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Abstract

Model-based control strategies for robot manipulators can present numerous perfor-
mance advantages when an accurate model of the system dynamics is available. In practice,
obtaining such a model is a challenging task which involves modeling such physical pro-
cesses as friction, which may not be well understood and difficult to model. Furthermore,
uncertainties in the physical parameters of a system may be introduced from significant dis-
crepancies between the manufacturer data and the actual system. Traditionally, adaptive
and robust control strategies have been developed to deal with parametric uncertainty in
the dynamic model, but often require knowledge of the structure of the dynamics. Recent
approaches to model-based manipulator control involve data-driven learning of the inverse
dynamics relationship, eliminating the need for any a-priori knowledge of the system model.
Locally Weighted Projection Regression (LWPR) has been proposed for learning the inverse
dynamics function of a manipulator. Due to its use of simple local, linear models, LWPR
is suitable for online and incremental learning. Although global regression techniques such
as Gaussian Process Regression (GPR) have been shown to outperform LWPR in terms of
accuracy, due to its heavy computational requirements, GPR has been applied mainly to
offline learning of inverse dynamics. More recent efforts in making GPR computationally
tractable for real-time control have resulted in several approximations which operate on a
select subset, or sparse representation of the entire training data set.

Despite the significant advancements that have been made in the area of learning con-
trol, there has not been much work in recent years to evaluate these newer regression tech-
niques against traditional model-based control strategies such as adaptive control. Hence,
the first portion of this thesis provides a comparison between a fixed model-based control
strategy, an adaptive controller and the LWPR-based learning controller. Simulations are
carried out in order to evaluate the position and orientation tracking performance of each
controller under varied end effector loading, velocities and inaccuracies in the known dy-
namic parameters. Both the adaptive controller and LWPR controller are shown to have
comparable performance in the presence of parametric uncertainty. However, it is shown
that the learning controller is unable to generalize well outside of the regions in which
it has been trained. Hence, achieving good performance requires significant amounts of
training in the anticipated region of operation.

In addition to poor generalization performance, most learning controllers commence
learning entirely from ‘scratch,’ making no use of any a-priori knowledge which may be
available from the well-known rigid body dynamics (RBD) formulation. The second portion
of this thesis develops two techniques for online, incremental learning algorithms which
incorporate prior knowledge to improve generalization performance. First, prior knowledge
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is incorporated into the LWPR framework by initializing the local linear models with a
first order approximation of the prior information. Second, prior knowledge is incorporated
into the mean function of Sparse Online Gaussian Processes (SOGP) and Sparse Pseudo-
input Gaussian Processes (SPGP), and a modified version of the algorithm is proposed
to allow for online, incremental updates. It is shown that the proposed approaches allow
the system to operate well even without any initial training data, and further performance
improvement can be achieved with additional online training. Furthermore, it is also shown
that even partial knowledge of the system dynamics, for example, only the gravity loading
vector, can be used effectively to initialize the learning.
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Chapter 1

Introduction

The use of robotics worldwide is most prevalent in the manufacturing industry where the
environment is highly controlled and relatively constant. Since the introduction of the
first robotic manipulator for industry use in the 1960s [45], simple decentralized control
strategies such as independent joint PD control [45] have become ubiquitous for basic ma-
nipulation tasks such as pick-and-place motions. Unlike decentralized controllers, control
strategies that are based on the dynamic model of the manipulator, known as model-based
controllers, present numerous advantages such as increased performance during high-speed
movements, reduced energy consumption, improved tracking accuracy and the possibility
of compliance [35]. While effective under highly controlled conditions, these controllers do
not easily adapt to sudden or even gradual changes to the dynamics of the system and often
require an accurate model of the system dynamics to achieve good performance. Deriving
an accurate model analytically is a difficult task, especially due to physical phenomena
which are not well understood or difficult to model, such as friction and gear backlash.
Furthermore, the lack of accurate dynamic parameters made available from the manufac-
turer [8] of robotic systems makes it difficult to obtain an accurate dynamic model. Even
with the use of dynamic parameter estimation [24], unmodeled dynamics can still reduce
the performance of model-based control systems. While adaptive controllers [14], [37], [45]
are able to deal with gradual changes in parameter values that may occur from daily wear
and tear, they are still unable to account for modeling errors or changes in the model
structure.

The increasing complexity of robotic systems and their actuators, such as high degree-
of-freedom (DOF) humanoid systems [8], hydraulically actuated manipulators [55], and
series-elastic actuators increases the need for more complex forms of control strategies
that often require knowledge of the dynamic structure of the system. As an alternative
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to modeling the complex behaviour of these systems, machine learning algorithms for
supervised learning can be applied to learn the dynamics. Recent developments in this
area of learning control have already yielded promising results that enable robots to learn
their own inverse dynamics function with no a-priori knowledge of the system [39],[43].

Locally Weighted Projection Regression (LWPR) is frequently applied [39],[43],[55] to
learn the inverse dynamics of a manipulator, due to its use of simple local, linear models
which allow online and incremental learning. However, due to its highly localized learning,
the system must be first be trained in the expected regions of operation. Other forms
of supervised learning, or regression techniques, have also been investigated for learning
control. Gaussian Process Regression (GPR) has been applied [36] to learn the inverse
dynamics function of a manipulator, but due to its heavy computational requirements, GPR
has been limited mainly to offline learning. More recent efforts [16],[50] in making GPR
computationally tractable for real-time control have resulted in several approximations
which operate on a select subset, or sparse representation of the entire training data set.

While much progress has been made in the area of learning control for robot manipula-
tors, there has not been much work in recent years to compare these new techniques with
previous approaches such as adaptive control which were specifically developed to deal with
parameter uncertainty. While learning control typically requires no a-priori knowledge of
the system dynamics, adaptive controllers most often operate with the assumption that the
structure of the dynamic model is known. With learning controllers, a common problem is
that large amounts of relevant training data must first be provided to the algorithm before
accurate results can be obtained. Realizing that this issue can be mitigated through the use
of a-priori knowledge of the system, research has been done [32] to incorporate the a-priori
known dynamics into the learning framework. However, due to the heavy computational
load of the learning algorithm in [32], online and incremental updates to the system cannot
be made.

This thesis will present a comparison between a fixed model-based control strategy, an
adaptive controller and the widely-used LWPR learning controller. Simulations are carried
out in order to evaluate the position and orientation tracking performance of each con-
troller under varied end effector loading, velocities and inaccuracies in the known dynamic
parameters. Both the adaptive controller and LWPR controller are shown to have com-
parable performance in the presence of parametric uncertainty. However, it is shown that
the learning controller is unable to generalize well outside of the regions in which it has
been trained. Hence, achieving good performance requires significant amounts of training
in the anticipated region of operation.

The second portion of this thesis focuses on addressing the issues with learning control
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which were encountered in the comparison work. Two techniques are developed for online,
incremental learning algorithms which incorporate prior knowledge to improve generaliza-
tion performance. First, prior knowledge is incorporated into the LWPR framework by
initializing the local linear models with a first order approximation of the prior informa-
tion. Second, prior knowledge is incorporated into the mean function of Sparse Online
Gaussian Processes (SOGP) and Sparse Pseudo-input Gaussian Processes (SPGP), and a
modified version of the algorithm is proposed to allow for online, incremental updates. It
is shown that the proposed approaches allow the system to operate well even without any
initial training data, and further performance improvement can be achieved with additional
online training. Furthermore, it is also shown that even partial knowledge of the system
dynamics, for example, only the gravity loading vector, can be used effectively to initialize
the learning.

1.1 Thesis Contributions

1. A thorough comparison of standard model-based control, adaptive control and learn-
ing control is presented in this thesis to provide a better understanding of the relative
strengths and weaknesses of each control strategy, and to identify areas in which im-
provements can be made.

2. Two types of online, incremental learning algorithms are developed which make use
of the a-priori knowledge of the system to improve the system’s initial performance
and ability to generalize the learned model to areas in which it has not yet been
trained. The two algorithms are validated in simulation and through experiments.

1.2 Thesis Outline

Chapter 2 provides the necessary background information on robot manipulator modeling.
First, robot manipulator kinematics are presented, including the mathematical represen-
tation of the structure of robot manipulators, as well as the solution to the forward and
inverse kinematics problem. Second, the dynamics of robot manipulators are presented
through the derivation of the rigid body dynamics (RBD) equation as well as the recursive
Newton-Euler algorithm for efficient computation of the dynamics. Third, basic control
strategies for robot manipulators are outlined, including independent joint PD control and
two variants of model-based control. The problem of model uncertainty is introduced in
the context of control.
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Chapter 3 reviews the related work in the literature which deals with parametric un-
certainty in the control of robot manipulators. First, techniques based on knowledge of the
dynamic model are presented, including robust and adaptive control strategies. Second,
the newer approach of learning the dynamic model is reviewed. Two classes of supervised
learning algorithms are presented - local learning techniques such as Locally Weighted
Projection Regression (LWPR), and global techniques such as Gaussian Process Regres-
sion (GPR) and Support Vector Regression (SVR). Examples of the application of these
learning algorithms to robot control are also presented.

Chapter 4 presents a comparison between standard model-based control, adaptive con-
trol and learning control with the LWPR algorithm. Simulations are carried out to evaluate
the performance of these controllers under dynamic conditions such as varying trajectory
speeds, end-effector loading, and parameter uncertainty in order to understand and identify
the scenarios in which each controller is more suitable.

Chapter 5 proposes two types of novel learning controllers that incorporate a-priori
knowledge to improve the generalization performance of the learning algorithms. A-priori
knowledge in the form of the full RBD equation, or partial knowledge of just the gravity
loading vector are used to initialize the LWPR algorithm as well as the Sparse Pseudo-Input
Gaussian Process (SPGP) and Sparse Online Gaussian Process (SOGP) algorithms with
modifications to allow for online, incremental learning of inverse dynamics. Simulation
work is carried out to validate the proposed approaches.

Chapter 6 describes the experimental platform used to validate the proposed approaches
in the previous chapter. Experimental and simulation results for the LWPR and SOGP
controllers are presented and compared to standard model-based control techniques.

Chapter 7 reviews the results and contributions of the thesis, and also presents con-
cluding remarks regarding the methods developed for online incremental learning of inverse
dynamics. A discussion of the possible directions for future work is also presented.
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Chapter 2

Background

This chapter overviews the modeling framework and basic algorithms for robot manip-
ulator control. First, the mathematical modeling convention and kinematic structure of
the manipulator are defined, and then the problem of forward and inverse kinematics is
presented. Next, the dynamic model of a robot manipulator is presented, followed by a
section on the basics of motion control.

2.1 Kinematics

Although robot manipulators are available in many configurations, this work assumes the
use of serial-linked manipulators which are composed of a set of bodies, or links, connected
by joints to form an open chain. This configuration is illustrated in Figure 2.1. It is also
assumed that each joint enables movement along or about a single axis, contributing a single
degree-of-freedom (DOF) to the entire manipulator. This is not a limiting assumption since
multi-DOF joints can be represented by a series of single-DOF joints connected by links of
zero length. For simplicity and clarity of notation, all results are given for revolute joints,
but the work presented can be extended to manipulators with prismatic joints. A robot
with n joints is referred to as an n DOF robot, and possesses n+ 1 links, with the 0th link
being the base, and the nth link containing the end-of-arm tooling, or end-effector.

In order to describe the location of each link, coordinate frames are attached to each
link, with a stationary base (or world) frame located along the z-axis of the first joint
according to the Denavit-Hartenberg (DH) convention [17]. The DH convention stipulates
that each joint i is actuated about the zi−1 axis, and allows the complete kinematic structure
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Figure 2.1: Serial-link Robot Manipulator

of a robot manipulator to be described by a set of link and joint parameters as described
in Table 2.1.

link length ai distance between zi−1 and zi axes along the xi axis
link twist αi angle from zi−1 axis to the zi axis about the xi axis
link offset di distance from the origin of frame i− 1 to xi axis along zi−1 axis
joint angle qi angle between xi−1 and xi axes about the zi−1 axis

Table 2.1: DH Parameters

The 4× 4 homogeneous transform matrix Ti−1
i specifies the position and orientation of

the ith frame with respect to the previous (i− 1th) coordinate frame:

Ti−1
i =

(
Ri−1
i pi
0 1

)
(2.1)

Ri−1
i =

 cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi

0 sinαi cosαi

 (2.2)

pi =

 ai cos θi
ai sin θi
di

 (2.3)
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where Ri−1
i is the 3× 3 rotation matrix defining the orientation of frame i with respect to

frame i − 1, and pi is the position vector defining the location of frame i with respect to
frame i− 1. Thus, the homogeneous transform of link i with respect to the base frame is:

T0
i = T0

i−1T
i−1
i (2.4)

Although the rotation matrix, R, contains nine elements, the orientation can also be
minimally represented by three Euler angles (θ, φ, ψ) which describe the orientation of a
reference frame in three successive rotations.

The forward kinematics (FK) of a robot specifies the position and orientation of the
end-effector with respect to the base frame, given the set of robot joint positions. It is
obtained by applying equation (2.4) along the entire link chain:

Tn =T0
1T

1
2 . . .T

n−1
n

=F(q)
(2.5)

where Tn represents the Cartesian position and orientation of the end-effector with respect
to the base frame, F is the FK function, and q is the n×1 vector of generalized coordinates
consisting of the n joint angles for an n-DOF manipulator. Hence, the FK function can
be seen as a transformation from the joint space coordinates of n joint angles to m task
space coordinates of the end-effector. A task space dimension of m = 6 corresponds
to Cartesian space, where three variables describe the end-effector’s position and three
variables describe its orientation. Hence, if n = m then the robot possess the exact
number of joints required to locate and orient the end-effector in the m-dimensional task
space. Certain configurations of the robot may result in the effective loss of one of more
degrees of freedom (e.g. when all the joints are in the same plane). These configurations
are referred to as singularities and are formally defined in Equation 2.9. Excluding these
configurations, manipulators with n > m are referred to as redundant, whereas those with
n < m are underactuated.

While the FK relationship deals with positions, the manipulator Jacobian, J(q), is
a differential relationship of the FK function which relates joint angle velocities to the
end-effector velocity in Cartesian space:

ẋm = J(q)q̇ (2.6)

where ẋm is an m× 1 vector of end-effector velocities. For m = 6, ẋm consists of the 3× 1
linear velocity vector vn and the 3× 1 angular velocity vector ωn. Hence, J(q) is a matrix
of dimension m × n. Assuming all n DOF are revolute, the Jacobian can be calculated
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geometrically by using the DH parameters:

J(q) =

[
. . . z0

i−1 × p0
n,i−1 . . .

. . . z0
i−1 . . .

]
(2.7)

where z0
i−1 is obtained from the DH assignment and expressed with respect to the base

frame, and p0
n,i−1 is the position vector from the i−1th frame to the nth frame expressed in

the base frame. Each ith column of the Jacobian, J , describes the individual contribution
of joint i to the motion of the end-effector.

In order to determine the joint angles which are required to obtain a desired end-effector
location, the solution to the inverse kinematics (IK) problem is required:

q = F−1(Tn) (2.8)

where F−1 is the IK relation. While the FK function uniquely maps q to a single end-
effector position and orientation, this is not the case for IK. For manipulators with n = m,
there may exist multiple solutions, and for n > m, or redundant manipulators, there is an
infinite number of solutions. However, for all cases no solution may exist, if for example,
the desired location is outside of the workspace of the robot.

For motion control and trajectory planning, IK is used to transform desired end-effector
trajectories to a corresponding sequence of joint angles. While exact, closed-form solutions
based on analytical geometry can often be derived for a specific manipulator geometry, there
is no general solution. Numerical solutions are possible through the use of the differential
kinematics. If J is square, i.e., m = n, rearranging Equation 2.6 and solving for q̇ gives
the differential IK relationship,

q̇ = J−1(q)ẋm (2.9)

where J−1 is the inverse of the Jacobian matrix. Certain configurations of q may result
in J being rank deficient, meaning that there is no solution to the above equation. These
configurations are referred to as singularities, and often exist near the boundary of the
workspace of the manipulator.

To solve the IK problem for joint angles given an end-effector position, Equation 2.9
can be applied as an infinitesimal relationship in an iterative numerical procedure that
starts from an initial guess of joint angles qinit and a desired end-effector position and
orientation, Rref and pref . By applying the FK function (2.8), the end-effector location
and orientation corresponding to the initial guess of joint angles can be obtained. The
algorithm then applies Equation 2.9 iteratively to improve the initial guess until a certain
accuracy tolerance is reached.
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A widely-used pseudocode [45] for the numerical solution to IK is employed in this
thesis, and is described in Algorithm 1. The required computation time for this numerical
IK approach is sensitive to the initial guess of the joint angles and is generally much slower
than an exact geometric IK approach. However, as trajectory planning is done offline in
this thesis, the computational efficiency of the IK algorithm is not a significant concern.

Algorithm 1 Numerical Inverse Kinematics

1: given: Rref ,pref ,q = qinit
2: (p,R)← Tn = F(q)
3: ∆Tn ← (∆p,∆R) = (pref − p,RTRref )
4: if (∆p,∆R) < desired threshold then
5: return q
6: else
7: δq = J−1(q)∆Tn

8: q = q + δq
9: go to line 2

10: end if

2.2 Dynamics

The dynamics of a manipulator characterizes the relationship between its motion (position,
velocity and acceleration) and the joint torques that cause these motions. The closed-form
solution for this relationship can be obtained through the Lagrangian formulation [45],
which states that:

L = K − V (2.10)

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (2.11)

where L is the Lagrangian, K is the kinetic energy, V is the potential energy and τ is
the n × 1 torque vector. Under the assumption that the links are rigid bodies and there
are no other energy storage elements in the system, the only source of potential energy is
gravity, and hence V can be expressed as a function of the joint angles alone. Applying
this assumption to (2.11) results in:

d

dt

(
∂K
∂q̇

)
− ∂K
∂q

+
∂V
∂q

= τ (2.12)
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The kinetic energy of any rigid object is dependent upon its inertial properties, as well as
its linear and angular velocity, as shown in the following equation:

K =
1

2
mv0

c
T
v0
c +

1

2
ω0T I0ω0 (2.13)

where m is the mass of the object, I0 is the inertia matrix of the object, v0
c is the linear

velocity of the object’s centre of mass (COM), and ω0 is the object’s angular velocity vec-
tor. The superscript in these expressions indicates that these quantities are expressed in
the inertial frame of reference, i.e. the base frame. However, because the inertia matrix I
is typically expressed in terms of the body frame, a similarity transform must be applied:

I0 = RIRT (2.14)

where R is the rotation matrix which transforms coordinates from the body frame to the
inertial frame. To compute the kinetic energy of a manipulator, it is necessary to derive
expressions for the kinetic energy of each link and sum them to obtain the total kinetic
energy. By using the Jacobian matrix in Equation 2.7, the linear and angular velocities
of any point on a given link may be expressed as a function of the Jacobian and the joint
angle velocity, q̇:

v0
ci = Jvci(q)q̇ (2.15)

ω0
i = Jωi

(q)q̇ (2.16)

where Jvci and Jωi
are the linear and angular components of the Jacobian (2.7) for the

COM of the ith link. From equation (2.13), it then follows that the overall kinetic energy
of the manipulator is equal to:

K =
1

2
q̇T

n∑
i=1

[
miJ

T
vci

Jvci + JTωi
I0
iJωi

]
q̇ (2.17)

where mi is the mass of the ith link and I0
i is the inertia matrix of the ith link in the inertial

frame. Expressing the summation in Equation 2.17 in matrix form, the kinetic energy of
the manipulator becomes:

K =
1

2
q̇TM(q)q̇ (2.18)

where M(q) is the n×n inertia matrix. Assuming that the only source of potential energy
is gravity, the potential energy of a manipulator can be computed as follows:
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V =
n∑
i=1

mig
Trci (2.19)

where rci is the location of the COM of the ith link, and g is the gravity vector.

The first two terms on the left hand side of (2.12) represent the inertial forces on the
arm. Substituting (2.18) into these terms results in:

d

dt

(
∂K
∂q̇

)
− ∂K
∂q

= M(q)q̈ + C(q, q̇) (2.20)

where C(q, q̇) is the n × 1 centripetal and Coriolis torque vector, which is calculated as
follows:

C(q, q̇) = Ṁ(q)q̇− 1

2

[
q̇T∂M

∂q1

q̇ · · · q̇T∂M

∂qn

q̇

]T
(2.21)

The third term in equation (2.12) represents the contribution of gravitational potential
energy. Letting the gravity loading vector be defined as:

G(q) =
∂V
∂q

(2.22)

The rigid body dynamics (RBD) equation of a robot manipulator is represented by:

M(q)q̈ + C(q, q̇) + G(q) = τ (2.23)

The RBD equation (2.23) is linear in terms of its parameters [45], and can thus be rear-
ranged so that the dynamic parameters appear as linearly separated from the rest of the
terms:

τ = φ(q, q̇, q̈)θ̂ (2.24)

where φ is an n × r regressor matrix which depends on the kinematics of the robot, and
θ̂ is an r × 1 vector of the parameters. This property of the RBD equation allows for
parameter identification techniques that are crucial for adaptive control strategies, as will
be shown in Chapter 3.

Another property of the RBD (2.23) states that the mapping from joint torques to joint
velocity, τ 7→ q̇ is passive, i.e. that for some ζ > 0 and for all finite time, t, the following
inequality holds:
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∫ t

0

q̇Tτdt ≥ −ζ (2.25)

The passivity property of robot manipulators can be used to design a specific class of
controllers which will be discussed further in Chapter 3.

Equation (2.23) represents the nonlinear and coupled dynamics of the robot manip-
ulator, but does not include additional torque components caused by friction, backlash,
actuator dynamics and contact with the environment. Coulomb and viscous friction can
be modeled in equation (2.23) by the addition of the following dynamics:

τf = Cfsign(q̇) + Vf q̇ (2.26)

where τf is the torque due to Coulomb and viscous friction, Cf is the n×n diagonal matrix
containing n Coulomb friction constants, and Vf is the n× n diagonal matrix containing
n viscous friction constants.

Ideally, the control signal, u, which is applied to the manipulator can be equated to
the joint torque, τ . However, due to the dynamics of joint actuators, which are assumed
to be servo motors, u is actually a motor voltage, vm. The actuator dynamics relating the
motor voltage and resulting torque can be modeled by the second-order system:

Jmθ̈m +

(
Bm +

kbkm
ra

)
θ̇m =

(
km
ra

)
vm −

τm
gr

(2.27)

where Jm is the rotational inertia of the servo motor, θm is the motor angle (before gearing),
Bm is the motor damping constant, km is the torque constant, kb is the voltage constant, gr
is the gear reduction ratio, ra is the armature resistance, vm is the motor voltage, and τm
is the motor torque. The motor angle θm and the corresponding joint angle qi are related
through the gear reduction ratio:

θm = grqi (2.28)

Applying this to Equation (2.27) results in:

g2
rJmq̈i + g2

r

(
Bm +

kbkm
gr

)
q̇i = gr

(
km
ra

)
vm − τm (2.29)

As with robot kinematics, there are two problems related to the dynamics of the robot -
forward and inverse dynamics. Forward, or direct dynamics, solves for the joint acceleration
q̈ given the joint torques τ as inputs. In order to compute the joint position and velocity,

12



the computed acceleration is integrated over time. The formulation of forward dynamics
is used primarily in the simulation of robotic manipulators. Inverse dynamics is used to
compute the joint torques as a function of the manipulator state (q, q̇, q̈), and is used in
various control methods, as described in Section 2.3 below.

2.2.1 Recursive Newton-Euler

While equation (2.23) presents the dynamics in a compact, closed form, more computa-
tionally efficient methods of calculating the dynamics exist, which do not calculate the
individual dynamic terms in (2.23), but rather, recursively iterate through the links apply-
ing the laws of classical mechanics. The recursive Newton-Euler (RNE) formulation [45]
is an example of this approach, where a forward iteration propagates the kinematics from
the base link to the end-effector. Then, a backward iteration propagates the forces and
moments exerted on each link starting from the end-effector down to the base link. The
RNE algorithm for a robot consisting of revolute joints is shown in Algorithm 2:

Algorithm 2 Recursive Newton-Euler

1: initialize: v̇0 ← g,v0,ω0, ω̇0 ← 0
2: for i = 1→ n do
3: ωi+1 = Ri+1

i (ωi + z0q̇i+1)
4: ω̇i+1 = Ri+1

i [ω̇i + z0q̈i+1 + ωi × (z0q̇i+1)]
5: vi+1 = ωi+1 × p∗i+1 + Ri+1

i vi

6: v̇i+1 = ω̇i+1 × p∗i+1 + ωi+1 × (ωi+1 × p∗i+1)Ri+1
i vi

7: ˙̄vi = ω̇i × si + ωi × (ωi+1 × si) + v̇i
8: Fi = mi ˙̄vi
9: Ni = Iiω̇i + ωi × (Iiωi)

10: end for
11: for i = n→ 1 do
12: fi = Ri

i+1fi+1 + Fi

13: ni = Ri
i+1[ni+1 + (Ri+1

i+1p
∗
i )× fi+1] + (p∗i + si)× Fi + Ni

14: τi = (ni)
T (Ri

i+1z0)
15: end for

The variables used in the RNE algorithm are defined as the following:
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i link index
g gravity vector, g = [0 0 − 9.81]
Ii moment of inertia of link i about its COM
si position vector of the COM of link i with respect to frame i
ωi angular velocity of link i
ω̇i angular acceleration of link i
vi linear velocity of the origin of frame i
v̇i linear acceleration of the origin of frame i
v̄i linear velocity of the COM of link i
˙̄vi linear acceleration of the COM of link i
ni moment exerted on link i by link i− 1
fi force exerted on link i by link i− 1

Ni net moment at the COM of link i
Fi net force at the COM of link i
τ i torque experienced at joint i
Ri rotation matrix defining frame i with respect to frame i− 1
p∗i vector from the origin of frame i− 1 to frame i with respect to frame i
z0 unit vector in the z direction, z0 = [0 0 1]

2.3 Motion Control

The control of robot manipulators is concerned with determining the necessary sequence
of joint torque inputs to achieve a desired motion of the end-effector. A wide range of
control methodologies exists depending on the given task and the physical design of the
manipulator. As robots are being used to perform increasingly more difficult and complex
tasks requiring high accuracy and speed, suitable control algorithms must also be used.
This section first outlines the basic method of independent joint control and then covers
the more advanced, model-based control.

2.3.1 Independent Joint Control

With independent joint control, or decentralized control [45], each joint of the manipulator
is treated as an independent system which is decoupled from the rest of the joints. Hence,
the calculation of the control input of a joint is based entirely on its own position, velocity
and desired trajectory. Due to its simple structure, the computational load of this type of
controller is extremely low and is easily scalable to systems with a large number of DOF.
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The Proportional-Derivative control (PD) can be applied at each individual joint in
order to track a desired trajectory. The control signal generated by the PD controller for
each joint i of the system, uFBi

, is given by the following equation, where the index i is
removed for clarity:

uFB = kpe− kdq̇ (2.30)

where kp and kd are proportional and derivative gains, e = qd − q is the joint space track-
ing error of the ith joint, and q̇d is the desired joint velocity for the ith joint. The use of
decentralized control does not explicitly account for coupled behaviour of the dynamics of
the system in (2.23). Instead, these effects are treated as disturbances to the system. The
resulting dynamics can be modeled through the modification of equation (2.29) as follows:

Jeff q̈ +Beff q̇ = gr

(
km
ra

)
vm − dk (2.31)

where dk is the disturbance to the system, modeled as a torque applied to the joint, and
Jeff and Beff are the effective inertia and damping values as seen by the joint:

Jeff = g2
rJm +mii (2.32)

Beff = g2
r(Bm + kbkm/ra) (2.33)

where Jeff accounts for the inertia of the ith link by adding the corresponding diagonal
term of the inertia matrix M(q) (2.23), i.e. mii. Equating the voltage vm in (2.31) to the
PD control signal, uFB in (2.30), and taking the Laplace transform results in the closed-
loop system:

Ω(s) = Jeffs
2 + (Beff + kkd)s+ kkp (2.34)

Q(s) =
kkp
Ω(s)

Qd(s)−
gr

Ω(s)
Dk(s) (2.35)

where Ω(s) is the closed-loop characteristic polynomial, k = kmgr/ra, and Q(s) and Qd(s)
are the actual and desired joint angles in the frequency domain. This system is illustrated
in Figure 2.2. The closed loop system will be stable for all positive values of kp and kd and
all bounded disturbances. The tracking error is given by the following:

E(s) =
Jeffs

2 + (Beff + kkd)s

Ω(s)
Qd(s) +

1

Ω(s)
Dk(s) (2.36)

During high-speed movements, the dynamic coupling between joints is more significant
(i.e. Dk(s) is high) causing higher tracking errors.
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Figure 2.2: Independent Joint PD Control

2.3.2 Model-Based Control

Model-based controllers are a broad class of controllers which apply the joint space dy-
namic equation (2.23) to cancel the nonlinear and coupling effects of the manipulator.
Model-based control can present numerous advantages over decentralized PD control such
as increased performance during high-speed movements, reduced energy consumption, im-
proved tracking accuracy and compliance [35].

Nonlinear Feedforward

The goal of nonlinear feedforward control [45],[4] is to eliminate the nonlinearity and cou-
pled behaviour in the dynamics according to equation (2.23) computed about the desired
trajectory. With the linearized and decoupled system, a simple PD controller can be ap-
plied to achieve stability and disturbance rejection. The control signal u is thus composed
of both the feedforward component uFF, as well as the feedback component uFB:

u = uFB + uFF (2.37)

uFB = Kpe + Kdė (2.38)

uFF = M̂(qd)q̈d + Ĉ(qd, q̇d) + Ĝ(qd) (2.39)

where qd represents the desired joint angles, e = qd − q, M̂(q), Ĉ(q, q̇) and Ĝ(q) denote
the estimates of the actual values in (2.23), and Kp and Kd are proportional and derivative
gain matrices. This controller is illustrated in Figure 2.3. Assuming perfect knowledge of
the parameters (i.e., M̂ = M, Ĉ = C and Ĝ = G) and substituting (2.37) into the RBD

16



dynamics equation (2.23), the error dynamics for the system are calculated as:

ë + M−1Kdė + M−1Kpe = 0 (2.40)

The feedback gains Kp and Kd are typically tuned such that the error equation is stable
and a desired level of tracking performance is achieved [45]. The advantage of using this
control scheme is that the feedforward compensation term uFF can be computed offline
since the desired trajectory, qd is known a-priori. However, if the actual trajectory, q,
deviates too far from the desired trajectory, the cancelation of nonlinearities and coupling
will be inaccurate.

Figure 2.3: Feedforward Control

Inverse Dynamics

The inverse dynamics approach is shown in Figure 2.4 and is often referred to as computed
torque control [14],[36]. Assuming that the links of the manipulator behave as rigid bodies,
the inverse dynamics approach is equivalent to the concept of feedback linearization used
in non-linear controls [45], and applies equation (2.23) to compensate for nonlinear and
coupling effects. Unlike the feedforward approach, this compensation is computed about
the measured joint position and velocity, as opposed to the desired trajectory. Hence, the
control signal, u is computed as:

u = M̂(q)q̈r + Ĉ(q, q̇) + Ĝ(q) (2.41)
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q̈r = q̈d + uFB (2.42)

where uFB is calculated as before in (2.38). Assuming perfect knowledge of the parame-
ters as with Nonlinear Feedforward control (2.39), and substituting (2.41) into the RBD
dynamics equation (2.23), the error dynamics for the system are represented by:

ë + Kdė + Kpe = 0 (2.43)

Again, the feedback gains Kp and Kd are typically tuned such that the error equation is
stable and a desired level of tracking performance is achieved [45]. Whereas the feedforward
approach allows a significant portion of computation to be performed offline, the inverse
dynamics approach requires online computation of the RBD equation (2.23). Thus, the in-
verse dynamics approach has the potential to be more robust to cases in which the robot’s
actual trajectory deviates from the desired trajectory, assuming that accurate joint veloc-
ities are available. However, in practice, most manipulators are only equipped with joint
encoders to sense joint positions, and numerical differentiation must be applied to obtain
joint velocity and acceleration values which result in noisy signals due to the quantization
of the encoders. Hence, the application of inverse dynamics would require compensation
for sensor noise through effective state estimation of the joint velocities and acceleration.
This is not an issue with the feedforward approach, as the desired joint velocities and
accelerations can be computed accurately offline.

Figure 2.4: Inverse Dynamics Control
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2.3.3 Model Uncertainty

While model-based approaches can provide superior performance to independent joint con-
trol [56],[35], this is contingent upon the assumption that the dynamic model (2.23) closely
matches the actual system, both in the values of the parameters and the structure of the
dynamics. In practice, obtaining such a model is a challenging task which involves model-
ing physical processes that are not well understood or difficult to model, such as friction
[6] and backlash. Thus, assumptions concerning these effects are often made to simplify
the modeling process, leading to inaccuracies in the model. Furthermore, uncertainties
in the physical parameters of a system may be introduced from significant discrepancies
between the manufacturer data and the actual system [8]. Changes to operating condi-
tions can also cause the structure of the system model to change. These inaccuracies in
the dynamic model cause imperfect cancelation of the nonlinearities and coupling in (2.23)
when model-based control is applied.

To represent the model uncertainty in the computed torque control law, (2.41) the con-
trol signal u can be rewritten as:

u = M̂(q)q̈r + Ĥ(q, q̇) (2.44)

Ĥ(q, q̇) = Ĉ(q, q̇) + Ĝ(q) (2.45)

where M̂(q), Ĉ(q, q̇) and Ĝ(q) denote the estimates of the actual values in (2.23). Thus,
the modeling error can be described by:

∆M := M̂(q)−M(q) (2.46)

∆H := Ĥ(q)−H(q) (2.47)

By substituting the control signal (2.44) into the RBD equation (2.23) and dropping the
arguments (q) for clarity, the system becomes:

Mq̈ + H = M̂q̈r + Ĥ (2.48)

Thus, the joint accelerations can be written as:

q̈ =M−1M̂q̈r + M−1∆H

=q̈r + Eq̈r + M−1∆H
(2.49)
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where E = M−1M̂− I, with I representing the identity matrix. Applying PD control
defined in Equation 2.42 results in the error dynamics:

ë + kdė + kpe = η (2.50)

where e = qd − q, and the mathematical notion of model uncertainty is represented by η
in the following:

η =Eq̈r + M−1∆H

=E(q̈d − kdė− kpe) + M−1∆H
(2.51)

The presence of the E,M and ∆H terms in the error dynamics indicates that the system
is still nonlinear and coupled due to the model uncertainty. Hence, the application of PD
control (2.30) cannot necessarily be tuned to achieve stability and convergence of tracking
error.

Since the introduction of model-based control, much effort has been devoted to devel-
oping techniques for model estimation and finding ways of compensating for model uncer-
tainty. Techniques such as system identification, as well as adaptive and robust control
have been proposed. Many of these approaches for dealing with model uncertainty rely on
the knowledge of the structure of the dynamics and treat the parameters as unknowns to
be identified. Newer approaches to manipulator control involve data-driven learning of the
inverse dynamics relationship of a manipulator, thus eliminating the need for any a-priori
knowledge of the system model. Unlike the adaptive control strategies, these approaches do
not assume an underlying structure but rather attempt to infer a model which describes
the observed data as closely as possible. These techniques, as well as the model-based
approaches are summarized in the following chapter.
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Chapter 3

Related Work

This chapter gives a brief summary of the existing research on model uncertainty in robot
manipulator control. To begin with, the approaches of robust and adaptive control are pre-
sented, followed by various learning control approaches which originate from the machine
learning community.

3.1 Model-based Control

Following the introduction of model-based control and the method of computed torque
control (2.41) described in Chapter 2, researchers began to address the issue of model
uncertainty and how to effectively control the system under this uncertainty. In a broad
sense, two strategies have evolved - robust control and adaptive control. Robust controllers
have a fixed structure and are designed to have low sensitivity to parameter variations,
disturbances and unmodeled dynamics [45]. Adaptive controllers, which are time-varying,
employ online parameter estimation techniques to compensate for uncertainty in the dy-
namic model [45]. Similar to the concept of adaptive control, given the structure of the
system, parameter identification can be used to estimate the unknown parameters. How-
ever, unlike adaptive control, parameter identification is an offline procedure that processes
batches of data collected from the system and applies regression techniques such as least
squares [8], [24], [40] to determine the parameter values. Because the identification pro-
cedure is carried out offline, the trajectories can be optimized specifically to excite the
dynamics to a sufficient extent in order to yield more accurate results. However, due
to its offline nature, this procedure is not well-suited to deal with systems in which the
parameters may vary over time.
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3.1.1 Robust Control

Whereas adaptive controllers deal with model uncertainty by attempting to identify a more
accurate model of the system through parameter update laws, robust control schemes focus
on the development of the control strategies which can satisfy a given performance criteria
over a range of uncertainty.

Various strategies have been proposed for robust control. Anticipating that the inexact
linearization and decoupling due to model uncertainty will introduce nonlinearities into
the error dynamics (2.43), well-known multivariable non-linear control techniques such as
the total stability theorem [19], Youla parameterization and H∞ [51], are used to design
compensators which guarantee convergence and stability of the system error for a given
set of nonlinearities. However, the application of these non-linear multivariable techniques
can often result in high-gain systems [3].

An alternative solution to dealing with model uncertainty is the application of variable-
structure controllers such as sliding mode control [48]. The main feature of such controllers
is that the nonlinear dynamic behaviour of the system is altered through the use of discon-
tinuous control signals which drive the system dynamics to ‘slide’ across a surface where
the system can be approximated by an exponentially stable linear time invariant system.
Hence, asymptotic stability of the tracking error can be achieved [3] even in the presence of
model uncertainty. Despite this advantage, due to the discontinuous control signals sliding
mode systems are susceptible to control chattering, which may result in the excitation of
high-frequency dynamic behaviour [3].

3.1.2 Adaptive Control

Adaptive control is a broad class of time-varying controllers which deal with model uncer-
tainty by attempting to identify a more accurate model of the system through parameter
update laws. Craig et al. [14] present an adaptive version of the computed torque control
method named Adaptive Computed Torque (ACT) control where the parameter update
law is driven by the tracking error of the system. A Lyapunov function is specified as:

v(E, θ̂) = ETPE + θ̂Tγ−1θ̂ (3.1)

where E = [e ė]T is the vector of the filtered servo error and its derivative, P is a semi-
positive definite constant matrix, θ̂ is the estimate of the unknown dynamic parameters,
γ is an r × r gain matrix, and r is the number of parameters. The equilibrium point is
given by E = 0. By making use of the property of linearity in the parameters (2.24), the
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following gradient-based update law is chosen to estimate the parameters online:

˙̂
θ = γφT (q, q̇, q̈)M̂−1e (3.2)

where φ is the regressor matrix (2.24), M̂ is the estimated inertia matrix. By using the
adaptive law in Equation 3.2, the requirements for Lyapunov stability are met, and hence
asymptotic convergence of the tracking error is guaranteed. However, convergence of the
estimated parameters to their true values is not guaranteed and relies on a condition termed
persistence of excitation (PE), given by the inequality:

αPEIr ≤
∫ t0+ρ

t0

φT
dφddt (3.3)

where αPE is a positive number, ρ is a time interval, Ir is the r × r identity matrix,
and φd is the regressor matrix φ evaluated along the desired trajectory instead of the
actual trajectory. This is a valid simplification due to the convergence of tracking error.
It is shown that if this inequality is met for all time from t0 to t0 + ρ and some α > 0,
parameter errors will converge to a bounded region near zero.

The adaptive approach presented in [14] makes two major assumptions - firstly, that the
inverse of the estimated inertia matrix is always bounded, and secondly, that measurements
of joint acceleration are available. To satisfy the first assumption, parameter estimates
are restricted to lie within a-priori known bounds of the actual parameters [14]. Spong
and Ortega [51] propose using fixed a-priori estimates of the dynamics and an additional
outer loop control component which is chosen adaptively to compensate for the inaccurate
dynamics. The same update law as (3.2) is used, and hence the measurement of joint
accelerations is still required for parameter estimation.

Middleton et al. [28] also build upon the ACT controller [14] but eliminate the need for
joint acceleration to perform the parameter estimates by filtering the linear parameteriza-
tion equation (2.24) such that the regressor matrix φ is a function strictly of joint angles
and velocity. Other researchers address this issue through the use of nonlinear observers
to perform state estimation [11],[57] of the joint accelerations.

A number of adaptive laws have been proposed [26],[47] based on the preservation
of passivity properties of the RBD model (2.25). Although they differ from the class of
controllers originating from [14], the motivation for these schemes is also to eliminate the
need for joint acceleration measurement [37].

Despite the numerous advancements, the adaptive methods presented thus far are still
reliant upon adequate knowledge of the structure of the dynamic model and are thus
particularly susceptible to the effects of unmodeled dynamics. In an attempt to account
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for this, the RBD equation (2.23) used in adaptive control laws has been extended to
include additional dynamic effects such as actuator dynamics [42],[57] and joint friction
[12]. However, in many cases, such as with friction [6], simplified dynamic models are
often used to approximate physical processes which, in reality, are complex and highly
nonlinear. Consequently, dealing with the effects of unmodeled dynamics remains an open
research area within adaptive control, and some researchers have combined adaptive control
with robust control techniques [3],[11] and even learning control [38],[22].

3.2 Learning Model-based Control

Newer approaches to manipulator control involve data-driven learning of the inverse dy-
namics relationship of a manipulator, thus eliminating the need for a-priori knowledge
of the system model. Research stemming from the machine learning community often
approaches this problem through function estimation, or supervised learning [9]. By an-
alyzing the input torques and resulting motion of the manipulator, an approximation of
the dynamic equation of the manipulator can be obtained. Unlike the adaptive control
strategies, many of these approaches do not assume an underlying structure but rather
attempt to infer a model which describes the observed data as closely as possible. Thus,
it is possible to encode nonlinearities whose structure may not be well-known.

Rather than learning the underlying model structure of the system through supervised
learning, Iterative Learning Control (ILC) [5], [10] incorporates information from error
signals in previous iterations to directly modify the control input for subsequent iterations.
However, ILC is limited primarily to systems which track a specific repeating trajectory
and are subject to repeating disturbances [10], whereas the model learning approaches
discussed below can be incrementally trained to deal with non-repeating trajectories.

While supervised learning is carried out through the provision of exemplar data of the
model being learned, another branch of machine learning, namely Reinforcement Learning
(RL) [53], is concerned with learning in situations where such exemplar data is not available.
The goal of reinforcement learning is to determine the set of actions, or policy that must be
taken in order to maximize a cumulative notion of reward. While reinforcement learning has
been successfully applied in many areas of robotics including motor primitive learning [25],
motion planning [23], and locomotion [54],[30], for the problem of learning an internal model
of the system where exemplar data is readily available in the form of joint encoder data
and commanded motor torques, RL would be much slower, especially in high-dimensional
spaces [53]. Thus, the following sections will focus on reviewing the relevant work in
supervised learning, which can be broadly categorized into two types [55] - global methods
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such as Neural Networks (NN), Gaussian Process Regression (GPR) [41] and Support
Vector Regression (SVR) [35], and local methods such as Locally Weighted Projection
Regression (LWPR) [43]. Regardless of the approach, it is desirable that learning can be
achieved in real-time by processing large amounts of data in an online, incremental manner
as opposed to offline batch processing. Furthermore, with online learning, the training data
could potentially cover an increasingly large portion of the input space over time. Hence,
the learning algorithm should also be able to adapt its models to account for the changing
input space.

3.2.1 Local Learning

Local learning approaches fit nonlinear functions with spatially localized models, usually in
the original input space of the training data [55]. Typically, simple local models (linear or
low-order polynomial) are used for the local models, and the learning algorithm automati-
cally adjusts the complexity (i.e., number of local models and their locality) to accurately
account for the nonlinearities and distributions of the target function.

Atkeson presents an early approach to local learning [7] termed Locally Weighted Re-
gression (LWR) which approximates a continuous nonlinear function by storing samples
of the function’s inputs and outputs. When queried for a prediction, LWR builds a linear
model in a local region around the query point through weighted least squares regression.
Although LWR is shown to exhibit superior prediction performance compared to neural
networks [4], the entire training data set is stored in memory, and must be exhaustively
searched to perform a prediction. Thus, the memory and computational requirements are
highly unfavourable, especially if the algorithm receives a large stream of incoming training
data, which is a characteristic of real-time control of robotic systems.

Building upon LWR, Receptive Field Weighted Regression (RFWR) [44] allows for
incremental, online learning by continuously constructing locally linear models in the region
of input space that data is being observed in. Thus, a set of piecewise local models
are stored in memory rather than the entire training data set, and a prediction can be
performed by taking the weighted average of the predictions of all the local models. The
region of validity of each local model, termed as the ‘receptive field’, is learned through
the use of gradient descent with a cross validation cost function.

Although RFWR eliminates the need for storage of the entire training data set, it still
suffers from the curse of dimensionality, in that increasing the dimension of the data set
results in an increase in computational requirements. This is a significant problem for high-
DOF robot manipulators which generate training points with an input dimensionality of

25



3n (angle, velocity and acceleration of each joint).

To address this issue, the technique of Locally Weighted Projection Regression (LWPR)
is introduced in [43], which incorporates the principles of RFWR but also incorporates
methods for dealing with high-dimensional systems. As LWPR will be the basis of much
of the work in Chapters 4, 5, and 6, the complete algorithm is explained in detail in the
following paragraphs.

LWPR approximates a nonlinear function with a set of piecewise local linear models
based on the training data that the algorithm receives. Formally stated, this approach
assumes a standard regression model of the form

y = f(x) + ε (3.4)

where x is the input vector, y the output vector, and ε a zero-mean random noise term. For
a single output dimension of y, given a data point xc and a subset of data close to xc, with
an appropriately chosen measure of closeness, a linear model can be fit to the subset of data:

yik = βik
Tx + ε (3.5)

where yik denotes the kth subset of data close to xc corresponding to the ith output dimen-
sion and βik is the set of parameters of the hyperplane that describe yik. The region of
validity, termed the receptive field [55] is given by

wik = exp(−1

2
(x− xck)TDik(x− xck)) (3.6)

where wik determines the weight of the kth local linear model of the ith output dimension
(i.e. the ikth local linear model), xck is the centre of the kth linear model, Dik corresponds
to a positive semidefinite distance parameter which determines the size of the ikth receptive
field. Given a query point X, LWPR calculates a predicted output

ŷi(x) =
K∑
k=1

wikŷik/

K∑
k=1

wik (3.7)

where K is the number of linear models, ŷik is the prediction of the ikth local linear model
given by (3.5) which is weighed by weight wik (as computed by 3.6) associated with the ikth

receptive field. Thus, the prediction ŷi(x) is the weighted sum of all the predictions of the
local models, where the models having receptive fields centered closest to the query point
are most significant to the prediction. This prediction is repeated i times for each dimension
of the output vector y. An example of LWPR approximating a nonlinear function with a
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single dimension output and input is given in Figure 3.1. In this figure, the data points
represent noisy samples taken from a decaying sinusoidal function. Each linear model is
represented by a single line which is fit to a subset of the data, and its corresponding
receptive field is illustrated by an ellipse which illustrates the region of validity of the local
model.
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Figure 3.1: Single dimension input and output LWPR example

The distance parameter, D, (3.6) is learned for an individual local model through
stochastic gradient descent given by

mn+1 = mn − aL
∂Jcost
∂m

(3.8)

where aL is the learning rate for gradient descent, D = mTm and Jcost is a penalized leave-
one-out cross-validation cost function [43] given by:

J =
1∑L
i=1wi

L∑
i=1

wi(yi − ŷi,−i)2 +
γ

n

N∑
i,j=1

D2
ij (3.9)

where L denotes the number of training points, N is the input dimensionality (three times
the number of DOF), wi is the weight associated with the ith training data point calculated
according to (3.6), yi is the prediction of the local model, ŷi,−i is the prediction of the local
model by leaving out the ith training data point, and γ is the penalty term constant. The
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first term of the cost function represents the mean of the leave-one-out cross-validation error
of the local model which ensures proper generalization of the local model. The second term,
referred to as the penalty term, ensures that the size of the receptive field does not shrink
indefinitely which would cause an increase in the number of local models used by LWPR.
Although this would be statistically accurate, the increasing computational and memory
requirements would rapidly become too expensive for online computation. Hence, γ can
be tuned to achieve the proper tradeoff between generalization and overfitting. However,
in [43], it was found that the regression results are not very sensitive to this parameter and
a value of γ = 1e−7 was found suitable for a wide range of experiments through empirical
evaluation.

In addition to the adjustment of the size of the receptive fields, the number of receptive
fields is also automatically adapted. A receptive field is created if for a given training
data point, no existing receptive field possesses a weight wi (3.6) that is greater than a
threshold value of wgen, which is a tunable parameter. The closer wgen is set to one, the
more overlap there will be between local models. Conversely, if two local models produce a
weight greater than a threshold wprune, the model whose receptive field is smaller is pruned.

Determining the set of parameters β of the hyperplane is done via regression, but can be
a time consuming task in the presence of high-dimensional input data. To reduce compu-
tational effort, LWPR assumes that the data can be characterized by local low-dimensional
distributions, and attempts to reduce the dimensionality of the input space X using Partial
Least Squares regression (PLS). PLS fits linear models using a set of univariate regressions
along selected projections in the input space which are chosen according to the correlation
between input and output data [43]. In addition to reducing computational complexity,
this also eliminates statistically irrelevant input dimensions from the local model, thus
adding numerical robustness by preventing singularities of the regression matrix due to
redundant input dimensions [43].

3.2.2 Global Learning

Global learning methods fit nonlinear functions globally, typically by transforming the
input space with predefined or parameterized basis functions and subsequent linear com-
binations of the transformed inputs. An early approach to the problem of global function
approximation is the Neural Network (NN) [20], which consists of a group of interconnected
neurons, or nodes representing mathematical transformations. Collectively, the entire net-
work defines a function mapping, f : R3n → Rn,x 7→ y, i.e. from a 3n× 1 input vector x
to the corresponding n × 1 output vector y. In [27], NN approaches are used to approxi-
mate the inverse dynamics function of a simple planar manipulator. Neural networks have
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also been used in conjunction with adaptive control strategies in [38] to compensate for
unmodeled dynamics. However, the NN approach employs a fixed parametric structure, as
the number of nodes as well as their connections must be fixed prior to training [20],[27].
Thus, for applications in online control where the input space of the training data may
continuously change, NNs may not be suitable.

A more recent regression technique is Support Vector Regression (SVR) [49]. By using
a kernel mapping function, SVR projects the training data to a high-dimensional space
where a linear regression model can be used to describe the training data. The model
parameters are learned by solving a constraint optimization problem which sweeps through
the entire training data set. Consequently, SVR is inherently an offline algorithm which
does not support incremental updates to the model. Attempts to make this algorithm
computationally tractable for online control involve sparsification of the training data set,
i.e. representing the entire training data set with a smaller subset of key data points. In
[18], a test of linear independence is applied such that only data points which cannot be
approximated with the existing data are added to the model. However, the sparse data set
is unbounded, and is allowed to become arbitrarily large during online learning. To deal
with this, a framework is developed in [35] for the insertion or deletion of key data points
into the sparse representation of the entire data set, often referred to as a ‘dictionary.’

3.2.3 Gaussian Processes Regression (GPR)

Gaussian Process Regression (GPR) [41] is another global supervised learning technique
which employs Gaussian process (GP) models to formulate a Bayesian framework for re-
gression. A GP is characterized by its mean and covariance functions which provide the
prior for Bayesian inference. After updating the GP prior with training data to yield the
posterior GP, the parameters of the mean and covariance function, known as the hyperpa-
rameters, are updated according to the training data. This is typically done by selecting
hyperparameters that maximize the probability of observing the training data. As with
LWPR, GPR and its variants will be the focus of Chapters 4, 5, and 6, and hence, the
algorithms are explained in detail in the following paragraphs.

Given the standard regression model (3.4), the goal of GPR is to find the function f
which maps the inputs X to their target output values y. The single observed output can
be described by

y ∼ N (0, K(X,X) + σ2
nIn) (3.10)

where σ2
n is the noise variance, In is the n×n identity matrix, and K(X,X) is the covariance
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matrix which is composed of the covariances, k(x,x′), evaluated at all pairs of the training
points. A widely used covariance function is given by the squared exponential (SE) form as

k(x,x′) = θ1 exp(−θ2‖x− x′‖2) (3.11)

where θ1 and θ2 are the two hyperparameters of the SE covariance term which control
the amplitude and characteristic length-scale respectively. The hyperparameters of the
Gaussian process can be learned for a particular data set by maximizing the log marginal
likelihood using optimization procedures such as gradient-based methods.

To make a prediction f̄∗(x
∗) given a new input vector x∗, the joint distribution of the

output values and the predicted function is given by[
y

f̄∗(x
∗)

]
∼ N (0,

([
K(X,X) + σ2

nIn k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
(3.12)

Thus, the conditional distribution gives the predicted mean value f̄∗(x
∗) with variance

V (x∗)

f̄∗(x
∗) = kT∗ (K + σ2

nI)−1y = kT∗ α,
V (x∗) = k(x∗,x∗)− kT∗ (K + σ2

nI)−1k∗

(3.13)

where k∗ = k(X,x∗), K = K(X,X) and α is the prediction vector.

A training data set of size N requires the inversion of the N ×N matrix in (3.13). This
is achieved through Cholesky factorization [41], and results in a computational complexity
of O(N3) for training with the standard GPR. Once this inversion is done, prediction of
the mean and variance are O(N) and O(N2) respectively.

The GPR framework has been applied in several previous works [29],[33],[36],[41] to
learn the inverse dynamics function of a robot manipulator. However, due to the com-
putational complexity of GPR which scales cubically with the number of training points
(O(N3)), the learning is performed entirely offline. Attempts to alleviate this problem have
been proposed both by the robotics [34] and machine learning community [16],[41],[50]. In
[34], online learning is achieved by combining GPR with the approach of local learning,
such that each local GP sees only a fraction of the total training data and hence remains
computationally tractable. Other researchers rely on sparse representations of the full GP
which typically involves representing the full training data set of size N with a subset
of data consisting of Ms elements, where Ms << N [16],[41],[50]. A common method of
choosing this subset of the data is based on an information gain criterion [50].
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3.2.4 Sparse Pseudo-input Gaussian Processes (SPGP)

A recent example of an approximation of the full GPR procedure is the Sparse Pseudo-
input Gaussian Processes (SPGP) [50]. SPGP introduces a method of simultaneously
finding an active set of point locations for ‘pseudo-inputs’, denoted by X̄ while learning
the hyperparameters of the Gaussian process in a smooth joint optimization scheme. These
pseudo-inputs can be viewed as a parametrization of an approximation of the GP covariance
function (3.11)[50]. Unlike other sparse approximations, the pseudo-inputs are not a fixed
subset of the training data but are treated as parameters to be optimized to yield a better
fit to the data. The SPGP covariance function is given by

KSPGP (xN ,xN) = KNMK−1M KMN + Λ
Λ = diag(λ)

λn = K(x∗,x∗)−KNMK−1
M KMN

(3.14)

where the N ×M matrix KNM is composed of the covariances between the N data points
and Ms pseudo-inputs given by K(xN , x̄M) and KM is composed of the covariance of the
pseudo-inputs given by K(x̄M , x̄M). By calculating (3.14) for each data point, the SPGP
covariance matrix, KSPGP

N is formed. Similar to (3.10), the marginal likelihood is given by

p(y|(X, X̄,Θ) = N (y|0,KSPGP
N + σ2In) (3.15)

Both the hyperparameters, Θ, and the pseudo-inputs, X̄ are learned jointly by maximizing
the likelihood using gradient ascent. With standard GP regression, this step requires
inverting KN which is composed of the complete training data set, thus requiring O(N3)
complexity for training. With SPGP, the equivalent step involves inverting KSPGP

N which is
not only smaller in dimension compared KN but consists of a low rank part and a diagonal
part (3.14) [50]. This allows the inversion in O(M2

sN) time for training.

Similar to GP regression, the predictive distribution for a new point x∗ can then be
computed through the following

f̄(x∗) = kT∗Q
−1
M KMN(Λ + σ2

nIn)−1y
V (x∗) = K(x∗,x∗)− kT∗ (K−1

M −Q−1
M )k∗ + σ2

nIn,
(3.16)

where Q = KM + KMN(Λ+σ2I)−1KNM. Hence, the predictive mean and variance can be
computed in O(Ms) and O(M2

s ) respectively after the initial O(M2
sN) training time.
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3.2.5 Sparse Online Gaussian Processes (SOGP)

Similar to SPGP, Sparse Online Gaussian Processes (SOGP) [16],[15] is another sparse
approximation of the full GPR framework which reduces the computational load of GPR by
keeping track of a sparse set of inputs named Basis Vectors (BV). SOGP also incorporates a
method of incrementally processing data by treating the posterior mean f̄N and covariance
functions K(X,X) as linear combinations of the prior covariance functions K0(x,x′):

f̄N = f̄0 +
N∑
i=1

K0(x,xi)αN(i) = f̄0 +αTNkx (3.17)

K(X,X) = K0(x,x′) +
N∑

i,j=1

K0(x,xi)Cn(ij)K0(xj,x
′) (3.18)

= K0(x,x′) + kTxCGP
N kx′

where αN = [αN(1), ..., αN(t)]T , CGP
N = {CN(ij)}i,j=1 are the mean and covariance param-

eters, and kx = [K0(x1,x), .., K0(xN ,x)]T is the vector of kernel functions centered on each
combination of training points. The parameters α and CGP can be iteratively updated
[16] through the following:

αN+1 = TN+1(αN) + qN+1(sN+1)
CGP
N+1 = UN+1(CGP

N ) + rN+1(sN+1s
T
N+1)

sN+1 = TN+1(CGP
N kN+1) + eN+1

(3.19)

where eN+1 = [0, .., 1]T is a unit vector of length N + 1, and the vector sN+1 is introduced
for clarity of the equations. Operators TN+1 and UN+1 extend an N -dimensional vector
and N×N dimensional matrix to an N+1 vector and (N+1)×(N+1) matrix respectively
by appending a zero to the end of the vector, and a zero row and column to the matrix.
The scalars qN+1 and rN+1 are computed as follows:

qN+1 = δ
δf̄N (xN+1)

ln〈P (yN+1|fN(xN+1)〉N
rN+1 = δ2

δf̄2N (xN+1)
ln〈P (yN+1|fN(xN+1)〉N

(3.20)

where 〈〉N denotes the average with respect to the GP at the N th iteration. As seen in
Equation 3.19, the dimensions of α and CGP increase with each data point added, which
is problematic for computational tractability when dealing with large data sets. However,
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if the new input xN+1 can be represented by a linear combination of covariance functions
constructed about the existing N data points, the dimensions of α and CGP do not need
to be increased. This is expressed in the following:

K(x,xN+1) =
N∑
i=1

êN+1(i)K0(x,xi) (3.21)

If the vector êN+1 can be found, then the updated GP could be represented using only the
first N inputs. However, for most covariance functions and inputs xN+1, Equation 3.21
cannot be satisfied for all x [16]. Instead, an approximation of the solution can be achieved
by minimizing the error measure:∥∥∥∥∥K0(x,xN+1)−

N∑
i=1

êN+1(i)K0(x,xi)

∥∥∥∥∥
2

(3.22)

where ‖·‖2 is a suitably defined norm, which is selected in [16] as a kernel Hilbert space
norm. The solution of the minimization problem in Equation 3.22 is given by:

êN+1 = K−1
N kN+1 (3.23)

where KN = {K0(xi,xj)}i,j=1. Applying this solution to Equation 3.21 results in:

K̂0(x,xN+1) =
N∑
i=1

êN+1(i)K0(x,xi) (3.24)

where K̂0(x,xN+1) can be seen as the orthogonal projection of K0(x,xN+1) on the linear
span of the functions K0(x,xi).

To determine whether or not the current input xN will be included in the BV set, the
residual error vector from the projection in (3.24) is calculated:

γN+1 = K0(xN+1,xN+1)− kTN+1K
−1
N kN+1 (3.25)

where γN+1 can be treated as a measure of the ‘novelty’ of the current input. An input
resulting in a high value of γ indicates that the new data cannot be described well through
linear combinations of the existing data points, and hence should be added to the BV set.
The overall SOGP algorithm is described in the following algorithm.
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Algorithm 3 Sparse Online Gaussian Process Regression

1: For a new data point, (yN+1,xN+1)
2: Compute qN+1, rN+1 (3.20), êN+1 (3.23), and γN+1 (3.25)
3: if γN+1 < εtol then
4: Compute α and CGP without extending their size:
5: αN+1 = (αN) + qN+1(sN+1)
6: CGP

N+1 = CGP
N + rN+1sN+1(sTN+1)

7: sN+1 = CGP
N kN+1 + êN+1 where êN+1 is computed according to (3.23)

8: else
9: Compute α and CGP according to (3.19)

10: Add current input xB+1 to the BV set
11: end if
12: if Size of BV set > MBV then
13: Compute the novelty, γ, of each BV and remove the lowest scoring one
14: end if

3.2.6 Incorporating Prior Knowledge

The learning approaches introduced thus far assume that there is no prior knowledge of
the system dynamics, and thus learning commences entirely from ‘scratch’. Furthermore,
adequate performance of these algorithms requires sufficient training in the regions of
state space that the system is expected to operate in. Thus, the performance of these
learning algorithms is poor outside of the regions in which they have trained, especially
in the case of local learning. Instead of assuming that there is no a-priori knowledge
of the system dynamics, recent work in learning control aims to incorporate the RBD
model (2.23), to provide a global characterization of the dynamics. In [32], the RBD
model is incorporated into the GPR algorithm to improve its performance in terms of
generalization and prediction accuracy, however the high computational requirements of
GPR still prohibit incremental online updates from being made, and hence the system
must be trained offline. Thus, the use of the RBD model as prior knowledge has not yet
been applied to online learning algorithms.
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Chapter 4

Comparison of Model-Based and
Learning controllers

While much progress has been made in the field of adaptive control and the more recent
learning approaches to dealing with model uncertainty, little work has been carried out
to compare the two. Burdet and Codourey [11] present a comparison between various
learning approaches (such as Neural Networks and and ILC) and model-based adaptive
controllers. Since then, there has not been any work in comparing the newer generation
of regression-based learning (LWPR, SVM, GPR) techniques to the classical model-based
control strategies. This chapter 1 focuses on evaluating Locally Weighted Projection Re-
gression (LWPR) as an alternative to the model-based techniques such as computed torque
(CT) or adaptive computed torque (ACT) control. Simulations are carried out in order to
evaluate the position and orientation tracking performance of each controller while varying
trajectory velocities, end-effector loading and errors in the known parameters.

In order to evaluate the performance of the LWPR learning controller, two model-based
controllers were also implemented: the computed torque (CT) controller in (2.41) and the
adaptive computed torque (ACT) controller as described in Equation 3.2. The performance
of these controllers was evaluated in simulation using MATLAB/Simulink, the Robotics
Toolbox (RTB) [13] and the open source LWPR code [55]. LWPR was used to learn the
joint space dynamics of a standard 6 DOF Puma 560 with the kinematic and dynamic
parameters obtained from the RTB. The control loop executed at 1ms while the model was
updated every 5ms for both the LWPR and ACT algorithms.

1A version of this chapter has been published. J. Sun de la Cruz, D. Kulić and W. Owen, A Compar-
ison of Classical and Learning Controllers, World Congress of the International Federation of Automatic
Control, pp. 1102-1107, 2011.
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4.1 Trajectories

In order to properly assess the performance of the model-based controllers, a trajectory
which excites the dynamics of the system caused by inertia, gravity and Coriolis/centripetal
effects in (2.23) must be tracked. The figure-8 trajectory [31] is used, as it includes both
straight and curved sections which induce significant torques from Coriolis/centripetal ef-
fects. The figure-8 trajectory, as seen in Figure 4.1, is described by the following task space
equations:

xd =
w8

2
sin(

2π

Kc

t) + xi

yd =
l8
2

cos(
4π

Kc

t) + yi −
l8
2

zd = zi

(4.1)

where pd = [xd yd zd]
T is the vector of the desired end-effector task space position, [xi yi zi]

is the desired Cartesian initial position, 2π/Kc is the desired duration of one cycle of the
figure-8 in seconds, and w8 and l8 are the width and length of the trajectory. The task-
space trajectory in Equation 6.1 is converted to a joint space trajectory at a sampling
rate of 1ms through the inverse kinematics algorithm in Chapter 2. Desired velocity and
acceleration terms are generated through numerical differentiation also with a 1ms time
step using Matlab. All trajectory generation was carried out offline.

In addition to the figure-8 trajectory, a persistently exciting (PE) trajectory [14] is used
to provide sufficient excitation of the dynamics. This trajectory was designed directly in
the joint space as a linear combination of sinusoids given by:

qi = ai + bi

3∑
l=1

(sin(wPEt) + cos(2wPEt)) (4.2)

where qi is the ith joint angle, ai and bi are constant scalars, and wPE is proportional to
the fundamental frequency. The resulting task space trajectory is a cardioid-like shape, as
seen in Figure 4.6.

Simulation I

The first simulation compares the performance of the LWPR controller to the fixed param-
eter computed torque controller at varying trajectory velocities. The figure-8 trajectory
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in Equation (4.1) is tracked with parameters w8 = l8 = 0.2, [xi yi zi] = [−0.3, 0.1, 0]. To
vary the trajectory velocities, values of Kc = 1.57 and Kc = 2.09 were used, corresponding
to frequencies of 0.25 and 0.3Hz. To evaluate orientation control, a sinusoidal signal was
input as the desired orientation of the end-effector. The LWPR controller was trained for
60s on the 0.25Hz trajectory, after which training was stopped and tracking performance
was evaluated. The system was then allowed to train for another 120s. Next the trajectory
frequency was increased to 0.3Hz, and the system was trained for an additional 30s, after
which tracking performance was evaluated. These results are then compared against the
CT controller. The durations of training were determined by observing the mean squared
error (MSE) of the predicted torques from the LWPR controller. Training was stopped
when asymptotic convergence of the MSE was observed. Since no parameter perturba-
tion was introduced yet, only the CT and LWPR controllers are compared in the first
simulation.

Simulation II

The second simulation evaluates tracking of the figure-8 pattern with varied end-effector
loads, thereby introducing model parameter errors. The trained system from the first
simulation (0.25Hz and 180s training) was used to track the figure-8 trajectory, but with
additional end-effector masses of 0.5 and 1kg. The same conditions were repeated on the
ACT and CT controller. After 30s of training time for the LWPR controller and ACT
controller, the performance of all three controllers was evaluated.

Simulation III

The third simulation adds varying amounts of error to the inertia parameters of the model
while observing the resulting performance of the three controllers when tracking the figure-8
trajectory. Training of these models was done in the same manner as above.

Simulation IV

The fourth simulation introduces friction in addition to inertia parameter uncertainty while
tracking the persistently exciting (PE) trajectory in Equation (4.2) This trajectory is used
for two reasons. Firstly, by using a trajectory with significant frequency content, the effect
of persistence of excitation on the tracking and performance of ACT can be evaluated.
Secondly, by shifting the operating range of the manipulator away from that of the figure 8
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trajectory, the generalization performance of LWPR is tested. Furthermore, both Coulomb
and viscous friction are introduced into the simulation. In order to assess the ACT con-
troller’s ability to cope with unmodeled dynamics, two cases are tested: one in which both
Coulomb and viscous friction (2.26) are modeled, and one in which only Coulomb friction
is modeled in the controller, but both types of friction are modeled in the plant. The
friction constants were obtained from the defaults for the Puma 560 in the RTB.

4.2 Parameter Tuning and Initialization

Adaptive Computed Torque

The stability of the ACT controller was found to be highly sensitive to the adaptive gain
parameter, γ (3.2). While a higher value of γ generally results in faster adaptation time,
it increases the system’s sensitivity to noise and numerical errors from integration of the
time derivative of the estimated parameters (3.2). An adaptive gain of 0.01 was found to
be the best tradeoff.

LWPR

Although LWPR incorporates many algorithms which enable the system to automatically
adjust its parameters for optimal performance, initial values of these parameters can sig-
nificantly impact the convergence rate. The initial value for the distance parameter D
(3.6) dictates how large a receptive field is upon initialization. Too small a value of D
(corresponding to large receptive fields) tends to delay convergence while a larger value of
D results in overfitting of the data [55]. This parameter was generally tuned through a
trial-and-error process which involved monitoring the MSE of the predicted values during
the training phase. The initial performance of the LWPR controller is also highly depen-
dent upon the data sets that are used to train the LWPR model. Because LWPR is a local
learning approach, it must be trained in the region(s) of input space that the manipulator
will be operating in. In order to train the model, a low-gain PD controller was used to
track the desired trajectory while the LWPR model obtained training data. The initial
value of the distance parameter D was set to 0.05 for each input dimension.
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4.3 Results

Simulation I

The LWPR model was trained on the figure-8 trajectory at 0.25Hz, enabling it to predict
the necessary torques for tracking at frequencies near 0.25Hz. As seen in Figure 4.1 and
Table 5.1, after an additional training period of 40s, the LWPR controller compensated for
the 0.3Hz trajectory, allowing it to perform nearly as well as the ideal CT controller. This
illustrates the ability of the LWPR controller to rapidly adjust to changes in its operating
conditions. However, frequencies greater than 0.3Hz were sufficient to push the system far
enough from the trained region of input space, eventually resulting in LWPR predicting of
zero for all the joint torques, causing the system to rely entirely on the feedback component
of the control law. This result highlights the sensitivity of the LWPR controller to the initial
training set. A potential solution is a more complete initial training of the LWPR model. If
the initial training set were to include a larger subset of the input space obtained through
motor babbling [39] for example, it is expected that the LWPR controller would be able
to handle larger perturbations.
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Figure 4.1: Position Tracking at 0.25Hz
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Frequency
0.25Hz 0.3Hz

[mm] [deg] [mm] [deg]
PD 4.07 0.89 5.54 2.89
CT 1.80 0.15 2.03 0.22

LWPR Initial 3.56 1.67 4.68 2.54
LWPR, 60s 2.71 1.31 / /
LWPR, 180s 1.95 0.25 2.20 0.42

Table 4.1: Frequency - RMS position error [mm], orientation error [deg]

Simulation II

The second simulation evaluated the ability of the controllers to handle unmodeled end-
effector loads. As seen in Table 5.2 and Figures 4.2 and 4.3, due to the unknown mass
of the end-effector, imperfect linearization and decoupling cause a decrease in tracking
performance of the CT controller. Both the LWPR and ACT controller are able to outper-
form the CT controller after 30s of additional training. Although the ACT controller has
a-priori knowledge of the structure of the dynamic equation of the manipulator, it does not
perform any better than the LWPR controller in position tracking after the same length of
adaptation time. This is due to the slow convergence of estimated masses to their actual
values, which can in turn be explained by the relatively low adaptive gain and the lack of
a PE trajectory. However, as seen in the orientation results in Table 5.2, when tracking
sinusoidal angular velocities on each joint of the wrist, the ACT controller yields better ori-
entation tracking as compared to the LWPR controller, illustrating the importance of PE
trajectories in the performance of the ACT controller. The LWPR controller was able to
learn the inverse dynamics for both the 0.5kg and 1kg payload. However, masses greater
than 1kg were sufficient to push the system to operate in a region outside its training,
causing the controller to rely entirely on the feedback component of the control law. In
this case, the performance of the LWPR controller was unable to converge due to the fact
that the system was now operating so far from the desired trajectory that the receptive
fields corresponding to the desired trajectory were never updated with new data.

Simulation III

Simulation three introduces parameter estimate errors into all the link masses, centre
of mass locations and the moments of inertia of each link. Table 4.3 and Figures 4.4
and 4.5 illustrate that inaccurate knowledge of the dynamic parameters causes significant
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Figure 4.2: Position Tracking with 0.5kg Load

Payload
+0.5 kg +1kg

[mm] [deg] [mm] [deg]
PD 7.34 0.92 19.07 3.39
CT 4.95 0.60 16.45 2.15

ACT, 30s 4.44 0.44 2.70 1.26
LWPR, +30s 4.16 0.65 7.01 1.29

Table 4.2: Payload - RMS position error [mm], orientation error [deg]

degradation in performance for the CT controller, due to the imperfect linearization of
the system dynamics. As seen in Table 4.3, the performance of the ACT controller was
particularly poor in comparison to the LWPR controller, and even the CT controller. This
can be explained by the fact that the perturbation of the inertia parameters was applied
to all the joints of the manipulator, unlike the case of end-effector loading where only the
parameters of one link were perturbed. Hence, it is expected that the adaptive controller
would require both a persistently exciting trajectory, which excites all the dynamic modes of
the structure, [14] and a longer adaptation time than 30s to yield better tracking results in
this scenario. The importance of PE trajectories will be illustrated in the next simulation.
For the LWPR controller, similar findings to that of simulations one and two were observed
in that inertia parameter perturbations greater than 10% were sufficient to prevent LWPR
from predicting accurate joint torques, causing the system to rely entirely on the feedback
portion of the control law.
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Figure 4.3: Position Tracking with 1kg Load

Parameter Error
+1% +5%

[mm] [deg] [mm] [deg]
PD 4.56 1.32 4.56 1.32
CT 2.15 0.25 2.65 0.30

ACT, 40s 2.20 0.12 2.75 0.15
LWPR, +40s 1.55 0.75 1.66 0.86

Table 4.3: Parameter Error - RMS position error [mm], orientation error [deg]

Simulation IV

Simulation four introduces the PE trajectory and Coulomb and viscous friction in addi-
tion to inertia parameter error. As seen in Table 4.3, the CT controller performed the
poorest due to the error in its model parameters. When the ACT is implemented with the
full friction model, the resulting tracking performance is significantly better than the CT
controller, as also shown in Table 4.3.

However, when only partial knowledge of the model is available (in this case only viscous
friction), the performance gain is no longer observed. The ACT controller outperforms the
LWPR controller only if the friction model is fully known. This illustrates the importance
of: 1) a persistently exciting trajectory and 2) accurate knowledge of structure of the
dynamic model when using adaptive control.

The PE trajectory was also chosen to be significantly different from the figure 8 in order

42



−0.4 −0.35 −0.3 −0.25 −0.2

0

0.05

0.1

0.15

0.2

X [m]

Y
 [m

]

 

 

Ref
CT
LWPR 30s
ACT 30s

−2 0 2

x 10
−3

0

0.05

0.1

0.15

0.2

Z [m]

Figure 4.4: Position Tracking with 1% Parameter Error

to test the generalization of the LWPR model. The first test involved using the model that
was learned in simulation three to attempt to track the PE trajectory. This model had
seen roughly 10,000 training points, all of which were localized to the figure 8 trajectory.
As expected, this LWPR model was unable to predict torques in the operating range of
the PE trajectory. Hence, the LWPR model had to be re-trained on the PE trajectory,
taking roughly 240 seconds to achieve good performance in the presence of friction.
This simulation was then repeated with a model that was initialized through the use of
motor babbling [39]. Here, a joint space trajectory was made by randomly selecting a
point in the robot’s expected operating range about which small sinusoidal trajectories
were executed by the joints. This sequence was repeated at different points until sufficient
coverage of the operating range was seen. Roughly 10,000 training points were generated
from motor babbling. A PD controller was then used to track this trajectory and the
resulting data was used to train the LWPR model. As seen in Table 4.3, by initializing the
LWPR model this way, good performance on the PE trajectory could be learned in half
the time compared to the case without motor babbling.

Even without any a-priori knowledge of the structure or parameters of the dynamics,
LWPR is able to learn the inverse dynamics function of a manipulator accurately enough to
yield near-optimal control results within minutes of training. Unlike the adaptive controller
which relies on persistence of excitation for tracking performance, the LWPR approach can
be trained on an arbitrary trajectory provided that it is given sufficient time to learn.

When tracking a PE trajectory with a known dynamic model, the ACT clearly outper-
forms the LWPR controller in terms of tracking accuracy and adaptation time, which is
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Figure 4.5: Position Tracking with 5% Parameter Error

Parameter Error
+1% +5%

[mm] [deg] [mm] [deg]
PD 4.12 0.95 4.12 0.95
CT 2.45 0.55 3.10 0.80

ACT, partial friction, 40s 2.0 0.40 2.1 0.45
ACT, full friction, 40s 1.65 0.30 1.70 0.32

LWPR, 240s 1.75 0.45 1.80 0.50
LWPR, motor babbling, 120s 1.82 0.50 1.85 0.55

Table 4.4: Parameter Error and Friction - RMS position error [mm], orientation error [deg]

expected due to its incorporation of a-priori knowledge. However, if LWPR is presented
with sufficient time to learn, its performance will closely approach that of ACT, but will not
surpass it due to the use of local linear approximations of the system dynamics. However,
the ACT controller is at a disadvantage since not all trajectories meet the PE requirement.
For this reason, the identification of system parameters is often done offline on a prede-
termined trajectory which is optimized to yield the best parameter estimates [24]. While
this may yield results better than the LWPR controller, the benefits of online, incremental
learning are lost, where LWPR excels.

The performance of LWPR outside of areas in which it has trained is poor. This
was clearly illustrated when a large perturbation to the inertia parameters caused the
manipulator to move outside its trained region, rendering the system completely reliant
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Figure 4.6: PE Trajectory - 5% inertia and friction error

upon the feedback portion of the control law. This problem can be overcome through
proper initialization of the model through motor babbling. However, for applications in
which the manipulator workspace is large, significant amounts of training covering the
robot’s entire workspace must be carried out in order to achieve good results. This is not
an issue for the adaptive controller, as it incorporates a-priori knowledge of the system
dynamics, which is applicable to the entire workspace of the robot.

4.4 Summary

These simulations indicate that the performance of the CT control scheme is highly de-
pendent upon accurate knowledge of the dynamic parameters of the system. A slight
perturbation from the actual inertia and friction parameters of the system caused a de-
crease in performance, while the LWPR and ACT performance remained more consistent
under the same conditions.

The ACT approach was able to outperform the CT controller in most scenarios due to
its ability to generate online estimates of the actual inertia parameters of the system. It was
shown that when the trajectory is persistently exciting and the structure of the dynamics is
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well known, the ACT controller also outperforms the LWPR. However, in practice, not all
trajectories are PE and the structure of the friction model may not be known well. Hence,
it is expected that when dealing with a physical robot, the simplified models of friction
used in this paper will further degrade the performance of the ACT controller while the
LWPR will be able to learn the additional nonlinearities present in the physical robot.

Lastly, although the LWPR controller was able to handle parametric uncertainty with-
out any a-priori knowledge of the system, its greatest limitation is its local learning, which
dictates that successful performance requires adequate initial training of the system. Sig-
nificant perturbations caused the system to operate outside of its trained region, resulting
in the system relying solely on the feedback component of the control law for tracking
performance. Initializing the model through motor babbling can partially mitigate this
issue, but the larger the workspace of the robot, the larger the training data set must be.
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Chapter 5

Incorporating Prior Knowledge

In the previous chapter, the ability of learning controllers to cope with varying levels and
sources of parametric uncertainty was illustrated. However, this performance is contingent
upon the availability of large amounts of relevant training data for the algorithm, especially
for the case of local learning techniques such as LWPR. This chapter 1 presents two types of
online, incremental learning algorithms which incorporate prior knowledge to improve the
generalization performance of the machine learning algorithms. An approach is developed
for incorporating prior knowledge for both local (LWPR) and global (GPR) learning. Prior
knowledge is incorporated into the LWPR framework by initializing the local linear models
with a first order approximation of the available prior information. Prior knowledge is
incorporated into the mean function of Sparse Pseudo Input Gaussian Processes (SPGP)
and Sparse Online Gaussian Process (SOGP) regression, and a modified version of the
algorithms is proposed to allow for online, incremental updates. It is shown that the
proposed approaches allow the system to operate well even without any initial training
data, and further improve performance with additional online training.

5.1 Prior Knowledge

The RBD equation (2.23) provides a globally valid model representing the dynamics of a
robot manipulator. Hence, providing the RBD equation as prior knowledge to the learning

1A version of this chapter has been published. J. Sun de la Cruz, D. Kulić and W. Owen, Online
Incremental Learning of Inverse Dynamics Incorporating Prior Knowledge, International Conference of
Autonomous and Intelligent Systems, pp. 167-176, 2011.
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controllers would greatly improve their generalization performance. However, due to the
complexity of robotic systems, obtaining a complete and accurate RBD model can be
difficult and tedious. Therefore, even if partial knowledge of the RBD model is available,
this information should be incorporated into the learning algorithms to potentially boost
performance. The simplest term of the RBD model in (2.23) is the gravity loading vector,
G(q) (2.22), as it depends upon the least number of inertial parameters of the system
compared to the inertia and centripetal/Coriolis terms of the model [45]. In this chapter,
techniques for incorporating partial prior knowledge to reduce training requirements for
learning controllers are developed.

5.2 LWPR

Although LWPR has the ability to learn in an online, incremental manner due to its local
learning approach, performance deteriorates quickly as the system moves outside of the
region of state space it has been trained in, as demonstrated in Chapter 4. In order to
improve the generalization performance of LWPR, an algorithm for incorporating a-priori
knowledge from the RBD model (2.23) into the LWPR algorithm is proposed. This is done
by initializing the receptive fields in the LWPR model with a first order approximation of
the available RBD model:

β ← ∂τ

∂x
x=x∗ (5.1)

where x∗ is a new query point for which no previous training data has been observed and
τ(x∗) is the known or partially known dynamics. Equation 5.1 represents the linearization
of the known system dynamics about a particular state of the system known as the query
point, x∗. Although expressions for this linearization can be derived analytically, due
to the complexity of the system dynamics, linearization is performed through numerical
perturbation about the query point x∗:

βik =
τi(x

∗
k−tol)− τi(x∗)

tol
(5.2)

where βik is the slope of the linearized model relating the ith output dimension to the kth

input dimension, x∗k−tol is the perturbed query point where tol is subtracted from the kth

element of the query vector x∗, and tol is the perturbation tolerance, which is set to a
small value for accuracy, i.e. tol = 10−5.

For a query point x∗ and the known RBD equation τ (x), the algorithm shown in
Algorithm 4 for initializing the LWPR model is added to the standard prediction procedure
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of LWPR:

Algorithm 4 LWPR with Prior Knowledge

1: if there is no existing RF centered near x∗ then
2: Compute (β) according to (5.1)
3: Initialize a new RF centered at x∗ with hyperparameters β
4: else
5: Compute prediction with standard LWPR procedure (3.2.1)
6: end if

The determination of whether an existing RF is centered near x∗ is made in the same
way as determining whether a new RF should be added, as described in Section 3.2.1, i.e.,
if there is no existing RF that produces a weight (3.6) greater than wgen given x∗, the
initialization procedure is applied.

By evaluating the partial derivative of the RBD equation (2.23) at the query point, a
first-order linear approximation of the system dynamics is obtained, and is used to initialize
the model at that point. The size of the receptive field is initially set as a tunable parameter,
and is eventually learned optimally through gradient descent as outlined in Chapter 3.

5.3 GPR Approaches

With Gaussian process regression techniques, including the SPGP and SOGP algorithms
described in Sections 3.2.4 and 3.2.5, typically a zero mean function for the Gaussian
process is assumed, and hence predictions in areas of the workspace where few training
points have been observed are inaccurate. A simple method of incorporating a-priori
knowledge is to set the mean function in Equation (3.10) equal to the available model of
the system, thus biasing the system towards the specified a-priori knowledge [32].

While the mean function is biased towards the prior knowledge, the covariance function
k (3.10) still requires adaptation to the data that is observed. Specifically, the hyperpa-
rameters of the covariance function, as described in Section 3.2.3 must be optimized to
the incoming training data. Nonlinear conjugate gradient descent (NCG) [46] is used to
minimize the negative log marginal likelihood with respect to the hyperparameters, Θ.
As an iterative gradient-based optimization technique, NCG requires the specification of
an initial guess of Θ, which is determined by performing the optimization on a batch of
training data collected from the system during motor babbling in Chapter 4.
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With standard gradient descent optimization, the location, χ, of the extremum of a
function, f , is found by iteratively taking steps in the direction of the gradient of the
function at the current point. That is:

χi+1 = χi + aidi (5.3)

where χi is the current solution (ith iteration) to the optimization problem, ai represents
the length of the step to be taken, and di is the step direction. This iterative procedure
often results in steps being taken in the same direction as in earlier steps resulting in a
slower convergence. By employing NCG, this repetition is avoided by ensuring that all
search directions are conjugate, or A-orthogonal, and that the necessary step lengths are
taken such that only one step must be taken in each search direction to arrive at the
extremum for that direction. Thus, the convergence of NCG is better than or at least
the same as standard gradient descent. A comparison between the convergence of NCG
and standard gradient descent is illustrated in Figure 5.1, where a 2-dimensional example
is given, where the green lines represent gradient descent convergence and the red lines
represent NCG.

Figure 5.1: Convergence of Gradient Descent vs NCG

Two vectors, di and dj, are conjugate, or A-orthogonal, if they have the following
property:

dTi Adj = 0 (5.4)

where A is a positive semi-definite matrix. In order to find the set of conjugate search
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directions, d, the Polak-Ribiére formula is used to generate coefficients ξ:

ξi+1 =
rTi+1(ri+1 − ri)

rTi ri
(5.5)

where i represents the current iteration, and the residual r is set to the negation of the
gradient at the current location χi, i.e. r = −f ′(χi). Thus, the conjugate search directions,
d, can be determined:

di+1 = ri+1 + ξi+1di (5.6)

With the selection of the step direction, di, the problem is reduced to a one-dimensional
optimization case which involves finding the best step length, a, to take in direction di. This
is done by through the use of a line search procedure which finds the ai that minimizes f(χi+
aidi). The interpolation method of line searching achieves this by firstly approximating
the function f(χ + ad) as a polynomial through a Taylor series expansion. Here we drop
the iteration index for simplicity:

f(χ+ ad) ≈f(χ) + a[
d

da
f(χ+ ad)]a=0 +

a2

2
[
d2

da2
f(χ+ ad)]a=0

=f(χ) + a[f ′(χ)]Td +
a2

2
dT f ′′(χ)d

(5.7)

The secant method is then used to approximate the second derivative, f ′′, as a finite
difference equation of the first derivative f ′ evaluated at two points, a = 0 and a = σ:

d2

da2
≈ 1

σ
[f ′(χ+ σd)]Td− [f ′(χ)]Td (5.8)

where σ is a non-zero number such that the closer σ is to 0, the better the approximation
of the second derivative. Substituting this expression into (5.7) and differentiating:

d

da
f(χ+ ad) ≈ [f ′(χ)]Td +

a

σ

{
[f ′(χ+ σd)]Td− [f ′(χ)]Td

}
(5.9)

Minimization of f(χ + ad) can then be achieved by equating its derivative to zero and
rearranging for a:

a = −σ ζ

ζprev − ζ
(5.10)

where ζprev = [f ′(χ+ σd)]Td and ζ = [f ′(χ)]Td. This process is then repeated, with the
current χ equated to the value of χ + ad calculated in the previous iteration. The stop
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condition for the line search is based on the gradient approaching orthogonality with the
current search direction, i.e. f ′ Td ≈ 0. High tolerances for this term have been found
to be too computationally inefficient for the relatively small gain in accuracy [46] that is
achieved.

Algorithm 5 Nonlinear Conjugate Gradient Optimization

1: given: initial guess χ, maximum allowable CG and line search iterations, εCG, εLS
2: initialize: r← −f ′(χ), d← r, i← 0
3: while i < imax and ‖ri‖ ≤ εCG‖r0‖ do
4: initialize: j ← 0
5: ζprev ← [f ′(χ+ σd)]Td
6: do
7: ζ ← [f ′(χ)]Td
8: a← −σ ζ

ζprev−ζ
9: χ← χ+ adi

10: ζprev ← ζ
11: j ← j + 1
12: while j < jmax and ‖ad‖ ≤ εLS
13: rprev ← r
14: r← −f ′(χ)

15: ξ ← rT (r−rprev)

rTprevrprev

16: d← r + ξd
17: i← i+ 1
18: end while

In order to test the effects of limiting the maximum number of line search iterations
on the accuracy of the SPGP algorithm, the system was trained on data sets obtained
from the simulations in Chapter 4 and the MSE of prediction was monitored. In the
first case, illustrated at the top of Figure 5.2, up to 50 line search iterations were allowed
(i.e. jmax = 50), and below in the second graph, 25 iterations were allowed. Despite this
difference, the final MSE of both cases is nearly identical. The only noticeable discrepancy
is the initially slower rate of convergence of the joints in the case of early line search
termination. Joint 1 also exhibits non-monotonic convergence initially. However, due to
the lower number of allowable line search iterations, the computational burden is reduced
and thus the frequency at which the overall hyperparameter updates are performed can be
increased. Hence, for the simulations, less accurate, but more frequent line searches were
used by terminating the search after 25 iterations.
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Figure 5.2: Prediction MSE

Despite its improved convergence over standard gradient descent, each call to NCG
optimization requires a significant number of time steps of the control loop to compute.
Thus, the code is broken down into a sequence of smaller, ‘atomic’ code segments, so that
the computation of NCG occurs over multiple controller time steps. This was done so
that each code segment would have at most one call to evaluate the function derivative f ′.
Based on Algorithm 5, the code segments are separated into lines 1 : 2, 3 : 5, 6 : 12 and
13 : 18, with each code segment being executed over a single time step of the controller.
The optimized location of the hyperparameters, represented by χ, is not used in the control
loop until the entire algorithm has been executed.

5.3.1 Simulation Setup

The proposed approaches are evaluated in simulation on a 6-DOF Puma 560 robot using
the Robotics Toolbox (RTB) [13]. The open-source LWPR [55], SPGP [50] and SOGP
[16] code were modified to incorporate a-priori knowledge and incremental updating as
described above. In order to simulate the nonlinearities present in a physical robot, the
effects of Coloumb and viscous friction were simulated according to Equation 2.26, with the
friction constants obtained from the defaults for the Puma 560 in the RTB. Furthermore,
to simulate the effects of imprecise knowledge of the inertial parameters of the robot, a
10% percent error in the inertial parameters of the a-priori knowledge was introduced. For
LWPR, the tunable parameters were set to the same values as determined in Chapter 4.
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For SPGP and SOGP, the maximum size of the sparse subset of datapoints, M , was set
to 35. This number was determined by trial-and-error to be the smallest possible value
before a noticeable degradation in prediction performance was introduced.

A-priori knowledge from the full RBD model in (2.23), or partial knowledge from the
gravity loading vector (2.22) are used to initialize each algorithm. Standard computed
torque control (2.41) is also implemented for comparison.

Tracking performance of the controllers is evaluated on a ‘star-like’ asterisk pattern [31].
The asterisk trajectory is a more challenging trajectory than the figure-8 due to the high
components of velocity and acceleration, and thus requires model-based control for good
tracking accuracy. Illustrated in Figure 5.3, this trajectory is formed in the horizontal XY
plane, by first moving in a straight line outwards from a centre point, then retracing back
inwards to the centre, repeating this pattern in eight different directions in a sequential
manner. The inverse kinematics algorithm presented in Chapter 2 is used to convert this
trajectory from task to joint space.
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Figure 5.3: ‘Asterisk’ trajectory
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Figure 5.4: Initial Tracking Performance for Joint 2 with full RBD Prior and No Prior

5.3.2 Results

Full Knowledge of RBD

Figure 5.4 depicts the joint space tracking performance of the computed torque (CT)
controller using a model with 10% error in the inertial and friction parameters of the
system. As seen from the figure, the parameter error causes poor tracking results. The same
RBD model is used to initialize both GP and LWPR models, and the resulting controllers
are trained online while tracking the asterisk trajectory. Figure 5.4 and Table 5.1 show
the joint space tracking performance after one cycle of the trajectory. The performance
of the GP controllers is very similar to that of the computed torque controller, as they
are initialized with the same RBD equation. On the other hand, as the LWPR model is
initialized with a set of linear approximations of RBD equation, the initial performance of
LWPR is not as good as the GP or the CT methods.

Figure 5.5 and Table 5.1 show the results after 90 seconds of additional training. Due
to the high computational efficiency of LWPR, incremental updates are made at a rate of
400 Hz, while the more computationally taxing GP algorithms limit updates to a rate of
100 Hz. Hence, as time progresses, LWPR is able to accumulate more training data than
the GP controllers, eventually performing nearly as well as SPGP and SOGP. Initially,
SPGP performs better than SOGP due to the fact that SPGP uses the full M = 35 sparse
inputs from the start, whereas SOGP is initialized with M = 1 and adds sparse inputs
as data is incrementally processed until the limit M = 35 is reached. Thus, after seeing
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Figure 5.5: Final Tracking Performance for Joints 2 with full RBD Prior

significant amounts of training data, both SOGP and SPGP perform very similarly. Lastly,
given sufficient data, all three learning controllers are able to outperform the CT method
by learning the nonlinear behaviour of Coloumb and viscous friction and compensating for
the initial inaccurate knowledge of the RBD equation.

Joint 1 2 3 4 5 6 Avg
LWPR, Initial 1.25 2.26 1.74 0.65 0.75 0.80 1.24

LWPR, 90s 0.75 0.94 0.82 0.25 0.38 0.45 0.60
SPGP, Initial 1.10 1.75 1.55 0.60 0.68 0.75 1.07

SPGP, 90s 0.70 0.85 0.78 0.22 0.32 0.45 0.55
SOGP, Initial 1.21 1.88 1.60 0.63 0.70 0.82 1.14

SOGP, 90s 0.72 0.84 0.80 0.22 0.32 0.47 0.56

Table 5.1: RMS tracking error with full knowledge (deg)

Partial Knowledge of RBD

Figure 5.6 and Table 5.2 illustrate the joint space tracking performance of the SPGP,
SOGP and LWPR models when initialized with only the gravity loading vector (2.22) of
the RBD equation. In this case, LWPR outperforms SPGP during the first cycle. This
can be attributed to the higher update rate of LWPR, allowing the model to adapt more
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quickly to the data it receives. After multiple cycles through the trajectory, this advantage
of LWPR vanishes, as the GP models have then observed enough training data across the
entire asterisk trajectory to learn a more accurate model. Figure 5.7 and Table 5.2 illustrate
the performance after 150 seconds of training. Similarly to the case of full knowledge of
the RBD, the learning controllers have all compensated for friction and clearly outperform
the CT controller. However, since the system was initialized with only partial knowledge
of the RBD equation, it has taken longer for both models to achieve the same tracking
performance in the case of full RBD knowledge. Similarly to the case of full knowledge of
RBD, SPGP initially performs better than SOGP, but after training this discrepancy is
minimized.
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Figure 5.6: Initial Tracking Performance for Joint 2 with Gravity Prior and No Prior

Joint 1 2 3 4 5 6 Avg
LWPR, Initial 2.57 4.78 3.62 0.95 0.80 0.75 2.25
LWPR, 150s 0.80 0.95 0.80 0.22 0.41 0.44 0.60
SPGP, Initial 0.48 6.66 5.29 0.05 0.12 0.27 2.15
SPGP, 150s 0.75 0.84 0.75 0.25 0.30 0.40 0.55

SOGP, Initial 0.50 6.75 5.43 0.10 0.14 0.30 2.20
SOGP, 150s 0.77 0.83 0.76 0.25 0.32 0.39 0.55

Table 5.2: RMS tracking error with partial knowledge (deg)

Without the use of a-priori knowledge, learning algorithms were typically initialized
with large training data sets obtained through motor babbling [55], [39], [33] in order to
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Figure 5.7: Final Tracking Performance for Joints 2 with Gravity Prior

achieve decent tracking performance after initialization. By incorporating a-priori knowl-
edge of the RBD equation, whether partial or full, it is shown in these results that the
proposed systems are able to perform reasonably well from the start, even without under-
going such an initialization procedure.

Algorithm Computation Time

In order to evaluate the computational efficiency of LWPR, SPGP and SOGP, each al-
gorithm was trained on data sets of varying size (2,4,6,8,10,12 and 14 thousand training
points) obtained from the simulation work in this chapter. Figure 5.8 illustrates the compu-
tation time required to compute a single torque prediction given an input x∗ as a function
of the number of training data points that the algorithm has processed. The results were
obtained on a PC running Windows XP with a CPU clock speed of 2.66 GHz and 4 GB
of RAM. For SOGP and SPGP, the maximum size of the sparse representation set was
limited to 35.

As seen in Figure 5.8, LWPR has the lowest computational cost which remains relatively
constant with an increasing data set size. This is due to the fact that LWPR does not
explicitly store the entire training set, but rather incorporates them into local linear models.
For the sparse GP techniques, SOGP clearly outperforms SPGP. This can be attributed
to the online procedure of SOGP which allows data points to be processed incrementally.
Although SPGP also uses a sparse representation, data is still processed in batches, and
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no provision for incremental updates is provided. Because of this, the computation time
for a single prediction from SPGP increases much more rapidly than SOGP as the number
of training points increases.

Although the simulation results presented in this chapter show that the SPGP controller
marginally outperforms the SOGP controller in terms of tracking performance (see Tables
5.1 and 5.2), the performance gains from SPGP are not significant enough to offset the
higher computational costs which increase significantly as the training data set increases.
Although the simulation platform was able to handle the computational requirements for
SPGP while maintaining near-real time performance, it should be noted that this was
only for 150 seconds of operation (corresponding to 15,000 training points). For long-term
incremental learning, it is expected that the computational requirements of SPGP will
prohibit real-time control. Thus, for the following chapters, SOGP is chosen over SPGP.

2000 4000 6000 8000 10000 12000 14000
0

2

4

6

8

10

12

14

16

Number of training points

C
om

pu
ta

tio
n 

tim
e 

[m
s]

 

 

LWPR
SOGP
SPGP

Figure 5.8: Computation time required for a single prediction
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Chapter 6

Experimental Work

The results presented in Chapters 4 and 5 are all carried out in simulation using MAT-
LAB/Simulink. In order to closely simulate the nonlinear dynamics present in a physical
system, the effects of Coulomb and viscous friction were introduced in simulation. In this
chapter, the results of experimental work on a physical robot, in addition to simulations, are
reported to fully evaluate the performance of the proposed methods. Experimental work
was conducted at the Collaborative Advanced Robotics and Intelligent Systems (CARIS)
Laboratory at the University of British Columbia.

6.1 Experimental Platform

All experimental work was carried out on a CRS A460 robotic manipulator with a custom
designed open-architecture controller [21] developed and fabricated in the UBC CARIS
lab. Use of the CARIS open-architecture controller was necessary to bypass the default
factory PID control architecture, allowing voltage commands to be issued to the DC servo
motors actuating the arm. The open-architecture controller is illustrated in Figure 6.1
and consists of a custom motor amplifier unit and a PC with a processor speed of 2.4GHz
and 2 GB of RAM running Windows XP. The Ardence RTX real-time kernel [1] is used
to allow RTX processes to take priority over Windows processes during CPU scheduling,
thus allowing real-time performance of the control system. Quanser’s Wincon software [2]
allows Simulink-coded controllers to be compiled into C code which can then be executed
on a Wincon client running as an RTX kernel process. The controller sampling time is set
to 1 ms, which is the lowest setting achievable by the Wincon system.
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Figure 6.1: CRS Open-Control Architecture, adapted from [2]

Due to the requirements of the Wincon system, the algorithms written in C/C++ code
(LWPR, SOGP, and RNE) were wrapped in C-coded S-functions and called as Simulink
function blocks. The multi-rate block sampling function of the Simulink engine allowed
the computationally-expensive functions to be executed at a slower sampling rate. For the
LWPR experiments, updates to the learned model are processed at a frequency of 100 Hz,
or at every 10th sample of the global 1ms sample time. These were the maximum update
rates and settings achievable by the controller hardware. Due to the limited availability
of the CRS arm at the CARIS lab, experimental work for the SOGP controller could
not be completed, and simulation results (indicated by SIM ) are presented for the SOGP
controller instead. For these simulations, the same global time step of 1ms was used, the
updates are processed at a frequency of 10 Hz, and hyperparameter updates are completed
at a rate of 1 Hz. The number of basis vectors for SOGP was set to 35.

6.2 Dynamic Parameters

The dynamic parameters for the CRS arm (link mass, location of centre of mass and inertia
matrix values) were obtained from the results presented in [40] which were determined
offline through the procedure of dynamic parameter identification as described briefly in
Chapter 3. The identified parameters were manually checked and corrected to ensure that
they made physical sense. For example, the location of the centre of mass location for link
2 was identified in [40] as being outside the volume of the link itself. Thus, the identified
value was replaced with the approximate location of the volumetric centroid of the link,
as physically measured by the author. These parameters were then used to calculate
the RBD model (2.23) and the gravity vector (2.22) for initialization of LWPR. The motor
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parameters (rotor inertia, damping and torque constant) for the joint motors were obtained
directly from the manufacturer specification sheet.

For the SOGP simulations, the CRS A460 arm was modeled using the kinematic pa-
rameters supplied in the user’s manual. The same dynamic parameters obtained above for
the LWPR experiments are used for the SOGP controller. For the plant model used in the
SOGP simulations, the available dynamic parameters of the CRS arm were perturbed until
the performance of the experimentally implemented FF controller matched that of the sim-
ulated FF controller as closely as possible. This was done so that the results in simulation
would be comparable to the experimental results obtained for the LWPR controller.

6.3 Experiments

The following test cases were carried out for the Feedforward (FF), LWPR, and SOGP
controllers in order to evaluate their ability to deal with uncertainty in the dynamic model:

1. Tracking a figure-8 trajectory by initializing the system through Motor Babbling
(MB), rigid body dynamics (RBD) and gravity loading information

2. Tracking a figure-8 trajectory at different frequencies and varied end-effector masses

The FF and LWPR controllers were tested experimentally on the CRS A460 arm while
the tests for the SOGP controller were carried out in simulation as described above. As
seen in Figure 6.2, a figure-8 trajectory in the horizontal XY plane, covering a length and
width of approximately 0.2m x 0.4m, is used to test the trajectory-following capabilities of
the controllers. Due to the limited processing power of the control PC for the CRS arm,
only the first three degrees of freedom of the manipulator were used - corresponding to
position-only control.

The task space equations for ‘the figure 8’ trajectory are as follows:

xd = 0.1 sin(
2π

Tc
t)− 0.47

yd = 0.2 cos(
4π

Tc
t)

zd = 0.29

(6.1)

where pd = [xd yd zd]
T is the vector of the desired end-effector task space position, and

Tc is the desired duration of one cycle of the figure-8 in seconds. Desired velocity and
acceleration terms are generated through numerical differentiation as in Chapter 4.
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Figure 6.2: Figure-8 trajectory

The simulation work carried out in Chapter 4 assumed that the commands to joint
actuators were issued directly as torques. However, with the open-architecture controller,
motor commands are issued in voltages and not torques. Thus, the LWPR and simu-
lated SOGP controllers were used to learn both the dynamics of the arm (2.23) as well
as the motor dynamics (2.27). The mapping to be learned by LWPR and SOGP is given by:

(q, q̇, q̈d) 7→ vm (6.2)

where vm is the vector of motor voltages for each joint.

6.3.1 Feedforward vs Computed Torque

Both the feedforward (FF) and Computed Torque (CT) controllers presented in Chapter
2 were implemented experimentally to determine which control strategy is the most effec-
tive. For the FF controller, desired joint velocities and accelerations were computed offline
through numerical differentiation of the desired joint angles. For the CT controller, some
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form of state estimation [37], [57] was required to determine the joint velocity and acceler-
ation signals given the joint angles as measured by the encoders. Numerical differentiation
was also used for the CT controller. However, due to the quantization of the joint encoders,
significant amounts of noise were introduced into the differentiated signals. To solve this,
a second-order Butterworth filter was used to smooth out the noise caused by numerical
differentiation. The filter was designed using the Filter design toolbox in MATLAB and
was implemented at 1KHz, which is the smallest allowable sampling time in Wincon. Both
the FF and CT controller were used to track the figure-8 trajectory in Equation 6.1. As
seen in Figure 6.3 and Table 6.1, the FF controller is able to outperform the CT controller.
Part of the reason for this discrepancy in performance is likely due to the use of the But-
terworth filter at 1KHz, which injects a significant delay into the resulting filtered signals
of the desired velocity and acceleration. If the experimental system was able to operate
at a higher frequency, or if sufficient computational resources were available to implement
a non-linear observer [37], the CT controller may have been able to outperform the FF
controller, as the cancelation of the nonlinear dynamics would be more accurate about the
actual, rather than the desired trajectory.

0.45 0.5 0.55 0.6 0.65
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25  

X [m]

 

Y
 [m

]

Ref
CT
FF

Figure 6.3: FF vs CT Tracking Performance
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Joint 1 2 3 Avg

FF 1.75 0.88 1.51 1.38
CT 1.82 1.05 1.78 1.55

Table 6.1: FF vs CT RMS Joint Space Error (deg)

6.3.2 Initialization Technique

The effects of different initialization strategies on LWPR tracking performance are shown
in Figure 6.6. For this experiment, LWPR was initialized either through motor babbling,
or through full or partial knowledge of the RBD equation as outlined in Chapter 5. The
same motor babbling strategy as in Chapter 4 was applied for this experiment, resulting
in roughly 50,000 initial training points from motor babbling. For LWPR, the full 50,000
training points were used for initialization. Initially, the performance of LWPR with motor
babbling initialization is consistently better than both RBD and gravity vector initializa-
tion for all three joints. This is due to the inaccuracy in the dynamic parameters used to
initialize the models, whereas the motor babbling initialization is based on data collected
from the physical system. Initialization with the RBD model consistently outperforms
gravity-only initialization, as expected due to the initial lack of compensation for the iner-
tia, M(q), and Coriolis/centripetal, C(q, q̇), terms in 2.23. However, after repeating the
trajectory for 50 cycles, the performance of all three initialization cases converges.

RMS Error (mm) x y z Avg

RBD Initial 5.21 19.45 0.51 8.39
RBD Final 4.17 14.33 0.35 6.28
Grav Initial 6.55 19.91 0.78 9.08
Grav Final 4.21 15.12 0.37 6.57
MB Initial 4.78 16.54 0.52 7.28
MB Final 4.20 14.25 0.33 6.26

Table 6.2: LWPR Initialization - Task Space Error
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Figure 6.4: LWPR Initialization - Joint Space Per Cycle Average Error
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RMS Error (mm) x y z Avg

RBD Initial 5.17 19.33 0.49 8.33
RBD Final 4.05 11.57 0.31 5.31
Grav Initial 8.54 21.34 1.52 10.47
Grav Final 4.01 12.01 0.32 5.45
MB Initial 4.51 15.50 0.39 6.80
MB Final 4.00 11.78 0.31 5.36

Table 6.3: (SIM ) SOGP Initialization - Task Space Error
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Figure 6.5: (SIM ) SOGP Initialization - Joint Space Per Cycle Average Error
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Although the same RBD model is used for the FF controller and for initializing LWPR,
the FF controller initially outperforms LWPR with RBD initialization. As with the simu-
lation work in Chapter 5, this can be explained by the fact that LWPR is initialized with
linear approximations of the RBD equation and hence, cannot outperform the nonlinear
RBD function in the FF controller. LWPR initialization with motor babbling data gives
the best initial performance, as the motor babbling data is collected from the actual sys-
tem. However, the FF controller with an inaccurate system model still outperforms LWPR
initially. This is due to the local learning nature of LWPR, whereby the model learned
from motor babbling cannot be completely generalized to the necessary regions of state
space required to track the figure-8 trajectory.

The SOGP controller was evaluated in simulation using the same initialization strategies
as with LWPR. For the simulated SOGP controller with motor babbling initialization, it
was found that only 5,000 points were necessary to initially outperform the RBD or gravity
vector initialized cases. This can be seen in Table 6.3 and Figure 6.7 where the root-mean-
squared (RMS) error of each cycle through the trajectory per joint is illustrated. The
performance of the model-based FF controller is also included for comparison. The 5,000
points for SOGP were selected by uniformly sampling every 10th point of the full motor
babbling training set. With SOGP, because the mean function of the Gaussian Process
is equated to the available RBD model, the initial performance of SOGP is equivalent to
the FF controller. Through additional training, the performance of all three initialization
strategies begins to converge and exceed that of the FF controller. For SOGP, the initial
performance of the system trained through motor babbling is significantly better than the
FF controller, as the motor babbling data is obtained from the actual system.

Tables 6.2 and 6.3 give the initial and final tracking error of the end-effector in Cartesian
space. Most notably, the error in the y-direction is much higher than the other directions.
This can be explained by examining the Cartesian equation for the reference trajectory
(6.1) and noting that the frequency of the sinusoid for the y-direction is twice as fast as that
of the x-direction, thus requiring the robot to move up to twice as fast in the y-direction
compared to the x-direction.

For both learning controllers, the eventual improvement of tracking error over the FF
controller illustrates the impact of inaccuracies in the dynamic model, and also highlights
the ability of learning algorithms to account for these inaccuracies. Lastly, it should be
noted that the initial performance of the learning controllers initialized through motor
babbling is heavily dependent upon the trajectory used for motor babbling. Although
the FF controller initially outperforms LWPR with motor babbling, it is expected that if
enough relevant training data is seen by the LWPR through motor babbling, it could also
outperform the FF controller from the start.
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6.3.3 Comparison with PD Control

Figure 6.6 compares the performance of LWPR initialized with the full RBD model and
the performance of a PD controller while tracking a figure-8 trajectory with a period of 8
seconds (Tc = 8). As seen in the ZY graph of the figures, the PD controller performance
is worst in the z-direction, which is expected as the system is not gravity compensated.
Because the LWPR controller is initialized with the full RBD model, its initial performance
in the z-direction is much better than the PD controller, indicating that gravity is being
compensated for. However, when viewed from the XY plane, it is evident that the initial
LWPR performance is not noticeably better than the PD controller. This is due to two
factors which cause poor initial performance. First, the use of inaccurate dynamic param-
eters of the CRS arm in initializing the LWPR system, and second, the use of first-order
approximations of the dynamics. The issue of inaccurately known parameters is compen-
sated for by further training of the system for an additional 50 cycles. This allows the
LWPR system to obtain 40,000 training points to improve the tracking performance.

Figure 6.6: PD vs LWPR with RBD Init. - Task Space

The same test case was applied to SOGP and a PD controller in simulation. As seen in
Figure (6.7), the performance of SOGP initialized with the RBD model results in an initial
performance in the XY plane that is better than the PD controller. Similar to LWPR,
the issue of inaccurately known parameters is compensated for by further training of the
SOGP system for an additional 50 cycles. This allows the simulated SOGP system to
obtain 4,000 training points, thus improving the tracking performance.

69



0.5 0.55 0.6 0.65 0.7
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X [m]

Y
 [m

]

 

 

0.29 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Z [m]

Y
 [m

]

 

 

Ref
SOGP Final
PD
SOGP Initial

Figure 6.7: (SIM ) PD vs SOGP with RBD Init. - Task Space

6.3.4 Unknown Payload

In order to simulate the case of unknown payloads on the end-effector, the learning con-
trollers were initialized with the RBD (2.23) model corresponding to an unloaded end-
effector. Two different masses - 1.1kg and 1.6kg, or equivalently 55% and 80% of the rated
end-effector loading (2kg) were attached to the end-effector and the figure-8 trajectory
was tracked as before using LWPR and the FF controller, also based on a model with
an unloaded end-effector. The same scenario was simulated with the SOGP controller.
Figure 6.8 and Table 6.4 show the effect of the unknown masses on the performance of
the base joint 1 (Figure 6.2) for the LWPR controller. From these results, it is clear that
the end-effector mass does not have a significant effect on the tracking performance for
joint 1, as indicated by the relatively small change in performance of both the FF and
learning controllers. This can be explained by the fact that the additional masses on the
end-effector only change the dynamics of the inertia matrix M(q), whereas the gravity
loading vector, G(q) and Coriolis/centripetal terms C(q, q̇) corresponding to joint 1 are
not significant due to the orientation of joint 1. Furthermore, the additional mass of 1.6kg
is not significant when considering the entire mass of the arm which must be accelerated
by joint 1. A similar trend is observed for the simulated SOGP controller, as shown in
Figure 6.10 and Table 6.5.
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Figure 6.8: LWPR Payload - Joint 1 Per Cycle Average Error

RMS Error (mm) x y z Avg

No Load Initial 5.12 19.33 0.49 8.31
No Load Final 4.01 13.21 0.34 5.85

55% Initial 5.29 19.47 0.89 8.55
55% Final 4.08 13.74 0.44 6.08
80% Initial 5.62 20.05 0.99 8.89
80% Final 4.2 14.06 0.45 6.23

Table 6.4: LWPR End-Effector Loading - Task Space Error
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Figure 6.9: LWPR Payload - Joints 2,3 Per Cycle Average Error

RMS Error (mm) x y z Avg

No Load Initial 5.31 19.42 0.53 8.42
No Load Final 3.65 11.03 0.32 5.00

55% Initial 5.19 18.47 0.89 8.55
55% Final 3.81 11.14 0.34 5.09
80% Initial 5.95 21.05 1.02 9.34
80% Final 3.61 10.95 0.30 4.95

Table 6.5: (SIM ) SOGP End-Effector Loading - Task Space Error
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Figure 6.10: (SIM ) SOGP Payload - Per Cycle Average Error

Contrary to joint 1, joint 2 and particularly joint 3 are more significantly impacted
by the addition of end-effector masses, as seen in Figure 6.9 and Tables 6.4 and 6.5. For
joint 2, the initial performance of the learning controllers is noticeably impacted by the
additional masses at the end-effector. However, after 50 cycles of training, the error has
converged close to that of the no-load scenario. In the case of joint 3, whose dynamic
parameters are effectively altered through the additional mass, the tracking performance
is most affected out of all three joints. Although LWPR quickly outperforms FF through
additional training, the convergence of the tracking error when compared to the no-load
case is much slower, and even after 50 cycles of training, there still exists a significant
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discrepancy in tracking performance. However, the per cycle error of both the 55% and
80% loading cases appear to be decreasing steadily even at 50 cycles, whereas the no-load
scenario seems to have converged to a steady-state. Thus, this discrepancy in performance
can likely be solved through further training. Similar behaviour for joints 1,2 and 3 is
observed in the simulation results for SOGP, as indicated in Figure 6.10 and Table 6.5.

In order to further test the ability of the learning controllers to cope with uncertainty
due to changing payloads, the payload experiment was repeated for LWPR using the model
learned from the 1.6kg load case, but with the mass removed from the end-effector. The
same test was performed in simulation for the SOGP controller. As seen in Figure 6.11
the initial performance of the LWPR controller is no longer as good as FF control, as the
model corresponding to an end-effector mass of 1.6kg was learned previously. However, in
this case, the convergence rate of LWPR is much better than the first payload experiment.
This is because LWPR automatically places a higher weight on the most recently observed
data while updating its individual receptive fields. Furthermore, because learning with
LWPR is highly localized to a specific region of state space, there is a decreased risk of
negative inference when observing data that is contrary to what has already been learned.
For the case of simulated SOGP, convergence of the tracking error takes just as long as
the original case where the no-load model was used to learn the model for the 1.6kg load,
as seen in Figure 6.12. This is due to the global learning over the input space, where
a change in the system dynamics reflected in the observed data may conflict with the
previously constructed model. Thus, SOGP must re-learn the dynamics by re-optimizing
both the location of the basis vectors as well as the hyperparameters (3.11) of the covariance
function.
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Figure 6.11: LWPR Payload Change - Joint 3 Per Cycle Average Error
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Figure 6.12: (SIM ) SOGP Payload Change - Joint 3 Per Cycle Average Error

6.3.5 Trajectory Speed

The final experiment involves increasing the speed of the figure-8 trajectory by decreasing
the period, Tc from 8 seconds to 5 seconds. The learned models for LWPR with RBD and
gravity only initialization from the no-load experiment were used in tracking the fast figure-
8. The same experiment was repeated in simulation for the case of the SOGP controller.
The results are shown in Figure 6.13 and Table 6.6. The performance of LWPR with gravity
initialization is consistently worse than that of the full RBD initialization, even though the
system was previously trained and had achieved performance similar to the case of RBD
initialization on the slower trajectory. This can be explained by the fact that during
initialization, only the gravity loading vector was used, neglecting the Coriolis/centripetal
C(q, q̇) term. When the system was trained online on the slow trajectory, the effects of
the Coriolis/centripetal term was learned, however it was localized about the specific q, q̇
state associated with the slow trajectory. When the same system was asked to track the
fast trajectory, q̇ was increased, and the dynamic behaviour learned for the compensation
of the Coriolis/centripetal terms on a smaller q̇ was no longer covered by the same local
model. Hence, LWPR with gravity initialization required more training to improve its
performance again.
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Figure 6.13: LWPR Fast Trajectory - Joint Space Per Cycle Average Error

For LWPR with RBD initialization, the dynamic effect of the Coriolis/centripetal term
is already compensated for, but this is done with an inaccurate dynamic model. Similarly
to the gravity initialized case, the RBD initialized LWPR controller had already compen-
sated for inaccurate dynamic parameters, but this learning was localized around the slow
trajectory, and hence the system had to retrain to compensate for inaccurate dynamic
parameters. For the simulated SOGP controller, similar trends to that of the LWPR con-
troller are observed, as indicated in Figure 6.15 and Table 6.15, and the same reasoning
can be applied to explain these trends.
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RMS Error (mm) x y z Avg

RBD Initial 6.72 20.05 0.65 9.14
RBD Final 4.12 18.45 0.34 7.63
Grav Initial 8.11 29.95 0.89 12.98
Grav Final 4.23 19.06 0.44 7.91

Table 6.6: LWPR Fast Trajectory - Task Space Error
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Figure 6.14: (SIM ) SOGP Fast Trajectory - Joints 1,2 Per Cycle Average Error

Comparing the FF and final LWPR and SOGP performance on the fast trajectory
in Tables 6.6 and 6.7 to the same controllers on the slower trajectory in Tables 6.2 and
6.3, it is clear that there is a significant degradation in tracking performance when the fast
trajectory is tracked, even though the dynamics of the arm are being compensated for by the
controllers. This discrepancy in error between the fast and the slow trajectories is primarily
seen in the y-direction, which suggests that the desired velocity of the trajectory in the
y-direction exceeds that of the physical velocity limits of the CRS arm. This reasoning is
further strengthened by the fact that the discrepancy in the performance between fast and
slow trajectories is not as large when considering the simulated SOGP case compared to
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the experimental results of LWPR, as no limitations on the performance of the arm were
imposed in simulation.
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Figure 6.15: (SIM ) SOGP Fast Trajectory - Joint 3 Per Cycle Average Error

RMS Error (mm) x y z Avg

RBD Initial 6.61 19.25 0.52 8.79
RBD Final 4.12 12.94 0.40 5.82
Grav Initial 7.83 28.17 0.82 12.27
Grav Final 4.20 13.06 0.41 5.89

Table 6.7: (SIM ) SOGP Fast Trajectory - Task Space Error
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Chapter 7

Conclusions and Future Work

This thesis analyzed the performance of model-based controllers for multi-DOF manipula-
tors, and presented strategies for control and initialization when the model parameters and
structure were not fully known. A comparison between a fixed model-based control strat-
egy, an adaptive controller and the LWPR learning controller was presented to characterize
the performance of the various controllers in the presence of modeling uncertainty and er-
ror. Simulations were carried out in order to evaluate the position and orientation tracking
performance of each controller under varied end effector loading, trajectory velocities and
inaccuracies in the known dynamic parameters. Both the adaptive controller and LWPR
controller were shown to have comparable performance in the presence of parametric uncer-
tainty. However, the LWPR controller was unable to generalize well outside of the regions
in which it had been trained. To address the issue of poor generalization performance, two
new methods which learn the inverse dynamics function in an online, incremental manner
while incorporating a-priori knowledge of the system were presented. First, the method of
LWPR was initialized with first-order approximations of the available rigid body dynamics
(RBD) equation. Second, a-priori knowledge was included in the GPR framework and its
variants by biasing the mean function towards the RBD equations. These approaches were
firstly validated in simulation using MATLAB/Simulink. Experimental validation for a
fixed model-based controller and the LWPR algorithm was then conducted on the CRS
A460 robot arm at the University of British Columbia (UBC), supplemented by simulation
work for the SOGP controller. Details of the findings of this thesis are presented below.
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7.1 Summary of Findings

The performance of the standard model-based feedforward (FF) control scheme was found
to be dependent upon accurate knowledge of the dynamic parameters of the system. A
slight perturbation from the actual inertia and friction parameters of the system caused
a decrease in performance, while the learning controllers and the simulated adaptive con-
troller were able to compensate for the parameter errors, thus yielding better tracking
performance. It was shown that when the trajectory is persistently exciting (PE) and the
structure of the dynamics is well known, the ACT controller can outperform the LWPR
learning controller. However, in practice, not all trajectories are PE and the structure of
the dynamics may not be known well. Hence, it is expected that when dealing with a
physical robot, the simplified models of friction used in this paper will further degrade the
performance of the ACT controller while the LWPR will be able to learn the additional
nonlinearities present in the physical robot.

Although the LWPR controller was able to handle parametric uncertainty without any
a-priori knowledge of the system, its greatest limitation is its local learning, which dictates
that successful performance requires adequate initial training of the system. It was found
that significant perturbations to the system from unmodeled dynamics or changes in the
trajectory speed were able to push the system to operate far enough outside of its trained
region. Initializing the model through motor babbling was shown to partially mitigate this
issue, but the larger the workspace of the robot, the larger the training data set must be.

Two incremental, online learning methods were proposed for approximating the inverse
dynamics equation while incorporating full or partial knowledge of the RBD equation.
First, prior knowledge was incorporated into the LWPR framework by initializing the local
models with a first-order approximation of the RBD equation. Second, prior knowledge
was incorporated into the SOGP framework by setting the mean function equal to the
RBD equation. The incorporation of prior knowledge into these two algorithms improved
their generalization performance, as the models are able to outperform independent joint
PD control without having seen any relevant training data beforehand.

Online learning with SOGP was achieved by spreading out the optimization phase of
the algorithm over several timesteps, allowing the system to train itself at a rate of 10
Hz. Although the greater computational efficiency of LWPR allows updates to occur at a
rate of 100 Hz, after a short period of training, the performance of LWPR and SOGP was
nearly identical in simulation, even though LWPR had accumulated more training data.
This is due to the global nature of GPR techniques, which have been found to yield better
accuracy compared to the local learning of LWPR under the same conditions [33]. Both
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approaches are able to compensate for the nonlinear effects of friction, as well as the initial
inaccuracy in the known inertial parameters.

Experimental validation of the FF and LWPR controllers was carried out on the CRS
A460 robot arm, and due to limited access to the equipment, further simulation work was
presented for the case of SOGP. Both LWPR and SOGP were allowed to learn the motor
dynamics in addition to the RBD dynamics of the arm. For the LWPR experiments, the
initial performance with motor babbling was consistently better than initialization with
the RBD equation or the gravity loading vector, due to the inaccurate knowledge of the
model parameters. However, given sufficient training time, the performance of all three
initialization methods converged to the same value, which was significantly better than
the FF controller, illustrating the advantage of learning control in dealing with parameter
uncertainty. LWPR was also shown to be capable of handling parametric uncertainty
arising from unknown end-effector loads and an increased trajectory velocity. The same
test cases were carried out in simulation for the SOGP controller, and similar trends were
found. For both cases, incorporation of a-priori knowledge allowed the system to perform
well without having seen any relevant training data beforehand. The simulation results
suggest that the convergence of tracking error with SOGP is faster than LWPR due to
the global learning nature of GPR as opposed to the highly localized learning of LWPR.
However, this must be verified experimentally.

7.2 Future Work

The directions for future work are primarily focused in two areas. First, further valida-
tion of the proposed algorithms presented in this thesis is required through more extensive
simulation and experimental work. Second, investigation of other supervised learning al-
gorithms is recommended.

7.2.1 Simulations

More extensive test cases are required to draw stronger conclusions about the ability of the
learning controllers to deal with various trajectories and model uncertainty. For example,
to test the effect of parameter uncertaintly, random samples from the space of parameters
in a predefined ‘error set’ could be taken and the resulting mean tracking error and variance
could be reported. To generalize the trajectory-following capabilities, random samples of
trajectories could be taken and the results could be compared through a Monte Carlo
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simulation. In addition to testing the controllers under various scenarios, the long-term
behaviour of the learning algorithms must also be verified by allowing the system to train
for longer periods of time.

7.2.2 Experiments

More experimental work is required to fully evaluate the proposed learning control methods.
Specifically, the SOGP algorithm must be tested experimentally so that a direct comparison
to LWPR can be made. The simulation work for SOGP in Chapters 5 and 6 suggests that
SOGP will yield tracking results that are very similar to LWPR, but the rate of convergence
of the error will be much faster for SOGP. In addition to this, it would be beneficial to
implement the ACT controller presented in Chapter 4 experimentally, as the performance
of this controller was found in simulation to be very sensitive to the accuracy of the model
structure. It is expected that a large discrepancy between the simple model of friction used
in simulation and the actual effects of friction in real life would cause degradation in the
performance of the ACT controller. However, this must also be verified experimentally.

7.2.3 Other Supervised Learning Algorithms

Aside from LWPR and GPR, regression with Support Vector Machines (SVM) has been
of recent interest to the robotics community, and some work has already been carried out
using SVM to learn inverse dynamics [35]. Further work in exploring the advantages and
disadvantages of this method as well as methods of incorporating a-priori knowledge into
the SVM framework would be beneficial.
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