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Abstract 

Vertically integrated electric power systems extensively use optimization models and solu- 

tion techniques to guide their optimal operation and planning. The advent of electric power 

systems re-structuring has created needs for new optimization tools and the revision of the 

inherited ones from the vertical integration era into the market environment. 

This thesis presents further developments on the use of optimization models and tech- 

niques for implementation and pricing of primary electricity markets. New models, solution 

approaches, and price setting alternatives are proposed. Shree different m o d e h g  groups 

are studied. The first modeling group considers simplified continuous and discrete models 

for power pool auctions driven by central-cost minimization. The direct solution of the 

dual problems, and the use of a Branch-and-Bound algorithm to solve the primal, allows 

to identie the effects of disequilibrium and different price set ting alternatives over the ex- 

istence of multiple solutions. It is shown that particular pricing rules worsen the c o ~ c t  

of interest t hat arise when multiple solutions exists under disequilibrium. A price-setting 

alternative based on dual variables is shown to dirninish such confiict. The second modeling 

group considers the unit commitment problem. An interior-point /cut t ing-plane met hod is 

proposed for the solution of the dual problem. The new method has better convergence 

characteristics and does not suffer [rom the parameter tuning drawback as previous meth- 

ods. The robustness characterist ics of the interior-point/cut ting-plane met hod, combined 

with a non-uniform price setting alternative, show that the cod ic t  of interest is diminished 

when multiple near optimal solutions exist. The non-uniform price setting alternative is 

compared to a classic average pricing rule. The last rnodeling group concerns to a new 

type of linear network-constrained clearing system models for daily markets for power and 

spinning reserve. A new model and solution approach is proposed. The model considers 

bids for supply and demand and bilateral contracts and a direct current model for the 

transmission network. The use of an  interior point method that can take advanlage of the 

special structure of the Newton's system is proposed. 

The use of optimization models in a market environment is still facing several chal- 

lenges; this thesis presents developments that help understand the use of complex opti- 

mization models for electricity markets; new models, solution approaches and price setting 

alternatives are  proposed. 
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Chapter 1 

Introduction 

A re-structtiring process of the power industry, that started in 1978. gave birth to the first 

competitive market for electricity generation in Chile in 1982 [l]. The order to privatize 

the United Kingdom electricity industry in 1988 concluded with the creation, in 1992, of 

the England and Wales Power Pool- In 1992, the a p p r o d  of the Electricity Policy Act 

(EPAct) ordered Open Access to transmission networks as the ba is  for the introduction 

of competition in the electricity industry in the U.S.A. Ever since, a variety of electricity 

markets have been created, among thern, the Pennsylvania-New Jersey-Maryland (PJM) 
Pool that started operations in 1997: the Californian market that started operations in 1998 

and the New York Power Pool in the same year. Alberta and Ontario, in Canada, have aIso 

re-s tructured their systems to a market-oriented basis. Several ot her countries have also 

implernented electricity markets, or are in the process to do so, among them, Argentina, 

Australia, Brazil, Mexico, Germhnv, Nonvay and Spain. 

The world-wide re-structuring process of the electric energy industry t hat begun more 

than twenty p a r s  ago, has deeply accelerated creating a political and technical turmoil. 

The operation of large investor- or state-owned utilities is being transformed from an rate- 

of-reburn basis to a competitive b a i s  by the creation of electricity markets- 

The reasons for such re-structuring process are varied. In well developed countries, the 

introduction of competition is believed to be a bridge to achieve more efficiency in the indus- 

try,. to equate price differences among regions and, eventually, to reduce the energy prices. 

In developing countries, re-structuring is sometimes linked to a privatization process of the 

state-owned utilities. The need to acquire funds to build the systerns expansions required 

to cope with the rapid load growth, is one of the reasons for the re-structuring of their 



systerns. It is also believed t hat t lie introduction of cornpet ition and private participation 

can make the state-owned utilities more efficient. 

Structure and Implementation of Electricity Markets 

The electricity industry bas peculiârities that make the design of an electricity market a 

challenging task. Electric energy cannot be stored in large quantities and, therefore, the 

generation supply hâs to match the demand at every time instant; transmission and system 

interactions have to be observed to guarantee the secure and reliable operation of the system. 

Such cornplexities need to be taken into account in what can be identified as  the three main 

design components of an electricity market: (i) the design of the primary electricity markets; 

(ii) the design of transmission management procedures: and (iii) the design of procedures 

for the provision of anci1Iax-y services. The first design cornponent refers to the creation of 

markets to cornpetitively buy and sel1 real power in different time ancl structural frames- 

The second cornponent refers to the definition of rules and procedures to provide access to 

the transmission system, including the congestion and pricing protocols. The last design 

coniponent deals with the procedures to be implemented for the provision of the ancillary 

services that are riecessary to support the reliable and secure operation of the system such 

as voltage support, frequency regulation and operating reserves. Even though transmission 

and ancillary services are not always provided in a market orienteci basis, the creation of 

primary markets is a constant in al1 the re-structured systems. 

There is a great diversity of market designs; practicdly, not two equal market designs 

exist. A classification given by R. Wilson [2, 19991 identifies ttiree groups of market models: 

( i)  centralized models; (ii) decentralized models; and (iii) hybrid models. Centralized rnod- 

e1s are characterized by the creation of an independent system operator (ISO) that executes 

a ceiitrd cost-minirnization scheduling of generation which constitutes the primary market. 

Alternatively, the same ISO is involved in the operation of tbe transmission system and 

procurement of ancillary services. On the other hand, decentralized models neither rely on 

central optimization of generation nor on a single ISO- In these desips, there is a Market 

Operator (MO) in charge of running prirnary markets by using simple models such as stan- 

dard auctions; transmission security and congestion management are executed by an ISO in 

coordination with the MO. Centralized and decentraIized models represent opposite poles 

of cxisting market designs; neiv hybrid designs are being recently created. These designs 

do not implernent primary markets by standard auctions or centralized cost-minimization 

in the same rnodeling Ievel as centralized designs. 



This thesis deals with the use of optimization models and techniques for implementa- 

tion and pricing of primary electricity markets. The implementation of primary electricity 

markets has inherited several optimization tools from the vast experience of the vertical in- 

tegration era. The transition of the cost-minimization models to a market environment has 

not been an easy process. There is a need for new madels and optirnization techniques, as 

weH as the revision and improvement of existing ones. In the following section: representa- 

tive market models are described. At the same time, the challenges that the implementation 

of optimization-based primary electrici ty markets is facing are described. 

1.2 Optimization Models in Primary Electricity Markets 

1-2.1 Centralized Models and the Use of Unit Cornmitment 

Uni t  cornmitmen t ( UC) problems have long been used in vertically-integrated utili ties to 

determine the short term (24 to 168 hours) economic operation of power system with con- 

siderable amounts of thermal generation. A classic UC is a large non-linear mbced-integer 

programming problem whose solution gives the comrnitment of generators and their respec- 

tive power outputs so that a forecasted load demand and system reserve are satisfied; and, 

nt the same tirne: satisfying the operative limits of the generation units (31. 

A UC mode1 has been used by the England and  Wales Power Pocl (EWPP) as the 

mechanisni to implemerit a daily market for real generation; Le-. a power Pool auction. The 

Pool receives bids from generators that contain a cost funciion and a set of operational 

limitations- The cost functions contain no-Ioad, start-up and variable cost coefficients- The 

operative limits include minimum and maximum power outputs, ramp constraints and min- 

imum shut down constraints, among others [il]. The Pool uses a Lagrangian rel~xation 

algorithm that  determines the minimum cost solution to the UC problem. Once the UC 
problem is solved, the Pool cornputes several price components to determine the price for 

suppliers and consurners: among these components is the System Marginal Pn'ce (SMP), 

shich defines the price for real power and is computed in such a way that scheduled gener- 

ators recover the costs submitted in their bids [4]. 

The cost functions subniitted by generators do not necessarily need to reflect their true 

values; it is expected tliat the cornpetitive forces would drive generators to submit a cost 

as low as tlieir actual cost in order to be scheduled at the solution to the UC problem; 

and, therefore. receive revenues from the power they produce. However, in the experience 



of the EWPP, large increases in the SMP and other price cornponents have been observed 

since 1992, and became more pronounced aftenvards. Empirical evidence shows that the 

large increases in prices were mainly due to duopoly market power by two major generator 

companies acting in the Pool [5, 19971 16: 19991; and, also, to the strategic selection of the 

start-up, and variable cost paranieters included in the bids [7. 19991. 

There bave been other concerns related to the use of unit commitment rnodels for pri- 

mary electricity markets. Using a simplified unit-cornmitment model, Jacobs [8, 19971 shows 

that cost-rninimization and uniform pricing based on averages, as used in the E W P ,  fa-ils 

to produce lower prices for consumers. The author shows that different feasible solutions, 

that do not minimize cost, can resuit in lower prices for consumers- The same author 

and related research by Hao et al. [9, 19991 propose the use of price-minimization unit- 

corninitment power pool auctions. In this niodel, the objective is to find a schedule that 

minirnizes a uniforrn price and, a t  the same tinie, guarantees cost-recovery for al1 suppliers- 

However, as identified by the authors, the decomposability of the optimization mode1 is 

lost, which makes it harder to salve: numericd results show that price minimization leads 

to lower energy prices but reqiiires the use of more expensive generators- 

In a publication by Johnson, Oren and Svoboda [IO, 19971, equity or fairness concerns 

related to the use of unit commitment for cornpetitive markets are raised. Using a unit 

comrnitment and hydro thermal coordination program, t hey show t hat sIight variations 

in the tuning parameters of the Lagrangian rela-uation-based scheduling program Iead to 

different near-optimal solutions. Despite that such multiple ncar-optimal solutions represent 

equally acceptable cost-minimizing solutions, they can represent very different profits for 

individual suppliers, which generates a conflict of interest since particular parameter setting 

could be favoring a particular generator. Additional work by Sheblé e t  al. [I l ,  19991 [12: 

19991 further explores on the existence of multiple solutions in unit commitrnent rnodels- 

Other more recently developed electricity markets, such PJM and the NY ISO, also 

based on forrns of UC models to execute their primary markets. At the same tirne, the 

transmission network is considered dong  with the primary market, constituting a highest 

centralized model. The equity concerns are not considered substantial to change t heir 

market models and they rely on settlement systems to manage no-load and start-up cost as a 

counter-measure to avoid the possible strategic bebavior [13,14]. The EWPP is undergoing a 

new re-structuring process that has split generation companies, and considers the utilization 

of simpler models to execute the primary market [15]. 



1.2.2 Decentralized Models and the Use of Standard Auctions 

The U.K. experience and the concerns that arise due to the complexity of the UC strorigly 

inftuenced the design of the Californian market- In the California market, the Power Ex- 

change (PX) implements a daily market where both suppliers and consumers submit simple 

price-quantity bids in order to compete to sel1 and buy real power [16]. The PX performs 

an ordering of the bids to construct a supply/demand curve whose intersection defines the 

schedules and a sinlge market price. Other systems that irnplement similar daily markets 

are Spain [l?] and Alberta in Canada [18]- 

The P X  mode1 can be classified as an standard uniform double-sided âuction market. 

Uniform, since a single price is set for the product; and doubIe-sided, since both consumers 

and suppIiers participate in the auction. An auction is a market mechanism to allocate 

goods and determine their price based on the bids submitted by participants [19]. The use 

of auctions as a general principle for price determinztion in a deregulated power industry 

has been first considered by G. B. Sheblé in PO, 19941 and Post e t  al. [21, 19951. 

The use of simple models to implenient electricity markets intends to provide a trans- 

parent and pure market-oriented trading Aoor, where the determination of schedules and 

prices is not made inside a "black b o y  optimization algorithm [2]-  

Generation companies acting in this type of markets need to rely on their bidding 

strategies to recover al1 their cost cornponents; a t  the same time, such strategies have to be 

designed so that the most probable outcome of the auction is in accordance to the opera- 

tional restrictions of their generation units. The design of bidding strategies that involve 

the self-cornmitment of generation units, acting in this type of markets, is an increasing re- 

search area of interest [Z-Xf - There is, therefore. a trade-off among reliability and market 

transparency. Unit cornmitment models take into consideration the operative limits of the 

suppliers and perform a central coordination of the resources. 

Even though the use of standard auctions in electricity markets can be supported by 

the known theoretical and experirnental properties of standard auctions cas applied to other 

markets, the properties of such auctions in the context of eIectricity markets are not well 

known. Reviews on the t heory of auctions can be found in [Il? 191. The basic result on the 

theory of uniform double-sided auctions specifies that participants best behavior is to reveai 

their true valuation of the object, ive-, reveal their true cost of generation, in the context of 

an electricity market. 

Recent work by EImaghraby and Oren [25, 19991 considers a P X  standard-auction as 



compared to a simplified unit-commitment model: the research concludes that, under spe- 

cific behavioral assimptions, the P X  auction is not able to achieve economic dispatch in 

equilibrium. That is, the behavior of bidders in a P X  auction is such that  cost minimization 

is never achieved, nrhich, in a unit-cornmitment like auction, is a possibility if participants 

submit their true costs, In general: if an efficient cornpetit ive-incentive auction for electricity 

markets exists and can be implemented? is still an open question [26, 19981 [27, 20001. 

As in the U.K., price increases due to market power have also been diagnosed in the 

California market [2S, 19991. 

1.2.3 Hybrid Models and Linear Optirnization 

In both the California PX market and the U.K- Pool. the daily market for power is executed 

without considering the transmission network. The operators of both markets coordinates 

with a separated operator who determincs the feasibility of the resulting schedules and 

determines the corrective actions based on the established design principles for transmission 

management. In California, such an operator is calIed the ISO [16], and in the case of the 

U.K., is the National Grid Company [4]. 

Hybrid designs have recently been created; these designs do not allow the inclusion of 

unit cornmitment in the primary market, but allow certain tirne-dependent operative limits 

to be expressed in the bids. In this new type of rnodels, a simplified representation of the 

transmission network is considered. The time-dependent optimization models t hat arise 

from these new models result in large, but easily solvable, linear optirnization inodels. The 

basis for these models is the spot pricing theory of electricity dcveloped by Schweppe et 

at. [29]. A benefit maximization dispatch problem is formulated and its solution provides 

the schedules for suppliers and consumers. At the same time, the optimal dual variables 

related to the power demand constraints in the optirnization model determine the locational 

prices that are also used for tra nsmission pricing. 

Examples of these new structures are the New Zealand Market [30, 19981, the proposed 

structure for the Mexican market (under evaluation) 131, 19991. The final report of the 

Ontario Market Design Cornmittee [32, 19981 recommends the introduction of locational 

marginal pricing for a second stage an the developrnent of the Ontario market. The rapid 

appearance of these alternative designs has created an increasing need for the identification 

of mathematical models and solution approaches for what is called transmission constrained 

market clearing [33, 19991 [34, 19991. 



1.3 Research Motivation 

While the strategic behavior of participants in an auction deserves investigation, and per- 

haps more practical experience, the use of complex optimization models (such <as unit com- 

mitment) to conduct electricity auctions is not well iinderstood yet and deserves further 

investigation [35, 19991. The search for better solution algorithms that can be valuable 

in both vertical-utility operation or market-environment is of great importance. At the 

same t ime, the search For bet ter alternat ive pricing schemes needs investigation. New 

models and solution approaches are required for recently created or proposed electricity 

markets [33, 19991 [34, 19991. 

In particular: (i) the study of simplified continuous and discrete models and direct 

solutions approaches can provide information for the understanding and design of price 

setting alternatives in power pool auctions driven by more complex optimization models; (ii) 

the search for new solution approaches to unit cornmitment problerns is still needed; nlethods 

that do not rely on parameter tuning and their use to design price setting alternatives are 

desirable; and (iii) the modeling and proposa1 of solution approaches to market clearing 

systems that arise from newly created market structures is also reqiiired. 

The structure of the thesis dong with the principal contributions is described in the 

next section; additional relevant bibliographical reviews are given along each chapter, 

1.4 Structure of the Thesis and Main Contributions 

In Chapter 2, a generic cost-minimization power Pool auction mode1 is described. 

Using Lagrangian duality, the conditions for the existence of an equilibrium are pre- 

sented. As illustrative examples, simplified continuous models that represent a stan- 

dard auction and a economic dispatch problem are presented. For both models, direct 

solution approaches to solve the prima1 and dual problems are presented. The relation 

between standard auctions and pricing with dual variables is iliustrated. 

In Chapter 3, two simplified discrete models for power pool auctions are studied. The 

models consider bids with startup cost and linear and qiiadratic variable cost. For 

both models, a closed form solution to the dual probleni is derived and enurnerative 

Branch-and-Bound methods are developed to find the solution to the prima1 problem. 

The non-existence of equilibrium and its effect on different pricing alternatives is pre- 

sented. It is shown that average pricing and price minimization worsens the conflict 



of interest that arises when multiple solutions exist. A derivation shows that: under 

disequilibrium, dual variables used as  prices do not generate enough revenues to re- 

cover al1 the submit ted cost of participants. The cost not recovered is bounded above 

by the duality gap- Based on t his observation, a non-uniform price set ting alternative 

using dual variables is proposed. The alternative is simple, avoids the price spikes 

that can easily happen with average pricing, and shows that it reduces the conflict of 

interest when multiple solutions exist. 

In Chapter 4, a unit commitment model and its solution by Lagrangian relaxation is 

presented. A new intenor-point/cutting-plane (IP/CP) method to soive the duaI prob- 

lem is proposed. This method, which has been used in other engineering applications. 

has bet ter convergence characteristics and does nat suffers from the parameter tuning 

drawback as previous approaches. The interior-point/cut t ing-plane met hod requires 

the solution of a potentid problem, for which an infeasible primal-duai interior-point 

method is proposed. Some implementation details are described in the chapter. 

In Chapter 5, a numerical evaluation of the performance of the IP/CP metliod to 

solve the unit commitment problem are presented, Its convergence characteristics 

and robustness to parameter changes are proven by numerical simulation- In the 

same chapter, we study the application of the IP/CP to execute unit cornmitment 

poiver pool auctions. Numerical results show that the robustness characteristics of the 

IP/CP method, combined with the non-uniform price setting alternative, dirninishes 

the conflict cf interest that c m  arise from the existence of neas-optimal solutions- The 

non-uniform price setting alternative is compared to an average pricing rule derived 

from the an average price setting as used in the EWPP. 

In Chapter 6:  a hybrid model for a n  energy and spinning reserve network-constrained 

market cIearing system is described. The model considers demand side bidding and 

bilateral contracts and a direct current representation of the transmission network. 

An interior-point method is proposed for its solution; this method can take advantage 

of the special structure of the Newton's systern. The model represents an experiniental 

development related to recently created and proposed electricity markets. 

The Iast chapter of the thesis provides closing cornments, conclusions and recommen- 

dations for future work. 



Chapter 2 

Central Cost Minimization and 

Compet itive Market Equilibrium 

Whenever a market exists or has to be implemented, a basic question arises on the exis- 

tence of competitive market equilibrium in such a market. Electric power cannot be stored; 

balance arnong power supply and demand has to take place at every time instant in the 

system. For these reasons, power markets need to be created and Implemented in com- 

puterized auctions with specific modeling assumptions. In Section 2-1 of this chapter, the 

equilibrium theory of production economies is applied to study the existence and unique- 

ness of equilibrium in power markets that are esecuted by central optimization models or 

optirnization-based power pool auctions. The conditions for the existence of an equilibrium 

are derived from the dual problem to a generic power pool auction model. The derivations 

in this chapter are used in subsequent chapters. 

The dual approach is used to present two simplified continuous optimization modeIs for 

power pool auctions. The first model, presented in Subsection 2.2.1, deals with the simple- 

bid type of auctions that are used in markets such as Caiifornia and Spain; the relation 

between dual variables and standard auctions pricing is described. In Subsection 2.2.2, a 

second model considers the classic economic dispatch as an optimization-based auction; a 

direct solution approach is derived based on duality. 



2.1 The Existence and Uniqueness of Cornpetitive Market 

Equilibrium 

In a competitive market, none of the participants (suppliers or consumers) is able to affect 

the market price of the commodities being traded. Suppliers and consumers take prices 

as given and act to mavimize their profit and utiiity, respectively. The intersection of the 

competitive supply and demand curves gives a market equilibrium. A market equilibrium 

point is a price vector for the commodities, and schedules of production and consumption 

that result in a "state of rest"; that is, no participant has incentives to depart from that 

point- This definition is due to Walras [36]. 

If an electricity market for power generation is implemented by a power pool auction, 

the pooI or market operator can be viewed as  the Walrasian auctioneer that determines such 

an equilibrium point. Here, it is considered an auction for power generation based on cost- 

rninimization where the demand is inelastic; that is, demand does not respond to the prices. 

For the description of the equilibrium concepts, perfect cornpetition is assumed and the cost 

functions suppliers submit to the pool are assumed to represent their true cost functions. 

The following general cost-minimization power pool auction mode1 is considered: 

f* = min Cic;(pi): 

s-t - zip: = O, Vt 

pi E Pi, Vi 

(2- la) 

(2. l b) 

(2 -  lc)  

where, for simplicity, C' denotes the sum over the n suppliers considered in the market; 
TL Le., Ci=,. The col- vector pi = . - ,py]T denotes the power outputs (schedule) 

for supplier i at  each of the m periods in the market; q ( p i )  = xp(pf) denotes the total 

variable cost of supplier i; Ct  denotes XEi; is the inelastic demand for period t, 

pd = [p:,& - - - Pi denotes the set of operative limits that are included in the 

bids, e.g., allowable power outputs, ramp Limits and tirne constraints; and V t  is short hand 

notation for t = 1, - - - , m and the same applies for i- The vector p can contain as many 

variables as required for modeling; for instance, commitment variables u. 

Problem (2.1) defines a generic central cost-minimization problem that can be used to 

represent different modehg  levels for a power pool auctions. In general, the solution to this 

problem gives the pozver outputs that satisfy the demand at  minimum cost while satisfiying 

the operative lirnits of t be suppliers. 

The conditions under which the solution to (2-1) represent a competitive market equi- 



librium point are derived next. 

In a cornpetitive market, each supplier acts to maximize its profits which can be modeled 

by the following maximization problem: 

where p = p2, - - - . is a vector that defines the price for power a t  each period of the 

market- Equation (2-2) specifies that? given a price vector pl a supplier produces power in 

such a way that profits (revenues minus cost) are maximized; a t  the same tirne, the power 

output has to be feasible to the operative limits set P. For a given price vector p, in order 

for a power output vector, pi, ta be optimal in (2.2), the following necessary conditions 

need be satisfied: 

The solution to problem (2-2) must satisfy (2.3): it gives the i-th bidder supply function 

denoted by 

P~ (P )  = 

The profit function (2.2) can then be written as 

The total supply function is defined as the sum of all the bidders siipply functions, Le., 

A price vector p*, for whicfi the supply function intersects the dernand +(p* )  = p d ,  is a 

market equilibrium price (see Figure 2.1). Some conditions need be satisfied to guarantee 

the existence of such an equilibriurn point [36]. These conditions can be summarized as 

follows: (i) zero output is a feasible allocation for each supplier O E Pi (ii) the sets pi are 
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Figure 2-1: Market equlibrium with inelastic demand, at time t 

bounded and a feasible allocation exists; Le., there are pi E Pi so that C i p i  = p d ;  and (iii) 

the supply functions pi (A) are continuous. 

The first condition ensures that a supplier can always go off the market so that, even- 

tually, is not forced to operate at negative profits which, in general, can be achieved. The 

power operative limits or production sets Pi are always boiindcd and a feasible solution is 

assunied to exist. However, the continuity of the supply function cannot be guaranteed if 

the cost functions ci(pi) are not differentiable or the set pi is non-convex [37]. Specidly: 

the later condition cannot be guaranteed for most of the unit-cornmitment like electricity 

auctions since the set Pi is discrete. 

When an equilibrium point exists, it can be determined by solving the dual to the 

cost-minimization power-pool auction problem in (2.1). The (Lagrangian) dual problem 

(see [38]) is given by 

where X is the vector of dual variables to the demand constraint (2.1 b). The dual function, 

denoted by +, is 

where p = [xiPf - - - , & ~ r ] ~ -  Regardless of the structure of Pi and the cost functions 

ci (pi), this dual function lias been proven to be piece-wise concave and non-differentiable 

[38], and can be rewritten as 

++(A) = ATpd - Ci+i(A) (2-9) 

where Sri(X) are the profit functions as defined in (2.2). Using (2.5) into (2.9), the dual 

function can be written as 
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Since the dual function is concave, but not differentiable, the necessary and sufficient con- 

dition (see [39]) for a vector A* to be an optimal solution to the dual problem (2-7) is 

where dq!~(X) denotes the sub-diEerential (the set of sub-gradients) of the dual function 

at A. Equation (2.11) specifies that the dual function achieves its maximum at the point 

where its sub-differential contains a zero sub-gradient. This is analogous to the point where 

the gradient of a concave differentiable function is zero. Some definitions and properties 

of non-differentiable functions are presented in Appendix A, F'rorn (2.10), and using the 

property (A.4) in the Appendix A, (2-11) is equivalent to 

If the supply functions are continuous a t  A*, then (2.12) can be written as 

Using (2.6) and (2.3): (2.13) results in 

That is, if the supply functions are continuous a t  the optimal solution of the dual problem, 

A*, the demand intersects the supply. Hence, the optimal dual variable is a. market equilib- 

rium price p = A*; furthermore, the supply pi(X*) gives an optimal solution to the primai 

problem, 

pf = pi (A*). 

From (2.10), the optimal value of the dual function is 

which is equal to the prima1 objective function 

Whenever there is a market equilibrium point, there is no duality gap f * - $* = 0, and 

the optimal dua1 vector is a market equilibrium (clearirig) price. Alternatively, it needs be 

mentioned that optimal dual variables in the absence of duality gap are Lagrange multipli- 

ers [38]. 
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The Lagrange multipliers vector may not be unique; this happens if the concave dual 

function is '%at" on top (which occurs when the demand intersects the supply function a t  a 

"flat" section [36]). Under equilibrium, there is no other feasible schedule (optimal or not) 

that can be preferred by al1 the suppliers, in terms of profits (2.2). That is, a Walrasian 

equilibrium is Pareto optimal; this is known as the "first theorem of microeconomics" [36]. 

If the continuity on the supply functions is not satisfied, the optimal duai variables are 

not a market equilibrium. There is no price that can equate supply and demand; at the 

optirnd dual solution, the demand does not intersect the supply, 

The conditions for the existence and uniqueness of cornpetitive market equilibrium are a 

classic development in microeconornic theory due to Debreu [36]- [40]. In this thesis, they 

are deveioped in the context of the cost-minimization power pool auctions and help illustrate 

price setting alternatives and their implications- When an equilibrium does not exist, the 

optimal dual variables are not market clearlng prices. Given an adopted pricing rule, and 

the final schedule implemented, conflict of interest rnay a i s e  among suppliers. 

In a vertically integrated industry, cost minimization is the basis of operation. Numerical 

algorithms that solve (2.1) to obtain optimal (or near optimal) solirtions do not arise any 

confiict of interest. Any optimal or near optimal solution does not bring c o d i c t  among 

generators that are owned by the same utility and, even more, prices are determined in 

a rate-of-return b a i s  by government regulation and are not a results of the optimization 

algorit hm. 

The closer the models in (2.1) to the physical characteristics of the power plants are (Le-, 

unit cornmitment models). the more diEcult is the optimization problem to solve. However, 

the outcome of the auction gives schedules that are feasible to the specified operative lirnits; 

this is considered to be a more reliable market- The simpler the models are (i-e., standard 

auctions), the easiest is the optimization problem to solve; the auction becomes a more 

transparent market where the determination of schedules and prices is more visible to 

everybody in the market. Most of the conflicts that arise when cornplex optimization 

rnodels are used are avoided. 
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2 -2 Simplified Power Auctions as Continuous Optimization 

Models 

2.2.1. The Simple-Bids Linear Mode1 

Due to the problems and previous experience with the use of complex optimization models, 

markets such as California and Spain have opted for the use of simpler or standard auction 

models. In standard auctions, simple price-quantity bids are used in the formulation (2.1). 

For each period in the market, suppliers and consumers submit to the  market operator 

one or several simple bids that contain the prices and quantities of power they are willing 

to sel1 or buy. The market operator constructs a supply/demand curve (see Figure 2.2) 

to determine the market clearing price and schedules frorn its intersection- Suppliers are 

ordered in increasing bid price, and consumers in decreasing prices order. 

For the inelastic dernand case, the market price p is the bid price of the last bidder that 

supplies the power to cover demand, which is know as the standard first-price auction [19]. 

A second-price auction sets the price as the bid price of the e s t  supplier in the curve that 

was not necessary to cover the demand. This type of simple-bids auction can be formulated 

.-- ----------- -----+-----*----*- -----------.------------ 
--5 .----------- Inelastic demand 

I 

Figure 2.2: Supply/demand curve, elastic and inelastic demand 

using the mode1 (2.1): for which we considered the case of inelastic demand. 

The cost function is defined as ci lp i )  = gipi and the set of operative limits by Pi = 

{p i  1 O 5 pi 5 P ~ }  where pi is the bid price in $/MW and pi is the offered arnount. For the 

market or pool operator, these bid prices represent costs to be minimized. The optimization 
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mode1 that describes the auction is given by 

The dual function (2-9) is now given by 

This function is piece-wise concave, as schematically shown in Figure 2-3. 

Figure 2.3: Piece-wise concave dual function 

As derived in Section 2.1, an optimal d u d  variable can be found hy searching the point 

at whidi the dual function has a zero sub-gradient. Let us assume that: (i) the bids are 

re-ordered in a non-decreasing cost order: Pl 5 & - - - < 0,; (ii) k is the smallest index 
k 

so tha t  C i = i p i  2 pd:  (iii) O = { i  Pi = A', i = 1, - - - ,n}; (iv) r = min{O} - 1; and (v) 

p, = x:= ,p i .  Then, the possible solutions for (2.18) can be sumrnarized as follows: 

Unique primal and dual optimal solutions. If 101 = 1 and p, < pk, the unique prirnd 

and unique dual optimal solutions are p* = [pl, + - pr,pc7 0kci7 - - - , O,IT and A' = Pk7 
respectively. 

Unique primal and mullzple dual solutions. If p, = &.,Fi, the optimal prima1 solu- 

tion is unique but degenerated; that is, there are multiple duaI solutions. The primal 

solution is given by p* = [Pl, - - - O,+lol+i, - - - , O,,] t :  and A* = [,&7/3,+lol+i]- 

Multiple primal and unique dual solution. If 101 > 1 and p, < &opi, there are mul- 

tiple prima1 solutions given by p* = [pl, - - - ,p,,p,+l, - - - .pr+lol, Or+lol+i,  - - - . O J T ;  
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that is, the power p, can be allocated arnong bidders in the set 0, in multiple ways. 

The optimal dual solution is A* = &- 

,411 these situations can be verified by evaluating the primal and drlal objective function 

values, which results in f*  = $*. AU the solutions represent a market equilibrium point 

for the auction. The Lagrange multipliers are market clearing prices. Pricing with Bk is 
equivalent to a first-price auction, and pricing with flk+l is equivalent to a second-price 

auction. 

When there are multiple prima1 solutions -case 3 above- al1 these represent market 

equilibrium schedules; independently or1 the distribution of p,  among bidders in the set O, 
their profits result the same (zero) in al1 the cases. Under this situation? bids in the set O 

are selected based on a priority order. until the load p, is supplied. For instance, in the 

Spanish electricity rnarket [1ïjt the following priority criteria is iised to select these bids: (i) 

the bid that arrives first on time to the market operator: (ii) the bid whose offered qumtity 

is larger: and (iii) the bid whose name has alphabetical precedence. Thesc, or any other 

criteria, can be represerited by a tie-breaking priority order assigned to each bid, Say o(i) .  

Bids in the top of the list are considered first to be part of the schedule; conversely, bids on 

the bottom of the Iist are not likely to be part of the final schedule. 

Numerical Example 

The data for a five-biddcrs case is shown in Table 2.1; the optimal prima1 and dual solutions 

for different demand Ievels are surnmarized in Table 2.2. The supply function and demand 

levels considered are shown in Figure 2-4. Table 2.2 also surnmarizes the cost, revenues and 

profits i-r; = mi - ci(p,) for each of the solutions. The price is set up by p = ,& in al1 the 

cases, which corresponds to the first-price auction. Al1 the values are in appropriate units 

$: $/MW and MW. Iri the first demand case (Table 2 2 ) ,  there is a unique primal and 

Table 2-1: Five simple-bidders example 

z 1 1 2 3  4 5 

dual solution. For pd = 100 h4W, there are multiple Lagrange multipliers; the dual function 

(see Figure 2.5) is flat on t o p  the supply function is intersected by the demand in a flat 

(MW) 

/3i(S/kIW) 

50 50 100 100 100 

5 10 20 30 30 
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segment, as seen in Figurc 2.4. In this case, the multiple equilibrium prices Vary from 10 

to 20 $/MW; it has to be seen that siippliers 1 and 2 are at their maximum output values 

and, therefore, the largest equilibrium price is given by the bid price of supplier 3 (the next 

less expensive bid to be used). 

Table 2.2: Optimal solutions, cost , revenues and profits 

When pd = 250 MWo there are two bidders in the set O = {4,5); either 4 or 5 is 

selected by the priority order to supply 50 MW. Whichever final schedule is implernented, 

both soiutions represent the same profit (ri = ppi - ci(pZ) = 0) for bidders 4 and 5 .  

Pd i ~f 
70 1 50 

2.2.2 Simplified Continuous Quadratic Mode1 

The mode1 considered now represents the classic loss-less ecoriomic dispatch problem of 

power systems [3]. This classic economic dispaich problem has been solved by a nurnber 

of methods incloding the gradient met hod, Newton's and the A-iteration techniques [4l]. 

Using the dual approach of Section 2.1. it is shown that its solution does not require a 

numerical-iterative algoritlim; instead a simple interpolation over the supply function finds 

the optimal prima1 and the possible multiple dual solutions. The cost function and operative 

limits set are: respectively 

ci , -p i  7i;. 

250 500 250 

f * = + *  A* 

450 10 
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Figure 2.4: Supply cunre and deniand levels 

Fi,we 2.5: Dual functions 

pi= {pi 1 - L  p: 5 pi <Fi}- 

The cost function is assurned strictly convex, Le., 7; > O. It should be noticed that a constant 

cost is not included in (2.20). The solution to the profit ma~imization subproblems (2.2) 

gives the following supply function for each supplier: 
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and the profit function 

These functions are shown schematically in Figure 2.6. As can be seen in Figure 2.6, 

the profit functions have a negative segment that ends at the minimum average cost X = 

~ ( p . ) / p . .  If the optimal dual variable does not exceed this value, the supplier is forced to 
-1 -1 

operate at negative profits since O $ Pi- 

Figure 2.6: Supply and profit functions 

Figure 2.7: Total supply and profits 

Each bidder supply function, Figure 2.6. is non-dccreasing and bas two non-differentiable 

points; hence, the total suppIy function is also non-decreasing with, at most: Sn non- 

differentiable points, as sketched in Figure 2.7. The non-differentiable points of the supply 
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function are given by 

Introducing, for convenience, zo = O and reordering these points in a non-decreasing order, 

.ZO 5 5 22 5 * < qn: then 

An optimal solution to the dual problem is given by 

where k be the srnaIlest index so that +(zk) _> pd- If q 5 ( q + l )  = d ( z k ) ,  then there are 

multiple optimal dual solutions given by 

which happens if the demand intersect the supply in a flat segment; see Figure 2-7- The 

optimal prima1 solution is given by 

which is evduated from (2.22). The optimal dual and prima1 objective function values are 

the same; therefore, there is no duality gap. The problem is strictly conves and tliere is 

always equilibrium with a unique schedule with possible multiple prices, as indicated in 

(2.27). A direct interpolation over the supply function (2.26) and the evaluation of (2.22) 

gives the solution to the classic economic dispatch probkm. 

Numerical Example 

A data set for an auction with four bidders with quadratic cost functions is presented in 

Table 2.3. The minimum output constraint is not considered (set to zero) and the results 

of the cost minimization power pool auction are as given in TabIe 2.4. 

For this rnodel, the supply function is continuous everywhere and, therefore, there is 

always a unique market equilibrium schedule (see Figure 2.8). For pd = 40 MW, tliere 

are multiple equilibrium prices as can be noticed in the correspondent dual function in 

Figure 2.9; the demand intersects the supply at one of its Aat portions (Figure 2.5). The 

costs, revenues and profits for each case are sumuiarized in Table 2.4. In al1 the cases, the 

price is set up using the minimum Lagrange multiplier p = min{X*). 



Table 2.3: Four cruadratic-cost bidders example 

Table 2-4: Optimal solutions, costs, revenues and profits 

- 

- 

2.3 Lagrange Multipliers and Marginal Prices 

Lagrange multipliers, provided they exist, represent the equilibrium prices. For the two 

continuous modeIs presented in this section, these prices always exist- The terrn marginal 

or shadow price has classically been used to define the Lagrange multipliers related to 

the power demand constraint (2.lb) that appears in most power dispatch problems [3,29]. 

However, since Lagrange multipliers may not exist or can have multiple values, the use of 

the term marginal price is avoided. In general, marginal prices are computed to measure a 

rate of change of the objective function with respect to changes in the constraints; they are 

used mainly to perform sensitivity analysis. 

Analytical formulations for marginal prices, and their relation to dual variables, have 

been studied for linear programs using directional derivatives [42,43] and for Iinear mixed- 

integer problems using price functions [44,45]. 



X 

Figure 2-8: Total supply function 

Figure 2.9: Dual functions 
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2.4 Summary 

This chapter presents the conditions for the existence of cornpetitive market equilibrium 

for power pool auctions driven by a central optimization model. The dual problem to a 

general cost rninimization power pool auction is used as a general framework to illustrate 

the relation between centrai optimization and equilibrium. The following remafks are made: 

An equilibriurn exists if the supply functions are continuous, which can be  guaranteed 

only if the cost functions are differentiable and the operative limit sets are convex. 

When an equilibrium exists, the optimal solution to the dual problem provides La- 

grange rnultipliers that are market clearing prices and also provides an equilibrium 

schedule- 

Multiple equilibrium prices happen if the demand intersects the supply a t  a Aat region; 

under equilibrium, multiple optimal schedules are equally preferred by dl supplicrs 

and do not represent any conflict of interest- 

If an equilibrium does not exist, the optimal dual variables do not represent market 

clearing prices and multiple cost-minimizirig solutions may exist. Under this situation: 

as presented in subsequent chapters, the selection of the pricing rule and the final 

schedule needs be done carefully in order to avoid unreasonable prices and conflict of 

interes t among suppliers. 

As an illustration of the derivations presented in the first section, two simplified optimization 

models for power auctions are presented and solved. For both models, equilibriurn aIways 

e'cists and its multiplicity in price and schedule can directly be identified- 

The first model corresponds to the simple-bid type of auctions used in markets such 

as California and Spain; the relation between dual variables and a first-price auction 

is presented. 

The second mode1 deals with the classic economic dispatdi problem used as an auction; 

for this quadratic model, a direct solution approach that does not require the use of 

,an iterative algorithm is developed [41]. 



Chapter 3 

Simplified Discrete Models for 

Power Pool Auct ions 

In this chapter, simplified discrete models for power pool auctions are presented. The  models 

consider that the cost functions, beside the iinear and quadratic components, include a 

startup cost term. The inclusion of startup cost requires the introduction of b i n q  variables 

that m&e the models very suitable to understand electricity auctions riin by more complex 

optimization models, such as unit commitment- 

Elmaghraby and Oren [25, 19991 use cost functions with linear and stnrtup cost terms 

to represent a simplified unit commitment mode1 and study the strategic behavior and 

efficiency of standard auctions. Jacobs Es, 19971 uses a linear model with startup cost to 

identiSr different solutions to the cost minimization auction. Dekrajangpetch and Sheblé [12: 

19991 use sirnplified rnodels to study Lagrangian relaxation in the context of an  auction. 

Recently, Radinskaia and Galiana [46, 20001 have also investigated the analytical solütion 

to simplified unit commitment models. 

Using the derivations in Chapter 2, we use the simplified models to investigate price 

set t ing alternat ives under disequilibrium and t heir effect s on multiple solut ions. Section 3.1 

presents a mode1 with linear and startup cost, and in Section 3.2, a model with quadratic 

and startup cost. For both rnodels, an malytical solution to the dual problem is derived 

and the prima1 problems are solved using a Bmnch-and-Bound (B&B) algorithm. 

In Section 3.3, price setting alternatives such as maximum average cost and price min- 

irnization are analyzed. It is shorvn that the cod i c t  of interest arising from the existence 

of multiple solutions are worsened by such pricing rules. Average pricing can cause unrea- 



sonable price increases wit hout any strat egic behavior assumption. The observations are 

used to propose a non-uniform price setting alternative based on dual variables. Numerical 

examples are presented in Sections 3.3 and 3.4. 

3.1 Linear Mode1 With Startup Cost 

In this model, a constant startup cost ûri ($) is added to a linear cost function. The startup 

cost requires the introduction of binary variables in the model; these variables, denoted by 

ui E {O, 11, are one when the bid is selected and zero othenvise. T h e  introduction of binary 

variables transforms the cost-rninimization power pool auct ion (2.1) into a unit-cornmitment 

like problem. The cost function that inciudes a constant startup cost is defined by 

The operative limits set is 

In 3.2, if the power output is greater than zero, then ui = 1 and the startup cost takes effect 

in the objective function; if ui = OS al1 the components in the cost function are zero. With 

cost functions and operative limits defined by (3.1) and (3.2): the dual problem to (2.1) can 

be solved in a closed form. The solution to the dual problem also provides lower bounds 

that makes BStB aa attractive alternative to find multiple solutions to the prima1 problem. 

3.1.1 Closed Form Solution to  the Dud Problem 

Following the notation in Section 2.11 the solution to the profit rnaximization subproblems 

(2.2) is given by 

where Xi = a i / p i  + Pi, Le.: the average cost at maximum output. Using (3.3) in (2.5): the 

i-th bidder profit function is 



The supply and profit functions are schematically showu in Figure 3.1; as it can be noted in 

this figure and in equation (3.3), the supply functions for each supplier have a discontinuity 

at XE;  this makes the total supply function, Figure 3-2, also a discontinuous function. 

Figure 3.1: i-th bidder supply and profit functions 

Figure 3.2: Total supply and total profit functions 

Zn order to find an optimal dual variable, it siiffices to find the point where a sub- 

gradient of the dual function equals the demand. Let us re-order the bids in the following 

non-decreasing fashion: 

Following the curve forms in Figure 3 -2 and since $(A) = Xpi - Ci$; (A), an optimal solution 

to the dual problem is given by 

where k is the smalIest index so that 



If the equdity holds in (3-7), then the dual function is 'qat" on the top and there are 

multiple dual variables in the intenal 

If the last situation happens, the demand intersects the supply and the Lagrange multi- 

pliers (3-8) are the equilibrium prices. Moreover, an optimal prima1 solution is given by 

p* = [pl? - - - !pk7 0' - - , O]*- Al1 other possible multiple prima1 solutions could be found by 

enumeration of the 2R cornmitment combinations ni E {O, 1); however, complete enumera- 

tion is prohibitive even for very sniall n [47]- A BQLB enumerative approsch is developed in 

next section for this purpose. 

3.1.2 A Branch-and-Bound Algorithm to Solve the Prima1 Problern 

Branch-and-Bound algorit hms can be described as inteHigent enumerative approaches [47]. 

A BSGB is a much more inexpensive alternative to complete enumeration and is able to 

obtain n~ultiple near-optimal or optimal soIutions. The practical success of a B&B method 

depends on two factors [4'7,48]: first, the computational effort it takes to obtain tight bounds 

to partitions in the original problem; and second, the existence of information that can be 

used to design the partitioning (branching) rules that speed up the algorithm. For the 

power auction mode] (3-1): with the linear and start-up cost function (XI), both upper and 

(tight) lower bounds are readiIy available from the solution of the dual problem and a good 

brariching order can be easily obtained. 

A binaq  tree for a problem with size n = 3 is shown in Figure 3.3. Each code k of the 

tree is a partition of the original problem (2.1). A partition represents the problem in a 

smaller feasible set, where a particular set of binary variables is fixed to zero, one , or left 

free, as indicated by 0: 1 and -Y in Figure 3.3. 

If fk and & are an upper and Iower bounds to each node çubproblem, then an upper 

and lower bound to the optimal objective value of the original problem is given by f = 

min Ifk) and - f = min {L}, respectively [47]. The B&B algorithm, based on the branching 

order, constructs new nodes of the tree and either updates the bounds, cuts the brânch or 

determines that an optimal solution have been found- At a particular node, k + 1: no 

optimal solution can be found if: (i) no feasible solution is contained on it, or (ii) its lower 

bound is larger than the best actual upper bound &+l > f. In this situation, the tree 

branch is not furtlier explored (it is cut). If none of these conditions are met, the bounds 
- - 

are updated: f = min{ f ,  f k} and - j = min{L, L}. 



Fi,(gure 3.3: Binary tree for the Brandi-and-Bound algorit hm 

If only a good near-optimal solution is required, the B&B dgorithm can be stopped at 

any node that satisfies Tk - c, where e measures the desired quality of the solution 

(complernentarity gap). If the  algorithm is stopped until there are no more nodes to visit, 
- 

al1 the nodes whose f k  = f are multiple near-optimal solutions- OnIy if 7 = fk = Ik, the 

solutions can be assured to be optimal. 

The upper and the lower bound for each tree node are computed CU follows- 

Determination of a lower bound 

The optimal dual objective function value a t  each node subproblem provides a lower bound 

for the subproblem 7& 5 fl [3S]. Since the dual problem can be solved in a closed form, 

the computation of this lower boirnd is very inexpensive, At node k, let A, 13 and C contain 

the indices of bids, with z ~ i  free,  TL^ = 1 and ui = 0, respectively; then, the dual function 

(2.9) of a subproblem at node k can be written as 

At node k, the optimal solution to the dual problem is denoted as 



This optimal value can be found by evaluating (3.9) at A*,  where A* is obtained from (3 .6)  

where Xi = ai/Pi + ,& is replaced by = &ilpi t 0,: with 

For bids in C: Cii = oo is introduced as an indication of the absence of bid i at  node k 

(u: = O). If the optimal dual variable is equal to cm: the dual problem is unbounded; 

tlierefore, the primal problem is infeasible- 

Determination of an upper bound 

At every node of the tree, an upper bound to the primal problem is given by the objective 

function value of any feasible solution. A tight upper bound can be computed if a primal 

feasible solution is constructed by considering the bids already comrnitted, 'rti = 1: and the 

bids in A that satisfy pi(XU) 1 0, where A* is the optimal dual solution to a dual subproblem 

a t  node k. The details of the algorithm are summarized below. 

Aigorithm 3-1 Determination of an umer  bound - a 

1. Initialiralion. Set p, = pi for al1 i E B and compute p, = pd - CiEBPi. 

2. Infeasibifity check. If p, > xie-pi , stop7 the problem at node k is infeasible; 

O t herwise? cont inize. 

3- Select bids in A to commit. With only bids in A and the remaining demand p,, solve 

the dual problem (3.9) using (3.6)- From (3.3), if pi(A*) > 0, set tti = 1- 

4. Linear dispatch. Considering the demand pd and bids with ui = 1, solve simple-bids 

dispatch problem by the procedure in Subsection 2-2.1. 

5. Set the upper bound. Set fk = ~ ~ i l u , = i ~ ~ i  + pipi using any pi among the possible 

multiple linear solutions. 

Determination of the branching order 

The branching ordcr decides the new node to be created when expanding the bina.ry tree. 

I t  is desirable to create nodes that eliminate as fast as possible bigger portions of the tree. 



For instance, see Figure 3.3, if it is found that the lower bound of the subprobiem at node 

1 is larger than the upper bound at node O (f > To) ,  then the whole left portion of the 
-1 

tree is eliminated when the first node is created. Considering the non-decreasing average 
- 

cost order XI 5 A2 5, - - - : 5 X, since bid 1 most probably is part of the optimal solution. 

setting ui = O in the first node of the tree is likely to result in the elirnination of its Ieft 

portion. For the next node, node 3, if we set u 2  = O, it is again likeIy tIiat the Ieft branch 

out of node 3 is eliminated- The process is likewise continued for bids 3, 4 - - - n. 
- 

Therefore: the branching order is taken as 1,2, - - - , n where XI 5 X2 5, - - - 5 A,. Any 

branching rule can be used: however, a good selcction considerably speed ups the BStB 

algori t hm. 

3.1.3 Numerical Example 

Table 3.1 contains the data for five bidders with Iineax and constant startup cost. The cost 

minimization auction is solved for the following demand levels: 52, 130, 190 and 210 MW- 

T h e  primal and dual soIution(s) for each of the demand Ievels are presented in Table 3.2. 

Table 3-1: Five bidders with Iinear plus startup cost function 
z 1 1 2 3 1 5  

In the sarne table, the values are presented for convenience. Al1 the quantities are in 

appropriate units MW. $/MW and b. Complete enurneration of the 25 = 32 cornmitment 

possibilities can confirm t hat the solutions presented are optimal in al1 the demand cases. 

The total supply function is shown in Figure 3.4; as can be  seen, for the demand levels of 52, 

110 and 130 MW. tliere is no market equilibrium and the optimal dual variable is unique. 

For pd = 110 MW: there arc two multiple solutions. For pd = 130, multiple solutions =ist; 

only two of these arc shown. The first solution contains bids 4 and 5, and the second 

solution contains bid 3. As can be noticed in the first solution, 30 MW can be supplied 

in an infinite number of ways suppliers 4 and 5; that is, pi = x and pz = 30 - x for al1 

10 5 x _< 20, lead to same objective function value $ 2140. 

ai (5) 
fii (S/bIW) 

pi (MW) 

For the demand levels of 190 and 210 MW, there exists a market equilibrium point as 

can be identified in Figure 3.4. For pd = 190 MW. the primal solution is unique but there 

30 40 CO 35 35 

10 15 25 25 25 

50 50 90 20 20 
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Figure 3.4: Total supply function 

are multiple equilibriurn prices. For pd = 210 MW: there is a unique equilibrium price and 

two optimal prima1 solutions. 

Table 3.2: Solution to the cost minimization aiiction 

Table 3.3 ~unirn~zrizes the costs, revenues and profits for each of the solutions wlien the 

price is set up by the snlallest optimal duai variable, 

P; PS P; p; P; 
50 2 O O O 

In Table 3.3, when an equilibrium esists, pricing with the optimal dual variable leads to  

A* 

15 -80 

f* v d9 
600.00 561 -6000 38.4000 



Table 3.3: Costs, revenues and profits. Pricing with dual variable p = min{X* ) 
C N R  

positive profits for al1 bidders; the pricing rule in (3.12) is analogous to a first-price auction 

in the sense that when eqiiilibrium exists, the "lastc bidder breaks everi at zero profit. For 
the cases in disequilibrium, some of the bidders do not recover t heir cost: in al1 these cases 

the total cost not recovered is equal to the magnitude of the duality gap- For pd = 130 

MW: al1 the otlier possible optimal solutions to supply 30 MW among bids 4 and 5, lead 



to the sctme cost not recovered of $ 46.667 among these bids. 

For pd = 210 MW: there is equilibrium with two optimal schedules; both solutions result 

in the same profit. Even though bidders 4 and 5 are not scheduled in one of the solutions, 

it  mcakes no difference for them which schedule is finally implemented. 

In al1 the disequilibrium cases, there <are incentives to rnove away Gom the optimal 

schedules. For instance, for pd = 52 MW, at a price of 15.80 $/MWh, bidder two would 

like to increase its output to 50 MW in order to rna~uimize its profits. For pd = 110 MW: 

since 25.78 < 26.75, bidders 4 and 5, in each solution, would like to rediice t heir output and 

operate a t  zero profit. 

For pd = 230 MW, in the first optimal solution, a t  the price 25.78 $/SLI\V. bidders 4 

and 5 would like to reduce their output to zero in orcler to avoid negative profit (silice 

25.78 < 26.75). In the second solution, bidder 3 would like to increase to maximum output 

in order to ma.ximize profit, The cases in disequilibriurn are used in subsequent sections to 

describe the problems that a i s e  in selecting the final schediiIe and the pricing rule. 

3.2 Quadratic Mode1 With Startup Cost 

Additionaily to the linear term in the cos t function of the previous model (3.1) , a quadratic 

terrn: y; > O, is added to the cost function submitted with the bids, i-e., 

The set of operative limits remains unchanged 

The dual problem can still be solved in a closed form way. and the primai problem is soIved 

by the B&B algorithm of Subsection 3.1.2. 

3.2.1 Closed Form Solution to the Dual Problem 

As may be e-qected, the supply and profit functions for this mode1 have the combined 

characteristics of the models with pure quadratic cost functions (Subsection 2.2.2) and the 

linear model with startup-cost (Section 3.1). For this case, in order for pi(X) to  be optimal 

to the profit maximization subproblems (2.2): it has  to satisfy 

- Pi 
pi (X)  = max [O,min {pi, -11. 

2% 



And he profit function is 

+i(A) = mau {O1 (A - Bi )pi(X) - T~P:(x) - ai} - (3.16) 

The substitution of (3.15) into (3.16) gives two possible solutions: if Ja~ < pi. the 

supply and profit functions are given by 

and, if dG >. pi, by 

where in (3.17) and (3.19): 

Variable A, is introduced to distinguish among the two possible forms of the  supply function 

in Figures 3.5 and 3.6. The combination of a large startup cost and srnall non-linear term 

makes ,/;,;/Y; bigger, which causes the supply function to behave in the same way when 

only a linear term is included in the cost function. The total supply and profit functions 



Figure 3.5: i-th bidder supply and profit functions for Jai/y; < Fi 

Figure 3.6: i-th bidder supply and profit functions for JG 2 pi 

F i o v e  3.7: Total supply and total profits 

have the forms depicted in Figure 3.7. If the points Xai ,  Abi and A, are gathered into the 

vector x ,  whose components are then reordered in a non-decreasing way zo 5 ri 5 22 - - - ; 
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where zo = O. An optimal solution to the dual problem is given by 

if ~k = Xak or zk = Xck 

where 3(zk) = ~ l r _ ~ j ~ ~ ( ~ ~ ) ~  and pi(zk) is used to indicate the maximum supply when zk is a 

discontinuity point in the supply; Le-, Xai  and A,. In the same equation, k is the smallest 

index so that $(zk) 2 p d ;  if the equality holds with zk = Abr , then there are multiple optimal 

dual variables given by 

If T(x') = pd, A* is an equilibrium price and the optimal primal solution is given by 

p = Ip,(XS),--- ,pk(X*),OI--- ,0IT. Other primal solutions can be found using the BSIB 
algori thm. 

3.2.2 Branch-and-Bound for the Prima1 Problem 

The B&B algorithm described in Subsection 3.1.2 is dso  used to solve the prima1 problem 

to the quadratic model in this section. The computation of lower and upper bounds is 

summarized below. 

Determination of a lower bound 

Considering the same description as in Subsection 3.1-2 for the sets A, 5' and C: the dual 

function at node k is given by 

The optimal solution to problem (3.23) is obtained from (3 .22) ;  but considering Cii instead 

of ai for the computation of X a i ,  Abil Xci in (3 .21) ,  

ai, i E A  

O, i E B  

w, i E C  



The optima1 dual function at node k is evaluated from (3.23), with A* from (3.22). And 

the lower bound is set up f ,  = $;. 

Determination of an upper bound 

The determinatian of the upper bound follows a similar procedure to the linear case: as 

described in the following algorithm. 

Algorithm 3.2 Determination of an upper bound 
1. Initialization. Set pi = pi for all i E B; compiite p, = pd - CiESpi. 

2. Infeasibility check. If p, > &fi , stop; the problem at node k is infeasible: 

otherwise, continue. 

3. Select bids in A t o  commi t -  With bids in A and demand p,, solve the dual problern 

(3.23) using (3.22). Depending on d f i ,  use (3.17) or (3.19); if pi(,/*) $ O set 

ui = 1. 

4. Per-orn  a quadrutic economic  dispatch. Considering the demand pd and bids with 

ui = 1, solve a quadratic dispatch with the analytical procedure in Subsection 2.2.2. 

Determination of the branching order 

For each of the forms of the supply function in Figures 3.5 and 3.6, a value Zi is assigned 

to each bid. For bids with the value is set at the mid point between Xai and Xbi ;  

that is, zi = Xai + (Abi - Xai)/2-  For bids with Jrri/ri 2 pi the value is set to 2, = A&. 

The indexing that results from the ordering Zl 5 25 5 - - < Zn defines the branching order. 

Setting ui = O in this order, it is more likely to eliminate large portions of the tree. 

3.2 -3 Numerical Example 

A data set for a five bidders is presented in Table 3.4. The cost minimization mode1 is solved 

for pd = 30,80,85: 95 and 140 MVIr. The total supply function is presented in Figure 3.8. 

The costs, revenues and profits for each case are surnmarized in Table 3-6. For pd = 30,85 

and 95 MW? there is no market eqiiilibrium point. In the first case, there is a cost not 



Table 3.4: Five bidders with quadratic and constant startup cost 

MO- 

180 - 
160 - 
140 - 

tM - 
n 
6 
V t 

80- 

60 - 

40- 

Z 

ai ($/MW) 
pi ( $ / M W )  

yi ($ /Mw~)  

pi ( M W )  

Figure 3.8: Total suppiy function 

1 2 3 4 5 

20.0 80.0 80.0 90.0 100.0 

10.0 12-0 12.0 30.0 35.0 

0.4 0.6 0.6 0.8 1.0 

20.0 30.0 30.0 50.0 60-0 

recovered that is smaller than the duality gap (0.180 < 0.4488); in the second case, the cost 

not recovered is equal to the duality gap; and, in the Iast case, the cost not recovered is 

zero- For pd = 30, there are two optimal primd solutions. For pd = 80 and 140 MW, there 

is a market equiiibrium point; in the first case, there are multiple equilibrium prices, and 

in the second, it is unique- The inclusion of the quadratic term in the cost function makes 

the total supply function smoother, which results in more chances for equilibrium to exist 

at different demand levels. 



Table 

Pd 

30 

Table 3.5: Solution to cost minimization auction 

.6: Costs, 

Pd 

30 

cf P P X P; ri C N R  

354.400 25.556 491273 136.572 

254.600 25.856 284.420 -0.180 -0.180 

f * +* (rs 
639.0000 638.5512 0.4488 

P; PS PZ PZ P; 
19 11 O O O 

19 O 1 1  O O 

A* 

25.86 



3.3 Price Setting Alternatives 

When an equilibrium exists, the Lagrange multipliers are market equilibrium prices and re- 

cover the costs of al1 the scheduled bids- In this situation, multiple optimal primal solutions 

are  Pareto optimal, therefore, none of these solutions is preferred by the bidders. There- 

fore, under equilibrium, the Lagrange multipliers are market cleaxing prices, and multiple 

optimal solutions do not represent any conflict of interest. 

When an equiIibrium does not exist, the optimal dual variables may not recover part 

of the cost of bidders in the margin of the optimal primal solutions. Since multiple primal 

solutions rnay exist, the selection of one or other as the final schedule may bring confiict 

of interest if the pricing rule results in different profits for a participant when one or other 

solution is selected as  the final schedule. 

After the experience in the England and Wales Power Pool with the use of average 

pricing, there has not been enough research that tries to identify price setting alternatives 

for unit commitment Iike power pool auctions. In [8, 19961, it is recognized that the cost- 

minimization auction under average pricing does not always leads to lower prices. Based 

on this observation, the use of a price-minimization auction is proposed in [9, 19971. In [49, 

19991, the minimum uniform price increment that is necessary to recover the cost of al1 the 

suppliers, is added to the dual variables- 

In this section these alternatives are reviewed and the effects they have on the prices 

and on the selection of the final schedule are discussed. Based on the observations made, a 

non-uniform price setting alternative based on dual variables is proposed. 

3-3.1 Maximum Average Cost 

In this alternative, the price is set up as the Iargest average cost among the bids scheduled 

in the solution of the cost minimization auction; that is, 

where, for short, ci' = ~ ( p f ,  1). This price ensures that al1 the bids recover their cost. This 

average pricing alternative, extended to  account for al1 the periods in a unit commitment 

auction, has been used in the England and Wales Power Pool to set the price for power: 

this is the so-calied Syslem hfurginul Price (SMP) [4, 19981. 

Let us consider the results in Table 3.3 for the auction with linear and startup cost. The 

maximum average cost for each of the demand levels, and each of the multiple solutions, 



is presented in Table 3.7. In the same table, the price given by the smallest optimal dual 

variable is presented. The results in this table can illustrate the three mayor factors that 

have raised codict  on the use of unit cornmitment power pool auctions. The first factor, as 

recognized by J. Jacobs in [8], consists on the fact that multiple cost minimizing solutions 

Iead to different maximum average prices. For instance, consider pd = 130 MW, the average 

price of the second solution is lower than the average price of the first (27-33 < 28.5 $/MW). 

The auttior notes that the price is not an equilibrium and considers that the Pool operator is 

''failing7 to obtain prices that are the best for consumers. Based on this observation, related 

work [9] proposes the substitution of the cost-minimization model by a price-minimization 

model. 

Table 3.7: Dud variable and maximum average price; test cases from Table 3.3 

The second factor, based on the actual experience of the England and \Vales Power 

Pool, deals with suppliers' strategic behavior. The final report that investigates the price 

spikes in the SMP [7]: states that some suppliers were able to strategicdly choose their 

cost coefficients submitted on the bids, so that these bids became price setter at very high 

average prices. In the EWPP, the cost curve contains three linear segments plus a startup 

and no-load cost [7]. A simpIe linear segment and startup cost, as in our model, can describe 

the situation. 

Consider Table 3.7; for the cases in equilibrium, the minimum Lagrange multiplier is 

equal to the maximum average price. Kowever, for the cases in disequilibrium, the average 

price takes values above equilibrium prices th& correspond to higher demand levels. For 

instance, consider pd = 130 MW, the average price of any of the multiple solutions (28.50 

and 27.33 $/MW) is higher than the equilibrium price (26.75 $/MW) when the demand 

is 210 MW. Even more, for pd = 52 MW, the demand is just above a discontinuity of the 

supply (Figure 3.4) and the average price results in 35 %/MW; that is, 30% larger than the 

equilibrium price when the demand is 4.03 times higher; Le., 26.75 $/MW for 210 MW- 

These price spikes do not necessarily need be a direct consequence of strategic behavior. In 

a cornpetitive situation, where suppliers are assumed to submit their true cost functions: it 

suffices that the demand be located just above a discontinuity of the supply function to set 

the average price at a high value. If a supplier "learns" to locate one of the bids just below 

210 

26.75 26.75 

26-75 26-75 

Pd (MW) 
p =  min{X*) ($/MW) 

p = pu,, ($/MW) 

110 

25.78 25.78 

28.50 28.50 

52 

15.80 

35.00 

130 

25.78 25.75 

28.50 27.33 

190 

25.78 

25.78 



the demand, the price spikes can consistently occur; to answer if this situation can happen 

or be easily created, it is required to study the strategic behavior of a l l  the participants 

incorporat ing dernand predict ions. 

Table 3.8 presents the cost , revenues and profits for each of the demand levels and mul- 

tiple solutioris for the same test cases in Table 3.3. The last factor, is that multiple optimal 

or near-optimal solutions to the cost minimization problem represent different profits for 

bidders, which creates conflict of interest for the selection of the final schedule. This ob- 

servation has been made first in [IO]. For instance, consider pd = 130 MW, in the first 

solution, bidder 3 rnakes $ 35; however, in the second solution, bid 3 is not scheduled and 

rnakes $ O .  Bid 3 looses if the pool operator chooses the second solution as the final schedule. 

The difference in profits among different solutions is worsened because average prices are 

different. 

In [49], after the cost minimization mode1 is solved, a minimum price increment that 

eusurcs cost recovery it is added to the dual variable- As can be noted from Table 3.3, this 

leads to the average prices. 

For the cases in equilibrium, if multiple solutions exist (Le., pd = 210) they do not raise 

confl k t  of interest since the multiple solutions result in the same profits for the bidders 

i nvolved . 

3.3.2 Price Minimization Auction 

The price minimization version for the auction with linear and startup cost in Section 3-1 

can be formulated as follows: 

The problem consists on finding a schedule that satisfies the dernand at minimum average 

price- The problem can be transformed into the following equivalent form that does not 



Table 3.8: Costs. revenues and profits. Pricing with maximum average cost p = p,,, 

C; P P x P; ri 1 ~~~i P x pd 
1 

require the introduction of binary variables: 



Besides the cornplexity that the solution to (3.27) represents, price minimization auctions 

have another drawback that has not b e e ~  pointed previously in the literature- The non- 

convexities in constraint (3 .27~)  can cause the existence of multiple solutions, which further 

complicate the selection of the final schedule. Sînce the price for each of the solutions is the 

same, but the schedules are strongly differcnt, the conflict of interest for the selection of the 

final schedule are emphasizeà. Table 3-9 summarizes the solution to the price minimization 

auction for the same data system using the demand levels in Table 3.3. Except for the 

first demand Ievel, the price minimization mcdel is able to obtain a price at the same 

levcl of the optimal dual variable (see Table 3.3). For al1 the cases, the schedules change 

considerably as compared to the cost minimization results; more expensive suppliers are 

loaded, resulting in a large total cost of the solution which considerably reduces the profits 

for suppliers. For the disequilibriurn cases. there are several multiple optimal solutions 

with strongly different schedules. For instance, for pd = 130 MW, al1 the solutions have 

the same price however, the selection of the first or second leaves bidder 1 or 2 without 

cuiy profits- The sanie situation happens for pd = 110 MW- In fact, for this two demand 

ievels there are more alternate solutions than the one presented on the table- For pd = 130, 

p' = [IO; 30. '30: O, 0IT is a150 a multiple solution. 

The results in Table 3.9 have been obtained by repetitively changing the initial condi- 

tion of an interior-point For non-convex non-1inea.r programming 1501- In this case, simple 

inspection can also be used to obtain the several multiple solutions. 

3.3.3 Dual Variables, Duality Gap and Cost Recovery 

As observed in the test cases, the cost not recovered by dual variables under disequilibrium 

resulis smaller than the duality gap; the bids that do not recover the cost are in the margin 

of the solution, and are the bids that appear (or do not appear) in multiple solutions and 

set the high average prices. In this section, it is proven that the total cost not recovered 

(CNR) by the optimal dual variables is bounded above by the magnitude of the duality 

gap - 
Let L3, be the set of bidders a t  any multiple optimal prima1 solution whose profits are 

negative when A' is used to set the  price; and let B+ be the set of bidders that have positive 

profits. The optimal objective function and the demand can be written as 



Table Costs, 

where fo- = CiEs- q(p : )  and PB- = x i E B - p I  : and pf represents the optimal output 

of bidder i; the same notation applies for p ~ + .  With these definitions, the optimal dual 

function value (2.9) can be written as 
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The duality gap is given by 

For any bid, we have 

where $J~(X')  is the maximum profit (bounded below by zero), as given by the solution to 

the profit rnctvimization subproblems (2.2). Hence. the two terms in the squared brackets 
*T of' (3.28) are positive and, therefore. the cost riot recovered, CNR = (fc- - X pGJ,  is 

bounded above by the duality gap 

Sincc the magnitude of the duaIitÿ gap tends to zero as the number of separable compo- 

nents in the dual function increases it can be expected that the diiality gap reduces as 

the number of participants in the auction increases. Xt has to be noticed that the derivation 

holds sirnilar for a pair of feasible prima1 and dual solutions. Let be the objective function 

value a t  any prima1 feasible solution and $(A) the duai objective function value at any A. 

Following the same derivation, the cornplementarity gap (cg = f - $(A)) gives the bound 

for the cost not recovered; that is, CNR 5 cg. A particular proof of the Iatter relationship 

is presentcd by Madrigal and Quintana in [51]. 

3.3.4 Non-Uniform Pricing Based on Dual Variables 

The two previous uniform pricing alternatives present clear drawbacks for pricing under 

disequiiibrium: multiple solutions represent quite different profits. Price spikes can occur 

even in the absence of strategic behavior? and the price minimization auction considerable 

reduces prices for suppliers since costly bids tend to be used. The alternative described here, 

consist on paying their cost to these marginal bidders with negative profits B-, and paying 

the value of dira1 variable to the rest of the bidders. The cost not recovered is cornpensated 

by adding an equal price increment and decrement to suppliers and load (consumers), as 



where the price increment and decrement are given by 

where IE is a factor t hat determines the distribution of the cost not recovered arnong suppliers 

and load. Ideally. this constant is 0.5 so that suppliers and load generate equally the cost not 

recovered. Zn very trivial cases. sucii as an auction with only one supplier in disequilibrium, 

the total positive profits &rl,O T ,  may be smaller than the cost not recovered. Therefore? 

constant k is computed as follows: 

Ciir,>o xi 
K = min 0.5, { C N R  

Even for cases with a sniall nunibcr of bidders (i-e.. five as in the examples) the total positive 

profit is niuch larger then the magnitude of the diiality gap, which is enough to guarantee 

that K = 0.5 from (3.37). The price increment, for suppliers that do not recover their 

cost, (3.36) is computed so that they exactly receive their cost. The price decrement for 

each supplier whose original profit is positive. (3.35); is amortized according to its profit. 

This guarantees that the decrement does not causes the profit of any supplier to go below 

zero (also a very improbable situation)- Other amort izat i~ns~ for instance, based on offered 

quantities, total costs or a priority selection could be used. 

Due to the size of the duality gap, it may also be reasonable to generate the CNR by 

any ot her administrative means; for instance, using settlement systems [2]. 

Table 3-10 presents the results of applying the non-uniforrn pricing rule for each of 

the solutions and dernand levels considered for the data set in Table 3-1. The following 

observations can be made: (i) The reduction in revenues for suppliers, and the increase in 

payments by the demand, adds up to ihe cost not recovered in each case; (ii) for the cases 

in eq~ilibriiirn~ no adjiistment is made since the cost not recovered is zero; (iii) for the cases 

in disequilibrium, the profits of suppliers are the same for d l  the alternate solutions. 
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Table 3.10: Costs: revenues and profits. Non-uniform pricing based on d u d  variables 
2 pi' 

1 50 

2 2 

1 50 

2 50 

4 10 

1 50 

2 50 

5 10 

CI Psi Psi x pf ri Cini PC PC Pd  

530.0 15.416 770-500 240-800 

The I<ut observation brings an advaritage of non-iiniform pricing to deal with the cod ic t  

of interest that mises with the existence of multiple solutions. Since the marginal bidders 

are paid their cost, they make zero profit. The rest of the bids, that are likely to appear 

in al1 aIternate solutions, receive the same price and, therefore, the confikt of interest that 

may arise frorn the selection of the final schediile is minimized. See for instance, in Table 



3.10, the cases for pd = 110 and pd = 130 MW: in both solutions suppliers receive the same 

profit; the selection of any of these solutions does not bring a conflict of interest. 

The non-uniform pricing alternative is also applied for the test case with quadratic and 

startup cost functions in Table 3.4, for the same demand levels as in Table 3.5- The result 

are summarized in Table 3.1 1. Since the supply functions tend to be smoother, the duaIity 

gap and cost not recovered tend to be smaller- The increments and decrements to load and 

suppliers prices are smaller- 

Table 3.11: Costs, reveriiies and profits. Non-uniform pricing based on dual variables 
Z P; ci* P s  P s  x P; 

1 19.000 354.400 25-852 491.152 

2 11.000 284.600 25.873 284.600 

1 19.000 354.400 25.852 491.182 

3 11.000 284.600 25-873 284-600 



3.3.5 Cornparison of AIternatives 

For the data in Table 3.1, the mean values of the total profit and load payment for each of the 

pricing alternatives are shown in Figure 3.9. The mean values are computed considering 

all the multiple soiutions for each demand level in disequilibrium (pt i  = 53: 110 and 130 

MW). Al1 the values are normalized to the profit and payment that result from average 

price setting- In each graph, the pricing used is denoted by p,,,, the maximum average 

cost alternative; pi,,, the price minimization auction; and pi,  the non 

alternative- 

Pave 

- 
52 110 130 

Suppliers Profits 

Figure 3.9: Normalized mean value of 1 

iniforni pricing 

Load Payment 

rofits and payrnents under disequilibrium 

Pricing with maximum average cost leads to higher prices which results in larger profits 

for suppliers and larger payments for consumers. The use of price rninimization leads to 

low profit for suppliers since more costly bids are used. The non-uniform pricing alternative 

leads to profit and payment that behave more with the demand; it is a result that fat-ors 

neither suppliers nor consumers. 

The standard deviation of total profit and payment for each disequilibrium case are 

presented in Figure 3.10. Pricing with ma~imum average causes different solutions to have 

very different profit and payment. The price minimization mode1 leads to different solutions 

that mean different profits, specially for suppliers. The non-uniform pricing alternative ieads 

in all the cases to the same pr~f i t  and payment. 

As notecl in the numerical examples, when an equilibriurn does not exist, multiple so- 

lutions bring conAict of interest that are enkarged or dimiaished by the particular pricing 
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Figure 3.10: 
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Supplier~ Profits Load Payment 

3 tandard deviation of total profits and payrnents under disequilibrium 

rule utilized. Pricing with maximum average cost and the price minimization auction en- 

hance these conflicts; multiple solutions have either different prices or different sdiedules, 

that result in considerable profit differences. Non-uniform pricing based on dual variables, 

diminishes the codic t  of interest. Therefore, even though ail the multiple solutions to the 

cost minimization mode1 cannot in general be found, it is known in advance? that if the 

price is set using (3.31)-(3.33), the conflicts are diminished. 

3.4 Larger, Randomly Generated Test Cases 

Four data sets with larger number of bidders are constriicted randomly in order to simulate 

more realistic situations. I t  is corisidered that bids coine from coal, gas and nuclear stations. 

This is simdated by considering the startup-costlvariable-cost/capacity as: high/low/large, 

1ow/ high/small and medium/medium/medium, respectively. For each type of generat ion: 

clusters of identical units are forrned to induce multiple solutions. 

Table 3.12 surnmarizes the characteristics and solution of four different test cases. as 

follows: (i) the number of bidders n, number of clusters with different bids n,, the maximum 

power output and the demand; (ii) the best primal objective function, the optimal dual 

variables, the complcmentarity gap, cost not recovered and number of multiple prima1 

solutions n,; (iii) the load price, the mean value and variance of suppliers price: the total 

load payrnents and the total profits; (iv) the total nurnber of unit comrnitment combinations, 

the number of nodes visited by the B&B algorithm n, and the time required to find the 



solutions. Al1 the values are in appropriate units, MWI S, and $/MW. The B&B algorithm 

is implemented in MATLAB, rurming on a 200bIhz personal cornputer. 

Table 3.12: Summarized results for larger auctions with linear and startup cost functions 

A B C D 

- 
f 

X * 

C g  

C N R  

ns 

For cases A and C, a cornpetitive market equilibrium point exists. For cases B and D, 
an equilibrium does not exist; for B, there is only one cost-minirnizing solution; however. 

for C there are four multiple solutions- For the last case, since there are only 15 clusters 

of different units it can be expected that multiple solutions aise.  It is clearly seen, for 

the 1 s t  case in Figure 3.11, that dernand does not intersect the supply function. The cost 

not recovered is very small for larger cases; the non-uniform price that suppliers receive 

is very similar for ail of them, as shown by the standard deviation a ( p , ) .  The number of 

nodes the B&B algorithm visits is very small in dl the cases as compared to al1 possible 

cornbinations. This is due to the good branching order and tight bounds available for the 

simplified rnodeIs. The time required to find the solution is only in the order of seconds; 

a complete enurneration would require in the order of w5 years (based on an estimation 

that uses the times in Table 3.12). 

470735.00 265282.20 63841 1-00 237012.00 

[99.33,101.21] 76.34 [94.14,103.22] 72.29 

0.00 63.34 0.00 46-65 

0.00 63.34 0.00 46.65 

1 1 1 4 

2n 

nv 
Tirne (sec) 

3.7779e+22 4.0565et31 4.0565e+31 3.7779e+22 

151 111 211 193 

9.6632 10.6080 16.6058 12.0530 



Figure 3.11: Total supply functions randomly generated test cases 

Table 3.13 shows the bids that are involved in the multiple solutions; t hey are bids 39, 

40, 41, 42 which have the sanie characteristics- There is only one bid that  does rioi: recover 

the cost; this is bid number 28 and appears in all the solutions. Since the bids that appear 

in all the multiple solutions are marginal, they make zero profit in al1 the solutions when 

the price is setup using non-uniform pricing. However, if the price would haw been set up 

by the maximum average cost, it is setup by bid 28 to 75.4 $/MW which causes the profit 

and load payments to increase. The other effect is that bidders 39, 40, 41 and 42 would 

receive different profits in each solution. 

Table 3.13: Bids i r  

I 
the rnargin. Case D 
ci(pf)/p; A* x*p; ri 

75.400 72.290 1084.34'7 -46.653 



Table 3.14 presents four larger cases for auction with bids that contain quadratic and 

startup cost functions. For cases B and C, there is a market equilibrium point. For cases 

A and B, there is no market equilibrium point. in the latter tw-O cases, there is a cost not 

recovered? equal to the duality gap in one case, and s m d e r  in the other. The inclusion 

of the quadratic cost term smoothes out the supply functions, which tends to reduce the 

duality gap see Figure 3.12. In the same figure: the zoomed plots show that in cases A and 

C the demand does not intersects the supply. 

Table 3.14: Summarized results for larger auctions with quadratic and startup cost functions 
A B C D 

- 
f 
A* 

cg 
CNR 

The bids that  are in the margin for each of the alternate solutions in cases A and C are 

shown in Tables 3.15 and 3.16, respectively. 

2n 

nu 

Timc (sec) 

For both cases, pricing with maximum average cost would increase the price to 37.667 

and 40.984 $/MW, respectively in each case. As can be noted in the same tables, the bids 

that appear in both alternate solutions correspond to the bids that do not recover their 

cost- The selection of either of the solutions does not bring conflict of interest. 

2.8147e+14 2.8147e3-14 1.4272e+45 1.4272et45 

335 75 479 299 
163.7400 41.9256 779.5643 577.8281 
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Figure 3.12: Total supply functions randomly generated test cases 

Table 3.15: Bids on the margin. Case A 
i 

( 1 ) 3 9  

Table 3.16: Bids on the margin. Case C 

ai Pi 'Yi 
11.0 36.0 0.059 

P: ci (P;* / ~ f  P P P ~  ri 

33.620 40.984 40.9839 137'7.874 -0.0073 
Pi 

57.0 

i 

(1)109 

Pi 

81.000 

i Pi -fi 

83.0 36.0 0.075 

PZ c i ( P f ) / ~ r  P PP; .rri 

10.600 37.667 37-6160 398.730 -0-539 



3.5 Summary 

In this chapter, two sirnplified discrete models for power pool auctions are studied. The 

models consider linear and quadratic cost functions with constant startup cost. The in- 

troduction of binary variables, and the methods developed to solve the prima1 and dual 

problems, make the models very suitable to understand the effects of disequilibriurn and 

price setting alternatives in centralized power pool auctions. As far as we are aware, these 

issues have not been thoroughly investigated in the e-uisting literature: specially in the 

framework of electricity power pool auctions. The following individual rernarks are made. 

For both models, their dual problem has a closed form solution. A Branch-and-Bound 

enurnerative approach that can find multiple near-optimal or optimai solutions is 

designed for the solution of the primal problem. 

When an equilibrium exists, t here can be multiple Lagrange multipIiers t hat represent 

market equilibrium prices. In equilibrium, multiple primal solutions do not represent 

conflict of interest. 

When an equilibrium does not exist, it ha. been shown that the optimal dual variables 

do not recover an amount of cost that is bounded above bÿ the duality gap. 

Also, when an equilibrium does not exist, multiple solutions bring conflict of interest 

that are enlarged or diminished by the particular pricing rule adopted. Pricing with 

mauimum average cost and the price rninimization auction, enhance these confiicts; 

multiple solutions have either different prices or difTerent schedules, that result in 

considerable profit differences. 

Pricing with maximum average cost can create unreasonable high prices even in the 

absence of strategic behavior. Price minimization uses more expensive resources that 

considerably reduce the profit for suppliers. 

A non-uniform price setting alternative based on duai variables is proposed. The alter- 

native produces prices that resemble more the behavior of the demand and diminishes 

the conflict of interest when multiple solutions arise. Since the cost not recovered is 

bounded above by the duality gap, the deviations in price are negligible; load payment 

and suppliers profit do not increase as compared to the other alternatives. 



Chapter 4 

An Interior-Point /Cutting-Plane 

Method for Unit Cornmitment 

A unit commitment (UC) problem consists on determining the poiver generators that need 

be committed and their production levels to supply the forecasted short-term (24 or, at 

most. 168 hours) demand and spinning reserve requirements, at a minimum cost- Units op- 

eration is subject to several constraints. UC models are very large non-linear mixed-integer 

(therefore, non-convex) programming problems. The formulation of a unit commitment 

problem is as varied as the number of approaches that have been used to soive it. Enu- 

merative approaches, dynamic programming, genetic programming, neural networks, and 

simulated anneding are m o n g  the techniques that have been used to solve this problem; 

comprehensive reviews on UC literature can be found in [52, 19941 [53, 19981. 

The most accepted and successful approach to solve UC problem is Lagrangian relazation 

(LR); the LR technique was first introduced in [54, 19771 and became very well established 

with subsequent developments [55, 19831 [56, 19881. The key idea in LR-based approaches is 

to solve the dual problem instead of the primal problem. The dual problem has a separable 

structure, Le., in a per thermal-unit basis, which perxnits its easy evaluation and, a t  the 

same time, provides a primal (not necessarily feasible) solution. The dual function is concave 

but not differentiable. Therefore, non-differentiable optimization techniques are required 

to soive the dual problem. Pioneering work on LR-based UC solution approaches has 

used sub-gradient (SC) methods as the dual maximization engine [54,56]. Despite their 

bad convergence characteristics, they stiIl are being used due to its easy implementation 

and low per-iteration cornputer effort. Several Cutting-plane (CP) variants to solve non- 



differentiable optimization have been employed to solve the dual to unit cornmitment or 

other power scheduling problerns. For instance, in [57. 19961 a penalty-bundle ( P B )  method 

is iised to solve the UC problem. In [58, 19971, a reduced complexity bundle method 

is introduced to solve the dual of a power scheduling problem. In 159, 19991, a CP with 

dynamically adjusted constraints is used to solve a hydro-thermal coordination problem. A11 

t hese cr;t ting-plane variants s t  il1 have the disadvantage t hat parruneters need be carefully 

tuned; these paranieters dehne a stabilization scheme that prevents unboundedness in the 

maximization of the dual function and help improve convergence [60, 19941- 

In this chapter, nie formulate a UC model and propose the use of an interior-point/cutting- 

plane (IP/CP) method to sohe the dual problem. IP/CP methods have been used to 

successfully solve non-differentiable problems in other engineering applications, such as lot 

sizing [61, 19971 and rniilti-commodity flow problems 162, 19943. An IP/CP method has 

two advantages over previous approaches: Firs t , i t has bet ter convergence and robust ness 

characteristics; second, it does not suffer from the parameter tuning drawback of previous 

approaches, These two characteristics make the IP/CP an attractive alternative when the 

UC model is used to execute power pool auctions. 

Section 4-1 formulates a UC model. Section 4.2 presents the LR algorithm. In Section 

4.3, two existing techniques to solve the dual problem, and the IP/CP method are presented. 

In Section 4.4, a primal-dual interior-point method is proposed to solve the potential prob- 

lem that arises in the IP/CP rnethod. Sections 4.5 and 4.6 deal with the solution of the 

profit maximization subproblems and the prima1 feasibility search phase. The las t scct ion 

briefly describes some implementat ion issues. Numerical resuIts on the IP/CP testing and 

the use of the UC as a power pool auction mechanisrn are presented in Chapter 5. 

4.1 The Unit Cornmitment Problern 

A unit commitrnent problem consists on deterniining the power generators that need be 

committed and their production levels to supply the forecasted short-term demand, at 

minimum cost, In a classical unit cornmitment model, not only the demand needs be 

satisfied, (2.lb), but also a power reserve constraint has to be observed; i.e., to the rnodel 
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in (2.1) the reserve constraint is added, that is, 

where rd is the power reserve requirement for period t ,  and ri' is the reserve contribution 

of supplier i a t  period t .  Both the cost function ci(pi) and the set of operative limits Pi 
depend on inter-temporal effects that make problem (4.1) non-separable in time. The UC 

belongs to the class of NP-hard problems, as proven in 1631. The cost function in (4.12~) 

contains fuel or variable costs and startup-costs, 

Each of the cost components is given by 

where cvoi ($) is a no-load cost, Pi and 7i are the linear and quadratic cost components in 

$/MW and $/MW*, respectively. The startup cost function contains a constant aii and 

a variable term a.>i ($); the variable term depends on the number of hours the unit has 

been de-committed (off) up to sub-period t - 1 (s:;'), and on the cooling constant ri. The 

cornmitment variables are again represented by U T ,  which take the value of one if unit i fs 

committed at tirne t, and zero otherwise. 

The reserve contribution of each thermal plant in (4 .1~)  is given by r: = uf@, - ~ f ) ,  
where Pi is the maximum ailowable power output. 

The set of operative limits Pi in (4-1c) can contain a variety of restrictions [52,53]; 

among thcm: (i) minimum and maximum power output; (ii) minimum up and down times; 

(iii) ramp constraints; and (iv) crew and must-run constraints. The first three groups of 

constraints are written as follows: 

ufp.  5 pf 5 u:pi. Yi, v t  
-1 

u: E (0, l} Vi, Vt  



where p. and pi are the minimum and maximum allowable power outputso respective- The 
-2 

minimum up- and minimum down-time constraints are written as 

where xzl and ELY' are the niimber of periods unit i has been committed and decommitted, 

respectively. The minimum nurnber of periods a unit can be comrnitted or decommitted is 

represented by Ti and ti, respectively. 

Analytic expressions for zfii and z i  are, for instance, zk = zk7'uf + uf and x i j  = 

2:;'(l - u:) + (1 - u f ) .  Initial time conditions are always specified and denoted by zd and 

x;,; one of them has to be zero. Ramp constraints c m  be written as 

shere  and xpi are the maximum ramping-down and ramping-up constraints. 

4.2 Dual-Prima1 Solution by Lagrangian Relaxation 

The Lagrangian relaxation technique, as applied to solve UC problemso is a two phase 

optimization approach. In the first phase, the (Lagrangian) dual problem to the UC mode1 

(4.1) is solved until a stopping criterion is satisfied; in the second phase, a prima1 feasible 

solution is constructed from the dual solution. 

The diial objective function is given as in (2.9) but additionally including the reserve 

constraints (4.1), as follows: 

where 

and X is the vector of dual variables related to the power and reserve constraints; that is 

X = [A,, &IT = [Abo - - * , Ar. A:, - - - , X?lT. The dual UC problem is given by 



The dual variables of the power-balance equality constraints are not necessarily constrained 

to be positive; however, since the cost always increases as  reat power generation increases, 

they always take positive values. The evident separabIe n a t u e  of the dual function $(A) is 

what makes the LR rnethod a successful technique to solve the UC problern in a two-stage 

approach: it is surnmarized in the following aigorit hm. 

Algorithm 4.1 The Lagrangian ~ e l a x & o ~ ~ l ~ o r i t h m  
-- - - -- 

1. Initialization. Obtain an initial dual vector A'. and set k = O. 

2. Phase 1- Solution to the dual problem. 

(a) Evaluaiion of the dual function. From ( ~ l ) ,  evaluate the dual objective 

functioii $(A? by solving the n individual profit-mswimization subproblems, 

(4.12)- Let p ( ~ k )  be the optimal prima1 variables (u: and pf) to  the dual problem. 

(b) Convergence test. If a convergence criterion is satisfied, go to  Phase 2: otlier- 

wise. continue. 

(c) Lrnproved dual solution. Using a non-differentiable optiniization technique, 

find an improved dual solution vector. x~~ '. Set k = k + 1 and go to Step (a). 

3- Phase 2.  Feiiçibility seach. Map p ( ~ k )  to  a prima1 feasible solution p ( ~ " )  -+ p: 

(a) Find a resenre feasible solution 

(b) Dispatch generation to exactly match the power demand 

There are several alternatives for the select ion of initialkat ion and stopping criteria. 

The  selection of an alternative is linked to the rnethod used to solve the dual problern. 

The technique used to solve the profit maximization subproblems (4.12) depends on the 

type and number of restrictions that are included in the set Pi. The procedures (usudly 

heuristic) to find a prima1 feasible solution also vary depending on the modeling detail in 

Pi. The solutiori to the dual problem is the rnost time-consuming part in the LR algorithrn; 

there is a number of non-differentiable optimization techniques that have been used to solve 

the dual problem. 



4.3 Solution to the Dual Problern 

The duai function in (4.1 1) is concave and non-differentiable; optimization techniques for 

non-differentiable op timization to  solve the maxîmization problem (4.13) depend on the 

computation of sub-gradients to the dual functiori. As proven in [38], a sub-gradient to the 

concave funct ion (4.1 1) J E is given by 

This sub-gradient represents a miss -ma tch  vector of the power demand and reserve con- 

straints, (4.lb) and (4-lc),  respectively - 

4.3.1 Sub-Gradient Method 

A sub-gradient (SG) rnethod is an extension of gradient rnethods for smooth optimization; 

it uses a sub-gradient as  the search direction vector. In the widely knoivn Polyak's sub- 

gradient method [64], a sub-gradient is used to obtain a normaIized search direction; and 

the combination of two parameters. rcl and tq, define the step length. The  updated dual 

vec t or is 

where E' stands for the siib-gradient at  X k .  a.s given by (4.14). Despite its poor and final 

osciIIatory convergence cliaracteristics and the fact that the tuning of parameters K I  and ~2 

is a non trivial task [65], sub-gradient rnethods are stiil extensively used to solve different 

power-system scheduling problems due, mainly, to its easy implementation and low per- 

iteration coniputational effort [5S7 56.58,63,66-681. 

4.3.2 Penalty-Bundle Method 

The penaltg-bundle (PB) method is one of several variants of cutting-plane methods [60J; 

both rnethods are briefly described next. A bundle is a collection of: (i) dud vectors 

{ A  -.  . A :  (ii) their corresponding dual objective function values {+(A'), - . . :$(Ak)}; 
and (iii) the sub-gradients {cl:. . . :eC}. A cutting-plane approximation, &-- of the dual 

function T,!I that is czssociated to this bundle is 
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The approximation in (4.16) overestirnates the dual function, that is, &(A) 2 +(A). The 
ma~imization of the original non-differentiable dual function (4-1 1) is replaced by the max- 

imization of the cutting-plane approximation (4.16). The rnaximization of (4.16) is equiv- 

alent to solving the linear program 

In the pure cutting-plane method, the solution to (4-17), A"', is used as a n  improved dual 

solution to maxirnize the original duaI function. This new vector is then used to update 

the cutting-plane approximation by adding a new cut, z 5 +(A"") + (A - X ' + ' ) ~ S ' ~  '. in 

(4.17). The updated approximation is again rnaximized and a new improved dual vector 

is obtained; this process is repeated until a stopping criterion is satisfied. As iterations 

proceed, the size of the lincar problem (4.1'7) increases. 

This pure cutting-plane procedure has severe dïawbacks; for instance, a t  the first it- 

eration, (4.17) is unbounded and, in general, at iteration k, the solution to (4.17), may 

be far away in the unbounded optimization region. To avoid this problem, stabilization 

srhemes that prevent the search to go far frorn the actual approximation c m  be used [60]. 

The  most simple stabilization scheme, KetIey7s cutting plane rnethod [GO], is to add the 

constraint X 5 X in (4.17) so that the dual search space is bounded; X is an  upper bound 

of the dual variabks, which in rnost engineering appIications is at hand. One of the niost 

used stabilization techniques is the penalty function method. In  this technique, a penalty 

function is added to the objective function z in (4.17); then an improved point is obtained 

from the solution to the quadratic problem 

The introduction of a penalty term causes the solution to (4.18) to be in a region close 

to the previous solution point A": and hence! it has the effect of bounding the search space. 

The penalty parameter ~3 controls the search region, which c m  be viewed as a sphere with 

center A*: and a radius controlled by fia. Although the theoretical convergence properties 

of the PB and SG method are similar [69], careful tuning of the penalty parameter can lead 

to considerable improvernents in LR-baçed schemes to solve unit comrnitment [57, 19961 
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and hydro-thermal scheduling problems [59: 19991. This method is usually addressed as the 

penalty-bundle met hod. 

Heuristic rules can be designed to set the parameter 61, ~2 and KS for some specific 

problems [60,69: 701. The choice of these parameters strongly d e c t s  the convergence char- 

acteristics of both mcthods- In most power-systems applications, these parameters are set 

up using trial-and-error runs or ad-hoc techniques. 

Interior-Point/Cutting-Plane Method (IP/CP) methods for non-differentiable optimization 

have been first introduced in [ T l ,  19921. In the rccent years. IP/CP rnethods have been very 

successful to solve engineering applications such as rniilti-commodity flow problems [62], lot 

sizing problems [72: 19941; stochastic programming [73, 19971 and also to compute market 

equilibria of international trade permits [T4. 19973. The theoretical convergence properties 

of an IP/CP method is sightly superior to other cutting plane methods [74, 19971; hcwever, 

in practice, quoting from the survey [69. 19991. "the method is not always the fastest, but is 

constantly good and is by far the most stabIe7'- IP/CP methods have never been explored 

before to solve power-system scheduling problems. 

IP/CP methods strongly diEer to other cutting plane methods; the latter ones maximize 

a cutting plane approximation over a stabilization region to obtain an  improved d u 4  solution 

vector. IP/CP methods tc&e the analytic center of a localization set as the new improved 

dual  solution. The localization set is a convex closcd region denoted by Q', and defined as 

The boundaries of the localization set are given by: (i) The cutting-plane approximation 

of the WC dual function (4.16) : (ii) a lower bound 4 to the dual objective function value; 

(iii) the known dual variables lorver bounds X 2 0;  and (iv) a box constraint X 5 X. The 

constraints (iiij and (iv) limit the localization set from the lefi? and n-ght, respectively; and 

the constraints (i) alid (ii) limit the localization set from above and belozu, respectively. 

As pointed out in [T2] .  tlie selection of the box constraint X has a limited influence on 

the convergence characteristics of the IP/CP metiiod: andl in practice, any large enough 

number based on knowledge of the pioblem can be chosen. For the UC problem, the same 

convergence chaïacteristics have been observed; the selection of a very wide range of values X 



does not affect the convergence characteristics of the IP/CP methods. For the UC problem, 

the box constraint can be set iip based on units' cost coefficients. A lower bound of the dual 

objective function is readily available from the evaluation of the dual  function at previoiis 

iterat ions, Le.? f = rnax{il>(~ ' ) _ - . . $ ( A k ) } .  

The localization set in (4.19) can be rewritten as 

where 

and y = [ z . ~ ~ ] .  In the same equation. A= E IREx5; s, b E R., and 1 E is 

an identity matrix; the dimension are given by m = 4772 f k + 1 and T i  = 2m + 1. The 

localization set RQas an iteration-incrcasing size. The anakgtic center of Clk, denoted by 

yk+' ,  is defined as the unique point that solves the potential problem 

The term xFl In(sj) defines a potential function whose maximum is achieved at a point 

centered in the localization set; for example. a non-centered point close enough to a hyper- 

plane j has sj + 0: and the associated potential coniponent ln(sl)  + -m. From yk+', A'+' 

is taken as an updated dual solution vector, which is used to evahate the dual function. The 

localization (4.19) is updated to .QkiL by adding a new cut, z < $(A"') + ( X - X ' + ' ) ~ < ~ ~  ', 
and by replacing the dual-function lower bound approximation by g = max{ l l>(~kCL) ,  z} .  
The analytic center of the updated localization set is obtained and the  process in repeated 

again until a stopping criterion is satisfied. 

The difference between the IP/CP a ~ p r o a c h  and previous cutting-plane methods is 

graphically illustrated in Figure 4.1 for X f R' . The figure includes: (a) a pure CP method 

with bounds on dual variables; (b) a PB cutting plane method; and (c) the IP/CP method. 



CHAPTER 4. AN IF/CP METHOD FOR UNIT COMMITMENT 67 

In all the cases, it is assumed that two cuts have already been obtained (solid straight lines). 

In cases (a) and (b), the improved point is taken frorn the ma'rimization of the cutting plane 

approximation, which is Iimited by bounds (dotted vertical lines) in dual variables and by 

a penalty function (dotted circle), respectively. In IP/CP methods. the analytic center of 

the localization set is taken as the improved point. T h e  loiver bound for the dual objective 

function and the box constraint are represerited by the dotted horizontal and vertical Iines, 

respectively. 

Figure 4.1: Cutting plane methods 

Figure 4.2 schernatically depicts the ttiird? fourth and fifth iterations of an IP/CP 

method; the dot inside each updated localization set (shaded region) represents the an- 

alytic center; the horizontal dotted line represents the fower bound z; ancl the bold curved 

line represents the dual function. This figure depicts the classic behavior of the IP/CP 

method; cuts generated lrom the analytic center are deeper and the localization set rapidly 

shrinks towards a single point that corresponds to the optimal value. 

Figure 4.2: Illustrative iterates of an IP/CP method 

Al1 eut ting plane methods require the solution of a linear or non-linear optimization 

problem whose size increases with the number of iterations. For the PB method, a quadratic 
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problem (4.18) has to be solved. This problem is very suitable for interior-point methods 

for quadratic programming. For the IP/CP method, the potential problern (PP) (4.21) 

has to be solved- In [61, 19971, a darnped Newton method is used to solve this problem. 

RecentIy in [75? 19991, an infeasible primd-dual Newton method is used to find the analytic 

center. The solution to problenr (4.21) has received less attention than linear programming 

problems; as stated in [69, 19991, "no rnethod can be credited superiority". In the next 

section, an infeasible log-barrier primal-dual interior-point-method to solve the potential 

problem is developed. 

4.4 A Primal-Dual Interior-Point Method to Solve the Po- 

tential Probiern 

An infeasible prirnal-dual interior-point-method (IPM) to solve the concave non-linear prob- 

lem (4.21) can be derived as an extension of primal-dual P M ' S  for linear programming [76]. 

Following Fiacco and McCormick's logarit hmic barrier function approach [77] : t lie trans- 

formed problem to (4-21) is given as 

where pV > O is a barrier parameter that is rnonotonically clrivcn to  zero: > > - - - > 
pm = O. The sequence of sohtions {y(pu)! s ( p V ) ) ,  that solve problem j1.22) for each pu, 

defines a barrier trajectory that converges to the unique maximizer of the original problem 

(4.21)- The necessary and sufficient conditions for optimality of (4.22) can be derived from 

the barrier Lagrangian funct ion 

where x E IRm > O is the vector of Lagrange rnultipliers to the constraints s = b - 
The maximum of (4.22) is given by a stationary point of (4.23); which has to satisfy the 

following first-order necessary conditions: 



where S = Diag(s), X = Diag(x) and e E RE is a vector of ones. From an initial condition 

so > 0, xO and yo that does not necessarily satisfies the equality constraints. the primal-dual 

interior-point method generates iterates of t hc form 

where the sea-ch directions A s ,  Ax and Ay are computed by solving one Newton's iteration 

that advances towards the solution of the optimality conditions (4.24)-(4.26). The common 

step Iength a" is computed so that variables s and x reinain strictly positive- A first-order 

Taylor-series expansion of (4.24)-(4.26) gives the augmented Newton's systerri, from which 

the Ax and Ay directions are computed 

The s direction is given by 

The step length is computed as cru = min(a,, O , ) ,  where 

The use of separate step lengths in P M ' S  for non-linear programming, does not always 

improve convergence as happens with linear programming [78]. In our experience with the 

potentid problem (4.21): a common step length has performed well. The  safety factor is 

set to the typical value of e = 0.99995 [76]. 

4.4.1 Initialization, Barrier Parameter Reduction and Stopping Criteria 

The initialization of variables for the IPM to solve the potential problem (IPM-PP) is done 

as  follows. The initial value for the vector is set up from the upper Ievel k-iterations 

of the LR algorithm by = [$J(X~-~),X'- '] .  This initialization allows a simple hot- 

restart of the IPM-PP that is equal to the ana1yt.i~ center of the previous localization set. 



More elaborated hot-restart strategies are described in [69]. Once is set, variables s are 

ini t iaiized by 

The dual variables are al1 initialized to one, Le-, 

Frorn (4,241, the following barrier parameter rediiction strategy c m  be derived 

where a typica1 value for the parameter O is given by 0.2 [78]. The convergence criteria of 

the IPM-PP are set by the following normaiized residuals: 

These convergence criteria are set to €1 = € 2  = 10-~ and e3 = 10-~. The parameter setting 

here presented has been found very efficient in a11 our tests performed. 

4.5 Solution to the Profit Maximization Subproblems 

The evaluation of the dual function for a given dual vector X~ is required a t  each iterntion of 

the LR algorithm- In order to evaluate (4.11) , it is required to solve the profit maximizstion 

subproblems (4.12). These subproblerns are non-linear and mixed-integer, and contain inter- 

temporal constraints. The supply function, that results from their solution, is no Ionger 

available in closed form. The profi t-maximization sub-problems can be efficient ly solved 

using dynamic prograrnming (DP). A D P  approach can easily handle non-linear objective 

functions and minimum time constraints. The inclusion of ramp constraints needs more 

considerations; for the purpose of this research, the inclusion of such constraints does not 

affect the development of the new approach or provide valuable information; the alternatives 

to include them have been studied in several other works [63,67,79,80]. 

A D P  approach to solve the subproblems (4.12) consists on a fonvarci enurneration of 

al1 states that are feasible to the minimum time constraints, (4.7)-(4.8): and to the binary 

cornmitment conditions (4.6). In order to illustrate the DP approacli, consider the graph 

shown in Figure 4.3. The graph corresponds to a unit that has been already committed for 

1 hour; that is zg = 1: ,di = O and whose minimum tinie coostraints are Ti = 3 aiid Li = 2. 
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Figure 4-3: Dynamic programming graph 

The graph is constructed by visiting only the feasible states to these constraints until t = 6 .  

In the DP graph, ripper nodes(states) correspond to on states ui = 1, and Iomer nodes to 

oflstates ut = O. Since the DP graph implicitly handles minimum time constraint in its 

construction, it is not necessary to use the non-linear expressions (4.7) and (4.8)- To each 

on-state, a profit rr: is associated. This profit is the maximum possible value that satisfies 

the minimum and maximum output constraints (4.5), 

The solution to problem (4.32) is @en by 

w here 

To each arc in the DP graph, a transition cost is associated; this cost is given bÿ the start-up 

cost cl,,. The total profit created by miving to state xi at stage t is computed using the 

recurrent formula 

F(x:) = max [~(x:-')+?rf - c : ~ ]  
$- E;Y'- 1 
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where represents all the feasible states a t  stage t - 1 in the DP graph. The opti- 

mal to the profit maximization subproblerns, given by the vector [u: , - - - , TA?, Pr], and 

represented by p(~k), is obtained by back-tracking from the node in the last stage of the 

D P  graph whose F ( x r )  is maximum. If there are multiple nodes in the last stage with 

maximum profit, the trajectory that results in more power output is selected, This helps to 

reach primal feasibility fasier since more power is being committed at the dual optimization 

phase- 

4.6 Prima1 Feasibility Search and Stopping Criteria 

After the dual ma.xirnization phase is tenninated, by any  stopping criterion, a primal so- 

lution p ( ~ k )  is available. However, this solution in most of the cases does not satisfy the 

power demand and reserve constraints (4.k) and (4.1~). The prima1 feasibility search phase 

in the LR algorithm takes p ( ~ k )  and maps it to a primal feasible solution using cost-based 

heuristics. The soiution obtained after the primal feasibility search, p, usually results in 

very small complementarity gaps- 

A simple procedure to obtain a primal feasible solution, derived fiom [56] and gencralized 

in [63], consists on first generating a reserve feasible solution, and aftenvards on dispatching 

the conimitted units to satisfy the real power demand. The reserve feasible solution is 

constructed by successively increasing the dual variables to the reserve constraint at the 

time periods when the reserve is not met. The subproblems (4.12) are then solved for eadi 

increased vector of d u d  values until the reserve constraint is satisfied. The procedure is 

outlined in the following aigorithm- 

Algorithm 4.2 Reserve feasibility search 

-i 1. Set j = O and A, = A: (from the last iteration of the dual maximization phase). 

2. With A' = [Ai ,  $1; solve the profit maximization sub-problems (4.12). 

3. If p(i') iç feasible to constraints (4.12): stop; otherwise, continue. 

-j+i - j  - 
4. Set A, = A, + & x rnin(0, [r: - cirt,. - . r," - Cirp]T}  

5-  Set Ji = j + 1 and go to step S. 

In Step 4 of the dgorit hm, the power reserve dual variables are increased for the periods 
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nrhere the reserve constraint is not met. The increase is made based on a. sub-gradient 

update; as long as it is positive, the païuuicter d guarantees that a finite number of iter- 

ations j are needed in order to achieve reserve feasibility [56,63f. However, a large value 

can commit more units than necessary; on the other hand, a smal increase in the value 

can rcquire more iterations to achie-ie feasibility. The reserve feasibility search does not, in 

general, represent a time consuming task as compared to the dual ma.ximization phase. 

Once the reserve constraint is met, a sirnplified quadratic economic dispatch is solved 

for every period t? considering o d y  the units whose uf = 1. Only under very uncornmon 

practical situations, as described in [63],  a reserve feasible solut ion cannot result in a feasible 

dispatch; that is, the inequalities Ciu:2f 5 5 Ciu$: cannot be satisfied. The economic 

dispatch problem to be solved a t  each tirne t is 

min 

s-t 

This problem can be solved by 

cornmitment obtained after the 

8. ' + 7- C' Cilu:=i ,Pz ,Pz 

P:! - Eilu:=i ~f = O 

pi 5 P: 5 Pi: ~i 1 ai = 1 

the direct approach presented in Subsection 2.2.2. The 

reserve feasibility search and the dispatch ob tained from 

the solution to (4-35), represents the feasible schedule that is denoted by 3. 

The quality of the solution p can be measured by the comp1ementarit.y gap ( c g )  or 

relative complernentarity gap ( r c g ) :  

r cg  = f - +(A') 100 

i 
where j deqotes the primal objective function value a t  any primal feasible solution p. 

Experience on solving UC problems [53,56,63] has shown that the rcg can be reduced to 

values about 1-2%, especially as the number of units in the UC increases. The s m d e r  the 

cg is, the closest it is to the dg. Since the dg is not know in advance, it may happen that 

a duality gap exists for the particular instance of the UC mode1 and, therefore, the rcg 

caruiot be reduced to zero; in this situation, a small rcg does not necessarily rnean p is a 

sub-optimal solution. Only when rcg is equal to zero, it can be assured that  the solution 

a t  hand is optimal- 

The computation of a prima1 feasible solution a t  each iteration of the LR algorithm, 

in order to  use (4.37) as an stopping criterion, can turn expensive especially when the 
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method to solve the dual problem has poor convergence characteristics. Stopping criteria 

for the SG algorithm are not easy to implement due to its final o s d a t o r y  characteristics. 

In most of the cases, the SG algorithrn is stopped when a given maximum iteration count 

is reached [12: 57,63,66,67]. 

Cutting plane methods provide better stopping criterion that only require the use of 

duaI quantities. At each iteration k of the LR algorithrn, the values zk from the solution of 

(4-18) or (4.21), in the PB or fP/CP methods, is an upper bound to the optimal dual value 

ek 2 d* .  Also, since the evaluation of the dual function (4.11) at A" is a lower bound to 

optirnai dual objective function $* 2 ~ c , ( x ~ ) ,  the following duaï gap stopping criterion can 

be implemented for these methods: 

Due to the robustness of IP/CP methods, the dual gap criterion can be set to values as low 

as €d = 10-6. 

4.7 Some Practical Implementation Issues 

The base prograrnming language for the LR implementation is C, using the GNU's gcc 

compiler (v2.7) [81], al1 under the Linux operative system. The implementation of a DP 

subroutine uses dynamic memory allocation; the efficient sparse implernentation of the IPM 

to solve the potential problem strongly iniproved initial implementations. Some of the key 

implementation issues of these two components in the LR algorithm are described in the 

next subsections. 

4.7.1 Dynamic Programming Data Structure 

A dynamic memory allocation data structure has been designed to generate the DP gaph  

in Figure 4.3. The structure is made of a static w a y  whose components are pointers to 

linked lists. The linked lists consist of registers that contain the information of each node, 

at a given stage (see Figure 4.4). The structure is defined as follows : 



typedef s t r u c t  STATE{ 

double PROFIT ; 

double POWER ; 

i n t  TIME ; 

i n t  INDEX ; 

in t  FROM ; 

s t r u c t  STATE *NEXT ; 

)STATES ; 

t ypede f  STATES *DPGRAPH Cm] ; 

The DP graph is contained in the variable DPGRAPH which is a static array with length 

m (the nuniber of time periods)- Each coinponent of the graph, DPGRAPH Ct] , contains a 

pointer to a linked list, STATES, that contains al1 the s ta t t i  at stage t. Each STATE in the 

linked list contains the following information: 

PROFIT The maximum profit of arriving to this node 

POWER The optimal power a t  this node 

TIMF The time the unit has been off (-) or on (+) 

INDEX A consecutive nurnber assigned to each node as they are created 

FROM TheINDEXoftheprecedingstateatstaget-1 

*NEXT Apointerto thenextstateinthesarnestaget 

St,wting from stage t = O, and given the initial conditions for the time constraints 

(4.7) and ( LS ) ,  new nodes are created as long as the time constraints are satisfied. Four 

possibilities euist: (i) the unit continues on u: = 1: = 1; (ii) the unit continues off 

u: = O,uff l  = O; (iii) the unit is decommitted u: = 1 , ~ : ~ '  = 0:  or (iv) the unit is 

committed uf = O,uf f '  = 1. For case (iv), when the unit is committed, the startup cost 

(4.4) is subtracted to the profit (4.31), as indicated in equation (4-34). The process is 

continued for stages t = 1, - - - rn; a t  the final stage, the node with maximum profit is 

searched. An optimal solution is obtained by backtracking using the variables FROM in the 

data structure. If there are multiple nodes in the last stage with the same maximum profits, 

the solution with larger total power output is selected. For each stage P: ,  in (4.32), is given 

by the variable PO- and the cornmitment variable is ut = O if a t  stage t the miable  

TIME< 0: and 1 otherwise, 
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Figure 4.4: D P  data structure 

4.7.2 Implementation Issues for the PB and the IP/CP Method 

A first euperimental implementation of the IP/CP rnethod to solve the dual UC problem 

used a semidefinite programming solver to solve the potential problem (4.21) [82]. The im- 

plementation of the primal-dual interior-point method. in Section 4.3, considerably reduced 

the computation times to solve the potential problem. 

The major computational effort for the P M - P P  to solve the potential problem, in Sec- 

tion 4.4, lies on the solution of the augmented symmetric indefinite Newton's system (4.28). 

The symmetric indefinite Newton's system (4.28) is sparse, which represents an advantage; 

but its soIution requires partial pivoting to preserve numerical stability. The Newton's sys- 

tem is solved using the public domain solwr SuperLU [83]. The software contains C-callable 

subroutines to perform factorization of general non-symmetric non-definite sparse matri- 

ces. I t  implernents the factorization P,WF'T = LU, where Pr is determined from partial 

pivoting to guarantee stable pivots and P, is a permutation rnatrix to preserve sparsity. 

The sparsity preserving permutation order can be set-up by the user in order to exploit 

the specific structure of matrix W. In our case. since W is symmetric, a simple minimum 

degree ordering [84] works well and avoids the costly interna1 symbolic computation WWT 

that is used to obtain an orderlng algorithm for general matrices- 

Additionally, the products between sparse-matrices and full vector required to corn- 

pute the residual vectors (4.24)-(4.26) and the As search direction (4.29) are performed 



using the C-callable Iibraries of the SparseBlas package. This package contains severd high- 

performance libraries for basic linear algebra operations with sparse matrices; the package 

is public domain software [85]. 

The quadratic problem (4.18) for the PB method has been solved using LOQO- LOQO 

is an implementation of a primal-dual predictor-corrector interior-point-method for non- 

convex non-linear programming. The method is based on successive quadratic programming 

approximations [86]. 

4.7.3 Summary 

This chapter presents the unit commitment problem and its solution by Lagrangian relax- 

ation. The LR algorithm is a two phase solution procedure for the UC model- The e s t  

phcase consists on the solution to the dual problem; the second phase, consists on a prima1 

feasibility search. The following remarks are made. 

Previous techniques to solve the dual problem have extensively used the sub-gradient 

method [54,56]; other work has used variations of cutting plane rnethods; among them: 

the penalty bundle met hod [57, 19961, the reduced-complexity bundle met hod [58: 

19971, and a dynamically adjusted cutting plane method [59, 19991. All these cutting 

plane methods are based on the maximization of an stabilized cutting-plane approxi- 

mation of the dual function. Both sub-gradient and cutting plane methods are strongly 

dependent on parameter set ting; which makes the met hods problem dependent. 

Tnterior-point/cut ting-plane met hods for non-differentiable optimization have been 

first introduced in [71, 19921. The IP/CP methods has been applied to solve other 

engineering application such as multi-commodity Aow problems [62, 19941, lot sizing 

problems [72. 19941, stochastic programming problems [73, 1 9971. IP/CP methods 

do not maximize an stabilized cutting plane approximation; instead, they find the 

analytic center of a localization set that contains the dual optimum. 

In this chapter, the use of an IP/CP method to solve the dual UC problem is intro- 

duced. A primal-dual interior point to solve the potential problem has been devel- 

oped. The method derives Erom the primal-dual approaches for non-linear program- 

ming. Previous methods to solve the potential problem consider damped Newton 

methods [6l' 19971, and recently primal-dual Newton methods [75, 19991. 

A reserve feasibility search dgorithm derived from 1631 has been presented. Some 
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implementation details of the LR algorithm have been described. Emphasis is given 

to the soIution of the profit maximization subproblems, and to the solution of the 

Newton's system from the IPM to solve the  potentiaI problem. 

Chapter 5 shows that the good convergence characteristics and robustness of the P / C P  

are also present on for the soIution of the UC problern. This allows us to consider the 

IP/CP method as a viable free-of-tuning alternative to obtain stable prices and design 

better pricing alternatives for unit-cornmitment power pool auctions. 



Chapter 5 

Performance Evaluat ion and the 

Unit Cornmitment Power Pool 
Auct ion 

This first part of this chapter presents a numerical evaluation for the performance of the 

IP/CP to solve the UC problem. In Section 5.2. a performance cornparison of the meth- 

ods to solve the dual problem is presented. In Subsection 5.2.1, the robustness of the 

IP/CP method against changes in the initialization of dual variables and changes in the 

bos constraint setting is tested. In S ubsection 5.2.2, the convergence characteristics of the 

prirnal-dual interior-point method to solve the potential problem are illustrated. 

In the second part of the chapter, Section 5.3, the use of the UC mode1 as a real-power 

pool auct ion is analyzed. In Subsection 5.3.1, initial considerations are given. In Subsection 

5.3-2: the non-uniform price setting alternative of Subsection 3.3.4 is extended to the UC 

power pool auction. In Subsection 5.3.3' a numerical evaluation of the deviation of profits 

due to parameter changes is performed. Additional numerical results in Subsection 5.3-4 

compare the non-uniform price setting alternative with average pricing. 

5.1 Evaluation of the IP/CP to Solve the UC Problem 

Four unit cornmitment data sets are used along this chapter. The first system, extracted 

from [57], contains 26 units. The second system is obtained fiom [63]; it contains 32 

generation units. Two other ïarger data sets containing 67 and 101 generations units are 
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generated from the 67 units system. The characteristics of the systems 'are sumrnarized in 

Table 5.1. The detailed parameters for UC - 26 and UC - 32 are presented in AppendLv B. 

Table 5.1: Characteristics of the test systems 

A first group of results deals with the cornparison of the non-differentiable techniques to 

solve the dual problem. 

System 

UC - 26 

5.2 Comparative Performance of Dual Maximization Tech- 

niques 

No. Units hh imum hl axirnum Tot al 

Demand (MW) Demand (MW) Capacity (MW) 

26 1824 2850 3105 

A base wlue for the init ialization of the dual variables Xo = [A:, A:] is ob tained by solving 

a quadratic economic dispatch problern (Subsection 2.2.2) for each time period, considering 

al1 the units with the minimum power output constraint relaxed to zero? p. = O. From the 
-1 

solution to the quadratic economic dispatch problem, the opti~nal dual variable in (2.26) 

is used to set the initial condition for the power demand constraint dual variables, i-e., 

A;' = A*.  The dual variables related to the reserve constraint are d l  set to zero, A:' = O 

The box constraint for the IP/CP method is initialized a t  the base value X = E, where 

the latter is based on following cost measure: 

where e E is a ones vector. Constant E is a measure of the largest possible total startup 

cost, plus total no-load and fuel cost among the units on the system. Such a high value 

represents a "safe" setting of the box constraint. Since dual variables for real and reactive 

power "measure" the rate of change of the objective with respect to changes in demand and 

reserve, the value in (5.1) is never likely to be reached. This value is left fixed in d l  the 

runs to be presented in this section. 

For the PB and SG algorithms, a set of preliminary trial runs is executed for each 



system in order to determine the parameter settings that best perforrn on maxirnizing the 

dual function within a range of 250 iterations. These values are presented in Table 5.2- 

Table 5.2: Parameter set tine: 

In a first set of tests. the dual stopping criterion, (4.35), for the PB and IPICP algorithms 

is set to &J 5 = 10-~- Additionally. a maximum number of 250 iterations for al1 the 

systems, including the SG method, is used to stop the dual mâ,~imization phase. The results 

of these tests are sumin,zrizeci in the first row-block of results in Table 5.3; as can be seen, 

for al1 the cases, the IP/CP method takes around 96 iterstions to reduce the dual gap to 

the stopping criterion (the solution times are in seconds and the objective values in $ 10~).  

Both the SG and PB rnethods ~zre not able to achieve the same objective function values 

before the iteratiori limit is reached. However? the execution tirncs of the IP/CP method 

are alrnost double than those of th SG method. 

Everi though the PB method achieves better objective values than the SG in the first 

two cases, the times required for the solution are much higher. As mentioned in Section 

4.7: the quadratic problem (4.18) is being solved by LOQO, which required the interaction 

between two separate programs this is already considered in Table 5.3 by subtracting the 

timc that has been required to read and write the text files. 

In order to compare under the same objective function achievement, a second test is 

performed for the PB and IP/CP methods using the dual values obtained a t  the last iteration 

of the SG method ~ ! I ~ ~ ( X " ;  that is, the dual maxirnization phase is stopped a t  any iteration 

i when l / lp&li)  3 $ I ~ G ( X ~ )  and 7 ,b lp lCp(~ i )  >. $ S G ( ~ k ) ,  respectively. The results of these 

runs are presented in the second part of Table 5.3. It can be observed in these results that 

the IP/CP method is able to obtain the same dual objective values of the SG algorithm in 

less computation time; this is due to the low number of iterations it takes. The PB method 

achieves better resuks only for the UC - 32 case. 

Figure 5.1 shows the evolution of the dual function for the U C - 104 case and the three 
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Table 5.3: Comparative performance, solrrtion to the dual problem 

U C -  67 1 1 250 419 18021.40 1 46 23 18161.75 

System 

UC-26 

solution methods. As can be seen, the IP/CP method rapidly reaches better dual function 

IP/CP SG 

values as compared to the PB and SG methods. Better dual values can be achieved by 

PB 

Iter. Time ~!JS~(X')  

250 41 7252.24 

the IP/CP rnethod, at the expense of cornputational tirne; however, such values cannot 

be achicved by the PB and SG methods, as observed in Table 5.3. Table 5.4 shows the 

O 1 O 20 30 40 50 60 70 
Iteration k 

Iter. Time $ p e ( ~ ~ )  

250 296 7269.26 

Figure 5- 1: Classic convergence pattern 

Iter. Time $ I P / C P ( ~ k )  

97 '71 7373.00 

results adiieved by the IF/CP method when the stopping criteron is further reduced to 

= 10-~. In the same table: the prima1 and dual objective function values after the 

feasibility searcfi are also presented. The relative compIementarity gap is presented in the 
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last column. The diial objective function values have been furt her irnproved as compared 

to Table 5.3. In d l  the UC: cases, Phase 2 of the LR algorithm takes computationd times 

of less than two seconds. The resenre rcquiren~ent in dI the cases is set to 7% of the system 

dernand. Parameter E, in the reserve feasibility phase is set to 0.005,O-4,0.45 and 0.55 in 

each UC case? respectively 

Table 5-4: Best soliition for each UC case 

5.2.1 Effects of Xnitialization and Box Constraint Setting 

System 

UC - 26 

More than the speed characteristics, its robustness properties have made the IP/CP an 

attractive method for several other applications ,as mentioned in Section 4.3.3, In this 

section, we perfornl several tests to confirm the Iixnited influence that the initialization and 

parameter setting have on the rnethod. In Table 5.5, summarized results of s k  difkrent 

runs of the IP/CP nietliod are presented. In the first three cases, the box constraint is set 

u p  to 1, 4 and 6 tixnes the base value K. In the other three runs: the initid dual vector 

is set to 1/10? I l4  and '2 times the base value Xo. For d l  the cases. the stopping criterion 

Iter. Time $(A? f M) TCS 

230 430.00 7274.1415 7448.45911 '7271.6186 2.43192 

Table 5.5: Effect of box coiistraint and initialization on the IP/CP method 

selected is di> 5 cd = 10-~. As can be  seen, the IP/CP achieves convergence within the 

Parameter 

UC - 26 

Iter A$ 

UC-32 

Iter A.S, 

UC - 67 

Iter A 

UC - 104 

lter Ali, 
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same nurnber of iterations in al1 of the cases, 

5.2.2 P M  Performance in Solving the Potential Problem 

For each test sytem. Figure 5.2 shows the number of iterations v that the primal-dual 

IPM (Section 4.4) requires to solve the potential problen; (PP) a t  each iteration, k, of the 

LR algorithm. I t  is important to  note tliat the number of iterations required to solve the 

LR iteration k 

Figure 5.2: Iterations required to solve the potential problem 

potential problem is sIightly larger in the first few k-iterations of the LR algorithm; this is 

due to the ltlrger size of the Iocalization set -refer to Figure 4.2. After t hese few k-iterations, 

the v-iterations reqiiired by the IP-M to find the analytic center remain fairly constant. The 

low number of iterations required by the IPM method allows the achievement of better 

d u d  function values in reasonabIe coniputational times. These results also confirm the 

robustness of the paranieter setting for the IPM which has not been changed for any of the 

test systerns. 

5.3 Unit Cornmitment as a Power Pool Auction 

Chapters 3 describes the problems t hat arise with the use of discrete models to conduct 

power pool auctioris. The non-existence of an equilibriurn combined with particular pricing 
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rules can bring cod ic t  of interest for the selection of the final schedule. A non-uniform 

price setting alternative, based on dual variables, h a  been shown to diminish the confiict 

of interest when multiple optimal solutions exist under disequilibrium- For t hose sirnplified 

models, the optimal prima1 and dual solutions can be identified. 

Even though LR is a succcsçful technique to solve UC problems, it cannot guarantee 

that an optimal prima1 and dual solution are obtained- Moreover, the identification of 

multiple solutions for such type of non-linear mùced-integer problerns is an impossible task 

in practical terms. Experience indicates that only good near-optimal solutions to the UC 

problems are obtained in most of thc cases. In this section, we investigate the applicability 

of the developed IP/CP rnethod and the use of the non-uniform price setting alternative 

to implement and price real power pool auctions based on our UC modeI. The cmalysis 

performed in this section is orily applied to real power as classically done in most of the 

previous studies that investigate the use of UC models to conduct electricity auctions 18- 

10,12], 

The IP/CP method is able to obtain more stable prices that, combined with the non- 

uniform pricing rule, minirnize t hc conflict of interest t hat arises when multiple near-optimal 

solutions are obtained due to pararneter variation, as identified in [IO] or when multiple 

optimal solutions esists [12]. Thc non-uniform price setting is generalized for the UC mode1 

and compared to a maximuin average cost alternative. A small example and the UC data 

sets are used mainly to present numerical resiilts. 

5.3.1 Introductory Considerations 

The LR algorithrn can be interpreted as a decentralized price-driven auction [Il, 56,63,88]. 

A n  auctioneer proposes a set of prices X~ and the suppliers react to these prices by proposing 

the supply p ( ~ k )  that maximizes their profit for the a v e n  set of prices; that is? the solution 

to sub-problems (4.12). Based on the mismatch between demand and supply, an auctioneer 

increments or decrements the prices until the supply eventually meets the demand, as done 

by a sub-gradient optirnization (4.15). If suppliers respond witli the true values p ( ~ k )  that 

soIve (4.12), and if an equilibrium does not exist: the sub-gradient updating procedure 

perrnanently oscillates since there is no price vector that matches supply and demand. The 

IP/CP met hod can also be interpreted as an auct ioneer; in such a case, the IP/CP proposes 

prices and suppliers respoiid with both p ( ~ k )  and &(A'). The IP/CP rnethod does not 

oscillate if an equilibrium cloes not cxist: however, in a decentralized operation the profits, 

+:(A'), for each proposcd price vector need be known by the auctioneer (the IP/CP). 
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The same situation happens if the UC model is solved in a centralized fashion; a vector 

of equilibrium prices rnay not exist- If it exists: the solution to optimality of the dual 

problem gives an equilibrium price (out of the possible multiple ones, Section 2.1)- Since 

the d u d  UC problem cannot be solved analytically to obtairi these prices, it is desirable 

that the numerical optimization technique be robust enough to approach the optimal dual 

solution. To illustrate this, let us consider the simplifieci linear discrete model of Section 

3.1, and the example in Table 3.1: with results in Table 3.2. When the dernand is pd = 130 

MW: there is no equilibrium price, and the optimal dual variable is 25.78 $/MW. If the SG 
dgorithm i , ~  used to numerically solve the dual problem, it permanently oscillates around 

the solution; the IP/CP method can realiably obtain the dual  optimum, even when different 

parametcr initializations arc selected. 

Figure 5.3 shows the final value of the dual function and dual variable obtained for 

several combinations of parameter n?: the initial dual vector A' and the box constraint 

(shown in Table 5.6). As cari be seen. independently on the parameter initialization, the 

IP/CP method always arrives to the optimal dual solution (in 10 iterations in al1 these 

cases). The SG rnetliod (even with 1000 iterations in this small case) does not obtain the 

optimal dual variable. and arrives to different values for different parameter settings- 

SG SG 

Figure 5.3: SG vs IP/CP method 

When an equilibrium exists, i.e.: pd = 190 MW, in the same Table 3.2, both the IP/CP 

<and the SG rnethods (after parameter tuning) arrive to one of the multiple equilibrium 
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prices. The SG arrives to 26.7448 $/MW1 and the P / C P  to 26.3533 $/MW. The IP/CP 

method arrives to a point "close" to the center (26.265 $/MW) of the flat region in the dual 

function. The numerical solution of the düal protlem does not guarantee that a specific 

dual variable, among the optimal, is found, 

Table 5.6: Difirent initializatiori parameters 

For the UC problem, once the dual problem is solved. a Phase 2 is performed to find 

a prima1 feasible solution frorn p(~k): as obtained in the  last iteration of the dual maxi- 

mization phase. The following simplified heuristics are useci to generate a prima1 feasible 

solution to the real power deniand constraint. 

Algorithm 5.1 Final heuristic 

2. Set t = t + 1: and compute p = and P = xuf~:. IFp 5 pd p, go to Step 5. If - - 
p - > pd, go to Step 3.  If pd > P? go to Step 4- 

3. De-commit units. Accordiiig to the minimum t ime constraints (4.7)-(4-8): determine 

the set of units that can be de-conimitted at period t -  For each of these units V j  E 3, 

evaluate its total cost (4.2) at minimum output: i-e. ct-. Order the units j E 7 
-1 

in the non-decreasing order & 2 4 > - - - 2 c;~,. Dccommit units in the order 

ci 2 &, 3 - - - > & until pd 2 Ciuigi- If t < rn: go back to Step 2; otherwise, go to - 
Step 5 .  

4. Cornmit units. Determine the set of units that can be committed at period t -  For 

each of these units V j  E 3' evaluate its total cost (4.2) at minimum output; i-e. c;. 
Order the units j E 3 in tlie non-increasing cost order < 4 5 - - - $ c [ ~ ~ .  Commit 

units in the order 4 5 d, 5 - - -  < & until 2 p d .  If t < m, go back to Step 2; 

otherwise, go to Step 5. 

5. Economic dispatcli. For each t ,  with al1 the units whose ilf = 1, solve tlie quadratic 

econornic dispatch problem (4.35), using the procedure in Subsection 2.2.2. 
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More elaborate heuristics that include unit de-commitment have been developed in [63] 

and [89]. These heuristics are used to further search for units t.hat can be de-committed and 

result in total cost reduction- For evaluation purposes of the IP/CP and the price setting 

alternative, only the simplified heuristics are considered in tliis section. Addi tionally, the 

initial time conditions of al1 the units are considered so that they can always be sbut down 

at the first period; that is, no unit can force its entry to the auction. 

5.3.2 Price Setting Alternatives 

The maximum average cost rule 

The rnost documented pricing rule for power pool aiictions executed by unit cornmitment 

models is the average cost pricing rule that has been used in the England and \Vales Power 

Pool [4). The price for real power a t  each period is definecl as t h e  System Murginal Price 

(SMP). The SMP is cornputed as the maximum average cost among the  scheduled units. 

It is computed so that al1 scheduled units recover their variable, no-load and start-up costs 

along d l  the periods in the auction [4): 

t t -t pi = (c, - aoi) /pi  other t 

where pi,, is used to denote the SMP, and A denotes the "Table A" periods, which coi-re- 

spond to the high demand periods in the auction. This pricing rule sepcuates the variable 

cost from the no-load and startup-costs. Startup cost is distributed (amortized) on the 

b a i s  of the power output that each unit produces in t hc "Table A" periods. In [go], sev- 

eral alternatives for the distribution of the no-load and start-up costs are analyzed. For 

cornparison purposes, we only consider the alternative where al1 periods in "Table A". 

Non-uniform pricing based on dual variables 

In Subsection 3.3.4, a non-uniform price setting alternative is presented for the simplified 

discrete models. The formulation is extended here for tlie unit cornmitment ariction- The 



total profits for each supplier can be written as  

where A;' iç the dual variable obtained from the dual rnaxirnization phase. Let us define the 

cost not recovered by the dual variables as CNR = & 5 , < 0 ~ I -  Under this non-uniforrn pric- 

ing rule, bidders with negative profits are paid their cost, The amount riecessary to generate 

these revenues is obtrtined by applying a non-uniforrn price for suppliers and consumers, 

The price increments and decrements are given by 

where K has the same meaning as in (3.37); since C NG is very small compared to the total 

profits, it results in 0.5 for al1 tests performed. The cost riot recovered is again distributed 

in the basis of profits. In (5.7): the amount passed to each supplier is distributed in the 

periods with positive profits. 

5.3.3 Deviation of Profits Among Sub-Optimal Solutions Due to Pararn- 
eter Changes 

The unit cornmitment data set with 26-units, UC - 26, is iised throughout this section. Five 

different initializations are considered; the initial dual vector is varied from 0.4,0.6,I.0,1.4 

and 1.8 times the base value A'. The stopping criterion for thc SG algorithm is 250 itera- 

tions, and the stopping criterion for the IP/CP method is ed 1 0 ~ ~ .  

Al1 the runs for the differeut settings result in very acceptable near-optimal prima1 

solutions; this is justified by the small complementarity gaps of the solution after Phase 2: 

as summarized in Table 5.7. In al1 the cases, the relative complementarity gap is below 1%. 

It has to be noticed that the cost not recovered is smaller than the complementarity gap. 



- - 

Parameter 

Setting 

0-4 x XO 

0-6 x x0 
1.0 x x0 
1.4 x XO 

1.8 x XO 

Table 5.7: Complementarity gaps and cost not recovered 

1 

The dual variables obtained by each method in each of the runs are graphically presented 

in Figure 5.4. As noted in the graph, the IP/CP method arrives practically to the same 

dual vector; the SG method arrives to considerable different values, 

Figure 5.4: Dual variables with five different initialkations 

In Figure 5.5, the left-hand side graphs show the mean valiie Ti of the total profit for 

each scheduled unit (10-26). The mean value is computed frorn the five different runs with 

diEerent initial dual vector. The right-hand side plots of the same figure show the standard 

deviation of the profits. In this case, the price is setup using a~~erage pricing (5.2). For both 

cases, when the dual probkrn is solved using the IP/CP and the SG rnethods, considerable 

standard deviation values of the profits are observed. The deviations are more pronounced 

in the case where the SG algorithm is used- 

The same quantities are shown in Figure 5.6, but in this case the price is set by the non- 

uniform pricing rule (5.5)-(5.6)- When the IP/CP method is iised, the standard deviation 

in profits is negligible as cornpared to the SG method. This is due to two factors: (i) the 

dual variables for every run axe quite similar, as seen in Figure 5.4; and (ii) the solutions 

found by Phase 2 differ only on sorne marginal units whose profits result negative: such 

negative profits are set to zero by the  non-uniform pricing rule. which tends to equalize 

the profits in al1 the solutions (see Table 5.8). The situation in these two figures can be 



SG, cr(.j-r;) 
1 I 

Generator no. 

Figure 5.5: Mean and standard deviation of profits, pricing with average cost 

SG, Fi 

1500/ 

Generator no. 

Figure 5.6: Mean and standard deviation of profits, non-uniform pricing 

compared to the results in Tables 3.8 and 3.10. Average pricing worsens the deviation of 

profits for each solution; non-uniform pricing tends to equate the profits of each multiple. 

optimal or ne=-optimal, solution. 

In order to better appreciate the impact of different solutions in the profits of each 
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Figure 5-7: Standar deviation of profits in percent of mean profit and cost 

supplier, Figure 5.7 shows the standard deviation of profits =as a percent of the mean profits. 

In the same figure, the right hand side plots show the standard deviation of profits a 

percent of the mean cost. As can be seen in these last plots, the deviation of profits as 

compared to the cost are considerabie (in the order of 6%) with the SG method: while with 

the P / C P  metliod, the deviations cannot be distinguished. 

In the left-hand side plots, a large deviation in profits for supplier 22 can be seen in the 

IP/CP plot, and two large deviations for suppriers 22 and 23 in the SG plot. Excluding 

these large values for the moment, it can be seen that the deviation of profits for the rest 

of the suppliers is in the order of 20 and 10 % with the SG method; while with the IP/CP, 

these deviations are not present. 

The large deviations in the left-hand side plots correspond to the marginal suppriers (21, 

22, 23); however, these values do not reflect the fact that in most of the alternate solution 

these bidders operate at  zero profits- For these marginal bidders, their cost ci, revenue ri 

and profit ni: for each of the five different runs, are presented in Table 5-5. The values 

are the ones obtained by the IP/C method. As can be seen, except for unit 22 in runs 2, 

4 and 5 ,  al1 the units operate at zero profit. Since unit 22 goes from 0.15 to O profit in 

different runs, the standard deviation results in a value close to the mean. Judging for the 

magnitude of costs and revenues' these large valiles should not represent a concern for the 
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marginal suppliers; refer to the right-hand side plots in Figure 5.7- 

Table 5.8: Cost, revenue and profit of suppliers on the margin 

y Gen. 1 1 2 3 4 5 1 3 a(y) a(7i-)/?jx100 

The results presented in this section show that the IP/CP method is a robust mean to 

compute dual variables as compared to the classic SG algorithm. This. cornbined with the 

non-uniform pricing rule, tends to considerably reduce the deviation of profits among d l  the  

near-optimal solutions. Average pricing =orsens the profit deviat ion arnorig t lie alternate 

solutions. 

5.3.4 Additional Numerical Examples 

Table 5.9 presents the surnmarized results on the application of the non-uniform pricing 

rule for each of the UC cases. The total load payment L P  and total suppliers profits SP 

for each of following price set ting alternatives (denoted by the subscripts) are presented: 

(i) A, pricing with dual variables (ii) pi, non-uniform pricing based on dual variables; and 

(iii) p,,,, pricing with maximum average cost. In the same tabIe. the foliowing information 

is presented: (i) ALPpiIXi the percent increment in load payment necessary t-O cover half of 

the cost not recovered; (ii) -ASPpilx, the percent decrement in suppliers profit necessary 

to cover the other half of CNR; and (iii) ALPhVelpi, dSPpace~pt, the increment in load 

payments and suppliers profits, respectively, if the average pricing is used; these increments 

are computed tcaking non-uniform pricing as the base values. 

I t  can be seen that when the non-uniform pricing mle is used, the total increments 

(decrements) in load-payment (auppliers-profit). necessary to' compensate for the small 

amount of cost not recovered, is negligible as compared to the overall increases in load 



payment and suppliers profits if the price is setup with the average rule (5-2). In the Iatter 

case, the uniform price leads to increases in load payment around 4%, which cari represent 

supplier profit increases above 30 %. 

Figures 5.8 and 5.9 show the dual variables, average prices, non-uniform suppliers and 

load prices, for the UC - 26 and UC - 104 cases. As can be seen, the average pricing rule 

tends to smooth the prices; in the second case, two marginal units can be clearly identified. 

These units set the average price, which causes a global increase in load payment and 

supplier profits; as seen in last column in Table 5.9. 

rcg 1 0.33494 0.60991 0.35750 0.06573 

Table 5.9: Summarized results for large unit cornmitment models 

C N R  1 15.89879 43.32062 63.27989 5.04465 

f 

Iters 1 1'76 159 156 150 

UC -26 UC - 32 UC - 67 UC - 104 
7355.95143 9137.15826 18109.15853 26802.93762 

The cases so far studied in this section deal only with sub-optimal solutions obtained by 

the LR algorithm; multiple optimal solutions can aiso exist but ca~mot be easily identified. 

An interesting srnall example that shows the possibility of multiple optimal soliitions in unit 

cornmitment like potver pool auctions is presented in [12]. Minimum time constraints are 

not considered and the variable startup cost is considered zero. The data  of the problem is 

presented in TabIe 5-10; there are four units and four periods in the auction, with demands 



Dual variables, A 

Non-uniforrn suv~liers price 

Average mice. p,,, 

Non-unifonn Load price, i p, 

Figure 5.8: Prices for UC - 26 

Non-uniform suppliers price - ' r  Psi  

Average price, p,,, 

n 

Non-uniform load price, p, 
I I 

Figure 5.9: Prices for UC - 104 

Table 5-11 presents the prima1 solutions found by Phases 1 and 2 of the LR algorithm; 

the last column presents a multiple optimal solution that cannot be  found by LR. Both 

soIutions are optimal, with prima1 objective function f * = 30801.20 $, and dual objective 

function $' = 30225.92 $. The duality gap is dg = 575.25 $ and the cost not recovered 
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resdts in $ 573.52. The solution obtained in Phase 1 satiçfies the condition p - 5 pd < p, 
in Step 2 of Algorithm 5.1 which drives the algorithm to the economic dispatch phase in 

Step 5. The solution to the economic dispatch results in an optimal solution at  the end of 

Phase 2. However, there is another optirnd solution as denoted in the Iast part of Table 

5.1 1. This solution cannot be obtained by Phase 2 algorithm. 

Table 5.10: Small UC problem with multiple optimal solutions 

i 1 a ~ i  Pi 7i a02 Pi Fi 

Sable 5.11 summarizes the costs, revenues and profits for each unit in each of the alter- 

nate solutions. The second and third row show the revenues and profits if the optimal dual 

variables are used to set the price. The fourth and fifth row show the same quantities but 

applying non-uniforrn pricing. Despite the fact the multiple solution cannot be obtained 

by the LR algorithm, it has to be noticed that either supplier 1 or 4 become marginal in 

one of the solutions and end up with the zero profit; this makes no difference for suppliers 

which solution is selected by the algorithrn- Average pricing, in this case: does not worsen 

the situation since it also results in the same profits for al1 suppliers. 

Table 5.11: Multiple optimal solutions 

5.4 Summary 

t 

This chapter presents a numerical evaluation on the performance of the IP/CP method to 

solve the unit cornmitment and its application as a real power pool auction- The follonring 

Phase 1 Solution 

1 2 3 4 

Phase 2 Solution 

1 2 3 4 

Multiple Solution 

1 2 3 4 



Table 5-12: Pricing the rn 
Phase 2 Solution 

I 2 3 4 

9.00 10916.00 5764.50 14120.70 

0.00 14908.98 9152.66 13547-17 

0.00 3992.98 3388.16 -573.527 

0.00 10910.00 5164.50 14120.70 

0.00 14753.82 9021.21 14120.70 

0.00 3837-82 3256-62 0-00 

dtiple solutions 
Multiple Solution 

remarks are made: 

Even ttiough the IP/CP method h a  a larger per-iteration computational effort, its 

convergence characterist ics are such that it can achieve the same objective functioxi 

values of the SG and PB methods in less total computation time- 

r The principal advantages of the IP/CP stem from its good convergence and robustness 

characteristics. It  does not suffer from parameter tuning and can achieve a very 

tight optimality condition in the solution of the dual problem. The initialization of 

the dual vector and the selection of the box constraint do not alter its convergence 

characterist ics. 

The primal-dual IPM proposed for the solution of the potential problem has shown its 

good convergence characteristics. It requires a fairly constant number of iterations to 

solve the potential problem in each of the L R  iterations. This allows the achievement 

of tight optimality bounds in the d u d  maximization phase within reasonable times 

(seconds to few minutes). 

The robustness of the IP/CP method allows the computation of dual variables tha t  are 

very stable to parameter changes. Even though the SG met hod can ob tain comparable 

solutions in terms of complementari ty gaps, the dual vectors it generates considerably 

changes wit h parameter variations. 

The non-uniform pricing alternative based on dual variables obtained from the IP/CP 

met hod reduces the conflict of interest when multiple near-optimal solutions exists. 

The average pricing al ternative furt her emphasizes the profit variations. For large UC 



problems, the non-uniform price set ting alternative tends to avoid the overall increases 

in load payment and suppliers profits. 

Although the LR aigorithm c m  find good near-optimal solutions in most of the prac- 

t ical cases, it cannot identify multiple optimal soh t  ions. Multiple optimal solutions, 

given a pricing rule, can represent cod ic t  of interest - In such situations, the conflicts 

can be diminished with the use of the non-uniform pricing alternative. 



Chapter 6 

A DC Network-Constrained 

Clearing System 

This chap ter presents a network-constrained clearing system t hat corresponds t O hybrid 

market structures. In this type of structures, central dispatch is perforrned to implement 

the primary market. At the same time, a direct current (DC) representation of transmission 

network is included. Even though unit cornmitment decisions are not specified by suppliers, 

certain type of teniporal operative lirnits are expressed in the bids- An actual market that 

performs this type of network or security-constrained market cleariug is New Zealand [30, 

19SS]. Recently, the proposai for the Mexican market [31, 19991 and a second stage in the 

market for Ontario [32, 19981 consider this type of market model. 

The inclusion of a DC representation of the transmission network h a ,  the intention to 

consider real power flow transmission limits and generate locational prices for power that 

give price signaIs for the correct expansion of generation and transmission. Locational or 

nodal prices are used in some market designs as the basis for transmission pricing [29]. The 

inclusion and pricing of other security aspects, such as voltage and frequency support is 

usually left outside the main power pool auction [2]. 

Classic power dispatch problems that contain temporal constraints: Le., dynamic eco- 

nomic dispatch, have been solved by a number of methods, among them, the Simplex 

method [91], Lagrangian relaxation [92] and gradient projection methods [93J. Irisarri et 

al. [94, 19981 present the first application of an interior point method for quadratic program- 

ming to solve a dynamic econornic dispatch problem. Interior point methods have proven 

to be suitable for the solution of several classic power systems problems; among them, 



constrained-economic dispatch? op t i m d  power flows and hydro-t hermal coordinat ion [95]. 

Developments t hat include rnodeling considerat ions to refiect specific effects of deregu- 

lation in dispatch probkms axe varied. Dekrajangpetch and G.B. Sheblé [96, 20001 present 

an affine-scaling interior point method to implement a one-hour transmission-constrained 

auction with bids for supply and demand of real power. Fahd et al. [97, 19921 present 

a model for the implementation of brokerage systems using l inea  programming. Ferrero 

and Shahidehpour [98, 19961 [99, 19971 present formulations of dynamic economic dispatch 

problems to evaluate import and export transactions. 

Models that deal with daily electricity markets in hybrid designs have simultarieously 

appeared recently. Madrigal and Quintana [100, 19981 [101, 19991 present a model for a 

daily market for power and spinning reserve. The model includes supply and demand bids 

and a direct cunent (DC) model for the transmission system; the probIem is solved using 

a primal-dual interior point method. Alvey et al- [30, 19981 present a sirnilar development 

for the New Zeahnd market, including outage constraints and mu1tipIe bid segments. 

In tliis chapter, a network-constrained clearing-system for a daily market for power and 

spinning reserve is presented- The model is related to hybrid structures where the market 

operator also considers a D C  transmission network model and allows the specification of 

operative limits such as ramp and energy constrains- Additionally to oiir previous models, 

it includes bilateral contracts and the model is solved by an interior point method taking 

advantage of the special structure of the Newton's system. The model is described in Section 

6.1, and its solution in Section 6.2; numerical results on the experimental impiementation 

are prese~ited in Section 6.3- 

6.1 The Clearing System Mode1 

The model considers a daily market for power and spinning reserve, where: (i) n, suppliers 

submit offers for power and spinning-reserve; (ii) n, consumers bid to purchase power; (iii) 

n b  bilateral contracts submit schedules with incremental and decremental price information; 

and (iv) a DC transmission net-work model is included. The Clearing System (CS) can be 

formulated as the problem 



The objective function in (6.1) defines a benefit mauvirnization over the m periods of the 

market session, Le., in a daily market, m = 24. The maximization is subject to: (i) Suppliers 

constraints specifications, hs; (ii) consumers constraints specifications, hc; (iii) a bilateral 

contract s model, hs ; and (iii) system and transmission network cons traints, g. The solut ion 

to CS gives the schediile decisions for suppliers, consumers and, if necessq ,  the revised 

schedules for bilateral contracts. At the same tirne, in this type of market structues, the 

dual variables that are provided by the model are used for locational pricing and pricing of 

transmission services. Each of the components is described next- 

6.1.1 Suppliers Model 

Suppliers submit bids for power and spinning reserve supply dong with the amounts offered 

and the operative liniits. Suppliers' bid information is summarized by: (i) The offer price 

(S/MUrh) for power @ and spinning reserve $, for al1 t = 1: - - - m; (ii) combined (power 

pi and spinning-reserve r:) maximum output pl; (iii) up, x@, and down, &, ramp rates; 

(iv) maximum energy supply in the trading day ëp;; and (v) the node in the system, Le., z, 

where the power is injected- 

In the objective function (6.l), the supplïers component is given by 

which corresponds to total cost minirnization. as given by the prices for power and spin- 

ning reserve. Maximum output, ramp rates and maximum energy supply are described, 

respectively, by the following equations: 

Constraints (6-3)-(6.6) define the set hs in (6.1). This set can be transformed into equality 

constraints by adding appropriate slack variables. 

The contribution of suppliers to nodal power injection at node z of the transmission 

network is denoted as Pt, and is given by 

where the i f z defines al1 suppliers i whose connection node to the network is z. 



6.1-2 Consumers Model 

Consumers submit bids for demand of real power containing: (i) The arnount of power 

required 3 from whicli %% is dispatchable-load (curtailable-load) and (1 - vj)% is non- 

dispatchable (non-curtailable); (ii) the price $ the consumer is willing to pay for the 

dispatchable-load; and (iii) the network node a t  which the load is to be withdrawn- Con- 

surners part, fc, in the CS objective function is given by 

The component hc, in (6.1), is given by 

At any node z, the total power withdrawn, by al1 consumers connected to it: is given by 

D z = ~ j E z ( ( l - T j ) d ~ + d ~ )  V t  (6.10) 

The signs in the objective function componcnts (6.2) and (6.8) define a benefit maximization 

problem; suppliers with lower prices are used and loads with higher bid prices are served. 

6.1.3 Bilateral Contracts Model 

Bilateral contracts for power are represented by three components: (i) a schedule of houi-Iy 

transaction power amounts that have been agreed between a bilateral-seller, v, and bilateral- 

buyer, ü: 6: = G; (ii) A schedule-percentage incremenfal; that is, a percentage of the 

schedule the seller is able to sel1 to the market at bid price 23,; (iii) a schedule-percentage 

decremental; that is, a percentage of the schedule the seller will not produce but buy from 
-U 

the market at bid price v:; and (iv) the seller and buyer connection nodes to the network: 

z and 2, respectively. The last part of the objective function, in the CS, is 

At any node z, the nodal power injection from bilateral contracts is given by 

Tz = C,,==(b: + d b :  - ~ b : )  - CYEzgI VZ (6-12) 

The incremental and decrernental quanti ties are limi ted by the following constraints: 

Vu, Vt (6-13) 

Vv: Vt  (6.14) 



Constraints (6.13) and (6.14) define the set hB in (6.1). With this model, bilateral-buyers 

always get their schedule satisfied; the sellers satisfy the schedule totdly with their own 

power or with components Vbf, from the market. This provides the hedging mechanism 

for contracts dealt as  contracts by diflerences. In this type of contracts, if the selling price 

of the contract (only known among seller and buyer) is above the market price, the buyer 

pays the difference; if the market price is below the contract price, the seller reimburses the 

difference. 

6.1.4 Network and System Constraints 

The system nodal real power balance is expressed in terms of a direct current (DC) model of 

the electrical network [3]. Taking into account the individual effect of suppliers, consumers 

and bilateral contracts. the power balance equation for each node r is given by 

In (6.15): the contributions of suppliers, bilateral transactions and consumers are given by 

(6.7): (6.12) and (6.lO), respectively; B= is the z-th row of the suscepttance matrix B and 

at is the vector of nodal voltage angles. Nodal voltage angles are free variables that can be 

handled by adding the artificial bounds - 2 ~  5 ;Si < 27r for al1 nodes (T = 3-141516), except 

a reference 61 = 0. 

Real powr-flow transmission-line limits are expressed by the set of constraints 

where X is the reactance matrix of the transmission lines [3]. The rnâ,uimurn allowable real 

power flow on the transmission Iines is denoted by 4. The amount of spinning reserve to be 

acquired from suppliers has to satisfy a systern requirement defined by that is, 

The set of network and system constraints g, in (6.1), is given by (6.15), (6.16) and (6.17). 

6.2 Solution by an Interior Point Method 

As defined in the previous section, the CS (6.1) is a large and sparse linear programming 

problem. The large dimension stems from the time-dependent constraints and the inclusion 



o f a  network mode1 on it. The CS problem is solved using the primal-dual infeasible-interior- 

point (PDIIPM) algorithm by Kojima et al. [102]; the derivation is briefly described dong  

with the  specid structure of the CS problem. 

Including the necessary slack variables. the problem (6.1) can be transformed into the 

standard (primai) linear programrning problem, 

min {cTx 1 Ax = b, x > O} (6.18) 

- - 
where x and c E Rz; b and y E RE3"'. The constraint matrix, A E IRnxm, has the folIowing 

structure 

where blocks A{s contain constraints that only relate variables a t  time t in the CS: that is, 

al1 constraints excep t ramp (6.5)- (6.4) and the energy (6.6) constraints, wliich are included 

in the Iast row of A in sub-matrices Bt's. The special structure of A can be preserved in 

the Newton's system. The dual problem to (6.18) is given by 

And i ts  associateci barrier-Lagrangian by 

where > > - - - > pO" = O is the barrier parameter and k the iteration index. The 

sequence of stationary points {x (,UV ): z (,xk)} to (6.21) define the central trajectory 

that converges to a solution of the original problern (6.20). Starting Erom an initial point, 

xk > 0, zk > O. the PDIIPM generates a series of points of the form: 

where the search directions Px, Ay and Ar  are computed using a one-step Newton's 

iteratiori that rnoves the current point towards the solution of the first-order necessary 



optimality conditions for (6-21): given by 

r d  = c - A ~ ~ - ~  = O  

rp  = b - A x  = O  (6-23) 
k r, = p  e -XZe  = O  

where X = Diag(x): Z = Diag(z) and e is a vector of ones. A first-order Taylor linearization 

of the optimality conditions (6.23) leads to the Newton's system whose solution provides 

the x- and y-search directions. 

(-A2 
where D-* = Z-'X is also diagonal: 

z-search direction is computed by 

f, = X - L r ,  - r d  and f y  = -rp.  From (6.23): the 

The step lengths a!, a; and a: in (6.22) are cornputed so that the new point remains 

strictty interior. That is, 

The barrier pararneter is reduced using 

Typical values for the safety factor and barrier pararneter are e = 0.99995 and cr = 0.2, 

respectively [76]. The algorit hm is stopped when the following criteria are satisfied: 

6-2.1 Solution to the Newton's System 

If variables x and y are partitioned CU follows: 



The structure of the Newton's system (6-24) can be rewritten as 

where At = [ A d ,  dytIT, ft = [f:, f:lT, and 

The solution to the system (6.32) can be accomplished by factoring only the matrices wt's 
and one with the dimension of B O .  The recognition of the special structure of the Newton's 

system has also been used in 21031 for a hydro-thermal coordination problem and in [94] 

for a dynamic economic dispatch problern, Performing a block elimination in (6.321, the 

folloiving systern of equations for the solution of A' is obtained: 

Bo& = f0 (6.34) 

where 

BO = Bo - xtÉrtBt (6.35) 

j0 = f O - z t & j t  (6.36) 

Matrices B~ and vector f t  are the solution to 

wtBt = g- Vt (6.37) 

wtjL = f Vt (6.38) 

The solution for each At is given b y  
t = j - - & P O  Vt  (6.39) 

The solution of al1 the variables only requires the factorization of the m matrices Wt7s and 

the matrix Bo in (6.34). 

6.3 Numerical Examples 

The mode1 and solution approach to the CS have been experirnentally implcmented using 

MATLAB. The sparsity features of MATLAB are used throughout the irnplementation, and 

in the special solution of the Newton's system. Tests runs are performed on a 200hIz PC, 
running on L r ~ u x  operative systern. 



6.3-1 Illustrative Small System 

The test system is shown in Figure 6.11 the related data in Table 6.1. It is assumed 

that consumers submit only dispatchable loads for one trading period (m = l), and that 

the incremental and decremental percent for the bilateral contracts are 5 = E = 0.5, with - 
their respective prices shown in Table 6.1. AI1 units are in MW and $/MWh. The system 

reserve requirement is r = 5 MW. Transmission lines reactances are 221 = 0.04, 523  = 0.02, 

and x31 = 0.04, al1 in p.u. of 100 MW- In Figure 6.1, the Ieft node is 1: the right is 2 

and bottom is 3. The dual mriables to the real power balance constraint (6.15) are used 

to define the nodal prices and are shown a t  each node in Figure 6.1. The price in al1 the 

nodes rcsults in 20 $/MWh. Since there is no congestion, this result can also be found by a 

simple ordering of the bids or1 the supply and demand side- The bilateral schedule, denoted 

by the thick arrows, remains unchanged. The price for spinning reserve is 4 $MW/h and is 

being provided by suppIier 2. The resulting nodal angles are 6 = [0,0.02411 0.01601' (rad). 

Table 6.1: Smail test system data 

In a second case, the offer price of supplier 2 is reduced fkom 20 to 12 $ / M W ;  the new 

resiilts are shown in Figure 6.2. Since the new price for power goes down to 12 $/MWh, and 

the price for the decremenial schedule subrnitted by the bilateral is 15, the bilateral-seller 

gets 5 MW from the market and: therefore, its schedule is adjusted to 5 MW. The price for 

spinning reserve stills is 4 S/MWh but is now provided by supplier 1, which has reached its 

maximum conlbined power and reserve output- 

Suppliers 

1 

2 

Bilaterals 

Let us now assume that the transmission lirnit on Iine 2- 3 is 5 MW. The results for this 

case are sliown in Figure 6.3. Due to corigestion, nodal prices are different in the system; 

the bilateral contract rcacts to the congestion prices and no longer can take 5 MW from the 

market. The spinning-reserve price is again 4 $/MWh and is produced by supplier 2. In 

0 r F 
io.0 2.0 20.0 

30 1.0 10.0 

6 Y T 



Figure 6.1: Results first case 

Figure 6.2: Resdts witli lower prices 

al1 these cases, the PDIIPM takes 14 iterations to find the optimal solution. The stopping 

criterion is E = 10-~': the initial condition for al1 variables is set to 1.0. 

6.3.2 14-Consumer, 7-SuppIier, 2-Bilateral Case 

For this simulation, the classic ZEEE 14-node system is used to represent the transmission 

network [104]. It  is assumed that there is a consumer that submits bids for power at every 

node. Prices submitted by consumers for the 14 hours are decreasing as the node index 

increases, and Vary in time. There are 7 suppliers submitting offers for power and spinning 

reserve located at nodes 1, 2, 4, 6? 9, 11 and 13: the offered prices are time varying. In the 

same system, t here are 2 bilateral contracts, with seller nodes 3, 2, and respective consumer 

nodes 10 and 6 .  Two different simulations are perforrned with this system. In the first case, 



Figure 6-3: Results with transmission constraints 

1 2 3 4 5 6 7  
Energy from cach suplier 

. . 
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Real power prices 

O 
O 5 10 15 20 25 

Spinning reserve prices 

Figure 6.4: Results without congestion 

ail maximum transmission limits are assumed 60 !VIT&-. Some of the results obtained by t h e  

CS are summarized in Figure 6.4: al1 values are in per unit of 100 MW, 

In the first graph of Figure 6.4, the total energy purchased from every supplier is pre- 

sented; the energy limit on supplier 5: 2000 MW, has been reached. The real power 0ows of 

some of the transmission lines (coiiriecting nodes 2-3, 4-3, 9-7 and 11-10) in the system axe 

shown in the second graph of tlie same figure. Since there is no congestion on the  system 

the nodal prices for power are equal in al1 tlie nodes (1 to 14) on t h e  system, as can be seen 
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in the third graph. Both the prices for real power and spinning reserve (Iast graph) Vary 

during the day according to the demand behavior. 

1 2 3 . 1 5 6 7  
Energy from each suplier 

O 5 10 15 20 25 
Real power prices 

Figure 6.5: Resiilts with congestion, part A 

In a second simulation case, ma.xirnunl transmission Iirnits are reduced to 35 MW and 

the new results are as shown in Figure 6.5. Congestion (in lines connecting nodes 2-3, 4-3. 

9-7 and 11-10) is cIectsly seen in the second graph of Figure 6.5: specially during high load 

periods. The supply from 6 and 7 considerably changes. as seen in the first graph of the 

same figure. Nodal prices increase and take different values in each node of the system 

due to the congestion; these prices for riodes 3, 8 are presented in the tliird graph. In 

the last graph it can be seen that the spinning reserve prices slightly change during the 

congestion periods. For this simulation case ('as seen in the first gi-aph of Figure 6.6) not 

ail the requested demand is served due to the congestion; parts of the load are not served. 

The supply/dernand curve for hour 18 is shown in the third graph of the same figure; as can 

be seen, enough supply euists for that loading condition at a price of 13 %/MWh: however, 

the congestion does not allow the suppiy to be transmitted, which Ieads to prices above 18 

$/MWh. In the second graph, the scliedules for both bilateral contracts are shown; one of 

which is not rescheduled and the other is incrernented. T h e  increments happen when the 

price is above 15 $/MWh which correspond to its incremental bid price d i  = 15. The extra 

power produced by that bilateral-seller is transmitted to feed some Ioad. In the  last graph 



of Figure 6.6, for consumers a t  nodes 3 and 8, a t  time t = 18, each bar represcnts: the 

requested load. the served load, the submitted bid price and the nodal price, respectiveiy- 

As can be seen, at t hese nodes wit h higher prices. the ioad is not fully served- The sarne 

O 5 10 15 20 25 
Requested and supplied power 

J 
O 5 10 15 20 25 

Bilateral schedules 

1 2 
Requested and semed quantities 

Figure 6-6: Results with congestion, part B 

initialkation and stopping criteria of the last example haven been used. In the last case, 

the time required by the PDIIPM is 24.5 seconds and 17 iterations if the Newton's system 

is solved block-wise. If the Newton's system is solved without taking into account its block 

structure, the time required is 34.35 seconds and 25 iterations. The difference in iterations is 

explained by the larger substitution round-off error when solving the full system. Since the 

sparsity is exploited in both cases: the solution times are comparable. Even for this small 

case, the dimension of W is 3878 x 3878 and the dimension of the blocks wt is 147 x 147; 

see Figure 6.7. 

6.4 Summary 

A mode1 and solution approach to a network-constrained clearing-system for a daily market 

for power and spinning reserve hm been proposed in tliis chapter. The mode1 is related to 

new hybrid types of market designs such as the proposed structure for the market in Mexico 

and the proposed esterisions for the Ontario market. Bidders specify operative limits in 



Figure 6.7: Newton's systern matrix W 

their bids but the unit conimitment decisions are not made by the market operator. A DC 

transmission mode1 is included in the market clearing to consider rea! power transmission 

flow limits. The following remarks are made: 

Few models and solution approaches have recently appeared for this specific type of 

problems- Related work includes an interior point for dynamic economic dispatch [94, 

19981; a netrvork-constrained one-hour auction witli bids for supply and demand, 

solved by an affine-scaling interior point [96. 20001. And [30, 199S], a daily market for 

power and spinning reserve related to the New ZeaIand market. 

Our model considers: (i) Offers for power and spinning reserve with ramp and energy 

constraints; (ii) bids for the demand of power; (iii) bilateral contracts with incremental 

and decremental prices to reflect contracts by differences; (iv) a DC transmission 

model for the transmission system. 

The use of PDIIPM for the clearing system problem is presented; the special structure 

of the restrictions matriv is exported to the Newton's system which allows a more 

eEcient solution. 

Numericd results on small problems show the validity of the model and the proposeci 

solution approach. Its implernentation on a largescale basis and other extensions are 

recommended in the conclusions chapter. 



Chapter 7 

Conclusions 

Summary and Contributions 

Optimization tools have long been used to successfully help on the operation and planning 

of classic vertically integrated power systems: the use of optimization tools in electricity 

markets is st  il1 undergoing a development phase. The experiences from the first electricity 

markets in the world and the fast deveiopment of new structures. has created the need to 

review, and propose new rnodeIs and techniques for the efficient implementation and pricing 

of electricity markets. 

This thesis elaborates on the use and development of optirnization models and tech- 

niques for implementation, and pricing of electricity markets. Observations and mathemat- 

ical derivations that provide more insight into the use of optimization modeIs for electricity 

markets are presented; new models, soIution approaches and pricing alternatives are dis- 

cussed. The conclusions and contributions of this research are as follows. 

In Chapter 2, a generic cost-minimization power pool auction mode1 is described. Using 

Lagrangian duality. the conditions for the existence of an cquilibrium are presented. As 

illustrative examples, simplified continuous models tùat represent a standard auction and a 

quadratic economic dispat ch pro blern are presented. For bot 11 rnodels, closed form solutions 

are presented. The main contribution in this chapter are 

The conditions for the existence of an equilibrium in production economies are very 

well known. However, as far as we arc aware, their derivation and, more importantly, 

its interpretation in the context of a power pool auction driven by a centrd cost- 



minimization model, have not been presented elsewhere. 

The dual formulation of the linear and quadratic rnodels allou-s the solution of both 

prima1 and dual  problems in a closed form. The simplified quadratic economic dispatch 

problem h a .  been around for more than forty ye~zrs, and is a component in many 

power system optimization applications. Its solution hcls dways been carried out by 

a number of iterative methods; in this research work, a direct solution approach is 

presented [41, 2000]. 

In Chapter 3, two simplified discrete rnodels for power pool auctions are studied: the 

rnodels are introduced with the intention to provide more insight on the consequences of 

disequilibrium and different pricing rules for unit-cornmitnient like power pool auctions- 

The contributions made in this chaptcr are as follows: 

Direct solution approaches for the dual problems, and the application of an enumer- 

ative Branch-and-Bound algorithm to find multiple solutions to the prima1 problem- 

The non-existence of an equilibriurn and its effect on different pricing alternatives are 

presented through numerical examples. It is shown that average pricing and price 

minimization worsens the conflict of interest t liat arises when multiple solutions exist. 

A mathematical derivat ion shows t hat , under disequilibrium, dual variables used as 

prices do not recover a cost amoirnt that is bounded above by the duality gap. Based 

on this observation, a non-uniform price setting alternative using dual variables is 

proposed. 

The non-uniform price setting alternative is simple, avoids the price spikes that can 

easily happen with average pricing, and shows that it reduces the conflict of interest 

when multiple solutions exist. 

In Chapter 4, a unit cornmitment model and its solution by Lagrangian relaxation 

is presented. Lagrangian relaxation is the most accepted ~iurnerical-optimization based 

approach to solve UC problem. The major computational effort on solving UC problems is 

the dual maximization phase  in this respect the contributions made are: 

The application of an interior-point/cut ting-plane (IP/CP) method to solve the dual 

unit commitment problem. Even though IP/CP methods have recently been used 

to solve other engineering applications, they have not been explored before in power 



scheduling applications [82, 20001. The IP/CP has two major advantages over pre- 

vious approaches: (i) it has better convergence characteristics; and (ii) it is a robust 

algorithm that is not affected by parameter tuning, <as other approaches. 

The interior-point/cutting-plane niethod requires the solution of a potential problem, 

for which an infeasible primal-dual interior-point method is devcloped. Implementa- 

tion details of the IP/CP method are also described. 

In Cliapter 5, a numerical evaluation of the performance of the IP/CP met hod to solve 

the unit commitment problem is presented. In the sarne chapter, we study the application 

of the P / C P  to execute unit cornmitment real power pool auctions. With respect to the 

characteristics of the IP/CP method the foIlowing rernarks are made: 

The P / C P  method has better convergence characteristics than the previous ap- 

proaches such as sub-gradient and penalty-bundle methods. Everi though its per- 

iteration computationaI effort is higher, i t  requires far less iterations to achievc good 

duaI objective function values, 

The IP/CP method can achieve tight optimality bounds in the solution of the dual 

problem. The tests performed show that the convergence cliaracteristics of the IP/CP 

are not affected by the initialization of the d u d  vector or the selection cjf the bos 

constraint; the rnethod is problem independet. 

The prima1 diial interior point method to solve the potential problem has d s o  stable 

convergence characteristics. The nurnber of iterations it reqiiires to solve the potent ial 

problem remains fairly constant after few iterations of the LR algorithm. 

With respect to the use of the UC and fP/CP as a real power pool auction, the following 

remarks and contributions are made: 

The use of average pricing worsens the cod ic t  of interest that can arise from the 

existence of multiple solutions. If the sub-gradient method is used to solve the dual 

problem and obtain prices, the deviation in profit is further emphasizecf. 

0 The numerical results show that the robustness characteristics of the IP/CP method, 

combined with the proposed non-uniforrn price setting alternative for the UC modeIl 

diminishes the conflict of interest that can mise from the existence of near-optimal 

solutions. 



The non-unifom price setting alternative, as compared to average pricing, avoids the 

overall increases in consumer payments and suppliers profit . 

In Chapter 6, a model for a daily market clearing for power and spinning reserve is 

presented- The model is related to recently developed hybrid market structures where unit 

commitment decisions are left to the suppliers but some operative lirnits are allowed to be 

specified. Few developments have treated on the solution of this new type of models [96, 

20001 [30, 19981 [1011 19991. The conclusions an contributions in this chapter are 

A model for the daily market clearing system that includes: ( i )  bids for supply of 

power and spinning reserve with temporal limits; (ii) bids for power demand; (iii) 

bilateral contracts; and (iv) a direct current model for the transmission network- 

The use of a primal dual interior point method for its solution is proposed- The special 

structure of the constraint matrix is exploited in the solution of the Newton% system. 

Although the implemented presented is at an experimental level, the results on two 

small systems show the validity of the models and solution approach- 

7.2 Research Recornrnendations 

7.2.1 O n  Simplified Discrete Models for Power Pool Auctions 

The inclusion of elastic demand (demand side bidding) in discrete models for power 

pool auction is recommended. Although dernand side bidding has been included in 

unit commitment models [105: 19991, its implications on the existence of equilibrium 

and price set ting alternatives should be investigated. 

Semidefinite programming is an  evolving research field on the mathematical program- 

ming arena- Semidefinite programming can be applied to solve combinatorid prob- 

lems [106, 19961. Initial research bas been conducted on the solution of discrete power 

diçpatch problem [BO, 19991. The evolution of semidefinite programming optimization 

may provide reliab1e solution approaches to discrete power dispatch problems. 

The non-uniform price setting alternative that h a  been proposed can be cornpared 

with (non-linear) two-part tariEs used in regulated indristries [l 071. Two part tariffs, 

are said to be Pareto-improving iI" they do not tend to favor a specific customer, 

which, by analow, we observe in Our simulations. Related pricing alternatives: such 



as Ramsey pricing which requires the addition of revenue constraints in the cost 

minimization models, are recommended to be studied. 

Any non-uniforrn price setting alternative may always be controversial [2]. Whenever 

equilibriurn prices and schedules are not found, the alternatives have to be designed 

so that they give good global results [108]- The investigation of alternative ways to 

handle the cost not recovered should be investigated. Even t hough set tlement systems 

are not considered market-oriented approaches [Z], they represent an alternative, 

A recent study for the California P X  [log, 19991 presents an evaluation on the irn- 

plementation feasibility of a multi-round simple-bids auction (iterative bidding); one 

of the motives for such a study is that rnuti-round bidding would give small gener- 

ators more Aexibility to design strategies to recover their startup and no-load costs 

through the simple-bids auction. Simplified discrete models with linear and constant 

startup cost (as presented in Chapter 3) could be an alternative for the sanie pur- 

pose. In [110, 20001, a combinatorial mode1 for one of the ancillary services market 

in Cdifornia is shown to avoid price spikes that recently appeared in such markets: 

however, complete enurneration is the obstacle to irnplement such an auction. The 

use of dual variables and alternative solution algorithms (Le., Branch-and-Bound) in 

ancillary services markets should be investigated. 

7.2.2 Unit Cornmitment Models and the IP/CP Method 

Further improvements can be made to the P / C P  method to speed up its performcmce 

[69, 19991 : (i) the efficient removal of cuts; as the LR iterations proceed, rediindant 

cuts can be removed from the localization set which reduces the size of the potential 

problem; (ii) generation of multiple and deep cuts; at each iteration, more than one cut 

or deeper cuts are added to the localization set, consequently, it can faster shrink to the 

optimal solution. It  is recommended to study if these improvements can furt her speed 

up the implementation of the IP/CP to solve the UC problem or other scheduling 

applications. 

Solving transmission-constrained unit cornmitment problems by L R  requires the so- 

lution to m optimal power flow problems a t  each iteration [53]. The low nuniber of 

iterations required by the IP/CP method to achieve good clual function values can con- 

siderably reduce the total computation effort to solve t his type of problems. Any ot her 

scheduling application solved by LR can benefit from the IPICP method. Follow- 



ing our derivation, applications to hydro-thermal coordination [11L, 20001 and inter- 

utilities power-exchange coordination problems [112, 20001 have recently appeared. 

In order to study reserve pricing alternatives, the inclusion of a cost component that 

is directly related to the power reserve is recommended. Phase 2 algorithms that do 

not rely on dual variables modification need be investigated for this purpose. -4t the 

same tirne, pre-processing algorithms that can identfi multiple solutions are ais0 of 

interest. 

7.2.3 Security-Constrained Clearing Systems and Interior Point Methods 

Mehrotra's predictor-corrector algorithm is one of the most successful interior point 

methods implemented in differnt software codes [76]. The largescale irnplernentation 

of the predictor-corrector algorit hm exploiting the special structure of the Newton's 

should be pursued in order to generate large scale tools for the analysis of market 

behavior. 

Infeasibilïty detection in network-constrained clearing systems c m  be of importance 

under high loading conditions- Although some work has bee done in this respect for a 

network-constrained auction using an affine-scaling method [96, 20001, wc recommend 

the investigation of homogeneous self-dual interior point formulations to detect infea- 

sibility in daily clearing systems. Homogeneous self-dual met hods have comparable 

performance to prima1 dual methods [16]. 

Develop quantitative studies on the effects that numeric format precision and different 

stopping criteria have over the final prices and scheddes deterrnined by the clearing 

system- The extent of such effects has not been thoroughly analyzed or quantified- 

Related work should include the effects of restoring to an optimal basis after the 

interior-point termination [76] and detection of multiple dual solutions. Some work 

has been done in this direction [96, 20001. 

The clearing system models can be extended to include ot  her different types of reserves 

that can be defined as separated ancillary services and security Iimits. This involves 

the inclusion of non-linear network models in this type of market clearing models. 



7-2-4 Optimization Models for Power Pool Auctions and Market Power 

The use of d u d  variables for pricing in unit cornmitment modeIs is recently being con- 

sidered by other works. In [88, 19991, the authors outline the possibility of including 

revenue adequacy constraints in a decentralized pool dispatch model. A yct unpub- 

lished manuscript [1l3, 2000J investigates on the use of cutting plane approachcs to 

solve unit cornmitment problems and generate dual variables for pricing purposes. 

Other forms of coordination and price setting alternatives can still be investigated. 

Although the study of strategic behavior does not used to lie directly on the electrical 

engineering or power engineering field, the theoretical study of auctions to detect 

garning that can lead to market power in electricity markets should be pursued- The 

theoretical study of combinatorid auctions is still in its initial developrnent phase 

[Il, 1141; and few developments have been made in that direction with respect to 

power pool auctions [271 20001 [25, 19991. Other experimental o r  gamet  heoretical 

approaches can also be used [36]. Data mining techniques could also help to describe 

behavioral patterns of participants in an electricity auction [ll5]. 
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Appendix A 

Some Properties of 

Non-Differentiable Functions 

The sub-different ial of a function f (x) : Rm -+ IR, is is defined as the set 

Where f O ( z ?  v )  is the generalized directional derivative of f at x in the  direction of u 

Each element of the sub-differential, E Rm, is called a sub-gradient- If f is concave then 

the sub-differential is sirnpIy given by 

Let f i  (x), . . . : f, ( x )  be a set of functions fi(=) : I R P  + R and ki any scalars, then 

This  is, al1 the sub-gradients of ûCiki fi(=) are contained in C,k$fi(~).  



Appendix B 

Unit Cornmitment Data Sets 

Table B.1: 26 Units sytem, load data 
t 

Table B.2: 32 Units dytem, load data 

1 2 3 4 5 6 1 8 
- 

t 

p ( 1 )  
t 

p ( 1 )  
t 

pi(kI?V) 

1 2 3 4 5 6 7 8 

1524.00 1710.00 1653.00 1596.00 1596.00 1653.00 1824.00 2166.00 

9 10 Il 12 13 14 15 16 

2419.50 2707-50 2821.50 2550.00 2821.50 2850.00 2850.00 2764.50 

17 18 19 20 21 22 2 3 24 

2736.00 2736.00 2650.50 2622.00 2622.00 2650.50 2479-50 2052.00 



Pi Pi 
(MW) (MW) 



Pi Pi 
(hliV) (MW) 

Gts system, generators data 
soi Pi -tt 

($1 ($/MW) ($/MW2) 




