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Abstract

Vertically integrated electric power systems extensively use optimization models and solu-
tion techniques to guide their optimal operation and planning. The advent of electric power
systems re-structuring has created needs for new optimization tools and the revision of the

inherited ones from the vertical integration era into the market environment.

This thesis presents further developments on the use of optimization models and tech-
niques for implementation and pricing of primary electricity markets. New models, solution
approaches, and price setting alternatives are proposed. Three different modeling groups
are studied. The first modeling group considers simplified continuous and discrete models
for power pool auctions driven by central-cost minimization. The direct solution of the
dual problems, and the use of a Branch-and-Bound algorithm to solve the primal, allows
to identify the effects of disequilibrium and different price setting alternatives over the ex-
istence of multiple solutions. It is shown that particular pricing rules worsen the conflict
of interest that arise when multiple solutions exists under disequilibrium. A price-setting
alternative based on dual variables is shown to diminish such conflict. The second modeling
group considers the unit commitment problem. An interior-point/cutting-plane method is
proposed for the solution of the dual problem. The new method has better convergence
characteristics and does not suffer from the parameter tuning drawback as previous meth-
ods. The robustness characteristics of the interior-point/cutting-plane method, combined
with a non-uniform price setting alternative, show that the conflict of interest is diminished
when multiple near optimal solutions exist. The non-uniform price setting alternative is
compared te a classic average pricing rule. The last modeling group concerns to a new
type of linear network-constrained clearing system models for daily markets for power and
spinning reserve. A new model and solution approach is proposed. The model considers
bids for supply and demand and bilateral contracts and a direct current model for the
transmission network. The use of an interior point method that can take advantage of the

special structure of the Newton's system is proposed.

The use of optimization models in a market environment is still facing several chal-
lenges; this thesis presents developments that help understand the use of complex opti-
mization models for electricity markets; new models, solution approaches and price setting
alternatives are proposed.
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Chapter 1

Introduction

A re-structuring process of the power industry. that started in 1978. gave birth to the first
competitive market for electricity generation in Chile in 1982 [1]. The order to privatize
the United Kingdom electricity industry in 1988 concluded with the creation, in 1992, of
the England and Wales Power Pool. In 1992, the approval of the Electricity Policy Act
(EPAct) ordered Open Access to transmission networks as the basis for the introduction
of competition in the electricity industry in the U.S.A. Ever since, a variety of electricity
markets have been created, among them, the Pennsylvania-New Jersey-Marylend (PJM)
Pool that started operations in 1997: the Californian market that started operations in 1998
and the New York Power Pool in the same year. Alberta and Ontario, in Canada, have also
re-structured their systems to a market-oriented basis. Several other countries have also
implemented electricity markets, or are in the process to do so, among them, Argentina,

Australia, Brazil, Mexico, Germany, Norway and Spain.

The world-wide re-structuring process of the electric energy industry that begun more
than twenty years ago, has deeply accelerated creating a political and technical turmoil.
The operation of large Investor- or state-owned utilities is being transformed from an rate-

of-return basis to a competitive basis by the creation of electricity markets.

The reasons for such re-structuring process are varied. In well developed countries, the
introduction of competition is believed to be a bridge to achieve more efficiency in the indus-
try, to equate price differences among regions and, eventually, to reduce the energy prices.
In developing countries, re-structuring is sometimes linked to a privatization process of the
state-owned utilities. The need to acquire funds to build the systems expansions required

to cope with the rapid load growth, is one of the reasons for the re-structuring of their
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systems. [t is also believed that the introduction of competition and private participation

can make the state-owned utilities more efficient.

1.1 Structure and Implementation of Electricity Markets

The electricity industry has peculiarities that make the design of an electricity market a
challenging task. Electric energy cannot be stored in large quantities and, therefore, the
generation supply has to match the demand at every time instant; transmission and system
interactions have to be observed to guarantee the secure and reliable operation of the system.
Such complexities need to be taken into account in what can be identified as the three main
design components of an electricity market: (i) the design of the primary electricity markets;
(ii) the design of transmission management procedures; and (iii) the design of procedures
for the provision of ancillary services. The first design component refers to the creation of
markets to competitively buy and sell real power in different time and structural frames.
The second component refers to the definition of rules and procedures to provide access to
the transmission system, including the congestion and pricing protocols. The last design
component deals with the procedures to be implemented for the provision of the ancillary
services that are necessary to support the reliable and secure operation of the system such
as voltage support, frequency regulation and operating reserves. Even though transmission
and ancillary services are not always provided in a market oriented basis, the creation of

primary markets is a constant in all the re-structured systems.

There is a great diversity of market designs; practically, not two equal market designs
exist. A classification given by R. Wilson [2, 1999] identifies three groups of market models:
(i) centralized models; (ii) decentralized models; and (iii) hybrid models. Centralized mod-
els are characterized by the creation of an independent system operator (ISO) that executes
a central cost-minimization scheduling of generation which constitutes the primary market.
Alternatively, the same ISO is involved in the operation of the transmission system and
procurement of ancillary services. On the other hand, decentralized models neither rely on
central optimization of generation nor on a single ISO. In these designs, there is a Market
Operator (MO) in charge of running primary markets by using simple models such as stan-
dard auctions; transmission security and congestion management are executed by an ISO in
coordination with the MO. Centralized and decentralized models represent opposite poles
of existing market designs; new hybrid designs are being recently created. These designs
do not implement primary markets by standard auctions or centralized cost-minimization

in the same modeling level as centralized designs.
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This thesis deals with the use of optimization models and techniques for implementa-
tion and pricing of primary electricity markets. The implementation of primary electricity
markets has inherited several optimization tools from the vast experience of the vertical in-
tegration era. The transition of the cost-minimization models to a market environment has
not been an easy process. There is a need for new models and optimization techniques, as
well as the revision and improvement of existing ones. In the following section, representa-
tive market models are described. At the same time, the challenges that the implementation

of optimization-based primary electricity markets is facing are described.

1.2 Optimization Models in Primary Electricity Markets

1.2.1 Centralized Models and the Use of Unit Commitment

Unit commitment (UC) problems have long been used in vertically-integrated utilities to
determine the short term (24 to 168 hours) economic operation of power system with con-
siderable amounts of thermal generation. A classic UC is a large non-linear mixed-integer
programming problem whose solution gives the commitment of generators and their respec-
tive power outputs so that a forecasted load demand and system reserve are satisfied; and,

at the same time, satisfying the operative limits of the generation units [3].

A UC model has been used by the England end Wales Power Pocl (EWPP) as the
mechanism to implement a daily market for real generation; i.e.. a power Pool auction. The
Pool receives bids from generators that contain a cost function and a set of operational
limitations. The cost functions contain no-load, start-up and variable cost coefficients. The
operative limits include minimum and maximum power outputs, ramp constraints and min-
imum shut down constraints, among others [4]. The Pool uses a Lagrangian relaxation
algorithm that determines the minimum cost solution to the UC problem. Once the UC
problem is solved, the Pool computes several price components to determine the price for
suppliers and consumers; among these components is the System Marginal Price (SMP),
which defines the price for real power and is computed in such a way that scheduled gener-

ators recover the costs submitted in their bids [4].

The cost functions submitted by generators do not necessarily need to reflect their true
values; it is expected that the competitive forces would drive generators to submit a cost
as low as their actual cost in order to be scheduled at the solution to the UC problem;

and, therefore, receive revenues from the power they produce. However, in the experience
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of the EWPP, large increases in the SMP and other price components have been observed
since 1992, and became more pronounced afterwards. Empirical evidence shows that the
large increases in prices were mainly due to duopoly market power by two major generator
companies acting in the Pool [5, 1997] [6, 1999]; and, also, to the strategic selection of the
start-up, and variable cost parameters included in the bids [7, 1999].

There have been other concerns related to the use of unit commitment models for pri-
mary electricity markets. Using a simplified unit-commitment model, Jacobs {8, 1997} shows
that cost-minimization and uniform pricing based on averages, as used in the EWPP, fails
to produce lower prices for consumers. The author shows that different feasible solutions,
that do not minimize cost, can result in lower prices for consumers. The same author
and related research by Hao et al. [9, 1999] propose the use of price-minimization unit-
commitment power pool auctions. In this model, the objective is to find a schedule that
minimizes a uniform price and, at the same time, guarantees cost-recovery for all suppliers.
However, as identified by the authors, the decomposability of the optimization model is
lost, which makes it harder to sclve: numerical results show that price minimization leads

to lower energy prices but requires the use of more expensive generators.

In a publication by Johnson, Oren and Svoboda [10, 1997}, equity or fairness concerns
related to the use of unit commitment for competitive markets are raised. Using a unit
commitment and hydro thermal coordination program, they show that slight variations
in the tuning parameters of the Lagrangian relaxation-based scheduling program lead to
different near-optimal solutions. Despite that such multiple ncar-optimal solutions represent
equally acceptable cost-minimizing solutions, they can represent very different profits for
individual suppliers, which generates a conflict of interest since particular parameter setting
could be favoring a particular generator. Additional work by Sheblé et al. {11, 1999] [12,

1999] further explores on the existence of multiple solutions in unit commitment models.

Other more recently developed electricity markets, such PJM and the NY ISO, also
based on forms of UC models to execute their primary markets. At the same time, the
transmission network is considered along with the primary market, constituting a highest
centralized model. The equity concerns are not considered substantial to change their
market models and they rely on settlement systems to manage no-load and start-up cost asa
counter-measure to avoid the possible strategic behavior [13,14]. The EWPP is undergoing a
new re-structuring process that has split generation companies, and considers the utilization

of simpler models to execute the primary market [13].
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1.2.2 Decentralized Models and the Use of Standard Auctions

The U.K. experience and the concerns that arise due to the complexity of the UC strongly
influenced the design of the Californian market. In the California market, the Power Ez-
change (PX) implements a daily market where both suppliers and consumers submit simple
price-quantity bids in order to compete to sell and buy real power {16]. The PX performs
an ordering of the bids to construct a supply/demand curve whose intersection defines the
schedules and a sinlge market price. Other systems that implement similar daily markets
are Spain [17] and Alberta in Canada [18].

The PX model can be classified as an standard uniform double-sided auction market.
Uniform, since a single price is set for the product; and double-sided, since both consumers
and suppliers participate in the auction. An auction is a market mechanism to allocate
goods and determine their price based on the bids submitted by participants [19]. The use
of auctions as a general principle for price determination in a deregulated power industry
has been first considered by G. B. Sheblé in [20, 1994] and Post et al. [21, 1995].

The use of simple models to implement electricity markets intends to provide a trans-
parent and pure market-oriented trading floor, where the determination of schedules and

prices is not made inside a “black box” optimization algorithm [2].

Generation companies acting in this type of markets need to rely on their bidding
strategies to recover all their cost components; at the same time, such strategies have to be
designed so that the most probable outcome of the auction is in accordance to the opera-
tional restrictions of their generation units. The design of bidding strategies that involve
the self-commitment of generation units, acting in this type of markets, is an increasing re-
search area of interest [22-24]. There is, therefore. a trade-off among reliability and market
transparency. Unit commitment models take into consideration the operative limits of the

suppliers and perform a central coordination of the resources.

Even though the use of standard auctions in electricity markets can be supported by
the known theoretical and experimental properties of standard auctions as applied to other
markets, the properties of such auctions in the context of electricity markets are not well
known. Reviews on the theory of auctions can be found in [11,19]. The basic result on the
theory of uniform double-sided auctions specifies that participants best behavior is to reveal
their true valuation of the object, i.e., reveal their true cost of generation, in the context of

an electricity market.

Recent work by Elmaghraby and Oren [25. 1999] considers a PX standard-auction as
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compared to a simplified unit-commitment model; the research concludes that, under spe-
cific behavioral assumptions, the PX auction is not able to achieve economic dispatch in
equilibrium. That is, the behavior of bidders in a PX auction is such that cost minimization
is never achieved, which, in a unit-commitment like auction, is a possibility if participants
submit their true costs. In general, if an efficient competitive-incentive auction for electricity

markets exists and can be implemented, is still an open question [26. 1998] [27, 2000].

As in the U.K., price increases due to market power have also been diagnosed in the
California market [28, 1999].

1.2.3 Hybrid Models and Linear Optimization

In both the California PX market and the U.K. Pool. the daily market for power is executed
without considering the transmission network. The operators of both markets coordinates
with a separated operator who determines the feasibility of the resulting schedules and
determines the corrective actions based on the established design principles for transmission
management. In California, such an operator is called the ISO [16], and in the case of the
U.K., is the National Grid Company [4].

Hybrid designs have recently been created; these designs do not allow the inclusion of
unit commitment in the primary market, but allow certain time-dependent operative limits
to be expressed in the bids. In this new type of models, a simplified representation of the
transmission network is considered. The time-dependent optimization models that arise
from these new models result in large, but easily solvable, linear optimization models. The
basis for these models is the spot pricing theory of electricity developed by Schweppe et
at. [29]. A benefit maximization dispatch problem is formulated and its solution provides
the schedules for suppliers and consumers. At the same time, the optimal dual variables
related to the power demand constraints in the optimization model determine the locational

prices that are also used for tra nsmission pricing.

Examples of these new structures are the New Zealand Market [30, 1998], the proposed
structure for the Mexican market (under evaluation) [31, 1999]. The final report of the
Ontario Market Design Committee [32, 1998] recommends the introduction of locational
marginal pricing for a second stage on the development of the Ontario market. The rapid
appearance of these alternative designs has created an increasing need for the identification
of mathematical models and solution approaches for what is called transmission constrained
market clearing {33, 1999] [34, 1999].
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1.3 Research Motivation

While the strategic behavior of participants in an auction deserves investigation, and per-
haps more practical experience, the use of complex optimization models (such as unit com-
mitment) to conduct electricity auctions is not well understood yet and deserves further
investigation [35, 1999]. The search for better solution algorithms that can be valuable
in both vertical-utility operation or market-environment is of great importance. At the
same time, the search for better alternative pricing schemes needs investigation. New
models and solution approaches are required for recently created or proposed electricity
markets [33, 1999] [34, 1999].

In particular: (i) the study of simplified continuous and discrete models and direct
solutions approaches can provide information for the understanding and design of price
setting alternatives in power pool auctions driven by more complex optimization models; (ii)
the search for new solution approaches to unit commitment problems is still needed; methods
that do not rely on parameter tuning and their use to design price setting alternatives are
desirable; and (iii) the modeling and proposal of solution approaches to market clearing

systems that arise from newly created market structures is also required.

The structure of the thesis along with the principal contributions is described in the

next section; additional relevant bibliographical reviews are given along each chapter.

1.4 Structure of the Thesis and Main Contributions

e In Chapter 2, a generic cost-minimization power Pool auction model is described.
Using Lagrangian duality, the conditions for the existence of an equilibrium are pre-
sented. As illustrative examples, simplified continuous models that represent a stan-
dard auction and a economic dispatch problem are presented. For both models, direct
solution approaches to solve the primal and dual problems are presented. The relation

between standard auctions and pricing with dual variables is illustrated.

e In Chapter 3, two simplified discrete models for power pool auctions are studied. The
models consider bids with startup cost and linear and quadratic variable cost. For
both models, a closed form solution to the dual problem is derived and enumerative
Branch-and-Bound methods are developed to find the solution to the primal problem.
The non-existence of equilibrium and its effect on different pricing alternatives is pre-

sented. It is shown that average pricing and price minimization worsens the conflict
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of interest that arises when multiple solutions exist. A derivation shows that, under
disequilibrium, dual variables used as prices do not generate enough revenues to re-
cover all the submitted cost of participants. The cost not recovered is bounded above
by the duality gap. Based on this observation, a non-uniform price setting alternative
using dual variables is proposed. The alternative is simple, avoids the price spikes
that can easily happen with average pricing, and shows that it reduces the conflict of

interest when multiple solutions exist.

e In Chapter 4, a unit commitment model and its solution by Lagrangian relaxation is
presented. A new interior-point/cutting-plane (IP/CP) method to soive the dual prob-
lem is proposed. This method, which has been used in other engineering applications,
has better convergence characteristics and does not suffers from the parameter tuning
drawback as previous approaches. The interior-point/cutting-plane method requires
the solution of a potential problem, for which an infeasible primal-dual interior-point

method is proposed. Some implementation details are described in the chapter.

e In Chapter 5, a numerical evaluation of the performance of the IP/CP method to
solve the unit commitment problem are presented. Its convergence characteristics
and robustness to parameter changes are proven by numerical simulation. In the
same chapter, we study the application of the IP/CP to execute unit commitment
power pool auctions. Numerical results show that the robustness characteristics of the
IP/CP method, combined with the non-uniform price setting alternative, diminishes
the conflict of interest that can arise from the existence of near-optimal solutions. The
non-uniform price setting alternative is compared to an average pricing rule derived

from the an average price setting as used in the EWPP.

e In Chapter 6, a hybrid model for an energy and spinning reserve network-constrained
market clearing system is described. The model considers demand side bidding and
bilateral contracts and a direct current representation of the transmission network.
An interior-point method is proposed for its solution; this method can take advantage
of the special structure of the Newton’s system. The model represents an experimental

development related to recently created and proposed electricity markets.

® The last chapter of the thesis provides closing comments, conclusions and recommen-

datiouns for future work.



Chapter 2

Central Cost Minimization and

Competitive Market Equilibrium

Whenever a market exists or has to be implemented, a basic question arises on the exis-
tence of competitive market equilibrium in such a market. Electric power cannot be stored;
balance among power supply and demand has to take place at every time instant in the
system. For these reasons, power markets need to be created and implemented in com-
puterized auctions with specific modeling assumptions. In Section 2.1 of this chapter, the
equilibrium theory of production economies is applied to study the existence and unique-
ness of equilibrium in power markets that are executed by central optimization models or
optimization-based power pool auctions. The conditions for the existence of an equilibrium
are derived from the dual problem to a generic power pool auction model. The derivations

in this chapter are used in subsequent chapters.

The dual approach is used to present two simplified continuous optimization models for
power pool auctions. The first model, presented in Subsection 2.2.1, deals with the simple-
bid type of auctions that are used in markets such as California and Spain; the relation
between dual variables and standard auctions pricing is described. In Subsection 2.2.2, a
second model considers the classic economic dispatch as an optimization-based auction; a

direct solution approach is derived based on duality.
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2.1 The Existence and Uniqueness of Competitive Market

Equilibrium

In a competitive market, none of the participants (suppliers or consumers) is able to affect
the market price of the commodities being traded. Suppliers and consumers take prices
as given and act to maximize their profit and utility, respectively. The intersection of the
competitive supply and demand curves gives a market equilibrium. A market equilibrium
point is a price vector for the commodities, and schedules of production and consumption
that result in a “state of rest”; that is, no participant has incentives to depart from that
point. This definition is due to Walras [36].

If an electricity market for power generation is implemented by a power pool auction,
the pool or market operator can be viewed as the Walrasian auctioneer that determines such
an equilibrium point. Here, it is considered an auction for power generation based on cost-
minimization where the demand is inelastic; that is, demand does not respond to the prices.
For the description of the equilibrium concepts, perfect competition is assumed and the cost
functions suppliers submit to the pool are assumed to represent their true cost functions.

The following general cost-minimization power pool auction model is considered:

7= min 3 ci(p;), (2.1a)
st pg—2pi=0, Vi (2.1b)

where, for simplicity, >_; denotes the sum over the n suppliers considered in the market;
i.e,, > °,. The column vector p; = [p},p?, -~ ,p*|T denotes the power outputs (schedule)
for supplier ¢ at each of the m periods in the market; ¢c;(p;) = > ,ci(pl) denotes the total
variable cost of supplier ¢; 3, denotes > ;% : p§ is the inelastic demand for period ¢,
pqs = [pl, pg,--- s pZ‘]T; P; denotes the set of operative limits that are included in the
bids, e.g., allowable power outputs, ramp limits and time constraints; and V¢ is short hand
notation for ¢ = 1,--- ,m and the same applies for i. The vector p can contain as many

variables as required for modeling; for instance, commitment variables .

Problem (2.1) defines a generic central cost-minimization problem that can be used to
represent different modeling levels for a power pool auctions. In general, the solution to this
problem gives the power outputs that satisfy the demand at minimum cost while satisfiying

the operative limits of the suppliers.

The conditions under which the solution to (2.1) represent a competitive market equi-
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librium point are derived next.

In a competitive market, each supplier acts to maximize its profits which can be modeled

by the following maximization problem:

$i(p) = max[pTp; — ei(p;)] (2:2)
pP:EP;
where p = [p,p%,--- ., p™}7 is a vector that defines the price for power at each period of the

market. Equation (2.2) specifies that, given a price vector p, a supplier produces power in
such a way that profits (revenues minus cost) are maximized; at the same time, the power
output has to be feasible to the operative limits set P. For a given price vector p, in order
for a power output vector, p;, to be optimal in (2.2), the following necessary conditions
need be satisfied:

p— Vpeci(p;) =0, (2.3)
p: € ’Pi.

The solution to problem (2.2) must satisfy (2.3); it gives the i-th bidder supply function
denoted by

pi(p)
pi(p) = p’gfp) (2.4)
p?"(p)
The profit function (2.2) can then be written as
¥i(p) = pTpi(p) — ci(pi(p)) (2.5)

The total supply function is defined as the sum of all the bidders supply functions, i.e.,

¢'(p)
2
o) = Spito) = | © P (26)

¢ (p)
A price vector p*, for which the supply function intersects the demand ¢(p*) = py, is a
market equilibrium price (see Figure 2.1). Some conditions need be satisfied to guarantee

the existence of such an equilibrium point [36]. These conditions can be summarized as

follows: (i) zero output is a feasible allocation for each supplier 0 € P;; (ii) the sets P; are
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Supply, ¢'(A)

Demand, p}

............................... Equilibrium price

MW
Figure 2.1: Market equlibrium with inelastic demand, at time ¢

bounded and a feasible allocation exists; i.e., there are p; € P; so that Y .p; = py; and (iii)

the supply functions p;(\) are continuous.

The first condition ensures that a supplier can always go off the market so that, even-
tually, is not forced to operate at negative profits which, in general, can be achieved. The
power operative limits or production sets P; are always bounded and a feasible solution is
assumed to exist. However, the continuity of the supply function cannot be guaranteed if
the cost functions c;(p;) are not differentiable or the set P; is non-convex [37]. Specially,
the later condition cannot be guaranteed for most of the unit-commitment like electricity

auctions since the set P; is discrete.

When an equilibrium point exists, it can be determined by solving the dual to the
cost-minimization power-pool auction problem in (2.1). The (Lagrangian) dual problem

(see [38]) is given by
Y* =max P(A) (2.7)

where A is the vector of dual variables to the demand constraint (2.1b). The dual function,
denoted by 7, is

¥(A) = min 3ei(p) + AT (py — p), (2.8)

T

where p = [30;p},--- , > ;p™|T. Regardless of the structure of P; and the cost functions
ci(p;), this dual function has been proven to be piece-wise concave and non-differentiable
[38], and can be rewritten as

P(A) = ATpy — () (2.9)
where 1;(A) are the profit functions as defined in (2.2). Using (2.5) into (2.9), the dual

function can be written as

$(A) = ATpy — AT p;(N) + Xiealp:( V). (2.10)
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Since the dual function is concave, but not differentiable, the necessary and sufficient con-

dition (see [39]) for a vector A* to be an optimal solution to the dual problem (2.7) is
0 € JYP(A*), (2.11)

where 9y¥(A) denotes the sub-differential (the set of sub-gradients) of the dual function
at A. Equation (2.11) specifies that the dual function achieves its maximum at the point
where its sub-differential contains a zero sub-gradient. This is analogous to the point where
the gradient of a concave differentiable function is zero. Some definitions and properties
of non-differentiable functions are presented in Appendix A. From (2.10), and using the
property (A.4) in the Appendix A, (2.11) is equivalent to

Pa € LA TP(N7) = 8% ci(pi(X7)) (2.12)
If the supply functions are continuous at A*, then (2.12) can be written as
Py € Tipi(A7) + L AT 8pi(N) - 5,V ci(p:) 9 (A7), (213)
Using (2.6) and (2.3), (2.13) results in
Pa = d(A7). (2.14)

That is, if the supply functions are continuous at the optimal solution of the dual problem,
A*, the demand intersects the supply. Hence, the optimal dual variable is a market equilib-
rium price p = A*; furthermore, the supply p;(A*) gives an optimal solution to the primal
problem,

p; = pi(A7). (2.15)
From (2.10), the optimal value of the dual function is
vt = ATy = LA TP(N) + cilpi(A7) = Eealpi (X))
which is equal to the primal objective function
fr=3e(p]) = Zicilpi(AT) =47 (2.16)

Whenever there is a market equilibrium point, there is no duality gap f* —¥* = 0, and
the optimal dual vector is a market equilibrium (clearing) price. Alternatively, it needs be
mentioned that optimal dual variables in the absence of duality gap are Lagrange multipli-
ers [38].
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The Lagrange multipliers vector may not be unique; this happens if the concave dual
function is “flat” on top (which occurs when the demand intersects the supply function at a
“flat” section {36]). Under equilibrium, there is no other feasible schedule (optimal or not)
that can be preferred by all the suppliers, in terms of profits (2.2). That is, a Walrasian

equilibrium is Pareto optimal; this is known as the “first theorem of microeconomics” [36].

If the continuity on the supply functions is not satisfied, the optimal dual variables are
not a market equilibrium. There is no price that can equate supply and demand; at the

optimal dual sclution, the demand does not intersect the supply,

Py # O(A7). (2.17)

The conditions for the existence and uniqueness of competitive market equilibrium are a
classic development in microeconomic theory due to Debreu [36]- [40]. In this thesis, they
are developed in the context of the cost-minimization power pool auctions and help illustrate
price setting alternatives and their implications. When an equilibrium does not exist, the
optimal dual variables are not market clearing prices. Given an adopted pricing rule, and

the final schedule implemented, conflict of interest may arise among suppliers.

In a vertically integrated industry, cost minimization is the basis of operation. Numerical
algorithms that solve (2.1) to obtain optimal (or near optimal) solutions do not arise any
conflict of interest. Any optimal or near optimal solution does not bring conflict among
generators that are owned by the same utility and, even more, prices are determined in
a rate-of-return basis by government regulation and are not a results of the optimization
algorithm.

The closer the models in (2.1) to the physical characteristics of the power plants are (i.e.,
unit commitment models). the more difficult is the optimization problem to solve. However,
the outcome of the auction gives schedules that are feasible to the specified operative limits;
this is considered to be a more reliable market. The simpler the models are (i.e., standard
auctions), the easiest is the optimization problem to solve; the auction becomes a more
transparent market where the determination of schedules and prices is more visible to
everybody in the market. Most of the conflicts that arise when complex optimization
models are used are avoided.
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2.2 Simplified Power Auctions as Continuous Optimization
Models

2.2.1 The Simple-Bids Linear Model

Due to the problems and previous experience with the use of complex optimization models,
markets such as California and Spain have opted for the use of simpler or standard auction
models. In standard auctions, simple price-quantity bids are used in the formulation (2.1).
For each period in the market, suppliers and consumers submit to the market operator
one or several simple bids that contain the prices and quantities of power they are willing
to sell or buy. The market operator constructs a supply/demand curve (see Figure 2.2)
to determine the market clearing price and schedules from its intersection. Suppliers are

ordered in increasing bid price, and consumers in decreasing prices order.

For the inelastic demand case, the market price p is the bid price of the last bidder that
supplies the power to cover demand, which is know as the standard first-price auction [19].
A second-price auction sets the price as the bid price of the first supplier in the curve that

was not necessary to cover the demand. This type of simple-bids auction can be formulated

MW

Elastic demand

i
ey

Inelastic demand

_fs‘&EJ_

Figure 2.2: Supply/demand curve, elastic and inelastic demand

Pe po S/MW

using the model (2.1), for which we considered the case of inelastic demand.

The cost function is defined as ¢;(p;) = 8;p; and the set of operative limits by P; =
{p; | 0 < p; < P;}. where 3; is the bid price in $ /MW and p; is the offered amount. For the

market or pool operator, these bid prices represent costs to be minimized. The optimization
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model that describes the auction is given by

ff=min ) ;Bip;
st pg— Z:ipi =0 (2.18)
0<p;: <P;

The dual function (2.9) is now given by

P(A) =Apa— 3 ; o B (A = Bi)pi- (2.19)

This function is piece-wise concave, as schematically shown in Figure 2.3.

¥(A)

e

A

Br—1 Bk = A" /3k+l\
Figure 2.3: Piece-wise concave dual function

As derived in Section 2.1, an optimal dual variable can be found by searching the point
at which the dual function has a zero sub-gradient. Let us assume that: (i) the bids are
re-ordered in a non-decreasing cost order: B8) < B2--- < [Bg; (ii) £ is the smallest index
so that Y b 5; > pa: (i) O = {i | B = A\",i = 1,---,n}; (iv) » = min{O} — 1; and (v)
Pe = »_i—;P;- Then, the possible solutions for (2.18) can be summarized as follows:

1. Unique primal and dual optirmal solutions. If |O] = 1 and p. < Py, the unique primal
and unique dual optimal solutions are p* = [Py, -~ ; By, P, Ok1, - - - ,O0n]? and A* = B,

respectively.

2. Unique primal and multiple dual solutions. If p. = ) ;. D;, the optimal primal solu-
tion is unique but degenerated: that is, there are multiple dual solutions. The primal

solution is given by p* = [P1.- -~ , Prijop: Or+joj+15 7 ,0.]%, and A* = [Bk, Br4jop+1]-

3. Multiple primal and unique dual solution. If [O] > 1 and p. < 3 ;.o P;, there are mul-

tiple primal solutions given by p* = [B1, - 1 Pr+Pr41,"* » Pr4|0) Or+|0f+1, " " ,0,)7;
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that is, the power p, can be allocated among bidders in the set (O, in multiple ways.
The optimal dual solution is A* = .

All these situations can be verified by evaluating the primal and dual objective function
values, which results in f~ = ¢¥~. All the solutions represent a market equilibrium point
for the auction. The Lagrange mulitipliers are market clearing prices. Pricing with g is
equivalent to a first-price auction. and pricing with Bc.; is equivalent to a second-price

auction.

When there are multiple primal solutions —case 3 above- all these represent market
equilibrium schedules; independently on the distribution of p. among bidders in the set O,
their profits result the same (zero) in all the cases. Under this situation, bids in the set O
are selected based on a priority order. until the load p. is supplied. For instance, in the
Spanish electricity market [17], the following priority criteria is used to select these bids: (i)
the bid that arrives first on time to the market operator; (ii) the bid whose offered quantity
is larger; and (iii) the bid whose name has alphabetical precedence. These, or any other
criteria, can be represented by a tie-breaking priority order assigned to each bid, say o(z).
Bids in the top of the list are considered first to be part of the schedule; conversely, bids on
the bottom of the list are not likely to be part of the final schedule.

Numerical Example

The data for a five-bidders case is shown in Table 2.1; the optimal primal and dual solutions
for different demand levels are summarized in Table 2.2. The supply function and demand
levels considered are shown in Figure 2.4. Table 2.2 also summarizes the cost, revenues and
profits m; = pp; — ¢i(p:) for each of the solutions. The price is set up by p = % in all the
cases, which corresponds to the first-price auction. All the values are in appropriate units
$, /MW and MW. In the first demand case (Table 2.2), there is a unique primal and

Table 2.1: Five simple-bidders example
7 1 2 3 4 5

p; (MW} 150 50 100 100 100
G: ($§/MW) | 5 10 20 30 30

dual solution. For py = 100 MW, there are multiple Lagrange multipliers; the dual function
(see Figure 2.5) is flat on top; the supply function is intersected by the demand in a flat
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Table 2.2: Optimal solutions, cost, revenues and profits

pe i P i pxp; m|f=y A
70 1 50| 250 500 250 450 10
2 20| 200 200 0
100 1 50| 250 500 250 750 [10,20]
2 50| 500 500 0
250 1 50| 250 1500 1250 4250 30
2 50| 500 1500 1000
3 100 | 2000 3000 1000
4 501500 1500 0
1 50| 250 1500 1250 4250 30
2 50| 500 1500 1000
3 100 | 2000 3000 1000
5 50 (1500 1500 0

segment, as seen in Figure 2.4. In this case, the multiple equilibrium prices vary from 10
to 20 $/MW; it has to be seen that suppliers 1 and 2 are at their maximum output values
and, therefore, the largest equilibrium price is given by the bid price of supplier 3 (the next
less expensive bid to be used).

When pg = 250 MW, there are two bidders in the set O = {4,5}; cither 4 or 5 is
selected by the priority order to supply 50 MW. Whichever final schedule is implemented,
both solutions represent the same profit (7; = pp; — c;(p}) = 0) for bidders 4 and 5.

2.2.2 Simplified Continuous Quadratic Model

The model considered now represents the classic loss-less economic dispatch problem of
power systems [3]. This classic economic dispaich problem has been solved by a number
of methods including the gradient method, Newton’s and the A-iteration techniques [41].
Using the dual approach of Section 2.1, it is shown that its solution does not require a
numerical-iterative algorithm; instead a simple interpolation over the supply function finds
the optimal primal and the possible multiple dual solutions. The cost function and operative
limits set are, respectively

ci(p:) = Bipi + 102, (2.20)
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MW
400
........ p2 = 250
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50
5 10 20 30 S/MW

Figure 2.4: Supply curve and demand levels
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Figure 2.5: Dual functions

Pi={pi | p, < pi <Pi}- (2.21)

The cost function is assumed strictly convex, i.e., v; > 0. It should be noticed that a constant
cost is not included in (2.20). The solution to the profit maximization subproblems (2.2)

gives the following supply function for each supplier:

Py 0 <A< B+ 2vip,
pi(A) = § (A = B:)/(2%). B+ 2vip, S A < i + 2V:P; (2.22)
Di: A2 Bi + 2vip;
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and the profit function

Ap, — ci(p,). 0 <A< B+ 27p,
Yi(A) = ¢ =(V/27)(B: — A/2) + B2/(47:). Bi +27p, < A < B + 27:p; (2.23)
DA — ci(B,), A > Bi + 2v:p;

These functions are shown schematically in Figure 2.6. As can be seen in Figure 2.6,
the profit functions have a negative segment that ends at the minimum average cost A =
q(gz.) /z_ni. If the optimal dual variable does not exceed this value, the supplier is forced to
operate at negative profits since 0 ¢ P;.

i(A !
pi(A) 5. Pi(A) AB; — :(P,)

o

(A= B9/ (2v:)

2
AL
47

_('\/271)(131 - Af2)

+
~
Ap, —cilp,)

Bit2vip, B+ 27 A  Bot2up, Bt 2B A

Figure 2.6: Supply and profit functions

¢(1) 2oi(A)
2P

21 &gt Z2n
(2)

Figure 2.7: Total supply and profits

Each bidder supply function, Figure 2.6, is non-decreasing and has two non-differentiable
points; hence, the total supply function is also non-decreasing with, at most, 2n non-

differentiable points, as sketched in Figure 2.7. The non-differentiable points of the supply
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function are given by

z={B +2mp.B1 + 2P . Bn + 27nD, . bn + 27nBp } (2.24)

Introducing, for convenience, zg = 0 and reordering these points in a non-decreasing order,
zg S z1 < 22 < -+ < 295, then

#(z0) = $(21) = ¢(22) = --- = ¢{z2n) (2.25)
An optimal solution to the dual problem is given by
Zk T Zk-1 .
AT =z + - - (2-26)
LIS Py g T

where k£ be the smallest index so that ¢(zx) > pg- If @(zxs1) = @(zx), then there are
multiple optimal dual solutions given by

AT = [Zk: Zk+1] (2.27)

which happens if the demand intersect the supply in a flat segment; see Figure 2.7. The
optimal primal solution is given by

p; = pi(A7), (2.28)

which is evaluated from (2.22). The optimal dual and primal objective function values are
the same; therefore, there is no duality gap. The problem is strictly convex and there is
always equilibrium with a unique schedule with possible multiple prices, as indicated in
(2.27). A direct interpolation over the supply function (2.26) and the evaluation of (2.22)

gives the solution to the classic economic dispatch problem.

Numerical Example

A data set for an auction with four bidders with quadratic cost functions is presented in
Table 2.3. The minimum output constraint is not considered (set to zero) and the results

of the cost minimization power pool auction are as given in Table 2.4.

For this model, the supply function is continuous everywhere and, therefore, there is
always a unique market equilibrium schedule (see Figure 2.8). For p; = 40 MW, there
are multiple equilibrium prices as can be noticed in the correspondent dual function in
Figure 2.9; the demand intersects the supply at one of its flat portions (Figure 2.8). The
costs, revenues and profits for each case are suminarized in Table 2.4. In all the cases, the
price is set up using the minimum Lagrange multiplier p = min{\*}.
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Table 2.3: Four quadratic-cost bidders example
1 1 3 4
p; (MW) 200 20.0 500 40.0
B (3/MW) 1 10.0 15.0 40.0 45.0
v ($/MW2) | 0.1 02 05 04
Table 2.4: Optimal solutions, costs, revenues and profits
Pda 1 P ci p X p! i fr=y" A*
40 1 20.0000 240.0000 460.0000 220.0000 620.0000 [23.0, 40.0]
2 20.0000 380.0000 460.0000 80.0000
100 1 20.0000 240.0000 1388.8889 1148.8889 | 3979.7222 69.4444
2 20.0000 380.0000 1388.8889 1008.8889
3 29.4444 | 1611.2654 2044.7531 433.4877
4 30.5556 | 1748.4568 2121.9136 373.4568
125 1 20.0000 240.0000 1700.0000 1460.0000 | 5872.5000 85.0000
2 20.0000 380.0000 1700.0000 1320.0000
3 45.0000 | 2812.5000 3825.0000 1012.5000
4 40.0000 | 2440.0000 3400.0000 960.0000

2.3 Lagrange Multipliers and Marginal Prices

22

Lagrange multipliers, provided they exist, represent the equilibrium prices. For the two

continuous models presented in this section, these prices always exist. The term marginal

or shadow price has classically been used to define the Lagrange multipliers related to

the power demand constraint (2.1b) that appears in most power dispatch problems [3,29].

However, since Lagrange multipliers may not exist or can have multiple values, the use of

the term marginal price is avoided. In general, marginal prices are computed to measure a

rate of change of the objective function with respect to changes in the constraints; they are

used mainly to perform sensitivity analysis.

Analytical formulations for marginal prices, and their relation to dual variables, have

been studied for linear programs using directional derivatives [42,43] and for linear mixed-

integer problems using price functions [44,45].
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2.4 Summary

This chapter presents the conditions for the existence of competitive market equilibrium
for power pool auctions driven by a central optimization model. The dual problem to a
general cost minimization power pool auction is used as a general framework to illustrate

the relation between central optimization and equilibrium. The following remarks are made:

e An equilibrium exists if the supply functions are continuous, which can be guaranteed

only if the cost functions are differentiable and the operative limit sets are convex.

e When an equilibrium exists, the optimal solution to the dual problem provides La-

grange multipliers that are market clearing prices and also provides an equilibrium
schedule.

e Multiple equilibrium prices happen if the demand intersects the supply at a flat region;
under equilibrium, multiple optimal schedules are equally preferred by all suppliers

and do not represent any conflict of interest.

e If an equilibrium does not exist, the optimal dual variables do not represent market
clearing prices and multiple cost-minimizing solutions may exist. Under this situation,
as presented in subsequent chapters, the selection of the pricing rule and the final
schedule needs be done carefully in order to avoid unreasonable prices and conflict of

interest among suppliers.

As an illustration of the derivations presented in the first section, two simplified optimization
models for power auctions are presented and solved. For both models, equilibrium always

exists and its multiplicity in price and schedule can directly be identified.

e The first model corresponds to the simple-bid type of auctions used in markets such
as California and Spain; the relation between dual variables and a first-price auction
is presented.

e The second model deals with the classic economic dispatch problem used as an auction;
for this quadratic model, a direct solution approach that does not require the use of

an iterative algorithm is developed [41].



Chapter 3

Simplified Discrete Models for

Power Pool Auctions

In this chapter, simplified discrete models for power pool auctions are presented. The models
consider that the cost functions, beside the linear and quadratic components, include a
startup cost term. The inclusion of startup cost requires the introduction of binary variables
that make the models very suitable to understand electricity auctions run by more complex

optimization models, such as unit commitment.

Elmaghraby and Oren [25, 1999] use cost functions with linear and startup cost terms
to represent a simplified unit commitment model and study the strategic behavior and
efficiency of standard auctions. Jacobs [8, 1997] uses a linear model with startup cost to
identify different solutions to the cost minimization auction. Dekrajangpetch and Sheblé [12,
1999] use simplified models to study Lagrangian relaxation in the context of an auction.
Recently, Radinskaia and Galiana [46, 2000] have also investigated the analytical solution

to simplified unit commitment models.

Using the derivations in Chapter 2, we use the simplified models to investigate price
setting alternatives under disequilibrium and their effects on multiple solutions. Section 3.1
presents a model with linear and startup cost, and in Section 3.2, a model with quadratic
and startup cost. For both models, an analytical solution to the dual problem is derived
and the primal problems are solved using a Branch-and-Bound (B&B) algorithm.

In Section 3.3, price setting alternatives such as maximum average cost and price min-
imization are analyzed. It is shown that the conflict of interest arising from the existence

of multiple solutions are worsened by such pricing rules. Average pricing can cause unrea-

25
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sonable price increases without any strategic behavior assumption. The observations are
used to propose a non-uniform price setting alternative based on dual variables. Numerical

examples are presented in Sections 3.3 and 3.4.

3.1 Linear Model With Startup Cost

In this model, a constant startup cost «; ($) is added to a linear cost function. The startup
cost requires the introduction of binary variables in the model; these variables, denoted by
u; € {0, 1}, are one when the bid is selected and zero otherwise. The introduction of binary
variables transforms the cost-minimization power pool auction (2.1) into a2 unit-commitment

like problem. The cost function that includes a constant startup cost is defined by
ci(pi, ui) = oiu; + Bips, (3.1)
The operative limits set is
P: = {(pi,wi) | 0 < pi S ui;, ui € {0,1}}. (3-2)

In 3.2, if the power output is greater than zero, then u; = 1 and the startup cost takes effect
in the objective function; if u; = 0. all the components in the cost function are zero. With
cost functions and operative limits defined by (3.1) and (3.2), the dual problem to (2.1) can
be solved in a closed form. The solution to the dual problem also provides lower bounds

that makes B&B an attractive alternative to find multiple solutions to the primal problem.

3.1.1 Closed Form Solution to the Dual Problem

Following the notation in Section 2.1, the solution to the profit maximization subproblems
(2.2) is given by

0, 0<A< Xi
pi(A) =<0 or 7;, A=) (3.3)
Pi; A> _Xi

where X; = o;/P; + ;, i.e., the average cost at maximum output. Using (3.3) in (2.5), the
i-th bidder profit function is

>

0, 0<A<

A
_ (3.4)
P; A — (a; + BiD;), A> A

Pi(A) =

~
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The supply and profit functions are schematically shown in Figure 3.1; as it can be noted in
this figure and in equation (3.3), the supply functions for each supplier have a discontinuity
at Ag: this makes the total supply function, Figure 3.2, also a discontinuous function.

pi(A) Pi(A)

F?V‘I
2

Figure 3.1: i-th bidder supply and profit functions

P2 Sa(h) A
>

VR VD & A YR VR
Figure 3.2: Total supply and total profit functions

In order to find an optimal dual variable, it suffices to find the point where a sub-
gradient of the dual function equals the demand. Let us re-order the bids in the following

non-decreasing fashion:
A <Xo--- < Ap (3.5)

Following the curve forms in Figure 3.2 and since ¥(A) = Ap; —Y_;%:()\), an optimal solution
to the dual problem is given by
A=, (3.6)

where &k is the smallest index so that

SE1P: = pa (3.7)
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If the equality holds in (3.7), then the dual function is “fHat” on the top and there are

multiple dual variables in the interval
A" =D, Aept] (3-8)

If the last situation happens, the demand intersects the supply and the Lagrange multi-
pliers (3.8) are the equilibrium prices. Moreover, an optimal primal solution is given by
p* =[Py, -~ .Pk,0.~-- ,0]T. All other possible multiple primal solutions could be found by
enumeration of the 2" commitment combinations u; € {0, 1}; however, complete enumera-
tion is prohibitive even for very small n [47]. A B&B enumerative approach is developed in

next section for this purpose.

3.1.2 A Branch-and-Bound Algorithm to Solve the Primal Problem

Branch-and-Bound algorithms can be described as intelligent enumerative approaches [47].
A B&B is a much more inexpensive alternative to complete enumeration and is able to
obtain multiple near-optimal or optimal solutions. The practical success of a B&B method
depends on two factors [47,48]: first, the computational effort it takes to obtain tight bounds
to partitions in the original problem; and second, the existence of information that can be
used to design the partitioning (branching) rules that speed up the algorithm. For the
power auction model (2.1), with the linear and start-up cost function (3.1), both upper and
(tight) lower bounds are readily available from the solution of the dual problem and a good

branching order can be easily obtained.

A binary tree for a problem with size n = 3 is shown in Figure 3.3. Each rode k of the
tree is a partition of the original problem (2.1). A partition represents the problem in a
smaller feasible set, where a particular set of binary variables is fixed to zero, one , or left
free, as indicated by 0, 1 and X in Figure 3.3.

If £, and £, are an upper and lower bounds to each node subproblem, then an upper
and lower bound to the optimal objective value of the original problem is given by f =
min {f;} and f = min {f, }, respectively [47]. The B&B algorithm, based on the branching
order, constructs new nodes of the tree and either updates the bounds, cuts the branch or
determines that an optimal solution have been found. At a particular node, & + 1, no
optimal solution can be found if: (i) no feasible solution is contained on it, or (ii) its lower
£k+1 > f. In this situation, the tree
branch is not further explored (it is cut). If none of these conditions are met, the bounds
are updated: f = min{f, f;} and f = min{f, f, }

bound is larger than the best actual upper bound
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Figure 3.3: Binary tree for the Branch-and-Bound algorithm

If only a good near-optimal solution is required, the B&B algorithm can be stopped at
any node that satisfies f, — f x < €, where € measures the desired quality of the solution
(complementarity gap). If the algorithm is stopped until there are no more nodes to visit,

all the nodes whose f, = f are multiple near-optimal solutions. Only if f = f. = f_, the

LK
solutions can be assured to be optimal.

The upper and the lower bound for each tree node are computed as follows.

Determination of a lower bound

The optimal dual objective function value at each node subproblem provides a lower bound
for the subproblem ¥; < fr [38]. Since the dual problem can be solved in a closed form,
the computation of this lower bound is very inexpensive. At node k, let A, B and C contain
the indices of bids, with u; free, u; = 1 and u; = 0, respectively; then, the dual function

(2.9) of a subproblem at node k can be written as

e(A) =Apa — Y {—ei+ max (A-B)pi}-) max  {(A — Bi)pi — oui}-
i€B 0<pi<P; icA 0 < pi Suip;
u; € {0, 1}
(3.9)

At node k, the optimal solution to the dual problem is denoted as

Yr=max P()) (3.10)
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This optimal value can be found by evaluating (3.9) at A*, where A\* is obtained from (3.6)
where A; = o /P; + [3; is replaced by =& /D; + Bi. with

a;, VieA
&=1{0, VieB (3.11)
oo, Viel

For bids in C, & = oo is introduced as an indication of the absence of bid i at node k
(ui = 0). If the optimal dual variable is equal to co, the dual problem is unbounded;

therefore, the primal problem is infeasible.

Determination of an upper bound

At every node of the tree, an upper bound to the primal problem is given by the objective
function value of any feasible solution. A tight upper bound can be computed if a primal
feasible solution is constructed by considering the bids already committed, u; = 1, and the
bids in A that satisfy p;(A*) > 0, where A* is the optimal dual solution to a dual subproblem

at node k. The details of the algorithm are summarized below.

Algorithm 3.1 Determination of an upper bound
L. Initialization. Set p; =p; for all 1 € B and compute p, = pg — Y _;c gP:-

2. Infeasibility check. If p, > >, .B; , stop, the problem at node k is infeasible;

otherwise, continue.

3. Select bids in A to commit. With only bids in A and the remaining demand p., solve
the dual problem (3.9) using (3.6). From (3.3), if p;(A\*) >0, set u; = 1.

4. Linear dispatch. Considering the demand p; and bids with u; = 1, solve simple-bids
dispatch problem by the procedure in Subsection 2.2.1.

5. Set the upper bound. Set _fk = Z{l—lw___l}ai + f;p; using any p; among the possible

multiple linear solutions.

Determination of the branching order

The branching order decides the new node to be created when expanding the binary tree.

It is desirable to create nodes that eliminate as fast as possible bigger portions of the tree.
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For instance, see Figure 3.3, if it is found that the lower bound of the subproblem at node
1 is larger than the upper bound at node 0 (f > fo), then the whole left portion of the
tree is eliminated when the first node is created. Considering the non-decreasing average
cost order X; < Ap <,--- .< Ap. since bid 1 most probably is part of the optimal solution,
setting u; = 0 in the first node of the tree is likely to result in the elimination of its left
portion. For the next node, node 3, if we set up = 0, it is again likely that the left branch

out of node 3 is eliminated. The process is likewise continued for bids 3,4 -- - n.

Therefore, the branching order is taken as 1,2,--- ,n where \; < Xy <,---, < An. Any
branching rule can be used: however, a good selection considerably speed ups the B&B
algorithm.

3.1.3 Numerical Example

Table 3.1 contains the data for five bidders with linear and constant startup cost. The cost
minimization auction is solved for the following demand levels: 52, 130, 190 and 210 MW.

The primal and dual solution(s) for each of the demand levels are presented in Table 3.2.

Table 3.1: Five bidders with linear plus startup cost function
t 1 2 3 4 5

o (8) |30 40 70 35 35
B ($/MW) | 10 15 25 25 25
7 (MW) |50 50 90 20 20

In the same table, the values ); are presented for convenience. All the quantities are in
appropriate units MW. $/MW and $. Complete enumeration of the 25 = 32 commitment
possibilities can confirm that the solutions presented are optimal in all the demand cases.

The total supply function is shown in Figure 3.4; as can be seen, for the demand levels of 52,
110 and 130 MW, there is no market equilibrium and the optimal dual variable is unique.
For pg = 110 MW, there are two multiple solutions. For pg = 130, multiple solutions exist;
only two of these are shown. The first solution contains bids 4 and 5, and the second
solution contains bid 3. As can be noticed in the first solution, 30 MW can be supplied
in an infinite number of ways suppliers 4 and 5; that is, p; = = and pf = 30 — z for all

10 € z < 20, lead to same objective function value § 2140.

For the demand levels of 190 and 210 MW, there exists a market equilibrium point as
can be identified in Figure 3.4. For py = 190 MW, the primal solution is unique but there
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Figure 3.4: Total supply function
Table 3.2: Solution to the cost minimization auction
Pd pI  P3 P3 P} P A” f° ' dg
52 50 2 0 0 0 15.80 600.00 561.6000 38.4000
110 50 50 0 10 0 25.78 1605.00 1577.7778 27.2222
50 50 0 0 10
130 50 50 0 20 10 25.78 2140.00 2093.3333 46.6667
50 50 30 0 0
190 50 50 90 0 0 | [25.78,26.75] | 3640.00 3640.0000 0.0000
210 50 50 90 20 0 26.75 4175.00 4175.0000 0.0000
90 50 90 0 20
i 10.6 15.8 25.78 26.75 26.75

are multiple equilibrium prices. For p; = 210 MW, there is a unique equilibrium price and

two optimal primnal solutions.

Table 3.3 summarizes the costs, revenues and profits for each of the solutions when the

price is set up by the smallest optimal dual variable,

p = min{A"}

(3.12)

In Table 3.3, when an equilibrium exists, pricing with the optimal dual variable leads to
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Table 3.3: Costs, revenues and profits. Pricing with dual variable p = min{A"}

Pa |t P} c; P g X pr ; CNR
52 |1 50 530.0 15.80 790.000 260.000

2 2 70.0 15.80 31.600 -38.400 | -38.400
110 | 1 50 530.0 25.78 1288.889 758.889

2 50 790.0 25.78 1288.889 498.889

4 10 285.0 25.78  257.T78 -27.222 | -27.222

1 50 530.0 25.78 1288.889 758.889

2 50 790.0 25.78 1288.889 498.889

5 10 285.0 25.78 257.778 -27.222 | -27.222
130 |1 50 530.0 25.78 1288.889 758.889

2 50 790.0 25.78 1288.889 498.889

4 20 535.0 25.78 515.556 -19.444

5 10 285.0 25.78  257.778 -27.222 | -46.667

1 50 530.0 25.78 1288.889 758.889

2 50 790.0 25.78 1288.889 498.889

3 30 820.0 25.78 773.333 -46.667 | -46.667
190 |1 50 530.000 25.78 1288.889 758.889

2 50 790.000 25.78 1288.889 498.889

3 90| 2320.000 25.78 2320.000 0.000 0.000
210 | 1 50| 530.000 26.75 1337.300 807.500

2 50 790.000 26.75 1337.500 547.500

3 90| 2320.000 26.75 2407.500  87.500

4 20} 535.000 26.75 535.000 0.000 0.000

1 50| 530.000 26.75 1337.500 807.500

2 50| 790.000 26.75 1337.500 547.500

3 90| 2320.000 26.75 2407.500 87.500

5 20| 535.000 26.75 535.000 0.000 0.000

positive profits for all bidders; the pricing rule in (3.12) is analogous to a first-price auction

in the sense that when equilibrium exists, the “last”™ bidder breaks even at zero profit. For

the cases in disequilibrium, some of the bidders do not recover their cost: in all these cases

the total cost not recovered is equal to the magnitude of the duality gap. For py = 130

MW, all the other possible optimal solutions to supply 30 MW among bids 4 and 5, lead
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to the same cost not recovered of $ 46.667 among these bids.

For pg = 210 MW, there is equilibrium with two optimal schedules; both solutions result
in the same profit. Even though bidders 4 and 5 are not scheduled in one of the solutions,

it makes no difference for them which schedule is finally implemented.

In all the disequilibrium cases, there are incentives to move away from the optimal
schedules. For instance, for pg = 52 MW, at a price of 15.80 $/MWh, bidder two would
like to increase its output to 50 MW in order to maximize its profits. For pgy = 110 MW,
since 25.78 < 26.75, bidders 4 and 5, in each solution, would like to reduce their output and
operate at zero profit.

For pg = 130 MW, in the first optimal solution, at the price 25.78 $/MW, bidders 4
and 5 would like to reduce their output to zero in order to avoid negative profit (since
25.78 < 26.75). In the second solution. bidder 3 would like to increase to maximum output
in order to maximize profit. The cases in disequilibrium are used in subsequent sections to

describe the problems that arise in selecting the final schedule and the pricing rule.

3.2 Quadratic Model With Startup Cost

Additionally to the linear term in the cost function of the previous model (3.1), a quadratic

term, v; > 0, is added to the cost function submitted with the bids, i.e.,
ci(pi, uz) = oqu; + Bipi + ¥ip? (3.13)
The set of operative limits remains unchanged
P = {(pi,uw:) | 0 < pi < w;p;, wi € {0,1}}. (3-14)

The dual problem can still be solved in a closed form way, and the primal problem is solved
by the B&B algorithm of Subsection 3.1.2.

3.2.1 Closed Form Solution to the Dual Problem

As may be expected, the supply and profit functions for this model have the combined
characteristics of the models with pure quadratic cost functions (Subsection 2.2.2) and the
linear model with startup-cost (Section 3.1). For this case, in order for p;(\) to be optimal
to the profit maximization subproblems (2.2), it has to satisfy

A—0;
)} (3.15)

pi(A) = max [0, min {7;.
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And he profit function is
$i(A) = max {0, (A —B)p:(N) —vipi(A) — e} (3.16)

The substitution of (3.15) into (3.16) gives two possible solutions: if /a;/vi < p;, the
supply and profit functions are given by

(0, A< A
0 or Vai/'Yh ’\:Aai
pi{A) =4 (3.17)
—2—,;!—', Aai <A< Ay
L P: A > Api
0’ AL )\ai
w‘L(A) = /\Pi()\) - Q(pl()‘)' 1)7 )‘ai < A< )‘ln (3'18)
X —ci(p;. 1). A 2> Aps
and, if \/a;/v; > p;, by
0, A< Ay
pi(A) = ¢ 0 or 7, A=Ay (3.19)
D;s A> Ag
0. A< Ay
bi(A) =9 _ _ (3.20)
Api_“cl'(pirl)r )‘Z/\n
where in (3.17) and (3.19),
Aai = Pi + 2/
Abi = Aei = ¢i(P;, 1) /P = «i/P; + Bi + 7iB; (3.21)

Variable A; is introduced to distinguish among the two possible forms of the supply function
in Figures 3.5 and 3.6. The combination of a large startup cost and small non-linear term
makes \/a;/v; bigger, which causes the supply function to behave in the same way when

only a linear term is included in the cost function. The total supply and profit functions
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Figure 3.5: i-th bidder supply and profit functions for /a;/v: < B;
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Figure 3.6: z-th bidder supply and profit functions for \/c; /v > 7;
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Figure 3.7: Total supply and total profits

have the forms depicted in Figure 3.7. If the points Mg, Api and Ay are gathered into the

vector z, whose components are then reordered in a non-decreasing way 29 < z; < z9---;
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where zp = 0. An optimal solution to the dual problem is given by

Zk, if Zp = /\ak or zp = )‘ck
A= Zk—1 (3.22)
2k + |Pd — ¢’( k)]—?'—'r if 2k = )‘bk
b P(2k) — &(zk)

where ¢(zx) = Zleﬁi(zk), and P;(zk) Is used to indicate the maximum supply when z; is a
discontinuity point in the supply; i.e., Ag; and Ag. In the same equation, k is the smallest
index so that ¢(zx) > py; if the equality holds with zx = Agk, then there are multiple optimal

dual variables given by
’\* = [zk:zk+l]

If $(A\*) = pg, A* is an equilibrium price and the optimal primal solution is given by
p = [P1(A%), -+ ,Pe(X*),0,--- ,0]F. Other primal solutions can be found using the B&B
algorithm.

3.2.2 Branch-and-Bound for the Primal Problem

The B&B algorithm described in Subsection 3.1.2 is also used to solve the primal problem
to the quadratic model in this section. The computation of lower and upper bounds is

summarized below.

Determination of a lower bound

Considering the same description as in Subsection 3.1.2 for the sets A, B and C, the dual

function at node k is given by

Ye(N) = Apa— Y max (A= Bi)pi — vip? — wicy;
icA 0<pi Sup;
u; € {0,1}

—Z—a;—!— max (/\ Bi)p: — 'y,-pl? (3.23)
€B

The optimal solution to problem (3.23) is obtained from (3.22); but considering &; instead
of «; for the computation of Ag;, Api, Aci in (3.21),
a;, 1€ A
& =140, i€B (3.24)
oo, tE€C



CHAPTER 3. SIMPLIFIED DISCRETE POWER POOL AUCTIONS 38

The optimal dual function at node £ is evaluated from (3.23), with A* from (3.22). And
the lower bound is set up f, = ¥.

Determination of an upper bound

The determination of the upper bound follows a similar procedure to the linear case, as

described in the following algorithm.

Algorithm 3.2 Determination of an upper bound
1. Initialization. Set p; = p; for all ¢ € B; compute pr = pg — 3 _;c5Pi-

2. Infeasibility check. If pr > ¥ ,-.P; , stop; the problem at node k is infeasible;

otherwise, continue.

3. Select bids in A to commsit. With bids in A and demand p,, solve the dual problem
(3.23) using (3.22). Depending on /a;/vi, use (3.17) or (3.19); if p;(A*) > 0 set

u; = 1.

4. Perform a quadratic economic dispatch. Considering the demand py; and bids with

u; = 1, solve a quadratic dispatch with the analytical procedure in Subsection 2.2.2.

5. Compute the upper bound. Set fr= E{ilu,:l}o‘i + Bipi + vip?.

Determination of the branching order

For each of the forms of the supply function in Figures 3.5 and 3.6, a value 2; is assigned
to each bid. For bids with m the value is set at the mid point between Ay and Ap;;
that is, z; = Ag + (Api — Aei)/2. For bids with m > P; the value is set to z; = Ay
The indexing that results from the ordering #, < 3 < --- < Z,; defines the branching order.

Setting u; = 0 in this order, it is more likely to eliminate large portions of the tree.

3.2.3 Numerical Example

A data set for a five bidders is presented in Table 3.4. The cost minimization model is solved
for pg4 = 30,80,85,95 and 140 MW. The total supply function is presented in Figure 3.8.
The costs, revenues and profits for each case are summarized in Table 3.6. For pgy = 30,85
and 95 MW, there is no market equilibrium point. In the first case, there is a cost not
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Table 3.4: Five bidders with quadratic and constant startup
i 1 2 3 4 5
a; (3/MW) | 20.0 80.0 80.0 90.0 100.0
G: (3/MW) | 10.0 120 12.0 30.0 35.0
v ($/MW?2)} | 04 06 06 0.8 1.0
7; (MW) 20.0 30.0 300 500 600
200+ i ) ) 4
180
160k g
340 P4 = 140
120~
=<
oot pg =95
4 pa =85
50_ .
/ pa = 80
m» -
“r pa =30
T/
% 100 200 %0 %0 500

Figure 3.8: Total supply function
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recovered that is smaller than the duality gap (0.180 < 0.4488); in the second case, the cost

not recovered is equal to the duality gap; and, in the last case, the cost not recovered is
zero. For pg = 30, there are two optimal primal solutions. For p; = 80 and 140 MW, there

is a market equilibrium point; in the first case, there are multiple equilibrium prices, and

in the second, it is unique. The inclusion of the quadratic term in the cost function makes

the total supply function smoother, which results in more chances for equilibrium to exist

at different demand levels.
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Table 3.5: Solution to cost minimization auction
Dd PL P> Py Py D A" fr P* dg
30 19 11 0 0 O 25.86 639.0000 638.9512  0.4488
19 0 11 0 O
80 20 30 30 0 0| [48.00, 81.83] | 2340.0000 2340.0000  0.0000
85 20 30 30 5 O 81.83 2772.5000 2749.1641 23.3359
95 20 30 30 15 O 92.25 3622.5000 3612.4871 10.0129
140 20 30 30 35 25 160.00 9102.5000 9102.5000 0.0000

Table 3.6: Costs, revenues and profits. Pricing with optimal dual variable

Pd |t p; ¢ P p X p; mi | CNR
30 |1 19.000 354.400 25.856 491.272 136.872

2 11.000 | 284.600 25.856  284.420 -0.180 { -0.180

1 19.000 ;| 354.400 25.856 491.272 136.872

3 11.000 284.600 25.856 284.420 -0.180 | -0.180
80 |1 20.000| 380.000 48.000 960.000 580.000

2 30.000 | 980.000 48.000 1440.000 460.000

3 30.000 | 980.000 48.000 1440.000 460.000 | 0.000
85 |1 20000 | 380.000 81.832 1636.656 1256.656

2 30.000 | 980.000 81.832 2454.984 1474.984

3 30.000 | 980.000 81.832 2454.984 1474.984

4 5000 | 432500 81.832 409.164 -23.336 | -23.336
95 | 1 20.000| 380.000 92.249 1844.981 1464.981

2 30.000 | 980.000 92.249 2767.471 1787.471

3 30.000 { 980.000 92.249 2767.471 1787.471

4 15.000 | 1282.500 92.249 1383.735 101.235 0.000
140 | 1 20.000 | 380.000 160.000 3200.000 2820.000

2 30.000 980.000 160.000 4800.000 3820.000

3 30.000 980.000 160.000 4800.000 3820.000

4 35.000 | 3882.500 160.000 5600.000 1717.500

5 25.000 | 2880.000 160.000 4000.000 1120.000 0.000
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3.3 Price Setting Alternatives

When an equilibrium exists, the Lagrange multipliers are market equilibrium prices and re-
cover the costs of all the scheduled bids. In this situation, multiple optimal primal solutions
are Pareto optimal, therefore, none of these solutions is preferred by the bidders. There-
fore, under equilibrium, the Lagrange multipliers are market clearing prices, and multiple

optimal solutions do not represent any conflict of interest.

When an equilibrium does not exist, the optimal dual variables may not recover part
of the cost of bidders in the margin of the optimal primal solutions. Since multiple primal
solutions may exist, the selection of one or other as the final schedule may bring conflict
of interest if the pricing rule results in different profits for a participant when one or other
solution is selected as the final schedule.

After the experience in the England and Wales Power Pool with the use of average
pricing. there has not been enough research that tries to identify price setting alternatives
for unit commitment like power pool auctions. In {8, 1996], it is recognized that the cost-
minimization auction under average pricing does not always leads to lower prices. Based
on this observation, the use of a price-minimization auction is proposed in [9, 1997]. In [49,
1999}, the minimum uniform price increment that is necessary to recover the cost of all the
suppliers, is added to the dual variables.

In this section these alternatives are reviewed and the effects they have on the prices
and on the selection of the final schedule are discussed. Based on the observations made, a

non-uniform price setting alternative based on dual variables is proposed.

3.3.1 Maximum Average Cost

In this alternative, the price is set up as the largest average cost among the bids scheduled

in the solution of the cost minimization auction; that is,

Peve = rnax{c:/pl’-“ |V u; =1} (3-25)

where, for short, ¢] = ¢;(p},1). This price ensures that all the bids recover their cost. This
average pricing alternative, extended to account for all the periods in a unit commitment
auction, has been used in the England and Wales Power Pool to set the price for power;
this is the so-called System Marginal Price (SMP) [4, 1998].

Let us consider the results in Table 3.3 for the auction with linear and startup cost. The

maximum average cost for each of the demand levels, and each of the multiple solutions,
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is presented in Table 3.7. In the same table, the price given by the smallest optimal dual

variable is presented. The results in this table can illustrate the three mayor factors that

Table 3.7: Dual variable and maximum average price; test cases from Table 3.3
pa (MW) | 52 110 130 190 210

p =min{A\"} (§/MW) | 15.80 | 25.78 25.78 | 25.78 25.78 | 25.78 | 26.75 26.75
0 = Pave (§/MW) | 35.00 | 28.50 28.50 | 28.50 27.33 | 25.78 | 26.75 26.75

have raised conflict on the use of unit commitment power pool auctions. The first factor, as
recognized by J. Jacobs in [8], consists on the fact that multiple cost minimizing solutions
lead to different maximum average prices. For instance, consider pgy = 130 MW, the average
price of the second solution is lower than the average price of the first (27.33 < 28.5 $/MW).
The author notes that the price is not an equilibrium and considers that the Pool operator is
“failing” to obtain prices that are the best for consumers. Based on this observation, related
work [9] proposes the substitution of the cost-minimization model by a price-minimization

model.

The second factor, based on the actual experience of the England and Wales Power
Pool, deals with suppliers’ strategic behavior. The final report that investigates the price
spikes in the SMP [7], states that some suppliers were able to strategically choose their
cost coefficients submitted on the bids, so that these bids became price setter at very high
average prices. In the EWPP, the cost curve contains three linear segments plus a startup
and no-load cost {7]. A simple linear segment and startup cost, as in our model, can describe
the situation.

Consider Table 3.7; for the cases in equilibrium, the minimum Lagrange multiplier is
equal to the maximum average price. However, for the cases in disequilibrium, the average
price takes values above equilibrium prices that correspond to higher demand levels. For
instance, consider p; = 130 MW, the average price of any of the multiple solutions (28.50
and 27.33 $/MW) is higher than the equilibrium price (26.75 $/MW) when the demand
is 210 MW. Even more, for p; = 52 MW, the demand is just above a discontinuity of the
supply (Figure 3.4) and the average price results in 35 $/MW; that is, 30% larger than the
equilibrium price when the demand is 4.03 times higher; i.e., 26.75 $/MW for 210 MW.
These price spikes do not necessarily need be a direct consequence of strategic behavior. In
a competitive situation, where suppliers are assumed to submit their true cost functions, it
suffices that the demand be located just above a discontinuity of the supply function to set
the average price at a high value. If a supplier “learns” to locate one of the bids just below
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the demand, the price spikes can consistently occur; to answer if this situation can happen
or be easily created, it is required to study the strategic behavior of all the participants

incorporating demand predictions.

Table 3.8 presents the cost, revenues and profits for each of the demand levels and mul-
tiple solutions for the same test cases in Table 3.3. The last factor, is that multiple optimal
or near-optimal solutions to the cost minimization problem represent different profits for
bidders, which creates conflict of interest for the selection of the final schedule. This ob-
servation has been made first in [10]. For instance, consider pq = 130 MW, in the first
solution, bidder 3 makes § 35; however, in the second solution, bid 3 is not scheduled and
makes $ 0. Bid 3 looses if the pool operator chooses the second solution as the final schedule.
The difference in profits among different solutions is worsened because average prices are
different.

In {49], after the cost minimization model is solved, a minimum price increment that
ensures cost recovery it is added to the dual variable. As can be noted from Table 3.3, this

leads to the average prices.

For the cases in equilibrium, if multiple solutions exist (i.e., pg = 210) they do not raise
conflict of interest since the multiple solutions result in the same profits for the bidders

involved.

3.3.2 Price Minimization Auction

The price minimization version for the auction with linear and startup cost in Section 3.1

can be formulated as follows:

Pave =min  p (3-26a)
st.  p>(ai/pi + Bi)ui, (3.26b)

pa— upi =0, (3.26¢)

0 < pi < Paus, u; € {0, 1} (3.26d)

The problem consists on finding a schedule that satisfies the demand at minimum average

price. The problem can be transformed into the following equivalent form that does not
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Table 3.8: Costs, revenues and profits. Pricing with maximum average cost p = pgpe
pa |t P} < P pxp; mi | 2T pXpd
52 11 50 530.0 35.00 1750.000 1220.000
2 2 70.0 35.00 70.000 0.000 | 1220.00 1820.00
11011 50 530.0 28.50 1425.000 895.060
2 50 790.0 28.50 1425.000 635.000
4 10 285.0 28.50  285.000 0.000 | 1530.00 3135.00
1 50 530.0 28.50 1425.000 895.000
2 50 790.0 28.50 1425.000 635.000
5 10 285.0 28.50  285.000 0.000 | 1530.00 3135.00
130 {1 50 530.0 28.50 1425.000 895.000
2 50 790.0 28.50 1425.000 635.000
4 20 535.0 28.50  570.000 35.000
5 10 285.0 28.50  285.000 0.000 | 1565.00 3705.00
1 50 530.0 27.33 1366.667 836.667
2 50 790.0 27.33 1366.667 576.667
3 30 820.0 27.33  820.000 0.000 | 1413.33 3553.33
190 | 1 50| 530.000 25.78 1288.889 758.889
2 50| 790.000 25.78 1288.889  498.889
3 90 2320.000 25.78 2320.000 0.000 | 1257.78 4897.78
210 [ I 50| 530.000 26.75 1337.500 807.500
2 50| 790.000 26.75 1337.500 547.500
3 90| 2320.000 26.75 2407.500 87.500
4 20| 535.000 26.75  535.000 0.000 | 1442.50 5617.50
1 50| 530.000 26.75 1337.500 807.500
2 50 790.000 26.75 1337.500 547.500
3 90 2320.000 26.75 2407.500 87.500
5 20| 535.000 26.75 535.000 0.000 | 1442.50 5617.50
require the introduction of binary variables:
Paye = Mmin  p (3.272)
sit.  pa— Y ;pi =0, (3.27b)
cip: + Bip? — pp? <0, (3.27¢)
0<p<p (3.27d)
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Besides the complexity that the solution to (3.27) represents, price minimization auctions
have another drawback that has not been pointed previously in the literature. The non-
convexities in constraint (3.27c) can cause the existence of multiple solutions, which further
complicate the selection of the final schedule. Since the price for each of the solutions is the
same, but the schedules are strongly different, the conflict of interest for the selection of the
final schedule are emphasized. Table 3.9 summarizes the solution to the price minimization
auction for the same data system using the demand levels in Table 3.3. Except for the
first demand level, the price minimization mocdel is able to obtain a price at the same
level of the optimal dual variable (see Table 3.3). For all the cases, the schedules change
constderably as compared to the cost minimization results; more expensive suppliers are
loaded, resulting in a large total cost of the solution which considerably reduces the profits
for suppliers. For the disequilibrium cases. there are several multiple optimal solutions
with strongly different schedules. For instance, for p; = 130 MW, all the solutions have
the same price; however, the selection of the first or second leaves bidder 1 or 2 without
any profits. The same situation happens for p; = 110 MW. In fact, for this two demand
levels therc are more alternate solutions than the one presented on the table. For pg = 130,
p* = (10,30,90,0,0]7 is also a multiple solution.

The results in Table 3.9 have been obtained by repetitively changing the initial condi-
tion of an interior-point for non-convex non-linear programming [50]. In this case, simple

inspection can also be used to obtain the several multiple solutions.

3.3.3 Dual Variables, Duality Gap and Cost Recovery

As observed in the test cases, the cost not recovered by dual variables under disequilibrium
resulis smaller than the duality gap; the bids that do not recover the cost are in the margin
of the solution, and are the bids that appear (or do not appear) in multiple solutions and
set the high average prices. In this section, it is proven that the total cost not recovered
(CNR) by the optimal dual variables is bounded above by the magnitude of the duality
gap-

Let B_ be the set of bidders at any multiple optimal primal solution whose profits are
negative when A” is used to set the price; and let B,. be the set of bidders that have positive

profits. The optimal objective function and the demand can be written as

ff=/fs_+ f5;
Ps=pPs_+DPs,
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Table 3.9: Costs, revenues and profits. Pricing with price minimization auction p = p,,

pe |1 p; i P pXp; Ti | 3.M  pXPpd
52 |1 5.1253 81.2528 15.85  81.2500 0.000

2 46.8747 | 7T43.1208 15.85 743.1208 0.000 0.000 824.20
110 | 1 20 230.00 25.78 515.56 285.56

3 90 2320.00 25.78 2320.0 0.000 | 285.56 2835.80

2 20 340.00 25.78 515.56 175.56

3 90 2320.00 25.78  2320.00 0.00 175.56 2835.80

1 10 136.00 25.78 257.78 127.78

2 10 190.00 25.78 257.78 67.78

3 90 2320.00 25.78 2320.00 0.00 195.56 2835.80
130 | 1 40 430.00 25.78 1031.11 601.11

3 90 2320.00 25.78  2320.00 0.00 | 601.11 3351.40

2 40 640.00 25.78 1031.11 391.11

3 90 2320.00 25.78  2320.00 0.00 391.11 3351.40

1 20 230.00 25.78 515.56 285.56

2 20 340.00 25.78 515.56 175.56

3 90 2320.00 25.78  2320.00 0.00 | 461.12 3351.40
190 | 1 50 | 530.000 25.78 1288.889 758.889

2 50 790.000 25.78 1288.889 498.889

3 90 | 2320.000 25.78 2320.000 0.000 | 1257.78 4897.78
210 | 1 50 530.000 26.75 1337.500 807.500

2 50 790.000 26.75 1337.500 547.500

3 90 | 2320.000 26.75 2407.500 87.500

4 20 535.000 26.75 535.000 0.000 | 1442.50 5617.50

1 50 530.000¢ 26.75 1337.500 807.500

2 30 790.000 26.75 1337.500 547.500

3 90 | 2320.000 26.75 2407.500 87.500

3 20 535.000 26.75 535.000 0.000 | 1442.50 5617.50

where fz_ = ;5 ci(p}) and pg_ = X ;c5_pi: and p] represents the optimal output

of bidder ¢; the same notation applies for Ps,- With these definitions, the optimal dual

function value (2.9) can be written as

Pt = )\'TPJ - Zﬂﬁi(}\') = )\‘T(PB_ +P5+) - Zies+‘/’i(/\') - ZieBJPi(/\')
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The duality gap is given by

dg=f" -7
= [Cies A = A o5, — f5,)] + Us. — A Tps ) + [Ties.9:(X)]  (3.28)

For any bid, we have
¥i(A) 2 ATp; —ei(p]) 20, (3.29)

where 15;(A") is the maximum profit (bounded below by zero), as given by the solution to
the profit maximization subproblems (2.2). Hence. the two terms in the squared brackets
of (3.28) are positive and, therefore. the cost not recovered, CNR = (fg_ — A" Tpg_), is
bounded above by the duality gap

CNR< dg (3.30)

Since the magnitude of the duality gap tends to zero as the number of separable compo-
nents in the dual function increases [38], it can be expected that the duality gap reduces as
the number of participants in the auction increases. It has to be noticed that the derivation
holds similar for a pair of feasible primal and dual solutions. Let f be the ob jective function
value at any primal feasible solution and %{A) the dual objective function value at any A.
Following the same derivation, the complementarity gap (cg = f — ¥(A)) gives the bound
for the cost not recovered; that is, CINR < cg. A particular proof of the latter relationship
is presented by Madrigal and Quintana in [51].

3.3.4 Non-Uniform Pricing Based on Dual Variables

The two previous uniform pricing alternatives present clear drawbacks for pricing under
disequilibrium; multiple solutions represent quite different profits. Price spikes can occur
even in the absence of strategic behavior, and the price minimization auction considerable
reduces prices for suppliers since costly bids tend to be used. The alternative described here,
consist on paying their cost to these marginal bidders with negative profits 3_, and paying
the value of dual variable to the rest of the bidders. The cost not recovered is compensated

by adding an equal price increment and decrement to suppliers and load (consumers), as
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follows:
pe = A" + Ade. (3.31)
Psi = AT — A)\si Yi [ T > 0, (3.32)
Psi = A" + Al Vi | m; <0, (333)

where the price increment and decrement are given by

1
Ale=x x CNR x — (3.34)
Pd
Adgi = (1 — k) X CNR X ———nt Vi|m >0, (3.35)
anpo L
A =—2 Vi | ;< 0. (3.36)
pi

where « is a factor that determines the distribution of the cost not recovered among suppliers
and load. Ideally, this constant is 0.5 so that suppliers and load generate equally the cost not
recovered. In very trivial cases. such as an auction with only one supplier in disequilibrium,
the total positive profits 3~ _, 7; may be smaller than the cost not recovered. Therefore,
constant &k is computed as follows:

. ~ 7r1
& = min {0.5, ;c[%)é—} (3.37)

Even for cases with a small number of bidders (i.e.. five as in the examples) the total positive
profit is much larger then the magnitude of the duality gap, which is enough to guarantee
that « = 0.5 from (3.37). The price increment, for suppliers that do not recover their
cost, (3.36), is computed so that they exactly receive their cost. The price decrement for
each supplier whose original profit is positive, (3.35), is amortized according to its profit.
This guarantees that the decrement does not causes the profit of any supplier to go below
zero (also a very improbable situation). Other amortizations, for instance, based on offered

quantities, total costs or a priority selection could be used.

Due to the size of the duality gap, it may also be reasonable to generate the CNR by

any other administrative means; for instance, using settlement systems [2].

Table 3.10 presents the results of applying the non-uniform pricing rule for each of
the solutions and demand levels considered for the data set in Table 3.1. The following
observations can be made: (i) The reduction in revenues for suppliers, and the increase in
payments by the demand, adds up to ihe cost not recovered in each case; (ii) for the cases
in equilibrium, no adjustment is made since the cost not recovered is zero; (iii) for the cases

in disequilibrium, the profits of suppliers are the same for all the alternate solutions.
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Table 3.10: Costs, revenues and profits. Non-uniform pricing based on dual variables

Pa |1 P} c; Psi  Psi X P} i YT Pec Pc X Pd
52 |1 50 530.0 15.416  770.800 240.800

2 2 70.0 35.000 70.000 0.000 | 240.800 16.170  840.8000
110 |1 50 530.0 25.614 1280.677 750.677

2 50 790.0 25.670 1283.490 493.490

4 10 285.0 28.500  285.000 0.000 | 1244.1667 25.901 2849.1667

1 50 530.0 25.614 1280.677 750.677

2 50 790.0 25.670 1283.490 493.490

5 10 285.0 28.500  285.000 0.000 | 1244.1667 25.901 2849.1667
1301 50 530.0 25.496 1274.811 744.811

2 50 790.0 25.593 1279.634 489.634

4 20 535.0 26.750  535.000 0.000

5 10 285.0 28.500  285.000 0.000 | 1234.4444 25.957 3374.4444

1 50 530.0 25.496 1274.811 744.811

2 50 790.0 25.593 1279.634 489.634

3 30 820.0 27.333  820.000 0.000 | 1234.4444 25.957 3374.4444
190 | 1 50| 530.000 25.778 1288.889 758.889

2 350 790.000 25.778 1288.889 498.889

3 90| 2320.000 25778 2320.000 0.000 1257.78 25.778 4897.78
210 | 1 50| 530.000 26.750 1337.500 807.500

2 50| 790.000 26.750 1337.500 547.500

3 90 | 2320.000 26.750 2407.500  87.500

4 20| 535.000 26.750  535.000 0.000 144250 26.750 5617.50

1 50| 530.000 26.750 1337.500 807.500

2 50| 790.000 26.750 1337.500 547.500

3 90 | 2320.000 26.750 2407.500 87.500

5 20| 535.000 26.750 535.000 0.000 1442.50 26.750 5617.50

The last observation brings an advantage of non-uniform pricing to deal with the conflict
of interest that arises with the existence of multiple solutions. Since the marginal bidders
are paid their cost, they make zero profit. The rest of the bids, that are likely to appear
in all alternate solutions, receive the same price and, therefore, the conflict of interest that

may arise from the selection of the final schedule is minimized. See for instance, in Table
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3.10, the cases for py = 110 and py; = 130 MW, in both solutions suppliers receive the same

profit; the selection of any of these solutions does not bring a conflict of interest.

The non-uniform pricing alternative is also applied for the test case with quadratic and
startup cost functions in Table 3.4, for the same demand levels as in Table 3.5. The result
are summarized in Table 3.11. Since the supply functions tend to be smoother, the duality
gap and cost not recovered tend to be smaller. The increments and decrements to load and

suppliers prices are smaller.

Table 3.11: Costs, revenues and profits. Non-uniform pricing based on dual variables

Pa |t p; c; Ps  Ps XP; L Pec Pc X Dd
30 | 1 19.000 | 354.400 25.852  491.182 | 136.782

2 11.000 | 284.600 25.873  284.600 0.000 25.851  775.7820

1 19.000 | 354.400 25.852  491.182 | 136.782

3 11.000 | 284.600 25.873  284.600 0.000 25.851  775.7820
80 |1 20.000 | 380.000 48.000 960.000 | 580.000

2 30.000 | 980.000 48.000 1440.000 | 460.000

3 30.000 | 980.000 48.000 1440.000 | 460.000 48.000 3840.0000
85 | 1 20.000 | 380.000 81.659 1633.171 | 1253.171

2 30.000 | 980.000 81.696 2450.893 | 1470.893

3 30.000 | 980.000 81.696 2450.893 | 1470.893

4 5000 432500 86.500 432.500 0.000 81.683  6967.457
95 | 1 20.000 | 380.000 92.249 1844.981 | 1464.981

2 30.000 | 980.000 92.249 2767.471 | 1787.471

3 30.000 | 980.000 92.249 2767.471 | 1787.471

4 15.000 | 1282.500 92.249 1383.735 | 101.235 92.249  8763.658
140 | 1 20.000 { 380.000 160.000 3200.000 | 2820.000

2 30.000 | 980.000 160.000 4800.000 | 3820.000

3 30.000 [ 980.000 160.000 4800.000 | 3820.000

4 35.000 | 3882.500 160.000 5600.000 | 1717.500

5 25.000 [ 2880.000 160.000 4000.000 | 1120.000 160.000 22400.000
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3.3.5 Comparison of Alternatives

For the data in Table 3.1, the mean values of the total profit and load payment for each of the
pricing alternatives are shown in Figure 3.9. The mean values are computed considering
all the multiple soiutions for each demand level in disequilibrium (py = 52,110 and 130
MW). All the values are normalized to the profit and payment that result from average
price setting. In each graph, the pricing used is denoted by pgve. the maximum average
cost altermative; pj. ., the price minimization auction; and p;, the non-uniform pricing

alternative.
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Figure 3.9: Normalized mean value of profits and payments under disequilibrium

Pricing with maximum average cost leads to higher prices which results in larger profits
for suppliers and larger payments for consumers. The use of price minimization leads to
low profit for suppliers since more costly bids are used. The non-uniform pricing alternative
leads to profit and payment that behave more with the demand; it is a result that favors
neither suppliers nor consumers.

The standard deviation of total profit and payment for each disequilibrium case are
presented in Figure 3.10. Pricing with maximum average causes different solutions to have
very different profit and payment. The price minimization model leads to different solutions
that mean different profits, specially for suppliers. The non-uniform pricing alternative leads
in all the cases to the same profit and payment.

As noted in the numerical examples, when an equilibrium does not exist, multiple so-

lutions bring conflict of interest that are enlarged or diminished by the particular pricing
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Figure 3.10: Standard deviation of total profits and payments under disequilibrium

rule utilized. Pricing with maximum average cost and the price minimization auction en-
hance these conflicts; multiple solutions have either different prices or different schedules,
that result in considerable profit differences. Non-uniform pricing based on dual variables,
diminishes the conflict of interest. Therefore, even though all the multiple solutions to the
cost minimization model cannot in general be found, it is known in advance, that if the
price is set using (3.31)-(3.33), the conflicts are diminished.

3.4 Larger, Randomly Generated Test Cases

Four data sets with larger number of bidders are constructed randomly in order to simulate
more realistic situations. It is considered that bids come from coal, gas and nuclear stations.
This is simulated by considering the startup-cost/variable-cost /capacity as: high/low/large,
low/high/small and medium/medium/medium, respectively. For each type of generation,
clusters of identical units are formed to induce multiple solutions.

Table 3.12 summarizes the characteristics and solution of four different test cases. as
follows: (i) the number of bidders n, number of clusters with different bids n., the maximum
power output and the demand; (ii) the best primal objective function, the optimal dual
variables, the complementarity gap, cost not recovered and number of multiple primal
solutions ng; (iit) the load price, the mean value and variance of suppliers price, the total
load payments and the total profits; (iv) the total number of unit commitment combinations,
the number of nodes visited by the B&B algorithm n, and the time required to find the
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solutions. All the values are in appropriate units, MW, $, and $/MW. The B&B algorithm
is implemented in MATLAB, running on a 200Mhz personal computer.

Table 3.12: Summarized results for larger auctions with linear and startup cost functions

A B C D

n 75 105 105 75
Ne 75 105 10 15
S.B; 8108.00 11408.00 11297.00 8306.00
D 6292.00 4563.20 8473.00 4020.00
i 470735.00 265282.20 638411.00 237012.00
A* [99.33,101.21] 76.34 [94.14,103.22] 72.29
cg 0.00 63.34 0.00 46.65
CNR 0.00 63.34 0.00 46.65
Mg 1 1 1 4
Pe 99.3333 76.3478 94.1392 72.2786
Ds 99.3333 76.3290 94.1392 72.2956
a(ps) 0.0000 0.2585 0.0000 0.4875
Pe X Dd 625005.3333 348390.5068  797641.7848 290628.3061
S 154270.3333  83108.3068  159230.7848  53616.3061
on 3.7779%e+22 4.0565e+31  4.0565e+31  3.7779e+22
Ny 151 111 211 193
Time (sec) 9.6632 10.6080 16.6058 12.0530

For cases A and C, a competitive market equilibrium point exists. For cases B and D,
an equilibrium does not exist; for B, there is only one cost-minimizing solution; however,
for C there are four multiple solutions. For the last case, since there are only 15 clusters
of different units it can be expected that multiple solutions arise. It is clearly seen, for
the last case in Figure 3.11, that demand does not intersect the supply function. The cost
not recovered is very small for larger cases; the non-uniform price that suppliers receive
is very similar for all of them, as shown by the standard deviation o{(ps;). The number of
nodes the B&B algorithm visits is very small in all the cases as compared to all possible
combinations. This is due to the good branching order and tight bounds available for the
simplified models. The time required to find the solution is only in the order of seconds;
a complete enumeration would require in the order of 10'® years (based on an estimation

that uses the times in Table 3.12).
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Table 3.13 shows the bids that are involved in the multiple solutions; they are bids 39,

40, 41, 42 which have the same characteristics. There is only one bid that does not recover

the cost; this is bid number 28 and appears in all the solutions. Since the bids that appear

in all the multiple solutions are marginal, they make zero profit in all the solutions when

the price is setup using non-uniform pricing. However, if the price would have been set up

by the maximum average cost, it is setup by bid 28 to 75.4 $/MW which causes the profit
and load payments to increase. The other effect is that bidders 39, 40, 41 and 42 would

receive different profits in each solution.

Table 3.13: Bids in the margin. Case D
i o B B | pi | c®)/pi X A'pi T
(1,2,3,4) 28 { 36.0 73.0 207 | 15.0 75.400 72.290 1084.347 -46.653
(1) 39 71.0 72.0 245 | 245.0 72.290 72.290 17711.000 0.000
(2) 40 71.0 72.0 245 | 245.0 72.290 72.290 17711.000  0.000
(3) 41 71.0 72.0 245 | 245.0 72.290 72.290 17711.000  0.000
(4) 42 71.0 72.0 245 | 245.0§ 72290 72.290 17711.000  0.000
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Table 3.14 presents four larger cases for auction with bids that contain quadratic and
startup cost functions. For cases B and C, there is a market equilibrium point. For cases
A and B, there is no market equilibrium point. in the latter two cases, there is a cost not
recovered, equal to the duality gap in one case, and smaller in the other. The inclusion
of the quadratic cost term smoothes out the supply functions, which tends to reduce the

duality gap; see Figure 3.12. In the same figure, the zoomed plots show that in cases A and
C the demand does not intersects the supply.

Table 3.14: Summarized results for larger auctions with quadratic and startup cost functions

A B C D

n 48 48 150 150
e 8 12 25 30
2P 5142 5148.00 16441.00 16304.00
Pd 3992.60 3933.00 12728.00 12517.00
7 99591.1900 101411.4000 377920.8133 357144.3735
A* 37.6160 38.7624 40.9839 41.1910
cg 0.5390 0.0000 0.2863 0.0000
CNR 0.5390 0.0000 0.0073 0.0000
Mg 2 1 2 1
Pe 37.6161 38.7624 40.9840 41.1910
i 37.6159 38.7624 40.9840 41.1910
o(ps) 0.0089 0.0000 0.0000 0.0000
pe X pg | 150186.0520 150357.5661 521644.2022 515587.9861
S 50594.8589  48946.1695 143723.3889 158443.6125
on 2.8147e+14  2.8147e+14  1.4272e+45 1.4272e+45
iy 335 75 479 299
Time (sec) 163.7400 41.9256 779.5643 577.8281

The bids that are in the margin for each of the alternate solutions in cases A and C are
shown in Tables 3.15 and 3.16, respectively.

For both cases, pricing with maximum average cost would increase the price to 37.667
and 40.984 §/MW, respectively in each case. As can be noted in the same tables, the bids
that appear in both alternate solutions correspond to the bids that do not recover their
cost. The selection of either of the solutions does not bring conflict of interest.
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Figure 3.12: Total supply functions randomly generated test cases

Table 3.15: Bids on the margin. Case A

i o B i D; p; ci(p7)/p; p 2 Ti

(1) 39 | 11.0 36.0 0.059 | 81.000 | 10.600  37.667  37.6160 398.730 -0.539
(2) 40 | 11.0 36.0 0.059 | 81.000 | 10.600 37.667 37.6160 398.730 -0.539

Table 3.16: Bids on the margin. Case C

i B i D; p; ci(p;)/p; p PP} T

(1) 109 { 83.0 36.0 0.075 | 57.0 | 33.620  40.984  40.9839 1377.874 -0.0073
(2) 110 | 83.0 36.0 0.075 | 57.0 | 33.620 40.984  40.9839 1377.874 -0.0073
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3.5 Summary

In this chapter, two simplified discrete models for power pool auctions are studied. The
models consider linear and quadratic cost functions with constant startup cost. The in-
troduction of binary variables, and the methods developed to solve the primal and dual
problems, make the models very suitable to understand the effects of disequilibrium and
price setting alternatives in centralized power pool auctions. As far as we are aware, these
issues have not been thoroughly investigated in the existing literature, specially in the

framework of electricity power pool auctions. The following individual remarks are made.

e For both models, their dual problem has a closed form solution. A Branch-and-Bound
enumerative approach that can find multiple near-optimal or optimal solutions is

designed for the solution of the primal problem.

e When an equilibrium exists, there can be multiple Lagrange multipliers that represent
market equilibrium prices. In equilibrium, multiple primal solutions do not represent

conflict of interest.

e When an equilibrium does not exist, it has been shown that the optimal dual variables
do not recover an amount of cost that is bounded above by the duality gap.

e Also, when an equilibrium does not exist, multiple solutions bring conflict of interest
that are enlarged or diminished by the particular pricing rule adopted. Pricing with
maximum average cost and the price minimization auction, enhance these conflicts;
multiple solutions have either different prices or different schedules, that result in

considerable profit differences.

e Pricing with maximum average cost can create unreasonable high prices even in the
absence of strategic behavior. Price minimization uses more expensive resources that

considerably reduce the profit for suppliers.

e A non-uniform price setting alternative based on dual variables is proposed. The alter-
native produces prices that resemble more the behavior of the demand and diminishes
the conflict of interest when multiple solutions arise. Since the cost not recovered is
bounded above by the duality gap, the deviations in price are negligible; load payment

and suppliers profit do not increase as compared to the other alternatives.



Chapter 4

An Interior-Point /Cutting-Plane
Method for Unit Commitment

A unit commitment (UC) problem consists on determining the power generators that need
be committed and their production levels to supply the forecasted short-term (24 or, at
most. 168 hours) demand and spinning reserve requirements, at a minimum cost. Units op-
eration is subject to several constraints. UC models are very large non-linear mixed-integer
(therefore, non-convex) programming problems. The formulation of a unit commitment
problem is as varied as the number of approaches that have been used to solve it. Enu-
merative approaches, dynamic programming, genetic programming, neural networks, and
simmulated annealing are among the techniques that have been used to solve this problem;

comprehensive reviews on UC literature can be found in [52, 1994] [53, 1998].

The most accepted and successful approach to solve UC problem is Lagrangian relazation
(LR); the LR technique was first introduced in [54, 1977] and became very well established
with subsequent developments [55, 1983] [56, 1988]. The key idea in LR-based approaches is
to solve the dual problem instead of the primal problem. The dual problem has a separable
structure, i.e., in a per thermal-unit basis, which permits its easy evaluation and, at the
same time, provides a primal (not necessarily feasible) solution. The dual function is concave
but not differentiable. Therefore, non-differentiable optimization techniques are required
to solve the dual problem. Pioneering work on LR-based UC solution approaches has
used sub-gradient (SG) methods as the dual maximization engine [54, 56]. Despite their
bad convergence characteristics, they still are being used due to its easy implementation

and low per-iteration computer effort. Several Cutting-plane (CP) variants to solve non-

58
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differentiable optimization have been employed to solve the dual to unit commitment or
other power scheduling problems. For instance, in [57. 1996] a penalty-bundle (PB) method
is used to solve the UC problem. In [58, 1997], a reduced complexity bundle method
is introduced to solve the dual of a power scheduling problem. In [59, 1999], a CP with
dynamically adjusted constraints is used to solve a hydro-thermal coordination problem. All
these cutting-plane variants still have the disadvantage that parameters need be carefully
tuned; these parameters define a siabilization scheme that prevents unboundedness in the

maximization of the dual function and help improve convergence [60, 1994].

In this chapter, we formulate a UC model and propose the use of an interior-point/cutting-
plane (IP/CP) method to solve the dual problem. IP/CP methods have been used to
successfully solve non-differentiable problems in other engineering applications, such as lot
sizing [61, 1997] and multi-commodity How problems [62, 1994]. An IP/CP method has
two advantages over previous approaches: First, it has better convergence and robustness
characteristics; second, it does not suffer from the parameter tuning drawback of previous
approaches. These two characteristics make the IP/CP an attractive alternative when the

UC model is used to execute power pool auctions.

Section 4.1 formulates a UC model. Section 4.2 presents the LR algorithm. In Section
4.3, two existing techniques to solve the dual problem, and the IP/CP method are presented.
In Section 4.4, a primal-dual interior-point method is proposed to solve the potential prob-
lem that arises in the IP/CP method. Sections 4.5 and 4.6 deal with the solution of the
profit maximization subproblems and the primal feasibility search phase. The last section
briefly describes some implementation issues. Numerical results on the IP/CP testing and

the use of the UC as a power pool auction mechanism are presented in Chapter 5.

4.1 The Unit Commitment Problem

A unit commitment problem consists on determining the power generators that need be
committed and their production levels to supply the forecasted short-term demand, at
minimum cost. In a classical unit commitment model, not only the demand needs be

satisfied, (2.1b}, but also a power reserve constraint has to be observed; i.e., to the model
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in (2.1) the reserve constraint is added, that is,

f* = min 2_ici(Pi)s (4.1a)
s.t ph—>.pt=0, vt (4.1b)
rh—-Yri<0, vt (4.1c)

p; € P, Vi (4.1d)

where 74, is the power reserve requirement for period ¢, and r} is the reserve contribution
of supplier 7 at period . Both the cost function c;(p;) and the set of operative limits P
depend on inter-temporal effects that make problem (4.1) non-separable in time. The UC
belongs to the class of NP-hard problems, as proven in [63]. The cost function in (4.1a)

contains fuel or variable costs and startup-costs,

ct=ch;+c; (4.2)

Each of the cost components is given by

2
ct; = utao: + Bip} + vip (4.3)

- et
¢ty = ub(1 — ui™ Y an + oz (1 — e7%a /7] (4.4)

where aqg; (8) is a no-load cost, (3; and ; are the linear and quadratic cost components in
$/MW and $/MW?, respectively. The startup cost function contains a constant ay; and
a variable term a»; ($); the variable term depends on the number of hours the unit has
been de-committed {off) up to sub-period ¢t — 1 (xfgl), and on the cooling constant 7;. The
commitment variables are again represented by uf, which take the value of one if unit ¢ is

committed at time ¢, and zero otherwise.

The reserve contribution of each thermal plant in (4.1c) is given by rf = u{p; — pf),

where p; is the maximum allowable power output.

The set of operative limits P; in (4.1c) can contain a variety of restrictions [52, 53];
among them: (i) minimum and maximum power output; (ii) minimum up and down times;
(iii) ramp constraints; and (iv) crew and must-run constraints. The first three groups of

constraints are written as follows:

ulp, < pl <ulp;, Vi, Vi (4.5)
ui € {0,1} Vi, Vi (4.6)
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where p. and p; are the minimum and maximum allowable power outputs, respectively. The

minimum up- and minimum down-time constraints are written as

w1 —ub) (2 -8 >0 Vi, Ve (4.7)
wl(l—wf ™) e —8) >0 Vi, Vi (4.8)

where 1'2.‘-_1 and z:fhfl are the number of periods unit 7 has been committed and decommitted,
respectively. The minimum number of periods a unit can be committed or decommitted is
represented by f; and {;, respectively.

t —

t—1, ¢
G =T u

Analytic expressions for z; and z!; are, for instance, z t+ul and zf; =

:z:fgl(l —u!) + (1 — u!). Initial time conditions are always specified and denoted by 29, and

z9;; one of them has to be zero. Ramp constraints can be written as

ulTpi T —ufpl < Ap; Vi, W (4.9)
ulpt — ™"t < Ap; i, Wt (4.10)

t

where Ap; and Ap; are the maximum ramping-down and ramping-up constraints.

4.2 Dual-Primal Solution by Lagrangian Relaxation

The Lagrangian relaxation technique, as applied to solve UC problems, is a two phase
optimization approach. In the first phase, the (Lagrangian) dual problem to the UC model
(4.1) is solved until a stopping criterion is satisfied; in the second phase, a primal feasible

solution is constructed from the dual solution.

The dual objective function is given as in (2.9) but additionally including the reserve

constraints (4.1), as follows:

Y(A) =3, (Mph + Arrh) — S a(X) (4.11)
where
¥i(A) = max St + Abrf — b — ) (4.12)

and A is the vector of dual variables related to the power and reserve constraints; that is
A=Do, AT = (AL, A7 AL -, A]T. The dual UC problem is given by

Y= max H(A) (4.13)
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The dual variables of the power-balance equality constraints are not necessarily constrained
to be positive; however, since the cost always increases as real power generation increases,
they always take positive values. The evident separable nature of the dual function () is
what makes the LR method a successful technique to solve the UC problem in a two-stage

approach: it is summarized in the following algorithm.

Algorithm 4.1 The Lagrangian Relaxation Algorithm
1. Initialization. Obtain an initial dual vector A?, and set k = 0.

2. Phase 1. Solution to the dual problem.

(a) Evaluation of the dual function. From (4.11), evaluate the dual objective
function ¥(AF) by solving the n individual profit-maximization subproblems,

(4.12). Let p(A*) be the optimal primal variables (uf and pt) to the dual problem.

(b) Convergence test. If a convergence criterion is satisfied, go to Phase 2: other-
wise. continue.

(c) Improved dual solution. Using a non-differentiable optimization technique,
find an improved dual solution vector, A¥*!. Set k = k + 1 and go to Step (a).

3. Phase 2. Feasibility search. Map p(A¥) to a primal feasible solution p(A*¥) — p:

(a) Find a reserve feasible solution

(b) Dispatch generation to exactly match the power demand

There are several alternatives for the selection of initialization and stopping criteria.
The selection of an alternative is linked to the method used to solve the dual problem.
The technique used to solve the profit maximization subproblems (4.12) depends on the
type and number of restrictions that are included in the set P;. The procedures (usually
heuristic) to find a primal feasible solution also vary depending on the modeling detail in
P;. The solution to the dual problem is the most time-consuming part in the LR algorithm;

there is a number of non-differentiable optimization techniques that have been used to solve
the dual problem.
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4.3 Solution to the Dual Problem

The dual function in (4.11) is concave and non-differentiable; optimization techniques for
non-differentiable optimization to solve the maximization problem (4.13) depend on the
computation of sub-gradients to the dual function. As proven in [38], a sub-gradient to the
concave function (4.11) £ € R*™ is given by

T
E=lpg— b - — P T = T — (4.14)

This sub-gradient represents a miss-match vector of the power demand and reserve con-
straints, (4.1b) and (4.1c), respectively .

4.3.1 Sub-Gradient Method

A sub-gradient (SG) method is an extension of gradient methods for smooth optimization;
it uses a sub-gradient as the search direction vector. In the widely known Polyak’s sub-
gradient method [64]. a sub-gradient is used to obtain a normalized search direction; and
the combination of two parameters, x; and k3, define the step length. The updated dual
vector is

1 &

AR+ — AF 4 max]o, ,
[ K1 +k x w2 ||€F||°

(4.15)

where ¢* stands for the sub-gradient at A*, as given by (4.14). Despite its poor and final
oscillatory convergence characteristics and the fact that the tuning of parameters «; and &,
is a non trivial task [65], sub-gradient methods are still extensively used to solve different
power-system scheduling problems due, mainly, to its easy implementation and low per-
iteration computational effort [52, 56,58, 63, 66-68].

4.3.2 Penalty-Bundle Method

The penalty-bundle (PB) method is one of several variants of cutting-plane methods {60];
both methods are briefly described next. A bundle is a collection of: (i) dual vectors
{A1, ..., A%}: (ii) their corresponding dual objective function values {p(AY), ..., (A5}
and (iii) the sub-gradients {¢!,..., &k}. A cutting-plane approximation, Wi, of the dual

function ¥ that is associated to this bundle is

V() = nllink{q,l;(/\j )+ (A = A9)Tgd} (4.16)

Jj=l....
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The approximation in (4.16) overestimates the dual function, that is, ¥x(A) > %¥(A). The
maximization of the original non-differentiable dual function (4.11) is replaced by the max-
imization of the cutting-plane approximation (4.16). The maximization of (4.16) is equiv-

alent to solving the linear program

max z
st. z<PN)+(A=-MT¢, j=1,--- .k (4.17)
A>0

In the pure cutting-plane method, the solution to (4.17), A¥*! is used as an improved dual
solution to maximize the original dual function. This new vector is then used to update
the cutting-plane approximation by adding a new cut, z < P(AF*1) + (A — AFFYTgr+L 4y
(4.17). The updated approximation is again maximized and a new improved dual vector
is obtained; this process is repeated until a stopping criterion is satisfied. As iterations

proceed, the size of the linear problem (4.17) increases.

This pure cutting-plane procedure has severe drawbacks; for instance, at the first it-
eration, (4.17) is unbounded; and, in general, at iteration k, the solution to (4.17), may
be far away in the unbounded optimization region. To avoid this problem, stabilization
schemes that prevent the search to go far from the actual approximation can be used [60].
The most simple stabilization scheme, Kelley’s cutting plane method [60], is to add the
constraint A < X in (4.17) so that the dual search space is bounded; A is an upper bound
of the dual variables, which in most engineering applications is at hand. One of the most
used stabilization techniques is the penalty function method. In this technique, a penalty
function is added to the objective function z in (4.17); then an improved point is obtained

from the solution to the quadratic problem

max  z — LrgllA — AF|?
st z<PM)+ A =-MT¢, j=1,--- &k (4.18)
A>0

The introduction of a penalty term causes the solution to (4.18) to be in a region close
to the previous solution point A¥: and hence, it has the effect of bounding the search space.
The penalty parameter k3 controls the search region, which can be viewed as a sphere with
center A*, and a radius controlled by x3. Although the theoretical convergence properties
of the PB and SG method are similar [69], careful tuning of the penalty parameter can lead

to considerable improvements in LR-based schemes to solve unit commitment [57, 1996]
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and hydro-thermal scheduling problems [59, 1999]. This method is usually addressed as the
penalty-bundle method.

Heuristic rules can be designed to set the parameter x,, k2 and k3 for some specific
problems [60,69,70]. The choice of these parameters strongly affects the convergence char-
acteristics of both methods. In most power-systems applications, these parameters are set

up using trial-and-error runs or ad-hoc techniques.

4.3.3 An Interior-Point/Cutting-Plane Method

Interior-Point/Cutting-Plane Method (IP/CP) methods for non-differentiable optimization
have been first introduced in {71, 1992]. In the recent years. IP/CP methods have been very
successful to solve engineering applications such as multi-commodity flow problems [62], lot
sizing problems [72, 1994], stochastic programming {73, 1997] and also to compute market
equilibria of international trade permits [74. 1997]. The theoretical convergence properties
of an IP/CP method is sightly superior to other cutting plane methods [74, 1997]; however,
in practice, quoting from the survey [69, 1999]. “the method is not always the fastest, but is
constantly good and is by far the most stable”. [P/CP methods have never been explored

before to solve power-system scheduling problems.

IP/CP methods strongly differ to other cutting plane methods; the latter ones maximize
a cutting plane approximation over a stabilization region to obtain an improved dual solution
vector. IP/CP methods take the analytic center of a localization set as the new improved

dual solution. The localization set is a convex closed region denoted by 2%, and defined as

2 ={(zA) |z <pN)+A=-MT¢, j=1,---,k
z >z, (4.19)
0<A<LA}

The boundaries of the localization set are given by: (i) The cutting-plane approximation
of the UC dual function (4.16); (ii) a lower bound z to the dual objective function value;
(iii) the known dual variables lower bounds A > 0; and (iv) a boz constraint A < X. The
constraints (iii} and (iv) limit the localization set from the left and right, respectively; and
the constraints (i) and (ii) limit the localization set from above and below, respectively.
As pointed out in [72], the selection of the box constraint A has a limited influence on
the convergence characteristics of the IP/CP method: and, in practice, any large enough
number based on knowledge of the pioblem can be chosen. For the UC problem, the same

convergence characteristics have been observed; the selection of a very wide range of values A
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does not affect the convergence characteristics of the IP/CP methods. For the UC problem,
the box constraint can be set up based on units’ cost coefficients. A lower bound of the dual
objective function is readily available from the evaluation of the dual function at previous
iterations, i.e., Z = max{i(A!),. .., v(A%)}.

The localization set in (4.19) can be rewritten as

F={y|ls=b—ATy, s> 0} (4.20)
where
(1 —&T (#Ah) = AT e
AT | 1 T e -
-1 0
0 I

S >IN

\o -1 ) \ )

and y = |z, J\T]. In the same equation. AT € R™*7; 5 b € R™, and I € R¥**?7 js
an identity matrix; the dimension are given by M = 4m + k +1 and 7 = 2m + 1. The
localization set 2* has an iteration-increasing size. The analytic center of 2% denoted by
y**!, is defined as the unique point that solves the potential problem

max 3. In(s;)

st. s=b-—ATy (4.21)

s>0

The term Z;ﬁzl In(s;) defines a potential function whose maximum is achieved at a point
centered in the localization set; for example. a non-centered point close enough to a hyper-
plane 7 has s; — 0, and the associated potential component {n(s;) =+ —oo. From yktL pan
is taken as an updated dual solution vector. which is used to evaluate the dual function. The
localization (4.19) is updated to £25+! by adding a new cut, z < P(AFF1)+ (A = AT T gh+1
and by replacing the dual-function lower bound approximation by z = m&Y{lf)(}\k+l),§}.
The analytic center of the updated localization set is obtained and the process in repeated

again until a stopping criterion is satisfied.

The difference between the IP/CP approach and previous cutting-plane methods is
graphically illustrated in Figure 4.1 for A € R!. The figure includes: (a) a pure CP method
with bounds on dual variables; (b) a PB cutting plane method; and (c) the IP/CP method.
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In all the cases, it is assumed that two cuts have already been obtained (solid straight lines).
In cases (a) and (b), the improved point is taken from the maximization of the cutting plane
approximation, which is limited by bounds (dotted vertical lines) in dual variables and by
a penalty function (dotted circle), respectively. In IP/CP methods, the analytic center of
the localization set is taken as the improved point. The lower bound for the dual objective

function and the box constraint are represented by the dotted horizontal and vertical lines,

respectively.
z z z
B(A) ¥\ $(N)
Ak k1 A Ak A+ A 2k 2\e+1 A
(a) CP (b) PB (c) IP/CP

Figure 4.1: Cutting plane methods

Figure 4.2 schematically depicts the third, fourth and fifth iterations of an IP/CP
method; the dot inside each updated localization set (shaded region) represents the an-
alytic center; the horizontal dotted line represents the lower bound z; and the bold curved
line represents the dual function. This figure depicts the classic behavior of the IP/CP
method; cuts generated from the analytic center are deeper and the localization set rapidly

shrinks towards a single point that corresponds to the optimal value.

()

z c»"‘o z z z22z
- {
2/ YRR N\, (pa
5 22 %,
(A) @ A< AL
A A \

Figure 4.2: Illustrative iterates of an IP/CP method

All cutting plane methods require the solution of a linear or non-linear optimization

problem whose size increases with the number of iterations. For the PB method, a quadratic
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problem (4.18) has to be solved. This problem is very suitable for interior-point methods
for quadratic programming. For the IP/CP method, the potential problem (PP) (4.21)
has to be solved. In [61, 1997], a damped Newton method is used to solve this problem.
Recently in [75, 1999], an infeasible primal-dual Newton method is used to find the analytic
center. The solution to problem (4.21) has received less attention than linear programming
problems; as stated in [69, 1999], “no method can be credited superiority”. In the next
section, an infeasible log-barrier primal-dual interior-point-method to solve the potential

probiem is developed.

4.4 A Primal-Dual Interior-Point Method to Solve the Po-
tential Problem

An infeasible primal-dual interior-point-method (IPM) to solve the concave non-linear prob-
lem (4.21) can be derived as an extension of primal-dual IPM’s for linear programming [76].
Following Fiacco and McCormick’s logarithmic barrier function approach [77], the trans-
formed problem to (4.21) is given as

max Zzlln(s +/,LUZ = in(si)
st. s=b-—ATy (4.22)

where x¥ > 0 is a barrier parameter that is monotonically driven to zero: p® > p! > --- >
1> = 0. The sequence of solutions {y(x"), s(u”)}, that solve problem (4.22) for each u¥,
defines a barrier trajectory that converges to the unique maximizer of the original problem
(4.21). The necessary and sufficient conditions for optimality of (4.22) can be derived from

the barrier Lagrangian function

o= (L+p®) 357 In(s;) — T (s — b+ ATy) (4.23)

1=1

where £ € R™ > 0 is the vector of Lagrange multipliers to the constraints s = b — ATy.
The maximum of (4.22) is given by a stationary point of (4.23); which has to satisfy the

following first-order necessary conditions:
rs = —SXe+(1+u")e=0 (4.24)

Ty = -'-ATy el b =0 (4'25)
ry = _Az=0 (4.26)
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where S = Diag(s), X = Diag(x) and e € R™ is a vector of ones. From an initial condition
59 > 0, % and y° that does not necessarily satisfies the equality constraints, the primal-dual

interior-point method generates iterates of the form

v+1 v
s s As
T =|lz| +a”| Az (4.27)
y y Ay

where the search directions As, Az and Ay are computed by solving one Newton's iteration
that advances towards the solution of the optimality conditions (4.24)-(4.26). The common
step length ¥ is computed so that variables s and = remain strictly positive. A first-order
Taylor-series expansion of (4.24)-(4.26) gives the augmented Newton’s system, from which

the Az and Ay directions are computed
-X-1s AT\ Az _[r=- X~ lrg (4.28)
A 0 Ay Ty
The s direction is given by

As =X"(r, - SAz) (4.29)

The step length is computed as a¥ = min{a,, as}, where

v

. T
a; = min{1, —gﬂzg | VAz{ < 0}
as = min{l, —QZ;v | vAs? < 0}

The use of separate step lengths in IPM’s for non-linear programming, does not always
improve convergence as happens with linear programming [78]. In our experience with the
potential problem (4.21), a common step length has performed well. The safety factor is
set to the typical value of o = 0.99995 [76].

4.4.1 Initialization, Barrier Parameter Reduction and Stopping Criteria

The initialization of variables for the IPM to solve the potential problem (IPM-PP) is done
as follows. The initial value for the vector y° is set up from the upper level k-iterations
of the LR algorithm by y° = [7,b(a\'°_1),z\k‘1]. This initialization allows a simple hot-
restart of the IPM-PP that is equal to the analytic center of the previous localization set.
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More elaborated hot-restart strategies are described in [69]. Once y° is set, variables s are
initialized by
s® =|b— ATy

The dual variables are all initialized to one, i.e.,

x =e
From (4.24), the following barrier parameter reduction strategy can be derived

prtl = G(Z?_;lsfrf —1) O<o<l

where a typical value for the parameter o is given by 0.2 {78]. The convergence criteria of

the IPM-PP are set by the following normalized residuals:

T
”rs_l-l_- 561! II I“ Sf , ”"'y” SE (4'30)
1+ 1+ |5} 1+ (|||
These convergence criteria are set to €; = €2 = 1078 and e3 = 107®. The parameter setting

here presented has been found very efficient in all our tests performed.

4.5 Solution to the Profit Maximization Subproblems

The evaluation of the dual function for a given dual vector A¥ is required at each iteration of
the LR algorithm. In order to evaluate (4.11), it is required to solve the profit maximization
subproblems (4.12). These subproblems are non-linear and mixed-integer, and contain inter-
temporal constraints. The supply function, that results from their solution, is no longer
available in closed form. The profit-maximization sub-problems can be efficiently solved
using dynamic progremming (DP). A DP approach can easily handle non-linear objective
functions and minimum time constraints. The inclusion of ramp constraints needs more
considerations; for the purpose of this research, the inclusion of such constraints does not
affect the development of the new approach or provide valuable information; the alternatives
to include them have been studied in several other works [63,67,79,80].

A DP approach to solve the subproblems (4.12) consists on a forward enumeration of
all states that are feasible to the minimum time constraints, (4.7)-(4.8), and to the binary
commitment conditions (4.6). In order to illustrate the DP approach, consider the graph
shown in Figure 4.3. The graph corresponds to a unit that has been already committed for
1 hour; that is % = 1,29, = 0 and whose minimum time constraints are #; = 3 and ¢; = 2.
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di

0 L 2 3 4 5 6
Time periods

Figure 4.3: Dynamic programming graph

The graph is constructed by visiting only the feasible states to these constraints until ¢ = 6.
In the DP graph, upper nodes(states) correspond to on states uf = 1, and lower nodes to
off states u! = 0. Since the DP graph implicitly handles minimum time constraint in its

construction, it is not necessary to use the non-linear expressions (4.7) and (4.8). To each

t

on-state, a profit «} is associated. This profit is the maximum possible value that satisfies

the minimum and maximum output constraints (4.5),
k ko 2
T = max A} i+ A (P; — pb) — (ab; + Bipt + vipl) (4.31)
st. p, <pf <7
The solution to problem (4.31) is given by

p; = max{p , min{p;,p"}} (4.32)

where
k k
_ A =N =B
Ti
To each arc in the DP graph, a transition cost is associated; this cost is given by the start-up

x

P

(4.33)

cost ct;. The total profit created by arriving to state z; at stage t is computed using the

recurrent formula

(=) t=leyt—1 (£ (:E;—l) b —cg (4.34)
I .
J
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where X?~! represents all the feasible states at stage t — 1 in the DP graph. The opti-
mal to the profit maximization subproblems, given by the vector [u}l,p},--- ,u™,p™], and

represented by p(AF), is obtained by back-tracking from the node in the last stage of the

DP graph whose F(zI") is maximum. If there are multiple nodes in the last stage with
maximum profit, the trajectory that results in more power output is selected. This helps to
reach primal feasibility faster since more power is being committed at the dual optimization

phase.

4.6 Primal Feasibility Search and Stopping Criteria

After the dual maximization phase is terminated, by any stopping criterion, a primal so-
lution p(AF) is available. However, this solution in most of the cases does not satisfy the
power demand and reserve constraints (4.1c) and (4.1c). The primal feasibility search phase
in the LR algorithm takes p()\k ) and maps it to a primal feasible solution using cost-based
heuristics. The solution obtained after the primal feasibility search, p, usually results in

very small complementarity gaps.

A simple procedure to obtain a primal feasible solution, derived from [56] and generalized
in [63], consists on first generating a reserve feasible solution, and afterwards on dispatching
the committed units to satisfy the real power demand. The reserve feasible solution is
constructed by successively increasing the dual variables to the reserve constraint at the
time periods when the reserve is not met. The subproblems (4.12) are then solved for each
increased vector of dual values until the reserve constraint is satisfied. The procedure is

outlined in the following aigorithm.

Algorithm 4.2 Reserve feasibility search

1. Set 7 =0 and 5(,7. = A¥ (from the last iteration of the dual maximization phase).
2. With X’ = [A’;, 5\1], solve the profit maximization sub-problems (4.12).

3. If p(ij) is feasible to constraints (4.12), stop; otherwise, continue.

4. Set 5\‘:“ = “i + & x min{0,[r} - Xk, .. rP =TTy

5. Set 7 = 7+ 1 and go to step 2.

In Step 4 of the algorithm, the power reserve dual variables are increased for the periods
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where the reserve constraint is not met. The increase is made based on a sub-gradient
update; as long as it is positive, the parameter e guarantees that a finite number of iter-
ations j are needed in order to achieve reserve feasibility [56,63]. However, a large value
can commit more units than necessary; on the other hand, a small increase in the value
can require more iterations to achieve feasibility. The reserve feasibility search does not, in

general, represent a time consuming task as compared to the dual maximization phase.

Once the reserve constraint is met, a simplified quadratic economic dispatch is solved
for every period ¢, considering only the units whose u! = 1. Only under very uncommon
practical situations, as described in [63], a reserve feasible solution cannot result in a feasible
dispatch; that is, the inequalities > ulp! < p4 < 3, ulp! cannot be satisfied. The economic
dispatch problem to be solved at each time ¢ is

. 2
min 3 e Bipk + 1ipi
St Pg— L= Pi=0 (4.35)

QiSP£S@'z Vilui=1

This problem can be solved by the direct approach presented in Subsection 2.2.2. The
commitment obtained after the reserve feasibility search and the dispatch obtained from
the solution to (4.35), represents the feasible schedule that is denoted by p.

The quality of the solution p can be measured by the complementarity gap (cg) or

relative complementarity gap (rcg):

cg = f —p(AF) (4.36)
F ok
reg = L2¥ A7) 100 (4.37)
where f denotes the primal objective function value at any primal feasible solution p.
Experience on solving UC problems [53,56,63] has shown that the rcg can be reduced to
values about 1-2%, especially as the number of units in the UC increases. The smaller the
cg is, the closest it is to the dg. Since the dg is not know in advance, it may happen that
a duality gap exists for the particular instance of the UC model and, therefore, the rcg
cannot be reduced to zero; in this situation, a small rcg does not necessarily mean p is a
sub-optimal solution. Only when 7cg is equal to zero, it can be assured that the solution

at hand is optimal.

The computation of a primal feasible solution at each iteration of the LR algorithm,

in order to use (4.37} as an stopping criterion, can turn expensive especially when the
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method to solve the dual problem has poor convergence characteristics. Stopping criteria
for the SG algorithm are not easy to implement due to its final oscillatory characteristics.
In most of the cases, the SG algorithm is stopped when a given maximum iteration count
is reached [12,57.63,66,67].

Cutting plane methods provide better stopping criterion that only require the use of
dual quantities. At each iteration k of the LR algorithm, the values z* from the solution of
(4.18) or (4.21), in the PB or IP/CP methods, is an upper bound to the optimal dual value
zF > 4. Also, since the evaluation of the dual function (4.11) at A* is a lower bound to
optimai dual objective function ¥* > %(A¥), the following dual gap stopping criterion can

be implemented for these methods:

A = x 100 < g4 (4.38)

zF — p(AF)
s
Due to the robustness of IP/CP methods, the dual gap criterion can be set to values as low

as eg = 1075

4.7 Some Practical Implementation Issues

The base programming language for the LR implementation is C, using the GNU’s gcc
compiler (v2.7) [81], all under the Linux operative system. The implementation of a DP
subroutine uses dynamic memory allocation; the efficient sparse implementation of the IPM
to solve the potential problem strongly improved initial implementations. Some of the key
implementation issues of these two components in the LR algorithm are described in the

next subsections.

4.7.1 Dynamic Programming Data Structure

A dynamic memory allocation data structure has been designed to generate the DP graph
in Figure 4.3. The structure is made of a static array whose components are pointers to
linked lists. The linked lists consist of registers that contain the information of each node,

at a given stage (see Figure 4.4). The structure is defined as follows :
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typedef struct STATE(
double PROFIT ;
double POWER ;
int TIME ;
int INDEX ;
int FROM ;
struct STATE *NEXT ;
}STATES ;
typedef STATES *DPGRAPH[m] ;

The DP graph is contained in the variable DPGRAPH which is a static array with length
m (the number of time periods). Each component of the graph, DPGRAPH[t], contains a
pointer to a linked list, STATES, that contains all the states at stage {. Each STATE in the

linked list contains the following information:

PROFIT The maximum profit of arriving to this node

POWER  The optimal power at this node

TIME The time the unit has been off (-) or on (+)

INDEX A consecutive number assigned to each node as they are created
FROM  The INDEX of the preceding state at stage { — 1

*NEXT A pointer to the next state in the same stage ¢

Starting from stage ¢ = 0, and given the initial conditions for the time constraints

(4.7) and (4.8), new nodes are created as long as the time constraints are satisfied. Four

t+1

possibilities exist: (i) the unit continues on u{ = 1,u{™" = 1; (ii) the unit continues off

ut = 0,uf*! = 0; (iii) the unit is decommitted u! = 1,u!*!
t+1
i

(4.4) is subtracted to the profit (4.31), as indicated in equation (4.34). The process is

continued for stages ¢ = 1,--- ,m; at the final stage, the node with maximum profit is

= 0; or (iv) the unit is

committed u} = 0,u:"" = 1. For case (iv), when the unit is committed, the startup cost

searched. An optimal solution is obtained by backtracking using the variables FROM in the
data structure. If there are multiple nodes in the last stage with the same maximuin profits,
the solution with larger total power output is selected. For each stage pf, in (4.32), is given
by the variable POWER; and the commitment variable is u! = 0 if at stage ¢ the variable
TIME< 0, and 1 otherwise.
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Figure 4.4: DP data structure

4.7.2 Implementation Issues for the PB and the IP/CP Method

A first experimental implementation of the IP/CP method to solve the dual UC problem
used a semidefinite programming solver to solve the potential problem (4.21) [82]. The im-
plementation of the primal-dual interior-point method, in Section 4.4, considerably reduced

the computation times to solve the potential problem.

The major computational effort for the IPM-PP to solve the potential problem, in Sec-
tion 4.4, lies on the solution of the augmented symmetric indefinite Newton’s system (4.28).
The symmetric indefinite Newton’s system (4.28) is sparse, which represents an advantage;
but its solution requires partial pivoting to preserve numerical stability. The Newton’s sys-
tem is solved using the public domain solver SuperlLU {83]. The software contains C-callable
subroutines to perform factorization of general non-symmetric non-definite sparse matri-
ces. It implements the factorization P, WP = LU, where P, is determined from partial
pivoting to guarantee stable pivots; and P, is a permutation matrix to preserve sparsity.
The sparsity preserving permutation order can be set-up by the user in order to exploit
the specific structure of matrix W. In our case, since W is symmetric, a simple minimum
degree ordering [84] works well and avoids the costly internal symbolic computation WW7

that is used to obtain an ordering algorithm for general matrices.

Additionally, the products between sparse-matrices and full vector required to com-
pute the residual vectors (4.24)-(4.26) and the As search direction (4.29) are performed
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using the C-callable libraries of the SparseBlas package. This package contains several high-
performance libraries for basic linear algebra operations with sparse matrices; the package

is public domain software [85].

The quadratic problem (4.18) for the PB method has been solved using LOQO. LOQO
is an implementation of a primal-dual predictor-corrector interior-point-method for non-
convex non-linear programming. The method is based on successive quadratic programming

approximations [86].

4.7.3 Summary

This chapter presents the unit commitment problem and its solution by Lagrangian relax-
ation. The LR algorithm is a two phase solution procedure for the UC model. The first
phase consists on the solution to the dual problem; the second phase, consists on a primal

feasibility search. The following remarks are made.

e Previous techniques to solve the dual problem have extensively used the sub-gradient
method [54,56]; other work has used variations of cutting plane methods; among them,
the penalty bundle method [57, 1996], the reduced-complexity bundle method [58,
1997}, and a dynamically adjusted cutting plane method [59, 1999]. All these cutting
plane methods are based on the maximization of an stabilized cutting-plane approxi-
mation of the dual function. Both sub-gradient and cutting plane methods are strongly

dependent on parameter setting; which makes the methods problem dependent.

e Interior-point/cutting-plane methods for non-differentiable optimization have been
first introduced in [71, 1992]. The IP/CP methods has been applied to solve other
engineering application such as multi~-commodity flow problems [62, 1994], lot sizing
problems [72, 1994], stochastic programming problems {73, 1997]. IP/CP methods
do not maximize an stabilized cutting plane approximation; instead, they find the

analytic center of a localization set that contains the dual optimum.

e In this chapter, the use of an IP/CP method to solve the dual UC problem is intro-
duced. A primal-dual interior point to solve the potential problem has been devel-
oped. The method derives from the primal-dual approaches for non-linear program-
ming. Previous methods to solve the potential problem consider damped Newton
methods [61, 1997], and recently primal-dual Newton methods [75, 1999].

e A reserve feasibility search algorithm derived from [63] has been presented. Some
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implementation details of the LR algorithm have been described. Emphasis is given
to the solution of the profit maximization subproblems, and to the solution of the

Newton’s system from the IPM to solve the potential problem.

Chapter 5 shows that the good convergence characteristics and robustness of the IP/CP
are also present on for the solution of the UC problem. This allows us to consider the
IP/CP method as a viable free-of-tuning alternative to obtain stable prices and design

better pricing alternatives for unit-commitment power pool auctions.



Chapter 5

Performance Evaluation and the
Unit Commitment Power Pool

Auction

This first part of this chapter presents a numerical evaluation for the performance of the
[P/CP to solve the UC problem. In Section 5.2, a performance comparison of the meth-
ods to solve the dual problem is presented. In Subsection 5.2.1, the robustness of the
IP/CP method against changes in the initialization of dual variables and changes in the
box constraint setting is tested. In Subsection 5.2.2, the convergence characteristics of the

primal-dual interior-point method to solve the potential problem are illustrated.

In the second part of the chapter, Section 5.3, the use of the UC model as a real-power
pool auction is analyzed. In Subsection 5.3.1, initial considerations are given. In Subsection
5.3.2, the non-uniform price setting alternative of Subsection 3.3.4 is extended to the UC
power pool auction. In Subsection 5.3.3, a numerical evaluation of the deviation of profits
due to parameter changes is performed. Additional numerical results in Subsection 5.3.4

compare the non-uniform price setting alternative with average pricing.

5.1 Evaluation of the IP/CP to Solve the UC Problem

Four unit commitment data sets are used along this chapter. The first system, extracted
from [87], contains 26 units. The second system is obtained from [63], it contains 32

generation units. Two other larger data sets containing 67 and 104 generations units are

79
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generated from the 67 units system. The characteristics of the systems are summarized in
Table 5.1. The detailed parameters for UC — 26 and UC — 32 are presented in Appendix B.

Table 5.1: Characteristics of the test systems

System | No. Units Minimum Maximum Total
Demand (MW) Demand (MW) Capacity (MW)

uUc -26 26 1824 2850 3105

ucC —-32 32 1596 2850 3561

ucC — 67 67 3192 9700 7343

UuC-104 104 4788 8550 11726

A first group of results deals with the comparison of the non-differentiable techniques to

solve the dual problem.

5.2 Comparative Performance of Dual Maximization Tech-

niques

A base value for the initialization of the dual variables Ag = [)\g, A% is obtained by solving
a quadratic economic dispatch problem (Subsection 2.2.2) for each time period, considering
all the units with the minimum power output constraint relaxed to zero, p; = 0. From the
solution to the quadratic economic dispatch problem, the optimal dual variable in (2.26)
is used to set the initial condition for the power demand constraint dual variables, i.e.,

)\;0 = A". The dual variables related to the reserve constraint are all set to zero, )\;0 =0

The box constraint for the IP/CP method is initialized at the base value X = &, where

the latter is based on following cost measure:
& = max{(ao: + ail + i) + (BiP; + viB;%) | Vile (5.1)

where e € R?™ is a ones vector. Constant & is a measure of the largest possible total startup
cost, plus total no-load and fuel cost among the units on the system. Such a high value
represents a “safe” setting of the box constraint. Since dual variables for real and reactive
power “measure” the rate of change of the objective with respect to changes in demand and
reserve, the value in (5.1) is never likely to be reached. This value is left fixed in all the

runs to be presented in this section.

For the PB and SG algorithms, a set of preliminary trial runs is executed for each
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system in order to determine the parameter settings that best perform on maximizing the

dual function within a range of 250 iterations. These values are presented in Table 5.2.

Table 5.2: Parameter setting
SG PB

System K1 K2 K3
UuC-26 |0.20 0.60 | 1.00
uC-32 | 0.10 0.06 | 0.10
uC-67 {0.15 0.06 | 1.5
UC—-10410.15 0.04| 0.2

In a first set of tests, the dual stopping criterion, (4.38), for the PB and IP/CP algorithms
is set to Ay < ¢4 = 1073, Additionally, a maximum number of 250 iterations for all the
systems, including the SG method, is used to stop the dual maximization phase. The results
of these tests are summarized in the first row-block of results in Table 5.3; as can be seen,
for all the cases, the IP/CP method takes around 96 iterations to reduce the dual gap to
the stopping criterion (the solution times are in seconds and the objective values in $ 10?).
Both the SG and PB methods are not able to achieve the same objective function values
before the iteration limit is reached. However, the execution times of the IP/CP method
are almost double than those of th SG method.

Even though the PB method achieves better objective values than the SG in the first
two cases, the times required for the solution are much higher. As mentioned in Section
4.7, the quadratic problem (4.18) is being solved by LOQO, which required the interaction
between two separate programs; this is already considered in Table 5.3 by subtracting the

time that has been required to read and write the text files.

In order to compare under the same objective function achievement, a second test is
performed for the PB and IP /CP methods using the dual values obtained at the last iteration
of the SG method z,bgg(Ak); that is, the dual maximization phase is stopped at any iteration
i when ¥pp(A') > ¥sg(A*) and ¥rp/cp(Af) > s (AF), respectively. The results of these
runs are presented in the second part of Table 5.3. It can be observed in these results that
the IP/CP method is able to obtain the same dual objective values of the SG algorithm in
less computation time; this is due to the low number of iterations it takes. The PB method

achieves better results only for the UC — 32 case.

Figure 5.1 shows the evolution of the dual function for the UC — 104 case and the three
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Table 5.3: Comparative performance, solution to the dual problem

SG PB IP/CP

System | Iter. Time wusg(A*) | Iter. Time 1pg(AF) | Iter. Time 1[J[p/cp(/\k)
Uc—-26 | 250 41 7252.24 | 250 296 7269.26 | 97 71 7273.00
UC—-32 | 250 43 9150.43 | 250 342 9172.84 | 96 54 9184.36
uc —-67 250 40 18159.67 | 250 419 18021.40 36 63 18251.59
UC— 1G4 { 250 61 27123.12 | 250 555 27026.11 | 96 72 27132.94
Uuc-26 135 126 7253.86 | 50 29 7256.36
ucC-—-32 93 23 9151.69 | 59 27 8155.00
ucC —67 250 419 18021.40 | 46 23 18161.75
uc-104 250 555 27026.11 83 56 27124.91

solution methods. As can be seen, the IP/CP method rapidly reaches better dual function

values as compared to the PB and SG methods. Better dual values can be achieved by

the IP/CP method, at the expense of computational time; however, such values cannot
be achieved by the PB and SG methods, as observed in Table 5.3. Table 5.4 shows the

P(A¥)

x 104
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Figure 5.1: Classic convergence pattern

70

results achieved by the IP/CP method when the stopping criteron is further reduced to

€q = 10-S.

In the same table. the primal and dual objective function values after the

feasibility search are also presented. The relative complementarity gap is presented in the
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last column. The dual objective function values have been further improved as compared
to Table 5.3. In all the UC cases, Phase 2 of the LR algorithm takes computational times

Table 5.4: Best solution for each UC case
System | Iter. Time (AL f »(\) rcg
uc —26 230 430.00 7274.1415 7448.45911 7271.6186 2.43192
ucC -32 206 293.00 9186.9381  9278.07658  9183.1654 1.03353
ucC - 67 205 318.00 18255.7956 18409.84884 18254.8772 (.84893
UC—-104 | 199 320.00 27135.4740 27502.59396 27134.6996 1.35580

of less than two seconds. The reserve requirement in all the cases is set to 7% of the system
demand. Parameter ¢, in the reserve feasibility phase is set to 0.005,0.4,0.45 and 0.55 in

each UC case, respectively.

5.2.1 Effects of Initialization and Box Constraint Setting

More than the speed characteristics, its robustness properties have made the IP/CP an
attractive method for several other applications as mentioned in Section 4.3.3. In this
section, we perform several tests to confirm the limited influence that the initialization and
parameter setting have on the method. In Table 5.5, sumnmarized results of six different
runs of the IP/CP method are presented. In the first three cases, the box constraint is set
up to 1, 4 and 6 times the base value K. In the other three runs, the initial dual vector

is set to 1/10, 1/4 and 2 times the base value Ag. For all the cases, the stopping criterion

Table 5.5: Effect of box constraint and initialization on the IP/CP method

ucC —26 uc-32 ucC —- 67 uUC — 104

Parameter | [ter Ay Iter A Iter A Iter A
1xK 94 0.00091 | 94 0.00085 | 96 0.00089 | 98 0.00076
4xK 95 0.00079 | 100 0.00092 | 98 0.00100 | 96 0.00100
6 x~K 95 0.00079 | 100 0.00092 | 98 0.00100 | 96 0.00100
0.10 x Ag 7 0.00097 { 96 0.00088 | 96 0.00080 | 94 0.00095
0.25 x Ag | 97 0.00082 | 96 0.00098 | 96 0.00084 | 94 0.00094
2.00 x Ao | 94 0.00091 | 94 0.00085 | 96 0.00089 | 98 0.00076

selected is Ay < e¢; = 1073. As can be seen, the IP/CP achieves convergence within the
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same number of iterations in all of the cases.

5.2.2 [IPM Performance in Solving the Potential Problem

For each test sytem, Figure 5.2 shows the number of iterations v that the primal-dual
IPM (Section 4.4) requires to solve the potential problem (PP} at each iteration, &, of the
LR algorithm. It is important to note that the number of iterations required to solve the

ucC — 26 ucC - 32
20 20
=18 =18
g 151 B
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Figure 5.2: Iterations required to solve the potential problem

potential problem is slightly larger in the first few k-iterations of the LR algorithm; this is
due to the larger size of the localization set ~refer to Figure 4.2. After these few k-iterations,
the v-iterations required by the IPM to find the analytic center remain fairly constant. The
low number of iterations required by the IPM method allows the achievement of better
dual function values in reasonable computational times. These results also confirm the
robustness of the parameter setting for the IPM which has not been changed for any of the

test systems.

5.3 Unit Commitment as a Power Pool Auction

Chapters 3 describes the problems that arise with the use of discrete models to conduct

power pool auctions. The non-existence of an equilibrium combined with particular pricing
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rules can bring conflict of interest for the selection of the final schedule. A non-uniform
price setting alternative, based on dual variables, has been shown to diminish the conflict
of interest when multiple optimal solutions exist under disequilibrium. For those simplified

models, the optimal primal and dual solutions can be identified.

Even though LR is a successful technique to solve UC problems, it cannot guarantee
that an optimal primal and dual solution are obtained. Moreover, the identification of
multiple solutions for such type of non-linear mixed-integer problems is an impossible task
in practical terms. Experience indicates that only good near-optimal solutions to the UC
problems are obtained in most of the cases. In this section, we investigate the applicability
of the developed IP/CP method and the use of the non-uniform price setting alternative
to implement and price real power pool auctions based on our UC model. The analysis
performed in this section is only applied to real power as classically done in most of the
previous studies that investigate the use of UC models to conduct electricity auctions [8-
10, 12].

The IP/CP method is able to obtain more stable prices that, combined with the non-
uniform pricing rule, minimize the conflict of interest that arises when multiple near-optimal
solutions are obtained due to parameter variation, as identified in [10] or when multiple
optimal solutions exists [12]. The non-uniform price setting is generalized for the UC model
and compared to a maximum average cost alternative. A small example and the UC data

sets are used mainly to present numerical results.

5.3.1 Introductory Comnsiderations

The LR algorithm can be interpreted as a decentralized price-driven auction [11,56,63,88].
An auctioneer proposes a set of prices A\* and the suppliers react to these prices by proposing
the supply p(\*) that maximizes their profit for the given set of prices; that is, the solution
to sub-problems (4.12). Based on the mismatch between demand and supply, an auctioneer
increments or decrements the prices until the supply eventually meets the demand, as done
by a sub-gradient optimization (4.15). If suppliers respond with the true values p(A¥) that
solve (4.12), and if an equilibrium does not exist, the sub-gradient updating procedure
permanently oscillates since there is no price vector that matches supply and demand. The
IP/CP method can also be interpreted as an auctioneer; in such a case, the IP/CP proposes
prices and suppliers respoud with both p(A¥) and ;(A¥). The IP/CP method does not
oscillate if an equilibrium does not exist; however, in a decentralized operation the profits,

¥;(AF), for each proposed price vector need be known by the auctioneer (the IP/CP).
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The same situation happens if the UC model is solved in a centralized fashion; a vector
of equilibrium prices may not exist. If it exists, the solution to optimality of the dual
problem gives an equilibrium price (out of the possible multiple ones, Section 2.1). Since
the dual UC problem cannot be solved analytically to obtain these prices, it is desirable
that the numerical optimization technique be robust enough to approach the optimal dual
solution. To illustrate this, let us consider the simplified linear discrete model of Section
3.1, and the example in Table 3.1, with results in Table 3.2. When the demand is pg = 130
MW, there is no equilibrium price, and the optimal dual variable is 25.78 $/MW. If the SG
algorithm is used to numerically solve the dual problem, it permanently oscillates around
the solution; the IP/CP method can realiably obtain the dual optimum, even when different

parameter initializations are selected.

Figure 5.3 shows the final value of the dual function and dual variable obtained for
several combinations of parameter x2, the initial dual vector A% and the box constraint A
(shown in Table 5.6). As can be seen. independently on the parameter initialization, the
IP/CP method always arrives to the optimal dual solution (in 10 iterations in all these
cases). The SG method (even with 1000 iterations in this small case) does not obtain the

optimal dual variable, and arrives to different values for different parameter settings.

Figure 5.3: SG vs IP/CP method

When an equilibrium exists, i.e., pg = 190 MW, in the same Table 3.2, both the IP/CP

and the SG methods (after parameter tuning) arrive to one of the multiple equilibrium



CHAPTER 5. PERFORMANCE EVALUATION AND THE UC PoweERr PooL AUcCTION 87

prices. The SG arrives to 26.7448 $/MW, and the IP/CP to 26.3533 $/MW. The IP/CP
method arrives to a point “close” to the center (26.265 $/MW) of the flat region in the dual

function. The numerical solution of the dual problem does not guarantee that a specific

dual variable, among the optimal, is found.

Table 5.6: Different initialization parameters

1 2 3 4 5
x| 52 78 104 130 156
x2 | 0.0020 0.0040 0.0060 0.0080 0.0010
A 27 53 79 105

For the UC problem, once the dual problem is solved. a Phase 2 is performed to find

a primal feasible solution from p(A¥), as obtained in the last iteration of the dual maxi-

mization phase. The following simplified heuristics are used to generate a primal feasible

solution to the real power demand constraint.

Algorithm 5.1 Final heuristic

1.

2.

Initialize t = 0.

Set t =t + 1, and compute p = > ulp and p = > u!pt. Ifp < py < P, go to Step 5. If
- —1 LN 4 i

(]

P > pd, g0 to Step 3. If pg > P, go to Step 4.

. De-commit units. According to the minimum time constraints (4.7)-(4.8), determine

the set of units that can be de-committed at period t. For each of these units Vj € F,
evaluate its total cost (4.2) at minimum output; i.e. ¢;. Order the units j € F
in the non-decreasing order ¢f > ¢ > --- > Qlt}-l. De-commit units in the order
ek >cb > >t ountil pg > >o:uip, If t < m. go back to Step 2; otherwise, go to

Step 3.

. Commit units. Determine the set of units that can be committed at period £. For

each of these units Vj € F. evaluate its total cost (4.2) at minimum output; i.e. g;-‘
Order the units j € F in the non-increasing cost order ¢ <cf <--- < Qlt}‘l‘ Commit
units in the order ¢} < b < --+ < ¢t until > ,u:p; > py- If t < m, go back to Step 2;

otherwise, go to Step 5.

Economic dispatch. For each ¢, with all the units whose u! = 1, solve the quadratic

economic dispatch problem (4.35), using the procedure in Subsection 2.2.2.
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More elaborate heuristics that include unit de-commitment have been developed in [63]
and [89]. These heuristics are used to further search for units that can be de-committed and
result in total cost reduction. For evaluation purposes of the IP/CP and the price setting
alternative, only the simplified heuristics are considered in this section. Additionally, the
initial time conditions of all the units are considered so that they can always be shut down

at the first period; that is, no unit can force its entry to the auction.

5.3.2 Price Setting Alternatives
The maximum average cost rule

The most documented pricing rule for power pool auctions executed by unit commitment
models is the average cost pricing rule that has been used in the England and Wales Power
Pool [4]. The price for real power at each period is defined as the Systern Marginal Price
(SMP). The SMP is computed as the maximum average cost among the scheduled units.
It is computed so that all scheduled units recover their variable, no-load and start-up costs

along all the periods in the auction [4]:

Poy = max  pf (5.2)
t
- Cc.; + Gyo;
pi = (cpi — ao0i) /B5 + Z:-t-ig-*—,—l te A
teAP;
pi = (ct; — aoi) /Bt other t

where pl,, is used to denote the SMP, and A denotes the “Table A” periods, which corre-
spond to the high demand periods in the auction. This pricing rule separates the variable
cost from the no-load and startup-costs. Startup cost is distributed (amortized) on the
basis of the power output that each unit produces in the “Table A" periods. In [90], sev-
eral alternatives for the distribution of the no-load and start-up costs are analyzed. For

comparison purposes, we only consider the alternative where all periods in “Table A”.

Non-uniform pricing based on dual variables

In Subsection 3.3.4, a non-uniform price setting alternative is presented for the simplified

discrete models. The formulation is extended here for the unit commitment auction. The
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total profits for each supplier can be written as

k.
= ’\; Pt — ey — ¢ (5-4)
where /\;,k is the dual variable obtained from the dual maximization phase. Let us define the
cost not recovered by the dual variablesas CNR = Zilﬂ_i <o™i- Under this non-uniform pric-

ing rule, bidders with negative profits are paid their cost. The amount necessary to generate

these revenues is obtained by applying a non-uniform price for suppliers and consumers,

ph=F — ANt (5.5)
ot =2+ AN (5.6)

The price increments and decrements are given by

AN =k x CNR x Ll X rnax{vri,Oz} X —=. i|m >0 (5.7)
Zailm, >0 Z:[:rf>0”i pi
A:\: = T; X iiﬁ—t, 1 [ T < 0 (5.8)
tPi
1
Ade =6 X CNR X = (5.9)
¢ thfi

where « has the same meaning as in (3.37); since CNG is very small compared to the total
profits, it results in 0.5 for all tests performed. The cost not recovered is again distributed
in the basis of profits. In (5.7), the amount passed to each supplier is distributed in the

periods with positive profits.

5.3.3 Deviation of Profits Among Sub-Optimal Solutions Due to Param-
eter Changes

The unit commitment data set with 26-units, UC — 26, is used throughout this section. Five
different initializations are considered; the initial dual vector is varied from 06.4,0.6,1.0,1.4
and 1.8 times the base value A°. The stopping criterion for the SG algorithm is 250 itera-
tions, and the stopping criterion for the IP/CP method is €4 < 1076,

All the runs for the different settings result in very acceptable near-optimal primal
solutions; this is justified by the small complementarity gaps of the solution after Phase 2,
as summarized in Table 5.7. In all the cases, the relative complementarity gap is below 1%.

It has to be noticed that the cost not recovered is smaller than the complementarity gap.
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Table 5.7: Complementarity gaps and cost not recovered
Parameter SG IP/CP

Setting reg cg CNR | rcg cg CNR
04 x \° 0.8920 65.0101 44.8894 | 0.2602 19.0794 9.2626
0.6 x X0 0.3030 22.2134 13.9534 | 0.2603 19.0866 10.9695
1.0 x A° 0.2961 21.7136 13.3118 | 0.3349 24.5563 15.8987
1.4 x \° 0.2007 14.7204 8.0929 | 0.2603 19.0866 10.9700
1.8 x A0 0.4651 34.0653 5.0230 | 0.2328 17.0729 9.0597

The dual variables obtained by each method in each of the runs are graphically presented
in Figure 5.4. As noted in the graph, the IP/CP method arrives practically to the same

dual vector; the SG method arrives to considerable different values.

IP/CP

A

SG
[ AN AN A
a- : R H
! t . ,‘/ \ : 4
! i N Y
3 wal H i 3 H ‘;
- ; 13 - a2} N '
= : N - / :
-~ - ' 4 oy : \
7 . & [
» i

Time Time

Figure 5.4: Dual variables with five different initializations

In Figure 5.5, the left-hand side graphs show the mean value 7; of the total profit for
each scheduled unit (10-26). The mean value is computed from the five different runs with
different initial dual vector. The right-hand side plots of the same figure show the standard
deviation of the profits. In this case, the price is setup using average pricing (5.2). For both
cases, when the dual problem is solved using the IP/CP and the SG methods, considerable
standard deviation values of the profits are observed. The deviations are more pronounced
in the case where the SG algorithm is used.

The same quantities are shown in Figure 5.6, but in this case the price is set by the non-
uniform pricing rule (5.5)-(5.6). When the IP/CP method is used, the standard deviation
in profits is negligible as compared to the SG method. This is due to two factors: (i) the
dual variables for every run are quite similar, as seen in Figure 5.4; and (ii) the solutions
found by Phase 2 differ only on some marginal units whose profits result negative: such
negative profits are set to zero by the non-uniform pricing rule. which tends to equalize
the profits in all the solutions (see Table 5.8). The situation in these two figures can be
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Figure 5.5: Mean and standard deviation of profits, pricing with average cost
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Figure 5.6: Mean and standard deviation of profits, non-uniform pricing

compared to the results in Tables 3.8 and 3.10. Average pricing worsens the deviation of
profits for each solution; non-uniform pricing tends to equate the profits of each multiple,

optimal or near-optimal, solution.

In order to better appreciate the impact of different solutions in the profits of each
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Figure 5.7: Standar deviation of profits in percent of mean profit and cost

supplier, Figure 5.7 shows the standard deviation of profits as a percent of the mean profits.
In the same figure, the right hand side plots show the standard deviation of profits as a
percent of the mean cost. As can be seen in these last plots, the deviation of profits as
compared to the cost are considerabie (in the order of 6%) with the SG method: while with
the IP/CP method, the deviations cannot be distinguished.

In the left-hand side plots, a large deviation in profits for supplier 22 can be seen in the
IP/CP plot, and two large deviations for suppliers 22 and 23 in the SG plot. Excluding
these large values for the moment, it can be seen that the deviation of profits for the rest
of the suppliers is in the order of 20 and 10 % with the SG method; while with the [P/CP,

these deviations are not present.

The large deviations in the left-hand side plots correspond to the marginal suppliers (21,
22, 23); however, these values do not reflect the fact that in most of the alternate solution
these bidders operate at zero profits. For these marginal bidders, their cost c;, revenue r;
and profit 7;, for each of the five different runs, are presented in Table 5.8. The values
are the ones obtained by the IP/C method. As can be seen, except for unit 22 in runs 2,
4 and 5, all the units operate at zero profit. Since unit 22 goes from 0.15 to 0 profit in
different runs, the standard deviation results in a value close to the mean. Judging for the

magnitude of costs and revenues, these large values should not represent a concern for the
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marginal suppliers; refer to the right-hand side plots in Figure 5.7.

Table 5.8: Cost, revenue and profit of suppliers on the margin

y Gen. 1 2 3 4 5 7 o(y) o(x)/y x 100
21 432.79 496.24 450.59 496.24 465.32 | 468.24 25.08 0
c; 22 245.12 192.32 217.02 192.32 206.86 | 210.73 19.57 0.05
23 158.68 141.69 169.63 141.69 156.06 | 153.55 10.70 0
21 432.79 496.24 450.59 496.24 465.32 | 468.24 25.08 0
r; 22 245.12 19247 217.02 19247 207.11 | 210.84 19.50 0.05
23 158.68 141.69 169.63 141.69 156.06 | 153.55 10.70 0
21 0 0 0 0 0 0 0 -
w5 22 0 0.15 0 0.15 0.26 0.11 0.10 88.48
23 0 0 0 0 0 0 0 -

The results presented in this section show that the IP/CP method is a robust mean to
compute dual variables as compared to the classic SG algorithm. This, combined with the
non-uniform pricing rule, tends to considerably reduce the deviation of profits among all the
near-optimal solutions. Average pricing worsens the profit deviation among the alternate

solutions.

5.3.4 Additional Numerical Examples

Table 5.9 presents the summarized results on the application of the non-uriform pricing
rule for each of the UC cases. The total load payment LP and total suppliers profits SP
for each of following price setting alternatives (denoted by the subscripts) are presented:
(i) A, pricing with dual variables; (ii) pi, non-uniform pricing based on dual variables; and
(iii) paye, pPricing with maximum average cost. In the same table, the following information
is presented: (i) ALP, ,, the percent increment in load payment necessary to cover half of
the cost not recovered; (ii) ~ASP,,,/, the percent decrement in suppliers profit necessary
to cover the other half of CNR; and (iii) ALP,,  /,, ASP,, . ./p.-
payments and suppliers profits, respectively, if the average pricing is used; these increments

the increment in load

are computed taking non-uniform pricing as the base values.

It can be seen that when the non-uniform pricing rule is used, the total increments
(decrements) in load-payment (suppliers-profit), necessary to compensate for the small

amount of cost not recovered, is negligible as compared to the overall increases in load
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payment and suppliers profits if the price is setup with the average rule (5.2). In the latter

case, the uniform price leads to increases in load payment around 4%, which can represent

supplier profit increases above 30 %.

Figures 5.8 and 5.9 show the dual variables, average prices, non-uniform suppliers and
load prices, for the UC — 26 and UC — 104 cases. As can be seen, the average pricing rule
tends to smooth the prices; in the second case, two marginal units can be clearly identified.
These units set the average price, which causes a global increase in load payment and

supplier profits; as seen in last column in Table 5.9.

Table 5.9: Summarized results for large unit commitment models

UC—26  UC—32 UC-67  UC—104

f 7355.95143 9137.15826 18109.15853 26802.93762
(M%) | 7331.39505 9081.76754 18044.64874 26785.32911
rcg 0.33494 0.60991 0.35750 0.06573

cg 24.55638  55.39072 64.50978 17.60851
CNR 15.89879  43.32062 63.27989 5.04465
LP, 12513.8768 10360.7465  20700.7083  30215.9431
LP, 12521.8262 10382.4068  20732.3482  30218.4654
ALP, |\ 0.0636 0.2091 0.1528 0.0083
SP, 5173.8242  1266.9089  2654.8297  3418.0501
SP,, 5165.8747  1245.2486  2623.1897  3415.5277
—ASP, 5 0.1536 1.7097 1.1918 0.0738
LP,, |13030.0875 10831.3917 21357.4119  32121.4577
ALP,, ;. 4.1913 4.5426 3.1724 6.3063
SP,.. 5674.1361  1694.2335  3248.2534  5318.5201
ASP, 1. 9.6701 33.7297 22.3526 55.6010
Time 203.00 163.00 171.00 224.00
Iters 176 159 156 150

The cases so far studied in this section deal only with sub-optimal solutions obtained by
the LR algorithm; multiple optimal solutions can also exist but cannot be easily identified.
An interesting small example that shows the possibility of multiple optimal solutions in unit
commmitment like power pool auctions is presented in [12]. Minimum time constraints are
not considered and the variable startup cost is considered zero. The data of the problem is

presented in Table 5.10; there are four units and four periods in the auction, with demands
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Figure 5.9: Prices for UC —- 104

of py = [170, 520, 1100, 1000]7 .

Table 5.11 presents the primal solutions found by Phases 1 and 2 of the LR algorithm;
the last column presents a multiple optimal solution that cannot be found by LR. Both
solutions are optimal, with primal objective function f* = 30801.20 $, and dual objective
function ¢¥* = 30225.92 $. The duality gap is dg = 575.25 $§ and the cost not recovered
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results in § 573.52. The solution obtained in Phase 1 satisfies the condition p < py < 7,
in Step 2 of Algorithm 5.1 which drives the algorithm to the economic dispatch phase in
Step 5. The solution to the economic dispatch results in an optimal solution at the end of
Phase 2. However, there is another optimal solution as denoted in the last part of Table
5.11. This solution cannot be obtained by Phase 2 algorithm.

Table 5.10: Small UC problem with multiple optimal solutions

i| ac Bi Vi Q2 p,  P;
1| 500 10 0.002 3300.7 100 600
2| 300 8 0.0025 0 100 400
3| 100 6 0.005 0 50 200
4] 542 9.88 0.002 3324.7 100 600

Table 5.11: Multiple optimal solutions
Phase 1 Solution Phase 2 Solution Multiple Solution

2 3 4 2 3 4 1 2 3
0 169.93 0 6 170 0 0 0 170
346.41  200.00 0 320 200 0 0 320 200

400 200 500 | 500 400 200
400 200 400 } 400 400 200

400.00 200.00 600.00
400.00 200.00 520.57

B W N | e
o O O O
O O O Ooj+
O O O O

Table 5.11 summarizes the costs, revenues and profits for each unit in each of the alter-
nate solutions. The second and third row show the revenues and profits if the optimal dual
variables are used to set the price. The fourth and fifth row show the same quantities but
applying non-uniform pricing. Despite the fact the multiple solution cannot be obtained
by the LR algorithm, it has to be noticed that either supplier 1 or 4 become marginal in
one of the solutions and end up with the zero profit; this makes no difference for suppliers
which solution is selected by the algorithm. Average pricing, in this case, does not worsen

the situation since it also results in the same profits for all suppliers.

5.4 Summary

This chapter presents a numerical evaluation on the performance of the IP/CP method to

solve the unit commitment and its application as a real power pool auction. The following
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Table 5.12: Pricing the multiple solutions
Phase 2 Solution Multiple Solution

1 2 3 4 1 2 3 4
Yo.ct | 0.00 10916.00 5764.50 14120.70 | 14120.70 10916.00 5764.50 0.00
Yo Abpt | 0.00 14908.98 9152.66 13547.17 | 13547.17 14908.98 9152.66 0.00
; 0.00 399298 3388.16 -573.527 | -573.52 3992.98 3388.16 0.00
>o.ct | 0.00 10916.00 5764.50 14120.70 | 14120.70 10916.00 5764.50 0.00
>o.ptpt | 000 14753.82 9021.21 14120.70 | 14120.70 14753.82 9021.21 0.00
m 0.00 3837.82 3256.62 0.00 0.00 3837.82 3256.62 0.00

remarks are made:

e Even though the I[P/CP method has a larger per-iteration computational effort, its
convergence characteristics are such that it can achieve the same objective function

values of the SG and PB methods in less total computation time.

* The principal advantages of the IP/CP stem from its good convergence and robustness
characteristics. It does not suffer from parameter tuning and can achieve a very
tight optimality condition in the solution of the dual problem. The initialization of
the dual vector and the selection of the box constraint do not alter its convergence
characteristics.

e The primal-dual IPM proposed for the solution of the potential problem has shown its
good convergence characteristics. It requires a fairly constant number of iterations to
solve the potential problem in each of the LR iterations. This allows the achievement
of tight optimality bounds in the dual maximization phase within reasonable times

(seconds to few minutes).

e The robustness of the IP /CP method allows the computation of dual variables that are
very stable to parameter changes. Even though the SG method can obtain comparable
solutions in terms of complementarity gaps, the dual vectors it generates considerably

changes with parameter variations.

e The non-uniform pricing alternative based on dual variables obtained from the IP /CP
method reduces the conflict of interest when multiple near-optimal solutions exists.

The average pricing alternative further emphasizes the profit variations. For large UC
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problems, the non-uniform price setting alternative tends to avoid the overall increases

in load payment and suppliers profits.

e Although the LR algorithm can find good near-optimal solutions in most of the prac-
tical cases, it cannot identify multiple optimal solutions. Multiple optimal solutions,
given a pricing rule, can represent conflict of interest. In such situations, the conflicts

can be diminished with the use of the non-uniform pricing alternative.



Chapter 6

A DC Network-Constrained
Clearing System

This chapter presents a network-constrained clearing system that corresponds to hybrid
market structures. In this type of structures, central dispatch is performed to implement
the primary market. At the same time, a direct current {DC) representation of transmission
network is included. Even though unit commitment decisions are not specified by suppliers,
certain type of temporal operative limits are expressed in the bids. An actual market that
performs this type of network or security-constrained market clearing is New Zealand [30,
1998]. Recently, the proposal for the Mexican market [31, 1999] and a second stage in the
market for Ontario [32, 1998] consider this type of market model.

The inclusion of a DC representation of the transmission network has the intention to
consider real power flow transmission limits and generate locational prices for power that
give price signals for the correct expansion of generation and transmission. Locational or
nodal prices are used in some market designs as the basis for transmission pricing [29]. The
inclusion and pricing of other security aspects, such as voltage and frequency support is

usually left outside the main power pool auction [2].

Classic power dispatch problems that contain temporal constraints, i.e., dynamic eco-
nomic dispatch, have been solved by a number of methods, among them, the Simplex
method [91], Lagrangian relaxation [92] and gradient projection methods [93]. Irisarri et
al. [94, 1998] present the first application of an interior point method for quadratic program-
ming to solve a dynamic economic dispatch problem. Interior point methods have proven

to be suitable for the solution of several classic power systems problems; among them,

99
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constrained-economic dispatch, optimal power flows and hydro-thermal coordination [95].

Developments that include modeling considerations to reflect specific effects of deregu-
lation in dispatch problems are varied. Dekrajangpetch and G.B. Sheblé [96, 2000] present
an affine-scaling interior point method to implement a one-hour transmission-constrained
auction with bids for supply and demand of real power. Fahd et al. [97, 1992] present
a model for the implementation of brokerage systems using linear programming. Ferrero
and Shahidehpour [98, 1996] [99, 1997] present formulations of dynamic economic dispatch

problems to evaluate import and export transactions.

Models that deal with daily electricity markets in hybrid designs have simultaneously
appeared recently. Madrigal and Quintana [100, 1998] [101, 1999] present a model for a
daily market for power and spinning reserve. The model includes supply and demand bids
and a direct current (DC) model for the transmission system; the problem is solved using
a primal-dual interior point method. Alvey et al. [30, 1998] present a similar development

for the New Zealand market, including outage constraints and multiple bid segments.

In this chapter, a network-constrained clearing-system for a daily market for power and
spinning reserve is presented. The model is related to hybrid structures where the market
operator also considers a DC transmission network model and allows the specification of
operative limits such as ramp and energy constrains. Additionally to our previous models,
it includes bilateral contracts and the model is solved by an interior point method taking
advantage of the special structure of the Newton’s system. The model is described in Section
6.1, and its solution in Section 6.2; numerical results on the experimental implementation

are presented in Section 6.3.

6.1 The Clearing System Model

The model considers a daily market for power and spinning reserve, where: (i) ns suppliers
submit offers for power and spinning-reserve; (ii) n. consumers bid to purchase power; (iii)
7 bilateral contracts submit schedules with incremental and decremental price information;
and (iv) a DC transmission network model is included. The Clearing System (CS) can be
formulated as the problem

(CS) max fs+fc+fB
st hs<0, hc<O0 (6.1)
hg<0,g=0
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The objective function in (6.1) defines a benefit maximization over the m periods of the
market session, i.e., in a daily market, m = 24. The maximization is subject to: (i) Suppliers
constraints specifications, hg; (ii) consumers constraints specifications, h¢; (iii) a bilateral
contracts model, hg; and (iil) system and transmission network constraints, g. The solution
to CS gives the schedule decisions for suppliers, consumers and, if necessary, the revised
schedules for bilateral contracts. At the same time, in this type of market structues, the
dual variables that are provided by the model are used for locational pricing and pricing of

transmission services. Each of the components is described next.

6.1.1 Suppliers Model

Suppliers submit bids for power and spinning reserve supply along with the amounts offered
and the operative limits. Suppliers’ bid information is summarized by: (i) The offer price
(3/MWh) for power 8¢ and spinning reserve <}, for all ¢ = 1,--- ,m; (ii) combined (power
p! and spinning-reserve r!) maximum output B; (iii) up, 4, and down, FAVER
(iv) maximum energy supply in the trading day €,; and (v) the node in the system, i.e., z,

ramp rates;

where the power is injected.

In the objective function (6.1), the suppliers component is given by

fs = =33 (8Pt + vird) (6.2)

which corresponds to total cost minimization, as given by the prices for power and spin-
ning reserve. Maximum output, ramp rates and maximum energy supply are described,

respectively, by the following equations:

phrt <7t vi, vt (6.3)
P pt < Ay vi, Vi (6.4)
pi—pi ! < Ay Vi, Vt (6.5)
> Pt < i Vi (6.6)

Constraints (6.3)-(6.6) define the set hs in (6.1). This set can be transformed into equality
constraints by adding appropriate slack variables.

The contribution of suppliers to nodal power injection at node z of the transmission
network is denoted as P!, and is given by

P.: = Eieng Vz (6.7)

where the 7 € z defines all suppliers ¢ whose connection node to the network is z.
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6.1.2 Consumers Model

Consumers submit bids for demand of real power containing: (i) The amount of power
required 3; from which n;% is dispatchable-load (curtailable-load) and (1 — ;)% is non-
dispatchable (non-curtailable); (ii) the price 'y;- the consumer is willing to pay for the
dispatchable-load; and (iii) the network node at which the load is to be withdrawn. Con-

sumers part, fc, in the CS objective function is given by
fe= ijt7§d§ (6.8)
The component hc, in (6.1), is given by
~t .
0< d;- < n;d; vy, WVt (6.9)
At any node z, the total power withdrawn, by all consumers connected to it, is given by
—t
D:=Y,c.((1—nj)d;+d) vz (6.10)

The signs in the objective function components (6.2) and (6.8) define a benefit maximization

problem; suppliers with lower prices are used and loads with higher bid prices are served.

6.1.3 Bilateral Contracts Model

Bilateral contracts for power are represented by three components: (i) a schedule of houtly
transaction power amounts that have been agreed between a bilateral-seller, v, and bilateral-
buyer, 7: &, = b%; (ii) A schedule-percentage incremental; that is, a percentage €, of the
schedule the seller is able to sell to the market at bid price ¥,; (iii) a schedule-percentage
decremental; that is, a percentage §v of the schedule the seller will not produce but buy from
the market at bid price v; and (iv) the seller and buyer connection nodes to the network:

z and Z, respectively. The last part of the objective function, in the CS, is
5=, (Wb, — 9. Abt) (6.11)
At any node z, the nodal power injection from bilateral contracts is given by
T: =3 e (b + AbL, — VBL) — S o b5, Yz (6.12)
The incremental and decremental quantities are limited by the following constraints:

0 < A, <€, Vo, Vi (6.13)
0 < Vb, <€ b, Yu, Vit (6.14)
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Constraints (6.13) and (6.14) define the set hp in (6.1). With this model, bilateral-buyers
always get their schedule satisfied; the sellers satisfy the schedule totally with their own
power or with components V5 from the market. This provides the hedging mechanism
for contracts dealt as contracts by differences. In this type of contracts, if the selling price
of the contract (only known among seller and buyer) is above the market price, the buyer
pays the difference; if the market price is below the contract price, the seller reimburses the

difference.

6.1.4 Network and System Constraints

The system nodal real power balance is expressed in terms of a direct current (DC) model of
the electrical network [3]. Taking into account the individual effect of suppliers, consumers

and bilateral contracts, the power balance equation for each node z is given by
Pt +T!=D! +B,6" vz Vvt (6.15)

In (6.15), the contributions of suppliers, bilateral transactions and consumers are given by
(6.7), (6.12) and (6.10), respectively; B is the z-th row of the suscepttance matrix B and
8 is the vector of nodal voltage angles. Nodal voltage angles are free variables that can be
handled by adding the artificial bounds —27 < §; < 2x for all nodes (m = 3.141516), except

a reference §; = 0.

Real power-flow transmission-line limits are expressed by the set of constraints
Xét<g Vi (6.16)

where X is the reactance matrix of the transmission lines [3]. The maximum allowable real
power flow on the transmission lines is denoted by . The amount of spinning reserve to be

acquired from suppliers has to satisfy a system requirement defined by 7¢; that is,
=T vt (6.17)

2

The set of network and system constraints g, in (6.1), is given by (6.15), (6.16) and (6.17).

6.2 Solution by an Interior Point Method

As defined in the previous section, the CS (6.1) is a large and sparse linear programming

problem. The large dimension stems from the time-dependent constraints and the inclusion



CHAPTER 6. A DC NETWORK-CONSTRAINED CLEARING SYSTEM 104

of a network model on it. The CS problem is solved using the primal-dual infeasible-interior-
point (PDIIPM) algorithm by Kojima et al. [102]; the derivation is briefly described along
with the special structure of the CS problem.

Including the necessary slack variables, the problem (6.1) can be transformed into the

standard (primal) linear programming problem,
min {c’z | Az = b,z > 0} (6.18)

where z and ¢ € R*; b and y € R™. The constraint matrix, A € R**™_ has the following

structure

A, ... O 0

A= o (6.19)
0 ... A, O
B: ... Bn Byg

where blocks A;’s contain constraints that only relate variables at time ¢ in the CS, that is,
all constraints except ramp (6.5)-(6.4) and the energy (6.6) constraints, which are included
in the last row of A in sub-matrices B;’s. The special structure of A can be preserved in
the Newton's system. The dual problem to (6.18) is given by

max {bTy | ATy+z=c, z >0} (6.20)
And its associated barrier-Lagrangian by

Ly =bTy+p*Yin(z) —2zT(ATy+z—¢) (6.21)

where @ > p! > --- > p* = 0 is the barrier parameter and k the iteration index. The
sequence of stationary points {z(u*), y(u*), z(1*)} to (6.21) define the central trajectory
that converges to a solution of the original problem (6.20). Starting from an initial point,
zF > 0, zF > 0. the PDIIPM generates a series of points of the form:

o+t = z* + ok Az
vt = yF +of Ay (6.22)
25l = 2K 1ok Az

where the search directions Az, Ay and Az are computed using a one-step Newton’s

iteration that moves the current point towards the solution of the first-order necessary
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optimality conditions for (6.21), given by

Td =c—ATy—-z=0
T, =b— Az =0 (6.23)
T =,uke—XZe =0

where X = Diag(z), Z = Diag(z) and e is a vector of ones. A first-order Taylor linearization
of the optimality conditions (6.23) leads to the Newton’s system whose solution provides

the z- and y-search directions,

-D=2 AT\ faz\ [(Ff. (6.24)
A 0 ay)  \Js, )

where D72 = Z7'X is also diagonal: f, = X~ 'r. —r4 and f, = —rp. From (6.23), the
z-search direction is computed by

Az=—-r4— AT Ay (6.25)
k

]
strictly interior. That is,

The step lengths of, of and of in (6.22) are computed so that the new point remains

—zk
or = min{1, gzikb | vak. <0} (6.26)
i
—2k
a'yc = a; = min{l, QA? | vAk <0} (6.27)

The barrier parameter is reduced using
ptt = o(cTzF - bTy*) /A, 0<o <1 (6.28)

Typical values for the safety factor and barrier parameter are ¢ = 0.99995 and o = 0.2,

respectively {76]. The algorithm is stopped when the following criteria are satisfied:

lIpll |[dll "z — b7y

< 6.29
1+b6=° T+l =% T+|Tz - (6.29)
6.2.1 Solution to the Newton’s System
If variables = and y are partitioned as follows:
Az = [Az!,--- , Az™, Az (6.30)

Ay = [Ay',---, Ay™, Ay°T (6.31)
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The structure of the Newton’s system (6.24) can be rewritten as

w! ... o BT Al f!
: o S I B (6.32)
0 ... wm BL ||lam ™
B, ... B, Bg A° fO

where Af = [Azt, Ayt ] ft=1[fL, ;]T, and

_ -2 T ~ 0 . _D—2 BT
wio (D7 AN g (0 0) 5 (-D5* B (6.33)
A, 0 B; 0 B, O

The solution to the system (6.32) can be accomplished by factoring only the matrices W*’s
and one with the dimension of Bg. The recognition of the special structure of the Newton'’s
system has also been used in {103] for a hydro-thermal coordination problem and in [94]
for a dynamic economic dispatch problem. Performing a block elimination in (6.32), the

following system of equations for the solution of A? is obtained:

BoA® = 7° (6.34)
where
Bo =B - 3_,B:B; (6.35)
= ' -TB.f (6.36)
Matrices B, and vector j_'t are the solution to
wWiB, = BT vt (6.37)
Wt}:t = ft vt (6.38)
The solution for each A! is given by
At = f - B,A° vt (6.39)

The solution of all the variables only requires the factorization of the m matrices W'’s and
the matrix Bg in (6.34).

6.3 Numerical Examples

The model and solution approach to the CS have been experimentally implemented using
MATLAB. The sparsity features of MATLAB are used throughout the implementation, and
in the special solution of the Newton’s system. Tests runs are performed on a 200Mz PC,

running on LINUX operative system.
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6.3.1 Illustrative Small System

The test system is shown in Figure 6.1, and the related data in Table 6.1. It is assumed
that consumers submit only dispatchable loads for one trading period (mm = 1), and that
the incremental and decremental percent for the bilateral contracts are &€ = £ = 0.5, with
their respective prices shown in Table 6.1. All units are in MW and §/MWh. The system
reserve requirement is ¥ = 5 MW. Transmission lines reactances are z»; = 0.04, T3 = 0.02,
and z3; = 0.04, all in p.u. of 100 MW. In Figure 6.1, the left node is 1, the right is 2
and bottom is 3. The dual variables to the real power balance constraint (6.15) are used
to define the nodal prices and are shown at each node in Figure 6.1. The price in all the
nodes results in 20 $/MWh. Since there is no congestion, this result can also be found by a
simple ordering of the bids on the supply and demand side. The bilateral schedule, denoted
by the thick arrows. remains unchanged. The price for spinning reserve is 4 SMW/h and is

being provided by supplier 2. The resulting nodal angles are § = [0,0.0241,0.0160}’ (rad).

Table 6.1: Small test system data

Suppliers B ¥ 7
1 100 2.0 20.0
2 200 40 35.0
Consumers ¥ n d
1 40 1.0 30.0
2 30 1.0 10.0
Bilaterals U v T
3-2 80.0 150 10.0

In a second case, the offer price of supplier 2 is reduced from 20 to 12 $§/MWh; the new
results are shown in Figure 6.2. Since the new price for power goes down to 12 $/MWh, and
the price for the decremental schedule submitted by the bilateral is 15, the bilateral-seller
gets 5 MW from the market and, therefore, its schedule is adjusted to 5 MW. The price for
spinning reserve stills is 4 §/MWh but is now provided by supplier 1, which has reached its

maximum combined power and reserve output.

Let us now assume that the transmission limit on line 2—3 is 5 MW. The results for this
case are shown in Figure 6.3. Due to congestion, nodal prices are different in the system;
the bilateral contract reacts to the congestion prices and no longer can take 5 MW from the

market. The spinning-reserve price is again 4 $/MWh and is produced by supplier 2. In
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Figure 6.2: Results with lower prices

all these cases, the PDIIPM takes 14 iterations to find the optimal solution. The stopping

criterion is e = 10~ !9; the initial condition for all variables is set to 1.0.

6.3.2 14-Consumer, 7-Supplier, 2-Bilateral Case

For this simulation, the classic IEEE 14-node system is used to represent the transmission
network [104]. It is assumed that there is a consumer that submits bids for power at every
node. Prices submitted by consumers for the 24 hours are decreasing as the node index
increases, and vary in time. There are 7 suppliers submitting offers for power and spinning
reserve located at nodes 1, 2, 4, 6, 9, 11 and 13: the offered prices are time varying. In the
same system, there are 2 bilateral contracts, with seller nodes 3, 2, and respective consumer
nodes 10 and 6. Two different simulations are performed with this system. In the first case,
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Figure 6.4: Results without congestion

all maximum transmission limits are assumed 60 MW. Some of the results obtained by the

CS are summarized in Figure 6.4; all values are in per unit of 100 MW.

In the first graph of Figure 6.4, the total energy purchased from every supplier is pre-
sented; the energy limit on supplier 5, 2000 MW, has been reached. The real power flows of
some of the transmission lines (connecting nodes 2-3, 4-3, 9-7 and 11-10) in the system are
shown in the second graph of the same figure. Since there is no congestion on the system

the nodal prices for power are equal in all the nodes (1 to 14) on the system, as can be seen
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in the third graph. Both the prices for real power and spinning reserve (last graph) vary
during the day according to the demand behavior.
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Figure 6.5: Results with congestion, part A

In a second simulation case, maximum transmission limits are reduced to 35 MW and
the new results are as shown in Figure 6.5. Congestion (in lines connecting nodes 2-3, 4-3.
9-7 and 11-10) is clearly seen in the second graph of Figure 6.5, specially during high load
periods. The supply from 6 and 7 considerably changes. as seen in the first graph of the
same figure. Nodal prices increase and take different values in each node of the system
due to the congestion; these prices for nodes 3, 8 are presented in the third graph. In
the last graph it can be seen that the spinning reserve prices slightly change during the
congestion periods. For this simulation case (as seen in the first graph of Figure 6.6) not
all the requested demand is served due to the congestion; parts of the load are not served.
The supply/demand curve for hour 18 is shown in the third graph of the same figure; as can
be seen, enough supply exists for that loading condition at a price of 13 $/MWh; however,
the congestion does not allow the supply to be transmitted, which leads to prices above 18
3/MWh. In the second graph, the schedules for both bilateral contracts are shown; one of
which is not re-scheduled and the other is incremented. The increments happen when the
price is above 15 §/MWh which correspond to its incremental bid price ©¥; = 15. The extra
power produced by that bilateral-seller is transmitted to feed some load. In the last graph
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of Figure 6.6, for consumers at nodes 3 and 8, at time t = 18, each bar represents: the
requested load, the served load, the submitted bid price and the nodal price, respectively.

As can be seen, at these nodes with higher prices. the load is not fully served. The same
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Figure 6.6: Results with congestion, part B

initialization and stopping criteria of the last example haven been used. In the last case,
the time required by the PDITPM is 24.5 seconds and 17 iterations if the Newton’s system
is solved block-wise. If the Newton’s system is solved without taking into account its block
structure, the time required is 34.38 seconds and 25 iterations. The difference in iterations is
explained by the larger substitution round-off error when solving the full system. Since the
sparsity is exploited in both cases, the solution times are comparable. Even for this small
case, the dimension of W is 3878 x 3878 and the dimension of the blocks W* is 147 x 147;
see Figure 6.7.

6.4 Summary

A model and solution approach to a network-constrained clearing-system for a daily market
for power and spinning reserve has been proposed in this chapter. The model is related to
new hybrid types of market designs such as the proposed structure for the market in Mexico

and the proposed extensions for the Ontario market. Bidders specify operative limits in
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Figure 6.7: Newton’s systein matrix W

their bids but the unit commitment decisions are not made by the market operator. A DC
transmission model is included in the market clearing to consider real power transmission

flow limits. The following remarks are made:

e Few models and solution approaches have recently appeared for this specific type of
problems. Related work includes an interior point for dynamic economic dispatch [94,
1998]; a network-constrained one-hour auction with bids for supply and demand,
solved by an affine-scaling interior point [96. 2000]. And [30, 1998], a daily market for

power and spinning reserve related to the New Zealand market.

e Our model considers: (i) Offers for power and spinning reserve with ramp and energy
constraints; (ii) bids for the demand of power; (iii) bilateral contracts with incremental
and decremental prices to reflect contracts by differences; (iv) a DC transmission

model for the transmission system.

® The use of PDIIPM for the clearing system problem is presented; the special structure
of the restrictions matrix is exported to the Newton’s system which allows a more
efficient solution.

o Numerical results on small problems show the validity of the model and the proposed

solution approach. Its implementation on a large-scale basis and other extensions are
recommended in the conclusions chapter.
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Conclusions

7.1 Summary and Contributions

Optimization tools have long been used to successfully help on the operation and planning
of classic vertically integrated power systems; the use of optimization tools in electricity
markets is still undergoing a development phase. The experiences from the first electricity
markets in the world and the fast development of new structures. has created the need to
review, and propose new models and techniques for the efficient implementation and pricing

of electricity markets.

This thesis elaborates on the use and development of optimization models and tech-
niques for implementation, and pricing of electricity markets. Observations and mathemat-
ical derivations that provide more insight into the use of optimization models for electricity
markets are presented; new models, solution approaches and pricing alternatives are dis-

cussed. The conclusions and contributions of this research are as follows.

In Chapter 2, a generic cost-minimization power pool auction model is described. Using
Lagrangian duality. the conditions for the existence of an equilibrium are presented. As
illustrative examples, simplified continuous models that represent a standard auction and a
quadratic economic dispatch problem are presented. For both models, closed form solutions

are presented. The main contribution in this chapter are
e The conditions for the existence of an equilibrium in production economies are very

well known. However, as far as we are aware, their derivation and, more importantly,

its interpretation in the context of a power pool auction driven by a central cost-

113
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minimization model, have not been presented elsewhere.

e The dual formulation of the linear and quadratic models allows the solution of both
primal and dual problems in a closed form. The simplified quadratic economic dispatch
problem has been around for more than forty years, and is a component in many
power system optimization applications. Its solution has always been carried out by
a number of iterative methods; in this research work, a direct solution approach is
presented [41, 2000].

In Chapter 3, two simplified discrete models for power pool auctions are studied; the
models are introduced with the intention to provide more insight on the consequences of
disequilibrium and different pricing rules for unit-commitment like power pool auctions.

The contributions made in this chapter are as follows:

e Direct solution approaches for the dual problems, and the application of an enumer-

ative Branch-and-Bound algorithm to find multiple solutions to the primal problem.

e The non-existence of an equilibrium and its effect on different pricing alternatives are
presented through numerical examples. It is shown that average pricing and price

minimization worsens the conflict of interest that arises when multiple solutions exist.

e A mathematical derivation shows that, under disequilibrium, dual variables used as
prices do not recover a cost amount that is bounded above by the duality gap. Based
on this observation, a non-uniform price setting alternative using dual variables is
proposed.

e The non-uniform price setting alternative is simple, avoids the price spikes that can
easily happen with average pricing, and shows that it reduces the conflict of interest

when multiple solutions exist.

In Chapter 4, a unit commitment model and its solution by Lagrangian relaxation
is presented. Lagrangian relaxation is the most accepted numerical-optimization based
approach to solve UC problem. The major computational effort on solving UC problems is

the dual maximization phase; in this respect the contributions made are:

e The application of an interior-point/cutting-plane (IP/CP) method to solve the dual
unit commitment problem. Even though IP/CP methods have recently been used

to solve other engineering applications, they have not been explored before in power



CHAPTER 7. CONCLUSIONS 115

scheduling applications {82, 2000]. The IP/CP has two major advantages over pre-
vious approaches: (i) it has better convergence characteristics; and (ii) it is a robust

algorithm that is not affected by parameter tuning, as other approaches.

e The interior-point/cutting-plane method requires the solution of a potential problem,
for which an infeasible primal-dual interior-point method is developed. Implementa-
tion details of the IP/CP method are also described.

In Chapter 5, a numerical evaluation of the performance of the IP/CP method to solve
the unit commitment problem is presented. In the same chapter, we study the application
of the IP/CP to execute unit commitment real power pool auctions. With respect to the

characteristics of the IP/CP method the following remarks are made:

e The IP/CP method has better convergence characteristics than the previous ap-
proaches such as sub-gradient and penalty-bundle methods. Even though its per-
iteration computational effort is higher, it requires far less iterations to achieve good

dual objective function values.

e The IP/CP method can achieve tight optimality bounds in the solution of the dual
problem. The tests performed show that the convergence characteristics of the IP/CP
are not affected by the initialization of the dual vector or the selection of the box
constraint; the method is problem independet.

e The primal dual interior point method to solve the potential problem has also stable
convergence characteristics. The number of iterations it requires to solve the potential

problem remains fairly constant after few iterations of the LR algorithm.

With respect to the use of the UC and IP/CP as a real power pool auction, the following
remarks and contributions are made:

® The use of average pricing worsens the conflict of interest that can arise from the
existence of multiple solutions. If the sub-gradient method is used to solve the dual

problem and obtain prices, the deviation in profit is further emphasized.

e The numerical results show that the robustness characteristics of the IP/CP method,
combined with the proposed non-uniform price setting alternative for the UC model,
diminishes the conflict of interest that can arise from the existence of near-optimal

solutions.
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e The non-uniform price setting alternative, as compared to average pricing, avoids the

overall increases in consumer payments and suppliers profit .

In Chapter 6, a model for a daily market clearing for power and spinning reserve is
presented. The model is related to recently developed hybrid market structures where unit
commitment decisions are left to the suppliers but some operative limits are allowed to be
specified. Few developments have treated on the solution of this new type of models [96,
2000] [30, 1998] [101, 1999]. The conclusions an contributions in this chapter are

e A model for the daily market clearing system that includes: (i) bids for supply of
power and spinning reserve with temporal limits; (ii) bids for power demand; (iii)

bilateral contracts; and (iv) a direct current model for the transmission network.

e The use of a primal dual interior point method for its solution is proposed. The special

structure of the constraint matrix is exploited in the solution of the Newton’s system.

e Although the implemented presented is at an experimental level, the results on two

small systemns show the validity of the models and solution approach.

7.2 Research Recommendations

7.2.1 On Simplified Discrete Models for Power Pool Auctions

e The inclusion of elastic demand (demand side bidding) in discrete models for power
pool auction is recommended. Although demand side bidding has been included in
unit commitment models [105, 1999], its implications on the existence of equilibrium

and price setting alternatives should be investigated.

e Semidefinite programming is an evolving research field on the mathematical program-
ming arena. Semidefinite programming can be applied to solve combinatorial prob-
lems [106, 1996]. Initial research has been conducted on the solution of discrete power
dispatch problem [80, 1999]. The evolution of semidefinite programming optimization

may provide reliable solution approaches to discrete power dispatch problems.

e The non-uniform price setting alternative that has been proposed can be compared
with (non-linear) two-part tariffs used in regulated industries [107]. Two part tariffs,
are said to be Pareto-improving if they do not tend to favor a specific customer,

which, by analogy, we observe in our simulations. Related pricing alternatives, such
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as Ramsey pricing which requires the addition of revenue constraints in the cost

minimization models, are recommended to be studied.

e Any non-uniform price setting alternative may always be controversial [2]. Whenever
equilibrium prices and schedules are not found, the alternatives have to be designed
so that they give good global results [108]. The investigation of alternative ways to
handle the cost not recovered should be investigated. Even though settlement systems

are not considered market-oriented approaches (2], they represent an alternative.

e A recent study for the California PX [109, 1999] presents an evaluation on the im-
plementation feasibility of a multi-round simple-bids auction (iterative bidding); one
of the motives for such a study is that muti-round bidding would give small gener-
ators more flexibility to design strategies to recover their startup and no-load costs
through the simple-bids auction. Simplified discrete models with linear and constant
startup cost (as presented in Chapter 3) could be an alternative for the same pur-
pose. In [110, 2000], a combinatorial model for one of the ancillary services market
in California is shown to avoid price spikes that recently appeared in such markets:
however, complete enumeration is the obstacle to implement such an auction. The
use of dual variables and alternative solution algorithms (i.e., Branch-and-Bound) in

ancillary services markets should be investigated.

7.2.2 Unit Commitment Models and the IP/CP Method

e Further improvements can be made to the IP/CP method to speed up its performance
[69, 1999] : (i) the efficient removal of cuts; as the LR iterations proceed, redundant
cuts can be removed from the localization set which reduces the size of the potential
problem; (ii) generation of multiple and deep cuts; at each iteration, more than one cut
or deeper cuts are added to the localization set, consequently, it can faster shrink to the
optimal solution. It is recommended to study if these improvements can further speed
up the implementation of the IP/CP to solve the UC problem or other scheduling

applications.

® Solving transmission-constrained unit commitment problems by LR requires the so-
lution to m optimal power flow problems at each iteration [53]. The low number of
iterations required by the [P/CP method to achieve good dual function values can con-
siderably reduce the total computation effort to solve this type of problems. Any other
scheduling application solved by LR can benefit from the IP/CP method. Follow-
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ing our derivation, applications to hydro-thermal coordination [111, 2000] and inter-
utilities power-exchange coordination problems {112, 2000] have recently appeared.

@ In order to study reserve pricing alternatives, the inclusion of a cost component that
is directly related to the power reserve is recommended. Phase 2 algorithms that do
not rely on dual variables modification need be investigated for this purpose. At the
same time, pre-processing algorithms that can identify multiple solutions are also of

interest.

7.2.3 Security-Constrained Clearing Systems and Interior Point Methods

® Mehrotra’s predictor-corrector algorithm is one of the most successful interior point
methods implemented in differnt software codes [76]. The large-scale implementation
of the predictor-corrector algorithm exploiting the special structure of the Newton’s
should be pursued in order to generate large scale tools for the analysis of market

behavior.

e Infeasibility detection in network-constrained clearing systems can be of importance
under high loading conditions. Although some work has bee done in this respect for a
network-constrained auction using an affine-scaling method [96, 2000], we recommend
the investigation of homogeneous self-dual interior point formulations to detect infea-
sibility in daily clearing systems. Homogeneous self~-dual methods have comparable

performance to primal dual methods [76].

e Develop quantitative studies on the effects that numeric format precision and different
stopping criteria have over the final prices and schedules determined by the clearing
system. The extent of such effects has not been thoroughly analyzed or quantified.
Related work should include the effects of restoring to an optimal basis after the
interior-point termination [76] and detection of multiple dual solutions. Some work
has been done in this direction [96, 2000].

@ The clearing system models can be extended to include other different types of reserves
that can be defined as separated ancillary services and security limits. This involves

the inclusion of non-linear network models in this type of market clearing models.
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7.2.4 Optimization Models for Power Pool Auctions and Market Power

e The use of dual variables for pricing in unit commitment models is recently being con-
sidered by other works. In [88, 1999], the authors outline the possibility of including
revenue adequacy constraints in a decentralized pool dispatch model. A yet unpub-
lished manuscript [113, 2000] investigates on the use of cutting plane approaches to
solve unit commitment problems and generate dual variables for pricing purposes.

Other forms of coordination and price setting alternatives can still be investigated.

e Although the study of strategic behavior does not used to lie directly on the electrical
engineering or power engineering field, the theoretical study of auctions to detect
gaming that can lead to market power in electricity markets should be pursued. The
theoretical study of combinatorial auctions is still in its initial development phase
[11,114]; and few developments have been made in that direction with respect to
power pool auctions [27, 2000] [25, 1999]. Other experimental or game-theoretical
approaches can also be used [36]. Data mining techniques could also help to describe

behavioral patterns of participants in an electricity auction [115].
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Appendix A

Some Properties of

Non-Differentiable Functions

The sub-differential of a function f(z) : R™ — R, is is defined as the set
Of () = {& | fo(m,v) > €Tv VYveR™} (A.1)
Where f°(x,v) is the generalized directional derivative of f at = in the direction of v

f°(z,v) = limsup fly +7v) - f(y)
y—x,rl0 r

(A.2)

Each element of the sub-differential, £ € R™, is called a sub-gradient. If f is concave then

the sub-differential is simply given by
3f(z) ={€| f(v) < f(z) +€T(v —2z) Vo >0} (A-3)
Let fi(z)...., fn(x) be a set of functions f;(x) : R™ — R and k; any scalars, then

9 ki fi(x®) C 3 .kidfi(x) (A.4)

This is, all the sub-gradients of 83" k; fi(z) are contained in }_.k;90fi(x).
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Appendix B

Unit Commitment Data Sets

Table B.1: 26 Units sytem, load data

t
Py (MW)

1
2223.00

2 3 4 5 6
2052.00 1938.00 1881.00 1824.00 1825.00

{

1881.00

8
1995.00

¢
P4 (MW)

9
2280.00

10 11 12 13 14
2508.00 2565.00 2593.00 2565.00 2508.00

15
2479.00

16
2479.00

4
P4 (MW)

17
2593.00

18 19 20 21 22
2850.00 2821.00 2764.00 2679.00 2622.00

23
2479.00

24
2308.00

Table B.2: 32 Units dytem, load data

t
py(MW)

1
1824.00

2 3 4 5 6
1710.00 1653.00 1596.00 1596.00 1653.00

{

1824.00

8
2166.00

t
PL(MW)

9
2479.50

10 11 12 13 14
2707.50 2821.50 2850.00 2821.50 2850.00

15
2850.00

16
2764.50

t
p4(MW)

17
2736.00

18 19 20 21 22
2736.00 2650.50 2622.00 2622.00 2650.50

23
2479.50

24
2052.00
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Table B.3: 26 Units system, generators data

t p, p; | L t xo ao; Bi 7i ay; Qo; i

(MW)  (MW) | (h) (h) (h) () (8/MW) ($/MW?) (8) (8) (h)
1 2.4 12.0 0 0 -1 24.3891  25.5472 0.0253 0.0 0.0 1.0
2 2.4 12.0 0 0 -1 24.4110 25.6753 0.0265 0.0 0.0 1.0
3 2.4 120 0 0 -1 24.6382  25.8027 0.0280 0.0 0.0 1.0
4 24 12.0 0 0 -1 24.7605 25.9318 0.0284 0.0 0.0 1.0
5 24 12.0 0 0 -1 24.8882 26.0611 0.0286 0.0 0.0 1.0
6 4.0 20.0 0 0 -1 117.7551 37.5310 0.0120 20.0 20.0 2.0
T 4.0 20.0 0 0 -1 | 118.1083 37.6637 0.0126 20.0 20.0 2.0
8 4.0 20.0 0 0 -1 | 1184576 37.7770 0.0136 20.0 20.0 2.0
9 4.0 20.0 0 0 -1 | 118.8206 37.8896 0.0143 20.0 20.0 2.0
10 15.2 76.0 3 2 3 81.1364 13.3272 0.0088 50.0 50.0 3.0
11 15.2 76.0 3 2 3 81.2980 13.3538 0.0089 50.0 50.0 3.0
12 15.2 76.0 3 2 3 81.4641 13.3805 0.0091 50.0 30.0 3.0
13 15.2 76.0 3 2 3 81.6259 13.4073 0.0093 50.0 50.0 3.0
14 25.0 100.0 4 2 -3 | 217.8952 18.0000 0.0062 70.0 70.0 4.0
15 25.0 100.0 4 2 -3 | 218.3350 18.1000 0.0061 70.0 70.0 4.0
16 25.0 100.0 4 2 -3 | 218.7752 18.2000 0.0060 70.0 70.0 4.0
17 54.23 155.0 5 3 5| 142.7348 10.6940 0.0046 | 150.0 1500 6.0
18 34.25 155.0 5 3 5 | 143.0288 10.7154 0.0047 | 150.0 150.0 6.0
19 94.25 155.0 5 3 5 | 143.3179 10.7367 0.0048 | 150.0 1500 6.0
20 54.25 155.0 5 3 -4 | 143.5972 10.7583 0.0049 | 150.0 1500 6.0
21 68.95 197.0 S 4 -4 1 259.1310 23.0000 0.0026 | 200.0 200.0 8.0
22 68.95 197.0 3 4 -4 1 259.6490 23.1000 0.0026 | 200.0 200.0 8.0
23 68.95 197.0 3 4 -4 | 260.1760  23.2000 0.0026 | 200.0 200.0 8.0
24 140.0 350.0 8 S 10| 177.0575 10.8616 0.0015 | 300.0 300.0 8.0
25 100.0 400.0 8 5 10 | 310.0021 7.4921 0.0019 | 500.0 500.0 10.0
26 100.0 400.0 8 5 10 | 311.9102 7.5031 0.0020 | 500.0 500.0 10.0
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Table B.4: 32 Units system, generators data

3 p, D; t; t; To Qo; Bi Ti | a1 oo T

(MW)  (MW) | (h) (k) (h) (3)  (83/MW) (§/MW?) | (8) (8) (h)
1 4.00 20.00 1 2 1 63.999 20.000 0.000000001 40 0 1
2 4.00 20.00 1 2 2 63.999 20.000 0.000000001 40 0] 1
3 10.0 76.00 6 12 6 | 133.919 16.193 0.01508 45 0 1
4 10.0 76.00 6 12 -2 ] 133.919 16.193 0.01508 45 0 1
3 4.00 20.00 1 2 1 63.999 20.000 0.000000001 40 0 1
6 4.00 20.00 1 2 2 63.999 20.000 0.000000001 40 0 1
T 10.0 76.00 6 12 10 | 133.619 16.193 0.01508 45 0 1
8 10.0 76.00 6 12 -2 | 133.919 16.193 0.01508 45 0 1
9 15.0 100.0 10 20 10 | 199.124 12.468 0.01532 45 0 1
10 15.0 100.0 10 20 10 | 199.124 12.468 0.01532 | 110 0 1
11 15.0 100.0 10 20 10 | 199.124 12.468 0.01532 | 110 0 1
12 20.0 197.0 12 24 12 | 209.546 13.928 0.002085 | 100 0 1
13 20.0 197.0 12 24 12 | 209.546 13.928 0.002085 | 100 C 1
14 20.0 197.0 12 24 12 | 209.546 13.928 0.002085 | 100 0 1
15 3.00 12.00 2 4 4 21.145 16.193 0.09553 30 0 1
16 3.00 12.00 2 4 -9 21.145 16.193 0.09553 30 0 1
17 3.00 12.00 2 4 4 21.145 16.193 0.09553 30 0 1
18 3.00 12.00 2 4 3 21.145 16.193 0.09553 30 0 1
19 3.00 12.00 2 4 4 21.145 16.193 0.09553 30 0 1
20 20.0 155.0 12 24 -20 | 275.606 12.360 0.08898 | 1G0 0 1
21 20.0 155.0 12 24 12 | 275.606 12.360 0.08898 | 100 0 1
22 40.0 4000 | 48 60 48 | 577.537 14.253 0.0007365 | 440 0 1
23 40.0 4100.0 48 60 48 | 577.537 14.253 0.0007365 | 440 0 1
24 10.0 76.00 6 12 -2 1 133.919 16.193 0.01508 45 0 1
25 10.0 76.00 6 12 -2 { 133.919 16.193 0.01508 45 0 1
26 10.0 76.00 6 12 -2 | 133.919 16.193 0.01508 45 0 1
27 10.0 76.00 6 12 -2 | 133.919 16.193 0.01508 45 0 1
28 10.0 76.00 6 12 -2 | 133.919 16.193 0.01508 45 0 1
29 10.0 76.00 6 12 -2 | 133.919 16.193 0.01508 45 0 1
30 20.0 155.0 12 12 12 | 275.606 12.360 0.008898 | 100 0 1
31 20.0 155.0 12 12 12 | 275.606 12.360 0.008898 | 100 0 1
32 35.0 350.0 24 24 24 | 517.66% 11.892 0.005220 | 250 0 1






