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Abstract

This thesis describes new techniques for Multiple-Criteria Decision Anal-
ysis (MCDA) under uncertainty with application to environmental prob-
lems. Decision support systems, such as the SEAL (Stochastic Environmen-
tal Analysis), REAL (Robust Environmental Analysis), and MEAL (Marginal
Distributions for Environmental Analysis) systems, are developed to help
decision makers improve their social, economic, and environmental decision
making under uncertainty.

A major contribution of this thesis is the investigation of uncertainty ap-
proaches, including interval judgments (Saaty and Vargas, 1987), info-gap
models (Ben-Haim, 1996), stochastic differential equations (Cox and Miller,
1965), and Bayesian techniques (Ludwig, 1996) in an MCDA context. For
example, the proposed MCDA info-gap model approach is completely non-
probabilistic; it captures a decision maker’s preferences and attitude toward
risk without resorting to “non-intuitive probabilistic concepts of gambling
and indifference between lotteries” (Barzilai, 1997) and is the first pub-
lished info-gap model MCDA technique in the literature. Convex
modeling is particularly valuable since utility functions are not required (only
value functions are necessary) and robust alternatives can be identified.

Significantly, the stochastic water quality models used in the the-
sis investigates the use of Stratonovich calculus to model the classic
interactions among biochemical oxygen demand (BOD), dissolved
oxygen (DO), and other environmental variables. In addition, the
Streeter—Phelps equations are generalized to more realistically model hy-
drologic processes. Finally, a practical colored noise approximation is
put forth and used to replace the abstract mathematical concept of ‘white’
(theoretical) noise. Replacing white noise with coloured noise is of great im-
portance in water quality modeling since in almost all cases the white
noise assumption is not justified and is used only for mathematical
convenience.

Finally, the SEAL decision support system is applied to a wide range of



stochastic environmental problems, from water quality modeling to species
extinction. Here the ‘First Passage Time’ problem is considered in
detail from an environmental perspective. In the context of fisheries
management, it is shown how regulating the ‘fishing effort’ can significantly
reduce the risk of stock extinction.

Finally, it is described how the management of renewable resources, where
it has been practiced at all, relies heavily on techniques from optimal control
theory, cost-benefit analysis, and maximum sustainable yield (MSY). These
approaches are critically reviewed and it is shown that formally modeling
both the risk of extinction and the ‘preservation value’ of a resource
can improve the sustainable management of renewable resources.
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Chapter 1

Introduction

1.1 TUncertainty and Post-Modernism

For thousands of years events on earth were viewed as inherently uncontrol-
lable and uncertain, governed by higher powers and forces. In the Middle
Ages, spirits, miracles, and demons were held responsible for the unpre-
dictability and disorder of life. The Greeks believed that fickle gods influ-
enced their life course and destiny. More than twenty-five hundred years
ago, at the very start of Western rationality, Epicurus and the ancient Greek
‘physicists’ proposed that the chance deviation of atoms (from their assumed
parallel paths) produces the novelty associated with combinations of atoms,
giving rise to all natural things: to this day the Epicureanists maintain that
the world is a fortuitous combination of atoms!.

In this context, the Newtonian revolution and the modern scientific world-
view — with its emphasis on predictability, control, and regularity — can be
viewed as a brief digression from the emphasis on chance and the supernatu-

1As written by Lucretius, the famous Roman poet and philsopher around 50 BC: “at
uncertain times and places, the eternal, universal fall of atoms is disturbed by a very slight
deviation: the ‘clinamen’ (Carus, 1947)”. This spontaneous, unpredictable fluctuation in
the direction of atoms forms the basis of Lucretian physics and attempts to explain events
such as laminar flow.
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ral that dominated previous millennia of Western thought. But in this brief
window of certitude — the modern paradigm from Newton (1642-1727) until
the late 20th century — science has become dominated by the philosophy of
determinism: given a set of known initial conditions, the future can be com-
pletely predicted. The French scientist Pierre Simon Laplace (1749-1827),
a leading expounder of determinism, proposed a set of scientific laws, “Ce-
lestial Mechanics”, to permit the exact calculation of how the universe will
unfold. Laplace even predicted that scientific laws would be found to explain
human behaviour, similar to those governing the motion of planets (Hawk-
ing, 1988). Widespread acceptance of determinism coincided with the rise of
a factory civilization and the Industrial Age: the world was perceived as a
giant assembly line, in which all components of the universe came together
like cogs in a cosmic machine, whose clockwork operations were subject to
universal deterministic laws.

This fascination with determinism is perhaps the defining characteristic
of Scientific Revolution: it can be found everywhere in Western scientific
thought from the philosophy of Kant (‘universal causal determinism’) to the
demon imagined by Laplace (capable of deducing the position and velocity
of every mass in the universe, and inferring its course, both toward the past
and future). Even the basic equation of quantum mechanics, Schrédinger’s
equation, is deterministic and time reversible. And many physicists argue
that the ‘Book of Physics’ will soon be closed: it is only a matter of time
until our knowledge of elementary particle physics and unified field theory
becomes ‘complete’. Hawking (1988) argues that we are close to this moment,
the time when humanity shall “read the mind of God”.

The first serious challenge to the dominance of determinism came from
Karl Heisenberg’s Uncertainty Principle (1927): it is not possible to know
both the position and velocity of an object with absolute certainty. By the
early twentieth century, Einstein had shown that our machine-universe was
observer dependent. But it was still a deterministic machine: after all, God
did not play dice.
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Scientists have recently discovered that many physical systems are es-
sentially deterministic, but extremely sensitive to initial conditions. More-
over, living and social systems are now recognized to be thermodynamically
“open systems” that exhibit discontinuous change and self-organization (Kay,
1984). Increasingly, scholars are defining a new science based on novelty,
choice, and spontaneous action. For example, Prigogine and Stengers (1997)
argue that the we have reached “The End of Certainty”:

A new formulation of the laws of nature is required that is no
longer based on certitudes, but rather possibilities. In accepting
that the future is not determined, we come to the end of certainty.

What is now emerging is an “intermediate” description of nature that lies
somewhere between the two alienating images of a deterministic world and
pure chance. In this “new dialogue with nature” (Prigogine and Stengers,
1984), chance and necessity intertwine inextricably. For example, Prigogine
and Stengers (1997) discuss how chance plays its role near the point of bifur-
cation after which a deterministic period ensues until the next bifurcation.

1.2 Uncertainty and Environmental Multiple

Criteria Decision Analysis

Operational research (OR) consists of some general methodologies and many
specific techniques for studying decision making problems (Hipel, 1992).
Throughout World War II, the British employed OR. in many of their military
activities (Blackett, 1962). Until recently, OR focused on models which pos-
tulate the existence of a unique single-criterion function. However, practical
decision situations are multidimensional and involve a wide range of criteria
from economic considerations to qualitative notions of comfort, aesthetics,
and sustainability (Bouyssou, 1993). The field of Multiple Criteria Decision
Analysis (MCDA) is now widely used to solve environmental problems with
multiple, and usually conflicting, objectives.
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It appears that the spirit of MCDA was captured by decision makers
more than 4,500 years ago in the Mesopotamian cities of Lagash and Umma
to select among water resources alternatives (McDonald and Kay, 1988)2.
Sustainable development is the epitome of MCDA since environmental prob-
lems are comprised of many interacting variables, conflicting objectives, and
competing alternatives: explicitly modeling socio-cultural dimensions (Inter-
national Union for Conservation of Nature and Natural Resources, 1980),
biophysical sustainability (Munasinghe and Shearer, 1995), and the need for
“lasting and secure livelihoods” (Barbier, 1987) will help to minimize resource
depletion, cultural disruption, and social instability.

MCDA consists of a set of tools to help in the analysis of a decision
problem by systematically compearing, selecting, or ranking a set of alterna-
tives according to two or more criteria. The excitement generated by the
first MCDA conference held at the University of South Carolina in 1973 con-
tributed to the early growth of MCDA (Ignizio, 1983). Other reasons for the
popularity of multiple criteria approaches in the 1970s include:

e dissatisfaction with conventional “single criterion” quantitative meth-
ods;

e recognition that multiple criteria approaches provide not only numbers
but also an improved understanding of the decision problem; and

e the existence of software and algorithms for solving large scale multiple
criteria problems.

In particular, this thesis addresses the difficult problem of environmen-
tal MCDA under uncertainty. For example, the evaluation of an alternative
(“Rezone lands from Protected to Urban”) on a given attribute (“Health
of deer population”) may be an uncertain quantity. With the exception

2The formal development of MCDA dates back to the late 19th century, when the
concept of equilibrium in consumer economics was introduced by Edgeworth and Pareto
(Stadler, 1988).
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of Multi-Attribute Utility Theory (Keeney and Raiffa, 1976), commonly re-
ferred to as MAUT, there has been little formal treatment of uncertain out-
comes in MCDA. However, the use of MAUT is restricted to problems involv-
ing prcbabilistic choice, in which case a cardinal von Neumann-Morgenstern
utility function applies (von Neumann and Morgenstern, 1947; Luce and
Raiffa, 1957).

1.3 Environmental Mental Models

The central problem in conservation ecology is that our expansive species of
primate, Homo sapiens (so called “man the wise”), now enjoys a remarkable,
although possibly temporary, dominance of its host ecosystem because of un-
precedented neurological development. Christensen (1997) points out that
resource problems are more “human problems” than environmental prob-
lems®. Over the past four decades the scope and scale of environmental
problems has expanded considerably, from local pollution and resource de-
pletion issues to regional and global problems including soil erosion, climate
change, and ozone depletion (Havas et al., 1984; Prato, 1999). In light of the
novelty, urgency, and ccmplexity surrounding the environmental problems of
modernity, decision makers are forced to learn more about their ecological
worldviews and beliefs.

Consider the issue of global climate change. While scientists have de-
veloped complex computer models of the earth’s atmosphere, there are sig-
nificant uncertainties involved in predicting temperature, precipitation, and
other variables. Estimates vary widely among the three to four well-known
Global Climate Models (GCMs). It is uncertain how issues as diverse as
energy use, food production, forest management, and transportation poli-
cies affect global warming. Meteorologists and other scientists may have the

3What we now call ‘environmental problems’ are by no means new: they probably
contributed more to the collapse of earlier civilizations than did the typically cited military
fortunes (Cronon, 1983; Weiskel, 1989).
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much-awaited answer to these questions by 2050 (Karl and Trenberth, 1999);
until then, whether humanity entertains a significant risk by continuing to
release greenhouse gases into the atmosphere on a large scale (several billion
tons of carbon per year) depends on one’s “view of the world” or mental
model (Weltanschauung).

These psychological models “predetermine how we perceive reality” (Mackay,
1994; Abel et al., 1998). They are constructed from past experiences (Abel,
1999) and help to simplify, structure, and ‘make sense’ of the deluge of in-
formation decision makers receive (Craik, 1952; Kelly, 1955; Johnson-Laird,
1983). Many authors have categorized these mental models: Harvey (1966)
considers epistemological types; Maruyama (1980) explores various “mind-
scapes” or “causal metatypes”; Timmerman (1986) considers “myths and
paradigms”; and Holling (1995) describes prevailing environmental “belief
systems”. Mental models are the mechanisms through which we interpret
reality and hence it is they, not reality, that guide our behaviour. Accord-
ingly, mental models hold supreme significance in political, economic, and
ecological decision making.

Information that confirms our existing mental models is readily accepted,
while information contradicting existing constructs is commonly ignored, re-
interpreted, or even changed to suit the model better. Although less common,
sometimes humans modify their mental models in order to accommodate new
experiences and conflicting information. When mental models do change
“they tend to do so rapidly, because the psychological re-structuring permits
new kinds of information to enter” (Abel, 1999). When mental models change
across an entire scientific discipline it is a “paradigm shift” (Kuhn, 1962;
Young, 1991). Extending Kuhn's concept, one can consider mental models
across an entire culture, or “cultural paradigms” (Kelly, 1955; Abel, 1999).

Often, mental models yield completely opposite conclusions, even among
experts using the same data. For example, rangeland scientists disagree over
whether rangelands are intrinsically stable (Stoddart et al., 1975), unstable
(Ellis et al., 1993), fragile and extensively degraded (Dregne et al., 1991),
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highly resilient (Scholes and Walker, 1993) or all of these, depending on rain-
fall variability (Coppock, 1993). An original categorization of human mental
models is developed in Fig 1.1 to illustrate four mental models that have
driven political debate, scientific research, and public concern about envi-
ronmental issues: the Nature Constant, Nature Ephemeral, Nature Random,
and Nature Resilient perspectives. For example, the ‘Nature Resilient’ men-
tal model falls under the subdivision of models which incorporate ‘biocentric
ethics’ and emphasize ‘monitoring and adaptation’. Notice that human ethics
can be either anthropocentric or biocentric.

Ethics is an important part of ‘mental models’ (Abel, 1999) since society
must decide which system components are valued and should be preserved.
Anthropocentric values tend to emphasize the use of natural resources for
economic purposes and the well-being of humans; whereas, biocentric values
deal with the intrinsic, non-utilitarian values of natural resources. The debate
between John Muir and Gifford Pinchot serves to highlight this distinction:
Pinchot (an early ‘Conservationist/Utilist’) argued that resources exist in
part for human consumption and ecological resources should be managed
to “reap maximum potential benefit for human life” (Lister, 1997). On the
other hand, Muir, an ‘Inherentist/Preservationist’, emphasized the intrinsic
value of living systems.

The anthropocentrism which separates humans from nature is quite spe-
cific to the Western world. In China and Japan, for example, nature means
“what is by itself”. Needham (1969) speaks of the irony with which the
Chinese greeted the Jesuits’ announcement of the triumphs of modern sci-
ence. For them, the idea of ‘managing’ nature seemed a wonderful example of
anthropocentric foolishness. According to Chinese tradition, nature is spon-
taneous harmony: “What can be controlled is never completely real; what is
real can never be completely controlled” (Nabokov, 1974).

Managers and scientists in public policy hold competing perspectives
on how organizations should respond to low probability, high consequence
events, such as earthquakes, tornadoes, and hurricanes (Hart et al., 1993;
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Sutphen and Bott, 1990). A tension exists between processes of command
and control (Perrow, 1984; Sagan, 1993) and processes of innovation and
discovery (Cohen and Levinthal, 1990). Both management approaches are
illustrated in Fig 1.1. Theories of risk reduction through redundancy (Lan-
dau, 1991; Simon, 1969) (Holling, 1973) have been rejected in practice as too
costly for low probability events, at least in certain situations (Rossi et al.,
1982).

] . Ethics and Values .
Biocentric Anthropocentric
_ Nature Resilient Nature Random
g
" /‘““\ﬂ
= / °
= 4
g =
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Figure 1.1: Schema of four human perceptions of natural systems (adapted
from Holling (1995), Regier (1993), and Scheffer et al. (1993).

Note that each worldview in Fig 1.1 makes use of different socio-economic
and ecological indicators — and is the result of different historical and cul-
tural influences. The remainder of the introduction describes how the chap-
ters of this thesis are organized according to Fig 1.1. To understand these
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mental models better, it may be helpful to picture nature as a ball on a ‘dy-
namical landscape’. Depending on the topography of the landscape, human
activities will slightly oscillate the ball, or permanently dislodge it into the
domain of another attractor. Here, the notion of ecological stability is cru-
cial: do systems tend to a single unique stable state from all initial conditions
and disturbances? Or do large perturbations carry these systems into a new
region of state space. In the former case, historical accidents are unimpor-
tant; in the latter, chance events can be of “overriding significance” (May,
1977).

1.3.1 The Nature Constant View

A unique combination of events — the scientific-technological revolution,
European domination of newly discovered lands, and seventeenth century
laissez-faire — gave rise to the view that nature provides an endless supply
of ecological resources for humans. The term ‘frontier economics’ was coined
by Kenneth J. Boulding to describe this approach which prevailed in most
countries until at least the late 1960s (Boulding, 1966): even if ecological
limits are reached, they can be overcome by product substitution and other
technological innovations. Examples include the ‘developmental’ paradigm
that has dominated rangeland management (Walker, 1994). In an influential
paper, Arrow et al. (1995) argue that technological optimism and cornucopian
beliefs continue to dominate economic policy since national and international
economic agreements “usually ignore the environment”. In areas where the
environment is beginning to impinge on economic policy, such as the General
Agreement on Tariffs and Trade (GATT) and the North American Free Trade
Agreement (NAFTA), it remains a “tangential concern”.

The Nature Constant perspective focuses on global stability and the lin-
ear response of ecological systems to human disturbances. This concept is
well represented by the “ecosystem linearization” models of Patten (1975)
in which interactions between components are assumed to be linear. Pro-
ponents of the Nature Constant view point out that as per capita income
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goes up, there is increasing environmental degradation up to a point, after
which environmental quality ostensibly improves (Shafik and Bandyopadhay,
1992; Beckerman, 1992). This “inverted-U” relationship (Simon and Kahn,
1984) is provided as evidence that economic growth will lead to a healthier

environment?.

1.3.2 The Nature Ephemeral View

The Nature Ephemeral view argues that the environment cannot safely tol-
erate human activities (fundamental instability is the rule): survival is only
deemed possible by applying safety factors (avoiding large scale irreversible
damage); ensuring biological diversity (in structure and over space); cur-
tailing human population growth (preserving future options and ecological
possibilities); and abandoning technological innovation. Accordingly, decen-
tralized governance with fine-scaled local autonomy is necessary. The Earth’s
resource base, it is argued, cannot support increased economic growth: dra-
conian legislation is necessary to replace existing patterns of consumption
and production with more environmentally sustainable ones.

In this worldview, all environmental phenomena (species, landscapes,
etc. ) have intrinsic value, independent of humans. As declared by Chief
Seattle during the Treaty of Walla Walla negotiations: “every part of the
earth is sacred.” It follows that every organism has a right to exist and
should be preserved. Early advocates of this “inherentist, preservationist”
ethic include John Muir, a nineteenth century naturalist who successfully
campaigned for forest preservation in the United States.

Ludwig et al. (1993) promote the Nature Ephemeral perspective in a
provocative article on conservation policy: they argue that despite claims of
sustainable environmental management, ecological resources are “inevitably
overexploited, often to the point of collapse or extinction.” At a minimum,

40n closer analysis, this “inverted-U” relationship may be limited to a select set of
pollutants, with localized effects and short-term costs such as basic sanitation (fecal col-
iforms), sulfur, and particulates (Arrow et al., 1995).
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the Nature Ephemeral perspective is a refreshing antidote to the anthro-
pocentric, cornucopian perspective. Tropical rain forests are often held to fit
this Ephemeral description (Gomez-Pompa et al., 1972). Perhaps the Nature
Ephemeral perspective is the most accurate one: economic pressures are a
reflection of human desires, and both human population growth and the per
capita consumption of resources is increasing in an unsustainable fashion.
The result of human greed, as we have seen too often, is the misuse, and
subsequent destruction of resources.

In addition, even well meaning scientists often cannot detect initial signs
of resource overexploitation until ecological damage is severe. Worse still,
consensus among scientists is seldom achieved, even after the total collapse of
a resource: humans seem unwilling to take prudent environmental measures,
even when there is a good scientific understanding that certain practices are
ultimately destructive.

An excellent example is the use of irrigation in arid regions. It is well
known that in ancient Mesopotamia the once highly productive wheat crop
had to be replaced by more salt-resistant plants. The increased soil salt was
a result of irrigation (Vreede, 1977). While many scientists warned of similar
consequences in California due to large scale planned irrigation, pleas from
local biologists, some as early as 1899 (Hilgard, 1899) fell on deaf ears (Gard,
1988). Thus, 3,000 years of experience and sound scientific knowledge may
not be sufficient to overcome shortsightedness and greed.

1.3.3 The Nature Resilient View

This view is frequently described as a synthesis of the Nature Constant and
Ephemeral extremes: the environment is forgiving of most shocks, but large
perturbations can knock variables into new regions of the landscape. In this
view, the response of a living system to stress will be largely linear until a
critical threshold is crossed, at which point a radical change (called a discon-
tinuity or catastrophe) occurs (Thom, 1969; Kay, 1991). Here, severe envi-
ronmental conditions (for example pest outbreaks, fires, and windstorms) are
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used to test the survivability of system components or eliminate weak ones.
In the Nature Resilient view, human culture is seen as embedded in nature,
dependent on it, and capable to harm it (Regier, 1993). By emphasizing the
resilience of systems (Gunderson et al., 1997), insights from the Nature Re-
silient view may help societies to overcome pathological behaviour including
institutional rigidity, social dependencies, political hegemony, and ecological
degradation.

1.3.4 The Nature Random View

Many environmental phenomena are highly variable. For example, in the
savannas of Southern and East Africa, rainfall can vary from more than 750
mm per annum in wet years to nil at the driest extremes. To the extent
that humans have made themselves dependent on non-extreme conditions
(or have not prepared for these occurrences) such events can cause large
scale destruction and even death.

None of these competing worldviews is correct to the exclusion of others.
But there is merit in identifying different approaches to understanding, regu-
lating, and managing natural systems. Since these four views have elements
of truth within them, intelligent people have mobilized compelling examples
to convincingly support these various views of the world.

1.4 Thesis Organization and Environmental
Mental Models

Fig 1.1 is used to establish a meta-model for this thesis. Specifically, each
MCDA technique described in this thesis can be considered in the context
of the environmental worldviews of Fig 1.1. A more detailed integration of
environmental mental models and MCDA topics is illustrated in Fig 1.2. For
example, the discussion of deterministic MCDA is consistent with the Nature
Constant (control Nature) perspective while info-gap models are consistent
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with the Nature Resilient perspective. Note that issues related to species
extinction are associated with the the Nature Ephemeral view.

In addition Fig 1.2 clearly shows the decision support programs associated
with each MCDA technique. Computer programs developed by the author
end in the acronym “EAL” because they are intended to facilitate environ-
mental (E) analysis (A) for ‘lokahi’ (L), the Hawaiian word for sustainability
(L). For example, the SEAL model facilitates stochastic environmental anal-
ysis; the REAL model identifies robust policy alternatives in the context of
info-gap models; and the MEAL model is an extremely useful Gibbs sampler
Monte-Carlo Markov-chain (Gelfand and Smith, 1990; Smith and Roberts,
1993) approach for use in Bayesian inferencing. Given a joint posterior prob-
ability density function, the MEAL decision support system can ascertain
marginal probability density functions.

Note that Fig 1.2 provides a framework for the thesis by showing:

e The type of MCDA approach most suitable for each worldveiw;

e An explanation of the computer programs developed for the various
MCDA techniques; and

e Each MCDA approach is illustrated using a case study from the field
of water resources managements.

In this way, Fig 1.2 helps to integrate and organize the thesis.

1.4.1 Optimal Control Theory: Nature Constant

Decision makers holding the Nature Constant view believe that Nature moves
fast enough to be detected but slow enough to be controlled and managed.

5The use of multiple-criteria analysis for water resources planning is well established
in the United States where it is required by law (Haimes and Hall, 1974; Prato, 1999).
Relevant legislation includes the Clean Water Act (Adler et al., 1993) and the National
Water Agenda for the 21st Century (Water Environment Foundation, 1992).
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Figure 1.2: Schema of four human perceptions of natural systems (adapted
from Holling (1995), Regier (1993), and Scheffer et al. (1993).

Much of Chapter 2) is consistent with the Nature Constant per-
spective because it assumes that multiple criteria decision making
occurs under certainty (i.e. the performance profile of each alternative
can be evaluated deterministically). In the Nature Constant perspective,
the environment is perceived as a set of resources valued according to their
economic worth. In Chapter 2 traditional deterministic optimal control the-
ory is discussed in the spirit of the Nature Constant worldview. Specifically,
the risk of species extinction is downplayed, the preservation value of a re-
source is not considered, and it is assumed that resource productivity can
be controlled. As is well-known, classic optimal control theory is pri-
marily concerned with the maximization of profits subject to economic and
environmental constraints.
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The development of sustainability indicators in Section (Chap-
ter ) also conforms to the Nature Constant view because a single
stable equilibrium is assumed. For example, when managing agricultural
systems from a Nature Constant perspective, sustainability often implies

e maintaining a constant (usually high) level of productivity; and

e quickly recovering from external disturbances.

Notions of productivity, constancy, and recovery from a Nature Constant
perspective are shown in Fig 1.3.
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Figure 1.3: Various notions of agricultural sustainability.

Specifically, in Section the author illustrates the use of sustainability indi-
cators in the context of forest management in New Brunswick, Canada (Clark
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et al., 1979; Levy et al., 2000d). Existing decision support systems for the
Nature Constant perspective include Web-HIPRE (HIerarchical PREference
analysis software), a popular Java-applet for multiattribute decision making
based on HIPRE 3+ Hamaildinen (1998).

1.4.2 Bayesian and Stochastic Approaches: Nature Ran-

dom

The inherent randomness and variability of environmental phenomena make
it difficult to perform classic statistical inferencing: it is rarely possible to
perform an infinite series of trials under identical conditions. In circum-
stances where only limited data are available and uncertainty is
large, the Bayesian/subjective interpretation of statistics (Chap-
ter 4) can often provide more guidance to decision makers than
the traditional, ‘frequentist’ approach.

A Markov-Chain Monte-Carlo decision support system (known as MEAL)
is developed based on Gibbs Sampling (Gelfand and Smith, 1990; Smith and
Roberts, 1993) to ascertain the marginal density functions for all parameters
in the mixed BOD-decay model. The MEAL computer system allows one
to determine marginal distributions even when it is not possible to integrate
the joint posterior over all nuisance parameters. For example, given a joint
density f(z,y1,-.-,Yp), to find the marginal distribution for z one would
have to integrate over yi,...,¥yp:

f@ = [ [ Fown ) dun..dy, (11)

The MEAL system provides an alternative method for obtaining f(z):
rather than compute f(z) directly, a sample

X, Xa s Xm ~ f(2) (1.2)

is generated without requiring f(z). By simulating a large enough sample,
the mean, variance, or any other characteristic of f(z), even the density itself,
can be calculated to the desired degree of accuracy.
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Stochastic models are also consistent with the Nature Random
view Stochastic models, developed in Chapter 5, allow for the order of oc-
currence of probabilistic events to be taken into account. The purely random
(‘white noise’) process is frequently encountered in stochastic models. In a
white noise process the future is independent of the past. Accordingly, the
white noise process is consistent with the Nature Random view
that events are independent (and that non-random structures are im-
probable and tend to decay).

Stochastic water quality models are used to capture the interactions
among carbonaceous BOD (CBOD), nitrogenous BOD (NBOD) and dis-
solved oxygen (DO). In Chapter 5 temporal moment equations are derived
for all state variables, the Streeter—Phelps equations are generalized, and
a practical coloured noise approximation is put forth to replace the ab-
stract mathematical concept of ‘white’ (theoretical) noise.

Finally, the SEAL model is developed to solve stochastic differential equa-
tions. The author programmed an explicit order 1.5 strong scheme to inte-
grate [to SDEs. The algorithm is found in Section 11.2 of Kloeden and Platen
(1992). The SEAL model can help in ascertaining a probability density func-
tion for the minimum DO concentration (DOuwpin)®.

1.4.3 Species Extinction and Conservation: Nature Ephemeral

The Nature Ephemeral perspective is consistent with the thesis
chapters dealing with species extinction (Chapters 2 and 6). In par-
ticular, the Allee effect (critical depensation) and the ‘preservation value’ of
resources is formally modeled. In addition, the SEAL decision support sys-
tem is applied to a number of species extinction problems. Here the ‘First
Passage Time’ problem is considered in detail from an environmen-
tal perspective. The First Passage Time analysis is valuable because in real
ecosystems it is known that if a population falls below a critical threshold

SIf the concentration of DO falls below a critical threshold, fish and other organisms
begin to die and floating sludges predominate.
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(minimum viable level) the population may become extinct.

In the context of fisheries management, it is shown how regulating the
‘fishing effort’ can significantly reduce the risk of stock extinction. The pre-
cautionary principle provides additional incentive to model species extinc-
tion. Finally, it is discussed how increasing the conservation/preservation
value of a fishery in an cost-benefit analysis framework can yield to more sus-
tainable management. The objective of this research is to prevent tragedies
such as the collapse of the Newfoundland northern cod fishery from being
repeated.

1.4.4 Info-gap models: Nature Resilient

In recent years, Holling’s concept of ‘ecological resilience’ (1973) has been
applied in areas from water resources (the design of “safe-fail systems”) to
financial management (portfolio hedging and asset liquidity). The Nature
Resilient perspective holds that natural and social systems are able to adapt
and thrive under conditions of adversity. Chapter 7 is consistent with the
Nature Resilient view. Here, the concepts of system adaptability,
flexibility, and robustness are emphasized. Specifically, an MCDA
info-gap model is put forth to quantify the robustness of policy
alternatives to uncertainty.

The info-gap approach identifies policy alternatives that, while capable
of coping with attribute variability, still achieve minimum socio-economic
requirements. The management of water quality (phosphorus and
eutrophication concerns) in Lake Erie is used as an illustrative ex-
ample of how info-gap models can be used to gain insights into
environmental problems: information about phosphorus levels is orga-
nized in terms of families of sets (or clusters).

The proposed multiple criteria info-gap model is entirely non-probabilistic
and constitutes a viable medium for integrating environmental indicators,
conflicting objectives, and ambient uncertainty in a complex decision con-
text. Numerical results generated by the REAL decision support system
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(Robust Environmental Analysis for Lokahi) show how the minimum re-
quired return and the available prior information determine which policy
alternative can best cope with ambient uncertainty. Finally, the constructed
robustness curves assess the global sensitivity of alternatives to uncertainty.

1.5 Additional Uncertainty Approaches

Uncertainty plays a significant role in how one perceives the external world.
There are a variety of formal tools that can assist in the understanding,
regulation, and optimization of uncertainty. For these reasons, uncertainty
techniques are an “important contribution to our scientific understanding
of complex phenomena” (Kapur and Kesevan, 1992). However, the field of
uncertainty analysis is quite vast. Accordingly, this thesis is restricted to crisp
(non-fuzzy) problems. While entropy methods are discussed briefly in the
context of info-gap models, the field of entropy optimization is also outside
the scope of this thesis. However, for completeness, both fuzzy approaches
and entropy methods are briefly discussed below.

1.5.1 Entropy Methods

The concept of information-theoretic entropy plays a significant role in the
modeling of uncertainty and the formulation of probabilistic systems. For
example, there may be uncertainty as to whether a pair of dice will turn up
two sixes or not. Similarly, there may be uncertainty about the impact of a
chemical on a water body, or the future market price of a resource. There
may be n possible discrete outcomes in each one of these situations, and their
probabilities may be p1,ps, - .., pn Where

P120,p2>0,...,pa 20, > pi= (1.3)

Different probability distributions are associated with different levels of
entropy (probabilistic uncertainty). For example, the entropy (uncertainty)
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in the probability distribution (0.5, 0.5) is more than the entropy of the
probability distribution (0.01, 0.99). One frequently encounters probability
distributions consistent with a set of given constraints. For example

n n
Zpi = ]-a Zpigri = Qr, T = 1: 2’ L (14)
i=1 =1

where m+1<nand p, >0,---,p, > 0.

Scientific objectivity implies that one should select a probability distri-
bution p = p;,ps,...,pn by using all information consistent with Eq 1.4
and carefully avoiding any information not given in Eq 1.4. The principle of
scientific objectivity leads to the principle of maximum entropy (maximum
uncertainty): “Out of all probability distributions consistent with a given set
of constraints, choose the one that has maximum uncertainty” (Kapur and
Kesevan, 1992).

In much of the probabilistic uncertainty literature, the term entropy is
frequently used in place of uncertainty. The reason is primarily historical: in
1948 Claude Shannon, a communication engineer, developed the first mea-
sure of uncertainty of a probability distribution p = p;,ps,...,pn- His
uncertainty measure .

S(p) = -k _p:ilnp; (1.5)

i=1

where k£ is an arbitrary positive constant, became known as entropy since
Eq 1.5 had the same mathematical form as entropy in thermodynamics. The
term entropy is advantageous because uncertainty, in all its forms, is too wide
a concept to be encompassed in a single measure such as that of Shannon’s.
For example, the term entropy clarifies that one is not considering uncertainty
due to fuzziness in information. Entropy also excludes situations in which
uncertainty is partly probabilistic and partly non-probabilistic.

Fuzzy Sets and Linguistic Imprecision

While uncertainty is often associated with probabilistic phenomena (such
as rolling a dice), uncertainty can also arise in the context of deterministic
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phenomena, where we know for that the outcome is not a chance event but
one is fuzzy about the meaning of this outcome. In both everyday discourse
and professional writing one often uses imprecise language when referring to
events or quantities. For example, the proposition that “the Grand River
is highly polluted” is ill specified: there may be considerable variation in
the way different people interpret this verbal phrase, and their interpreta-
tion is context dependent (Wallsten et al., 1986). Saying that a water body
is “highly polluted” may have a different meaning depending on whether
one lives in Canada or in a country where environmental standards are not
as high. This suggests that simple mappings between verbal phrases and
probabilities are likely to be problematic.

Fuzzy set theory (Zadeh, 1972) considers linguistic imprecision to be an
unavoidable aspect of human conversation which should be explicitly handled
by a formal axiomatic reasoning system. A conventional “crisp” set is defined
by a membership function, which specifies for every object whether or not it is
a member of the set. In contrast, a fuzzy set is defined by a fuzzy membership
function, which allows degrees of membership intermediate between 0 and
1. For example, with a dissolved oxygen concentration level of 5 mg/L the
Grand River might have degree of membership 0.6 in the fuzzy set of polluted
rivers. Fuzzy set theory defines operations for the union, intersection, and
complement of fuzzy sets, as generalizations of the corresponding crisp set
operations.

Some uncertainty experts, such as Morgan and Henrion (1990) argue that
linguistic imprecision can be “remedied” by providing a careful specification
of all events and quantities. In this view, it is the role of the analyst to elim-
inate imprecise language. It may be possible to rephrase the statement, “the
Grand River is highly polluted” more precisely: “In May, 2000, the Grand
River has a BOD (biological oxygen demand) level exceeding 20 mg/L.”

On the other hand, proponents of fuzzy set theory have developed so-
phisticated techniques for the formal representation of linguistic imprecision.
There is a considerable body of research investigating the correspondence be-



22 Computer Support for Environmental MCDA Under Uncertainty

tween verbal phrases such as “unlikely”, “highly probable” efc. and numerical
probabilities (Wallsten et al., 1986). While the controversy surrounding lin-
guistic imprecision and fuzzy set theory raises important issues, it is beyond
the scope of the thesis, which is concerned only crisp problems.

1.5.2 Which MCDA Approach to Use?

Every decision problem exists in a decision context (the set of circumstances
and conditions that affect the decision making process). There are many ways
to categorize decision problems from an operations research perspective. For
example, Radford (1989) notes that important features of a decision problem
include:

1. Whether or not uncertainty exists in the decision situation being con-
sidered.

2. Whether or not the benefits and costs can be completely assessed in
quantitative terms.

3. Whether or not multiple criteria must be taken into account’.

Rajabi et al. (1999) emphasize other important features of MCDA prob-
lems:

1. Whether economic, social and environmental impacts are considered.

2. Whether or not technical, legal, and operational issues are taken into
account.

3. Whether or not the distribution of impacts is addressed.

"Most optimization techniques, including linear, dynamic, and nonlinear programming,
are single criterion methods because they are often employed for maximizing monetary
benefits (or minimizing costs) subject to various economic and physical constraints.
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Because the type of information available (probabilistic/non-probabilistic,
cardinal/ordinal, deterministic/stochastic) may vary from one problem to the
next, different MCDA techniques have been developed to take advantage of
the type of information available, as shown in the top row of Table 1.4. Which
technique to use depends on the features of the decision problem. For exam-
ple, ELECTRE methods (Roy, 1973) employ information in a fuzzy context,
the Analytic Hierarchy Process (AHP) approach (Saaty, 1990) elicits ratio
judgements, while Elimination Methods (MacCrimmon, 1973) require only
ordinal rankings. Of course there other ways to view MCDA problems issues
not addressed in Table 1.4. For example, MCDA methods can be classified
according to whether the attributes are evaluated before (a priort preference
articulation) or after the alternatives are presented (posterior preference ar-
ticulation).

Techniques for decision making under certainty include Optimal Control
Theory, CBA (Cost Benefit Analysis), the Elimination Method and MAVT
(Multi-Attribute Value Theory). These four techniques are shown in the
top row of Table 1.4 (from left to right). The remaining five approaches in
Table 1.4 — Interval Methods, Entropy Techniques, MAUT (Multi-Attribute
Utility Theory), and Info-gap methods — apply to decision making under
uncertainty. This thesis begins with a discussion of MCDA under certainty
and extends the discussion to new approaches for MCDA under uncertainty.
Note that in Table 1.4 a checkmark is placed in a cell location, if a particular
decision making technique is capable of handling the type of information
available. While this type of evaluation matrix is highly subjective, it is
extremely useful in illustrating the relative merits of different techniques.
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Figure 1.4: Features of a Decision Problem and MCDA
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1.5.3 Type of Impacts

All nine of the techniques listed in Table 1.4 can be used to help make
decisions when the criteria are expressed in dollars. However, the treatment
of decision consequences in purely monetary terms has attracted considerable
criticism, particularly for environmental applications (Sagoff, 1988), although
it is certainly more convenient to assess projects and make decisions solely
on the basis of monetary values. Faustmann (1849) designed one of the first
harvesting models (a forest rotation system) in order to maximize long-term
economic benefits®.

Social and Environmental Impacts

Clearly, social and environmental criteria must be considered to ensure the
integrity of life support systems. Multi-attribute Value Theory (MAVT)
is a common approach that is able to handle social, environmental, and
economic criteria. For example, in the spruce budworm analysis of Bell (1977)
and Clark et al. (1979) value functions were elicited from an environmental
official in the province of New Brunswick, Canada. A caricature of the results
are shown in Table 1.1. Note that there are three generic value function
shapes present in Table 1.1: Forest Volume possesses a Desirable Range value
function; whereas, Recreational Quality is modelled with a More is Better
value function; and Area Sprayed is of the More is Worse type.

8In the nearly two centuries since Faustmann’s work, an overemphasis on economic
consideration together with the introduction on non-native species and overharvesting has
led to large-scale species extinction (Prato, 1999).
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Table 1.1: Indicators, value functions and references.

Indicator Value Function Range
T; Descriptor Units Graph Equation: v;(z;) Worst Best
: 3
T Forest Volume m=>[ ha o = (215002 ‘0 or 200v 1001
Ref. Wymore (1988) Desirable Range
Clark et al. (1979)
z»  Spray Area 10% ha 4.5 0
|
Ref. Lane et al. (1994) More is Worse
Baskerville (1995)
z3  Harvest Cost $/m3 30 0
|
Ref. Keeney (1980) More is Worse
Bell (1977)
s1
z4 Rec. Quality good sites ~ —0.13 0 25
34 ’ : T4 N
=2
Ref. Bell (1977) 80| More is Better
0

Clark et al. (1979)
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Distribution of Impacts

The types of environmental decisions for which fairness is likely to be a major
concern range from the local and site-specific projects to national and policy-
level endeavours. Intuitively, concerns of fairness and impact distributions
relate to both substantive and procedural aspects of environmental decisions.
In a substantive sense, adverse impacts ought not fall disproportionately on
some groups, particularly on groups that have historically been economically
and politically marginalized (or somehow disadvantaged). Those receiving
most of the benefits should be paying most of the costs (or enduring most of
the adverse impacts). ‘Procedural fairness’ refers to the procedures by which
decisions are reached (Lind et al., 1990).

Joubert et al. (1997) argue that MAV'T is a more appropriate tool than
CBA with respect to procedural and substantive justice, particularly for eval-
uating environmental projects that generate significant social and ecological
externalities. MAUT is a relevant technique to use because one may wish to
include the risk attitudes of the stakeholders when considering the distribu-
tion of impacts. Due to the extreme uncertainty regarding future impacts,
info-gap modeling may also be appropriate. Other relevant approaches are
shown in Table 1.4.

1.5.4 Feasibility and Policy Considerations

Rajabi et al. (2000) emphasize that technical and operational feasibility, in
addition to public policy issues and governance considerations should be con-
sidered in any MCDA. For instance, assessing the effect of a chemical on a
population of fish prompts the questions: Are all species equally important?
Are six unhealthy fish equivalent to one dead fish? What about the tradeoff
between employment and ecosystem health? Intangible attributes (such as
aesthetic considerations, pain and suffering, etc. ) can be extremely difficult
to include in any decision analysis. Finally, one must consider how conse-
quences unfold over time (including issues of discounting and inter/intra—
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generational equity). These significant uncertainties may be addressed in
the context of info-gap modeling. MAVT may also be particularly relevant
in light of the value judgements required to analyze these problems. The
elimination method would be recommended if tradeoffs among alternatives
is not permitted. Finally, the Bayesian approach may be useful to incorporate
the opinions of experts.

1.5.5 Type of Problem
Social Systemms Models

A typical societal systems problem involves deciding how much development
to permit in a watershed. For example the potential impact of new develop-
ment is of great concern for the community, government and environmental
agencies in the Laurel Creek Watershed. A caricature of a social system
problem is shown in Fig ??. Here, the relevant criteria are organized into a
hierarchy, where the highest element of the hierarchy represents the overall
goal, sustainable growth. Subgoals, such as housing and water quality are
decomposed further until a sufficiently detailed representation of the decision
problem is obtained. The decision alternatives, ‘Business as Usual’, ‘Moder-
ate Development’ and ‘Limit Development’ are placed on the lowest level of
the hierarchy.

A variety of approaches are suitable for social systems models. While
CBA is frequently used, MAVT may be more appropriate since all impacts do
not need to be converted into a dollar value. Moreover, Bayesian approaches
may be useful to due a lack of data. In addition, interval approaches can be
used when the relative criteria weights cannot be precisely specified. Finally,
info-gap models and MAUT can be used to incorporate the risk attitudes of
the stakeholders.
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Physical Systems Models

Physical systems models include atmospheric and hydrological models. Stochas-
tic differential equations are often useful for modeling physical systems. A
stochastic process is a function of two variables: the parameter ¢ and the
probability parameter w. A stochastic process is thus a mathematical model
of a dynamic process whose dependence on a parameter t is governed by
probabilistic iaws.

This thesis considers physical systems models in hydrology. Sufficient
quantities of organic material in a water body may lead to an increase in
bacterial activity and a resulting decline in DO concentration. The removal
of organic material by microorganisms (such as bacteria and algae), primarily
through aerobic decomposition, gives rise to the classic “DO sag curve” of
Fig 1.6. As the concentration of DO falls, the number of surviving life forms
is reduced; in extreme cases, most forms of life are dead and odors, floating
sludges, and fungal growth predominate. In addition to stochastic differential
equations, time series analysis techniques and other statistical tools can also
be used to model physical systems. Moreover, physical models have been
used in the context of optimal control theory and MAVT. It is also possible
to integrate physical models with Bayesian approaches, info-gap models and
other techniques.
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1.5.6 Type of Tradeoffs

In compensatory methods, quantitative tradeoffs across objectives are al-
lowed. Compensatory and noncompensatory approaches frequently coexist
in decision problems. The choice ultimately depends on the characteristics
of the problem: compensatory methods tend to be more demanding in terms
of data and the amount of information to be elicited from experts. Munda
(1993) and Opschoor and Hafkamp (1991) provide an overview of compen-
satory methods applied in the economic evaluations of environmental prob-
lems.

In many decision situations alternatives cannot be evaluated entirely in
quantitative form. In this situation, noncompensatory models offer some ca-
pability of placing a number of alternatives in an order of preference. An im-
portant example of non-compensatory models is the lexicographic approach.
In lexicographic preference, one attribute has overriding importance; deci-
sions are made on the basis of it alone. If there are several options tied
for performance on this attribute, the second and third most important at-
tributes are used to break ties.

A popular non-compensatory technique is the Elimination method (Mac-
Crimmon, 1973). The Elimination Method uses a stepwise process of screen-
ing alternatives: if one alternative performs better than another on the most
important attribute, then it will be selected, however poorly it does on the
remaining attributes. Alternatives not meeting a specified level of perfor-
mance are eliminated until only one is left that has satisfied all the tests to
that point. Ties are resolved by making the levels of performance or the crite-
ria used more discriminating. Necessary conditions for use of the Elimination
Method include ordinal or cardinal preferences for alternatives (for each ob-
jective) and an ordinal ranking of the criteria. The Elimination Method is
illustrated in Fig 1.7 in the context of sixteen alternatives A through P.
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1.5.7 Type of Uncertainty
Probabilistic Uncertainty

Fig 1.8 shows an example of a response surface as a function of inputs x,
and z,: the surface displays how the output y changes with variations in
the values of the inputs. Note that the inputs z; and z, are represented
by the two horizontal dimensions, and the output y is represented by the
vertical dimension. It is assumed that both uncertain inputs are empirical
quantities (measurable in principle) and that uncertainty about them can
be legitimately represented by probability distributions. A wide variety of
techniques are availabie to handle probabilistic uncertainty, including MAUT
and entropy methods. Info-gap methods are capable of handling both prob-
abilistic and non-probabilistic models of uncertainty.

Non-probabilistic Uncertainty

In section 7.3, info-gap set models of uncertainty are proposed to handle
non-probabilistic representations of uncertainty: here, the emphasis is on
“cluster-thinking” (Ben-Haim, 1998) rather than on recurrence, probability,
or likelihood. Given a particular piece of information an info-gap modeler
might ask: what is the “cloud of possibilities” (Ben-Haim, 1999) consistent
with this information? How does this cloud shrink, expand and shift as our
information changes? What is the gap between what is known and what
could be known? Info-gap modeling often takes place without recurrence
information, and hence one can make no heuristic or lexical judgements of
likelihood.

1.5.8 Type of Information
Quantitative Information

For the quantitatively oriented decision maker, there is great appeal in being
able to establish some means of associating a numerical score with each de-
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y = f(z1,72)

Figure 1.8: Propogation of the continuous probability distributions through
a model

cision alternative, after which the choice of the optimal alternative becomes
automatic. Accordingly, most optimization procedures are based on the as-
sumption that one can assign a real number (such as a cost in dollars or the
biomass of a fish stock in kg) to represent the consequences of an alternative
according to a criterion.

Among cardinal decision analytic methods, a fundamental distinction ex-
ists between monetary and non-monetary evaluation approaches. This thesis
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focuses on the latter; although popular examples of the former include cost-
benefit analysis (CBA) and nonmarket valuation methods, such as contingent
valuation (CV) (Mishan, 1988; Dasgupta and Pearce, 1972). Of course car-
dinal value functions require a more demanding set of assumptions than the
ordinal case, but provide more information about the preference structure. A
cardinal value function v preserves ordinal preference as well as an ordering
on difference (under certainty).

Qualitative Information

In many environmental problems it is simply not possible to assign quanti-
tative values to the consequences of each alternative. Often, the natural way
to evaluate the performance of actions is by using qualitative, descriptive, or
ordinal information to express concepts such as “degree of degradation” and
“quality of life”. Ordinal value functions attach numbers to objects in such
as way that ordinal preference relationships are preserved. However, ordinal
numbers are meaningful only in their ordinal content and differences between
them are meaningless. Interval techniques and the Elimination method are
well suited for ordinal information.

1.5.9 Type of Analysis
Extinction Analysis

Discussing the possibility of species extinction is particularly timely in light of
the intense harvesting of biological resources currently taking place across the
globe. Extinction analysis techniques allows one to model the expected time
to extinction of a species. Appropriate techniques to model extinction issues
include MAUT (to include risk profile of stakeholders), Bayesian approaches
(to include subjective probabilities), and info-gap models (to handle extreme
uncertainty). In this thesis the risk of species extinction was incorporated
into an optimal control problem by using the following population growth
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function F(z) where F(z) < O for certain values of z near £ = 0:

F(z) =rz (1 — %) (% — 1) where O0<m< K (1.6)

To model ecological criteria such as the risk of species extinction, it is
instructive to compare and contrast the population dynamics of the pure
compensation logistic growth model (Fig 1.9a) and its critical depensation
analog (Fig 1.9b). Figure 1.9a illustrates two typical solution curves z(t)
approaching the equilibrium K from above and below. The lower curve is
usually referred to as a logistic growth curve. Fig 1.9b) exhibits the phe-
nomena of irreversibility. If the population is reduced to some level below
the minimum viable population m, an irreversible extinction process begins:
ultimate extinction of the population is ensured, regardless of what happens
to future effort levels.
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Hierarchical Analysis

The Analytic Hierarchy Process (AHP) is a popular hierarchical technique
to solve MADM problems. For a full exposition see Saaty (1980). The first
stage in the AHP approach is problem structuring: breaking down the top
level objective into subgoals until a sufficiently detailed representation of
the decision problem is obtained. It is plausible that each of the techniques
studied in this thesis could be applied to some part of a hierarchical problem.

Fig 1.10 illustrates a hierarchical value tree in the context of farm man-
agement. The highest system objective is often a broad statement about the
overall goal, usually a universally acceptable statement. As one moves down
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the ‘value tree’, the objectives become more specific, more operational, and
at the same time conflict more with each other. For example, under con-
ditions of water scarcity, will agricultural users have priority over industrial
ones? What about allocation to residential users? How to meet domestic,
industrial, and agricultural objectives simultaneously?
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Chapter 2

Environmental Multiple
Criteria Decision Analysis

In Section 2.1 both conservation and economic criteria are considered in the
context of optimal control theory . Here, research has traditionally dealt with
determining a harvest policy that maximizes the discounted net revenues
derived from the exploitation of a renewable resource, subject to biological
and economic constraints (Clark, 1985).

The MCDA framework is explained in Section 2.2. Here, important issues
include alternative generation (Section 2.2.1), indicator selection (Section
2.2.2), the evaluation of alternatives (Section 2.2.3), and the fundamental
problem of MCDA: comparing noncommensurate quantities, for example,
comparing dollar costs with environmental quality. The traditional approach
to this problem is cost-benefit analysis (CBA), whereby all considerations
— economic, social and environmental — are converted to dollar values.
Although this “compensation” permits tradeoffs among criteria, when the
attributes of interest cannot meaningfully be reduced to a single measure
such as cost, other methods of comparison must be found. In this context, the
advantages of MCDA over CBA and non-market valuation procedures such
as Willingness to Pay (WTP) and contingent valuation (CV) are discussed
(Section 2.2.4).

40
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Multiattribute decision making (MADM), the discrete version of MCDA,
is the focus of Section 2.3. Here, discrete alternatives are evaluated against
criteria ranging from cost (a quantitative criterion) to aesthetics (a qualita-
tive criterion). Various MADM approaches are considered including outrank-
ing methods (Section 2.3.1), Multi-Attribute Value Theory (Section 2.3.2),
the Analytic Hierarchy Process (Section 2.3.3), and lexicographic techniques
(Section 2.3.4). Finally, the importance of performing a comprehensive sen-
sitivity analysis is discussed (Section 3.3).

2.1 Optimal Control Theory

It is important to note that the ‘environment’ does not enter into either
neoclassical or Marxist economic analysis. Consider the situation facing a
private individual who owns a forest in a market economy. The entire forest
can be cut immediately, generating many forest products but leaving only
barren land, worth almost nothing. On the other hand, the forest can be run
as a sustainable “timber factory”, cutting trees slowly over time according
to a well-selected pattern. However, the forest only grows at a limited rate,
so the sustainable rate of timber production may be low. The owner of a
forest (or any resource) tends to view her stock (in this case trees) as a
capital asset (Clark, 1985). She expects the asset to earn dividends at the
prevailing interest rate; otherwise, she will attempt to dispose of the asset.
This result, which is often considered to be the fundamental theorem of
resource economics, dates back to the pioneering work of Hotelling in the
1930s: if the return on other available investments (i.e. the interest rate)
is greater than the growth rate of the forest, then the owner can maximize
return by cutting the entire forest and investing the proceeds, rather than
managing a sustainable forest.

As another example, consider how Antarctic blue whales (Balaenoptera
musculus) might be managed by a single firm, or a consortium of countries
such as the International Whaling Commission (IWC), that possess exploita-
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tion rights. Until the 1950s the Antarctic whaling industry focused its efforts
on the harvesting of blue whales (reducing the estimated original population
of 150,000 to fewer than 1,000 by 1965, when their capture was prohib-
ited by the IWC). Scientists estimate that a standing population of 75, 000
blue whales is required to achieve a maximum sustainable yield (MSY) of
approximately 2,000 whales per annum.

For the sake of discussion, assume that harvesting has reduced the blue
whale population to 75,000 and that the market value of the average blue
whale carcass is $10,000. Here, industry has two options: sustainable har-
vesting or immediate extermination. [n the former case, an MSY policy will
result in an annual revenue of $20 million; in the latter, immediately harvest-
ing the remaining 75,000 whales yields a lump-sum revenue of $750 million.
Invested at a rate of 5% per annum, this sum would yield an annual return of
$37.5 million. From this rudimentary economic analysis, the extermination
of blue whales appears considerably more profitable than pursuing an MSY
policy (Clark, 1976).

Of course, this argument has been deliberately oversimplified. For ex-
ample, how to deal with the problem of selling several million tons of whale
products in a short time (demand inelasticity)? Moreover, the cost of catch-
ing blue whales becomes exorbitant as their population becomes depleted
(Antarctic feeding grounds cover more than 20 million square kilometers)®.
However, the conclusion may still be that government intervention is the only
way to save the whales, the forests, and other natural resources. Interven-
tion may be economically justified for the ecosystem services provided (soil
formation, climate regulation, habitat for resident and transient species), in
addition to recreational values and genetic diversity.

A traditional objective in the management of renewable resources is to

'In a personal communication, renowned bioeconomic modeler Dr. Colin Clark of the
University of British Columbia noted that while the slow growth rate of the blue whale
may cause industry to shun conservation (due to the “inferior asset” problem), the species
may still survive because complete extermination is not economically feasible (due to what
he tongue-and-cheek calls the “economic extinction” of blue whalers).
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select a harvesting regime, h(t¢), that maximizes total discounted net revenues
from the resource in question. The goal of maximizing revenues derived from
the exploitation of a resource may be expressed as maximizing:

& 0]

Present Value = / e~% [p — c(z)] h(t) dt (2.1)
0

where the unit harvest cost, ¢(z), price, p, and discount rate, §, are important
economic variables in the exploitation of renewable resources.

2.1.1 Optimal Fishery Management and MCDA

If § > 0 is a constant denoting the (continuous) rate of discount, p is a con-
stant price per unit (eg 3 per kg), and c[z(t)] equals the unit harvesting cost
when the population level is z then the management objective of maximizing
total discounted net revenues derived from the exploitation of a resource may
be expressed as maximizing:

PV=i/€“@—an@dt (2.2)
0

where PV is present value. Traditional economic theory assumes that one
attempts to utilize a harvest rate h = h(t) that leads to the largest possible
value for the expression in Eq 2.2. Note that Eq 2.2 also depends on the
population level z(t), which itself is related to the harvest rate according to

‘fl_f = F(z)—h(t), t>0 (23)

The variables z(¢t) and h(t) must also satisfy the constraints

zt)>0 and h(t) >0 (2.4)

Maximizing the expression in Eq 2.2 subject to these conditions is a problem
in optimal control theory. Several mathematical techniques can be used to
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determine the harvest policy A(¢) that maximizes Eq 2.2. Here we make use
of the Euler equation as follows.
Substituting A(t) = F(z) — £ from Eq 2.3 yields:

o0

PV = / e~ [p — o(z)] [F(z) — &] dt (2.5)
0
Since this integral has the form
f Alt,z, %) dt (2.6)
one may apply the classical Euler necessary condition for a maximum:
A d 8A

—_— = —— 2.7
6z ~ di 9% @7

In resource management, it is often assumed that resources should be
exploited in such a way that the total discounted net revenues derived from
the resources are maximized. Clearly this does not adequately consider the
social, ecological, and recreational aspects of natural resource problems. Ac-
cordingly, Section 2.1.2 makes three significant and original contributions to
the optimal control literature:

1. Formally modeling the ‘preservation value’ of the resource stock itself.
It is important to capture the recreational value and ecological services
provided by a resource system.

2. Allowing price and cost to vary as a function of time.

3. Including the possibility of species extinction (i.e. critical depensa-
tion).

The first two issues will be addressed with application to Schaefer’s fisheries
model. However, formally modeling species extinction requires the use of a
growth function that exhibits critical depensation, sometimes referred to as
the ‘Allee effect’. Throughout this chapter, the effect of the discount rate,
price, and other parameters on harvesting decisions is examined in detail.
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2.1.2 Preservation Value and Critical Depensation

The value of the world’s ecosystem services and natural capital should not be
underestimated. For example, an international team of researchers recently
approximated the monetary value of environmental processes, including the
regulation of atmospheric gases, the treatment of wastes, and the cycling
of nutrients to be “in the range of 16 — 54 US trillion dollars per year”
(Costanza et al., 1997). However, many authors express reservations about
making such monetary based resource management decisions. For example,
Goulder and Kennedy (1997) argue that such decisions will be biased in fa-
vor of economic-based considerations since the benefits of economic activities
are better understood than ecological impacts. This was likely a factor in
the development of hydropower systems in the U.S. Pacific Northwest, which
drastically reduced salmon populations and their associated social benefits in
the Columbia River Basin (Lee, 1995). In addition, the assignment of mone-
tary values to ecological services is done, for the most part, independently of
the environmental assessment and management process (Smith, 1992; Prato,
1999). Others reject the use of dollar estimates for ethical reasons (Mitchell
and Carson, 1989). Moreover, since non-market values of ecological services
are both site-specific and application dependent, the dollar amounts derived
for one area are generally unsuitable for others (Bjornstad and Kahn, 1996).
In fact, few valuation studies exist for some major biomes, including desert,
tundra, ice/rock, and cropland (Costanza et al., 1997).

Others are more enthusiastic about the nonmarket valuation of natural
resource systems. Postel and Carpenter (1997), for example, argue that bet-
ter accounting for nonmarket values of natural systems can “help to ensure
that land-use and water management decisions are both economically ratio-
nal and environmentally sound”. Economists commonly estimate the “non-
market values” of ecosystem resources through surrogate market techniques,
such as travel cost and hedonic pricing, or by nonmarket valuation methods,
such as contingent valuation (CV). By so doing, a ‘preservation value’, V{(z),
may be attached to the resource stock itself, so that the objective function
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takes the following form:
J = / e {[p — o(x)] h(t) + V(z)} dt (2.8)
0

where J evaluates to the net discounted present value. Any expression for
the preservation value V(z) should satisfy V'(z) > 0. Here:

V(z) = vin(x) (2.9)

Moreover, assume that the price per unit of harvested biomass p(f) is a
function of time. Possible models for p(¢) include damped trigonometric
functions, such as

p(t) = a; +aze ‘sint. (2.10)

Finally, assume that unit harvest costs ¢(t)c(z(t)) are a function of time
(Clark, 1985), where
lim ¢(t) = ¢ (2.11)

t—o00

Possible expressions for ¢(t) satisfying 2.11 include:

#(t) = ¢+ae”* and
(2.12)
#(t) = ¢+ aretlay +azsint + aqcosi]

where a;, a», a3, and a4 are constants.
Accordingly, Eq 2.8 can be re-written as:

[e,e]

= [ B0 - 0@ F@) -4 + via@}d  (213)

(4]

Now, using Eq 2.6,
Alt, z,2) = e {[p(t) — ¢(t)e(z)] [F(z) - £] + V(2)} (2.14)

Applying the Euler necessary condition for a maximum in Eq 2.7 it follows
that
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92 = 2 oo (pote) - 0)e@)] [Fe) - 2] + V(z))
= = {{p(t) - (2)e(x)] F'(2)} + 219
e {[F(z) 8l [~6(@e @]} + e V(@)
498 _ 20 st (p(t) - 4(t)e(a)] (&) - ] + V(@)
= e {op(t) - B(H) + $(O)c'(2)s + c(@)9(t) — F(t)e(z) }
(2.16)

Equating the expressions in Eq 2.15 and Eq 2.16 and simplifying yields:

O @F@E)
+EE - = ee@

B N ()
PO — #(0c@) " p@) — HO)cla)

Further rearranging yields an important implicit formula for the popula-

V'(z)
p(t) — ¢(t)c(z)

)

tion level z:

F'(z) [p(t) — ¢(t)c(z)] — 6(t)c'(z)F(z) +

_ (2.17)
Vi(z) — d(t)e(z) = &[p(t) — ¢(¢)e(z)] — B(t)
which can be re-written by use of the product rule of calculus:
2 [ ) - 6(0e@)} F(z) | +V'(z) — d)elz) =
T (2.18)

8 [p(t) — 8(t)c(z)] — B(t)
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This is an equation for z that, according to optimal control theory, must
hold when z = z*, the optimal population level. For the Schaefer model the

equations are

z c
F(z) = rz(1- =) d == 2.19
@=re(1-%) emd cl@) =2 (2.19)
where F'(z) is the growth function and c¢(z) represents the unit harvest costs.
Substituting these expressions into the basic optimal control formula (Eq

2.18) one obtains:

£[(o0-22) o] £ -

¢(t)c :

) ) — ——| — pld
o - 222) 50
After differentiation this becomes a quadratic equation in z, the positive

solution of which is given by

o K (2 S 29 .

(2.20)

ek TN TE T

4 rp(t)aK  rp(t)K  rp(t)gK

K |[¢t)c 5 Bp(t)\? () éc v $(8)
1 J(pa)qK“‘F*'rp(t)) *‘8[ T POR ~
(2.21)

To simplify this expression, the following dimensionless quantities are

introduced:

(2.22)
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Thus z* represents the biomass as a proportion of the environmental ca-
pacity K, and 2 is the corresponding open access, rent-dissipating biomass
level. When g and K are given (as is usually the case), 2, is determined by
the ratio ¢/p of fishing costs to price. -y is the ratio of the discount rate to
the intrinsic growth rate of the population; this term is frequently referred
to as the bionomic growth ratio.

The following symbols will also help to simplify the notation:

H() = ﬁ:))

(2.23)

Q) = rp(t) K

where H (t) is the ratio of the rate of change of price divided by price times the
intrinsic growth rate. Finally, 2(¢) is the ratio of the ‘preservation coefficient’
v divided by Krp(t). Note that it is the ratio of v to p(¢) that is important
(K and r are usually given). This model shows that regardless how much
society values a resource (represented by a high value for v) one must also
consider the price per unit biomass of the resource (since p(t) may offset v).
With the above substitutions, Eq 2.21 now becomes:

(6(D)ze(t) + 1 —v + H(E)) +

>

FAE—

e

. 9.24)
() 2eo (2) (

[6(t)200(t) +1 — v+ HBO* + 8 |8(H)ze0(t)y + Q(E) —

Note that from Eq 2.24, zero discounting (y = 0) produces the highest
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optimal population level given by?

2= %(q’)(t)zm(t) + 1+ H() +

: (2.25)
i \l(¢(t)zoo(t) +1+H®)® + 8 {Q(t) _ ¢(t)j~°°(t)}

Critical Depensation

This analysis will now be extended to the situation of critical depensation
(the “Allee effect”). As before, optimal population levels will be calculated.
However, the pure compensation logistic Schaefer model of population growth
is now replaced by the following growth curve:

F(z) = rz (1 - %) (ﬁ ~ 1) (2.26)

m

After substituting F'(x) into the optimal control formula (Eq 2.18), then

differentiating, simplifying, and introducing the dimensionless quantities of
Eq 2.22, one obtains a cubic equation in z:

N

3 - % [gﬁ(t)zoo(t) + 6+ 1] 2+

e+ (142) 0o - 201,

é(t)zm(t)J — 0

(2.27)

- g l:#(t)r + 7é(t) 2o0(t) —

Here, the dimensionless quantity @ is introduced to represent the ratio of

the extinction threshold (m) to the carrying capacity (K):

m
=%

21t is also of interest whether z* is higher than z)ssy in the case of a zero-discount
rate.
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Note that a higher value of 6 corresponds to a higher risk of species extinction.
Using the quantities defined in Eq 2.23, the notation can be further simplified:

2 = % [¢(t)z°o(t) + 0+ 1} 2

_g Q) + 78(t) 200(t) — @?@‘] =0

While a closed form analytic solution is possible for the cubic equation
of Eq 2.28, mathematical software (MAPLE) was used to highlight the re-
lationship between the optimal population level (z*) and key parameters,
with 8 = 0.05. Specifically, the relationship between z* (normalized) and
the bionomic growth ratio < for various values of z., is illustrated in Fig 2.1.
Note that z* is relatively insensitive to v for moderate to high values of the
rent dissipating biomass level (z,, > 0.45). However for lower values of z,
z* drops off markedly for v > 2. Fig 2.2 illustrates the normalized optimal

*

population level z* as a function of the bionomic growth ratio « for various
normalized values of the preservation ratio §2. Note that increasing Q2 can
have a significant role in increasing z*.

Note that price p(t) and the coefficient of the unit harvesting cost ¢(t) are
modeled as functions of time (i.e. price and cost changes are not exogenous
to the system). This satisfies a long-standing void in the environmental
optimal control literature (Clark, 1976; 1985; Lohmander, 1990) and yields
penetrating insights as shown in Fig 2.3. Note that as the fishing costs
#(t) increase at time T3, the optimal population level (z*) initially decreases
as fisherman rush to harvest more fish (before the costs rise even further).
However, in the long term, the higher costs lead to a higher z*. Similarly,
the price drop at time T3 leads initially to a lower value of z*, but ultimately
a higher one (less fish are harvested in the long term since they yield less
profit).
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Optimal population levels (z*)

T T
Bionomic growth ratio (7)

Figure 2.1: Optimal population levels (normalized) 2* as a function of the
bionomic growth ratio -y for various values of z-
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Optimal population levels (2*)

Bionomic growth ratio {v)

Figure 2.2: Optimal population levels (normalized) z* as a function of the
bionomic growth ratio -y for various values (normalized) of preservation ratio,
Q.
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Figure 2.3: Relationship among price, p(t), cost coefficient, ¢(¢), and optimal
population levels, z*, vs time
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2.2 Multiple Criteria Decision Analysis (MCDA)

Multiple Criteria Decision Analysis (MCDA)} is a collection of methodologies
to select among alternatives that involve incommensurate attributes. MCDA
can be classified into two main branches, Multiple Attribute Decision Mak-
ing (MADM) and Multiple Objective Mathematical Programming (MOMP).
The former applies to decision problems with a discrete set of alternatives
(i.e. when the set of alternatives can be explicitly defined by listing its fi-
nite, and usually small, members); the latter when the set of alternatives is
implicitly defined by a set of constraints to be satisfied (resulting in a large
or infinite number of alternatives). A good discussion of MOMP can be
found in Steuer (1986) and Appendix A. While MOMP represents a useful
generalization of continuous SPSC problems, it is beyond the scope of this
thesis.

Discrete multiattribute problems can be found in almost all types of pri-
vate and public decisions, such as the evaluation of projects, plans, and
policies. In many cases, the discrete alternatives take on a specific “iden-
tity” which captures the public’s imagination, such as the locations where
nuclear wastes can be “buried” (Yucca mountain, deep space, Pacific ocean,
etc. ). In other cases, the alternatives are more naturally linked to various
actors in the decision process (for example, the nuclear industry or conser-
vation groups) or specific value systems (conservative solutions, draconian
solutions, and so on). Finally, continuous and discrete problems are not
mutually exclusive. For example, the siting of a nuclear power plant (an
inherently discrete problem) can be supported by continuous programming
techniques (Nijkamp, 1990).

2.2.1 Generation of Alternatives

Alternatives (also referred to as decision options, courses of action, strate-
gies, or means) are potential solutions to a decision problem. It is important
that no alternative is excluded a priori at the early stages because of some
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particular criterion such as high cost; a more expensive option may become
acceptable when mitigatory costs and environmental impacts are taken into
account (Munasinghe, 1993). For some criteria, for example, cost of machin-
ery, alternatives are readily evaluated.

The definition and generation of alternatives is an important, but fre-
quently overlooked, step in the process of MCDA (Keeney, 1992; Stewart,
1992; Vincke, 1992). For most environmental problems there is no pre-
existing set of well-defined alternatives. Most often, before any formal deci-
sion analysis can proceed, some preliminary work to define, expand, or reduce
the set of feasible alternatives is necessary.

In many real world problems, the decision maker is interested in selecting
a combination of alternatives rather than an individual alternative. For ex-
ample, a government which is responsible for developing the long term water
supply for a region may employ a variety of sources, such as underground
aquifers, treated river water, and imported lake water to satisfy future de-
mand. The set of feasible alternatives can be reduced by removing “inferior”
alternatives, identifying those that do not meet performance standards on
key environmental indicators (Ulungu and Teghem, 1994; Rajabi, 1997).

2.2.2 Selection of Criteria (Indicators)

The highest objective in an environmental problem is usually a broad, unmea-
surable goal, often to minimize adverse environmental effects. The overall
objective may be broken down into a hierarchy of goals, where lower levels
become more detailed and measurable, but also more conflicting. The degree
to which objectives are achieved is measured through a set of performance
indicators (also referred to as criteria or attributes). The criteria are usually
in conflict with each other, especially if each criterion represents the interests
of a specific group of decision makers. For example, closing down a nuclear
power plant may reduce the risk of radiation leaks, while laying off workers,
and increasing energy costs. Thus, it is rare to find an action that is best ac-
cording to all criteria, and one must search for a compromise solution (rather
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than an optimal one) that appropriately reconciles the different criteria.

Eckel, Levy, Hipel, and Kilgour (1998a) describe the role of environmen-
tal indicators (including output, input, and process indicators) for planning
and management in the context of the Pressure—State—Response (PSR)
model (see Fig 2.4). The PSR model was developed by the Organization for
Economic Cooperation and Development (OECD) in the early 1990s and is
described in detail by Hammond et al. (1995) and OECD (1993). Pressure
refers to human activities directly affecting the environment (such as methane
emissions); state refers to observable changes of the environment (e.g. rising
global temperatures) while response deals with the ways in which society
chooses to address environmental problems, ranging from expenditures for
environmental protection to solar energy research, environmental education,
and energy taxes.
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Figure 2.4: Indicator use in the Pressure-State-Response model as described
by Eckel, Levy, Hipel, and Kilgour (1998a). This figure is modified from the

work of OECD (1993) and Hammond et al. (1995).
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After long debate among scientists and indicator experts, the Driving
forces— Pressure— State—Impact— Response model (DPSIR) was recently
adopted as the most appropriate way to structure environmental information
by most countries of the European Union and by international environmental
organizations, such as the European Environment Agency (EEA) and the
OECD (Eurostat, 1999). Significant emphasis is now placed on the two new
additions to the PSR model: driving forces (environmentally relevant sectoral
trends, such as energy generation, transportation, industry, agriculture, and
tourism) and impacts (effects of a changed environment, e.g. a decrease in
agricultural production, increased flood risks ete. )

Ideally, the state of a nation’s environment should be measured using
output measures: when output measures are unavailable, Eckel, Levy, Hipel
and Kilgour (1998a) propose using inputs, and sometimes the process itself.
Output and input measures are essentially different: output refers to the
end result of the process; whereas, inputs measure the resources put into the
process, with no attempt to measure their effects. The output of a wastewater
treatment facility is improved water quality which could be measured using
a single chemical that acts as a leading indicator, giving early warning of the
presence of other chemicals. Output indicators are often described in relative
terms, such as “percent of the maximum acceptable level”.

Where output measures are unavailable or inappropriate, input measures
are capable of quantifying the effort being made by a country to improve
the state of the environment, but not the effectiveness of such actions: a
given amount of input may have little or no impact on output. Examples
of environmental inputs include spending on greenhouse gas reduction and
the resources devoted to environmental enforcement. In order to be a valid
indicator, the chosen input measure must demonstrably affect the output.
When neither output nor input measures are available governmental attitudes
can provide clues as to the state of the environment. For example, many
governments lack the resources and commitment to enforce illegal activities
that ultimately impact the environment, such as the black market for CFCs.
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2.2.3 Ewvaluation of Alternatives

For the quantitatively oriented decision maker, there is great appeal in being
able to establish some means of associating a numerical score with each de-
cision alternative, after which the choice of the optimal alternative becomes
automatic. Accordingly, most optimization procedures are based on the as-
sumption that one can assign a real number (such as cost in dollars or the
biomass of a fish stock in kg) to represent the consequences of an alternative
according to a criterion. However, in many environmental problems this is
simply not possible. Often, the natural way to express the consequences of
actions is by using qualitative (descriptive) or ordinal information.

For this reason, MCDA techniques have been developed to take advantage
of the type of information available. For example, the ELECTRE methods
(Roy, 1973) employ information in a fuzzy context, the Analytic Hierarchy
Process (AHP) approach (Saaty, 1980; Saaty and Vargas, 1987; Saaty, 1990;
Belton, 1986) elicits ratio judgements, while Elimination Methods (MacCrim-
mon, 1973) require only ordinal rankings. Moreover, MCDA methods can be
classified according to whether the attributes are evaluated before (a pri-
ori preference articulation) or after the alternatives are presented (posterior
preference articulation).

This thesis addresses primarily the prior articulation of preferences. This
means that the value system of the stakeholder is analyzed before the evalu-
ation of the actual decision alternatives. This separation is never completely
possible as the decision context affects the elicitation process. Neverthe-
less, attempting to separate values from alternatives has two key advantages.
First, it can help to systematically explore the stakeholder’s value functions.
Second, the results can be used to explore new alternatives in the same de-
cision problem (or even to address a new decision problem).

Finally, compensatory methods are the focus of this thesis: quantita-
tive tradeoffs across objectives are allowed. Although compensatory and
noncompensatory approaches frequently coexist in decision problems. The
choice ultimately depends on the characteristics of the problem: compen-
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satory methods tend to be more demanding in terms of data and the amount
of information to be elicited from experts. Munda (1993) and Opschoor and
Hafkamp (1991) provide an overview of compensatory methods applied in
the economic evaluations of environmental problems.

Among cardinal decision analytic methods, a fundamental distinction ex-
ists between monetary and non-monetary evaluation approaches. This thesis
focuses on the latter; although popular examples of the former include cost-
benefit analysis (CBA) and nonmarket valuation methods, such as contingent
valuation (CV) (Mishan, 1988; Dasgupta and Pearce, 1972). The treatment
of decision consequences in purely monetary terms has attracted consider-
able criticism, particularly for environmental applications (Nijkamp, 1980;
Sagoff, 1988; Prato, 1999), although it is certainly more convenient to assess
projects and make decisions solely on the basis of monetary values.

2.2.4 MCDA and Cost-Benefit Analysis

MCDA is a conceptual framework for evaluating environmental projects that
alleviates some of the ethical, theoretical, and practical shortcomings of CBA
(Prato, 1999; Bishop, 1993; Perrings, 1994): both economists and ecologists
note that basing environmental investment decisions on CBA will not ensure
the sustainability of essential natural services, such as flood protection, wa-
ter purification, and biodiversity. There are several reasons why MCDA is
preferred to CBA (Naiman et al., 1997; Cameron, 1997). First, CBA com-
promises the “authenticity, richness, and quality” (Prato, 1999) of decision
making since an inherently multiple criteria problem (with socio-cultural di-
mensions) must be analyzed with a single monetary criterion (net present
value).

Second, Willingness to Pay (WTP) estimates of ecological services elicited
with Contingent Valuation (CV) methods are routinely incorporated into the
CBA of environmental projects (Feather et al., 1995; Cameron, 1997). In
summarizing the weakness of the CV method Kahn (1996) argues that “con-
tingent valuation is associated with controversy and is far from universally ac-
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cepted, even among environmental economists.” Moreover, Cameron (1997)
notes that respondents have trouble stating their WTP for improved water
quality®. Finally, estimating dollar values for goods and services is partic-
ularly impractical in developing countries where most business transactions
and social activities occur outside of any formal market setting (Bjornstad
and Kahn, 1996).

2.3 Multi-Attribute Decision Making (MADM)

MADM, a subset of MCDA, is a class of problems in which there are a
discrete set of alternatives. MADM situations are sometimes termed ‘se-
lection problems’. This thesis focuses on cardinal MADM approaches al-
though most of the results could be reformulated to accommodate ordinal
data (Keeney, 1992). In this section a variety of MADM approaches are
highlighted and contrasted, including Outranking methods (Section 2.3.1),
Multi-Attribute Value Theory, MAVT (Section 2.3.2), the Analytic Hierar-
chy Process, AHP (Section 2.3.3), and lexicographic techniques, such as the
‘Elimination Method’ (Section 2.3.4).

2.3.1 Outranking methods

The ELECTRE technique was developed by Benayoun et al. (1966) and
Roy (1973); the name ELECTRE is an acronym for ELimination Et (and)
Choice TRanslating algorithm. Three versions of ELECTRE have been pre-
sented by Roy: ELECTRE I seeks to reduce the number of alternatives under
consideration; ELECTRE II ranks nondominated alternatives; while ELEC-
TRE III discusses the notion of “pseudo-criteria”. Proponents of outranking
methods argue that their lack of an axiomatic foundation is compensated by
their descriptive reality (Bouyssou, 1993). In ELECTRE the decision maker

3Sagoff (1988) introduced another criticism of CV: survey respondents tend to express
their WTP for a good or service from the viewpoint of a concerned citizen rather than as

a consumer or user of that good or service.
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must provide both a set of weights reflecting the relative importance of the
objectives and numerical scores evaluating the alternatives. Information per-
taining to the ‘discordance’ and ‘concordance’ indices is also required.

Outranking methods are based on the concept of an outranking relation
(S). Given two discrete alternatives a; and aj it is said that

® g; outranks a; (a;Sa;) if there is enough evidence to suggest that ‘a; is
at least as good as a;’

® q; does not outrank a; (not(a;Sa;)) if the arguments in favor of the
proposition ‘a; is at least as good as a;’ are considered insufficient

Several common criticisms of ELECTRE are:
e there are often no alternatives selected by ELECTRE;
e the methods lack a strong axiomatic basis;

e many input parameters are required which may have little intuitive
meaning (such as the discordance and concordance thresholds);

e a consultant often adjusts the thresholds and the weights in order to
obtain the desired solution;

e the method is quite complicated;

e if one possesses the information necessary for building a linear utility
function, the use of ELECTRE may be gratuitous.

Responding to these criticisms Brans and Vincke (1985) developed PROMETHEE,
an offshoot of ELECTRE. The ELECTRE approach to MADM problems
continues to be a popular technique in the European school of MCDA (al-
though much of the literature is only available in French).
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2.3.2 Multi-attribute Value Theory (MAVT)

The need to clarify values has long been recognized as a critical component
of decision analysis. For example over 200 years ago, the American inventor
and statesman Benjamin Franklin (Franklin, 1772) emphasized the impor-
tance of personal values. Even today, the management gurus Peters and
Waterman Jr (1982) propose one all-purpose bit of advice for managerial ex-
cellence: “figure out your value system”. Similarly, Keeney (1994) refers to
value-focused thinking as a way to facilitate creative thinking and to improve
communication among stakeholders. In fact, values pervade the entire field
of operations research; they are used to build a quantitative objective func-
tion, which provides the basis for evaluating alternatives. Most importantly,
values are essential in defining the goals we strive to meet (and the indicators

we select to measure our progress toward these goals).

Cardinal Value Functions

Value functions are a mathematical representation of human judgments.
They attempt to analytically describe the value system of the individuals
involved in a decision and realistically capture aspects of human judgment.
A cardinal value function v is often referred to as a “measurable value func-
tion”, a “cardinal value function”, or a “value difference function”. Cardinal
value functions require a more demanding set of assumptions than the or-
dinal case, but provide more information about the preference structure. A
cardinal value function v preserves ordinal preference as well as an order-
ing on difference (under certainty). Thus v(z;) > v(z,) implies that z, is

preferred to z, and
o(z1) ~v(z2) > v(z3) — v(za) (2.29)

implies that the value difference between z, and z, is greater than that be-
tween z3 and x4 (where z3 is preferred to z4). Hence, cardinal value functions
can measure ‘strength of preference’ under certainty. Debreu (1959), Scott
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and Suppes (1958), Frisch (1964), Alt (1971), and others have proposed var-
ious axiomatizations of such ‘strength of preference’ measures. The formal
properties of this so-called “positive-difference” structure are reviewed by
Krantz et al. (1971).

A decision alternative can typically be described by a vector of attributes
(z1, T2, z3) where, for example z; may denote profit, z» the flooding risk,
and z3 the recreational benefits of a particular alternative. An attribute y is
preferentially independent of z if preferences for values of ¥ do not depend
on the value of z. If also z is preferentially independent of y, then y and
z are mutually preferentially independent. In general, preferential indepen-
dence states that the preferences for some subset of the attributes do not
depend on the level fixed for the other attributes. Price and quantity in
many commodities are naturally preferentially independent: people always
prefer affordable to expensive items given a fixed quality level. This holds for
any fixed quality level. And people always prefer higher quality to inferior
quality for any fixed cost.

Intuitively, preferential independence suggests that each alternative con-
tributes independently to the overall score, or, in other words, that some
additive form of the value function v(z,, zs,. .., z,) may be appropriate. In
fact, Keeney and Raiffa (1976) prove that if the set of attributes z,, =,
..., I i1s mutually preferentially independent, a decision maker’s preferences
can be represented by an additive value function:

U(.’L‘l, To..., IL'n) = Z .ICi 'Ui(:lii) (2.30)
=1

The additive representation explicitly introduces the component (marginal)
value functions v; for attribute z;. A common technique for specifying com-
ponent value functions, is the bisection technique (Keeney and Raiffa, 1976).
On the other hand, the shape of marginal value functions can be directly
selected. Two commonly used functional forms for decreasing, convex value
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functions are:

v(z) = az® +bz+c

v(z) = —e ™ —be™™

After imposing v(z°) = 0 and v(z*) = 1, a value function has one degree
of freedom which can be used to modify its shape. Often the assessor tries to
elicit the score z! corresponding to v(z') = 0.5 from the decision maker. This
approach is particularly appealing when the decision maker can interactively
modify the shape of the curve using graphical software (Hidmaél4dinen, 1998).
Finally, “sophisticated and formally trained” assessors should be consulted
before attempting to elicit value functions (von Winterfeldt and Edwards,
1986; Huber, 1974).

2.3.3 Value Hierarchy: AHP approach

The highest system objective is often a broad statement about the overall
goal, usually a universally acceptable statement. In the context of water
resources, the highest objective for a nation may be ‘the ability to supply all
present and future water needs for economic development and the welfare of
its inhabitants’. The lower level, or subordinate, objectives are introduced as
answers to the question of how the higher level objectives will be achieved.
After moving down the hierarchy several levels, the answers become “imple-
mentation activities” rather than objectives per se (Jousma et al., 1987).
The Analytic Hierarchy Process (AHP) is a popular hierarchical tech-
nique to solve MADM problems. For a full exposition see Saaty (1980). The
AHP decision support process consists of three phases: problem structuring,
preference elicitation, and synthesis. Problem structuring involves breaking
down the top level objective into subgoals until a sufficiently detailed repre-
sentation of the decision problem is obtained. Preference elicitation consists
of a series of pairwise comparisons where the decision maker considers the
relative importance of two attributes at a time, such as housing and water
quality. For each pair, one must decide which attribute is more important,
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and by how much? To answer this question, the decision maker provides
a verbal statement to represent the intensity of her preferences, such as “I
perceive water quality to be demonstrably more important than additional
housing”. This preference statement is then cast into a numeric scale.

To illustrate the use of AHP, consider the issue of stormwater management
in Subwatershed 314, Laurel Creek Watershed, Ontario, Canada. As specified
in the Laurel Creek Watershed Study (Grand River Conservation Authority,
1993) each subwatershed in the Laurel Creek Watershed must meet minimum
standards for the eight environmental criteria listed in Table 2.1. Weights
for the eight environmental criteria in Table 2.1 were ascertained by eliciting
pairwise comparisons from local residents.

The pairwise comparison matrix (PCM) shown in Fig 2.5 was developed
by aggregating individual scores using the geometric mean technique. The
resulting eigenvector £ of this PCM is:

E = (0.74 0.47 0.29 025 0.19 0.15 0.13 0.11) (2.31)

After normalizing E the weightings are bacteria = 0.74/2.33 = 0.32,
phosphorus = 0.20, sediment = 0.12, DO = 0.11, hydrology = 0.08, hydro-
geology = 0.06, erosion = 0.06, and temperature = 0.05.
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Phosphorus 0.63 1.00 182 219 2.29 297 3.53 3.80
Sediment 044 0.55 1.00 121 159 180 222 264
Dissolved Oxygen | 0.32 046 083 1.00 151 1.71 185 2.19
Hydrology 0.26 044 063 0.66 1.00 043 1.54 1.66
Hydrogeology 0.20 0.3¢4 0.56 0.58 0.70 1.00 1.08 1.46
Erosion Control 0.17 0.28 0.45 054 065 093 100 1.36

Temperature 0.16 0.26 038 046 0.60 0.68 0.74 1.00

Figure 2.5: Pairwise Comparison Matrix for Stormwater Management
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Infiltration is to be maintained on an
average annual basis for the entire subwatershed

e peak flows must be controlled to existing levels

¢ peak flow timing must be maintained to

within 75 % of existing conditions

e runoff volume is to be matched to existing levels,
exclusive of extended detention volumes

future distribution of impulse is to be maintained at existing levels

stormwater discharged to the receiving stream is not to exceed:
26°C from June 1 to August 1
29°C from August 1 to October 31

stormwater discharged to the receiving stream
should not have less than 5 mg/l D.O.

90% removal of Phosphorous from urban development
is required and in stream levels are to be
less than 0.05 to 0.08 mg/1

stormwater discharged to the stream
(both during and after construction)
is to have less than 25 mg/] of suspended solids

in stream levels are to be less than 200 counts/100 ml E.coli

Table 2.1: Subwatershed 314 Targets
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2.3.4 Lexicographic Approach

In many decision situations alternatives cannot be evaluated entirely in quan-
titative form. In addition, numeric weighting factors are often unavailable to
express the priorities of the objectives. In this situation, noncompensatory
models offer some capability of placing a number of alternatives in an order
of preference. An important example of non-compensatory models is the
lexicographic approach. In lexicographic preference, one attribute has over-
riding importance; decisions are made on the basis of it alone. If there are
several options tied for performance on this attribute, the second and third
most important attributes are used to break ties. Some researchers, such as
French (1986) eschew lexicographic preference because there is no trade-off
at all between alternatives.

A popular lexicographic technique is the Elimination method (MacCrim-
mon, 1973). Since significant emphasis is placed on the primary attribute, to
the exclusion of other issues, the Elimination Method and other lexicographic
methods should be used judiciously to ensure that all possible information is
used in the analysis. Necessary conditions for use of the Elimination Method
include ordinal or cardinal preferences for alternatives (for each objective)
and an ordinal ranking of the criteria. In summary, the Elimination Method
uses a stepwise process of screening alternatives: if one alternative performs
better than another on the most important attribute, then it will be selected,
however poorly it does on the remaining attributes. Alternatives not meeting
a specified level of performance are eliminated until only one is left that has
satisfied all the tests to that point. Ties are resolved by making the levels of
performance or the criteria used more discriminating.

Consider the evaluation of sixteen stormwater management alternatives
(A through P) in Subwatershed 314. The evaluation of these sixteen alter-
natives based on the eight environmental criteria listed in the Laurel Creek
Watershed document is illustrated in Table 2.1. More details can be found
in the technical report by Dorfman (1996). Of the eight criteria shown in
Fig 2.6 and Table 2.1 many local residents feel that ‘bacteria’ is the most
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important criterion (citing the effects of high bacteria levels on fish, dissolved
oxygen, swimmers, and the water supply).

1= <
8 = = @
2 & S 4
S . 2 2 % = 5
Z 3 £ 235 S B E
S £ § 5 S £ B E g o= oz
= & 2% 8 28 5 % 2 5 %
5 £ ¢ £ 2 2 % % ok
BMP (brief definition) TIEIS|IE|AIE|&|S|& Comments
At Source
Lot Level Infiltration A VIiVIVIVIVIV]VI]V]| 8 | easily implemented
Vegetated Filter Strips B NARVARY 3 | best suited for commercial
Conveyance (to stream)
Pervious Pipes c VIivIVIVIV]IV] V] V]| 8 | groundwater contamination
Grassed Swales D NA R4 2 | inexpensive
Sand Filters E Vv vV | v || 4 | high maintenance
Cooling Trench F NARY v 3 | well suited to temperature
Conveyznce (in stream)
Erosion Protection G Vv vV|vIVv|V| 5 | improves stream erosion
Restore Canopy H v v 2 | not preferred
Buffer Strips I Vv ViV 3 | required as part of study
End of Pipe
Detention Wet Ponds J NARY; v 3 | effective sediment removal
Detention Dry Ponds K ViV Vv 3 | not preferred; ineffective
Detention Wetlands L NARYS vV 1V |5 | effective for bacteria
Infiltration Basins/Trenches M VIivVvIivIiIVIVIVIVI] V]| 8 | high failure rate
Oil/Grit Separators N v 1 | not preferred
Quantity Detention Basins o v 1 | control large storms
Detention Wetlands P v/ | 1 | preferred as contingency

Figure 2.6: Sixteen stormwater management BMPs
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Using the criteria rankings derived in the previous section (i.e. bacteria
is the most important criteria, followed by phosphorous, sediment, DO, hy-
drology, hydrogeology, erosion, and temperature), the Elimination Method
shows that the ordering of alternatives (from most to least preferred) is

most preferred A~C~M>G>L>FE>P>»B>D>
tie
I>H>F>»J~K>N>Q0 least preferred
tie
(2.32)
Here, ‘Lot Level Infiltration’ (A), ‘Pervious Pipes’ (C), and ‘Infiltration
Basins’ (M) are the most attractive alternatives. Deciding among these three
may require additional information. For example it is known that ‘Pervious
Pipes’ are susceptible to clogging and ‘Infiltration Basins’ possess a “very
high failure rate” (Dorfman, 1996). Accordingly, the most suitable alterna-
tive may be ‘Lot Level Infiltration’. Chipman (1971) and Fishburn (1970)
discuss lexicographic preference in more detail.

2.4 Conclusions

Values of 2* (normalized optimal population levels) are plotted as a function
of the ratio of the discount rate to the intrinsic growth (the bionomic growth
rate, v) and the cost to price ratio (¢ and K are usually given) z,. One can
conclude that as the harvest costs increase (or resource prices decrease) the
optimal population level z, increases in a non-linear fashion. An extreme
case arises when 2, = 0, that is, when the costs of fishing are zero: here the
optimal population level is quite low (but not zero due to the structure of the
cost function). In addition, increasing the discount rate (making the future
worth less relative to the present) leads to progressively decreasing optimal
population levels z* that approach z, as v — +co. In addition, increasing
the preservation value of the stock (and decreasing the price per unit of the
harvested resource) leads to higher optimal population levels. Consequently,
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explicitly including conservation concerns in a cost-benefit analysis may lead
to increased protection of resources, provided that the price of the resource
remains low.

The dynamic relationships among price, cost, and optimal population
levels are also modeled. It is shown that as the costs of harvesting increase,
the optimal population level initially decreases (as harvesters rush to extract
more resources). However, in the long term, as harvesting costs continue
to increase, eventually harvesting is reduced. To address this temporary
increase in harvesting, a government might announce a tax in advance and
implement the full tax immediately. A reduction in the price per unit of
harvested biomass was shown to increase the optimal population level.

This chapter illustrates the use of the Elimination Method and Multi-
Attribute Value Theory to select among sixteen stormwater management
alternatives in subwatershed 314, in the Laurel Creek Watershed. It was
shown that ‘Lot Level Infiltration’ (A), ‘Pervious Pipes’ (C), and ‘Infiltration
Basins’ (M) are the most attractive alternatives. However, since ‘Pervious
Pipes’ are susceptible to clogging and ‘Infiltration Basins’ possess a “very
high failure rate” (Dorfman, 1996) the most suitable alternative may be ‘Lot
Level Infiltration’.



Chapter 3

MCDA under Uncertainty

A plethora of techniques is currently available to describe and model envi-
ronmental systems under uncertainty — soft systems methodologies, boot-
strapping, qualitative simulation, fuzzy logic, scenario analysis, Monte Carlo
simulation, what-if conjectures, risk analysis, perturbation theory, spectral
analysis, and the statistical design of experiments, to name a few. For a
detailed discussion of these uncertainty methods, see, for example, Morgan
and Henrion (1990), Zadeh (1972), Restrepo et al. (1993), and references
therein. Which uncertainty technique to select depends on the purpose of
the uncertainty analysis, the nature of the uncertainties (local or global), and
whether model inputs are endogenous or exogenous to the model.

Section 3.1 deals with the use of interval approaches to formally model
the uncertainty in a decision maker’s preferences. When a multiple criteria
situation is characterized by severe uncertainty, a decision maker may be un-
able to provide precise estimates for her preferences. In fact, a decision maker
might feel comfortable specifying only ordinal information. Or the decision
maker may feel inclined to make interval ‘strength of preference’ statements
consistent with ‘natural’ verbal expressions such as “the i-th attribute is
two to three times more important than the j-th attribute”. Accordingly,
methodologies for processing ordinal information and interval judgments are

provided.

74
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Section 3.2 uses simulation models and sustainability indicators to address
the uncertainty inherent in multi-attributed resource management decisions.
Here, several sustainability indicators are put forth, including measures to
capture ‘failure intensity’ and ‘system resistance’. These indicators are con-
sidered in the context of Web-HIPRE, a Java-applet based on Hamaldinen’s
HIPRE 3+ (1998), in order to promote interactive web-based MCDA under
uncertainty (Section 3.2.1). Finally, these concepts are illustrated using a
forest management case study in New Brunswick, Canada (Section 3.2.2).

3.1 Interval Approaches to Uncertainty

Preference judgments are notoriously tentative, imprecise, approximate, and
incomplete. Accordingly, when multiple attribute problems are characterized
by severe uncertainty a decision maker may be unable to provide precise esti-
mates for her preferences, such as the relative importance of criteria. In fact,
a decision maker might feel comfortable only specifying an ordinal ranking
of the criteria weights. It follows that a decision maker should be allowed to
specify a range of value judgments (approximate preference statements).

Consider a decision problem with three attributes, ¢;, ¢z, and cs3, and cor-
responding ‘relative importance’ scores of wy, ws, and w; (w;’s are commonly
referred to as ‘weights’, although more technically they are ‘scaling factors’).
Assume that the only preference information available to the analyst is the
following ordinal information:

w3 > w; and w; > we with wi+wy+wy = 1 (3.1)

Consider the question of estimating w;, the relative importance of at-
tribute ¢;. It is assumed that each w; is non-negative and less than or equal
to 1. It follows that

O0<w; <1l and 0<wy<1and 0<w3 <1 (3.2)

To determine the average value of w; consistent with ws > w; = ws, an
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intuitive approach pursued by the author is to take the average value of w;
over all points in the feasible region (the pink plane shown in Fig 3.1).

From elementary calculus, the average value of z weighted according to
a function A(z) over the interval [a, ] is

jb':z:/\(:r)dzz:

Average value of z = “—b——— (3.3)

J Az)dz

By convention, the weighting function A(z) is non-negative with a positive
integral over the range [a,d]. For the problem at hand, £ = w; since we are
trying to find the average value of w;. As shown in Fig 3.1 there will be two
linear weighting functions: A;(w;), the solid green rectangle, applies when
0 < w; < 3; and Ap(wy), the open blue rectangle, applies when ;<w < 3.
Geometrically, for any particular value of w,, where 0 < w; < é, the set of
points that is consistent with this value of w; is proportional to the length of
the green rectangle in Fig 3.1. Similarly, for any value of wy, with £ < w; < 1,
the set of points that share this value of w; is proportional to the length of

the open blue rectangle in Fig 3.1.
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Figure 3.1: Calculation of average value of w,
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Accordingly, Eq 3.3 becomes:

1/3 1/2
Jr wy\l(wl) d‘l!)l + f wl/\g('wl) d’l.l)]_
Average value of w; = 0 7 11//32 (3.4)
f /\1(101) dwl + f /\g(wl) d'w1
0 /3

Since the weighting functions A;(w,) and As(w;) are both linear, elemen-
tary algebra and Fig 3.1 yield:

1
)\L(wl) = \/§’LU]_ and )\g(wl) = 2'\/5 (5 - wl) (3.5)
Substituting this into Eq 3.4 yields
1/3 1/2
f wl\/‘?wl dw1 + f w12\/§(% - ‘LU]_) d~w1
o 1/3
Average value of w; = 7 72
f \/§’LU1 dwl + f 2\/_2_(% - wl) dwl (3'6)
0 1/3
_ 9
18

Using this approach one can derive the average value of the weights (w;,
we, and w3) to be (5/18, 2/18, and 11/18).

3.2 Simulation tools for MCDA

Advances in computer and information technologies have revolutionized the
daily lives of many humans: everything from electronic shopping to political
activism has been transformed. Environmental managers have been quick to
take advantage of the Internet’s ability to disseminate environmental infor-
mation quickly, cheaply, and efficiently; web-based decision support systems
have become a popular means to help institutions and nations achieve their
environmental objectives. For example, Bhargava and Tettelbach (1997)
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present an Internet-based system for efficient waste disposal and recycling,
while Heilman et al. (1999) use the Extensible Markup Language (XML)
for the design of web-accessible databases to support rangeland conserva-
tion. Decision support systems not only capitalize on the Internet’s ability
to efficiently incorporate new knowledge (and make it instantly available to
end-users) but also assist decision makers in evaluating alternatives across
physical, biological, and social dimensions (Gunderson et al., 1995).

3.2.1 Sustainability Indicators

The author developed several sustainability indicators to evaluate soil tillage
practices (Levy et al., 2000c) and forest management approaches (Levy et al.,
2000d) in the context of Web-HIPRE (Hdmalainen, 1998). Specifically, Web-
HIPRE, a Java-applet based on Hamaéldinen's HIPRE 3+ (1998) is an in-
teractive web-based tool for decision analysis which integrates a number of
MCDA techniques including AHP (Saaty, 1980), SMART (Edwards and Bar-
ron, 1994), and SWING (von Winterfeldt and Edwards, 1986). The meaning
of sustainability remains unclear: some interpret sustainable development as
a lofty philosophical goal such as “the pursuit of happiness” and “justice”
(Manning, 1990), while others dismiss the concept as an oxymoron, or a
political shibboleth (Livingston, 1994). To others, sustainability implies a
condition in which the frequency and severity of societal risks are decreasing
over time.

The interpretation of sustainability is also context dependent. For exam-
ple, when managing agricultural systems, sustainability might imply produc-
tivity, constancy, and recovery (the ability to bounce back from a perturba-
tion). In order to formally evaluate system sustainability using Web-HIPRE,
several new sustainability concepts are defined, extending the work of Pimm
(1984) and Loucks (1997).

Let the status of the system at time ¢, ¢t = 1,2, 3...n, be represented by
the variable X, where the possible values of X; are divided into two sets:
S, the set of satisfactory values (X; € S) and F', the set of unsatisfactory
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values (X; € F'). Satisfactory and unsatisfactory ranges of criterion values
are subjective. They are based on human judgment or human goals. In some
cases, they may be based on well-defined health standards; however, most
criteria ranges will not have predefined or published standards.

Fig 3.2(a) shows an illustrative time series of values of a typical system
performance indicator, along with associated satisfactory and unsatisfactory
ranges. Each criterion will have its own range of satisfactory values. An
episode is defined as the maximal set of consecutive years in which an in-
dicator fails in the same direction; it is possible, of course, for the system
to immediately switch from failing ‘low’ to failing ‘high’, but this ‘Scylla to
Charybdus’ scenario will not be considered further. Note that in Fig 3.2(a)
there are four episodes occurring in years {3,4}, {6,7}, {9,10,11,12}, and
{17,18}. Note that in Fig 3.2(a) the deviation from satisfactory values are
also given.

The degree to which the system tends to maintain satisfactory values
is its resistance, vy, measured by the probability that the system remains
satisfactory immediately following a satisfactory value (i.e. that good follows
good):

v=P(Xm1 €S| X €5). (3.7)

This result is closely linked to the mean inter-episode time, I, which is
defined as follows:

1
— L; .8

# inter-episodes . Z . 7 (3.8)

jeinter-episodes
where there are ¢ episodes, 7 inter-episodes (with j = ¢ — 1) and the length
of the jth inter-episode is £;. The mean episode time, y, is measured as the
average length of an episode:
1
p=g—— ¥ = (39)

- # episodes -
i eepisodes

where C; is the length of episode 3.
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Extreme events typically bring substantial economic damages. Thus, the
prevention, management, and control of extreme events may have a high
priority. When a system fails, a measure of its vulnerability is the extent of
failure, 7.e. the expected magnitude of failure. As an estimator, v, the mean
maximum failure is used. This represents the average maximum failure extent
over all episodes in a time series:

. Y max{fail} (3.10)

V= —————
# episodes -
i e episodes

where “max { fail; }” represents the maximum failure during episode 7 and
“# episodes” stands for the number of episodes in the time series.

One could combine aspects of i and v to capture information about how
effectively the system is buffering shocks. To this end, v, the mean failure
sharpness is defined as:

_ 1 max { fail; } .
e D (3.11)

T

i c episodes

1 would be more meaningful if it could consider the time the system
requires to return from its peak failure to the satisfactory region; we shall
call this £;. This concept is included in the mean recovery time, ¥, which is
defined as:

1 Z max { fail; } (3.12)

- # episodes 3

i € episodes
All of the aforementioned sustainability indicators are now computed for
the time series in Fig 3.2(a) as follows:
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Resistance: vy = -1% =0.5
Mean Inter-Episode Time: ['= ! +§ +3 =20
Mean Episode Time: p= w—l—-}-ﬂ =25
Mean Maximum Failure: v = %8_—!;9 =7.0
Mean Failure Sharpness: ¢ = % [g + g + % + g— ] = 3.0
Mean Recovery Time: ¥ =i[%+%+§+?]=57

These indicators should be combined with those already existing in the
literature. For example, Hashimoto et al. (1982) defined system resilience to
be the average probability of a recovery from the failure set in a single time
step.

3.2.2 Sustainability Indicators and Forest Management

To illustrate the use of sustainability indicators in the context of environ-
mental management, consider the following forest management problem in
New Brunswick, Canada (Clark et al., 1979). At the heart of this issue is
the spruce budworm, a lepidopteran defoliator of conifers (Chorisoneuma fu-
miferana). This insect oscillates from low to high population levels every
30-60 yvears. During an outbreak, typically lasting about eight years, the
budworm may kill up to 90% of trees in a stand; balsam fir (Abies balsamea)
and spruce are particularly vulnerable. In an attempt to minimize disruption
of pulp and paper production, industry and government in New Brunswick
began the aerial application of pesticide in 1952. While initially ‘success-
ful’ at suppressing budworm outbreaks, chemical spraying gradually became
less and less effective (Baskerville, 1995). When an unprecedented outbreak
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Table 3.1: Subset of indicators developed from a simulation model built at
the University of British Columbia and International Institute for Applied
Systems Analysis (Clark et al., 1979).

Resource Indicators
Forest volume in m3 of merchantable timber / ha of fully stocked forest
Proportion of total volume harvested

Environmental Indicators

Insecticide impact in terms of fraction of province sprayed
Age class diversity of the forest

Economic Indicators
Cost per unit volume of harvested wood
Cost of insecticide spraying

Social Indicators

Recreational quality (number of subregions meeting a predefined rating)
Employment rate reflecting proportion of mill capacity utilized

erupted in the mid 1970s, the Canadian government recognized the need for
indicators to determine the health of the forests and related socio-economic
variables (see Table 3.1 for a subset of the indicators considered).

During the mid-1970s, the government of Canada reviewed possible forest
management alternatives: how best to schedule the harvesting and spraying
of trees so as to maintain a viable lumber industry, promote ecological in-
tegrity, and preserve recreational opportunities? As part of the attempt to
answer this question, a detailed simulation model was built (by researchers at
the Institute for Resource Ecology, University of British Columbia, Canada
and at the International Institute for Applied Systems Analysis, Laxenberg,
Austria) to examine the impacts of different harvesting alternatives on crit-
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ical socio-economic and resource variables. Three of the key alternatives
investigated by Clark et al. (1979) were:

¢ “Historical Management” (policies used in New Brunswick in the 1960s
and 1970s);

o “Winkler Dantzig” Management (the use of dynamic programming to
determine the ‘optimal’ schedule for spraying and harvesting);

e “Branch Density Hybrid Management” (judicious forest harvesting to
avoid triggering a budworm outbreak).

Fig 3.2(c) illustrates the hierarchical arrangement of attributes in this for-
est management problem: resource (z;), economy (z2), ecology (z3), recre-
ation (z4), and employment (z5). Note that there are four ‘level one’ objec-
tives, upon which the three alternatives (Historical Management, Winkler-
Dantzig Management, and Branch-Density Hybrid Management) are evalu-
ated. The overall value of each alternative is determined using the formula

V(z;) = k1z1; + kozoj + kazsj + ke(kaTaj + kszs;) (3.13)

For simplicity, assume that the level one criteria are of equal importance:
t.e. k1 = 0.25, ko = 0.25, k3 = 0.25, and k¢ = 0.25; and that the level two
criteria, namely recreational quality and mill employment, have weights of
ks =1/3 and k5 = 2/3 respectively.

Using the sustainability indicators of the previous section, the value func-
tion of Eq 3.13, and the time series provided in the work of Clark et al. (1979),
overall sustainability scores can be determined for each of the three forest
management alternatives. As previously mentioned, determining the ‘accept-
able region’ for each indicator is highly subjective. For example, in the case
of harvest costs, the ‘acceptable region’ was assumed to be

z3 < $20/m? (3.14)

Additional details can be found in Levy et al. (2000d) where the overall
sustainability scores for the Historical Management, Winkler-Dantzig, and
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Branch-Density Hybrid alternatives are found to be 0.05, 0.50, and 0.65
respectively. This is illustrated graphically in Fig 3.2(b). Note that Branch-
Density Hybrid is non-dominated on all criteria except z; (the resource in-
dicator), on which Winkler-Dantzig is best.

3.3 Sensitivity Analysis

Practicing decision analysts employ a variety of sensitivity techniques to
model uncertainties ranging from unknown weights to uncertain preference
information. However, sensitivity analyses are often ad hoc and inadequate
for a number of reasons. First, traditional sensitivity methods occupy a
separate phase of the MCDA cycle, usually at the “back end” (Chdvez and
Shachter, 1998). They inform the decision maker which uncertainties are im-
portant, but do not provide the necessary feedback to the decision maker (“at
the front end”). Second, while many sensitivity methods provide clues as to
how changes in model inputs will impact the recommended action, they do
not represent a comprehensive basis for measuring the relative robustness of
competing decisions to uncertainty. Third, the term “sensitivity analysis” is
sometimes used loosely and many authors have introduced their own specific
definitions. For example Kleijnen (1994) explicitly defines “sensitivity anal-
ysis” as the response of model outputs to eztreme values of the model inputs
and drastic changes of the model structure. In contrast, Morgan and Henrion
(1990) defines “uncertainty analysis” as the process of sampling model inputs
from probability distributions to quantify the consequences of uncertainty on
the model output.

In a typical sensitivity analysis involving unknown weights, one might
modify the relative importance of a particular criteria weight and observe
the effect on the overall result. For instance, in the Stormwater Management
problem, consider the effect of placing more importance on “Erosion” and less
on “Phosphorus”. The resulting ordering of the sixteen alternatives (from

most to least preferred) is:
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most preferred A~C-'~A/[>-G>-L>-E

tie
new positions

>-P>-I>-JA.JI&>H>-B>-F:>D>-N>—O least preferred
tie

(3.15)

3.4 Sensitivity Analysis Techniques

Consider a model represented as a function f, with two uncertain inputs z;
and z, and one output y:

y = f(z1,72) (3.16)

Further, assume that various uncertainties in the inputs have been iden-
tified.

A scenario is a particular situation, specified by a single value for each
input variable which defines a single point on the response surface. Accord-
ingly, a scenario can be defined as a vector of values for the inputs, z:

z = (z1,22) (3.17)

A nominal, or “base-case” scenario, consists of a single nominal value for
each input and represents the initial “best guess” values for the inputs (per-
haps the mean, median, or mode values of the full probability distribution).
These nominal input values are denoted Z; and T,. Together these two input
values specify the nominal scenario:

T = (51,5_5-2) (318)
The corresponding nominal output value is defined as:

7 = (Z1, T2) (3.19)



Simulation tools for MCDA 87

The analysis of uncertainty involves measuring the degree to which each
input z; (here z; and z, are the only inputs) contributes to uncertainty in
the output y. Perhaps the simplest method to quantify this uncertainty is a
measure called simply sensitivity, Us. It is the rate of change of the output
y with respect to variation in an input z; (Morgan et al., 1984). In this case,
the two sensitivities are the partial derivatives of output y with respect to
each input, evaluated at values of the nominal scenario. In general Ug can

be defined as follows:
9y

6:1:,- —
T

Us(z,y) = (3.20)
Hence, these sensitivities are the slopes of the two tangents to the response
surface at the nominal scenario. One obvious problem with Us for comparing
the uncertainty of different inputs is that it depends on the scale, or units of
measurement of z; and y. Of course sensitivity to an input measured in cen-
timeters will be a hundred times greater than an input measured in meters.
To ensure that measures of uncertainty are unaffected by the unit of mea-
surement, Ug should be normalized, defining changes in z; and y in relative
terms as a fraction of their nominal values. This measure of uncertainty is

sometimes known as elasticity, Ug.

Oy

8:1:,- g

x (3.21)

UE(EV y) =

< | 8l

A drawback of both Us and Ug is that they ignore the degree of variation
in each input. An input that has a small sensitivity, but a large variation
about its nominal value may be just as important as an input with a larger
sensitivity but smaller variation. The simplest approach that considers beth
sensitivity and variation is generally known as the first order approximation
or Gaussian approrimation after the German mathematician Karl Friedrich
Gauss (the “Prince of Mathematics”), who is credited with developing this
approach in the early nineteenth century. Here, the variance of the output
Var[y] = o2 is estimated as the sum of squares of the contributions from each
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input. Denote the variance of each input as Var[r;] = o? and Var[z,] = o3.
Then the variance of the output is given by the Gaussian approximation as:

o B et (2]

271 a—x? Va’f'[.'l.'g} (3.22)

Var(z:] + [

Here, the total uncertainty in the output, expressed as variance, is ex-
plicitly decomposed as the sum of the uncertainty contributions from each
input (the product of its partial derivative times its standard deviation).
This is the basis for many uncertainty techniques in the physical sciences
and environmental engineering.

The Gaussian approach is a local approach in that it considers the be-
havior of the function only in the vicinity of the nominal scenario. This
may be fairly accurate when functions are smooth and inputs are near nom-
inal values, but is likely to produce misleading results for more complicated
functions and large deviations from nominal values. In such cases, a global
approach to uncertainty is called for that explicitly evaluates the function
for large uncertainties (scenarios distant from the nominal scenario).

Suppose that a low and high value is selected for each input, chosen to
bound its range of plausible variation (it is not necessary for the bounds to
be symmetrically placed around each input’s nominal value). Assume that
the ranges for our two inputs z; and z, are denoted as [z?,z}] and [z, 73]
respectively. The nominal range sensitivity method, Ur, computes the effect
on the output of varying each input from its low to high value, while keeping
the other inputs at their nominal values (Morgan et al., 1984). For example:

Ur(z1,9) = f(z],T2) — f(2.%2)
UR(x21 y) = f(fhx;) - f(fhxg) (3'23)
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3.4.1 Analytic Approaches: Taylor Series Approxima-
tion

For all except the simplest cases, such as linear combinations of normal vari-
ables, Springer (1979) argues that exact analytic methods for the propagation
of uncertainty are intractable (or require sophisticated numerical integration
techniques). However, there are a variety of well-known approximate ana-
lytic techniques based on Taylor series expansions (Cheney, 1966). These
techniques are sometimes called Method of Moments because they analyze
uncertainty using the mean, variance, and sometimes higher order moments
of a random (output) variable which is itself a function of one or more ran-
dom (input) variables. In many engineering fields, the term ‘First Order
Uncertainty Analysis’ is used (Burges and Lettenmaier, 1975; Benjamin and
Cornell, 1970), because only the first order term in the Taylor series expan-
sion is considered.
Coansider a vector of n uncertain inputs

z = (21,22, ... Tn) (3.24)

soy = f(zx) It is assumed that the nominal value for each input is equal to
its expectation, so that for ¢ = 1 ton, E{z;] = Z;. Accordingly, the nominal
scenario is equal to the mean scenario, or the expectation of x:

Elx] = (Z1,T2, --- Tn) (3.25)

The Taylor series expansion provides a way to express deviations of output,
y, from its nominal value y — 7 in terms of deviations of inputs from their
nominal values, z; — T;. Successive terms contain higher order powers of
deviations and higher order derivatives of the function with respect to each
input (Korn and Korn, 1968). The expansion around the nominal scenario
with the first three terms is given by
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Z(-'L't xz)—‘

=1

-y &
2 Z Z(:z:, —Ti)(z; — Tj) a—zz_;}xj -

=1 j=1

3! ZZZ(% z:)(z5 — Z;) (zx — k)—al:f%xz:a?k .

i=1 j=1 k=I

+

(3.26)

+

Note that all derivatives are evaluated at the nominal (i.e. mean) scenario
T where

T = (T, T ... Tn) (3.27)

If the deviations z; — T; are relatively small, the higher powers will become
very small. And if the function is relatively smooth in the region of T, the
higher derivatives will be small too. Under these conditions, the Taylor series
produces a good approximation when the higher order terms are ignored.

For example, consider an approximation for the mean of the output de-
viation given in Eq. 3.26 using only terms up to the second order:

Ely — 7] ZE[xz AR

i=1

‘ZZE [(z: — Zi)(z5 — Z)) 8 a:L'J

=1 ;=1

-+

(3.28)

Since the nominal value of each z; is equal to its mean, we know
Elz; — T;] =0,
so the first term disappears. The covariance between z; and z; is given by
Covlz;, zj] = E[(z: — Ti)(z; — Tj)] (3.29)

Substituting this into Eq 3.28 yields

1
Ely—-7) =~ 3 Z Covlz;, x,]a Bz, (3.30)

i=1 j=1
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Note that as long as the function y is non-linear (at least one of the
second order or higher derivative terms are nonzero) the mean output value
E[y] cannot be computed simply by evaluating the model with all inputs set
to their expected values.

First Order Approximation
To make things simpler, it is common to take only the first order term. To
first order, the expected value of the deviation in y is zero:

Ely-31 =0 (3.31)

and so the expected value of y can be approximated simply by the nominal

value 7:
Ey) =7y (3-32)

From the definition of variance we have

Var(y) = E [(y — E))?]
=E{(y—-97

It follows that the first order approximation for the variance of the output
can be obtained using only the first order term from Eq 3.26.

Varly (Z(J;, : )
T (3.34)
~ Z ZE [(z: — Z:)(z; — :cj)] Gy

=1 j=1 ax]

(3.33)

Using the covariance formula in Eq 3.29, Var[y] can be expressed as:

Var[y] = ZZCov [zi, z5] 3

=1 j=1

Oy

3| (3.35)
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More insights can be gleaned by separating the variance terms,
Var([z;] = Cov|z;, z],
from the covariance terms. Moreover, since
Cov(z;, z;] = Cov[zj, zi]

it can be shown (Morgan et al., 1984) that

. = 3}
Varly] = Z Var [z;] I:@Ty

=1

2
J N
n T (3.36)
2 3 Oy
Z Z CO’U [IL',‘, Ij] -a?z B
€T

=1 j=i+1

Oy
Jz

If the inputs are independent, the second term containing the covariances
is zero, and this collapses into the simple Gaussian approximation discussed
in Eq 3.22 for the two input case. Assuming independence of the z; and z;
terms the variance of the output is approximately the sum of the squares of
the products of the standard deviation o[z;] and sensitivity dy/dz; of each
input:

Varly] = Z Var [z;]

=1

2
J (3.37)

i

327,'

Both the first order approximation (Gaussian) and higher order approxi-
mations (method of moments) have been applied quite widely to the analysis
of complex problems in engineering and the physical sciences. These analytic
methods have a number of advantages: numerical calculations are relatively
simple (once the algebraic analysis has been completed); the contribution
of each input toward the variance in the output is clearly illustrated, and
the entire probability distribution of the input parameters does not require
specification (only the first few moments, typically the mean and variance).
However, these analytic methods suffer from a number of disadvantages:
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1. If the model is complex and higher order terms are necessary, the al-
gebra can become intractable.

o

It is difficult to obtain estimates for the tails of the output distribution
(usually only the mean and variance are conveniently calculated).

3. Large uncertainties in the input variables will cause significant inaccu-
racies since the Method of Moments is a “local approach”.

4. First order approximations replace the actual function by a linear one
(a hyperplane tangent to the response surface at the nominal scenario).

. The method breaks down if the response surface has discontinuities or

(9]

important covariance terms are omitted.

3.5 Conclusions

In order to evaluate the sustainability of ecological systems over time, sev-
eral new sustainability indicators are developed, extending the work of Pimm
(1984) and Loucks (1997). Using the time series provided in the classic spruce
budworm paper of of Clark et al. (1979), overall sustainability scores were de-
termined for three forest management alternatives (Historical Management,
Winkler-Dantzig, and Branch-Density Hybrid). The ‘acceptable region’ for
each indicator was subjectively determined. For example, in the case of
harvest costs, the ‘acceptable region’ was assumed to be less than $20/m3.
The overall sustainability scores for the Historical Management, Winkler-
Dantzig, and Branch-Density Hybrid alternatives are found to be 0.05, 0.50,
and 0.65 respectively. The Branch-Density Hybrid alternative was found to
be non-dominated on all criteria except z; (the resource indicator), on which
Winkler-Dantzig is best.

Since preference judgments are notoriously tentative, imprecise, approx-
imate, and incomplete an intuitive interval approach to estimating criterion
weights is developed that requires orly an ordinal ranking of the weights.
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This approach determines the average value of each criterion weight over
all values in the feasible region (i.e. consistent with the constraints). The
results are useful although often surprising without the aid of a diagram. Fi-
nally, practicing decision analysts employ a variety of uncertainty/sensitivity
techniques, including analytic approaches such as the Taylor Series Approx-
imation, to model uncertainties ranging from unknown weights to uncertain
preference information.
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Chapter 4

Bayesian Uncertainty Analysis

By the end of the 1970s, under the influence of powerful computing machines,
there was an explosion of immensely complex, often arbitrarily precise, and
predominantly deterministic environmental models!. Despite the enthusiasm
of the time, most of the large scale systems and policy oriented models built
in the 1970s fell significantly short of their original expectations. A few
shortcomings figured prominently in the limited utility of these efforts:

1. Failure to carefully examine the implications of uncertainty in the input

variables.

2. Inability to deal with exogenous events and stochastic phenomena, par-
ticularly in physical systems such as climate models.

3. Inadequate and incomplete understanding of the system being modeled.

Clearly, environmental decision making under uncertainty remains a dif-
ficult research problem, particularly in complex, multi-attribute situations.
Yet, without a thorough analysis of the uncertainty in a policy problem “we

! A number of other global modeling projects were undertaken in the decade that fol-
lowed publication of The Limits to Growth (Meadows et al., 1974). Many of them, such as
the Global 2000 Report to the President (U.S. Council on Environmental Quality, 1980)
and the Forrester-Meadows model are succinctly summarized in Meadows et al. (1982).

96
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cannot be sure that the results of a model, especially a very large and complex
one, mean anything at all.” (Morgan et al., 1984). To improve the analysis
and modeling of uncertainty in environmental systems, this chapter considers
uncertainty at all stages in the environmental modeling cycle. The Bayesian
approach to uncertainty analysis is emphasized throughout. As shown in Fig
4.1, uncertainty in environmental modeling can be categorized into the stages
of model building (Section 4.1), parameter estimation (Section 4.2), and pre-
diction. Of course, models can be used for purposes other than prediction,
such as simulations, forecasting, and analysis,
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4.1 Model Building

Rosen (1985) addresses some of the nuances that arise in the modelling of
physical systems. He argues that modeling a “Natural System” N (some
aspect of the world gleaned through interaction) in terms of a syntactic “For-
mal System” F (which manipulates symbols according to explicit rules, as
in mathematics) requires a sequence of three steps:

1. System identification: encoding linkages and environmental phenomena
observed in NN as propositions in F'.

2. The syntactic entailment of F': the application of its rules of inferences.
3. Decoding theorems back into causal phenomena by way of prediction.

The distinction between parameter and model uncertainty is often am-
biguous and different model structures can be assimilated into a single meta-
model, which contains separate models as special cases, according to one or
more parameters. For example, Howard and Matheson (1984) and Howard
(1988) consider a dose-response function with uncertain form: it may be
linear or exponential. It is straightforward to define a dose-response func-
tion with an exponent parameter which will reproduce linear models if the
exponent is 1 (Henrion and Fischoff, 1986). Similarly a dose-response func-
tion with a threshold parameter can be defined that will characterize non-
threshold models, if the threshold parameter is zero (Morgan et al., 1984). In
this way, uncertainty about the model form can be converted into uncertainty
about the parameter values (Genest and Zidek, 1986).

4.1.1 Assumptions and Simplifications

Any model should be as simple as possible, yet still provide a reasonable
explanation of what is happening according to the principle of Occam’s Ra-
zor (Hipel and McLeod, 1994). Even the most carefully constructed and
sophisticated model is only an approximation to reality: inaccuracies and
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uncertainties will arise when modelling real-world systems (Wynne, 1992).
Furthermore, data is often lacking, measurements may be imprecise, and
environmental phenomena are inherently random.

The use of a first order equation for the decay of organic wastes dates
back to the pioneering work of Phelps (1909) and Streeter and Phelps (1925).
A majority of modelers continue to assume that environmental processes
occur at rates proportional to the concentration of the substance of interest.
Specifically, environmental processes are often described mathematically as:

dC
dt

where C is a concentration (mass/volume), ¢ is time, and k& is a rate constant

= —kC (4.1)

(1/time). The integrated form of this expression is the familiar first-order or
exponential decay formula:

C(t) = Coexp (—kt) (4.2)

where C(t) is the concentration of C at time ¢, and Cj is the initial concentra-
tion of C. This approach has intuitive appeal, and the parameters Cp and &
are easy to estimate given only a few measurements of C(¢t). Environmental
processes that have been approximated in this manner include the oxidation
of carbonaceous biochemical oxygen demand (BOD) and nitrogenous BOD
by oxygen demanding organisms (O’Connor and Dobbins, 1958; Metcalf and
Eddy, 1991).

The decay process in Eq 4.1 is referred to as a ‘first-order’ reaction. The
term first-order arises from an implicit exponent of a ‘1’ on the C in this
equation. This assumption is so common and subtle that many researchers
are unaware that a subjective decision has been made by choosing a first-
order model (Berger and Berry, 1988). For fundamental processes such as
nuclear decay and chemical reactions, the first order assumption has “sound
theoretical and empirical support” (Bates and Watts, 1988). However, envi-
ronmental processes occur at a very different scale from chemical reactions
(Swamee and Ojha, 1991) and are an aggregation of numerous underlying,
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often unknown, individual processes (Adrian and Sanders, 1992). To address
this situation, the first-order decay model of Eq 4.1 can be more generally
expressed as:

dC

- = —kC* (4.3)

where the exponent 4 is a free parameter to be estimated from the observa-
tions. The integrated form of Eq 4.3 is

1

Ct) = [Co P —k(1—0)t]1—¥@ (4.4)
Note that when 8 = 0, the concentration decreases linearly to zero. On the
other hand, when 0 is greater than zero, the rate of concentration decrease
slows with time, with a zero asymptote. When # = 1, the rate of decrease
is proportional to C and the solution is given by Eq 4.2. Large values of &
indicate faster initial concentration decreases, followed by increasingly slower
decreases. This is illustrated in Fig 4.2. Finally, 8 is not restricted to integers
(fractional values are also possible). For example, Adrian and Sanders (1992)
consider the oxygen sag equation for half order BOD kinetics (f = 0.5 in Eq
4.3).
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time (£)

Figure 4.2: Decay of C(t) for various values of 8

4.2 Parameter Estimation: the Bayesian ap-

proach

Assessing the relative plausibility of a variety of parameter values, given
the available data, is an important component of ecological modeling. Such
an assessment is awkward using classical statistics, since the frequentist ap-
proach assumes that the value of parameters are fixed (known by God), not
random: each parameter has a single, true, though often unknown value (at
least to mortals). However, in Bayesian statistics parameters are not fixed:
they are themselves random variables from a given probability distribution.

Even with copious volumes of data, it is often not possible to recover a
uniquely best set of parameter estimates allowing a match between the model
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and the observations (Sorooshian and Gupta, 1985; Johnston and Pilgrim,
1976). Moreover, data of ecological processes are always produced with a
certain error (Jorgensen, 1979). In the modelling process these errors will
be propagated to the model parameters. Moreover, model parameters must
also compensate for the shortcomings of over-simplified model constructs.
Any statistic used to estimate the value of an unknown parameter @ is
called an estimator of 8. The observed value of the estimator is called the
estimate. For instance, the usual estimator of the mean of a normal pop-

ulation, based on a sample z;,...,z, from that population, is the sample
average
1 n
Iz = ;I:Zl T; (4.5)
1=

If a sample of size 3 yields the data z; = 5, zo = 5 and z3 = 2, then
the estimate of the population mean, resulting from the estimator Z is the
value 4. Hence, an estimator is a function of the observed sample values
that provides an estimate of a parameter of the parent distribution (such
as a moment). The method of moments, maximum likelihood method, and
method of least squares are three general approaches for obtaining point
estimates of unknown parameters (estimators). Bayesian approaches can help
in the estimation of unknown parameters when prior information available.

The earliest general method for determining an estimator of an unknown
parameter is the method of moments (introduced by Karl Pearson in 1894).
It works as follows: the parameters of a population distribution are selected
to match the estimate of the sample data. It follows that the method of
moments’ estimate of a population mean is always the sample mean. This
procedure is usually quite straightforward to implement. The method of
maximum likelihood is more widely used in modern statistics and involves
the selection of parameter values most likely to yield the observed data set.
Polacheck et al. (1993), Punt and Butterworth (1993), and Punt et al. (1994)
use the method of maximum likelihood estimation in the context of fisheries.
The evaluation of point estimators is described in more detail in Appendix



104 Computer Support for Environmental MCDA Under Uncertainty

B.

Bayesian Regression Analysis

Many engineering and scientific problems are concerned with determining
a relationship between a (random) response variable Y and one or more
explanatory or predictor variables z1,...,z,:

Y = f(z1,...,2p) +€ (4.6)

where the function f is unknown and ¢ is random error. For instance, in a
chemical process, the relationship between the amount of catalyst employed
and the output of the process might be of interest. The simplest type of
relationship between the dependent variable Y and the p predictor variables
Ii,...,Tp is a linear relationship:

Y = 6o+ bizi + -+ + BpZp (4.7)

where By, B1, . . ., Bp are unknown coefficients, usually estimated from a set of
data.

Linear Regression

If the relationship between Y and the z;’s,7 =1, ..., p, is given by Eq 4.7 then
it would be possible (once B; were learned) to exactly predict the response
for any set of input values. However, in practice, such precision is almost
never attainable, and the most that one can expect is that Eq 4.7 would be
valid subject to random error. This means that the explicit relationship is:

Y = By + Biz1 + -+ + Box, +¢ (4.8)

where €, the random error, is assumed to be a random variable having mean
0. Hence, another way of expressing Eq 4.8 is

EY|z] = Bo + Biz1 + -+ + Bpzyp (4.9)
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where © = (2, T, .. .,Zp) is the set of independent variables, and E [Y|z] is
the expected response given the inputs . Equation 4.9 is called a regression
equation because it describes the ‘regression’ of Y on the set of independent
variables z1, s, . .. 7,. A regression equation containing a single independent
variable is called a simple regression, whereas one containing many indepen-
dent variables is called a multiple regression equation.

If there are n observations (z;,Y}),-. ., (Zn, Yz) on a single independent
variable z and output Y, the common model is:

Yi = B + buz: + € (4.10)

so that S; + piz; represents the systematic relationship and € is random
error. Y is clearly a random variable as it depends on e. In this thesis z is
always regarded as non-random.

A number of assumptions about the random errors €y,...,€, are now
made formally. Not all of these assumptions are needed for some results; in
rough order of importance they are:

1. E(Gi) = 0
2. €,...,€, are statistically independent.
3. Var(e;) = o2, i.e. constant for all observationsi =1,...,n.

4. €; is normally distributed.

These four assumptions are often summarized as saying that €, ..., €, are
independent and identically distributed N (0, 0?). In particular, Assumption
1 rules out data in which the errors have a positive expectation (mean) in
parts of the z range, and negative expectation in others. As previously
discussed, if E(¢;) =0 for i =1,...,n then

E(Y;) = Bo + Bz (4.11)

i.e. we have a linear relationship between E(Y) and z. Similarly, Assump-
tions 2, 3, and 4 also translate immediately into assumptions about Y, ..., Y,.
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Assumption 2 implies that Y7, ..., Y, are statistically independent, Assump-
tion 3 implies that Var(Y;) = o2, i.e. a constant over observations, and
Assumption 4 implies that Y; is normally distributed. Thus the four as-
sumptions about €, .. ., €, may be summarized by saying that Y;,...,Y; are
independent, and that Y; has a N(8y + B1z;, ¢?) distribution, as illustrated
in Fig 4.3.

Least squares estimation

The usual procedure to estimate Sy and f; is to select them such that

n

Z v — (Bo + Brz:)” (4.12)
i=1
is a minimum. This is the method of least squares. Each [y; — (8o + B1z:)]?
is the square of the vertical distance from the line one is drawing; the “best”
line is determined by the condition that the sum of squares of the vertical
distances between observations and the line be a minimum.
Using the popular linear model in Eq 4.10, the likelihood of the data, =
and y given the model parameters, £y, 51, and o is a normal distribution

expressed as:
1 1 2 .
p(z,yla,b,0) = Grot 2 &P | ~52 ; [y: — (Bo + Brz:)] (4.13)

Note that the sum of the squares
Z [v: — (Bo + Brz:)]” (4.14)
i=1

becomes part of the exponent in the likelihood probability density function.
It follows that
1 1 « 2
p(@,yla,b,0) < —exp | =5~ > [v: = (o + rzi)] (4.15)

=1
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+
4 ¥
I3 X
IfX =z, then ¥ ~ J]\
Y
Bo + Bz,
IfX =z, thenY ~ Jl\
) Y
Bo + Biz2

IfX =13, then Y ~

Bo + Brzs

Figure 4.3: Y; has a N(fy + f1z:, o?) distribution
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In a Bayesian context, a prior distribution is needed. When no prior
knowledge (initial ignorance) of model parameter values is assumed, a Jef-
frey’s prior distribution on o (variance of the model residuals) is appropriate.
This results in a joint prior distribution of the form:

1
p(:BO) ﬁly U) = ; (4.16)
According to Bayes’ theorem, the prior in Eq 4.16 is then combined with
the likelihood function given in Eq 4.15 to yield the joint posterior probability
density of the form:

p(a,b,ol®,y) < anl_*_l exp (—2}7 E [y — (Bo + Bla:i)]:z) (4.17)

i=1
Note from Eq 4.17 that minimizing the sum of squares implies finding the

maximum of the posterior density.

4.2.1 Mixed Order Model of BOD Decay

A compelling reason for using Bayesian parameter estimation over maximum
likelihood methods, or other estimation procedures, is that much information
is lost when model parameters are represented by a single value rather than
by a full distribution. In many modeling applications, one is interested in
estimating the value of an unknown parameter, ¢, or a vector of n parameters

6 = (61, 6a,---, 0,) (4.18)

about which there may be some prior beliefs. These prior beliefs may be
interpreted as the assigned probability before the collection of new data. This
prior distribution is often determined by using either previously existing data,
subjective scientific judgment, or by employing a statement of ignorance.
The latter, called a noninformative prior, is often a uniform distribution in
which all possible parameter values are equally likely. After obtaining m new
observations

T = (T1, T2,y Tm) (4.19)
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which have a probability distribution that is a function of the n unknown
parameters, the dependence of £ on @ can be expressed as the probabil-
ity density function p(x|@). This pdf is often referred to as the likelihood
function.

The next step in the Bayesian approach is to update the prior beliefs on
@ to account for the new data, . This is done using Bayes’ theorem:

p(l8) x p (6) (4.20)
p(z)

In the above expression p (@|x) is called the Bayesian posterior distribution

and expresses the probability of the parameter values given the observed data.

The denominator, p (z), is the expected value of the likelihood function over

the parameter distribution and it acts as a normalizing constant. Because

the denominator in Eq 4.20 is a constant, Bayes’ theorem is often expressed

p(Olz) =

in words as:
posterior o likelihood x prior (4.21)

indicating that the prior expectations are modified by the likelihood function
to yield the posterior beliefs. Once the normalized posterior distribution is
derived, it can be used for inference in a number of ways. Marginal distribu-
tions can be obtained for each model parameter ; by integrating the joint
posterior over all the other parameters in 6.

The presence of dissolved oxygen is essential for maintaining the biologi-
cal integrity of the aquatic environment. For this reason, agencies responsible
for water quality management seek to quantify the impact of municipal and
industrial wastes on the dissolved oxygen concentration of receiving waters.
The amount of oxygen required by aerobic microorganisms (bacteria) to sta-
bilize the organic matter of waste water (from metabolism of organic waste
compounds) is termed the biochemical oxygen demand (BOD)2.

Conventionally, BOD exertion is modeled as a first-order decay process
(Phelps, 1909), in which oxygen consumption is proportional to the concen-

2This indicator has been extensively used to measure the “rate and extent of bio-
availability of the organic material present in waste water” (Constable and McBean, 1977).
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tration of the BOD remaining (the BOD ‘yet to be satisfied’) at time ¢, L(¢),
where L is measured in mg/L:

drL
- = - 22
— kL (4.22)

Here, & is the first order BOD rate constant in units of (1/day) and Lg
is the initial concentration of L (the amount of BOD remaining at ¢t = 0,
or ultimate BOD). This model was used in the pioneering work of Streeter
and Phelps (1925), who developed the relationship between the stabilization
of an organic waste measured by the BOD and the dissolved oxygen (DO)
levels of a river. Theriault (1927) and Fair (1939) did additional early work
in estimating the parameters of the first-order BOD decay model. The first
order BOD decay has been widely used for nearly a century to describe the
deoxygenation rate of municipal and industrial organic wastes. However, this
model is often chosen more on the basis of mathematical convenience, rather
than as a description of the complex transformations that occur as BOD
decays; a number of authors have cautioned against assuming that all BOD
data are described by a first order model (Orford and Ingram, 1953; Adrian
and Sanders, 1992; 1998).

Specifically, many authors have pointed out that second order reactions
frequently describe the stabilization of wastewaters (Thomas, 1957; Young
and Clark, 1965; Tebbutt and Berkun, 1976; Nemerow, 1974). After extensive
examination of municipal sewage Tebbutt and Berkun (1976) note that “...
the oxygen uptake relationship could be satisfactorily modeled by both first
and second order formulations.” Data taken from the Waterloo Pollution
Control Plant (Constable and McBean, 1977) is used to compare the first
and second order BOD decay models in Appendix C using the root mean
squared error (RMSE) statistic

i=1

N
RMSE = J%me ~ Y (8] (4.23)

where y,(¢;) is the predicted value of y on day ¢;; ym(t;) is the measured value



Model Building 111

of y on day ¢;; and N is the number of measurements of ¥ (¢;). Appendix C
shows that the RMSE value is lower for the second order model.

Many studies have reported varying degrees of success modelling BOD
decay with first, second, and half order models. An alternative to the fixed
exponent approach is to model the parameter on L in Eq 4.22 as a free
parameter. Rather than assuming a first-order (or any fixed order) decay
process a priori, this formulation acknowledges that BOD decay is a mixture
of decay processes and allows the data to determine the reaction order, which
need not be constrained to integer values. With the exponent as a free
parameter, the first-order decay model of Equation 4.22 can be more generally

expressed as:

dL
- = - n n 4'.
— knL (4.24)

where the exponent n is a free parameter to be estimated from the observa-
tions. The integrated form of Eq 4.24 is

L(t) = [Li™ — kn(1 —n)t] == (4.25)

where n is a ‘pseudo-order’ parameter, k, is a mixed-order reaction rate
constant and the other variables have been previously defined. This “mixed
order” model was first proposed for application to BOD by Hewitt et al.
(1979) who fit Eq 4.25 to oxygen uptake curves obtained from stream samples
in New Jersey.

Bayesian parameter estimation is now applied to the mixed-order BOD
decay model. Bayes’ theorem is used to develop a joint posterior distribution
for the parameters in @ conditional on observed data. By implementing a
sampling based approach known as the Gibbs sampler (Gelfand and Smith,
1990) marginal parameter distributions are then derived, allowing competing
parameter values to be compared quantitatively to assess which are most
plausible for the fitted data set. Bayesian computation via the Gibbs sampler
and related Markov Chain Monte Carlo Methods is described in Smith and
Roberts (1993).
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The mixed-order BOD decay model can be represented in vector form as

the nonlinear model
y = f(0,t) +¢€ (4.26)

where € ~ N(0,02) and y and f(0,t) are the left and right-hand sides of Eq
4.25 respectively. Note that the vector of parameters, @, represents the three
parameters of the BOD model, Ly, k,, and n, t.e. :

6 = [Lo, kn, 7] (4.27)

Using this model, the likelihood of the data given the model parameters is a
normal distribution expressed as

1 1 l-n 212
p(x|6,0) = Wexp (—ﬁizzl [yi — (Lg™ = ka(1 = n)ty) ]
(£.28)
where the data is given by

z =[(tLy)i-- (v - - - (Ens ya)] (4.29)

Assuming initial ignorance of model parameter values, Jeffreys’ non-informative
prior chosen (Jeffreys, 1961). This results in a joint prior distribution of the
form:

p(8,0) =~ (4.30)
According to Bayes’ theorem, this prior is then combined with the likelihood
function given in Eq 4.28 to yield the posterior density function:

1 « 112
exp <_7 I:y.‘ —_— (Lé-n —_ kn(l — n)t,-) lln]

(4.31)

p(Olz,0) « =

Determining Marginal Distributions

Now that we have determined the joint posterior distribution for the param-
eters in @, how do we obtain the marginal density functions for n, Lo, or
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kn. In general, given a joint density f(z,y,...,y,) one could obtain the
marginal distribution for each parameter by integrating the joint posterior
over all the other parameters. For example

f(.’l?) =/"'/-f(xayly---ryp)dyl“'dyp (4'32)

However, there are many cases where the integrations shown in Eq 4.44 are
extremely difficult to perform, either analytically or numerically. In such
cases, the Gibbs sampler provides an alternative method for obtaining f(z):
rather than compute or approximate f(z) directly, the Gibbs generates a
sample

X, X..., X ~ f(z) (4.33)

without requiring f(z).

A Markov-Chain Monte-Carlo decision support system (or MEAL for
marginal distributions, environmental analysis, and ‘lokahi’) is developed
based on Gibbs Sampling (Gelfand and Smith, 1990; Smith and Roberts,
1993) to ascertain marginal density functions of interest. By simulating a
large enough sample, the mean, variance, or any other characteristic of f(z),
even the density itself, can be calculated to the desired degree of accuracy.
To understand the Gibbs sampler better, consider the two variable case.
Starting with a pair of random variables (X,Y), the Gibbs sampler generates
a sample from f(z) by sampling instead from the conditional distributions
f(zly) and f(y|z), distributions that are often known in statistical models.
This is done by generating a “Gibbs sequence” of random variables:

Yy, Xo, Y, Xi, Y3, Xy, ..., Yk Xk (4.34)

The initial value Yy = vy is specified, and the rest of Eq 4.34 is obtained
iteratively by alternately generating values from

Xi~ f=z1Y] = y)) (33

j’+l ~ fyl XJ" ~73_’,)
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The generation of Eq 4.34 is known as Gibbs sampling. It turns out that
under reasonably general conditions, the distribution of X} converges (in
distribution) to f(z}, the true marginal distribution of X, as & — oo. Thus,
for k large enough, the final observation in Eq 4.34 is effectively a sample
point from f(z).

To test the accuracy of the Gibbs sampler program written by the author
in MATLAB, consider the following joint distribution of X and Y

flz,y) (Z) y*re (1 —gy)* =Bl £ =0,1,...,n and 0<y<1

(4.36)

Suppose that the marginal distribution f(z) of X is of interest. The

Gibbs sampler allows us to generate a sample from f(z) by sampling instead
from the conditional distributions:

f(z | y) is Binomial (n, y)
(4.37)
fly|z)isBeta(z+a, n—z+f)

Applying the iterative scheme of Eq 4.35 to the conditional distributions in
Eq 4.37 one can generate a sample X, Xs,..., X, from f(z) and use this
sample to estimate any desired characteristic of the marginal distribution
f(z). In this example, Gibbs sampling is not needed since f(z) can be
analytically obtained from Eq 4.36 as

_(n\ T(a+B)'(n—z+p)
fz) = (x) F(a) T(8) T(a + £ 1)

z=0,1,...,n (4.38)

the beta-binomial distribution. Hence, characteristics of f(z) can be ob-
tained either

e directly from Eq 4.38 (either analytically or by generating a sample
directly from the beta-binomial distribution) or by

e using Gibbs sampling from the conditional distributions in Eq 4.37
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Fig 4.4 compares the Gibbs sample obtained from the conditional distribu-
tions in Eq 4.37 with n = 16, @ = 2, and B = 4 (green histogram) and the
analytic Beta-Binomial distribution of Eq 4.38 (grey line). Note that the
two histograms are very similar, giving credence to the claim that the Gibbs
scheme for random variable generation is indeed generating variables from
the marginal distribution.

Of course Gibbs sampling is not essential in any bivariate situation where
the joint distribution f(z,y) can be calculated, since

f(z,y)
flz) = OID)] (4.39)
On the other hand, Gibbs sampling may be indispensable in situations where
there are more than two variables, and when f(z,y), f(z), or f(y) cannot
be calculated.

For example, in the BOD decay model we have an entire vector of pa-
rameters (random variables), 6. The Gibbs sampling approach is used to
determine the marginal distributions for the parameters Lg, kn, and n in 6.
Specifically, the marginal distribution for Ly (the ultimate BOD, defined as
the amount of BOD remaining at ¢ = 0) is given in Fig 4.5.
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Figure 4.4: Comparison of analytical Beta-Binomial distribution (grey line)
with the green histogram sample obtained using Gibbs Sampling with n = 16,
a=2,and =4
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Figure 4.5: Marginal probability density function for Ly (ultimate BOD)
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4.3 Conclusions

Data taken from the Waterloo Pollution Control Plant (Constable and McBean,
1977) is used to compare the first and second order BOD decay models in
using the root mean squared error (RMSE) statistic

N
RMSE = J%;[yp(m — m(t)]? (4.40)

where y,(t;) is the predicted value of y on day t;; ym(t:) is the measured value
of y on day t;; and N is the number of measurements of y,,(¢;). It is shown
that the RMSE value is lower for the second order model than the first order
model.

Next, the BOD decay exponent n is allowed to take on any real value
(giving rise to a mixed-order BOD decay model), i.e. n is not restricted to
simply 1 or 2. According to Bayes’ theorem, the following joint posterior
density function for the parameters in 0 is:

p(8lz,0) o

1 <« 172
exp (—2—03 [y{ — (L[l)—n — kn(l - n)ti) 1""]

n+1
o i=1

(4.41)
where the vector of parameters, 6, represents the three parameters of the
BOD model, Ly, &,, and n, i.e. :

6 = [Lo, kn,n] (4.42)
and the data are given by
= [(t1, 91); -+ (tir 15)3 - - - (s W) (4.43)

A Markov-Chain Monte-Carlo decision support system (MEAL) is de-
veloped. based on Gibbs Sampling (Gelfand and Smith, 1990; Smith and
Roberts, 1993) to ascertain the marginal density functions for n, Lo, or k,.
This technique is valuable because integrating the joint posterior over all
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nuisance parameters is often intractable. For example, given a joint density
f(z,y1,--.,yp), to find the marginal distribution for £ one would have to
integrate over yi, - - -, Yp:

1@ = [ [ FEw) dundy (4.44)

The MEAL system provides an alternative method for obtaining f(z):
rather than compute f(z) directly, the MEAL system generates a sample

X, X0, Xm ~ flz) (4.45)

without requiring f(z). By simulating a large enough sample, the mean,
variance, or any other characteristic of f(z), even the density itself, can be
calculated to the desired degree of accuracy. The Gibbs sampling approach is
used to determine the marginal distributions for the parameters Lg, ky, and
n in . Some scientists have difficulty accepting Bayesian methods and inter-
pretations in view of their apparent “arbitrariness and subjectivity” (Berger,
1985). This chapter addresses these objections through the systematic use
of prior density functions for unknown parameters.



Chapter 5

Dynamic Environmental
Modeling under Uncertainty:
Stochastic Differential

Equations

5.1 Stochastic Processes

There are many examples of stochastic (random) processes in physical sit-
uations: ground acceleration due to an earthquake, windload on structures,
etc. A stochastic process is a function of two variables: the parameter ¢ and
the probability parameter w. A stochastic process is thus a mathematical
model of a dynamic process whose dependence on a parameter ¢ is governed
by probabilistic laws!. It follows that a complete notation of a stochastic
process is hence z(t,w), t € T and w € Q. For a fixed ¢, z(f,w) is a func-
tion on the probability space 2 and thus a random variable. On the other
hand, for fixed w, z(t,w) defines a function of £ and is a realization or a
sample function of the stochastic process. For notational convenience, the

Mn this thesis, ¢ will refer only to time, however, it can also denote a spatial coordinate.

120
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dependence of a stochastic process on w is often not explicitly shown.

STATE SPACE
Discrete Continuous
Di Markov Chain Time Series
iscrete
TIME Models Models
Conti Point Stochastic Differential
ontinuous
Processes Equations

Table 5.1: Classifications of Stochastic Models (Cox and Miller, 1965)

A common categorization of stochastic models was proposed by Cox and
Miller (1965) and is summarized in Table 5.1. Notice that time can be ei-
ther discrete or continuous and the state space of the variables describing
the system can also be divided into discrete and continuous values. Using
this distinction, four kinds of stochastic models are grouped in Table 5.1.
Markov chains, for instance, fall under the subdivision of stochastic mod-
els which incorporate discrete time and discrete values of the state space in
their mathematical structure. This chapter is primarily concerned with con-
tinuous time, continuous real-valued (continuous values of the state space)
stochastic processes. In particular, stochastic differential equations (SDEs),
first addressed by Langevin (1908) in the study of the Brownian motion are
investigated. Stochastic models falling in all categories in Table 5.1 have
been employed for addressing problems arising in stochastic hydrology and
water quality modeling (Hipel, 1994). For example, when deciding upon the
design of a multipurpose reservoir, a time series model fitted to the historical
river flows can be used for simulating other possible flow sequences.
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5.1.1 Wiener Process, W(t)

The Scottish botanist Robert Brown noted that individual pollen grains in
water moved about irregularly (due to the random bombardment of the
pollen grain by molecules of water). This type of erratic motion of tiny
objects in a fluid or gas can be described by Brownian motion, commonly
referred to as the Wiener Process W (t) and formally defined as the limiting
position of a random walk process®>. The Wiener process is one of the most
useful stochastic processes in applied probability theory and has been applied
for purposes such as analyzing price levels on the stock market and quantum
mechanics. In this thesis, only the ‘unit’ or ‘standard’ Wiener process, W (¢),
is dealt with (the variance of the unit Wiener process is simply t, rather than
the more general o2t).

Elementary properties of W (¢)

The Wiener process W(t) can be formally defined as follows:

1. for every £ > 0, W(?) is normally distributed with mean 0 and variance
(4

2. W(0) =0

3. The process W has independent increments, i.e. if r < s < t < u
then W(u) — W(t) and W(s) — W(r) etc. are independent stochastic
variables.

4. For s <t the stochastic variable W (t) — W{s) has the Gaussian distri-

bution N (O, VvVt—s).

2The random walk process can be envisaged as the sequence of plays of a game: if you
win any play you receive 1 unit; if you lose you lose 1 unit where successive plays are
assumed to be independent. Gamow, one of the pioneers of nuclear physics 1947 modeled
the progress of a drunk staggering away from a lamp post (with equal-sized steps) as a
random walk process.
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5. The sample functions of W (¢) are continuous but almost surely (with
probability one) nondifferentiable functions at every point.
The continuity of W (¢) in mean square is easy to prove since
E[[W(s)-W(@)[)] =0ass—t (5.1)

It can be also be shown that W (%) is not differentiable in mean square:

E [ W(t+h})L- W) |?

] =171J—->ooas|h,|—>0 (5.2)

Similarly it can be shown that W (¢) is also not differentiable with prob-
ability 1. Thus a typical Weiner trajectory consists entirely of “corners”.
An additional important characteristic of the Wiener Process is that:

E[(W(E)W(s)] = min(t,s)

t @ t<s (5.3)
= s : t>=s
t=s : t=s

This property implies that

1. E[W2¢)] =t

2. E[IW(t) - W(s)[?] =t — s, fort>s

3. E[ldW(t)[?] =dt where dW(t) = W (t +dt) — W(2)

4. W(t) has the The Lévy oscillation property (described below)

Let us fix two points in time, s and ¢ with s < £ and use the convenient
notation
At = t—s
AW() = W(t) —W(s)
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5.2 River Water Quality Modeling

A water quality model typically describes the chemical, physical, and biolog-
ical processes that occur in a water body, such as the reaction of chemical
constituents and the uptake of nutrients by living organisms. In this section,
four important contributions are made to the field of stochastic water qual-
ity modeling. First, the classic deterministic Streeter-Phelps equations are
modelled in a stochastic context. Second, the use of white noise processes
in water quality models is questioned. It is proposed that colored noise (the
Ornstein-Uhlenbeck process) replace the standard white noise assumption.
Approximation schemes are put forth so that practitioners can use colored
noise as a viable replacement for white noise. Third, generalized CBOD and
NOD decay models are used (so that decay parameters can be estimated from
data). Fourth, a decision support system, SEAL (Stochastic Environmental
Analysis for “Lokahi”) is designed to help environmental managers improve
water quality modeling in a multiple-criteria, stochastic context. In the con-
text of decision analysis, Yakowitz and Hipel (1997) refer to the importance
of “Lokahi” in their interesting paper: “Multiple objective decision making
for Lokehi in environmental management”.

Since the survival of aquatic organisms depends principally upon the
amount of available oxygen, dissolved oxygen (DO) is an important con-
cern in water quality management. Other important factors include water
temperature since biochemical processes and organism growth rates are reg-
ulated to a large extent by temperature (Culberson and Piedrahita, 1996).
An increase of atmospheric carbon dioxide and/or other greenhouse gases is
projected to cause climate warming which could significantly alter DO char-
acteristics in water bodies. These changes are in turn expected to have a
profound effect on indigenous fish populations (Fang et al., 1999).

The earliest models of water quality involved two linear deterministic
differential equations of biochemical oxygen demand (BOD) and dissolved
oxygen (DO) based on the pioneering work of Phelps (1909) and Streeter
and Phelps (1925). While working for the U.S. Public Health Service, these
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researchers and their colleagues investigated the water quality of American
rivers. The seminal Streeter—Phelps equations form the foundation for many
of today’s sophisticated water quality models which are able to capture phe-
nomena such as the phosphorus cycle, carnivores, phytoplankton, and con-
taminants in a “nonlinear compartmental approach” (Thompson, 1982).
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Figure 5.1: The reaches of a stream

Consider a river with multiple reaches and a treatment plant discharging
at the head of the reach, as illustrated in Fig 5.1. An environmental agency
may be interested in monitoring the discharge of contaminants into the river.
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Mass or energy balance equations are often used to describe the dynamics
of constituent concentrations of natural water bodies. Tne health of aquatic
systems (algae, fish, micro-organisms, etc. ), aesthetics (such as odor and
color), potability, taste, and so on depend upon the resulting concentrations
of dissolved oxygen. DO levels naturally cycle over the course of a day
(and throughout the year). In the steady state conditions resulting from
the natural balance of various chemical and biological processes, the DO
concentration fluctuates about a saturation concentration (Og). Whenever
untreated waste waters are discharged into the stream, the concentration of
DO may be adversely affected.

In this chapter, the steady-state stochastic DO models of Bowles et al.
(1977), Finney et al. (1982), Dewey (1984), Zielinsky (1989), and Curi et al.
(1995) are considered. These models address three water quality constituents:
DO, carbonaceous biochemical oxygen demanding substances (CBOD) and
nitrogenous oxygen demanding substances (NOD). Coupled CBOD-NOD-
DO reactions are an important component of water quality modeling and
data for the concentration of these constituents are more readily available
than for other substances. It is known that CBOD is increased by nonpoint
load sources of carbon (S¢) and decreased by oxidation (%), sedimentation,
and adsorption (£). NOD is also increased by nonpoint load sources (S)
and decreased by oxidation (k). Finally, DO is supplied by reaeration (k3)
and photosynthesis (P) and decreased by respiration (R), CBOD (k,), and
NOD (k7). The following three deterministic differential equations have been
used for describing the water quality of a river (Zielinsky, 1989; Curi et al.,
1995):

d

d—f = —(k,+L)C + Sc

N -
‘-ia? = —kyN + Sy (5.4)
dO

— = k0, ~0) - kC —kN + P - R
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where the photosynthetic term, P, in Eq 5.4 is represented by

P, sin[v(t + 0)] (5.5)

These equations describe how a spike input of CBOD, NOD (or other
organic material) generates the classic transient DO “sag curve” shown in
Fig 1.6. In Eq 5.5 P,, is the maximum rate of photosynthetic DO production
in mg/L/day. A detailed modeling of photosynthesis is beyond the scope
of this thesis®. However, the photosynthetic term used in Eq 5.5 is general
enough to encompass the comprehensive photosynthesis models of O’Connor
and Toro (1978) and Curi (1992).

The units of the variables in Eq 5.4 are well-known and reproduced here.
First the three state variables are defined: C is the carbonaceous biochemical
oxygen demand (CBOD) in mg/L; N is the nitrogenous oxygen demand
(NOD) in mg/L; and O is the dissolved oxygen concentration (DO) in mg/L.
Next, the four decay constants are defined: &; is the CBOD decay rate per
day; L is the sedimentary and adsorption loss rate for CBOD per day; &, is
the decay rate of NOD per day; and k; is the reaeration rate per day. In
addition, Og is the saturation concentration of oxygen in mg/L while R is
the loss rate of DO due to respiration in mg/L/day. Finally, Sc and Sy are
the nonpoint source loads of carbon and nitrogen respectively in mg/L/day.

Replacing the state variables C, N, and O with z;, 2, and z; respectively,
equation 5.4 can be re-written in matrix form:

dx

— = A b 5.
7 T + (5.6)
where the 3 x 1 column vector x is
Zy
T2 (5.7)
z3

3y is often taken to be a function of the fraction of the day with sunshine, while § is a
value chosen to ensure that the photosynthesis cycle at any point of its periodic function
coincides with the origin of the river (Curi et al., 1995).
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The 3 x 3 matrix A is given by

—~(k,+L) O 0
0 —k, O (5.8)

while the 3 x 1 column vector b is

Sc
Sn (5.9)
Ppsin[v(t +0)] — R+ k3Og

Accordingly, Eq. 5.6 becomes

d Ty —'(kl + C) 0 0 1
a To = 0 —kz 0 To
I3 -.ICI ‘—kz —k‘g T3
(5.10)
Se
+ SN

Pnsin[v(t+6)] — R + k30s

5.2.1 Random Processes and Water Quality Modeling

There is a great need for modeling and understanding the “imposing number
of uncertainties” (Tung and Hathhorn, 1988) associated with biological and
physical processes occurring within the stream or river environment. More
generally, uncertainty pervades all aspects of the hydrological cycle which
leads to significant complexities in the modelling and prediction of water
quality (Loucks and Lynn, 1966; Padgett and Rao, 1979; Chadderton et al.,
1982). For example, random water quality processes are due in part to the
variability and randomness of atmospheric conditions (Hobbie and Tiwari,
1978). Curi et al. (1995) argue that the parameters and coefficients in Eq
5.4, namely k), L, ks, k3, Sc, Sy, R, and P, “vary significantly” at different
locations of the stream.



Stochastic Differential Equations 129

In addition, obtaining reliable estimates for the reaeration coefficient (k3)
and other parameters continues to be a significant challenge since satisfactory
empirical or theoretical expressions have yet to be devised. For example,
Wilcock (1988) and references therein describe how seven different predictive
formulas for the reaeration coefficient vary with discharge rate for a given
river. While the formulas provide reasonable agreement for low flows, they
diverge by more than an order of magnitude at discharge rates higher than
3m3/s.

Other factors which contribute to system noise (and hence uncertainty)
include measurement errors, unreliable estimates for initial conditions, non-
point source loading, uncertainty in respiratory and photosynthetic activities,
and random fluctuations in parameters that define decay and reaeration. To
account for this random behavior the quantities k,, £, ks, k3, Sc, Sn, R, and
P, are considered as random variables given as a superposition of their mean
values and a Gaussian white noise process &(-) where (-) is the parameter or
input coefficient to be specified:

ki =k + o1&(¢) Pn = P, +04&(2)
L =C + or&(t) R = R+o05&(t)

) (5.11)
ky =ko + 026(t) Sc = S¢ + o6&s(t)

ks =ks + o3&(t) Sy = Sy + o7&(2)

A physical continuous process, such as BOD and DO must be interpreted
in the Stratonovich SDE sense. This was formally proven by Wong and Za-
kai (1965). For related discussions see Stratonovich (1967a), Stratonovich
(1966), Gray and Caughey (1965), and Mortensen (1968). Unfortunately,
many environmental researchers have failed to include this fact in their anal-
yses. For example, Curi et al. (1995) mentioned neither Wong and Zakai
(1965) nor Stratonovich calculus in their stochastic modeling of the the
Thames river, Ontario, Canada. Several researchers, such as Ponnambalam
et al. (1997) correctly describe the stochastic calculus necessary to model en-
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vironmental processes. Ponnambalam et al. (1997) note that the reason they
treated the BOD decay stochastic differential equation in the Stratonovich
sense is that if they had taken it in the Ito sense, “with higher and higher
variance value for the [reaction rate coefficient], the probability of exceedance
calculated becomes close to zero which would be hard to understand for prac-
tioners although is correct theoretically”.

To correctly model this water quality situation, the set of Stratonovich
stochastic differential equations corresponding to Eq 5.10 must be derived:

dz3 T, = X<

= ~Bi+D)z1 + o — [0&(t) + &)z + oeks(t)

dzs - =

d$t2 = —k2$2 -+ SN - O'2$2£2(t) + 0-767(t)

ddz;s = Ea(Os - 1z3) — k1zy — koz2 + Ppsin v(t+0)] — R - 012:&1(t)

— 02726(t) + 03(0s — 23) &(t) + 0uPrsin[v(t +6)]&(1) — 0565(t)
(5.12)

These Stratonovich SDEs can be re-written in differential form:
dz} = [-(ki+L)z1 + Sc] dt — o131 0 dWi(t) — orzi 0 dWi(t) + g6 0 dW(t)
dzy = [—kazo + Sn] dt — o220 dWa(t) + o7 0 dWi(t)
dz; = mg(OS —1z3) — kyzy — kozs + Ppsin [v(t+6)] — m dt
— o1zy 0 dWi(t) — o9z20 dWs(t) + 03 (Os — z3) o dWs(2)
+ o4 Pnsin[v(t +6)] o dWy(t) — o5 0 dWs(t)

The solution to the coupled CBOD-NOD-DO equations is properly ob-
tained by transforming the above Stratonovich SDE (Eq 5.12) to its equiv-
alent Ito form through the Stratonovich—Ito conversion relations (using Eq
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?7):

d —
= =~z + Sc — [0i&(8) + orée®)m + ouke(?)
dxz
dt
dzs
dt

= —aeZy + Sy — 02Tr&o(t) + 07&:(2)
= a3z3 — Pfix1 — PaTs + P, sin w(t+6)] — v — or1z1&(2)

- 0’217252(?7) =+ g3 (Os —.'113) f3(t) -+ 0'4?-",_ sin [I/(t + 8)] §4(t) b O’sfs(t)
(5.13)

The Ito SDEs in differential form are hence as follows:
d.’L'l = [—-Q]_ z; + —S_c] dt — leldwl(t) - O’L.'IZ]_CH/VL(t) + Udes(t)

dz, = [—-—ag o + §N] dt — ngdeQ(t) + 0'7dW7(t)
dr; = [——a3x3 — Bizy — Bazs + Prpsin[v(t+6)] — 'y] dt
— o1 dWi(t) — 02z:dWa(t) + 03 (Os — z3) dWs(t)

+ 0475msin[u(t+9)] dI’V4(t) - Udes(t)

(5.14)
where

_ _ 2, 2 . 2
a1=k1+ﬁ—01;-a2 ﬁl=k1—%l'

— o2 — o3
oy =ky — 5 B2 = ko — —22 (5.15)

2

—_ o2 —_

Of3=/€3——23' T =R — k305

5.2.2 Formulation of Moment Equations

Consider the steps required to calculate the first moment (expected value)
for z; (CBOD) as a function of time, i.e. < z; >. First take expected values
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of both sides of the first equation in Eq 5.14.

d<z|>= [—a1 <z > +§C] di — o1 <z dWy(t) >

(5.16)
—or < xldWL(t) > 405 < dWs(t) >
Since this is an Ito SDE it follows that
d<z>= [—ar <z1> + S¢| dt (5.17)

Therefore we have a linear deterministic differential equation of first order:

d<z| >

dt + <z >= ?C (518)

Using the obvious integrating factor e®* it follows that

S
<z >= Arexp(—at) + a—c (5.19)
1
where 5
A = 5,(0) - =€ (5.20)
841

Similarly, the first moment (expected value) for zo (NOD) as a function of
time, i.e. < z9 > is found to be

S
< Ty >= Ajexp(—ant) + E‘i (5.21)
2
where z
A = z,(0) - 2X (5.22)
Qa2

Finally, the first moment (expected value) for z3 (DO) as a function of time,
i.e. < z3(t) > is the solution of the following differential equation

d< z3>
T+a3<m3>= — B <zT1> —Ba<z0 >
(5.23)

+ Ppsin[v(t+6)] — v
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The solution can be found by trying the particular solution:
<z3z >p= Grexp(—ayt) + Goexp(—ant) + Gssinvt + Gqcosvt + Gs

Using elementary techniques from differential equations the general solution
can be found as:

< z3>= Azexp(—azt) + Giexp(—ait) + Gsexp(—ast)

(5-24)
+ Gssinvt + Gycosvt + Gs
where
Gl = —_— [iﬂ_l_j’
Qg — Q1
Q3 — O
P, (azcosv@ + vsinvf)
Ga = of + v?
3 (5.25)
P, (azsinvé + vcosvl)
G4 == ) )
a? +v
S S
Gsz_[ﬁlc+ﬁ2N+l:|
13 QoX3 3

A3 =$3(O) —[G1 — G2 - G4— Gs]

5.2.3 Generalized CBOD and NOD Decay Models

Recall that in Eq 5.4 the oxidation of CBOD and NOD is modeled as a
‘first-order’ reaction process in which the oxidation rate is proportional to
the amount of CBOD and NOD present. The term ‘first-order’ arises from
an implicit exponent of ‘1’ on the r; and z, variables in these equations.
However, since the environmental processes being considered will not neces-
sarily decay in a first order manner, the coupled CBOD-NOD-DO equations
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of Eq 5.4 should be modified to allow for more flexibility in the oxidation of
CBOD (z;) and NOD (z2) as follows:

d

Fxtl = —(kl +£)Ii\ =+ SC
dz

T:' = —kgﬂ:‘z‘ —+ SN

‘% = k3(Os — 73) — kg — kozt + Prsin[v(t+0)] — R

where the parameters A and g are now not necessarily 1. The above
system of equations can be conveniently written in matrix form:

PR —(ki+L) O 0 z}
Et' T2 == 0 —kg 0 ZL';
z3 ~k; —ks —ks3 z3
(5.26)
Sc
+ SN

Ppsin [v(t + 8)] — R + ksOs
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The corresponding Ito SDEs in differential form are:

9

A

2 2
iz, = [_ (FL+Z) 2 + Fo + M_%xfx-l] W

- lei‘cmfl(t) - O’LZ;_\dI’VL(t) + O'GdI’Vs(t)

r _ 2
dz, = —k- .’L‘g + Sy + 2—2[_5.’1:3#_1} dt — UQISdI’VQ(t) + 0‘7dW7(t)
[ oA g a3 | -1
d&?g = kg (OS—I;;) - kl.’BI - k2$2 + ?/\.’Dl
08 a1 o3zs B oo B
+ ?1/.7:2" + =5 Ppsin[v(t+0)] — R | dt

- lei\dwl (t) - 02$§dW2(t) + o3 (Os - I3) de(t)

+ U4Fm sin [U(t + 9)] dW4(t) - O’5dW5 (t) (527)

5.2.4 SEAL System and Water Quality Modeling

Sample paths of DO vs time are calculated in MATLAB using the SEAL
(Stochastic Environmental Analysis for Lokahi) model. Details of how the
SEAL system integrates the Ito SDEs and other code related to the SEAL
model is provided in Appendix D. Typical output generated by the SEAL
system for water quality management is shown in Fig 5.2 which illustrates
four sample paths of DO vs time.

Given any specific location along a river, the SEAL system produces the
probability density function (pdf) of DO that corresponds to this location.
Fig 5.3 illustrates the DO density functions corresponding to locations z;
and z;. There are two main steps in employing the SEAL model for the
analysis of stochastic water resources problems. First, hundreds, or even
thousands of sample DO paths are simulated. Next, the SEAL model displays
a probabilistic description of the DO sag curve at any point in space (or time).
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This probabilistic analysis can be used to make inferences about both central
tendencies and extreme events. For example, at location z, the mean of the
DO density function is well above the critical value of DO (DOe¢r) necessary
to ensure the survival of aquatic organisms (see Fig 5.3). Of course the value
of DOcr is subjective and context dependent. Finally, Fig 5.3 illustrates that
a small fraction of the total DO samples will likely have a DO level less than
DOcr (by considering the tails of the DO distributions in Fig 5.3).

Moreover, the minimum DO concentration (DOp;,) is of great interest
in calculating maximum assimilable organic loads. As the concentration of
DO falls below DOcr, fish and other organisms begin to die, and floating
sludges predominate (due to increased activity of bacterial communities). If
DOmin is anticipated to be significantly below DO¢r at a critical location,
an environmental agency may be forced to take drastic actions to reduce the
level of organic wastes that are released into the water body.
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Figure 5.2: Four sample paths of Dissolved Oxygen (DQO) vs time (t)
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Figure 5.3: Probabilistic nature of DO sag curves
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5.3 Colored Noise in Environmental Models

5.3.1 Limitations of White Noise Assumptions

The term “noise” was first used in communications engineering to describe
the undesired acoustic affects accompanying spontaneous electric fluctua-
tions in speakers. A “white noise” function &(t) is theoretically conceived
as a Gaussian stochastic process with mean zero in which the ‘time scale of
correlations is zero’. That is, white noise has a Dirac delta autocorrelation
function Re(t;,%2) and a power spectral density Se(w) with constant value
over the entire frequency (w) spectrum. According to the Central Limit The-
orem, the normality assumption is justifiable if the noise is composed of many
small independent (or weakly dependent) random effects. The term white is
borrowed from optics, where white light has been used to signify uniform en-
ergy distribution among the colors*. A white noise stochastic process £(2) is
formally assumed to satisfy the following properties, at least approximately:

e £(1) is stationary
o < &(t) >= Oforallt

® S¢(w) is constant —o<w< o

o (&(t1)€(ta) ) = 6(tL —ta)

where § () denotes the Dirac delta function and < - > represents the
average over the ensemble of the stochastic process.

Nonetheless, the white noise process &(t) is a useful mathematical ide-
alization for describing random influences that fluctuate rapidly and hence
are virtually uncorrelated for different instants of time. For example, the
force exerted on a particle immersed in a fluid may be usefully idealized as
“white noise” since such a particle may undergo more than 10%' molecular

*Actually, the analogy is not correct since in optics the uniform energy distribution of
white light is based on wavelength rather than frequency.



140 Computer Support for Environmental MCDA Under Uncertainty

collisions per second from all directions. Other typical applications for white
noise include modeling the thermal noise in electrical systems and the arrival
of atomic particles at a Geiger counter. While the white noise assumption
may be appropriate in these circumstances, replacing a real, physical, wide-
band stationary process n(t) (i.e. colored noise) by a delta-correlated process
(white noise) means that the cutoff frequency of the actual process (w.) is
not explicitly taken into account.

It is only permissible to approximate colored noise n(t) with white noise
£(t) if the cutoff frequency (w.) is considerably larger than all other frequen-
cies which are important for the system under consideration. Specifically, if

the correlation time

0
1 [ TR(T)dr

Teor R — = — (5.28)
€ J R(T)dr

is small relative to the other relative time constants of the system, we can
realistically replace n(t) with &£(£).

5.3.2 BOD under colored noise

Let C(t) represent the concentration of BOD remaining at time ¢ in mg/L.
Elevated BOD levels frequently arise when an industrial plant is releasing
organic wastes into a water body. Accurate modeling of the rate at which
the BOD is exerted in the receiving water is important for determining down-
stream oxygen deficit. Conventionally, BOD exertion is modeled as a first-
order decay process in which oxygen consumption is proportional to the con-
centration of BOD remaining at time ¢, C(%):

dC

dt

Assuming that fluctuations in the environment (such as temperature and
precipitation) manifest themselves as fluctuations in the BOD decay rate

= —k(t) C(t) with  C(0) =Gy (5.29)
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constant k(%), the stochastic BOD model will be:

aC -
- = - [£E+on(t) ] C@®) (5.30)
where k is the expected value of k, o is the intensity of the fluctuations,
and 7(%) is a colored noise (Ornstein—Uhlenbeck) process which is a more
assumption than white noise.

Eq 5.29 can be solved by re-arranging the equation and integrating from

0 to ¢: . .
dC(s) _ _ -
‘0/ Cl) b/[k + on(s) ] ds (5.31)
It follows that ,
ci@) | _ Tt — o ) ds ‘
ln[ Ce ] = —kt _0/77( )d (5.32)

It is now straightforward to solve for C(¢):

C(t) = Cy exp [—Et — a/n(s) ds:I (5.33)

The colored noise process 7(t) has zero mean:
<n(t) >=0 (5.34)

with an autocorrelation function given by:
2

Bylti,tz) = (n(t)n(t)) = 5= exp(~alsi —s:]) (5.35)

where ( --) represents the average over the ensemble of the stochastic process.
Note that the autocorrelation function R, is dependent only upon the time
displacement, 7:

o?
Bo(ti,tr+7) = By(r) = o= exp(—a|7]) (5.36)
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Figure 5.4: Autocorrelation function R,(7) = % exp (—a|7|) for colored

noise process 1(t) where 7 = ¢; — ¢,
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A plot of R(7) for the colored noise process 7n(t) is given in Fig 5.4. Note
how this autocorrelation function differs from R(7) of white noise shown in
Fig ??. The process 7(t) is the solution of the stochastic differential equation

(Uhlenbeck and Ornstein, 1954)
dn
& = —© n(t) + oo&(t) a>0 (5.37)

where £(t) denotes zero mean Gaussian white noise, formally the time deriva-
tive of the Wiener Process, W (t):

£(t) = ‘”Zt“) and  W(t) = / £(s)ds = / dW(s)  (5.38)
0 0

Hence, Eq 5.37 can be written as

dn = —an(t)dt + opdt a>0 (5.39)

5.3.3 Approximate Colored Noise Solution

To facilitate practical use of the colored noise assumption, the following ap-
proximate solution is proposed to calculate moments of C(¢) when ¢ is small.
First, note that Eq 5.33 can be written as:

C(t) = Cyp exp (—%t) l:l - afn(s) ds + Z—j//n(sl) 1(s2) ds dsy — }
0 0 o

Keeping only terms of O(o?®) and taking expected value of both sides yields:

<C(t)> = <Cg>exp(—Et) [1—a/<n(s)>ds
0

+ g[/(‘r](sl)n(SQ) > dsldé‘g} (5.40)
00
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Since < n(t) > = 0 and R,(s1,52) = < 7n(s1) n(sz) > it follows that

<C(t) >=<Cy> exp (-—Et) [1 + —//Rﬂ(31,32 d31d82:| (5.41)

Now, as t — oo
2

a,
R,(s1,82) — i exp (—a|sy — s2]) (5.42)

and Eq 5.41 becomes

9 t t
< C(t) >= Co exp (—kt) [l + (JZZ) //exp(—alsl—sﬂ)dslds{l
00

(5.43)
Note that

t ot
//exp(—alsl—szl)dslds«z

t

o/

2

a2

[/e*cp( ~a(sy — 1)) ds; + /exp(—a (s1 — s2)) dsl} dso

Q 82

[at + exp (—at) — 1]

Accordingly, the first moment for C(¢) is
< C(t) > = Cpexp (—kt) l:l (O; C;) [at + exp(—at) — l]] (5.44)

The variance of C(t) can also be computed using the formula:
Var[C(t)] = < C%(t) > - [<C@®) > (5.45)
To compute the first term on the right hand side of Eq 5.45 note that

¢ ¢t
2
Ci(t) = C}§ exp (—2kt) [1 - 20/1}(5) ds -+ 2—2%—/‘/71(31)77(32) dsdsy
0 0 0

+ o? JO/W(SI) n(s2) ds1dss +O(a3)} (5.46)
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where the right hand side can be further simplified:

14

C3(t) = Cg exp (—2kt) |:1 — 20/ n(s)ds + 20> n(s1) n{s2) d31d32]
[roseec]]

1]

where terms of O(o?) and higher are neglected since o is assumed to be small.
Taking expectations of both sides of the above equation yields:

4
<C*t) > = < C%> exp(—2kt) [1 - 20'/<n(s) > ds
0

t ¢t
+ 202// < n(s1)n(s2) > dsldSQ:I
00

which simplifies to

< C) > = C2 exp (—2Ft) [1 + 22 / / Ry (s1, 55) dsldSQ:l (5.47)
00

since
<n(t)>=0 and Ry(s1,82) = < n(s1)n(sz) > (5.48)

It should be noted that

t

0.2

[/Rq(sl,sz) ds;dss = a—g[at+ exp (~at) — 1] (5.49)
0

0

Hence, it follows that

2 (05 0)?

< C%(t) > = C¢ exp (—2kt) [1 + = [at + exp(—at) — 1]

(5.50)
and the variance of C(t) can now be easily computed using Eq 5.45.
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5.4 Conclusions

Stochastic models are developed for environmental systems, allowing for the
order of occurrence of probabilistic events to be taken into account. This
chapter uses stochastic water quality models to capture the interactions
among biochemical oxygen demand (BOD), dissolved oxygen (DO), and other
environmental variables. The temporal moment equations are derived for car-
bonaceous BOD (CBOD), nitrogenous BOD (NBOD), and DO. In addition,
the Streeter—Phelps equations are generalized to more realistically model
hydrologic processes. Finally, a practical colored noise approximation is
put forth and used to replace the abstract mathematical concept of ‘white’
(theoretical) noise. The temporal expectation and variance of BOD is then
computed under colored noise.

The SEAL model is developed to solve stochastic differential equations.
The author programmed an explicit order 1.5 strong scheme to integrate Ito
SDEs. The algorithm is found in Section 11.2 of Kloeden and Platen (1992).
The SEAL model is used to produce a probability density function corre-
sponding to the time (or location) at which DO, occurs. This knowledge is
valuable since it can help to predict when and where maximum aquatic stress
will occur. In the context of aquaculture pond management, predicting the
time of low DO events is critical since ponds are mechanically aerated during
periods of low DO: successful aeration is dependent upon supplying enough
oxygen to fulfill the respiratory needs of the animals and plants within the
pond. The SEAL model is sufficiently flexible to provide a variety of infer-
ences about DO, CBOD, and NBOD levels.

Moreover, the minimum DO concentration (DOpia) is of great interest
in calculating maximum assimilable organic loads. As the concentration of
DO falls below DOcr, fish and other organisms begin to die, and floating
sludges predominate {due to increased activity of bacterial communities). If
DO is anticipated to be significantly below DOg¢r at a critical location,
an environmental agency may be forced to take drastic actions to reduce the
level of organic wastes that are released into the water body.



Chapter 6

Uncertainty and Species
Extinction

This chapter considers a class of problems that be categorized best under the
heading ‘First Passage Time’. By modeling first passage time, one investi-
gates the time it takes (deterministically, or on average) for a certain event
to occur (for example the time it takes for an oil spill to reach shore, a species
to become extinct, or a nuclear accident to occur). Knowledge of this first
passage time can help in the scientific management of natural resources, par-
ticularly from a Nature Ephemeral perspective, where grave events such as
species extinction are not a question of if — but when. The first passage time
problem can address many other important issues in environmental manage-
ment, such as the impact of human activities (overharvesting, deforestation,
etc. ) on the behavior of ecological systems.

6.1 Analytical Equations for First Passage Time

The one-dimensional first passage time problem is examined first, where the
region under consideration is an interval z; < zp < x5. We are interested in
the time T it takes the process z(t) starting at zq to first reach the boundary
T = I) Of T = Zy, as shown in Fig 6.1. This so-called first passage time

147
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varies from realization to realization, so the mean (expected) first passage
time M (zo) is of interest. Other notations for M (z,) include E[T,].

Consider a practical first passage time example: a bomb has exploded a
few miles outside of a city. [t is of interest to estimate the expected time it
will take the dispersing molecules of poisonous gas to first reach the boundary
of the city under the molecular bombardment of ordinary air molecules. As
another example, consider the recent oil spill off the coast of Ecuador. It is
of interest to estimate the first time that the oil will reach the Galapagos
Islands or other ecologically sensitive areas.

H R wm e wm wm e wm n w. g W -
S I

PN
P
1 To 2
T to

Figure 6.1: Determination of first passage time T to reach boundary z = z;
or r = z, starting at zq

6.1.1 Safe Domains

Three commonly used ‘safe-domains’ characterize first-passage problems: type—
B barrier; type-D barrier; and type-E barrier.
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Type—B barrier

In the first case, the safe domain is characterized by a single barrier or passage
level z = b, i.e. any value of z(¢) such that < b is safe. The first-passage
problem in this case consists of cbtaining the probability distribution of the
time T at which z(¢) first takes on a value £ > b. A possible sample z(t) with
its corresponding first-passage time T is sketched in Fig 6.2a corresponding
to an upper barrier. In Fig 6.2b the first passage time T corresponding to
a lower-level barrier is illustrated. These problems involve a ‘single-passage
level’, known as a type-B barrier (Crandall et al., 1966). It is quantitatively
described by the magnitude of b.

Type-D barrier

This case is similar to the type-B barrier except that the safe domain is
characterized by the double barrier £ = +b i.e. any value of = such that
|z| < b is safe. The first passage problem in this case consists of obtaining
the probability distribution of the time T at which z first takes on a value
x| > b. The symmetric double-passage barrier of Fig 6.3 is known as a
type-D barrier (Crandall et al., 1966).

Type-E Barriers

For the third case, consider a passage level not for the process z(t) itself, but
for its envelope a(t) where

=2
x

a2 = :L'2 -+ — (61)
n

The safe domain a < b is therefore a circle of radius b in the phase plane where
Z/wy is plotted against z. An envelope passage level is known as a type—E
barrier (Crandall et al., 1966). The first-passage problem here consists of
obtaining the probability distribution of the time 7" at which the envelope
a first takes on a value @ > b. The use of type-E barriers and envelope
processes a(t) are described in more detail in Section 6.1.4.
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Let z(t) be a Markov process with initial value zo = z(%). If a Markov
process is continuous and p(z,t|zo,t) denotes the transitional probability
density that the system is in the neighborhood of state z at time ¢ given that
it was at zo at time ¢y (¢ > ?9), then p satisfies the well-known Kolmogorov
backward equation

Op _ Ky (zo,tg) 8%p
ot 2 oz

o
+mmm5§ (6.2)
0

To find an equation satisfied by M(zp), Stratonovich (1967b) derived the
Pontriagin equation:

Kg(l‘o) d2ﬂ/f(.’170)
2 dz3

d]\/[(l’g)
d.’IIo

+ Ki(zo) = -1 (6.3)

Consider the one-dimensional case in which the boundary is composed of
two endpoints, =, and z,. If the initial point zy lies at the boundary itself,
then the boundary is “reached immediately” and the mean first-passage time
is zero. In this case Eq 6.3 satisfies the boundary condition

M(z,) = M(z2) = 0 where =z € [z;,25] (6.4)
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Figure 6.3: First Passage Times for type-D Barriers

6.1.2 Wiener Process (Brownian Motion)

In this section the Pontriagin equation (Eq 6.3) is applied to the Wiener Pro-
cess (which was described in detail in Section 5.1.1). Consider the equation

dx

T = ot

Since £(t) = % we have

dz(t) = o dW (t)

Using the Pontriagin equation (Eq 6.3), Stratonovich (1967b) shows that
for the Wiener Process the first passage time M (z,) satisfies:

U_ZJZJVI(xo) _

-1 6.
2  dz3 (6.5)

and so
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dzM(l'o) — -3

2 2
dz§ c

Integrating both sides yields:

dil’[(.’l)o) 2
d$0 —;x + C
M(zy) = —;1511:3 + Czy + D

Using the boundary conditions M (z;) = 0 and M (z;) =

following two equations:

1
0 = —;5:1:%+C$1+D
L 5
0 = —;$2+C$2+D
Solving for C and D yields
c=0F% 4g p= 0&
o (o2
Hence, from Eq 6.7 we have
_ 1, Ty + T2 T T2
A/[(zO) = '—;2’170 + (T) o —
1o
= —= [z3 — (z1 + %2) To + Z1 T2

First Passage Time for Wiener Process with Drift

153

(6.6)

(6.7)

0 we have the

(6.8)

(6.9)

(6.10)

We say that W (¢) is a Wiener process with drift coefficient 2 and variance

parameter o2 if
e W(0)=0

e W (t) has stationary and independent increments
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e W (t) is normally distributed with mean pt and variance o2t

Let T} represent the time it takes for a Wiener process with drift coefficient
u > 0, variance parameter o2, and W(0) = 0 to hit b. For such a Wiener
process the Laplace transform of the probability density of T} is given by:

Efexp (—0T,)] = exp (—;b; (\/m — p)) (6.11)

for x>0, 6 > 0, and b > 0. This is also the moment generating function of
T;. Differentiating both sides with respect to 8 yields

E[-Tyexp(—0T3)] = ———L%z—g-e@ (-5 (Vi + 2057 - 1))
(6.12)

Setting 6 = 0 yields
B[T] = -, (6.13)

Now differentiating both sides of Eq 6.12 yields

Bl-T2ew(0T)] = 0o (— o5 (VI 7 2057 — u))

w2+ 2020

bo? b (S + 5802
i (42 + 2 028)%/? P (_E( St u)
(6.14)
Again setting 6 = 0 yields
b? + bo?

Now the variance of T, Var{T}, | can be determined by using the relationship

Var[Ty] = E[TZ] - (E [T])*

_ub? + bo? 2 2
= e T\ (6.16)
bo?
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6.1.3 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck Process was introduced in Section 77:

d

% + az(t) = oc&t), a>0 (6.17)
where £(t) is Gaussian white noise with the property that &(f) = dW (¢t)/dt.
Using the Pontriagin equation (Eq 6.3) Stratonovich (1967b) shows that for

the Ornstein-Uhlenbeck Process the first passage time M (z¢) satisfies:

o? dzﬂ/[(.’ro) dl\’[(.’rg)
—2— -'Eg— - o ‘—d?o—* =-1 (6.18)
Standard integration techniques can be used to solve Eq 6.18:
_ 2z To
M(zy) = A+ Bexp ( 2 ) + = (6.19)

Using the boundary conditions M (z;) = 0 and M (z2) = 0 we have the
following two equations:

A +B°exp(2azl> + 2 =0

o2 o
204:132 Iy
A +B-e = =0 .
+ e\:p( — ) + 2 (6.20)

Solving for A and B yields:

_(2az; 2az;
T exp — — Igexp =
2z 2azy
a § exp ) — exp >
o o

B = (6.21)

A =
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6.1.4 Linear Oscillators

First passage time problems have been studied extensively with respect to
electrical and mechanical systems. Consider the linear oscillator whose re-
sponse y(t) is related to the wide-band random excitation F(¢) by the differ-
ential equation:

¥ + 2Cuway + w3y=F(t)

where the constants w, and ¢ represent, respectively, the undamped natural
frequency and the damping ratio of the vibratory system. The excitation
F(%) is taken to be a wide-band random process with zero mean. A com-
monly studied first passage time problem for linear oscillators is to determine
the probability distribution of the time 7" that it takes for y(¢) starting from
an initial amplitude level r to reach the barrier R (see Fig 6.4). The exact
analytical solution to this problem is not available; hence, an approach for
obtaining an approximate solution was derived by Ariaratnam and Pi (1973).
The envelope a(t) of y(¢) is shown in Fig 6.4. The approach of Ariaratnam
and Pi (1973) is thus to determine the “first-passage time for envelope cross-
ing for a linear oscillator”. In Fig 6.4 this is denoted by #;. This is used to
estimate the first-passage time for y(¢), t,. Note from Fig 6.4 that ¢, appears
to be a good approximation to t} for large w;,.

Electrical and Mechanical Examples

Consider an electrical system in which an inductor L of 0.5 Henry is connected
in series with a 6 ohms resistor R, a capacitor C of 0.02 farads, an alternating
voltage E(t) given by 24 sinl0t, and a switch as shown in Fig 6.5a. The
voltage drop across the resistor, inductor, and capacitor is 61, 0.5 dI/dt, and
50Q respectively.

Hence, by Kirchhoff’s law,

I
61 + 0.5% + +50Q = 24 sin10t (6.22)
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where [ is the instantaneous current and I = gd% Accordingly,
dIl I
GEt— + O.EF + 50 = 240 cos 10t (6.23)

We are often interested in determining the first time that the current reaches
a maximum level (above a threshold level of current, the circuit may blow
a fuse). This problem may be solved using the first passage time envelope
method of Ariaratnam and Pi (1973) where 240 cos 10¢ is the applied poten-
tial (excitation) in volts and I(t) is the resulting current in amperes.

As another example, consider a simple mechanical structure that can be
represented by a a mass, a spring, and a dashpot. Assume that the motion
of the mass is restricted to translation in only one direction as shown in Fig
6.5(b). Here, k is a spring constant, ¢ is a viscous damping coefficient, and
m is a mass. Assume that the input of interest is a force applied to the mass,
F, and y(¢) is the resulting output displacement of the mass. Since the sum
of all forces acting on the mass must equal zero it follows that the equation
of motion for this system is:

my(t) +cy(t) + ky = F(t) (6.24)

since the spring force is —k y(¢), the damping force is —c (%), and the inertial
force is —mgi(t). Eq 6.24 connects the desired response quantity y(t) with
the excitation F'(¢). In order to standardize the analysis it is conventional to
introduce the notation

k
2 and ¢
m km

= 2¢
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(a) Circuit Diagram
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(b) Linear Oscillator

Figure 6.5: (a)Electrical system with voltage input; (b)Simple mechanical
system with mass m, spring, dashpot and a force input
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6.2 Uncertainty and Extinction in Fisheries

Uncertainty is perhaps the most ubiquitous theme in fisheries management
(Hilborn, 1997). Commercial fishers must cope with considerable uncertainty
about the price they will receive, the costs of fishing (including fuel, interest
rates, and license fees), the abundance of fish, and political constraints, such
as the length of fishing seasons. Recreational anglers also face changing
regulations and fluctuating stock levels. Moreover, fisheries managers are
obliged to make complex decisions under uncertainty, such as estimates of
stock size and appropriate quotas for recreational and commercial fisheries:
uncertainty is pervasive in the estimation of model parameters used to predict
sustainable yield levels (including mortality rates, growth rates, and stock
recruitment). At higher levels of government, fisheries officials are beset by a
fickle electorate, fluctuating budgets, and the impact of mammals and foreign
vessels on fisheries.

Ludwig et al. (1993) note that in every instance of a major fisheries col-
lapse there has been no general agreement about the causes of these failures:
classic examples include the overharvesting of the Pacific sardine (off the
coast of California) and northern cod (off the coast of Newfoundland). Many
scientists are still in denial about these catastrophes (arguing that it is vir-
tually impossible to overfish a pelagic species); other scientists blame seals,
foreign vessels, or climatic conditions. While El Nifio events certainly played
a role in the most spectacular fisheries collapse of all time — the Peruvian
anchovy fishery — there remains no general agreement about the role of
overfishing and oceanographic events as causes of this well studied disaster.
Fisheries agencies have been generally unable to cope with the uncertainty in
the stock assessment process: overfishing has led to the spectacular collapse
of several major fisheries.
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6.3 Extinction Risk and the SEAL Model

Learning about fisheries sustainability requires systematically and experi-
mentally harvesting from it. Yet, as was previously emphasized, both un-
derharvesting and overharvesting are often politically, economically, and en-
vironmentally infeasible. Accordingly, stochastic simulations with the SEAL
model are of great value to calculate the “risk” of stock collapse at low
abundance or high fishing pressure. The SEAL model requires a popula-
tion threshold below which the species may be gravely threatened. Such
information is subjective, but estimates are available. For example, fisheries
managers in South Africa feel that their pelagic fishery faces “unacceptable
risks” if the spawning biomass falls below 20% of the mean pre-exploitation
level within a 20-year period (Butterworth et al., 1997).
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Figure 6.6: Sample Functions

The simplest deterministic model of population growth is the exponential
equation dN/dt = p(t)N, where u(t) is the Malthusian growth coefficient,
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which may vary in sign and magnitude with ¢ to account for seasonal varia-
tions and vagaries of the environment. Hence p(t) may fluctuate randomly as
r+0&(t). In Eq 7?7 it was shown that when o and r are constants and £(t) is
a zero mean Gaussian white noise process a linear Ito stochastic differential
equation was obtained:

dN(t) = r N(t)dt + o N(£) dW (£) (6.25)

In this model, the exponential population growth is unbounded. Under con-
ditions of limited resources, however, there exists a finite carrying capacity
K with the population decreasing whenever it exceeds this value. This fea-
ture can be incorporated into deterministic models by replacing the growth
constant r by the linear factor r [K — N(t)]. Then we obtain the linear-
quadratic Verhulst equation

The corresponding nonlinear stochastic differential equation is
dN(t) = rN(t) [K — N(t)] dt + o N(t) dW(t) N(0) =Ny >0 (6.27)

where the constant K > 0 is called the carrying capacity of the environment,
the constant 7 € R is a measure of the quality of the environment, and the
constant ¢ is a measure of the size of the noise in the system. Gard (1988)
proves that
N = Ng e::p [(rK — Lc¥)t+oW(2)] (6.28)
1+ Nor [ exp [(rK — %0?)s+oW(s)] ds
0

is the solution of Eq 6.26 with ¢ > 0.
The above Verhulst equation (Eq 6.26) is often written simply as

dN(2)

et AN(t) — N%(¢) (6.29)
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On randomizing the parameter A to A + c&(¢) one obtains the stochastic
differential equation

dN(t) = [AN(t) — N?(t)] dt + o N(t)dW(2) (6.30)

using the Tto interpretation, which again can be explicitly solved (see, for
example Kloeden and Platen (1992)):

Ny exp [(AN(t) — Lo?) t+ oW (2)]

N(t) = (6.31)

¢
1+ Ny fexp[(A — Lo2)s+0oW(s)] ds
0

One of the simplest deterministic models of critical depensation is given
by the following equation:

% = rz (1 - %) (% - 1) —qEz (6.32)

where gE'z represents the harvested yield. The vagaries of the environment
can be modelled by allowing r to vary randomly as 7+ c€(¢). This yields the
stochastic differential equation

dX, = [rx (1 - 1) (—’i— 1) - qu] dt + oX.dW, (6.33)
K/ \m

using the Ito interpretation where o represents the intensity of the fluctu-
ations and dW, = ¢£(t) dt. Note that the stochastic differential equation
given in Eq. 6.33 represents population growth with critical depensation and
harvesting. Three realizations of this stochastic process given are shown in
Fig 6.6. Here, it is assumed that the effort level E' is 300 vessels, and that
the intensity of fluctuations o is 0.25. In addition, (0) = 500. That is, the
population at time 0 is 500. Finally, note that species extinction occurs when

the population falls below 200 individuals, i.e. z,, = 200.
Note that for the three samples illustrated in Fig 6.6 only one ‘is driven
to extinction’ before ¢ = 100. In the SEAL model, the mean first passage

time is calculated in two ways (giving rise to the symbols z; and p»):
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e All samples (realizations) are included (u;). This is achieved by as-
suming that every sample faces extinction either before ¢ = 100 (as
calculated by the SEAL model) or at t = 100.

e Only those samples (realizations) that became extinct before ¢ = 100
are included (u5).

Both means are illustrated in Fig 6.7. Note that u, will always be less than
or equal to ;.

6.4 Precautionary Principle and the SEAL

model

At the 1987 Conference on the Protection of the North Sea, the precautionary
principle was put forward in an attempt to shift the burden of proof from
the regulatory agency to the marine polluter. A pollution-related version of
the precautionary principle is that “potentially damaging pollution emissions
should be reduced even when there is no scientific evidence to prove a causal
link between emissions and effects” (Peterman and M’Gonigle, 1992). The
obvious fisheries variation on this statement is that catches should be reduced
unless there is good evidence that the current catch is sustainable. This is
the opposite of what Ludwig et al. (1993) consider the norm — not reducing
catch levels until there is compelling evidence of a collapse.

In a developing fishery, the precautionary principle suggests a slow de-
velopment of the fishing industry and caution in expanding catches. More
specifically, caution in expanding fishing capacity is called for to minimize
the chance of stock depletion and economic overdependence. While biological
caution may have economic costs in foregone yield, in a developing fishery it
should not lead to the large-scale dislocation of existing fishers. On the other
hand, when a stock is fully developed or exploited (and often overexploited),
precautionary reductions in catch may reduce the stock collapse risk at the
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expense of disruptive social and economic change in the community of people
who harvest the fish.

Recent years have witnessed the extension of the precautionary principle
to the protection of fishery resources. At the international level, there have
been attempts to apply the precautionary principle to the Code of Conduct
for Responsible Fisheries, the Rio Declaration of the U.N. Conference on
Environment and Development, and the U.N. Convention of the Law of the
Sea Relating to the Conservation of Straddling Stocks and Highly Migratory
Fish Stocks. Although each of these agreements promotes the precaution-
ary principle’s use, an operational definition of the term eludes each of them.
While the precautionary principle “implies the commitment of resources now
to safeguard against the potentially adverse future outcomes of some deci-
sion” (Perrings, 1991), it does not suggest how much resources to allocate or
which future outcomes are most important.

To address these issues, the SEAL model is used to quantify the risk of
species extinction caused by harvesting activities. Specifically the role of
‘fishing effort’ (number of boats, traps, etc. ) is examined to see how an
increase in fishing vessels affects the risk of species extinction. The relation-
ship between ‘fishing effort’ and the first passage time to stock collapse is
illustrated in Fig 6.8. As the number of boats increases from 300 to 400 to
800 to finally 1500, the mean first passage time to extinction (defined by ;)
decreases from 24.4 to 23.0 to 22.0 to 17.7 respectively. The precautionary
principle and the SEAL model should be applied to all fisheries resources:
greater uncertainty regarding the productivity of a stock should correspond
to greater caution in setting target harvest levels.

6.5 Conclusion

The theory and practice of first passage time problems is discussed in the
context of mechanical and electrical systems. The knowledge is then applied
to environmental problems, specifically fisheries management. Uncertainty
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and species extinction are perhaps the most ubiquitous themes in fisheries
(Hilborn, 1997). Since MSY levels are, in fact, often unsustainable (Larkin,
1977), the long term health of fisheries is a grave concern. Resource managers
must cope with considerable uncertainty about appropriate quotas for fishers,
estimates of stock size, the social implications of harvesting, and political
considerations such as the length of fishing seasons.

The risk of extinction was formally modelled. The SEAL decision sup-
port system was used to advise the Risk Institute (University of Waterloo,
Civil Engineering) and the Government of Canada (Department of Fisheries
and Oceans (DFQ) about the relationship between ‘fishing effort’ and stock
extinction. It is shown that as the the number of boats decreases by a factor
of five, the mean time time to extinction increases by approximately 38%.
It is concluded that the precautionary principle and the SEAL model should
be applied to all fluctuating fisheries resources.



Chapter 7

Convex Models and MCDA

under uncertainty

Recognizing that environmental conditions, social systems, and management
objectives will change over time, Section 7.1 formally models the robustness,
flexibility, and adaptability of the systems we monitor, analyze, design, and
operate. Particular emphasis is placed on notions of flexibility (Section 7.1.1),
robustness (Section 7.1.2), and adaptability (Section 7.1.3). The general
absence of operational measures for these concepts is “impeding academic
progress” in decision analysis (Kumar, 1986). The use of robustness analyses
is illustrated with examples from urban planning to whale management at
the International Whaling Commission.

Given the extreme uncertainty and complexity of many strategic decision
problems, humans often use “bounded models of rationality”. This is de-
scribed in Section 7.2 with special emphasis on Nobel Laureate H.A. Simon’s
bounded rationality framework known as satisficing. It is explained why sat-
isficing (a combination of the words satisfactory and sufficient) is the most
appropriate decision strategy for addressing complex, large-scale problems.

In Section 7.3, the aforementioned ideas of ecological resilience, ‘bounded
rationality’, uncertainty, and multiple criteria decision making are considered
by means a new, non-probabilistic approach to decision analysis known as

169
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“convex models” (Ben-Haim, 1998). This methodology is introduced in the
context of improving water quality (Section 7.3.1). The theory of convex
models is discussed (Section 7.3.2) and, for the first time, convex models are
extended to include multiple criteria problems (Section 7.3.3). A key contri-
bution of this chapter is the identification of environmental policy alternatives
that are robust to uncertainty (Section 7.3.4). Finally, the proposed method-
ology is used to select alternatives in a multiple criteria forest management
problem in New Brunswick, Canada (Section 7.3.5).

7.1 Flexibility and Robustness

In recent years Holling’s concept of ecological resilience has been borrowed by
those researchers searching for increased flexibility, robustness, and adapt-
ability in their decision making: applications range from water resources
(“safe-fail systems”) to financial management (portfolio hedging and asset
liquidity). Planners need rigorous methods for judging whether a particular
policy or system is more “robust” than another, along with useful metrics for
quantifying these features precisely. The most valuable strategies “are some-
how robust in the face of rapidly changing circumstances and unanticipated
outcomes” (Chdvez and Shachter, 1998). Ideally, a robust policy should be
able to respond to uncertainties that we do not explicitly model at the time
of system design.

7.1.1 Decision Flexibility

The marketplace is changing so rapidly (changing product lines, changing
technical characteristics of products, and changing market demands) that
industries are increasingly turning to flexibility and robustness analyses (Ku-
mar, 1987; Mandelbaum, 1978; Zelenovic, 1982) to cope with uncertainty:
Gerwin (1985) identified seven different sets of uncertainties in one specific
manufacturing process. The arena of environmental management which is
also fraught with a wide range of uncertainties. Authors such as Falkenmark
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(1957) and Kundzewicz (1997) point out that environmental strategies must
be flexible, robust, and adaptive to deal with impacts of human activities
such as the widespread pollution of surface and ground water supplies.

Flexibility is important in decision-making because strategies and policies
should be responsive to a large range of uncertain outcomes.

A flexible solution may be preferred to one which is optimal, because the
decision maker does not have total confidence in the model. “Optimization”
may be misguided in situations characterized by extreme uncertainty, highly
non-linear interrelationships, turbulent dynamics, and inevitable changes in
key decision makers over the strategic time horizon. For example, strategic
decisions concerning investments in future U.S. space transportation vehicles
require developmental lead times of over 10 years during which unexpected
changes in technology, funding, and leadership (and hence priorities, policies,
and desired capabilities) are likely to occur (Richards, 1996).

Stigler (1939) presents a useful and intuitive notion of flexibility (often
referred to as ‘robust flexibility’) which has been applied and extended by
a number of researchers (Marschak and Nelson, 1962; Merkhofer, 1975; Ep-
stein, 1980; Jones and Ostroy, 1984; Shachter and Mandelbaum, 1999). The
notion of robust flexibility is explained in Fig 7.1(a) which shows average cost
curves v(d, X) for two factories, A and B. Note that both factories achieve
the minimum average cost at the same level of output z*. While factory A
achieves a lower average cost than B at z*, it is quite sensitive to the uncer-
tain quantity X. Intuitively, factory B is more robust to uncertainty in the
value of X because of the protection it provides (from high values of average
cost) over a broad range of possible output values. Stigler (1939) character-
izes the “robust flexibility” of these factories using the second derivative of
their average cost curves: a lower second derivative corresponds to increased
flexibility.

Fig 7.1(b) formally defines Stigler’s problem in decision analytic terms.
Here, the value function v(d, X) specifies the value that results when action
d is taken and action = € X obtains. Note that there are three alternatives:
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d*, which yields a moderate payoff v(d*, X) for all values of X; d*, which
suffers a significant drop in v(d*, X) for high values of X; and d~, which
yields low values of v for small X. Inuitively, d* appears to be the most
flexible alternative in that its value remains nearly constant over the entire
range of X, whereas both d~ and d* have value curves that are characterized
by low dips.

More precisely, d* appears to be most flexible (or least brittle) of the three
alternatives in the sense that it minimizes the cumulative distance between
itself and the upper boundary of the value curves for each of the available
alternatives. Because X is given probabilistically, the notation P(X|&) is
used to specify the probability distribution of X conditional on & (the prior
state of knowledge). Using these definitions, Chdvez and Shachter (1998)
define the flexibility of action d; with respect to the random variable X as:

(7.1)

[ |

u(d, X) - v(ds, X) | €
where subscripting E by X indicates that the expectation is taken with
respect to X. The most flexible (least brittle) alternative/action minimizes
the quantity in Eq 8.6. Finally, it is useful to observe the duality between
flexibility and brittleness (flexible strategies are less brittle because they do
not suffer ‘dips in value’ across a wide range of outcomes).

7.1.2 Robustness

Robustness may be viewed as an insurance policy against uncertainty: “Un-
like a traditional insurance policy, however, robustness is almost certain to
pay off, but the amount of the payoff is not guaranteed” (Richards, 1996).
Gupta and Rosenhead (1968) argue that a robustness analysis “abandons the
search for optimality” in an unknowable future in favor of “the more modest
and practical goal of future flexibility.”
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(b) Stigler-type flexibility for a decision problem with three alternatives

Figure 7.1: Stigler’s approach to flexibility: (a) Definition of Robust Flexi-
bility; (b) Decision Problem with Three Alternatives.
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To some, robustness can be conceptualized as a counterpart to risk: “ro-
bustness represents desirable variability in a decision process as opposed to
the undesirable variability implied by riskiness” (Richards, 1996). To others,
robustness is reflected in the adage: “keep your options open” (Erlandson,
1981). Since robustness has to do with variability, not with point estimates,
many of the methodologies currently used to evaluate technological, policy,
and environmental systems are not not applicable.

The robustness concept implies a different policy-formulation paradigm
from that offered by traditional optimization techniques, including return-
on-investment approaches and cost/benefit analysis. A robustness approach
will not provide the “optimal” answer; rather, it offers insights that can lead
to more adaptive and flexible strategies. Furthermore, robustness is inher-
ently an inclusive, process-oriented concept: decision robustness is evaluated
at each stage of the strategic planning process, ideally in a participatory,
community-building framework. There is a large literature pertaining to
robust decision making in military planning and strategy; for instance, “de-
ployment versatility” is necessary to cope with battlefield uncertainty and
surprise.

Robustness Measures

The simplest set of robustness measures is the ratio of the number of “good”
options left open after selecting an action to the number of “good” options
prior to taking the action (Gupta and Rosenhead, 1968)!. Consider a plan-
ning situation in which the set of all outcomes is denoted by S, and the set
of all acceptable outcomes is represented by S* (a subset of S). The set of
outcomes attainable if the ith alternative (a;) is selected is denoted by Sj,
and S7 represents the set of all acceptable outcomes if a; is chosen. In Fig
7.2(a), S}, a subset of S;, is shaded.

1The notion that a desirable current action is one that gives rise to good outcomes in the
future has appeared frequently in the development of micro-economic theory (Marschak
and Nelson, 1962).
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Figure 7.2: (a) Rosenhead’s Definition of Robust Flexibility; (b) City of Wa-
terloo Urban Planning Problem
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Rosenhead {1989) defines the robustness of an action (alternative) a; as:

robustness(a;) = -Z%:—;- (7.2)

where n(-) is the number of elements in the relevant set. Since
n(S7) < n(S*), (7.3)

the robustness of any initial decision must lie between 0 and 1. The higher
the robustness of an initial decision, the more acceptable outcomes that re-
main open. Rosenhead’s robustness analysis has been conveniently applied
to discrete multiple criteria problems (Levy et al., 2000b).

To illustrate the use of a robustness analysis, consider the “Waterloo Ur-
ban Planning” problem: the City of Waterloo, in Ontario, Canada, must
decide how much development to permit in the Laurel Creek Watershed.
This problem was outlined in the Laurel Creek Watershed study (see for ex-
ample Grand River Conservation Authority (1993) and WATgreen Advisory
Committee (1996)). Here we consider only a caricature of the “Waterloo Ur-
ban Planning” problem. Assume that the City of Waterloo has four courses
of action they can pursue, as shown in Fig 7.2(b):

e Proactively protect the environment (a;),
e Limit future development (as),

e Business as Usual (a3), or

e Aggressively promote development (aq4).

Assume that these four alternatives give rise to the fourteen outcomes A
through P in Fig 7.2(b). In general, these fourteen outcomes are described
by multiple attributes such as housing needs, flooding risk, and ecological
issues (water and land quality). Assume that

e ! represents ideal endstates (housing needs are met with no additional
degradation to water resources and no additional risk of flooding),
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e -+ represents desirable outcomes,

e * represents acceptable endstates,

e 7 represents questionable outcomes, and
e — represents undesirable outcomes.

The “futures” Fy, F5, and F3 in Figure 7.2(b) represent possible future so-
cial, economic, and environmental scenarios. For example, F} might represent
the situation in which the Microsoft Corporation moves their headquarters to
Waterloo Region and the population grows significantly. F> might represent
a future with increased global warming and a more vigorous hydrological
cycle, increasing the risk of floods, etc.

Figure 7.2(b) is summarized in Table 7.1(a). If only preferred endstates
are taken into account (that is =, +, and !), then no action dominates
all others when futures F, Fs, and F3 are considered. However, using the
maximin criteria of Wald (1950), Limiting Development (action ay) offers the
most flexibility. On the other hand, under the minimax regret criterion of
Savage (1954), the Business as Usual alternative would be selected.

By the same token, the concept of ‘debility’ (Caplin and Kornbluth, 1975)
can be used to model the ‘undesirability’ of an alternative. Here, debility is
defined as the number of undesirable outcomes that can arise after selecting
a particular course of action, expressed as a ratio of all such undesirable
endstates (analogous to Eq 7.2). The debility results are shown in Table
7.1(b). Note that the action Protect (a;) dominates all others (since a lower
debility score is preferred).
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Futures Decision
Alternative (a;) ’a 24 F; Criteria
Protect (ay) 3/9 2/10 4/10
Limit (az) 3/9 4/10 4/10 <= maximin
Usnal (wy) 1/9 6/10 3/10 <= minitax regret
Aggressive (a4) 2/9 2/10 3/10

(a) Robustness Matrix

Futures Decision
Alternative (a;) B 128 F; Criteria
Protect {ay) 1/3 0/1 (/2  +— dominance
Limit (az) 2/3 0/1 0/2
Usual (a3) 2/3 1/1 2/2
Aggressive (a4) 1/3 1/1 0/2

(b} Debility Matrix

Table 7.1: Using Decision Criteria to select among Alternatives: (a) Robust-
ness Matrix; (b) Debility Matrix.
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7.1.3 Adaptability

Adaptability is similar to the concepts of flexibility and robustness, in that
it implies the ability to cope with and respond to perturbations, while of-
ten adding the ingredient of learning or evolution. Adaptability theory sensu
Conrad (1983) uses entropy measures (Kumar, 1986) to describe the capacity
of an ecosystem to persist in an uncertain environment. Conrad (1983) holds
that in order to survive, biological systems must be capable of functioning
in an uncertain environment; the adaptability of the biota is given by the
entropy of the most uncertain environment which does not “inevitably cause
a catastrophic change in biota”. Many long-term ecological research studies,
including the most influential, Hubbard Brook (Bormann and Likens, 1979),
have clearly demonstrated that the aggregate behavior of environmental sys-
tems is highly uncertain and dynamic.

The information theoretic approach of Conrad (1983) is now briefly pre-
sented. (2 represents the transition scheme of an ecosystem: this is the set
of probabilities which determine the state of the biota (8) and environment
(€) at time ¢t + 7 given their states at time . The transition scheme is

Q= {p[Be(t+1),e°t+7) |B@),eW)] |urelvsey (7.4)

where t is time, T is a definite time interval, I is the index set of the biota,
J is the index set of the environment.
The entropy of the ecosystem transition scheme is given by:

HQ) == plB®),e@)] xp[B*(t+ 7).t +7) | B(t), ()]
xlogp[B*(t+ 1), +7) | B7(t),e°(t)] (7.5)

where the sum is taken over all u,7r € I and v,s € J and H is defined as
‘entropy’ (in the Shannon-Weaver sense):

H=-> piln(p:) (7.6)
=1

where H decreases as one event becomes increasingly likely and it is written
as H(Q) rather than as a function of all its arguments.
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Conrad (1983) also defines the average uncertainty in the behavior of
the biota given the initial state of the biota and the initial state of the
environment (uncertainty of biota transition scheme):

Hw) ==Y pl6@®).@)] xp[8* (¢ +7) | B7(1), € (2)]
xlogp[B* (t +7) | B7(2),£°(2)] (7.7)

and the sum runs over u, r, and s. Likewise, Conrad defines a conditional
entropy for the behavior of the environment:

Hw) == pl @)@ xple"t +7) | B7(),&(2)]
xlogp[e”(t + 1) | B7(t),€°(2)] (7.8)

The adaptability of the biota is given by:
H(w") = max [H(w")s.t. 4], (7.9)

where w* is the transition scheme of the actual environment that the system
encounters and the condition A is that “the half-life of the biota is not de-
creased at all”. In other words, for the biota to persist, the adaptability of the
living system must be greater than or equal to the actual uncertainty of the
environment: H(@w") > H(w*). Conrad argues that organisms can adapt to
their environment by a variety of mechanisms, such as selective indifference,
avoiding parts of the environment for “good reasons” (geographical regions
with many predators, water with high pH, etc. )2.

Adaptive Management

Holling (1978) argues that robust, innovative solutions require adaptive man-
agement and that it is necessary to design for uncertainty:

2M. Conrad and T. E. Creese make the distinction between selective and non-selective
indifference, where the latter refers to avoiding parts of the environment when you should
not be avoiding them.
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While efforts to reduce uncertainty are admirable ... if not ac-
companied by an equal effort to design for uncertainty and obtain
benefits from the unexpected, the best of predictive methods will
only lead to larger problems arising more quickly and more often.
This view is the heart of adaptive environmental management —
an interactive process using techniques that not only reduce un-
certainty but also benefit from it. The goal is to develop more
resilient policies.

Adaptive management is a process of adjusting actions, as appropriate,
in light of new information and on our progress toward meeting objectives.
Its basic premise is that “if human understanding of nature is imperfect,
then human interactions with nature (e.g. policies) should be experimental”
(Lee, 1995). Management discussions can be viewed as experiments, subject
to modification — but with goals clearly in mind. Adaptive management
stresses the need to review and revise management approaches because of the
ever changing natural environment coupled with our incomplete knowledge
base. While adaptive management is an appropriate response to biological
uncertainty, it is time consuming and can give grossly inaccurate results when
relevant variables are either ignored or not held constant (Smith, 1997).

7.2 Satisficing and Bounded Rationality

There have been many important phenomena observed in human decision
making that are not explained by the theory of utility or profit maximization.
Nobel Laureate H.A. Simon (Simon, 1957; 1958; 1979) proposed a rationality
framework for decision analysis called satisficing (a combination of the words
satisfactory and sufficient). A decision maker who chooses the best available
alternative according to some criterion is said to optimize; one who chooses
an alternative the meets (or exceeds) specified criteria, is said to satisfice.
Of course the satisficing solution is not guaranteed to be either unique or in
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any sense ‘best’3.
March (1978), Simon (1979), and March and Simon (1958) have both
noted that satisficing involves a bounded rationality, in that:

e decisions occur in limited time frames,
o decision makers are unable to acquire all the information they need,

& decision makers are not aware of all of the things they need to know to

make a decision.

The term ‘bounded rationality’ implies “somewhat less than perfect ratio-
nality” (Lewandowski et al., 1989). However, the evidence suggests that this
approach represents not bounded, but simply culturally different rationality
(Simon, 1997). The satisficing framework proposes that decision makers sat-
isfice not only because of the difficulty of optimization but also due to the
inherent complexity of many real-world decision situations. As summarized
by Eilon (1971): “optimizing is the science of the ultimate and satisficing is
the art of feasible.”

One variation on the satisficing theme is the ‘organizational slack’ hypoth-
esis of Cyert and March (1963): firms will settle for ‘satisfactory’ profits, and
it is only when these thresholds are not met that an organization searches for
an improved product or more efficient operation. Cyert and March (1963)
define organizational slack as “the difference between total resources and nec-
essary payments”, ¢.e. uncommitted capital that can be used as a ‘buffer’ for
hard times. They continue,

Many interesting phenomena within the firm occur because
slack is typically not zero ... (Slack) seems to be useful in deal-
ing with the adjustment of firms to gross shifts in the external
environment ... When the environment becomes less favorable,
organizational slack represents a cushion ... (permitting) firms to

3The term ‘satisfice’, which appears in the Oxford English Dictionary as a Northum-
brian synonym for ‘satisfy’, was borrowed for this new use by Simon (1956).
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survive in the face of adversity ... (It} absorbs a substantial share
of the potential variability in the firm’s environment . .. (playing)
both a stabilizing and adaptive role (pp 36-38)

And they conclude that organizational slack is not imposed by management
but generated spontaneously in the healthy dynamics of a robust business
environment.

The present emphasis on decision making under uncertainty can at least
partly be seen as a reaction to the mainstream determinism of the 1960s and
early 1970s. Tracing research endeavors back into the nineteenth century
Beck (1987) and Brush (1995) argue that the recent emphasis on uncertainty
can be interpreted as a swing of the pendulum “away from determinism and
toward indeterminism”. Fig 7.3a illustrates the author’s interpretation of
how decision making paradigms have evolved from the use of utility maxi-
mization in the 1950s, to ‘aggressive’ satisficing in the 1970s and ‘defensive’
satisficing in the early 21st century. The move toward ‘defensive satisficing’
reflects the fact that real-world problems are pressure-packed, ill-defined,
dynamic, and inherently complex: the number of components and the num-
ber of ways of combining them are so large that searching for optimality is
unrealistic.

‘Defensive’ satisficing is the best approach for designing policies that are
robust to uncertainty (possess a high ‘surprise threshold’) and safeguard
against ecological degradation (Williams et al., 1997; Prato, 1999). This is
particularly important as decision stakes in modern problems are often quite
high (Fig 7.3b). Satisficing is a central theme in the behavioral approach
to economics, which studies the actual decision making process. For many
firms, organizations, and individual decision makers, a solution that is as
close as possible to a goal is more acceptable than an optimal one: decision
makers routinely reject apparent optimal solutions for those that provide a
minimum standard of satisfaction, often referred to as “aspiration levels”
(March, 1978).
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While utility maximization may be a useful tool for representing “mass
economic behavior” (Lewandowski et al., 1989) it has many limitations as
a predictor of individual behavior, see for example Erlandson (1981) and
Horsky and Rao (1984). For example, extensive studies of decisions to pur-
chase (or not to purchase) flood insurance reveal behavior that cannot be
reconciled with the maximization of utility. Rather, Kunreuther et al. (1978)
found that people tend to ignore (hence, not insure against) low-probability,
high-consequence events, unless they have had “rather direct past personal
experience of them” (Simon, 1997). However, maximizing utility may be an
appropriate for well-structured repetitive tasks, with well-trained decision
makers, such as oil drilling decisions (Schoemaker, 1982).
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There is a large body of research showing that satisficing is particularly
relevant for MCDA (Hogarth, 1980; Kahneman et al., 1982). A standard
experimental paradigm presents subjects with a number of multi-attributed
alternatives, and allows them to obtain additional information about each
until they make a choice (select an alternative) or exhaust the available in-
formation. Experiments show that decision makers usually satisfice, both in
terms of failing to examine all the available information and in the sense of
choosing an alternative as soon as one has been found to meet minimum re-
quirements against the criteria of concern. Additional evidence suggests that
business firms (Cyert and March, 1963; Bromiley, 1986) and individual deci-
sion makers (Clarkson, 1962; Bouwman and Ungston, 1982; Scelberg, 1966)
rarely examine all alternatives in real-world situations, or pay attention to
all potentially relevant variables. For example, when searching for their first
job, Soelberg (1966) showed that business school students use a variety of
rules of thumb to limit the list of firms they contacted and to choose among
those who made offers to them. The very notion of heuristics to address a
problem is inspired by the idea of satisficing, since “an acceptable solution
in hand is better than an optimal solution in the bush” (Rajabi, 1997).

7.3 Convex Models of Uncertainty

The overwhelming volume of economic and environmental literature on the
subject of decision making under uncertainty is probabilistic. However, a
large body of evidence indicates that competent decision-makers often violate
the axioms of expected utility and may lack the information, expertise, or
time to perform a probabilistic analysis (Knight, 1921). In this section,
uncertainty is viewed as an information gap: the disparity between what is
known and what needs to be known in order to make a perfect decision.
In environmental planning, industrial management, medical diagnosis and
other areas, this gap is often quite substantial. But how can we measure
the size of this gap? And is it possible to get a meaningful quantification of
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uncertainty? Finally, are non-probabilistic approaches capable of modeling
robustness to uncertainty?

Convex models of uncertainty are used to answer these questions. Con-
vex models require fewer assumptions and less data than probabilistic models
for their formulation and verification. Accordingly, somewhat weaker asser-
tions, with “starker interpretations” (Ben-Haim, 1999), will be accessible
with convex models than with probabilistic models. Nonetheless, meaningful
results can be obtained. An additional motivation for the non-probabilistic
quantification of uncertainty arises in situations where critical events have ex-
tremely low probabilities, which are difficult for decision makers to interpret.
Though the mathematical formulation of convex models emerged in control
theory (Schweppe, 1973), seismic design of structures (Drenick, 1968), nu-
clear measurements (Ben-Haim, 1985), and mechanical analysis (Ben-Haim
and Elishakoff, 1990), it matches an intuition of uncertainty which is preva-
lent among economists and environmental managers.

Some scholars, such as K.W. Hipel of the University of Waterloo, Canada
and Y. Ben-Haim, Technion, Israel prefer the term “information-gap” (or
“info-gap”) models (in place of convex models) to emphasize the fact that
“uncertainty is the complement of knowledge. It is the gap between what
is known and what needs to be known to make correct decisions” (Mack,
1971). John Kenneth Galbraith explains the importance of this informa-
tion gap in the context of complex industrial organizations: “the difference
between the amount of information required to perform the task and the
amount of information already possessed by the organization” (Galbraith,
1973). Convex models can formally model uncertainty and provide insights
into the problems that were once thought too complex and unpredictable to

analyze.

7.3.1 Lake modeling and Convex Models

Consider the following, not atypical, modeling problem: assessing the impact
of alternative policies to improve the water quality in Lake Erie by reducing
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eutrophication and algae production (Nelson, 1976; Simon, 1997). A com-
mon approach to addressing this problem is the construction of a complex
simulation model of the lake and the adjoining watershed (a total area of
some thousands of square miles). Next, a grid can be imposed on this wa-
tershed area and equations constructed for each cell to estimate phosphate
production (on land) and algal growth (in the lake). The grid will need to
be quite fine to account for important point sources (e.g. city sewer outfalls)
and complex currents that redistribute material over large distances. Such
a model will not only be enormous (tens of thousands of parameters) but
it will also contain equations that represent poorly understood mechanisms
(such as biochemical aspects of eutrophication processes).

Moreover, data on phosphate sources, such as agricultural runoff are no-
toriously inaccurate. And developing a forecasting model which operates
dynamically over time adds additional complexity. Information on socio-
economic patterns and the biological effects of pollution is so inexact it makes
no sense to attempt more than order-of-magnitude estimates. Given the de-
gree of crudeness in biological and social models, it is unwise to model the
entire system in great detail. Modeling in such complex situations may call
for “little more than back-of-an-envelope estimates” (U.S. National Academy
of Sciences and National Academy of Engineering, 1974). To make ‘sense’
of overwhelming model complexity in the Lake Erie system, Kay and Regier
(1997) used a heuristic qualitative model in the form of an “impressionistic
sketch” based on their two-attractor catastrophe model (Regier and Kay,
1996). Using concepts from ‘complex systems thinking’ (involving terminol-
ogy such as multiple equilibria, positive feedback, and attractors) Kay and
Regier (1997) qualitatively described two alternative ‘systemic states’ of Lake
Erie.

7.3.2 Theory of Convex Modeling

The convex modeling approach to analyzing phosphorus levels in Lake Erie
is now described. Assume that the nominal (typical/anticipated) phospho-
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rus levels in Lake Erie are given by P(t), 2 known function. The actual
phosphorus level, P(t), deviates by an unknown amount from the expected
phosphorus level P(t). This information may be quantified in an information-
gap model of uncertainty. Consider the set of all phosphorous-functions P(t)
whose deviation from the nominal function P(t) is bounded by a:

R(a,P) ={P(t): |P(t)—-P@)| <a}, a>0 (7.10)

R(«, P) is a set of functions that contains all phosphorus functions consistent
with our prior information, where « is the uncertainty parameter, expressing
the (unknown) phosphorus level.

As explained by Ben-Haim (1996) this information-gap uncertainty model,
R(c, P), is a family of nested sets for & > 0. This means that R(a, P) C
R(B,P) if o < B. For fixed «, the set R(c, P) represents a degree of uncer-
tain variability in the lake’s phosphorous level P(t). The greater the value
of a, the greater the possible variation of phosphorus, so «, the uncertainty
parameter, expresses the information gap between what is known (P(¢)) and
what needs to be known for an ideal solution (the exact function P(¢)). Ro-
bustness to uncertainty underlies the convex modeling appraoch: specified
goals are attained, while at the same time the decision-maker’s immunity to
uncertainty is maximized.

Convex modeling is a stark theory of uncertainty, motivated by a severe
lack of information. It does, however, have its own particular subtlety. It is
facile enough to express the idea that uncertainty may be either pernicious or
propitious. That is, uncertain variations may be either adverse or favorable:
the robustness function is the greatest level of uncertainty consistent with no-
failure; while the opportunity function is the least level of uncertainty which
entails the possibility of sweeping success. If ¢ is a vector of parameters
such as time, design variables, and model parameters, the robustness and
opportunity functions can be expressed as the maximum or minimum of a
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set of a-values:

a(q) = max{e: minimal requirements are satisfied} (7.11)

B(q)

min{a : sweeping success is obtained } (7.12)

The robustness function &(q) is the immunity against failure, so a large
value of @(q) is desirable. In contrast, the opportunity function B(q) is the
immunity against sweeping success, so a small value of E(q) is desirable.
Quite often the degree of success is assessed by a scalar reward function
R(g,u) which depends on the vector g of actions, decisions and model pa-
rameters as well as on an uncertain quantity « whose variations are described
by an information-gap model U(a,%). The minimal requirement in Eq 8.8
is that the reward be no less than a critical value r.. Likewise, the sweep-
ing success in Eq 8.9 is attainment of the “wildest dream” reward r,,. The
robustness and opportunity functions can now be expressed more explicitly:

alg.re) = max{a: glgn_)R(q,U)Zrc} (7.13)
ucU(o,u

Blar) = minfa: mex Rlou)2r (714)
u€l(a,i)

As explained elsewhere (Ben-Haim, 1998), the robustness function &(q, r¢)
decreases monotonically in the minimum required reward r.. This expresses
the trade-off between demanded reward and immunity to uncertainty: if
large reward is required then only low immunity to uncertainty is possi-
ble. Conversely, the opportunity function E (g, 7c) increases monotonically in
wildest-dream reward 7: sweeping success cannot be attained at low levels
of ambient uncertainty. This is illustrated in Fig 7.4.

7.3.3 Convex Models and MCDA

Suppose that prior knowledge exists about nominal (anticipated) attribute
levels for an alternative j, i.e.: the vector T; = (Z1j, Z2j, - -- , Znj) is known,
but very little is known about how the actual attribute values will deviate
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Figure 7.4: Robustness and opportunity curves (schematic).

from these nominal levels. A convex model determines the robustness to
variability of the jth policy alternative by considering the following three
components:

e A decision model to evaluate the overall value of each alternative,
V(z;). In this section an additive value function model is employed.

o The failure criterion, or conditions under which the alternative does
not meet minimum requirements: the failure region may be written as
V(:I?J) < Uer-

® The uncertainty model, or quantification of the variability inherent
in the attribute levels. For the jth alternative, uncertainty can be
modelled as a solid sphere centered at the point T; = (Zy;, T2j, - - - , Tnj)s
with radius «. This set, of the form

n

Sj(a,':'fij) = {:l:j : Z (:z:,-j - Zfij)z S 042} . (7.15)
i=1

is more and more likely to contain the actual attribute levels as «

increases.
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Define J to be the set of decision alternatives, of which the decision maker
must select one. The evaluation of policy alternative j € J is described by
a vector of indicators, ; = (215, ZT2j,- - , ZTnj), Where n is the number of
indicators, and z;; is the performance level of alternative j on indicator z. Let
v;(-) be the value function for indicator 7. An amalgamation rule combines
consistently scaled component (marginal) value functions, v;(z;;), into an
overall index of value or worth, V(z;). This is achieved most often using a
linear additive model, in which overall value is the weighted sum of scaled

indicators: n
V(z;) = Z kivi(zi), j=1,---,m. (7.16)
=1

The constants k; rescale the indicators to be comparable, while at the same
time indicating their relative importance. In order for the linear additive
model to be a valid representation of the overall objective, the indicators
should be preferentially independent (Keeney and Raiffa, 1976), meaning
that the level of any specific indicator does not depend on the levels of the

other indicators.

7.3.4 Robustness of Policy Alternatives

Here the uncertainty model is described in more detail. Suppose that we
have some prior knowledge about nominal (anticipated) indicator outcomes
for an alternative j, i.e.: the vector T; = (Ty;, Toj,-* - ,Znj) is known, but
that we know very little about how the actual indicator values will deviate
from the nominal. A simple uncertainty model based on this information
states that each outcome, z;;, may deviate by an unknown fraction of its
nominal value, Z;;. Consider the following “uniform-bound” information-gap
model for uncertain indicator levels, #;(c), a family of nested sets for each
a« > 0 defined by

Hi(a) = {m,-: I—%‘—L’l < wia, i=1, n} (7.17)
ij
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Each element z;; of the vector x; € #;(a), representing the level of the ith
indicator for alternative j, must lie within a specific interval according to

fij - wif,-ja < Tij < fij + wii"ija- (718)

In other words, #;(«) is the set of x;-vectors (attribute-vectors for al-
ternative j), whose elements z;; vary from their nominal values by no more
than a fraction w;a. The uncertainty weights, w, ..., w, are positive num-
bers that express our prior information about the relative variability of the
indicators. If no prior information about the relative variability of the at-
tributes exist, then all the w;’s will equal unity. In the case where the ith
attribute varies more than the others, then its uncertainty coefficient, w;,
should exceed 1. The uncertainty parameter, ¢, expresses the (unknown)
degree of variation of the actual indicator outcomes z;;. For a > 0, the
allowable uncertainty in z;; increases with o. This is expressed by the “nest-
ing” of sets, i.e. if & < B, then #H;(a) C H;(B)- Since these sets are convex,
this information-gap model is called a convex model of uncertainty.

The robustness of a policy alternative is the greatest value of the uncer-
tainty parameter, «, that is consistent with the minimum required overall
value (u ). We evaluate this as follows. First we define a set of “accept-
able” a-values: those values that do not allow failure if the jth alternative
is implemented. Consider the set

.Aj(ucr) = {O{: mlni ki Ui(.’l,‘ij) 2 Uer v Ty c H](CY)} . (719)

i=1
Aj(uc) is the set of a-values for which all indicator-vectors z; in H;(a) have
overall value greater than or equal to u. for alternative j. The robustness of
an alternative is the greatest acceptable value of the uncertainty parameter

aj=max{a: o€ Aj(Uc)}; (7.20)

thus, &; is the maximum ca-value consistent with achieving u., for all in-
dicator outcomes in the uncertainty-set H;(a), if alternative j is selected.
An alternative is ‘robust’ to uncertainty if, despite high levels of attribute
uncertainty, it can achieve a minimum overall valtue (uc)-
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Simple INlustration of Convex Models

Consider two attributes, z; and z, with nominal attribute values Z;; and Z»;,
respectively on alternative j. Assume that there is twice as much variability
in z; as in z,, then w; = 2 and we = 1. As a visualization aid, let ¢ = 0.15.
Hence, from Eq 7.18, the allowable variation in attribute 1 is: T;; —0.37; <
z1; < Zi; +0.37Zy;. Similarly, the allowable variation in attribute 2 would
be: Ty; —0.15T5; < zo; < To;j +0.15T,;. This gives rise to the rectangles in
Fig 7.5. In other words, #;(0.15) is the set of x;-vectors (attribute-vectors
for alternative j), whose elements z;; and z,; vary from their nominal values
by no more than the fractions 0.3 and 0.15, respectively. Similarly, H;(0.2)
is the set of x;-vectors whose elements z;; and z3; vary from their nominal
values by no more than the fractions 0.4 and 0.2, respectively.

Since A;(uc) is the set of a-values for which all indicator-vectors z; in
H;(a) have overall value greater than or equal to u., for alternative j, the
situation shown in Fig 7.5 has A;j(uc) = {a: 0 < a <0.3}. This implies
that &; = 0.3. Recall that the alternative with the highest & will be the most
robust to variability.

7.3.5 Forest Management and Convex Models

Researchers have shown that the coniferous forest ecosystem of New Brunswick
consists of multiple stable states (Clark et al., 1979; Ludwig et al., 1978;
Holling, 1988): the system moves in a discontinuous fashion between maxi-
mum foliage just before an outbreak and minimum foliage immediately after
the outbreak. Essentially, a lower equilibrium density for budworm is estab-
lished by insectivorous birds whose populations control budworm populations
in younger stands. However, as the trees mature, the accumulation of foliage
volume impedes the birds’ ability to search for budworm. Eventually, a higher
equilibrium density for budworm (an outbreak) is established, followed by a
budworm dieoff (low equilibrium density).

Nominal indicator (performance) levels and value functions for each in-
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dicator in this problem were taken from the research of Clark et al. (1979).
Levy et al. (2000a) provides additional detail about the spruce budworm case
study as it pertains to convex models. Specifically, the robustness to uncer-
tainty of three policy alternatives were considered: Historical Management
(a1), Winkler-Dantzig (@.), and Branch-Density Hybrid (@3). It is assumed
that the uncertainty weights are selected as w; =2, wo =1, w3z = 1, wy = 6,
and ws =1 (i.e. Forest Volume and Recreational Quality indicators tend to
vary two and six times more than the other attributes).

Robustness curves are generated by the REAL (Robust Environmental
Analysis for Lokahi) decision support system. Fig 7.6 shows that the Branch-
Density Hybrid alternative clearly dominates the other two with respect to
immunity-to-uncertainty when uc > 0.45 (ue =2 0.45 at the upper crossover
point), while for lower values of uc,, the Historical alternative is most robust
(uer =2 0.38 at the lower crossover point). It is also important to recognize
that @; is a decreasing function of u.: this represents a tradeoff between
minimum required overall value and immunity to uncertainty (Ben-Haim,
1998).
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7.3.6 Conclusions

Recognizing that environmental conditions, political structures, and man-
agement objectives may change significantly over time, this chapter formally
models the robustness, flexibility, and adaptability of complex, large-scale
systems. An multiple criteria information-gap procedure is put forth for iden-
tifying policy alternatives that, while capable of coping with attribute vari-
ability, still achieve minimum socio-economic and ecological requirements.
The management of water quality in Lake Erie and spruce-budworm out-
breaks in New Brunswick are used as illustrative examples. Numerical and
theoretical results show how the minimum required return and the available
prior information determine which policy alternative can best cope with un-
certainty in environmental variables. Moreover, the constructed robustness
curves assess the global sensitivity of alternatives to uncertainty.

The proposed multiple criteria info-gap model is entirely non-probabilistic
and constitutes a viable medium for integrating environmental indicators,
conflicting objectives, and ambient uncertainty in a complex decision context.
In addition, the info-gap approach operationalizes the notion of ‘satisficing’
(finding a solution that is ‘good enough’ for the problem at hand). Particu-
larly under high levels of uncertainty, the art of the feasible (satisficing) may
be more helpful than the art of the ultimate (optimization).



Chapter 8

Conclusions and Future

Research

Social change and technological uncertainty continue to accelerate along the
information superhighway of modernity: “technological upheaval”, “informa-
tion revolution”, “organizational instability”, and “economic disequilibrium”
are the norm, often contributing to social malaise, violent conflict, and eco-
nomic paralysis (Schon, 1971; Rifkin, 1981). While periods of upheaval can
be disconcerting, they provide fertile soil for the growth for new ideas: the
Newtonian model arose at a time when feudalism in Western Europe was
crumbling — the social system, was, so to speak, “far from equilibrium”.

8.1 Main Contributions of the Thesis

Dyer et al. (1992) emphasize that one of the most difficult and important
topics in operations research is the development of new techniques to real-
istically model uncertainty in a multiple criteria context. To this end, new
MCDA uncertainty approaches and computer tools were developed in a va-
riety of fields, from Bayesian statistics and stochastic calculus to info-gap
models. Specific contributions are as follows:
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An overview of environmental optimal control theory

An overview of discrete MCDA under certainty and uncertainty
The inclusion of extinction risk in optimal control theory

The inclusion of a ‘preservation value’ in optimal control theory

A determination of the relationship between cost, price, discount rate
and optimal population level; a determination of how the optimal pop-
ulation level changes over time

The development and application of sustainability indicators
The implementation of MCDA interval methods

A review of adaptive management, robustness, resilience, and flexibility
from a decision analytic perspective

Generalizations of Streeter-Phelps equations under uncertainty

Formulation of moment equations for Streeter-Phelps equations under
uncertainty

Development of the SEAL model to solve stochastic differential equa-
tions. The author programmed an explicit order 1.5 strong scheme to
integrate Ito SDEs. The algorithm is found in Section 11.2 of Kloeden
and Platen (1992).

Use of SEAL model to identify the expected minimum DO level. This
information is then used to determine the maximum organic waste ma-
terial that can be discharged into a receiving water.

The design of MCDA info-gap models

An exploration of the axiomatic foundations of MCDA info-gap models
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