
Mining Time-Changing Data Streams

by

Yingying Tao

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2011
c© Yingying Tao 2011

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by
my examiners.

I understand that my thesis may be made electronically available to
the public.

ii

Abstract

Streaming data have gained considerable attention in database and
data mining communities because of the emergence of a class of applica-
tions, such as financial marketing, sensor networks, internet IP monitor-
ing, and telecommunications that produce these data. Data streams have
some unique characteristics that are not exhibited by traditional data:
unbounded, fast-arriving, and time-changing. Traditional data mining
techniques that make multiple passes over data or that ignore distribution
changes are not applicable to dynamic data streams. Mining data streams
has been an active research area to address requirements of the streaming
applications. This thesis focuses on developing techniques for distribution
change detection and mining time-changing data streams. Two techniques
are proposed that can detect distribution changes in generic data streams.
One approach for tackling one of the most popular stream mining tasks,
frequent itemsets mining, is also presented in this thesis. All the proposed
techniques are implemented and empirically studied. Experimental results
show that the proposed techniques can achieve promising performance for
detecting changes and mining dynamic data streams.

iii

Acknowledgments

I would like to thank all people who have helped and inspired me
during my Ph.D study.

It is difficult to overstate my appreciation to my supervisor, Dr. M.
Tamer Özsu, who shared with me a lot of his expertise and research in-
sight. His wide area of knowledge, thoughtful advises, understanding and
encouraging have laid a good basis for this thesis. I thank him for all the
support during my Ph.D study.

I am heartily thankful to Dr. Wayne Oldford for his guidance and
support during the year of my thesis revision. His insights in statistical
analysis and testing is second to none. He enabled me to develop an deeper
understanding on the subject.

I am grateful Dr. Grant Weddell, Dr. Ajit Singh, and Dr. Raymond
Ng for their willingness to serve my committee. I also like to warmly thank
Calisto Zuzarte and IBM Toronto Software Lab. for their support.

I would like to express my deep gratitude to Dr. Qiang Zhu, my
former supervisor during my Master study, for bringing me into the world
of research and guiding me through many difficulties.

I owe my sincere thanks to everyone whom I have shared experiences
in life. This is a long and never ending list so I won’t be able to put all
the names down.

Lastly, and most importantly, I wish to thank my parents, Tao Jiang
and Song Heng. They bore me, raised me, taught me, and loved me. To
them I dedicate this thesis.

iv

Contents

List of Figures ix

List of Tables xviii

List of Symbols xxi

1 Introduction 1

1.1 Data stream environment 1

1.1.1 Data streams . 1

1.1.2 Data stream management systems 2

1.1.3 Brief history of data streams 3

1.1.4 Distribution changes in data streams 5

1.2 Data stream mining . 6

1.2.1 Models and issues in data mining 7

1.2.2 Mining data streams: New challenges 8

1.3 Motivation . 11

1.3.1 Mining data streams with distribution change . . . 12

1.3.2 Multi-dimensional streams 13

1.4 Scope and Contributions 14

1.5 Thesis Outline . 17

v

2 Background 19

2.1 The data stream model . 20

2.1.1 Data models . 20

2.1.2 Window models . 21

2.2 Stream distribution and change detection 23

2.3 Survey on data stream mining 26

2.3.1 Data refining . 26

2.3.2 Stream mining tasks 29

2.3.3 Other related research issues 32

3 Distribution Change Detection 35

3.1 Introduction . 35

3.2 Related work . 37

3.3 Detecting Changes with Tumbling Windows 39

3.3.1 Motivation . 39

3.3.2 Tumbling window design 40

3.3.3 Generating reference window 41

3.3.4 Change detection 47

3.3.5 Experimental framework 47

3.3.6 Experiments . 54

3.3.7 Mining streams with periodical changes 138

3.4 Detecting mean and standard deviation changes 143

3.4.1 Motivation . 143

3.4.2 Introduction to control charts 144

3.4.3 Control chart-based approach 145

3.4.4 Experiments . 150

3.5 Summary . 211

vi

4 Change Detection in Multi-dimensional Streams 213

4.1 Motivation . 213

4.2 Related Work . 215

4.3 Detecting changes using multi-
dimensional control charts 216

4.3.1 Building the multi-dimensional control chart 217

4.3.2 Detecting changes 219

4.3.3 Full algorithm . 220

4.4 Experimental framework 220

4.5 Experiments . 223

4.5.1 Change detection evaluation 223

4.5.2 Performance comparison with other technique . . . 233

4.6 Summary . 237

5 Mining Frequent Itemsets in Time-Changing Streams 239

5.1 Motivation . 239

5.2 Preliminaries . 241

5.3 Related Work . 243

5.4 TWIM: Algorithm for Mining Time-
Varying Data Streams . 245

5.4.1 Tumbling windows design 246

5.4.2 Predicting candidates 249

5.4.3 Maintaining current frequent itemsets and detecting
new frequent itemsets 258

5.5 Experiments . 261

5.5.1 Effectiveness over streams with stable distribution . 261

5.5.2 Effect of threshold ν 263

vii

5.5.3 Effectiveness over dynamic streams 263

5.5.4 TWIM Parameter Settings 265

5.5.5 Memory usage . 268

5.5.6 CPU time analysis 269

5.6 Summary . 270

6 Conclusions 271

6.1 Summary of work . 271

6.2 Directions for future research 273

Bibliography 276

viii

List of Figures

1.1 Abstract architecture of a DSMS 4

1.2 Example of mining an email stream 7

2.1 Windows update intervals 23

2.2 Movement of windows endpoints 24

2.3 Example of continuous distribution of a stream 25

3.1 Reference window generation 43

3.2 Example of two-step sampling 45

3.3 Number of true changes detected for Stream1 and Stream2 56

3.4 Number of true changes detected for Stream3 and Stream4 57

3.5 Number of true changes detected for Stream5 and Stream6 58

3.6 Number of false changes detected for Stream1 and Stream2 59

3.7 Number of false changes detected for Stream3 and Stream4 60

3.8 Number of false changes detected for Stream5 and Stream6 61

3.9 Mean duration for detecting true changes in Stream1 and
Stream2 . 62

3.10 Mean duration for detecting true changes in Stream3 and
Stream4 . 63

3.11 Mean duration for detecting true changes in Stream5 and
Stream6 . 64

ix

3.12 Standard deviation of the duration for detecting true changes
in Stream1 and Stream2 65

3.13 Standard deviation of the duration for detecting true changes
in Stream3 and Stream4 66

3.14 Standard deviation of the duration for detecting true changes
in Stream5 and Stream6 67

3.15 Max duration for detecting true changes in Stream1 and
Stream2 . 68

3.16 Max duration for detecting true changes in Stream3 and
Stream4 . 69

3.17 Max duration for detecting true changes in Stream5 and
Stream6 . 70

3.18 Number of true changes detected for Stream7 and Stream8 72

3.19 Number of true changes detected for Stream9 and Stream10 73

3.20 Number of true changes detected for Stream11 and Stream12 74

3.21 Number of false changes detected for Stream7 and Stream8 75

3.22 Number of false changes detected for Stream9 and Stream10 76

3.23 Number of false changes detected for Stream11 and Stream12 77

3.24 Mean duration for detecting true changes in Stream7 and
Stream8 . 78

3.25 Mean duration for detecting true changes in Stream9 and
Stream10 . 79

3.26 Mean duration for detecting true changes in Stream11 and
Stream12 . 80

3.27 Standard deviation of the duration for detecting true changes
in Stream7 and Stream8 81

3.28 Standard deviation of the duration for detecting true changes
in Stream9 and Stream10 82

3.29 Standard deviation of the duration for detecting true changes
in Stream11 and Stream12 83

x

3.30 Max duration for detecting true changes in Stream7 and
Stream8 . 84

3.31 Max duration for detecting true changes in Stream9 and
Stream10 . 85

3.32 Max duration for detecting true changes in Stream11 and
Stream12 . 86

3.33 Number of true changes detected for Stream13 and Stream14 89

3.34 Number of true changes detected for Stream15 and Stream16 90

3.35 Number of true changes detected for Stream17 and Stream18 91

3.36 Number of false changes detected for Stream13 and Stream14 92

3.37 Number of false changes detected for Stream15 and Stream16 93

3.38 Number of false changes detected for Stream17 and Stream18 94

3.39 Mean duration for detecting true changes in Stream13 and
Stream14 . 95

3.40 Mean duration for detecting true changes in Stream15 and
Stream16 . 96

3.41 Mean duration for detecting true changes in Stream17 and
Stream18 . 97

3.42 Standard deviation of the duration for detecting true changes
in Stream13 and Stream14 98

3.43 Standard deviation of the duration for detecting true changes
in Stream15 and Stream16 99

3.44 Standard deviation of the duration for detecting true changes
in Stream17 and Stream18 100

3.45 Max duration for detecting true changes in Stream13 and
Stream14 . 101

3.46 Max duration for detecting true changes in Stream15 and
Stream16 . 102

3.47 Max duration for detecting true changes in Stream17 and
Stream18 . 103

xi

3.48 Number of true changes detected for Stream1 and Stream17
using XI-fixed with different τ values 107

3.49 Number of false changes detected for Stream1 and Stream17
using XI-fixed with different τ values 108

3.50 Mean duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different τ values 109

3.51 Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-fixed with different τ
values . 110

3.52 Max duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different τ values 111

3.53 Number of true changes detected for Stream1 and Stream17
using KD-moving with different τ values 112

3.54 Number of false changes detected for Stream1 and Stream17
using KD-moving with different τ values 113

3.55 Mean duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different τ values 114

3.56 Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using KD-moving with different
τ values . 115

3.57 Max duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different τ values 116

3.58 Number of true changes detected for Stream1 and Stream17
using XI-merged with different τ values 117

3.59 Number of false changes detected for Stream1 and Stream17
using XI-merged with different τ values 118

3.60 Mean duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different τ values 119

3.61 Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-merged with different
τ values . 120

xii

3.62 Max duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different τ values 121

3.63 Number of true changes detected for Stream1 and Stream17
using XI-fixed with different windows size 123

3.64 Number of false changes detected for Stream1 and Stream17
using XI-fixed with different windows size 124

3.65 Mean duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different windows size 125

3.66 Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-fixed with different
windows size . 126

3.67 Max duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different windows size 127

3.68 Number of true changes detected for Stream1 and Stream17
using KD-moving with different windows size 128

3.69 Number of false changes detected for Stream1 and Stream17
using KD-moving with different windows size 129

3.70 Mean duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different windows size . . 130

3.71 Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using KD-moving with different
windows size . 131

3.72 Max duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different windows size . . 132

3.73 Number of true changes detected for Stream1 and Stream17
using XI-merged with different windows size 133

3.74 Number of false changes detected for Stream1 and Stream17
using XI-merged with different windows size 134

3.75 Mean duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different windows size . . 135

xiii

3.76 Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-merged with different
windows size . 136

3.77 Max duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different windows size . . 137

3.78 Example of a control chart 145

3.79 Number of true changes detected for Stream1 and Stream2 153

3.80 Number of true changes detected for Stream3 and Stream4 154

3.81 Number of true changes detected for Stream5 and Stream6 155

3.82 Number of true changes detected for Stream7 and Stream8 156

3.83 Number of true changes detected for Stream9 and Stream10157

3.84 Number of true changes detected for Stream11 and Stream12158

3.85 Number of false changes detected for Stream1 and Stream2 159

3.86 Number of false changes detected for Stream3 and Stream4 160

3.87 Number of false changes detected for Stream5 and Stream6 161

3.88 Number of false changes detected for Stream7 and Stream8 162

3.89 Number of false changes detected for Stream9 and Stream10163

3.90 Number of false changes detected for Stream11 and Stream12164

3.91 Mean duration for detecting true changes in Stream1 and
Stream2 . 165

3.92 Mean duration for detecting true changes in Stream3 and
Stream4 . 166

3.93 Mean duration for detecting true changes in Stream5 and
Stream6 . 167

3.94 Mean duration for detecting true changes in Stream7 and
Stream8 . 168

3.95 Mean duration for detecting true changes in Stream9 and
Stream10 . 169

xiv

3.96 Mean duration for detecting true changes in Stream11 and
Stream12 . 170

3.97 Standard deviation of the duration for detecting true changes
in Stream1 and Stream2 171

3.98 Standard deviation of the duration for detecting true changes
in Stream3 and Stream4 172

3.99 Standard deviation of the duration for detecting true changes
in Stream5 and Stream6 173

3.100Standard deviation of the duration for detecting true changes
in Stream7 and Stream8 174

3.101Standard deviation of the duration for detecting true changes
in Stream9 and Stream10 175

3.102Standard deviation of the duration for detecting true changes
in Stream11 and Stream12 176

3.103Max duration for detecting true changes in Stream1 and
Stream2 . 177

3.104Max duration for detecting true changes in Stream3 and
Stream4 . 178

3.105Max duration for detecting true changes in Stream5 and
Stream6 . 179

3.106Max duration for detecting true changes in Stream7 and
Stream8 . 180

3.107Max duration for detecting true changes in Stream9 and
Stream10 . 181

3.108Max duration for detecting true changes in Stream11 and
Stream12 . 182

3.109Number of true changes detected for Stream13 and Stream14184

3.110Number of true changes detected for Stream15 and Stream16185

3.111Number of true changes detected for Stream17 and Stream18186

3.112Number of false changes detected for Stream13 and Stream14187

xv

3.113Number of false changes detected for Stream15 and Stream16188

3.114Number of false changes detected for Stream17 and Stream18189

3.115Mean duration for detecting true changes in Stream13 and
Stream14 . 190

3.116Mean duration for detecting true changes in Stream15 and
Stream16 . 191

3.117Mean duration for detecting true changes in Stream17 and
Stream18 . 192

3.118Standard deviation of the duration for detecting true changes
in Stream13 and Stream14 193

3.119Standard deviation of the duration for detecting true changes
in Stream15 and Stream16 194

3.120Standard deviation of the duration for detecting true changes
in Stream17 and Stream18 195

3.121Max duration for detecting true changes in Stream13 and
Stream14 . 196

3.122Max duration for detecting true changes in Stream15 and
Stream16 . 197

3.123Max duration for detecting true changes in Stream17 and
Stream18 . 198

3.124Number of true changes detected for Stream1 and Stream17
with different τ values . 200

3.125Number of false changes detected for Stream1 and Stream17
with different τ values . 201

3.126Mean duration for detecting true changes in Stream1 and
Stream17 with different τ values 202

3.127Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 with different τ values 203

3.128Max duration for detecting true changes in Stream1 and
Stream17 with different τ values 204

xvi

3.129Number of true changes detected for Stream1 and Stream17
with different window size 206

3.130Number of false changes detected for Stream1 and Stream17
with different window size 207

3.131Mean duration for detecting true changes in Stream1 and
Stream17 with different window size 208

3.132Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 with different window size . . . 209

3.133Max duration for detecting true changes in Stream1 and
Stream17 with different window size 210

4.1 Number of true changes detected for Stream1 – Stream4 . 224

4.2 Number of false changes detected for Stream1 – Stream4 225

4.3 Mean duration for detecting true changes in Stream1 –
Stream4 . 226

4.4 Standard deviation of duration for detecting true changes
in Stream1 – Stream4 . 226

4.5 Max duration for detecting true changes in Stream1 – Stream4227

4.6 Number of true changes detected for Stream5 – Stream8 . 227

4.7 Number of false changes detected for Stream5 – Stream8 228

4.8 Mean duration for detecting true changes in Stream5 –
Stream8 . 228

4.9 Standard deviation of duration for detecting true changes
in Stream5 – Stream8 . 229

4.10 Max duration for detecting true changes in Stream5 – Stream8229

4.11 Number of true changes detected for Stream9 – Stream12 230

4.12 Number of false changes detected for Stream9 – Stream12 230

4.13 Mean duration for detecting true changes in Stream9 –
Stream12 . 231

xvii

4.14 Standard deviation of duration for detecting true changes
in Stream9 – Stream12 231

4.15 Max duration for detecting true changes in Stream9 – Stream12232

4.16 Number of true changes detected using CC and KD 234

4.17 Number of false changes detected using CC and KD 234

4.18 Mean duration for detecting true changes using CC and KD 235

4.19 Standard deviation of duration for detecting true changes
using CC and KD . 235

4.20 Max duration for detecting true changes using CC and KD 236

5.1 Tumbling windows for a data stream 248

5.2 Offset for itemset Ai . 259

xviii

List of Tables

3.1 Stream types generated 50

3.2 Window-based change detection techniques 52

4.1 Stream types generated 222

5.1 Recall and precision comparison of TWIM 262

5.2 Results for varying ν value 264

5.3 Mining results over S5 . 264

5.4 Mining results over S6 . 265

5.5 Results for varying λ over S5 266

5.6 Results for varying λ over S6 266

5.7 Varying |WM | and |WP | over S5 267

5.8 Varying |WM | and |WP | over S6 267

5.9 Maximal counters for mining S1 - S4 268

5.10 Maximal counters when λ varies 268

5.11 Maximum counters when |WM | and |WP | varies 269

5.12 CPU time for TWIM . 269

xix

List of Symbols

∆ size of window in terms of time
ε1, ε2 stopping rule thresholds
UCL,LCL upper and lower control limit of control chart C
κ distance of control limits from center line
Λ weight matrix
λ threshold for calculating frequent itemset candidates
µ(S) mean value of S
ν threshold for calculating the support of frequent itemsets
ρ probability that a T 2 control chart has chi-square distribution
σ(S) standard deviation of S
τ significance level
ω weight for calculating moving mean and standard deviation
Ai frequent itemset
A complete set of frequent itemsets in S
AC cover set of A
ASC smallest cover set of A
Acc(Ri) the accuracy of the mining result Ri

C control chart
C candidate list for frequent itemsets mining
d number of dimensions in multi-dimensional streams
Gi partitions of a distribution
gS

i , gE
i start and end point of partition Gi

h bandwidth parameter for kernel density estimation
H0 Null hypnosis that asserts distribution does not change
H1 Alternative hypnosis that asserts distribution has changed

xxi

I, Ii set of items for transactional stream
K() kernel function for kernel density estimation
k number of partitions in the distribution
M covariance matrix
Nt number of transactions received by time t
n(t′, t] number of data received within time (t′, t]
occi number of times distribution Pi occur in S
P set of important distributions observed in S
P, PA, Pi probability distribution of S, SA, Si

P(A) power set of itemset A
p(vi) probability of vi ∈ v(s) occurring in S
Ri mining results for S under distribution Pi

S data stream
Sd d-dimensional data stream
s, si data element in S
SA, Si substream in S
Sr substream representing current distribution
StR Stopping rule
sup(A) number of transactions that support A
SUP (A) the support of A
t, ti timestamp
ta timestamp of the last distribution change
Ti a transaction that access itemset Ii

T set of transactions
v(s) value domain of the data s
W window on S
|W | size of window in terms of number of elements
WM maintenance window containing frequent itemsets
WP prediction window containing a candidate list
Wr reference window containing representative set Sr

Wt observation window containing latest data

xxii

Chapter 1

Introduction

1.1 Data stream environment

1.1.1 Data streams

Traditional database management systems (DBMSs) are successful in many
real-world applications where data are modeled as persistent relations.
However, in the past decade, a set of applications has emerged that in-
volve processing large volumes of continuous data. The data involved
in these applications come in the form of streams. They are generated
continuously and in fixed order; the large volume (often assumed to be
unbounded) of the data that arrive in the stream makes it impossible to
store the entire stream on disk, and in many applications the data ar-
rival rate is high (e.g., hundreds or even thousands data per second). The
following are some typical examples of such applications:

• Sensor networks are becoming increasingly popular for environmen-
tal and geophysical monitoring [10, 165], traffic monitoring [97], lo-
cation tracking [64], surveillance [162], and supply-chain analysis
[58]. The measurements produced by sensors can be modeled as a
continuous and unbounded stream of data.

1

• Financial and market activities continuously generate data such as
point-of-sale purchase transactions, stock tickers, real time prices,
and foreign exchange rates [88, 118]. On-line analysis of these data
can identify important market activities and economic patterns.

• In telecommunications, an overwhelming amount of telephone call
records is generated every minute [17]. Analyzing such telephone
logs in real-time may reveal interesting customer spending patterns
and may improve service quality as a result.

• In the networking community, much recent interest has focused on
on-line monitoring and analysis of network traffic [112, 126]. Tasks
in this context include bandwidth usage tracking, routing system
analysis, and server attack detection. The IP packet headers col-
lected from a web site can be modeled as a data stream.

Traditional DBMSs are not well equipped for such data streams. For
example, many techniques used in conventional DBMSs require multi-
ple scans over the entire data set; however, since data streams are un-
bounded, in general we can only have one look at the data. Once the
data is processed and discarded, we will not be able to get it back. There-
fore, a new class of systems known as Data Stream Management Systems
(DSMSs) are being studied by the database research community to fulfill
the needs of managing and processing data streams.

1.1.2 Data stream management systems

Recently, many DSMS prototypes have emerged to specifically support
stream processing applications. Stonebraker et al. summarized the eight
requirements that any DSMS must fulfill [148]:

1. Keep the data moving.

2. Query using SQL on streams (e.g., StreamSQL).

3. Handle stream imperfections (delayed, missing and out-of-order data).

2

4. Integrate stored and streaming Data.

5. Generate predictable outcomes.

6. Guarantee data safety and availability.

7. Partition and scale applications automatically.

8. Process and respond instantaneously.

Figure 1.1 illustrates the abstract system architecture of most proposed
DSMSs. The high-volume, low-latency, and time-changing streams arrive
for processing in real time. An input monitor then regulates the input
rates by dropping some data when the DSMS is unable to keep up with
the stream arrival speed. An allocated memory space is used as working
storage for processing the input streams. This memory space contains
only a portion of the stream that usually consists of the latest data, and is
maintained automatically by expiring oldest data when new data arrive.
Additional storage (usually allocated on disks) can be used for maintaining
important data in the stream, or for storing some auxiliary information
such as query plans and indexes. The output of the DSMS can have
different forms depending on the stream processing applications. This
can be a subset of data in the stream (e.g., for queries), an alert (e.g., for
fraud detection), or some extracted information (e.g., for association rule
mining). Some DSMSs are built on top of existing DBMSs, so that they
may exchange information and take advantage of some components in the
comparatively mature DBMSs.

1.1.3 Brief history of data streams

Although database research community’s interest in streaming data is re-
cent, the idea of data streams can be traced back to almost half a century
ago. In the 1960s, Landin formulated the term stream for the use of mod-
eling the histories of loop variables when designing unimplemented com-
puting languages [84]. However, within the next few decades, data stream
and its processing techniques were mostly identified and developed within

3

Figure 1.1: Abstract architecture of a DSMS

the literature of data flow [2, 43, 79, 161]. Data flow is predominately
concerned with the development of parallel processing techniques and the
evaluation of potential concurrency in computations. It can be considered
as a canonical example of data streams. Stephens presented a detailed
survey on the history and on the related work of data flow processing
[147]. Although not always in the form that is immediately recognizable
today, stream processing and analysis have been an active area of research
in computer science, such as in neural networks, in cellular automata, and
in safety critical systems.

Instigated by the trends and applications of the World Wide Web, wire-
less communications, sensor networks, and many others, data stream man-
agement and processing have become a hot topic in the past decade. Many
DSMS systems have been developed. Academic systems include Aurora
[110], Atlas [158], Borealis [103], CAPE [108], MAIDS [104], NiagaraCQ
[26], Nile [114], STREAM [96], PIPES [80], PSoup [19], TelegraphCQ
[121], and Tribeca [149]. Commercial DBMSs have also started to incor-
porate new features to support streaming data. Many new techniques for
tackling issues in all aspects of data stream processing have been proposed.
Good overviews on these topics can be found in [100, 56].

4

1.1.4 Distribution changes in data streams

In traditional DBMSs, it is reasonable to assume that the data set is static,
i.e., the data elements are samples from a static distribution. However,
this does not hold for many real-world data stream applications. Typically,
fast data streams are created by continuous activity over long periods of
time. It is natural that the underlying phenomena can change over time
and, thus, the distribution of the values of the data in the stream may
show significant changes over time. This is referred to as data evolution,
dynamic stream, time-changing data, or concept-drifting data [3, 69, 78,
157].

The distribution change in the stream can be either a slow and gradual
long term process (we refer to this as distribution drift in the rest of the
thesis), or a significant sudden change (we refer to this as distribution
shift). Both types of changes can be commonly observed in many stream-
based applications.

Example 1 (distribution drift). Scientists have been using temperature
and precipitation detecting sensors to monitor annual hydrologic processes
[33]. A study of the climate trends in California shows that, due to the
increasing concentrations of atmospheric carbon dioxide, the mean value
of the annual runoff shows a 37% decrease over a 100 year period [10].

Example 2 (distribution shift). To gain a greater share of consumer
expenditures, a special “loyalty program” is proposed by a retail brand.
By monitoring the daily transactions of multiple outlets, a 14% increase
in gross sales is observed immediately after the introduction of the loyalty
program, indicating a positive impact of this proposed program [128].

Distribution changes over data streams have significant impact on most
of the DSMSs. A stream processing model built previously may not be
efficient or accurate after the data evolve, since some characteristics ob-
served earlier in the data will no longer hold. Hence, if a distribution
change occurs in the stream, it is important for the user to be notified of
this change. The DSMS needs to be adjusted to reflect this change and
new results should be generated for the data under the new distribution.

There is a considerable amount of work that focus on distribution

5

change detection and incremental maintenance of stream processing mod-
els [4, 22, 52, 62, 123]. Change detection techniques should fulfill two goals:
1) To find whether a particular stream processing model has become stale
because of the distribution change; and 2) to provide rich information for
users to understand the nature of the data changes. An ideal solution
should not make any assumptions regarding stream characteristics (past
or present), and should be able to provide descriptive results that can be
used to interpret the trend of the changes. Such a solution can be incor-
porated into any existing stream processing engine and, thus, could make
many stream processing techniques previously designed only for static
streams suitable for processing time-changing data streams. Furthermore,
for streams whose distribution changes follow certain patterns, by analyz-
ing the distribution during different time periods, it may be possible to
predict their upcoming distribution changes.

1.2 Data stream mining

In his 1982 book Megatrends, John Naisbitt wrote: “We are drowning in
information, but we are starved for knowledge.” In past decades, available
data volume has doubled almost every year, however, the knowledge we
have learned from these has not increased at the same speed. The area
of data mining arose partially to address this problem, and data mining
techniques have proven to be extremely useful in almost all real-world
application domains.

With the emergence of data streams, the amount of data generated
and accumulated is rapidly increasing. Traditional data mining that are
designed for static and well structured data with comparatively low effi-
ciency are not suitable for mining such streaming data. Therefore, a new
type of mining application that accepts data streams as input has emerged.
Stream mining technology can dramatically change the way corporations,
governments, and even individuals process data.

An example of an email stream mining application process is illustrated
in Figure 1.2. This application classifies emails according to certain cri-
teria, such as types of email (e.g., business or personal), email topics, or

6

the email sender/receiver locations. The contents of emails in each class
are then extracted, aggregated, and reconstructed. The mining results are
then continuously generated after analyzing the contents.

Output
Email

classification

Content
extraction,
aggregation,

reconstruction

Content

analysis

Email
Streams

feedback

Figure 1.2: Example of mining an email stream

Since there are many similarities and common processes between tradi-
tional data mining and data stream mining, in Section 1.2.1, an overview
of the models and issues in traditional data mining is provided. The new
challenges and requirements for mining applications with streaming input
is then discussed in Section 1.2.2.

1.2.1 Models and issues in data mining

This thesis focuses on the techniques for detecting distribution changes
in time-changing streams and performing popular data mining tasks over
these dynamic streams. Although data stream mining has gained attention
only in the past few years, data mining over relational databases has been
one of the key features in many real-world applications, such as fraud
detection, risk assessing, retail marketing, and scientific discovery.

Data mining is a process of data collection, analysis, and prediction.
Data mining tools use sophisticated analysis methods to discover pre-
viously unknown relationships and patterns in large (multi-dimensional)
data sets, and predict their future trends and behaviors. These mining
results enable the users to make proactive and knowledge-driven decisions.
The typical data mining process consists of the following three stages:

Stage 1: Exploration. This stage usually starts with data preparation
that involves data cleaning, data transformation, and performing some

7

preliminary analysis over the data to identify the most relevant variables
and to determine the complexity and the general nature of the mining
techniques that can be taken into account in the next stage.

Stage 2: Model building. This stage involves applying various tech-
niques for the same task on a test data set, and choosing the one with the
best performance.

Stage 3: Deployment. In this final stage, the selected technique is
applied to new data to generate expected output.

Depending on the application domain and user requirements, data min-
ing applications can fulfill different functions/tasks. Data mining tasks are
quite diverse and distinct because different types of data sets consist of
many patterns. Among all the data mining tasks, the following are widely
used in various real-world applications:

• Clustering. This task seeks to identify a finite set of categories (clus-
ters) to describe the data. The clusters can be mutually exclusive
or consist of a richer representation, such as a hierarchy.

• Classification. This task aims to find a function that can map (clas-
sify) each data item in the data set into one of the several predefined
classes.

• Frequency counting and association rule learning. This task searches
for relationships between variables, or identifies the most significant
values in the data set.

• Summarization and regression. This task involves methods for find-
ing a compact description for the entire data set or a subset of it. A
simple example is tabulating the mean and standard deviations for
all the fields. Another example is to find a function that models the
data with the least error.

1.2.2 Mining data streams: New challenges

Data stream mining applications address the same tasks as traditional
data mining but over unbounded, continuous, fast-arriving, and time-

8

changing data streams. These characteristics impose many new challenges
for even the simplest task in traditional data mining. Most of the existing
techniques cannot be adopted for the data stream environment. The fol-
lowing is a summarization of major issues and challenges that differentiate
data stream mining from conventional data mining.

• Unbounded data sets. Conventional data are completely stored on
disk. When the data mining application initiates, it can retrieve
the entire data set, whereas data streams are unbounded. Once the
storage space is full, old data must be evicted to make room for the
newly arrived data. Hence, at each time, only a portion (usually
the latest part) of the data is available, and old data that have
been discarded cannot be retrieved. This issue renders data mining
techniques that require multiple scans over the entire data set to be
useless.

• “Messy” data. Traditional data mining techniques are designed for
data sets that typically come in relational form, such as tuples in
relational tables. The tuples in a relational table may be organized
on disk in specific layout patterns, e.g., tuples with identical values
of an attribute can be clustered for efficient access. Furthermore,
auxiliary structures such as indexes can be built on the relations
to enable efficient retrieval of individual tuples. However, data in
a stream arrive continuously, usually at a high rate. The DSMSs
typically have no control over the arrival order, rate, or data distri-
bution of the input streams. Hence, an efficient mining technique
for relational data may no longer have similar performance when
handling streams.

• Efficiency. Data mining over relational data sets can be considered
as one-time tasks. The process starts when the mining process is
triggered and ends once the results are generated. The results are
then used for some time until the re-execution of the data mining
task. Therefore, efficiency is usually not the primary concern in
traditional data mining. Some sacrifices of efficiency is reasonable
to gain a higher accuracy or generate exact results. Mining data

9

streams is a continuous process and will not end unless manually
terminated by user. Hence, the results are approximations in many
stream mining applications. Since the data arrival rate can be ex-
tremely high, and real-time response is required, efficiency of data
mining algorithms is critical for stream mining techniques. Tech-
niques such as load-shedding and sampling are not commonly used
in traditional data mining, but are widely adopted for mining high-
speed streams.

• Data evolution. Data streams are generated by real-world applica-
tions continuously, and the underlying distribution of a data stream
may change over time. This problem does not exist in traditional
data mining, since relational data are usually considered static. The
distribution changes in a data stream can greatly affect the per-
formance of the stream mining technique, because mining results
generated for the previous distribution may not be accurate distrib-
ution changes, and, hence, new results need to be produced on the
fly whenever a distribution change is detected.

For example, frequent itemset mining is a common data mining task
for transactional data streams. Mining frequent itemsets can be
quite time-consuming, since the total number of itemsets is expo-
nential. Hence, for traditional data mining, usually only the item-
sets that are known to be frequent are monitored and infrequent
itemsets are discarded. However, for data streams that change over
time, an itemset that was once infrequent can become frequent if
the distribution of the stream changes, and vice versa. Therefore, it
is critical for a frequent itemset mining application to have the abil-
ity of detecting changes, of eliminating itemsets that are no longer
frequent, and also of generating new frequent itemsets.

To address these challenges, any data stream mining application must
fulfill the following requirements:

• Time efficiency. As discussed previously, stream mining applications
must have real-time efficiency to mine fast-arriving data streams.

10

Unlike data mining algorithms that aim to gain high or even perfect
accuracy, stream mining techniques should have the ability to be
adjusted to achieve balance between the accuracy of the results and
the response time.

• Resource efficiency. With the unbounded and pass-through fea-
tures of data streams, two types of resources, memory space and
computation power, are particularly valuable in streaming environ-
ments. Any stream mining application must have the capability of
resource-awareness; resources should be adaptively allocated. Ad-
vanced scheduling and memory management techniques are impor-
tant for mining data streams.

• Ability to handle delayed, missing, and out-of order data. A stream
mining application runs in real-time and, hence, should not wait
for certain data indefinitely. Any algorithm that can cause blocking
must also have the ability to time-out, so that the mining application
can continue with partial data.

• Ability to detect changes. Data streams can change over time. When
the distribution changes, previously generated mining results may
no longer be valid. Therefore, a stream mining technique must have
the ability to detect changes in the stream and should automatically
modify its mining strategy for different distributions.

• Determinism. A stream mining application must ensure that its
mining process is both deterministic and repeatable. Therefore, re-
mining the same input stream should generate the same output re-
gardless of the time of execution. This ability is important from the
perspective of fault tolerance and recovery.

1.3 Motivation

Mining time-changing data streams is crucial but difficult. A large number
of existing stream mining techniques make the false assumption that the
stream of interest has stable distribution over its entire lifespan. Although

11

these approaches may achieve high performance by by-passing the diffi-
culty of change detection, their practical values are questionable. There-
fore, the focus of this thesis is on developing new techniques for detecting
distribution changes and stream mining techniques that are suitable for
dynamic data streams.

1.3.1 Mining data streams with distribution change

As discussed previously, distribution changes over data streams have con-
siderable impact on most of the stream mining algorithms and, thus, tech-
niques for detecting changes in streaming data are required. However, the
importance of this challenge has only been recognized in recent years.
There are basically two different approaches to detect changes. One looks
at the nature of the data set in the stream and determines if that set
has evolved while the other detects if an existing data mining model is
no longer suitable for recent data, which implies concept drifts. The for-
mer approach leads to general techniques that are suitable for any type
of stream, whereas the second group of approaches are task-specific that
are designed for one specific stream mining technique and usually only
perform well on certain types of streams.

The general approaches have the advantage of flexibility. They can be
incorporated into any stream mining technique. Moreover, since they de-
tect changes by directly analyzing the data, aside from generating alarms
at the time of the distribution changes, these approaches may be able to
provide richer information, such as the characteristics of the new distrib-
ution, or the type of the distribution change (i.e., whether it is a sudden
and severe shift or a slow and gradual drift). This information is crucial
for analyzing the streaming data and can help users choose the best min-
ing technique for a given input stream. However, few distribution change
detection approaches proposed in literature are independent of stream
mining applications.

Although the task-specific approaches do not have as much flexibility
as general approaches, the previous mining results may provide useful
information that can help the change detection and mining techniques

12

to be fine-tuned to improve performance efficiency and accuracy. For
example, in an association rule mining application, a significant frequency
change in some of the itemsets may indicate a distribution change. In
a stream classification application, a dramatic change of the size of one
class may be a signal of the impending arrival of a new distribution. Since
general approaches are not directly connected to the mining task, they
cannot take advantage of such feedback information. Hence, for many
streaming applications that only perform one specific mining task, task-
specific techniques with outstanding performance may be more useful than
general approaches.

There is a large number of task-specific techniques developed for each
of the stream mining tasks. However, many of these techniques have
problems in meeting all of the common requirements for mining streaming
data: ability to process large volumes of data in real time, low memory
usage, and ability to cope with time-changing data. This thesis looks
into one of the most important mining tasks, which is frequency counting.
An algorithm is proposed that meet all three common requirements and
can out perform existing techniques for mining frequent itemsets in time-
changing data streams.

1.3.2 Multi-dimensional streams

Most of the stream mining techniques for dynamic data streams only work
over single-dimensional data, i.e., they assume there is only one attribute
of interest in the stream. However, the data collected in a data stream
from real-world applications usually contain several attributes. In prac-
tice, many stream processing applications need to take more than one
attribute into consideration. For example, in modern quality control,
several quality characteristics are usually monitored simultaneously. In
e-commerce, where each data element in the stream is an order placed
by customers, a positive linear correlation between items in the order
may indicate similar purchase patterns. There has been little attention
paid to the problem of extending change detection and mining to multi-
dimensional streams.

13

Under the assumption that attributes of interest are not correlated
with each other, the issue due to multi-dimensionality can be easily ad-
dressed by running a set of single-dimensional dynamic stream mining
process simultaneously on each attribute. However, if the correlations
among several attributes are taken into account, such a solution is no
longer satisfactory. One of the challenges for mining multi-dimensional
data set is known as “the curse of dimensionality” (or Hughes effect [15]):
in high-dimensional space, data may be sparse, making it difficult to find
any structure in the data. Under the streaming environment that re-
quires efficient on-line techniques, it is more difficult to mine such multi-
dimensional dynamic streams.

A practical stream mining technique should have the ability to handle
streams with more than one dimension. Based on this insight, in this
thesis, one of the proposed techniques that are primarily designed for
mining single-dimensional streams is further extended to higher dimension.

1.4 Scope and Contributions

In the next chapter, we present the formal definition of the data stream
model, and discuss the window models that are commonly used in stream
processing and mining. A survey of issues and related works in data
stream mining is introduced afterwards. This background is important
for understanding the remainder of the thesis.

Since the focus of this thesis is on mining data streams with distrib-
ution changes, we begin with exploring the fundamental problem of this
topic in Chapter 3: detection of distribution changes in data streams. Dis-
cussions in this chapter are not restricted by any specific stream mining
application and the proposed approaches can be applied on any type of
uni-dimensional streams.

Many existing generic change detection techniques adopt statistical
tools to estimate the distributions of the data sets in the stream and to
calculate the discrepancy between the current distribution and distribu-
tion of the newly arrived data. Since many existing statistical tools require

14

a large amount of sample data to accurately estimate the distribution, un-
der the streaming environment where the size of the data set is usually
small due to memory constraint, the accuracy is impacted. Hence, we
propose an approach to represent the distribution that generates the data
in the stream using a small data set. Two windows, a reference window
and a observation window, are used to maintain data sets that represent
the current and new distributions of the stream. An intelligent merge-
and-select sampling approach is proposed that can dynamically update
the reference window. The small data set in the reference window can
represent the current distribution of the stream with high accuracy.

Although it may not be able to estimate the distribution function of a
small data set with high accuracy, some key features of this distribution,
such as mean, range, and variance, can be easily obtained. For some types
of data stream applications, these key features are the sole interest and
are sufficient for generating mining results. Based on this, another gen-
eral approach is proposed in Chapter 3 that detects mean and standard
deviation changes in any dynamic data stream. This technique uses con-
trol charts [129] to monitor the input stream and generates alarms when
there is a significant change in the mean and standard deviation of the
data. Unlike most of the change detection techniques that require a huge
number of data to get promising results, this approach can achieve high
accuracy with only a small sample set. As the experiments demonstrate,
the proposed approach has high efficiency, so that fast distribution changes
in the stream can be captured.

Most of the existing stream mining approaches, including the ones
presented in Chapter 3, are mainly designed for streams with single di-
mension. There is very little research on change detection and mining
multi-dimensional streams. As noted earlier, for many practical applica-
tions, data collected in streams contain multiple attributes, and there can
be more than one attribute of interest. In Chapter 4, a method is pro-
vided to extend one of the proposed techniques to higher dimensions. It
is shown that, by modifying the proposed change detection and stream
mining approach, this approach is suitable for multi-dimensional time-
changing streams.

Chapter 5 examines one of the most important mining tasks: frequent

15

itemsets mining. A task-specific stream mining technique is proposed.

Mining frequent itemsets in dynamic streams are particularly difficult
because infrequent itemsets are usually not maintained due to limited
memory. However, when a distribution change occurs, a once infrequent
itemset may become frequent under the new distribution. Such new fre-
quent itemsets are difficult to detect. Furthermore, even if these itemsets
can be detected, their statistics can not be obtained, since mining a data
stream is a one-pass procedure and historical information is irretrievable.
In Chapter 5, a false-negative oriented algorithm is proposed that can
find most of the frequent itemsets, detect distribution changes, and up-
date the mining results accordingly. This technique uses two windows
(window models will be discussed in Section 2.1.2), one for maintaining
existing frequent itemsets and one for predicting new frequent itemsets. A
candidate list is maintained that contains a list of itemsets that have po-
tential to become frequent. Every time the two windows move, we check if
new frequent itemsets and candidates should be added and if some existing
ones need to be removed from the list.

The contribution of this thesis can be briefly summarized as follows:

• The issue of mining time-changing data streams is systematically
studied. Data stream mining has only gained popularity recently,
and many proposed techniques are based on the false-assumption
that distribution in the data stream will always be static. In this
thesis, we study this important but challenging issue both in depth
and in width.

• Two generalized change detection algorithms are proposed. As has
been previously discussed, most of the change detection techniques
proposed in literature are task-specific. Generalized approaches are
rare, but have greater potential since they can be applied to any
type of stream and plugged in any stream mining applications.

• These proposed techniques are extended to data streams with higher
dimensions. Multi-dimensional data mining is a difficult task even
for traditional data mining. Few studies have been conducted for
detecting changes and mining multi-dimensional data streams.

16

• A novel technique for mining frequent itemsets in data streams is
proposed. The proposed technique has the ability of detecting dis-
tribution changes in real-time, and can out-perform others according
to the experiments.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents
the background of data stream mining. In Chapter 3, the problem of
distribution change detection is discussed and two change detection tech-
niques are proposed. In Chapter 4, we discuss the potential of extending
our proposed techniques to higher dimensions. A novel approach for min-
ing frequent itemsets in transactional streams is presented in Chapter 5.
Finally, Chapter 6 concludes this thesis with summarizations and sugges-
tions for future work.

17

Chapter 2

Background

This chapter surveys the background and related work in data stream
models and processing techniques. In keeping with the emphasis on data
stream mining and distribution change detection, the following topics in
stream processing are omitted.

• Query languages and query processing over streams. An overview of
these topics can be found in [98, 11, 121, 57, 76, 81, 87, 107].

• Distributed stream processing. See [13, 35, 131, 116, 151, 160] for
examples of recently proposed techniques on this issue.

• High availability and fault tolerance. See the following representa-
tive papers [12, 47, 59, 60, 111, 83] as examples.

• Application-specific DSMS issues, such as sensor streams [65, 122,
92], merging streams [105, 55, 115], grid computing [1, 72, 138], and
geospatial streams [113, 64, 141].

Section 2.1 surveys data stream models. Section 2.2 gives a formal
definition of the stream distributions. Reviews of recent work on data
stream mining is given in Section 2.3.

19

2.1 The data stream model

2.1.1 Data models

A data stream S is a sequence of continuous, append-only, and ordered
(usually by timestamps) data elements that arrives in real-time. Each
element in S can be denoted as 〈s, t〉 , where s is the actual data and t
is the monotonically increasing timestamp attached to s1, indicating the
arrival time of the element. Depending on the underlying application that
generates S, data s may have different forms. For example, s may take the
form of relational tuples in relational-based stream models; in object-based
models, s can be instantiations of data types with associated methods.
Also, s can be modeled as a set of items (or tuples) in transactional-based
DSMSs. Each stream processing application may only consider a few
attributes or items of the stream. The unconsidered attributes or items
can be filtered before data are fed to the process.

Timestamp t can be either explicit (as a traditional timestamp) or
implicit (as a sequence number). Explicit timestamps are often used when
the arrival time of the elements is significant, whereas implicit timestamps
are mostly adopted when the general considerations of “recent” or “old”
as sufficient for the DSMS. Note that in either case, timestamps may or
may not be visible to users and the arrival order of the elements may
not be identical to the order in which the elements were submitted by
the application, due to unstable network speeds, especially for distributed
systems.

Although the individual element s may take the form of relational
tuples, the entire data stream differs from the relational models in several
ways:

• Data elements in the stream arrive online. Although the system may
attach implicit timestamps on the stream, it has no control over the
order of data arrival.

1In the rest of the thesis, the data element may be referred as only s when there is
no ambiguity.

20

• Due to performance and storage constraints, in general, once an
element from a stream is processed, it may not be retrieved (back-
tracked). In particualr, online stream algorithms are restricted to
only one look at the data [53].

• Data streams are potentially unbounded (often assumed to be in-
finite) in size and, hence, cannot be stored completely in bounded
memory. Therefore, most stream processing applications can only
produce approximate results, since the whole data set is not available
at any time.

• Online applications that process streams in real-time must have high
efficiency, sometimes at the cost of sacrificing some accuracy in over-
all performance.

Since a stream cannot be stored entirely in a DSMS, only a subset
of the stream is available at any time. This subset can be a continuous
“chunk” of the stream in terms of arrival time, or the subset can be made
up of discontinuous elements selected by the application. We call such
subsets substreams, defined as follows:

Definition 2.1 A substream Si = {〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} of stream
S is a finite set of elements that occurs in S, i.e., 〈sj, tj〉 ∈ S, j = 1, ..., k.

2.1.2 Window models

In many cases, new elements in a data stream are more relevant and
usually more accurate than are the older ones. Therefore, for most stream
applications, only a recent excerpt of a stream is of interest. This insight
gives rise to window models. A window W over a stream S contains
a continuous substream Si of S. Substream Si can be represented by
using the timestamps of the oldest element 〈s1, t1〉 and the newest element
〈sk, tk〉 in Si. That is, window W can be referred to as “window on S from
time t1 to tk”. Elements that are inside W are (temporarily) stored locally
and, hence, can be scanned multiple times. Once an element is evicted
from the window, it cannot be retraced.

21

Many window models have been proposed in literature. These models
can be classified according to the following criteria:

• Window size.

Time-based windows contain elements that arrive within a certain
time period. For example, a time-based window with size ∆ may
contain elements with timestamps within range [t, t + ∆]2. In con-
trast, count-based windows contain fixed number of elements. There-
fore, the length in time for a count-based window is not stable, since
data streams usually do not have even arrival speeds.

• Update intervals.

Windows using eager re-evaluation strategies expire old elements
upon the arrival of each new element. Such windows are referred to
as sliding windows. In contrary, lazy re-evaluation strategies (batch
processing) lead to a “jumping” of the windows when they update.
These windows are referred to as jumping windows. If the update
interval is larger than the window size, then this window is called a
tumbling window. Figure 2.1 illustrates different types of windows
in terms of update intervals. Note that in the rest of the thesis, we
use W and W ′ to denote the same window before and after moving,
separately, when there is no ambiguity.

• Movement of the windows endpoints.

For a window with both endpoints (the timestamps of its oldest and
newest elements) fixed, the window does not move over time. Such
windows are defined as fixed windows. Fixed windows are often used
as a reference for comparison. If one endpoint is fixed and the other
is moving, then such windows are referred to as landmark windows.
Landmark windows need to be monitored carefully, since they can
easily drain the system memory. If both endpoints of a window are

2It can also be (t, t+∆), (t, t+∆], or [t, t+∆), depending on the specific definition
of the window.

22

si

si+1

si

si+j

W

W’

W’

W

W’W

S
t

Sliding window

Jumping window

Tumbling window

Figure 2.1: Windows update intervals

moving3, then the window is a moving window. Figure 2.2 illustrates
these three types of windows.

2.2 Stream distribution and change detec-

tion

If the timestamps of all data elements in a stream are discarded, then
these elements form a data set. The probability distribution of such a
data set can be defined conventionally: all the possible values (for discrete
distribution) or the intervals (for continuous distribution) are described,
along with the probabilities that a random variable can take within a given
range [48].

However, as discussed in Section 1.1.4, data streams can change signifi-
cantly over time and, thus, distributions in dynamic streams are temporal.

3Theoretically, the direction of the movement can be either forward or backward;
however, only forward movement is used in most cases.

23

t 1

t 2

S
t

Moving window

Landmark window

Fixed window

Figure 2.2: Movement of windows endpoints

Estimating the distribution over the entire data set of a dynamic stream
has no practical meaning and cannot provide useful information for un-
derstanding and analyzing the stream. Therefore, in this thesis, the prob-
ability distributions of a stream are defined in the scope of substreams:

Definition 2.2 The probability distribution Pi of a substream Si, un-
der the assumption that all elements in Si are generated by the same distri-
bution Pi, is the frequency distribution of all values within this substream,
without considering their arrival time. The value domain of elements in
Si is denoted as V .

Figure 2.3 gives an example of the density curve of a continuous dis-
tribution that generates current data in stream S. The x-axis is values
domain, and y-axis is density. The density curve has total area 1 under-
neath it. The area under the curve within certain range of values [vi, vj]
indicates the probability that a data element s in stream S has its value
v(s) falls in this range. For example, if the area under the curve within
range [vi, vj] is 30%, then 30% of the data s in stream S generated by the
current distribution will have values v(s) ∈ [vi, vj].

Given two substreams SA = S(t1, t2] and SB = S(t2, t3] from data

24

Figure 2.3: Example of continuous distribution of a stream

stream S, with data generated by probability distributions PA and PB,
respectively, the similarity of PA and PB can be measured by conduct-
ing statistical tests on PA and PB. The choice of the statistical tests is
application-based. For example, discrepancy in distributions can be calcu-
lated using distance functions. Also, similarities of two distributions can
be estimated using key features of the data sets, such as the value range,
the standard deviation, and the number of distinct values.

If PA and PB show high similarity according to the tests, then it is safe
to assume that the distribution of S does not change during the time span
of SA and SB. However, if the probability of PA 6= PB is high (greater
than a user defined threshold), then it is reasonable to believe that the
distribution of S has changed. There are mainly two types of distribution
changes: distribution drifts and distribution shifts. Distribution drifts
refer to the slow and gradual changes in a stream, such as temperature
and gas price changes; whereas distribution shifts represent abrupt and
severe changes, such as machine malfunction and fraud.

The main tasks for designing a change detector are to design a statisti-
cal test with high accuracy and to develop a technique that can report dis-
tribution changes quickly. Change detection is not an easy task. The de-
sign of a change detector is a compromise between detecting true changes
and avoiding false alarms. For data streams with high arrival rates, ef-
ficiency is highly important and, hence, the change detection technique

25

over dynamic streams must find a “balance” between efficiency and accu-
racy. In some cases, some accuracy may be sacrificed to achieve higher
efficiency, and vise versa. A more detailed survey of the related work on
change detection will be given in Section 3.2.

2.3 Survey on data stream mining

Data stream mining is the process of extracting information and patterns
from streaming data. It can be considered as an extension of traditional
data mining and knowledge discovery from relational tables to the new
type of continuous, unbounded, rapid, and time-changing data. There-
fore, most of the issues identified in relational data mining must also be
addressed for stream mining, with the additional difficulties introduced by
new stream data as discussed in Chapter 1.

2.3.1 Data refining

Data refining approaches refine the data elements in the stream for the
purpose of mining. These approaches do not extract complex information
from streams, but a data stream after these processes will be cleaner, more
compact, and better structured. Mining the stream after these processes
may greatly improve the performance of the mining applications. Some
information generated from the processes, such as data synopsis and dis-
tribution change alarms, can help the mining applications to adjust their
parameters and strategies over time. Unlike relational data mining that
process the entire data once, before the mining procedure starts, streaming
data processing procedures continue during the entire life span of streams.

Sampling

Data stream sampling is the process of choosing a suitable representative
subset from the stream of interest. The major purpose of stream sampling
is to reduce the potentially infinite size of the stream to a bounded set of

26

samples so that it can be stored in memory. There are other uses of stream
sampling, such as cleaning “messy” data and preserving representative
sets for historical distributions (see Section 3.3 as an example). However,
since some data elements of the stream are not looked at, in general,
it is impossible to guarantee that the results produced by the mining
application using the samples will be identical to the most recent results
returned on the complete stream. Therefore, one of the most critical tasks
for stream sampling techniques is to provide guarantees about how much
the results obtained using the samples differ from the non-sampling based
results.

Sampling is a technique that has long been used in various domains.
The size of the data set is always unknown when the data come in the form
of a stream. Moreover, stream processing restricts only one pass through
the data. These two conditions render many existing sampling approaches
useless for streaming data. A number of stream sampling techniques have
been proposed in recent years. Manku et al. developed a framework
that is based on random sampling and includes several known algorithms
as special cases [94]. Park et al. proposed a reservoir-based sampling
algorithm using replacement technique to maintain the sample set [102].
Cormode and others proposed a method for maintaining dynamic samples
that can be used in a variety of summarization tasks [38]. Chuang et al.
explored a new sampling model, called feature preserved sampling, that
sequentially generates samples over sliding windows [34].

Load shedding

The arrival speed of elements in data streams are usually unstable and
many data stream sources are prone to dramatic spikes in load. There-
fore, stream mining applications must cope with the effects of system
overload. Maximizing the mining benefits under resource constraints is
challenging. Load shedding techniques, which are techniques that discard
some of the unprocessed data during peak time, are widely adopted for
handling system overload. There are three major decisions in load shed-
ding: 1) Determining when to shed load; 2) Determining how much load to
shed; and 3) Determining which elements drop. Dropping elements earlier

27

and dropping more elements can speed-up the system and avoid wasting
work; however, the accuracy of the mining results may be affected. The
quality of the decisions can be estimated by loss or gain ratios.

Some heuristic approaches have been proposed and implemented in
DSMS prototypes [105, 120, 117]. Chi et al. developed a load shedding
technique using the Markov model4 and the quality of decision metric for
classifying data streams [32]. A frequency-based load shedding approach
is introduced by Chang and Kum [20]. A control-based load shedding
approach adopted in the Borealis system is presented in [153].

Synopses maintenance

Synopsis maintenance processes create synopses or “sketches” for summa-
rizing the streams. Synopses do not represent all characteristics of streams,
but rather some “key features” that might be useful for tuning stream
mining processes and further analyzing streams. It is especially useful for
stream mining applications that accept various streams as input, or for
input streams with frequent distribution changes. When streams change,
some kind of re-computation, either from scratch or according to differ-
ences only, has to be done. An efficient synopsis maintenance process can
generate summaries of streams shortly after changes, and stream mining
applications can re-adjust their settings or switch to other mining tech-
niques based on this valuable information. Which synopsis should be
maintained is an application-based issue. Examples of synopsis include
histograms, range estimation, quantiles, and frequency moments.

Cormode and Muthukrishnan introduced a sublinear space structure
called the Count-Min sketch for summarizing data streams [37]. Lin and
Xu developed an algorithm for continuously maintaining quantile sum-
mary of the most recent elements in a stream [90]. Pham et al. proposed
a synopsis building approach by using a service and message-oriented ar-
chitecture for data streams [137].

4A Markov model [95] is a state transition model that represent a changing set of
states over time, where there is a known probability or rate of transition from one state
to another.

28

Change detection

As discussed in Section 1.3.1, distribution changes over data streams have
great impact on stream mining applications. When the distribution of the
stream changes, previous mining results may no longer be valid under the
new distribution and the mining technique must be adjusted to maintain
good performance for the new distribution. Hence, it is critical that the
distribution changes in a stream be detected in real-time, so that the
stream mining application can react promptly.

Change detection on data streams has been recognized as an important
problem in recent years. In general, there are two different tracks of tech-
niques for detecting changes. One track looks at the nature of the dataset
and determines if that set has evolved and the other track detects if an
existing data model is no longer suitable for recent data, which implies
concept drifting. The work proposed by Kifer et al. [78] and Aggarwal
[3, 4] are representative of the first track and much work [69, 157, 49, 51]
belongs to the second track. See Section 3.2 for a more detailed survey on
change detection techniques.

2.3.2 Stream mining tasks

This section reviews some of the most popular stream mining tasks: clus-
tering, classification, frequency counting and association rule mining, and
time series analysis.

Clustering

Clustering is an important technique for both conventional data mining
and data stream mining. Clustering groups together data with similar
behavior. Clustering can be thought of as partitioning or segmenting
elements into groups (clusters) that might or might not be disjointed. Note
that in many cases, the answer to a clustering problem is not unique, that
is, many answers can be found and interpreting the practical meaning of
each cluster may be difficult.

29

Aggarwal et al. proposed a framework for clustering data streams [5].
This framework uses an online component to store summarized informa-
tion about the streams and an offline component performs clustering on
the summarized data. An extension of this framework, called HP Stream,
was proposed the following year [6]. HP Stream finds projected clusters
for high dimensional data streams.

Clustering algorithms proposed in literature can be briefly categorized
into decision tree based and K-Median based approaches. Some exam-
ples of decision tree based techniques are [45, 51, 69, 150]. Representative
papers that are based on the improvement of K-Median or K-Mean algo-
rithms include [101, 24, 25, 61, 132].

Classification

Classification maps data into predefined groups (classes). Classification is
similar to clustering but with the difference that the number of groups is
fixed and classification results are not dynamic. Classification algorithms
require that the classes based on data attribute values to be defined. Pat-
tern recognition is a popular classification task. In pattern recognition, an
input pattern is classified into one of the several predefined classes based
on its similarity to these classes.

Similar to clustering approaches, the classification technique can also
adopt the decision-tree model. Decision-tree classifiers, Interval Classifier
[119], and SPRINT [143], have been developed for mining databases that
do not fit in main memory using sequential scans and, thus, are suitable
for data stream environments. The VFDT [45] and CVFDT [69] systems
originally designed for stream clustering can be adopted for classification
tasks. Techniques proposed by Ding et al. [44] and Ganti et al. [52] are
other examples of decision-tree based classification approaches.

The classification system developed by Last [86] uses an info-fuzzy
network as a base classifier. This system can automatically adjust itself
for different distributions in dynamic streams. Wang et al. introduced a
framework [157] that can also deal with time-changing streams by using
weighted classifier ensembles. Aggarwal et al. built a distribution change
sensitive system using the idea of microclusters [7].

30

Frequency counting and association rule mining

The problem of frequency counting and mining association rules (frequent
itemsets) has long been recognized as important task. However, although
mining frequent itemsets has been widely studied in data mining, it is
challenging to extend it to data stream environment, especially for streams
with non-static distributions. An overview of this issue is presented by
Jiang and Gruenwald [74].

Mining frequent itemsets is a continuous process that runs throughout
the life span of a stream. Since the total number of itemsets is exponential,
it is impractical to keep a counter for each itemset. Usually, only the
itemsets that are already known to be frequent are recorded and monitored
and counters of infrequent itemsets are discarded. However, data streams
can change over time and, hence, a once infrequent itemset may become
frequent if distribution changes. Such (new) frequent itemsets are difficult
to detect, since mining data streams is a one-pass procedure and history
is not retrievable.

Despite these difficulties, a number of frequency counting and associa-
tion rule mining techniques for data streams have been proposed. Earlier
work simplifies the problem by counting only the frequent items. Tech-
niques for mining frequent items [18, 36, 41, 63] commonly assume that
the total number of items is too large for memory-intensive solutions to be
feasible. Approaches developed for mining frequent itemsets in literature
[22, 29, 31, 166] may or may not be applied on dynamic streams. See
Section 5.3 for detailed discussions on related work about this topic.

Time series analysis

In general, a set of attribute values over a period of time is described
as time series. Usually, a time series consists of only numeric values,
either continuous or discrete. From this informal definition, it is natural
to picture a data stream that contains only numeric attributes as a time
series. Mining tasks over time series can be briefly classified into two types
based on this criteria: pattern detection and trend analysis. A typical
mining task for pattern detection would involve being given a sample

31

pattern or a base time series with a certain pattern and to find all the
time series that contain this pattern. Detecting trends in time series and
predicting the upcoming trends are the tasks for trend prediction.

Zhu and Shasha proposed a system for computing measures over time
series using an arbitrarily chosen sliding window [170]. Lin et al. proposed
the use of symbolic representation of time series [89]. This representation
allows both dimensionality reduction and distance measurement. Chen
proposed two distance functions for time series pattern matching [27, 28].

Perlman and Java developed a two-phase approach for predicting trends
in astronomical time series [136]. First, they attempt to represent the data
set as a collection of patterns. In the next step, probabilistic rules of form
“If pattern A occurs in time series 1, then pattern B may occur in time
series 2 within time T”. Indyk et al. proposed a technique for estimat-
ing the average trends and the relaxed periods of time series by using a
so-called sketch pool [71].

2.3.3 Other related research issues

There are many open issues in stream mining area that have grand im-
portance but do not receive sufficient attentions. Some of these issues are
addressed in the following discussions.

Evaluation and benchmark

Although a large number of data stream mining techniques have been de-
veloped, there is not yet an open source benchmark specifically designed
for data streams that can be used to evaluate and compare the perfor-
mance of different stream mining systems. Data stream researchers are
left with the options of either using the benchmarks designed for DBMSs
or re-implementing others technique and conducting experiments on some
sample data. Both solutions consume significant amount of time and
resources, and the quality of the comparison results are usually not satis-
fying. Developing benchmarks for stream mining systems is a both chal-
lenging and important research issue.

32

Integration of stream mining systems with relational DBMSs

Developing and commercializing an independent data stream mining sys-
tems require large amount of time and resources. One of the alternative
solutions is to integrate prototype of a stream mining system with an ex-
isting relational DBMS or a relational data mining system. Nowadays
more and more commercial DBMSs start to incorporate new components
to support streaming data. Research works need to be done on issues
such as increasing the compatibility between both systems and sharing
resources effectively.

Stream visualization

Data stream mining often involves many transformations. Some of the
features of the data may be hidden after transformations. Visualization
could help user asses whether important features of stream are captured
by the mining application. Moreover, stream mining results, such as clus-
tering structure and distribution differences, can be better presented and
interpreted after visualization.

33

Chapter 3

Distribution Change
Detection

3.1 Introduction

As discussed in previous chapters, the underlying distributions in some
data streams can change over time. This is due to the evolving nature of
many real-world applications that run for long periods. A change in the
distribution that generates the data elements in the stream can cause the
stream mining models to go stale and to degrade their accuracy. Hence,
any stream mining technique that ignores distribution changes is not ap-
plicable to dynamic data streams. However, the problem of detecting
distribution changes in dynamic data streams remains difficult and open
due to the unbounded and fast-arriving characteristics of data streams.

Various change-detection techniques have been proposed in literature
[4, 99, 68, 69, 75, 130, 168]. However, most of these techniques are ad-hoc.
They are designed for one specific stream processing technique, such as
stream query processing or association rule mining, and may perform well
only on streams generated by particular streaming applications. These
techniques cannot be directly applied to detect distribution changes in
generic data streams.

35

Only a few distribution change-detection approaches proposed in liter-
ature are independent of a specific stream processing application. These
techniques are discussed in detail in Section 3.2. Some of these solutions
assume that the user already has knowledge of which type of distribution
the sample set follows. Unfortunately, in real world applications this in-
formation is usually hard to obtain, especially for streams with changing
distributions.

There exist a number of statistical tools that can estimate the distri-
bution of given data set, such as kernel density estimation (KDE) [133]
and empirical cumulative distribution function (ECDF) [145]. Using these
statistical tools, distribution changes can be detected by calculating the
discrepancy between the estimated distributions of previous data set and
the newly arrived data set.

It is well-known that by using the ECDF, the estimated distribution
function Fn(x) (where n is the size of the given data set) converges to
the underlying distribution F (x). Indeed, the distribution of Fn(x) is

asymptotical N(F (x), F (x)(1−F (x))
n

). As n increases, the asymptotic vari-
ance decreases and Fn(x) improves as a more accurate estimation of F (x).
However, in the data stream environment, memory is usually limited and,
hence, the number of data elements to determine Fn(x) is also limited.

To address this problem, a new technique called merged-window method
is proposed in Section 3.3. Suppose that there are m new data generated
by the same distribution that arrive in the stream. The goal of the pro-
posed technique is to select n data from the union of the n original data
that are used to represent F (x) and the m new data, so that the variance
of ECDF can be reduced using the newly selected n data. This approach
is investigated using several sets of experiments.

Although it is difficult to achieve high performance for detecting all
kinds of distribution changes in streams with any type of distribution, for
some stream mining applications, only certain key features of the data
stream are of interest. These key features are sufficient for generating
mining results for these applications. The performance of a change de-
tection technique may be greatly improved if, instead of monitoring all
types of distribution changes, it only focuses on changes in these key fea-

36

tures. Based on this insight, a control chart based approach is proposed
in Section 3.4 that detects mean and standard deviation changes in any
dynamic data stream.

3.2 Related work

Distribution estimation and change detection are two problems that often
arise in a number of research areas. The problem of estimating the dis-
tribution of a given data set has long been studied and several statistical
tools have been proposed.

One of the most popular non-parametric distribution estimation tech-
niques is kernel density estimation (KDE) [133]. The kernel density es-
timator has the form f̂h(x) = 1

nh

∑n
i=1 K(x−xi

h
). KDE smooths out the

contribution of each observed data point over a local neighborhood using
a kernel function K(). The value of the density for each point of interest
is estimated as the sum of the weighted values of all data in the sample.
The kernel width h, usually referred as “bandwidth”, is a smoothing para-
meter. Silverman gives a good summary of many commonly used density
estimation techniques [146].

KDE is a powerful tool that provides a descriptive output that assists in
diagnosing the nature of the data set. In practice, however, the quality of a
kernel estimate largely depends on the choice of the bandwidth h. A large
bandwidth may over-simplify the distribution of a given data set, whereas
a small bandwidth could make two data sets generated from the same
distribution look very different. It is hard to determine which value of h
provides the optimal degree of smoothness without some formal criterion.
Furthermore, a given value of h does not guarantee the same degree of
smoothness if used with different kernel functions K().

Aggarwal address the data stream change detection problem by pro-
viding a framework that uses KDE [3]. The kernel function and bandwidth
used in this framework are the Gaussian kernel and Silverman’s rule-of-
thumb for choosing the bandwidth [146]. This classical choice has been
proven to be promising. However, as will be shown in our experiments, this

37

method is inclined to be conservative, i.e., it detects fewer true changes
with fewer false alarms. Therefore, this approach may not be ideal for all
real-world applications.

A set of algorithms known as probabilistic model-building genetic algo-
rithms (PMBGA) [16, 85, 134] are also used for estimating distributions.
In these algorithms, a set of candidate solutions are provided at the be-
ginning. Initially, a random set of samples is selected and evaluated using
an objective function. This objective function evaluates the accuracy of
each candidate solution for that sample. The evaluation continues until
the solution with optimal accuracy is found. These approaches suffer from
one major problem: without any prior knowledge about the sample set,
candidate solutions cannot be properly selected and, hence, the estimation
result can be poor. Furthermore, the learning process is long and may not
be suitable for streams with high arrival rates.

Kifer et al. propose an approach that detects changes by calculating
the distances between the distributions of two data sets collected from
a stream during different time periods (past and present). The distance
is calculated using a set of novel distance functions [78]. A distribution
change is reported if the distance calculated using these functions is be-
yond a pre-set threshold. As will be shown in our experiments, the pro-
posed distance functions are “aggressive” in change detection: they can
detect most true distribution changes, however, the false alarm rate is
usually high.

Muthukrishnan and others [130] develop an algorithm that bases its
detection decision on the classic Sequential Probability Ratio Test (SPRT)
[156]. The probabilities of whether the new data set contain or do not
contain a change point are estimated and the difference between the dis-
tributions is measured by the ratio of these two probabilities.

There are other statistical techniques that do not estimate the distrib-
ution function of the data set, but some of them are ad-hoc and cannot be
applied to all types of data generated by different applications. Further-
more, most of the techniques cannot be directly adapted to the one-pass,
continuous, and fast-arriving stream environment. They either require a
large sample size, or suffer from a long delay from the time a distribution

38

change occurs to the time it is detected.

3.3 Detecting Changes with Tumbling Win-

dows

3.3.1 Motivation

In most change detection techniques, detecting distribution changes is a
process of comparison: the distribution of newly arrived data is compared
with the current distribution of the stream and distribution changes are de-
tected by measuring the discrepancy between the two distributions. Since
the data set continuously generated by a distribution can be unbounded,
naturally, a subset of data for a distribution will be selected for compar-
ison. This gives rise to window models. The data set in the window is a
representative set representing the distribution that this set is generated
from. This window is called the reference window.

Given a data set (substream) that arrives within a certain time period,
there are many ways of selecting and updating (if required) its represen-
tative set. Hence, different reference window selection methods are pro-
posed in literature. There are two popular ways of selecting the reference
window: one is to select the first substream after a new distribution is
detected; the other is to select the last substream of the current distri-
bution. Because the former method fixes the window at the beginning
of the distribution, we call it the fixed window method. For the latter
method, because the window is continuously moving to capture the latest
substream when new data generated by the same distribution arrive, we
call it the moving window method.

Both methods may be problematic in practice. As mentioned in Sec-
tion 3.1, the distribution of a large data set may not be properly captured
by using a small subset that is selected based on only one criteria: data in
the subset arrive within a certain time period. Furthermore, for a stream
with slow distribution changes, it may be a while until the new distri-
bution is stabilized. Hence, the substream captured immediately after

39

the distribution change cannot reflect the real distribution. Therefore,
this substream is not suitable to be the representative set of the current
distribution.

Although the size of the representative set has to be limited due to
memory and efficiency concerns, if, instead of blindly using the first or last
set of data generated by the current distribution, a sample set with the
same size can be chosen “intelligently” by considering the characteristics
of the distribution, then the distribution of this selected set may be much
closer to the true distribution.

Based on this idea, a new reference window selection method called
merged window method is proposed for solving the problem of representing
a (complicated) distribution using a small sample set accurately. Details
of this proposed method are described in Section 3.3.3.

Distribution change detection is then performed by comparing the data
set in the merged window with the newly arrived data. If there is a large
discrepancy, then a distribution change is detected.

3.3.2 Tumbling window design

To detect changes, two time-based windows are maintained on a stream
S: a reference window Wr with time interval ∆r and an observation win-
dow Wt with time interval ∆t. Substream Sr in Wr represents the current
distribution, whereas the substream St in Wt records the set of data ele-
ments that have arrived in the last ∆ time units. The change detection
procedure is triggered every time Wt moves.

The observation window Wt is implemented as a tumbling window.
Every ∆t time units, Wt tumbles so that all the elements in it are deleted
and a new empty window is opened. Wt is implemented as a tumbling
window, rather than the more common sliding window, because of per-
formance considerations. A time-based sliding window moves forward for
each unit of time (when time moves forward), and, all items in the window
with a timestamp less than (tnow −∆) are evicted. Since the change de-
tection process is triggered every time Wt moves, using a sliding window

40

would greatly reduce the efficiency of the change detection process when
the stream has a high arrival rate.

The time intervals ∆r of reference window Wr and ∆t of observation
window Wt are pre-defined values. If the arrival speed of S is relatively
slow and stable, then larger intervals ∆r and ∆t are chosen, indicating
bigger window sizes |Wr| and |Wt|, respectively. In contrast, if S has high
arrival rate, or if the speed of S may change drastically (e.g., “bursts” in
data), then smaller ∆r and ∆t are more proper.

Intuitively, the larger the representative set Sr in Wr, the closer its
distribution is to the real distribution of S, and potentially the higher the
accuracy of distribution change detection. However, memory limitation
forces the size of Sr to be as small as possible. Furthermore, large Sr may
reduce the efficiency of change detection technique because large amount of
data is involved in the distribution discrepancy calculation. As mentioned
above, the time interval ∆t of Wt indicates the frequency with which
the change detection procedure is triggered. Smaller ∆t values would
mean more frequent change detection and, thus, the number of delayed
alarms will be fewer. However, smaller ∆t values reduces the efficiency
of the proposed change detection technique. Therefore, the values of ∆r

and ∆t should be determined according to the accuracy and efficiency
requirements of the relevant application.

3.3.3 Generating reference window

Definition 3.1 Let WA and WB be two windows on stream S contain-
ing substreams SA and SB, respectively. We define the concatenation of
windows WA and WB, denoted as WA + WB, as the set union of the two
substreams within them, i.e., WA + WB = SA ∪ SB. Therefore, ∀〈si, ti〉 in
WA + WB, 〈si, ti〉 ∈ SA or 〈si, ti〉 ∈ SB.

Notice that although by Definition 2.2, the arrival time of each ele-
ment is not considered when calculating the distribution, the timestamps
attached to the elements are not removed when concatenating two win-
dows. Therefore, two elements 〈si, ti〉 and 〈sj, tj〉 with the same values,
i.e., si = sj, are not considered duplicates in WA + WB. This guarantees

41

that the probability of a value that occurs in many elements will be cal-
culated correctly. Thus, |WA + WB| = |WA| + |WB| even when WA and
WB overlap.

The overview of generating the dynamic reference window Wr is illus-
trated in Figure 3.1. Let a distribution change be detected at time t1.
Starting at t1, Wr records a substream Sr that contains the first |Wr| ob-
served elements. Observation window Wt contains substream St with the
newest |Wt| elements (Figure 3.1a). At time t2, Wt is full and ready to
tumble forward. If, at this point, a distribution change is not detected,
Wr and Wt are concatenated/merged so that a larger substream with size
|Wr + Wt|, denoted as Wt + Wr as per Definition 3.1, is available (Figure
3.1b). Then |Wr| elements are selected from the concatenated window
(Wr +Wt) as the latest representative set, and this replaces the substream
in Wr

1 (Figure 3.1c). This merge-and-select process is triggered every time
Wt tumbles. Hence, elements in Wr can be regarded as a “concentration”
of all data from the current distribution that have been observed so far.
In other words, this representative set is a careful selection from the large
vault of observed elements since the beginning of the distribution. Thus,
substream Sr in Wr is highly representative of the current distribution.
This merge-and-select process continues until the next time a distribution
change occurs.

Ideally, what is desired is to find the data set W ′
r in Wr + Wt, such

that its distribution is the closest to the true distribution of S, i.e.,
Discrepancy(P ′

r, P) = min(Discrepancy(∀P i
r , P)), where P i

r is the distri-
bution of any substream in (Wr + Wt) with size |Wr|. However, finding
such a substream can be computationally expensive. For stream appli-
cations that require high efficiency (e.g., fraud detection and stock ticker
monitoring), an approximate algorithm is required.

The goal for the approximation is to find a substream W ′
r with size

1In the rest of this section, Wr and W ′
r are used to denote the reference

windows before and after merge-and-select process, respectively.

42

Wr

tW

Wr tW

Wr tW

Wr’

Wr’

Wr’ Wr tWWr WrAt time t 2 , = , since + =

1t Timestamp last distribution change is detected

|W |r |W |r= ’

t 4

S
t t t1 2

... ...

... ...

t 3

(a)

(b)

(c)

Figure 3.1: Reference window generation

43

|Wr| from Wr + Wt, such that:

Discrepancy(P ′
r, P) ≤ min(Discrepancy(Pt, P), Discrepancy(Pr, P))

(3.1)

To achieve this goal, a two-step sampling approach is proposed. First
the density function of the distribution of data set in (Wr+Wt) is estimated
using the popular kernel density estimation [133]:

f̂h(s) =
1

(|Wr + Wt|)h
|Wr+Wt|∑

i=1

K(
s− si

h
) (3.2)

where K() is the kernel function, h is the smoothing parameter called
bandwidth, and si is a data element in (Wr + Wt). K() is set to be the
standard Gaussian function with mean zero and variance 1. This setting
is usually chosen when no pre-knowledge of the distribution is available
[146]. Thus,

K(s) =
1√
2π

e−
1
2
s2

(3.3)

Hence, equation 3.2 can be rewritten as

f̂h(s) =
1

(|Wr + Wt|)
√

2πh2

|Wr+Wt|∑
i=1

e−(s−si)
2/2h2

(3.4)

The bandwidth h is selected using Silverman’s rule of thumb [146], i.e.,

h = 0.9min(σ̂,Q/1.34)(|Wr + Wt|)−1/5 (3.5)

where σ̂ is the standard deviation of K() and Q is the interquartile range
of K(). This is a classical setting that is used by many real-world appli-
cations.

Although the kernel density estimation approach can generate an esti-
mated density function of the current distribution, as discussed in Section

44

3.2, the accuracy of this estimation heavily dependents on the bandwidth
selection. The distribution of a data set can be over-simplified or over-
complicated with a fixed bandwidth. However, it is difficult to obtain
optimal bandwidth for each distribution in a dynamic stream. Hence,
kernel density estimation is used only as a preliminary guidance for the
sampling strategy.

Figure 3.2 illustrates the idea of the proposed two-step sampling ap-
proach, where x-axis is the value of data s in (Wr + Wt), and y-axis is the
density. The probability of s falling in the range [vi, vj] is the area under
the section of curve in [vi, vj]. In the first step, the whole area under the

density function f̂h(s) is partitioned into k disjoint groups G1, G2, ..., Gk,
where k is a constant (k value selection is discussed shortly). The start and
end value for each partition Gi is denoted as gS

i and gE
i , respectively. Each

partition has the same area, i.e., area(Gi) = 1
k
area(f̂h(s)) (i = 1, .., k).

Figure 3.2: Example of two-step sampling

The second step is sampling from each partition. The same number
of data elements are sampled from each partition. Since the resulting
representative set is stored in Wr, in each partition Gi a total of SGi =
1
k
|Wr| data are selected, where SGi represents the data elements selected

from Gi.

45

To partition (Wr + Wt) into a number of groups Gi (i = 1, ..., k), the
empirical cumulative distribution function of the data set in (Wr + Wt) is
calculated as:

F̂ (x) =
1

|Wr + Wt|
|Wr+Wt|∑

i=1

1(−∞,x](si), si ∈ (Wr + Wt) (3.6)

where 1(−∞,x](si) is the indicator function defined as:

1(−∞,x](si) =

{
1 if si ≤ x;
0 otherwise

(3.7)

The start and end values gS
i and gE

i for each partition Gi (i = 1, ..., k)
is then calculated as follows:

gS
i =

{
min(sj), ∀〈sj, tj〉 ∈ (Wr + Wt) i = 1;

x where F̂ (x) = (i− 1)/k i = 2, ..., k
(3.8)

gE
i =

{
x where F̂ (x) = i/k i = 1, ..., k − 1;
max(sj),∀〈sj, tj〉 ∈ (Wr + Wt) i = k

(3.9)

On the second step, a number of representative data elements are se-
lected from each partition. The number of representative data selected
from partition Gi is determined by ki = round(|Wr|/k). If

∑k
1 ki 6= |Wr|,

then several data elements are added to or removed from random groups
to ensure |W ′

r| = |Wr|.
Within each partition Gi, ki data elements are randomly selected with

the indicator function 1Gi(s) as:

1Gi(s) =

{
1 if gS

i ≤ s ≤ gE
i ;

0 otherwise
(3.10)

The random selection strategy is done to eliminate biases introduced
through the kernel density estimation and partition process. The final

46

substream S ′r in the updated reference window W ′
r is the union of all data

elements selected from all groups, i.e., S ′r = SG1 ∪ SG2 ∪ ... ∪ SGk
.

The number of total partitions k is a predefined constant value for
each distribution. A higher k value implies a better quality of the repre-
sentative set selection. However, note that computation cost and memory
consumption will also increase with higher k. Therefore, for a “smooth”
distribution, i.e., fewer high density areas or less “bumpy” shape, k can be
kept smaller, which means that (Wr + Wt) can be partitioned into fewer
groups.

3.3.4 Change detection

The change detection procedure is triggered every time Wt tumbles. Let Sr

and St be the substreams in Wr and Wt, respectively. Let Pr and Pt be the
distributions that Sr and St represent, respectively. If Discrepancy(Pr, Pt) >
1 − τ , where τ is a predefined threshold referred to as significance level,
then a distribution change is detected. In other words, Sr and St will be
considered as being generated by the same distribution only when Pr and
Pt have a similarity same or higher than the significance level τ .

To measure the discrepancy between Pr and Pt, some statistical test
can be applied. Examples of such tests include kernel density comparison
[3] and various distance function based tests [142, 155, 28, 78].

Therefore, a complete window-based change detection technique in-
cludes a window selection method and a statistical test for calculating
discrepancy. The choice of the window selection method and the choice of
the statistical test are independent. Hence, the merged window method
proposed in Section 3.3.3 can be associated with existing statistical tests
to form new change detection techniques. The performances of some of
these techniques are evaluated in Section 3.3.6.

3.3.5 Experimental framework

To evaluate the performance of different change detection approaches over
streams with various distributions, change durations, and parameter set-

47

tings, an experiment framework is designed and implemented. This frame-
work includes synthetic stream generation, change detection, and experi-
mental results illustration.

Data stream generation

To generate a stream S with distribution changes, three parameters need
to be set: stream size n, number of distribution changes in the stream
mChg, and the significance level τ . The stream size n determines the
number of data elements in the synthetic stream. Although, theoretically,
a data stream is unbounded and sometimes even considered infinite, to
gain control over the testing streams, in the experiment framework the
unbounded stream size is replaced by a sufficiently large number n. The
performance of a change detection technique on unbounded streams can
be estimated by its performance on streams with a large number of data
elements. The other two parameters mChg and τ are used to generate
distribution changes in the stream.

The change duration of each distribution in a stream is the total
number of data elements that are generated by this distribution. Let
S1, S2, ..., SmChg+1 be the substreams that contain data elements generated
from different distribution. For stream S with total of n data elements and
mChg changes, we generate mChg random numbers chg1, chg2, ..., chgmChg

within the range (1, n). These mChg numbers indicate the “location”
where the new distribution change occurs. Therefore, stream S contains
mChg + 1 different distributions with change durations S1[s1, schg1),
S2[schg1 , schg2), ..., SmChg[schgmChg−1

, schgmChg
), SmChg+1[schgmChg

, sn], where
s1, ..., sn are the n data elements in stream S. Because the locations of the
distribution changes are randomly generated, in stream S there could be
distributions that last for a long time and distributions that only contain
a few data elements.

The data in each substream Si[schgi−1
, schgi

) is generated by one dis-
tribution type Pi. The type of changes among P1, P2, ..., PmChg+1 of sub-
streams S1, S2, ..., SmChg+1 can be either location change (i.e., mean values
change) or scale change (i.e., standard deviation change).

48

The location or scale (depends on the change type) of the distribution
for each substream is randomly generated. However, it is possible that the
randomly generated location or scale of the distributions of two consecu-
tive substreams Si and Si+1 are very close, so that Discrepancy(Pi, Pi+1) ≤
1−τ . For this case, there is actually no distribution change between Si and
Si+1. To avoid this case, each time the location or scale of a distribution
Pi is generated, it is compared with its immediate preceding distribution
Pi−1. If the two distributions are too similar according to τ , the location
or scale of Pi is regenerated until Discrepancy(Pi, Pi−1) > 1 − τ . This
guarantees that there are mChg numbers of true changes in S.

The speed of a distribution change can be either abrupt or gradual.
The abrupt changes are called distribution shifts and the gradual changes
are called distribution drifts. Distribution drifts are usually more difficult
to detect and may not be detected as fast as distribution shifts. A change
detection technique may perform differently between detecting shifts and
detecting drifts. To evaluate the performances of change detection tech-
niques over different change speeds, streams with either shifts or drifts are
generated.

For a stream with only distribution shifts, the stream is a direct con-
catenation of all the substreams, i.e., S = S1 + S2 + ... + SmChg+1. To
generate streams with slow and gradual distribution drifts, the parameter
of drift duration driftDur is defined. For substreams Si[schgi−1

, schgi
) and

Si+1[schgi
, schgi+1

), the distribution drift starts from data schgi−bdriftDur/2c
and ends at schgi+bdriftDur/2c. The values of the data in the drifting pe-
riod gradually change from the value of schgi−bdriftDur/2c to the value of
schgi+bdriftDur/2c linearly, i.e., schgi−bdriftDur/2c+j = schgi−bdriftDur/2c
+j × (schgi+bdriftDur/2c − schgi−bdriftDur/2c)/driftDur.

Based on the above discussion, 18 stream types are generated using
the proposed experimental framework. These stream types are described
in Table 3.1

Change detection techniques

For each change detection technique implemented within the experimen-
tal framework, a reference window and an observation window are used

49

Table 3.1: Stream types generated

Stream type Distribution type Chg type Chg speed

Stream1 Normal distribution Location Shifts
Stream2 Uniform distribution Location Shifts
Stream3 Exponential distribution Location Shifts
Stream4 Binomial distribution Location Shifts
Stream5 Half-half mix of two Normals Location Shifts

with different mean
Stream6 Half-half mix of one Normal and Location Shifts

one Uniform with different mean
Stream7 Normal distribution Scale Shifts
Stream8 Uniform distribution Scale Shifts
Stream9 Exponential distribution Scale Shifts
Stream10 Binomial distribution Scale Shifts
Stream11 Half-half mix of two Normals Scale Shifts

with different mean
Stream12 Half-half mix of one Normal and Location Shifts

one Uniform with different mean
Stream13 Normal distribution Location Drifts
Stream14 Exponential distribution Location Drifts
Stream15 Binomial distribution Location Drifts
Stream16 Half-half mix of two Normals Location Drifts

with different mean
Stream17 Uniform distribution Scale Drifts
Stream18 Half-half mix of one Normal and Scale Drifts

one Uniform with different mean

50

to store the representative data set and the newly arrived data. Three
reference window moving methods are implemented and compared:

• Fixed window method.

The reference window is fixed at the beginning of the current distri-
bution. It is the first window after the last distribution change has
been detected. This is the window moving method adopted in [78].

• Moving window method.

The reference window is always immediately before the observation
window, i.e., reference window contains data arrived during (t1, t2]
and observation window contains data arrived in (t2, t], where t is
the current time. This is the window moving method used in kernel
density based approach [3].

• Merged window method.

This is the window moving method that we propose, where the pre-
vious reference window is merged with observation window and a
subset of the merged window is selected to be the current reference
window.

For calculating the discrepancy between two distributions, two statis-
tical tests are implemented using these three window moving method: the
kernel density comparison (KD) [3] and the distance function-based ap-
proach (XI) [78]. The KD test uses kernel density estimation to generate
the densities of these two data sets and calculate the difference between
them. Among different choices of kernel functions, the gaussian kernel
function is recommended by the author; hence, in the experiments, we
apply gaussian function to KD test. In XI test, distribution change is
detected by calculating the distance between the data sets in the two win-
dows. Several distance functions are proposed in [78]. According to their
experiments, the XI distance has the overall best performance. Thus, XI
distance testing is implemented to compare with the KD test.

51

By combining the three window moving methods with the two tests,
there are a total of six change detection techniques implemented and com-
pared in the experimental framework. These six techniques are summa-
rized in Table 3.2. The “Legend” column in the table illustrates the line
colors and styles that are used in the result figures in Section 3.3.6.

Table 3.2: Window-based change detection techniques

Detection Window moving Statistical test Legend
technique method
XI-fixed Fixed window method XI distance testing
KD-fixed Fixed window method Kernel density comparison
XI-moving Moving window method XI distance testing
KD-moving Moving window method Kernel density comparison
XI-merged Merged window method XI distance testing
KD-merged Merged window method Kernel density comparison

Each stream type in Table 3.1 is repeatedly generated and tested using
these six change detection techniques. The total number of streams gener-
ated for each stream type and tested over each change detection techniques
is controlled by parameter numRun.

Results analysis

For each change detection technique applied on each stream type, there are
a total of numRun sets of results generated. These result sets record five
important criteria for evaluating the performance of the change detection
technique:

• Number of true changes detected.

For one stream S generated using one of the 18 stream types in Ta-
ble 3.1, let chg1, chg2, ..., chgmChg be the locations where true changes
occur. Let det1, det2, ...,
detkDet be the locations where distribution changes are reported
by the change detection technique. Note that the number of true

52

changes mChg may not be the same as the number of changes
detected kDet, since there may be true changes missed and false
changes reported.

For streams with distribution shifts, if deti−1 < chgj ≤ deti, then
deti is a true change detection point. Because there is a true change
occurred within (sdeti−1

, sdeti] and this change is detected at location
deti.

For streams with distribution drifts with drifting period [chgj −
bdriftDur/2c, chgj + bdriftDur/2c], any change detection point
that is within this drifting period is considered neither a true change
nor a false change. Since a distribution does change during the drift-
ing period, the changes reported during this period are not false.
However, these changes are not important as the new distribution is
not stabilized and, thus, they are not counted in the results. Hence,
a true change detection point deti for streams with drifts must be
at a location where deti−1 < chgj + bdriftDur/2c ≤ deti.

• Number of false changes detected.

For streams with distribution shifts, if chgj−1 ≤ deti−1 < deti <
chgj, then deti is regarded as a false change detection, because no
true change has occurred within (sdeti−1

, sdeti]. For streams with
distribution drifts, deti is regarded as a false change detection if
chgj−1 + bdriftDur/2c ≤ deti−1 < deti < chgj − bdriftDur/2c.

• Mean duration for detecting true changes.

For streams with distribution shifts, for each true change detection
point deti that detects the distribution change at chgj, the change
detection duration is calculated as Durj = deti − chgj. For streams
with distribution drifts, the change detection duration is calculated
as Durj = deti−(chgj+bdriftDur/2c). A smaller duration indicates
that the distribution change is detected quickly, whereas a larger
duration indicates a long delay in detecting the change.

The durations of false detection and missed true changes are not
recorded. The mean duration is the mean value of the durations for
all true change detections.

53

• Standard deviation of durations for detecting true changes.

The standard deviation of duration is the standard deviation of the
durations for all true change detections.

• Maximal duration for detecting true changes.

The maximal duration is the maximal value of the durations for all
true change detections.

To summarize the numRun result sets for each stream type, density
figures are generated for the five criteria discussed above. In each figure,
the x-axis is the value of each criteria and y-axis is the density. The
densities of the six change detection techniques are compared and analyzed
for each stream type.

3.3.6 Experiments

In this section, a series of experiments are presented using synthetic data
streams generated by the proposed experimental framework to compare
the performance of the three window moving method and two statistical
tests discussed above. These experiments are carried out on a PC with
3GHz Pentium 4 processor and 1GB of RAM, running Windows XP. All
algorithms are implemented in R.

Change detection evaluation

The parameters discussed in the experimental framework are set as follows.
The size n of each generated data stream is set to 100,000 data elements.
The number of true distribution changes mChg in each stream is 100.
Significance level τ is set to 80%. The impact of τ values over the change
detection performance is discussed shortly. The total number of streams
generated and tested for each stream type is numRun = 100.

The arrival speed of each stream is stable, with one tuple per unit time.
This is for the purpose of gaining control over the window’s length, since
a time-based sliding window will be equal to a count-based one when the

54

stream speed is stable. However, note that all the implemented change
detection techniques do not require the stream to have an even speed.
The sizes of both Wr and Wt are set to 100 data elements. The impact of
window size is studied in later section. The number of partitions k used
in the merged window method is set to 10.

To study the performance of the six testing change detection techniques
over streams with different distribution types, the first set of experiments
is conducted using stream types Stream1, ..., Stream6. The experimental
results are presented by five sets of figures, where the x-axis represents
the values of the five criteria discussed in Section 3.3.5 and y-axis is their
density. The legend of these figures is described in Table 3.2. Figures
3.3, 3.4 and 3.5 present the numbers of true changes detected in this set
of streams. The numbers of false changes detected are shown in Figures
3.6, 3.7 and 3.8. Figures 3.9, 3.10 and 3.11 show the mean values of the
durations for each type of stream. Figures 3.12, 3.13 and 3.14 demonstrate
the standard deviations of the durations. Distribution on the maximal
durations are illustrated in Figures 3.15, 3.16 and 3.17. The line colors
and styles in the figures are consistent with the ones shown in Table 3.2.

55

Figure 3.3: Number of true changes detected for Stream1 and Stream2

56

Figure 3.4: Number of true changes detected for Stream3 and Stream4

57

85 90 95 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 6 − Mix of Normal and Uniform

Figure 3.5: Number of true changes detected for Stream5 and Stream6

58

Figure 3.6: Number of false changes detected for Stream1 and Stream2

59

Figure 3.7: Number of false changes detected for Stream3 and Stream4

60

Figure 3.8: Number of false changes detected for Stream5 and Stream6

61

Figure 3.9: Mean duration for detecting true changes in Stream1 and
Stream2

62

Figure 3.10: Mean duration for detecting true changes in Stream3 and
Stream4

63

Figure 3.11: Mean duration for detecting true changes in Stream5 and
Stream6

64

Figure 3.12: Standard deviation of the duration for detecting true changes
in Stream1 and Stream2

65

Figure 3.13: Standard deviation of the duration for detecting true changes
in Stream3 and Stream4

66

Figure 3.14: Standard deviation of the duration for detecting true changes
in Stream5 and Stream6

67

0 1000 2000 3000 4000

0.0
00

0
0.0

00
4

0.0
00

8
0.0

01
2

Stream 1 − Normal Distribution

100 200 300 400 500

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 2 − Uniform Distribution

Figure 3.15: Max duration for detecting true changes in Stream1 and
Stream2

68

500 1000 1500 2000 2500

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

Stream 3 − Exponential Distribution

100 120 140 160 180 200

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 4 − Binomial Distribution

Figure 3.16: Max duration for detecting true changes in Stream3 and
Stream4

69

500 1000 1500 2000 2500 3000

0.0
00

0.0
02

0.0
04

0.0
06

Stream 5 − Mix of Two Normals

500 1000 1500

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Stream 6 − Mix of Normal and Uniform

Figure 3.17: Max duration for detecting true changes in Stream5 and
Stream6

70

The experimental results demonstrate that XI test can detect more
true changes at the cost of a higher false rate (Figures 3.3-3.8). KD test
detects fewer true changes than XI test for all six types of streams. How-
ever, the number of false changes detected is also lower than XI test.

Different window moving methods also affect the performance of the
change detection techniques. The moving window method detects less
true changes and less false changes than the fixed window method. The
proposed merged window method has comparative performance with the
fixed window method in detecting true changes. For Stream1, Stream2
and Stream6, the number of true changes detected using both window
moving methods are very close. Merged window method outperforms
fixed window approach in the test cases of Stream3 and Stream4 (Figure
3.4 and 3.7), whereas fixed window approach performs better for stream
Stream5 (Figure 3.5 and 3.8). However, the proposed merged window
method usually generates less false alarms than the fixed window method.
The exceptions are the test cases in stream Stream3 and Stream4 when
merged window method is applied on XI test (Figure 3.7).

The change duration analysis (Figures 3.9-3.17) shows that KD test
takes longer time to detect changes than XI test. Fixed window method
has the longest overall change detection duration than moving window
method and the proposed merged window approach. Fixed window method
may detect some distribution changes very late, e.g., the change may be
detected after 1000 data since the change occurs. The moving window
method and merged window method can both detect most true changes
quickly, with moving window approach slightly better.

To evaluate the impact of change type over the performance of all
tested change detection techniques, the second set of experiments is con-
ducted using Stream7, ..., Stream12 using the same parameters as the
first set. Same as the previous set of experiments, the results are demon-
strated by five sets of figures, with the x-axis being the values of the five
criteria and y-axis being their density. The number of true changes de-
tected after 100 run for each stream type is shown in Figures 3.18, 3.19
and 3.20. The number of false detections is shown in Figures 3.21, 3.22
and 3.23. Figures 3.24 - 3.32 illustrate the analysis on the durations of
true change detections.

71

Figure 3.18: Number of true changes detected for Stream7 and Stream8

72

50 60 70 80 90 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 9 − Exponential Distribution

Figure 3.19: Number of true changes detected for Stream9 and Stream10

73

70 75 80 85 90 95 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 12 − Mix of Normal and Uniform

Figure 3.20: Number of true changes detected for Stream11 and Stream12

74

Figure 3.21: Number of false changes detected for Stream7 and Stream8

75

Figure 3.22: Number of false changes detected for Stream9 and Stream10

76

Figure 3.23: Number of false changes detected for Stream11 and
Stream12

77

Figure 3.24: Mean duration for detecting true changes in Stream7 and
Stream8

78

Figure 3.25: Mean duration for detecting true changes in Stream9 and
Stream10

79

Figure 3.26: Mean duration for detecting true changes in Stream11 and
Stream12

80

50 100 150 200 250 300

0.0
0

0.0
5

0.1
0

0.1
5

Stream 8 − Uniform Distribution

Figure 3.27: Standard deviation of the duration for detecting true changes
in Stream7 and Stream8

81

Figure 3.28: Standard deviation of the duration for detecting true changes
in Stream9 and Stream10

82

100 200 300 400 500

0.0
00

0.0
05

0.0
10

0.0
15

Stream 12 − Mix of Normal and Uniform

Figure 3.29: Standard deviation of the duration for detecting true changes
in Stream11 and Stream12

83

0 1000 2000 3000 4000

0.0
00

0
0.0

00
4

0.0
00

8
0.0

01
2

Stream 7 − Normal Distribution

200 400 600 800 1000

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 8 − Uniform Distribution

Figure 3.30: Max duration for detecting true changes in Stream7 and
Stream8

84

0 1000 2000 3000 4000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4
1e

−0
3

Stream 9 − Exponential Distribution

0 1000 2000 3000 4000

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

Stream 10 − Binomial Distribution

Figure 3.31: Max duration for detecting true changes in Stream9 and
Stream10

85

200 400 600 800 1000 1200 1400

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 11 − Mix of Two Normals

0 1000 2000 3000 4000 5000

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

Stream 12 − Mix of Normal and Uniform

Figure 3.32: Max duration for detecting true changes in Stream11 and
Stream12

86

The results of the second set of experiments do not show significant
difference than the results from the first set of experiments. The observa-
tions and conclusions made based on the first set of results are still valid.
The second set of results demonstrate that the performance of two statisti-
cal tests and three window moving methods tested in the experiments are
not greatly impacted by the change type of the stream. This is because all
the methods in the experiments are generic approaches that do not make
any assumption on the type of distribution or the type of changes in the
underlying stream.

From the results of change detection in Stream1, ..., Stream12, it can
be noticed that XI test is more “aggressive” than KD test. Its perfor-
mance has higher recall with shorter response time to the changes but
also has lower precision. KD test is more “conservative” that generates
less errors by sacrificing the number of true detections and takes longer
time to confirm a distribution change truly occurs.

One possible explanation of the performance difference between KD
and XI tests is that, KD test “smoothes” the distribution of a data set by
replacing each data element with the kernel. Therefore, for two data sets
generated by different but similar distributions, the difference in density
estimation may not be significant after smoothing, especially if the two
distributions are of the same type, e.g., both are normal distributions.
By reducing the bandwidth, KD may detect more true changes but the
number of false changes may also increase. In contrast, even for two data
sets generated by the same distribution, it is possible that the XI distance
between the two sets is not small. Hence, XI test is very sensitive to the
changes in data sets. However, if we compare the rate of true detections
over the total number of detections that represent the accuracy of the
change detection technique, XI test may not be superior than KD test. XI
test simply reports more changes and, hence, even with the same accuracy
as KD test, XI test will detect more true changes.

The proposed merged window approach outperforms the moving win-
dow approach with more true changes detected, less number of false detec-
tions and comparable true change detection durations. The performance
of merged window method is slightly worse than fixed window method
in terms of true detections. However, it also generates fewer false alarms

87

than fixed window method. Fixed window method is slower in detecting
true changes and in some cases may take very long time to report a distri-
bution change. Hence, it may not be suitable for some applications that
fast responses to distribution changes are required.

Fixed window method chooses the first data set of the distribution
to be its representative set. However, as discussed in Section 3.3.1, this
representative set may not truly represent the entire distribution. It is
also possible that some data in the representative set may belong to the
previous distribution. This could be the reason why fixed window method
generate the most number of false alarms among all three window moving
methods. Although it also produces the most number of true detections,
the accuracy, i.e., the total number of true detections over the total number
of changes detected, may be similar or even worse than the other two
windows moving methods.

Moving reference window method compares two data sets that arrive
subsequently, and, hence, the distribution changes must be abrupt and
significant to be detected. Therefore, many true changes are missed when
using moving reference window method. However, such significant and
abrupt can be detected without long delay.

The proposed merged window approach is balanced among the three
criteria: the number of true change detections, the accuracy, and the
change detection durations. It may not outperform the other two window
moving methods in one of the three criteria, but the overall performance
is the best among the three window moving methods.

Detecting distribution drifts

The streams Stream1, ..., Stream12 tested in previous experiments only
contain abrupt changes. As mentioned previously, distribution drifts are
usually more difficult to detect because the changes are not significant.
To study the performance difference between detecting distribution shifts
versus drifts, we conduct experiments using stream types Stream13, ...,
Stream18 with the same parameter settings. The drift duration driftDur
is set to four times of the windows size, i.e., 400 data elements. The
experimental results are demonstrated in Figures 3.33 – 3.47.

88

30 40 50 60 70 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 13 − Normal Distribution with Drift

40 50 60 70 80 90

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 14 − Exponential Distribution with Drift

Figure 3.33: Number of true changes detected for Stream13 and Stream14

89

85 90 95

0.0
0

0.0
5

0.1
0

0.1
5

Stream 15 − Binomial Distribution with Drift

30 40 50 60 70 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 16 − Mix of Two Normals with Drift

Figure 3.34: Number of true changes detected for Stream15 and Stream16

90

30 40 50 60 70 80 90

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drift

50 60 70 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 18 − Mix of Normal and Uniform with Drift

Figure 3.35: Number of true changes detected for Stream17 and Stream18

91

0 20 40 60

0.0
0

0.0
5

0.1
0

0.1
5

Stream 13 − Normal Distribution with Drift

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 14 − Exponential Distribution with Drift

Figure 3.36: Number of false changes detected for Stream13 and
Stream14

92

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 15 − Binomial Distribution with Drift

0 20 40 60 80

0.0
0

0.0
5

0.1
0

0.1
5

Stream 16 − Mix of Two Normals with Drift

Figure 3.37: Number of false changes detected for Stream15 and
Stream16

93

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Stream 17 − Uniform Distribution with Drift

10 20 30 40 50 60 70

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 18 − Mix of Normal and Uniform with Drift

Figure 3.38: Number of false changes detected for Stream17 and
Stream18

94

200 300 400 500

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

Stream 13 − Normal Distribution with Drift

200 250 300 350 400 450 500

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

Stream 14 − Exponential Distribution with Drift

Figure 3.39: Mean duration for detecting true changes in Stream13 and
Stream14

95

200 250 300 350

0.0
00

0.0
10

0.0
20

0.0
30

Stream 15 − Binomial Distribution with Drift

100 200 300 400 500

0.0
00

0.0
04

0.0
08

0.0
12

Stream 16 − Mix of Two Normals with Drift

Figure 3.40: Mean duration for detecting true changes in Stream15 and
Stream16

96

100 150 200 250 300 350

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 17 − Uniform Distribution with Drift

200 250 300 350 400 450

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Stream 18 − Mix of Normal and Uniform with Drift

Figure 3.41: Mean duration for detecting true changes in Stream17 and
Stream18

97

200 400 600 800 1000

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

0.0
06

Stream 13 − Normal Distribution with Drift

100 200 300 400 500 600 700 800

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

Stream 14 − Exponential Distribution with Drift

Figure 3.42: Standard deviation of the duration for detecting true changes
in Stream13 and Stream14

98

100 200 300 400 500 600 700

0.0
0

0.0
2

0.0
4

0.0
6

Stream 15 − Binomial Distribution with Drift

200 400 600 800 1000

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

Stream 16 − Mix of Two Normals with Drift

Figure 3.43: Standard deviation of the duration for detecting true changes
in Stream15 and Stream16

99

100 200 300 400 500 600 700

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

Stream 17 − Uniform Distribution with Drift

200 400 600 800

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

Stream 18 − Mix of Normal and Uniform with Drift

Figure 3.44: Standard deviation of the duration for detecting true changes
in Stream17 and Stream18

100

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4
1e

−0
3

Stream 13 − Normal Distribution with Drift

1000 2000 3000 4000 5000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

Stream 14 − Exponential Distribution with Drift

Figure 3.45: Max duration for detecting true changes in Stream13 and
Stream14

101

1000 2000 3000 4000

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

Stream 15 − Binomial Distribution with Drift

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4

Stream 16 − Mix of Two Normals with Drift

Figure 3.46: Max duration for detecting true changes in Stream15 and
Stream16

102

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

Stream 17 − Uniform Distribution with Drift

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4

Stream 18 − Mix of Normal and Uniform with Drift

Figure 3.47: Max duration for detecting true changes in Stream17 and
Stream18

103

The following observations can be made from the experimental results.

• The performances of KD test and XI test are consistent with the
previous experiments. KD test still detects less true changes and less
false changes than XI test. The durations of true change detections
of KD test are still slightly better than XI test with the same window
moving method.

• Compared to the stream types with the same distribution type and
the same change type but different change speed (e.g., Stream1 and
Stream13), XI test seems to detect slightly more number of true
changes but also report more false changes for distribution drifts.
This indicates that the XI test tends to be more aggressive for
streams with distribution drifts. In contrast, KD test becomes more
conservative in reporting true changes and false changes for distrib-
ution drifts.

The explanation to this observation is similar to the one made in
previous sets of experiments. That is, the distance function based
test is more sensitive to changes than kernel estimation. Therefore,
if the observation window contains some data that arrive within
drifting period and the rest of the data from the stabilized new
distribution, XI test is more likely to report a distribution change.
If the data generated by the stabilized new distribution is dominant
in the observation window, KD test may not notice the change.

• The window moving methods have more significant impact on the
overall change detection performance than pervious experiments on
distribution shifts. This is especially noticeable when using KD test.
Moving window method generates a lot fewer true change detections
than fixed window method and merged window method. Merged
window method generates fewer true changes than fixed window
method on Stream13, Stream14 and Stream16. For Stream15,
Stream17, Stream18, the performances of merged window method
and fixed window method on number of true changes are compara-
tive.

104

Since moving window method continuously moves the reference win-
dow to the end of the current distribution, when a distribution drift
occur, both reference window and observation window contains data
set in the drifting period. The discrepancy between Sr and St is usu-
ally small, and, thus, many distribution drifts cannot be detected
when using moving window method.

Fixed window method sets the reference window at the beginning
of current distribution, and, hence, Sr usually does not contain any
data arriving within the drifting period. Therefore, the discrepancy
between Sr and St is the most significant among three window mov-
ing methods. However, note that although fixed window method
performs best on detecting true changes, it also returns the most
number of false changes.

• All six change detection techniques take a lot longer to detect drifts
than detecting shifts. This observation confirms our conclusions that
distribution drifts usually cannot be detected as fast as distribution
shifts because the change is gradual.

• Fixed window method takes the longest time among three window
moving methods to detect shifts. However, in detecting drifts it
is usually the fastest. Moving window method performs worst on
true change detection durations. The reason is the same as dis-
cussed above. Discrepancy(Sr, St) is the smallest for moving win-
dow method and the largest for fixed window method. Therefore,
fixed window method can detect changes fast, whereas moving win-
dow method may take very long time until the discrepancy is signif-
icant.

Effect of significance level τ

Significance level τ defines the concept of “distribution change”. Two
distributions PA and PB are considered same only when their similar-
ity is greater or equal to τ . Hence, a larger τ value indicates that a
small discrepancy between the distributions Pr and Pt of Sr and St may
be considered as a distribution change. In contrast, a change detection

105

technique with smaller τ setting only report a distribution change when
Discrepancy(Pr, Pt) is large.

To study the effect of τ , a set of experiments is conducted using the
proposed experimental framework with τ value set at 70%, 80%, 90% and
95%. The rest of parameter settings are the same as previous experi-
ments. According to the experimental results, the impact of τ is con-
sistent for different change detection techniques on various stream types.
Hence, we only demonstrate the results for XI-fixed, KD-moving and XI-
merged change detection techniques described in Table 3.2 on Stream1
and Stream17 described in Table 3.1. These empirical results are shown
in Figures 3.48 – 3.62.

106

80 85 90 95

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

65 70 75 80 85 90 95

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.48: Number of true changes detected for Stream1 and Stream17
using XI-fixed with different τ values

107

0 200 400 600 800

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

0 100 200 300 400 500 600 700

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.49: Number of false changes detected for Stream1 and Stream17
using XI-fixed with different τ values

108

60 80 100 120 140 160

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

150 200 250 300 350

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.50: Mean duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different τ values

109

50 100 150 200 250

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

100 200 300 400 500

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.51: Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-fixed with different τ values

110

100 120 140 160 180 200 220 240

0.0
0.1

0.2
0.3

0.4

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

300 320 340 360

0.0
0.1

0.2
0.3

0.4

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.52: Max duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different τ values

111

40 50 60 70 80 90 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

20 40 60 80 100

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.53: Number of true changes detected for Stream1 and Stream17
using KD-moving with different τ values

112

0 200 400 600 800

0.0
0.1

0.2
0.3

0.4

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

0 100 200 300 400 500

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.54: Number of false changes detected for Stream1 and Stream17
using KD-moving with different τ values

113

60 80 100 120 140 160

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

100 150 200 250 300 350 400

0.0
0

0.0
1

0.0
2

0.0
3

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.55: Mean duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different τ values

114

50 100 150 200 250

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

200 400 600 800 1000

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.56: Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using KD-moving with different τ values

115

500 1000 1500

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

0 1000 2000 3000 4000

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.57: Max duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different τ values

116

65 70 75 80 85 90 95 100

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

50 60 70 80 90 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.58: Number of true changes detected for Stream1 and Stream17
using XI-merged with different τ values

117

0 200 400 600 800

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

0 100 200 300 400 500 600 700

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.59: Number of false changes detected for Stream1 and Stream17
using XI-merged with different τ values

118

60 80 100 120 140

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

150 200 250 300 350 400 450

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.60: Mean duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different τ values

119

50 100 150 200 250

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

200 400 600 800

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.61: Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-merged with different τ values

120

100 150 200 250 300 350 400 450

0.0
0.1

0.2
0.3

0.4

Stream 1 − Normal Distribution

tau=95%
tau=90%
tau=80%
tau=70%

300 350 400 450 500 550 600

0.0
0.1

0.2
0.3

0.4

Stream 17 − Uniform Distribution with Drift

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.62: Max duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different τ values

121

These results show that larger τ values lead to a larger number of
true detections. However, the number of false changes that are detected
increases dramatically when τ value increases. These observations confirm
the previous discussion. Furthermore, the true change detection durations
with larger τ settings are significantly shorter than the durations with
smaller τ values. This is because a larger τ value indicates more significant
distribution changes, which are easier to detect.

Effect of window size

As discussed in Section 3.3.2, the sizes of windows Wr and Wt affect both
the accuracy and efficiency of the change detection technique. To study the
effect of window size, we conduct a set of experiments using the proposed
experimental framework with sizes of Wr and Wt set as 50, 100, 200, and
400 data elements. The rest of the parameter settings are the same as
previous experiments. Similar to the experiments on different τ values,
only the results for XI-fixed, KD-moving and XI-merged change detection
techniques on Stream1 and Stream17 are demonstrated in Figures 3.63
– 3.77.

According to these results, a very small windows size will result in
a large number of false detections, although the number of true changes
detected is also larger. This may be because the representative set is too
small to represent the true distribution that generates it. Therefore, the
accuracy of the change detection technique is greatly impacted. However,
true distribution changes can be detected quickly with a small windows
size, because the discrepancy between Pr and Pt is calculated frequently.
We also note that the experiments with same numRun take noticeable
longer time when using a small windows size. Hence, the efficiency of
the change detection techniques may be affected with small windows size
setting.

122

60 70 80 90 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

70 80 90 100 110 120

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.63: Number of true changes detected for Stream1 and Stream17
using XI-fixed with different windows size

123

0 200 400 600 800

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

0 100 200 300 400 500 600 700

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.64: Number of false changes detected for Stream1 and Stream17
using XI-fixed with different windows size

124

50 100 150 200 250 300 350

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

150 200 250 300 350 400

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.65: Mean duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different windows size

125

0 100 200 300 400

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

100 150 200 250 300 350 400 450

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.66: Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-fixed with different windows size

126

0 500 1000 1500 2000 2500 3000

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

0 500 1000 1500 2000 2500 3000

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.67: Max duration for detecting true changes in Stream1 and
Stream17 using XI-fixed with different windows size

127

40 60 80 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

25 30 35 40 45 50 55 60

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.68: Number of true changes detected for Stream1 and Stream17
using KD-moving with different windows size

128

0 20 40 60 80 100 120 140

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

5 10 15 20 25 30 35

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.69: Number of false changes detected for Stream1 and Stream17
using KD-moving with different windows size

129

100 150 200 250 300

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

100 200 300 400 500

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.70: Mean duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different windows size

130

100 200 300 400 500

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

200 400 600 800

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.71: Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using KD-moving with different windows size

131

500 1000 1500 2000 2500 3000

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

500 1000 1500 2000 2500 3000 3500

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.72: Max duration for detecting true changes in Stream1 and
Stream17 using KD-moving with different windows size

132

60 70 80 90 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

70 80 90 100 110 120

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.73: Number of true changes detected for Stream1 and Stream17
using XI-merged with different windows size

133

0 200 400 600 800 1000

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

0 100 200 300 400 500 600 700

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.74: Number of false changes detected for Stream1 and Stream17
using XI-merged with different windows size

134

50 100 150 200 250 300 350

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

150 200 250 300 350 400

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.75: Mean duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different windows size

135

50 100 150 200 250 300

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

100 200 300 400 500 600 700

0.0
0

0.0
1

0.0
2

0.0
3

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.76: Standard deviation of the duration for detecting true changes
in Stream1 and Stream17 using XI-merged with different windows size

136

500 1000 1500 2000

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

Stream 1 − Normal Distribution

winSize=400
winSize=200
winSize=100
winSize=50

1000 2000 3000 4000 5000

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

Stream 17 − Uniform Distribution with Drift

winSize=400
winSize=200
winSize=100
winSize=50

Figure 3.77: Max duration for detecting true changes in Stream1 and
Stream17 using XI-merged with different windows size

137

3.3.7 Mining streams with periodical changes

For dynamic data streams, an interesting question is whether the distri-
bution changes are entirely random and unpredictable, or whether it is
possible for the distribution changes to follow certain patterns. If some
regularity can be detected, this can be exploited in mining. An analysis of
different applications and data streams reveals that there is a large class
of data streams that exhibit periodic distribution changes; that is, a dis-
tribution that has occurred in the past generally reappears after a certain
time period. Consider, for example, a scientific stream that records sea
surface temperature. There is periodicity to the distribution of collected
data that may not be visible within one year, but is apparent over multiple
years.

For two substreams in a data stream generated by the same (or highly
similar) distributions, mining results should be the same (or highly simi-
lar). Examples of such mining results include a list of all frequent
items/itemsets for frequent pattern discovery, and set of clusters/classes
for clustering and classifications. Therefore, if a historical distribution
reoccurs and if its mining results have been archived previously, then it
is possible to skip the re-mining process and directly output the archived
mining results as the new results. This match-and-reuse strategy is faster
for periodically changing streams compared with the traditional detect-
and-mine stream mining approaches, since pattern matching is usually
considerably less time consuming than mining.

Based on this insight, we propose a approach called DMM (Detect,
Match, and Mine) for mining data streams with periodically changing
distributions. Change detection procedure runs throughout the lifetime of
a stream to monitor its distribution changes. Once a new distribution is
detected, this new distribution is matched against those that have occurred
and archived earlier. If a match is found between the new distribution
and an archived one, DMM skips the re-mining process and outputs the
mining results of the archived distribution. Consequently, processing time
is greatly reduced. If pattern matching fails (i.e., no similar distribution
has been seen previously), then the mining process is activated to generate
new results for this new distribution.

138

Note that in DMM the procedures of change detection, pattern match-
ing, and data mining are independent of each other. This provides con-
siderable flexibility as it is possible to plug in any technique for each
procedure at any point if the application requirements are altered.

The key problems that need to be resolved in the proposed DMM
approach are pattern representation, pattern selection, and matching. So-
lutions for each of these problems are discussed in the following sections.

Pattern representation

During the lifespan of a dynamic stream that has continued for a long
time, there may be a large number of different distributions occurred. This
number will keep increasing over time. Therefore, due to memory concern,
each archived distribution (pattern) needs to be stored as succinctly as
possible. One of the most popular approach in data stream mining is to
represent the current distribution using a representative data set.

The performance of DMM approach greatly depends on the method of
selecting representative set. If the discrepancy between the true distribu-
tion and the distribution of its representative set is large, the accuracy of
pattern matching results may be low. When two distinct distributions are
mistakenly considered similar, archived mining results that are not similar
to the real mining results of the new distribution will be output. If two
highly similar distributions are not recognized as a match because of the
poorly selected representative sets, time will be wasted on the unnecessary
re-mining.

The DMM approach adopts the merged window method proposed in
Section 3.3.3 for choosing representative set of each newly detected distrib-
ution. The representative set is continuously updated until a distribution
change occur. The performance of merged window method have been
extensively studied in Section 3.3.6.

139

Choosing important distributions

For a dynamic data stream, there could be a large number of different
distributions that are observed during the lifespan of the stream. Due to
limited memory, it is infeasible to record all of these distributions along
with their mining results. Furthermore, maintaining a large number of
distributions could increase the time it takes to match a newly detected
distribution. Hence, only important distributions, i.e., the ones that have
a high probability to be observed again in the future, should be archived.
We use P = {P1, ..., Pm} to denote the set of important distributions.

The importance of distributions is determined by the following heuris-
tics:

1. Distributions that have occurred in the stream for more times are
more important than the ones that have been observed fewer times.
For each archived distribution Pi, a counter occi is used to indicate
the number of times Pi has occurred. Hence, for two distributions
Pi and Pj, if occi > occj, then Pi is more important than Pj.

2. The longer a distribution lasts in the stream’s lifespan, the more
important it is. If a distribution Pi is detected at t1 and the subse-
quent change is detected at t2, Pi’s lifespan is Ti = t2− t1. Hence, if
Ti > Tj, then Pi is more important than Pj.

3. The more distinctive a distribution is, the higher is the chance that
it will be archived. A distribution that is similar to an existing
distribution in P (but not enough to be recognized as a match)
is regarded as less important. When searching for a match of a
new distribution Pi, the smallest discrepancy mini(Discrepancy)
between Pi and any of the archived distributions in P is recorded.
Hence, for two distributions Pi and Pj, if mini(Discrepancy) >
minj(Discrepancy), then Pi is more important than Pj.

4. A distribution Pi that has mining results Ri with higher accuracy is
more important than a distribution with less accurate mining results.

140

Let Acc(Ri) be the accuracy of the mining results for Pi; hence, if
Acc(Ri) > Acc(Rj), then Pi is more important than Pj

2.

When a distribution change is detected, whether or not a match is
found, the important distribution set P is updated. The distribution Pr

that was in effect when a change was detected is evaluated to determine
whether it should be included in P . If Pr had been matched with pattern
Pi ∈ P , then Pr replaces Pi in P if its lifespan is longer than Pi’s lifespan
(rule 2). If Pr has no matching distribution in P and P has not reached
its maximum memory allowance, Pr is added to P . Otherwise, the dis-
tribution that is the least important is pruned from P according to rules
1-4.

Distribution matching

When a new distribution is detected at time t1, a set of data elements is
chosen as the sample data set representing this new distribution. For the
applications that require high efficiency, it is possible to use the substream
in observation window Wt from timestamp t1 to t1+∆t, so that the match-
ing can start as soon as possible. However, as discussed in Section 3.3.1,
the first set of data that arrive at the beginning of a new distribution
may not capture the true distribution, especially when the distribution
is complicated or the distribution change is slow. Therefore, if the accu-
racy is more important than efficiency, the new distribution is observed
for a longer time (i.e., wait until Wt tumbles several times) and the rep-
resentative set is refined by using the merged window method discussed
previously.

This new distribution is then matched with a set of important historical
distributions that have been preserved. Let SA and SB be two substreams

2The mining results of a supervised learning task is used as the ground truth.
Acc(Ri) refers to the accuracy of Ri compared with the ground truth. If Ri is
later reused for another distribution Pk that matches Pi, the accuracy of Ri over
Pk is still calculated w.r.t to the ground truth. Therefore, the error introduced
by the adopted mining technique and the error caused by the match are both
taken into account.

141

containing the representative sets generated by the new distribution PA

and a historical distribution PB, respectively.

Definition 3.2 Given SA, SB, PA and PB as defined above, if
Discrepancy(PA, PB) ≤ 1−τ , where τ is the predefined significance level,
then the distributions of substreams SA and SB match each other, denoted
as PA ­δ PB.

The discrepancy between PA and PB is calculated using a chosen sta-
tistical test. The performance of two statistical tests, kernel density test
and XI-distance test, were demonstrated in Section 3.3.6. The choice of
the test depends on the application requirement.

Let RA and RB be the mining results obtained during the period that
distributions PA and PB are in effect, respectively. If a match is found, i.e.,
PA ­δ PB, then the preserved mining results RB for the stream is output
as the new mining result RA, i.e., RA = RB. The justification is that for
two highly similar distributions, their mining results should present high
similarity as well. This way, the data mining time is dramatically reduced
without reducing the quality of mining results.

The significance level τ is important: larger τ implies a higher accu-
racy of the two matching distributions, while a smaller τ increases the
possibility of a new distribution to match a pattern in the preserved set.
A smaller τ leads to higher efficiency, since the time for matching distrib-
utions and reusing mining results are far less than the time for re-mining
the new distribution. Therefore, the question of finding a balance between
accuracy and efficiency for setting τ value arises. The solution depends
on the nature of the application and the nature of streams generated by
it. The impact of τ is empirically studied in Section 3.3.6.

142

3.4 Detecting mean and standard deviation

changes

3.4.1 Motivation

As discussed in Section 3.1, it is difficult to achieve a high accuracy in es-
timating the distribution using a small data set generated by it. However,
some key features of this distribution, such as mean, range, variance, and
cardinality (i.e., the number of distinct values) can be obtained with high
accuracy using a small data set. For many stream mining applications,
these key features are the sole interest and are sufficient for generating
mining results. Examples of such applications include fraud detection,
temperature monitoring, production quality control, and trend analysis.
Therefore,a control chart [129] based approach is proposed that detects
mean and standard deviation changes in any dynamic data stream.

There are two types of control charts that are widely used in real-
world applications: Shewhart control charts (SCC) [144] and Exponen-
tially Weighted Moving Average (EWMA) control charts [9]. In SCC,
the decision regarding the in/out-of-control state of a data point depends
solely on that data and, hence, no historical data are used in its estima-
tions. In contrast, EWMA’s decision depends on the EWMA statistic,
which is an exponentially weighted average of all prior data points and,
thus, its decisions are affected by historical data. EWMA can be sensi-
tive to small but gradual distribution drifts and are suitable for stream-
ing applications such as temperature monitoring and financial marketing,
whereas SCC is ideal for streaming applications, such as fraud detection
and machine monitoring, that expect sudden distribution shifts. Since
many data stream mining applications use past data and previous mining
results as a guidance to mine the newly arrived data, the EWMA control
charts are used in the proposed technique so that historical data are taken
into consideration when detecting distribution changes.

Unlike many of the statistical techniques for change detection that
require a large number of samples to get promising results, control chart
method can achieve high accuracy with only a small sample set. This is

143

an important feature for detecting changes in the streaming environment,
since stream processing techniques are single pass and memory is always
limited. As the experiments demonstrate, the proposed approach has high
efficiency so that fast distribution changes in the stream can be captured.

3.4.2 Introduction to control charts

Statistical control charts are widely used for controlling and monitoring
manufacturing processes. They are powerful tools that can detect distrib-
ution changes in sensor readings. Control chart techniques are not capable
of providing the underlying distribution function for the given data sets.
Instead, they only focus on monitoring the important characteristics of
the data set (i.e., the ones in which the user is most interested). In many
practical cases, the mean and standard deviation of the observed data
are monitored by the charts. Although control charts cannot identify the
distribution function of the data set, they are effective, efficient, and their
interpretations can assist in the identification of the nature of the data.

A control chart is a graphical display of (usually) one feature that
has been measured or computed from a set of sample observations. A
control chart contains three values: the mean value of the reading that is
obtained by learning a small sample set at the beginning of the process
(center line in Figure 3.78), the Upper Control Limit (UCL), and the
Lower Control Limit (LCL) (the two horizontal lines above and below
the mean in Figure 3.78). The control limits are probability limits that
indicate the probability that a data point falls outside these values. If
a point falls outside the limits, then a possible “out-of-control” state is
reported; otherwise, the process is said to be “in-control”. Figure 3.78 is
an example of a control chart with one out-of-control point.

The major issue in control chart design is to determine the UCL and
LCL, and the time intervals used to update them. Many control chart
design algorithms have been developed [167, 67, 164, 169]. However, none
of them are specifically designed for dynamic data stream change detec-
tion. The user has to manually readjust UCL and LCL at each point a
distribution change is detected.

144

Measurement CL LCLUCL

2

4

6

8

10

12

14

16

18

20

22

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

Figure 3.78: Example of a control chart

3.4.3 Control chart-based approach

In this section, a EWMA control chart based approach is proposed for
detecting mean and standard deviation changes in dynamic data streams.
This approach uses a tumbling window W to store the most up-to-date
substream from which the test samples are obtained. Control chart Cµ

monitors the mean changes and control chart Cσ monitors the standard
deviation changes of the stream. Every time W moves, new samples are
processed and then fed into Cµ and Cσ. If the new samples fall outside
LCL and UCL of one of the control charts, then a distribution change is
reported. Charts Cµ and Cσ will be automatically adjusted to reflect the
new distribution.

Stopping rule design

Let Sr be a substream generated by the current distribution of S, and
substream So contain newly arrived data. A tumbling window W with
tumbling interval ∆ is introduced for capturing the set of new elements

145

that have arrived in S in the last ∆ time units (i.e., substream So). Every
time the window tumbles (i.e., every ∆ time units), change detection
process is triggered. Note that the commonly used sliding window model
is not adopted, because sliding window causes frequent update of the
statistics every time a new element arrives, and, thus, is not suitable for
streams with high speed.

Let t′ be the timestamp of the last distribution change detection in
S, and t be the current timestamp. Let Sr = S(t′, t − ∆] be the set of
data elements generated by the current distribution. So = S(t − ∆, t] is
the set of new elements that have arrived in S in the last ∆ time unit.
Distribution change detection can be formulated as a hypothesis testing
problem. For substreams Sr and So with probability distributions Pr and
Po, respectively, assuming that data sets in Sr and So are independent
and identically-distributed (i.i.d), the null hypothesis H0 asserts Pr and
Po are identical. In other words, H0 is in favor if the data sets in Sr and
So belong to the same distribution. The problem of distribution change
detection for dynamic data streams is to find a proper test so that H0 will
be refuted if it is no longer true. The “alarm time” when H0 is refuted is
denoted as ta. At time t = ta, the alternative hypothesis H1 that asserts
Pr is different than Po is in favor.

For the proposed control-chart based approach, the stopping rule [14]
is defined as the test to refute H0:

StR = inf{(|µ(So)− µ(Sr)| > ε1) ∨ (|σ(So)− σ(Sr)| > ε2)} (3.11)

where inf indicates infimum (i.e., greatest lower bound), and ε1 and ε2

are user defined thresholds. Every time the stopping rule is triggered, a
distribution change is reported.

Thresholds ε1 and ε2 indicate the sensitivity of the stopping rule to
changes. Smaller thresholds make the change detection technique more
sensitive to minor changes, but may introduce a higher false-alarm rate.
Whereas a change detection technique with higher thresholds can only
detect significant changes. In control chart based change detection tech-
niques, ε1 and ε2 are represented by the control limits UCL and LCL.

146

Significance level τ is the minimum probability of refuting H0 when
stopping rule StR is satisfied, i.e.,

Pr(H0|StR) < 1− τ (3.12)

Building control chart Cµ for detecting mean changes

Let µ(St) denote the mean value of S from the last distribution change
ta to current time t. Let UCLµ and LCLµ denote UCL and LCL of
control chart Cµ, respectively. The setting of µ(St) for dynamic streams
is difficult, since S continuously grows over time, causing the mean value
of the stream to continuously change. Furthermore, since historical data
(i.e., the data that fall out of W) are lost, µ(St) is, in fact, unknown. Thus,
a weighted moving mean formula is used to estimate the mean value of S
up to time t:

µ(St) = ω ∗ µ(S(t′, t]) + (1− ω) ∗ µ(S ′t) (3.13)

S(t′, t] is the substream that contains data that have arrived within
range (t′, t], where t′ < t. µ(S ′t) is the weighted moving mean calculated
at time t′, and 0 < ω ≤ 1 is the weight that defines the importance of
historical data. The higher the ω value, the more important is the recent
data. In the extreme case when ω = 1, µ(St) is determined solely by the
small sample set received between t′ and t. The value of ω for a particular
application is determined by the significance value τ . Tables provided by
Lucas and Saccucci [91] are used to select appropriate ω value.

The control limit formulas for EWMA control chart on detecting mean
changes are designed as:

UCLt
µ = µ(St) + κ ∗ σ(St)

LCLt
µ = µ(St)− κ ∗ σ(St)

(3.14)

where κ is the distance of the control limits from the center line, expressed
in terms of limits. The value of κ is determined by the weight ω and

147

significance level τ . Tables in [91] can be used to select the value of κ for
a particular application.

Building control chart Cσ for detecting standard deviation changes

The control chart designed in the previous section monitor the mean value
changes in data streams. However, for some applications the standard de-
viation, or the “scale”, of the data may change while its mean remains
the same. One typical example is mechanic parts manufacturing, where
standard deviation represents the precision of the instrument and anom-
alies in the precision must be address in time. In weather analysis, extreme
temperatures may greatly affect the standard deviation of the annual tem-
perature, while the changes on mean temperature over the year may be
insignificant. Therefore, a control chart Cσ for monitoring standard devi-
ation changes in the stream is designed in the proposed technique.

Similar to the mean value µ(S), the standard deviation σ(S) is also
unknown due to the fact that S is continuously growing and historical
data are lost. Hence, the weighted moving standard deviation σ(St) of
stream S at time t has to be estimated using the following formula:

σ(St) =

√
ω

(2− ω) ∗ n
∗ σ(S ′t) (3.15)

where ω is the weight used in Equation 3.13, σ(S ′t) is the weighted moving
standard deviation calculated at time t′, and n is the the number of data
elements in S(t′, t].

Since a F-test is commonly used for testing if standard deviations from
two data set differ significantly, the control limits for detecting standard
deviation changes are designed as following:

UCLt
σ = σ(St) ∗

√
Fτ (freedom1; freedom2)

LCLt
σ = σ(St) ∗

√
F1−τ (freedom1; freedom2)

(3.16)

148

where τ is the significance level, and freedom1 and freedom2 are the
user-specified degree of freedoms in F-distribution.

Detecting changes

When data from stream S first arrive, a set of data are selected for use as
learning samples and control charts Cµ and Cσ are constructed using the
method discussed in the previous section. Once Cµ and Cσ are built and
all parameters are tuned, a tumbling window W is used, with tumbling
interval ∆, to capture the most current substream and feed it to Cµ and
Cσ as a set of new samples.

Let t be the current timestamp. W contains data that have arrived in
(t −∆, t] time interval. Each time W moves, the new sample set will be
evaluated and the evaluation results will indicate whether S is in control
(i.e., distribution is stable) or it is out-of-control (i.e., distribution has
changed). After the evaluation, all data inside W are removed, making
room for new data.

Let ta be the last time distribution change was detected. If the dis-
tribution has not changed since the beginning of S, then ta = t0. Null
hypothesis H0 that asserts distribution of S does not change is refuted iff
the distance between previous and present mean values or standard devi-
ation is above the threshold. When H0 is refuted, a distribution change is
noted and ta is set to t.

One of the keys in the proposed change detection technique is to find
a proper window tumbling interval ∆. A smaller interval implies frequent
evaluation and, hence, the distribution change can be quickly reported.
In the extreme case when W moves every time a new element arrives, the
tumbling window model is equal to a sliding window model. However,
frequent evaluation increases computation cost significantly, since µ(St),
σ(St) and all the control limits need to be recalculated upon every update.
A large ∆ may reduce the number of true changes detected, because some
rapid distribution changes could be missed; even if a change will be de-
tected eventually, there will be a long delay. The effect of ∆ is empirically
studied in Section 3.4.4.

149

Full algorithm

The full algorithm of the proposed approach is given in Algorithm 1.

The time complexity of Algorithm 1 is linear O(n), where n is the
number of data received within each ∆ time period, hence, the proposed
approach is very efficient.

3.4.4 Experiments

To evaluate the performance of proposed control chart based change detec-
tion technique, a series of experiments are conducted. The data streams
used in the experiments are generated using the experimental framework
discussed in Section 3.3.5. The criteria for evaluating experimental results
is the same as in Section 3.3.5. All experiments are conducted on a PC
with 3GHz Pentium 4 processor and 1GB of RAM, running Windows XP
system. All programs are implemented in R.

Change detection evaluation

The control chart based approach is compared with three change detec-
tion techniques discussed in Section 3.3.5: XI-fixed, KD-moving, and XI-
merged. Each synthetic stream contains 100,000 data that arrive at an
even speed. There are total 100 changes in each stream. Significance level
τ is set to 80%. Sizes of all windows, W used in the control chart based
technique and Wr and Wt used in the three comparing techniques, are
set to 100 data. The number of partitions k used in the merged window
method is set to 10. The total number of streams generated and tested
for each stream type is numRun = 100.

A set of experiments is conducted using stream types Stream1, ...,
Stream12 described in Table 3.1. The results are presented in sets of
figures with x-axis being values of the five criteria discussed in Section
3.3.5 and y-axis being the density of these criteria. Figures 3.79 – 3.84
illustrate the number of true changes detected in each type of stream.
Figures 3.85 – 3.90 show the number of false changed detected. The mean

150

Algorithm 1 Mean and Standard Deviation Detection using Control
Charts
1: INPUT: Data stream S
2: Significance level τ

Degree of freedom freedom1 and freedom2
3: Determine ω and κ based on τ ;
4: Record timestamp ta = t0;
5: while t− t0 < ∆ do
6: Collect data into W ;
7: Record timestamp t;
8: end while
9: µ(S ′t) = µ(S[t0, t]);

10: σ(S ′t) = σ(S[t0, t]);
11: while S does not terminate do
12: t′ = t;
13: while t− t′ < ∆ do
14: Collect data into W ;
15: Record timestamp t;
16: end while
17: µ(St) = µ(S(t′, t]);
18: σ(St) = σ(S(t′, t]);
19: Calculate UCLt

µ and LCLt
µ using Equation 3.14;

20: Calculate UCLt
σ and LCLt

σ using Equation 3.16;
21: if µ(St) > UCLt

µ and µ(St) < LCLt
µ and σ(St) > UCLt

σ and
σ(St) > UCLt

σ then
22: Report distribution change;
23: //Reset initial mean and standard deviation
24: ta = t′;
25: µ(S ′t) = µ(S(t′, t]);
26: σ(S ′t) = σ(S(t′, t]);
27: else
28: //Update EWMA mean and standard deviation
29: Calculate µ(St) using Equation 3.13;
30: Calculate σ(St) using Equation 3.15;
31: end if
32: end while

151

values of the change detection durations for each stream type is shown
in Figures 3.91 – 3.96. The standard deviations of the change detection
durations are demonstrated in Figures 3.97 – 3.102. Figures 3.103 – 3.108
present the maximal durations for detecting changes in each stream type.

152

60 70 80 90

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 1 − Normal Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

86 88 90 92 94 96 98

0.0
0

0.0
5

0.1
0

0.1
5

Stream 2 − Uniform Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.79: Number of true changes detected for Stream1 and Stream2

153

75 80 85 90 95 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 3 − Exponential Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

90 92 94 96 98

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 4 − Binomial Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.80: Number of true changes detected for Stream3 and Stream4

154

60 70 80 90 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 5 − Mix of Two Normals with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

85 90 95

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 6 − Mix of Normal and Uniform with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.81: Number of true changes detected for Stream5 and Stream6

155

60 70 80 90

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 7 − Normal Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

65 70 75 80 85 90 95 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 8 − Uniform Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.82: Number of true changes detected for Stream7 and Stream8

156

50 60 70 80 90 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 9 − Exponential Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

50 60 70 80 90 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 10 − Binomial Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.83: Number of true changes detected for Stream9 and Stream10

157

75 80 85 90 95

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

70 75 80 85 90 95

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.84: Number of true changes detected for Stream11 and Stream12

158

20 40 60 80 100 120

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 1 − Normal Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

40 60 80 100 120 140 160

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

Stream 2 − Uniform Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.85: Number of false changes detected for Stream1 and Stream2

159

20 40 60 80 100 120

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 3 − Exponential Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

60 80 100 120 140

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 4 − Binomial Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.86: Number of false changes detected for Stream3 and Stream4

160

20 40 60 80 100 120

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 5 − Mix of Two Normals with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

40 60 80 100 120

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Stream 18 − Mix of Normal and Uniform with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.87: Number of false changes detected for Stream5 and Stream6

161

20 40 60 80 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 7 − Normal Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

0 20 40 60 80 100 120 140

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 8 − Uniform Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.88: Number of false changes detected for Stream7 and Stream8

162

0 20 40 60 80

0.0
0

0.0
5

0.1
0

0.1
5

Stream 9 − Exponential Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 10 − Binomial Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.89: Number of false changes detected for Stream9 and Stream10

163

10 20 30 40 50 60 70

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

20 40 60 80 100

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Stream 12 − Mix of Normal and Uniform with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.90: Number of false changes detected for Stream11 and
Stream12

164

80 100 120 140 160

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 1 − Normal Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

60 80 100 120

0.0
0

0.0
5

0.1
0

0.1
5

Stream 2 − Uniform Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.91: Mean duration for detecting true changes in Stream1 and
Stream2

165

60 80 100 120

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 3 − Exponential Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

50 55 60 65 70

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Stream 4 − Binomial Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.92: Mean duration for detecting true changes in Stream3 and
Stream4

166

80 90 100 110 120 130

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Stream 5 − Mix of Two Normals with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

60 70 80 90 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 6 − Mix of Normal and Uniform with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.93: Mean duration for detecting true changes in Stream5 and
Stream6

167

80 100 120 140 160 180 200

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 7 − Normal Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

60 70 80 90 100 110

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 8 − Uniform Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.94: Mean duration for detecting true changes in Stream7 and
Stream8

168

80 100 120 140 160 180

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

Stream 9 − Exponential Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

80 90 100 110 120 130 140

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Stream 10 − Binomial Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.95: Mean duration for detecting true changes in Stream9 and
Stream10

169

70 80 90 100 110

0.0
0

0.0
2

0.0
4

0.0
6

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

80 100 120 140 160 180

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.96: Mean duration for detecting true changes in Stream11 and
Stream12

170

100 200 300 400 500

0.0
00

0.0
05

0.0
10

0.0
15

Stream 1 − Normal Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

50 100 150 200 250 300

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Stream 2 − Uniform Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.97: Standard deviation of the duration for detecting true changes
in Stream1 and Stream2

171

50 100 150 200 250 300

0.0
0

0.0
5

0.1
0

0.1
5

Stream 3 − Exponential Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

40 60 80 100 120

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

Stream 4 − Binomial Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.98: Standard deviation of the duration for detecting true changes
in Stream3 and Stream4

172

100 200 300 400

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 5 − Mix of Two Normals with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

50 100 150 200 250 300

0.0
0

0.0
5

0.1
0

0.1
5

Stream 6 − Mix of Normal and Uniform with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.99: Standard deviation of the duration for detecting true changes
in Stream5 and Stream6

173

100 200 300 400 500 600

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Stream 7 − Normal Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

50 100 150 200 250

0.0
0

0.0
5

0.1
0

0.1
5

Stream 8 − Uniform Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.100: Standard deviation of the duration for detecting true
changes in Stream7 and Stream8

174

100 200 300 400

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

Stream 9 − Exponential Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

100 200 300 400 500

0.0
00

0.0
05

0.0
10

0.0
15

Stream 10 − Binomial Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.101: Standard deviation of the duration for detecting true
changes in Stream9 and Stream10

175

50 100 150 200 250 300 350

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

100 200 300 400 500

0.0
00

0.0
05

0.0
10

0.0
15

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.102: Standard deviation of the duration for detecting true
changes in Stream11 and Stream12

176

0 1000 2000 3000 4000

0.0
00

0
0.0

00
4

0.0
00

8
0.0

01
2

Stream 1 − Normal Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

0 500 1000 1500 2000 2500 3000

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 2 − Uniform Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.103: Max duration for detecting true changes in Stream1 and
Stream2

177

500 1000 1500 2000 2500 3000

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Stream 3 − Exponential Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

200 400 600 800 1000 1200

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 4 − Binomial Distribution with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.104: Max duration for detecting true changes in Stream3 and
Stream4

178

500 1000 1500 2000 2500 3000

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

Stream 5 − Mix of Two Normals with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

500 1000 1500 2000 2500 3000

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Stream 6 − Mix of Normal and Uniform with Mean Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.105: Max duration for detecting true changes in Stream5 and
Stream6

179

0 1000 2000 3000 4000

0.0
00

0
0.0

00
4

0.0
00

8
0.0

01
2

Stream 7 − Normal Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

500 1000 1500 2000 2500

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

Stream 8 − Uniform Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.106: Max duration for detecting true changes in Stream7 and
Stream8

180

500 1000 1500 2000 2500 3000 3500

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4
1e

−0
3

Stream 9 − Exponential Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

0 1000 2000 3000 4000

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

Stream 10 − Binomial Distribution with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.107: Max duration for detecting true changes in Stream9 and
Stream10

181

500 1000 1500 2000 2500 3000

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

0 1000 2000 3000 4000

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

Stream 11 − Mix of Two Normals with SD Changes

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.108: Max duration for detecting true changes in Stream11 and
Stream12

182

These results reveal that the proposed control chart based technique
can detect the most number of true changes among the four techniques. It
detects more false changes than KD-moving, however, the number of false
detection is significantly less than XI-fixed and XI-merged. The durations
for detecting true changes using the proposed method are comparable to
KD-moving, XI-fixed, and XI-merged methods. Therefore, the control
chart based approach has the best overall performance among all four
techniques compared in the experiments. The run time of the control chart
based approach is also noticeably shorter than the other three methods.

The reason why the proposed technique shows the best overall per-
formance in the experiments is because the control charts used in the
technique are “specialized” in monitoring mean and standard deviation
over the stream and, hence, are very sensitive to the changes in these two
characteristics. In contrast, the other three approaches are generalized
techniques that are designed to detect any type of changes in a stream
and, thus, may not be as “focused” to monitoring changes in mean val-
ues and standard deviations. Therefore, for a stream mining application
where mean values and/or standard deviations are the sole interest, the
control chart based change detection technique is more suitable.

Detecting distribution drifts

To study the performance of the proposed technique on detecting distribu-
tion drifts, we conduct a set of experiments using stream types Stream13,
..., Stream18 with the same parameter settings. The drift duration
driftDur is set to four times the windows size, i.e., 400 data elements.
The experimental results are demonstrated in Figures 3.109 – 3.123.

183

30 40 50 60 70 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Stream 13 − Normal Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

40 50 60 70 80 90

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Stream 14 − Exponential Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.109: Number of true changes detected for Stream13 and
Stream14

184

82 84 86 88 90 92 94 96

0.0
0

0.0
5

0.1
0

0.1
5

Stream 15 − Binomial Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

30 40 50 60 70 80 90

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 16 − Mix of Two Normals with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.110: Number of true changes detected for Stream15 and
Stream16

185

30 40 50 60 70 80 90

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

50 60 70 80 90

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 18 − Mix of Normal and Uniform with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.111: Number of true changes detected for Stream17 and
Stream18

186

0 20 40 60

0.0
0

0.0
5

0.1
0

0.1
5

Stream 13 − Normal Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 14 − Exponential Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.112: Number of false changes detected for Stream13 and
Stream14

187

20 30 40 50 60 70 80 90

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 15 − Binomial Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

0 20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 16 − Mix of Two Normals with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.113: Number of false changes detected for Stream15 and
Stream16

188

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 17 − Uniform Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

10 20 30 40 50 60 70

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 18 − Mix of Normal and Uniform with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.114: Number of false changes detected for Stream17 and
Stream18

189

150 200 250 300 350 400 450

0.0
00

0.0
04

0.0
08

0.0
12

Stream 13 − Normal Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

200 250 300 350 400 450 500

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

0.0
30

Stream 14 − Exponential Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.115: Mean duration for detecting true changes in Stream13 and
Stream14

190

150 200 250 300 350

0.0
00

0.0
10

0.0
20

0.0
30

Stream 15 − Binomial Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

200 300 400 500

0.0
00

0.0
04

0.0
08

0.0
12

Stream 16 − Mix of Two Normals with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.116: Mean duration for detecting true changes in Stream15 and
Stream16

191

100 150 200 250 300 350

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 17 − Uniform Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

200 250 300 350 400 450

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

Stream 18 − Mix of Normal and Uniform with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.117: Mean duration for detecting true changes in Stream17 and
Stream18

192

200 400 600 800 1000

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

0.0
06

Stream 13 − Normal Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

100 200 300 400 500 600 700 800

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

Stream 14 − Exponential Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.118: Standard deviation of the duration for detecting true
changes in Stream13 and Stream14

193

100 200 300 400 500 600

0.0
0

0.0
2

0.0
4

0.0
6

Stream 15 − Binomial Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

200 400 600 800 1000

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

Stream 16 − Mix of Two Normals with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.119: Standard deviation of the duration for detecting true
changes in Stream15 and Stream16

194

100 200 300 400 500 600 700

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

Stream 17 − Uniform Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

200 400 600 800

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

0.0
06

Stream 18 − Mix of Normal and Uniform with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.120: Standard deviation of the duration for detecting true
changes in Stream17 and Stream18

195

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4
1e

−0
3

Stream 13 − Normal Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

Stream 14 − Exponential Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.121: Max duration for detecting true changes in Stream13 and
Stream14

196

1000 2000 3000 4000

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

Stream 15 − Binomial Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4

Stream 16 − Mix of Two Normals with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.122: Max duration for detecting true changes in Stream15 and
Stream16

197

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

Stream 17 − Uniform Distribution with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4

Stream 18 − Mix of Normal and Uniform with Drifts

Control Chart
Xi fixed
KD moving
Xi merge

Figure 3.123: Max duration for detecting true changes in Stream17 and
Stream18

198

Similar conclusions as the previous set of experiments can be made
for detecting distribution drifts. The control chart based approach gener-
ates the most number of true changes with number of false detections less
than XI-fixed and XI-merged, but more than KD-moving. The true detec-
tion durations are comparable to the other three methods. These results
demonstrate that the proposed technique can achieve good performance
in detecting distribution drifts. This is because the EWMA control charts
adopted in the technique are designed for detecting small and gradual
changes.

Effect of significance level τ

Significance level τ is an important parameter in the control chart that can
be used to determine parameters ω and κ. τ is a user defined parameter
that should be determined by analyzing application requirements. A high
significance setting indicates that only severe distribution changes are of
interest, while minor distribution changes will be reported with a low τ
value.

The effect of τ values over the change detection results are studied by
repeating the previous experiments with τ value set at 70%, 80%, 90% and
95%. From the results, it is noticeable that the impact of τ is consistent for
different stream types, and, hence, only the empirical results of detecting
changes in stream types Stream1 and Stream17 is demonstrated. These
results are shown in Figures 3.124 – 3.128.

199

75 80 85 90 95

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution with Mean Changes

tau=95%
tau=90%
tau=80%
tau=70%

50 55 60 65 70 75 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Stream 17 − Uniform Distribution with Drifts

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.124: Number of true changes detected for Stream1 and Stream17
with different τ values

200

20 40 60 80 100 120

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

Stream 1 − Normal Distribution with Mean Changes

tau=95%
tau=90%
tau=80%
tau=70%

0 10 20 30

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 17 − Uniform Distribution with Drifts

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.125: Number of false changes detected for Stream1 and
Stream17 with different τ values

201

80 100 120 140 160 180

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 1 − Normal Distribution with Mean Changes

tau=95%
tau=90%
tau=80%
tau=70%

50 100 150 200 250 300 350

0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Stream 17 − Uniform Distribution with Drifts

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.126: Mean duration for detecting true changes in Stream1 and
Stream17 with different τ values

202

50 100 150 200 250 300

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution with Mean Changes

tau=95%
tau=90%
tau=80%
tau=70%

200 400 600 800 1000

0.0
00

0.0
01

0.0
02

0.0
03

Stream 17 − Uniform Distribution with Drifts

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.127: Standard deviation of the duration for detecting true
changes in Stream1 and Stream17 with different τ values

203

500 1000 1500 2000 2500 3000

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Stream 1 − Normal Distribution with Mean Changes

tau=95%
tau=90%
tau=80%
tau=70%

2000 4000 6000 8000

0e
+0

0
1e

−0
4

2e
−0

4
3e

−0
4

4e
−0

4
5e

−0
4

Stream 17 − Uniform Distribution with Drifts

tau=95%
tau=90%
tau=80%
tau=70%

Figure 3.128: Max duration for detecting true changes in Stream1 and
Stream17 with different τ values

204

These results suggest that, increasing significance level τ can increase
the number of true detections. However, the number of false detection
will also increase when τ value is larger. This is because, with a high τ
value, the control limits UCL and LCL are “tighter”, i.e., distance between
UCL/LCL and the center line is small. Hence, small changes on the mean
values and standard deviations will be reported as a distribution change.
It is also worth noting that the durations for detecting true changes are
noticeably smaller with higher τ setting. This is because higher τ values
increase the weight ω in Equations 3.13 and 3.15, making historical data
less important in calculating weighted moving means and standard devia-
tions. Therefore, control charts are more sensitive in changes in the newly
arrived data in windows W , resulting in a faster detection.

Effect of window size

As discussed in Section 3.4.3, the size of the tumbling window W may
affect the efficiency and accuracy of the proposed technique. To study
the effect of window size over the control chart based technique, a set of
experiments is conducted by repeating the previous experiments with |W |
set as 50 data, 100 data, 200 data, and 400 data. The experimental results
on stream types Stream1 and Stream17 are illustrated in Figures 3.129
– 3.133.

According to these results, a smaller window size will result in larger
number of false detections, however, the number of true changes detected is
also larger. This may be because with a small sample size (i.e., the number
of data in window W is smaller), outliers may greatly affect the mean
value and standard deviation, making the control charts more sensitive
to outliers. Hence more changes, both true changes and false changes,
are detected. The results also show that smaller window sizes make the
true changes detected faster, because the weighted moving means and
standard deviations are updated and compared with the control limits
more frequently. These results confirm our discussions in Section 3.4.3.

205

75 80 85 90 95 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 1 − Normal Distribution with Mean Changes

winsize=50
winsize=100
winsize=200
winsize=400

60 70 80 90 100

0.0
0

0.0
5

0.1
0

0.1
5

Stream 17 − Uniform Distribution with Drifts

winsize=50
winsize=100
winsize=200
winsize=400

Figure 3.129: Number of true changes detected for Stream1 and Stream17
with different window size

206

40 60 80 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Stream 1 − Normal Distribution with Mean Changes

winsize=50
winsize=100
winsize=200
winsize=400

20 40 60 80

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Stream 17 − Uniform Distribution with Drifts

winsize=50
winsize=100
winsize=200
winsize=400

Figure 3.130: Number of false changes detected for Stream1 and
Stream17 with different window size

207

50 100 150 200 250

0.0
0

0.0
2

0.0
4

0.0
6

Stream 1 − Normal Distribution with Mean Changes

winsize=50
winsize=100
winsize=200
winsize=400

200 250 300 350 400

0.0
00

0.0
04

0.0
08

0.0
12

Stream 17 − Uniform Distribution with Drifts

winsize=50
winsize=100
winsize=200
winsize=400

Figure 3.131: Mean duration for detecting true changes in Stream1 and
Stream17 with different window size

208

50 100 150 200 250

0.0
00

0.0
10

0.0
20

0.0
30

Stream 1 − Normal Distribution with Mean Changes

winsize=50
winsize=100
winsize=200
winsize=400

100 200 300 400 500 600 700

0.0
00

0.0
04

0.0
08

0.0
12

Stream 17 − Uniform Distribution with Drifts

winsize=50
winsize=100
winsize=200
winsize=400

Figure 3.132: Standard deviation of the duration for detecting true
changes in Stream1 and Stream17 with different window size

209

500 1000 1500 2000

0.0
00

0
0.0

01
0

0.0
02

0
0.0

03
0

Stream 1 − Normal Distribution with Mean Changes

winsize=50
winsize=100
winsize=200
winsize=400

1000 2000 3000 4000 5000 6000

0e
+0

0
2e

−0
4

4e
−0

4
6e

−0
4

8e
−0

4
1e

−0
3

Stream 17 − Uniform Distribution with Drifts

winsize=50
winsize=100
winsize=200
winsize=400

Figure 3.133: Max duration for detecting true changes in Stream1 and
Stream17 with different window size

210

3.5 Summary

The unboundedness and high arrival rates of data streams and the dy-
namic variations in their underlying data distribution make processing
stream data challenging. Detection of these distribution changes are im-
portant to properly and accurately perform various data mining tasks.
However, most of the techniques proposed in literature are ad-hoc and
cannot be directly applied to all types of streams. General solutions are
more difficult to find but are much desired, because they can be plugged in
any stream mining applications and can make techniques developed under
stable environments suitable for mining dynamic streams.

In this chapter, two new techniques are proposed for detecting distri-
bution changes in dynamic streams. The first technique is designed to
solve the problem of presenting (complex) distributions using small data
sets with high accuracy. The second technique focuses on detecting the
changes in two statistics of a distribution – mean and standard deviation.
Both approaches are generic and can be applied to many types of data
streams and mining applications. Extensive experiments are conducted
and results show the promise of these approaches in detecting distribution
changes for ever-changing streams.

211

Chapter 4

Change Detection in
Multi-dimensional Streams

In Chapter 3, two application-independent change detection approaches
are proposed. These techniques demonstrate promising performance in
the experiments. However, one major constraint of these approaches is
that they can only be applied to streams with single dimension, i.e., there
is only one attribute of interest in the stream.

The control chart based approach discussed in Section 3.4 only detects
the changes of two key features, i.e., the mean and standard deviations, of
the stream. Since correlations of these two features can be easily obtained,
the proposed control chart based approach can be extended to streams
with multi-dimensions. In this chapter, we relax the uni-dimension con-
straint of the proposed control chart for detecting mean changes by using
a T 2 control chart [66].

4.1 Motivation

The elements in a data stream collected from real-world applications usu-
ally contain several attributes. Most of the change detection techniques
for dynamic data streams assume that there is only one attribute of in-
terest. However, in practice, many stream processing applications need

213

to take more than one attribute into consideration. For example, in mod-
ern quality control, several quality characteristics are usually monitored
simultaneously. In e-commerce, where each element in the stream is an
order placed by customers, a positive linear correlation between items may
indicate similar purchase patterns. There has been little attention paid to
the problem of extending change detection to multi-dimensional data.

Under the assumption that attributes of interest are not correlated
with each other, the multi-dimensionality can be easily addressed by run-
ning a set of processes that detect distribution changes simultaneously on
each attribute. However, this assumption does not hold for many real-
world applications. Take a stream monitoring application that controls
the quality of drug products as an example. A drug product contains
several substances [40]; most often the substances in the drug are interde-
pendent. One impurity might be formed as a result of the degradation of
another one, or two impurities might react to form another impurity. If
the correlations among several attributes (variants) in the data are taken
into account, such a solution is no longer satisfactory.

Processing multi-dimensional data can be difficult because of the cor-
relations among dimensions. One of the challenges is known as “the curse
of dimensionality”: In high dimensional space, data may be sparse, mak-
ing it difficult to find any structure in the data. One solution is to reduce
the dimensionality, either by selecting a feature subset [46, 54, 135] or by
using a feature transformation that projects high dimensional data onto
“interesting” subspaces [18, 70, 73]. Reducing the dimensionality can be a
feasible solution when the dimensionality is very high. However, for data
sets that have been reduced to only a few dimensions, it is improper to
further reduce them, since some important correlation information may
be lost during the process.

The correlations of some key features of the data, such as mean, range,
variance, among dimensions can be easily obtained. Therefore, a technique
that only detects distribution changes over certain key features in uni-
dimensional streams should have the potential to be extended to multi-
dimensional streams. Based on this insight, we modify the technique
proposed in Section 3.4 that detects mean changes to make it suitable
for detecting mean changes in multi-dimensional streams.

214

Recall that the original approach in Section 3.4 is based on control
chart. This provides another advantage for multi-dimensional change de-
tection. Unlike many change detection techniques that require a large
number of data to get promising results, the control chart-based method
can achieve high accuracy with only a small sample set. This is an im-
portant feature for detecting changes in the streaming environment, since
stream processing techniques are single pass and memory is always lim-
ited. As will be discussed, the modified approach has high efficiency so
that fast distribution changes in the stream can be captured. However,
note that the proposed method is not a generic change detection method.
It can only detect changes in mean values and may not perform well for
detecting other types of distribution changes in multi-dimensional streams.

4.2 Related Work

Detecting distribution changes in multi-dimensional space is difficult and
few techniques have been proposed for this problem. Many approaches
try to bypass the problem by transforming the multi-dimensional data to
a uni-dimensional space using dimensionality reduction techniques (e.g.,
[18, 46, 54, 70, 135]). As noted earlier, useful correlation information will
be lost during the reduction process.

A statistical test, called cross-match, has been proposed for comparing
two multivariate distributions [139]. Cross-match uses interpoint distances
[140] to construct an optimal non-bipartite matching. The similarity be-
tween two distributions is measured by the number of pairs that contain
one data from each distribution. This method is computationally expen-
sive and consumes large amount of memory. Therefore, it is not applicable
for data stream applications.

Dasu et al. propose a change detection approach in multi-dimensional
streams using the Kullback-Leibler (KL) distance [82] to calculate the
distance between two distributions [124, 125]. KL distance, defined as

distKL(PA, PB) =
∑

PA(xi)log
PA(xi)
PB(xi)

, is one of the most fundamental mea-
sures for measuring the dissimilarity between two completely determined

215

probability distributions. However, note that since KL distance is a non-
symmetric measure, it is not strictly a distance metric. This approach
then uses bootstrap methods [30] to determine whether the change is sig-
nificant or not. This technique relies on a partition of the space. As shown
in their experiments, the performance will decrease significantly when the
number of the dimensions increases.

Song et al. develop a technique for calculating the discrepancy be-
tween the underlying distributions of two large data sets with multiple
dimensions [127]. The method is based on multi-dimensional kernel den-
sity estimator and uses maximum expectation algorithm [42] to choose
the kernel bandwidths that are closest to the true distribution. Accord-
ing to their experiments, this method can detect subtle changes in the
data set with few false detections. However, since large amount of data
are required for the statistical test and relatively heavy computation is
involved, this approach is not suitable for data stream applications that
require high efficiency.

4.3 Detecting changes using multi-

dimensional control charts

The extended technique for detecting mean changes in multi-dimensional
streams has a similar framework as the original technique proposed in
Section 3.4. A tumbling window W with tumbling interval ∆ is used to
store the most up-to-date substream from which the test data are obtained.
The multi-dimensional control chart C monitors the mean changes of a
stream S. New data are fed into C when W moves. A distribution change
is reported when the mean value of a data set falls outside the control
limits LCL and UCL of the control chart. The same stopping rule StR
and null hypothesis H0 introduced in Section 3.4 are adopted for the multi-
dimensional approach. A significance level τ is defined as the minimum
probability of refuting H0 when stopping rule StR is satisfied.

216

4.3.1 Building the multi-dimensional control chart

To detect distribution changes in multi-dimensional streams, the covari-
ance matrix is introduced into the proposed control chart. Each entry in
the covariance matrix quantifies the degree to which two dimensions vary
together (covary). Let Sd be a d-dimensional stream with all elements in
space <d and let M be the d × d covariance matrix. Sd(t − ∆, t] repre-
sent the set of d-dimensional data elements that have arrived in Sd in the
last ∆ time unit. µd(Sd(t −∆, t]) denotes the mean of the values in this
substream. The covariance matrix M can be calculated as:

M =

∑
(Sd(t−∆, t]− µd(Sd(t−∆, t]))(Sd(t−∆, t]− µd(Sd(t−∆, t]))T

n(t−∆, t]
(4.1)

where n(t−∆, t] is the number of elements in Sd(t−∆, t].

Let µd(Sd
t′) be the mean value of S at time t′ = t − ∆. The distance

between the mean value of substream Sd(t−∆, t] and the mean value of
the previous data set Sd

t′ is then defined as follows:

dist(µd(Sd(t−∆, t], µd(Sd
t′)) =

(µd(Sd(t−∆, t])− µd(Sd
t′))

T M−1(µd(Sd(t−∆, t])− µd(Sd
t′))

(4.2)

From this equation, it can be seen that the larger the distance, the
more different is the mean value of substream Sd(t−∆, t] compared with
the previous mean value. If this distance is significant, then a distribution
change may occur.

Recall that in Section 3.4, the history of the stream is taken into
consideration by introducing a weighting factor into the control chart.
The weighting factor ensures that both distribution shifts and distribu-
tion drifts can be detected in time. Hence, for the d-dimensional stream
Sd, the weight factor is extended to a weight matrix Λ that is a diagonal
matrix with ω1, ω2, ..., ωd on its main diagonal, where ω1, ω2, ..., ωd are the

217

weight variables on each dimension i = 1, ..., d. Every time a new set of
data Sd(t − ∆, t] arrives, it is assigned weight Λ, and weight of the old
data is decreased by factor (1− Λ).

By combining the weight matrix Λ and the covariance matrix M , the
weighted covariance matrix MΛ is defined as:

MΛ(i, j) = ωiωj
1− (1− ωi)

n(1− ωj)
n

ωi + ωj − ωiωj

M(i, j) (4.3)

where MΛ(i, j) and M(i, j) are the (i, j)-th elements in matrix MΛ and
M , respectively; ωi and ωj are the ith and jth members of the diagonal
matrix Λ; variable n is the number of elements in substream Sd(t−∆, t].

If the weight of each dimension is identical, i.e., ω1 = ω2 = ... = ωd =
ω, and if the number of elements in Sd(t−∆, t] is sufficiently large, then
Equation 4.3 can be simplified as:

MΛ =
ω

2− ω
M (4.4)

Assigning identical weights for all dimensions can greatly reduce the
computational cost and can reduce the work of the user for setting pa-
rameters. For many real-world applications, although the attributes in
the data stream have different meanings, the degree of significance of his-
torical data is similar for all dimensions. Using the simplified equation
for calculating weighted covariance matrix MΛ is recommended for these
applications. Similar to the discussion in Section 3.4, the weight ω is also
determined using the significance level τ and the tables provided by Lucas
and Saccucci [91].

Based on the above discussion, the weighted moving mean to estimate
the mean value of Sd up to time t is defined as follows:

µd(Sd
t) = (Λ ∗ µd(Sd(t−∆, t]) + (1− Λ) ∗ µd(Sd

t′))
T

M−1
Λ (Λ ∗ µd(Sd(t−∆, t]) + (1− Λ) ∗ µd(Sd

t′))
(4.5)

218

4.3.2 Detecting changes

When data from stream Sd first arrive, a set of data is obtained to be used
as learning samples and the control chart C is built using the method
discussed above. Once C is built and all the parameters are tuned, a
tumbling window W , with tumbling interval ∆, is applied to capture the
most current substream and feed it to C as a set of new data.

Let t be the current timestamp, and let W contain data that have
arrived in (t − ∆, t]. Each time W moves, the new sample set will be
evaluated by C, and the evaluation results will indicate whether Sd is in
control (i.e., distribution is stable) or it is out of control (i.e., distribution
has changed). After the evaluation, all data inside W are removed, making
room for new data.

Tracy et al. [152] have shown that for a T 2 control chart with dimension
d, if no distribution change is observed, then the probability of the T 2

statistics having a chi-square distribution is quite high. That is,

T 2 ∼ d ∗ (m + 1)(m− 1)

m ∗ (m− d)
Fd,m−d,ρ (4.6)

where m is the number of observations in a preliminary data set with
stable distribution, ρ is the probability that T 2 statistics have chi-square
distribution, and Fd,m−d,ρ is the Fisher-Snedecor distribution [39] with d
and m− d degrees of freedoms.

Let t be the current timestamp when W is about to tumble, and ta
be the last time a distribution change was detected. In control chart C,
the parameters m and ρ in equation 4.6 are equivalent to n(ta, t−∆], i.e.,
the number of data in substream Sd(ta, t − ∆], and 1 − τ , respectively.
Therefore, the UCL of the proposed multi-dimensional control chart C,
denoted as UCLd, is defined as follows:

UCLd =
d ∗ (n(ta, t−∆] + 1)(n(ta, t−∆]− 1)

n(ta, t−∆] ∗ (n(ta, t−∆]− d)
Fd,n(ta,t−∆]−d,1−τ (4.7)

If the distribution has not changed since the beginning of S, then

219

ta = t0. Null hypothesis H0 (i.e., distribution of S does not change) is
refuted iff:

µd(Sd
t) > UCLd (4.8)

The distribution change occurs only when weighted moving mean of S
at time t is beyond the upper control limit of the control chart. When H0

is refuted, a distribution change is noted and ta is set to t.

Note that µd(Sd
t) have the property of directional invariance, that is,

the average run length to detect a change depends only on the direction of
the change. The significance of the difference of the mean value between
the old data and the new substream is the sole point of interest; hence,
only the upper control limit is required for the proposed control chart.

4.3.3 Full algorithm

The process of the proposed technique using multi-dimensional control
chart is summarized in Algorithm 2.

The most time consuming part of the algorithm is calculating weighted
moving mean using Equation 4.5 (line 27). The time complexity for cal-
culating Equation 4.5, if carried out naively, is O(d3). For the rest of the
algorithm, the time complexity is linear, i.e., O(n), where n is the size
of stream S. Therefore, the proposed approach has the worst-case time
complexity O(d3n), which is acceptable for fast arriving streams when the
number of dimensions is not extremely large.

4.4 Experimental framework

To evaluate the performance of the proposed approach, an experiment
framework that includes synthetic stream generation and experimental
results illustration is designed and implemented.

A d-dimensional data stream Sd consists of d single dimensional streams
S1, S2, ..., Sd, where Si is the stream of the ith dimension. For each data

220

Algorithm 2 Mean Change Detection for Multi-dimensional Streams

1: INPUT: Data stream Sd

2: Significance level τ
3: OUTPUT: Distribution change alarms
4: (Interpretation) Set of single dimensional charts that are

out-of-control
5:
6: Determine ω based on τ ;
7: Record timestamp ta = t0;
8: Calculate covariance matrix MΛ using Equation 4.1;
9: while t− t0 < ∆ do

10: Collect data into W ;
11: Record timestamp t;
12: end while
13: µd(Sd

t′) = µd(Sd[t0, t]);
14: while S does not terminate do
15: t′ = t;
16: while t− t′ < ∆ do
17: Collect data into W ;
18: Record timestamp t;
19: end while
20: µd(Sd

t) = µd(Sd(t′, t]);
21: Calculate UCLd using Equation 4.7;
22: if µd(Sd

t) > UCLd then
23: Report distribution change;
24: ta = t′;
25: µd(Sd

t) = µd(Sd(t′, t]);
26: else
27: Calculate µd(Sd

t) using Equation 4.5;
28: end if
29: end while

221

element Xj = (x1, x2, ..., xd) ∈ Sd, the ith dimension xi of Xj is the jth
data element in the single dimensional stream Si. Hence, we generate d
single dimensional streams with total of n data in each.

Let mChg be the number of distribution changes in Sd. We gener-
ate mChg random numbers chg1, chg2, ..., chgmChg within the range (1, n).
These mChg numbers indicate the “location” of the new distribution
change occurs. We then generate each single dimensional stream Si using
the framework discussed in Section 3.3.5. The distributions P1, ..., Pd of
streams S1, ..., Sd are of the same type. For example, all single dimensional
streams S1, ..., Sd of Sd can have normal distribution with changing mean
values. As in Section 3.3.5, we generate streams with either distribution
shifts or distribution drifts.

A total of 12 types of multi-dimensional data streams are generated
using the framework discussed above. These streams are summarized in
Table 4.1.

Table 4.1: Stream types generated

Stream type Dim Distribution type Chg speed

Stream1 4 Normal distribution Shifts
Stream2 4 Uniform distribution Shifts
Stream3 5 Exponential distribution Shifts
Stream4 5 Half-half mix of one Normal and Shifts

one Uniform with different mean
Stream5 15 Normal distribution Shifts
Stream6 15 Uniform distribution Shifts
Stream7 18 Exponential distribution Shifts
Stream8 18 Half-half mix of one Normal and Shifts

one Uniform with different mean
Stream9 4 Normal distribution Drifts
Stream10 15 Uniform distribution Drifts
Stream11 5 Exponential distribution Drifts
Stream12 18 Half-half mix of one Normal and Drifts

one Uniform with different mean

222

For each stream type, there are a total of numRun streams generated
using the proposed framework. These streams are input into the proposed
technique and one set of results is output for each stream. Therefore,
there are a total of numRun result sets generated for each stream type.
Same as Section 3.3.5, these result sets record five important criteria for
evaluating the performance of the change detection technique: number of
true changes detected; number of false changes detected; mean duration
for detecting true changes; standard deviation of durations for detecting
true changes; maximal duration for detecting true changes. Density figures
are generated to summarize the numRun result sets for each stream type,
where x-axis in each figure is the value of each criteria and y-axis is the
density.

4.5 Experiments

A series of experiments are conducted to evaluate the performance of the
proposed multi-dimensional control chart for mean change detection. All
experiments are conducted on a PC with 3GHz Pentium 4 processor and
1GB of RAM, running Windows XP system. All programs are imple-
mented in R.

4.5.1 Change detection evaluation

The parameters discussed in the experimental framework are set as fol-
lows. The size n of each generated multi-dimensional data stream is set to
100,000 data elements. The number of true distribution changes mChg in
each stream is 100. Significance level τ is set to 80%. The total number
of streams generated and tested for each stream type is numRun = 100.
The arrival speed of each stream is stable, and, therefore, a time-based
tumbling window is equal to a count-based one. The size of the tumbling
window W used in our control chart is set to 100 data elements.

The proposed control-chart approach is applied on stream types
Stream1, ..., Stream12 described in Table 4.1. The results are grouped

223

into three sets. The first set contains results of detecting changes in
stream types Stream1, ..., Stream4. These stream types have low dimen-
sions and distribution shifts. Stream types Stream5, ..., Stream8 have
distribution shifts and relatively high dimensions and, thus, the change
detection results on these stream types are grouped into the second set.
The last set contain results of detecting distribution drifts in stream types
Stream9, ..., Stream12.

Figures 4.1 – 4.5 demonstrate the results of the five important criteria
for the first set (streams with low dimensions). The results of the second
set (streams with high dimensions) are presented in Figures 4.6 – 4.10. The
results of the third set (streams with distribution drifts) are illustrated in
Figures 4.11 – 4.15. In each figure, x-axis records the values of the five
criteria and y-axis shows their densities.

65 70 75 80 85 90 95

0.0
0

0.0
5

0.1
0

0.1
5

Num of True Changes Detected

Stream1
Stream2
Stream3
Stream4

Figure 4.1: Number of true changes detected for Stream1 – Stream4

224

0 5 10 15 20 25

0.0
0.1

0.2
0.3

Num of False Changes Detected

Stream1
Stream2
Stream3
Stream4

Figure 4.2: Number of false changes detected for Stream1 – Stream4

225

60 70 80 90 100 110 120

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

Mean Duration of Detecting True Changes

Stream1
Stream2
Stream3
Stream4

Figure 4.3: Mean duration for detecting true changes in Stream1 –
Stream4

30 40 50 60

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

SD of Durations for Detecting True Changes

Stream1
Stream2
Stream3
Stream4

Figure 4.4: Standard deviation of duration for detecting true changes in
Stream1 – Stream4

226

100 200 300 400 500 600

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Max of Durations for Detecting True Changes

Stream1
Stream2
Stream3
Stream4

Figure 4.5: Max duration for detecting true changes in Stream1 –
Stream4

55 60 65 70 75

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Num of True Changes Detected

Stream5
Stream6
Stream7
Stream8

Figure 4.6: Number of true changes detected for Stream5 – Stream8

227

0.0 0.5 1.0 1.5 2.0

0.0
0.5

1.0
1.5

2.0
Num of False Changes Detected

Stream5
Stream6
Stream7
Stream8

Figure 4.7: Number of false changes detected for Stream5 – Stream8

60 70 80 90 100 110 120

0.0
0

0.0
5

0.1
0

Mean Duration of Detecting True Changes

Stream5
Stream6
Stream7
Stream8

Figure 4.8: Mean duration for detecting true changes in Stream5 –
Stream8

228

25 30 35 40 45 50

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

SD of Durations for Detecting True Changes

Stream5
Stream6
Stream7
Stream8

Figure 4.9: Standard deviation of duration for detecting true changes in
Stream5 – Stream8

150 200 250

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Max of Durations for Detecting True Changes

Stream5
Stream6
Stream7
Stream8

Figure 4.10: Max duration for detecting true changes in Stream5 –
Stream8

229

45 50 55 60 65 70

0.0
0

0.0
5

0.1
0

0.1
5

Num of True Changes Detected

Stream9
Stream10
Stream11
Stream12

Figure 4.11: Number of true changes detected for Stream9 – Stream12

0 1 2 3 4

0.0
0.2

0.4
0.6

0.8
1.0

Num of False Changes Detected

Stream9
Stream10
Stream11
Stream12

Figure 4.12: Number of false changes detected for Stream9 – Stream12

230

60 80 100 120 140 160

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Mean Duration of Detecting True Changes

Stream9
Stream10
Stream11
Stream12

Figure 4.13: Mean duration for detecting true changes in Stream9 –
Stream12

50 100 150 200 250 300

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

SD of Durations for Detecting True Changes

Stream9
Stream10
Stream11
Stream12

Figure 4.14: Standard deviation of duration for detecting true changes in
Stream9 – Stream12

231

0 1000 2000 3000

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

Max of Durations for Detecting True Changes

Stream9
Stream10
Stream11
Stream12

Figure 4.15: Max duration for detecting true changes in Stream9 –
Stream12

These results indicate that the proposed control chart technique per-
forms well on multi-dimensional streams. It can detect most of the true
changes in a short time, usually within the same tumbling window where
a distribution change occurs. The number of false detection is low for all
stream types except Stream2.

It can be noted that both the number of true detections and false detec-
tions are lower when the streams have higher dimensions. This is because
when number the dimensions is higher, the correlations among dimensions
make distribution in the stream more difficult to capture. Therefore, the
distribution changes are more difficult to detect.

Comparing to distribution shifts, distribution drifts are more difficult
to detect by the proposed technique. This is because distribution drifts are
gradual and less significant than distribution shifts. Fewer true changes
can be detected in streams with distribution drifts. The time taken for
detecting drifts are also longer. In several cases it takes more than 2000
data elements until a distribution drift is detected.

232

4.5.2 Performance comparison with other technique

To further evaluate the performance of the proposed approach, we compare
the multi-dimensional control chart approach with a technique proposed
by Song et al. (denoted as “KD”) that detects distribution changes be-
tween two multi-dimensional data sets [127]. The KD technique takes two
multi-dimensional data sets S1 and S2 as input. It estimates the distribu-
tion P1 of S1 using multi-dimensional kernel density estimation and then
calculates the likelihood of S2 being generated by P1. If the likelihood is
lower than the significance level, then the null hypothesis H0 that asserts
S1 and S2 have identical distribution is revoked, and a distribution change
is reported.

Let ta be the last time a distribution change is reported by the KD
approach and let t be the current timestamp. The first data set S1 used
in KD is set as S1 = S[ta, t). We set the second data set S2 = S[t, t + ∆],
where ∆ is the same as the size of the tumbling window W in our control
chart approach. When W tumbles and a new data set S(t + ∆, t + 2 ∗∆]
arrives, if null hypothesis H0 is true for S1 and S2, then set S1 = S1 +S2 =
S[ta, t+∆] and S2 = S(t+∆, t+2 ∗∆]. Otherwise, if H0 is revoked, then
a distribution change is reported and we set ta = t, S1 = S(t, t + ∆], and
S2 = S(t + ∆, t + 2 ∗∆].

We apply both techniques on stream types Stream2, Stream5, and
Stream12. All parameter settings are the same as in Section 4.5.1. The
experimental results on the five criteria are demonstrated in Figures 4.16
– 4.20, where “CC” is the control chart-based approach and “KD” is the
kernel density based approach.

233

40 50 60 70 80 90 100

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

Num of True Changes Detected

Stream2−CC
Stream2−KD
Stream5−CC
Stream5−KD
Stream12−CC
Stream12−KD

Figure 4.16: Number of true changes detected using CC and KD

0 5 10 15 20 25

0.0
0.5

1.0
1.5

2.0

Num of False Changes Detected

Stream2−CC
Stream2−KD
Stream5−CC
Stream5−KD
Stream12−CC
Stream12−KD

Figure 4.17: Number of false changes detected using CC and KD

234

0 50 100 150

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

Mean Duration of Detecting True Changes

Stream2−CC
Stream2−KD
Stream5−CC
Stream5−KD
Stream12−CC
Stream12−KD

Figure 4.18: Mean duration for detecting true changes using CC and KD

0 50 100 150 200

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

SD of Durations for Detecting True Changes

Stream2−CC
Stream2−KD
Stream5−CC
Stream5−KD
Stream12−CC
Stream12−KD

Figure 4.19: Standard deviation of duration for detecting true changes
using CC and KD

235

−200 0 200 400 600 800 1000

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

Max of Durations for Detecting True Changes

Stream2−CC
Stream2−KD
Stream5−CC
Stream5−KD
Stream12−CC
Stream12−KD

Figure 4.20: Max duration for detecting true changes using CC and KD

From these results, it can be seen that the proposed control chart
approach can detect more true distribution changes than KD for all stream
types. The control chart approach also detects less false changes than KD
for stream types Stream5 and Stream12. The number of false detections
of KD is slightly less than control chart approach. Both techniques have
comparable true change detection durations. Hence, it can be concluded
that the proposed approach outperforms KD on the overall performance
of detecting changes in these three stream types.

One major reason why KD in general detects less true changes and
more false changes than control chart approach is, to make an accurate
estimation of the kernel density of a data set, the size of this data set must
be sufficiently large, e.g., with at least thousands of data. Hence, when a
data set contains only 100 data elements, the kernel estimation is highly
unreliable and, hence, the performance of KD decreases. In contrast, a
control chart based approach that only focuses on key features of the
stream can generate change detection results with high precision and low
recall using small samples. This is one major advantage of control chart
based approach.

236

Note that KD is a generic approach that can detect all kinds of distrib-
ution changes. Hence, it may have better performance than the proposed
control chart if the type of changes in the stream is not mean changes.
The time complexity of multi-dimensional kernel estimation is O(dn2),
where d is the number of dimensions and n is the size of data set. The
worst-case time complexity of detecting changes in a data stream S using
KD approach is O(dn3), where n is the total number of data in S. Hence,
KD may not be applicable for data streams with high arrival rate. In con-
trast, as discussed in Section 4.3.3, the proposed approach has worst-case
time complexity O(d3n). Since n is usually significantly larger than d, the
proposed control chart has worst-case run time complexity significantly
lower than KD and, thus, is more suitable for streaming data.

4.6 Summary

Distribution change detection for multi-dimensional data streams is im-
portant, but difficult. Most of the proposed change detection techniques
are only suitable for streams in single-dimensional environments. We ex-
tend the control chart approach proposed in Chapter 3 and develop a new
technique for detecting mean changes of data streams with multiple di-
mensions. A multi-dimensional control chart is built to monitor the data
stream. If the mean value of a current sample set falls beyond the control
limit, then a distribution change is reported. This proposed control chart
technique is efficient with promising performance as demonstrated by the
experiments.

237

Chapter 5

Mining Frequent Itemsets in
Time-Changing Streams

Mining frequent itemsets in data stream applications is beneficial for a
number of purposes such as knowledge discovery, trend learning, fraud
detection, transaction prediction and estimation [41, 63, 104]. In this
chapter, a false-negative oriented technique, called TWIM, is proposed.
The proposed technique can find most of the frequent itemsets, detect
distribution changes, and update the mining results accordingly for dy-
namic data streams.

5.1 Motivation

The problem of mining frequent itemsets has long been recognized as im-
portant for many applications such as fraud detection, trend learning,
customer management, marketing and advertising. However, the char-
acteristics of stream data – unbounded, continuous, fast arriving, and
time-changing – make this a challenging task. Existing mining techniques
that focus on relational data cannot handle streaming data well [50].

The problem of mining frequent items has been extensively studied
[23, 36, 41, 75]. The common assumptions are that the total number of

239

items is too large for memory-intensive solutions to be feasible. Mining
frequent items over a data stream under this assumption still remains an
open problem. However, the task of mining frequent itemsets is more
difficult than mining frequent items. Even when the number of distinct
items is small, the number of itemsets could still be exponential in the
number of items, and maintaining frequent itemsets requires considerable
more memory.

Mining frequent itemsets is a continuous process that runs throughout
a data stream’s life-span. Since the total number of itemsets is exponen-
tial, it is impractical to keep statistics for each itemset due to bounded
memory. Therefore, usually only the itemsets that are already known to
be frequent are recorded and monitored, and statistics of other infrequent
itemsets are discarded. However, since the distribution of a data stream
can change over time, an itemset that was once infrequent can become fre-
quent if the stream changes its distribution. Detecting such changes is an
important task, especially for online applications, such as leak detection,
network monitoring, and decision support.

Since it is not feasible to maintain all itemsets, it is difficult to detect
frequent itemsets when distribution changes happen. Furthermore, even if
these itemsets can be detected, it is not possible to obtain their statistics
(supports), since mining a data stream is a one-pass procedure and his-
tory information is irretrievable. Distribution changes over data streams
might have considerable impact on the mining results; however, few of the
previous works have addressed this issue.

A number of techniques have recently been proposed for mining fre-
quent itemsets over streaming data. However, as will be discussed in Sec-
tion 5.3, these techniques have problems in meeting common requirements
for processing dynamic data streams: ability to process large numbers of
itemsets in real time, low (preferably minimum) memory usage, and ability
to cope with time varying distributions.

A new algorithm, called TWIM, is proposed for mining frequent item-
sets in real time. TWIM can also predict the distribution change and
update the mining results accordingly. The proposed approach maintains
two tumbling windows over a data stream: a maintenance window and a

240

prediction window. All current frequent itemsets are recorded and main-
tained in the maintenance window, and the prediction window is used to
keep track of candidates that have the potential of becoming frequent if
the distribution of stream values changes. Every time the windows tum-
ble, we check if new frequent itemsets and candidates should be added,
and if some existing itemsets and candidates need to be removed from the
lists. Since statistics are not kept for every itemset within the windows,
memory usage is limited. Experimental results show that while TWIM is
as effective as previous approaches for non-time-varying data streams, it
is superior to them since it can also capture the distribution change for
time-varying streams in real-time.

5.2 Preliminaries

The stream of interest for mining frequent itemsets are transactional data
streams, where each data element corresponds to a transaction. Exam-
ples of such transaction-based data streams include online commerce, web
analysis, banking, and telecommunications applications, where each trans-
action accesses a set of items from a certain item pool, such as inventory,
customer list, or a list of phone numbers.

Let I = {i1, i2, ..., in} be a set of items. A transaction Ti accesses a
subset of items Ii ⊆ I. Let T = {T1, T2, ..., TNt} be the set of transactions
at time t. Nt is the total number of transactions received up to time t.
The data stream that contains T is denoted as ST . Note that the number
of items, n, is finite and usually is not very large, while the number of
transactions, Nt, will grow monotonically as time progresses.

Definition 6.1. Given a transaction Ti ∈ T , and a subset of items
Aj ⊆ I, if Ti accesses Aj, i.e., Aj ⊆ Ii, we say Ti supports Aj.

Definition 6.2. Let sup(Ai) be the total number of transactions that
support Ai. If SUP (Ai) = sup(Ai)/Nt > ν, where ν is a predefined
threshold value, then Ai is a frequent itemset in S under current distrib-
ution. SUP (Ai) is called the support of Ai.

Example 1. Consider a data stream S with T = {T1, T2, T3, T4, T5} at

241

time t and a set of items I = {a, b, c, d}. Let I1 = {a, b, c}, I2 = {a, b, c, d},
I3 = {c, d}, I4 = {a}, and I5 = {a, c, d}. If threshold ν = 0.5, then the
frequent itemsets are A1 = {a},A2 = {c},A3 = {d},A4 = {a, c}, and
A5 = {c, d}, with supports SUP (A1) = SUP (A2) = 0.8, and SUP (A3) =
SUP (A4) = SUP (A5) = 0.6.

Let A = {A1,A2, ...Am} be the complete set of frequent itemsets in S
under current distribution. The ultimate goal of mining frequent itemsets
in data stream S is to find A in polynomial time with limited memory
space. However, it has been proven that the problem of finding A off-line
is NP-hard [109]. The following theorem proves that on-line updating A
for a data stream that grows in real-time is #P-hard.

Theorem 1 The problem of finding the complete set of frequent itemsets
A in a given transaction-based data stream S with threshold ν is #P-hard.

Proof If there exists an algorithm that can list all frequent itemsets A
in polynomial time, this algorithm should also be able to count the total
number of such frequent itemsets with the same efficiency. Thus, it suffices
to show that counting |A| for any given S and threshold ν is #P-hard.

Let n be the total number of items in I, and let Nt be the total number
of transactions at time t. Construct a n×Nt matrix M . Each element Mk,j

in M is a Boolean value: Mi,j = 1 iff ik ∈ Tj, and Mi,j = 0 is otherwise.
Hence, there exists a one-to-one mapping between stream S and matrix
M .

Any n × Nt matrix M can be mapped to a monotone-2CNF formula
with Nt clauses and n variables. Therefore, the problem of counting |A|
can be reduced to the problem of counting the number of satisfying as-
signments for a monotone-2CNF formula using polynomial time.

It has been proven that the problem of counting the number of satisfy-
ing assignment of monotone-2CNF formulas with threshold ν is #P-hard
[106, 154]. Hence, counting |A| is a #P-hard problem. ¤

Note that in the proof, Nt does not have to be infinite and does not
even have to be a large number. Therefore, even if techniques such as
windowing that can reduce the number of transactions Nt are applied,

242

the problem of mining the complete set of frequent itemsets still remains
#P-hard. Furthermore, the size of the complete set of frequent itemsets
A can be exponential. An extreme case is that every transaction Tj in S
accesses I (i.e., ∀Tj ∈ Tt, Ij = I). For such cases, no algorithm can list
A using polynomial time and space. However, note that this proof holds
even for the cases where |A| is not exponential. Even when the actual size
of A is small, the time taken for searching for A is still exponential.

5.3 Related Work

Mining frequent items and itemsets is challenging and has attracted atten-
tion recently. Jiang and Gruenwald [74] provide a good review of the re-
search in frequent itemsets and association rule mining over data streams.

The problem of mining frequent items and approximating frequency
counts has been extensively studied [23, 36, 41, 75]. Much of the work
mainly considers the applications where total number of items in a stream
is very large and, therefore, under memory-intensive environments, it is
not possible to store a counter even for each of the items. However, the
problem of mining frequent items is much easier than the problem of
mining frequent itemsets. Even when the number of distinct items is
small, which is true for many applications, the number of itemsets could
be exponential.

One of the classical frequent itemset mining techniques for relational
DBMSs is Apriori [8], which is based on the heuristic that if one itemset is
frequent, then its supersets may also be frequent. Apriori requires multiple
scans over the entire data and, hence, cannot be directly applied in a
streaming environment. Many Apriori-like approaches for mining frequent
itemsets over streaming data have been proposed in literature [22, 29, 77],
and some of them can be applied on dynamic data streams. However, as
will be discussed in Section 5.4.2, Apriori-based approaches suffer from a
long delay when discovering large sized frequent itemsets and may miss
some frequent itemsets that can be easily detected using TWIM.

Yang and Sanver propose a naive approach that can only mine frequent
itemsets and association rules that contain only a few items (usually less

243

than three) [163]. When the sizes of potential frequent itemsets are over
three, this algorithm may take an intolerably long time to execute.

Manku and Motwani propose the Lossy Counting (LC) algorithm for
mining frequent itemsets [93]. LC quickly prunes itemsets with low fre-
quency and, thus, only frequent itemsets remain. Since LC has a very low
runtime complexity and is easy to implement, it is one of the most popular
stream mining techniques adopted in real-world applications. However, as
experimentally demonstrated by a number of studies, LC may not perform
well in practice [29, 36, 166], and is not applicable to data streams that
change over time.

Chang and Lee propose an algorithm named estDec for finding recent
frequent itemsets by setting a decay factor [21]. It is based on the insight
that historical data should play a less important role in frequency counting.
This approach does not have the ability to detect any itemsets that change
from infrequent to frequent due to distribution drifts.

Chi et al. present an algorithm called Moment [31], which maintains
closed frequent itemsets [159] using a tree structure named CET. The
Moment algorithm provides accurate results within the window and can
update the mining results when stream distribution changes. However,
Moment is not suitable for streams that change distributions frequently,
because there might be a long overhead for updating CET when new nodes
are added or an itemset is deleted. Furthermore, if the total number of
frequent itemsets is larger or their size is large, Moment could consume
much memory to store the tree structure and hash tables. Chang and Lee
also adopt a sliding window model to mine recent frequent itemsets [22],
which suffers from the same problem of large memory usage and may not
be feasible in practice.

Most of the techniques proposed in literature are false-positive ori-
ented, that is, the itemsets they find may not be truly frequent ones.
False-positive techniques may consume more memory and are not suit-
able for many applications where accurate results, even if not complete,
are preferred. Yu et al propose a false-negative oriented algorithm, called
FDPM, for mining frequent itemsets [166]. The number of itemsets mon-
itored in FDPM is fixed and, thus, memory usage is limited. However,

244

this approach cannot detect distribution changes in the stream, because
an itemset could be pruned long before it becomes frequent.

5.4 TWIM: Algorithm for Mining Time-

Varying Data Streams

We propose an algorithm, called TWIM, for detecting and and maintaining
frequent itemsets for any data stream. The proposed algorithm is false-
negative oriented: all itemsets that it finds are guaranteed to be frequent
under current distribution, but there may be some frequent itemsets that
it will miss. However, TWIM usually achieves high recall according to the
experimental results. Since it is a false-negative algorithm, its precision is
always 100%.

To detect distribution changes in time, a tumbling windows model is
applied on S (Section 5.4.1). When windows tumble, the supports of
existing frequent itemsets are updated. If a distribution change occurs
during the time span of the window, then some frequent itemsets may
become infrequent, and vice versa. In most previous techniques, itemsets
that are not frequent at the point when the check is performed are sim-
ply discarded. Since supports for only frequent itemsets are maintained,
infrequent itemsets that become frequent due to distribution change are
difficult to detect. Even if such itemsets can be detected somehow, since
the historical information is irretrievable, their estimated supports may be
far from the true values, which leads to poor precision. Therefore, TWIM
maintains a candidate list that contains a list of itemsets that have the
potential to become frequent when the distribution of S changes. Since
the supports for the candidates are maintained long before they become
frequent, their estimated supports have high accuracy. The problem of
predicting candidate itemsets and the procedure for reducing the size of
candidate lists to reduce memory usage are discussed in Section 5.4.2.

When windows tumble, the supports of all candidates are updated. If
a distribution change occurs, some infrequent itemsets are added to the
candidate list and some itemsets will be removed from the candidate list

245

according to certain criteria (Section 5.4.3). Candidates with supports
greater than ν are moved to the frequent itemset list.

The main TWIM algorithm is given in Algorithm 3. Each procedure
is expanded in the following subsections.

Algorithm 3 TWIM Algorithm

1: INPUT: Transactional data stream S
2: Tumbling window WM and WP

3: Threshold ν and λ
4: OUTPUT: A list of frequent itemsets A and their supports
5: A = Φ; C = Φ; Nt = 0;
6: sup(i1) = sup(i2) = ... = sup(in) = 0;
7: for all transaction Tk that arrives in S do
8: if WM is not ready to tumble then
9: Update the supports for all frequent itemsets and candidates

10: else
11: //Windows ready to tumble
12: Call MAINTAIN CURRENT FREQSETS;
13: //Move infrequent itemsets from A to candidates
14: Call DETECT NEW FREQSETS;
15: //Check if any itemset in candidate becomes frequent
16: Call MAINTAIN CANDIDATES;
17: //Add new candidates
18: Call UPDATE CANDIDATE SUP;
19: //update supports for all candidates
20: WM and WP tumble;
21: end if
22: end for

5.4.1 Tumbling windows design

For most real-life data streams, especially the ones with distribution changes,
recent data are more important than historical data. Based on this in-
sight, a tumbling windows model is adopted in TWIM to concentrate on
recently arrived data.

246

A time-based tumbling window WM , called the maintenance window,
is used to maintain existing frequent itemsets. A smaller WM is more
sensitive to distribution changes in S; however, it will also incur higher
overhead as the interval for updating frequent itemset lists and candidate
lists is shorter. While larger WM reduces the maintenance overhead, it
cannot detect sudden distribution changes.

Since data streams are time-varying, a frequent itemset can become
infrequent in the future, and vice versa. It is easy to deal with the first
case. Since counters for all frequent itemsets are maintained, the supports
for these frequent itemsets can be updated periodically (every time WM

tumbles). The counters of those itemsets that are no longer frequent will
be removed. However, in the latter case, since there is no information
about currently infrequent itemsets, it is difficult to tell when the status
changes. Furthermore, even if a new frequent itemset can be detected
somehow, its support cannot be estimated, as no history exists for it.

To deal with this problem, a second tumbling window WP , called the
prediction window, is defined on the data stream. WP moves together
with WM , aligning the window endpoints. It keeps history information for
candidate itemsets that have the potential to become frequent. The size
of WP is larger than WM and is predefined based on system resources, the
threshold ν, and the accuracy requirement of the support computation
for candidates. Note that we do not actually maintain WP ; it is a virtual
window that is only used to keep statistics. Hence, the size (time length)
of WP can be as large as required. A large prediction window can ensure
high accuracy of the estimated supports for candidate itemsets, resulting
in high precision. However, it cannot detect sudden distribution changes
and may consume more memory as there are more itemsets maintained in
the window. A smaller WP is more sensitive to distribution changes and
requires less memory, but the precision of the mining result may be lower.

Figure 5.1 demonstrates the relationship between maintenance window
WM and prediction window WP . In Figure 5.1, WM and WP are the win-
dows before tumbling, while W ′

M and W ′
P are the windows afterwards1.

1To discuss the maintenance and prediction windows before and after tum-
bling, WM and WP are used to denote the old windows before tumbling, and

247

When the end of WM is reached, it tumbles to the new position W ′
M . For

every iteration that WM tumbles, WP also tumbles. This is to ensure that
the endpoints of WM and WP are always aligned, so that frequent item-
sets and candidate itemsets can be updated simultaneously. Therefore,
in Figure 5.1, WP tumbles to its new position W ′

P even before its time
interval is fully spanned.

W’MWM

WP

W’P

S
t

t2t1

Figure 5.1: Tumbling windows for a data stream

Mining frequent itemsets requires keeping counters for all itemsets;
however, the number of itemsets is exponential. Consequently, it is not
feasible to keep a counter for all of them and, thus, only counters for the
following are maintained:

• A counter for each item ij ∈ I. Since the total number of items
n is small (typically less than tens of thousands), it is feasible to
keep a counter for each item. If each counter is four bytes, then
the memory requirement for storing all the counters usually will not
exceed 4 MB.

• A counter for each identified frequent itemset. As long as the thresh-
old value ν is reasonable (i.e., not too low), the number of frequent
itemsets will not be large.

W ′
M and W ′

P are used to denote the new windows after tumbling.

248

• A counter for each itemset that has the potential to become fre-
quent. These itemsets are called candidate itemsets2. The list of all
candidates is denoted as C. The number of candidate itemsets |C|
is also quite limited, as long as the threshold value λ (discussed in
Section 5.4.2) is reasonable.

If a frequent itemset becomes infrequent at some point, instead of
deleting it right away, it is moved from the set of frequent itemsets A to C,
and its counter is reset. However, this itemset is not removed immediately
in the event that it becomes frequent again soon, as will be explained in
more detail in Section 5.4.3. The counter for an itemset is removed only
when this itemset is removed from candidate list C.

5.4.2 Predicting candidates

To deal with the difficulties of determining which infrequent itemsets may
become frequent, a prediction stage is designed to generate a list of can-
didate itemsets C, which includes itemsets that are most likely to become
frequent. The prediction stage happens as WM and WP tumble, so that
statistics for these candidates can be collected within the new window W ′

P .

Any itemset Ai with λ ≤ SUP (Ai) < ν is considered a candidate and
included in C. Here λ is the support threshold for considering an itemset
as a candidate. Every time WP tumbles, all candidates in C are evaluated.
If the counter of one candidate itemset is below λ, it is removed from C
and its counter is released. λ is user defined: smaller λ may result in
a higher recall, but consumes more memory since more candidates are
generated; a high λ value can reduce memory usage by sacrificing the
number of resulting frequent itemsets. Thus, the λ value can be set based
on application requirements and available memory.

Every time WM and WP tumble, the counters of all candidates and
the supports of all items will be updated. If one candidate itemset Ai ∈ C
becomes frequent, then ∀Aj ∈ A, Ak = Ai ∪ Aj might be a candidate.

2The question of which itemsets are predicted to have such potential will be
discussed in the following sections.

249

Similarly, if one infrequent item r becomes frequent at the time the win-
dows tumble, then ∀Aj ∈ A, Ak = {r} ∪ Aj can be a candidate.

One simple solution is to add all such supersets Ak into the candidate
list C. However, this will result in a large increase of the candidate list’s
size, since the total number of Ak for each Ai or {r} can be |A| in the
worst case. The larger the candidate list, the more memory is required for
storing counters, and the longer it takes to update the list when WM and
WP tumble.

As indicated earlier, many existing frequent itemset mining techniques
for streams are derived from the popular Apriori algorithm [8]. When an
itemset Ai with size ni is determined to be frequent, Apriori makes multi-
ple passes to search for its supersets. In the first run (or in the streaming
case, the first time WM and WP tumble after Ai is detected), all its super-
sets with size ni +1 are added to the candidate list. The size of candidate
supersets increases by 1 at every run, until the largest itemset is detected.
This strategy successfully reduces the number of candidates; however, in
cases when the itemset size |I| is large, it may take an extremely long
time until one large frequent itemset is detected.

Example 2. Let I = {a, b, c, d, e}, where {a}, {b}, {c} and {d} are fre-
quent itemsets. Assume that, at the point when WM and WP tumble, item
e becomes frequent; hence, {e}’s immediate supersets {a, e}, {b, e}, {c, e}
and {d, e} will be regarded as candidates. If, by next time WM and
WP tumble, {a, e} is detected as frequent, then {a, b, e}, {a, c, e} and
{a, d, e} will be added to the candidate list. Assuming the largest item-
set {a, b, c, d, e} is actually a frequent itemset, it will take time 4 × |WM |
for this itemset to be detected. This delay could be unacceptably long
when the maintenance window size is large. Furthermore, the itemset
{a, b, c, d, e} may never be detected as frequent if the distribution of the
stream changes rapidly.

Another problem may occur for such Apriori-like approaches, as demon-
strated in the following example.

Example 3. Let I = {a, b, c, d}, where a and b are frequent items
and itemset {a, b} is the only candidate in C. Assume that the next
time windows tumble, SUP ({a, b}) < λ and, hence, itemset {a, b} will

250

be discarded from the candidate list C. Assuming t time later c becomes
a frequent item, and A will be {{a}, {b}, {c}}, and C = {{a, c}, {b, c}}.
If by the next run, both {a, c} and {b, c} are determined to be frequent,
then in the end A will be {{a}, {b}, {c} {a, c}, {b, c}, {a, b, c}}. Notice the
problem here: itemset {a, b} is not included in A. However, since {a, b, c}
is a frequent itemset, by definition, {a, b} must be frequent as well. The
problem occurs because {a, b} has been discarded long before. When
the distribution changes and {a, b} turns from infrequent to frequent, it
cannot be added to the candidate list if {a} and {b} are in A all the
time. Although by simply adding all subsets of {a, b, c} in A, {a, b} can
be added back to the frequent itemset list, since Apriori-like approaches
only check the supersets of the existing frequent itemsets, the subsets of
existing frequent itemsets are not considered.

Continuing with Example 3, assume that item d becomes frequent at
time t′. Using Apriori-like approaches, it will take 3 × |WM | to detect
the frequent itemset {a, b, c, d}. Instead, however, if starting from the
current largest itemset in A, that is {a, b, c} in this example, then itemset
{a, b, c, d} is considered a candidate and can be detected as frequent next
time windows tumble. Hence, the time for detecting {a, b, c, d} is only
|WM |. By definition, the completeA can be obtained by simply computing
the power set of {a, b, c, d}minus null set φ. This approach minimizes both
the delay in detection and the size of the candidate list.

Definition 6.3. Given an itemset listA = {A1,A2, ...,Am}, for ∀A′ =
{A′

1,A′
2, ...,A′

r}, where A′
1,A′

2, ...,A′
r ∈ A, if A′

1 ∪ A′
2 ∪ ... ∪ A′

r = A1 ∪
A2 ∪ ... ∪ Am and r < m, then A′ is a cover set of A, denoted as AC .

For example, given itemset listA = {{a}, {b}, {c}, {d}, {a, b}, {a, b, c}},
AC = {{d}, {a, b}, {a, b, c}} is one cover set.

Definition 6.4. Given an itemset listA and all its cover setAC
1 ,AC

2 , ...,
AC

q , if |AC
s | = min(∀|AC

i |), where i = 1, ..., q, then AC
s is the smallest cover

set of A, denoted as ASC .

For example, the smallest cover set ASC of itemset list A = {{a}, {b},
{c}, {d}, {a, b}, {a, b, c}} is {{d}, {a, b, c}}.

When a candidate itemset or an infrequent item becomes frequent,
the candidate list can be expanded from either direction, i.e., combining

251

the new frequent itemset with all current frequent items in A or with the
smallest cover set of A. The decision as to which direction to follow de-
pends on the application. If the sizes of the potential frequent itemsets
are expected to be large, then the smallest cover set could be a better
option. In contrast, if small sized frequent itemsets are more likely, then
Apriori-like approaches can be applied. However, it is difficult to make
such predictions in many real-world scenarios, especially when the distri-
bution of the data streams is changing over time. Hence, a hybrid method
is applied in TWIM.

Hybrid approach for generating candidates

The proposed hybrid candidate prediction technique is as follows. At the
time WM and WP tumble:

• Step 1. Detect new frequent itemsets and move them from candi-
date set C into set of frequent itemsets A. At the same time, detect
any new frequent items and add them into A. This step will be
discussed in detail in Section 5.4.3.

• Step 2. Update A = A ∪ P(ASC)− φ, where P(ASC) is power set
of A’s smallest cover set. This step is for eliminating the problem
discussed in Example 3.

• Step 3. Detect itemsets in C whose supports have dropped below λ.
Replace each of these itemsets by its subsets of length one smaller
and remove it from C. For example, if itemset {a, b, c, d} is no longer
a candidate, then itemsets {a, b, c}, {a, b, d}, {b, c, d}, and {a, c, d}
are added into C, and {a, b, c, d} is removed. This process can be
regarded as the reverse process of a Apriori-like approach.

• Step 4. Set C = C − A. After Steps 2 and 3, there could be some
candidates that are already included in A and, hence, they are no
longer kept in the candidate list C.

• Step 5. Let Ai be a candidate itemset that becomes frequent, or
{r} where r is an item that turns from infrequent to frequent.

252

Step 5.1. ∀Ak = {r} ∪ Ai, where r ∈ (I − Ai) and {r} ∈ A, if Ak

is not in A, then Ak is a new candidate.

Step 5.2. ∀Aj ∈ (A−Ai)
SC , if Ak = Aj ∪Ai is not in A, then Ak

is a new candidate.

The following example demonstrate the hybrid candidate prediction
process:

Example 4. Let I = {a, b, c, d}, A = {{a}, {b}, {c}, {a, b}, {a, c},
{a, b, c}}, and C = φ. At the time WM and WP tumble:

Step 1. Assume that item d becomes frequent; hence, A = {{a}, {b}, {c},
{d}, {a, b}, {a, c}, {a, b, c}}.

Step 2. A = A ∪ P(ASC) − φ = A ∪ P({{d}, {a, b, c}}) − φ =
{{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Notice that itemset {b, c}
is added to A.

Steps 3 and 4. Since currently C = φ, these two steps are skipped.

Step 5. C = {{a, d}, {b, d}, {c, d}, {a, b, c, d}}.
After time |WM |, the two windows tumble again:

Case 1: SUP ({a, b, c, d}) ≥ λ and {a, b, c, d} becomes frequent.

Step 1.1. A = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, b, c},
{a, b, c, d}}.

Step 1.2. A = P({a, b, c, d})− φ.

Step 1.3. C = {{a, d}, {b, d}, {c, d}}.
Step 1.4. C = C − A = φ.

Step 1.5. All frequent itemsets are detected.

Case 2: SUP ({a, b, c, d}) < λ, and no new frequent itemset detected.

Step 2.1 and step 2.2. A remains unchanged.

Step 2.3. C = {{a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.
Step 2.4. Itemset {a, b, c} is removed from C, because it is already a

frequent itemset.

253

Step 2.5. No new frequent itemset detected and, thus, this step does
not apply.

Property: For each itemset Ai with size ni that moves from infre-
quent to frequent at tumbling point t, let CA be the list of new candidates
generated using the hybrid approach at Step 5. Let |CA| be the number of
itemsets in CA, and tA be the total time required for all frequent itemsets
in CA to be detected. It can be proven that |CA| + 2

|WM |tA ≤ 2m − ni,
where m is the total number of frequent items in A.

Notice that m, i.e., the number of frequent items, is determined by
the nature of the stream and is not related to the chosen mining method.
This property indicates that the time and memory usage of the proposed
hybrid candidate generation approach are correlated. They are bounded
to a constant that is not related to the size of minimal cover set ASC .
If, at time t, the size of CA is large (which indicates a large amount of
memory consumption), then based on this property, the time for detecting
all frequent itemsets in CA will be very short. In other words, large |CA|
value indicates a small tA. Note that once all the frequent itemsets are
detected, CA will be removed from C and, therefore, the large memory
usage only lasts for a short time period. In contrast, if it takes longer to
detect all frequent itemsets in CA, then the memory usage will be quite
limited. That is, |CA| must be small when tA is large. Hence, this nice
property guarantees that the overall memory usage of the proposed hybrid
approach is small, and its upper bound is only determined by the number
of frequent items in the stream.

Finding smallest cover set

The proposed candidate prediction technique uses smallest cover set of A
to discover the most number of frequent itemsets in the shortest time. An
approximate algorithm is proposed in this section that can find a good
cover set3 for a given frequent itemset list A efficiently in terms of both
time and memory. The proposed technique is described as follows:

3Informally, a good cover set is one with a small number of itemsets, and
the size of each itemset in this cover set is as large as possible. For example,
{{a, b, c}, {b, c, d}} is better than {{a, b, c}, {d}}, because if {b, c, d} is deter-

254

• Step 1. Let ASC = φ. Build a set of itemsets B = {B1,B2, ...,Bm}.
Let Bi = Ai for ∀Ai ∈ A.

• Step 2. Select the largest itemset Bk ∈ B, i.e., |Bk| = max(|Bi|),
∀Bi ∈ B, i = 1, ...,m. If there is a tie, then select the one with
larger corresponding itemset in A. In other words, if |Bk| = |Br| =
max(|Bi|) and |Ak| > |Ar|, where Ak and Ar are the corresponding
frequent itemsets of Bk and Br according to step 1, then select item-
set Bk. If the tie remains, then randomly select one of the largest
itemsets. Set ASC = ASC ∪ {Ak}.

• Step 3. For ∀Bi ∈ B, i = 1, ...,m, set Bi = Bi − Bk. Remove all
empty sets from B.

• Step 4. Stop if B = φ. Otherwise, go to step 2.

The following example demonstrates this smallest cover set algorithm:

Example 5. Let A = {{a, b, c}, {a, c, d}, {a, d, e}, {a}, {b}, {c}, {d},
{e}}.

Step 1. ASC = φ, and B = A.

Step 2. Select the largest itemset B1 = {a, b, c} ∈ B. ASC = {A1} =
{{a, b, c}}.

Step 3. B2 = {a, c, d} − {a, b, c} = {d}; B3 = {a, d, e} − {a, b, c} =
{d, e}. All the rest itemsets in B are empty. Hence, B = {B2,B3} =
{{d}, {d, e}}. Go to Step 2.

Step 2-2. Select the largest itemset B3 = {d, e} ∈ B. ASC = ASC ∪
{A3} = {{a, b, c}, {a, d, e}}.

Step 3-2. B = φ. Algorithm terminates. The final cover set of A is
{{a, b, c}, {a, d, e}}.

The run time of this algorithm in the worst case is (|A| − n)× |ASC |,
where n is the total number of frequent items in the stream. Hence, this
algorithm is very efficient in practice.

mined to be frequent, many subsets can be added into A.

255

Updating candidate support

For any itemset that changes its status from frequent to infrequent, instead
of being discarded immediately, it remains in the candidate list C for a
while in the event that distribution drifts back quickly and it becomes
frequent again.

Every time WM and WP tumble, C is updated: any itemset Ai ∈ C
with SUP (Ai) < λ along with its counter is removed, and new qualified
itemsets are added resulting in the creation of new counters for them.

For an itemset Ai that has been in the candidate list C for a long time,
if it becomes frequent at time tj, its support may not be greater than
the threshold ν immediately, because the historical transactions (i.e., the
transactions that arrive in the stream before tj) dominate in calculating
SUP (Ai). Therefore, to detect new frequent itemsets in time, historical
transactions need to be eliminated when updating SUP (Ai) for every
Ai ∈ C.

Every time WP tumbles, some of the old transactions expire from WP .
For any itemset Ai that remains in C, SUP (Ai) is updated to eliminate
the effect of those historical transactions that are no longer in WP .

WM and WP tumble every |WM | time units. At the time WM and
WP tumble, the transactions that expire from WP are those transac-
tions that arrived within the oldest |WM | time span in WP . Hence,
a checkpoint can be maintained every |WM | time intervals in WP , de-
noted as chk1, chk2, ..., chkq, where chk1 is the oldest checkpoint and q =
b|WP |/|WM |c. For each Aj ∈ C, the number of transactions arriving be-
tween chki−1 and chki that access Aj are recorded, denoted as supi(Aj).
At the time WM and WP tumble, transactions before checkpoint chk1

are expired from WP and sup(Aj) is updated as sup(Aj) = sup(Aj) −
sup1(Aj). Note that after tumbling, a new checkpoint is added and chk2

becomes the oldest checkpoint.

The procedures for maintaining candidate list C and updating candi-
date counters are given in Algorithm 4 and Algorithm 5, respectively.

256

Algorithm 4 MAINTAIN CANDIDATES

1: A = A ∪ P(ASC)− φ;
2: for all Ai ∈ C do
3: if S(Ai) < λ then
4: for all j ∈ Ai do
5: C = C ∪ ({Ai − {j}})
6: end for
7: C = C − {Ai};
8: remove sup(Ai); remove offset(Ai);
9: //the concept of offset is presented in the next section

10: end if
11: end for
12: C = C − A;
13: for all Ai = detect new freqset() do
14: for all {j} ∈ A and j /∈ Ai do
15: Ak = {j} ∪ Ai;
16: if Ak /∈ A then
17: C = C ∪ {Ak}; sup(Ak) = 0; offset(Ak) = Nt;
18: end if
19: end for
20: for all Aj ∈ ASC do
21: Ak = Aj ∪ Ai;
22: if Ak /∈ A then
23: C = C ∪ {Ak}; sup(Ak) = 0; offset(Ak) = Nt;
24: end if
25: end for
26: end for

257

Algorithm 5 UPDATE CANDIDATE SUP

1: for all Ai ∈ C do
2: sup(Ai) = sup(Ai)− sup1(Ai);
3: offset(Ai) = Nt;
4: end for
5: for all j = 2 to q = b|WP |/|WM |c do
6: chkj−1 = chkj; //expire the oldest point chk1

7: end for
8: Set all the records in chkq to 0;
9: //every time WM tumbles, a new checkpoint is added to WP

5.4.3 Maintaining current frequent itemsets and de-
tecting new frequent itemsets

Every time WM tumbles, support values for all the existing frequent item-
sets are updated. If the support of an itemset Ai drops below ν, then it
is moved from the set of frequent itemsets A to the candidate list C. The
counter used to record its frequency will be reset to zero, i.e., sup(Ai) = 0.
This is to ensure that Ai may stay in the candidate list for some time if
the distribution change is not rapid, as its history record plays a dominant
role in its support. By resetting its counter, the effect of historical trans-
actions is eliminated and its support is mainly determined by the most
recent transactions. This ensures that the decrease in its support can be
detected in a shorter time. During the time-span of WM , sup(Ai) will be
updated as each new transaction arrives. If SUP (Ai) < λ at the time
WM and WP tumble, Ai will be removed from the candidate list.

New frequent itemsets will come from either the infrequent items or
the candidate list. Since counters for all items i ∈ I are maintained, when
an item becomes frequent, it is easy to be detected and its support is
accurate. However, for a newly selected frequent itemset Ai that comes
from candidate list C, its support will not be accurate, as most of its
historical information is not available. If its support is still calculated
as SUP (Ai) = sup(Ai)/Nt, where Nt is the number of all transactions
received so far, this SUP (Ai) will not reflect Ai’s true support. Hence, an
offset for Ai, denoted offset(Ai), is applied that represents the number of

258

transactions that are missed in counting the frequency of Ai. Ai’s support
at any time t′ > t should be modified to SUP (Ai) = sup(Ai)/(Nt′ −
offset(Ai)), where Nt′ is the total number of transactions received at time
t′, as the data stream monotonically grows.

Because the counters of candidate itemsets are updated every time WM

and WP tumble to eliminate the history effect (as mentioned in Section
5.4.2), their offsets also need to be reset to the beginning of the new WP .

Figure 5.2 demonstrates the process of the offset being calculated. As-
sume that an itemset Ai is added to the candidate list at the beginning of
WP (time t) and a counter is created for it. At the time WM and WP tum-
ble (time t′), SUP (Ai) is evaluated to check if Ai should be moved to the
set of frequent itemsets A. Since Ai’s historical information before time
t is not available,Ai’s offset is adjusted to Nt. Hence, offset(Ai) = Nt,
where t is the timestamp when Ai starts being recorded.

WM

WP

Nt

isup(A)

SUP(A)i isup(A)offset(A)i offset(A)i

S

t

starts being recorded

= / (N − t)

Figure 5.2: Offset for itemset Ai

Note that the supports for such itemsets are no longer based on the
entire history, unlike all items that have been tracked throughout the
entire life-span of the stream. However, using supports that only depend
on recent history should not affect TWIM’s effectiveness. This is because
the data stream is continuous with a distribution that changes over time
and, hence, the mining results over such data stream is temporary – the

259

result at time t1 may not be consistent with the result at time t2 (t1 < t2).
Therefore, calculating supports using the entire history may not reflect
the current distribution correctly or promptly, not to mention the huge
amount of memory required for tracking the entire history for each itemset.
Experiments demonstrate that the proposed approach is sensitive to both
steady and slow changes, and rapid and significant changes, while the
existing techniques cannot perform well, especially for the latter case.

The procedures for maintaining A and detecting new frequent itemsets
are given in Algorithms 6 and 7, respectively.

Algorithm 6 MAINTAIN CURRENT FREQSETS

1: for all Ai ∈ A do
2: if sup(Ai)/(Nt − offset(Ai)) < δ then
3: C = C ∪ {Ai}; A = A− {Ai};
4: sup(Ai) = 0; offset(Ai) = Nt;
5: end if
6: end for

Algorithm 7 DETECT NEW FREQSETS

1: for all Ai ∈ C do
2: if sup(Ai)/(Nt − offset(Ai)) > δ then
3: A = A ∪ {Ai}; C = C − {Ai};
4: RETURN Ai;
5: end if
6: end for
7: for all j ∈ I do
8: if {j} /∈ A and sup(j)/Nt > δ then
9: A = A ∪ {j}; Ai = {j};

10: RETURN Ai;
11: end if
12: end for

260

5.5 Experiments

To evaluate TWIM’s performance, a set of experiments is designed. TWIM
is compared with three techniques: SW method [22], which is a sliding
window based technique suitable for dynamic data streams; FDPM [166]
approach, which is a false-negative algorithm; and Lossy Counting (LC)
[93] algorithm, which is a widely-adopted false-positive algorithm. De-
tails of these approaches have been discussed in Section 5.3. Since neither
FDPM nor LC has the ability to detect distribution changes, the experi-
ments are conducted in two stages. In the first stage, these algorithms are
compared over data streams without distribution change. In the second
stage, dynamic data streams are introduced.

The experiments are carried out on a PC with 3GHz Pentium 4 proces-
sor and 1GB of RAM, running Windows XP. All algorithms are imple-
mented using C++.

5.5.1 Effectiveness over streams with stable distrib-
ution

In these experiments, the effectiveness of the four algorithms is evaluated
over four data streams S1, S2, S3, S4 that is used in FDPM [166]. The total
number of different items in I is 1000, the average size of transactions in
T is eight, and the number of transactions in each data stream is 100,000.
Note that in real-world a data stream can be unbounded. However, none
of the algorithms will be affected by the total number of transactions as
long as the stream is sufficiently large.

The four streams S1, S2, S3, and S4 have Zipf-like distributions [171].
The lower the Zipf factor, the more evenly distributed are the data. A
stream with higher Zipf factor is more skewed. Since FDPM cannot deal
with time-varying streams, these testing data streams that we adopted
from FDPM do not have distribution changes. The objective of these
experiments is to test the performance of TWIM over streams with stable
distribution.

261

The sizes of the tumbling windows used in TWIM are user determined
based on the arrival rate of a data stream. The effect of different window
sizes is studied in Section 5.5.4. For ease of representation, the transaction
arrival rate for all data streams is fixed in these experiments. Hence, the
sizes of WM and WP can be represented using transaction counts.

The sizes of the two tumbling windows are |WM | = 500 transactions
and |WP | = 1500 transactions. The threshold values ν and λ are set
to 0.8% and 0.5%, respectively. The effect of these threshold values is
discussed in Section 5.5.2 and Section 5.5.4. The size of the sliding window
used in SW is the same as the size of WM in TWIM, i.e., 500 transactions.
The error parameter and reliability parameter used in FDPM and LC are
set to ν/10 and 0.1, respectively4. According to earlier experiments, this
setting can produce the best performance for FDPM and LC [93, 166].
The recall (R) and precision (P) results for all four techniques are shown
in Table 5.1.

Table 5.1: Recall and precision comparison of TWIM

Stream Zipf TWIM SW FDPM LC
R P R P R P R P

S1 0.8 0.68 1 0.71 0.74 0.69 1 1 0.52
S2 1.2 0.87 1 0.79 0.83 0.80 1 1 0.62
S3 2.0 0.93 1 0.92 0.95 0.95 1 1 0.84
S4 2.8 1 1 1 1 1 1 1 0.88

These results demonstrate that, FDPM and SW perform slightly better
than TWIM when the distribution of a data stream is close to uniform.
However, when Zipf is higher, the performance of TWIM is comparable to
FDPM and better than SW. When the stream is very skewed, TWIM, SW,
and FDPM can all find the exact answer. Note that although LC always
has a recall of 100%, its results are unreliable, especially for streams with
lower Zipf. These results demonstrate that TWIM performs at least as well

4The error parameter ε is used to control error bound. Smaller ε can reduce
errors and increase the recall of FDPM and LC. The memory consumption of
FDPM is reciprocal of the reliability parameter [166].

262

as existing algorithms on streams without distribution change. Although
the recall of FDPM is claimed to approach 100% at infinity [166], this
only holds when the stream has no distribution change during its entire
lifespan, which is a very strong and usually incorrect assumption for most
real-world applications.

5.5.2 Effect of threshold ν

This set of experiments evaluate the effectiveness of the four algorithms
with different values of threshold ν. For this set of experiments, λ is
set as ν − 0.3%. Note that threshold λ is mainly used to control the
size of candidate list C. As λ becomes smaller, more candidate itemsets
are selected, leading to a higher memory consumption. In contrast, a
larger λ may cause TWIM’s recall to decrease when mining a dynamic
data stream, because there are fewer candidates available. The effect
of different λ values on mining time-varying streams is demonstrated in
Section 5.5.4. Since the testing data stream in this set of experiment has
a steady distribution, the size of C should not affect the performance of
TWIM.

TWIM, SW, FDPM and LC are applied to data stream S2 (as in
the previous experiments) with Zipf 1.2, and ν value varies from 0.4%
to 2%. The results are shown in Table 5.2, which demonstrate that the
effectiveness of TWIM is comparable with FDPM when ν varies. TWIM’s
recall is improved with higher ν. This is because a high ν value indicates
that only itemsets with extremely high supports are considered frequent
itemsets. Such itemsets are distinctive from the rest and, thus, are easier
to be detected. Although SW always has a better recall than TWIM and
FDPM, its precision never reaches 100%. LC has a low precision even
when ν is high (2%).

5.5.3 Effectiveness over dynamic streams

To evaluate the effectiveness of these four algorithms over time-varying
data streams, several experiments are conducted.

263

Table 5.2: Results for varying ν value

ν TWIM SW FDPM LC
R P R P R P R P

0.4% 0.62 1 0.76 0.57 0.65 1 1 0.44
0.8% 0.83 1 0.85 0.81 0.80 1 1 0.62
1.2% 0.94 1 1 0.87 0.93 1 1 0.74
2% 0.98 1 1 0.99 1 1 1 0.77

We adopted the two data streams S5 and S6 used in SW [22]. Each
stream contains 1,000,000 transactions. On average, the number of items
in the transactions of S5 and S6 is five. Both of the streams change their
distributions every 20,000 transactions. The distribution changes of S5

are steady and slow. It takes 4000 transactions for S5 to complete one
distribution change. Whereas S6 has faster and more noticeable changes:
only 800 transactions to change. The sizes of the two tumbling windows
are |WM | = 400 transactions and |WP | = 1500 transactions. Threshold
values ν and λ are 0.8% and 0.5%, respectively. The mining results after
each distribution change for S5 and S6 are given in Table 5.3 and Table
5.4.

Table 5.3: Mining results over S5

change # TWIM SW FDPM LC
R P R P R P R P

change 1 0.91 1 0.85 0.87 0.82 0.93 1 0.66
change 2 0.93 1 0.86 0.92 0.73 0.87 1 0.51
change 3 0.88 1 0.74 0.84 0.69 0.77 1 0.44
change 4 0.88 1 0.77 0.93 0.72 0.68 1 0.46
change 5 0.92 1 0.83 0.86 0.60 0.68 1 0.35

These results reveal that TWIM and SW adapt to time-varying data
streams, while neither FDPM nor LC is sensitive to distribution changes.
The more severe the changes, the worse is the performance of FDPM
and LC. Moreover, FDPM and LC’s performance decrease when more

264

Table 5.4: Mining results over S6

change # TWIM SW FDPM LC
R P R P R P R P

change 1 0.95 1 0.72 0.82 0.87 0.82 1 0.58
change 2 0.97 1 0.71 0.77 0.78 0.81 1 0.51
change 3 0.93 1 0.69 0.80 0.65 0.74 1 0.38
change 4 1 1 0.74 0.71 0.67 0.66 1 0.41
change 5 0.88 1 0.71 0.89 0.53 0.64 1 0.32

distribution changes occur in a stream, whereas TWIM and SW are not
affected by the number of changes. SW performs worse than TWIM in
both experiments. Mining results of TWIM over the stream with faster
and more noticeable distribution changes (S6) are better than the one that
changes slower (S5), while SW appears to be more suitable to slower and
mild changes. Note that as mentioned in Section 5.4.1, the mining results
of TWIM can be improved for such slow-drifting data streams by reducing
the sizes of WM and WP .

5.5.4 TWIM Parameter Settings

Effect of threshold λ

We test TWIM on the time-varying streams S5 and S6 described in Section
5.5.3, and vary λ from 0.4% to 1%. The sizes of WM and WP are 400
transactions and 1500 transactions, respectively. Threshold value ν is
fixed at 1.2%. The results are presented in Table 5.5 and Table 5.6.

According to the results, the performance of TWIM can be improved
by decreasing λ. However, as discussed in Section 5.4.2, a low λ value may
result in higher memory consumption. The extreme case is λ = 0. In this
case, all infrequent itemsets will be treated as candidates and, thus, the
total number of counters is exponential.

265

Table 5.5: Results for varying λ over S5

Change # λ (%)
0.4 0.6 0.8 1

R P R P R P R P

change 1 0.96 1 0.97 1 0.88 1 0.72 1
change 2 0.95 1 0.95 1 0.83 1 0.74 1
change 3 0.93 1 0.89 1 0.85 1 0.68 1
change 4 0.98 1 0.94 1 0.88 1 0.75 1
change 5 0.89 1 0.87 1 0.74 1 0.69 1

Table 5.6: Results for varying λ over S6

Change # λ (%)
0.4 0.6 0.8 1

R P R P R P R P

change 1 0.98 1 0.92 1 0.89 1 0.83 1
change 2 1 1 1 1 0.92 1 0.87 1
change 3 0.93 1 0.91 1 0.84 1 0.77 1
change 4 1 1 0.95 1 0.91 1 0.85 1
change 5 0.95 1 0.95 1 0.90 1 0.83 1

266

Varying window sizes

To evaluate the effect of tumbling window sizes, TWIM is tested on S5 and
S6 with |WM | varying from 200 to 1000 transactions, and |WP | varying
from 1000 to 4000 transactions. Threshold values ν and λ are 0.8% and
0.5%, respectively. The experimental results are shown in Tables 5.7 and
5.8. Since the precisions are always 100% for the proposed false-negative
approach, only the recall values are demonstrated in the tables.

Table 5.7: Varying |WM | and |WP | over S5

|WM | |WP | chg 1 chg 2 chg 3 chg 4 chg 5

200 1000 0.93 0.88 0.89 0.91 0.95
400 1500 0.87 0.92 0.85 0.88 0.90
600 2000 0.82 0.88 0.79 0.74 0.82
800 3000 0.75 0.73 0.72 0.67 0.69
1000 4000 0.68 0.72 0.66 0.64 0.61

Table 5.8: Varying |WM | and |WP | over S6

|WM | |WP | chg 1 chg 2 chg 3 chg 4 chg 5

200 1000 0.99 0.97 0.93 0.95 0.88
400 1500 0.94 0.97 0.91 1 0.87
600 2000 0.89 0.92 0.85 0.89 0.86
800 3000 0.82 0.84 0.79 0.86 0.77
1000 4000 0.78 0.81 0.81 0.75 0.73

These results reveal that larger windows size may reduce TWIM’s re-
call, since sudden distribution changes will be missed. However, note that
as mentioned in Section 5.4.1, large windows ensure high accuracy of the
estimated supports for candidate itemsets.

267

5.5.5 Memory usage

The major memory requirements for TWIM are the counters used for all
items, frequent itemsets, and candidates. To reflect the memory usages of
the proposed approach, the maximal numbers of counters that are create
for each experiment are reported as follows.

Table 5.9 presents the memory usage of TWIM, FDPM, and LC for
mining data sets S1, S2, S3 and S4. Given that each counter takes four
bytes, the memory requirement for mining these data streams using TWIM
is around 60 KB. According to Table 5.9, the memory consumed by SW
is about four times of TWIM’s memory usage. TWIM uses slightly more
memory than FDPM, and LC consumes the least memory.

Table 5.9: Maximal counters for mining S1 - S4

Stream Maximal Counters
TWIM SW FDPM LC

S1 11892 47606 8478 7129
S2 14533 59438 10128 8722
S3 18002 71040 13502 11346
S4 16115 56442 11764 10098

Table 5.10 indicates TWIM’s memory usage for the experiments in
Section 5.5.4. It demonstrates that the memory consumption of TWIM is
inversely correlated to threshold λ. The maximum memory consumption
is around 228 KB for S5 and 191 KB for D6.

Table 5.10: Maximal counters when λ varies

Stream λ (%)
0.4 0.6 0.8 1

Max Counter-S5 64432 47210 36778 32002
Max Counter-S6 51301 42676 35209 28123

To evaluate the effect of window sizes on memory usage, we present in
Table 5.11 the maximum number of counters created for experiments in
Section 5.5.4.

268

Table 5.11: Maximum counters when |WM | and |WP | varies

|WM | |WP | max Counter - S5 max Counter - S6

200 1000 42398 39901
400 1500 50006 44872
600 2000 56020 51922
800 3000 59891 54646
1000 4000 65335 59043

The maximum memory usage for mining S5 and S6 are around 251KB
and 225KB, respectively. These results show that larger windows sizes
result in more counters to be used. Furthermore, the number of counters
used for a stream with slow distribution changes is greater than the number
of counters for a stream that changes fast.

5.5.6 CPU time analysis

Since TWIM is a window-based approach while neither FDPM nor LC
use windows, it is difficult to fairly compare their CPU times. However,
to demonstrate that TWIM is efficient for high-speed data streams, a set
of experiments is conducted.

By analyzing Algorithm 3, it is clear that TWIM performs the greatest
amount of work when |WM | and |WP | tumble. Hence, the average run time
of TWIM at each tumble point is tested for streams S1 to S6. The results
are demonstrated in Table 5.12. These results indicate that TWIM is an
efficient algorithm suitable for online streams. Notice that streams with
distribution changes (S5 and S6) require slightly longer processing time,
because A and C are updated more frequently.

Table 5.12: CPU time for TWIM

Streams S1 S2 S3 S4 S5 S6

Average run time (ms) 3.3 4.0 2.5 3.7 5.3 5.9

269

5.6 Summary

Mining frequent itemsets is important for many real-world applications.
Many existing techniques do not support dynamic data streams. A novel
false-negative orientated algorithm, called TWIM, for change detection
and mining frequent itemsets is proposed in this chapter. This approach
has the ability to detect distribution changes in a data stream and update
mining results in real-time.

TWIM uses two tumbling windows to maintain current frequent item-
sets and to predict distribution changes. A list of candidate itemsets is
generated and updated during mining. The candidates are the itemsets
that have the potential to become frequent if distribution changes. Every
time the two tumbling windows move, both the candidate list and frequent
itemset list are updated. Candidates that become frequent are moved to
the frequent itemset list, new candidates are added, and itemsets that
no longer have supports greater than threshold value λ are removed. Un-
like most existing algorithms that are false-positive oriented, the proposed
approach produces only true frequent itemsets and requires less memory.
Experimental results demonstrate that TWIM has promising performance
on mining data streams with or without distribution changes.

270

Chapter 6

Conclusions

Many of today’s applications generate data in the form of continuous,
fast-arriving, and time-changing streams. Mining dynamic data streams
for knowledge discovery has become increasingly important. However,
traditional data mining techniques that make multiple passes over data or
that ignore distribution changes are not suitable for dynamic data streams.
New techniques that are efficient to run in real-time, that only require
one-pass of the stream, and that are sensitive to distribution changes are
desired.

6.1 Summary of work

This thesis focuses on developing techniques for mining time-changing
data streams. One of the major differences that distinguish data stream
mining from traditional data mining is that mining data streams is a con-
tinuous process that lasts over the entire life-span of the stream. The ever-
changing distribution of a dynamic data stream makes the stream mining
task difficult, because once the underlying distribution that generates the
data in the stream changes, the data mining model built previously may
no longer be accurate or efficient, and the previous mining results may be
invalid for the new distribution. Hence, distribution change detection is a
fundamental problem for dynamic data stream mining.

271

Two techniques are proposed in this thesis aiming to solve the prob-
lem of distribution change detection in streaming data (Chapter 3). These
techniques are not tied to specific stream mining tasks and can be gener-
alized to detect changes in generic data streams. Existing stream mining
approaches that are only suitable for streams with stable distributions can
support dynamic data streams by adopting the proposed techniques.

The first approach is designed to represent the distribution that gen-
erates the data in the stream using a small data set. Two windows, a
reference window and a observation window, are used to maintain data
sets that represent the current and new distributions of the stream. An
intelligent merge-and-select sampling approach is proposed that can dy-
namically update the reference window. The small data set in the ref-
erence window can represent the current distribution of the stream with
high accuracy. Since many existing statistical tools require a large amount
of sample data to estimate the distribution, with this proposed approach,
the accuracy of change detection techniques that adopt these statistical
tools can be improved.

We also proposed a framework for mining streams with periodically
occurring distributions. Once a distribution change is detected, the new
distribution is compared with all preserved ones to determine if it is a re-
occurring distribution. Identifying such periodic distributions can greatly
reduce the data mining time, since previous mining results on the same
distribution can be directly output as the new mining results.

The second approach aims to detect mean and standard deviation
changes in the distributions of a stream. This technique detects distribu-
tion changes efficiently with high accuracy by using control charts. Data
elements of the stream are continuously fed into the control charts and
the distribution change is monitored by control limits. This control chart-
based approach can detect both fast and severe distribution shifts and
slow and steady distribution drifts with satisfying performance.

Data elements in different data streams can have various forms and
each data element may contain multiple attributes (dimensions). In many
real-world applications, dimensions in the stream are correlated. Detecting
distribution changes for such multi-dimensional streams is more difficult

272

because of these correlations. Very few multi-dimensional change detec-
tion techniques over data streams have been proposed in literature. We
observe that, by using a covariance matrix to represent the correlations
among all dimensions, the proposed control chart-based approach can
be extended to detect distribution changes in multi-dimensional streams
(Chapter 4).

Although ad-hoc approaches lack the flexibility to be plugged into any
data mining processes, they can obtain better performance by taking ad-
vantages of previous mining results and of special features of the streams.
Therefore, we study one of the most important mining tasks, frequent
itemset mining, and develop a mining technique for this task.

The major difficulty of mining frequent itemsets in dynamic data streams
is that data stream can be scanned in only one-pass. Non-frequent item-
sets are not monitored due to memory concerns and, hence, once the dis-
tribution changes, it is impossible to check if a non-frequent itemset has
become frequent following the change. A frequent itemset mining tech-
nique that maintains a list of candidate itemsets is proposed (Chapter
5). The candidates are the non-frequent itemsets that have the poten-
tial to become frequent if the distribution changes. These candidates are
generated by a set of heuristics and are updated when new sets of data ele-
ments arrive. Candidates that become frequent are output as new mining
results, new candidates are added according to the heuristics, and item-
sets that are no longer qualified as candidates are removed from the list.
This false-negative approach demonstrates promising performance in the
experiments.

6.2 Directions for future research

This research can be extended along the following directions.

• Automatic window size setting.

Many of the proposed techniques in the thesis adopt window models
to obtain data elements and to control the time intervals at which

273

change detection and mining processes to be triggered. The sizes of
the windows used in these techniques are important parameters that
affect the performance. In the current work, these parameters are
assigned to be user-specific. This requires the users to have certain
level of knowledge on the data stream and the mining technique.
Ideally, the window size should be set automatically and can be
adjusted based on the mining results. Although the issue is discussed
and experiments are presented, there is still human involvement.
Hence, a possible future research topic is to automatically tuning
the windows size.

• Determining number of partitions for representative set selection.

Currently, the number of partitions k for selecting representative
set in Chapter 3 is user defined. However, as has been discussed in
Chapter 3, k value is determined by the “shape” of the distribution.
Smaller k should be chosen if the distribution is less “complex”, i.e.,
with less peaks and valleys, and vice versa. Hence, an algorithm
that estimates the “complexity” in the distribution would be useful
for setting k value. The design of such an algorithm is a possible
future research topic.

• Recognizing and eliminating noise.

The control chart-based change detection technique proposed in
Chapter 3 and its multi-dimensional extension in Chapter 4 are both
sensitive to noises. One of the possibilities for improving these ap-
proaches is to develop effective noise recognition and elimination
algorithms. However, it should be noted that outliers are not al-
ways noise and may contain critical information for some streaming
applications. Hence, different noise recognition algorithms should
be applied for certain types of streams.

• Mining k-th most frequent itemsets.

It has been proven in Chapter 5 that mining frequent itemsets in
dynamic data streams is an #-P problem and, hence, only approxi-
mate solutions exist. However, if the problem of finding all frequent
itemsets is reduced to the problem of finding the top-k most frequent

274

itemsets, then a polynomial algorithm that can generate exact re-
sults might be found. Further research work needs to be done to
provide theoretical proof of the existence (or non-existence) of such
solution, and to find the algorithm if it exists.

• Designing an experimental framework for evaluating the performance
of the proposed frequent itemsets mining technique.

Currently only six streams are used in the experiments of evaluating
the performance of the proposed frequent itemsets mining technique.
The number of sample streams is too few to make the experimental
results conclusive. An experimental framework is required to gen-
erate different stream types and large amount of streams of each
stream type for extensively studying the performance of the pro-
posed technique. The framework may have a similar form as the
ones designed in Chapter 3 and Chapter 4, where several stream
types are defined and 100 streams for each stream type is automati-
cally generated. The number of distribution changes, the time when
the changes occur, the type of distribution in a stream, the type of
distribution changes (i.e., distribution shifts or drifts), and the num-
ber of items in each transaction should be set as parameters that can
be tuned dynamically.

275

Bibliography

[1] G. Abdulla, T. Critchlow, and W. Arrighi. Simulation data as data
streams. ACM SIGMOD Record, 33(1):89–94, 2004.

[2] D. Adams. A model for parallel computations. Parallel Processor
Systems, Technologies, and Applications, pages 311–333, 1970.

[3] C. Aggarwal. A framework for diagnosing changes in evolving data
streams. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 575–586, 2003.

[4] C. Aggarwal. On change diagnosis in evolving data streams. IEEE
Trans. Knowledge and Data Eng., 17(5):587–600, 2005.

[5] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering
evolving data streams. In Proc. 29th Int. Conf. on Very Large Data
Bases, pages 81–92, 2003.

[6] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for projected
clustering of high dimensional data streams. pages 852–863, 2004.

[7] C. Aggarwal, J. Han, J. Wang, and P. Yu. On demand classification
of data streams. In Proc. ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 503–508, 2004.

[8] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proc. 20th Int. Conf. on Very Large Data Bases, pages
487–499, 1994.

277

[9] F. Aparisi and J. Garcia-Diaz. Design and optimization of ewma
control charts for in-control, indifference, and out-of-control regions.
Computers and Operations Research, 34(7):2096–2108, 2007.

[10] M. Ayers, D. Wolock, G. McCabe, L. Hay, and G. Tasker. Sensitivity
of water resources in the delaware river basin. US Geological Survey,
Open-File Report 92-52, 1994.

[11] S. Babu, K. Munagalat, J. Widom, and R. Motwani. Adaptive
caching for continuous queries. pages 118–129, 2005.

[12] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.
Fault-tolerance in the borealis distributed stream processing system.
ACM Trans. Database Sys., 33(1), 2008.

[13] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-
based load management in federated distributed systems. In Proc.
of the 1st conf. on Symposium on Networked Systems Design and
Implementation, page 15, 2004.

[14] M. Basseville and I. Nikiforov. Detection of Abrupt Changes: Theory
and Application. Prentice-Hall, 1993.

[15] R. Bellman. Dynamic programming. Princeton University Press,
1957.

[16] P. Bosman. Linkage information processing in distribution estima-
tion algorithms. In Proc. the Genetic and Evolutionary Computation
Conf. (GECCO), pages 60–67, 1999.

[17] L. Carbonara, H. Roberts, and B. Egan. Data mining in the telecom-
munications industry. Principles of Data Mining and Knowledge
Discovery, 1263:396, 1997.

[18] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Lo-
cally adaptive dimensionality reduction for indexing large time series
databases. ACM Trans. Database Sys., 27, 2002.

278

[19] S. Chandrasekaran and M. Franklin. Psoup: A system for streaming
queries over streaming data. The VLDB Journal, 12(2):140–156,
2003.

[20] J. Chang and H. Kum. Frequency-based load shedding over a data
stream of tuples. Journal of Information Science: an Int. Journal,
179(21):3733–3744, 2009.

[21] J. Chang and W. Lee. Finding recent frequent itemsets adaptively
over online data streams. In Proc. 9th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 487–492, 2003.

[22] J. Chang and W. Lee. A sliding window method for finding recently
frequent itemsets over online data streams. Journal of Information
Science and Engineering, 20:753–762, 2004.

[23] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent
items in data streams. In Proc. Int. Colloquium on Automata, Lan-
guages, and Programming, pages 693–703, 2002.

[24] M. Charikar, K. Chen, and R. Motwani. Incremental clustering and
dynamic information retrieval. In Proc. ACM Symp. on Theory of
Computing, pages 626–635, 1997.

[25] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming
algorithms for clustering problems. In Proc. ACM Symp. on Theory
of Computing, pages 30–39, 2003.

[26] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scal-
able continuous query system for internet databases. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 379–390, 2000.

[27] L. Chen and R. Ng. On the marriage of edit distance and lp-norms.
In Proc. 30th Int. Conf. on Very Large Data Bases, pages 792–803,
2004.

[28] L. Chen, T. Ozsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 491–502, 2005.

279

[29] J. Cheng, Y. Ke, and W. Ng. Maintaining frequent itemsets over
high-speed data streams. In Proc. Pacific-Asia Conf. on Knowledge
Discovery and Data Mining PAKDD, pages 462–467, 2006.

[30] M. Chernick. Bootstrap Methods, A practitioner’s guide. Wiley
Series in Probability and Statistics, 1999.

[31] Y. Chi, H. Wang, P. Yu, and R. Muntz. Moment: Maintaining closed
frequent itemsets over a stream sliding window. In Proc. 2004 IEEE
Int. Conf. on Data Mining, pages 59–66, 2004.

[32] Y. Chi, P. Yu, H. Wang, and R. Muntz. Loadstar: A load shedding
scheme for classifying data streams. In Proc. SIAM International
Conference on Data Mining, pages 1302–1305, 2005.

[33] F. Chiew and T. McMahon. Detection of trend or change in annual
flow of australian rivers. Int. Journal of Climatology, 13(6):643–653,
1993.

[34] K. Chuang, H. Chen, and M. Chen. Feature-preserved sampling over
streaming data. ACM Trans. Knowledge Discovery from Data, 2(4),
2009.

[35] G. Cormode and M. Garofalakis. Sketching streams through the
net: Distributed approximate query tracking. pages 13–24, 2005.

[36] G. Cormode and S. Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. In Proc. 22nd ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems,
pages 296–306, 2003.

[37] G. Cormode and S. Muthukrishnan. An improved data stream sum-
mary: The count-min sketch and its applications. Journal of Algo-
rithms, 55:29–38, 2004.

[38] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing
and mining inverse distributions on data streams via dynamic inverse
sampling. pages 25–36, 2005.

280

[39] F. David. The moments of the z and f distributions. Biometrika,
36:394–403, 1949.

[40] M. Gonzalez de la Parra and P. Rodriguez-Loaiza. Application of the
multivariate t2 control chart and the mason-tracy-young decompo-
sition procedure to the study of the consistency of impurity profiles
of drug substances. Quality Engineering, 16(1):127–142, 2003.

[41] E. Demaine, A. Lopez-Ortiz, and J. Munro. Frequency estimation
of internet packet streams with limited space. In Proc. 10th Annual
European Symposium on Algorithms, pages 348–360, 2002.

[42] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical
Society.

[43] J. B. Dennis. First version of a data flow procedure language.
Programming Symp., Lecture Notes Computer Science, 19:362–376,
1974.

[44] Q. Ding and W. Perrizo. Decision tree classification of spatial data
streams using peano count trees. In Proc. 2002 ACM Symp. on
Applied Computing, pages 413–417, 2002.

[45] P. Domingos and G. Hulten. Mining high-speed data streams. In
Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 71–80, 2000.

[46] J. Dy and C. Brodley. Feature subset selection and order identifi-
cation for unsupervised learning. In Proc. Int. Conf. on Machine
Learning, pages 247–254, 2000.

[47] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey of
rollback-recovery proto cols in message-passing systems. ACM Com-
puting Surveys, 34(3):375–408, 2002.

[48] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions.
Wiley-Interscience, 2000.

281

[49] W. Fan, Y. Huang, and P. Yu. Decision tree evolution using limited
number of labeled data items from drifting data streams. In Proc.
2004 IEEE Int. Conf. on Data Mining, pages 379–382, 2004.

[50] M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams:
A review. ACM SIGMOD Record, 34(2):18–26, 2005.

[51] J. Gama, P. Medas, and P. Rodrigues. Learning decision trees from
dynamic data streams. In Proc. 2005 ACM Symp. on Applied Com-
puting, pages 573–577, 2005.

[52] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams
under block evolution. SIGKDD Explorations, pages 1–10, 2002.

[53] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining
data streams: You only get one look a tutorial. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, page 635, 2002.

[54] E. Gatnar. A wrapper feature selection method for combined tree-
based classifiers. From Data and Information Analysis to Knowledge
Engineering, 3:119–125, 2006.

[55] P. Gibbons and S. Tirthapura. Estimating simple functions on the
union of data streams. In ACM Symposium on Parallel Algo. and
Architectures, pages 281–291, 2001.

[56] L. Golab and M. Ozsu. Issues in data stream management. ACM
SIGMOD Record, 32(2):5–14, 2003.

[57] L. Golab and M. Ozsu. Processing sliding window multi-joins in
continuous queries over data streams. pages 500–511, 2003.

[58] H. Gonzalez, J. Han, and D. Klabjan. Warehousing and analyzing
massive rfid data sets. In Proc. 22nd Int. Conf. on Data Engineering,
page 83, 2006.

[59] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 173–182, 1996.

282

[60] X. Gu, S. Papadimitriou, S. Yu, and S. Chang. Online failure fore-
cast for fault-tolerant data stream processing. pages 1388–1390,
2008.

[61] S. Guha, A. Meyerson, N. Mishra, and R. Motwani. Clustering data
streams: Theory and practice. IEEE Trans. Knowledge and Data
Eng., 15(3):515–528, 2003.

[62] F. Gustafsson. Adaptive filtering and change detection. Wiley, 2000.

[63] M. Halatchev and L. Gruenwald. Estimating missing values in re-
lated sensor data streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 83–94, 2005.

[64] Q. Hart and M. Gertz. Querying streaming geospatial image data:
The geostreams project. In Proc. 17th Int. Conf. on Scientific and
Statistical Database Management, pages 147–150, 2005.

[65] J. Hellerstein, W. Hong, and S. Madden. The sensor spectrum:
Techonology, trends, and requirements. ACM SIGMOD Record,
32(4):22–27, 2003.

[66] H. Hotelling. Multivariate quality control - illustrated by the air
testing of bombsights. Technics of Statistical Analysis, pages 111–
184, 1947.

[67] H. Huang and F. Chen. A synthetic control chart for monitoring
process dispersion with sample standard deviation. Computers and
Industrial Engineering, 49(2):221–240, 2005.

[68] S. Huang and Y. Dong. An active learning system for mining time-
changing data streams. Intelligent Data Analysis, 11(4):401–419,
2007.

[69] G. Hulten, L. Spencer, and P. Domingos. Mining time-chaning data
streams. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining, pages 97–106, 2001.

283

[70] A. Hyvarinen. Survey on independent component analysis. Neural
Computing Surveys, 2:94–128, 1999.

[71] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representa-
tive trends in massive time series data sets using sketches. In Proc.
26th Int. Conf. on Very Large Data Bases, pages 363–372, 2000.

[72] C. Isert and K. Schwan. Acds: Adapting computational data
streams for high performance. In Proc. of Int. Symposium on Par-
allel and Distributed Processing, page 641, 2000.

[73] J. Jackson. A User’s Guide to Principal Components. John Wiley
and Sons, 1991.

[74] N. Jiang and L. Gruenwald. Research issues in data stream associ-
ation rule mining. ACM SIGMOD Record, 35(1):14–19, 2006.

[75] R. Jin and G. Aggrawal. Efficient decision tree constructions on
streaming data. In Proc. 9th ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining, pages 571–576, 2003.

[76] J. Kang, J. Naughton, and S. Viglas. Evaluating window joins over
unbounded streams. pages 341–352, 2003.

[77] R. Karp, C. Papadimitriou, and S. Shenker. A simple algorithm for
finding frequent elements in sets and bags. ACM Trans. Database
Sys., pages 51–55, 2003.

[78] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. In Proc. 30th Int. Conf. on Very Large Data Bases, pages
180–191, 2004.

[79] P. R. Kosiniski. A data flow programming language for operating
systems. Proc. ACM Sigplan-Sigops Interface Meeting, 8(9):89–94,
1973.

[80] J. Kramer and B. Seeger. Pipes - a public infrastructure for process-
ing and exploring streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 925–926, 2004.

284

[81] J. Kramer and B. Seeger. Semantics and implementation of continu-
ous sliding window queries over data streams. ACM Trans. Database
Sys., 34(1), 2009.

[82] S. Kullback and R. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22(1):79–86, 1951.

[83] Y. Kwon, M. Balazinska, and A. Greenberg. Fault-tolerant stream
processing using a distributed, replicated file system. Proc. of the
VLDB Endowment, 1(1), 2008.

[84] P. J. Landin. The next 700 programming languages. Comm. of the
ACM, 9(3):157–166, 1966.

[85] P. Larranaga and J. Lozano. Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation. Kluwer Academic Pub-
lishers, 2002.

[86] M. Last. Classification of nonstationary data streams. Intelligent
Data Analysis, 6(2):129–147, 2002.

[87] R. Lawrence. Early hash join: A configurable algorithm for the
efficient and early production of join results. pages 841–852, 2005.

[88] A. Lerner and D. Shasha. The virtues and challenges of ad hoc +
streams querying in finance. Q. Bull. IEEE TC on Data Engineering,
26(1):49–56, 2003.

[89] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation
of time series, with implications for streaming algorithms. In Proc.
ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 2–11, 2003.

[90] X. Lin and J. Xu. Continuously maintaining quantile summaries of
the most recent n elements over a data stream. pages 362–374, 2004.

[91] J. Lucas and M. Saccucci. Exponentially weighted moving aver-
age control schemes: Properties and enhancements. Technometrics,
32:1–29, 1990.

285

[92] A. Manjhi, S. Nath, and P. Gibbons. Tributaries and deltas: efficient
and robust aggregation in sensor network streams. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 287–298, 2005.

[93] G. Manku and R. Motwani. Approximate frequency counts over
data streams. In Proc. 28th Int. Conf. on Very Large Data Bases,
pages 346–357, 2002.

[94] G. Manku, S. Rajagopalan, and B. Lindsay. Random sampling tech-
niques for space efficient online computation of order statistics of
large datasets. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 251–262, 1999.

[95] A. Markov. Extension of the limit theorems of probability theory
to a sum of variables connected in a chain. Dynamic Probabilistic
Systems, 1:552–577, 1971.

[96] A. Arasu et al. Stream: The stanford stream data manager. Q.
Bull. IEEE TC on Data Engineering, 26(1):19–26, 2003.

[97] A. Arasu et al. Linear road: A stream data management bench-
mark. pages 480–491, 2004.

[98] A. Arasu et al. The cql continuous query language: Semantic foun-
dations and query execution. The VLDB Journal, 15(2):121–142,
2006.

[99] A. Bifet et al. New ensemble methods for evolving data streams. In
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 139–148, 2009.

[100] B. Babock et al. Models and issues in data stream systems. In
Proc. 21st ACM SIGACT-SIGMOD-SIGART Symp. Principles of
Database Systems, pages 1–16, 2002.

[101] B. Babock et al. Maintaining variance and k-medians over data
stream windows. In Proc. Symposium on Principles of Database
Systems, pages 234–243, 2003.

286

[102] B. Park et al. Reservoir-based random sampling with replacement
from data stream. In Proc. SIAM International Conference on Data
Mining, pages 492–496, 2004.

[103] D. Abadi et. al. The design of the borealis stream processing engine.
pages 277–289, 2005.

[104] D. Cai et al. Maids: Mining alarming incidents from data streams.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
919–920, 2004.

[105] D. Carney et al. Monitoring streams - a new class of data man-
agement application. In Proc. 28th Int. Conf. on Very Large Data
Bases, pages 215–226, 2002.

[106] D. Gunopulos et al. Discovering all most specific sentences. ACM
Trans. Database Sys., 28(2):140–174, 2003.

[107] D. Terry et al. Continuous queries over append-only databases. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
321–330, 1992.

[108] E. Rundensteiner et al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. pages 1353–1356, 2004.

[109] F. Angiulli et al. On the complexity of inducing categorical and
quantitative association rules. Theoretical Computer Science,
314:217–249, 2004.

[110] J. Daniel et al. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, 2003.

[111] J. Hwang et al. High-availability algorithms for distributed stream
processing. pages 779–790, 2005.

[112] M. Chen et al. Path-based failure and evolution management. In 1st
Symposium on Network Systems Design and Implementation, pages
309–322, 2004.

287

[113] M. Gertz et al. A data and query model for streaming geospatial
image data. Lecture Notes in Computer Science, 4254:687–699, 2006.

[114] M. Hammad et al. Nile: A query processing engine for data streams.
page 851, 2004.

[115] M. Mazzucco et al. Merging multiple data streams on common keys
over high performance networks. In Proc. of ACM/IEEE Conf. on
Supercomputing, pages 1–12, 2002.

[116] M. Shah et al. Flux: An adaptive partitioning operator for contin-
uous query systems. pages 25–36, 2003.

[117] N. Tatbul et al. Load shedding in a data stream manager. pages
309–320, 2003.

[118] N. Tatbul et al. Retrospective on aurora. The VLDB Journal,
13(4):370–383, 2004.

[119] R. Agrawal et al. An interval classifier for database mining appli-
cations. In Proc. 18th Int. Conf. on Very Large Data Bases, pages
560–573, 1992.

[120] R. Motwani et al. Query processing, approximation, and resource
management in a data stream management system. pages 245–256,
2003.

[121] S. Chandrasekaran et al. Telegraphcq: Continuous dataflow
processing for an uncertain world. In Proc. 1st Biennial Conf. on
Innovative Data Systems Research, pages 269–280, 2003.

[122] S. Jeffery et al. A pipelined framework for on-line cleaning of sensor
data streams. page 140, 2006.

[123] S. Subramaniam et al. Online outlier detection in sensor data using
non-parametric models. In Proc. 32nd Int. Conf. on Very Large
Data Bases, pages 187–198, 2006.

288

[124] T. Dasu et al. An information-theoretic approach to detecting
changes in multi-dimensional data streams. In Proc. Symp. on the
Interface of Statistics, Computing Science, and Applications, pages
1–24, 2006.

[125] T. Dasu et al. Change (detection) you can believe in: Finding distri-
butional shifts in data streams. Lecture Notes in Computer Science,
5772:21–34, 2009.

[126] T. Johnson et al. Streams, security and scalability. In Proc. 19th
Annual IFIP Conf. on Data and Applications Security, pages 1–15,
2005.

[127] X. Song et al. Statistical change detection for multi-dimensional
data. In Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 667–676, 2007.

[128] L. Meyer-Waarden. The effects of loyalty programs on customer life-
time duration and share of wallet. Journal of Retailing, 83(2):223–
236, 2007.

[129] D. Montgomery. Introduction to statistical quality control. John
Wiley and Sons, 1996.

[130] S. Muthukrishnan, E. van den Berg, and Y. Wu. Sequencial change
detection on data streams. In Proc. IEEE Int. Conf. on Data Mining
Workshops, pages 551–560, 2007.

[131] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous
queries over distributed data streams. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 563–574, 2003.

[132] C. Ordonez. Clustering binary data streams with k-means. In ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pages 12–19, 2003.

[133] E. Parzen. On estimation of a probability density function and mode.
The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

289

[134] M. Pelikan. Hierarchical bayesian optimization algorithm: Toward
a new generation of evolutionary algorithms. Studies in Fuzziness
and Soft Computing, 170, 2005.

[135] H. Peng, F. Long, and C. Ding. Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1226–1238, 2005.

[136] Perlman and Java. Predictive mining of time series data in astron-
omy. Astronomical Data Analysis Software and Systems XII ASP
Conf. Series, 295:431–434, 2003.

[137] Q. Pham, N. Mouaddib, and G. Raschia. Data stream synopsis using
saintetiq. Lecture Notes in Computer Science, pages 530–540, 2006.

[138] B. Plale. Using global snapshots to access data streams on the grid.
In Lecture Notes in Computer Science, pages 191–201, 2004.

[139] P. Rosenbaum. An exact distribution-free test comparing two mul-
tivariate distributions based on adjacency. Journal of the Royal
Statistical Society: Series B, 67(4):515–530, 2005.

[140] J. Ross and N. Cliff. A generalization of the interpoint distance
model. Psychometrika, 29(2):167–176, 2006.

[141] C. Rueda and M. Gertz. Modeling satellite image streams for change
analysis. In Proc. of ACM Int. Symposium on Advances in Geo-
graphic Info. Systems, 2007.

[142] S. Salvador and P. Chan. Fastdtw: Toward accurate dynamic time
warping in linear time and space. In Proc. KDD Workshop on Min-
ing Temporal and Sequential Data, pages 561–580, 2004.

[143] J. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel
classifier for data mining. In Proc. 22th Int. Conf. on Very Large
Data Bases, pages 544–555, 1996.

290

[144] W. Shewhart. Statistical Method from the Viewpoint of Quality Con-
trol. Dover Publications Inc., 1987.

[145] G. Shorack and J. Wellner. Empirical processes with applications to
statistics. John Wiley & Sons Inc, 1986.

[146] B. Silverman. Density Estimation. Chapman & Hall, 1986.

[147] R. Stephens. A survey of stream processing. Acta Informatica,
34(7):491–541, 1997.

[148] M. Stonebraker, U. Cetintemel, and S. Zdonik. The 8 requirements
of real-time stream processing. ACM SIGMOD Record, 34(4):42–47,
2005.

[149] M. Sullivan and A. Heybey. Tribeca: A system for managing large
databases of network traffic. In Proc. USENIX Annual Technical
Conf., page 2, 1998.

[150] Y. Tao and T. Ozsu. Efficient decision tree construction for mining
time-varying data streams. In Proc. Conf. of the Centre for Ad-
vanced Studies on Collaborative research (CASCON), pages 43–57,
2009.

[151] F. Tian and D. DeWitt. Tuple routing strategies for distributed
eddies. pages 333–344, 2003.

[152] N. Tracy, J. Young, and R. Mason. Multivariate control charts for
individual observations. Journal of Quality Technology, 24(2):88–95,
1992.

[153] Y. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream
databases: A control-based approach. pages 787–798, 2006.

[154] L. G. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing, 8(3):410–421, 1979.

[155] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar mul-
tidimensional trajectories. In Proc. 18th Int. Conf. on Data Engi-
neering, pages 673–684, 2002.

291

[156] A. Wald. Sequential Analysis. Dover Publications, 2004.

[157] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting
data streams using ensemble classifiers. In Proc. 9th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, pages 226–
235, 2003.

[158] H. Wang, C. Zaniolo, and C. Luo. Atlas: A small but complete sql
extension for data mining and data streams. pages 1113–1116, 2003.

[159] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strate-
gies for mining frequent closed itemsets. In Proc. 9th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, pages 236–245,
2003.

[160] W. Wang, M. Sharaf, S. Guo, and M. Ozsu. Potential-driven load
distribution for distributed data stream processing. In Proc. of the
2nd Int. Workshop on Scalable Stream Processing System, pages 13–
22, 2008.

[161] K. S. Weng. Stream orientated computation in recursive data flow
schemas. In Project MAC Technical Memo 69, 1975.

[162] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 407–418, 2006.

[163] L. Yang and M. Sanver. Mining short association rules with one
database scan. In Proc. Int. Conf. on Information and Knowledge
Engineering, pages 392–398, 2004.

[164] M. Yang and J. Yang. Control chart pattern recognition using semi-
supervised learning. In Proc. 7th WSEAS Int. Conf. on Applied
Computer Science, pages 272–276, 2007.

[165] Y. Yao and J. Gehrke. Query processing for sensor networks. In Proc.
1st Biennial Conf. on Innovative Data Systems Research, pages 233–
244, 2003.

292

[166] J. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false neg-
ative: Mining frequent itemsets from high speed transactional data
streams. In Proc. 30th Int. Conf. on Very Large Data Bases, pages
204–215, 2004.

[167] M. Fazel Zarandi, A. Alaeddini, and I. Turksen. A hybrid fuzzy
adaptive sampling - run rules for shewhart control charts. Journal
of Information Science: an Int. Journal, 178(4):1152–1170, 2008.

[168] P. Zhang, X. Zhu, and Y. Shi. Categorizing and mining concept drift-
ing data streams. In Proc. ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 812–820, 2008.

[169] S. Zhang and Z. Wu. Designs of control charts with supplemen-
tary runs rules. Computers and Industrial Engineering, 49(1):76–97,
2005.

[170] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thou-
sands of data streams in real time. In Proc. 28th Int. Conf. on Very
Large Data Bases, pages 358–369, 2002.

[171] G. K. Zipf. Human behavior and the principle of least-effort.
Addison-Wesley, 1949.

293

