. Then, Section 2.3.3 presents an

algorithm to optimally determine the code parameters at the source and at the relay.

Optimality analysis of this scheme is discussed at the end.

3These CSI assumptions are indeed practical, since the receiver of each hop can evaluate its immediate
channel gain by measuring the pilot signal sent from the corresponding transmitter. In addition, the
receiver can measure the equivalent channel (the source to the destination) if the relay forwards the pilot
signal of the source towards the destination. Having the equivalent channel gain and the relay to destination
channel gain, the destination can find the source to relay channel gain as well.
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2.3.1 Optimal Transmission over a Two-State Two-hop Network

Consider a two-hop network in which the source-relay channel fading power is equal to L1(1)

or L1(2) with probabilities f1(1) and 1− f1(1), respectively, and L1(1) < L1(2). Similarly,

the relay-destination channel fading power is equal to L2(1) or L2(2) with probabilities

f2(1) and 1 − f2(1), respectively, and L2(1) < L2(2). The source and the relay power

constraints are denoted by P1 and P2, respectively.

In this setting, the relay transmits a two-layer code. The rates associated with these

layers are denoted by R2(1) and R2(2) which are transmitted with power ρ2(1) and P2 −
ρ2(1), respectively. Furthermore, the input rate of the relay is denoted by Γin.

The objective is to find R2(1), R2(2), and ρ2(1) to maximize the average received rate

at the destination. Based on the multilayer structure of the code, these parameters should

be set such that the destination can always decode the first layer (with rate R2(1)) and can

decode the second layer if the channel fading power is equal to L2(2). Considering a given

Γin and ρ2(1), the problem of maximizing the average received rate at the destination can

be be written as:

A∗(ρ2(1),Γin) = max
R2(1),R2(2)

f2(1)R2(1) + (1− f2(1))(R2(1) +R2(2)) (2.19)

s.t. R2(1) ≤ β1,

R2(2) ≤ β2,

R2(1) +R2(2) ≤ Γin,

R2(1), R2(2) ≥ 0,

where β1 = log
(
1 + ρ2(1)L2(1)

1+(P2−ρ2(1))L2(1)

)
and β2 = log (1 + (P2 − ρ2(1))L2(2)). The optimum

value of A∗(ρ2(1),Γin) can be found using Fourier Motzkin elimination technique. The

result is:

A∗(ρ2(1),Γin)=min

{
f2(1)β1 + (1− f2(1))(β1 + β2), f2(1)β1 + (1− f2(1))Γin,Γin

}
. (2.20)
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Table 2.1: The optimal values of B∗(Γin) for different values of the input rate

Case ρ2(1) R2
∗(1) R2

∗(2) B∗(Γin)

0≤Γin<TR1 TP1 Γin 0 Γin

TR1≤Γin<TR2 TP2 log
(
1 + TP2L2(1)

1+(P2−TP2)L2(1)

)
Γin−R2

∗(1) R2
∗(1)+(1−f2(1))R2

∗(2)

TR2≤Γin TP3 log
(
1 + TP3L2(1)

1+(P2−TP3)L2(1)

)
log(1+(P2−TP3)L2(2)) R2

∗(1)+(1−f2(1))R2
∗(2)

For a given Γin, the optimum value of ρ2(1) then can be found as:

B∗(Γin) = max
ρ2(1)

A∗(ρ2(1),Γin) (2.21)

s.t. ρ2(1) ≤ P2,

ρ2(1) ≥ 0.

The optimization problem in (2.21) can be solved for different values of Γin. The

results are summarized in Table 2.1 where TP1 and TP2 are defined such that they satisfy

log (1 + TP2L2(1)) = Γin and log (1 + P2L2(1)) + log
(

1+(P2−TP2)L2(2)
1+(P2−TP2)L2(1)

)
= Γin, respectively.

Furthermore,

TP3 =

(
P2 −

(
L2(2)(1− f2(1))− L2(1)

f2(1)L2(1)L2(2)

)+
)+

, (2.22)

and TR1, TR2 are defined as:

TR1 = log(1 + P2L2(1)), (2.23)

TR2 = log (1 + P2L2(1)) + log

(
1 + (P2 − TP3)L2(2)

1 + (P2 − TP3)L2(1)

)
.

Having obtained the optimal design of the relay (for each input rate), we now focus on

the source-relay link. Similar to the relay part, the source transmits a two-layer code. The

rates associated with these layers are denoted by R1(1) and R1(2) which are transmitted

with power ρ1(1) and P1 − ρ1(1), respectively. Using this structure, the input rate of the

relay is Γin = R1(1) or Γin = R1(1) +R1(2) if the channel fading power of the source-relay
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link is equal to L1(1) or L1(2), respectively.

We should now calculate R1(1), R1(2) and ρ1(1) to maximize the average received rate

at the destination. For a fixed ρ1(1), we have:

D∗(ρ1(1)) = max
R1(1),R1(2)

f1(1)B
∗(R1(1)) + (1− f1(1))B

∗(R1(1) +R1(2)) (2.24)

s.t. R1(1) ≤ δ1,

R1(2) ≤ δ2,

R1(1), R1(2) ≥ 0,

where δ1 = log
(
1 + ρ1(1)L1(1)

1+(P1−ρ1(1))L1(1)

)
and δ2 = log (1 + (P1 − ρ1(1))L1(2)). Noting that

B∗(Γin) is a non-decreasing function with respect to Γin, we conclude that the optimal

solution of (2.24) satisfies R1(1) = δ1 and R1(2) = δ2, i.e.:

D∗(ρ1(1)) = f1(1)B
∗(δ1) + (1− f1(1))B

∗(δ1 + δ2). (2.25)

Finally, the optimal value of ρ1(1) can be evaluated by:

R∗ = max
ρ1(1)

f1(1)B
∗(δ1) + (1− f1(1))B

∗(δ1 + δ2) (2.26)

s.t. ρ1(1) ≤ P1,

ρ1(1) ≥ 0,

where B∗(δ1) and B∗(δ1 + δ2) can be determined using Table 2.1 and using Γin = δ1

and Γin = δ1 + δ2, respectively. Note that δ1 = log
(
1 + ρ1(1)L1(1)

1+(P1−ρ1(1))L1(1)

)
and δ2 =

log (1 + (P1 − ρ1(1))L1(2)). By obtaining the optimal value of ρ1(1), we have all the re-

quired parameters for designing the multilayer codes at both the source and the relay.

2.3.2 Infinite-layer DF Coding for Two-hop Networks

In this section, we continue the study of two-hop networks, but this time we consider a

network in which both hops have continuous channel gains. Consequently, instead of finite-

layer codes, the source and the relay use infinite-layer codes. In this setting, the relay still

works in DF mode. A more precise description of each transmission phase is presented in

the following.
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1. To construct an infinite-layer code, the source selects a distribution function to

distribute its power among its different layers. Since there is no rate-limitation

at the source, this power distribution function is denoted by ρ1(·,∞). Note that

ρ1(·,∞) should be selected such that it satisfies the source power constraint, i.e.:∫∞
0

ρ1(a,∞)da = P1.

The relay is able to decode up to layer l1 of the transmitted code, where l1 represents

the source-relay channel fading power. Thus, similar to (2.12), the relay input rate

would be:

R̃1(l1) =

∫ l1

0

aρ1(a,∞)

1 + aI1(a,∞)
da, (2.27)

where I1(a,∞) =
∫∞
a

ρ1(γ,∞)dγ.

2. In the second phase, the relay transmits the data to the destination. As noted in

Section 2.2, the transmission rate of the relay cannot exceed what it has received

from the source-relay link, i.e., R̃1(l1). For each value of R̃1(l1), the relay should

choose a power distribution function for distributing the relay power among the code

layers while also satisfying the power constraint P2. Defining ρ2(·, R̃1(l1)) as the

power distribution at the relay conditioned on the input rate R̃1(l1), we have:

Power constraint at the relay:∀R̃1(l1) :

∫ ∞

0

ρ2(a, R̃1(l1))da = P2, (2.28)

Rate constraint at the relay:∀R̃1(l1) :

∫ ∞

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
da ≤ R̃1(l1), (2.29)

where I2(a, R̃1(l1)) =
∫∞
a

ρ2(γ, R̃1(l1))dγ.

3. Transmitting the resulting infinite-layer code on the relay-destination link, the des-

tination is able to decode up to layer l2, where l2 denotes the channel fading power

of the second hop. Therefore, for each R̃1(l1), the average received rate at the desti-

nation can be written as:

R2(l2, R̃1(l1)) =

∫ l2

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
da. (2.30)

Note that for successful decoding, the destination should know the power distribution
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strategy of the relay. This information can be obtained by evaluating the source-relay

channel fading power at the destination.

The average received rate at the destination can be written as:

Ravg = El1

[
El2

[
R2

(
l2, R̃1(l1)

) ]]
(2.31)

=

∫ ∞

0

∫ ∞

0

fL1(l1)fL2(l2)R2(l2, R̃1(l1))dl2dl1,

where fL1(l1) and fL2(l2) denote the probability density functions of the channel fading

powers of the source-relay and relay-destination links, respectively. Given (2.28)-(2.31),

the final optimization problem is:

R∗
avg = max

ρ1(·,∞), ρ2(·,·)

∫ ∞

0

∫ ∞

0

fL1(l1)fL2(l2)

∫ l2

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
dadl2dl1 (2.32)

s.t.

∫ ∞

0

ρ1(a,∞)da = P1, (2.33)

∀R̃1(l1) :

∫ ∞

0

ρ2(a, R̃1(l1))da = P2, (2.34)

∀R̃1(l1) :

∫ ∞

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
da ≤ R̃1(l1). (2.35)

Note that the above optimization problem is similar to the one derived in [24]. However,

in [24], the relay rate constraint in (2.35) is stated as an equality. The inequality in (2.35)

reflects the fact that the relay may not need to send all the information that it has received

from the source-relay link. For instance, consider a scenario in which the rate received at

the relay is higher than the corresponding R∗
T , where R∗

T is defined in (2.15). In such a

scenario, the relay only uses R∗
T bits of the received information and ignores the rest.
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2.3.3 Optimal Design of Infinite-layer DF Codes for Two-hop

Networks

In this section, we present an algorithm to solve the optimization problem in (2.32)-(2.35).

Note that unlike single-hop scenarios, (2.32) cannot be directly modeled as a constrained

variation problem4. The reason is that R̃1(l1) in (2.35) is not a constant value for different

selections of ρ1(·,∞) and l1. To resolve this issue, we use the following lemma.

Lemma 2.1. The maximization problems in (2.36) and (2.37) are equivalent.

max
g1(·),g2(·)

∫ b

a

∫ d

c

H(x)K(g1(·), g2(·), x, y)dydx, g1(·) ≥ 0, g2(·) ≥ 0, (2.36)

max
g1(·)

∫ b

a

H(x) max
g2(·)|(g1(·),x)

∫ d

c

K(g1(·), g2(·), x, y)dydx, g1(·) ≥ 0, g2(·) ≥ 0, (2.37)

where a, b, c, d are constant and H(·) and K(·) are known non-negative functions. The

subscript g2(·)|(g1(·), x) emphasizes that we should find the optimal g2(·) once g1(·) and x

are determined by the outer maximization problem. Note that H(·) depends only on the

value of x, and K(·) depends on the selection of g1(·) and g2(·) as well as the values of x

and y.

Proof. Let us denote the solution of (2.36) by (ĝ1(·), ĝ2(·)) and the solution of (2.37) by

(ǧ1(·), ǧ2(·)). Starting from (2.36), we can write:

max
g1(·),g2(·)

∫ b

a

∫ d

c

H(x)K(g1(·), g2(·), x, y)dydx =

∫ b

a

∫ d

c

H(x)K(ĝ1(·), ĝ2(·), x, y)dydx (2.38)

=

∫ b

a

H(x)

∫ d

c

K(ĝ1(·), ĝ2(·), x, y)dydx

≤
∫ b

a

H(x) max
g2(·)|(ĝ1(·),x)

∫ d

c

K(ĝ1(·), g2(·), x, y)dydx

≤ max
g1(·)

∫ b

a

H(x) max
g2(·)|(g1(·),x)

∫ d

c

K(g1(·), g2(·), x, y)dydx.

4A comprehensive discussion of variation problems can be found in [45].
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On the other hand, if we start from from (2.37), we have:

max
g1(·)

∫ b

a

H(x) max
g2(·)|(g1(·),x)

∫ d

c

K(g1(·), g2(·), x, y)dydx =

∫ b

a

H(x)

∫ d

c

K(ǧ1(·), ǧ2(·), x, y)dydx (2.39)

=

∫ b

a

∫ d

c

H(x)K(ǧ1(·), f̌2(·), x, y)dydx

≤ max
g1(·),g2(·)

∫ b

a

∫ d

c

H(x)K(g1(·), g2(·), x, y)dydx.

Combining (2.38) and (2.39), the lemma is proved.

Using this lemma and noting that fL1(l1) ≥ 0, ∀l1 , we can express (2.32) as follows:

R∗
avg = max

ρ1(·,∞)

∫ ∞

0

fL1(l1) max
ρ2(·,·)|(ρ1(·,∞),l1)

∫ ∞

0

fL2(l2)

∫ l2

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
dadl2dl1,(2.40)

where the outer maximization problem is subject to:

∫ ∞

0

ρ1(a,∞)da = P1, (2.41)

and the constraints of the inner maximization problem are as follows:

∀R̃1(l1) :

∫ ∞

0

ρ2(a, R̃1(l1))da = P2, (2.42)

∀R̃1(l1) :

∫ ∞

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
da ≤ R̃1(l1). (2.43)

Note that, in (2.40), the dependency of

∫ ∞

0

fL2(l2)

∫ l2

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
dadl2 on

ρ1(·,∞) and l1 is only through R̃1(l1); therefore, R
∗
avg can be written as:

R∗
avg = max

ρ1(·,∞)

∫ ∞

0

fL1(l1) max
ρ2(·,R̃1(l1))

∫ ∞

0

fL2(l2)

∫ l2

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
dadl2dl1,(2.44)

where max
ρ2(·,R̃1(l1))

means that we should find the optimal power distribution function at the

relay once the value of R̃1(l1) is determined by the outer maximization problem.

Given (2.40)-(2.44), in the next two sections, we will discuss how this two-step maxi-
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mization problem can be solved using Euler’s equations.

2.3.3.1 Relay-Destination Link Maximization Problem

Assume that the rate decoded at the relay is equal to R̃1(l1). Conditioned on R̃1(l1), the

objective is to find the optimum power distribution at the relay, namely ρ∗2(·, R̃1(l1)), such

that the average received rate at the destination is maximized. In other words, ρ∗2(·, R̃1(l1))

is the solution to the following problem:

h∗(R̃1(l1)) = max
ρ2(·,R̃1(l1))

∫ ∞

0

fL2(l2)

∫ l2

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
dadl2 (2.45)

s.t.

∫ ∞

0

ρ2(a, R̃1(l1))da = P2,

∫ ∞

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
da ≤ R̃1(l1).

In (2.45), R̃1(l1) is known (determined by the outer maximization problem). This problem

is equivalent to the case of the rate-limited broadcasting strategy in (2.6). Therefore, the

optimum solution is ρ∗2(l2, R̃1(l1)) = −dI∗2 (l2,R̃1(l1))

dl2
, for:

I∗2 (l2, R̃1(l1)) =





P2 l2 < lb2
1−FL2

(l2)+λ−l2fL2
(l2)

l22fL2
(l2)

lb2 ≤ l2 ≤ le2

0 le2 < l2

, (2.46)

where FL2(l2) is the cdf of the second-hop channel fading power and lb2, l
e
2 are determined

as a function of λ to satisfy I∗2 (l
b
2, R̃1(l1)) = P2 and I∗2 (l

e
2, R̃1(l1)) = 0, respectively. Finally,

λ is computed to satisfy:

∫ ∞

0

aρ2(a, R̃1(l1))

1 + aI2(a, R̃1(l1))
da = min(R̃1(l1), R

∗
T ), (2.47)

where R∗
T is given in (2.15). Note that (2.47) states that the total transmission rate of the

optimal multilayer code at the relay does not exceed R∗
T .
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2.3.3.2 Source-Relay Link Maximization Problem

Knowing the optimum solution for the inner maximization problem in (2.45), i.e., h∗(R̃1(l1)),

R∗
avg in (2.44) can be written as:

R∗
avg = max

ρ1(·,∞)

∫ ∞

0

fL1(l1)h
∗(R̃1(l1))dl1 (2.48)

s.t.

∫ ∞

0

ρ1(a,∞)da = P1,

where:

R̃1(l1) =

∫ l1

0

aρ1(a,∞)

1 + aI1(a,∞)
da, (2.49)

and I1(a,∞) =
∫∞
a

ρ1(γ,∞)dγ. As (2.49) shows, R̃1(l1) depends on l1, ρ1(·,∞), and

I1(·,∞). Furthermore, since ρ1(l1,∞) = −I ′1(l1,∞) = −dI1(l1,∞)
dl1

, the integrand of (2.48)

can be expressed as a function of l1, I1, and I ′1. Hereafter, G(l1, I1, I
′
1) refers to the integrand

of (2.48), i.e.:

G(l1, I1, I
′
1) = fL1(l1)h

∗(R̃1(l1)). (2.50)

Using this notation, equation (2.48) takes the form of a fixed end-point variation problem

and the optimal I1(l1,∞) can be computed as the solution of the Euler’s equation [46]:

∂G

∂I1
−

d ∂G
∂I′1

dl1
= 0, lb1 ≤ l1 ≤ le1, (2.51)

where lb1 and le1 are selected such that I1(l
b
1,∞) = P1 and I1(l

e
1,∞) = 0, respectively, and

I1(l1,∞) = P1, ∀l1 ≤ lb1, and I1(l1,∞) = 0, ∀l1 ≥ le1. Furthermore, following from (2.50),
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we have:

∂G

∂I1
= fL1(l1)h

∗′(R̃1(l1))

∫ l1

0

a2I ′1(a,∞)

(1 + aI1(a,∞))2
da, (2.52)

∂G

∂I ′1
= fL1(l1)h

∗′(R̃1(l1))

∫ l1

0

−a

1 + aI1(a,∞)
da, (2.53)

d ∂G
∂I′1

dl
= f ′

L1
(l1)h

∗′(R̃1(l1))

∫ l1

0

−a

1 + aI1(a,∞)
da+ fL1(l1)h

∗′(R̃1(l1))
−l1

1 + l1I1(l1,∞)
(2.54)

+ fL1(l1)h
∗′′(R̃1(l1))

−l1I
′
1(l1,∞)

1 + l1I1(l1,∞)

∫ l1

0

−a

1 + aI1(a,∞)
da,

where h∗′(·) and h∗′′(·) denote the first and second order derivatives of h∗(·) with h∗(·)
given in (2.45). 5 Substituting (2.52)-(2.54) in (2.51), we can simplify the Euler’s equation

and compute the optimum I1(l1,∞).

A numerical example for a two-hop network in which both hops have a Rayleigh fading

distribution are provided in Section 2.5.

2.3.4 Optimality Analysis of Infinite-layer DF Coding

Considering the average received rate at the destination, we first review the optimality

of multilayer transmission for single-hop networks. Next, the optimality result for the

two-hop network will be presented.

2.3.4.1 Single-hop Network

A single-hop network consists of one source and one destination where the link between the

two is quasi-static fading. Following work by Shamai in [15], this network can be modeled

as a broadcast system where there is one source and κ, κ → ∞, virtual destinations; see

Fig. 2.2. In this equivalent model, the channel fading power between the source and each

of the virtual destinations is fixed and corresponds to one of the realizations of the channel

fading power denoted by {l1, l2, · · · , lκ}. It is also important to note that the average

received rate at the destination in the original model (Fig. 2.2a) translates to the weighted

sum of the rate received at the destinations in the broadcast model (Fig. 2.2b). The weight

5Since h∗(·) does not have a closed form solution, h∗
′

(·) and h∗
′′

(·) should be determined numerically.
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Figure 2.2: A single-user network and its equivalent broadcast network model

of the ith virtual destination is the probability that the channel fading power is equal to

li.

Note that since all nodes are single antenna units, the resulting broadcasting network

is degraded and its capacity region is known [47]. For example, the solid line in Fig. 2.3

shows the boundary of a typical capacity region of a two-user degraded broadcast channel.

We also know that the multilayer coding (superposition coding) can achieve the boundary

of the capacity region of the degraded broadcast channel [47].

The goal is to find a point of the capacity region which maximizes the weighed sum of

the rates received at different virtual destinations. Clearly, since all weights and rates are

non-negative, we expect that the optimal point is on the boundary of the capacity region.

To determine this point, we can construct a family of κ dimensional planes with a given

normal vector (determined based on the weights of the virtual destinations) and select the

plane which is tangent to the boundary of the capacity region. For instance, the dashed

line in Fig. 2.3 shows the tangent line corresponding to the weights of 2
3
and 1

3
for virtual

destinations 1 and 2, respectively. The intersection of the dashed line and the boundary of

the capacity region shows the point corresponding to the optimal design of the multilayer

code.

An immediate consequence is that it is possible to find a multilayer code which max-

imizes the weighted sum rate in a single-hop network. This is possible because: i) the

optimal point is on the boundary of the capacity region, and ii) all boundary points can

be achieved using multi-layer coding. This proves that if we want to find the optimal

transmission scheme of a single-hop network (with respect to the average received rate at

the destination), it is sufficient to search over all possible multilayer codes.
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Figure 2.3: Capacity region of a single-user network

2.3.4.2 Rate Limited Single-hop Network

Here, we show that multilayer coding is the optimal transmission scheme (with respect to

the average received rate at the destination) for rate-limited single-hop set-up6 as well.

The equivalent broadcast channel model of this network is similar to the broadcast

channel model of Section 2.3.4.1 (see Fig. 2.2b). The only difference is that, in this case,

we should also consider the rate constraint at the transmitter of the broadcast channel. In

other words, the capacity region of the rate-limited degraded broadcast network is the set

of points which are inside the capacity region of the original degraded broadcast channel,

and in addition, they are below the surface associated with the input rate constraint. To

illustrate, the black solid line in Fig. 2.4 shows the boundary of a capacity region of a

typical rate-limited two-user degraded broadcast channel. In this figure, the blue dotted

line depicts the boundary of the capacity region of the original degraded broadcast channel

(without rate limitation) and the red dashed line captures the source transmission rate

limitation. Note that since all nodes are single antenna units, we still have a degraded

broadcast setting.

6The structure of the rate-limited single-hop network is described in Section 2.1
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Figure 2.4: Capacity region of a rate-limited single-hop network

The goal here is to find a point in the capacity region which maximizes the weighted

sum of the received rates at the virtual destinations. Similar to the previous part, due

to the non-negativity of the weights and rates, the optimal point is on the boundary of

the resulting capacity region (the solid line). Therefore, the optimal point is either over

Arc
_

AB or point C (the end point of the line representing the input rate limitation). Arc
_

AB is a part of the original capacity region and all of its points can be achieved using

multilayer codes. Furthermore, point C can be achieved using a single layer code which is

again a special case of multilayer codes. This proves that a multilayer coding scheme is the

optimal transmission scheme (with respect to the average received rate at the destination)

in rate limited single-hop scenarios.

2.3.4.3 Optimality of Two-hop Infinite-layer DF Coding

First, note that according to the two-hop structure of the network, all the information

received by the destination should be first passed through the relay. As a result, the signal

received at the destination is a degraded version of what has been received at the relay. In

other words, no information can be decoded by the destination unless it is also decodable

at the relay. Because of this characteristic of the network, it can be concluded that decode

and forward is the optimal relaying scheme in two-hop settings.
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Figure 2.5: A two-hop network and its equivalent broadcast network model where κ = 3

To analyze the two-hop settings, consider a typical two-hop network depicted in Fig. 2.5a.

Assume that the channel fading powers of each hop is randomly selected from a set of dis-

crete values {l1, l2, · · · , lκ}.7 The probability associated with each channel state is denoted

by {f̆L1(l1), f̆L1(l2), · · · , f̆L1(lκ)} and {f̆L2(l1), f̆L2(l2), · · · , f̆L2(lκ)} for the first hop and for

the second hop, respectively.

Similar to the single-hop network, we construct the equivalent broadcast channel of a

two-hop setting. Starting from the source-relay link, we can model it with a broadcast

channel consisting of one source and κ virtual relays in which the channel fading power

between the source and each of the virtual relays are fixed and corresponds to one of the

actual channel states. For illustration, Fig. 2.5b depicts this model for the case of κ = 3.

Considering the link between one of the virtual relays and its corresponding destina-

tion, we can model this link with another broadcast channel in which there are κ virtual

destinations (corresponding to different states of the relay-destination link). Figure 2.5c

shows an example for the case of κ = 3.

To find the optimal transmit strategy, we start from the relay-destination link and

assume that the source uses an arbitrary transmission scheme such that the ith virtual

relay decodes rate Bi where i ∈ {1, 2, · · · , κ}.
Given rate Bi at the ith relay, the optimal relaying strategy is to maximize the weighted

7This represents a discrete approximation of the channel fading powers. Modeling the continuous
channel fading power with discrete values is accurate only if κ → ∞. Here, for simplicity, we assume
that the channel fading power of both links are selected from the same set. However, the statements of
optimality holds in the general case.
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sum of the rate at the virtual destinations. To design the optimal code, we note that

the transmission strategy of each of any given virtual relay only affects the rate of the

virtual destinations which are associated to it. Therefore, the optimal coding scheme can

be independently designed for each of the virtual relays, i.e., each virtual relay should

transmit data such that it maximizes the weighted sum of the rates associated with its

corresponding virtual destinations. Based on this observation, the problem of finding the

optimal transmission scheme (conditioned on the value of Bi) for the ith virtual relay can

be modeled as finding the optimal code for data transmission over a single-hop network

with an input rate limitation. As presented in Section 2.1.1, the optimal transmission

strategy in this setting is a multilayer code and the corresponding average received rate,

i.e. h∗(Bi), can be computed using (2.45) (or similarly (2.6)) where R̃1(l1) = Bi.

Given h∗(Bi), ∀i ∈ {1, 2, · · · , κ}, the average received rate at the destination can be

written as:

R =

κ∑

i=1

f̆L1(li)h
∗(Bi), (2.55)

where f̆L1(li) is the probability of the ith channel state in the source-relay link. Note

that different transmission strategies at the source result in different sets of {Bi, i ∈
{1, 2, · · · , κ}} at the virtual relays, and consequently, due to (2.55), they result in different

values for R. Based on the equivalent broadcast model, the domain of the achievable sets

of {Bi, i ∈ {1, 2, · · · , κ}} is the same as the capacity region of the underlying broadcast

channel model corresponding to the source-relay link (the source and the virtual relays).

Therefore, to find the optimal strategy, we should search over this capacity region and

select set {Bi, i ∈ {1, 2, · · · , κ}} which maximizes R. Furthermore, we know that since

the equivalent broadcast channel is degraded, all points on the boundary of this capacity

region can be achieved using a multilayer code [47]. Therefore, to prove the optimality

of the multilayer coding for the source-relay link, it is enough to show that the optimal

selection of set {Bi, i ∈ {1, 2, · · · , κ}} is a point on the boundary of the capacity region,

i.e., we should show that ∂R
∂Bi

is positive ∀i ∈ {1, 2, ..., κ} where:

∂R

∂Bi

= f̆L1(li)h
∗′(Bi). (2.56)
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By definition, f̆L1(li) is a non-negative value. Moreover, following Section 2.1, we can

conclude that h∗′(Bi) is non-negative (indeed, h∗′(Bi) = 0 for Bi ≥ R∗
T and h∗′(Bi) > 0,

otherwise). Therefore, ∂R
∂Bi

≥ 0 for ∀i ∈ {1, 2, ..., κ}. Consequently, R is maximized for a

selection of set {Bi, i ∈ {1, 2, · · · , κ}} which is on the boundary of the capacity region of

the broadcast channel. Thus, multilayer coding is the optimal transmission strategy for

the source-relay link as well.

2.4 Infinite-layer DF Coding for Multi-hop Networks

In this section, we study the generalization of the two-hop infinite-layer DF coding strategy

to the case of multi-hop scenarios. The following lemma is required in the sequel.

Lemma 2.2. Consider the following optimization problem:

max
ρ(·,Γin)

∫ ∞

0

f(l)h(R(l,Γin))dl (2.57)

s.t.

∫ ∞

0

ρ(a,Γin)da = P,

∫ ∞

0

aρ(a,Γin)

1 + aI(a,Γin)
da ≤ Γin,

where I(a,Γin) =
∫∞
γ

ρ(a,Γin)dγ, f(·) ≥ 0, h(·) ≥ 0, h(·) is a non-decreasing function, P

and Γin are given parameters, and:

R(l,Γin) =

∫ l

0

aρ(a,Γin)

1 + aI(a,Γin)
da. (2.58)

Then, the lemma states that the optimal ρ(·,Γin) which maximizes (2.57) can be evaluated

as ρ∗(l,Γin) = −I∗′(l,Γin) =
−dI∗(l,Γin)

dl
where I∗(l,Γin) is the solution of:

f(l)h′(R(l,Γin))

∫ l

0

1

(1 + aI∗(a,Γin))2
da− f ′(l)h′(R(l,Γin))

∫ l

0

−a

1 + aI∗(a,Γin)
da (2.59)

− f(l)h′′(R(l,Γin))
−lI∗′(l,Γin)

1 + lI∗(l,Γin)

∫ l

0

−a

1 + aI∗(a,Γin)
da

+
λ

(1 + lI∗(l,Γin))2
= 0, lb ≤ l ≤ le,
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where lb satisfies I∗(lb,Γin) = P , le satisfies I∗(le,Γin) = 0, and λ is determined such that:

∫ ∞

0

aρ(a,Γin)

1 + aI(a,Γin)
da = min(Γin, R

∗
T ), (2.60)

with R∗
T given in (2.15), and I∗(l,Γin) = P, ∀l < lb and I∗(l,Γin) = 0, ∀l > le.

Proof. We first write (2.57) as a variation problem with a subsidiary constraint. For a

given Γin, let G1(l, I, I
′) = f(l)h(R(l,Γin)) and G2(l, I, I

′) = −lI′(l,Γin)
1+lI(l,Γin)

. The optimal

I(l,Γin) satisfies:

∂G1

∂I
+ λ

∂G2

∂I
− d∂G1

∂I′

dl
− λ

d∂G2

∂I′

dl
= 0, lb ≤ l ≤ le, (2.61)

where, for each Γin, lb and le are selected such that they satisfy I(lb,Γin) = P and

I(le,Γin) = 0, respectively, and I∗(l,Γin) = P, ∀l < lb and I∗(l,Γin) = 0, ∀l > le. Fur-

thermore, we have:

∂G1

∂I
= f(l)h∗′(R(l,Γin))

∫ l

0

a2I ′(a,∞)

(1 + aI(a,∞))2
da, (2.62)

d∂G1

∂I′

dl
= f ′(l)h∗′(R(l,Γin))

∫ l

0

−a

1 + aI(a,∞)
da+ f(l)h∗′(R(l,Γin))

−l

1 + lI(l,∞)
(2.63)

+ f(l)h∗′′(R(l,Γin))
−lI ′(l,∞)

1 + lI(l,∞)

∫ l

0

−a

1 + aI(a,∞)
da,

∂G2

∂I
=

l2I ′(l,Γin)

(1 + lI(l,Γin))2
, (2.64)

d∂G2

∂I′

dl
=

−1 + l2I ′(l,Γin)

(1 + lI(l,Γin))2
. (2.65)

Substituting (2.62)-(2.65) into (2.61) completes the proof of Lemma 2.2.

Figure 2.6 represents a typical multi-hop network setup. Similar to (2.32), the max-

imum achievable average received rate at the destination is the solution of the following
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Figure 2.6: Multi-hop network model

optimization problem:

Ravg = max
ρj(·,·)

∀j∈{1,2,··· ,k}

∫ ∞

0

fL1(l1)

∫ ∞

0

fL2(l2) · · ·
∫ ∞

0

fLk
(lk)Rk(lk,Γ

k
in)dlk · · · dl2dl1(2.66)

s.t.

∫ ∞

0

ρj(a,Γ
j
in)da = Pj , ∀j ∈ {1, 2, · · · , k},

∫ ∞

0

aρj(a,Γ
j
in)

1 + aIj(a,Γ
j
in)

da ≤ Γj
in, ∀j ∈ {1, 2, · · · , k},

where fLj
represents the pdf of the channel fading power of the jth hop, i.e., the link

between nodes j and j + 1, Ij(a,Γ
j
in) =

∫∞
γ

ρj(a,Γ
j
in)dγ. Furthermore, Rj(lj,Γ

j
in) is the

decodable rate at node (j +1) where the channel fading power of the jth hop is in state lj

and the input rate of node j is Γj
in. We have:

Rj(lj,Γ
j
in) =

∫ lj

0

aρj(a,Γ
j
in)

1 + aIj(a,Γ
j
in)

da. (2.67)

Note that Γj
in (input rate of node j) for j ∈ {2, 3, · · · , k} can be evaluated as Γj

in =

Rj−1(lj−1,Γ
j−1
in ) where Γ1

in = ∞ (there is no rate constraint at the source).

Similar to Lemma 2.1, (2.66) can be written as:

max
ρ1(·,Γ1

in)

∫ ∞

0

fL1(l1) max
ρ2(·,Γ2

in)

∫ ∞

0

fL2(l2) · · · max
ρk(·,Γk

in)

∫ ∞

0

fLk
(lk)Rk(lk,Γ

k
in)dlk · · · dl2dl1. (2.68)

The constraints of each maximization problem, say the jth one, is:

∫ ∞

0

ρj(a,Γ
j
in)da = Pj , (2.69)

∫ ∞

0

aρj(a,Γ
j
in)

1 + aIj(a,Γ
j
in)

da ≤ Γj
in. (2.70)
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Based on (2.68), the maximum achievable average received rate at the destination can

be found by determining the optimal design of the infinite-layer code corresponding to each

node (conditioned on its input rate) starting from node j = k and proceeding sequentially

in a reverse order. This algorithm is summarized in the following:

1. Starting from the last hop, this step computes ρ∗k(·,Γk
in) for all possible values of the

corresponding input rate, i.e., Γk
in:

h∗
k(Γ

k
in) = max

ρk(·,Γk
in)

∫ ∞

0

fLk
(lk)Rk(lk,Γ

k
in)dlk (2.71)

s.t.

∫ ∞

0

ρk(a,Γ
k
in)da = Pk,

∫ ∞

0

aρk(a,Γ
k
in)

1 + aIk(a,Γ
k
in)

da ≤ Γk
in.

The resulting maximization problem has the form of (2.57) where h(Rk(lk,Γ
k
in)) =

Rk(lk,Γ
k
in). Therefore, optimal ρk(·,Γk

in), or equivalently I∗k(·,Γk
in), can be found using

Lemma 2.2 where (2.59) is satisfied with h′(Rk(lk,Γ
k
in)) = 1, and h′′(Rk(lk,Γ

k
in)) = 0.

2. This step computes the optimal power distribution for node k− 1, i.e., ρ∗k−1(·,Γk−1
in ),

such that:

h∗
k−1(Γ

k−1
in ) = max

ρk−1(·,Γk−1
in )

∫ ∞

0

fLk−1
(lk−1) max

ρk(·,Γk
in)

∫ ∞

0

fLk
(lk)Rk(lk,Γ

k
in)dlkdlk−1 (2.72)

(a)
= max

ρk−1(·,Γk−1
in )

∫ ∞

0

fLk−1
(lk−1)h

∗
k(Γ

k
in)dlk−1

(b)
= max

ρk−1(·,Γk−1
in )

∫ ∞

0

fLk−1
(lk−1)h

∗
k(Rk−1(lk−1,Γ

k−1
in ))dlk−1

s.t.

∫ ∞

0

ρk−1(a,Γ
k−1
in )da = Pk−1,

∫ ∞

0

aρk−1(a,Γ
k−1
in )

1 + aIk−1(a,Γ
k−1
in )

da ≤ Γk−1
in ,

where (a) is derived by substituting the last maximization with its optimal solution,

i.e., h∗
k(Γ

k
in), and (b) is due to Γk

in = Rk−1(lk−1,Γ
k−1
in ). The resulting optimization

problem, again, has the form of (2.57). Therefore, the optimal ρk−1(·,Γk−1
in ), or

equivalently I∗k−1(·,Γk−1
in ), can be found based on Lemma 2.2.
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3. The parameters of the optimal codes for the remaining nodes can be computed sim-

ilarly. For instance, for node j, we should first replace the last k − j maximizations

with h∗
j+1(Γ

j+1
in ) and then use Lemma 2.2 to solve the resulting optimization problem

and determine ρ∗j (·,Γj
in).

2.5 Numerical Results

This section presents some numerical results related to a two-hop network with Rayleigh

fading in both hops. The performance of the proposed scheme is compared with the cut-set

bound and with two other sub-optimal schemes proposed in [24].

Infinite-layer DF Coding: This scheme follows the design steps presented in Sec-

tion 2.3.3.

Step I: Concerning the relay-destination link, (2.46) and (2.47) provide the optimum

ρ2(l2, R̃1(l1)) for different relay input rates, namely R̃1(l1), where due to the Rayleigh fading

assumption we have FL2(l2) = 1− e−l2 and fL2(l2) = e−l2 . Having obtained the optimum

power distribution of the relay (for each R̃1(l1)), we can use (2.45) to find the maximum

average received rate at the destination. Figure 2.7 shows h∗(R̃1(l1)) for different values of

R̃1(l1) and P2.

Step II: Concerning the source-relay link, the optimum ρ1(l1,∞) can be determined

by finding I1(l1,∞) such that it satisfies (2.51). Note that due to (2.52)-(2.54) and the

Rayleigh fading assumption, i.e., fL1(l1) = e−l1 , (2.51) can be simplified as:

h∗′(R̃1(l1))

∫ l1

0

1− a− a2I1(a,∞)

(1 + aI1(a,∞))2
da (2.73)

− h∗′′(R̃1(l1))
−lI ′1(l1,∞)

1 + lI1(l1,∞)

∫ l1

0

−a

1 + aI1(a,∞)
da = 0,

where R̃1(l1) is given in (2.49) and h∗′(R̃1(l1)), h
∗′′(R̃1(l1)) are the first and the second

derivative of h∗(R̃1(l1)). To solve (2.73), we approximate the continuous function I1(l1,∞)

with a discrete function Ĭ1(m), m ∈ {1, 2, ..., N} where Ĭ1(1) = P1 and Ĭ1(N) = 0. Note

that h∗(R̃1(l1)) is already derived by the result of Step I. The optimal power distribution

is then computed using numerical methods.
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Figure 2.7: Maximum average received rate at the destination for the case of Rayleigh
fading two-hop network

Figure 2.8 depicts I∗1 (l1,∞) for P1 = P2 = 20dB assuming Rayleigh fading. Having

I∗1 (l1,∞), the amount of power associated with each layer of the code can be determined

using ρ∗1(l1,∞) = −I∗′1(l1,∞). The optimal ρ∗1(l1,∞) can then be used in (2.48) to find the

maximum average received rate at the destination. The dashed lines with square marks

in Fig. 2.9 and Fig. 2.10 represent the average received rate at the destination versus the

relay power P2 where P1 = 20dB and P1 = 30dB, respectively.

Broadcasting Cutset Bound: This bound simply indicates that the achievable av-

erage received rate at the destination of a two-hop network cannot exceed the achievable

average rate of the associated single-hop links, i.e., the source-relay link and the relay-

destination link [24]. This is independent of the relay structure and its relaying mode.

Based on (2.13), the cutset bound can be written as8:

Ccutset = min

(∫ ∞

0

fL1(l1)

∫ l1

0

aρ∗1(a,∞)

1 + aI∗1 (a,∞)
dadl1,

∫ ∞

0

fL2(l2)

∫ l2

0

aρ∗2(a,∞)

1 + aI∗2 (a,∞)
dadl2

)
, (2.74)

8See [24] for more details.
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Figure 2.8: Optimal I1(l1,∞) for the case of Rayleigh fading two-hop network

where the first term shows the maximum achievable rate at the relay (considering the

source-relay link) and the second term shows the maximum achievable rate at the desti-

nation (considering the relay-destination link). Furthermore, I∗1 (a,∞) and consequently

ρ∗1(a,∞) can be evaluated using (2.14) where fL(l) is substituted by fL1(l1). Similarly,

I∗2 (a,∞) and consequently ρ∗2(a,∞) can be evaluated using (2.14) where fL(l) is substi-

tuted by fL2(l2). The corresponding upper bounds versus different P2 values are shown in

Fig. 2.9 and Fig. 2.10 where P1 = 20dB and P1 = 30dB, respectively.

Infinite-layer AF Coding: In this scheme, the relay amplifies and forwards the re-

ceived signal. To design the optimum infinite-layer code, first, the equivalent end-to-end

channel should be found. In other words, the source-relay and the relay-destination chan-

nels combined with AF relaying can be modeled as a single channel with a new probability

density function for the effective fading power. Once this new pdf is obtained, the optimum

power distribution can be evaluated. The maximum achievable average received rate of this

scheme is presented in [24]. Figure 2.9 and Fig. 2.10 depict the corresponding maximum

average received rate at the destination where P1 = 20dB and P1 = 30dB, respectively.
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Figure 2.9: Average received rate at the destination P1=20 dB, P2=20 - 32 dB

Outage at the Source, Broadcasting at the Relay: This is another suboptimal

strategy that has been studied in [24]. In this case, the source uses a one-layer code, known

as the outage approach, and the relay uses an infinite-layer code. We refer to this scheme

by DF1−bs.
9 The achievable average received rate of this scheme is computed in [24]. For

the sake of comparison, this achievable average received rate is evaluated for different

relay powers and presented in Fig. 2.9 and Fig. 2.10 where P1 = 20dB and P1 = 30dB,

respectively.

As Fig. 2.9 and Fig. 2.10 show, in both network setups, the proposed infinite-layer

DF coding strategy is strictly superior to the infinite-layer AF coding. Note that, prior

to this work, the infinite-layer AF coding was the best known high SNR transmission

strategy for two-hop networks [24]. As expected, Fig. 2.9 and Fig. 2.10 also show that

the proposed scheme achieves a superior performance as compared to DF1−bs (DF1−bs

is a special case of the proposed infinite-layer DF coding). Furthermore, as P2 increases,

the rate of the proposed scheme approaches the cutset bound which means that for high

values of P2, relays without buffering capability have small degradation compared to the

ideal performance. In addition, Fig. 2.9 and Fig. 2.10 demonstrate that, as P1 decreases,

9For consistency, subscript 1− bs is used according to the notation used in [24]. This subscript
represents the one-layer coding and the broadcasting scheme at the source and at the relay, respectively.
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Figure 2.10: Average received rate at the destination, P1=30 dB, P2=30 - 42 dB

the performance of DF1−bs approaches the optimal performance. This is because if the

power of the relay is much smaller than the power of the source, the performance of the

relay-destination link limits the performance of the system. Therefore, in most cases, even

if the source transmits using a one-layer code, the relay is able to decode a rate of R∗
T (if

the relay receives a rate more than R∗
T , the extra rate should be discarded).

2.6 Summary

In this chapter, we first examined a quasi-static two-hop network in which data is trans-

mitted from a source via a relay to a destination. It is assumed that knowledge of the

channel for each hop is not available at the corresponding transmitter, and the relay is not

capable of data buffering over multiple transmission blocks. For this network setup, an

infinite-layer coding scheme is proposed at the source, as well as at the relay. Furthermore,

an optimal power distribution function is derived which is used to determine the amount

of power that should be assigned to each code layer at the source and at the relay. We also

discussed how these results can be generalized to multi-hop settings. Finally, we provided

some numerical results that demonstrate the superior performance of the infinite-layer DF

coding over the infinite-layer AF coding.
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Chapter 3

Transmission over Single-hop

Multi-antenna Networks

A number of recent source-coding standards compress the video signal into multiple layers

such that a destination is able to reconstruct the video (with a lower quality) even if it

has not received all layers. Implementation of such source coding techniques in wireless

networks requires the application of coding mechanisms (such as multilayer coding) which

allow unequal error protection for different layers of the coded video stream. In this

chapter1, we study the performance of multilayer coding for quasi-static fading channels

where the source and the destination are equipped with multiple antennas and the CSI is

only known at the destination. The objective is to maximize the average received rate at

the destination.

The organization of this chapter is as follows: Section 3.2 proposes a design rule for

construction of multilayer codes for MIMO systems. As a preliminary example, Section 3.3

shows how the proposed design rule can be used to construct the optimal multilayer code

for single-antenna systems. Afterwards, Section 3.4 presents the code design algorithm

for the case of MIMO systems. The performance of the designed code is then evaluated

for different network setups and Section 3.5 shows how multilayer coding can improve the

performance of wireless networks.

Notation: The input rate of the source in this scenario is infinity, i.e. Γin = ∞ and based

on the notations of Section 2.1.2, we should use R(·,∞), ρ(·,∞), and I(·,∞). However,

1The work in this chapter is partially reported in [23, 48].
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with a slight misuse of notations, in this chapter, we denote R(·,∞), ρ(·,∞), and I(·,∞)

simply by R(·), ρ(·), and I(·), respectively.

3.1 Network Model

Consider a link where the source and the destination are equipped with M and N an-

tennas, respectively. The channel is quasi-static (channel gain remains fixed during one

transmission block) and CSI is only available at the destination (the source only knows the

statistical behavior of the channel). It is also assumed that the destination is only able to

perform successive decoding (joint-decoding is not possible). For this network, we have:

y = Hx+ n, (3.1)

where x and y are (M×1) input and (N×1) output vectors, respectively. The additive noise

vector n is an N -dimensional vector with zero-mean complex Gaussian i.i.d. distributed

entries. The channel propagation matrix H is assumed to be a circularly symmetric M×N

matrix with entries that have zero mean i.i.d. distributions. Furthermore, K denotes the

rank of HH† which is equal to min(M,N) since H is full rank.

The transmitted signal x is a multilayer code which consists of the superposition of a

continuum layers of Gaussian coded information. Let xl denote the stream that corresponds

to the lth layer of the code. Similar to Section 2.1, we assume that the source assigns ρ(l)dl

portion of its normalized power to transmit xl. Furthermore, the incremental rate of code

layer xl is denoted by ζ(l)dl and I(l) is defined as I(l) =
∫∞
l

ρ(γ)dγ.

In this work, unlike [21], we do not limit the study to a specific selection of ζ(l), i.e.,

(2.2). In contrast, we find the optimal multilayer code for an arbitrary ζ(l) and therefore

the result provides a general rule for the design multilayer codes.
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3.2 Multilayer Coding Scheme for Multiple Antenna

Systems

In this section, we aim to extend the results of Section 2.1 for MIMO systems, and present

an algorithm to determine families of optimal multilayer codes.

3.2.1 Successive Decoding Requirement at the Destination

As mentioned in Section 3.1, in this work, we assume that the destination has only the

capability of successive decoding and is not able to perform joint decoding on the received

signal. It means that the destination cannot decode layer `1 before it decodes all code

layers l where l < `1. In other words, the code layer `1, i.e. x`1 , can be decoded by the

destination if for all l ≤ `1, the mutual information between the received signal y and xl

is larger than the differential rate of xl, i.e.,

ζ(l)dl ≤ I(y;xl|xa, ∀a ≤ l), ∀l ≤ `1, (3.2)

where I(y;xl|xa, ∀a ≤ l) represents the mutual information between y and xl where all

xa, a < l have been already decoded.

3.2.2 Formulating the Average Received Rate at the Destination

(Ravg)

The average received rate at the destination, in MIMO cases, can be formulated by either

of the following two expressions in (3.3) and (3.4):

Ravg =

∫

H

fH(H)R(H)dH, (3.3)

where fH(H) denotes the pdf of the channel propagation matrix, and R(H) represents

the decodable rate at state H. As shown in [21], the calculation of (3.3) for Single-Input

Single-Output (SISO) systems is straightforward. The reason is that in SISO cases, matrix

Hi should be substituted by a complex number which simplifies the integration of (3.3).
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Unfortunately, this simplification is not applicable in MIMO scenarios. To overcome this

mathematical complexity, we evaluate Ravg by integrating P(l)ζ(l)dl over all layers of the

code, i.e.:

Ravg =

∞∫

0

P(l)ζ(l)dl, (3.4)

where P(l) represents the probability that the channel is in a state that the lth code layer

can be decoded, and ζ(l)dl shows the differential rate associated to the code layer l.

To simplify (3.4), we start by finding the probability that the destination can decode

a certain code layer, namely P(`1). Due to the successive decodability scheme, this prob-

ability is equivalent to the probability of:

ζ(l)dl ≤ I(y;xl|xa, ∀a ≤ l), ∀l ≤ `1. (3.5)

To compute P(`1), we assume that ζ(l) is selected such that if for a particular channel

realization, we have ζ(`1)dl ≤ I(y;x`1 |xa, ∀a ≤ `1), we also have ζ(l)dl ≤ I(y;xl|xa, ∀a ≤
l), ∀l ≤ `1. In the sequel, we refer to this property as the successive decodability requirement.

To show the decodability of layer `1 (assuming that ζ(l) satisfies the successive decod-

ability requirement), it is enough to verify (3.5) for only `1 (not for all l < `1). Therefore,

P(`1) can be written as:

P(`1) = Pr{ζ(l)dl ≤ I(y;xl|xa, ∀a ≤ l), ∀l < `1} (3.6)

= Pr{ζ(`1)dl ≤ I(y;x`1|xa, ∀a ≤ `1)}.

Equation (3.6) can be further simplified noting that H is a circularly symmetric M×N

matrix where its entries have zero mean i.i.d. distributions. For such a channel, [49] shows

that equal power distribution between antenna elements maximizes the mutual information
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between the source and the destination. Thus, I(y;x`1|xa, ∀a ≤ `1) can be written as:

I(y;x`1|xa, ∀a ≤ `1) =I(y;xl≥`1|xa, ∀a < `1)− I(y;xl>`1|xa, ∀a ≤ `1) (3.7)

(a)
=log det(I+

I(`1)

M
HH†)− log det(I+

I(`1 + dl)

M
HH†)

=−dI(l)
d

dI(l)
log det

(
I+

I(l)

M
HH†

)∣∣∣∣
l=`1

(b)
=−dI(l)Tr

([
I+

I(l)

M
HH†

]−1

× ∂(I+ I(l)
M

HH†)

∂I(l)

)∣∣∣∣∣
l=`1

,

where (a) can be justified using the results of [49], and (b) is based on ddet(G)
d a

= det(G)×
Tr
(
G−1 dG

d a

)
, where G is an invertible matrix and its elements are independent of each

other [50]. Equation (3.7) can be further simplified as:

I(y;x`1 |xa, ∀a ≤ `1)=−dI(l)Tr

([
I+

I(l)

M
HH†

]−1
HH†

M

)∣∣∣∣∣
l=`1

(3.8)

=−dI(l)Tr

([
I+

I(l)

M
VΛV†

]−1
VΛV†

M

)∣∣∣∣∣
l=`1

(a)
=−dI(l)Tr

([
V

(
I+

I(l)

M
Λ

)
V†
]−1

VΛV†

M

)∣∣∣∣∣
l=`1

=−dI(l)Tr

(
V

[
I+

I(l)

M
Λ

]−1

V†VΛV†

M

)∣∣∣∣∣
l=`1

(b)
=−dI(l)Tr

([
I+

I(l)

M
Λ

]−1
Λ

M

)∣∣∣∣∣
l=`1

(c)
=−dI(l)

K∑

i=1

λi

M

1 + I(l)λi

M

∣∣∣∣∣
l=`1

=−I ′(`1)

K∑

i=1

λi

M + I(`1)λi

dl,

whereVΛV† represents the eigenvalue decomposition of matrixHH† where λi, i ∈ {1, · · · , K}
represent the non-zero eigenvalues of HH† and V is the unitary matrix of corresponding

eigenvectors. In (3.8), (a) and (b) are due to I = VV† and Tr(AB) = Tr(BA) identities,
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respectively. Furthermore, (c) is justified using the fact that both
(
I+ I(l)

M
Λ
)−1

and Λ

M

are diagonal matrices and we know that the product of two diagonal matrices is diagonal

as well. Substituting (3.8) in (3.6), we have:

P(`1) = Pr

{
ζ(`1)dl ≤ −I ′(`1)

K∑

i=1

λi

M + I(`1)λi

dl

}
. (3.9)

To simplify the notation, we define random variable Uα as:

Uα =

K∑

i=1

λi

M + αλi

, (3.10)

where α is a constant. Based on this notation and (3.9), we have:

P(`1) = Pr{ζ(`1) ≤ −I ′(`1)× U I(`1)}. (3.11)

It is noted that depending on the pdf of matrix H entries, the joint pdf of the λis’,

i.e., f(λ1, λ2, · · · , λK), can be determined. For instance, [51] presents f(λ1, λ2, · · · , λK)

for the case where the matrix elements have zero-mean complex Gaussian distribution,

CN (0, 1). Knowing f(λ1, λ2, · · · , λK), it is possible to compute the pdf and cdf of U I(`1)

and consequently P(`1). The terms fUα(u) and FUα(u) denote the pdf and cdf of Uα,

respectively.

Given (3.11), the probability of successful decoding of layer `1, where lb ≤ `1 ≤ le, can

be written as:

P(`1) = Pr

{
U I(`1) ≥ ζ(`1)

−I ′(`1)

}
(3.12)

= 1−Pr

{
U I(`1) ≤ ζ(`1)

−I ′(`1)

}

= 1− FUI(`1)

(
ζ(`1)

−I ′(`1)

)
,

where FUI(`1) represents the cdf of the random variable U I(`1) and lb, le are selected such

that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively. Note that, in (3.12), I ′(·) is

always a negative value. Substituting (3.12) in (3.4), we have the following theorem.
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Theorem 3.1. Consider a single-user MIMO system in which the source uses multilayer

coding and the destination is able to perform successive decoding. In this network, the

average received rate at the destination can be evaluated as:

Ravg =

∫ le

lb

[
1− FUI(l)

(
ζ(l)

−I ′(l)

)]
ζ(l)dl. (3.13)

where lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively.

Note that this theorem is valid only if ζ(l) is selected such that it satisfies the successive

decodability requirement.

As (3.13) shows, Ravg depends on l, I(·), I ′(·), and ζ(); therefore, our goal is to find

I(·) and ζ(·) such that they maximize (3.13). This maximization problem is discussed in

the next section.

3.2.3 Maximizing the Average Received Rate at the Destination

(Ravg)

Hereafter G(l, I, I ′, ζ) refers to the integrand of (3.13), i.e.,

G(l, I, I ′, ζ) = Q(l, I, I ′, ζ)ζ(l), (3.14)

where Q(l, I, I ′, ζ) = 1−FUI(l)

(
ζ(l)

−I′(l)

)
. Using this notation and (3.13), R∗

avg can be written

as:

R∗
avg = max

I(·),ζ(·)

∫ le

lb
G(l, I, I ′, ζ)dl, (3.15)

where lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively. Note

that this problem has the form of a variation problem with two functions ζ(·) and I(·). To
find the optimal solution of (3.15), we use the following theorem [45].

Theorem 3.2. [45], A necessary condition for the curves:

yi = yi(x), ∀i ∈ {1, · · · , n}, (3.16)
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to be an extremum of:

∫ a

b

F (x, y1, · · · , yn, y′1, · · · , y′n)dx, (3.17)

is that for all i ∈ {1, · · · , n}, yi(x) satisfies the following Euler equations for all a ≤ x ≤ b:

Fyi −
d

dx
Fy′

i
= 0. (3.18)

where the subscripts denote the partial derivatives with respect to the corresponding argu-

ments.

Using Theorem 3.2, the optimal solution of the maximization problem in (3.15) can be

determined as:

∂G

∂I
− d

dl
(
∂G

∂I ′
) = 0, (3.19)

∂G

∂ζ
− d

dl
(
∂G

∂ζ ′
) = 0. (3.20)

where lb ≤ l ≤ le and lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l,

respectively.

In the following, we show that equations (3.19) and (3.20) are not independent, i.e., if

G satisfies (3.20) it also satisfies (3.19). To prove, we first simplify (3.20) for lb ≤ l ≤ le

where:

∂G

∂ζ
=

∂Q(l, I, I ′, ζ)

∂ζ(l)
× ζ +Q(l, I, I ′, ζ)× 1, (3.21)

∂G

∂ζ ′
= 0.

Therefore, to satisfy (3.20), ζ(l) and Q(l, I, I ′, ζ) should be selected such that:

− ∂Q(l, I, I ′, ζ)

∂ζ
× ζ(l) = Q(l, I, I ′, ζ), ∀lb ≤ l ≤ le. (3.22)

We also have the following lemma.

49



Lemma 3.1. Consider Z(x, y) defined as:

Z(x, y) = Pr

{
u ≤ −x

y

}
, (3.23)

where u is a random variable and x, y are two given numbers. The lemma states that we

have the following identity:

∂Z(x, y)

∂y
=

−x

y
× ∂Z(x, y)

∂x
. (3.24)

Proof. We have:

Z(x, y) = Pr

{
u ≤ −x

y

}
. (3.25)

Therefore:

∂Z(x, y)

∂x
= lim

dx→0

Pr
{
u ≤ −x−dx

y

}
−Pr

{
u ≤ −x

y

}

dx
(3.26)

= lim
dx→0

Pr
{
u ≤ −x

y
+ −dx

y

}
−Pr

{
u ≤ −x

y

}

dx
,

and:

∂Z(x, y)

∂y
= lim

dy→0

Pr
{
u ≤ −x

y+dy

}
−Pr

{
u ≤ −x

y

}

dy
(3.27)

(a)
= lim

dy→0

Pr
{
u ≤ −x

y
+ xdy

y2

}
−Pr

{
u ≤ −x

y

}

dx
,

where in (a) we used the fact that xdy

y(y+dy)
= xdy

y2
as dy goes to zero. Defining dh = −x

y
dy,

(3.28) can be written as:

∂Z(x, y)

∂y
= lim

dy→0

Pr
{
u ≤ −x

y
+ −dh

y

}
−Pr

{
u ≤ −x

y

}

−y

x
dh

(3.28)

=
−x

y
lim
dh→0

Pr
{
u ≤ −x

y
+ −dh

y

}
−Pr

{
u ≤ −x

y

}

dh
.
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Thus, the lemma is proved since:

∂Z(x, y)

∂y
=

−x

y

∂Z(x, y)

∂x
. (3.29)

Considering (3.19) and (3.14), ∀lb ≤ l ≤ le we have:

∂G

∂I
=

∂Q(l, I, I ′, ζ)

∂I
× ζ(l), (3.30)

∂G

∂I ′
=

∂Q(l, I, I ′, ζ)

∂I ′
× ζ(l). (3.31)

Furthermore, using Lemma 3.1, ∂Q(l,I,I′,ζ)
∂I′

can be simplified as:

∂Q(l, I, I ′, ζ)

∂I ′
= −

∂FUI(l)

(
ζ(l)

−I′(l)

)

∂I ′
(3.32)

= −−ζ(l)

I ′(l)
×

∂FUI(l)

(
ζ(l)

−I′(l)

)

∂ζ

= − ζ(l)

I ′(l)
× ∂Q(l, I, I ′, ζ)

∂ζ

(a)
=

Q(l, I, I ′, ζ)

I ′(l)
,

where (a) follows from the identity imposed by the Euler condition of (3.22).

Given (3.32) and considering lb ≤ l ≤ le, (3.30) and (3.31) can be written as:

∂G(l, I, I ′, ζ)

∂I
=

∂Q(l, I, I ′, ζ)

∂I
× ζ(l), (3.33)

∂G(l, I, I ′, ζ)

∂I ′
=

∂Q(l, I, I ′, ζ)

∂I ′
× ζ(l) (3.34)

=
ζ(l)

I ′(l)
×Q(l, I, I ′, ζ).
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Furthermore, we have:

d

dl

∂G(l, I, I ′, ζ)

∂I ′
=

d

dl

ζ(l)

I ′(l)
×Q(l, I, I ′, ζ) +

ζ(l)

I ′(l)
× d

dl
Q(l, I, I ′, ζ) (3.35)

=
ζ ′(l)

I ′(l)
Q(l, I, I ′, ζ) +

−ζ(l)I ′′(l)

I ′2(l)
Q(l, I, I ′, ζ)

+
ζ(l)

I ′(l)

[
∂Q(l, I, I ′, ζ)

∂I
× I ′(l) +

∂Q(l, I, I ′, ζ)

∂I ′
× I ′′(l)

+
∂Q(l, I, I ′, ζ)

∂ζ
× ζ ′(l) +

∂Q(l, I, I ′, ζ)

∂l

]

(a)
=

ζ ′(l)

I ′(l)
Q(l, I, I ′, ζ) +

−ζ(l)I ′′(l)

I ′2(l)
Q(l, I, I ′, ζ)

+
∂Q(l, I, I ′, ζ)

∂I
ζ(l) +

Q(l, I, I ′, ζ)ζ(l)I ′′(l)

I ′2(l)
− Q(l, I, I ′, ζ)ζ ′(l)

I ′(l)

=
∂Q(l, I, I ′, ζ)

∂I
ζ(l),

where (a) follows from (3.22), (3.32), and the fact that ∂Q(l,I,I′,ζ)
∂l

= 0.

Substituting (3.33) and (3.36) into the Euler equation in (3.19), ∂G
∂I

and d
dl
( ∂G
∂I′

) cancel

out each other and therefore (3.19) is always satisfied. In other words, as long as I(·)
and ζ(·) satisfy (3.20), they satisfy (3.19) as well. Based on this observation, the optimal

multilayer design rule can be summarized as the following theorem.

Theorem 3.3. Consider a single-user MIMO system in which the source uses multilayer

coding and the destination is able to perform successive decoding. In this network, the

average received rate at the destination is maximized if I(·) and ζ(·) are related as:

∂FUI(l)

(
ζ(l)

−I′(l)

)

∂ζ
× ζ(l) = 1− FUI(l)

(
ζ(l)

−I ′(l)

)
, ∀lb ≤ l ≤ le, (3.36)

where lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively. Note

that this theorem is valid only if ζ(l) satisfies the successive decodability requirement.
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3.3 The Design Rule Sanity Check

Theorem 3.3 states a design rule for constructing the optimal multilayer code for a general

single-user MIMO system with successive decoder. It is important to note that unlike the

previously existing designs of multilayer codes, the proposed scheme is valid for arbitrary

selections of ζ(l) (as long as it satisfies the successive decodability requirement).

To illustrate the application of Theorem 3.3, we study a SISO network (in which the

channel gains are Rayleigh fading) and use (3.36) to determine the optimal multilayer code

for two different examples.

We start by simplifying FUI(l)

(
ζ(l)

−I′(l)

)
for a Rayleigh fading SISO setup. Note that in

single-antenna scenarios, HH† is equal to the fading power, i.e., λ = |h|2. Therefore, for

all lb ≤ l ≤ le, we have:

FUI(l)

(
ζ(l)

−I ′(l)

)
= Pr

{
λ

1 + αλ
≤ ζ(l)

−I ′(l)

}
(3.37)

= Pr {−I ′(l)λ− I(l)ζ(l)λ < ζ(l)}

= Pr

{
λ <

ζ(l)

−I ′(l)− I(l)ζ(l)

}

= Pr

{
|h|2 < ζ(l)

−I ′(l)− I(l)ζ(l)

}

(a)
= 1− e

ζ(l)

I′(l)+I(l)ζ(l) ,

where lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively.

In (3.37), (a) follows from the fact that the power of a Rayleigh fading channel has an

exponential distribution, i.e., Pr {|h|2 < a} = 1 − e−a. Therefore, Ravg in (3.13) can be

written as:

Ravg =

∫ le

lb

[
1− FUI(l)

(
ζ(l)

−I ′(l)

)]
ζ(l)dl (3.38)

=

∫ le

lb
e

ζ(l)

I′(l)+I(l)ζ(l) ζ(l)dl. (3.39)
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Using Theorem 3.3, Ravg would be maximized if I(l) and ζ(l) satisfy (3.36), i.e.:

∂
[
1− e

ζ(l)

I′(l)+I(l)ζ(l)

]

∂ζ
× ζ(l) = e

ζ(l)

I′(l)+I(l)ζ(l) , ∀lb ≤ l ≤ le. (3.40)

Equation (3.40) can be further simplified to:

− I ′(l)ζ(l) = [I ′(l) + I(l)ζ(l)]
2
, ∀lb ≤ l ≤ le. (3.41)

Meaning that the average received rate at the destination of a single-antenna Rayleigh

fading network, i.e., (3.39), becomes maximized if its associated I(l) and ζ(l) satisfy (3.41).

We now use this result in the following two cases.

• Case I:

First assume ζ(l) = −lI′(l)dl
1+lI(l)

. Note that, the optimal multilayer code for the case of

ζ(l) = −lI′(l)dl
1+lI(l)

is originally computed in [21] using a deferent approach.

Based on (3.41), the optimal power distribution function can be evaluated by deter-

mining I1(l) such that:

− I1
′(l)× −lI ′1(l)dl

1 + lI1(l)
=

[
I ′1(l) + I1(l)

−lI ′1(l)dl

1 + lI1(l)

]2
, lb < l < le, (3.42)

where lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively.

Equation (3.42) can be further simplified to:

l(1 + lI1(l)) = 1 ⇒ I1(l) =
1

l2
− 1

l
. lb < l < le, (3.43)

Substituting ζ(l) and I1(l) in (3.39), the maximum average received rate will be:

R∗
avg =

∫ le

lb

[
2

l
− 1

]
e−ldl, (3.44)

where lb =
√
1+4P−1
2P

and le = 1. As the last step we should show that ζ(l) satisfies the

successive decodability requirement which is apparent for the case of ζ(l) = −lI′(l)dl
1+lI(l)

(Assuming `1 < |h|2, it is obvious that for all `2 : `2 < `1, we have `2 < |h|2).
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As expected equations (3.43) and (3.44) are identical to the results reported in [21].

This verifies the accuracy of the proposed scheme.

• Case II:

As the second example, assume ζ(l) = −lI ′(l). Similar to Case I The optimal I2(l)

for sb ≤ l ≤ se can be evaluated as:

I2
′(l)× lI ′2(l) = [I ′2(l) + lI2(l)I

′
2(l)]

2 ⇒ lI2
′(l) = I2

′(l)
2
[1− lI2(l)]

2, (3.45)

where sb, se are selected such that I(l) = P, ∀l ≤ sb and I(l) = 0, ∀se ≤ l, respectively.

Equation (3.45) can be further simplified to:

I2(l) =
1

l
− 1√

l
, sb < l < se, (3.46)

where sb =
√√

1+4P−1
2P

and se = 1. Having I2(l), (3.39) can be written as:

R∗
avg =

∫ se

sb
−l
[
1− F

I2(l)
U (l)

]
I ′2(l)dl (3.47)

=

∫ se

sb
−e−

√
l

[−1

l
+

1

2
√
l

]
dl

(a)
=

∫ (se)2

(sb)2

[
2

l̂
− 1

]
e−l̂dl̂,

where (a) is deduced by changing the integral variable from l to l̂ =
√
l. To finalize

the design, we should check the successive decodability requirement. To this end,

assuming:

`1 ≤
λ

1 + I2(`1)λ
, (3.48)

we should show that ∀`2, `2 < `1 we have:

`2 ≤
λ

1 + I2(`2)λ
. (3.49)

55



The proof is straight forward. Since I2(s) =
1
s
− 1√

s
, (3.48) and (3.49) can be sim-

plified to
√
`1 ≤ λ and

√
`2 ≤ λ, respectively. Therefore, if we know

√
`1 ≤ λ, it is

adequate to show that for all `2 less than `1,
√
`2 ≤ λ is valid. Obviously, the last in-

equality is accurate since `2 < `1 ⇒
√
`2 <

√
`1; therefore, the successive decodability

requirement holds.

Note that R∗
avg in (3.47) is similar to R∗

avg in (3.44) for Case I. In other words, although

changing ζ(l) resulted in different optimal power distributions, i.e. I1(l) and I2(l), the

values of R∗
avg are the same in both cases. This result also shows that the optimal design

of multi-layer code is not unique for single-antenna networks.

3.4 Multilayer Code Design Algorithm for MIMO Sys-

tems

Considering a single antenna network, Section 3.3 presents two designs of multilayer codes

for two assumptions of ζ(l). Generalizing to MIMO scenarios, this section shows how

Theorem 3.3 can be applied to construct the optimal multilayer code for a MIMO system

where ζ(l) = ζ2(l) = −lI ′(l).

We use Theorem 3.3 and first simplify FUI(l)

(
ζ(l)

−I′(l)

)
based on ζ(l) = ζ2(l), i.e.,

FUI(l)

(
ζ(l)

−I ′(l)

)
= Pr

{
K∑

i=1

λi

M + I(l)λi

≤ ζ(l)

−I ′(l)

}
(3.50)

(a)
= Pr

{
K∑

i=1

λi

M + I(l)λi

≤ l

}

= FUI(l) (l) ,

where lb ≤ l ≤ le and lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l,

respectively. We also have:

∂FUI(l)

(
ζ(l)

−I′(l)

)

∂ζ
=

1

−I ′(l)
fUI(l)

(
ζ(l)

−I ′(l)

)
(3.51)

=
−fUI(l)(l)

I ′(l)
,
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where fUα(l) represents the pdf of the random variable Uα.

Substituting (3.50) and (3.51) into (3.36), the optimal I(l) should be selected such that

it satisfies:

lfUI(l)(l) = 1− FUI(l) (l) , ∀lb ≤ l ≤ le, (3.52)

where lb, le are selected such that I(l) = P, ∀l ≤ lb and I(l) = 0, ∀le ≤ l, respectively. Note

that I(l) is valid only if we are able to show that the selected ζ(l) satisfies the successive

decodability requirement.

MultiLayer Code Design Algorithm:

The following algorithm summarizes the steps of the algorithm that we have used for

finding the optimal I(l) which satisfies (3.52). Note that I(l) is a continuous function;

however, we have quantized it into Q levels and solved (3.52) for these discrete points.

Note that, the result becomes more accurate as Q → ∞.

1. Uniformly quantize [0, P ] to Q levels, i.e., P = {α1, · · · , αQ}, where α1 = P and

αQ = 0. Furthermore, set q = 1.

2. Set I(l) = αq.

3. Based on the fading characteristic of the channel (and consequently channel eigen-

values, i.e., λi’s), find the pdf and cdf of Uαq =
∑K

i=1
λi

M+αqλi

2.

4. Find l∗q such that 1− FUαq (l∗q) = l∗qfUαq (l∗q).

5. If q < Q; set q = q + 1 and return to step 2.

6. Set I∗(l) = P, ∀l < `∗1 and I∗(l) = 0, ∀l > l∗Q.

7. Having the optimal I(l), the rate of each code layer is determined by ζ(l) = ζ2(l).

The transmitted signal (x) would be the superposition of all these code layers.

8. Verify that the successive decodability requirement is satisfied for the selected ζ(l).

2As will be discussed in Section 3.5.1, a closed form solution for the pdf and cdf of Uαq is not required
and it is sufficient if we are able to find a numerical estimation of them.
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3.5 Numerical Results and Discussion

To analyze the performance of the proposed transmission scheme, in this section, we in-

vestigate the performance of multilayer codes in three different network setups. For the

purpose of comparison, we also compute the ergodic capacity (Cerg) and the outage rate

(Routage) as defined in [21]. A brief explanation of Cerg and Routage is presented in the

following.

Ergodic Capacity, Cerg: To compute the ergodic capacity, instead of quasi-static

fading, we assume that we have a fast fading channel, i.e., the code block length is much

longer than the dynamics of the channel. The optimal transmission scheme for such a

network is to design a single-layer code with a rate equal to the channel ergodic capacity

which can be computed as [51]:

Cerg = E

{
log det

(
1 +

PHH†

M

)}
. (3.53)

The reason is that each transmitted codeword experiences a large number of channel re-

alizations. Thus, the destination can decode this message if the rate of the coded data is

less than the expectation of the channel capacities for different channel realizations. Note

that since in our network model the channel gain remains constant during one transmission

block, Cerg would be an upper bound for the maximum achievable average received rate

at the destination.

Outage Rate, Routage: Considering a quasi-static fading channel, in this strategy, the

source transmits a single-layer code with rate R for all channel conditions. The transmitted

data can be decoded if the channel capacity (corresponding to the channel state of that

block) is more than R. Otherwise, the channel would be in outage and no information can

be extracted. For each value of R, the average received rate at the destination would be:

Ro(R) = R×Pr
{
R < log det

(
1 +HH†P/M

)}
(refer to [21] for details). In this scheme,

the design of the optimal code is to find a rate R = R∗ which maximizes Ro(R). The term

Routage denotes this maximum achievable rate:

Routage = max
R

R×Pr
{
R < log det

(
1 +HH†P/M

)}
. (3.54)
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Figure 3.1: Cumulative density function of U where αr = 2.5, 2, and 1.5 dB.

3.5.1 Setup One

Network Setup: Consider a network with one source and one destination, each equipped

with two antennas. The link between the source and the destination is considered as a

quasi-static Rayleigh fading, i.e., entries of the channel matrix H are zero-mean complex

Gaussian, CN (0, 1) random variables, and the CSI is only available at the destination3.

Note that this setup is the same as [21] and [22]. Therefore, we can compare the achievable

rate of the proposed scheme with the achievable rates presented in [21] and [22].

Code Design: To obtain the optimal multilayer code design, we first construct set

P as described in the first step of the design algorithm presented in section 3.4. In the

next step, for each value of αr ∈ P, we empirically estimate the pdf and cdf of Uαr .4 For

illustration, the three curves in Fig. 3.1 depict FUαr (l) where αr = 2.5, 2, and 1.5 dB.

Given the cdf and pdf of Uαr , ∀αr ∈ P, the optimal I(l) can be determined by solving

3In this study we assume that the destination is only able to perform successive decoding.
4It is noted that having the joint distribution of λis’ for the case of Rayleigh fading [51], fUαr (l) and

FUαr (l) could be determined analytically. However, these functions will not have simple mathematical
forms; hence, in step 4 of the design algorithm we still need to solve (3.52) numerically and we cannot
use the closed form expression for fUαr (l) and FUαr (l). This is the reason that a numerical estimation of
fUαr (l) and FUαr (l) is sufficient for finding the close-to-optimal I(l).
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Figure 3.2: I∗(l) for a Rayleigh fading 2x2 MIMO system where P=30dB.

(3.52) as described in step 4 of the proposed design algorithm. Figure 3.2 shows the

resulting I∗(l) for the understudy network where the source power is P = 30dB. Note

that since we do not have the closed form expression for I∗(l), the successive decodability

requirement is verified numerically in this scenario.

Finally, we use Theorem 3.1 to find the corresponding average received rate at the

destination. The solid line in Fig. 3.3 shows the achievable rate of the proposed scheme

where P varies from 0dB to 70dB. For comparison, we also compute Routage and Cerg for

this network setup. The results are depicted in Fig. 3.3.

Discussion: As Fig. 3.3 shows, multilayer coding, namely Rbs, achieves higher data

rates compared to the outage approach, i.e., Routage. This is due to the possibility of partial

data decoding where multilayer codes are used.

Another important observation is related to the efficiency of the multilayer codes in

MIMO system with Rayleigh fading. As Fig. 3.3 suggests multilayer codes are not as

beneficial as they appear in single-antenna cases (refer to Fig. 3 in [21] for the performance

of multilayer coding in single-antenna setups). This effect is also reported by the authors

of [21] and [22]. As noted in [21] and [22], the hardening effect is probably the main

reason for this behavior. It means that the existence of multiple antennas and the fact
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Figure 3.3: Average received rate at the destination for different transmission schemes
(setup one).

that each of the entries of the propagation matrix is drawn independently from a complex

normal distribution eliminates the large variation of the effective channel fading for different

channel realizations. This characteristic reduces the efficiency of the multilayer coding and

leads to a a small improvement as compared to the outage approach (single-layer coding).

3.5.2 Setup Two

Network Setup: The network setup is similar to setup one. The only difference is that

instead of a pure Rayleigh fading, the source-destination link is modeled as a link which has

both quasi-static Rayleigh fading and shadowing. More precisely, the source-destination

propagation matrix Ĥ can be written as [52]:

Ĥ =
√
zH, (3.55)

whereH is a Rayleigh fading matrix similar to setup one and z is a positive random variable

with log-normal distribution. To model practical environments, the mean and variance of

the log-normal random variable are set to 0dB and 8dB, respectively [53].
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Figure 3.4: Average received rate at the destination for different transmission schemes
(setup two).

Code Design: We follow the steps of setup one with the exception that we also

consider the effect of the log-normal shadowing in evaluating the cdf and pdf of Uαr , i.e.,

FUαr (l) and fUαr (l). The results are depicted in Fig. 3.4 where the achievable average

received rate of the proposed scheme is shown by a solid line, namely Rbs. Routage and Cerg

are also plotted for comparison.

Discussion: Similar to setup one, the superiority of the proposed approach compared

to the outage approach can be verified, Fig. 3.4. However, unlike setup one, multilayer

coding considerably enhances the performance of the outage approach and the hardening

effect is not significant as in setup one. The reason is that in setup one each channel

state depends on the values of four independent random variables (corresponding to each

transmit-receive antenna pairs). The independence between these values leads to the hard-

ening effect, i.e., there would not be a very large deviation in the total effect of all four

variables. On the other hand, in setup two, after fixing the Rayleigh fading matrix, i.e., H,

the whole matrix is multiplied by a shadowing factor, which is square root of a log-normal

random variable, i.e., z. Thus, if z becomes small it affects all the transmitter-receiver

antenna gains simultaneously and hence reduces the channel capacity considerably. The

opposite effect (large increment in capacity) can be seen where the shadowing factor takes
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Figure 3.5: Network topology

a large value. This large deviation in the network capacity is the reason that the multilayer

code is more beneficial in setup two.

This result points out that although multilayer coding is not very beneficial in some

network setups (e.g., quasi-static Rayleigh fading), it might significantly improve the net-

work performance in some other channel distributions (e.g. quasi-static Rayleigh fading

with shadowing).

3.5.3 Setup Three

Network Setup: Consider a network of size 4km×2km which is partitioned into two

cells.5 The Base Station (BS) associated with each cell is located at the middle of each

cell, Fig. 3.5.

The aim is to broadcast a TV channel (e.g., a popular TV show) to all users. It is

assumed that users are uniformly distributed in the network. The channel between each

user and each BS is modeled as Rayleigh fading with log-normal shadowing. The distance

between the user and each BS is used to estimate the path loss effect. In this study, the

path loss exponent is set to 2.6 [54], and all nodes are equipped with a single antenna.

To improve the performance of video broadcasting in a multiuser network, we should

5This structure can be considered as two adjacent cells of a cellular network which covers the whole
region. To simplify the analysis, here, we only consider two of the cells in this network.
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first compress the video signal using a Scalable Video Coding (SVC) standard, e.g., SVC

H.264/AVC. As briefly discussed in Section 1.2, scalable video code streams consist of one

base-layer and several enhancement layers. One way to use this feature in a wireless network

is to transmit a SVC signal using a multilayer code. Based on multilayer transmission

scheme, each user (according to its channel condition) can decode a number of code layers

and partially regenerate the transmitted video.

Code Design: In the following, we discuss two transmission schemes for the network.

The first scheme is based on the common implementation of cellular networks while in the

second scheme we use the idea of BS cooperation for transmission of multilayer codes.

A. Macro-Diversity Scheme: In this scheme we follow the common design of a cellular

network and partition the available bandwidth into two equal parts, e.g., [0,W/2)

and [W/2,W ). Each of these frequency ranges is assigned to one of the BSs. For

instance, the right BS transmits in the range of [0,W/2) and the left one transmits

one [W/2,W ). Both BSs use multilayer coding to broadcast the SVC coded video

signal to the users. Based on this scheme, a typical user (for instance in the right

cell), receives two signals:

a) The multilayer code transmitted by its own BS in the frequency range of [0,W/2).

b) The multilayer code transmitted by the BS of the adjacent cell in the frequency

range of [W/2,W ).

One simple decoding strategy is that the user disregards the signal received from the

BS of the adjacent cell and decodes the data only based on the signal received in

the frequency range of [0,W/2). This decoding scheme can be improved, considering

the fact that the other BS is also transmitting exactly the same message. Therefore,

the user can receive the signal from both BSs and then perform Maximum Ratio

Combining (MRC).

To design the multilayer code for this case, distribution of the channel gain is selected

corresponding to the distribution of the effective SNR (after performing MRC) at

a typical network user.6 Having this equivalent model, the optimal design of the

multilayer code can be found based on the results of Section 2.1. Furthermore,

the average received rate of a typical user can be evaluated using (2.13) and (2.14)

6The effective SNR depends on the distance of the user from each of the BSs, the shadowing factor,
and the power of the Rayleigh fading for each link. It is assumed that users are uniformly distributed in
each cell.
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Figure 3.6: Average received rate at the destination for different transmission schemes
(setup three).

where F (l) and f(l) are substituted by the cdf and pdf of the equivalent channel

gain, respectively. The achievable rate of this scheme is shown with dashed line in

Fig. (3.6). In this figure, the x-axis represents the average power that a typical user

(located at the middle of a cell) receives from its associated BS.

B. BS Cooperation Diversity Scheme: In this example, both BSs intend to transmit

the same message to the users, and users are able to receive the signal transmitted

by both BSs (with different attenuations). In addition, since both BSs have access to

the whole message, no extra communication is require if BSs want to cooperatively

transmit the data.

Based on this observation, in this scheme, instead of two separate BSs, the two BSs

are considered as two antennas of a single source which are not co-located (antennas

are distributed over the network). Therefore, the problem of broadcasting a TV

signal over two separate cells of a network translates to broadcasting of a TV signal

from a source which is equipped with multiple antennas. The main advantage of

this method is that since both BSs are transmitting cooperatively, we do not need

to partition the bandwidth between them and the whole bandwidth can be used for

transmission of the multilayer code. We should also mention that, in this MIMO
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scheme, each BS transmits independent codewords which means that the antennas

do not need cooperation and thus they do not need to be co-located .

The optimal multilayer code can be determined by following the design algorithm

proposed in Section 3.4. The solid line in Fig. 3.6 depicts the performance of this

transmission scheme.

Discussion: Comparing the results of the two schemes, we can see that the second

transmission strategy considerably improves the network performance. Intuitively, by co-

operative data transmission (over the two BSs), the transmission rate can be increased

because of doubling the available bandwidth and in addition we get the multiple antenna

gain. This result implies that in a cellular network in which the BSs are broadcast the

same message to the users, instead of partitioning the available bandwidth between dif-

ferent cells, the bandwidth should be shared by all BSs which broadcast the message

cooperatively toward the destination.

3.6 Summary

In this work, we investigated the optimal design of multilayer coding, in order to develop a

scheme that can be used for transmission of layered coded data (such as SVC H.264/AVC

streams). The objective is to maximize the average received rate at the destination and we

studied a quasi-static fading MIMO system where the CSI is only known at the destination

and the destination relies on successive decoding. For such network settings, we proposed

a design rule for constructing a multilayer code where nodes are equipped with multiple

antennas. We also suggested an algorithm to determine the optimal power distribution

function of the multilayer code. Furthermore, the maximum average received rate at the

destination was evaluated for different network setups and studied the gain that we can

get by transmission of multilayer codes.
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Chapter 4

Transmission over MIMO Random

Access Networks

In this chapter1, we study a symmetric multiple access network with K users and one

Access Point (AP). It is assumed that users and the AP are equipped with M and N

antennas, respectively. To access the network, each user independently decides whether to

transmit in a time slot or not (no coordination between users). We begin the study by first

considering a symmetric two-user random access network in Section 4.3 and determining

the optimal value of network average Degrees of Freedom (DoF) for this two-user network.

Generalizing the results to symmetric K-user random access networks, in Section 4.4, we

propose an upper-bound of the network average DoF. This upper-bound is then analyzed

for different network configurations and we determine the network classes in which the

proposed upper-bound is tight. It is also shown that in most network settings the upper-

bound can be achieved using simple single-stream data transmission. However, for some

network configurations we need to apply multi-stream data transmission in conjunction

with interference alignment to reach the upper-bound. Some illustrative examples are also

presented in this chapter.

1The work in this chapter is partially reported in [55, 56].
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4.1 Network Model

Consider a network with K synchronous users and one Access Point (AP) where the users

and the AP are equipped with M and N antennas, respectively. The maximum trans-

mit power of each node is denoted by P . Hj is an M × N matrix representing channel

propagation matrix between user j and the AP. The entries of Hj are fixed and drawn

independently from a complex Gaussian distribution with zero mean and unit variance,

CN (0, 1). The input-output relationship is:

y = H1x1 +H2x2 + · · ·+HKxK + n, (4.1)

where xj and y represent the transmitted signal from user j and the received signal at the

AP, respectively.

At the beginning of each time slot, each user independently decides, with probability

ρ, whether to transmit or not in that time slot. The set of active users (in each time slot)

is known at the AP, but users do not know the status of other users.

Similar to the classic packet collision model in the networking literature, in [42], a

transmission is considered successful if the set of transmission rates of active users corre-

sponds to a point inside of the capacity region of that network state. The average network

throughput is then computed based on the achievable rate in each network state and their

corresponding probability of occurrence [42]. Unfortunately, computation of the network

average throughput becomes complicated in MIMO cases. Therefore, we investigate the

behavior of the system in high SNR regimes. In particular, we study the growth rate of

the average throughput (average DoF of the network), i.e.:

D = lim
SNR→∞

2K−1∑
i=1

Pr[Si]R[Si]

log SNR
(4.2)

=

2K−1∑

i=1

Pr[Si] lim
SNR→∞

R[Si]

log SNR

=
2K−1∑

i=1

Pr[Si]D[Si],

where Si ⊆ {1, 2, · · · , K}, i ∈ {1, 2, · · · , 2K − 1} shows the set of users which are active in
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state i. Furthermore, Pr[Si] depicts the probability that the network is in state Si. Note

that since we have K nodes in the network, there are 2K − 1 different states of active

users. R[Si] and D[Si] represent the achievable throughput and the achievable DoF of the

network operating in state Si, respectively.

4.2 Problem Formulation

4.2.1 Virtual AP Representation

To evaluate the DoF of different network states, we use the idea of the virtual AP proposed

in [42]. In this method, the actual AP is substituted by a number of virtual APs each of

which corresponds to one of the network states, namely AP[S],S ⊆ {1, 2, · · · , K}. Thus,

there are 2K − 1 virtual APs and each user is connected to 2K−1 − 1 virtual APs.

With this representation, we can consider the network with K users (becomes active

with probability ρ), as a network in which all users are always active, but we have a

number of APs each of them is connected to a subset of users. The problem of finding a

scheme that maximizes the network average DoF is also translated to finding a strategy

which maximizes the weighted sum of the DoF of the received data at different APs. The

weight of each AP is the probability that the network operates in such a network condition.

Considering ρ as the probability of activation of a node in a time slot, the weight of each

AP[S] is equal to:

P|S| = Pr[S] = ρ|S|(1− ρ)K−|S|, (4.3)

where |S| is the cardinality of the set of active users S. As can be seen, this probability

only depends on the number of active users and not the actual active users.

4.2.2 User Signaling

Based on the virtual AP representation, we now focus on a network with K users and

2K − 1 destinations, where each user broadcasts data to 2K−1 − 1 destinations.

Let us define Wj (with DoF of dj) as the data transmitted by user j and Wj [S] (where
S ⊆ {1, 2, · · · , K}) as the portion of user j’s transmitted data which can be decoded at
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AP[S]. The DoF of Wj [S] is denoted by dj[S]. The DoF of the total decodable data at

state S, i.e., D[S], can be written as:

D[S] =
∑

∀j∈S
dj[S]. (4.4)

As discussed in Section 4.2.1, the network average DoF is equal to the weighted sum of

the degrees of freedom for each of the virtual APs. The weight of each AP is the probability

that network operates in that state, see (4.3). Equation (4.2), therefore, can be written as:

D =
∑

∀S:S⊆{1,··· ,K}
Pr[S]D[S] (4.5)

=
∑

∀S:S⊆{1,··· ,K}
P|S|D[S].

Note that the goal is to determine a transmission scheme which maximizes the value of D.

Knowing the virtual AP representation of the network, we are now ready to study

the problem of determining the best transmission scheme which maximizes the network

average DoF. In the following we need the following lemma. For the proof the reader is

referred to [42].

Lemma 4.1. Consider S,S ′ ⊆ {1, 2, · · · , K}. If S ⊆ S ′, dj [S] ≥ dj[S ′].

4.3 Two-user MIMO Random Access Networks

Before going to the general K-user network, in this section we first study the behavior of

a network with two users and one AP. Later, in Section 4.4, we extend these results to

the general case of multiuser networks. The main result of the two-user random access

network is presented in the following theorem.

Theorem 4.1. Consider a two-user random access network where each user and the AP

have M and N antennas, respectively. The node activation probability is denoted by ρ.

The optimal network average DoF for this network is presented in Table 4.1.
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Table 4.1: Optimal network average DoF: Two-user random access network

ρ ≥ 1
2

ρ < 1
2

N ≤ M Nρ 2Nρ(1− ρ)

M < N < 2M Nρ 2Mρ(1− ρ) + 2∆ρ2

2M ≤ N 2Mρ

∆ = (N −M)

Figure 4.1: Virtual AP representation of two-user random access network.

4.3.1 Converse of Theorem 4.1

Figure 4.1 shows the virtual AP representation of a two-user MIMO random access network.

The DoF of the decoded data at each virtual AP can be computed by (4.4):

D[{1}] = d1[{1}], (4.6)

D[{2}] = d2[{2}],
D[{1, 2}] = d1[{1, 2}] + d2[{1, 2}].

One trivial upper-bound for the achievable DoF in each state is for the case that we

assume full cooperation between the active users. Therefore, an upper-bound for the DoF

in each state is the minimum of the number of AP’s antenna and the total number of

antennas available at the active users (in that state), i.e.:

D[{1}] = d1[{1}] ≤ min(M,N), (4.7)

D[{2}] = d2[{2}] ≤ min(M,N),

D[{1, 2}] = d1[{1, 2}] + d2[{1, 2}] ≤ min(2M,N).
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Therefore, the basic upper-bound of the average network DoF will be:

max
A

Du = P1d1[{1}] + P1d2[{2}] + P2

(
d1[{1, 2}] + d2[{1, 2}]

)
(4.8)

s.t. d1[{1}] ≤ min(M,N)

d2[{2}] ≤ min(M,N)

d1[{1, 2}] + d2[{1, 2}] ≤ min(2M,N)

d1[{1, 2}] ≤ d1[{1}]
d2[{1, 2}] ≤ d2[{2}].

where A = {d1[{1}], d2[{2}], d1[{1, 2}], d2[{1, 2}]} and the last two inequalities are due to

Lemma 4.1.

This upper-bound is not tight in general. To improve the upper-bound we can make

use of providing some side information for different network states through a genie. The

same procedure is applied for improving the upper-bound in [42]. In the following, we

intuitively describe this technique for a two-user network. For the detailed proof of this

method refer to the proof of Theorem 1 in [42].

The virtual AP at state S = {1, 2} is able to decode a part of data transmitted from

each of the users denoted by W1[{1, 2}] and W2[{1, 2}]. Now, assume a genie provides the

undecoded part of user 2 transmitted signal, i.e., {W2\W2[{1, 2}]} for AP[{1, 2}]. Thus,

AP[{1, 2}] can decode W2 completely (it has already W2[{1, 2}] part). Having W2, the

contribution of user 2 on the received signal can be canceled. Therefore, it can be assumed

that the network is working in state S = {1}. In this network state (user 1 is the only active

user), there is no interferer at the AP and therefore the AP is able to decode all transmitted

data from user 1, W1 (of course, rate of W1 should be less than or equal to the capacity of

the point-to-point link between user 1 and the AP). So, if we provide {W2\W2[{1, 2}]} for

AP[{1, 2}], it should be able to decode {W1[{1}],W2[{1, 2}]}. Note that the total DoF of

these streams still needs to follow the same DoF upper-bound. Therefore, we have:

d1[{1}] + d2[{1, 2}] ≤ min(2M,N). (4.9)

In a same way, if a genie reveals the message part of {W1\W1[{1, 2}]} to the AP[{1, 2}],
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we will have:

d1[{1, 2}] + d2[{2}] ≤ min(2M,N). (4.10)

Providing the side information for AP[{1}] and AP[{2}] will not generate new conditions.

Therefore, the new upper-bound for the average network DoF will be:

max
A

Du = P1d1[{1}] + P1d2[{2}] + P2

(
d1[{1, 2}] + d2[{1, 2}]

)
(4.11)

s.t. d1[{1}] ≤ min(M,N)

d2[{2}] ≤ min(M,N)

d1[{1}] + d2[{1, 2}] ≤ min(2M,N)

d2[{2}] + d1[{1, 2}] ≤ min(2M,N)

d1[{1, 2}] ≤ d1[{1}]
d2[{1, 2}] ≤ d2[{2}].

where A = {d1[{1}], d2[{2}], d1[{1, 2}], d2[{1, 2}]}.

In order to simplify the upper-bound, we first prove the following lemma.

Lemma 4.2. Consider a two-user MIMO random access network. The upper-bound opti-

mization problem in (4.11) has at least one solution which is symmetrical for all users.

Proof: The optimization problem in (4.11) has the form of a linear program prob-

lem, i.e., it has a linear objective function with respect to the DoF of messages and the

constraints define a convex region.

Now, assume Υ = {d1[{1}] = a, d1[{1, 2}] = b, d2[{2}] = c, d2[{1, 2}] = d} is one optimal

non-symmetrical solution for the problem. Due to the symmetry of the network, we can

change the role of user 1 and user 2. Therefore, Υ′ = {d1[{1}] = c, d1[{1, 2}] = d, d2[{2}] =
a, d2[{1, 2}] = b} is also an optimal solution for the problem. Now consider a new scheme

called Υ′′ = Υ+Υ′

2
. Note that the DoF of each stream is now equal for both users (they have

the same transmission scheme). Due to the convexity of the objective function, we know

that the achievable DoF of Υ′′ is at least equal to Υ, therefore, it is optimal. Moreover,

the convexity of the search domain ensures that Υ′′ is still a feasible point. Thus, there

exists at least one optimal solution which is invariant under user permutation.
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Applying Lemma 4.2 to the two-user random access network, we can conclude that

α1 = d1[{1}] = d2[{2}], (4.12)

α2 = d1[{1, 2}] = d2[{1, 2}].

Combining (4.3), (4.11), and (4.12), we get the following theorem.

Theorem 4.2. Consider a two-user random access network where each user and the AP

have M and N antennas, respectively. One upper-bound for the average network DoF is:

max
α1,α2

Du = 2ρ(1− ρ)α1 + 2ρ2α2 (4.13)

s.t. α1 ≤ min(M,N)

α1 + α2 ≤ min(2M,N)

α2 ≤ α1

0 ≤ α2,

where ρ is the probability of the node activation.

To compute this upper-bound, we define β2 = α2 and β1 = α1 − α2. The above

optimization problem can then be written as the following set of inequalities:

Du ≤ 2ρ(1− ρ)β1 + 2ρβ2 (4.14)

β1 + β2 ≤ min(M,N)

β1 + 2β2 ≤ min(2M,N)

β1 ≥ 0

β2 ≥ 0.

We use the Fourier Motzkin elimination technique to compute Du in terms of N , M , and

ρ (see Section 4.6 for more details). The results are similar to that presented in Table 4.1.

This proves that Table 4.1 is the upper-bound of the network achievable DoF, D.
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4.3.2 Achievability Scheme and Signal Alignment

Based on (4.1), the channel input-output relation is:

y = H1x1 +H2x2 + n (4.15)

=
[
H1 H2

] [ x1

x2

]
+ n

= H

[
x1

x2

]
+ n,

where H is a 2M × N matrix representing the combined channel between the users and

the AP. Since the channel gains are drawn independently from a random variable, H1, H2,

and H are full rank almost surely. In other words, the column spaces of H1 and H2 is

min(M,N)-dimensional subspace in the N -dimensional space of the received vectors. The

rank of H is equal to min(2M,N), i.e., we can determine min(2M,N) independent N × 1

vectors in the space of the received vectors.

The core idea of the achievability scheme is that user j partitions its data into

min(M,N) sub-messages and transmits each of them along one optimally selected spa-

tial direction. To find these optimal directions, in general, we first decide on min(2M,N)

independent directions at the space of the received vectors. Depending on the values of M

and N , we select some of these directions and assign them to the users. If one direction is

assigned to a user, the other user will not transmit any stream along that direction. There

are also some settings in which we let both users transmit along one direction, i.e., this

direction is shared between both users.

The data sent along a direction which is assigned to user 1 or user 2 (if its DoF is

less than one) is always decodable regardless of the state of the other user. However, the

data sent along a shared direction can be decoded if i) only one of the users is active in

that network state, or ii) both users are active but each transmits with half of its available

DoF. Otherwise, the transmitted streams along that direction cannot be extracted. The

optimal design of the code, therefore, relies on determining these spatial directions such

that they minimize the dimension of the interference [57, 58]. In the following we present

one optimal selection of the transmit directions. These directions will be used in the

achievability scheme proposed in Theorem 4.3.
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a) N ≤ M : First select N independent vectors in the space of the received signal:

v = {v1,v2, , · · · ,vN}.

Then, we define vj
i as an M × 1 vector that if user j transmits data along that spatial

direction, its data will be received at the AP along the direction of vi, i.e.,

vi = Hjv
j
i , (4.16)

where i ∈ {1, 2, · · · , N} and j ∈ {1, 2}. In fact, we select N directions at the AP and

share all of them between the two users. Note that in (4.16) we have N equations and M

variables where M ≥ N . Thus, there is at least one solution for each vj
i .

b) N ≥ 2M : Due to the independence between entries of the channel matrices, the

ranks of the column spaces of H1, H2, and H are equal to M , M and 2M , respectively.

This implies that the subspace of the intersection of the column spaces of H1 and H2 has

rank zero with probability one. Therefore, it is possible to find 2M independent vectors

such that the first M vectors, {v1,v2, · · · ,vM}, span the column space of H1 and the

remaining vectors, {vM+1 · · · ,v2M}, span the column space of H2. We, then, define vj
i

(where i ∈ {1, 2, · · · ,M}) as a direction along which user j transmits its ith data stream

such that:

vi = H1v
1
i , (4.17)

vM+i = H2v
2
i .

Intuitively, we select 2M directions, M of them are assigned to user 1 and the other M

directions are assigned to user 2.

c) M ≤ N ≤ 2M : In such settings, the ranks of H1, H2, and H are M,M , and N ,

respectively. Furthermore, since N < 2M , the intersection of the column spaces of H1 and

H2 is of rank of 2M − N with probability one. This means that it is possible to find N

independent N × 1 vectors, such that:

1) 2M −N directions reside in the intersection of the column spaces of H1 and H2:

p1 = {v1,v2, · · · ,v2M−N}, (4.18)
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2) N −M directions reside inside the column space of H1, but not H2:

p2 = {v2M−N+1,v2M−N+2, · · · ,vM}, (4.19)

3) and N −M directions reside inside the column space of H2, but not H1:

p3 = {vM+1,vM+2, · · · ,vN}. (4.20)

p1, p2, and p3 are the proper receiving directions at the destination. We should find

the corresponding optimal transmit directions. For directions in ρ1, we use:

vi = H1v
1
i , (4.21)

vi = H2v
2
i ,

where i ∈ {1, 2, · · · , 2M −N}. It means that user 1 and user 2 transmit their data along

v1
i and v2

i which are received aligned with each other at the destination. In other words,

the directions in set ρ1 are shared between both users.

Next, we selectN−M directions of v1
2M−N+i and v2

2M−N+i (where i ∈ {1, 2, · · · , N −M})
such that the transmitted data from user 1 and user 2 are received along directions of ρ2

and ρ3, respectively, i.e.:

v2M−N+i = H1v
1
2M−N+i, (4.22)

vM+i = H2v
2
2M−N+i.

As will be shown, this technique enables us to decode some parts of the transmitted data

if both users are active. The achievability scheme can be summarized as the following.

Theorem 4.3. Consider a two-user random access network where each user and the AP

have M and N antennas, respectively. The transmission scheme presented in Table 4.2

achieves the optimal value of the network average DoF. In this table, xj represents the data

transmitted by user j. The i th stream of xj is denoted by sji and the DoF of sji is shown

by d
s
j
i
.

Proof. We should verify that the proposed scheme achieves the upper-bound for all network

setups. Here, we present the proof of each scenarios.
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Table 4.2: Achievability scheme: Two-user random access network

Signal Design ρ ≥ 1
2

ρ < 1
2

N ≤ M x1 =
N∑
i=1

s1iv
1
i ,x2 =

N∑
i=1

s2iv
2
i

i ∈ {1, 2, · · · , N} :

ds1i = ds2i =
1
2

i ∈ {1, 2, · · · , N} :

ds1i = ds2i = 1

M < N < 2M

x1 =
2M−N∑
i=1

s1iv
1
i +

M∑
i=2M−N+1

s1iv
1
i

x2 =
2M−N∑
i=1

s2iv
2
i +

M∑
i=2M−N+1

s2iv
2
i

i ∈ {1, 2, · · · , 2M −N} :

ds1i = ds2i =
1
2
,

i ∈ {2M −N + 1, · · · ,M} :

ds1i = ds2i = 1,

i ∈ {1, 2, · · · , 2M −N} :

ds1i = ds2i = 1,

i ∈ {2M −N + 1, · · · ,M} :

ds1i = ds2i = 1,

2M ≤ N x1 =
M∑
i=1

s1iv
1
i ,x2 =

M∑
i=1

s2iv
2
i ds1i = ds2i = 1, i ∈ {1, 2, · · · ,M}
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Figure 4.2: Signal structure: Two-user random access network where M = 3 and N = 2
(N ≤ M), and ρ ≥ 1

2
.

a) Consider a network in which N ≤ M and ρ ≥ 1
2
. From Table 4.2, the achievability

scheme is that each user partitions its data toN streams and sends them along vj
i as defined

in (4.16). Based on (4.16), v1
i and v2

i are received aligned with each other and along the

direction of vi (all N receiving directions are shared between both users). Noting that

the DoF of each stream is 1
2
, we conclude that both streams can be decoded at high SNR

regardless of the number of active users. Thus, from (4.5) the network achievable DoF will

be:

Dl = ρ(1− ρ)

[
N∑

i=1

ds1i +
N∑

i=1

ds2i

]
+ ρ2

N∑

i=1

[
ds1i + ds2i

]
(4.23)

= 2ρ(1− ρ)
N

2
+ ρ2(2× N

2
) = Nρ.

We can verify that this achievable network average DoF is the same as the upper-bound

presented in Table 4.1. For illustration, Fig. 4.2 shows an example of this scheme where

M = 3 and N = 2.

b) Now, consider a network in which N ≤ M and ρ < 1
2
. The achievability scheme is

similar to part a, except that in this case the DoF of each stream is 1. With this selection,

and since all direction are shared between both users we can not decode any data when

both users are active. However, we achieve the DoF of N when only one user is active.
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Therefore, similar to (4.23) we have:

Dl = ρ(1− ρ)

[
N∑

i=1

ds1i +

N∑

i=1

ds2i

]
+ ρ2

N∑

i=1

×0 (4.24)

= 2ρ(1− ρ)N.

This result is the same as what presented in Table 4.1.

c) The next scenario is for a case in which 2M ≤ N (either ρ ≥ 1
2
or ρ < 1

2
). In

these situations, user 1 and user 2 partition their data into M streams and transmit

them along the direction of v1
i and v2

i (where i ∈ {1, 2, · · · ,M}) as selected in (4.17),

respectively. Based on (4.17), v1
i and v2

i will be separately received along v1, · · · ,vM

and vM+1, · · · ,v2M , respectively (they do not interfere with each other). This property,

in addition to the fact that the DoF of each stream is 1 ensure us that the data can be

decoded (in high SNR) regardless of the number of active users. The network average DoF

is thus:

Dl = ρ(1− ρ)

[
M∑

i=1

ds1i +

M∑

i=1

ds2i

]
+ ρ2

M∑

i=1

[
ds1i + ds2i

]
(4.25)

= 2ρ(1− ρ)M + ρ2(2M) = 2Mρ,

which is the same as the upper-bound introduced in Table 4.1. Figure 4.3 demonstrates

an example of M = 2 and N = 5.

d) In this case we study is a setup in which M < N < 2M and ρ < 1
2
. The idea is

to align the transmitted data such that if both users become active, only some parts of

the data interfere with each other and we can still decode some portion of the transmitted

messages. To this end, we select N receiving directions as presented in p1, p2 and p3,

(4.18)-(4.20).

The signal transmitted by user 1 and user 2, each consists of M streams where 2M−N

of them are transmitted along v1
i and v2

i (as defined in (4.21)), respectively. v1
i and v2

i

both get to the AP aligned with each other and along the direction of vi (from set ρ1).

The remaining N −M streams of user 1 and user 2 are transmitted along the directions

defined in (4.22). These streams are get to the AP along their corresponding directions

from set ρ2 and ρ3 (without interference). Figure 4.4 shows an example in which M = 3

and N = 5.
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Figure 4.3: Signal structure: Two-user random access network where M = 2 and N = 5
(2M ≤ N).

Note that the DoF of all streams are one; therefore, the data sent along a direction can

be decoded if only one stream is transmitted along that direction. Thus, if only user 1 (or

user 2) transmits, we can decode all M streams of sets p1 and p2 (or p3). If both users

transmit, 2(N−M) messages transmitted along p2 and p3 can be successfully decoded (no

interference along these directions). However, the streams received along the directions of

set p1 will be lost since these directions are occupied with two transmitters, each of them

sends with the DoF of 1. The achievable network average DoF, therefore, can be evaluated

as:

Dl = ρ(1− ρ)

[
M∑

i=1

ds1i +
M∑

i=1

ds2i

]
+ ρ2

[
M∑

i=2M−N+1

[
ds1i + ds2i

]]
(4.26)

= ρ(1− ρ) [M +M ] + ρ2 [N −M +N −M ]

= 2ρ(1− ρ)M + 2(N −M)ρ2

= 2ρ(1− ρ)M + 2ρ2∆,

where ∆ = N −M . This is the same as the upper-bound presented in Table 4.1.

e) The last case is when M < N < 2M and ρ ≥ 1
2
. The transmission scheme of this

case is similar to part d where the transmit DoF over the shared directions is 1
2
(instead

of 1 in the previous case). By this assumption, we are able to decode the messages sent

along the shared directions even when both users are active; however, the achievable DoF
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Figure 4.4: Signal structure: Two-user random access network where M = 3 and N = 5
(M < N < 2M), and ρ < 1

2
.

is reduced when only one user is active.

Dl = ρ(1− ρ)

[
M∑

i=1

ds1i +
M∑

i=1

ds2i

]
+ ρ2

[
2M−N∑

i=1

[
ds1i + ds2i

]
+

M∑

i=2M−N+1

[
ds1i + ds2i

]]
(4.27)

= 2ρ(1− ρ)

[
N −M +

2M −N

2

]
+ ρ2

[
(2M −N)× (

1

2
+

1

2
) + (N −M)× (1 + 1)

]

= 2Nρ

This result is also the same as the upper-bound presented in Table 4.1 and Theorem 4.3

is proved.

Figure 4.5 depicts the optimal network average DoF, for different values of the node

activation probability. The results are plotted for different cases, where M = 3, 4 and

N = 5, 6.
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Figure 4.5: Network average DoF: Two-user MIMO random access network.

4.4 K-user MIMO Random Access Networks

In this section we extend the study to multiuser networks. Similar to the two-user network,

we will use the virtual AP representation of the network, i.e.:

a) There are 2K − 1 virtual APs and each user sends data to 2K−1 − 1 virtual APs.

b) Each user transmits a message, Wj , with the DoF of dj.

c) Assuming that the network is in state S, the decodable portion of user j transmitted

data is denoted by Wj [S] with the DoF of dj[S]. The total DoF of the decoded signal at

AP[S] is therefore can be evaluated by:

D[S] =
∑

∀j∈S
dj[S]. (4.28)

Note that based on Lemma 4.1 all dj[S] have the property that, if S ⊆ S ′, then:

dj[S ′] ≤ dj[S]. (4.29)
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One upper-bound for the achievable DoF at each network state is the minimum of the

number of AP’s antennas and the total number of antennas available at all active users,

i.e., ∀S ⊆ {1, 2, · · · , K}:

D[S] =
∑

∀j∈S
dj[S] ≤ min(|S|M,N). (4.30)

d) The goal is to determine a transmission scheme which maximizes the network average

DoF which can be evaluated as:

D =
∑

∀S:S⊆{1,··· ,K}
P|S|D[S]. (4.31)

4.4.1 Main Results

In the following we present the main results of this section. The detailed discussion will

follow up later.

Theorem 4.4. Consider a symmetric K-user MIMO random access network in which each

user and the AP are equipped with M and N antennas, respectively. The node activation

probability is denoted by ρ. One upper-bound for the network average DoF is:

max
A

Du =
K∑

j=1

j∑

k=1

kΓkβj (4.32)

s.t. a1.
K∑

k=1

βk ≤ min(M,N)

a2.

K∑

k=1

kβk ≤ min(KM,N)

b. βk ≥ 0; k ∈ {1, 2, · · · , K},

where A = {βj , ∀j ∈ {1, 2, · · · , K}} and Γk is the probability that k users are active in the

network, i.e.,

Γk =

(
K

k

)
ρk(1− ρ)K−k. (4.33)
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The optimization problem in Theorem 4.4 is indeed a Linear Program (LP) problem

with K non-negative variables and K+2 constraints. The important property of (4.32)

is that except the positivity constraints, there are only two other inequalities among the

boundary conditions. Therefore, (4.32) has at least one optimal solution in which at most

two variables take non-zero values. Note that, the solution of (4.32) depends on the values

of K, M , N , and ρ. To determine these optimal solutions (in different settings), we have

used the simplex method. The following corollary summarizes the results.

Corollary 4.1. The optimization problem of (4.32) has at least one solution in which all

βj except at most two of them are equal to zero. The exact solution of different network

settings (different combinations of ρ,K,M, and N) is presented in Table 4.3.

In Table 4.3, ρj , j ∈ {1, 2, · · · , K} are defined as the solution of:

BK−j,j(1− ρj)− j

(
K − 1

j

)
ρjj(1− ρj)

K−1−j = 0, (4.34)

where Ba,b(x) is the incomplete beta function defined as:

Ba,b(x) =

x∫
0

ua−1(1− u)b−1du

1∫
0

ua−1(1− u)b−1du

. (4.35)

Note that the value of ` in Table 4.3 is a function of the node activation probability, ρ.

Furthermore, the definition of ρj in (4.34) can be used to prove the following lemma.

Lemma 4.3. argmaxj
∑j

k=1 kΓk

j
is equal to ` if

ρ`−1 < ρ ≤ ρ`,

where ρj is the solution of equation (4.34)
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Table 4.3: Network average DoF upper-bound: K-user random access network

N ≤ M

` : ρ`−1 < ρ ≤ ρ`
N ≥ KM

M < N < KM

j1 : ρj1−1 < ρ ≤ ρj1 , j2 = bN
M
c+ 1

∀j 6= `, βj = 0,

β` =
N
`
,

∀j 6= K, βj = 0,

βK = M,

ρj2−1 ≤ ρ : ` = j1 ρ < ρj2−1 : ` = j2

∀j 6= `, βj = 0,

β` =
N
`
,

∀j /∈ {`− 1, `}, βj = 0,

β`−1 = `M −N, β` = N − (`− 1)M,

Du =

(∑̀
k=1

kΓk

)
N
`

Du = KMρ Du =

(∑̀
k=1

kΓk

)
N
`

Du =

(
`−1∑
k=1

kΓk

)
(`M −N)

+

(∑̀
k=1

kΓk

)
(N − (`− 1)M)

Note: ` is a function of of the node activation probability, ρ.
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The optimality of the proposed upper-bound (existence of an achievability scheme)

depends on the values of M , N , and K. The next theorem summarizes the achievability

results.

Theorem 4.5. Consider a symmetric K-user MIMO random access network in which

each user and the AP are equipped with M and N antennas, respectively. The network

average DoF upper-bound presented in Theorem 4.4 is achievable if any of of the following

conditions holds:

I) N ≤ M ,

II) KM ≤ N ,

III) M < N < KM and ρ ≥ ρb N
M

c where ρj is defined in (4.34).

IV) The upper-bound is also achievable for some special network setups (discussed in

section 4.4.3) where M < N < KM and ρ < ρb N
M

c.

Note that the optimality of the upper-bound is not proved for the general case of M < N <

KM and ρ < ρb N
M

c.

The idea behind the code design is similar to what discussed for the two-user random

access network. Each user partitions its data to sub-messages and transmits them over

appropriate directions. These directions are determined such that if more than one user

are transmitting, the AP can still decode some of the sub-messages from each user.

4.4.2 Proof of Theorem 4.4 (The Genie Aided Upper-bound)

The immediate upper-bound for the average network DoF can be derived by finding the

maximum value of (4.31) inside the region defined by (4.29) and (4.30), i.e.,

max
A

Du =
∑

∀S:S⊆{1,··· ,K}
P|S|D[S] (4.36)

s.t. a. D[S] =
∑

∀j∈S
dj[S] ≤ min(|S|M,N)

b. S ⊆ S ′ : dj[S ′] ≤ dj[S]
∀S,S ′ ⊆ {1, 2, · · · , K}.
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where A = {dj[S], ∀j ∈ {1, · · · , K}, ∀S ⊆ {1, 2, · · · , K}}.

In order to get a tighter upper-bound, similar to the two-user scenario, we use the idea

of providing some side information to the virtual APs [42].

Based on the virtual AP representation we know that the received signal at AP[S] is:

G[S] =
⋃

∀j∈S
Wj . (4.37)

First we select one of the users in S, say user 1̂. The part of user 1̂ message decoded

at AP[S] is denoted by W1̂[S] and its DoF is equal to d1̂[S].

Let V1̂[S] be the portion of 1̂ transmitted signal which is not decoded by AP[S], i.e.,

V1̂[S] = {W1̂\W1̂[S]}. (4.38)

Now assume a genie provides V1̂[S] for AP[S]. Therefore, AP[S] has access to all data

streams transmitted by user 1̂. Thus, it can remove the contribution of user 1̂ signal on

the received signal, i.e.:

G[S1] =
⋃

∀j∈S1

Wj , (4.39)

where S1 = {S\1̂}. G[S1] represents the signal that the AP would receive if it works in

state S1 (equivalently the signal that received at AP[S1]). Furthermore, from the virtual

AP representation we know that AP[S1] can decode Wj [S1] for all the remaining users, i.e.,

j ∈ {S\1̂}. Note that, since S1 ⊂ S, from Lemma 4.1 we have dj[S1] ≥ dj[S], for j ∈ S1

(the DoF of decodable signal is increased when the effect of user 1̂ is eliminated). Thus:

∑

∀j∈S1

dj[S1] ≥
∑

∀j∈S1

dj[S]. (4.40)

Therefore, to confine the search domain, instead of each constraint of:

d1̂[S] +
∑

∀j∈S1

dj[S] ≤ min(|S|M,N), (4.41)
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we use:

d1̂[S] +
∑

∀j∈S1

dj[S1] ≤ min(|S|M,N). (4.42)

We now select another active user, user 2̂. AP[S1] can decode a part of user 2̂ trans-

mitted data denoted by W2̂[S1] with the DoF of d2̂[S1]. Similar to the previous case we

define:

V2̂[S1] = {W2̂\W2̂[S1]}, (4.43)

as the uncoded part of user 2̂ transmitted data. Providing V2̂[S1] for AP[S1], the effect of

user 2̂ can be eliminated as well. Thus, we have:

G[S2] =
⋃

∀j∈S2

Wj , (4.44)

where S2 = {S\{1̂, 2̂}}. Therefore, the modified upper-bound is:

d1̂[S] + d2̂[S1] +
∑

∀j∈S2

dj[S2] ≤ min(|S|M,N). (4.45)

Continuing this procedure for the remaining active nodes of S, it can be proved that the

basic DoF constraint of:

∑

∀j∈S
dj[S] ≤ min(|S|M,N), (4.46)

can be substituted by:

d1̂[S] + d2̂[S1] + · · ·+ dq̂[Sq−1] ≤ min(qM,N), (4.47)

where q = |S|.

Note that there are q! ways to select users 1̂, 2̂, · · · , q̂ (different sorting order of set S).
Therefore, the basic condition of (4.46) for state S generates q! conditions of the form

(4.47).
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Theorem 4.6. Consider a K-user MIMO random access network. One upper-bound of

the network average DoF is equal to:

max
A

D =
∑

∀S:S⊂{1,··· ,K}
P|S|
∑

∀j∈S
dj[S],

where A = {dj[S], ∀j ∈ {1, · · · , K}, ∀S ⊆ {1, 2, · · · , K}} and dj[S]’s are located inside the

boundary B1 defined by:

a. d1̂[S] + d2̂[S1] + · · ·+ dq̂[Sq−1] ≤ min(|S|M,N) (4.48)

b. S ⊆ S ′ : dj[S ′] ≤ dj[S],

for all S,S ′ ⊆ {1, · · · , K} and for all sorting order of S represented by Ŝ = {1̂, 2̂, · · · , |̂S|}.
In equation (4.48), q = |S| and Sj = {S\{1̂, 2̂, · · · , ĵ}}.

To solve this problem, we first simplify the constraints specifying B1. We need the

following lemma.

Lemma 4.4. The upper-bound optimization problem defined in (4.48) has at least one

symmetric solution. This symmetric solution has the following properties:

1) dj[Q] is equal for all user inside a set Q, i.e., d[Q] = dj[Q], ∀j ∈ Q.

2) d[Q1] is equal to d[Q2] as long as q = |Q1| = |Q2|, i.e., αq = d[Q1] = d[Q2].

Proof: The proof is similar to the proof of Lemma 4.2 (for the two-user scenario), and

is based on the linearity of the objective function (i.e., (4.48)), the convexity of B1, and

the fact that if |Q1| = |Q2|, the coefficients of dj[Q1] and dj[Q2] in (4.48) are equal.

B1.a Boundary Constraints

As described in (4.48), S ⊆ {1, · · · , K}; thus, there are 2K −1 different selection for S.
Furthermore, for each S, there are |S|! different sorting order. Therefore, the constraints of

B1.a are in fact
∑2K−1

k=1 k! inequalities. Here, we show that instead of
∑2K−1

k=1 k! inequalities,

it is possible to determine only K inequalities which construct the same region of B1.a.
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a) We start by considering one group of constraints in B1.a related to one particular

S with different sorting orders, i.e.:

d1̂[S] + d2̂[S1] + · · ·+ dq̂[Sq−1] ≤ min(|S|M,N), (4.49)

where q = |S|, Sj = {S\{1̂, 2̂, · · · , ĵ}}, and Ŝ = {1̂, 2̂, · · · , q̂} is one desirable sorting order

of S. There are q! inequities in this group.

According to the first symmetry property of Lemma 4.4, if Q ⊆ {1, · · · , K}, then dj[Q]

is the same for all user j inside of Q, i.e., ∀j ∈ Q. Thus, we can suppress the user subscript

from equation (4.49):

d[S] + d[S1] + · · ·+ d[Sq−2] + d[Sq−1] ≤ min(|S|M,N). (4.50)

In other words, different sorting of set S does not generate independent constraints; there-

fore, all |S|! inequalities associated for different sorting order of the set S can be substituted

by one constraint of the form (4.50).

b) Now, from the second symmetry property we know that d[S] is equal for all S’s
which have the same cardinality, i.e., the value of d[S] only depends on the cardinality of

S (not the actual active users of S). Therefore, (4.50) is the same for all subset S’s which
have the same cardinality. Thus, we can write (4.50) as the following:

α|S| + α|S1| + · · ·+ α|Sq−2| + α|Sq−1| ≤ min(|S|M,N), (4.51)

Furthermore, since |Si| = |S| − i, (4.51) can be written as:

|S|∑

k=1

αk ≤ min(|S|M,N). (4.52)

Based on this observation, we can replace all constraints related to all S’s with the same

cardinality with one constraint of the form (4.52). We also know that |S| can take a value

between one and K. Therefore, all 2K − 1 constraints can be replaced by K inequalities

of the form (4.52). The following lemma summarizes the above discussion.
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Lemma 4.5. The set of inequalities which define the boundary condition of B1.a can be

substituted by the following K inequalities:

q∑

k=1

αk ≤ min(qM,N), (4.53)

where q ∈ {1, 2, · · · , K}.

B1.b Boundary Constraints

Consider S,S ′ ⊆ {1, 2, · · · , K} such that S ⊆ S ′. Due to B1.b constraint, dj[S ′] and

dj[S] should satisfy:

dj[S ′] ≤ dj[S] (4.54)

Based on Lemma 4.4, dj[Q],Q ⊆ {1, 2, · · · , K} is invariant to the selection of the user j

and in addition is the same for all sets Q with the same cardinality; thus, we can rewrite

(4.54) as:

α|S′| ≤ α|S|. (4.55)

Furthermore, since S ⊆ S ′, we have |S| ≤ |S ′|. Having (4.55) for all sets of S and S ′, we

can write B1.b constraints as:

αq′ ≤ αq, ∀q′, q ∈ {1, 2, · · · , K}, q ≤ q′, (4.56)

or equivalently,

αK ≤ αK−1 ≤ · · · ≤ α2 ≤ α1. (4.57)

The Objective Function

The objective function of the optimization problem in (4.48) can be written as the
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following:

Du =
∑

∀S:S⊆{1,··· ,K}
P|S|
∑

∀j∈S
dj[S] (4.58)

(a)
=

∑

∀S:S⊆{1,··· ,K}
P|S||S|d[S]

(b)
=

K∑

k=1

kΓkαk,

where Γk is define by (4.33) and shows the probability that k users are active in the

network. In equation (4.58), (a) and (b) are justified based on the first and second symmetry

properties of Lemma 4.4, respectively.

Based on Lemma 4.5 and equations (4.57) and (4.58), the next theorem summarizes

the new outer-bound of the network average DoF.

Theorem 4.7. Consider a symmetric K-user MIMO random access network in which each

user and the AP are equipped with M and N antennas, respectively. One upper-bound of

the network average DoF can be determined as:

max
A

Du =
K∑

k=1

kΓkαk (4.59)

s.t. a.

q∑

k=1

αk ≤ min(qM,N), ∀q ∈ {1, 2, · · · , K}

b. 0 ≤ αK ≤ αK−1 ≤ · · · ≤ α2 ≤ α1,

where A = {αj, ∀j ∈ {1, 2, · · · , K}} and Γk is defined in (4.33).

Do We Need All Boundary Constraints

In this section we want to see whether any of the boundary constraints of the maxi-

mization problem of (4.59) is redundant or not. We need the following lemma.

Lemma 4.6. For all q ∈ {1, 2, 3, · · · , K}:

a)
q∑

k=1

αk ≤ qα1,

b)
q∑

k=1

αk ≤
K∑
k=1

αk.
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Proof: The proof is straight forward and can be verified by noting that 0 ≤ αK ≤ αK−1 ≤
· · · ≤ α2 ≤ α1.

Lets write the boundary conditions of (4.59) for three cases of q = 1, q = j where

j ∈ {2, · · · , K − 1}, and q = K:

CO1 : α1 ≤ min(M,N), (4.60)

CO2 :

j∑

k=1

αk ≤ min(jM,N), j ∈ {2, · · · , K − 1},

CO3 :
K∑

k=1

αk ≤ min(N,KM).

Now assume that q such that qM ≤ N ; therefore, CO1 and CO2 reduce to:

CO1 : α1 ≤ M, (4.61)

CO2 :

q∑

k=1

αk ≤ qM.

Multiplying the first inequality by q, we get:

qα1 ≤ qM. (4.62)

Furthermore, based on the Lemma 4.6-a and non-negativity of αk’s, we know that:

q∑

k=1

αk ≤ qα1, (4.63)

Combining equations (4.62) and (4.63), we can conclude that as long as CO1 is satisfied,

all other boundary conditions of q in which qM ≤ N are also satisfied, and therefore they

are redundant.
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Now assume q such that N < qM , then, CO2 and CO3 can be written as:

CO2 :

q∑

k=1

αk ≤ N, (4.64)

CO3 :
K∑

k=1

αk ≤ N.

The inequality in Lemma 4.6-b shows that CO2 is redundant with respect to CO3 (where

we have N < qM).

As a summary, we see that CO2 constraints for all j ∈ {2, 3, · · · , K − 1} are redundant

with respect to either CO1 or CO3, depending on the values of jM and N . Therefore,

we can remove all constraints 1 < q < K and only keep the first and the last boundary

constraints. Therefore, the optimization problem of (4.59) can be written as:

max
A

Du =

K∑

k=1

kΓkαk (4.65)

s.t. a1. α1 ≤ min(N,M)

a2.
K∑

k=1

αk ≤ min(N,KM)

b. 0 ≤ αK ≤ αK−1 ≤ · · · ≤ α2 ≤ α1,

where A = {αj, ∀j ∈ {1, · · · , K}, j ∈ {1, 2, · · · , K}} and Γk is defined in (4.33).

To further simplify the upper-bound, let’s define βK = αK and βi = αi − αi+1 where

i ∈ {1, 2, · · · , K − 1}. We then rewrite the optimization problem of (4.65) based on these

new variables. This leads us to the final upper-bound optimization problem which is

presented in (4.32) and therefore Theorem 4.4 is proved.
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4.4.3 Proof of Theorem 4.5 (The Achievability Scheme)

As briefly explained in Section 4.4.1, the achievability scheme depends on the network

parameters. In this section, we discuss each situation in more details and bring an example

for each scenario. We need the following lemma in the following.

Lemma 4.7. [59], Consider a k-user multiple access network in which each user and the

AP equipped with M and N antennas, respectively. There exist a coding scheme (based on

random coding) in which the decodable DoF of each user is equal to min(M, N
k
).

1) Single-Stream Codes

a) Case N ≤ M :

For such network settings, Table 4.3 presents the network average upper-bound in which

all βk’s are set to zero except one of them in which β` = N
`
where ` is determined such

that ρ`−1 < ρ ≤ ρ` and ρ is the probability of node activation.

Given this upper-bound and considering the definition of βj , it is implied that a scheme

achieves the upper-bound if we propose a coding scheme such that all users transmit with

the DoF of N
`
and the AP can decode the users transmitted data as long as the number

of active users in a time slot is less than `. To construct such a code, we use the idea of

random coding. Assuming a long block length of t ≥ KM +N +1, each user (for instance

user j) generates a Gaussian codebook Cj which has SNRδj×t codewords where δj = N
`

(representing the DoF of the code) and ` is determined such that ρ`−1 < ρ ≤ ρ`. Each

codeword is an M × t matrix which its elements are drawn from a zero mean Gaussian

random variable with unit variance.

By this selection, while the number of active users k, is less than `, we have
∑k

j=1 δj ≤
N . Furthermore, since in this scenario N ≤ M , the DoF of each user, i.e., N

`
, is also less

than the number of antennas available at each user, i.e., M . Having these two properties,

Lemma 4.7 guarantees that if there are k (where k ≤ `) active users, the AP is able to

decode all data streams, i.e.:

dj[Q] = δj =
N

`
, ∀j ∈ Q where |Q| ≤ ` (4.66)
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Substituting (4.66) in (4.31), the achievable network average DoF can be computed as:

Dl =
∑

∀Q:Q⊆{1,··· ,K}
P|Q|D[Q] (4.67)

=
∑

∀Q:Q⊆{1,··· ,K}
P|Q|

∑

j∈Q
dj [Q]

=

K∑

k=1

∑

∀Q:|Q|=k,
Q⊆{1,··· ,K}

P|Q|
∑

j∈Q
dj[Q]

=
∑̀

k=1

∑

∀Q:|Q|=k,
Q⊆{1,··· ,K}

kPk

N

`

=

(∑̀

k=1

kΓk

)
N

`

where Γk is defined in (4.33) and shows the probability that k users are active in the

network. As can be verified the achievable network average DoF is equal to the upper-

bound presented in Table 4.3. Therefore, we have the optimal network average DoF in this

scenario.

To illustrate, Fig. 4.6 shows the network average DoF for different network setups.

Note that, to achieve the upper-bound, the DoF of each user should be modified according

to the value of ρ. For instance, consider the case in which K = 5,M = 3, and N = 2. For

this setup, as long as 0.669 < ρ ≤ 1 (or equivalently ` = 5) the optimal scheme is that each

user transmits a single-stream code with the DoF of 2
5
. This data can always be decoded

regardless of the number of active users. Then, if 0.4860 < ρ ≤ 0.669 (or equivalently

` = 4) the DoF of each user should be equal to 2
4
. In this case, the transmitted data can

be decode, if less than five users are active. If five users become active, we loos all the

transmitted data. In a same way, if 0.333 < ρ ≤ 0.4860 (or ` = 3), 0.2 < ρ ≤ 0.333 (or

` = 2), and 0 ≤ ρ ≤ 0.2 (or ` = 1), each user should transmit a single-stream data with

the DoF of 2
3
, 2

2
, and 2

1
, respectively.

b) Case N ≥ KM :

The achievability scheme of this case is similar to the previous case, i.e., each user sends

one stream of data with a DoF of M , i.e, δj = M . Assuming all users are active, the DoF
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Figure 4.6: Network average DoF: K-user random access network where N ≤ M .

of the received data is equal to
∑K

j=1 δj = KM which is less than N due to the N ≥ KM

assumption in this case. Clearly, the DoF of the received data remain less than N when

fewer users are active. Therefore, from Lemma 4.7 we conclude that the transmitted data

from all users can be decoded in all network states and the DoF of each user data is equal

to M . Similar to (4.67), the achievable network average DoF can be computed as:

Dl =
K∑

k=1

∑

∀Q:|Q|=k,
Q⊆{1,··· ,K}

P|Q|
∑

j∈Q
dj[Q] (4.68)

=

K∑

k=1

∑

∀Q:|Q|=k,
Q⊆{1,··· ,K}

kPkM

=

(
K∑

k=1

kΓk

)
M = KMρ

where Γk is defined in (4.33). Comparing this achievable network average DoF with the

result of Table 4.3 proves that we have the optimality result in this case as well.
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Figure 4.7: Network Average DoF: K-user random access network where KM ≤ N .

As an example, Fig. 4.7 shows the network average DoF for different network settings.

In each scenario, the optimal scheme is that each user sends a single-stream with the DoF

of M . The figure verifies that the optimal transmission remains unchanged for all range

of ρ. Another observation is that the optimal average network DoF is not increased if we

increase N beyond 2M (i.e., from N = 6 to N = 7). It is due to the fact that there is

no additional degrees of freedom at the transmitter; therefore, the extra dimension at the

receiver cannot be exploited.

c) Case M < N < KM :

Two situations occur for the upper-bound of the network average DoF.

First, as long as ρ ≥ ρj2−1, there is only one non-zero βk. The achievability scheme is

therefore similar to the network of N ≤ M . In other words, each user (for instance user j),

construct a codebook (Cj) which encodes a single-stream of data with the DoF of δj =
N
`

where ` is determined such that ρ`−1 < ρ ≤ ρ`. This selection ensures the decodability of

the transmitted data as long as not more than ` users are active in the network. Thus,
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similar to (4.67), we have:

Dl =
∑̀

k=1

∑

∀Q:|Q|=k,
Q⊆{1,··· ,K}

kPk

N

`
(4.69)

=

(∑̀

k=1

kΓk

)
N

`

where Γk is defined in (4.33). Comparing this result with the upper-bound of Table 4.3

shows that the single-stream code is optimal in the case that ρ ≥ ρj2−1. However, as will

be shown, the single-stream coding cannot achieve the upper-bound where ρ < ρj2−1. In

the next part we discuss these situations in more details.

2) Multi-Stream Codes: M < N < KM and ρ < ρj2−1

The upper-bound of the network average DoF, in the scenarios where M < N < KM

and ρ < ρj2−1, is presented in Table 4.3 in which we set β`−1 = `M−N , β` = N−(`−1)M ,

and βj = 0, ∀j 6= ` and (`− 1). This result implies that the upper-bound can be achieved

if we can construct a code such that the decodable DoF of each user is equal to M if up to

` − 1 users become active. Furthermore, where there is ` active users, we should be able

to partially decode the transmitted data and get the DoF of N − (`− 1)M .

The main difference between the upper-bound of these scenarios and the previous

case is that, here, the upper-bound is achieved when two βj are not equal to zero while in

the previous cases there is only one non-zero βj. It is the reason that in these situations,

although single-stream codes are still a lower-bound of the achievable network average DoF,

they are no longer the optimal scheme and connot reach the upper-bound. The existence

of the optimal code for arbitrarily selection of K,M, and N is an open problem. Here,

we aim to present some examples of networks for which we are able to construct a coding

scheme which achieves the upper-bound of the network average DoF. Therefore, we have

the optimal network average DoF in these special network setups.

As will be discussed, the proposed code consists of multiple streams of data. It is the

reason that we use the term multi-stream code for this transmission scheme. The transmit

direction of each code is selected such that all of the streams from all users can be decoded

if less than ` users are active. Furthermore, if ` users are active, the AP still can decode
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parts of the transmitted streams from each users [57,58]. Simultaneous activation of more

than ` users will corrupt all streams and nothing can be decoded at the AP.

As noted, we are always able to construct the single-stream code (a code which can be

either received completely or we loos all transmitted data) and consider it as a lower-bound

for the network average DoF. In the single-stream code, each user (for instance user j),

selects a code-book (Cj) with DoF of:

δj =





M if

`−1∑

k=1
kΓk

`Γ`
≤ N

M`−N

N
`

if

`−1∑

k=1
kΓk

`Γ`
> N

M`−N

. (4.70)

The achievable average DoF, therefore, will be:

Dl =





`−1∑
k=1

kΓkM if

`−1∑

k=1

kΓk

`Γ`
≤ N

M`−N

∑̀
k=1

kΓk
N
`

if

`−1∑

k=1

kΓk

`Γ`
> N

M`−N

. (4.71)

In the sequel, the performance of the single-stream coding approach is also presented when

we analyze different network setup.

4.4.4 Examples

In this section, we bring three examples. In the first two examples we discuss two network

setups for which we are able to construct an achievability scheme based on a multi-stream

data transmission. Thus, we have the optimality results in these situations. As we men-

tioned there are some scenarios in which the multi-stream data transmission is not able to

achieve the upper-bound. The third example of this section presents one of these scenarios.

Note that, based on Section 4.4.3.1-c, in all setups (including the last one) we have the

optimal network average DoF if ρ is larger than a threshold, namely ρj2−1.

Example 1: As the first example, consider a K-user random access network where

M = K − 1 and N = 2K − 3. Therefore, j2 = bN
M
c + 1 = 2 and ρj2−1 =

1
K
.

In this network, M < N < KM . Therefore, we know that as long as ρ ≥ 1
K

single-
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Table 4.4: Notations used for the intersections of column spaces

a = I(H1,H2) ⇒ a = H1a1 = H2a2

b = I(H1,H3) ⇒ b = H1b1 = H3b3

c = I(H1,H4) ⇒ c = H1c1 = H4c4

d = I(H2,H3) ⇒ d = H2d2 = H3d3

e = I(H2,H4) ⇒ e = H2e2 = H4e4

f = I(H3,H4) ⇒ f = H3f3 = H4f4

stream code, Section 4.4.3.1-c, achieves the optimal network average DoF. In these cases,

we first find ` such that ρ`−1 ≤ ρ ≤ ρ`. Then, we construct a single-stream code with the

DoF of N
`
for each user.

Now we focus on the settings that ρ < 1
K
. Based on Table 4.3, we know that the

upper-bound is achievable if we are able to design a code such that we can get the DoF of

K−1 where only one user transmits. Furthermore, the DoF of 2K−4 should be decodable

where each two users become active. To design such a code, each user constructs multiple

streams of data and transmits them over predetermined spatial directions. These directions

are selected such that at least some of them do not overlap with each other (when more

than one user become active); therefore, we can decode some parts of the data.

To simplify the explanation, we assume K = 4, i.e., we have a four-user random access

network and users and the AP are equipped with 3 and 5 antennas, respectively. We focus

on the cases where ρ < 1
4
. Table 4.3 suggests that we should design a code such that we

can achieve the DoF of 3 and 2 (per user) when one and two users are active, respectively.

Let Hj, j ∈ {1, 2, 3, 4} denotes the 5×3 channel propagation matrix between user j and

the AP. The order of the column spaces of all Hj, j ∈ {1, 2, 3, 4} is 3 and the intersection

of the column spaces between each two Hj is one (the space of the received signal is of

the order of 5). The intersections of each two channel matrices are summarized in Table

4.4. In this table, I(·, ·) is a function with two matrices as the inputs, and its output is

the intersection of the two input matrices. For instance, b = I(H1,H3) means that the

intersection of the column spaces of H1 and H3 is denoted by b. Furthermore, the second
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Table 4.5: Signal structure: Four-user random access network where M = 3 and N = 5

s1 s2 s3

User 1 a1 b1 c1

User 2 a2 d2 e2

User 3 b3 d3 f3

User 4 c4 e4 f4

expression in each row of Table 4.4 shows the direction along which a user should transmit

such that the data gets to the AP along the direction of the corresponding intersection.

For instance, b1 and b3 denote the directions that user 1 and user 3 should transmit such

that their data gets to the AP along direction b.

To transmit data, each user partitions its data into three streams (s1, s2, and s3) each

with the DoF of one. These streams are then transmitted over three predetermined direc-

tions. Table 4.5 summarizes the code structure of each user in this setup. For instance,

Table 4.5 shows that user 3 transmits data over three directions of b3, d3, and e3. There-

fore, s1, s2, and s3 will be received along the directions of b, d, and e, respectively.

We claim that with this structure we can achieve the DoF of 3 if one user is active and

also we can decode the DoF of 2 (per user) in cases that two users are active. For instance

assume that user 1 is active. Based on Table 4.5, it transmits three messages along a1, b1,

and c1 spatial directions. These messages are received along directions a, b, and c (see

Fig. 4.8). Sine there is no interferer, all streams can be decoded and we get the DoF of 3.

Now assume that another user, for instant user 2, starts transmission. It transmits

along a2, d2, and e2 directions. Therefore, at the AP we will have the following signals:

user 1(s2) : direction b, user 1(s3) : direction c, (4.72)

user 2(s2) : direction d, user 2(s3) : direction e,

user 1(s1) + user 2(s1) : direction a

This signal structure is also pictorially depicted in Fig. 4.8. As can be seen, we have five

direction that over four of them (b, c,d, and e) only one stream is transmitted. Since the

DoF of each stream is one, we can decode these parts and get the DoF of 4 (DoF of 2 per
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Figure 4.8: Signal structure: Four-user random access network where M = 3 and N = 5.
The last two cases are not-decodable since there are more than 5 received directions at the
AP.
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Figure 4.9: Network average DoF: Four-user random access network where M = 3 and
N = 5.

user). Note that, we cannot decode the messages which are sent along direction a. It is

due to the fact that in this direction we have two signal (s1 of user 1 and s1 of user 2) each

has the DoF of 1.

The above reasoning is not limited to users 1 and 2 and applies to all cases that there

are two active users in the network, i.e., regardless of actual active users, we can get the

DoF of 3 and 2 (per user) if the number of active users is one and two, respectively. This

code, therefore, achieves the upper-bound in the range of ρ < 1
4
and shows the optimality

of the results in Theorem 4.4. Note that, this strategy can be extended to design codes for

the general cases where the number of users is not equal to 4.

Figure 4.9 shows the optimal network average DoF for this 4-user network. For the

range of ρ > 0.25, the single-stream data transmission is optimal, i.e., where 0.63 < ρ ≤ 1,

0.422 < ρ ≤ 0.63, and 0.25 < ρ ≤ 0.422 each user transmits a single-stream with the DoF

of 5
4
, 5

3
, 5

2
, respectively. In case that ρ < 0.25, the optimal scheme is to use the introduced

multi-stream technique which aligns the signals of different users. For comparison, we have

also plotted the achievable network average DoF if we use the single-stream code where

ρ < 0.25. The gap between the two schemes is evident in the figure.
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Table 4.6: Signal structure: Four-user random access network where M = 4 and N = 7

s1 s2 s3 s4

User 1 a1 b1 c1 g

User 2 a2 d2 e2 h

User 3 b3 d3 f3 i

User 4 c4 e4 f4 j

Example 2: Another example of networks in which we can prove the optimality of the

upper-bound is a K-user network where M = K and N = 2K−1. Thus, j2 = bN
M
c+1 = 2

and ρj2−1 =
1
K
.

Based on Table 4.3, a single-stream code, Section 4.4.3.1-c, achieves the optimal network

average DoF if ρ ≥ 1
K
.

Furthermore, Table 4.3 suggests that the upper-bound can be achieved for ρ < 1
K

if

we can design a code such that the AP can decode the DoF of K and K − 1 (per user)

where the number of active users is one and two, respectively. To simplify the explanation,

here, we consider a 4-user network (K = 4) where M = 4 and N = 7. In this setup,

Hj, j ∈ {1, 2, 3, 4} are matrices of size 7 × 4. Therefore, the order of the intersection of

the column space ofs each two Hj is still 1. The notation that we used to refer to these

intersections is the same as Example 1 (Table 4.4).

To transmit data, in this scenario, each user partitions its data into four streams

(s1, s2, s3 and s4) each with the DoF of one. The transmit direction of each stream is

summarized in Table 4.5. In Table 4.6, directions g,h, i, and j are selected such that they

are independent to the other vectors transmitted by their corresponding user. For instance,

g is determined such that it is independent of a1,b1, and c1.

To prove the optimality, we should show that the achievable DoF of this code is 4 if one

user is active and 3 (per user) in cases that two users are active. Figure 4.10 shows this

situation. In this figure, g′ = H1g and h′ = H2h. For instance, we assume user 1 is the

only active user. In this case there is no interferer in the network and therefore, all four

transmitted streams are received along four independent directions at the AP (they can

be decode successfully). The achievable DoF is therefore equal to 4. Next, we study the

case with two active users in the network, without loss of generality, we assume user 1 and
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Figure 4.10: Signal Structure: Four-user random access network where M = 4 and N = 7.
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Figure 4.11: Network average DoF: Four-user random access network where M = 4 and
N = 7.

user 2 are active. Looking into the structure of the received signal (depicted in Fig. 4.10),

we see that (except direction a) there is only one data stream per each spatial direction.

Thus, all of them could be decoded and we get the DoF of 6 (3 per user). Note that the

data sent along a1 and a2 are received aligned with each other when they get to the AP

and thus we cannot decode them.

Extending this results to any one or two active users, we see that for ρ < 1
4
the DoF

of 4 and 3 (per user) is achievable, respectively. This proves that the upper-bound of

Theorem 4.4 is indeed optimal.

Figure 4.11 shows the optimal network average DoF for this 4-user network. Similar

to Example 1, where ρ is higher than a threshold, i.e., 0.25 ≤ ρ, the single-stream code is

optimal and where ρ < 0.25 we should use the proposed alignment technique. Figure 4.11

presents the achievable DoF of the sub-optimal single-stream code as well.

Note that these cases are only two examples that we mentioned to show that the upper-

bound of Theorem 4.4 is tight in some scenarios. However, there are also some network

setups that the introduced vector alignment technique cannot reach the upper-bound. In
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Figure 4.12: Network average DoF: Five-user random access network where M = 3 and
N = 5.

these scenarios we can use the single-stream code as a lower-bound of the achievable net-

work average DoF. For instance, in Example 3 we analyze one of these network conditions.

Example 3: Consider a network with five users where each user and the AP are

equipped with 3 and 5 antennas, respectively.

For this network, from (4.34), we have ρj2−1 = 1
5
. Therefore, as long as ρ ≥ 1

5
, a

single-stream coding technique based on Section 4.4.3.1-c can achieve the optimal network

average DoF. However, if ρ < 1
5
there is a gap between the achievable rates of the single-

stream code and the upper-bound of Theorem 4.4. The vector alignment scheme which we

applied for the previous two examples fails to fill this gap as well. Further investigation is

required to find out the optimal network average DoF in these situations.

The results are presented in Fig. 4.12 where we have the optimum results only for

ρ ≥ 0.2. The gap between the lower and the upper-bound (where ρ < 1
5
) is shown in the

figure as well.
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4.5 Summary

We studied a random multiple access network with K users (each equipped with M an-

tennas) and one Access Point (with N antenna). There is no central controller for the

network and, at the beginning of each a time slot, users (independently and with proba-

bility ρ) start transmission of data. In this chapter, we proposed an upper-bound of the

network average DoF for different network setups. In addition, we presented an achievabil-

ity scheme which reaches the upper-bound of the network average DoF for all symmetric

two-user random access networks with different values of M and N . The optimality result

also holds for symmetric K-user random access networks where i) N ≤ M , or ii) KM ≤ N ,

or iii) M < N < KM and ρ is larger than a threshold. The existence of the achievability

scheme is also proved for some specific network examples in which ρ is smaller than the

threshold and M < N < KM . This optimal strategy is based on the idea of multi-stream

data transmission and vector interference alignment.

4.6 Fourier-Motzkin Elimination Technique for Solv-

ing Equation (4.14)

As mentioned in the last paragraph of 4.3.1, we can use Fourier-Motzkin elimination tech-

nique to show that Du in (4.14) is equivalent to the results of Table 4.1. To show the steps

of the proof, in this section we find the value of Du for the cases that N ≤ M and ρ ≤ 1
2

or ρ > 1
2
. The other cases can be proved similarly. For convenience, lets rewrite (4.14)

considering that N ≤ M .

Du ≤ 2ρ(1− ρ)β1 + 2ρβ2 (4.73)

β1 + β2 ≤ N (4.74)

β1 + 2β2 ≤ N (4.75)

β1 ≥ 0 (4.76)

β2 ≥ 0. (4.77)
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First, we combine the above inequalities such that we can cancel β1:

(4.73) + 2ρ(1− ρ)× (4.74) (4.78)

(4.73) + 2ρ(1− ρ)× (4.75) (4.79)

(4.76) + (4.74) (4.80)

(4.76) + (4.75) (4.81)

(4.77) (4.82)

Two cases can happen:

1) Considering ρ ≤ 1
2
, we have:

Du ≤ 2ρ2β2 + 2ρ(1− ρ)N (4.83)

Du + 2ρ(1− 2ρ)β2 ≤ 2ρ(1− ρ)N (4.84)

β2 ≤ N (4.85)

2β2 ≤ N (4.86)

β2 ≥ 0 (4.87)

It can be seen that (4.85) is redundant with respect to (4.86). Next, we combine

inequities (4.83)-(4.87) such that we can cancel β2.

(1− 2ρ)× (4.83) + ρ× (4.84) (4.88)

(4.83) + ρ2 × (4.86) (4.89)

2ρ(1− 2ρ)× (4.87) + (4.84) (4.90)

2× (4.87) + (4.86) (4.91)

Therefore, we have:

Du ≤ 2ρ(1− ρ)N (4.92)

Du ≤ ρ(1 − 2ρ)N (4.93)

Du ≤ 2ρ(1− ρ)N (4.94)

0 ≤ N (4.95)
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It can be shown that (4.93) is redundant with respect to (4.92). Therefore, if N ≤ M

and ρ ≤ 1
2
, we have Du = 2ρ(1−ρ)N which is equal to what is presented in Table 4.1.

2) Considering ρ > 1
2
, we have:

Du ≤ 2ρ2β2 + 2ρ(1− ρ)N (4.96)

Du ≤ 2ρ(2ρ− 1)β2 + 2ρ(1− ρ)N (4.97)

β2 ≤ N (4.98)

2β2 ≤ N (4.99)

β2 ≥ 0 (4.100)

It can be shown that (4.96) and (4.98) are redundant with respect to (4.97) and

(4.99), respectively. Therefore, we can eliminate them. Next, we combine inequities

(4.96)-(4.100) such that they cancel out β2.

(4.97) + ρ(2ρ− 1)× (4.99) (4.101)

2× (4.100) + (4.99) (4.102)

Therefore, we have:

Du ≤ ρN (4.103)

0 ≤ N (4.104)

Therefore, if N ≤ M and ρ > 1
2
, we have Du = ρN which is equal to what is

presented in Table 4.1.
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Chapter 5

Concluding Remarks

5.1 Summary of Contributions

In this dissertation, we have studied three network setups in which the channel state

information is only available at the destination.

In Chapter 2, we have considered a multi-hop network in which the channel gains

of each hop changes quasi-statistically from one transmission block to the other. It is

assumed that the knowledge of the channel gain of each hop is available only at its corre-

sponding receiver, and relays are not capable of data buffering over multiple transmission

blocks. Considering a single-antenna case, we have proposed a scheme based on multilayer

data transmission in conjunction with decode and forward relaying. For this transmission

scheme, we have formulated the statistical average of the received rate per channel use at

the final destination as an optimization problem. We have then introduced an algorithm

to solve the introduced optimization problem and determine the optimal parameters of

the multilayer codes of each node. The optimality of the proposed scheme for the two-hop

networks is also discussed in this chapter.

In Chapter 3, instead of multi-hop settings, we have studied a single-hop network (with

a quasi-statistic fading channel) in which both source and destination are equipped with

multiple antennas. Similar to Chapter 2, we have assumed that the CSI is not available

at the source and the objective is to design a multilayer code such that it maximizes the

statistical average of the received rate per channel use at the destination. This study is
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limited to the scenarios in which the destination is only able to perform successive decoding.

In this chapter, first, we have proposed a general design rule for construction of the optimal

multilayer codes for multiple-input multiple-output systems. The chapter also presents an

algorithm that uses the proposed design rule to determine the parameters of the multilayer

code. The superiority of the proposed scheme compared to the previously known scheme

is also shown in this chapter.

Finally, in Chapter 4, we have analyzed a K-user random access network in which

users and the AP are equipped with M and N antennas, respectively. In this network,

although the channel gains are fixed and known at the users, the user still does not know

the complete channel state. It is due to the fact that in each time slot, there could be more

than one active user that produce interference over each other. The objective is to find

a way to combat with the ambiguity regarding the channel state and propose a scheme

that achieves the optimal value of the network average DoF (introduced in Section 4.1).

This chapter also proposes a transmission scheme that maximizes the network average DoF

for all settings of a two-user random access network, i.e., for all values of M , N , and ρ

where ρ denotes the probability of node activation in a time-slot. Generalizing the result

to a K-user random access network, we have presented an upper-bound for the network

average DoF. Furthermore, we have proved that this upper-bound is tight, if either of these

conditions holds: 1) N ≤ M , or 2) KM ≤ N , or 3) M < N < KM , and ρ is larger than

a threshold. The optimality of the proposed upper-bound is also proved for some specific

network examples in which ρ is smaller than the threshold and M < N < KM . The

achievability schemes of these cases are based on the idea of multi-stream data transmission

and vector interference alignment.

5.2 Future Research Directions

This dissertation can be extended in different directions. Some of them are briefly described

in the following.

• In Chapter 2, we have studied a multi-hop network in which all relays have a max-

imum transmission power constraint. To extend the results, we can relax this con-

straint to an average power constraint. Based on the average power constraint, a

relay is able to transmit with lower power in cases that its input rate (the amount of
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data that the relay is decoded from the multilayer code of the previous hop) is low,

and instead use higher transmit power in cases that the input rate is higher, i.e., the

relay saves power in some transmission blocks and uses it in some other transmission

blocks. The optimization problem in this case is the extended version of the opti-

mization problem introduce in (2.5)-(2.8), where we should also find the optimum

transmit power of each relay (condition on its input rate), while the average transmit

power is constant. In [60], we present some initial studies on this subject.

• In Chapter 3, we have discussed the optimal design of multilayer codes for single-hop

MIMO networks. Inspired by the results of Chapter 2, this work can be extended to

the optimal design of the multilayer codes, when they are transmitted over multi-hop

MIMO networks.

• As pointed out in Chapter 4, the optimal network average DoF of a K-user MIMO

random access networks is derived except for the cases that M < N < KM and

ρ is smaller than threshold ρj2−1, where ρ denotes the user activation probability,

and M , N represent the number of antennas available at each user and the AP,

respectively. Threshold ρj2−1 is also defined in Corollary 4.1. In this chapter, we

have proposed a transmission scheme that achieves the network average DoF even

in networks where ρ is smaller than threshold ρj2−1 and M < N < KM . However,

as shown in Example 3 of Section 4.4.4, the proposed scheme is not applicable for

all network settings. Therefore, an important extension of the work is to close the

gap between the upper-bound and lower-bound of the network average DoF by either

finding a new achievability scheme or by refining the upper-bound in these cases.

• In the study of random access network in Chapter 4, the AP is either able to decode

a message or it discards all messages that are collided with each other. One interest-

ing idea is that instead of discarding the whole collided messages, the AP stores the

received signal (without decoding it) and tries to decode it using the information that

it receives at a later time. This is the same notion that is used in network coding lit-

erature. The technique is that even though we might not be able to decode a message

independently, we might be able to decode it when we receive some information in

the future, or this undecodable message might be useful for decoding a message that

we will receive at a later time. Transmission schemes that use this idea potentially

have this capability to improve the throughput of the network. Therefore, this can
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be a noteworthy extension of the results of Chapter 4.
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