
Robust Time-Optimal Control for
the One-Dimensional Optical Lattice

for Quantum Computation

by

Botan Khani

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics - Quantum Information

Waterloo, Ontario, Canada, 2011

c© Botan Khani 2011



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Quantum information is a growing field showing exciting possibilities for computational
speed-up and communications. For the successful implementation of quantum computers,
high-precision control is required to reach fault-tolerant thresholds. Control of quantum
systems pertains to the manipulation of states and their evolution. In order to minimize
the effects of the environment on the control operations of the qubits, control pulses should
be made time-optimal. In addition, control pulses should be made robust to noise in the
system, dispersion in energies and coupling elements, and uncertain parameters.

In this thesis, we examine a robust time-optimal gradient ascent technique which is used
to develop controls of the motional degrees of freedom for an ensemble of neutral atoms
in a one-dimensional optical lattice in the high dispersion regime with shallow trapping
potentials. As such, the system is analyzed in the delocalized basis. The system is treated
as an ensemble of atoms with a range of possible quasimomenta across the first Brillouin
zone. This gives the ensemble of Hamiltonians, indexed by the quasimomenta, a distinct
spectra in their motional states and highly inhomogeneous control Hamiltonians. Thus,
the optical lattice is seen as a model system for robust control.

We find optimized control pulses designed using an ensemble modification of gradient-
ascent pulse engineering robust to any range of quasimomentum. We show that it is
possible to produce rotation controls with fidelities above 90% for half of the first Brillouin
zone with gate times in the order of several free oscillations. This is possible for a spectrum
that shows upwards of 75% dispersion in the energies of the band structure. We also show
that NOT controls for qubit rotations on the entire Brillouin zone fidelities above 99%
were possible for 0.6% dispersion in energies. The gate times were also in the order of
several free oscillations. It is shown that these solutions are palindromic in time due to
phase differences in some of the energy couplings when comparing one half of the Brillouin
zone to another. We explore the limits of discretized sampling of a continuous ensemble
for control.
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Chapter 1

Introduction

Quantum information is a burgeoning field promising to provide some remarkable gains
in computational speed, increased security in cryptography, as well as introducing the
ability to break present cryptography schemes [33, 29, 40, 96, 68]. The field of quantum
information pertains to the study of performing information processing in the realm of
quantum physics. The possibility of quantum-based computing was introduced through a
series of discoveries. One significant such discovery was in 1961 when Landauer argued that
all information is physical since a physical process must occur to store and erase it [69].
In 1982, Feynman considered the idea of quantum computers as quantum simulators [33].
Another idea put forth from Feynman in 1985 was the possibility of quantum computation
through controlled evolution of atomic quantum states [34]. That same year, Deutsch
published a paper that introduced a fully quantum model of computation [26]. He argued
that a quantum computer could simulate any finite physical system exactly and simulate
any discrete stochastic classical processes. In 1998, DiVincenzo laid out the criteria by
which quantum computers would function [28].

Very important to the field were discoveries of specific quantum algorithms in the early
1990s that showed the potential for quantum-based computers to have tremendous increases
in computational speedup versus contemporary classical computers. One such algorithm
was discovered by Peter Shor in 1994 in which he showed that a quantum algorithm was
more efficient than a classical one. Complexity is defined as how the number of elementary
operations required to perform the necessary computation changes as a function of the
number of input bits. This particular algorithm showed that order-finding problems, such
as factoring a number or finding a discrete logarithm could be performed on a quantum
computer with a complexity that was super-polynomially better than the best known clas-
sical algorithms of the time [96]. As data security systems using public key encryption
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schemes relied on the difficulty of factoring prime numbers for keeping encrypted infor-
mation secure, a quantum algorithm had shown that they were vulnerable. Subsequently,
great interest is still placed in the field of quantum information.

Another significant contribution to the field arrived in 1995 with the publication of
Grover’s search algorithm [45]. This algorithm showed that quantum computers could
enjoy wide use in applications such as database searches. Although the improvement in
computational speed is not as dramatic as Shor’s algorithm, it is significant nonetheless.
An important development in quantum computing was that quantum systems could be
simulated by quantum computers more efficiently than classical computers, as postulated
by the strong Church-Turing thesis [26]. This provides wide opportunities for scientific
studies of physical systems that would otherwise have been too difficult to simulate, lead-
ing to new discoveries in physics and chemistry. Other significant algorithms showing vast
improvements in quantum over classical computational speed followed, including: quantum
Fourier transforms [4, 47], generalizations of specific hidden subgroup problems [32], quan-
tum random walks [17], etc. Essentially, the field shows great promise as many discoveries
continue to be made.

With the theories showing the vast capabilities and benefits of quantum information,
the main challenge rests in the physical implementation of a quantum computer. A basic
requirement for a quantum computer is that it must be able to prepare and maintain a series
of well-defined quantum bits, or qubits, where a quantum state is stored as a superposition
of two pure states in each qubit that may or may not be coupled. The quantum computer
must then be able to perform a complete set of coherent quantum evolutions, or gates, in
order to do computation on a qubit or series of coupled qubits. The state of the qubit must
then be able to be physically measured. Lastly, the number of qubits a quantum computer
can operate on must be scalable so that the computer can be made more complex.

When it comes to physical implementations, there are a variety of choices to experi-
ment with: ion traps [20], neutral atom traps [44], cavity quantum electrodynamics (QED)
[31, 103], photonics [63], liquid and solid state nuclear magnetic resonance (NMR) [112],
superconducting qubit devices [21], topological quantum computing [84], etc. Each imple-
mentation has its own advantages and disadvantages. Regardless of their attributes, they
must satisfy the basic requirements of a quantum computer. The main challenge common
to some implementations such as superconducting qubits for quantum computation is im-
proving coherence times. Coherence is the property of a state being preserved within a
system. Decoherence is the opposite where information from a state within a system is
spread to the external environment. Information that has leaked into the environment is
both exceedingly difficult to measure and can not be computed by the quantum computer,
thus being considered lost. With the advent of fault tolerant quantum error correction
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codes by Shor and DiVincenzo in 1996, it was shown that quantum computers could tol-
erate finite noise allowing complex quantum algorithms to be performed effectively [30].
This was greatly improved upon by Laflamme and Knill with the development of a general
theory of quantum error correction [64] and also by Gottesman with the introduction of
stabilizer codes in 1997 [41].

The problem of decoherence is inherent to the nature quantum systems. Coherent
quantum effects are effectively observable when coupling to the environment, that is ev-
erything that is external to the qubit, has been abated to minimize noise. In practice
it is not possible to have a perfectly isolated qubit as it would preclude the ability to
control and measure it, thus some noise will always be present. Despite the best efforts
of experimentalists and theorists alike, gates can not be performed at present with pre-
cision high enough to satisfy required error correction thresholds. The solution requires
more advanced designs [79], improved error correction codes, more advanced hardware,
and performing qubit operations fast and precise enough to avoid issues with decoherence.

Another problem presented in quantum systems is imperfect knowledge of the system,
imperfect hardware, and inhomogeneity in the state or controls of the system itself. Some
implementations such as superconducting qubits require precise nanoscale fabrication of
the device [65]. As a result, some parameters of the system may be significantly different
from the intended design and are difficult to measure, leaving a parameter that may have
a large uncertainty. In systems such as charge qubits, the quantized energy levels depends
on a particular parameter that is prone to fluctuate between runs of the experiment, thus
requiring robustness [65]. Other implementations of quantum computers such as some
condensed matter systems contain an ensemble of systems with dispersion in energies [3].
A practical apparatus measuring and controlling the qubit may also be imperfect. Better
hardware and engineering for quantum systems can be done though imperfections will
always remain. However, being able to perform high precision qubit operations in the
presence of imperfections through robust control would address these issues.

Research into quantum control aims to help resolve the problem of decoherence and deal
with imperfections. Interest in the control of quantum systems has been present for over
60 years since the advent of experimental NMR spectroscopy [67, 35]. Coherent control of
quantum systems is necessary in preparing states and evolving gates. Not limited to the
burgeoning field of quantum computing, applications of quantum control to research and
industry are widespread and include NMR spectroscopy and imaging, research in atomic
trapping, metrology, and nanotechnology. In the beginning, quantum control techniques
had centred around simple analytic pulses designed for idealized models of systems such
as Rabi pulses for rotating the state of a qubit or Ramsey fringes for measuring a qubit’s
frequency [1, 100]. More sophisticated control techniques emerged as research in NMR
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further advanced and the immediate need in quantum computing for high precision con-
trollability arose [67]. These control techniques addressed many of these issues in quantum
control. One such issue was the application of fast control pulses. For this, time-optimal
numerical control methods allowed for pulses with short times. Since almost any quantum
system is generally too complex for optimal control to be calculated analytically, numeri-
cal algorithms such as gradient ascent pulse engineering [59], Kaya-Huneault methods [58],
real-embedding [49], Krotov [66], and genetic algorithms [56] are relied upon. Another issue
is preventing unwanted transitions or couplings to quantum levels in a system that have
a higher rate of decoherence than the qubit itself. Analytic pulse shaping methods such
as derivative removal by adiabatic gate (DRAG), or stimulated Raman adiabatic passage
(STIRAP) work to prevent such transitions while remaining time-optimal [52, 81, 38].

Other control methods seek to isolate the qubit by effective removal of coupling to the
environment. The environment can not be controlled directly and behaves unpredictably
with a system on short time scales. However, techniques derived from bang-bang control
such as CPMG and dynamical decoupling utilize sufficiently fast pulses to effectively decou-
ple the qubit hamiltonian from the environment by exploiting an effective time-reversal of
its evolution with the bath environment [106, 91, 105, 104, 86, 14]. Dynamical decoupling
can also be applied while performing quantum gates [61]. The only drawback is that they
do not suppress the pure energy relaxation type of decoherence. However schemes such
as the quantum Zeno effect can effectively eliminate relaxation by repeated measurements
[78]. Other techniques to isolate a qubit from the environment include encoded protection
from coupling errors and using decoherence-free subspaces [74, 102, 9].

Another important issue to be resolved by quantum control is robust control. Improved
qubit controls would address incomplete knowledge of the system and imperfect hardware.
This manifests as uncertainties in the parameters of the system, imperfectly executed
control pulses, calibration errors, and dispersions in the energies. Controls that can be
designed to be robust to these imperfections would allow for the high precision gates that
are the requisite for a quantum computer. There are a variety of methods for designing
robust control sequences which includes the composite for off-resonance with a pulse se-
quence (CORPSE) method [80], the broadband excitation by optimized pulses (BEBOP)
[99], the band-selective uniform response pure-phase (BURP) [39], and modifications to
standard time-optimal control methods such as gradient ascent pulse engineering [72].

A promising physical implementation for quantum computers is that of superconduct-
ing qubits. These devices rely on the non-linear effect of the Josephson junction and the
phenomena of superconductivity to produce macroscopic quantum states consisting of a
large quantity of electrons [21]. They do not require rigorous mechanical control for func-
tion unlike atomic traps and can be designed with desired parameters unlike molecules
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used in NMR. Also, in situ tunability of energy couplings and non-linearity is possible.
The most attractive feature of superconducting qubits is that the design and fabrication
of the devices have much in similarity to the semiconductor chips mass produced by the
computer industry. As a result, fabrication of the devices is possible with available technol-
ogy. In addition, placing a qubit in a superconducting cavity mimics the effects of cavity
quantum electrodynamics and helps shield it from noise sources while providing strong
measurement and control coupling to the qubit. Most of all, they show great potential for
scalability as multiple qubits can be coupled to a single cavity [108, 37].

The main challenges in such devices is their calibration in order for them to respond
desirably to shaped control pulses. They also require ultra cold temperatures only pro-
ducible within dilution refrigerators. In addition, their coherence times are much shorter
than other implementations of quantum computers, on the order of a few ns to tens of µs.
Initially, superconducting qubits had very few qubit operations that could be performed
within their decoherence times. As an example, in 2002 the best performing charge qubit
had a decoherence time of 0.5 µs and a qubit relaxation time of 1.8 µs [107]. However,
as design engineering and fabrication improved along with more clever designs that were
crafted, decoherence times improved significantly. By 2005 the highest decoherence time
was 4 µs with a qubit relaxation time of 1 µs [6]. At present, a group in Yale has shown
qubit relaxation times of up to 60 µs and superposition coherence times of 20 µs [85]. Tak-
ing into account the frequency of Yale’s qubit, well over a million single-qubit rotations are
possible during the coherence time, making it one of the best quantum devices at present.
With the pace of improvements made in coherence times, superconducting qubits may be
the first implementation to provide a fully scalable quantum computer. They certainly
hold merit as potential candidates for quantum computing in the long-term future.

Superconducting qubit devices undoubtedly will require robustness to dispersions, noise,
and imperfect hardware. One challenge would then be to provide high precision control
pulses robust to errors. However, a challenging physical system for quantum computation
should be selected, one that would be both difficult to control yet possible to benchmark
control pulses in experiment. One such system is a one-dimensional optical lattice. They
are also considered a candidate for a quantum computer [27] owing to their long coherence
times and ease of scalability [68]. The one-dimensional optical lattice is a lattice of ultra
cold atoms trapped by a standing potential of light along one axis in a vacuum chamber.
The qubit state can then be encoded into the vibrational state of the atom. Controlling
the system as a whole is a significantly difficult challenge since each atom may have its own
position and quasimomentum with respect to the trapping potential well it sits in. Apply-
ing lasers on the entire system to wiggle the atoms or change the height of their trapping
potential barriers is simple in experiment. However, having them perform high-precision
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operations is not trivial if possible at all, especially for quantum computing. The reason is
that the controls must be designed to be robust to the range of possible energies the atoms
may have. Also, the atoms interact differently to the lasers depending on their vibrational
state. As a result, there is inhomogeneity in both the energies and controls of the atoms.
One recent proposal has suggested the use of global controls of atoms in addition to single
atom addressability to perform high precision gates [94]. However, the need for robust
control remains. Thus, if robust control can be demonstrated on a system as challenging
as the optical lattice, than it is possible to apply robust control to many other systems.

This research pertains to the robust control of the optical lattice. In particular, robust
time-optimal control using a modified gradient ascent algorithm for optimization over a
discrete sample of an ensemble parameter. For complex problems such as controlling an
ensemble it is generally difficult to find control sequences analytically. An alternative is
to use techniques from optimal control theory where control pulses are developed using
powerful numerical approaches [90, 66, 55, 59]. These numerical techniques are highly
flexible since they are independent of the type of quantum system considered and can be
adapted to many constraints such as the need for robustness. Optimal control theory has
been applied to the problem of robust or ensemble control in many different contexts like
NMR [72, 10, 98, 111], many-body entanglement [87], spin-chains [109], and spin systems
[93].

In this thesis, it is shown that optimal control can perform high-fidelity gates in the
presence of significant energy and coupling dispersion. In Chapter 2, a description of the
physical model of the optical lattice is presented. In Chapter 3, an introduction to the
use of time-optimal control theory is given with a description on robust control. In Chap-
ter 4, the results are presented in detail. These results show the quality of robust control
pulses designed by numerical gradient pulse engineering methods with limited resources.
A description of an interesting result is given where higher fidelity gates were possible with
shorter durations for high dispersion.
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Chapter 2

Physical model: The optical lattice

2.1 Introduction

Optical lattices [7] are a candidate for quantum computing [27] since they are naturally
scalable and provide long coherence times [68]. They are also useful for the simulation of
strongly correlated many-body and other condensed matter systems [71, 8, 7]. Simulations
of such systems can in turn be used to compute otherwise intractable problems such as
antiferromagnetic transitions [97] and conductor to insulator transitions [53, 42], to name a
few. Particles are bound in a lattice structure arrangement by optical wavelengths of light.
The simplest one-dimensional optical lattice can be created by two counter-propagating
beams of coherent light to create a standing wave potential. A local vapour cloud of neutral
atoms is trapped in one dimension by light-induced forces with a binding potential that
is proportional to the light intensity while being free to move in the other two spatial
dimensions. The atoms are consistently kept at very low temperatures to ensure minimal
energy fluctuations so that they remain bounded in the potential of the relatively weak
trapping lasers and that their quantum mechanical nature may be observed and exploited.
Investigating this system provides the opportunity to study a difficult control problem
for quantum computation where the qubits are encoded into the vibrational states of the
atoms [12, 16, 76, 94].

One of the advantages of optical lattices are the possibilities for control; however finding
control sequences to perform desired operations is very difficult. The eigenstates of a
periodic potential give a band structure where states within the bands are distinguished
by quasimomentum (Fig. 2.1) and the coupling strength between states is also dependent
on quasimomentum. The control task that is being set out for discussion is to perform a
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Figure 2.1: The first four energy bands (highlighted in grey) for a 1-D optical lattice are
shown in the localized basis for potential depth r = 13 and compared to the sinusoidal
trapping potential. Refer to Fig. 2.2.

single-qubit gate between atoms in the lowest two Bloch bands. These gates are naturally
vertical, i.e., they connect states with equal quasimomenta since the eigenvalues eika of the
discrete displacement operator are described by the quasimomenta k. The only controls
available over the atoms are a global set that adjust the phase and intensity of the control
laser, thus acting on all atoms. These controls do not affect the discrete displacement
symmetry so that the quantum number k is not changed. The challenge is to control an
ensemble of particles in parallel for preparing quantum states or performing gates despite
undergoing different evolutions. This problem is mathematically equivalent to that of
robust control [101, 19, 81, 89, 18, 92, 54, 73].

The purpose of this research is to investigate theoretical control sequences for the optical
lattice in the broader scope of being able to further control the quantum system in the
context of the gate model of quantum computing. In this Chapter, the physics of the one-
dimensional optical lattice and the corresponding global controls are discussed, giving detail
to the calculations of the eigenenergies of a system with a periodic potential and the control
couplings in appropriate basis. In Section 2.2 & 2.3 the one-dimensional lattice model and
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its band structure is introduced while developing a language connecting it to quantum
control theory. The properties of the dispersion in the system and the anharmonicity
of the eigenenergies as a consequence of weak binding potentials are observed in Section
2.4. The relation of this system to the charge qubit is given in Section 2.5. In Chapter
3 a description of how this inhomogenous system can be treated within control theory is
developed. The results of this numerical control treatment are shown in Chapter 4.

2.2 Physics of the Optical Lattice

2.2.1 Static Model

We consider a physical model of a one-dimensional optical lattice similar to the experimen-
tal apparatus of the Steinberg group [76, 57, 77]. In their apparatus, the optical lattice
potential is generated by two vertical counter-propagating lasers with an incidence angle of
49.6◦ and is loaded with 85Rb atoms from an optical molasses at 10 µK. Since the densities
of the atoms are 105 per lattice plane along with no transversal trapping, it can be assumed
that there are no inter-atomic interactions. In addition, the coherence lengths of atoms
are smaller (≈ 60 nm) than the distance between wells (∼1 µm) so that it can be assumed
there is no coherence between wells. The lattice lasers are placed one above the other in
the direction of gravity so that the Landau-Zener tunnelling rates are kept minimal [82].
In addition, excited atoms that fall out of the lattice tend to become spatially separated
from bound atoms, thus minimizing inter-atomic interactions [82, 5]. However, the hori-
zontal optical lattice has been considered here. One of the advantages to horizontal optical
lattices is the availability of higher excited states for more qubits or as resource states for
quantum operations. The Hamiltonian for an alkali atom interacting with an ideal optical
lattice potential in 1-D is given by

H0 =
p2

2m
+ U0 sin2 kLx (2.1)

where m is the mass of the atom, kL is the wave number of the lattice laser light and U0 is
the lattice potential depth. The potential is assumed uniform since the region of interest
is small. Given that there are over 105 lattice sites in the region of interest the lattice is
assumed to be infinite in length. Re-scaling this Hamiltonian gives

H0 =
p2

2m
+ rEre sin2 kLx (2.2)
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Here ER = ~ωre = ~2k2
L/2m is the recoil energy (i.e. the kinetic energy the atom gains by

absorbing a lattice photon). In experiments, the depth is typically 18-30ER, though a wider
range was considered for this numerical study. At these lattice depths for typical atomic
densities the atoms are essentially non-interacting and thus we can simplify the model by
considering the evolution of a single atom interaction [76]. Finally, for the purposes of
analysis, by letting

~̃ = 1

x̃ = kLx

t̃ = ωret

p̃ = −i~̃ ∂
∂x̃
,

(2.3)

the Hamiltonian is expressed in a dimensionless form given by

H̃0 = p̃2 + r sin2 x̃ = p̃2 +
r

2
(1− cos 2x̃), (2.4)

where r is the lattice potential depth in units of recoil energies and p̃ is now the momentum
in units of ~kL. In order to analyze this system the eigenenergies and wavefunctions must
be calculated. A Hamiltonian that contains a periodic potential has a well-known solution
that can be derived using Bloch’s theorem or Mathieu’s functions, which will be referred to
as Bloch solutions and Mathieu solutions, respectively. Choosing either method of deriving
solutions is a matter of preference and of computational tools available since the solutions
are mathematically equivalent. Mathieu solutions must be calculated using either algebraic
approximation or numerical approaches [36]. Bloch solutions must be calculated through
the use of similarity transformations in linear algebra which also must also be computed
numerically for large systems (see Subsection 2.2.3). In any case, the resulting solutions
using Wannier functions can also be derived to give Wannier states in the localized basis
although they were not used in this research other than to verify the solutions of Bloch
states.

2.2.2 Mathieu solutions

The Mathieu method for solving the static Hamiltonian of the one-dimensional optical
lattice involves solving Schrödinger’s equation explicitly. Letting p = p̂ − p0, where p0 is
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the equivalent of quasimomentum k and p̂ = −i d
dx

, the eigenstates can be solved as follows

Hψ(x) = Eψ(x)

where ψ(x) = ψ(x+ 2π).

[
(p̂− p0)2 − r cos2 x

]
ψ(x) = Eψ(x)(

− d2

dx2
+ 2ip0

d

dx
+ p2

0

)
ψ(x)− r cos2 (x)ψ(x) = Eψ(x)

ψ′′(x)− 2ip0ψ
′(x) + (E + r cos2(x)− p2

0)ψ(x) = 0

(2.5)

This equation can be reformulated into Mathieu’s differential equation by assuming ψ(x) =
eip0xg(x). The first term of the expression becomes

(eip0xg(x))′′ = (ip0e
ip0xg(x) + eip0xg′(x))′

= eip0x[−p2
0g(x) + 2ip0g

′(x) + g′′(x)]

and the second term of the expression becomes

−2ip0(eip0xg(x))′ = eip0x[2p2
0g(x)− 2ip0g

′(x)]

Thus

(eip0xg(x))′′ − 2ip0(eip0xg(x))′ + (E + r cos2 x− p2
0)eip0xg(x) = 0

eip0xg′′(x) + (E + r cos2 x)eip0xg(x) = 0

g′′(x) +

(
E +

1

2
r +

1

2
r cos 2x

)
g(x) = 0

(2.6)

Thus Eq. (2.6) is in the form of Mathieu’s differential equation. This is solved by a
Mathieu function meµ(q = − r

4
, x), where µ is the exponential term. Thus the wavefunction

for band level n is

ψn(x) =
1√
2
eip0xme−2[p0−k(n,p0)]

(
− r

4
, x
)

(2.7)
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where

k(n, p0) =
∑

l=±1

(int(2p0 + l/2)mod 2)

×(int(p0) + l(−1)n[(n+ 1)div 2])

and int(a) rounds a to the nearest integer, a mod b is the modulus of a and b, and a div b
is the integer divisor of a divided by b.

2.2.3 Bloch solutions

Bloch’s solution utilizes the periodicity of the Hamiltonian by exploiting the symmetries
of the potential and the fact that the Hamiltonian is invariant to spatial translations
of integers of primitive lattice vectors. Bloch showed that Hamiltonians with periodic
functions have periodic modulated plane wave solutions describing the wavefunction of a
particle in a lattice. The length of a reciprocal primitive lattice vector for our Hamiltonian
is K = 2π

a
, where a is the primitive lattice vector.

Proof

This proof to Bloch’s theorem gives a more intuitive description. Beginning by defining
the translation operator1:

T (~G)f(~r) = f(~r + ~G). (2.8)

where ~G is a primitive lattice vector that translates by integers of lattice spacings.

In the first part of this proof, the translation operator is shown to commute with the
Hamiltonian and thus both have simultaneous eigenvalues. The translation operator acts
on a periodic Hamiltonian H(~r) with periodic eigenstate ψ(~r) to give

T (~G)H(~r)ψ(~r) = H(~r + ~G)ψ(~r + ~G)

= H(~r)ψ(~r + ~G)

= H(~r)T (~G)ψ(~r).

(2.9)

Thus operating on a Hamiltonian gives

T (~G)H(~r) = H(~r)T (~G). (2.10)

1This proof is based directly on the one shown on pg. 134 of Ashcroft and Mermin [2].
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Also observe that applying multiple translation operations is independent of the order,

T (~G)T (~G′)ψ(~r) = ψ(~G+ ~G′) = T (~G′)T (~G)ψ(~r). (2.11)

Thus, the translation operator commutes with the Hamiltonian and as a consequence they
share the same eigenbasis, i.e.

Hψ = εψ

T (~G)ψ = λ(~G)ψ.
(2.12)

so that λ(~G) is a simultaneous eigenvalue of the translation operator and the Hamiltonian.

In the second part of this proof, the solution to the eigenvalues and eigenstates are
given. Observe that one set of translation operations can be written as

T (~G)T (~G′)ψ = λ(~G)T (~G′)ψ

= λ(~G)λ(~G′)ψ.
(2.13)

and it can also be equivalently written as

T (~G′)T (~G)ψ = T (~G+ ~G′)ψ

= λ(~G+ ~G′)ψ.
(2.14)

Thus, since the following relation must hold true

λ(~G+ ~G′) = λ(~G)λ(~G′), (2.15)

the eigenvalues can be calculated using a suitable xi to be

λ(~ai) = e2πixi . (2.16)

where ~ai is a primitive lattice vector.

Consider expressing the eigenvalues in terms of the primitive lattice translation vector,

~G = n1 ~a1 + n2 ~a2 + n3 ~a3, (2.17)

where ni is some integer. The eigenvalues become

λ(~G) = λ(~a1)n1λ(~a2)n2λ(~a3)n3 . (2.18)

13



Thus
λ(~G) = ei

~k· ~G, (2.19)

where ~k is expressed in terms of the reciprocal lattice vectors ~bi

~k = x1
~b1 + x2

~b2 + x3
~b3, (2.20)

and ~bi · ~aj = 2πδij.

Therefore the solution to Schrödinger’s equation gives

T (~G)ψ = ψ(~r + ~G) = λ(~G)ψ = ei
~k· ~Gψ(~r), (2.21)

and ψ(~r) must be periodic in ~G.

Bloch Solution

For our Hamiltonian in Eq. (2.4), according to Bloch’s theorem we can assume that the
eigenstates have the form

Ψ(k)
n (x) = 〈x| ψ(k+Km)

n

〉
= ψ(k+Km)

n (x)ei(k+Km)x, (2.22)

where for some integer l 〈
(
2π

k
l + x

∣∣∣∣ ψ(k)
n

〉
= 〈x| ψ(k)

n

〉
(2.23)

and n indicates the state band level, k is the reciprocal lattice quasimomentum, K = 2kL is
the primitive reciprocal lattice vector, m is an integer (Brillouin zone) lattice site number,

and ψ
(k)
n (mπx) = ψ

(k)
n (x) for all integers m. Essentially the wavefunction describing a

particle with a one-dimensional periodic Hamiltonian is a wavefunction for a free particle
with a periodic modulation. The resulting wavefunctions can be calculated using the
central matrix method or the Bloch method [2, 62]. Here the quasimomentum will remain
preserved for any control fields that are added to this Hamiltonian. As shown in the proof
of Bloch’s theorem, since the discrete translation operator commutes with the Hamiltonian,
it shares its eigenbasis with the eigenstates of the one-dimensional optical lattice. As a
result, the discrete translation operator commutes with the controlled Hamiltonian shown
later in Eq. (2.29) so the eika of the discrete displacement operator are described by the
quasimomenta k, and the quasimomentum is conserved for the control fields considered
in Section 2.3. This allows us to express the Hamiltonian of the entire system as an
ensemble of effective Hamiltonians over all quasimomenta where the Hamiltonian for a
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given quasimomenta is:

H̃
(k)
0 = (p̃− k)2 +

r

2
(1− cos 2x̃), (2.24)

satisfying H
(k)
0

∣∣∣ψ(k)
n

〉
= E

(k)
n

∣∣∣ψ(k)
n

〉
. Here one period of the potential is defined by choice

of units to range from −1 ≤ x ≤ 1 for simplicity. Thus, having k restricted to the first
Brillouin zone, the overall wavefunction for the entire ensemble system would be:

Ψ(k)(x) =
∑

m,n

ψ(k+Km)
n ei(k+Km)x (2.25)

Following up to solving the eigenvalues analytically, the Hamiltonian from Eq. (2.4) is
first rewritten in terms of the Fourier components of a generalized periodic potential,

H̃0 = p̃2 +
∑

g

Uge
iνgx̃ (2.26)

where ν is the minimum discrete frequency and Ug are the Fourier coefficients.

The eigenenergies can be solved using the proceeding wavefunction in Eq. (2.25) and
Hamiltonian in Eq. (2.26) in Schrödinger’s equation (The ˜ symbol signifying dimensionless
units will be dropped herein for brevity).

0 = H
(k)
0 Ψ(k)

n (x)− E(k)
n Ψ(k)

n (x)

0 =

(
p2 +

∑

g

Uge
iνgx

)∑

m

ψ(k+Km)
n ei(k+Km)x − E(k)

n

∑

m

ψ(k+Km)
n ei(k+Km)x

0 =

(
− ~2

2m

d2

dx2
+
∑

g

Uge
iνgx

)∑

m

ψ(k+Km)
n ei(k+Km)x − E(k)

n

∑

m

ψ(k+Km)
n ei(k+Km)x

0 =

(
~2

2m
(k +Km)2 − E(k)

n

)∑

m

ψ(k+Km)
n ei(k+Km)x +

∑

g,m

Uge
i(νg+k+Km)xψ(k+Km)

n

0 =

(
~2

2m
(k +Km)2 − E(k)

n

)∑

m

ψ(k+Km)
n ei(k+Km)x +

∑

g,m

Uge
i(k+Km)xψ(k+Km−νg)

n .

Since the periodicity of the lattice is determined by the periodicity of the potential, the
magnitude of the primitive reciprocal lattice vector is equal to the smallest Fourier com-
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ponent of the potential with non-zero frequency. I.e. K = ν so that the equation becomes

0 =

(
~2

2m
(k +Km)2 − E(k)

n

)∑

m

ψ(k+Km)
n ei(k+Km)x +

∑

g,m

Ugψ
(k+K(m−g))
n ei(k+Km)x

0 =
∑

m

[(
~2

2m
(k +Km)2 − E(k)

n

)
ψ(k+Km)
n ei(k+Km)x +

∑

g

Ugψ
(k+K(m−g))
n ei(k+Km)x

]

0 =

(
~2

2m
(k +Km)2 − E(k)

n

)
ψ(k+Km)
n +

∑

g

Ugψ
(k+K(m−g))
n

(2.27)

Denoting λ(k) = ~2
2m

(k +Km)2,

(λ(k) − E(k)
n )ψ(k+Km)

n +
∑

g

Ugψ
(k+K(m−g))
n = 0 (2.28)

Result (2.28) is known as the central equation [62]. It only admits solutions whereby
wavefunctions with quasimomenta k and quasimomenta that differ by K are admitted.
This equation is written in a linear algebraic form to solve for the eigenvalues E

(k)
n and

eigenfunction ψ
(k+Km)
n .




. . .

. . . (λ(k) + U0)− E(k)
n U1 U2 . . .

. . . U−1 (λ(k) + U0)− E(k)
n U1 . . .

. . . U−2 U−1 (λ(k) + U0)− E(k)
n . . .

. . .







...

ψ
(k+K(m−1))
n

ψ
(k+K(m))
n

ψ
(k+K(m+1))
n

...




= 0

where m is the Brillouin zone number. Diagonalizing this matrix with respect to E
(k)
n gives

the eigenenergies and eigenstates for a particle with of fixed quasimomentum k and energy
level n.

2.3 Dynamics Model

In a typical experimental setup [82], two lasers are placed at an angle of 49.6◦ to trap
the atoms. These same lasers are used as control beams by directing their beams through
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acousto-optic modulators where their relative phases can be controlled, allowing the trap-
ping potential to spatially shift atoms along the axis of the lattice. The amplitude of the
lasers can also be controlled, allowing modulation of the trapping potential depth. Fol-
lowing our horizontally oriented model of Steinberg’s one-dimensional optical lattice, we
introduce the system controls as two parameters η(t) and φ(t) controlling the depth of the
potential and the position of wells, respectively. Rewriting Eq. (2.24) in terms of these
new variables we obtain,

H(k)(t) = (p− k)2 + r[1 + η(t)] sin2

(
x+

φ(t)

2

)
. (2.29)

Here, the ˜ symbol has been dropped for brevity.

For the purpose of computing the time evolution of the system, the Hamiltonian in
Eq. (2.29) is expressed in a form separating the time-dependent and independent variables:

H(k)(t) =(p− k)2 +
r

2
[1 + η(t)] [1− cos (2x+ φ(t))]

=H
(k)
0 −

r

2
[1− cos(2x)] +

r

2
[1 + η(t)] [1− cos (2x+ φ(t))] .

(2.30)

Using the trigonometric identity cos(φ+ θ) = cos(φ) cos(θ)− sin(φ) sin(θ)

H(k)(t) = H
(k)
0 +

r

2
[1− (1 + η(t)) cosφ(t)] cos(2x) +

r

2
(1 + η(t)) sinφ(t) sin(2x) +

r

2
η(t).

(2.31)
In order to express the Hamiltonian in the standard form for quantum control (i.e. H(t) =
H0 +

∑
p up(t)Hp) we reparameterize the control fields in terms of

α(t) =
r

4

[
1− [1 + η(t)] cosφ(t)

]
,

β(t) =− r

4

[
[1 + η(t)] sinφ(t)

]
.

(2.32)

so that the total control Hamiltonian (neglecting the global phase r
2
η(t)) is

H(k)(t) = H
(k)
0 + 2α(t) cos(2x)− 2β(t) sin(2x)

= H
(k)
0 + α(t)(e2ix + e−2ix) + iβ(t)(e2ix − e−2ix).

(2.33)

In order to control a system with an ensemble of atoms spread over quasimomentum, the
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system control fields α(t) and β(t) must be found to perform desired quantum operations
independent of k.

The remaining dynamic terms of the optical lattice Hamiltonian may be projected
analytically into the Bloch basis using the following analysis.

Calculation of dynamic terms in the Bloch basis

The calculation of the dynamic terms of the Hamiltonian in the Bloch basis are straight-
forward as follows. Letting kL = 1 so that K = 2,

〈ψ(k̂′)
n′ |ei2x̂|ψ(k̂)

n 〉 = lim
t→+∞

∫ t

−t
dxdx′〈ψ(k̂′)

n′ |x′〉〈x′|e2ix̂|x̂〉〈x̂|ψ(k̂)
n 〉 By resolution of identity

= lim
t→+∞

∫ t

−t
dxdx′Ψ

∗(k̂′)
n′ (x̂)e2ix̂δ(x̂− x′)Ψ(k̂)

n (x̂)

= lim
t→+∞

∫ t

−t
dx
∑

m′

ψ
∗(k̂′+2m′)
n′ e−i(k̂

′+2m′)x̂ei2x̂
∑

m

ψ(k̂+2m)
n ei(k̂+2m)x̂

= lim
t→+∞

∫ t

−t
dx
∑

m′m

ψ
∗(k̂′+2m′)
n′ ψ(k̂+2m)

n e−i(k̂
′+2m′)x̂ei2x̂ei(k̂+2m)x̂

=
∑

m′m

ψ
∗(k̂′+2m′)
n′ ψ(k̂+2m)

n lim
t→+∞

∫ t

−t
dxei2(m−m′+1)x̂ei(k̂−k̂

′)x̂

=
∑

m′m

ψ
∗(k̂′+2m′)
n′ ψ(k̂+2m)

n δ(m−m′ + 1)δ(k̂ − k̂′)

=
∑

m

ψ
∗(k̂+2m+1)
n′ ψ(k̂+2m)

n ,

(2.34)

where the ˆ symbol has been used to denote canonical operators.

Similarly,

〈ψ(k̂′)
n′ |e−i2x̂|ψ(k̂)

n 〉 = lim
t→+∞

∫ t

−t
dxΨ

∗(k̂′)
n′ (x̂) e−i2x̂ Ψ(k̂)

n (x̂)

=
∑

m

ψ
∗(k̂+2m−1)
n′ ψ(k̂+2m)

n .
(2.35)
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2.4 Dispersion
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Figure 2.2: The first four energy 1-D band structures are shown in the momentum basis
for four different potential depths r. The lower potential depth r = 2 (top left) shows the
largest amount of energy dispersion and the closest energy crossings. The depth r = 30
(bottom right) shows a lesser amount of dispersion and larger energy splittings.

According to the model of the system outlined above, states with different quasimo-
menta will evolve independently so the system can be treated as an ensemble of non-
interacting particles. Since the eigenenergies of this system depends on quasimomentum,
there will be dispersion in the resonance frequencies across the range of quasimomenta.
In other words, the resonant frequencies of excitations associated with different vertical
transitions are not the same: see Fig. 2.2. This dispersion is characterized by the quantity

D = 1− ∆E
(1)
01

∆E
(0)
01

, (2.36)

19



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

r [h
2
k

2
 /(2π)

2
2m]

D
is

p
e

rs
io

n
 [

∆
ω

/ω
m

a
x
 x

 1
0

0
%

]

Figure 2.3: The dispersion between the first two energy bands in the 1-D optical lattice as
a function of the potential depth.

where ∆E
(k)
01 = E

(k)
1 − E(k)

0 .

The main consequence of the dispersion is that a single harmonic excitation cannot
simultaneously excite all possible quasimomenta transitions, which poses a difficult chal-
lenge for controlling an ensemble with high dispersion. For the optical lattice, the amount
of energy dispersion decreases with an increase in the strength of potential since the atoms
become more localized, as shown in Fig. 2.3. The dispersion can be fitted to an exponen-
tial function for r < 100 to show its exponentially decreasing dependence on increasing
potential as follows

D(r) = 1.045e−0.1676r. (2.37)

Unfortunately the anharmonicity of the lattice, which is essential to resolve different tran-
sition frequencies, decreases polynomially with increasing potential depth (see Fig. 2.4).
For k = 0 the relative anharmonicity can be characterized as

δ(r) = −1.075e−0.0655r − 0.04103e0.00521r, (2.38)
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Figure 2.4: The anharmonicity of the first two energy levels at k = 0 as a function of the
potential depth r.

where

δ = 1− ∆ω12(k = 0)

∆ω01(k = 0)
(2.39)

signifies the deviation of the eigenenergies from harmonic energies. This leads to a trade-off
when choosing the depth of the lattice between dispersion and anharmonicity.

In addition to the dispersion in the eigenenergies, there is significant dispersion over the
quasimomentum space for the coupling matrix elements that represent the controls. This
dispersion also decreases with the strength of the potential, and is higher for couplings
to further neighbouring states, as shown Fig. 2.5. In addition, odd neighbouring coupling
matrix elements such as the first and third nearest neighbour couplings have an opposite
sign between one half of the first Brillouin zone and the other (see Appendix A for more
detail and figures on the coupling bands). As a result, rotation operations between states
separated by odd quantum numbers in the one dimensional optical lattice will be performed
in opposing directions. Thus, with the addition of inhomogeneity in the couplings, it is
a non-trivial task to develop controls sequences to account for both energy and coupling
dispersion.
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Figure 2.5: The dispersion in the real and imaginary coupling matrix elements (for k > 0)
between the ground state and an excited state as a function of the trapping potential
depth r. Here, the nth nearest neighbour coupling level denotes the dispersion in coupling
between the ground state and the nth excited state.
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2.5 Relation to the charge qubit (transmon)

Other systems can fit the model of the optical lattice as outlined in this chapter. One such
system is the superconducting transmon qubit, allowing the results from the study of the
1-D optical lattice to be directly applicable to this system with minor modifications, as
explained in this section.

The transmon is a device which contains a single charge qubit (Cooper-pair box) [11, 83]
placed within a microwave coplanar waveguide cavity, providing shielding from r.f. noise
and allowing for reduced sensitivity to charge noise [65]. The advantage to using this device
is its insensitivity to critical current and flux noise compared to other superconducting qubit
devices such as phase and flux qubits [110]. As a result, dephasing times are increased.
The addition of the cavity also allows for dispersive readout to be performed. Reduction
in charge sensitivity is achieved by the use of a very large capacitor placed within the
cavity, thus increasing the Josephson to charging energy ratio. Typically, this ratio is
EJ/EC ≈ 20− 50, allowing for very low energy dispersions [50]. The charge qubit can be
modelled similarly to the optical lattice. The simplified Hamiltonian of this system takes
the form

Ĥ(ng) = 4EC(n̂− ng)2 − EJ cos φ̂ (2.40)

where n̂ is the number of Cooper pairs on the superconducting islands, φ̂ is the phase
difference to the island, EC and EJ are the charging and Josephson energy, respectively
and ng = CgU/2e is the effective offset charge.

Since n̂ and φ̂ are canonically conjugate variables, we can directly map this Hamiltonian
onto that of the optical lattice by letting

n̂→ p, φ̂→ x and
EJ
EC
→ r

2
. (2.41)

The only remaining component is to let the gate charge, ng, play the role of the quasimo-
menta [95]. In this case, the gate charge would have a single value, unlike the ensemble
in the one-dimensional optical lattice, but has uncertainty due to noise from fluctuating
charges and voltages [51]. In order to control the charge qubit we must account for this
inherent spread over ng. The optimization techniques for these two systems will be iden-
tical, even though the causes of the dispersion are very different: ensemble averaging or
parameter uncertainty. Pulse sequences such as CORPSE [24] has been applied to min-
imize fluctuations of the energy splittings [22] in superconducting qubits. This has been
investigated to a greater extent numerically [80].
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Chapter 3

Optimal Control Theory

3.1 Introduction

Control theory pertains to the control of a dynamical system given a static and dynamical
description of that system, the effect of the control sequence on the system, and possibly
the effects of an external system not controlled directly by the controls [55]. In quantum
computation, it is a necessity to have control and as a consequence be able to control a
quantum system.

The objective of control theory is to use a set of controls that make it possible for
a system to perform a dynamic operation as best as possible given its dynamics and
constraints whereas finding solutions analytically to perform the same operation to the
desired degree of precision would be impossible. Often, the best control sequence can only
be found through numerical techniques in limits where analytic approximations break-
down. However, in practice it may be impossible to find an optimal solution given limited
computational resources for systems with complex dynamics.

There are essentially two general implementations of control on a system: open-loop
and closed-loop feedback control. Closed-loop feedback involves controls that are adjusted
according to measurements of the response of the system in order to manipulate it ap-
propriately. This is valuable in controlling a system whereby the effects of the control is
somewhat unpredictable due to imperfect control hardware, external effects of the envi-
ronment, and lack of knowledge of the dynamic response of the system itself. Open-loop
feedback control does not rely on physically measuring the response of a system during the
application of control. As a result, the response of a system to a control application must
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be well-known. If the response is not well-known a range of possible responses must be
accounted for. The advantage here in using open-loop feedback control is that undesirable
effects on the system due to measurements made during the application of the control and
issues with measurement precision is avoided.

Since the one-dimensional optical lattice model in this research is simple enough to
be modelled computationally, open-loop time-optimal control techniques are sufficient to
finding pulses for performing state transfer and gate operations for the purposes of quantum
computation. The following section outlines the control techniques suitable for systems
such as the one-dimensional optical lattice.

3.2 Time-optimal control using gradient-ascent pulse

engineering

GRAPE (gradient-ascent pulse engineering) is a numerical optimization routine that searches
for optimal control sequences of a fixed duration [59, 13, 75, 15, 90]. A fidelity function
Φ is a measure of the performance of the controls for a desired operation. Using a fidelity
function the control sequence u are optimized using a gradient search over the fidelity land-
scape. In GRAPE, fidelity functions are made preferable to other measures of performance
since taking the gradient of a fidelity is in general tractable.

A closed system with P degrees of freedom for control can be described by the Hamil-
tonian,

H(t) = H0 +
P∑

p=1

up(t)Hp, (3.1)

with H0 and Hp being the drift and control Hamiltonians, respectively and up(t) the control
parameters for each degree of freedom. The unitary describing the evolution of the system
is

U = T
[
e−i

∫ T
0 H(t)dt

]
, (3.2)

where T is the time-ordering parameter.

The control sequence is initially u(0) and is updated after each iterative optimization
step r following the rule

u(r+1) = u(r) + ε∇uΦ, (3.3)

where ε is a step parameter that may be changed between iterations for faster convergence,
and ∇uΦ is the gradient of the fidelity with respect to the controls. This gradient will
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update the controls in an efficient manner that maximizes the fidelity. The iteration can
continue until a desired minimum fidelity is reached. As a note, finding a global optimum
is not guaranteed with this protocol. However, finding high-fidelity control sequences is
possible by optimizing a number of different initial controls.

There are two different classes of fidelity functions considered here: performance of state
transfers and performance of unitary operations (otherwise known as quantum gates).

Unitary operation

We consider a quantum system with a Hilbert space of dimension d. We apply the controls
over a time T and discretize it as a series of N square pulses each with duration ∆t so
that up =

∑N
n up,n. The most common method of measuring the fidelity between the gates

realized with these controls and the desired gate is

Φ =

∣∣∣∣
1

d
Tr[ V †U(T ) ]

∣∣∣∣
2

, (3.4)

where V is the desired gate. With a control sequence that is a set of square-pulses, the
evolution unitary operator for the system can be written as

Uj = exp

{
− i∆t

(
H0 +

P∑

p=1

up,jHp

)}
. (3.5)

Thus the realized gate at the end of the control sequence is

U(T ) = UNUN−1 · · ·U2U1. (3.6)

The gradient of the fidelity with respect to the controls can thus be calculated,

∂Φ

∂up,j
=

∂

∂up,j

∣∣∣∣
1

d
Tr[V †UN · · ·U1]

∣∣∣∣
2

=
1

d2

∂

∂up,j

(
Tr[V †UN · · ·U1] Tr[U †1 · · ·U †NV ]

)
,

(3.7)

where the cyclic permutation property of trace has been used. For simplicity, let the

26



backward and forward evolution propagators, respectively, be

Pj = U †j+1 · · ·U †NV
Xj = Uj · · ·U1,

(3.8)

giving,

∂Φ

∂up,j
=

1

d2

∂

∂up,j
(Tr[P †jXj] Tr[X†jPj])

=
1

d2

(
Tr

[
P †j

∂Xj

∂up,j

]
Tr

[
X†jPj

]
+ Tr

[
P †jXj

]
Tr

[
∂X†j
∂up,j

Pj

])

=
1

d2

(
Tr

[
P †j

∂Uj
∂up,j

Uj−1 · · ·U1

]
Tr

[
X†jPj

]
+ Tr

[
P †jXj

]
Tr

[
U †1 · · ·U †j−1

∂U †j
∂up,j

Pj

])
.

(3.9)

The derivative of the time evolution unitary of time step j is

∂Uj
∂up,j

=
∂

∂up,j
exp

{
− i∆t

(
H0 +

P∑

p=1

up,jHp

)}
. (3.10)

In order for this to be solved, we refer to the BCH lemma [48] which states:

d

dx
eA+xB

∣∣∣∣
x=0

= eA
∫ 1

0

eAτBe−Aτdτ, (3.11)

or
d

dup,j
e−i∆t(H0+

∑P
p=1 up,jHp) = −i∆tUj

(
1

∆t

∫ ∆t

0

Uj(τ)HpUj(−τ)dτ

)
, (3.12)

where

Uj(τ) = exp

{
− iτ

(
H0 +

P∑

p=1

up,jHp

)}
. (3.13)

Here, let H̄p be the average Hamiltonian defined as the expression in the parenthesis of
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Eq. (3.12). The gradient then simplifies to,

∂Φ

∂up,j
=

1

d2

(
Tr

[
P †j (−i∆t)H̄pUj · · ·U1

]
Tr

[
X†jPj

]
+ Tr

[
P †jXj

]
Tr

[
U †1 · · ·U †j H̄†pi∆tPj

])

= −i∆t
d

(
Tr

[
P †j H̄pXj

]
Tr

[
X†jPj

]
− Tr

[
P †jXj

]
Tr

[
X†j H̄

†
pPj

])

=
2∆t

d
Im

(
Tr

[
P †j H̄pXj

]
Tr

[
X†jPj

])
.

(3.14)

The average Hamiltonian can be solved either explicitly or by approximation. In the
first order approximation, assume that ∆t << ||H0 +

∑P
p=1 up,jHp||−1. Thus Uj(τ) ≈ I

for τε[0, ∆t] and using the approximation as ∆t << ||H(t)||−1, the average Hamiltonian
becomes

H̄p =
1

∆t

∫ ∆t

0

Uj(τ)HpUj(−τ)dτ

≈ 1

∆t

∫ ∆t

0

IHpIdτ

= Hp.

(3.15)

Thus, the derivative of the unitary with respect to the control can be approximated as

∂U †j
∂up,j

≈ −i∆tHpUj. (3.16)

The advantage of the first order approximation to H̄p is that it requires less compu-
tation than the explicit solution. However, there is potential for convergence problems
during optimization since the gradient provided is not precise. For optimization over
complex topological landscapes, it is advantageous to use the the explicit solution at the
expense of a possible increase in computation. The difficulty in calculating the integral ex-
plicitly in Eq. (3.12) analytically is the exponentiated matrices. However, using similarity
transformations (diagonalization) of the contents of the exponentiated expression in the
time evolution unitary Uj(τ), the integral can be greatly simplified in this basis since the
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unitaries become diagonal. Expanding the integral expression we have:

H̄p =
1

∆t

∫ ∆t

0

exp{−iτHj}Hp exp{iτHj}dτ, (3.17)

where Hj = H0 +
∑P

p=1 up,jHp.

We now do a change of basis on Eq. (3.17) above using the basis transformation Tj that

diagonalizes Hj. Letting D = T †jHjTj gives

T †j H̄pTj =
1

∆t

∫ ∆t

0

exp{−iτD} T †jHpTj exp{iτD}dτ. (3.18)

Using the vector set |m〉〈m| to represent the new basis, the diagonal matrix becomes
D =

∑
m λm|m〉〈m| where λm is an eigenvalue of Hj. If we use bra-ket notation to write

out the matrix elements of H̄p, we get:

〈m|H̄ ′p|n〉 = 〈m|T †j H̄pTj|n〉

= 〈m| 1

∆t

∫ ∆t

0

e−iτ
∑
m′ λm′ |m′〉〈m′| T †jHpTj e

iτ
∑
n′ λn′ |n′〉〈n′|dτ |n〉

= 〈m| 1

∆t

∫ ∆t

0

∑

m′

e−iτλm′ |m′〉〈m′| T †jHpTj
∑

n

eiτλn′ |n′〉〈n′|dτ |n〉

=
∑

m′n′

1

∆t

∫ ∆t

0

e−iτλm′ 〈m|m′〉〈m′| T †jHpTj e
iτλn′ |n′〉〈n′|n〉dτ

=
∑

m′n′

1

∆t

∫ ∆t

0

e−iτλm′ 〈m′|T †jHpTj|n′〉 eiτλnδm′mδn′ndτ

=
1

∆t

∫ ∆t

0

e−iτ(λm−λn) 〈m|T †jHpTj|n〉 dτ

=

{
〈m|T †jHpTj|n〉 if n = m

i
∆t(λm−λn)

(e−i∆t(λm−λn) − 1) 〈m|T †jHpTj|n〉 if n 6= m.

(3.19)

We must transform this solution back to the computational basis by undoing the sim-
ilarity transformation so that we have the final solution for the average Hamiltonian. To
calculate the analytic gradient, we use the same gradient as Eq. (3.14) with the appropriate
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average Hamiltonian, i.e.

∂Φ

∂up,j
=

2∆t

d
Im

(
Tr

[
P †j (TjH̄

′
pT
†
j )Xj

]
Tr

[
X†jPj

])
. (3.20)

State transfer

Following the previous section, GRAPE can also be applied to the task of preparing desired
states from an initial state for a quantum system, i.e. state transfer. Essentially any
state transfer can be generalized as a unitary operation. However, using state transfer
optimization techniques allows the pulse to be designed to utilize the population of higher
levels for more efficient transfer than is possible with a general gate [60].

The most common measure of state fidelity is

Φ =
1

d
Tr[ C†ρ(T ) ] (3.21)

where C is the desired state, d is the dimension of the system, and ρ(T ) is the realized
state at the end of the control sequence.

In similar fashion to the calculation shown in the previous section, the gradient of the
fidelity with respect to the controls is computed to be

∂Φ

∂up,j
= −i∆t

d
Tr(λ†j[H̄p, ρj]) (3.22)

where the backward and forward propagators, λj and ρj respectively, are defined as

λj = U †j+1 · · ·U †NCUN · · ·Uj+1

ρj = Uj · · ·U1ρ0U
†
1 · · ·U †j

(3.23)

where the evolution unitary Uj at time j is defined as in Eq. (3.5), and the average Hamil-
tonian is defined as either Eq. (3.15) or Eq. (3.19).

Penalty functions

The simplest manner to optimize a pulse with restrictions on the controls such as total
power or amplitude is to place penalty functions on the fidelity. These penalty functions
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are added as an extra term in the fidelity and the appropriate term is added to the gradient
of the fidelity. Eg., if the amplitude of the controls is preferred to be small, penalties for
large amplitudes may be placed so that the fidelity becomes

Φ′ = Φ−
P∑

p=1

N∑

j=1

(|up,j|2 − αp), (3.24)

and the corresponding gradient is

∂Φ′

∂up,j
=

∂Φ

∂up,j
− 2|up,j|, (3.25)

where αp is the strength of the penalties.

Strict amplitude restrictions may also be put in place for a control so that |up,j| < αp.
With such restrictions, the fidelity becomes

Φ′ = Φ−
P∑

p=1

N∑

j=1

(
1

2
|up,j|2 − αp|up,j|

)
, (3.26)

with gradient
∂Φ′

∂up,j
=

∂Φ

∂up,j
− (|up,j| − αp). (3.27)

3.3 Robust GRAPE

Robust GRAPE pertains to a set of global controls for a system that are optimized to
be robust to at least one variable parameter which will henceforth be called an ensemble
parameter. This parameter can be represented as noise, energy dispersion, uncertainty
in system parameters, etc. To numerically optimize robust controls, a discrete sample of
Hamiltonians over a range of the different varying parameters must be taken. For simplicity,
in this subsection only one ensemble parameter, k, is considered. The framework in the
previous section is continued here.
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3.3.1 Discrete ensemble sampling for optimization

Pulses of finite time have a measurable frequency bandwidth thus the system to which it
is applied will respond to a wide-band of available excitation frequencies. This property
allows discrete optimization to work for a continuous ensemble parameter k.

Consider a simple two-state system with dipole coupling between levels and a simple
π-on control pulse f(x) = α cos(ω0t) to perform a NOT gate. For a pulse applied for
infinite time the Fourier transform would give the spectral function for frequency ω

F (ω) =

∫ ∞

0

αf(x)e−iωtdt

= α

√
π

2
δ(ω − ω0) + α

√
π

2
δ(ω + ω0).

(3.28)

For a finite duration of time T , the spectral function for the simple pulse would be

F (ω;T ) =
A

ω2 − ω2
0

∣∣ω − e−iTω(ω cos(ω0T ) + iω0 sin(ω0T ))
∣∣ , (3.29)

where A is a normalization factor. This corresponds to a symmetrical spectrum that is
peaked about the frequency ω0, however the bandwidth of the spectrum is finite and the
frequency is less well-defined with decreasing duration. The unitary time evolution as a
function of the rotation angle θ for a fast, simple dipole interaction is

U [θ] = e−iσX
θ
2 = I cos(θ/2)− iσX sin(θ/2). (3.30)

where σX is the Pauli-spin matrix representation of the dipole coupling. The unitary
representing the evolution of the system with frequency response ω after some time T is

U [πF (ω;T )] = I cos(F (ω;T )π/2)− iσX sin(F (ω;T )π/2) (3.31)

Using the fidelity function from Eq. (3.4) to measure the response of the physical system
to the pulse, the fidelity can be expressed as

Φ(θ) =

∣∣∣∣
1

d
Tr[ V †U(θ) ]

∣∣∣∣
2

(3.32)
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or with respect to Eq. (3.31)

Φ(ω) =

∣∣∣∣
1

d
Tr[ V †U(πF (ω)) ]

∣∣∣∣
2

. (3.33)

For a system with an ensemble parameter that results in varying resonance frequencies
ω(k), the fidelity response would be

Φ(k) =

∣∣∣∣
1

d
Tr[ V †U(πF (ω(k))) ]

∣∣∣∣
2

. (3.34)

Since the bandwidth of the spectrum increases with decreasing pulse duration, Eq. (3.34)
shows that the bandwidth of the response of the system also increases.

When choosing discrete points of the ensemble parameter k to optimize a system, the
bandwidth should be large enough such that systems with intermediate ensemble parame-
ters will also precisely perform the desired operation. Otherwise the time duration would
have to be shortened or the distance between sampled k values would have to be decreased
by sampling more points. This will become important in the description in Section 4.5.

The Nyquist sampling rate states that to sufficiently sample a function, the ideal sam-
pling frequency must be at least twice the frequency bandwidth of the response [23]. Thus,
for the specific fidelity function, given some time T , there will be a bandwidth b of the
fidelity response as a function of the ensemble parameter k so that the sampling rate
for optimization would be ν = 2b. However, this is not completely necessary as using a
proper fidelity function will design controls to be robust, as explained near the end of this
subsection.

Unitary operation

The general Hamiltonian of a closed system with a dependence on an ensemble parameter
is

H(k)(t) = H
(k)
0 +

P∑

p=1

up(t)H
(k)
p . (3.35)

The system with the varying parameter will be treated as an ensemble of systems. We
define the robust time evolution unitary operator as

U (k) = T
[
e−i

∫ T
0 H(k)(t)dt

]
, (3.36)
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where T is the time-ordering operator.

A suitable fidelity must be chosen so that its gradient is tractable. Choosing the fidelity
function in Eq. (3.4) for each sampled value of the ensemble parameter is suitable. Thus,
the overall fidelity function across the ensemble is

Φ =
1

d2

∣∣∣∣
∫

dk c(k) Tr
(
V †U (k)

)∣∣∣∣
2

, (3.37)

where d is the dimension of each system, V is the desired gate, and c(k) is the distribution
of the ensemble parameter. For numerical analysis, a discrete number of systems in the
ensemble must be sampled with values k1, k2, . . . kM , where M is the number of systems
sampled in the ensemble. Thus, the overall discretely sampled fidelity across the ensemble
becomes

Φ =
1

(dM)2

∣∣∣∣∣
M∑

l=1

c(kl) Tr
(
V †U (kl)

)
∣∣∣∣∣

2

. (3.38)

For GRAPE, the gradient with respect to the controls, ∇uΦ, must be provided. Using the
property |a|2 = 2Re(a), the corresponding gradient for the ensemble sampled fidelity is

∂Φ

∂up,j
=

2

(dM)2
Re

(
M∑

l=1

c(kl) Tr

[
V †
∂U (kl)

∂up,j

]
×

M∑

l′=1

c(kl) Tr
[
V †U (k′l)

]∗
)

=
2

(dM)2
Re

(
Tr

[
V †

M∑

l=1

c(kl)
∂U (kl)

∂up,j

]
×

M∑

l′=1

c(kl) Tr
[
V †U (k′l)

]∗
)
,

(3.39)

where

∂U
(kl)
j

∂up,j
= −i∆tU (kl)

j H̄(kl)
p . (3.40)

Here the average Hamiltonian can be approximated as H̄
(kl)
p ≈ H

(kl)
p or expressed

analytically as H̄
(kl)
p = T

(kl)
j H̄

(kl)′
p T

(kl)†
j , where T

(kl)
j diagonalizes the Hamiltonian H

(kl)
j and

〈m|H̄(kl)′
p |n〉 =

{
〈m|T (kl)†

j H
(kl)
p T

(kl)
j |n〉 if n = m

i
∆t(λm−λn)

(e−i∆t(λm−λn) − 1) 〈m|T (kl)†
j H

(kl)
p T

(kl)
j |n〉 if n 6= m.

(3.41)

For a d-dimensional system, the computational-scaling for calculating the gradient for M
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different evolutions scales by a factor of M compared to standard GRAPE. This is an
improvement over representing the discrete ensemble as a dM -dimension Hilbert space
since d× d matrix multiplication scales with O(d3).

For simplicity, let the backward and forward propagators be defined, respectively, as

P
(kl)
j = U

(kl)
j+1

† · · ·U (kl)
N

†
V

X
(kl)
j = U

(kl)
j · · ·U (kl)

1 .
(3.42)

Using Eq. (3.40) and Eq. (3.42), the gradient of the sample fidelity Eq. (3.39) can be
expressed as

∂Φ

∂up,j
=

2

(dM)2
Re

( M∑

l=1

c(kl) Tr

[
P
†(kl)
j

∂X
(kl)
j

∂up,j

] M∑

l′=1

c(kl) Tr

[
X
†(k′l)
j P

(k′l)
j

])

=
2

(dM)2
Re

( M∑

l=1

c(kl) Tr

[
P
†(kl)
j

∂U
(kl)
j

∂up,j
X

(kl)
j−1

] M∑

l′=1

c(kl) Tr

[
X
†(k′l)
j P

(k′l)
j

])

=
2

(dM)2
Re

( M∑

l=1

c(kl) Tr

[
P
†(kl)
j

(
− i∆tH̄(kl)

p

)
X

(kl)
j

] M∑

l′=1

c(kl) Tr

[
X
†(k′l)
j P

(k′l)
j

])

=
2∆t

(dM)2
Im

( M∑

l=1

c(kl) Tr

[
P
†(kl)
j H̄(kl)

p X
(kl)
j

] M∑

l′=1

c(kl) Tr

[
X
†(k′l)
j P

(k′l)
j

])
.

(3.43)

There are a variety of other fidelity functions that could be used for robust GRAPE
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and provide suitable gradients such as:

Φ1 =
1

(dM)2

M∑

l=1

∣∣c(kl) Tr
(
V †U (kl)

)∣∣2 (3.44a)

Φ2 =
1

dM
Re

(
M∑

l=1

c(kl) Tr
(
V †U (kl)

)
)

(3.44b)

Φ3 =
1

dM
Im

(
M∑

l=1

c(kl) Tr
(
V †U (kl)

)
)

(3.44c)

Φ4 =
1

dM

∣∣∣∣∣
M∑

l=1

c(kl) Tr
(
V †U (kl)

)
∣∣∣∣∣ (3.44d)

Φ5 =
1

dM

M∑

l=1

c(kl)
∣∣Tr
(
V †U (kl)

)∣∣ (3.44e)

Remarks

The fidelity function in Eq. (3.38) is different from just a simple average of the standard
gate fidelity over the ensemble. This fidelity function is particularly important in that
it accounts for phase differences across the sampled fidelities and optimizes the controls
to minimize this difference. At first glance it would seem that the phase in U (k) is not
relevant, however it’s phase ensures that intermediate regions between sampled ensemble
points evolve in the same manner. This resolves the issue of having to ensure that pulse
durations must be short enough for their broadband frequencies to perform operations in
the intermediate regions of the ensemble that were not directly optimized. Following an
example given by Dr. Seth Merkel, consider evolutions on all traceless Hamiltonians. The
unitary group representing all available evolution operators are SU(d), thus all unitary
evolution operators have det(U) = 1. Assuming det(V ) = 1, there are only a finite set of
unitary maps that maximize |Tr(V †U)|. These unitary operators can admit a determinate
of U = ei2πq/dV where q = 1 . . . d. For intermediate regions in quasimomentum space
between two different phases, there may be poor fidelity since U (k) can not change instan-
taneously due to the nature of broadband pulses (see Subsection 3.3.1). For a physical
system such as a one-dimensional optical lattice, the evolutions are not all SU(d), however
it is suspected that similar arguments can be made for the requirement of global phase
matching of U (k) although this requires further investigation. In practice, the optimization
will be trapped in local maxima of poor fidelity if global phase is neglected. This is evident
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when points sampled in k space for optimization have higher fidelities than intermediate
regions between two sampled points. The fidelity that has been chosen for optimization of
the ensemble accounts for this phase to ensure that it is uniform throughout the ensemble
parameter space.

State transfer

Using the derivations of the previous section, robust state transfer is summarized with
a modified phase constrained fidelity function based on Eq. (3.21). Using the definitions
from the previous section, this can be expressed as

Φ =
1

dM

∣∣∣∣∣
M∑

l=1

c(kl) Tr
(
C†ρ(kl)

)
∣∣∣∣∣ . (3.45)

where C is the desired state. The corresponding gradient of the fidelity is

∂Φ

∂up,j
=

2∆t

d
Im

(
M∑

l=1

c(kl) Tr(λ
†(kl)
j [H̄(kl)

p , ρ
(kl)
j ])

)
(3.46)

where the backward and forward propagators are defined, respectively, as

λ
(kl)
j = U

†(kl)
j+1 · · ·U †(kl)N CU

†(kl)
N · · ·U †(kl)j+1

ρ
(kl)
j = U

(kl)
j · · ·U (kl)

1 ρ
(kl)
0 U

†(kl)
1 · · ·U †(kl)j .

(3.47)

3.3.2 Advanced optimization techniques

There are many techniques that can be used to carry out gradient search-based optimization
more effectively in order to find the best control pulses. One of the problems with using
GRAPE is how to efficiently utilize computational resources to find good solutions and
handle local maxima traps which cause convergence issues. One of the main approaches to
this problem involves an algorithmic approach to adapting the gradient step parameter ε
and in managing convergence issues. However, one must consider that different algorithmic
approaches have different computational complexities and performances in handling traps
[25]. In general, algorithms should be investigated and chosen appropriately. In this
section, the most comprehensive algorithm used for generating robust controls is reviewed
and described. In addition, techniques for dealing with convergence issues are briefly
overviewed.
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Comprehensive Algorithm

At first glance, it appears that the comprehensive algorithm requires the most resources to
implement however it is the most likely to converge to a solution, as shown in Fig. 3.1. The
idea behind it is to ensure that any steps taken with the gradient in modifying the controls
will increase fidelity in an efficient manner. The step parameter ε is changed adaptively;
being increased when the controls have increased the fidelity and decreased otherwise. The
first iteration will have the fidelity Φbefore and its gradient calculated. A second fidelity Φ0

is calculated again after the controls are updated using the gradient.

The next step is to ensure that the updated controls have increased the fidelity, thus
indicating that the controls are being optimized. First, the fidelity for each ensemble
parameter is checked to see if it has exceeded the desired fidelity Φmax. Checking the
fidelity Φ

(l)
0 of each ensemble parameter l rather than the fidelity of the entire ensemble

Φ0 is done in the interest of having an operation performed with the minimum fidelity
for all sampled points in the ensemble. Exceeding Φmax for all sampled Φ

(l)
0 signifies the

successful optimization of the control sequence.

If the control has not been successfully optimized, the next step is to check if there
is a change in the current fidelity from the previous fidelity. It is not possible to further
optimize the control if the change in fidelity is no longer detectable due to finite precision
in numerical computation. As a result, the best possible solution is the previous control.

With the success of the previous check, the next check is to ensure that the ensemble
fidelity Φ0 has increased from the previous iteration. If it is has increased, then the controls
are updated with the gradient. The gradient step parameter ε is then adaptively increased
and the next iteration begins. If it has not increased, this may be a result of too large of
a modification of the controls by the gradient. The step parameter ε is then decreased by
α ε(0,1) until an increase in the fidelity is detected. If an increase is not detected when the
step parameter is below the threshold µ, then it is considered unreasonable to continue to
search for a convergent solution.

Miscellaneous Techniques

For systems and desired operations that are complex, using numerical optimization tech-
niques to attain control sequences may be difficult. The optimization process may often not
be able to return convergent controls with reasonable resources due to the inherent com-
plexity of the fidelity landscape [88]. As a result, additional techniques may be employed
in optimization. Such techniques include: simulated annealing on the control landscape
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for situations when the control sequence will not converge to a solution, appropriately
changing the step parameter ε, choosing random initial controls, and choosing intuitive
initial controls based on analytic techniques. These techniques are adapted to the system
of interest and the desired operation. In this thesis, all such techniques were employed
except for simulated annealing, which was avoided due to the instability of finding good
solutions that occurs when coordinates on a fidelity landscape are randomized.

It is not a precise science to use the techniques described above, it often requires
knowledge and experience to employ a successful strategy. However, a hybrid of GRAPE
with highly adaptive genetic algorithms has been proposed to complement the weaknesses
of gradient ascent algorithms [70].
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Figure 3.1: A flowchart showing the comprehensive algorithm for implementing robust
gradient ascent numerical optimization with discrete sampling over an ensemble parameter.
First, as standard with numerical optimization, a control pulse u(r+1) is provided. Here, r is
the iteration counter. The next step is to calculate the fidelity and its gradient with respect
to the control. The controls are then updated and the fidelity from the updated controls is
calculated. The first condition is to check if the updated fidelity Φ0 has reached the desired
precision for each ensemble point l, otherwise to continue. The second condition checks if
any individual fidelities Φ

(l)
0 of each point in the ensemble has changed from before. If not,

the optimization is discontinued. The third condition checks if the fidelities of each point
has increased from before on average. If not, the gradient step size ε is reduced and the
step of updating the controls is repeated. If the gradient step size is smaller than µ the
optimization is halted. Otherwise if the third condition is true, the updated controls are
kept and the optimization is reiterated.
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Chapter 4

Results

This chapter summarizes the numerical simulations that were performed using optimized
pulses and the performance of these optimizations. Using the numerical techniques out-
lined in Ch. 3, control parameters were optimized for the one-dimensional optical lattice
Hamiltonian in Eq. (2.4) for varying potential depths and pulse durations. The main tar-
get gate was a NOT gate on the first two energy bands of the one-dimensional horizontal
optical lattice. For initial controls, we considered both a π-on Rabi pulse (assuming no
dispersion) and bounded randomly generated controls fields. In general, the evolution due
to the controls were simulated using a model limited to the first six energy bands and typi-
cally sampling over 10 values of the quasimomenta. In this discussion, it has been assumed
that the lattice wave number kL = 1 so that K = 2, and boundaries of the first Brillouin
zone are from k = −1 to k = 1 with the distribution function being constant c(k) = 1.
The optimization was sampled over only a limited number of values of the quasimomenta
k, typically 10 points, in order to perform the numerical search efficiently using the fidelity
in Eq. (3.38). The number of control fields was fixed for the number of full free oscillations
at k = 0 and was typically 100 per free oscillation. Ideally, the gradient search will halt
when a local maxima in the fidelity is reached but this may take a considerable amount
of computational resources. All optimizations were halted after 105 updates in the control
parameters and in some cases after a fidelity of 0.99 was obtained. After obtaining the op-
timized controls, the final fidelity was calculated using the fidelity function in Eq. (3.4) by
simulating the system over a finer sample of quasimomenta, typically with 100 uniformly
sampled points.

For the following sections in this chapter, examples are shown for resulting optimized
controls with amplitude restrictions that would be present in a typical experimental setup
in order to observe what performance was possible for preparing states (Section 4.1). Ex-
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amples are shown for performing NOT gates for optimizing one half (Section 4.2) and the
entire (Section 4.3) first Brillouin zone. Performance results are shown for robust GRAPE
for a range of dispersions and times for optimization on half (Subsection 4.4.1) and the
entire (Subsection 4.4.2) first Brillouin zone. This shows that it is possible to perform op-
erations of reasonable fidelity in reasonable times for a system with inhomogeneity. This
is a proof of the theoretical minimum performance possible and that higher fidelities and
shorter times are achievable. Although the results for control of the entire lattice are what
this research aimed for, the results for control of half the lattice is significant nonetheless
since it deals with the same dispersion in eigenenergy but without the anti-symmetry of the
coupling matrix elements about k=0. Thus, the complications in adding anti-symmetry in
couplings can be observed.

In addition, it is found that the pulses for performing gates on the entire lattice are
palindromic. An explanation of this effect is given in Section 4.6. A comparison of using
the phase restricted fidelity function in Eq. (3.38) and a partially phase restricted fidelity
in Eq. (3.44b) is presented in Subsection 4.4.3. Finally, it is observed in Section 4.5 that
the lattice responds favourably to shorter simple pulses due to pulse bandwidth arguments
from Subsection 3.3.1.

4.1 State transfer optimization with penalty functions

For controls that can be directly applied to the lab, physical constraints and boundary
conditions on the controls must be accounted for. Such constraints translate to constraints
on the controls. For a simple 1-D optical lattice experiment with the control setup described
in Section 2.3, a typical experimental setup shows that the potential depth of the laser
controls must lie within the range of r = 18 to r = 40. In order to keep atoms trapped in
an experiment on a one-dimensional vertical lattice the translation control must not shift
the lattice by a phase of ±π/2, or equivalently a distance of ± π

4kL
, and the duration for

each pulse must not be less than 1 µs [82].

Here, an example of an optimized pulse for state transfer with a potential depth of
r = 25 (1.38% dispersion) with the aforementioned constraints is shown in Fig. 4.1. The
pulse was optimized for a system with four levels using the fidelity function from Eq. (3.45)
modified with the penalty function described in Eq. (3.24). The restrictions that the phase
and amplitude modulation must not exceed a shift of π/2 and r ± 3, respectively, were
placed. The optimization was halted when all optimization sampled points in quasimomen-
tum performed with gate error of less than 1%. It is observed that the pulse is well-behaved
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for a time of 1.15 ms which is on the order of several free oscillations. The corresponding
average gate error is 0.35%, and is fairly flat across the quasimomentum.
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Figure 4.1: Well-behaved controls for transfer of the ground to the first excited band of
the 1-D optical lattice for a potential depth of r=25 with 1.38% dispersion. The pulse
is optimized with the constraint that the phase control φ(t) shifts within π/2 and the
amplitude control r[1 + η(t)] modulates within the range r=22-28. The pulse sequence is
sampled at a rate of 1 µs with a total duration of 1.15 ms (7 free oscillations measured at
k=0).
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Figure 4.2: The corresponding gate error of the pulse optimized in Fig. 4.1. The gate error
is no greater than 1% and is 0.35% on average.
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4.2 Example of NOT gate controls for half lattice (k≥
0)

Here are two examples of optimized controls for performing NOT gates on the first two
energy bands of the optical lattice model from Chapter 2 limited to the first six energy
bands. One is a control for a system with potential depth r = 7 (which corresponds
to a dispersion of 32.7%), as shown in Fig. 4.3. The duration of this control was 5 free
oscillations (when measured at k=0). The gate error across the ensemble was less than 2%
with the exception of particles with quasimomentum near the edges of the Brillouin zone,
see Fig. 4.4. Even with such high dispersions in the energies and control Hamiltonians
gates with reasonable fidelities can be found.

The second control in Fig. 4.3 is for a system with potential depth of r = 2 and thus a
dispersion of 75.7%. The average fidelity for the optimized points was 96.0% but after finer
examination of the fidelity across the quasimomenta it was found to have an average of
50.0%, as shown in Fig. 4.4. Thus a more cautious approach should be taken with regards
to optimizing a coarse sampling over the quasimomenta space. These limitations can be
overcome by finer sampling over the range of quasimomenta, however this can become
computationally expensive.
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Figure 4.3: Comparison of two optimized controls for preparing a NOT gate for one half of
the first Brillouin zone (k≥ 0) when the optimization uses only ten points in quasimomen-
tum space. Both pulses are well-behaved in the sense that they don’t translate the lattice
by a full lattice site or change rapidly from the initial value for r. (a) An optimized pulse
for a potential depth r = 7 with 32.7% dispersion and fidelity 98.7% which is calculated by
sampling over 100 quasimomentum values. The duration of the pulse is 5 free oscillations
(at k=0). (b) An optimized pulse for potential depth r = 2 and dispersion 75.7% with an
averaged sample fidelity of only 50.0%. The time duration of the pulse is 25 free oscillations
(at k=0).
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Figure 4.4: Comparison of gate error for well-behaved optimized controls in Fig. 4.3 where
the blue dotted line corresponds to control sequence (a) and the red solid line to (b). For
(a) the gate error is at most 3% across the possible quasimomenta and the average gate
error is 1.3%. In (b) the gate error has been minimized for the quasimomenta points that
were sampled for optimization but was 50.0% on average when sampled over 100 points.

47



4.3 Example of NOT gate controls for full lattice

Here, examples for some of the best pulses for performing gates over the entire lattice
are described. The defining characteristic of the optimized pulses were that they were
palindromic, i.e. the pulse sequences were symmetric in time about the centre of their
duration. An example of two such pulses is shown Fig. 4.5. Here, one optimized control
performs very well for a lattice depth of r=30 (a dispersion of 0.63%), and is robust to
any quasimomentum to within 0.4% error. The duration of the pulse is moderate, with 10
free oscillations (measured at k=0). The second pulse is for a shallower lattice depth of
r=12 with an energy dispersion of 13.2%. The duration of the pulse was relatively short at
2.5 free oscillations (measured at k=0). The fidelity response to both optimized pulses is
shown in Fig. 4.6. It is observed that gates with low quasimomenta would perform poorly
with this pulse. This was expected since the coupling element dispersion changes rapidly
near k=0 (see Appendix A).
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Figure 4.5: Comparison of two optimized controls for preparing a NOT gate for k≥ 0 when
the optimization uses only ten uniformly sampled points in quasi momentum space. Both
pulses are well-behaved in the sense that they don’t translate the lattice by a full lattice
site or change rapidly from the initial value for r. (a) An optimized pulse for a potential
depth r = 30 with 0.63% dispersion and fidelity 99.6% which is calculated by sampling over
200 quasimomentum values. The duration of the pulse was 10 free oscillations (measured
at k=0). (b) An optimized pulse for potential depth r = 12 and dispersion 13.2% with
a sampled fidelity of 97.6% . The time duration of the pulse was 2.5 free oscillations
(measured at k=0). The controls are palindromic due to a π-angle phase shift in the
control Hamiltonians between k > 0 and k < 0.
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Figure 4.6: Comparison of gate error for optimized controls in Fig. 4.5 where the red
solid line corresponds to control sequence (a) and the blue dotted line to (b). Due to
the optimized control being palindromic for (a) and somewhat palindromic for (b), the
response of the lattice is nearly symmetrical about k=0. (a) The gate error is less than 1%
across the possible quasimomenta and the average gate error is 0.41%. In (b) the gate error
for the quasimomenta points that were sampled is less than 8% and is 2.4% on average
when sampled uniformly over 200 points.
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4.4 Performance of robust NOT gate

4.4.1 Performance for half the lattice

The relationship between the maximum fidelity of the solutions and the level of dispersion
of the Hamiltonian for half of the first Brillouin zone (k≥ 0) was observed. Although
the maximum iterations for optimization was in place (105 iterations), for short times
(Fig. 4.7) excellent control fields were found (Φ > 0.99 for potentials as shallow as r=17,
i.e. potentials with 5.36% dispersion) for the entire range of potential depths that were
considered, 0.25 ≤ r ≤ 110.

In general, for long gate times, the maximum fidelity solution for NOT gates became
lower as the dispersion was increased, see Fig. 4.8. The optimization becomes more difficult
with higher dispersion due to the vast number of control fields that must be optimized and
the inherent limits of broadband control. As a result, broadband pulses must be tailored
to accommodate a greater range of possible energies and couplings for optimization.

In addition, the fidelity becomes deficient as the gate times increase. This may seem
counterintuitive, but it is due to the fact that as the gate time increases the amount that
the fidelity varies as a function of k increases. For very short gate times, the fidelity is
fairly constant across quasimomentum space, but for long gates the fidelity is often found
to be high only for the specific points that were optimized, and dips to almost zero in the
intermediate regimes, as seen in Fig. 4.4.
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Figure 4.7: The maximum fidelity for an optimized pulse over a range of times, from 1 to
10 free oscillations (measured at k=0), preparing a NOT gate on half of the first Brillouin
zone (where k > 0) as a series of different potential depths. The potential depth ranged
from r = 0.25 to r = 110, giving a dispersion ranging from 96.9% to 0.01%, respectively.
Each point is an average of optimized pulses from 1 Rabi and 10 random initial pulses.
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Figure 4.8: Same as Fig. 4.7 but with times from 15 to 70 free oscillations (at k=0).
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4.4.2 Performance for the whole lattice

The relationship for the maximum fidelity of NOT gates optimized over the entire first
Brillouin zone for different durations was observed for a series of potential depths (giving
a range of dispersions). The optimization was performed in a manner similar to Subsec-
tion 4.4.1. As such, the range of lattice depths observed was 0.25 ≤ r ≤ 110. Here, Fig. 4.9
shows that fidelities of Φ > 0.99 were only observed with potential depths of r=30 (0.63%
dispersion) and greater.

In comparison to the maximum fidelities observed for half the Brillouin zone, optimizing
over the full Brillouin zone resulted in fidelities that showed similar trends over long times
(15 to 70 free oscillations measured at k=0) with a slight decrease in fidelity (Fig. 4.10).
At short times with 1 to 10 free oscillations (measured at k=0), similar trends to Fig. 4.7
were observed, however for lattice depths of r=17 and lower the fidelity has decreased
significantly (Fig. 4.9).

The significant decrease in fidelity observed for highly dispersive energies and couplings
when optimizing for the full lattice was due to a phase difference of π in some coupling
matrix elements with quasimomenta of −k and +k within the first Brillouin zone (see
Appendix A). This adds additional complexity to any gradient search algorithm as there
are significantly fewer available sets of unitary maps that result in the gate versus having
symmetric coupling elements.
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Figure 4.9: The maximum fidelity for an optimized pulse over a range of times, from 1
to 10 free oscillations (at k=0), preparing a NOT gate on the entire Brillouin zone as a
series of different potential depths. The potential depth ranged from r = 0.25 to r = 110,
giving a dispersion ranging from 96.9% to 0.01%, respectively. Each point is an average of
optimized pulses from 1 Rabi and 10 random initial pulses.
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Figure 4.10: Same as Fig. 4.9 but with times from 15 to 70 free oscillations (at k=0).
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4.4.3 Comparison of optimization between phase constrained and
partially phase constrained ensemble fidelity

In choosing the fidelity of Eq. (3.38) for optimizing gate control pulses due to a favourable
property, it is appropriate to compare it empirically with another fidelity function that
lacks this property. This particular fidelity was chosen since it constrained the relative
phase between the fidelities sampled for each ensemble parameter (i.e. quasimomentum)
in the range considered over fidelities with unconstrained phase.

For ease of comparison, the maximum fidelities for the fully phase constrained fidelity in
Eq. (3.38) are shown in Fig. 4.11, along with the results for the partially phase constrained
fidelity, where only the real component of the fidelity was taken in Eq. (3.44b) (see Fig. 4.12)
for performing NOT gates on the full optical lattice. Both fidelities are shown as a function
of pulse durations from 2 to 55 free oscillations (measured at k=0) for a series of potential
depths 2 ≥ r ≥ 50. The maximum fidelities of both plots were calculated as consistent
to the method described in the beginning of this chapter, where each of the 200 observed
quasimomentum has a corresponding fidelity calculated using Eq. (3.4). As such, phase
constrained ensemble fidelity is shown empirically to be superior to partially constrained
ensemble fidelity for determining gate controls for the considered optical lattice model.
Thus, it can be concluded that optimization with a completely phase constrained fidelity
would result in pulses with better performance than a phase unconstrained fidelity.

57



0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Time (Free osc. at k=0)

E
rr

o
r 

[1
−

Φ
]

 

 

r=2

r=7

r=12

r=17

r=22

r=30

r=50

Figure 4.11: The maximum fidelity for a pulse optimized using the phase constrained
fidelity function over a range of times, from 2 to 55 free oscillations (measured at k=0),
preparing a NOT gate on the entire Brillouin zone as a series of different potential depths.
The potential depth ranged from r = 2 to r = 50, giving a dispersion ranging from 75.7%
to 0.04%, respectively. Each point is a maximum of optimized pulses from 1 Rabi and 10
random initial pulses.
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Figure 4.12: The maximum fidelities as observed similarly to Fig. 4.11, with the exception
that only the partially phase constrained fidelity of Eq. (3.44b) was used to optimize the
controls.
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4.5 Bandwidth considerations

The connection between gate duration and the rate of change of fidelity can be observed
through the simulation described in Fig. 4.13. Here, GRAPE is performed for exactly
one value of the quasimomentum. The performance of this control field across k is then
observed. It was found that as the gate time was decreased the fidelity response became
more broad about the single value of quasimomentum that was optimized. As a result,
fewer points in quasimomenta would need to be sampled for shorter times in order to have
a favourable response for the entire lattice.

In principle, there should always be higher fidelity control fields at longer gate times
but finding these fields becomes increasingly computationally expensive. Considering the
fidelity landscape as a function of the amplitude of the control fields, increasing the num-
ber of control fields essentially increases the dimension of this landscape, thus making it
increasingly more complex with many local maxims. Good solutions may exist, however
localized searches over a landscape where many false maxims exist make it increasingly
difficult to search for a good solution. In other words, finding good control fields becomes
computationally expensive as the need to sample more values in quasimomentum space or
to simply run the algorithm from many different initial conditions increases as one expects
to see a flat high fidelity response across the quasimomentum space.
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Figure 4.13: The fidelity response over quasimomenta is shown for pulses for performing
NOT gates at a potential depth of r = 2 for three different times that were optimized
specifically for k=0.5. This shows the effect of the bandwidth limit of the pulses on fi-
delity. Shorter pulses have larger spectral bandwidth and thus affect a larger range of
quasimomenta so that relatively fewer points in quasimomenta would need to be sampled
for optimization of the ensemble.
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4.6 Palindromic Controls Analysis

In controlling the optical lattice, there is an additional complication. When the system
Hamiltonian with quasimomentum +|k| is compared to the system Hamiltonian with quasi-
momentum −|k| within the same Brillouin zone, the eigenenergy remains the same however
the control may be changed due to anti-symmetry. In particular, the function for the imag-
inary computational component of the control Hamiltonian HI = i(eikx − e−ikx) is an odd
function so that changing the sign of the quasimomentum changes the sign of the control.
This effect can be seen in the Figures of Appendix A. Since the imaginary Hamiltonian is
responsible for the 1st and 3rd nearest-neighbour matrix coupling elements, these coupling
elements will be anti-symmetric about k=0 (refer to Fig. A.2 and Fig. A.4). As a result,
rotations made using these couplings for +|k| will cause reverse rotations to occur with
−|k|. With the additional effect of the drifting of the Hamiltonian and controls that work
on the time-scale of these drift rotations, a set of controls that is robust to one half of
the Brillouin will not perform properly for the other half since the evolutions are different.
Thus, the need for focused robust control arises.

Here, a control pulse for a simple scenario can be developed to show that one ideal
solution would be to have palindromic pulses, that is pulses that are symmetric about the
time of half its duration. Examine a simple two state system where we have assumed that
robust controls for performing simple rotations is at our disposal. Also assume that there
is anti-symmetry in the X-rotation about k = 0. The goal would be to perform a simple
state transfer from the ground to first excited state. One of the simplest control pulses to
control both halves of the Brillouin zone involves techniques derived from Hahn spin-echo
[46].

For a pulse of duration T , there are two phases in the sequence, one half for time
0 ≤ t < T/2 and the second half for time T/2 ≤ t < T . The second half of the control
sequence will be the time reversal of the first half. For the first half of the sequence, the
pulse begins with a Xπ/2 rotation (where Xφ denotes a rotation about the x-axis of angle
φ) of the ground state into the uniform superposition state, as visualized on the Bloch
sphere in part (a) of Fig. 4.14. This is allowed to precess for some time allowing for a total
accumulated phase of eiπ/2. For the negative half of the Brillouin zone, the response to the
rotation is in the reverse direction, as observed in Fig. 4.15.

For the second half of the pulse sequence, the exact reverse of the sequence for the first
half would then be performed. This begins by allowing the system to drift and accumulate
another phase eiπ/2. Then a X−π/2 rotation is performed which would result in the state for
the positive half of the Brillouin zone being in the excited state. The drift for the negative
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half of the Brillouin zone would occur as it did in the second half, however its response
to the X-rotation would be reversed and it would also end in the excited state. Thus, the
states of particles on both halves of the Brillouin zone would be focused at the end of the
pulse sequence using a palindromic control.

�0�

�1�

Y

Z
X�Π�2

Π�2 drift
X

(a) 0 ≤ t < T/2.

�0�

�1�

Y

Z

X�Π�2

Π�2 drift
X

(b) T/2 ≤ t < T .

Figure 4.14: The evolution of a two state system with positive σx coupling elements
(such as in the positive half of the Brillouin zone with k > 0) with a palindromic pulse
for preparing the excited state from the ground state. (a) At time 0 ≤ t < T/2 a Xπ/2

rotation pulse is applied followed by a drift to allow a rotation about the Z-axis of π/2. (b)
At time T/2 ≤ t < T , the exact reverse pulse sequence in the first half is applied. Here,
the system is allowed to drift about the Z-axis by π/2, followed by a X−π/2 rotation pulse.

For time-optimal controls on a complex system that we have considered, simple control
techniques are not sufficient. Fast pulses would utilize the many interactions between
different states in order to prepare a state or gate in a relatively short time. In addition,
rotations would not occur without drift as assumed in the simple example above. As
a result, the design of control sequences would be non-trivial, especially with a system
requiring robustness. Thus, the need for optimal control in order to develop proper high-
precision control sequences.
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Figure 4.15: The evolution of a two state system with negative σx coupling elements (such
as in the negative half of the Brillouin zone with k < 0) with the exact same palindromic
pulse applied in Fig. 4.14 for preparing the excited state from the ground state. In this
regime, because the control couplings have been phase shifted by π, the system will respond
in the opposite manner to controlled rotations than it would for positive couplings. (a)
At time 0 ≤ t < T/2 a Xπ/2 rotation pulse (which appears as X−π/2 for k < 0) is applied
followed by a drift to allow a rotation about the Z-axis of π/2. (b) At time T/2 ≤ t < T ,
the exact reverse pulse sequence in the first half is applied. Here, the system is allowed to
drift about the Z-axis by π/2, followed by a X−π/2 rotation pulse (which appears as Xπ/2

for k < 0).
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Chapter 5

Conclusions

In 1965, a prophetic prediction known as Moore’s law, which has been widely accepted by
the microchip industry, states that for a fixed cost, the complexity of integrated electronic
components would double every two years. As physical constraints such as the quantum
effects of noise and most notably tunneling effects pose a limit to the ability in continu-
ing the miniaturization of devices, thus threatening an end to Moore’s law, the need to
develop new technologies becomes more apparent. What makes quantum computers re-
markable in comparison to traditional classical computers is that they would utilize these
otherwise oppressive quantum effects to not only surpass the computational power of clas-
sical computers, but provide an entirely new paradigm of information processing. This
paradigm provides the potential for algorithms that would be significantly faster than any
classical algorithm and provide secure communications, all to the extent that it is worth
pursuing the goal of a functioning quantum computer. Thus, with the goal and challenges
in mind, researchers have pursued discoveries in all avenues related to the processing of
information using quantum effects which include: quantum algorithms, complexity theory,
quantum cryptography and communications, quantum fault-tolerance and error correction,
topological quantum computing, physical quantum devices, quantum control, etc.

This thesis is focused on the study of time-optimal robust control for the one-dimensional
optical lattice. A working quantum computer must be stable against the effects of disper-
sion, fluctuations in parameters, and uncertainty in parameters. Demonstrating the ability
to design robust control for a system as difficult and challenging to control as the optical
lattice shows that it is possible to develop the controls to perform operations with the
necessary stability and precision. The control techniques discussed in this thesis can be
applied to other devices for quantum computers such as superconducting qubits which
includes the quantronium, flux, charge, phase, and the transmon qubits. These techniques
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can even be applied to other systems for physical or chemical study in the research of NMR
or condensed matter systems.

In this thesis, the physical model that was considered for controlling the one-dimensional
optical lattice with two global lasers to shift the trapping potential and to adjust the
height of the potential was discussed in Chapter 2. The optimal control techniques using
gradient-ascent pulse engineering that were developed to design controls for the optical
lattice that were robust to it’s energy dispersion, control dispersion, and control anti-
symmetry was discussed in Chapter 3. Finally, the results of simulations for optimized
controls was shown and discussed in Chapter 4. These results showed that it was indeed
reasonably possible to produce controls that could robustly control the optical lattice with
a precision of at least 99% for dispersions in the vibrational energies of 0.6%. The results
showed that our technique of using the phase-constrained fidelity function proved superior
to phase-unconstrained fidelity functions. It was also observed that palindromic pulses
were produced by optimization due to the anti-symmetries of the controls.

With concluding remarks, it can be said that with further optimization, it is possible
to tailor the controls to the desired precision. Future work for improved control design can
also be explored as an extension of the concepts in this work, such as a hybrid method of
gradient-ascent pulse engineering and genetic algorithms in order to unite the advantages
of their unique ability for local and global searches [70], or the use of a new proposal of
real-embedding [49].
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Appendix A

Coupling bands for the optical lattice

Here, in the same manner that the eigenenergy bands were shown in Fig. 2.2 of Section 2.4,
the dispersion of the coupling strength across the Brillouin zone for the ground and 1st
excited states of the 1-D optical lattice are shown for a range of lattice potential depths.
The important property of the energy couplings (coupling matrix elements) to consider are
that they may be either symmetrical or anti-symmetrical about the zero quasimomentum
in the first Brillouin zone. The consequence of having anti-symmetric coupling elements in
quasimomenta adds to the complexity of the control challenge as driving a qubit rotation
for atoms with positive quasimomenta will perform the opposite rotation for atoms with
negative quasimomenta. To add to the difficulty of control, the coupling elements also
have increasing gradients with respect to quasimomenta as the trapping potential depth is
decreased.

The Z-couplings (σX matrix elements) in Fig. A.1 show a smooth symmetrical curve
for the first two states with the exception of a dip near k=0 for low lattice depths. Both
the 1st and 3rd nearest-neighbour couplings (where the nth nearest-neighbour coupling
denotes the coupling matrix element from one state to the nth higher state) for the first
two states show anti-symmetry with a discontinuity about k=0, shown in Fig. A.2 and
Fig. A.4 respectively. In addition, with shallower trapping potential depths the amount of
dispersion in the coupling elements increases. Such couplings are responsible for the need
of time-reversal invariant control pulses to perform gates on the optical lattice [43]. The
2nd and 4th nearest-neighbour couplings in Fig. A.3 and Fig. A.5, respectively, show steep
changes in strength near k=0 and in quasimomenta near the boundaries of the Brillouin
zone. This effect is more pronounced with shallower trapping potential depths.

68



−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

r=2

Z
−

c
o

u
p

lin
g

 [
U

0
/E

re
]

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

r=13

−1 −0.5 0 0.5 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

r=18

k [2π/(G m)]

Z
−

c
o

u
p

lin
g

 [
U

0
/E

re
]

−1 −0.5 0 0.5 1
−1

−0.9

−0.8

−0.7

−0.6

r=30

k [2π/(G m)]

Figure A.1: The Z-coupling (σX matrix elements) strength is shown for the ground state
(blue solid) and the first excited state (green dashed) across the quasimomentum within
the first Brillouin zone of the 1-D optical lattice for varying trapping potential depths.

69



−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

r=2

N
e

a
re

s
t−

n
e

ig
h

b
o

u
r 

c
o

u
p

lin
g

 [
U

0
/E

re
]

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

r=13

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

r=18

k [2π/(G m)]
−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

r=30

k [2π/(G m)]

Figure A.2: The nearest-neighbour coupling strength (matrix coupling element to the first
higher state) is shown for the ground state (blue solid) and the first excited state (green
dashed) across the quasimomentum within the first Brillouin zone of the one-dimensional
optical lattice for varying trapping potential depths. The coupling strengths are anti-
symmetric about k=0.
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Figure A.3: The 2nd nearest-neighbour coupling strength (matrix coupling element to
the second higher state) is shown for the ground state (blue solid) and the first excited
state (green dashed) across the quasimomentum within the first Brillouin zone of the one-
dimensional optical lattice for varying trapping potential depths. The coupling for the
second excited state exhibits rapid change near k=0. At r=2, the coupling for the first
excited state also exhibits this effect.
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Figure A.4: The 3rd nearest-neighbour coupling strength (matrix coupling element to
the third higher state) is shown for the ground state (blue solid) and the first excited
state (green dashed) across the quasimomentum within the first Brillouin zone of the one-
dimensional optical lattice for varying trapping potential depths. The coupling strengths
are anti-symmetric about k=0.
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Figure A.5: The 4th nearest-neighbour coupling strength (matrix coupling element to
the fourth higher state) is shown for the ground state (blue solid) and the first excited
state (green dashed) across the quasimomentum within the first Brillouin zone of the one-
dimensional optical lattice for varying trapping potential depths. The coupling strength
has increasing gradient near k=0 for lower potential depths.
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Appendix B

Performance of robust controls for
NOT gates supplement

B.1 Performance for the whole lattice

Here supplementary information is provided for the results of the performance of optimized
pulses shown in Subsection 4.4.2. The supplement provided are the average and median
fidelities for optimized NOT gates versus the duration of the pulse for a series of potential
depths along with the maximum fidelity (minimum error) for very short durations. There
are three sets of gate durations shown: very short (0.1 to 0.75 free oscillations at k=0),
short (1 to 10 free oscillations at k=0), and long (15 to 70 free oscillations at k=0). The
NOT gates were optimized for the whole one-dimensional optical lattice (i.e. the entire
first Brillouin zone).

B.1.1 Very short times
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Figure B.1: The maximum fidelity for an optimized pulse over a range of times, from 0.1
to 0.75 free oscillations (at k=0), preparing a NOT gate on the entire Brillouin zone as a
series of different potential depths. The potential depth ranged from r = 0.25 to r = 110,
giving a dispersion ranging from 96.9% to 0.01%, respectively. Each point is a maximum
of optimized pulses from 1 Rabi and 10 random initial pulses.
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Figure B.2: Same as Fig. B.1 but with each point a median of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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Figure B.3: Same as Fig. B.1 but with each point an average of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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B.1.2 Short times
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Figure B.4: The median fidelity for an optimized pulse over a range of times, from 1 to 10
free oscillations (at k=0), preparing a NOT gate on the entire Brillouin zone as a series of
different potential depths. The potential depth ranged from r = 0.25 to r = 110, giving a
dispersion ranging from 96.9% to 0.01%, respectively. Each point is a median of optimized
pulses from 1 Rabi and 10 random initial pulses.
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Figure B.5: Same as Fig. B.4 but with each point an average of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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B.1.3 Long times
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Figure B.6: The median fidelity for an optimized pulse over a range of times, from 15 to 70
free oscillations (at k=0), preparing a NOT gate as a series of different potential depths.
The potential depth ranged from r = 0.25 to r = 110, giving a dispersion ranging from
96.9% to 0.01%, respectively. Each point is a median of optimized pulses from 1 Rabi and
10 random initial pulses.
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Figure B.7: Same as Fig. B.6 but with each point an average of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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B.2 Performance for the whole lattice with k=0 op-

timized

The results for optimization of pulses for performing NOT gates on the full optical lattice
Hamiltonian in a manner almost precisely to Section 4.4.2 are shown. The exception in
these particular pulses were that 11 quasimomentum points were evenly sampled in the
first Brillouin zone for optimization. This was performed to allow k=0 to be sampled in
the optimization, whereas it was not sampled in Section 4.4.2 and thus some pulses showed
higher gate errors around that point. The results for sampling the Hamiltonian with k=0
for optimization did not show significant improvement. Here, the minimum, median, and
average gate errors are shown for very short (0.1 to 0.75 free oscillations at k=0), short (1
to 10 free oscillations at k=0), and long (15 to 70 free oscillations at k=0) times.

B.2.1 Very short times
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Figure B.8: The maximum fidelity for an optimized pulse over a range of times, from 0.1
to 0.75 free oscillations (at k=0), preparing a NOT gate as a series of different potential
depths. The potential depth ranged from r = 0.25 to r = 110, giving a dispersion ranging
from 96.9% to 0.01%, respectively. Here, the k=0 was a sampled point included for opti-
mization. Each point is a maximum from optimized pulses initialized from 1 Rabi and 10
random pulses.
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Figure B.9: Same as Fig. B.8 but with each point a median of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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Figure B.10: Same as Fig. B.8 but with each point an average of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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B.2.2 Short times
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Figure B.11: The maximum fidelity for an optimized pulse over a range of times, from 1 to
10 free oscillations (at k=0), preparing a NOT gate as a series of different potential depths.
The potential depth ranged from r = 0.25 to r = 110, giving a dispersion ranging from
96.9% to 0.01%, respectively. Here, the k=0 was a sampled point included for optimization.
Each point is a maximum of optimized pulses from 1 Rabi and 10 random initial pulses.
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Figure B.12: Same as Fig. B.11 but with each point a median of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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Figure B.13: Same as Fig. B.11 but with each point an average of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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B.2.3 Long times
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Figure B.14: The maximum fidelity for an optimized pulse over a range of times, from 15 to
70 free oscillations (at k=0), preparing a NOT gate as a series of different potential depths.
The potential depth ranged from r = 0.25 to r = 110, giving a dispersion ranging from
96.9% to 0.01%, respectively. Here, the k=0 was a sampled point included for optimization.
Each point is a maximum of optimized pulses from 1 Rabi and 10 random initial pulses.
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Figure B.15: Same as Fig. B.14 but with each point a median of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.

0 20 40 60 80
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Time (Free osc. at k=0)

E
rr

o
r 

[1
−

Φ
]

 

 

r=0.25

r=0.5

r=1

r=1.5

r=2

r=7

r=12

r=17

r=22

r=30

r=50

r=70

r=90

r=110

Figure B.16: Same as Fig. B.14 but with each point an average of the error with optimized
pulses from 1 Rabi and 10 random initial pulses.
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[80] M. Möttönen, R. de Sousa, J. Zhang, and K.B. Whaley. High fidelity one-qubit
operations under random telegraph noise. Phys. Rev. A, 73:022332, 2006. 4, 23

[81] F. Motzoi, J.M. Gambetta, P. Rebentrost, and F.K. Wilhelm. Simple pulses for
elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett, 103:110501, 2009.
4, 8

[82] S. H. Myrskog, J. K. Fox, M. W. Mitchell, and A. M. Steinberg. Quantum pro-
cess tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A,
72(1):013615, Jul 2005. 9, 16, 42

[83] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic
quantum states in a single-cooper-pair box. Nature, 398(6730):786–788, 04 1999. 23

94



[84] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar
Das Sarma. Non-abelian anyons and topological quantum computation. Rev. Mod.
Phys., 80(3):1083–1159, Sep 2008. 2

[85] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R.
Johnson, M. J. Reagor, L. Frunzio, L. Glazman, and R. J. Schoelkopf. How coherent
are Josephson junctions? ArXiv e-prints, May 2011. 5

[86] S. Pasini, P. Karbach, C. Raas, and G. S. Uhrig. Optimized pulses for the perturba-
tive decoupling of a spin and a decoherence bath. Phys. Rev. A, 80(2):022328, Aug
2009. 4

[87] F. Platzer, F. Mintert, and A. Buchleitner. Optimal dynamic control of many-body
entanglement. Physical Review Letters, 105(2), 2010. 6

[88] H. Rabitz, T.-S. Ho, M. Hsieh, R. Kosut, and M. Demiralp. Topology of optimally
controlled quantum mechanical transition probability landscapes. Phys. Rev. A,
74(1):012721, Jul 2006. 38

[89] P. Rebentrost and F.K. Wilhelm. Optimal control of a leaking qubit. Phys. Rev. B,
79:060507(R), 2009. arXiv:0808.2680. 8

[90] S.A. Rice and M. Zhao. Optimal Control of Molecular Dynamics. Wiley, 2000. 6, 25

[91] D. Rossini, P. Facchi, R. Fazio, G. Florio, D. A. Lidar, S. Pascazio, F. Plastina, and
P. Zanardi. Bang-bang control of a qubit coupled to a quantum critical spin bath.
Phys. Rev. A, 77(5):052112, May 2008. 4

[92] S. Safaei, S. Montangero, F. Taddei, and R. Fazio. Optimized single-qubit gates for
josephson phase qubits. Phys. Rev. B, 79:064524, 2009. 8

[93] R.S. Said and J. Twamley. Robust control of entanglement in a nitrogen-vacancy
center coupled to a c 13 nuclear spin in diamond. Physical Review A - Atomic,
Molecular, and Optical Physics, 80(3), 2009. 6

[94] P-I. Schneider and A. Saenz. Quantum computation with ultracold atoms in a driven
optical lattice. arXiv:1103.4950, 2011. 6, 7

[95] Gerd Schön and A. D. Zaikin. Quantum coherent effects, phase transitions, and the
dissipative dynamics of ultra small tunnel junctions. Physics Reports, 198(5-6):237
– 412, 1990. 23

95



[96] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, Washington, DC, USA, 1994. IEEE Computer Society. 1

[97] Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, and
Markus Greiner. Quantum simulation of antiferromagnetic spin chains in an optical
lattice. Nature, 472(7343):307–312, 04 2011. 7

[98] T.E. Skinner, M. Braun, K. Woelk, N.I. Gershenzon, and S.J. Glaser. Design and
application of robust rf pulses for toroid cavity nmr spectroscopy. Journal of Magnetic
Resonance, 209(2):282–290, 2011. 6

[99] Thomas E. Skinner, Timo O. Reiss, Burkhard Luy, Navin Khaneja, and Steffen J.
Glaser. Application of optimal control theory to the design of broadband excitation
pulses for high-resolution nmr. Journal of Magnetic Resonance, 163(1):8 – 15, 2003.
4

[100] Charles Slichter. Principles of magnetic resonance. Springer-Verlag, Berlin New
York, 1990. 3

[101] M. Steffen, J.M. Martinis, and I.L. Chuang. Accurate control of josephson phase
qubits. Phys. Rev. B, 68:224518, 2003. 8

[102] M. J. Storcz, J. Vala, K. R. Brown, J. Kempe, F. K. Wilhelm, and K. B. Whaley.
Full protection of superconducting qubit systems from coupling errors. Phys. Rev.
B, 72(6):064511, Aug 2005. 4

[103] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measurement
of conditional phase shifts for quantum logic. Phys. Rev. Lett., 75(25):4710–4713,
Dec 1995. 2
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