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Abstract

Optimal investment decisions often rely on assumptions about the models and their associ-
ated parameter values. Therefore, it is essential to assess suitability of these assumptions
and to understand sensitivity of outcomes when they are altered. More importantly, appro-
priate approaches should be developed to achieve a robust decision. In this thesis, we carry
out a sensitivity analysis on parameter values as well as model specification of an important
problem in portfolio management, namely the optimal portfolio execution problem. We then
propose more robust solution techniques and models to achieve greater reliability on the
performance of an optimal execution strategy.

The optimal portfolio execution problem yields an execution strategy to liquidate large
blocks of assets over a given execution horizon to minimize the mean of the execution cost
and risk in execution. For large-volume trades, a major component of the execution cost
comes from price impact. The optimal execution strategy then depends on the market price
dynamics, the execution price model, the price impact model, as well as the choice of the
risk measure.

In this study, first, sensitivity of the optimal execution strategy to estimation errors in
the price impact parameters is analyzed, when a deterministic strategy is sought to minimize
the mean and variance of the execution cost. An upper bound on the size of change in the
solution is provided, which indicates the contributing factors to sensitivity of an optimal
execution strategy. Our results show that the optimal execution strategy and the efficient
frontier may be quite sensitive to perturbations in the price impact parameters.

Motivated by our sensitivity results, a regularized robust optimization approach is devised
when the price impact parameters belong to some uncertainty set. We first illustrate that
the classical robust optimization might be unstable to variation in the uncertainty set. To
achieve greater stability, the proposed approach imposes a regularization constraint on the
uncertainty set before being used in the minimax optimization formulation. Improvement in
the stability of the robust solution is discussed and some implications of the regularization
on the robust solution are studied.

Sensitivity of the optimal execution strategy to market price dynamics is then investi-
gated. We provide arguments that jump diffusion models using compound poisson processes
naturally model uncertain price impact of other large trades. Using stochastic dynamic pro-
gramming, we derive analytical solutions for minimizing the expected execution cost under
jump diffusion models and compare them with the optimal execution strategies obtained
from a diffusion process.

A jump diffusion model for the market price dynamics suggests the use of Conditional
Value-at-Risk (CVaR) as the risk measure. Using Monte Carlo simulations, a smoothing
technique, and a parametric representation of a stochastic strategy, we investigate an ap-
proach to minimize the mean and CVaR of the execution cost. The devised approach can
further handle constraints using a smoothed exact penalty function.
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Chapter 1

Introduction

1.1 Overview

On May 6, 2010, over about 30 minutes, the price of US stock market indices, stock-index
futures, and options suddenly dropped by more than 5%, and rebounded rapidly. This short
period of extreme intraday volatility (see plot (a) in Figure is referred to as the Flash
Crash (Kirilenko et al. 2010). In the course of this extreme market volatility, a large sell
program was executed in the June 2010 E-mini S&P 500 futures contract (see plot (b) in
Figure . This trade has been considered a main trigger for the Flash Crash.

According to the joint report of Commodity Futures Trading Commission (CFTC) and
Securities and Exchange Commission (SEC) (see e.g., (Kirilenko et al. 2010)) at 2:32 p.m.
(EDT) on May 6, 2010, the mutual fund complex Waddell & Reed initiated a sell order of
75,000 E-mini S&P 500 futures contracts (valued at approximately $4.1 billion) in order
to hedge an existing equity position. The trader chose to execute this unusually large sell
program via an automated execution algorithm. This algorithm was programmed to feed
orders to target an execution rate of 9% of the trading volume calculated over the previous
minute, with no regard to price or time. As a result, the sell program was executed extremely
rapidly in just 20 minutes. Consequently, it incurred a large price impact and triggered a
sharp price decline. In order to prevent further price change, at 2:45 p.m. (EDT), trading
on the E-Mini paused for five seconds. After the market resumed trading, prices fluctuated
for a few seconds. However, after that, price of the E-mini began a rapid ascent until the
market got to the same price level where it was at 2:32 p.m. (EDT) when the rapid sell-off
began.

As [Kirilenko et al| (2010)) report, during the early moments of the sell program’s exe-
cution, some of the other investors provided liquidity. However, a few minutes later, they
aggressively sold contracts and competed for liquidity with the selling program. In this way;,
they further amplified the price impact of this program. The combined price pressure from
the sell program and other trades drove the price of the E-Mini down.



The Flash Crash incident clearly demonstrates the effect of the price impact from a trade
execution. It also indicates the importance of an execution algorithm in cost control and the
desirability of the execution algorithm to adapt to price changes.

Price impact often represents the largest portion of the total transaction cost in large
trades. It is the difference between the execution price and what the market price would
have been in the absence of the transaction (Torre and Ferrari, |1997). Price impact mainly
consists of liquidity costs and information effects transmitted by the investor’s own trade.
Liquidity costs include additional prices an investor pays for immediate execution of the
trade; this is often called the temporary price impact and only affects the execution price
at the moment of trading. Furthermore the imbalance between supply and demand, due to
the investor’s trade, usually transmits information to the market which can move the future
market price. For example, selling a large block of an asset may suggest that the seller
believes the asset is overvalued. The effect of this information is often referred to as the
permanent price impact. The total price impact is the sum of the temporary and permanent
price impact.

Characteristics of the temporary and permanent price impact, as well as their distinctions,
have been addressed broadly in the literature, see, e.g., (Holthausen et al., [1990; |Chan and
Lakonishokl, 1993] 1995 |/Almgren and Chriss, 2000/2001; [Huberman and Stanzl, 2004)) and
the references herein. A common result of these studies is that the magnitude of the price
impact is a function of the trade size. This function is called the price impact function. The
expected price impact function is typically estimated through a linear or nonlinear regression
based on the available historical transaction data, see, e.g., (Almgren et al., [2005).

Due to the dependence of the price impact on the trading volume, portfolio managers
usually split a large trade into smaller partial orders, called packages. They then submit
these partial orders gradually over several periods. Such a sequence of trades submitted over
a finite trading horizon is called an execution strategy. The size of each package can still
be large enough to induce a significant price change (Gabaix et al., [2006). There are many
possible execution strategies to complete a desired trade, each of which is associated with an
execution cost. Execution strategies which suggest to trade quickly over first periods incur
a large execution cost and low risk. In contrast, more evenly paced execution strategies
yield a smaller execution cost and higher risk. Therefore, a delicate balance must be struck
between risk and cost. Given a permanent and temporary price impact model, along with
the market price dynamics and execution price model, the problem of controlling risk and
cost of executing a trade is called the optimal portfolio execution problem. Estimating and
controlling execution cost and risk is essential to portfolio management, particularly for
institutional traders, who often trade in large sizes.

Since the market price in the absence of an execution is not observable and must be
predicted, price impact cannot be directly measured. Furthermore, future price impact
needs to be forecasted based on historical execution prices. As a result estimating the price
impact and the execution cost associated with an execution strategy is challenging, see, e.g.,
(Torre and Ferrari, |1997; Bessembinder, 2003). For example, to obtain a reliable estimate,
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large statistical samples over an extended time horizon are required. However, as investors
typically avoid costly trades, they are not included in the trade data. Therefore estimates
from the trade data may systematically underestimate price impacts. Moreover, the level of
information available for assets is unequal; information about heavily traded assets is more
available than that of thinly traded assets. Furthermore, cross effect of price impacts among
different assets should be regarded.

In addition, simultaneous estimation of the expected temporary and permanent price
impact of concurrent trades make the estimation process complex. Thus modeling and
estimating price impact of the investor’s own trade as well as that of concurrent trades is
a very difficult task. Therefore, the obtained estimations are likely to be erroneous. These
estimation errors and their effect on the optimality of an obtained execution strategy must
be investigated and taken into account when seeking an optimal strategy. The present thesis
investigates this issue.

1.2 Contributions

In this thesis, we study sensitivity of an optimal execution strategy and its performance to
variations in the price impact of the investor’s own trade and the market price specification.
We then propose more robust solution techniques and models to achieve greater reliability on
the performance of the optimal strategy. The main contributions of the thesis are threefold.

Firstly, we analyze sensitivity of the optimal portfolio execution strategy and the efficient
frontier to estimation errors in the impact matrices. Here, we assume that the execution
strategy is deterministic and variance is used to measure the execution risk. Furthermore,
permanent and temporary price impact functions are assumed to be linear, which are defined
by permanent and temporary impact matrices. Our work in this area makes the following
contributions, presented in Chapter [3| and also in (Moazeni et al., [2010):

e We analyze several mathematical properties of the optimal portfolio execution problem.
In particular, we show that, instead of depending on the permanent and temporary im-
pact matrices individually, the optimal execution strategy is determined by a combined
impact matrix, which is a linear combination of the two matrices. We also prove that
the minimum expected execution cost strategy is the naive execution strategy, when
the permanent impact matrix is symmetric and the Hessian of the objective function
is positive definite. Thus perturbations which maintain symmetry in the permanent
impact matrix and positive definiteness in the Hessian of the objective function do not
change the optimal strategy.

e We then provide upper bounds on the size of change in the optimal execution strategy
in a more general setting. These upper bounds are in terms of change in the impact
matrices, the eigenvalues of a block tridiagonal matrix defined by the combined impact
matrix, the risk aversion parameter, and the covariance matrix. These upper bounds
suggest the contributing factors to sensitivity of an optimal execution strategy.
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e The change in the efficient frontier increases as the risk aversion parameter decreases
for asymmetric perturbations. We consistently observe that imposing no-buying con-
straints for a sell execution or maintaining symmetry in the permanent impact matrix
decreases sensitivity of the optimal execution strategy and the efficient frontier to per-
turbations.

Secondly, to take into account of estimation errors in the impact matrices and to obtain
a more robust optimal execution strategy, we adopt a regularized robust optimization. Our
contributions in this area, presented in Chapter |4 and also in (Moazeni et al., |2011b)), are as
follows:

e One of the concerns in robust optimization is determining the uncertainty set and
potential instability of the approach to small changes in the uncertainty set. We
illustrate potential instability of the robust optimization approach to perturbation in
the uncertainty set for the optimal portfolio execution problem when impact matrices
are uncertain.

e We then propose a reqularized robust optimization approach for the optimal portfolio
execution problem which offers better stability properties than the classical robust
solution. Given any compact and convex uncertainty set for price impact matrices, we
construct a reqularized uncertainty set by including a regularization constraint. The
regularization constraint is a linear matrix inequality defined by the Hessian of the
objective function and a reqularization parameter.

e Several implications of this regularization on the regularized robust solution and the
robust efficient frontier are proved and computationally illustrated.

Thirdly, we analyze how the optimal execution strategy changes with the market price
model specification, under the assumption that an optimal strategy can be dynamically
adjusted. In particular, to obtain a more accurate estimation for the execution cost, we
propose a jump model for the market price to capture permanent price impact of other
concurrent large trades. A jump diffusion process for the market price can capture the
characteristics of tail distributions due to price impact from institutional trades. Our main
contributions in this area, which are presented in Chapter |5 and also in (Moazeni et al.,
2011a)), are as below:

e We provide arguments that compound jump diffusion processes naturally model un-
certain price impact of other large trades. We explicitly model the jump component,
using two compound Poisson processes where random jump amplitudes capture uncer-
tain permanent price impact of other large buy and sell trades.

e Using stochastic dynamic programming, we derive analytical solutions for minimizing
the expected execution cost under jump diffusion models. Our results indicate that,



when the expected market price change is nonzero, likely due to large trades, assump-
tions on the market price model can have significant impact on the optimal execution
strategy.

e We analyze qualitative and quantitative differences of the expected execution cost and
risk between optimal execution strategies, determined under a multiplicative jump
diffusion model and an additive jump diffusion model.

In addition, under a jump diffusion process for the market price, a risk measure which
captures the fat tail characteristics of the execution cost distribution is more appropriate.
However, computing optimal stochastic portfolio execution strategies under an appropriate
risk consideration presents many computational challenges. To obtain a stochastic (market
price dependent) execution strategy under a mean-CVaR objective, we devise a computa-
tional technique based on smoothing and parametric rules. Our main contributions in this
area, presented in Chapter @ and also in (Moazeni et al., [2011c), are summarized as below:

e We apply a smooth and parametric approach to minimize mean and Conditional Value-
at-Risk (CVaR) of the execution cost, using Monte Carlo simulations. The proposed
approach reduces computational complexity by smoothing the nondifferentiability aris-
ing from the simulation discretization and by employing a parametric representation
of a stochastic strategy.

e We further handle constraints using a smoothed exact penalty function.

e Using a downside risk as an example, we illustrate that the proposed approach can be
generalized to other risk measures. In addition, we analyze the effect of including risk
consideration on the optimal execution strategy.

1.3 Structure of the Thesis

The thesis is structured as follows. Chapter [2| presents the mathematical formulation of the
optimal portfolio execution problem and reviews several main results from the literature.
Chapter|3|analyzes in detail sensitivity of the optimal execution strategy and its cost and risk
to estimation errors in parameters of the price impact functions. Our proposed regularized
robust optimization approach is described in Chapter [4. Sensitivity of the optimal execution
strategy to the market price model is discussed in Chapter [5 where a jump model is also
proposed to model uncertain price impact of other concurrent large trades. In Chapter
[6] we propose a method for solving the stochastic mean-CVaR optimal portfolio execution
problem, using smoothing and parametric rules. Main conclusions of the thesis and some
directions for future work are presented in Chapter [7]



Chapter 2

The Optimal Portfolio Execution
Problem

This chapter presents the mathematical formulation for the optimal portfolio execution prob-
lem. Since the mathematical analysis for buying and selling are similar, without loss of
generality, here we assume that the investor’s goal is to liquidate blocks of assets. Orders
are placed before price changes are known, and only market orders are considered.

2.1 Mathematical Formulation

Assume that an investor plans to liquidate his holdings in m assets during N periods in the
time horizon T, to =0 < t; < --- <ty =T, Whereréftk—tk_l = % for k=1,2,...,N.
The investor’s position at time ¢ is denoted by the m-vector xy = (x1x, Tox, - . - ,a:mk)T, where
Zi, 18 the investor’s holding in the ith asset at period k. The investor’s initial position is
2o = S, and his final position zy equals 0, which guarantees complete liquidation by time
T. The amount of trading in the kth period, denoted by an m-vector nyg, is the difference
between positions at two consecutive times t;_; and t;, where

N = Tp—1 — Tk, k:1,2,...,N. (211)
Negative n;;, implies that the ¢th asset is bought between t,_; and t;. We refer to a sequence
{ny }2¥_ satisfying Zgil ni = S as an execution strategy.

Let Py be the execution price of one unit of assets at time ¢, for K =1,2,..., N. Due to
price volatility and price impacts, P, is not deterministic over the execution horizon. Given
the temporary price impact function h(-), we assume that the m-vector unit execution price
P, is given by

ﬁk:P,H—h(%), k=1,2,...,N, (2.1.2)
T
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where the m-vector P, denotes market price per share at time ¢,. The deterministic initial
market price is denoted by Fy. Similar to (Almgren and Chriss| [2000/2001)), we assume that
the permanent price impact of the decision maker’s trade is a deterministic function of the
trading rate, denoted by ¢ (+), and

ny,

Pk:fk_l(Pk_l)—Tg< ) k=12, N—1, (2.1.3)

.
where Fj_1(Py_1) represents the market price at time ¢, when the decision maker does not
trade in (tg_1, ], e.8., Fr—1(Pr—1) = Pr_1+3&, with & a multi-variate standard normal, and
¥ the volatility matrix of the asset prices. Random price Fj_1(Pgx_1) at time t; can also be
specified by other models which can correspond to a jump diffusion model (Merton), [1976)) or
a stochastic volatility model (Heston, 1993)). The permanent price impact function captures
the permanent price impact per unit of time and multiplying by 7 in (2.1.3)) represents the
permanent impact within (tx_1, tx].

The functions g(-) and h(-) measure the expected permanent price impact and temporary
price impact, respectively. There are only a few studies about the structure of the price
impact functions. Theoretical analysis in (Brown et al., 2004)) indicates that the temporary
price impact function is monotonically increasing in size, but it is approximately a square root
over small trades and logarithmic for large trades. [Huberman and Stanzl (2004) show that
when the price impact of trades is assumed to be time-independent, only linear permanent
price impact functions can support viable market prices; nonlinear permanent price impact
functions can give rise to a sequence of trades that generates infinite expected profits per
unit of risk. However, the temporary price impact function can be of a more general form. It
has been frequently stated in the literature that the temporary price impact function should
be concave, see, e.g., (Almgren et al., |2005) and the references therein. Moreover, empirical
studies have argued that permanent price impact costs for buying and selling are different,
and there is an asymmetry in the overall impact of buys and sells; the permanent price
impact of buys is larger than that of sells, see, e.g., (Chan and Lakonishok, 1993; Saar, 2001)
and the references therein.

Literature on the optimal portfolio execution problem frequently assumes a linear price
impact model, see, e.g., (Bertsimas and Lo, [1998; Bertsimas et al.,|1999; Almgren and Chriss,
2000/2001; Huberman and Stanzl, 2004). Throughout the thesis, we consider linear time-
independent price impact functions in which price impacts at each interval (tx_1,t;| are

assumed to be proportional to the trading rate v = =*:

g(v) = G,

W) — Ho, (2.1.4)

where H and G are m-by-m matrices, referred to as the temporary and permanent impact
matrices. These impact matrices H and G are the expected price depressions caused by
trading assets at a unit rate.

We assume model ([2.1.4) mainly for the following reasons. First, it captures both the
permanent and temporary price impacts of large trades, while being simple enough to allow



for a mathematical analysis. Second, it has been used in many theoretical studies, e.g.,
(Almgren and Chriss|, 2000/2001; Almgren and Lorenzl, 2007; |Carlin et al., 2007; [Schied and
Schoonebornyl, 2008)).

Using the impact matrices H and G, we define a matrix ©, frequently used later on:

oL mynm —c. (2.1.5)

-
Subsequently, we refer to © as the combined impact matrix.

Given an execution strategy {nj}i_,, the total amount received at the end of the time
horizon T' equals Z]kvzl n;f]—:’k. The difference between this quantity and the value of an ideal
benchmark trade is the ezecution cost (Almgren|, 2010). The benchmark is commonly taken
as the value of the portfolio at the arrival price Fy. Thus, the execution cost of a trade is
often defined as v

k=1
Market volatility and uncertainty in price impact of trades over the trading horizon 7" make
predicting the exact value of the execution cost corresponding to an execution strategy
impossible. Whence, the execution cost is uncertain. To decrease risk one can trade more
rapidly, which will increase the execution cost due to the limited liquidity of markets. Thus,
there is a tradeoff between risk and the cost of trading. This tradeoff can be expressed in a
mean and risk setting with a risk aversion parameter p > 0, as below:

N N
min  E (P{S—anﬁk> +u-0 <P§S—anﬁk> (2.1.6)
TN k=1 k=1
N

s.t. anzg,

k=1

where E(-) denotes the expectation of a random variable and W(-) is some risk measure. The
risk aversion parameter u expresses the tolerance level of the decision maker to risk. A large
value of 1 corresponds to the investor’s small tolerance to risk.

Alternatively problem (2.1.6) can be formulated in terms of the positions {z;}_, as in
the following:

N N
min E (POTS - Z(xk_l - .Tk)Tpk;) +pu- ¥ (POTS - Z(xk_l - zk)Tﬁ’k> (2.1.7)
N
k=1

TO,T1 5+, T
k=1

s.t. Tro — g,
N = 0.

We refer to solutions of problems (2.1.6)) and (2.1.7)) as an optimal execution strategy and
optimal positions, respectively.



Problems (2.1.6]) or (2.1.7) may include some other constraints to reflect regulation con-
straints or the investor’s preferences. For example, to forbid purchases in a sell execution, the
constraints ny > 0 or xx_; > x) can be included in problems (2.1.6) and ([2.1.7)), respectively.

The most obvious strategy is to sell at a constant rate over the whole liquidation period.
We refer to this strategy as the naive (execution) strategy,

ng=—, k=1,2--,N. (2.1.8)

2|C/)|

This execution strategy is an important benchmark since it is optimal under some simple
model assumptions.

The optimal portfolio execution problem, with variance as the risk measure, shares a
similar mathematical structure with the traditional multi-period mean-variance portfolio
optimization problem when a transaction cost is associated with rebalancing the portfolio.
In both problems, given some fixed number of investment periods and the initial portfolio,
the goal is to produce a sequence of trades that maximizes some expected utility of the final
wealth and minimizes risk. However, in the classical multi-period mean-variance portfolio
optimization problem, permanent price impacts of the trades are not modeled. Moreover, the
optimal portfolio execution problem includes a specific constraint on the investor’s portfolio
position at the end of the trading time horizon.

The similarity of the optimal portfolio execution problem to the mean-variance portfolio
optimization problem motivates the notion of an efficient frontier in the context of the
optimal portfolio execution problem. A feasible execution strategy is efficient if it has the
least expected execution cost among all execution strategies with the same variance of the
execution cost. The collection of efficient execution strategies yield the (mean-variance)
efficient frontier of the execution strategy universe. The notion of efficient frontier can also
be extended to other risk measures.

Next we review the recent literature on the optimal portfolio execution problem.

2.2 Related Literature

There is a large body of literature on the optimal portfolio execution problem, see, e.g.,
(Huberman and Stanzl, [2004)) or (Almgren, 2010), and references therein.

The effect of large trades on a market have been studied empirically by several authors
starting with (Kraus and Stoll, |1972), who utilized data from the New York Stock Exchange,
see also (Chan and Lakonishok; 1993, 1995; Keim and Madhavan, |{1996,|1997; (Chiyachantana
et al., [2004). They generally find that execution of large orders exerts both permanent and
temporary price impact.

Bertsimas and Lo| (1998) study minimizing the expected execution cost of acquiring
large amounts of a single asset for several price impact models. Using stochastic dynamic
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programming, they provide closed form representations for the optimal execution strategy.
Their work is extended to portfolios of assets in (Bertsimas et al., [1999)).

More advanced execution strategies under a risk consideration are presented in (Almgren
and Chriss, (1999, [2000/2001)), where a weighted sum of mean and variance of the execution
cost is minimized. Almgren and Chriss| (2000/2001) assume that permanent and temporary
price impact functions are linear and market price evolves according to an additive diffusion
process. Their approach assumes that the optimal execution strategy does not depend on the
market price and is deterministic. This work is extended to nonlinear price impact functions
in (Almgren) 2003)). Linear price impact functions and the optimization framework presented
in (Almgren and Chriss, 2000/2001) are adopted and further studied by Jondeaua et al.
(2007). They use the tick-by-tick data from Paris Stock Exchange to estimate (deterministic
but time-varying) temporary and permanent price impact functions. They then obtain the
optimal execution strategy and study some characteristics of the solution as a function of
the permanent price impact, the temporary price impact, and standard deviation of the
underlying market price process.

A potential disadvantage of the Almgren-Chriss approach is that trading positions do
not dynamically depend on the asset price movement. Assuming a slightly different price
dynamics than (Almgren and Chriss, [2000/2001), Huberman and Stanzl (2005) provide a
closed-form solution for the dynamic execution strategy which minimizes mean and variance
of the execution cost. The use of dynamic programming to minimize mean and variance of
the execution cost is further studied in (Moazeni, 2011). There, a sufficient condition on the
existence of the dynamic programming equation for the optimal portfolio execution problem
with a mean-variance objective is provided.

Optimal execution in a continuous-time framework has also been studied, mostly to trade
a single asset. Related work includes (Subramanian and Jarrow, 2001; He and Mamaysky),
2005; \Vath et al., 2007; [Forsyth), [2010; Draviam et al., 2010). (Ting et al.,|2007) extends the
work (Bertsimas and Lo, [1998) to the continuous-time setting by providing closed form solu-
tion for minimizing the expected execution cost through solving a Hamilton-Jacobi-Bellman
equation. They solely consider temporary price impact and assume that market price fol-
lows a Brownian motion. Their optimal execution strategies confirm that greater liquidity
requires more gradual liquidation. Infinite-horizon optimal execution cost problem in the
continuous-time setting, with a linear price impact model and an additive price dynamics,
is considered in (Schied and Schooneborny], [2008). They assume that the investor seeks to
maximize the expected utility of her cash position after liquidation of holdings in an asset.
A wide range of utility functions have been considered. To determine the adaptive execution
strategy, a stochastic control approach is used to characterize the value function and a solu-
tion. A mean-variance framework of the problem in the continuous-time setting to execute
a single asset in the absence of permanent price impact is addressed by |Almgren| (2009). In
this work, variance is approximated with an expected value, which then allows the use of
stochastic dynamic programming. A similar setting with a diffusion market price process
and a linear temporary price impact function is considered by |Almgren and Lorenz| (2007)).
They propose an adaptive strategy to minimize mean and variance of the execution cost.
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The derivation of the adaptive strategy relies on a parameter which depends on the price
impact parameter, risk aversion parameter, and volatility. At each time, the static strategy
to minimize mean and variance of the execution cost is computed and its objective function
value is evaluated. Depending on the interval which contains the objective function value,
the parameter is readjusted and the optimal strategy corresponding to the new parameter
value is computed.

To take into account price impact of other market participants’ trading activities, |Alm-
gren and Lorenz (2006) present a single asset market price model for the optimal execution
cost problem. The model is a Brownian motion with drift, where the drift factor follows
a normal distribution and is to capture trading targets of other market participants. They
then provide a closed form representation for the optimal execution strategy to minimize the
expected execution cost.

Optimal execution by modeling the underlying limit order book has also been studied
previously, see, e.g., (Alfonsi et al., 2010) and the references therein.

In the aforementioned literature, different models and parameter values are assumed. It
is important to analyze sensitivity of the optimal execution strategy and its performance
to these assumptions. It is further beneficial to devise methods to alleviate this sensitivity.
This is indeed the focus of this thesis.
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Chapter 3

Optimal Execution Strategies and
Sensitivity to Price Impact Matrices

3.1 Introduction

Sensitivity of mean-variance efficient portfolios to estimation errors in the expected returns
and the covariance matrix has been widely studied in the literature, see, e.g., (Jobson and
Korkie, 1980; Kallberg and Ziembal, [1984; [Frost and Savarino|, [1988; Michaud) [1989; |Best and
Grauer, 1991} |Broadie, [1993; |Chopra and Ziembay, [1993; |Chen and Zhao, [2003). However, to
the best of our knowledge, sensitivity of the optimal execution strategy and efficient frontier
to estimation errors in the permanent and temporary price impact functions has not been
addressed yet. For the mean-variance portfolio optimization, the difficulty in accurate esti-
mation of the expected rate of returns is well known. As discussed in Chapter [I] estimating
price impacts is rather challenging. Furthermore, literature dealing with ways to improve the
estimation of price impact functions is scarce. Therefore, it is important to understand the
sensitivity of an optimal execution strategy and the efficient frontier to errors in parameters
of the price impact functions. Recognizing the effect of estimation errors may provide more
realistic expectations about the future performance of a chosen execution strategy.

A common approach to investigate the effect of estimation errors is to interpret the errors
as perturbations to the data and to perform a sensitivity analysis on the solution. Sensitivity
discussions are essential in model validation. In this chapter, we carry out sensitivity analysis
to study the effect of estimation errors in the impact matrices on the optimal execution
strategy and the efficient frontier.

In addition to the impact matrices, the structure of the optimal portfolio execution prob-
lem in the mean-variance setting depends on the covariance matrix of asset prices. Estimation
errors can also occur in the covariance matrix. However, in contrast to the impact matrices,
there is an extensive literature on techniques to improve the estimation of the covariance
matrix, see, e.g., (Disatnik and Benninga, 2007) and the references therein. Furthermore,
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most of the recent literature on addressing estimation risks in the mean-variance portfolio
optimization focus exclusively on the impact of estimation errors in the mean return by tak-
ing the covariance matrix as known, see, e.g., (TerHorst et al., 2006; Garlappi et al., 2007}
Antoine, 2008). Therefore, in this study, we assume that the covariance matrix is given, and
we mainly focus on sensitivity of the optimal execution strategy and the efficient frontier to
perturbations in the impact matrices. As in (Almgren and Chriss, 2000/2001), our discus-
sion in this chapter assumes that optimal strategy is deterministic and market price evolves
according to an additive diffusion process.

We first show that the optimal execution strategy depends on the combined impact
matrix © given in (2.1.5)), rather than H and G individually. This suggests that one may
want to estimate O directly in order to determine an optimal execution strategy. In addition,
we prove that when the permanent impact matrix is symmetric and the combined impact
matrix is positive definite, a unique optimal execution strategy exists for any positive risk
aversion parameter.

We discuss some cases in which the optimal execution strategy is insensitive to pertur-
bations in the impact matrices. In particular, we prove that, for any symmetric permanent
impact matrix and positive definite matrix ©, the naive execution strategy minimizes the
expected execution cost. Therefore, as long as the symmetry of the permanent impact
matrix G is maintained, the minimum expected execution cost strategy is not sensitive to
perturbations.

We then analyze sensitivity of the optimal execution strategy when the risk aversion
parameter is positive or the permanent impact matrix is asymmetric. Since the impact ma-
trices appear both in the Hessian matrix and the linear coefficient of the quadratic objective
function for the optimal portfolio execution problem, the optimal execution strategy in gen-
eral may be quite sensitive to their perturbations. We provide upper bounds on the size of
change in the optimal execution strategy in terms of the change in the impact matrices and
a magnification factor. These upper bounds explicitly specify which factors may magnify
the effect of estimation errors on the optimal execution strategy. For example, following the
established upper bounds, it can be easily seen that the change in the optimal execution
strategy decreases when a large risk aversion parameter is chosen. In general, upper bounds
for the magnification factors depend on the eigenvalues of the block tridiagonal Hessian ma-
trix defined by the covariance matrix, the impact matrices, and the risk aversion parameter.
The upper bounds can be simplified when the permanent impact matrix and its perturbation
are symmetric. Under these assumptions and the additional assumption of a positive risk
aversion parameter, the magnification factor becomes small when the minimum eigenvalue
of either the covariance matrix or the combined impact matrix © is large. When both of
these minimum eigenvalues are small, the optimal execution strategy may be very sensitive
to the estimation errors. These results implicitly evince that the optimal execution strategy
for trading a single asset is expected to be less sensitive than the optimal execution strategy
for trading portfolios.

We also illustrate sensitivity of the efficient frontier to perturbations in the impact ma-
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trices through simulations. Our computational results demonstrate that, when buying is
prohibited for a sell execution, the optimal execution strategy and efficient frontier are less
sensitive than the case when buying is permitted. Indeed, when buying is allowed, the effi-
cient frontier can be quite sensitive to perturbations in the impact matrices. In particular,
changes in the efficient frontier can become very large for a small risk aversion parameter if
perturbations in the permanent impact matrix are asymmetric. We also observe that, for the
minimum variance execution cost strategies, estimation errors can lead to large variations
in the expected execution cost. Finally, we compare the effect of estimation errors in the
covariance matrix on the optimal execution strategy and the efficient frontier with their sen-
sitivity to perturbations in the impact matrices. Our simulations indicate that perturbations
in the impact matrices affect both the optimal execution strategy and the efficient frontier
more prominently than perturbations in the covariance matrix, particularly when the risk
aversion parameter is small. Our sensitivity analysis is restricted to the optimal portfolio
execution problems and perturbations for which both the original problem and perturbed
problems have unique solutions.

The presentation of this chapter is as follows. The mathematical formulation of the
assumed optimal portfolio execution problem is described in §3.2l We discuss, in §3.3]
sensitivity of the optimal execution strategy to perturbations in the impact matrices and
provide upper bounds on the size of its change. Simulations are carried out in to
illustrate the effect of perturbations in the impact matrices on the efficient frontier and
optimal execution strategy. Concluding remarks are given in §3.5]

3.2 Mean-Variance Optimal Execution Strategy

In this section, we study the mean-variance formulation of the optimal portfolio execution
problem, i.e., variance Var(-) is used as the risk measure ¥(-) in problems (2.1.6)) and ([2.1.7)).
We further assume that Fj_;(Pgx_1) in equation (2.1.3)) follows a discrete arithmetic random
walk:

Fi1(Peoy) = Py + 7125

Here & = (&g, Eopy -, &) T represents an [-vector of independent standard normals and ¥ is
an m X [ volatility matrix of the asset prices. Thus the market price is given by:
Py = Ppy + 7256, — 7g (ﬁ) . (3.2.1)
T

For any execution strategy {nj}_, and its associated positions {x;}+_,, applying the
execution price model (2.1.2)) and market price dynamics (3.2.1]), we obtain

N N N N
anﬁk =S5TP + Zr%xfzgk - Tfog (%) - anh (%) . (3.2.2)
k=1 k=1 k=1
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Thus the variance of the execution cost equals (recall that ny is assumed to be deterministic)

Var (PTS an&) = TZ(Ek Czy, (3.2.3)

k=1

where C' = Y37 is the m x m symmetric positive semidefinite covariance matrix of asset
prices. Notice that the variance of the execution cost, under the assumptions of this section,
does not depend on the impact matrices.

From (3 , when the price impact model (2.1.4)) is applied, the expected execution cost
can be expressed as below:
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Using equation ({2.1.5)), we obtain
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Eliminating the constant term 1 STH S from the objective function and explicitly impos-
ing xny = 0 and 29 = S, problem (2 is reduced to the following quadratic minimization
problem:

1
min 5ZTW(H, G, )z + b7 (H,G)z. (3.2.5)

z€R
The m(N —1) xm(N —1) symmetric tridiagonal block matrix W(H, G, u) and the m(N —1)-
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vectors b(H, G) are defined as follows:

L —-oT 0 0 -
-0 L -—er 0 _((?S
W(H,Gup<]| 0 -6 L o, wHHE|l T |,
o 0 0 .. 0

where L = (© + ©7) 4+ 2u7C. The m(N — 1)-vector z of decision variables is as below:

TN-1

In problem (3.2.5)), R denotes a subset of R™™~1 corresponding to feasible execution strate-
gies.

When purchasing is allowed during selling and no other constraint is imposed, R =

Ro L Rm(N-1) Thus an optimal execution strategy can be obtained from the following
unconstrained quadratic programming problem:

1
min —z' W(H,G, u)z + b (H,G)z. (3.2.6)
z€ERo 2

When W(H, G, 1) is not positive semidefinite, problem (3.2.6)) has no local minima and is
unbounded below. If W(H, G, p) is positive semidefinite but singular, problem (3.2.6)) has

either no solution or infinitely many solutions. Problem (3.2.6)) has a unique minimizer if and
only if W(H, G, i) = 0. The unique minimizer in this case is 2* = —W(H, G, u)b(H, G).

The set 'R may include constraints on the asset positions. For example, a liquidation
plan may prohibit purchasing over the trading horizon. In this case, the feasible set R = R,
where

Re def (xlT, 733%71) c S>xy, x>y for k=2, N—1, any_1 > O}. (3.2.7)

To simplify the representation of these constraints, we introduce the sequence of square
matrices {Jj,}» ', where J; = (1) and

0
1 -1 0
J2—<(1] _11>,J3— 0o 1 1|, a=|%" o for k >2. (3.2.8)
0 0 1 -1
0 1
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Thus in the presence of these constraints, the optimal portfolio execution problem is reduced
to the following problem:

1
min §ZTW(H, G, )z +b"(H,G)z, (3.2.9)

zeRm(Nfl)
s.t. (—el @ I,)z > =8,
(Jn_1® L)z > 0.

Here ® denotes the Kronecker product of two matrices.

The quadratic programming problem is convex if and only if W(H,G,u) = 0.
Since the set of feasible strategies R. is compact, the Weierstrass Theorem along with the
continuity of the objective function of problem , implies that problem has a
global minimizer. Moreover, positive definiteness of W (H, G, 1) guarantees that the global
minimizer is unique.

Similar to the mean-variance portfolio optimization problem, the optimal portfolio ex-
ecution problem is a quadratic programming problem. However, in contrast to the
mean-variance portfolio optimization problem in which the expected return appears only in
the linear term of the quadratic objective, in the optimal portfolio execution problem (|3.2.9))
the impact matrices appear in both the quadratic term and the linear term of the objective
function in a structured fashion. Therefore sensitivity analysis restricted to perturbations in
the linear term of the quadratic objective function, see, e.g., (Best and Grauer, 1991)), is not
applicable in this context. It is necessary to explicitly analyze the effect of estimation errors
in the impact matrices for the optimal portfolio execution problem.

Since one expects a unique optimal execution strategy under a reasonable price impact
model (whether buying is permitted or not), assuming W (H, G, u1) is positive definite seems
appropriate. This assumption guarantees that both problems (3.2.6]) and (3.2.9)) have unique
solutions.

The representation of problem (3.2.9) indicates that the optimal execution strategy only
depends on the combined impact matrix © rather than matrices H and G individually.

In the following lemma, we show that when the permanent impact matrix G is symmetric,
positive definiteness of © is a necessary and sufficient condition for the positive definiteness
of W(H,G,0). Symmetric permanent impact matrices, e.g., diagonal matrices, have been
used in the literature on the optimal portfolio execution problem, see, e.g., (Almgren and
Chriss, [2000/2001}; |/Almgren et al., 2005).

Lemma 3.2.1. Let the permanent impact matriz G be symmetric. Then W(H,G,0) = 0 if
and only if © = 0. In particular, W(H,G,0) > 0 if and only if © = 0.
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Proof. When G is symmetric, © = ©T. For any real m(N —1)-vector h = (b1, hT ... hL )T,

N—2 N-1 N-1 N—2
WTW(H,G,00h ==Y bl Ohi+ Y hlOhi+ > hlOhi— > hlOhi
i=1 i=1 i=1 i=1
N-2 N-—2
= hi{Ohy = > 01 O(hi — higa) + > bl O(hi — hig1) + hiy_1Ohn 1
i=1 i=1
N-2
=h{Ohy + Y (hiy1 — hi) O(hit1 — hi) + hiy_1Ohy_1. (3.2.10)
i=1
If © = 0, each term in (3.2.10) is nonnegative. Thus KW (H,G,0)h > 0 and consequently
W(H,G,0) = 0. The other direction of the statement follows from the fact that 20 is a
leading principle submatrix of W (H, G,0). Therefore (symmetric) positive semidefiniteness
of W(H,G,0) implies © = 0. ]

For any > 0, W(H,G, ) = 2utly_1 ® C + W(H,G,0). Hence, when the permanent
impact matrix G is symmetric and © > 0, Lemma implies that the matrix W(H, G, u) =
0 for any p > 0.

Thus, whether buying is permitted or not, the uniqueness of the optimal execution strat-
egy for any risk aversion parameter pu > 0 is guaranteed when © = 0 and G = GT. In
the next proposition, we show that under these assumptions, the execution strategy that
minimizes the expected execution cost (1 = 0) can be found explicitly. Surprisingly, it does
not depend on the values of the impact matrices.

Proposition 3.2.1. Let the permanent impact matric G be symmetric. Then the naive
execution strateqy nj, = %, k=1,2,...,N, is the unique execution strategy that minimizes

the expected execution cost (solves problems (3.2.6) and (3.2.9) with p = 0) if and only if
© > 0.

Proof. The assumption GT = G implies ©7 = ©. Consequently W(H,G,0) = (Jy_1 +
JL 1) ® ©. Firstly we consider the situation when buying is allowed, i.e., problem
with 1 = 0. A direct use of Lemma implies that problem (3.2.6)) with 4 = 0 has a
unique solution if and only if ©® > 0. Applying properties of the Kronecker product, this
unique solution equals

2 = =W H,GOB(H,G) = ((Jvor+Th) " ©671) (e 2 08)
— (vt Th) T e) @S,

Recall that e; = (1,0,---,0)7. Applying the explicit representation of the inverse of the
tridiagonal matrix Jy_; + J%_;, see, e.g., (da Fonseca, 2007), we have

. N—1 N-=2 1\”*
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N
Hence, the minimum expected execution cost position equals {x,’g}i\fzo = {#S } , which
_ k=0

corresponds to the naive execution strategy n; = %, k= 1,---,N. Since this solution
satisfies the constraints of problem (3.2.9)), it is also the unique minimum expected cost
execution strategy when buying is prohibited. O

Therefore, the minimum expected execution cost strategy is always the naive execution
strategy of trading a constant number of shares per period, under the assumptions that the
permanent impact matrix G is symmetric and © is positive definite. Thus, the minimum
expected execution cost strategy is insensitive to any change in the impact matrices as long as
the perturbation maintains the strict convexity of the objective function and the symmetry
in the permanent impact matrix.

When buying is permitted, the optimal execution strategy is the solution to a linear
system with the coefficient matrix W(H, G, it). Thus it is important to analyze the condition
number of this matrix. Moreover, as we show subsequently in §3.3], sensitivity of the optimal
execution strategy to perturbations in the impact matrices depends on the eigenvalues of
W(H,G, ). In the rest of this section, we analyze the condition number and the minimum
eigenvalue of the matrix W(H, G, u). We apply the following result from (Kulkarni et al.|
1999) in our discussion.

Lemma 3.2.2. Let N > 2. Then the eigenvalues N; (Jn-1+ J&_,) equal 2 (1 — cos (%))
fori=1,2,....N — 1.
A direct consequence of Lemma is

(N-1D)
)\max (JNfl + JT— ) 1 = cos (T> 4
T _ N-1) _ — 2
K2 (JN—1 =+ JN—1) . (JN—1 + JJZ\F[_I) 1 — cos (%) cot <2N> )

(3.2.11)

Since W(H,G,p) = 2uriy_1 ® C + W(H,G,0) and the matrices C' and W(H, G, 0)
are symmetric, the Courant-Fischer Theorem (see, e.g., Theorem 8.1.5 in (Golub and Loan),
1996), which is also provided in Theorem ({A.1.1) of Appendix |A]) implies that

/\min(W(HJ Gu M)) 2 2/~L7—/\min(c) + )‘min(W(]—L Gv O)) (3212)

When G is symmetric, this lower bound can be stated explicitly in terms of the combined
impact matrix ©:

Corollary 3.2.1. Let N > 2 and the permanent impact matriz G' be symmetric. Then

Amin (W (H, G, 11)) > 207 Anin(C) + 4 sin® (%) Amin(©).

In addition, the equality holds when p = 0.

20



Proof. When G is symmetric, W (H, G,0) can be represented as the Kronecker product of
the matrices (J N-1+ Jg,_l) and ©. Thus, using properties of Kronecker matrix products
(see, e.g., Appendix |A|or Property I.X in section 2.3 of (Graham) |1981)), we obtain

Amin(W(H, G, 0)) = Amin (-1 + J5 1) Aain(©) = 2 (1 — cos (%)) Amin(©).
This result, along with inequality (3.2.12)), completes the proof. O

In the next proposition, we investigate how ko(W(H,G, 1)) depends on the condition
number of the covariance matrix and the combined impact matrix ©.

Proposition 3.2.2. Let W(H,G,0) = 0 and N > 2. Then

(a) ko(W(H,G,0)) > cot? (5% ) - k2(© + OT).

(b) If, in addition, G is symmetric, then

ko (W (H, G, 0)) = cot2< T

W) ks (O). (3.2.13)

(¢) Assume C = 0. Then rko(W(H,G,n)) < kao(C) + ko(W(H,G,0)) for any p > 0.

Proof. (a) To prove part (a), we use the fact that the matrices W (H, G,0) and W (H, G, 0)

have identical eigenvalues. More precisely, (r{, 72, ...,r% ) is an eigenvector of W(H, G, 0)

associated with the eigenvalue A if and only if (rk_;,rk o, ....,77)T is an eigenvector of

W (H,GT,0) for the same eigenvalue. In particular, we have
Amax (W (H, G,0)) = Apax (W(H,G",0)),  Amin (W(H, G,0)) = Apin (W(H,G",0)) .

Now the corollary of the Courant-Fischer Theorem along with the assumption W(H, G,0) >
0, results in

Amax (W (H,G,0) + W(H,GT,0)) < 2max (W(H,G,0))
Amin (W (H, G,0) + W(H,GT,0)) = 2X\mm (W(H,G,0))

= ko (W(H,G,0)).

Consequently ko (W(H, G,0)+ W (H, GT,O)) < ko (W(H,G,0)). This inequality, along
with the expression of W(H,G,0) + W(H,GT,0) as the Kronecker product of the matri-
ces (Jy_1+ J&_;) and (© + ©7), yields

ko (W(H,G,0)) > ke (W(H,G,0) + W(H,GT,0)) = ko ((Jno1 + JH_1) ® (©+67)) .(3.2.14)
Thus

ka(W(H,G,0)) > ky (Jn-1+ J5_) k2 (0 +O7T) = cot? (%) ko(© +07), (3.2.15)

which completes the proof of part (a).
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(b) When © is symmetric, W(H, G, u) = W(H, G, ). Therefore
K2 (W(Ha Ga O) + W(H7 GT7 0)) = K2 (2W<H7 G> 0)) = KQ(W(H7 Gv O))

Hence, equality holds in (3.2.14]) and (3.2.15)). This completes the proof of part (b).

(¢) To prove part (c), let i > 0 be given. Using W(H, G, ) = 2urln_ 1@ C+W(H,G,0),
we have
Amax (W(H,G,0) +2utIy_1 ® C)
Amin (W (H,G,0) +2urly_1 @ C)
Amax (W ( )
min (WW(

K2 (W(Hv Ga :u))

max (W (H,G,0))  Apax(2umIn_1 ® C)
W(H,G,0))  Anin(2urin_1 @ C)
(W(H G,0)) + k2(C),

where inequality (3.2.16)) comes from the fact that Ay (W(H, G,0)) > 0 and A\ (2u7Iy_ 1 ®
) > 0. O

(3.2.16)

Proposition 2| shows that the condition number of the matrix W(H,G, ) can be
large when the condltlon number of either the covariance matrix C' or the Hessian matrix
W (H,G,0) is large. However, ko(W(H,G,0)) is at least as large as cot? (QN) times the
condition number of the matrix (© + ©T). Proposition m also implies that, in the single
asset trading, the condition number of the obtained matrix W (H, G, 0) depends only on the
number of periods .

In the next section, we investigate sensitivity of the optimal execution strategy to per-
turbations in the impact matrices H and G.

3.3 Sensitivity of the Optimal Execution Strategy

In this section, we derive some upper bounds for the change in the optimal execution strategy
in terms of the change in the impact matrices and eigenvalues of the Hessian of the objective
function. Such analysis indicates under what conditions the optimal execution strategy is
insensitive to perturbations and when it may become very sensitive. Throughout, we denote
perturbations in the temporary and permanent impact matrices as AH and AG, respectively.
In subsequent discussions, we assume that W(H, G, ) = 0. Therefore, for sufficiently small
perturbations of AH and AG, the matrix W(H + AH,G + AG, p) is symmetric positive
definite. Consequently the optimal execution strategy after perturbation remains unique.

Given the perturbed impact matrices H + AH and G + AG, the perturbed optimal
portfolio execution problem (3.2.9) is

1
min 5zTW(H + AH, G+ AG, 1)z + b (H 4+ AH, G+ AG)z, (3.3.1)
z€RM(N~-1

s.t. (—ef ® I,)z > -8,
(JNfl & Im)Z Z 07
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where the matrix Jy_; is defined in (3.2.8). Problems (3.2.9)) and (3.3.1)) have the same set
of feasible points. Applying the properties
b(H + AH,G + AG) = b(H,G) + Ab, Ab ¥ b(AH,AG),

W(H+AH,G+AG, p) = W(H,G, 1)+ AW, AW ¥ W(AH,AG,0),(3.3.2)

we may restate the objective function of problem ([3.3.1)):
1 1
§zTW(H, G,z +b"(H,G)z + §ZTAWZ + Ab . (3.3.3)

Quantities AW and Ab are determined by A© = %(AH—{— AHT)— AG. Thus the solution of
problem (3.3.1]) and consequently the optimal execution strategy depends on the perturbation
in the combined impact matrix A© rather than AH or AG individually. Therefore, all of the
perturbations in the impact matrices that produce the same A© affect the optimal execution
strategy identically. In particular, when A© = 0, we have AW = 0 and Ab = 0. Therefore,
problems and have identical solutions. Hence the optimal execution strategy
is insensitive to this special perturbation of the impact matrices AH and AG, when A© = 0.

Furthermore, as we discussed in Proposition [3.2.} the minimum expected execution cost
strategy is also insensitive to any perturbation in the impact matrices as long as the perturbed
permanent impact matrix G + AG remains symmetric and W(H + AH,G + AG,0) >
0. Specifically, when trading a single asset and pu = 0, the optimal execution strategy is
not sensitive to any change in the impact matrices, assuming that the minimum expected
execution cost problem has a unique solution.

Therefore, in the aforementioned cases the optimal execution strategy and the variance
of the execution cost remain the same. However, in both cases, the expected value of the
corresponding execution cost changes as the impact matrices are perturbed. When A© = 0,
the change in the mean of the execution cost is %ETAH S. In the second case, in which
p=0,0 =0T and A® = AOT are considered, the variation in the mean of the execution
cost equals 22T"AWz + Ab"z + LSTAHS, where z = (N — 1, N — 2,--- ,1)7£. However,
when AG is asymmetric, our simulation study in shows that the change in the mean and
particularly the variance of the execution cost can become very significant for small values

of u, especially when p = 0.

In the rest of this section, we analyze sensitivity of the optimal execution strategy to more
general perturbations in the impact matrices. Firstly, we note that the Euclidean distance
between any two execution strategies n* = {nj }5_, and n = {f; }5_, is related to the change
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between corresponding positions z* = {z}}i_, and T = {Zx }2_:

[ —”Hz Zan_nkHQ ZH"’% 1~ T — (Tpo1 — Tg) H;
N

= Hl’k |~ T 1HQ+ZH%—%H2—QZ Ty — Tp1)” (), — T

k=1

N
lerck 1 The 1H2+2Z|!:cz—fk||§=4zH:cz—:kai-
k=1 k=1

This result can be summarized as

| /\

In” = nll, < 2[ja" =z, (3.3.4)

We start our sensitivity discussion with the strategy on which no constraint is imposed. In
the following theorem, we exploit the explicit representation of the solution of problem
to determine the exact change in the optimal execution strategy. For notational simplicity,
abbreviate W(H, G, u) as W when there is no confusion.

Theorem 3.3.1. Consider the optimal portfolio execution problem (3.2.6)). Assume W (H,G, u) >
0 and W(H + AH,G + AG, p) = 0. Denote the unique solutions of problem ({3.2.6)) before
and after perturbation with z* and Z respectively. Then

2 —zZ=WH+AH,G+ AG, p) (Ab— AWW ' (H, G, n)b(H,G)) . (3.3.5)

Furthermore, let n* = {n;}¥_ | and i = {fix}2_, be the optimal execution strategies corre-
sponding to the solutions z* and Z respectively. Then, there exists a magnification factor
¥ > 0 such that:

In* = 7ll, < 2]2* = 2> < 20]|S|2 (1 + 4v/m?]O]) 2Ol (3.3.6)

1
thT’e 19 S min{)\min(w)vkmin(W+AW)} ’

Proof. Positive definiteness of W guarantees problem has the unique solution z* =
—W~'b(H,G). Similarly, under the assumption W + AW = 0, problem (3.2.6), with the
perturbed impact matrices H + AH and G + AG, has a unique solution, namely z =
—(W + AW)~Y(b(H, G) + Ab). Therefore
W+ AW)(z* —2) = (W +AW)[-W'b(H,G) — (—(W + AW) Y (b(H, G) + AD))]
= —b(H,G) — AWW 'b(H,G) + b(H,G) + Ab
= -~ AWW '(H,G) + Ab,

which proves (3.3.5)). Thus
Iz =zl = ||(W+AW)™ (Ab— AWW'b(H, G))||,
< W+ AW) 7 Hlz ([|AD]l2 + AW [|2[W [ [6(H, G)ll2) -
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Since W + AW and W are symmetric positive definite, the above inequality is reduced to

z ! [AW][2
* - < Ab N (T b H . .
Il =l = Amin(W + AW) (H I+ )\min(W)H (H, G)|2 (3.3.7)
! |AW o -
< A N (T . . .
= Amin(W + AW) (H Oll2 + >‘min<W)||@H2 1512 (3.3.8)

Since AW is symmetric, |[AW ||y = |AW s and [|[AW |}y < /AW [L[AW | = |AW];.
Thus

AWl 1AG]1 + [|AS + AOT|; + A7y
2|A0]: +2[A87|;
= 2A0]: +2[[AB]|«

4/m]|| AB. (3.3.9)

<
<

IN

Substituting inequality (3.3.9) in (3.3.8) and using inequality (3.3.4) complete the proof of
(3:3.6). 0

Inequality is valid for any unconstrained quadratic minimization problem with the
Hessian matrix W and the linear coefficient b(H, G). If the perturbation of the Hessian matrix
AW is sufficiently small, relative to the change in the linear coefficient Ab, the upper bound
is dominated by 9||Abl|, which is linear in 9. This is particularly the case in the traditional
mean-variance portfolio optimization since the covariance (Hessian) matrix can in general
be estimated more accurately than the mean rate of return (linear coefficient). However,
in the optimal portfolio execution problem, the change in the combined impact matrix A©
appears in both the linear coefficient b(H, G) and the Hessian matrix W. Therefore, when
the magnification factor 1 is sufficiently large, the upper bound is dominated by the term
V?||AW |5, which is quadratic in 9. Thus, the effect of estimation errors in the impact
matrices can potentially be more significant than the effect of perturbations in the mean
rate of return in the traditional mean-variance portfolio optimization.

The upper bound in (3.3.6) illustrates the main factors which can magnify the effect of
estimation errors in the impact matrices on the optimal execution strategy. This effect is
described through the magnification factor ©¥. When the upper bound of 9 is small, the
optimal execution strategy is not so sensitive to perturbations in the impact matrices. On
the other hand, the optimal execution strategy may be sensitive to the perturbation A©
when this upper bound is large.

The provided upper bound for ¢ in Theorem depends only on the minimum eigen-
values of W and W+ AW. When both of these eigenvalues are large, the magnification factor
becomes small. Consequently the optimal execution strategy does not change significantly
due to perturbations in the impact matrices. When p > 0 and C' > 0, according to inequal-
ity , Amin (W) (and similarly Ay, (W + AW)) increases as pthmin(C) increases, which
implies that the magnification factor ¥ becomes small. This result indicates that, when the
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risk aversion parameter is nonzero and Ay, (C) is large (or equivalently xo(C) is small), the
optimal execution strategy is not very sensitive to the perturbations. Furthermore, assuming
C = 0, variation in the optimal execution strategy due to the perturbations diminishes as
1 — 400. This result is entirely expected; since as u — +oco the objective function of prob-
lem is dominated by the variance of the execution cost which depends only on the
covariance matrix C'. In these two cases the investor may not need to be concerned about
the effect of estimation errors in the impact matrices.

On the other hand, when the minimum eigenvalue of C' > 0 is small, the influence
of estimation errors on the optimal execution strategy may become more prominent for a
small risk aversion parameter. This dependence of the effect of estimation errors on the risk
aversion parameter is analogous to the traditional mean-variance portfolio optimization, see,
e.g., (Chopra and Ziemba, (1993).

When the permanent impact matrices G and G + AG are symmetric, using Corollary
3.2.1, the upper bound for ¥ presented in Theorem [3.3.1] can be stated in terms of the
minimum eigenvalues of © and © + A©.

Corollary 3.3.1. Let the assumptions in Theorem hold. In addition, assume that
G and AG are symmetric, Apin(©) > 0 and Apnin(© + AO) > 0. Then there exists a
magnification factor 99 > 0 such that

In* = all, < 2012 — zll2 < GollSllz (1 + 2v/mdo]©]]2) 262,

where

1
¥y < . 3.3.10
0= UT Amin (C) + 2 sin? (i) - mIN{ Apin (0), Amin (© + AO) } ( )

2N

For a sufficiently small perturbation, the upper bound of 9, in becomes small
if and only if either pAnin(C) or Auin(©) is large. Either case results in a small sensitiv-
ity of the optimal execution strategy to perturbations. However, for a given positive risk
aversion parameter, when both Api,(C) and A\y,in(©) are small, the change in the optimal
execution strategy can potentially be large relative to the perturbation AG. Note that,
based on Proposition [3.2.1], the minimum expected execution cost strategy is insensitive to
perturbations when matrices G and G + AG are symmetric and © and © + A© are positive
definite.

Now consider the optimal portfolio execution problem when buying is not permitted.
Denote the coefficient matrix of the no-buying constraints in problem (3.2.9)) with A, i.e.,
A=Y ® I,,, where

T
Ydéf( “ ) (3.3.11)
JIN-1

The following property of the bidiagonal matrix Jy_; is proved in (da Fonseca, [2007)).
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= 21— o (34 for =
4sin’ (3755
Therefore, Apin(JiJl) is a decreasing function of k, ie., for k& > 1, Apn(JpJ]) >

Amin(Jr4111). Moreover, 1 > Apin(JiJ)) > 0 and consequently the matrix JiJ/ is sym-
metric positive definite.

Proposition 3.3.1. For every integer k > 1, ) ( Ji. )
1,2,..., k. Particularly, \min (Jk,Jk ) =2 (1 — cos (%1 )) =

Next, we present a property of the coefficient matrix of the binding constraints in problem
at a feasible point. Throughout, for a given subset J of the row indices of A, we let
A denote the submatrix of A consisting of the rows with indices in J. The submatrix of A
consisting of those columns with indices in a subset J of column indices is denoted by A”.

Lemma 3.3.1. Consider the coefficient matriz A of the constraints in problem (3.2.9)), i.e.,

A=Y ®I,,, whereY is defined in (3.3.11)). Let z* be a feasible point of problem (3.2.9) and
J be the set of indices of the binding constraints at z*. Then

)\min (AJA?;) Z AInin (JN—l‘]]j\;—l) - 4Sin2 (4N7r— 2) . (3312)

Proof. Applying properties of the Kronecker product, we have

AAT = (@1, (Y o L)} = (Ve L) (e 1)) = (VYT e 1)) (3313)
Let M be the permutation matrix such that

[1,2,...,N,1,2,...,N,...,1,2,..., N]M*" =[1,...,1,2,...,2,...,N,...,N].
Therefore, corresponding to the index set .J, we can find an index set .J' such that

My (VYT) @ 1)) (M) = (Lo (VYT)))
Thus
Main (((VFT) @ 1)7) = Ao (MF (VY7 © 1)) (M)

o <([m ® (YYT))j:>
> min )\mln (}/(2)}/(3;) :

1=1,2,...,

Here Y(;) is the submatrix of Y with the row indices equal to j — N (i — 1) where
€ (J’ N{N(i—1)+1,..,N(i—1) +N}) .
This result, along with equality (3.3.13)), yields

Amin (AJAT> > min /\mm (Y(Z)Y(zT)) . (3.3.14)

=12,..,



In the rest of the proof, we show that for every i =1,2,...,m,

)\min (1/(1)3/(,5> Z Amin (JN—IJJT\;_1> . (3315)

Denote positions associated with the feasible point z* with {z}}4_,. Note that, for each
asset i, a positive number of shares must be sold in at least one of the periods. Thus, for
every asset ¢ = 1,2,...,m, there is at least some j € {1,2,..., N} so that the constraint
corresponding to the jth row of Y is not active. For any asset ¢, there are two cases to
consider: either S; >z or S; = x},. In the first case, S; > 27, the rows of Y{;) are a subset
of the rows of Jy_;. Let Y(_; denote the submatrix consisting of rows of Jy_; that are not
in Y(;. We then have

2T (InoadE ) 2

)\min (JN—lz]]j\;_l) = I;’l?g)l ZTZ (3316)
- A Yo Yga + 2 YgYga + 4 Yo Y n + 2 Y)Y 2
(21,22)#0 2l + 21 2
4 (YY) = .
< min = )\min Yz Yz s
< Jmin ——r YoYs)

which proves inequality (3.3.15)).

Now let S; = x%,. In this case, there must be at least some j € {2,3,..., N}, such that

xj( i1y > zj;. When N = 2, the second constraint must be inactive, which implies that the

only row of Y(; is the first row of Y. Therefore, Apin (Y(Z)Yg)) = Amin (In—1J5_1).

When N > 3, at least one of the rows of Jy_; corresponds to an inactive constraint. Let
this row be the jth row of Jy_; where j € {1,2,...,N —1}. When j = N — 1, Y{;) does
not include the last row of Jy_;. Since the matrix Y after eliminating its last row equals
—J%_1, Y is a submatrix of —J%_,. Thus similar to (3.3.16), we can show that

/\min (}/iz)yiz;) > )\min (JJE_1JN—1) - )\min (JN—IJJE_l) )

where the last equality comes from the fact that J%L ,Jy_; and Jy_1J%_, have identical
eigenvalues. This result proves inequality (3.3.15)) for this case.

When j € {1,2,...,N — 2}, the rows of Y{;) are a subset of the rows of the following

matrix
T
(.0

(—JJT 0 )(Jj 0 >_<ijj 0 )
0 Jn—j 0 Jz?fqu 0 JN—j—lJJJ\;fjfl '
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Therefore
/\min (Yiz)}/(z;) Z min {/\min (JJTJ]) a)\min (JN—j—IJJI\;_j_l)} Z Amin (JN—IJJY\;_l) )

where the last inequality comes from the facts that Apin (J]T J;) = Amin (J;J7) and Apin (J; J! )
is a decreasing function of j. Thus, for every ¢ = 1,2,...,m, inequality (3.3.15) holds. Ap-
plying inequalities (3.3.14)), (3.3.15]), and Proposition completes the proof. O

Our analysis for sensitivity of the optimal execution strategy, when buying is prohibited,
is based on a result in (Hager, 1979). He proves that for a linearly constrained quadratic
programming problem, under some conditions on the Hessian of the objective function and
the Jacobian matrix of the binding constraints, both the solution and the Lagrange multi-
pliers are Lipschitz continuous functions of the problem data. An estimate for the Lipschitz
constant is discussed in §3 of (Hager], [1979)); this result is summarized in the following theo-
rem. Note that the upper bound presented in the following theorem is slightly tighter than
the bound in Lemma 3.2 of (Hager, [1979)); but the result essentially follows from the same
proof.

Theorem 3.3.2. Consider the following quadratic programming problem with the data d =
(Q’ b7 A’ C)

L T
min - oz Qr+b x (3.3.17)

s.t. Ar+c<O.

Let D be a conver set of data so that for every d € D, the above problem has a unique
solution, denoted by x(d), and a unique Lagrange multiplier, denoted by u(d). Let J(d) be
the set of indices corresponding to the binding constraints at x(d). Assume that there exist
some parameters vy < +00, vy < +00, B >0, and a > 0 so that for every d = (Q,b, A, c) in
D:

(a) [|Ql]z < v,

) [ 45, < e
() || 45 u@] = sluta)]
(d) 2" Qx > o||z||3, for every x such that Az = 0.
Then there exists a positive constant o < 400 such that for every dy,ds € D:

lo(dh) o)l < o(Ibcn) — bl + () = eo)ly) + ¢ s (G}l + Pl )
(1Q(d) ~ Q) + 1 A(d) ~ A + |47 () — A7 (@)]).

where 0 < L+ 5 (2 +1) (va+ 22 4 1)),
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In the optimal portfolio execution problem, the impact matrices only appear in the objec-
tive function. Therefore, perturbations in the impact matrices do not affect the constraints

of problem ([3.2.9). When the constraints in Problem (3.3.17)) do not change for any d € D,
a tighter upper bound for ¢ can be obtained as in the following corollary:

Corollary 3.3.2. Let the assumptions in Theorem|[3.3.4 hold. In addition, assume that A(d)
and c(d) are constant on D, i.e., A(d) = A and c(d) = ¢ for every d € D. Let dy € D be
giwen. Then there exists a positive constant gy < +00 such that for every dy € D

() — 2(da)]s <
oo 9() = () + g . [0+ e {1, 1Q(a) o} el ) Q) — Qs

1e{l

1 1 v V2V
where 00 < 3 + Frmrrigrnny (5 + 1) (”2 + Foaxig@ny + 1)'

Proof. Consider problem ({3.3.17)) with the input data d = (@, b, A, ¢) with the corresponding
parameters vy, vg, 3, and a given. Clearly, for any d € D, problem (3.3.17]) and the following

problem have an identical solution:

S o T s
min o Qr+b'x (3.3.18)

st. Ar+4+c¢<0,

where Q = rQ, b=rb, and r = m. Applying Theorem [3.3.2| to problem ([3.3.18])
and using the fact that A(d) and c¢(d) are constant on D, there exists a positive constant

0 < +0oo such that for every d, € D:

a(dy) — z(da)lla < 6 (||b(dr) — b(da) ||, + le(dr) — c(da) ) + &° <ig%§}(\|b(di)”2 + Hc(di)HQ))

([|Q(d1) — Q(d2)|, + |A(dr) — A(d2)lly + | AT (d1) — AT (d2)]],)

= 0llb(a) bl + 2 s 00}l + el ) Q) ~ rQc),
R R 1
= o)~ o)l + 22w [0l + el ) 1) = @(a
where ¢ < % + % (% + 1) <U2 + 55+ 1) or equivalently

r <U1 TV
- —+1)(v2+ +1).
B\ B
B! into the above

The result follows by defining gy = 70 and substituting » = W
inequality. This completes the proof. O

_|_

.1
ro < —
a

The following theorem establishes an upper bound on the size of change in the optimal
execution strategy, due to perturbation in the impact matrices, when buying is not permitted.
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Theorem 3.3.3. Assume for the given risk aversion parameter >0, W(H, G, pu) = 0 and
W(H + AH,G + AG, n) > 0. Denote the unique solutions of problems (3.2.9)) and (3.3.1)

with z* and z respectively. Then there exists some ¢ > 0 such that

[n* —nll, <2|" -z, (3.3.19)
<2 ||5], (1 + 4sv/m (max{L, [|[W |2} + [[©]l, + [A6],)) |A6]2,

where n* = {n; | and n = {nx}Y_, are the optimal execution strategies associated with
2* and Z respectively, and

= (1 e (1”) <max{f;njx<vv>}) (max{l,;maxm} o <4Nﬂ— 2> )) |

4N -2

with A = max Apax(W +nAW) and A = m rh Amin(W + nAW).

1
n€(0,1] n€(o,

Proof. For the given perturbations AG and AH of the impact matrices, define

DY {d(n) = (H +nAH, G +1AG) : n€[0,1]}.

Clearly, D is a convex set. Since W (H,G,u) = 0 and W(H + AH,G + AG, ) > 0 for any

n € [0, 1], we have

W +nAW =W (H +nAH,G +nAG,u) = (1 —n)W(H,G,u) +nW(H + AH,G + AG, ) = 0.
Therefore, for any n € [0,1], problem (3.2.9) with the impact matrices H + nAH and

G + nAG has a unique solution, denoted as z(n). For a given n € [0, 1], let J(n) denote the
set of indices corresponding to the binding constraints of problem (3.2.9) at z(n). Lemma

3.3.1/implies that A, (A J(T,)A:§(n)> > (0 and consequently A J(d)Ag( d) is invertible. Thus the

rows of A4 are linearly independent and problem (3.2.9) has a unique Lagrange multiplier
u(n).
Define

A max Dunax (W + 7AW : € [0,1]}, A% min (W +9AW) 1 € [0,1]} .

Since for any n € [0,1], W + nAW is symmetric positive definite, A and )\ are positive. In
addition,

W+ nAW|ls = Amax(W +0nAW) < X Vn € [0,1]. (3.3.20)

Using the Courant-Fischer Theorem, we have Apax(W + nAW) < Apax (W) + nAnax(AW),
which implies A < 4o00. Furthermore, for any n € [0,1], W + nAW is symmetric. The
Courant-Fischer Theorem yields

W+ AWz > Ao (W + nAW)||2]2 > Al2]2 ¥y € [0,1]. (3.3.21)
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Applying the definitions of 1-norm, ||.||;, and co-norm, |||/, for the matrix Ag(n)’ we get

N-1
HAT = max Z la;;] < maxNZ laij| = |All, VYn€[0,1]

ieJ( 17) i=1,2,...,
[Tl = e, D laul < max Zw 1A]l,, Vi e o,1],

where a;; is the entry of A in the ith row and jth column. Hence

|45ll, < V |45 S IAL Al < I @ L) Y @ )l < 2,

where the last inequality follows from ||Y ® I,,|| = 2 and ||Y ® I,,||; = 2. Therefore,

J(n)

AT, <2 ¥nelo1]. (3.3.22)

For any n € [0, 1] and the associated unique optimal Lagrange multiplier u(n), the Courant-
Fischer Theorem yields

2
[ ATy ||, = w(m)T Age ATyun) = Amin (AseATe) Tulls = Awin (Inv-1T5-1) [lu()ll3,

(3.3.23)
where the last inequality comes from Lemma [3.3.1L Hence

[ ATy, = 2sin (4N”_ 2) lu(mll, ¥ne0,1]. (3.3.24)

Inequalities (3.3.20)), (3.3.21)), (3.3.22)), and (3.3.24)) show that the assumptions of Theorem
[3.3.2] are satisfied on the convex data set D for

def def def
v =N, v = 2, 53251n<

T def
4N—2)>O’ a=\>0.

Applying Corollary to problem (3.2.9)), there exists some ¢ such that
Iz = Zll2 < cllAb]l + AW |o(max{[|b(H, G) |2, [[b(H + AH, G + AG) |2}
+ max{L, [|[Wl|2}[S]])

< <[|ABS[s + AW |2 (|©S]l2 + [AOS]|2 + max{L, [[W|]2}]|S]|2)
< <[[Sl2 ([[AO]l2 + < |AW |2 ([|©]l2 + [[AB]l2 + max{1, [W]|2})),

1 A+A by .
where ¢ < A (1 T 25sin? <4N ) <max{1,)\max(W)}> (max{l,)\max(W )} + 3sin (4N 2))> ’ Applylng -
equality (3.3.9), i.e., [AW |2 < 4y/m| A8z, and inequality (3.3.4) completes the proof. [J
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Theorem |3.3.3| provides an upper bound for the size of the change in the optimal execution
strategy, when buying is not permitted. For a given N, the upper bound of the magnification
factor ¢ depends, at least asymptotically (as AW — 0), only on the eigenvalues of the Hessian
matrix W.

Similar to Theorem [3.3.1] a small value of ¢ guarantees that the optimal execution
strategy is not very sensitive to the perturbation in the combined impact matrix A©. As
AW — 0, we have A & A\ax(W). Hence, the term

(1 e (17r) (et Gty o5 (i 2>>) (8529

4N -2

is bounded by a constant which depends only on N. Therefore, for the fixed number of
periods N, asymptotically (as AW — 0), the upper bound for the magnification factor ¢ is
small when A\, (W) is large.

The eigenvalues Apax(W), A and A increase with the same rate as the risk aversion
parameter j increases, and consequently, all the terms in are bounded as y — +oo0.
However, when C' > 0, % approaches zero as u — +oo. Therefore, as the risk aversion
parameter p increases, the upper bound for ¢ becomes small. Hence, when the covariance
matrix is positive definite, ||2* — Z||s — 0 as g — +o00. This result indicates that, similar to
the case that buying is allowed, sensitivity of the optimal execution strategy to perturbation
in the impact matrices diminishes as the risk aversion parameter y increases.

We can express the upper bound for the magnification factor ¢ provided in Theorem
in terms of the eigenvalues of C' and ©, when the permanent impact matrix G and its
perturbation AG are symmetric. Under these assumptions, the Courant-Fischer Theorem
can be applied, and we have

A= min A\pin(W +nAW) > 207 Anin(C) + Amin(IN—1 + Jﬁ_l) min A\pin(© + nAO),
nef0,1] n€(0,1]

A = max Amax(W + 7AW) < 267 Amax(C) 4+ Amax(Jn—1 + JE_1) max Apax(© + nA6O).
n€l0,1] n€l0,1]

Applying these inequalities, the upper bound for ¢, obtained in Theorem [3.3.3] can be
simplified as follows:

Corollary 3.3.3. Let the assumptions in Theorem[3.3.5 hold. In addition, assume that the
matrices G and AG are symmetric. Then there exists a magnification factor ¢y such that

I —7all, < 2] = Zll2 < @lIS]l2 (1 + 20v/m (max{L, W]z} + [O]]2 + [AB]|2)) [AB]2,

where

1
UT Amin (C) + 2 sin? (l) min Apin(© + nAO)

N nelo

(1 e (ettonmcrn) (maczmy + 95 (- 2>)> '
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Inequality indicates that when the permanent impact matrices G and G+ AG are
symmetric, the magnification factor ¢y asymptotically (as AW — 0) depends on 1A (C)+
2 sin? (%) Amin(©). In this case, for a given positive risk aversion parameter, ¢, becomes
small when either the minimum eigenvalue of the covariance matrix or the minimum eigen-
value of the combined impact matrix © is large. However, when both g, (C) and Ay, ()
are small, the upper bound for ¢y in becomes large, which suggests pronounced

sensitivity of the optimal execution strategy to estimation errors in the impact matrices.

Both upper bounds in inequalities and indicate that the change in the
optimal execution strategy increases proportionally with respect to the size of the initial
portfolio holding S. Next, we precisely analyze the dependence of the optimal execution
strategy on the initial portfolio holding.

Lemma 3.3.2. Consider the optimal portfolio execution problem with the impact
matrices H and G where W (H,G,u) = 0. Let z* = ((a})T,--+ | (z5_)")T be the solution
with the initial portfolio holding S. Then, for every a > 0, az* is the solution of problem
(3.2.9) with the initial portfolio holding o.S.

Proof. First note that z is a feasible point of problem (3.2.9)) with the initial portfolio holding

S if and only if az is a feasible point of problem (3.2.9) with the initial portfolio holding a.S.
Since z* is the solution, for every feasible point z of problem (3.2.9)), we have

1 _ 1 _
5(Z*)TW(H, G, )z — (88) "zt < 5zTW(H, G,z — (08,

where x] and z; are positions in the first period corresponding to z* and z respectively.
Therefore, multiplying the above inequality by o2, we get

%(az*)TW(H, G, p)(az") — (a08) (az}) < =(a2)"W(H, G, p)(az) — (aOS) (axy).

N | —

This result yields az* is the solution of problem ([3.2.9) with the initial portfolio holding
as. [

In the next section, we use simulations to illustrate sensitivity of the optimal execution
strategy and the efficient frontier to perturbations in the impact matrices.

3.4 Computational Investigation

In this section, we use simulations to computationally investigate the influence of perturba-
tions in the impact matrices on the optimal execution strategy and efficient frontier. With
exception of §3.4.3] we assume that the covariance matrix is accurately given. The simula-
tions are done using MATLAB Version 6.5.
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~ Consider an investor who holds a portfolio of three different assets with the initial holding
S; = 10°, i = 1,2, 3. The goal is to liquidate the holdings in five days by trading daily, i.e.,
T =5, N=25,and 7 = 1. Let the true daily asset price covariance matrix beﬂ

0.324625 0.022983 0.420395
C = 0.022983 0.049937 0.019247 x 1%, (3.4.1)
0.420395 0.019247 0.764097

Note that Apin(C') = 0.00045310, A\pax(C) = 0.01019550, and rko(C) = 22.50175986. The
price impact model assumes that the price impacts are proportional to the trading
rate. Assume that the median daily trading volume of each asset is one million shares. For
the temporary impact matrix, we suppose that for each 10% of the daily volume traded, the
price impact equals the daily variance. In addition, we assume that selling 20% of the daily
volume incurs a permanent price depression equal to the daily variance. In other words,

C

_ —10-5. 2
= 510 % 10° 107°-C $ per share”, (3.4.2)
C
G 020 < 10° (0.5x107°)-C $ per day per share

Note that W(H,G,0) = 0 and Ay (W (H, G,0)) = 2.5960 x 107?. Throughout this section,
we refer to H and G as the true impact matrices, and to the corresponding optimal execution
strategy as the true optimal execution strategy.

In our simulation investigation, we assume that perturbations in the impact matrices
have independent normal distributions. Specifically,

AH = pmax{||Heil|, i =1,2,3} ¢, AG = pmax{||Ge;ll, 1 =1,2,3}p, (3.4.3)

oo ! oo !

where ¢ and ¢ are 3 x 3 random matrices whose elements are independent zero-mean
Gaussian random variables with unit variance. We use the randn command in MATLAB to
generate ¢ and . The parameter p € [0, 1] indicates the size of the relative perturbation.

In order to ensure that the optimal execution strategy corresponding to the perturbed
impact matrices, H + AH and G + AG, is unique, we only consider perturbation with
W(H + AH,G + AG,0) = 0. We refer to the optimal execution strategy determined from
a pair of perturbed impact matrices as the estimated optimal execution strategy. We use the
convex quadratic optimization solver mskqpopt in the software package MOSEK Version 4.0
to compute the optimal execution strategies, both in the presence and absence of no-buying
constraints.

In §3.4.1] we illustrate sensitivity of the optimal execution strategy to perturbations in
the impact matrices and present plots of true and estimated optimal execution strategies.
Sensitivity of the efficient frontier is demonstrated in §3.4.2] In §3.4.3| the effect of estimation
errors in the covariance matrix C' on the optimal execution strategy and the efficient frontier
is compared with the effect of perturbations in the impact matrices.

IThis is the covariance matrix of three risky assets used in Rockafellar and Uryasev]| (2000)).
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3.4.1 Sensitivity of The Optimal Execution Strategy

In this section, we investigate effect of the risk aversion parameter p and no-buying con-
straints on the sensitivity of the optimal execution strategy. For illustration, we focus on
the cases when the risk aversion parameter p = 0, which corresponds to minimizing the
expected execution cost, and u = 107°. Following Proposition the true optimal execu-
tion strategy, which minimizes the expected execution cost, is the naive execution strategy
ng = %S for k =1,...,5, since in our assumed setting G is symmetric and © > 0. On the
other hand, the perturbed impact matrices H + AH and G + AG from are typically
asymmetric. For each simulation study, a relative perturbation p = 0.05 is assumed.

Figure plots the true optimal execution strategy when p = 0 (the naive execution
strategy) against optimal execution strategies corresponding to 50 simulated perturbed im-
pact matrices. The left plots are generated under the assumption that buying is allowed.
For the plots on the right, it is assumed that buying is not permitted. Graphs in Figure
demonstrate that the optimal execution strategy in this case is quite sensitive to pertur-
bations in the impact matrices. In addition, these plots illustrate that imposing no-buying
constraints on the problem significantly decreases the sensitivity of the optimal execution
strategy to perturbations. Note that the range in the number of shares traded (vertical axis),
when buying is allowed, is much larger than the range after imposing no-buying constraints.

For the risk aversion parameter g = 107° the true optimal execution strategy and
estimated optimal execution strategies associated with the same set of perturbed impact
matrices are plotted in Figure Similar to the previous case, the left plots are generated
under the assumption that buying is allowed. For the plots on the right, it is assumed that
buying is not permitted. Comparing Figure [3.2] with Figure [3.1] it is clear that, sensitivity
of the optimal execution strategy to perturbations in the impact matrices is decreased when
the risk aversion parameter g = 107°. Moreover, in Figure , there is little difference in
sensitivity of the optimal execution strategy to perturbations whether no-buying constraints
are imposed or not.

In addition, for each asset, we compute ratio of the average difference, between the true
and estimated optimal execution strategies, to the initial holding, i.e.,

M
def 1 . .
eili) = 22 ol —nify, i=1,2.3, (3.4.4)
voe=1

where the vector nl(-g) is the estimated optimal execution strategy of the ¢th asset in the /th
simulation. Table presents the values of €;(u) for various choices of p for M = 5000
simulations. From Table |3.1| we observe that, whether buying is allowed or not, the relative
average error €;(1) decreases as the risk aversion parameter p increases. For example while
the relative average error in asset 2 is 37.3619% for x4 = 1072, it becomes less than 0.1% for
> 0.05. This observation is consistent with our analytical result that the change in the
optimal execution strategy decreases as the risk aversion parameter increases. Table also
confirms that the optimal execution strategy when buying is prohibited is less sensitive than

36



Asset 1

Asset 1

N True Optimal Execution Strategy

N Estimated Optimal Execution Strategy — . —-

80000

60000

40000

20000

-20000

-40000

Number of Shares Traded in the Period

-60000
Ll 1 1

True Optimal Execution Strategy — v
d Optimal Execution Strategy —- —- 7
/

40000

20000

Number of Shares Traded in the Period

T TSV

3
Periods

Asset 2

Asset 2

100000

240000 '\ True Optimal Execution Strategy
220000 S . i

200000 N, E d Optimal E )

gy

I True Optimal Execution Strategy —

Estimated Optimal Execution Strategy —- —- !

180000
160000
140000
120000
100000
80000
60000
40000
20000

-20000
-40000
-60000
-80000
-100000
-120000
-140000
-160000

Number of Shares Traded in the Period

80000

60000

40000

Number of Shares Traded in the Period

3
Periods

Asset 3

Periods

Asset 3

. | True Optimal Execution Strategy
60000 s

d Onti E ion S

N

40000

20000

Number of Shares Traded in the Period

—~&

Number of Shares Traded in the Period

NG : T
U= 7z = * =~ ™~
L / . RSy N
- e N 10000 |-~ =575 NN
L P N O A AN
| o AN .77 R
20000 N (,/ﬁ,/.'/./ sy \\\\ ~
I // 7 . S /,/ } \\\
r N Py / NN
-40000 [~/ s ; N
L 1 1 1 ! ok= P 1 ) 1 L
1 2 4 5 1 2 4 5

3
Periods

3
Periods

Figure 3.1: Optimal execution strategies for p = 0 with 5% relative perturbations in the
impact matrices for 50 simulations.

prohibited for plots on the right.

For plots on the left, buying is allowed. Buying is
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1 ‘ Buying is allowed Buying is prohibited
Asset 1 Asset 2 Asset 3 Asset 1  Asset 2 Asset 3
0 154.3614 229.6044 229.6111 43.7554 53.4204 53.4303
1078 122.0550 169.4105 74.2133 43.6052 53.2656 26.8415
1075 24.0294  37.3619  14.1912 22.7091 34.4506 13.5175
0.05 0.0196 0.0349 0.0115 0.0177  0.0317  0.0105
0.5 0.0020 0.0035 0.0012 0.0018 0.0032  0.0011
1 0.0010 0.0017 0.0006 0.0009  0.0016  0.0005

Table 3.1: Relative average error ¢;(u) (percentage) with 5% relative perturbations in the
impact matrices, with general (likely asymmetric) perturbations in the permanent impact
matrix, based on 5000 simulations.

’ 1 \ Buying is allowed \ Buying is prohibited

Asset 1 Asset 2 Asset 3 Asset 1  Asset 2 Asset 3

0 9.9306 x 10710 1.4253 x 1072 1.4254 x 107 0.0005  0.0008  0.0008
108 0.9364 1.3388 0.5476 0.9181 1.3250 0.5382
107° 21.3055 34.2984 12.5860 20.6919 32.2731 12.2386
0.05 0.0187 0.0339 0.0111 0.0173  0.0311  0.0103
0.5 0.0019 0.0034 0.0011 0.0017 0.0031  0.0010

1 0.0009 0.0017 0.0006 0.0009  0.0016  0.0005

Table 3.2: Relative average error ¢;(u) (percentage) with 5% relative perturbations in the
impact matrices, with symmetric perturbations in the permanent impact matrix, based on
5000 simulations.

the one obtained when buying is allowed. This difference is more striking for small values of
1. As p increases, the difference between the two cases almost diminishes.

Given G = GT in our example, Proposition implies that, when perturbation in the
permanent impact matrix satisfies AGT = AG, the unique minimum expected execution cost
strategy is the naive execution strategy. In the settings of our computation, the only possible
violation is the asymmetric perturbation in the permanent impact matrix. This evinces the
importance of maintaining symmetry in estimating the permanent impact matrix if it is
known or assumed to be symmetric. To illustrate how restricting to symmetric perturbations
affects sensitivity of the optimal execution strategy, we compute ¢;(p) for estimated optimal
execution strategies with the perturbed impact matrices H + AH and G + %(AG + AGT),
where AH and AG are determined according to ([3.4.3)). Table [3.2] presents these values.

Comparing Table with Table we observe that the relative average error &;(j),
with symmetric perturbations in the permanent impact matrix, is smaller than the relative
average error g;(u) in Table with asymmetric perturbations. This difference is more
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significant for small values of u, particularly g < 107°. For p > 107° there is little difference
in the relative average errors in Table 3.2 with those in Table[3.1] Thus, when the permanent
impact matrix G is known to be symmetric and this property is maintained with its estimate,
an investor who wants to minimize only the expected execution cost need not to worry about
the effect of estimation errors in the impact matrices on the optimal execution strategy.

3.4.2 Sensitivity of The Efficient Frontier

In this section, we illustrate the effect of perturbations in the impact matrices on the efficient
frontier in the space of the variance and the expected execution cost. For a given pair of
perturbed impact matrices H + AH and G + AG, we compute the following three efficient
frontiers for p € [0,107°]:

e The true (efficient) frontier is the efficient frontier computed from the true values of
the impact matrices H and G.

e The actual (efficient) frontier is the curve of the true mean and variance of the exe-
cution cost of the optimal execution strategy determined from the perturbed impact
matrices H + AH and G + AG. The actual frontier depicts the true performance of
estimated optimal execution strategies for various values of pu.

e The estimated (efficient) frontier is the efficient frontier computed from the perturbed
impact matrices H + AH and G + AG.

The notions of the actual frontier and estimated frontier have been used in (Broadie,
1993)) to investigate the effect of estimation errors in mean return and the covariance matrix
in the traditional mean-variance portfolio optimization. As mentioned in (Broadie, 1993)),
the estimated frontier is what appears to be the case based on estimated input data, but the
actual frontier is what really occurs based on the true values of the data. Since the true values
of the data are unknown, the true and actual frontiers are unobservable in practice. Note
that actual frontiers can never be below the true efficient frontier as the optimal portfolio
execution problem is a minimization problem. However, estimated frontiers can be either
above or below the true and actual frontiers.

When perturbation in the permanent impact matrix is asymmetric, the effect of perturba-
tions in the impact matrices on the efficient frontier is demonstrated in Figure[3.3] Figure[3.3
(a) illustrates deviations of actual frontiers from the true efficient frontier for u € [0,1077].
From the plot on the left generated under the assumption that buying is allowed, it can
be observed that large deviations of actual frontiers can occur, particularly when the risk
aversion parameter is very small. Moreover, the lengths of the actual frontier from different
simulations vary drastically; the lengths of some actual frontiers a great deal differ from the
length of the true frontier. Figure (a) also demonstrates that, similar to the sensitivity of
the optimal execution strategy, the change in the efficient frontier decreases as u increases.
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(b) Estimated Frontiers versus the True Frontier

Figure 3.3: Actual and estimated frontiers with 5% relative perturbations in the impact
matrices, with general (likely asymmetric) perturbations in the permanent impact matrix,
for 50 simulations. Buying is allowed for plots on the left. Buying is prohibited for plots on
the right.
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Figure 3.4: Actual and estimated frontiers with 5% relative perturbations in the impact
matrices, with symmetric perturbations in the permanent impact matrix, for 50 simulations.
Buying is allowed for plots on the left. Buying is prohibited for plots on the right.
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Therefore, an execution strategy that minimizes the variance of the execution cost can be
estimated more accurately than the one that minimizes the mean of the execution cost. This
is consistent with our theoretical results.

Comparing the right plot to the left plot in Figure (a), we observe that deviations
of actual frontiers from the true frontier are significantly reduced in the right plot in which
buying is prohibited. There is also less variation in the length of actual frontiers. Thus, im-
posing no-buying constraints significantly decreases the effect of estimation errors in impact
matrices. Similar phenomena has been reported in the mean-variance portfolio optimization,
see, e.g., (Frost and Savarino|, [1988; Best and Grauer| 1991; |Jagannathan and Ma, [2003).

Figure|3.3| (b) depicts deviations of estimated frontiers from the true frontier. Comparing
to plots in Figure (a), there seems to be less difference in the deviations for different risk
aversion parameters, whether no-buying constraints are imposed or not. In addition, for a
large risk aversion parameter, we observe larger deviations in the estimated frontiers than in
the actual frontiers. On the other hand, deviations of estimated frontiers are smaller than
those of actual frontiers for a small risk aversion parameter.

Let perturbed impact matrices be H+AH and G+ 1(AG+AG") where AH and AG are
defined as in - thus the permanent impact matrix perturbatlon is symmetric. For these
symmetric perturbations in the permanent impact matrix, Figure illustrates differences
between actual frontiers and the true efficient frontier are significantly reduced when the risk
aversion parameter is small. In particular, when the risk aversion parameter is near zero,
actual frontiers are very close to the true frontier. Maintaining symmetry does not seem to
affect the sensitivity at the left end of the frontier for a large value of p. In addition, we
note that the assumption of symmetry in the permanent impact matrix has little effect on
estimated frontiers.

We now compare sensitivity of the mean of the execution cost with sensitivity of the
variance of the execution cost. Figure displays (mean,variance) points on the actual
frontiers for 4 = 0 and = 107°. The left plots are generated when buying is permitted.
For the plots on the right, buying is prohibited. This figure suggests that, when p = 0,
variation in the variance of the execution cost is relatively larger than the variation in the
mean of the execution cost. For u = 107>, on the other hand, the relative variation in the
mean is larger than the variance of the execution cost.

To quantify the relative variations in the mean and variance of the actual execution cost,
for a given risk aversion parameter pu, a relative perturbation p and a finite set of simulations
M, we consider the following measures

max}L var, (1) — min, var, (1)
Evar (s p) = , , (3.4.5)
|true variance for (u = 0) — true variance for (u = 1079)|
(i) def max )’ mean; () — min?’ =1 mean;(u)
mean i £ true mean for (g = 0) — true mean for (u = 1075)|’

where (var;(u), mean;(u)) is the coordinate of the actual frontier for the jth simulation.
Table|3.3|displays values of ., (i, p) and epean (i, p) using M = 50 simulations. These results
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Figure 3.5: Points on the actual frontier for 4 = 0 and p = 107° with 5% relative per-
turbations in the impact matrices, with general (likely asymmetric) perturbations in the
permanent impact matrix, for 50 simulations. Buying is allowed for plots on the left. For
plots on the right, buying is prohibited.
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p Buying is allowed
w=0 p=10"°
EV&I‘ gmean gvar Emean
0.02 0.16026  0.09950 0.01271 0.05570
0.05 0.75538  0.70920 0.04420 0.18996
0.08 3.83520 3.05705 0.05605 0.26419
0.10 45.16636 33.01414 0.08737 0.36430
’ p Buying is prohibited
nw=0 p=107"°
6var 6mean EV&I‘ 6mean
0.02 0.04643 0.03685 0.02038 0.08873
0.05 0.18433 0.09185 0.03951 0.17412
0.08 0.29582  0.18370 0.06779 0.33724
0.10 0.39132  0.14567 0.06600 0.27287

Table 3.3: Relative variation in variance and mean of the execution cost, ey (1, p) and
Emean (M, p), due to perturbations in the impact matrices with general (likely asymmetric)
perturbations in the permanent impact matrix, based on 50 simulations.

illustrate that, whether buying is allowed or not, the relative variation e.,(0, p) is larger
than the relative variation in mean &pean(0, p). On the other hand, the relative variation in
variance €.,:(1072, p) is less than the relative variation in mean €., (1072, p). In addition,
Table demonstrates that the difference in both mean and variance increases quickly
and nonlinearly as the relative perturbation p increases. The fast increase is particularly
prominent when buying is permitted.

3.4.3 Sensitivity to Perturbations in the Covariance Matrix

So far we have assumed that an accurate estimation for the covariance matrix is given, and
we only considered the effect of perturbations in the impact matrices. This is in accordance
with the recent literature on addressing estimation risks in the mean-variance portfolio opti-
mization which focuses exclusively on the impact of sensitivity in the mean return by taking
the covariance matrix as known, see, e.g., (TerHorst et al. 2006} |Garlappi et al., [2007;
Antoine, 2008)). For the purpose of completeness, in this section, we compare the effect of
estimation errors in the covariance matrix on the optimal execution strategy and the efficient
frontier with the effect of perturbations in the impact matrices. In the sequel, we refer to the
covariance matrix C, defined in , as the true covariance matrix. To simulate estimated
covariance matrices, we use the perturbed matrix C' + % (AC + ACT), where perturbations
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1 ‘ Buying is allowed ‘ Buying is prohibited
Asset 1  Asset 2 Asset 3 Asset 1 Asset 2 Asset 3

0 0 0 0 0 0 0
1078 0.1980 0.3515  0.1167 0.1995 0.3519 0.1176
107 17.7192 29.4778 10.4594 17.0635 28.3482 10.0912
0.05 0.0820 0.1398  0.0467 0.0188  0.0435 0.0111
0.5 0.0115  0.0179  0.0064 0.0019  0.0044 0.0011
1 0.0060  0.0092  0.0034 0.0009  0.0022  0.0006

Table 3.4: Relative average error ¢;(u) (percentage) with 5% relative perturbations in the
covariance matrix based on 5000 simulations.

AC have independent normal distributions. Specifically,
1
AC = Spmax{||Ceillo, i = 1,2,3} (6 + '),

where ¢ is a 3 x 3 random matrix whose elements are independent zero-mean Gaussian
random variables with unit variance. The parameter p indicates the size of the relative
perturbation. To ensure that the perturbed matrix is positive definite and symmetric, we

only consider perturbations with C' + % (AC + AC’T) > 0. Throughout , we assume
that accurate values of the impact matrices are given, and the true impact matrices defined

in (3.4.2)) are used.

When the risk aversion parameter p = 0, any perturbation in the covariance matrix
has no effect on the optimal execution strategy. However, when u > 0, perturbations in the
covariance matrix might be influential. To assess the effect of perturbations in the covariance
matrix on the optimal execution strategy, for every asset ¢, we compute the ratio of the
average difference €;(u1), defined in equation , between the optimal execution strategy
n; corresponding to the true covariance matrix C', and the optimal execution strategy nge)
obtained from the perturbed covariance matrix C' + % (AC + AC’T) in the ¢th simulation.
Table [3.4] illustrates these values for various choices of p for M = 5000 simulations with
p = 5% relative perturbations in the covariance matrix C. Similar to the perturbations in
the impact matrices, Table suggests that the effect of estimation errors in the covariance
matrix on the optimal execution strategy depends on the choice of the risk aversion parameter
. Table maintains the same trend as in Table 3.2l However, for smaller values of f,
(n < 1079), the relative average error &;(u) in Table are notably smaller than those in
Table . However, as p increases the values of €;(u) in Table get slightly larger (less
than 0.1%) than the values of the relative average error presented in Table . This indicates
that an investor should concern more on the effect of estimation errors in the impact matrices
on the optimal execution strategy than the influence of estimation errors in the covariance
matrix, specially an investor who chooses small values for p.

To investigate the effect of perturbation in the covariance matrix on the efficient frontier,
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we use the notions of true, estimated, and actual frontiers in a similar sense as defined
in §3.4.2 Here AH and AG are zero and the covariance matrix C' is perturbed. Figure
(a) depicts the effect of perturbations in the covariance matrix on the actual frontiers.
Comparing the plots in Figure (a) with Figure (a), we observe that the difference
between actual frontiers and the true frontier in Figure (a) are less than the change
between them in Figure (a). This suggests that 5% perturbation in the impact matrices,
even when symmetry is maintained, is more influential on the actual efficient frontier than
perturbations of the same magnitute in the covariance matrix. Similar to the plots in Figure
3.4] (a), graphs in Figure (a) demonstrate that differences between actual frontiers and
the true efficient frontier are significantly reduced when the risk aversion parameter p is
small. Particularly, when the risk aversion parameter approaches zero, at the right end of
the frontiers, actual frontiers converge to the true frontier. This behaviour is expected, as
for p = 0, the variance of the execution cost and consequently the covariance matrix do not
play any significant role in finding the optimal execution strategy. Deviations of the actual
frontiers from the true frontier at the left end are almost similar to Figure (a).

Deviations of estimated frontiers from the true frontier are depicted in Figure (b).
Comparing to plots in Figure (b), there seems to be less difference in the deviations of
the estimated frontier in (b) from the true frontier for different risk aversion parameters.
Similar to Figure for a large risk aversion parameter, we observe larger deviations in the
estimated frontiers than in the actual frontiers. When the risk aversion parameter u = 0, the
optimal execution strategy for all of the perturbed matrices C' + % (AC + AC’T) is identical.
Since the impact matrices are fixed in this case, the optimal expected execution cost is
unchanged for all of the perturbations AC, while they incur different estimations for the
variance of the execution cost. This explains the behavior of the right end of the estimated

frontiers in (b).

In summary, our computational investigation suggests that the effect of estimation errors
in impact matrices on the execution strategy and efficient frontiers can be quite large in
general. Moreover, the effect of these errors varies with the risk aversion parameter. For
a large risk aversion parameter, the difference between the true frontier and the actual
frontier is small. In addition, we consistently observe that imposing no-buying constraints
decreases the effect of estimation errors on both the optimal execution strategy and the
efficient frontier. Moreover, when appropriate, maintaining symmetry in the permanent
impact matrix decreases the effect of estimation errors.

In our simulations, we have also noticed that it is possible for a small perturbation in
impact matrices to make the Hessian matrix indefinite. As the number of assets grow, this
issue becomes even more pronounced. When the Hessian matrix is indefinite, the optimal
portfolio execution problem , in which buying is permitted, no longer has a solution
since the objective function becomes unbounded below. This is another evidence of po-
tentially large sensitivity of the optimal execution strategy to perturbations in the impact
matrices.

47



1300 [, 1300 |-

N True Efficient Frontier =——— r True Efficient Frontier =
k73 \ Actual Efficient Frontier—-—-- k73 - Actual Efficient Frontier—. —-
8 - N o I
© 1200 O 1200 |-

o B I B
2 2 N
= = -
= - =3 -
8 1100 | 8 1100~
>< B >< B
w X w .
k-] k-] I
g 1000 8 1000~
< - © |
> I > [
- - I
% 900 - % 900 -
[ - D =
a N o N
i - b F

800 |- 800 |~

; L 1 L L L L 1 L n :\ L L L 1 L L i L 1 L
1E+08 2E+08 1E+08 2E+08
Variance Variance
(a) Actual Frontiers versus the True Frontier

1300 |- 1300

- True Efficient Frontier — True Efficient Frontier —
k3 = Y Estimated Efficient Frontier —-—- k3 Estimated Efficient Frontier —. —.
o o
O 1200 |- O 1200 |
[= B f= -

K=} N S I
= - =
= 5 5 I
8 1100 g 1100
> B >
w - i I
— [ —
° [ o 1000
$ 1000~ E B
© = © -
> B > I
o - k-] |
53 L @ 900
.g 900 - g- I
S ol B aoof

800 - 800 |-

. 1 L A 1 = L . 1 . A L . 1 L
1E+08 2E+08 1E+08 2E+08
Variance Variance

(b) Estimated Frontiers versus the True Frontier

Figure 3.6: Actual and estimated frontiers with 5% relative perturbations in the covariance
matrix for 50 simulations. Buying is allowed for plots on the left. Buying is prohibited for
plots on the right.
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3.5 Concluding Remarks

Specification and estimation of the price impact function in the optimal portfolio execution
problem inevitably have errors. Therefore it is important to analyze how sensitive the optimal
execution strategy and the efficient frontier are to these estimation errors. In this chapter, we
consider linear price impact functions and study the effect of perturbations in the parameters
of the price impact function.

We first show that the optimal execution strategy is determined from the combined
impact matrix © = % (H + HT) - G.

We discuss some cases in which the optimal execution strategy is insensitive to the esti-
mation errors in the impact matrices. For example, the optimal execution strategy, which
minimizes the expected execution cost, is the naive execution strategy as long as the perma-
nent impact matrix and its perturbation are symmetric and the combined impact matrices
O and © + AO are positive definite. In other words, when symmetry is maintained for the
permanent impact matrices and positive definiteness is maintained for the combined impact
matrices, the minimum expected execution cost strategy is not sensitive to changes in the
impact matrices.

We provide upper bounds for the size of change in the optimal execution strategy in
terms of the change in the impact matrices and some magnification factor. In general, the
magnification factor is defined by the minimum eigenvalue of the block tridiagonal Hessian
matrix W. This matrix W is determined by the covariance matrix C', the combined impact
matrix O, and the risk aversion parameter u. From the established upper bounds, it can be
concluded that the change in the optimal execution strategy diminishes as the risk aversion
parameter increases. However, for a small risk aversion parameter, estimation errors may
significantly affect the optimal execution strategy and efficient frontiers.

Our computational investigation confirms the importance of accurate specification of the
impact matrices. We demonstrate that, in addition, maintaining symmetry of the permanent
impact matrix also reduces the effect of estimation errors. Moreover, our simulations suggest
that adding appropriate constraints, such as no-buying constraints, can significantly alleviate
the effect of estimation errors in the impact matrices. Consistent with our theoretical results,
the computational investigation shows large sensitivity of the optimal execution strategy and
the efficient frontier for a small risk aversion parameter u, when the permanent impact matrix
is asymmetric. Specially, this change becomes more significant in the absence of no-buying
constraints. This result also coincides with the observation that, for the traditional mean-
variance portfolio optimization, the effect of estimation errors in the mean and covariance
matrix reduces when no-buying constraints are imposed on the problem.

In summary, our theoretical and computational results indicate that the optimal execu-
tion strategy can potentially be very sensitive to estimation errors in the impact matrices.
This is particularly the case if the permanent impact matrix is asymmetric, the risk aversion
parameter is small, and buying is permitted.
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Chapter 4

Regularized Robust Optimization

4.1 Introduction

Sensitivity of the optimal execution strategy and the efficient frontier to estimation errors in
the impact matrices motivates us to devise an optimization approach in which this estimation
risk is explicitly taken into account.

Indeed, uncertainty is inevitable in any real world decision making problem. An opti-
mization problem formulation often relies on model parameters which must be estimated.
This presents challenges in the precise notion of optimality and computation of an optimal
decision. Several approaches to account for data uncertainty in optimization problems have
been proposed in the literature. In particular, robust optimization has gained much interest
over the last decade, see, e.g., (Beyer and Sendhoff, 2007; Ben-Tal et al., 2009). In robust
optimization, parameter uncertainty is modeled deterministically through an uncertainty set,
which includes all or most possible parameter values. The approach then offers a solution
which has the best worst objective value when parameters belong to the uncertainty set. In
this chapter, we consider a robust optimization technique for the optimal portfolio execution
problem to handle uncertainty in price impact.

The current robust optimization methodology, however, has shortcomings. Firstly, it can
be conservative in the sense that a robust solution may have poor objective values for many
realizations of the data including the nominal one, see, e.g., (Bienstock, [2007). Shrinking
the uncertainty set using a scaling factor has been a typical technique to alleviate this issue,
see, e.g., (Ben-Tal and Nemirovski, |2000; Bertsimas and Sim, 2004)). An additional problem,
which has not been addressed in the current robust optimization literature, is the potential
instability of the robust solution to variation in the uncertainty set.

Specifically we consider the optimal portfolio execution problem with uncertain price
impact matrices. Similar to Chapter [3, we assume a deterministic strategy and an additive
market price dynamics.
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Firstly, we use simulation to illustrate the potential instability of the classical robust
optimization method for the optimal portfolio execution problem, with respect to the uncer-
tainty set for price impact parameters. In particular, for an interval uncertainty set, we show
that sensitivity of the robust solution and the robust efficient frontier to perturbations in
the boundaries of the uncertainty set can be larger than sensitivity of the nominal solution
and the nominal efficient frontier to changes in the nominal price impact parameters. Next
we show that, for a convex and compact uncertainty set and convex set of feasible execu-
tion strategies, a robust optimal execution strategy uniquely exists, when the Hessian of the
objective function is positive definite for every realization of price impact parameters in the
uncertainty set. Under this assumption, the unique robust solution can be computed via
solving a convex programming problem which yields a worst case realization of the price im-
pact parameters, and optimal Lagrange multipliers. These values are then used to determine
the robust optimal execution strategy.

To improve stability of the robust optimization, we propose the following reqularized
robust optimization approach for the optimal portfolio execution problem. Given any convex
compact uncertainty set, a reqularization constraint is included to construct a regularized
uncertainty set. This regularized uncertainty set is then used in the minimax formulation to
yield a regularized robust solution.

For the optimal portfolio execution problem with uncertain parameters in a linear price
impact model, the regularization constraint is a lower bound constraint on the minimum
eigenvalue of the Hessian of the objective function. We refer to the fixed lower bound as the
reqularization parameter. The regularization constraint using the eigenvalue function retains
convexity of a convex uncertainty set. Varying eigenvalues of some design matrix to enhance
stability properties is fairly common in engineering problems, see, e.g., (Lewis and Overton),
1996)).

The intuition behind the proposed regularization constraint comes from the results ob-
tained in Chapter |3} variation in the solution can be large, as price impact parameters are
perturbed, when the minimum eigenvalue of the Hessian of the objective function corre-
sponding to the pair of price impact parameters is small. By imposing the regularization
constraint, we prevent potential instability of the robust solution by excluding elements,
which may result in unstable solutions, from the uncertainty set.

We make two main contributions in this chapter. Firstly, we study sensitivity of the
classical robust optimization to changes in the uncertainty set. Secondly, we propose a
regularized robust optimization approach for the optimal portfolio execution problem with
uncertain price impact matrices. The regularized robust solution is unique and can be
obtained by an efficient method based on convex optimization for a positive regularization
parameter. We illustrate that including the regularization constraint in the uncertainty
set improves stability of the robust solution. We formally show that the change in the
regularized robust optimal execution strategy is bounded above by the change in the worst
case price impact parameters over the regularized uncertainty set. In addition, the change
in the regularized robust solution converges to zero when the variation in the uncertainty
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set approaches zero. We then investigate some implications of the regularization on the
regularized robust solution and its robust objective function value. Since the regularized
uncertainty set is a subset of the original uncertainty set, it controls conservatism of the
robust solution by offering a better optimal objective function value. The regularized robust
mean-variance efficient frontier with a smaller regularization parameter dominates that with
a larger regularization parameter. We also establish a bound on the distance between the
regularized robust optimal execution strategy and the naive strategy, which suggests that
this distance decreases as the regularization parameter increases.

This chapter is organized as follows. The classical robust optimization approach is de-
scribed in where we also discuss potential instability of the robust solution to variation
in the uncertainty set. Derivation of the robust solution under the assumption that the
Hessian of the objective function is positive definite over the uncertainty set is presented
in We propose the regularized robust optimization approach for the optimal portfolio
execution problem in §4.4] Stability of the approach is discussed in §4.5] Several implica-
tions of regularization on the regularized robust solution and its objective function value are

addressed in Concluding remarks are given in §4.7]

4.2 Classical Robust Optimization

Robust optimization has been broadly used in various fields (Beyer and Sendhoff, 2007} [Ben-
Tal et al., |2009), with portfolio management as one of its main applications, see, e.g., (Ben-
Tal et al., 2000; Ghaoui et al., [2003}; |Ceria and Stubbs, 2006; |[Bienstock, 2007; Kim and Boyd,
2007 |Garlappi et al., 2007; |Fabozzi et al.| 2007; Takeda et al., 2008; |Lul, 2008; [Demiguel and
Nogales, 2009) and the references therein. Robust optimization is an alternative method to
stochastic programming to deal with parameter uncertainty in mathematical programming.
Unlike stochastic programming, no distribution on uncertain parameters is assumed and
possible values are equally important. In this methodology, data uncertainty is described by
an uncertainty set, which hopefully includes all or most possible realizations of the uncertain
input parameters.

Given a nonempty, convex, and compact uncertainty set U, robust optimization yields a
solution that optimizes the worst-case performance when the input data belongs to &. The
minimax robust optimization methodology consists of the following two steps:

e constructing an uncertainty set U,

e solving the minimax problem.

An uncertainty set is typically specified by a confidence interval associated with a sta-
tistical method to estimate the parameters based on historical data, see, e.g., (Goldfarb and
Lyengar, 2003). Its specification may depend on the desired level of robustness and assump-
tions about modeling errors. The choice of the uncertainty set also contributes to tractability
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and conservativeness of the approach. Intervals and ellipsoids have typically been used in
the literature on robust optimization to describe an uncertainty set.

We explore here the usefulness of the robust optimization for the optimal portfolio execu-
tion problem with uncertain impact matrices, henceforth denoted by H and G. Subsequently,
(H,G) denotes a vector in R2"*  obtained by stacking the columns of the matrices H and
G on top of one another. Since the covariance matrix can be estimated relatively more ac-
curately, in comparison to the impact matrices, we continue to assume that the covariance

matrix C' is accurately given.

Let U C R2™* denote a compact uncertainty set for impact matrices, a robust optimal
execution strategy can be obtained by solving the following robust counterpart problem:

[ | ~ -

RCWU): inf max ~STHS+ —2"W(H,G, u)z+b"(H,G)z.
2€R (A,G)eu T 2

Compactness of U implies that the optimal value of the inner maximization problem is

attained and the use of max rather than sup is justified. Notice that here the uncertainty
only affects the objective function.

As the size of the uncertainty set I/ increases, the objective value at a robust solution
is likely to increase. This drawback of robust optimization has been frequently referred in
the literature as the conservativeness of the methodology. Ben-Tal and Nemirovski (1998,
1999, 2000)), El-Ghaoui and Lebret (1997), and El-Ghaoui et al. (1998) suggest to rectify
the over-conservatism of robust solutions by specifying an interval uncertainty set to be an
ellipsoid of a smaller size. |Bertsimas and Sim/ (2004)) propose the use of a different subset of
the uncertainty set to control the level of conservatism in the robust solution.

In addition to being a conservative approach, specification of an uncertainty set is arbi-
trary to a large degree, and an uncertainty set built on the historical data may not be able to
accurately explain future scenarios. Robust optimization can be viewed as a black box which
takes the uncertainty set as its input and produces a robust solution as an output. Thus, it
is important to understand how stable the robust solution is with respect to variation in the
uncertainty set. This issue, further discussed below, has not been considered in the robust
optimization literature to date.

We say a general robust optimization scheme or a robust solution is stable with respect
to the uncertainty set, if a small variation in the uncertainty set produces a small change in
the robust solution. Next we use a robust optimal portfolio execution example to illustrate
potential instability of the robust solution with respect to change in the uncertainty set. We
use here an interval uncertainty set in our example due to its simplicity.

Consider an interval uncertainty set U = Uy X Ug, where

U déf [Q77] = {é € Rm2 : Qij < éij < éij .
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For the interval uncertainty set U = Uy X Ug in (4.2.1]), the inner maximization problem in
RC(U) becomes [[

N m N m N
- 1 -
max Z Z Gij(xk)i(xk_l — (Ek)j + = Z Z H;; (xg — l’k—l)i (xg — a:k_l)j + /JTZ.T{CJI]C
HG 5=t =11 =1 k=1
st. Hy <Hj<Hg i=12..,m, j=12..,m, (4.2.2)
Q’U Sélj Séz_ﬂ Z:17277m7 j:17277m7

which is a linear optimization problem in terms of the variables lflij and G’Zj with box
constraints. At the solution, each variable equals either its upper bound or lower bound,
depending on the sign of its coefficient in the objective function. Whence a robust solution
of problem RC(U) solves the following problem:

1 —- 1 — — -
inf —STHS + =2"W(H,G, 1)z + b (H,G)z
z=(z1, aN-1)ER T 2 ( 2 ( )
o N-1
+> (Gij — Gij) max {0, > (w)i(ag — wk—l)j}
1,7 k=1

N
+% Z (FZJ - ﬂw) max {07 - Z(mk - afk—l)z‘(l'k - xk1)j} . (4.2.3)

k=1

This problem can be formulated as minimizing a quadratic function subject to quadratic
constraints; an optimization method is not guaranteed to yield a global solution in general.

Our objective in the rest of this section is to understand sensitivity of a robust optimal
execution strategy to variation in the interval uncertainty set. To this end, we conduct a
sensitivity analysis based on simulations; this technique has been previously used for the
Markowitz mean variance portfolio optimization, see, e.g., (Broadie, [1993).

We assume that there exists an uncertainty set & which yields a robust strategy with the
desired properties; we refer to this as the original uncertainty set. Suppose this uncertainty
set is unknown; some perturbed uncertainty set I/ is instead applied by the decision maker.

The performance of a strategy is represented by a mean-variance efficient frontier. An
original efficient frontier depicts the performance of the strategy with respect to the original
data. An actual frontier describes the actual performance of (using the original data) a
strategy determined using perturbed data.

For given nominal impact matrices H and G, we refer to the solution of problem (3.2.5)
as the nominal optimal execution strategy. The original nominal frontier is the curve of the
original mean and variance of the execution cost of the nominal optimal execution strategy
when the risk aversion parameter p varies in (0,00). For the perturbed impact matrices
H+ AH and G + AG, the actual nominal frontier is the curve of mean and variance of the

IThe second summation of the objective function in problem ([4.2.2)), at k = 1, yields the term %ST]EI S.
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execution cost computed from the original nominal impact matrices H and G for the optimal
execution strategy determined from the perturbed impact matrices H + AH and G + AG.

Similarly we can consider a robust efficient frontier of the robust solution with respect to
an uncertainty set U it is the curve of the worst case mean and variance of the execution cost
of the robust solution. This notion of robust efficient frontier is described in (Kim and Boyd),
2007). We also extend the notions of original and actual (mean-variance) efficient frontier
to the robust frontier. The original robust frontier corresponds to the worst case mean and
variance of the execution cost with respect to the original uncertainty set U for the robust
solution obtained from U. An actual robust frontier for the perturbed uncertainty set I is
the curve of the worst case mean and variance with respect to the original uncertainty set
U for the robust solution computed from a perturbed uncertainty set .

Using simulations, we consider a three asset robust optimal portfolio execution problem
with respect to an interval uncertainty set to illustrate sensitivity of the robust solution to the
uncertainty set specification; the details are described in Example [£.2.1] In our simulation
study, we use the open-source solver Gloptipoly3 (Henrion et al.,|2009) to compute a solution
for problem . Gloptipoly3 returns a flag, indicating whether the obtained solution is
global or not. Simulated perturbations are selected when Gloptipoly3 has indeed obtained
a global solution for the robust optimization problem. This example has been used in
to illustrate sensitivity of the nominal execution strategy to the impact matrices; we also
include nominal efficient frontiers and nominal solutions here to compare them with the
robust efficient frontiers and robust solutions.

Example 4.2.1. Consider liquidation of three assets with the initial holding S; = 10° shares,
1 =1,2,3, in five days by trading daily, i.e., T =5, N =5, and 7 = 1. We assume that
there 1s mo constraint on the execution strategy, i.e., R = Rg. The assets are currently
traded at price Py = 50%/share. Let the daily asset price covariance matriz be as in .
The nominal permanent and temporary impact matrices H and G are assumed to be as in
. Note that i (W (H, G, 0)) = 2.5960 x 1079,

_ For simplicity we assume that the temporary impact matriz is accurately given, i.e.,
H = H = H, and only the permanent impact matriz is uncertain with G = 3 - G and
G=02-G,ie.,

Uy = {H}, U =102 -G, 3-G] (4.2.4)
Notice that Apin(W (H,G,0)) = 8.6534 x 10710, which is smaller than Auim(W (H, G, 0)).

We now add 5% perturbation AGY and AE@ to the nominal permanent impact matriz
G and the upper bound of the original uncertainty set Ug as follows:

AGO = 5% - max;; {|Gyj|} - 0O, AGY = 5% - max {|Gy|} - ¢,  (4.2.5)
2y

where ¢\ is a standard normal random sample (computed using randn in MATLAB). A
sample ¢\ is selected only if the nominal solution corresponding to the perturbed permanent
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impact matriz G+ AGY uniquely exits (the matriz W (H, G + AGY,0) is positive definite),
the perturbed uncertainty set Ug = |G, G + A@“)] is a wvalid interval (all entries of the

matriz G + A@“) — G are nonnegatwe),_and Gloptipoly3 obtains a global solution for the
robust optimization problem (4.2.3) withU = Uy X Ug.

The original robust frontier and actual robust frontiers corresponding to 50 perturbations
Ug to the original uncertainty set U = Uy x Ug (with p € [0,107°]) are graphed in the left
plot in Figure[{.1. We observe large deviations of the actual robust frontiers from the orig-
inal robust frontier. This indicates that the robust frontier can be unstable to perturbations
in the uncertainty set. For comparison, the right plot in Figure[].1] graphs the original nom-
inal frontier and 50 actual nominal frontiers corresponding to 50 perturbed nominal impact
matrices G + AGW. This plot shows that sensitivity of the robust frontiers to perturbations
in the uncertainty set may be larger than sensitivity of the nominal frontiers to perturbations
i the nominal tmpact matrices.

In addition, it can be observed from Figure[]. 1) that deviations of actual frontiers from the
original ones are more prominent for small risk aversion parameters. We further examine
variation in the optimal execution strategy when p = 0. Figure [4.3 illustrates sensitivity
of the robust optimal execution strateqy for p = 0 to perturbations in Ug (left plots) and
compares it to sensitivity of the nominal solution to perturbations in the nominal permanent
impact matriz G (right plots). Significant variation in the robust optimal execution strategy
can be observed from the left plots; variation is more severe in comparison to variation in
the nominal optimal execution strateqy depicted in the right plots. Note that both the original
nominal solution and the original robust solution in this case are the naive strateqy since the
matrices G and G are symmetric (see Proposition .

Example clearly illustrates that the robust optimal execution strategy can be un-
stable with respect to variation in the uncertainty set. This can also be seen when the
set of feasible execution strategies is R.. In this case, for every z = (21, -+ ,2n_1) € R,
Tp_1 > xp > 0. Hence, (F, @) is the solution to problem and the worst case realization
of impact matrices is the same regardless which execution strategy is adopted. Therefore,
when W (H,G,0) is positive definite, the (global) robust solution of problem RC(U) with
respect to the interval uncertainty set U = Uy X Ug can be obtained simply by solving the
following convex quadratic programming problem:

min %STHS + %ZTWH, G )=+ 2To(H, G). (4.2.6)
Consequently, applying the robust optimization approach to obtain a robust execution strat-
egy, we end up with a nominal optimal portfolio execution problem with the impact matrices
replaced by the upper bounds of the uncertainty set. Hence, sensitivity of the robust solution
to variation in the uncertainty set U = Uy X Ug is the same as sensitivity of the solution
to perturbation in the impact matrices H and G. Applying Theorem for the optimal
portfolio execution problem implies that the robust solution may be very sensitive
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Figure 4.1: Comparing sensitivity of the robust efficient frontier to 5% perturbation in the
upper bound of the uncertainty set Uy with sensitivity of the nominal efficient frontier to
5% perturbation in the nominal permanent impact matrix G.

to change in the uncertainty set U if A\ (W (H, G, u)) is sufficiently small. Indeed, this
sensitivity may be larger than the sensitivity of the nominal optimal execution strategy to
the nominal impact matrices (H, G) when Ay (W (H, G, 1)) < Anin (W (H, G, ).

Next we show that the robust optimal execution strategy can be computed by semidefinite
programming when the Hessian W (H, G, p) is positive definite for every (H,G) € U. Indeed,
this method will also be used for our proposed regularized robust optimization described in

4

4.3 Robust Optimal Execution Strategy

For simplicity, we denote the objective function of RC(U) by Y(z, H,G), i.e
of 1 oA oA
(2, H,G) Y STHS+ 2z TW(H,G, p)z+b"(H,G)z. (4.3.1)

The function Y (z, H, G) is linear in (H,G) and quadratic in z. The function Y(-, H, G) is in
general non-convex, as the uncertainty set ¢/ may include scenarios (H G) where the matrix
W (H,G, u) is not positive semidefinite. Thus robust problem RC(I{) is NP-hard in general

When W(H,G,p) is positive semidefinite, for every (H,G) € U, T (-, H,G) is a con-
vex quadratic function. Using Theorem 5.5 of Rockafellar| (]1996[), MaX 7 ey Y(-,H,G) is

2Note that the problem of minimizing a non-convex quadratic function is known to be NP-hard (Pardalos
land Vavasis} [1991).
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convex. Thus, the problem (infzeR <max(g’é)€u T(z H, é))) is a convex optimization
problem for a convex feasible set R. The following proposition shows the existence and
uniqueness of the saddle point for the minimax problem RC'(U) under convexity assump-
tion.

Proposition 4.3.1. Let R be nonempty, convex, and closed, and the uncertainty set U be
nonempty, convexr, and compact. For a given risk aversion parameter p > 0, assume that
the matriz W (H, G, 1) is positive deﬁmte fm’ every (H,G) € U. Then the minimaz problem
RC(U) has a saddle point (zy, Hy, Gy), 1.

T (zuH G) <Y (20, Ha, Go) < Y (2, Hy,Gu), ¥V (H,G) €U, VzeR. (432)

Moreover, for every two saddle points (20, HM GM) and (2@, H® G?), we have 2V =
22 i.e., the robust optimal execution Stmtegy from problem RC(U) is unique.

)

Proof. From the convexity of R and U, compactness of U, and T(Z,[:[ , é) being strictly
convex in z and linear in (H,G), we have

inf max T(z,f[,é) = max inf T(z,ﬁ[,é), (4.3.3)
z€R  (H,G)eud (H,G)eu z€R

see, e.g., Theorem 3 of (Simons, |1995)), which is provided in Theorem

Let (H,,G,) € U be an optimal point for the outer maximization problem below

max inf T (z,f],é’)
(H,G)eu z€R

Thus,

<1nf T (2, Hy, Gy )) = ( max inf T (z,ﬁ[,é)) . (4.3.4)
zER (H,G)eu ZER

Since (H,,G,) € U, W(H,, Gy, ) is positive definite. Thus T (z, H,, G,,) is a strictly convex
quadratic function. Since R is closed, there exists 2y, ¢,) € R at which inf.cr T (2, Hy, Gy)
is uniquely attained (see, e.g., Proposition 2.5 of (Dostal, 2009) which is presented in Propo-

sition |A.2.1]). Thus

T (2(51,.G.), Hu, Gu) = ,zlg?fz T (z2,H,,G,) = (;nc?)xu zlg7fa T (z, H, G) (4.3.5)

and

T (2(t,,60)s Hus Gu) <Y (2, H,,Gy), VzeER. (4.3.6)

From (§ and -, we get

inf  max T(z,f[,é)zT z JH,, G) .
R ([,G)eu SExD )
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Therefore, z(p, a,) is a solution of the outer infimum on the left problem of equation (|4.3.3)).
Thus

T(Z(Hu,(;u),Hu,Gu) = inf max T( ﬁ é) max T(z(HmGu),I-if,é)
z€ER (H,G)elU (H,G)eu

Hence,
T (Z<Hu,cu a, @) <Y (2(#,.60) Hiy Gu), YV (H,G) €U. (4.3.7)

Inequalities (4 and (4.3.7) imply that (z(m,.¢.), Hu, Gu) is a saddle point.

For the uniqueness, note that positive definiteness of W( .G, ) for every (H,G) e U
yields strict convexity of Y(-, H, G). In particular, Y (-, H ) s strictly convex, and the
problem min,cr Y(z, HM, GM) has a unique solution. Hence, if 2 £ 2

T (20, BV, GW) < T (@, HO,GV) < T (Z(Q)’H(2)7g(2)) .

This contradicts to the fact that both (2™, H® GO ) and (22, H® G®) are saddle points
and consequently Y(z), H® GM) = 1 (2 @ H(Q) G). Therefore, 21 = 22, O

Proposition [4.3.1] indicates that the robust optimal execution strategy is unique, when
the matrix W(H, G, u) is positive definite for every (H,G) € U.

A typical approach to obtain a robust solution is to find a semidefinite programming
(SDP) representation for the robust counterpart problem RC(U). Ben-Tal and Nemirovski
(1998) show that the robust counterpart of an uncertain convex quadratically constrained
quadratic programming problem, with separate ellipsoidal uncertainty sets for the Hessian
and linear term of the objective function can be explicitly modeled as a linear semidefinite
programming. As is explained in (Halldorsson and Tuttnct, 2003), the model in (Ben-
Tal and Nemirovski, [1998) places the uncertainty description on the square root of the
Hessian, whence, every matrix in the uncertainty set is positive semidefinite. However,
when one has an uncertainty description for only the Hessian, transferring that into an
uncertainty description on the Cholesky-like factors can be difficult. [Ben-Tal and Nemirovski
(1998) further discuss that a more general uncertainty for the Hessian and linear term of the
quadratic objective function leads to an NP-hard robust counterpart problem.

Here, we apply semidefinite programming to solve problem RC(U), when the matrix
W(I:I .G, ) is positive definite for every (lff , CN}') € U. However, in contrast to the typical
approach, see, e.g., (Ben-Tal et al.; 2009), in which the dual of the inner maximization
problem is taken, similar to (Kim and Boyd, 2008), we first switch the order of min and max;
then we take the dual of the minimization problem and show that it is SDP representable.
We summarize our discussion in the following proposition. Below, we consider that the set
of feasible execution strategies R is defined by linear inequality constraints

R={zeR™D . Az < ¢}, (4.3.8)
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where ¢ is an r-vector and A is a r x m(N — 1) matrix. This representation of R lets us
treat any linear inequality constraint such as nonnegativity constraints or bound constraints
on execution strategies, in a unified manner. Furthermore, since an equality constraint can
be represented using two inequality constraints, it can also be used when linear equality
constraints are imposed on an execution strategy.

Proposition 4.3.2. Let the uncertainty set U be nonempty, conver, and compact, and the
matriz W (H,G, 1) be positive definite for every (H,G) € U. Furthermore, assume the
nonempty feasible set R is as in (4.3.8)). Then the robust solution to RC'(U) equals

2y = —W(Hy, Gy, )~ (b(Hy, Gu) + A™N) (4.3.9)
where (H,,Gy) and A, € R, constitute a solution of the following problem.:

PU) : __ max v
(H,G)elU, ARy, veR

o~ - o~ T
25THS — 27N — 20 (b(H, G) + AT)\)
b(H,G) + AT ) W(H,G,u)

s.t. ] = 0. (4.3.10)

When no constraint is imposed, i.e., R = Ry, the robust solution of RC(U) is
2y = ~W(Hy,, Gy, 1) '0(H,, G), (4.3.11)
where (H,,G,) constitutes an optimal point of the following problem:

o omax w (4.3.12)
(H,G)eU, veR
25THS 90 WH.C)

. T R i = 0.

ot [ WH.G)  W(H G |~

Proof. The given assumptions and Proposition 4.3.1] imply that the infimum is attained.
Furthermore, problem RC(U) equals:

1 g 1 . .
max min —STHS + —2TW(H,G,p)z+ b (H,G)z
(H,G)eu ZER T 2

= max ES'TFIS + min <1ZTW(I:I, G, )z + bl (H, é)z) . (4.3.13)
(HGeu T z€ER 2

The Lagrangian function of the inner minimization problem in (4.3.13)) is:

L(z,\) =57 AW(H, G, p)z+ 0T (H,G)z + N (Az — ¢)
%ZTW(FI G, 1) (b( ,G)+AT)\) z—ch'A
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Since L(z,\) is a strictly convex quadratic function of z, the Lagrange dual problem is:

o (_min | 26)

AER?, 2eRM(N—1)

_ L m A NS N T _ T
= juax ( 2<b(H,G)+A A) W, G, ) (b(H,G)+A /\> Ir).

Here R’ denotes the nonnegative orthant. Since R is defined by linear inequalities,
Slater’s condition and consequently strong duality hold for the inner minimization prob-

lem of (4.3.13)). Thus:

1 . -
min (zTW(H,G,,u)z + bT(H,G)z> = max ( min L(z,)\)) .
2€R \ 2 AERT \ zeRm(N-1)

Thus problem (4.3.13]) is reduced to:

o~ — - o~ T - o~ o~
Cmax  STHS (b, G) + ATA) WML G (b, G) + ATA) — A (43.04)
(H,G)eUNeRT, T 2

Problem (4.3.14]) can be reformulated as:

max v
(H,G)eU, \eR7,, veER
o~ — ~ o~ T o~ o~
s.t. %STHS - % <b(H, G) + AT)\> W(H,G,p)~ (b(H, G) + AT)\> —TA> .

Since W(ﬁ .G, ) is positive definite, using the Schur complement, inequality
1 7~- 1 ~ T L ~
—STHS - 3 (b(H, G) + AT)\> W(H, G, 1) (b(H, G) + AT)\> ~ A >0, (4.3.15)
-

holds if and only if the linear matrix inequality

o . T

25T S — 267N — 20 <b(H, G) + AT)\> -
b(H,G) + ATX W(H,G, ) T

holds, with strict positive definiteness in the last constraint if and only if strict inequality

holds in inequality (4.3.15]).

Therefore, a solution of the inner maximization problem in RC(U) can be obtained by
solving the maximization problem P(U). Let the pair (H,,G,) and A, € R, be a solution
of problem P(U), then the robust solution equals (4.3.9)).

When no constraint is imposed, i.e, R = R, problem (4.3.13)) is reduced to the following
problem:

17~~~ 1 ~ ~ ~
max —STHS — - b (H,GYW YH,G,u)b(H,G). (4.3.16)
(HGeu T 2
A similar discussion then implies that the robust solution becomes (4.3.11)) where (H,,G,)
is an optimal point of problem (4.3.12)). n
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At an optimal point of P(U), optimal objective value v represents the execution cost
corresponding to the robust optimal execution strategy. Convexity of the objective function,
the uncertainty set U, and the linear matrix inequality constraints imply that problem P(U)
is a convex programming problem. When U is defined by linear matrix inequalities, problem
P(U) is a linear semidefinite programming problem; this problem can be solved using high-
quality open-source solvers, e.g., SEDUMI (Sturm, [2001) or SDPT3 (Toh et al., [2002).

An advantage of the above derivation for the robust solution is that this approach does
not depend on any specific structure (e.g., interval or ellipsoidal) of the uncertainty set. We
also adopt this derivation for the regularized uncertainty set introduced in It is worth
mentioning that formulation P(i) also allows us to include the constraint G = G7 in the
uncertainty set specification, when there is some evidence that the permanent impact matrix
is symmetric.

4.4 Regularized Robust Optimization

Example illustrates that a robust execution strategy can be sensitive to the uncertainty
set specification. Now we propose a regularized robust optimization formulation to address
this issue.

For the nominal optimal portfolio execution problem ({3.2.6]), sensitivity of the optimal ex-
ecution strategy and the efficient frontier has been studied in Chapter |3l This analysis shows
that, when the minimum eigenvalue of the Hessian of the objective function W(H, G, u) is
small, the optimal point may vary significantly when the impact matrices change slightly.
This result suggests that excluding those elements, which yield a small minimum eigenvalue
for W(I:[ .G, 0), from the uncertainty set & may prevent an unstable solution. This idea is
also related to the well known regularization technique in which prior information is included
in the problem formulation to stabilize the solution. The most common form of regularization
for ill-posed least square problems is Tikhonov regularization, see, e.g., (Engl, 1993} [Fierro
et al., 1997 Tikhonov and Arsemin, 1997)), where a two-norm bound constraint is included.
Here we propose to regularize uncertainty set to obtain more stable robust solutions.

Let 4 C R2™ be a nonempty, convex, and compact uncertainty set for the impact
matrices. Given U and a positive constant p > 0, we impose the regularization constraint
Amin(W(H, G, 0)) > p on the uncertainty set:

def

VU, p) {(ﬁ, G) €U | AW (H, G, 0)) > p} . (4.4.1)
We refer to the parameter p and the set V(U, p) as the reqularization parameter and the
reqularized uncertainty set, respectively. The regularization constraint Api (W (H,G,0)) > p
is equivalent to the matrix inequality constraint W(lf[ , é, 0) = pLm(n—1) Where I, (n_1) is the
m(N —1) x m(N —1) identity matrix. Figure {4.3|illustrates how the regularized uncertainty
set V(U, p) compares with U for two values of p in a single asset execution.
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Figure 4.3: Regularized uncertainty set V(U, p) versus uncertainty set U. Here, m = 1,
N =5, and the nominal impact matrices are H = 107% and G = 8 x 10~7. The uncertainty
set is U = {(H,G) € Uy X Uz : duin(W(H,G,0)) > 0} where Uy = [0.75 - H, 1.25 - H]
and Ug = [0.75 - G, 1.25 - G|. The grey area denotes the original uncertainty set and circle
pattern denotes the regularized uncertainty set V(U, p).

We note that convexity of & and convexity of the regularization constraint imply con-
vexity of V(U, p). Moreover, since the function Ay, (+) is a continuous function, closeness of
U implies closeness of V(U, p).

For every (H,G) € V(U, p) and p > 0, the Courant-Fischer Theorem yields
Auin (W (H, G, 1)) = A (W(ﬁ, G,0) + 2urly ® c) > o+ 20 Amin (C), (4.4.2)

where ® denotes the Kronecker product of two matrices. Thus by imposing the specified
regularization constraint, we ensure that the minimum eigenvalue of the Hessian of the
objective function at the worst case impact matrices is positive and not very small.

The regularization parameter value p affects the size of the regularized uncertainty set
V(U, p). If p increases, the size of the uncertainty set decreases, i.e., implicitly one is demand-
ing robustness with respect to a smaller set of parameter values. As a result, the resulting
robust strategy will be less conservative.

To ensure that the set V(U, p) is nonempty, the regularization parameter p needs to
be chosen carefully. In particular, when Api,(W(H,G,0)) > 0 for the nominal impact
matrices (H,G) € U, the regularized uncertainty set V(U, p) is nonempty for any p <
Amin(W(H,G,0)). Thus the regularization parameter can be proportional to this value.
If the regularization parameter p is strictly greater than max g &)<, Amin(W(H, G, 0)), the
regularized uncertainty set becomes empty.
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Given an uncertainty set ¢ and a positive regularization parameter p, the regularized
robust optimization formulation is given below:

,(p) © min max lgT[:[S* + 22 W(H,G, 1)z + b (H,G)z.  (4.4.3)

2€R (H,G)evUp) T

When z* constitutes a solution of problem (4.4.3)), it is subsequently called a regularized
robust optimal execution strategy. Including a regularization constraint also allows us to
compute a regularized robust solution using problem P(V(U, p)) and equation . This
is the case even for an interval uncertainty set U for which, computing a robust solution can
be NP-hard in the absence of a regularization constraint. For an interval uncertainty set
U, problem P(V(U,p)) is a linear semidefinite programming problem which can be solved
efficiently. Note that ®,(p) = v*, where v* is the optimal value of problem P(V(U, p)).

Now we illustrate the effect of regularization on stability of the robust solution with
an interval uncertainty using the portfoho execution described in Example [£.2.1 We use
the same M = 50 perturbations AG®), used in Flgures ! and . Regularlzed robust
solutions are computed in MATLAB 7.9, using ) and m Problem (| is
solved using CVX, a package for specifying and solvmg convex programs (Grant and Boyd,
2009) in MATLAB.

Figure illustrates sensitivity of the actual robust efficient frontier corresponding to
the regularized robust execution strategy to perturbation in the uncertainty set. The actual
robust frontier for the regularized robust solutions is the worst case mean and variance with
respect to the original uncertainty set «. Comparing Figure .4 with Figure .1, we observe
clear improvement in stability of the regularized robust solution. Furthermore, Figure
indicates that increasing the regularization parameter p reduces variation in the actual robust
frontiers.

Figure illustrates stability of the regularized robust optimal execution strategy when
1 = 0 for two regularization parameter values p. Comparing the left plots with the right plots
in Figure indicates that the sensitivity is larger for a smaller regularization parameter
p. In addition, comparison between Figure and Figure indicates that the regularized
robust optimal execution strategy has a more stable behavior to perturbation in the upper
bound of the interval uncertainty set Ug than the classical robust optimal execution strat-
egy. Note that, for both regularization parameter values, the worst case original permanent
impact matrix G, for P(V(U, p)) is symmetric; thus the regularized robust optimal execu-
tion strategy is the naive strategy, which follows from Proposition [3.2.1} For a perturbed
uncertainty set U = Uy X U, the worst case permanent impact matrix G, from problem
P(V(U,p)) is typically not symmetric; thus the strategy can differ significantly from the
naive strategy.

Next we formally analyze stability of the regularized robust solution.
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Figure 4.4: Sensitivity of the robust efficient frontier for the regularized robust optimal
execution strategy to 5% perturbation in the upper bound of the uncertainty set Uy, for
liquidating the three assets in Example .

4.5 Stability of the Regularized Robust Optimal Exe-
cution Strategy

In this section, we establish a bound on the change in the regularized robust optimal exe-
cution strategy, when the uncertainty set is perturbed. This bound explicitly indicates how
the regularization parameter p affects sensitivity of the regularized robust solution to varia-
tion in the uncertainty set. In addition, we show that the change in the regularized robust
solution converges to zero when the change in the uncertainty set & converges to zero.

We measure perturbation in the uncertainty set by the Hausdorff distance (Hausdorff]
1962), which quantifies how far two subsets in a metric space are from each other. Given a
metric space (X, d), the Hausdorff distance between two subsets S, 7 C X is defined by:

Haus, (S, T) o max{sup inﬂﬁ d(s,t), sup inf d(s,t)},

ses te teT S€S

see, e.g., Remark 4.40 of (Bonnans and Shapiro| |2000) for a more detailed discussion.

When both subsets S and 7 are bounded, Hausy(S, T) is finite. The Hausdorff distance,
defined on a metric space (X, d), is a metric on the set of all non-empty compact subsets
of X, see, e.g., Proposition 4.1.8 of (Papadopoulos| 2005)). This metric has been previously
used to measure perturbation to a set, see, e.g., (Alvoni and Papini, [2005). Here, we define
the Hausdorff metric induced by the metric d, below, on R*"™ :

of 2
d((Hy,G1) . (Hy,Go)) € Z|[Hy = Halla + |Gy — Gao. (4.5.1)
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The norm || - || here denotes the matrix 2-norm.

Measuring perturbation in the uncertainty set using Hausy;, we show next that, as
Haus, (U4, U) — 0, the distance of the regularized robust strategies corresponding to U
and U also approaches zero. Our analysis mainly relies on results in Chapter [3and (Fiacco,
1974). Below, Apax(+) denotes the maximum eigenvalue.

Theorem 2.1 in (Fiacco, [1974)), presented in Theorem [A.1.2] implies when the sequence
{8k} of closed subsets of a compact set T of a metric space (X, d) approaches a compact set
S C X, i.e.,, Hausy(Sk,S) — 0, then any sequence of solutions of minimizing a continuous
function f over Sy contains at least one convergent subsequence and all cluster points are
solutions of min,es f(x).

We precede the stability analysis for the regularized robust optimal execution strategy
by the following auxiliary lemma. This result is used when Theorem 2.1 in (Fiaccol, [1974)) is
applied for the portfolio execution cost problem with R = R., using (4.3.14)).

Lemma 4.5.1. Let R = R, and a nonempty, convex, compact uncertainty set U be given.
Assume that the regularization parameter p > 0 is chosen such that V(U, p) is nonempty.
Then problem , applied for the regqularized uncertainty set V(U, p), shares the same
set of solutions with the following problem:

o~ ~ o~ T ~ o~ ~ o~
max %STHS — % (b(H, G) + AT/\> W H, G, ) (b(H, G) + ATA) —c'A\(4.5.2)
st A2 < A
(H,G)eVU,p), AeR,

where

N Vi S Yo W () (1+4mAu+2mmx<c>

(p + 20T Amin(C)) - sin (4N7r7_2> 9 sin? (ﬁ) ) (Ao + 1) [[S]]2-

Here, A, = max g é ey 1©||2 where © is the combined impact matriz corresponding to H
and G. Furthermore, the set of feasible points of problem ([£.5.2) is compact.

Proof. Recall that problem (4.3.14)) includes the Lagrange dual problem of the inner mini-
mization problem in (4.3.13)), which is given below

1 S S
min §zTW(H,G,u)z+bT(H,G)z. (4.5.3)

2ER.

Let J be the set of indices of binding constraints defining R, at the solution of problem

(4.5.3). Lemma yields

, T
Amin (A7AT) > 4sin? <4N — 2) : (4.5.4)
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Furthermore, using equation (3.3.22)) we have

IAT[l2 < 2. (4.5.5)

Proposition implies that the Lagrange multiplier A of the constraints defining R,
satisfies

2 (W(H, G, ) Amax(W (H, G, 1)) - | AT ||2> STRAT
A < 1+ OS2+ |IS
H H2 )\min(W(]N{’ é’ Iu)) ' \/m ( )\min(AJATJ—’) (” H2 H HQ)
< WU, G p0) (1 4 Qmax(W U, é’“”) Mat DSl (450
(p + 20T Apin (C)) - sin (ﬁ) 2sin? (ﬁ)

where inequalities (4.5.4)), (4.5.5)), and (4.4.2) are used to derive inequality (4.5.6)). Notice

that A, is finite as U is compact.
For every (H,G) € V(U, p), the matrix W (H, G, 0) is symmetric. Thus
IW(H,G0lle < [W(EHGOl < 8] +]6+6 |+ 67,
1Ol +1©]]x + 167l + 167 1x
2[10]|1 + 2[|O]|00 < 4v/mA,,. (4.5.7)

<
<

Therefore,
Amax(W(H, G, 1)) < |W(H,G,0)||2 + 27 Amax(C) < 4v/mAy + 24 Amax (C).  (4.5.8)

Using inequalities (4.5.7) and (4.5.8)) in inequality (4.5.6) we get,

4\/RAU + Q[LT/\maX(C) 14 4mAu + 2M7-)\max(0)
(p =+ 24T Amin (C)) - sin (4]\?—72> 2 sin? (741\;12)

Thus optimal points of problem (|4.3.14]) satisfy inequality (4.5.9)). Whence problems (4.3.14)
and (4.5.2) have the same set of solutions.

The upper bound in inequality (#.5.9) depends on U and the constants p, N, and S.
Therefore, it is finite for any compact uncertainty set U C R2™* . Thus when U is nonempty

and compact, the set of feasible points of problem (4.5.2)) is closed and bounded, and conse-
quently compact. O

[All2 <

) (Au+ 1) 1Sz (45.9)

Lemma is used in part (c) of the following theorem.

Theorem 4.5.1. Let the risk aversion parameter p > 0 and a nonempty convexr compact
uncertainty set U be given. Assume that the reqularization parameter p > 0 is chosen such
that V(U, p) is nonempty. Denote a solution to the reqularized robust problem with
respect to the uncertainty set U with (z,, H,,Gy,). Let U be any nonempty convex compact
uncertainty set such that V(U, p) is nonempty, and (2, Hy, Gy) be a solution to problem
with respect to U. Denote the combined impact matrices corresponding to (H.,, G,)
and (Hy, Gy) with ©, and Oy, respectively. Define A, = max z é ey p) |©|l2. Then the
following hold:
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(a) When the execution strategy is unconstrained, i.e., R = Ry,

20 — zallo _ ( 4y/m )
— " <L 1+ — 19, — Oxll2, (4.5.10)
||S||2 59 Bp 2

where B, = p+ 2uT Amin(C).

(b) When buying is prohibited in the sell execution strategy, i.e., R = R., there exists
Sua > 0 such that

< Sua (1 + 4\/>§uu (max{1, Bu} + Ay + [[On — ﬁHz)) 104 — Oall2, (4.5.11)

where B, = 4v/mAy + 2uT Amax (C) and

S (ﬁu FAVIIO = Ol | g <4N7r 2)) (512
sin? (5 ) By By -

(c) In addition, for any uncertainty set U with Hausy(U,U) — 0, we have ||z, — zal]2 — 0,
when R equals either R, or Ry, and the metric d(-,-) is defined in (4.5.1)).

Proof. First we note that, since U and consequently V(U, p) are compact, A, is finite. Fur-
thermore, since (H,,G,) € V(U,p) and (Hy, Gz) € V(U,p), the matrices W (H,, G, i)
and W (Hyg, Gg, ) are both positive definite. Whence, Proposition implies that the
corresponding regularized robust strategies are unique.

For notational simplicity, denote
W, € W(H,, Gy, 1), Wa € W(Hg, Gy, o).
Since (H,,Gy) € V(U, p) and (Hy, G3) € V(U, p), inequality (4.4.2)) yields

min{ Amin(Wa), Amin(Wa)} > B, (4.5.13)

A max{1, Amax(Wo)} > max{1, p + 2umAuin (C)} > 5, (4.5.14)

Since the regularized robust solutions z, and z; solve the nominal optimal portfolio
execution problem with the impact matrices (H,, G,) and (Hgz, G3), respectively, Theorem

yields

20 = zall2 <

15]218u — Ball2 4/m
i { Arnin (Wer), Amin(Wa) } < min{)\min(Wu),)\min(Wu)}”9”H2>’ (4.5.15)

when R = Ry.

Applying inequality (4.5.13) in (4.5.15)), and the fact that ||©,]s < A,, we obtain in-
equality (4.5.10) and the proof of part (a) is completed.
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Next, let R = R.. Theorem implies that

2w = zalls < sue 11, (1+ dsuav/m (A + 104l + 104 = ©5l,) ) 10 = Oulz, (4.5.16)

(1 + 2Sin(;<+ f) ) ; (i‘ + 3sin (4N7r_ 2))) : (4.5.17)

AN -2

where

>+

with A = max Apax (W, +n(Wa — W,)), A = min )\mm(W +n(Wy —W,)), and X is as in

nel0,1] nel0,1]
(4.5.14]).
The Courant-Fischer Theorem yields
A= m[m Amin (Wo + (W — W) (4.5.18)
nelo
> min (nAmin(Wa) + (1 = 1) Auin(Wa)) = By,
n€[0,1]

where the last inequality comes from inequality (4.4.2)).
Since the matrix W, — W, is symmetric, we have ||W, — Wal|1 = ||[Wy — Wa|le. Hence,

W = Wallz < VIIWa = Walll[We = Walloo = [We = Wl

Therefore we have

Wy = Wall, < [[Wy —Wall,
< 84 = Oull, + € = O + (8 = ©a) |, + [|(Bu — ©a)" ],
<2(|0, — 04, +2]|(©. — 0a)" ||,
= 2|0y — Oall; +2[|0y — Oul| (4.5.19)
< 4v/m||©, — Oql,.

This result along with the Courant-Fischer Theorem imply that
A = max A\pax (W +n(Wy — W)

nG[O 1]

< max (Amax(Wa) + 1Amax(Wa — W)

n€l0,1]
< Amax(Wa) + max n||Wa — W |2
n€l0,1]
< Amax (W) + [[Wa = W2
< A W) + 4/7]|05 — O, (45.20)

Since (H,,G,) € U, inequality (4.5.8)) yields Apax(W,) < B,. Using this inequality in
inequality (4.5.20]), we get

X +A 2\ < Q(Bu + 4\/E||@ﬁ — Oull2)-
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Applying these inequalities, along with inequalities and (4.5.18)), in (4.5.17)) yields
inequality ({.5.12)). Furthermore, using inequalities ||©,]l> < A, and [[W,[l2 = Amax(Wa) <
B, in (4.5.16)), inequality is obtained. This completes the proof of part (b).

The proof of part (c) relies on the result in (Fiaccol (1974) (see Theorem 2| and
Corollary |A.1.1 “ for problems (4 and (4.5.2). Since the matrix W(H,G, p) is p081t1ve
definite over V(U, p), the entries of the inverse matrix W~ (H,G, 1) are continuous functions
of the entries of the matrlces H and G (see e.g., (Basener, 2006)). Whence, the objective
functions of problems (4 and (| are continuous with respect to elements of H, G,
and .

First consider the case when the set of feasible execution strategies is Ry. Suppose
Haus,(U,U) — 0 and ||z, — zu||2 # 0. Thus there exists some € > 0 such that for every
k there exists some U;, C R?*™ with Hausy(Uy,U) < £ and ||z, — zg,[l2 > €. Here zg,
is the regularized robust solution corresponding to the uncertainty set {overlineldy}. Let
{(Hg,,Gag,)}x be a sequence of solutions of problem (4.3.16) with the uncertainty sets Uj,.
Corollaryyields there exists a subsequence {(Hg, , Gy, )} of the sequence {(Ha, , G, ) }x
that approaches to a solution (H,, G,) of problem with the uncertainty set U. Thus,
for i sufﬁciently large, d((Hy, Gu), (Hy,, ,Gg,,)) — 0. Consequently, ||©, — Oy, [l2 — 0, be-
cause [|©, — Og, |2 < d((Hy, Gu), (Hukl,Gukl)) Using inequality ({.5.10) and the fact that
the regularized robust solutions 2y and’ zz,, are unique, we get |2 — Zay, 2 — 0, for i large
enough. This result is in contradiction to |20 — za, ll2 > €. Whence, |z, — zaHg — 0 as

Haus,(U,U) — 0.

Now, let R = R.. Recall that (H,, G,) solves problem (4.3.10)) or equivalently problem
@D Furthermore, Lemma indicates that (H,, G,,) constitutes a solution of problem
@D in which the set of feasible points is compact. Therefore, Corollary is applicable
to problem . A similar discussion, as in the previous case, through Corollary

and inequalities (4.5.11)) and (4.5.12) completes the proof of part (c), when R = R.. O

Theorem [4.5.1] implies that small variations in the uncertainty set U result in small
changes in the regularized robust solution. In other words, the regularized robust solution
is asymptotically stable with respect to change in the uncertainty set.

4.6 Implications of Regularization

In this section, we discuss additional implications of the proposed regularization on the
robust solution, the robust optimal value, and the efficient frontier.

4.6.1 Implications on the Optimal Execution Strategy

Here, we analyze how the regularization parameter affects some characteristics of the regu-
larized robust optimal execution strategy.
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For every (H,G) € V(U, p), inequality (&.4.2) yields
1 < 1
Amin(W(H, G, 1)) ~ P+ 20T Amin(C)

Hw—l(ﬂ, G’“)Hz — Ao (W—l(ﬁ, é,u)) - (4.6.1)

The following proposition shows that the regularized robust solution satisfies a Tikhonov-
type regularization constraint, when R = Ry.

Proposition 4.6.1. Let R = Ry, the risk aversion parameter y > 0, and the nonempty
convex compact uncertainty set U be given. Assume that the reqularization parameter p is
chosen such that V(U, p) is nonempty. Then the regularized robust solution z, € Ry of

problem (4.4.3)) satisfies:
el . A
ISz = p+ 207 Ain (C)

(4.6.2)

where A, = MaX 7 &yev(u,p) 1©ul[5-

Proof. When the set of feasible execution strategies is given by Ry, the regularized robust
solution is determined by equation (4.3.9). Applying inequality (4.6.1]), we get:

Izulla = ||=W ™ (Hy, Gu, ) b(Hy, G,
< |[W ™ (Hu, G )| [16(Hu, Gl
_ b Gl
T p+ 20T Amin (C)
Using ||b(Hu, Gu)lly = || — ©uS]l2 < [|Oull2]1S]l2 < AulS||2 in the above inequality completes
the proof of inequality (4.6.2)). O

Proposition indicates that including the regularization constraint in the uncertainty
set implicitly offers a solution that satisfies a two-norm constraint on the execution strategy.

In addition, the regularization parameter also affects the Euclidean distance between the
regularized robust optimal execution strategy and the naive strategy. The naive strategy
can be used as a benchmark since it has been proved to be optimal in special circumstances.
For example, the naive strategy is always the solution for the nominal optimal portfolio
execution problem , when p = 0, the permanent impact matrix G is symmetric, and
© is positive definite (see, e.g., Proposition. Furthermore, when the permanent impact
matrix G is symmetric for every element in &, which holds in a single asset case, the robust
optimal execution strategy is the naive strategy, regardless of the choice of the uncertainty
set. A bound on the distance between the regularized robust optimal execution strategy and
the naive strategy benchmark is established in the next proposition.

Proposition 4.6.2. Let R = Ry, the risk aversion parameter p > 0, and the nonempty
convexr compact uncertainty set U be given. Assume the regularization parameter p is chosen
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such that V(U, p) is nonempty. Then, the reqularized robust optimal execution strategy z, of

problem (4.4.3)) satisfies:

120 — 2n|2 A, ( 4/mA, + 2u7)\max(0)>
= S ) 1 + )
[1.5]]2 4sin® (&) p By

- (4.6.3)
2N
where B, = p + 2utAnin(C) and z, represents the naive strategy xy, = (%) S for k =
1,2,---,N.

Proof. Let (H,,G,) € V(U,p) be a solution of problem (4.3.12)) with the uncertainty set
V(U, p). The unique regularized robust solution from problem (4.4.3) is then

2y = _W_1<Hu7 Gu’lvb) b(Hw Gu)

For simplicity, denote

W, €W (H,, Gy, 1), by 2 b(H,, G).

Notice that [|byl2 < [|Oull2]|S|l2 < Aul|S]l2. Whence

(7, Gi)ll2 = 195 Sll2 < 107112115 1l2 = [1Oull2[IS]l2 < Aul|S]l2- (4.6.4)

Since the naive strategy minimizes the expected execution cost for any symmetric per-
manent impact matrix where the combined impact matrix is positive definite (see, e.g.,
Proposition , it is the unique optimal execution strategy corresponding to the impact
matrices H, + H! and G, + GI | i.e., z, = =W, b,, where

W, W (H, + BTG, +GT.0), b, b (H,+HT, G, +GT).

Therefore
Wiz — 20) = Wa (=W, tby — (=W, 10,)) = =W, W, by + by, = (W, — W)W, by — by + by
Using b, — b, = b (HL,GT) and W, — W,, = W(—HL, —GT 11), we have:

2w = znllz = Wyt (Wu = W)Wy by — by + by) |2
< W 2 (W = Wall2 W, H2libullz + 1| = bu + ball2)
= W, o (W (—HE, =GL, )2 Wy ollbull2 + 116 (HL, GL) |l2)

1 [[bu[2

= g _gT _ MPull2 T T
)\min<Wn) <”W( u Guau)”Z )\mln(Wu) + Hb( " 7Gu) H2

! AullS]l2 ; >
< i IW(=H =Gy, . AullS 4.6.5
= Amin(Wa) <” T T s e (o (4.6.5)
< (W (—HL, —GL,0)||2 + 2umAmax(C)) AullS: + Ay||S]]2 ). (4.6.6)
- )‘min(Wn) v v BP
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where inequality (4.6.5)) comes from (4.4.2) and (4.6.4). Inequality (4.6.6) comes from the

Courant-Fischer theorem.

Corollary applied to W, implies that

Amin (W,,) = 4sin® ( T

. T
o) i (0 +©7)

Since (H,, G.) € V(U, p), we have Apin (W (Hy, Gy, 0)) > p. This yields Apin(©, + OT) > p,
as the matrix ©, + ©7 is a leading principle submatrix of Ay, (W (H,, Gy,0)). Thus we get

T
Auin (W) > 4sin? (2 p. 4.6.7
(W, = sin () 5 (467
Furthermore, a vector (al,al,...;ak ;)T is an eigenvector of W(H,,G,,0) associated

with the eigenvalue A if and only if the vector (—ak_;, —a% _,, ..., —a?)T is an eigenvector of
W(-HI', —GT,0) for the same eigenvalue. Thus,

|W(=H,, =G, 0)|, = [[W(Hy, Gu, 0) ]|, < 4v/mA,, (4.6.8)

where the inequality comes from (4.5.7)) for (H,,G,). Using inequalities (4.6.7) and (4.6.8))
in (4.6.6) completes the proof of (4.6.3)). ]

Table 4.1| computationally shows this property for liquidating the three assets in Example
[4.2.7] Tt indicates that the Euclidean distance between the naive strategy and the regular-
ized robust solution decreases as the regularization parameter increases. Figure further
illustrates the impact of the regularization parameter p on the regularized robust optimal ex-
ecution strategy. We observe that, as the regularization parameter increases, trading for the
first and second assets becomes more even while trading for the third asset becomes slightly
more uneven. Plots in Figure further depict the difference between the regularized robust
optimal execution strategies (for py = 0.8, 1,1.3) and the (classical) robust solution (the thin
solid line).

Proposition indicates that if p increases, the upper bound on the difference be-
tween the regularized robust optimal execution strategy and the naive strategy decreases.
This property demonstrates a difference between the regularization parameter p and the
risk aversion parameter . When a large risk aversion parameter p is chosen, the optimal
execution strategy becomes close to the strategy of liquidating the entire holding in the first
period. We note that Proposition can be extended for more general feasible sets R.

4.6.2 Implications on the Efficient Frontier
A mean-variance efficient frontier clearly depicts the performance of a strategy in terms of
the cost and risk. Here, we study impact of regularization on the efficient frontier. Under

the assumed model, following (3.2.3)), variance of the execution cost does not depend on the
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Figure 4.6: Execution strategies for liquidating three assets in Example with the un-
certainty set as in and p = po - Amin(W(H, G, 0)). The feasible set is R = Ry. The
thick solid line depicts the naive strategy. The thin solid line represents the (unregularized)
robust solution. 6



|

| o | 120 = znll2/[151]2
pw=05x10"%| p=0.5x 10"
0.1 0.587858 0.084620
0.8 0.501393 0.070671
1 0.492655 0.070255
1.3 0.488592 0.070077

Table 4.1: Difference between the regularized robust solution and the naive strategy, for
liquidating the three assets in Example [4.2.1, Here the regularization parameter equals
P =pPo- )‘min(W(H7 G7 O))
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Figure 4.7: A single asset trading with C = 0.003, H = 107°-C, G = 0.5 x 107° - C.
The uncertainty set is U = Uy X Ug, where Uy = [0.5- H, 1.5 H|] and Ug = [0.5 -
G, 4 - G]. Frontiers are for p € [0,107%] and the feasible set of execution strategies is Ry.
The regularization parameter equals p = pg - Amin(W (H, G, 0)). Right plot illustrates robust
frontier (with respect to U) of nominal solutions (depicted by solid line), and robust frontiers
(with respect to V(U, p)) of regularized solutions for several choices of p. Left plot illustrates
the nominal efficient frontier of nominal solution (depicted by solid line) and nominal frontier
of regularized robust solutions.
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impact matrices. Whence, robust optimization problem RC({/) minimizes the weighted sum
of the worst case mean of the execution cost and the variance of the execution cost.

Firstly we compare the nominal mean-variance performance of the nominal optimal exe-
cution strategy with that of the regularized robust optimal execution strategy. Every robust
solution is a feasible point for the nominal optimal portfolio execution problem with nominal
impact matrices. Thus, the nominal efficient frontier of nominal solutions is always below
the nominal efficient frontier of the robust solution with respect to any uncertainty set U.
The nominal frontier of the robust solution is the curve of the nominal mean and variance
points corresponding to the robust optimal execution strategy.

We consider here a single asset execution example to illustrate. The left plot in Figure
compares the nominal frontier of the nominal solution with the nominal frontier of the
regularized robust solution. At the left end of the frontiers (corresponding to u — 1073),
all of the nominal frontiers converge to a single point, which corresponds to the optimal
execution strategy of minimizing the variance of the execution cost, nf = S and nf = 0
for : = 2,..., N. As p increases, more weight is given to minimizing the expected cost and
the difference among the frontiers becomes more prominent. The difference increases as
the regularization parameter increases. Since here the nominal permanent impact matrices
and worst-case permanent impact matrix are symmetric, the naive strategy is optimal for
the nominal and robust problems, when y = 0. Hence, the frontiers also converge to a
single point at the right end. An interesting observation from the left plot in Figure [.7]
is that the nominal frontier of the regularized robust solution does not intersect with the
nominal frontier of the nominal solution, except at its ends (comparing it with Figure 1 in
(Zhu et al., |2009)). This suggests that a regularized robust solution cannot be obtained
simply by adjusting p in the nominal optimization framework. Hence, in general (for general
uncertainty sets) there is no correspondence between the risk aversion parameter p and the
regularization parameter p.

Next we assess robust performance by examining the robust frontier. The robust fron-
tier (with respect to an uncertainty set U) of the nominal solution is the worst case mean
and variance of the nominal solution. Since the solution of the nominal optimal portfolio
execution problem is feasible for problem RC(U), the variance and worst case mean of its
corresponding execution cost are no smaller than those of the robust solution. Therefore, the
robust frontier of the nominal optimal execution strategy is always above the robust efficient
frontier of the robust optimal execution strategy. This has also been computationally ob-
served in (Titinci and Koenig), 2004) for a single period traditional portfolio optimization,
when only the mean return is subject to uncertainty.

Conservativeness of the regularized robust optimal execution strategy can be adjusted
through the regularization parameter. As the regularization parameter p increases, the size
of the regularized uncertainty set decreases. Hence, ®,(p1) > ®,(p2), when p; < po. Here,
®,(+) is the robust optimal value defined in (4.4.3)). Hence, the regularized robust solution
becomes less conservative. In particular, ®,(p) < ®,(0), for every p > 0.

Let the feasible region R be closed and convex, and the uncertainty set &/ be nonempty;,
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convex, and compact. Assume p; and ps are two regularization parameters where 0 < p; <
p2, and the sets V(U, p1) and V(U, p2) are nonempty. Then the (mean-variance) robust
frontier with respect to V(U, pa) of the regularized robust solutions corresponding to ps is
always below the mean-variance robust frontier with respect to V(U, p1) of the regularized
robust solution corresponding to p;. The property is depicted in the right plot in Figure 4.7}

In regularized robust optimization, when the regularization parameter p increases, the
robust frontier with respect to the regularized uncertainty set of the regularized robust
solution is pushed down. The following discussion illustrates this result.

Let the regularized robust optimal execution strategy, corresponding to the risk aversion
parameter p and the regularized uncertainty set V(U, p1), be z,,. Denote the variance and
robust mean of the execution cost corresponding to z,, with V; and E;, respectively:

Vv, et ngl(l ® C)zpys

. 1opo 1 . o
E ©  max  —STHS+ 22 W(H,G.0)z, + b7 (H,G)z,.
(HG)evUp) T 2
Let z,, be the regularized robust optimal execution strategy obtained from the regularized
uncertainty set V(U, p2) and the risk aversion parameter i such that 72 (I ® C)z,, = V.
Denote the robust expected execution cost corresponding to z,, with Eo, i.e.,

e Lar g 1 7O iNe
E, & max  -STHS+ —Z,)TQW(Ha G, 0)zp, + 0" (H,G)2p,.
(H,G)eVU,p2) T 2

Using Sion’s convex-concave minimax theorem (see, e.g., Theorem 3 in (Simons, 1995), which
is presented in Theorem [A.3.2)) and the fact that both V(U, p2) and R are convex, and the
uncertainty set V(U, p2) is compact, we have:
| R | ~ S
Ey+aVi=®,(p2) =  max min-STHS+ -z"W(H,G, )z + b7 (H,G)z (4.6.9)
(H,G)eVUypo) R T 2
| R | ~ SR
< _ max -STHS + fzng(H, G, ) zp, + b (H,G)zp,
(H,G)eVUspe) T 2
| | ~ ~
<  max  —STHS+ 2] W(H,G, )z, + b (H,G)z,,(4.6.10)
(HG)evUp) T 2
=E; +4Vy,

where inequality (4.6.10) comes from the assumption p; < po, which yields V(U, p2) C
V(Z/[, pl)
Thus we obtained Es + 1V, < E; 4 1V and consequently E; < E;. In other words, the

point (V1, Es) on the robust frontier corresponding to V(U, ps) is below the point (V1, Ey).
Hence the robust frontier of V(U, py) is below the robust frontier of V(U, p1).

The main property, used in the above argument, is the fact that the variance of the exe-
cution cost does not depend on the impact matrices and uncertainty sets. This property does
not hold in the traditional portfolio optimization with an uncertain covariance matrix whose
uncertainty set is non-separable from the mean uncertainty set. In such cases, equalities

(4.6.9) and (4.6.10) fail.
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4.7 Concluding Remarks

To address estimation risk in impact matrices, we consider robust optimization for the opti-
mal portfolio execution problem. The minimax robust optimization can provide an optimal
worst case performance guarantee. Effectiveness of the robust optimization, however, de-
pends on specification of the uncertainty set, which is often imprecise. An uncertainty set
with a large size can yield an overly conservative solution.

In addition, we illustrate that the robust execution strategy can be sensitive to the
specification of the uncertainty set. Specifically, sensitivity of the robust execution strategy
to the upper bound of an interval uncertainty set for the permanent impact matrix can be
more severe than the sensitivity of the nominal execution strategy to the nominal impact
matrices.

Motivated by the sensitivity analysis for the optimal execution strategy for the nominal
optimal portfolio execution problem in the previous chapter, we propose a regularized ro-
bust optimization framework for the optimal portfolio execution problem. By imposing a
regularization constraint to bound the minimum eigenvalue of the Hessian of the objective
function in the problem, we show both mathematically and computationally that sensitivity
of the regularized robust execution strategy is significantly improved.

We propose an efficient method based on convex optimization for the regularized robust
execution problem. While a robust execution strategy may not be easily computed for a
general uncertainty set, the regularized robust execution strategy can be efficiently derived
using convex programming. Finally we analyze mathematically and computationally several
implications of regularization on the execution strategy and its corresponding cost.
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Chapter 5

Optimal Execution Under Jump
Models For Uncertain Price Impact

5.1 Introduction

In the previous chapters, we have addressed sensitivity and robustness of the deterministic
optimal execution strategy, obtained under a mean-variance objective and an additive market
price dynamics, to changes in the parameters of linear price impact functions.

However, the typical assumption of a Brownian motion model for the market price dy-
namics is questionable. In the context of the optimal portfolio execution problem, it fails
to capture the impact of large trades from other institutions concurring during the course
of the execution. Analogous to the fact that one’s own large trade causes a discrete market
price change, a large trade from others also induces a permanent (uncertain) price impact
on the market price. These uncertain permanent price impact of other large trades should
be modeled appropriately in the market price dynamics when seeking an optimal execution
strategy and evaluating the risk associated with an execution strategy. Unfortunately cur-
rent quantitative analysis of the execution cost does not explicitly model this source of price
depression; only the permanent price impact of the decision maker’s own trade is explic-
itly considered. Indeed, the normal distribution assumption contradicts the well recognized
empirical evidence that the short term (a day or less) asset return probability distribution
function typically has fat tails, see, e.g., (Campbell et al., |1996; Pagan, |1996; Cont, 2001)).

There are relatively few studies on the optimal portfolio execution problem under a model
which accounts for price impact of other concurrent large trades. (Carlin et al.| (2007) develop
a repeated game of complete information to model repeated interaction of price impact of
large investors who attempt to minimize the expected execution cost. This model however
relies on the assumptions that participants are strategic, and their execution strategies and
their overall trading target are common knowledge. In (Almgren and Lorenz, [2006), a
Bayesian approach is proposed to introduce information on other large trades based on
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the observed price. This approach models the market price through normal distributions.
Thus risk assessment under this model, particularly the tail risk, is likely to be inaccurate.
Note that, in both studies, no risk consideration is given in devising an optimal execution
strategy. In (Alfonsi et al., 2010]), optimal execution strategies in order books are considered;
the authors also mentioned, without any explicit discussion, that perhaps jump models for
the market price should be considered.

In this chapter, we make no assumption about the decision maker’s knowledge of other
institutions’ trading targets or their execution strategies. Thus, arrivals and price impact of
other large trades are uncertain. We investigate reasonable models for this uncertainty and
their effect on the optimal execution strategy and execution risk. The main contributions of
this chapter include the following:

e Following the methodology in market microstructure theory in which uncertainty in
order arrivals over time are modeled by Poisson processes, see, e.g., (Garman| |1976)),
we explicitly model uncertain permanent price impact of other large trades using com-
pound Poisson processes. Jump events, in this model, represent uncertain arrivals of
other large trades and random jump amplitudes represent their uncertain permanent
price impact. In the proposed model the market price evolution is defined by the
summation of a continuous diffusion process (for "normal” trades) and two compound
Poisson processes for permanent price impact of large buy and sell trades. Our pro-
posed model accounts for discrete large changes in the market price to better capture
the fat tails in the probability distribution of the price due to concurrent large trades
by other institutions.

e Since the first concern in portfolio execution is the expected cost, we derive explicit
formulae for optimal execution strategies to minimize the expected execution cost (op-
timal risk neutral execution strategies), under discrete additive jump diffusion models
as well as multiplicative jump diffusion models with linear price impact functions. The
additive diffusion model without uncertain jumps has been used previously in the lit-
erature, see, e.g., (Almgren and Chriss, 2000/2001). Since the stock price is typically
modeled by a multiplicative model, we also consider multiplicative models with jumps.
We analyze implications of model assumptions on the optimal execution strategies,
execution cost, and execution risk. In addition we apply a computational method to
determine the optimal execution strategy which minimizes the CVaR of the execution
cost, assuming a strategy is deterministic.

e We compare the execution cost distribution and risk values for the optimal risk neutral
execution strategy under a mean and volatility-adjusted Brownian diffusion model and
the jump diffusion model. We illustrate that for quantitative assessment of risk, model
assumptions can make a significant difference, particularly with respect to the assess-
ment of extreme risk. Therefore, using an appropriate model is crucial in evaluating
the risk exposure associated with an execution strategy, even for a risk neutral investor
seeking a strategy which solely minimizes the expected execution cost. Furthermore,
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when a risk measure such as CVaR is minimized, the solutions under the two models
are different and the execution risk can be underestimated by a Brownian diffusion
process with no jump.

Our theoretical and computational investigation also establishes the following result and
observations. Firstly, under an additive diffusion market price model and with linear price
impact functions, it has been noted that, see, e.g., (Bertsimas and Lo, 1998), when the
expected market price change is zero, the optimal risk neutral execution strategy is the naive
execution strategy of trading an equal amount in each period. We generalize this result by
proving that, when the expected market price change aside from the permanent price impact
of the decision maker’s own trade is zero, the optimal risk neutral execution strategy derived
from stochastic dynamic programming is always static, unrelated to the specification of the
market price evolution. Moreover, for stationary linear price impact functions this static
strategy is reduced to the naive strategy. Unless otherwise stated explicitly, in this chapter,
we simply refer to the expected market price change aside from the permanent price impact
of the decision maker’s own trade as the expected market price change.

Secondly, when the expected market price change is nonzero, specification of the market
price evolution matters and the optimal execution strategy derived under each model can be
significantly different from the naive strategy. The optimal risk neutral execution strategy
obtained under the additive jump diffusion model is static and independent of the asset price
volatility. In contrast, the optimal risk neutral execution strategy under the multiplicative
jump diffusion model is dynamic and depends on the market price realization. Hence, this
execution strategy adjusts the trading size according to the trading impact of other investors
realized during the previous periods. In addition, the optimal risk neutral execution strategy
under the multiplicative jump diffusion model depends on the covariance matrix.

Finally, we investigate the degree of suboptimality of both the naive strategy and the
optimal risk neutral execution strategy under the additive jump diffusion model in terms of
the expected execution cost. We observe that the expected execution cost associated with
the optimal risk neutral execution strategy obtained under the multiplicative jump model
can be significantly less than the expected execution cost of the naive strategy. Moreover, its
expected execution cost can be notably smaller than that of the execution strategy optimal
under the additive jump model with comparable expected market price change and volatility.
This is particularly true as the asset return volatility or the trading horizon increases.

This chapter is organized as follows. In §5.2] we motivate and describe the proposed jump
process to capture uncertain permanent price impact of other large institutions. In we
provide closed-form expressions for the optimal execution strategies under an additive jump
diffusion model and a multiplicative jump diffusion model. The computational method to
minimize the CVaR of the execution cost in described in In §5.5 simulations are
carried out to compare different execution strategies and model assumptions in terms of the
expected execution cost and risk assessment. Concluding remarks are presented in

Similar to (Bertsimas and Lo, |1998; |Almgren and Chriss, 2000/2001; Huberman and
Stanzl, [2004), our presentation mainly follows the discrete time framework since the analytic
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formula for optimal risk neutral execution strategy is presented under a discrete time model.
We also analyze the execution risk in the discrete time setting. We note that the continuous
time optimal execution problem for the single asset has also been widely studied, see, e.g.,
(Forsyth), 2010). The rational for the jump process can also be appreciated in contrast to a
continuous time Brownian model.

5.2 Jump Processes for Uncertain Price Impact of Large
Trades

For the optimal portfolio execution problem, the random variable Fj_;(Px_1) in the market
price dynamics is typically characterized by a normal random variable corresponding
to an increment of a Brownian motion process. When the expected market price change is
zero, the optimal risk neutral execution strategy is the naive strategy under many market
price dynamics, see, e.g., (Bertsimas and Lo, [1998; |Huberman and Stanzl, 2005|). This
observation may suggest that one needs not be concerned with the specification of the market
price dynamics (or price impact functions). However, secondary to the expected execution
cost, the risk of the execution cost is another main concern for investors. Accurate assessment
of the execution risk associated with an execution strategy needs an accurate model for the
market price. In addition, based on 15 minutes returns of 1000 largest U.S. assets in several
international indices, Gabaix et al.| (2006) show that trades of large institutions cause nonzero
expected short term market price changes.

Furthermore, empirical evidence indicates that the distribution of the short term asset
return typically has fat tails, see, e.g., (Campbell et al., |1996; Pagan, [1996; Cont, 2001]).
One likely reason for the fat tail distribution is the price impact of trades from institu-
tions. |Gabaix et al|(2006]) show that trades of large institutions generate excess asset price
volatility.

There is an additional contradiction in modeling market price dynamics as a Brownian
motion; this contradiction can be better seen in the context of a continuous time framework.
When the market price is modeled by a continuous process, permanent price impact of the
decision maker’s own trade causes a discrete change in the market price while the impact of
large trades from other institutions maintains price continuity.

In this chapter we assume that the arrival time of large trades from other institutions as
well as their impact are unknown to the decision maker. Following the approach proposed
in (Garman, [1976)), we model these uncertain arrivals using Poisson processes with constant
arrival rates. The arrival of each trade induces an unknown permanent price impact and
causes a jump in the market price. We use a random jump size to model the uncertain
impact; the jump size is assumed to follow a known distribution. Combining this with
uncertain arrivals, the uncertain price impact of uncertain trades from other institutions
are modeled by compound Poisson processes. Including compound Poisson processes in the
market price dynamics yields a price distribution with fatter tails than that of a normal
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distribution. The proposed model is likely to be a more accurate representation for the
trading activities of institutional investors.

To further distinguish buys from sells, we assume that arrivals of buy and sell trades
are independent Poisson processes with deterministic arrival rates. For simplicity, we first
consider a single asset trading, and then generalize the model to trading of multiple assets.
Let {X; : t € [0,T]} be a Poisson process in the execution horizon [0,7] with a constant
arrival rate A\, > 0. The process {X;} models uncertain arrivals of sell trades from other
institutions. Similarly, a Poisson process {Y; : ¢ € [0,T]} with a constant arrival rate A, > 0
represents arrivals of buy trades. Processes {X;} and {Y;}, respectively, count the number
of sell and buy events during the time period [0, ¢). Initially Xy = 0 and Yy = 0. We assume
that processes {X;} and {Y;} are independent of each other.

Using the Poisson processes {X;} and {Y;}, we model uncertain permanent price impact
of trades by other institutions in [t;_1, ;) as below:

thk_yvtk71 th—th71
TJRE D k)= Y mlk), (5.2.1)
/=1 /=1

where (k) and m,(k) are random variables with known distributions. When the upper limit
of a summation in (5.2.1]) is zero, the summation itself is zero.

For every period k, the random variable (k) represents the permanent price impact
of the ¢th sell trade in [tx_1,t;). We assume that the random variables {m,(k)} are inde-
pendently distributed with the mean pu,(k) and standard deviation o, (k). Similarly, the
random variable y,(k) captures the permanent price impact of the ¢th buy trade in period
k. The random variables {y,(k)} are assumed to be independently distributed with mean
and standard deviation p,(k) and o, (k), respectively.

Using two separate compound Poisson processes in equation ([5.2.1]) provides the flexibility
to choose different arrival rates and distributional characteristics for permanent price impact
of buys and sells from other institutions. Distinguishing permanent price impact of sell trades
and buy trades by their arrival rates or distributions for the jump sizes is similar to the double
gump diffusion process for modeling asset price dynamics, see, e.g., (Ramezani and Zeng,
2007)) and references therein. Furthermore, empirical studies on institutional trades indicate
that market reacts differently to buy and sell orders: buys have larger permanent price
impact than sells, see, e.g., (Saar, |2001) and references therein. Employing two compound
Poisson processes allows us to set 1, (k) > 1, (k) to capture this market behavior.

The proposed jump diffusion model can be extended to a portfolio of m assets. For each
asset i = 1,2, ..., m, we similarly define two independent Poisson processes {Xt(l)} and {Y;(z)}
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with constant arrival rates ,\Sj) and )\g(f), respectively. In this case, J (k) is the m-vector

Yt(kl)fyt(klzl Xéli)iXt(;)fl
1 1
oo - > 7Pk
/=1 /=1
T (k)< : (5.2.2)
e te—1 th tp1
S - > wM k)
/=1 /=1

We further note that, if necessary, the compound Poisson processes of different assets can
be allowed to include correlations to capture cross-asset relations observed.

For simplicity we assume subsequently that, for every period k, random jump sizes for
sell trades at period k are independent of random jump sizes for buy trades at period k.
In addition, we assume that the jump amplitudes are independent of the Poisson processes,
and the compound Poisson processes are independent of the Brownian motion process used
to model normal market price changes.

Below we incorporate jumps in two specifications for the market price dynamics, namely,
additive model and multiplicative model. The additive diffusion process has been used
frequently in the literature on the optimal portfolio execution problem, see, e.g., (Almgren
and Chriss, 2000/2001); this is mainly due to the simplicity of the additive model which
leads to determination of the optimal execution strategy in the early literature. In practice,
a multiplicative model is more accurate in modeling the stock price and it has been more
widely adopted in the finance literature for asset price modeling.

Additive Jump Diffusion Models.  Here we assume that the change in the market
price comes from a Brownian increment and a jump J?(k), which represents permanent
price impact of other large trades:

Fir (Poo1) = Poy + 72522, 4+ 103 + T2(k). (5.2.3)

The m-vector Ta§ can be interpreted as the expected price change due to small trades,
which is likely to be negligible. The random vector Z; is an [-vector of independent stan-
dard normals, and X2 is an m x [ volatility matrix of the asset price changes. Based on
high frequency financial price data, it has been noted in (McCulloch and Tsay, 2001) that
significant percentages of trades lead to no price change. Similarly, we decompose the market
price change into random shocks which lead to no expected price change, and jump events
that cause a nonzero expected price change. Notice that we have used the superscript a to
distinguish the model parameters in the additive model from those of multiplicative
model subsequently presented. Throughout this chapter bold superscripts of matrices and
vectors should not be considered as exponents.
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Together with the price impact of the decision maker’s own trade, the market price
dynamics is:

Py = Py + 7222 + 102 + J2(k) — 79 <%> ., where (5.2.4)
T
Y, =Yy, Xy =Xty
Tk =D 3k - > k), fork=12.. N
j=1 j=1

We use E% (k) and Cov? (k) to refer to E(J*(k)) and Cov(J?(k)), respectively. In the
additive market price dynamics , the total market price change is decomposed into
two components, one due to small trades, captured by 7ad + 71/2%2¢,, and the other due to
the permanent price impact of large trades, modeled by J2(k). Whence, the total expected
market price change in each trading interval becomes 7o) + E% (k). Since &, and J?(k) are
assumed to be independent, the covariance of the total market price change in the kth period
equals X2(X2)" 4+ Cov¥ (k).

Multiplicative Jump Diffusion Models. In practice, often one explicitly models return
rather than price change; here we incorporate jump in such a model. Let the market return,
aside from the permanent price impact of the decision maker’s trades, be characterized by
a normal distribution plus uncertain permanent price impact of other large trades. In the
single asset trading context, this corresponds to

Fr-1(Pe—1) — Py

— raf + 7AERG, + T (R),
Pt

or equivalently
Fio1(Pic1) = Pocy (L4 7o + 712878, + T™(k)) - (5.2.5)

Similarly, the multiplicative jump diffusion model for m assets, together with the price
impact of the decision maker’s own trade, can be described as below:

P, = Diag(Pi—1) - (e + Taf* + 71/25™¢, + T™(k)) — 7g <%> , where (5.2.6)
T

T (k) < Z (X™(k) —e) — Z (7™=(k) —e) . (5.2.7)

Here, e is the m-vector of all ones and Diag(P;_1) is a diagonal matrix with the m-vector
P4 as its diagonal. The components of the [-vector & are independent standard normals
and X™ is an m x [ volatility matrix of the asset returns. The term 7af* can be interpreted
as the expected return due to small trades. Here, the superscript m emphasizes parameters
in the multiplicative jump model. Jump amplitudes 75*(k) and xj*(k) represent uncertain
permanent price impacts, and are assumed to be drawn from known distributions. We denote
the expected value and covariance matrix of 7™ (k) with E'7 (k) and Cov';(k), respectively.
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5.3 Dynamic Optimal Mean Execution Cost Strategy

The optimal portfolio execution problem in the generic form is described in . Since
the main objective of the decision maker is to minimize the expected execution cost, we
first consider here the optimal risk neutral execution strategy under jump models when
purchasing is allowed, i.e.,

N N
min E (POTS - anﬁ’k) s.t. an =S. (5.3.1)

nl PR ’nN
k=1
We will also analyze properties of the optimal risk neutral execution strategy in terms of
both the expected execution cost and execution risk.

Stochastic dynamic programming has been used to determine the optimal execution
strategy when the market price evolves according to a Brownian motion, see, e.g., (Bertsimas
and Lol 1998; Bertsimas et al., [1999; Huberman and Stanzl, [2005). The key ingredients of
the stochastic dynamic programming for problem are described below.

Let the optimal-value function at ¢;_; corresponding to problem (5.3.1)) be

N
Pk—l, Tr—1 | s.t. E n; = Tg—1-
J=k

Here, ny, - -- ,ny are over the set of R™-valued functions of the system state, namely current
asset holdings x;_; and current market price Py_1.

N
Vi (Pi—1,25-1) = min E (POTS — ZnJTFN’J
N
=k

Ny ey T

For k = N, n}y = xy_1 since there is no choice but to execute the entire remaining order
zn—1. Whence, for the model (2.1.2)), the optimal-value function for the last period becomes

Vi(Py_1,2y-1) = min E (POTS*—n%PN | Py_1, xN,l) (5.3.2)

ny, tny=0
— TN—
= P{S —aly (P = (F5H)).
For the linear temporary price impact function ([2.1.4)), we have

. - 1 H+ HT
VN(PN—lny—l) = POTS - x%_le—l + éfl'%_lfl‘]v_l. (533)

Now assume that nj,, and V;, | (P, 7;) have been determined. The optimal execution nj, and
the optimal-value function V;*(Py_1, xx—1) can be determined from the Bellman’s principle of
optimality which relates, recursively backwards in time, the optimal-value function in period
k to the optimal-value function in period k + 1:

Vk*<Pk717xk71> = min E (—n{ﬁk + Vk*+1<Pk7xk> | Pkfl, :Ck,1> .

ng

Next we present the optimal risk neutral execution strategies under three different model
assumptions: when the expected market price change is zero, additive jump diffusion models,
as well as multiplicative jump diffusion models.
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5.3.1 Effect of a Zero Expected Market Price Change

An optimal execution strategy in general depends on the market price dynamics, i.e., F(-)
in . For a single asset execution under linear price impact functions and an additive
diffusion model with zero expected market price change, the optimal risk neutral execution
strategy is the naive strategy. The assumption that the expected market price change is zero
may be reasonable in the absence of large institutional trades.

We now generalize this result to more general model assumptions for the portfolio case

in Theorem [£.3.1]

Theorem 5.3.1. Let the market price dynamics and the execution price model be given by

equations (2.1.3) and (2.1.2)), respectively. In addition, assume that
E(F.1(P.1) | Po1) =Pe1, k=1,2,--- /N —1. (5.3.4)

Assume further that the price impact functions g(-) and h(-) are deterministic functions of
the trading rate “* and do not depend on the market price. Then the unique optimal risk
neutral execution strategy for the optimal portfolio execution problem , when it exists,
is static (state independent). Furthermore, for the linear price impact functions
with constant tmpact matrices, symmetric permanent impact matriz G and positive definite
combined impact matriz ©, the optimal risk neutral ezecution strategy {n}}Y_, is the naive
strategy.

This result highlights the important role of the expected market price change in the
optimal execution strategy. Note that the results hold without specific assumption on the
market price dynamics Fy(-). The proof of Theorem is provided in Appendix [B.1]

In general, the expected market price change in each period is nonzero, likely due to
institutional trades. We will show that, in this case, the model assumptions and the expected
market price change can significantly affect the optimal execution strategy.

In §5.3.2|and §5.3.3| we focus on two specifications of the market price model ([2.1.3) that
include the jump process J (k).

5.3.2 Additive Jump Diffusion Market Price Models

We now present a closed-form expression for the optimal risk neutral execution strategy with
respect to the additive jump diffusion model ([5.2.4)).

Theorem 5.3.2. Assume that the m x m symmetric matrices {Ag}a_,, specified by the
following recursive equation:

Ap = A1 — (A —ONAL (A — 00", k=1,2,...,N—1, (5.35)
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with Ay = ©T+0, are positive definite. Moreover, let m-vectors {bx}4_, and scalars {cx}h_,

be defined as follows:

bp = bry1+ (07 — A )AL (besr — B (k+ 1) + E% (k) — E%(k+ 1) (5.3.6)
+2E% (k) + 1o,
1 T ,_
k= Chp1t g (bps1 — E%(k+ 1) + E% (k)" Aply (o — E%(k+1) + E%(k)),
with by = E%(N)+7a§ and cy = 0. Then the unique optimal risk neutral ezecution strategy

n* = {n; .| of problem (5.3.1) under the additive jump model (5.2.4) is:
np=—Al (b —E%(k+ 1) + E%(k) + (07 — A1) af_)) k=1,...,N —1,(5.3.7)

N-1
ny =5 -— ng,
k=1
where xf = S and x}, = x}_, —n} fork=1,2,..., N —2. Furthermore, the optimal expected

execution cost equals:

_ 1_ _
Vi(Po.ao) = 'S = 557(07 — A1 = G)S — (o + by — E(1) - rad)" S — ¢y

A proof for Theorem [5.3.2]is given in Appendix [B.2

Theorem [5.3.2] indicates that the optimal risk neutral execution strategy under the ad-
ditive model does not depend on the market price realization. In addition, volatility
¥ and covariance Cov? (k) play no role in determining the optimal risk neutral execution
strategy . However, the expected permanent price impact of other large trades, E%(k),
affects the optimal execution strategy. This can be seen more clearly from Proposition [5.3.1
below under an additional symmetry assumption.

Proposition 5.3.1. Let the permanent impact matrix G be symmetric and the combined
impact matriz © be positive definite. Moreover, assume for every k =1,2,..., N, E%(k) =
E? for some constant E%. Then the unique optimal risk neutral execution strategy is

S (N+1-2k
nZ:%—%@l(Ef}—l—ro&g‘), k=1,2,...,N. (5.3.8)

Note that the symmetry assumption holds, for example, when permanent impact matrix
is a diagonal matrix; this is also assumed in the literature, see, e.g., (Almgren and Chriss,
2000/2001)). We provide a proof for Proposition in Appendix [B.2]

In contrast to the naive strategy, the optimal execution strategy now depends on
the impact matrices and varies over time as a linear function of ©'(7a§ + E%). While the
naive strategy never buys for a sell execution, the optimal risk neutral execution strategy
(5.3.8) may suggest buying in some periods during liquidation. Note that the solution
reduces to the naive strategy when the total expected market price change 7af + E% = 0.

90



This result is consistent with Theorem [5.3.1 When ©7 (70§ + E%) < 0, the optimal
risk neutral execution strategy is a strictly decreasing linear function of k. Specifically the

decision maker trades more than % shares in the periods 1,2, ..., (%W , while, in the periods

L%J ,..., N, he trades less than % shares per period. Similarly, when ©~!(7ad +E%) >0,
the optimal risk neutral execution strategy is a strictly increasing function of the time period
k. Figure [5.1f illustrates the optimal risk neutral execution strategy n* versus the naive
strategy 7 in liquidating a single asset using the parameters presented in Table

We further examine what parameters £% depends on. Let the jump sizes Wj‘(k) and
X3 (k) be normally distributed with means p3(k) and 15 (k), and standard deviations o3 (k)
and J;(k), respectively. Hence, for the single asset execution, we have, see, e.g., Theorem
9.1 in (Karlin and Taylor, [1981):

E% (k) = 7AE(X3(k) — 7AE (n2(k)) = 7 (A (k) — Xopid(k)) . (5.3.9)
Cov¥ (k) = 1), (Var(w?) + (E(Wja))?> + 7, <Var(x§‘) + (E(X?))2>

= A ((020R) + (u2()) + 7 ((o2(0)° + (3(R)7) . (5:3.10)

Under the assumptions in Proposition [5.3.1 we observe that buy and sell arrival rates and
the expected permanent price impacts directly affect the expected market price change and
consequently the optimal risk neutral execution strategy. When A\, = A, and p3(k) = u3(k),
E% (k) = 0 while Cov?%(k) is strictly positive when either o2(k), is positive or of(k)\, is
positive. In this case, trades increase the volatility without causing a direction in the market
price change.

5.3.3 Multiplicative Jump Diffusion Market Price Models

The simplicity of the additive jump diffusion model leads to a static optimal risk
neutral execution strategy. However, from a practical perspective, the additive model
has limitations. For example, its optimal strategy is static and therefore cannot adapt to
the price information revealed during the course of trading.

Theorem m presents the optimal risk neutral execution strategy from problem
when market price dynamics and execution price model are given by the multiplicative jump
diffusion model ((5.2.6)) and (2.1.2)), respectively. Subsequently we denote the m x m identity
matrix with 7,,,. Moreover, we use A o B to denote the componentwise (Hadamard) product
of the matrices A and B.

Theorem 5.3.3. Assume that the sequence of deterministic symmetric matrices { Dy},

defined by

H+ HT
T

Dy = —2GTALG + — (GTBy + B{G) — 2Cy, (5.3.11)
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Figure 5.1: The optimal execution strategy n* in equation ([5.3.8)), versus the naive strategy
n for selling S = 10° shares within T = 5 days. Here N = 5, and o = 0, p2(k) = 0.2125,
pi(k) = 0.2250 for k = 1,2,..., N. For the left plot, permanent price impact of other large
trades causes a negative expected market price change (arrival rates (A, A\,) = (2,1.5)). For
the right plot permanent price impact of other large trades causes a positive expected market
price change (arrival rates are (\;, Ay) = (1.5,2)).

are positive definite, where the deterministic matriz By and the symmetric matrices Ay and
Cy are derived from
1 _
Ap 1 =AroQr_1+ Ly_1AgLi_1 + 5 (Im — Lk_l(QAkG + Bk)) Dk 1 (Im — Lk_l(QAkG + Bk))T7
By = Lk_lBk — (Im — Ly—1(By, + 24xG)) D, (2C, + G By,) (5.3.12)
Cro1=Cr+ = (QCk + BlG) D, (20, + G"By,) .

Here L,y = Diag (e + Taff + ER(k — 1)), Qp—1 = 757(X™)T + Cov(k—1), and Ay =0,

By = I, and Cy = —HEHT - Then the unique optimal risk neutral execution strategy

27
n* = {n;}_, is given by

nj =D} (Im (Bk+1 +2G" Api) L) Po1 — Dl (2Ck41 + GT Biy) wi—14(5.3.13)
k=1,...,N —
N—-1
=5 — ng.
k=1

Furthermore, the optimal expected execution cost becomes

‘G*(Po, 370) == POTS — P0TA1P0 — POTBl.%'Q — $§leo. (5314)
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The proof of Theorem is given in Appendix

The optimal risk neutral execution strategy , derived under the multiplicative
jump diffusion model , is significantly different from the optimal execution strategy
(5.3.7) under the additive jump diffusion model (5.2.4). Firstly, the optimal risk neutral
execution strategy does depend on the covariance matrices ™ (X™)” and Cov’}. In
addition, strategy , obtained under the multiplicative model , is stochastically
dynamic and depends on the future market price realization P,_;, when 7af* + E7 (k) # 0.
When Taf* + E7 (k) is zero for every period k, Theorem , applied to the price dynamics

(5.2.6]), implies that the solution ([5.3.13]) becomes static.

Assume that the jump amplitude is log-normally distributed, i.e., log 73" (k) and log xj* (k)
have normal distributions with means (k) and p*(k), and standard deviations o} (k) and

o (k), respectively. For a single asset trading (m = 1), we have, see, e.g., (Karlin and

Taylor}, 1975)) page 268:

B (w2(0) = exp (2(0) + 5 02(1)°).

Var (7(k)) = (exp ((o2(k))?) — 1) exp (2 (k) + (0 (k))?),
E (x™(k)) = exp (u;“(k) ¥
Var (x(k)) = (exp ((03(k)%) — 1) exp (24 (k) + (o(K))*).

Therefore,

o 2 om 2
E7 (k) =71\ (exp (,u;n(k) + ”;k))) - 1) —TAp (exp <,ulxn(k‘) + (gﬁék))) - 1> ,

VB(k) = A, (Var (r2(k)) + (B (m(k)) = 1)°) + A, (Var (x(8)) + (B (k) = 1)°).

In contrast to E%, now the volatility of the permanent price impact affects the expected
market price change. Notice that other distributions can also be considered for the jump
amplitudes. For example, Pareto and Beta distributions have been considered for jump
amplitudes in a double exponential jump diffusion process to model asset price evolution in
the literature, see, e.g., (Kou, [2002; Ramezani and Zeng, 2007).

5.4 Assessing and Controlling the Execution Risk

The optimal risk neutral execution strategy under the multiplicative jump diffusion model
, given the values of the two state variables P, and xj, depends only on the expected
market return E'; and the covariance Cov’; (see Theorem . Thus, the optimal risk
neutral execution strategy is identical to the optimal strategy obtained under the following
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adjusted model without jump for the market price
P, = P,_, + Diag(P,_1) <T (af + 77 'ED) + 71/ (zm + r*l/2cov§1/2) gk) — Gy, (5.4.1)

While the market price in model is normally distributed and has no jump, the market
price Py of models (j5.2.6) and share the same first and second moments. Hence, for
the purpose of determining the optimal risk neutral execution strategy, one does not need
to differentiate between model without jump and model with jumps.

However, in addition to the expected execution cost, one needs to be concerned about
the execution risk which can be assessed from the execution cost distribution. For risk man-
agement purposes, it is important to quantitatively measure and manage the execution risk.
The multiplicative jump model and the adjusted normal model clearly leads
to distinctively different execution cost distributions. We illustrate the difference computa-
tionally in §5.5]

If one also wants to control execution risk when choosing an execution strategy, then the
stochastic programming problem ([2.1.6]) needs to be solved with an appropriate risk measure
U(-) for the execution cost. Under the jump model, the distribution of the execution cost
is asymmetric and the variance is not appropriate since it treats the cost and profit equally.
Alternative to variance, Value-at-risk (VaR) is a standard benchmark for a firm-wide measure
of risk. For a given time horizon ¢ and confidence level /3, the value-at-risk of a portfolio is the
loss in the portfolio’s market value over the time horizon ¢ that is exceeded with probability
1 — 8. However, as a risk measure, VaR has recognized limitations. For example it lacks
subadditivity and convexity, see, e.g., (Artzner et al.| (1997, 1999). The CVaR risk measure,
also known as the mean excess loss, mean shortfall or tail VaR, is an attractive alternative to
VaR. For a given time horizon ¢ and confidence level 3, CVaR is the conditional expectation
of the loss above VaR for the time horizon ¢ and the confidence level 5. It has been shown that
CVaR is a coherent risk measure and has many attractive properties including convexity, see,
e.g., (Artzner et al., [1999). In addition, minimizing CVaR typically leads to a portfolio with
a small VaR. Using CVaR for the optimal portfolio execution problem seems appropriate as
short term asset returns have fat tails and trading impact leads to price jumps.

Denote the execution cost by the random variable L o (POT S — Z]kvzl n{]sk> For a
given confidence level 5 € (0,1), CVaRg is given below

CVaRj(L) = min (a+(1=B)"E([L-a])), (5.4.2)

where [z]T = max(z,0), see, e.g., (Rockafellar and Uryasev, [2000). With the CVaR risk
measure, the optimal portfolio execution problem (2.1.6)) becomes

N N

. G s 1 G s

. min E <P6FS — g 1 nng> + - (a + -3 ([PgS - kE 1 ni Py — 04]"')) (5.4.3)
a€R = =

N
s.t. an =S.
k=1
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This is a multi-stage stochastic nonlinear programming problem. In particular, the execution
cost depends nonlinearly on n; due to the permanent price impact. Solving this problem is
computationally challenging; we devise a computational method to approximate the solution
in Chapter [6]

In the rest of this section, similar to (Almgren and Chriss, [2000/2001)), we assume that
the strategy {ns}2_, is deterministic. We use the following computational method to obtain
an optimal static execution strategy under the CVaR risk measure. Since there is no ana-
lytic expression for the CVaR evaluation, Monte Carlo simulation is required to discretize
a CVaR minimization problem. Unfortunately, under a discretization with M simulations,
the objective function in includes the sum of M piecewise nonlinear functions:

LM N 0 1 M N " +

: TG T TG T pl

nl,---rgljlvleﬂem i E (PO S — E ny Py ) + e a+M(1—ﬂ) E Fy S — E np Py —a
a€R Jj=1 k=1 j=1 =1

N
s.t. an = S,
k=1

where the superscript (j) denotes the jth simulation.

The CVaR risk measure is typically continuously differentiable (Rockafellar and Urya-
sevy, [2000). Since nondifferentiability here arises from simulation discretization, we apply a
smoothing technique in (Alexander et al., 2006|) for the single period CVaR optimization
problem. The convergence property of this smoothing method is established in (Xu and
Zhang, 2009). We approximate the nonsmooth piecewise linear function [z]* by a continu-
ously differentiable piecewise quadratic function p.(z) for some small resolution parameter
€

z it z>¢€
pe(z) = %%—%z—i—}f if —e<z<e (5.4.4)
0 if 2 < —e¢

In particular, the execution strategy which minimizes the CVaRg of the execution cost can
be computed from the following minimization problem:

M N N
: 1 TG T pJ) Y
erpmin a—i—m zj:pe (PO S kz:;nk P -« s.t. ;nk = 5. (5.4.5)

5.5 Performance Comparison

We now present our computational investigation of the potential effect of the model as-
sumption on the optimal risk neutral execution strategy. We evaluate trading performance
in terms of the expected execution cost, execution risk, and more generally execution cost
distribution.
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Because of a more accurate characterization for the short term asset return, the mul-
tiplicative jump diffusion model with known model parameters is assumed for the
future market price. Since trading impact of large institutions is likely to cause a nonzero
change in the expected market price and return, we assume that the expected change in the
market price is nonzero. Based on the assumed model, we then compare the following three
strategies:

e Strategy,,: optimal risk neutral execution strategy under the assumed multiplicative

jump model (5.2.6)).

e Strategy,: optimal risk neutral execution strategy under the additive jump diffusion
model ((5.2.4)) with comparable means and covariances set as below

E% = RET, 72X + Cov? = P} (12™(Z™)" + Covy).

We denote the total volatility (72™(X™)7 + Cov’})"/2 by 04 Note that Strategy ,
does not depend on the covariance Cov? and volatility 2.

e Strategy,: the naive strategy which is optimal when the expected total market price
change is zero, the permanent impact matrix G is symmetric, and the combined impact
matrix © is positive definite. The naive strategy is used as the performance benchmark;
the comparison illustrates the importance of accurate modeling of the market price
dynamics in determining an optimal execution strategy.

We conduct computational investigations for a single asset trading example. The ex-
pected market price change due to small trades is assumed to be zero, i.e., a§ = 0 ($/share)/day
and of* = 0 (1/day). We also assume that variance 72™(X™)7 (due to normal trading)
constitutes 10% of the total variance o2,. Specifically, we consider selling S shares over T
days. Unless otherwise stated, the parameter values in Table are used.

’ Parameters \ Values ‘
Number of Periods N=T
Interval Length r=T/N =1 day
Temporary Impact Matrix | H = 2.5 x (107%) ($ - day)/share?
Permanent Impact Matrix G =25x(1077) $/share”
Initial Asset Price Py =50 $/share

Table 5.1: Parameter values for the single asset execution example.

In addition parameters A\, and A, are trading arrival rates per day. We assume that the
jump amplitudes 73* and xj* are log-normally distributed, and E% (k) = E% and E%7 (k) =
E for some constants EY and E7, Cov’;(k) = Cov; and Cov? (k) = Cov? for some
constants Cov’? and Cov?,.
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Furthermore, the market price dynamics is determined by the following parameters ™,
Wy My 00ty 0% Ary and Ay, In subsequent computational results, we have simply assigned
reasonable parameter values for illustrative purposes; we also choose these parameter values
so that the magnitudes of trading impact represented by E (73*(k)) — 1 and E (x*(k)) — 1
are reasonable. In addition, since in general the permanent price impact of buying is larger
than selling, we choose larger values for means of jump amplitude for buys than for sells,

Le., fyt > iy

5.5.1 Comparison of the Execution Risk

We assess the difference in execution risk under the multiplicative jump diffusion model
(5.2.6), denoted as Modely,, and the adjusted model (5.4.1) without jump, denoted by
Model 4.

The market price model leads to a normal distribution for the market price Py
which can underestimate the tail risk (likely due to large trades of other institutions). How-
ever, the multiplicative jump model , in which permanent price impact of other institu-
tional trades are modeled by compound Poisson processes, is capable of better characterizing
the short term asset returns and describing the fat tails.

In subplot (a) of Figure , probability density functions of the market price P; under
the models and (b.4.1) are compared. Subplot (b) compares the execution cost
distribution associated with Model,; and Models. Under the proposed jump model ,
compared with the normal model , the execution cost has larger probability of small
costs and higher probability of extreme costs. Using the model , it is possible to
significantly underestimate the execution risk.

Figure [5.3| compares the risk measured in standard deviation and VaR for the execution
strategies Strategy,,, Strategy,, and Strategy,, under the assumed multiplicative jump
diffusion model . Figure illustrates that the risk values are quite different between
the naive strategy and Strategy,, or Strategy,. We note that at E7 = 0 the risk measure
values are identical since the three execution strategies Strategy,, Strategy,, and Strategy 4
coincide at this point.

Figure also illustrates that including an appropriate risk measure in problem ([2.1.6)) is
important in determining the optimal execution strategy. Under the proposed jump model,
the coherent risk measure CVaR may be more appropriate.

Assume that an execution strategy {n;}Y_, is deterministic, we compute the minimum
CVaRgsy, strategies under Modely; and Model 4. Table illustrates the difference between
the optimal static (price-independent) execution strategies to minimize CVaRgsy of the exe-
cution cost computed under the two models Modely; and Model,. Table indicates that,
although Model,; and Model 4 share the same optimal risk neutral execution strategy, they
yield different optimal execution strategies when CVaRgse, of the execution cost is minimized.
The difference in CVaRgsy values is about 3.7%. While the strategy to minimize variance
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Figure 5.2: Probability density functions of Modely; and Model, for M = 50,000 simu-
lations. The kurtosis of P; for Model;; is 7.03 while for Modely is 3.03. The kurtosis of
the execution cost per share for Model,; is 7.50 while for Model4 is 3.04. Initial holding is
S = 106 shares. The jump parameters are \, = 1, u™ = 9.901 x 1073, (¢™)2 = 9.802 x 1075,

Ay = 0.2, 2 =1.049 x 1072, (03*)* = 2.873 x 107°. These values yield ¥™ = 9.045 x 107,
E™ = —0.0076, and Cov™® = 8.182 x 10~*.

of the execution cost suggests to liquidate the entire holding immediately, the strategies
for minimizing CVaRg5% under both models sell in the first couple of periods aggressively
and purchases are made in the last periods. Although here minimizing CVaRgs5y strategies
share a similar pattern under both Model,; and Model 4, there is significant difference in the
amount of trading in these two strategies.

5.5.2 Comparison of Optimal Execution Strategies

When the expected total market price change is nonzero, Strategy,, is dynamic while the
optimal Strategy , is static. However, since the initial price 4 and the initial holding x,
are known, the optimal execution nj for both Strategy,, and Strategy, are deterministic.
Figure compares Strategy,, and Strategy , for the first period as a function of E77. As is
illustrated in Figure , the difference in Strategy,, and Strategy, increases as E’7 moves
away from zero.

Given a fixed E}, Figure illustrates the optimal execution strategies Strategy,, and
Strategy 4 from period 2 to period 5 for M = 1000 simulations of the jump amplitudes and
pricing shocks &;. These plots clearly illustrate the significant difference of these execution
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Figure 5.3: Risk measures of the execution costs for Strategy,,, Strategy 4, and Strategy y for
M = 40,000 simulations. Initial holding is S = 10° shares. Time horizon is T' = 5. The jump
parameter values are A, = 2, ™ = 9.9013 x 1072, ¢ = 9.9007 x 1073, and ), € [0.05, 3.6].

T

These values yield ™ = 9.6484 x 1073, 04,y = 0.032, and Cov’} = 9.3091 x 10~*.

Model,, Model 4
CVaRose || 2.50 x 10° 2.59 x 10°
ny 9.83 x 10° 9.61 x 10°
N9y 1.91 x 10* 1.12 x 10°
ns 7.11 x 10° | —5.87 x 10*
I —1.13 x 103 | —4.55 x 10°
ns —8.59 x 10% | —9.04 x 10°

Table 5.2: Optimal execution strategies which minimize CVaRgs4 under Modely, and
Modely, and the corresponding optimal values using M = 50,000 simulations in execut-
ing a single asset. Parameters are as in Table and T = 5 days, and S = 10° shares.
The jump parameter values equal \, = 3, y™ = 9.5 x 1073, o™ 1072, A, = 0.5,
= 6.9 x 1073, and o} = 3.2 x 1072, These values yield ¥™ = 0.009, E} 0.025050,
and Cov’} = 1.106555 x 1072,
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Figure 5.4: Comparison of the optimal execution nj under the multiplicative jump model
and under the additive jump model. Initial holding is S = 107 shares. The total volatility
equals g, = 0.03.

strategies. While the naive strategy Strategy, suggests to trade an equal amount in each
period, Strategy , is time varying but independent of the market price realized at the be-
ginning of each period. In contrast, Strategy,, is stochastic and varies with the realized
market prices. In comparison to the naive strategy, both execution strategies Strategy,,
and Strategy , suggest to sell more aggressively initially in order to take advantage of the
expected impact of large trades E’; < 0.

According to Theorems [5.3.2] and |5.3.3, another main difference between Strategy,, and
Strategy 4 is that the execution strategy Strategy,, depends on the covariance of the market
return, while the execution strategy Strategy , does not depend on the covariance of market
prices. We illustrate implications of this property next.

5.5.3 Comparison of Expected Execution Costs

We now compare expected execution costs associated with strategies Strategy,., Strategy,,,
and Strategy 4, presented in cents per share. We quantify the average execution cost differ-
ence per period for a single asset trading using the following measure,

N M
am def 1 m) s = (m) a) =(a),.
b= NMSZZ‘”’(f OB (@) —n BP0 (5.5.1)

k=1 i=1

where the number M is the total number of simulations, n,(;“) () is the optimal risk neutral

execution under the multiplicative jump diffusion model for the kth period in the i¢th sim-
ulation, n,ia) is the optimal execution for the kth period derived under the additive jump
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Figure 5.5: Optimal execution strategies n3, nj, n; and nf under the multiplicative jump
model and the additive jump model for M = 1000 simulations. The trading horizon is
T = 5 days. Initial holding is S = 107 shares. The parameter values are \, = 3.8, u™ =
9.901 x 1072, o™ = 9.901 x 1073, A, = 0.2, ' = 1.186 x 1072, and ot = 1.198 x 1072

These values yield ¥™ = 9.045 x 1073, 7 = —3.560 x 1072, and Cov’} =8.182 x 1074,
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Ttot 1y o om Strategy,, | Strategyy | Strategy, | D*™(%)
0.020 || 0.00590 | 0.0125 | 6.03 x 1073 21.40 292.29 22.73 86.26
0.025 || 0.00540 | 0.0341 | 7.54 x 1073 21.19 293.08 22.66 89.10
0.030 || 0.00478 | 0.0490 | 9.05 x 1073 21.04 293.90 22.60 92.48
0.035 || 0.00406 | 0.0621 | 10.55 x 1073 20.97 293.31 22.65 95.77
0.040 || 0.00322 | 0.0744 | 12.06 x 1073 20.58 293.43 22.62 100.41
0.045 || 0.00227 | 0.0862 | 13.57 x 1073 20.32 292.01 22.59 104.61
0.050 {| 0.00121 | 0.0977 | 15.08 x 10~* 20.13 292.78 22.59 108.71

Table 5.3: Average expected execution cost (cents per share) and D*™ (percentage) for
M =100, 000 simulations. Trading horizon is T' = 10 days. Initial holding is S = 10° shares.
Jump parameters equal \, = 2.6, A\, = 0.2, u™ = 4.938 x 107 and o™ = 9.950 x 1073.
Thus, E7 = —1.180 x 1072

diffusion model. The prices P,im)(z) and péa)(z) are the execution prices at period k in the
ith simulation, corresponding to the execution strategies n(™ (i) and n(®, respectively. The
market price is assumed to follow a multiplicative jump diffusion model.

Using simulation, we compute D*™ measure for 7" = 10 days and various values of
0wt~ These quantities are reported in Table |5.3] which also includes the averaged execution
costs of the three execution strategies Strategy,,, Strategy ,, and Strategy,. As Table
indicates, the average relative difference D* (%) can be quite significant. Moreover, the
value of D* (%) increases as o0y, increases. Notice that, as Strategy, and Strategy, do
not depend on the asset price volatility, their corresponding expected execution costs are
constant as oy, changes; the slight variations for Strategy , and Strategy, are due to Monte
Carlo simulations.

Proposition provides an analytical formula for the expected execution cost of the
optimal execution strategy obtained under the additive jump diffusion model. For Strategy,,,
which is optimal under the multiplicative jump diffusion model, the expected execution cost
of Strategy,, decreases as 04, increases. This is due to the fact that, under the multiplicative
model, the solution is truly stochastically dynamic; thus it is capable of capturing price
variations. In contrast, Strategy , is static and its execution cost do not depend on oy.

Subplot (a) in Figuredepicts dependence of the expected execution cost on the trading
horizon T'. As Figure demonstrates, when the time horizon increases, the expected
execution cost of the execution strategy Strategy, becomes much higher than the expected
execution cost of Strategy,,. Subplot (b) in Figure[5.6/illustrates how the expected execution
cost associated with each of these three execution strategies varies as E’; changes, focusing
when E”7 < 0. This figure clearly shows that in the depicted range, as E; deviates from zero,
the expected execution cost of Strategy, becomes significantly higher than the expected
execution costs of Strategy,, and Strategy,. Moreover, as it is expected, the expected
execution cost corresponding to Strategy, is also greater than that of Strategy,,. This
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difference becomes more prominent as E’7 moves away from zero.
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Figure 5.6: Comparison in the expected execution cost (cents per share). The expected costs
in subplot (b) are computed using Theorem for Strategy,, and Proposition for
Strategy 4. Initial holding is S = 107 shares. The values specified for the model parameters
yield ™ = 9.045 x 1073, For Subplot (a), A\, = 3.8, ™ = 9.901 x 1073, o™ = 9.901 x 1073,

Ay = 0.2, pp = 1.186 x 1072, 0™ = 1.198 x 1072, E% = —3.560 x 1072, Cov’y = 8.182x 1074,

y —

5.6 Concluding Remarks

Current literature on the optimal portfolio execution problem typically assumes that the
market return (or price change) has a normal distribution. There are two main problems
with this assumption. Firstly, the empirical study indicates that the short term return
distribution often has fat tails, possibly due to permanent price impact of institutional
trades. Such fat tails cannot be described by normal distributions. Secondly, while the
permanent price impact of a decision maker’s own trade causes a discrete price depression,
it is not reasonable to model permanent price impact of other concurrent large trades by a
continuous Brownian motion.

In this chapter, we suggest using jump processes to capture uncertain permanent price
impact of trades by other institutions. The proposed model includes two compound Pois-
son processes corresponding to buy and sell trades, respectively. Using stochastic dynamic
programming, we provide an analytical solution to the risk neutral execution strategy which
minimizes the expected execution cost under the proposed jump diffusion models for the
evolution of the market price. This solution is static (state independent) when the expected
market price change is zero. However, when the expected market price change is nonzero, the
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optimal execution strategy derived under the multiplicative jump diffusion model is stochas-
tic and dynamic. In addition the optimal execution strategy depends on the asset return
volatility. In contrast, under an additive jump diffusion model, the optimal execution strat-
egy does not depend on the asset price realization or the volatility, even when the expected
market price change is nonzero.

Under the proposed jump diffusion model, more accurate assessment of the execution risk
can be made. When the market price change is modeled by normal distributions, the tail
execution risk can be significantly underestimated. Using simulations, we illustrate that the
execution cost distribution associated with the naive strategy, optimal risk neutral strategy
under the additive jump diffusion model, and the optimal risk neutral strategy under the
multiplicative jump diffusion model are qualitatively different. This highlights the impor-
tance of using an appropriate model to determine an optimal execution strategy. In addition,
we assess differences in the optimal execution strategies derived under different model as-
sumptions. Assuming that the market price dynamics is characterized by a multiplicative
jump diffusion model, we show that the execution strategy optimal under an additive jump
diffusion model (with comparable mean and standard deviation) can perform notably sub-
optimally when the asset return volatility or the trading horizon increases.

Our main focus, in this chapter, was on investigating model assumptions and the resulting
optimal execution strategies. We considered the optimal execution strategy for minimizing
the expected execution cost. There are many possible objective functions which are of
interest to institutional investors. In particular, a natural additional criterion to include is
some measure of risk, e.g., variance, VaR or CVaR of the execution cost. While the inclusion
of a risk measure into the objective function is conceptually straightforward and probably
desirable, an analytical expression for the optimal execution strategy is not available except in
very special cases (Bertsimas and Lo} [1998). Including risk measures in the objective function
might make the optimal-value function non-separable in the sense of stochastic dynamic
programming, see, e.g., (Yao et all [2003). Therefore, the presence of some nonlinear risk
measure makes solving the stochastic dynamic programming very challenging. We further
investigate this in the next chapter.
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Chapter 6

Smoothing and Parametric Rules for
Stochastic Mean-CVaR Optimal
Execution Strategy

6.1 Introduction

Since trading takes time and the permanent price impact of a trade can affect the future
asset price, the optimal portfolio execution problem is fundamentally a stochastic dynamic
programming problem, see, e.g., (Bertsimas and Lo, |1998)). In a single asset case, Almgren
and Lorenz (2007)) provide an optimal adaptive strategy. Stochastic (adaptive) execution
strategies can explicitly recognize market price change during the trading horizon. In addi-
tion it has been shown in (Almgren and Lorenz, 2007) that a significant improvement over
static strategies can be achieved through stochastic execution strategies.

When no risk is considered, analytical solutions have been found for the stochastic dy-
namic programming problem which minimizes the expected execution cost under several
price models, see, e.g., (Bertsimas and Lo, [1998; |Bertsimas et al., [1999)). Under a specific
additive market price model with a deterministic price impact model and volatility, Huber-
man and Stanzl (2005) have obtained a closed-form solution for minimizing the mean and
variance of the execution cost.

In addition to the expected execution cost, one is often interested in controlling the
risk in execution, e.g., including minimizing variance of the execution cost as an objective.
Unfortunately, under general price models, the mean-variance objective formulations for the
optimal portfolio execution problem are not amenable to stochastic dynamic programming
techniques; the dynamic programming equation may not exist. When this occurs, a time-
consistent dynamic solution cannot be determined using a stochastic dynamic programming
technique. Even when a dynamic programming equation exists, obtaining a closed-form
solution in general may not be possible, particularly when constraints are included.
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In Chapter[5], a model is proposed which explicitly characterizes uncertain arrivals of other
large trades by including jump processes to the market price dynamics. The proposed jump
diffusion model includes two compound Poisson processes, with random jump amplitudes
capturing uncertain permanent price impact of other large buy and sell trades respectively.
Since the execution cost distribution is now asymmetric and may have fat tails, CVaR or a
downside risk measure is more appropriate. In addition, CVaR is a coherent risk measure
which can measure extreme events/execution costs and has attractive properties such as
convexity, see, e.g., (Artzner et al., |[1997; |Rockafellar and Uryasev 2000)).

In (Shapiro| [2008), dynamic programming equation is applied to dynamically coherent
risk measures; however no computational result is provided. In general, when the objective
function includes a risk measure such as CVaR, numerical methods are required to compute
stochastic dynamic programming solutions. When a portfolio of risky assets are involved,
solving a multi-stage optimal portfolio execution problem is computationally challenging,
since computational complexity grows exponentially in the number of state variables. Thus
computing a stochastic dynamic programming solution is often computationally intractable
in practice; this is known as the curse of dimensionality. As discussed in (Shapiro, 2008]),
while two stage linear stochastic programming problems can be solved with a reasonable
accuracy, computational complexity in solving multistage stochastic programming problems
grows quickly with the increase of the number of stages. Many approximation algorithms
in the literature have been considered to obtain approximations to stochastic programming
solutions, see, e.g., (de Farias and Roy), [2003; Powell, 2007). Solving a multi-stage stochastic
programming problem is even more challenging when there are inequality constraints (Haugh
and Lo, 2001).

The goal of this chapter is to propose a tractable computational approach to obtain an
approximate stochastic dynamic programming solution for the optimal portfolio execution
problem when mean and some risk measure of the execution cost are minimized. To achieve
optimality at each time period k, a new stochastic strategy can be computed by considering
optimality conditional on the information set Z, at time k. In particular, our approach re-
lies on Monte Carlo simulations, where simulation price paths are generated by iid samples
for the random variables in the decision time horizon. Compared to the backward itera-
tion in the dynamic programming approach, methods based on forward simulation paths
have attractive features. While backward dynamic programming approaches to multi-stage
stochastic programming problems suffer the curse of dimensionality when applied to prob-
lems with high dimensional state spaces, the use of a forward simulation base approach for
multi-stage multi-asset stochastic optimization problem does not incur exponential growth in
computational complexity. Simulation based approximation solution approaches have been
previously applied successfully in (Longstaff and Schwartz, 2001) to solve a stochastic dy-
namic programming for pricing an American option. Coleman et al. (2007) also use a similar
method for the total risk minimization with a quadratic objective. In this case, they observe
that this approach is capable of achieving relatively good accuracy comparing to the analytic
solution. In (Coleman et all 2007)), decision variables are approximated using cubic splines.

There are, however, additional computational challenges in solving the multi-stage multi-
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asset optimal portfolio execution problem based on simulations. Firstly, if a strategy is
allowed to be an arbitrarily path dependent, the number of variables in the simulation
optimization problem is proportional to the number of scenarios which is very large in general.
Furthermore, unlike the single period simulation CVaR optimization problem, the multi-
period simulation optimal portfolio execution problem is piecewise nonlinear rather than
piecewise linear due to the presence of permanent price impact. This can be problematic
since solving a general nonlinear programming problem is more difficult than solving a linear
programming problem. Moreover, if constraints, e.g., bound constraints, are imposed, the
number of corresponding constraints in the simulation optimization problem also becomes
proportional to the number of simulations.

In this chapter, we propose techniques to overcome these computational challenges for
the simulation approach to multi-stage CVaR execution cost minimization. To reduce the
number of variables, we first represent execution strategies using a parametric model with
unknown parameters. Different parametric forms can be used. In this chapter, we assume
that an execution strategy depends linearly on the price and the trading accomplished thus
far; this parametric form is motivated by the analytic formula for the optimal risk neu-
tral execution strategy derived in Chapter 5] To alleviate the piecewise nonlinearity in the
objective function arising from the simulation discretization to the CVaR measure, we ap-
ply the smoothing technique proposed in (Alexander et al., [2006) for a single period CVaR
optimization problem. The motivation behind the smoothing is the same as in the single
period case: the piecewise nature in the simulation CVaR optimization problem arises from
simulation discretization but the CVaR risk measure in the continuous model is in fact con-
tinuously differentiable. To handle constraints, we first apply the exact penalty function
and then use smoothing to alleviate the piecewise nature of the exact penalty function. In-
deed, our proposed smoothing method of the exact penalty function corresponds to applying
a new penalty function which is piecewise quadratic but continuously differentiable. The
new penalty function can be regarded as a combination of the quadratic and exact penalty
functions.

Using the proposed parametric representation and smoothing method, we obtain a static
nonlinear optimization problem with a potentially nonlinear objective function. We then use
the trust region algorithm in (Coleman and Li, |1996]) to solve this problem. The first and
second derivatives of the objective function can be computed using automatic differentiation,
see, e.g., (Coleman and Vermal 2000). We further note that our proposed computational
approach is quite general and it can be applied to alternative risk measures other than CVaR.

The presentation is organized as follows. In §6.2] we explain mean-CVaR stochastic
optimal portfolio execution problem. Our smoothing and parametric rules are explained in
6.3 In §6.3.3 we describe handling constraints using a smoothed exact penalty function.
Our computational investigation is provided in §6.4 Concluding remarks are given in §6.5
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6.2 Stochastic Mean-CVaR Optimal Strategy

While the main objective of the decision maker is to minimize the expected execution cost,
he may be concerned with the execution risk, i.e., uncertainty in the total amount that will
be received from the trade implementation. In particular, as we discussed in the previous
chapter, a jump-diffusion model with two compound Poisson processes is more appropriate
since they explicitly model the uncertain impact of uncertain arrivals of other large buy and
sell trades. Under this model assumption, the execution cost distribution is asymmetric and
may have fat tails. This provides rationale for using a CVaR risk measure in the optimal
portfolio execution problem formulation.

Since trading takes time and the permanent price impact affects the future market price,
optimal portfolio execution problem is a multi-stage stochastic programming problem. The
solution to this multi-stage stochastic programming problem can potentially yield a solution
which adapts to market price and the impact of other large trades.

When execution risk is considered, the stochastic programming formulation for the opti-
mal portfolio execution problem is:

N N
min E (POTS - anﬁk> +u-W <P0TS — anﬁk> (6.2.1)
MY yeens LN
T, —~easurable k=1 k=1
k=1,..,.N
N

k=1

where W (-) is a risk measure for the execution cost and p > 0 is a risk aversion parameter.
Here Z;, denote the information set observable at time ¢.

Stochastic dynamic programming has been previously used to minimize the expected
execution cost when the market price evolves according to a Brownian motion, and the
permanent price impact of the decision maker’s trade makes a discrete price change, see,
e.g., (Bertsimas and Lo [1998; |Bertsimas et al., [1999). However, when a risk measure such as
variance or CVaR is included in problem with a positive risk aversion parameter, the
multi-stage stochastic programming problem becomes significantly more complex. Moreover,
when a dynamic programming equation cannot be found, a solution {n}4_, of the stochastic
programming problem (|6.2.1) computed at the initial time ¢, does not necessarily have the
time consistency property. In other words, n; from problem is not optimal at time
tx, i.e., it may not solve the following problem:

N N
min E <P0T§ - > nlP Ik> +u-0 (Png - > nlP Ik,> (6.2.2)
Mfosenns nN ' ‘
n;:7;—measurable =1 i=1
j=k,... N

N
s.t. an =S.
k=1
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Here it is assumed that nq,--- ,ng_q are given.

Given that problems and yield different solutions at time ¢y, k > 2, the
decision maker has two different ways to implement an execution strategy through the multi-
stage stochastic programming formulations. The first possibility is to compute the optimal
strategy {nj}_, at the initial time based only on problem . Then at time ¢, the
amount ny, computed from , is implemented even though it may not be optimal from
tr perspective. Alternatively, to ensure conditional optimality at time t;, the decision maker
can ignore the already computed strategy for 5 from problem (6.2.1)) and adopts the strategy
for time t; by solving a conditional stochastic programming problem to determine
trading amount for this period.

No matter which method the decision maker adopts for execution, she needs to solve
one of the multi-stage stochastic programming problems and . Computing
solutions to these problems is a daunting task. In the remaining part of this chapter, we
focus on developing a tractable computational technique applicable to both problems
or problem , and we are not concerned with which one is preferred. Since our proposed
computational method can be applied to both problems (6.2.1) and ((6.2.2)), without loss of
generality, we present our proposed approach for problem (6.2.1]).

Notice that problem (6.2.1) or (6.2.2) may have additional constraints, such as a no-
buying requirement while selling. In this case, even when a dynamic programming equation
exists, computational methods cannot easily handle constraints since the value function from

the dynamic programming under constraints becomes nondifferentiable, see, e.g., (Bertsimas
and Lo, 1998).

Different risk measures can be included in the objective function of problem (|6.2.1]).
Typical choices of the risk measure W(:) are variance, VaR, or CVaR. In this chapter, we
focus on CVaR risk measure since we believe that the short horizon return is far from a
normal distribution and it is important to properly capture the tail risk. We note however
that our proposed computational approach is applicable to other risk measures including
variance and downside risk.

CVaR is frequently defined based on VaR. In the context of the optimal portfolio ex-
ecution problem, let X denote the execution cost in the given time horizon. For a given
confidence level 5, VaR is the smallest cost over the time horizon that is exceeded with
probability no greater than 1 — 3, i.e., VaRg(X) = inf{x € R : Pr(X < x) > g}. Using
VaR, CVaR can be defined as

CVaRs(X) = E (X : X > VaRg(X)).

Without reference to VaR, a more direct way of defining CVaR is:

CVaRg(X) = min (a + ﬁE ([X — a]+)) : (6.2.3)

where [z]* = max(z,0). When the random cost X has a strictly increasing and continuous
probability distribution function, these two definitions are equivalent. However the latter
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definition yields a coherent risk measure even when the distribution is discontinuous. In
addition, formulation 3)) directly leads to linear or nonlinear programming formulations
under simulation dlscretlzatlons. It then can be solved by available linear programming or
nonlinear programming optimization techniques.

The mean-CVaR optimal portfolio execution problem with the risk aversion parameter
> 0 is then given as below

N

min (POT S - Zn{Pk> + - CVaRg (POT S—> nf Pk> (6.2.4)
ny,ng,...nMN k=1

ny : I, — measurable

N
s.t. Zn =9

Using CVaR definition - formulation is reduced to the following problem:

N N +
min TG _ Tp B prg _ _
ny : I, — measurable
N
s.t. > =5 (6.2.5)
k=1

Additional ng > 0 constraints can also be incorporated in problem (6.2.5]).

We note that, when the objective of the optimal portfolio execution problem is to mini-
mize only the variance of the execution cost, i.e.,

min Var (PTS anPk) st axn =0, (6.2.6)

ni,.. NN

the optimal execution strategy is the strategy of liquidating the entire holding in the first
period:

n=95 n,=0 k>2. (6.2.7)

This can be easily seen since the variance of the execution cost associated with this strategy
equals zero. The CVaR of the execution cost associated with the execution strategy (6.2.7))

is v 1 <
CVaRg | PyS — i | ==S"h(=).
alig ( 0 ;”k k) - -
We note that the strategy (6.2.7]) for minimizing variance is in general not the strategy for
minimizing CVaR.

In the next section, we describe our proposed smoothing and parametric approach to
obtain an approximate solution of problem ([6.2.5)) efficiently.
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6.3 The Proposed Smoothing and Parametric Method

Since CVaR risk measure does not have an analytic expression in general, Monte Carlo (MC)
simulation is typically applied to discretize the CVaR optimization problem. For the optimal
portfolio execution problem, the discretized problem is more complex since the price path
changes when the trading amount changes due to permanent price impact. Assume that the
market price dynamics in the kth time period is given by F(Py_1,&x) where & is a random

vector. We generate M random paths {&, -+ ,&y_1} and these sample values are fixed for
simulation CVaR problems even when price paths change with the trading amount {n}. For
any given {n;}_,, let {P,}._, denote market price path corresponding to {&, -+ ,&n_1},
we obtain a discretized stochastic optimization problem for problem (6.2.5)):
L - 7 50) . 7 50) :
- TG T B TG T B
L MZ (PO S — anPkJ ) + po M= B) Z Py S — anpkﬂ —«
ny: I —measurable Jj=1 k=1 Jj=1 k=1
N
s.t. D gy =S. (6.3.1)

The superscript (j) indicates the jth scenario. Note that for each k and j, Pk(j Visamx 1
vector, where m is the number of assets in the portfolio. The continuously differentiable
nonlinear objective function in problem (6.2.5) now becomes a piecewise nonlinear objective
function. Each simulation corresponds to one nonlinear function piece; here the nonlinearity
arises from the iterative dependence due to the permanent price impact. Using a standard
technique of replacing the piecewise function [|* with a set of constraints, this piecewise
nonlinear minimization problem can be formulated as a nonlinear programming problem with
the number of nonlinear constraints proportional to the number of Monte Carlo simulations
M. Solving such a large scale nonlinear programming problem is computationally expensive,
as the number of scenarios M is typically very large. Therefore, as the first step, we use a
smoothing method to avoid dealing with a very large number of constraints; this is described

in §6.3.1]

6.3.1 Eliminating Non-differentiability

To reduce computational complexity of problem (6.3.1]), we use a smoothing technique, pro-
posed by Alexander et al.| (2006) for a single period CVaR optimization problem. The basic
idea is to approximate the piecewise linear function [z]* with a continuously differentiable
piecewise quadratic function p.(z) with a small resolution parameter e:

z if z2>¢€
pe(z) = §+%z+}le if —e<z<e (6.3.2)
0 it 2 < —e€

111



Note that p.(z) > 0 for every € and z. Using (6.3.2)), problem (6.3.1]) is then reduced to the

following continuously differentiable nonlinear minimization problem:

1 SRl () 15 M al )
; Tpl Ta T pli
S VDD DL L R L v DT (Po 5> niF —a)
ny: I —measurable Jj=1k=1 j=1 k=1
N
s.t. > =5 (6.3.3)

In problem (/6.3.3]), the objective function is actually continuously differentiable, since each
simulation no longer introduces a nonlinear function piece. Therefore, there is no need to
include an additional constraint for each simulation to avoid non-differentiability.

6.3.2 Using Parametric Trading Rules

To obtain a stochastic execution strategy which adapts to the market price, one can let ny
freely depend on each price scenario, i.e.,

M N M N
: 1 (T () p Tg GN\T )
min - n P+ — Py S — n P —«
ot T L LR gy 2 e (RS - )
N 7j=1k=1 j=1 k=1
n,(j) I, —measurable
+po
N
s.t. S =5, j=1,2,...M. (6.3.4)
k=1

The number of decision variables in the nonlinear minimization problem is of order
M - N, where M is the number of scenarios and N is the number of periods. Hence, solv-
ing problem directly is computationally expensive as the number of scenarios M is
typically large.

In addition we need to ensure that the execution strategy is non-anticipatory, ny is
Ir-measurable. More precisely, execution strategy at stage k& must only depend on the
information available up to time .

To resolve these two issues, we explicitly require that the execution strategy to have a
parametric representation as below:

Ny :fk (Pk—17$k—1)) k= 1,2,...,N— 1. (635)

Here f} is a deterministic function of P,_; and xj_1, where Pj,_; represents the market price
at time t;_; and z;_; quantifies the total number of shares to be sold. This explicitly restricts
the strategy to be non-anticipatory.
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Applying the decision rule in problem (|6.3.4), we arrive at:

M N
i 1 TP K T GI\T p)
min PY 4+ PS> nHTPY) —«
NOMGINCN Z_: - (1_5)ZPE 0 E_( p) By
; R J=1 k= j=1 k=1
”Ec]):fk<P1§]) x21)1>
+pa
N
s.t. E ng) =S, j=1,2,...,M. (6.3.6)

Assuming that the parametric function f; depends on a small number of parameters,
the number of unknown variables in the optimization problem is then significantly
reduced. The equality constraint can also be eliminated by an explicit variable substitution.
Thus problem (6.3.6) can be represented as an unconstrained continuously differentiable
nonlinear minimization problem with a total of O(l x (N — 1)) variables, where [ denotes
the number of parameters in the definition of fj.

Now, we describe a specific linear trading rule used in our computational investigation for
approximating the optimal execution strategy. This parametric representation is motivated
by the explicit formula derived in Chapter [5| for minimizing the expected execution cost
under a multiplicative jump-diffusion model.

Specifically we assume the following linear parametric model for a stochastic optimal
execution strategy:

ng = Ykpk—l + kak—l + ¢k, k= 1,2, ceey N — 1, (637)
N-1

nN = g - Z N,
k=1

where Y and Z; are m x m unknown matrix parameters, and ¢, is an m unknown parameter
vector. The m vector Pj_; represents the market price in the previous period and xp_q is
the m vector of shares remaining to be sold.

Indeed the optimal execution strategy for minimizing the expected execution cost has
exactly this linear parametric representation. Thus the computed optimal execution strategy
based on , when = 0 and no constraint is included, attains minimum execution cost
(i.e. no loss of optimality). When a positive risk aversion parameter is used, the parametric
model assumption (6.3.7) may lead to a suboptimal solution. When Y, = 0 and Z; = 0, the
strategy is a static execution strategy. One may further assume that Y7 = 0 and Z; = 0,
to reduce parameter redundancy since the strategy at £k = 1 is deterministic and n; can be
determined solely by c;.

Using representation (6.3.7)) for ny, problem ((6.3.6)) is reduced to computing

c1,Ys,Z2,¢9,...,¥YN_1,ZNn_1,cN-1, and «,
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from the following problem:

M N
. 1 ) . m N N
min -2 (n,(g))TP,g]) + Zpe (POTS - Z(n,(cj))TPlg]) - oz)
N .
st. Y ond) =8, j=12..M,

nl(cj) =YkP;£i)1+ka1(£1+ckv k=2,3,...,.N—1.

After eliminating the decision variables n,(fj ), the number of decision variables in this problem
equals (N — 2)(2m? +m) +m + 1 which does not depend on the number of simulations M.

6.3.3 Handling Inequality Constraints Using Penalty Functions

In an optimal portfolio execution problem, one may want to impose additional inequality
constraints, for example, no buying during a selling order execution. Handling inequality
constraints in stochastic dynamic programming is in general challenging, see, e.g., (Gross-
man and Vila) |1992; Bertsimas and Lo, [1998). Using the simulation approach as in problem
, the number of constraints becomes proportional to the number of simulations, since
there exists a constraint corresponding to each future scenario. Thus computational com-
plexity becomes prohibitive, particularly when the objective function is nonlinear due to
permanent price impact.

Penalty functions are well established methods for handling constraints in nonlinear opti-
mization, see, e.g., (Nocedal and Wright, |2000). Quadratic penalty functions, exact penalty
functions, and barrier functions are frequently used in practice. While barrier functions
typically require a strictly feasible point to start with, the quadratic penalty function and
exact penalty function achieve feasibility in the optimization process. One attractive prop-
erty of the exact penalty function, in comparison to the quadratic penalty function, is the
existence of a finite penalty parameter (under suitable assumptions) using which a minimizer
of the penalized optimization problem is a minimizer of the original optimization problem.
If a quadratic penalty function is used, the penalized optimization yields a solution of the
constrained optimization problem asymptotically as the penalty parameter converges to +oo.

Consequently we prefer to use the exact penalty function. To illustrate this technique,

assume that we want to include the following set of L constraints in optimization problem
6.2.4):
ag(ny,...,ny) <0, ¢=1,2,...,L.

the simulation problem corresponding to (6.3.6)) will have the following M - L constraints:

w(ﬁ%”wn%>go, j=1,2... M, (=12, ... L
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When the number of simulations M increases, the number of constraints increases ac-
cordingly. Consequently the computational cost for solving the corresponding nonlinear
optimization problem can quickly become prohibitive. Using the exact penalty function

max {O, ay <n§j), e ,nE@)} for the inequality ag(ngj), . ,n%)) < 0 and a large enough
penalty parameter ¥ > 0, we arrive at the following penalty optimization problem:

M N M N
‘ 1 ) oy m _ . oy
wn SN S5 (s S
wemn@) )Gy M= M(1—8) 4 —
e .y j=1 k=1 j=1 k=1
= (P e,
k=1.2,. N—1
L M ' '
+po+ 19 - ZZmaX{O,ag (ngj), . ,n%))} (6.3.9)
=1 j=1
N .
5.8, S =5, j=1,2,...M,
k=1

Unfortunately the above penalty optimization problem is piecewise differentiable due to the

use of the exact penalty function, with the number of function pieces proportional to the
number of simulations. Once again, computational cost for solving the penalty optimization
problem can quickly become prohibitive. Instead of resorting to the quadratic penalty, we
choose to smooth the exact penalty function, given its similarity to nondifferentiability in
the CVaR risk measure. Using smoothing based on the function p.(:) defined in (6.3.2)), we
approximate the penalty optimization problem by the following smooth unconstrained
minimization problem:

M N M N
‘ 1 ) . L B . .
mn S D S (s R
0@ @ M4 M(1—p) “
ozE']R,nl ,n2' ,,,,, TLN ]:1 k=1 ]:1 k=1
D ()
k=12,.,N—1
L M
+po 49 ZZ& (ag <ngj), ,ngv))> (6.3.10)
=1 j=1
N .
s.t. an(f]) :5, j:17277M
k=1

Here we can regard the smoothed function p. (-) as a new penalty function; it is a hybrid
of the quadratic penalty function and the exact penalty function. Indeed this new penalty
function can be regarded as an exact penalty function with a resolution determined by the
parameter e. This parameter € can be different from that in the smoothed function for CVaR
and it can vary with the constraints. We are currently investigating theoretical properties
of this new penalty function.

The objective function of problem (|6.3.10)) is continuously differentiable but quite non-
linear due to smoothing of piecewise functions as well as the existence of the permanent
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price impact. Optimization methods for minimizing a continuously differentiable objective
function typically require derivative calculations to achieve a good computational perfor-
mance. In our subsequent computational investigation, we use the trust region method in
(Coleman and Li, |1996]) with the derivative evaluations using automatic differentiation; for
further discussion on automatic differentiation we refer the reader to (Griewank and Corliss|,
1991} |Coleman and Verma, [2000; Nocedal and Wright|, 2000)) and references therein.

6.4 Computational Results

This section presents several computational examples to illustrate feasibility and efficacy of
our proposed smoothing and parametric representation approach for approximating optimal
stochastic execution strategies. In addition we assess performance of the computed stochastic
execution strategy. The objective of our computational investigation is to demonstrate

e Accuracy of the computed execution strategies by comparing them to the strategies
from analytic formulae when they exist;

e Capability of the proposed technique to handle inequality constraints;

e Applicability of the technique to alternative risk measures. This also allows us to study
the effect of the choice of a risk measure on the optimal execution strategy.

Specifically, we approximate the optimal execution strategy by solving problem ((6.3.8]).
We assume that the market price follows a jump diffusion process as in ([5.2.6) with of* = 0.
In addition, we assume linear time-independent price impact functions as in ([2.1.4]).

We assume that the jump amplitudes are log-normally distributed and identically dis-
tributed over period, i.e., log7 " (k) and log x” (k) have normal distributions for all i and
k, with means p3* and g, and standard deviations o} and o;?, respectively. We further

assume that the arrival rates )\gf) and )\g) of different assets in the portfolio are equal to A,
and Ay, respectively.

In summary, the execution price model and market price dynamics are as follows:

~ H
Pk = Pk—l - ?nk, (641)

P, = Diag(Pe_1)(em + 7/25™E + T™(k)) — Gny.. (6.4.2)
Unless otherwise stated, our computation generates M = 12,000 sample paths of ran-
dom variables {(&1, 1), -+, (Env—1, In-1)}. We use automatic differentiation in ADMAT:

Automatic Differentiation Toolbox (Coleman and Verma, |2000) to compute gradients. The
Hessian is then computed using the finite difference method.
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The optimal execution strategy in general differs with the choice of the risk measure. For
example, it can be shown that the variance of the execution cost, under our assumed model,
does not depend on the impact matrices. However, CVaR of the execution cost depends on
the impact matrix.

The proposed computational method can be applied to other downside risk measures
such as Semi-standard deviation, see, e.g., (Fabozzi et al., [2007)) page 59:

N N +
v (ng - Zn{ﬁk> déf E STPU - anpk
k=1 k=1
M N
1 B . .
~ T Y P (STPO - Z(n,‘j))TP,S)> . (6.4.3)
j=1 k=1

To assess accuracy and effect of risk measures, we compare the following execution strate-
gies:

e Strategy,,: strategy which minimizes the expected execution cost, i.e., p = 0 in prob-
lem (|6.3.8)).

e Strategy.: strategy which minimizes CVaRgs¢, without considering the expected exe-
cution cost.

e Strategyg: strategy which minimizes the variance (or standard deviation) of the exe-
cution cost.

|EQ|

e Strategy,: the naive strategy, n, = k=1,2,...,N.

e Strategy,: strategy which minimizes the semi-standard deviation risk measure (see

equation (6.4.3))).

6.4.1 Accuracy of the Computational Approach

To illustrate accuracy of the proposed computational approach, we compare the computed
execution strategy from and its performance with the exact optimal execution strategy
for minimizing the expected execution cost only and for minimizing variance of the execution
cost only, since an analytic solution exists for both cases. Strategyg is obtained by solving
problem with the objective function replaced by variance of the execution cost:

N ) | M N o M o
Var (POTS - anpk) ~ Y <P0TS - Z(n,(j))TP,g”> — [ FS -2 0> ) R
k=1 j

k=1 j=1

Let Strategyj, and Strategyy denote the exact strategies from the analytic formulae to
minimize mean and variance of the execution cost, respectively.
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’ Parameters ‘ Values ‘

Trading Horizon T =5 days
Number of Periods N=5
Interval Length r=T/N =1 day
Initial Portfolio Price | Py = 50e3 $/share
Initial Holdings S = 10%;3 shares
CVaR Confidence Level 6 =0.95

Table 6.1: Parameter values used in the simulations.

We consider an execution problem for a portfolio of three assets with the parameter

setting described in Table [6.1]

We assume that the daily asset return covariance matrix is as in (3.4.1). We further
assume:

H=05x10"*-C, G=05x10"°-C, ¥=(0.001-C)"2
We let arrival rates and jump amplitudes be identical for the three assets:

Ae =05, pP=10"" oP=10"° A, =2, pr=10" o=10"

When only variance of the execution cost is minimized, the exact optimal execution
strategy is given in for which the optimal objective value equals zero. Furthermore,
when only the expected execution cost is minimized, an analytical formula for the optimal
execution strategy obtained from the stochastic dynamic programming is provided in Chapter
bl We use these two cases as benchmarks to illustrate accuracy of the proposed technique.

Table compares the expected execution cost, standard deviation, and CVaR of the
computed execution strategies with those of the optimal execution strategies using explicit
formulae. Comparing Strategy,, with Strategy),,, we observe approximately five significant
digits of accuracy in the expected execution cost and three significant digits in standard
deviation. The variance of the Strategyg is about 1073 compared to zero for Strategy’;
however the expected execution cost agrees in about 6 significant digits.

To examine the difference in the execution strategy, we quantify the percentage difference
between the exact optimal execution strategy and the computed execution strategy using
the following measure:

. def = .. N .. .
(i, k) = (100/”3”00) X llglj%}](\/[’ngk)(z’j) —n(k)<z7j)‘, i=1,-,m, k=1,---,N,

where, for asset ¢ in simulation 7, nik)(i, 4) and 2*) (4, §) are the analytical solution and the

computed solution at period k, respectively. Values of (i, k) are reported in Table for
M = 12,000 simulations. The results indicate that the computed solutions are relatively
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Mean Standard Deviation CVaR

Strategyg | 1.0319544883 x 10° 0.0338536247 1.0319549344 x 10°
Strategys | 1.0319545000 x 10° 0 1.0319545000 x 10°
Strategy,, | 1.9618159824 x 10° | 3.2645688653 x 10° | 8.6482124208 x 10°
Strategyh, | 1.9618206384 x 10° | 3.2634725096 x 10° | 8.6451163525 x 10°

Table 6.2: Mean, CVaRgsy, and Standard deviation of the execution cost corresponding to
each strategy.

Percentage Difference £(i, k) Corresponding to Strategy,,

Asset | k=1 | k=2 | k=3 | k=4 | k=5
1 0.0215 1.4905 0.3609 —0.0056 —0.9441
2 —0.2181 —0.7944 1.4332 0.0572 0.2588
3 —0.0183 —0.7452 —0.0056 0.3408 0.6913
Percentage Difference £(i, k) Corresponding to Strategyg
Asset\ k=1 \ k=2 \ =3 \ k=4 \ k=5

1 1.9109 x 107% | 2.8269 x 10~* | 3.3402 x 10~* | 1.6659 x 10~* | 3.4062 x 10~*
2 2.3535 x 1076 | 3.1935 x 10™* | 1.2011 x 10~* | 2.7644 x 10™* | 2.7478 x 10~*
3 | —25138 x 107° | 2.5517 x 107" | 2.0356 x 10~ | 1.7203 x 10~* | 2.7208 x 10*

Table 6.3: Comparisons to benchmark strategies Strategy}, and Strategyy.
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close to the exact ones, and the maximum difference between them is at most 1.5% which
most likely comes from computational errors.

For minimizing CVaR, there is no analytic solution. Table presents mean and
CVaRgsy of the execution cost corresponding to the computed solution of problem (6.3.8)
for different choices of . Even though we cannot explicitly assess the accuracy in this case,
we do observe that, for the computed strategy, the expected execution cost increases while
CVaRygs5y decreases, when the risk aversion parameter y increases.

| p | CVaR(95%) | Expected Execution Cost |
0 0.86482 0.19620
1 0.77781 0.20439
10 0.77485 0.20505
+00 0.77464 0.20512

Table 6.4: Mean and CVaRgsy of the execution cost in dollars per share.

Improvements in the objective function value by the optimization solver over iterations
are presented in Figure[6.1l These plots demonstrate that for the portfolio example of three
assets considered, around 40 to 50 iterations in the optimization solver are enough to obtain
a near optimal solution. The computational times are reported below each graph. The
computations were done in MATLAB 7.9.0 on a Pentium 3.00GHz running Windows XP
with 0.99 GB RAM.

6.4.2 Handling Constraints

We now illustrate effectiveness of the smoothed penalty function to handle constraints. We
also investigate effect of constraints n;, > 0 on the computed optimal execution strategy
and the corresponding objective function value. We consider liquidation of S = 10° shares
of a single asset whose initial market price is Fy = 50 dollars per share. Permanent and
temporary price impact values are assumed to be G = 2.5 x 1077 and H = 2.5 x 1076,
respectively, and ¥ = 0.009. Jump parameters are as follows:

Ae =3, pr=95x10"3 o0,=10"2 N\, =05 pu,=69x10"% o,=32x10"2

CVaR and mean of the execution costs corresponding to the optimal execution strategies
with and without the constraint n, > 0 are presented in Table [6.5] The risk aversion
parameter is g = 100.

Figure [6.2] depicts the optimal execution strategy for minimizing mean and CVaR of the
execution cost with the risk aversion parameter ;1 = 100 in the presence of the non-negativity
constraints ni > 0. These plots show that the computed optimal execution strategy using
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Figure 6.1: Progress of the optimization solver over iterations.

’ Execution Strategies \ CVaRgsy

Expected Execution Cost ‘

ny unconstrained 3.37896
ng >0 5.40572

1.42706
2.51237

Table 6.5: Effect of constraints n, > 0: cost and risk values in dollars per share
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Optimal Execution Strategy Configuration under Non-negativity Constraints
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Figure 6.2: The 100 realizations of the computed optimal execution strategies as functions
of the market price for a single asset trading with and without non-negativity constraints.
A circle shows an execution strategy when buying is allowed, and a diamond represents a
strategy when buying is prohibited. The line in each graph indicates Strategy,. Strategies
have been computed using the penalty parameter ¥ = 10* and the risk aversion parameter
= 100. In the first period when buying is allowed, n} = 76.64867% of the initial holding
and when buying is prohibited, nj = 75.28936% of the initial holding.
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the penalty parameter ¥ = 10* indeed satisfies n, > 0. In particular, while the execution
strategy when ny is not bound constrained suggests to sell more in the first period and
buy in the last periods (k = 4,5); the execution strategy computed under n; > 0 is more
conservative and the strategy does not seem to vary with the asset price significantly.

6.4.3 Applicability to Other Risk Measures

Here we illustrate use of the proposed approach for the semi-standard deviation risk measure
when trading a single asset. The setting is as in Section [6.4.2]

Figure demonstrates that Strategy, is very similar to Strategyg. Furthermore,
Strategy,, is more aggressive comparing to Strategy., i.e., it suggests to trade more in
the first periods and buy in the last periods.

It is worth mentioning that the results provided in this section depend on our assumed
linear parametric representation in equation . If we choose other representations, the
configuration of the computed optimal execution strategies might differ. We leave investigat-
ing properties of the solutions under different parametric representations for the execution
strategy for future research.

6.5 Concluding Remarks

In this chapter, we use smoothing and parametric rules to attain a stochastic price-dependent
execution strategy when a nonlinear risk measure is included in the objective function for
the optimal portfolio execution problem. This formulation yields the exact solution of the
stochastic dynamic programming when only expected cost is minimized. Our computational
approach can handle multi-asset cases as well as constraints with no prominent additional
computational cost.
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Optimal Execution Strategy Configuration under Different Risk Measures
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Figure 6.3: The 100 realizations of the optimal execution strategies Strategy,, (squares),
Strategy. (circles), and Strategy, (triangles) as functions of market price for a single asset
trading when no constraint is imposed. The line in each graph indicates the naive strategy
Strategy . In the first period, Strategy  suggests to sell n{ = 20.00%, Strategy,, suggests to
sell n} = 77.44418%, and Strategy suggests to sell nj = 76.63369%), and Strategy,, suggests
to sell nj = 97.57436% of the total holding.
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Chapter 7

Conclusions and Future Work

Given the market price dynamics, the execution price model, and the price impact model,
an optimal execution strategy minimizes the mean and risk of the execution cost when
liquidating large blocks of assets over a given execution horizon. In this thesis, we analyze
sensitivity of the optimal portfolio execution strategies to model parameters as well as models
themselves, and we propose robust strategies.

We first analyze sensitivity of the optimal execution strategy and the efficient frontier
to errors in estimating the price impact parameters. Here, the execution risk is measured
using the variance and the optimal execution strategy is assumed to be deterministic. Fur-
thermore, it is assumed that the market price has a normal distribution. We identify some
cases in which the optimal execution strategy is insensitive to the estimation errors in the
price impact parameters. Specifically, the optimal execution strategy which minimizes the
expected execution cost is the naive execution strategy as long as the permanent impact
matrix and its perturbation are symmetric, and the corresponding combined impact matri-
ces are positive definite. We provide an upper bound on the size of change in the optimal
execution strategy. Our theoretical and computational results indicate that the optimal ex-
ecution strategy may potentially be very sensitive to estimation errors in the price impact
parameters. This is particularly the case if the permanent impact matrix is asymmetric, the
risk aversion parameter is small, and no constraint is imposed on a solution.

Motivated by the sensitivity analysis, we consider the robust optimization to address
uncertainty in the impact matrices. Potential instability of the classical robust optimization
to variation in the uncertainty set is illustrated through an example. To achieve greater
stability, the proposed approach imposes a regularization constraint on the uncertainty set
before being used in the minimax optimization formulation. Improvement in the stability
of the robust solution is discussed both theoretically and experimentally. Some implications
of the regularization on the robust solution and the mean-variance efficient frontier are
investigated.

The optimal execution strategy should be stochastic to adapt to market conditions. We
further investigate implications of market price model assumption on the stochastic optimal
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execution strategy. In particular, we suggest using jump diffusion processes for the market
price dynamics to capture uncertain permanent price impact of other large trades. The
proposed model includes two compound Poisson processes corresponding to buy and sell
trades, respectively. Using stochastic dynamic programming, we provide analytical solutions
for minimizing the expected execution cost under discrete jump diffusion models and compare
them with the optimal execution strategies obtained from a continuous diffusion process.

A jump diffusion model for the market price dynamics suggests the use of Conditional
Value-at-Risk (CVaR) as the risk measure. However, solving multi-stage stochastic pro-
gramming problem is a daunting task, particularly when there are constraints. Under both
temporary and permanent price impact, the objective function of the optimal portfolio exe-
cution problem can be quite nonlinear when a risk measure for the execution cost is included.
We propose a tractable computational approach to compute an optimal execution strategy.
The approach employs Monte Carlo simulations, a smoothing technique, and parametric
rules for the optimal strategy. The smoothing technique alleviates the problem associated
with the nondifferentiability arising from the CVaR risk measure for each simulation. The
parametric rule allows a strategy to be stochastic and reduces the number of optimization
variables at the same time. In particular, a linear parametric representation permits the ex-
act representation of the execution strategy for minimizing the expected cost. The approach
then yields a stochastic execution strategy which depends on the price and holdings at trad-
ing time. The computational complexity of the resulting method does not depend on the
number of simulations. While we focus on CVaR risk measure, the proposed computational
method is applicable to different risk measures, e.g., downside risk as well as variance. In
addition, a smoothed exact penalty function is applied to handle stochastic constraints.

Some directions for future research are:

e [t may be desirable to extend the idea of regularization to other robust formulations,
especially for robust quadratic programming.

e Another interesting issue to look into in regularized robust optimization is how to
reduce dimensionality of the semidefinite programming representation. One approach
can be to replace the regularization constraint with © > pI.

e In this thesis, we do not address how to estimate the parameters of the proposed
jump diffusion model. It will be interesting to investigate techniques to estimate the
parameters.

e Empirical performance assessment of the proposed jump diffusion model using real
world data suggests another future research direction.

e [t may be interesting to study some properties of the resulting nonlinear differentiable
optimization problem, in terms of convexity or uniqueness of the solution. It may be
helpful to employ the specific structure of the problem in the optimization solver to
speed up the code. We also would like to extend our method to solve other similar
dynamic stochastic programming problems in finance.
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Appendix A

Mathematical Preliminaries

A.1 Linear Algebra and Optimization

The matrix p-norm of the real matrix A € R™*" is the matrix norm induced by the vector
p-norm:

A
14, = sup 142l
P,

(A.1.1)

For p =1 and oo, we have

1<j<n

m
IAlr = max > ayl,
i=1

1<i<m

Al = max Y "yl
j=1
The p-norms satisfy certain inequalities that are frequently used:
1
Al < 1Al < Vi) Al
1
ﬁHAHl < || All < VnllAll1,

[All2 < VAl [[Alloe-

A symmetric matrix A is said to be positive semidefinite, denoted by A = 0, if yT Ay >0
for every vector y of the appropriate dimension. Equivalently, all eigenvalues of A are non-
negative. If yT Ay > 0 for every nonzero vector y, then A is said to be positive definite,
A » 0. Equivalently, all eigenvalues of A are positive. If A has some positive and some neg-
ative eigenvalues, then A is said to be an indefinite matriz. The sum of positive semidefinite
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(respectively positive definite) matrices is also positive semidefinite (positive definite). For
a matrix A € R™ ", the matrix A7 A is symmetric and is also positive semidefinite since
y (AT A)y = (Ay)T (Ay) = ||Ayl|z2 > 0, for every y € R".

Let A1 (A), A2(A), - - - denote the distinct eigenvalues of a symmetric matrix A. We usually
order them
A(A) > M(A) > - > A(A)

Let A be an eigenvalue of A”A. By definition, AT Az = Az for some eigenvector x, so

|Az |3 = 2T AT Az = 2T Xz = \||z|]3. Tt follows from (A.1.1]) with p = 2 that
| Al = max A (ATA).
Therefore, when A is symmetric, the matrix 2-norm equals:
[Allz = max [A;(A)].

We denote the minimum and maximum eigenvalues of a matrix A having all real eigenvalues
by Amin(A) and Apax(A), respectively. The next theorem presents well-known cases of the
Courant-Fischer-Weyl Theorem, see, e.g., Theorem 8.1.5 in (Golub and Loan, {1996):

Theorem A.1.1. Let A € R™" and B € R™" be symmetric. Then

yT Ay yT Ay

Amin(4) = min , Amax(A) = max .
) yer\{0} yTy ) yerm\{0} yTy
Furthermore,
AIna,x(fl) + )\min(B) S )‘maX(A + B) S )\max(A) + )\maX(B)y
Amin(A> + )\min<B) S )\min(A + B) S >\min(A> + >\max<B)'

Suppose now that A is nonsingular and has all real eigenvalues. Then its eigenvalues are
nonzero, so Ax = Az implies \™'z = A~'z. Hence

Amax(A_l) - 1/)‘111111(14)

The following result, well-known as the Schur Complement, is used in the thesis:

Lemma A.1.1. Let A € R™™"™ and B € R"™™ be symmetric. Further assume that B 1is
positive definite. Then

T
M ( 5 [{4 ) =0« A-UB U »0. (A.1.2)

Moreover, M = 0 if and only if A — UB~UT = 0.
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The Kronecker product of two matrices A, x, and B, x4, denoted by A® B, is the mp x ng
block matrix

anB  apB - a,B
A®B= S - (A.1.3)

@mlB CZmQB amnB

For the properties of the Kronecker product, a reader is referred to §4.5.5 in (Golub and
Loan, 1996). In particular,

(A® B)(C'® D) = AC ® BD,
(A By '=A"1'® B,
(A B = A" @ BT,

Furthermore, let A and B be two square matrices of size n and m, respectively. Denote the
eigenvalues of A and B by oy, ,a, and By, - -, B, listed according to multiplicity. Then
the eigenvalues of A® B are o;f; fori =1,--- ;nand j=1,--- ,m (see, e.g., Property I.X
in section 2.3 of (Graham) 1981)).

For two matrices A and B of the same dimensions, the Hadamard product, also known as
the entrywise product, denoted by A o B, is a matrix of the same dimension with elements
given by

(Ao B);; = A;;Bjj.

The interior of a set S C R", denoted by int(S5), is given by
int(S) = {z € S|(x + eB) C S for some € > 0},

where B = {x € R™ : ||z]| < 1} for some vector norm || - || on R™. If int(S) = S, then S is
said to be open.

The closure of S C R", denoted by cl(S), is the set of all points x € R™ where there
exists a sequence of points in S converging to x. If ¢l(S) = S, then S is said to be closed.

A subset S of a metric space X is said to be compact if for every collection {R,}, of
open subsets of X such that S C U,R,, there exists a finite number of R,,, 1 =1,2,--- , M
such that S C UM, R,.. Compact subsets of metric spaces are closed, and closed subsets of
compact sets are compact. A set S is called sequentially compact if every sequence {z} in
S has a point ¢ such that given an open neighborhood N of ¢, there exist infinitely many
k such that z; € N. For a subset S of a metric space X, S is compact if and only if S is
sequentially compact. A subset of R™ is compact if and only if it is closed and bounded.

A useful tool in optimization on a compact feasible set is the Weierstrass (Eztreme Value)
Theorem, e.g., see (Bertsekas, [1996). It states that a continuous function on a closed and
bounded subset of R™ attains its maximum and minimum values, each at least once.
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The following theorem is a major result on which our discussion in Chapter [4] relies. A
topological space X is called first-countable if for every point x € X there exists a sequence
{Ay}x of open neighbourhoods of x such that for any open neighbourhood B of = there exists
a A contained in B. A Hausdorff space is a topological space in which distinct points have
disjoint neighbourhoods.

Theorem A.1.2. [Theorem 2.1 of (Fiacco,|1974)] Let X be a first-countable Hausdorff space
and T is a sequentially compact nonempty subset of X. Consider the following problems

min_ f(z), ,Jmin Je(),

where

e f and fi are real-valued functions defined on X,

e the subsets R C X and Ry C X are closed for all k,

e RNT is nonempty,

e Ry NT —-RNT,

o fi(x) is continuous on an open set containing R N'T, for k large,

o fi — [ uniformly on some open set containing R N'T.

Then for k large, there exists v, € RNT such that fi(zx) = minger,nr fe(z). Furthermore,
any (global) minimizing sequence {xy} contains at least one convergent subsequence and all
cluster points are (global) minimizing points of f(x) in RNT.

When in Theorem [A.1.2] f, = f for all &, the following corollary can be derived:

Corollary A.1.1. Let (X,d) be a metric space and f : X — R be continuous on X. Consider
the following problem:

Q(R): max f(z),
where R C X is nonempty and compact. Then for any sequence of nonempty compact subsets
of X, {Rk}r, with Hausy(R,Ry) — 0, and for any maximizing sequence {xy} of problems
Q(Ryk), there exists at least one convergent subsequence and all cluster points of {xx}r are
mazximizing points of problem Q(R).

Proof. First note that every metric space is first-countable and Hausdorff. Since R is com-

pact, it is a bounded subset of the metric space (X,d). Thus, it is contained in a ball of
finite radius, i.e. there exists xg € X and M > 0 such that d(z¢,z) < M, for all x € R.
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Since Haus,(R, Ri) — 0, there exists Ky such that for every k > Ky, Haus;(R, Ry) <
€0, and consequently sup,cp, inf,cr d(z,y) < €. Therefore for every x € Ry, there exists
some z®) € R such that d(z, ™) < ¢;. Hence, d(z,70) < d(z,2®) + d(z® 20) < eg + M.
Thus z is in the ball Byye,(x0) = {z € X : d(x,z0) < ¢ + M}. Consequently, Ry C
Birie, (), for every k > Ky. Denote the closure of Bysye, (o) by 7. Thus 7' is a compact
subset of X and Ry, C T, for all £ > K. The result then follows from Theorem using
the defined set T'.

]

The following result is very useful to prove convexity of some functions. A proof follows
from the fact that the intersection of a collection of convex sets is convex.

Theorem A.1.3 (Theorem 5.5 of (Rockafellar, 1996)). The pointwise supremum of an ar-
bitrary collection of convex functions is convez.

A.2 Quadratic Programming Problem
Consider the quadratic function f : R™ — R, given by

fla) = 54" Qu + VT,

with @) is a symmetric matrix and b € R™. The function f is convex if and only if ) > 0
(and concave if and only if @) < 0). The function f is strictly convex if and only if @ > 0.

The following proposition provides a sufficient condition when infimum of a function f(z)
over x € () is attained:

Proposition A.2.1. [Proposition 2.5 of Dostdl (2009)] Let f be a quadratic function defined
on a nonempty closed convex set S C R™. Then the following statements hold:

1. If f is strictly convez, then a global solution of min,cs f(x) exists and is necessarily
unique.

2. A global solution of minges f(z) exists if and only if f is bounded from below on S.

A primal problem and its Lagrangian dual are linked through the Lagrangian function.
Consider the following quadratic programming problem with linear constraints:

S T
min oz Qr+bx (A.2.1)

st. Ax+c¢<O0.
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The Lagrangian function associated with the problem (A.2.1)) is as below:
1
L(z,\) = §xTQa: + o'z 4+ N (Ax +¢),

when A is the Lagrange multiplier associated with the inequality constraints. Equation
(3.15) in (Hager, |1979) provides a bound on |||z in terms of @, b, A, and ¢. This result is
summarized in the following proposition:

Proposition A.2.2. In problem (A.2.1), let Q) be symmetric positive definite, and the feasi-
ble set is nonempty. Let Apin(A7AT) > 0, when J is the set of indices of binding constraints
at the solution of problem (A.2.1)). Then any optimal Lagrange multiplier X is bounded by:

2 max (@) ( Amax (@) - ||A§||2>
Amin(Q) * v/ Amin (A AY) L Amin (A AT) (1oll2 + llell2) - (A.2.2)

Below, we provide the proof from (Hager, [1979) for the convenience of the reader.

[All2 <

Proof. Positive definiteness of () along with the assumption that the feasible region is
nonempty implies that problem has a unique solution x. Let J denote the indices
corresponding to binding constraints for x. Let A be an optimal Lagrange multiplier. The
first order necessary condition for problem can be expressed in the form:

<fii f?)(i)Z(il). (A.2.3)

Express * = 2P + 2+, where A;2? = 0 and 2t is perpendicular to the null space of Aj.
Since ! lies in the range space of A%, there exists y such that z+ = ATy. From the second

equation in (A.2.3), we have A;x = —c;. Thus

1
i
lella > [lesllz = [[Aszll2 = [[Asz™]|2 = |AsATyll2 > Anin(AsAD) [yll2 > Amin(A7AT) NAlet'
J
Thus we have
| AT ]2
ol = el (A:24)
min J

On the other hand, multiplying the first equation of (A.2.3) by (zP)T from left gives us
(2P)TQx + (xP)T ATN; = —(27)Th. Note that ()T ATA; = 0. Thus

l2”[l2l1bll2 = 11(2")7bllz = [|(2”)" Qa” + ()" Q™ [l = Auin(@) |27 13 — 22| @12l |12-

Dividing by ||2?]]> and applying (A.2.4) in the above inequality yields:

IAS
[bll2 > Amin(@)l|271]2 = Q2|2 ll2 = Amin(@)l|2” |2 = 1Qllay—— 7= [l

min(AJA?;)
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Thus we have

! <|rby|2 . ||Q||2L”T||c||2> > 127]l. (A2.5)
)\min(Q) /\min(AJAJ)

The first equality of (A.2.3)) and the assumption Ay (A7AT) > 0 yield

Auin (A7AT) M2 < [AGA2 < 1Ibll2 + Q|2 < [1Bll2 + Anax (Q) (|27 ]2 + [l27 2)- (A-2.6)

Applying inequalities (A.2.4) and (A.2.5) in inequality (A.2.6 -, we arrive at

[All2 < Amin(AJA§) (16]l2 + Amax(Q) (|2 (|2 + [lz12))
1 max(@)) < HA?;H2 )
= Amin (A7 AT) (1 (@) 50+ AmaX(Q)Amin(f‘l‘ff‘l?) Ietl
< (230 (14 (Q)w> (152 + 1)
- )\mln (AJAT) n ) e )\min (AJAE;) ’

where the last inequality comes from the facts that f\m‘"‘—"((g)) > 1 and max{||bl|2, ||c||2} <

|bll2 + ||c||2. This completes the proof. O

A.3 Minimax Optimization Problem

Rockafellar| (1996) defines a saddle-point as below:

Definition A.3.1. [page 380 of |Rockafellar (1996)] A point (u,v) is a saddle-point of K
with respect to mazximizing over C and minimizing over D if (u,v) € C' x D and

K(u,v) < K(u,v) < K(a,v), YueC, YveD.

This means that the function K (@, -) attains its infimum over D at v, while K (-, v) attains
its supremum over C' at u. The relatlonshlp between saddle-points and saddle-values is as
follows:

Theorem A.3.1 (Lemma 36.2 of Rockafellar (1996)). Let K be any function from a non-
empty product set C X D to [—oo,o0]. A point (a,v) is a saddle-point of K (with respect to
mazximizing over C' and minimizing over D) if and only if the supremum in the expression
SUp,cc infyoep K(u,v) is attained at u, the infimum in the expression inf,ep sup,co K(u,v)

is attained at v, and these two extrema are equal. If (u,v) is a saddle-point, the saddle-value
of K is K(u,0).

The following theorem presents some sufficient condition when the infimum and supre-
mum in the minimax problem can switch their order:
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Theorem A.3.2. [Theorem 3 in (Simons, |1995)] Let X be a compact convex subset of a
linear topological space, Y be a convex subset of a linear topological space, and f : X XY — R
be upper semicontinuous on X and lower semicontinuous on Y . Suppose that, for all y € Y
and A € R, {z € X : f(z,y) > A} is convex and for all x € X and A € R, the set
{yeY : f(z,y) < A} is convex. Then

inf = max inf .
inf max f(z,y) = max inf f(z,y)
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Appendix B

Proofs

B.1 Effect of a Zero Expected Market Price Change

In this section, we present the proof of Theorem [5.3.1]

Proof. We first prove by induction on k that, when E (Fy_q1 (Py_1)|Pr—1) = Pr_1 holds
and (deterministic) price impact functions are independent of the market prices, optimal
execution n; does not depend on Pj_;, and for £ = 1,2,..., N, the optimal-value function
is given by

Vk*(Pk—la xk—l) = P(I)Tg — nglpk—l + Rk—l(xk—l)a (Bll)

where Ry_1(-) is a deterministic function independent of Pj_;.

For k = N, optimal execution n} equals zy_; and from equation (5.3.2)) the optimal-
value function in the last period becomes

S TN—
V(P onan) = By S — oy Py +$%—1h< ]j' 1> :

This confirms the correctness of (B.1.1) for ¥ = N with Ry_1(zy_1) = x%_lh(:w;l).
Assume that in the period (k + 1), optimal execution n;,, only depends on z; and the
optimal-value function at time period k + 1 is

Vi (P, ) = Py S — xp Pe + Ry(wy),

where Ry (xy) does not depend on P;. The Bellman’s principle of optimality in the kth step
yields:

Vi(Pe—1,mp—1) = Hé%lm E [—nfpk + Vi1 (P, k) | Pr1, Jfk—l}
n
= min E {—nf (Pk,l —h (%)) + POTS’ — xZPk + Ri(zk) | Pe-1, CL‘kq} i

ng cRrRm™m
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Applying the market price dynamics (2.1.3)), equation (2.1.1)) and assumption (5.3.4)), the
optimal-value function V,*(Py_1, xx—1) becomes

. B (721 () 7~ ()0 (2)
+ Ry(vr—1 — nk) | Pr1,7k-1]
= min (—n;‘g (Pk,l —h (%)) + PI'S — (21 — )T (Pk,l —Tg (%)) + Ry (xp—1 — nk)>

niER™

= P{'S -2l |P._;+ min (n{h (%) + (xp—1 — )7y (%) + Ry (xgp—1 — nk)) . (B.1.2)

niER™

The objective function of the minimization problem in does not depend on P,
and is only in terms of x;_; and specifications of the price impact functions h(:) and g(-).
Hence, optimal execution n; does not depend on Fj,_; and consequently is static. Moreover,
the optimal objective value of the minimization problem in becomes

Vi (Po1,m51) = PyS — 2} Pt + Ry_1(z1-1),
where

. Nk N

Ry_1(zk—1) = min <n;‘§h <—> + (zp—1 — i)' 7g <—> + Ry (xp—1 — nk)> .
ngER™ T T

This proves the correctness of equation (B.1.1]) for k. Thus, for k = 1,2,..., N, the optimal-

value function is as in equation (B.1.1)), and the optimal execution n} is independent of P,_,

and consequently is static.

Now, let the price impact functions be given by ([2.1.4) where the permanent impact
matrix G is symmetric and the matrix © is positive definite. By induction on k, we prove
that for k =1,2,..., N,

|
R B.1.3
TN k1Y (B-13)

x G 1 S)
Vk (Pkfl, xkfl) = POTS — PkT_lfﬂk,1 -+ 51‘%_1 <m + G) Lh—1-

From (j5.3.3)), the optimal execution n} equals xy_1, and the optimal-value function becomes

_ 1 H+HT
Vi (Pno1,2n21) = POTS — !E%_leq + §$%_171‘N—1
_ 1

This confirms the correctness of (B.1.3]) for £ = N. Now assume (B.1.3) is true for k + 1.
Therefore,

)
N -k

_ 1
Vi1 (Pe,ay) = Py S — Plag + Easf (
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Using this assumption, we show that (B.1.3]) is true for k. The Bellman’s principle of
optimality in the kth step becomes:

Vi (Pe—1, 1) = nHéiEglm E [—n;{pk: + Vi1 (Pry zk) | Pr—1, $k:—1:|
k

. H - 1 O
= nirélﬂgm E [—ngpkl + n£7nk + (POTS — P,;‘Fa:k + 51‘{ (]\f—k + G) :ck) ‘ P4, $k1:|

. H _ A
= min <—H£Pk—1 + 71577% + P{S — E [Play|Po1, z-1] + (zp-1 — nk:)Tg(xk—l - nk)> ,
k

where A = % + G. Applying the market price dynamics (2.1.3) and equation (2.1.1)), the
expected value in the above statement can be stated in terms of P,_; and x;_1:

E [Plap|Po1,weo1] =E [(Fao1(Pio1) — Grg) " (wp1 — i) | Poet, @1
= (Poe1 — Gn) " (w1 — ),

where the last equality comes from the assumption E [Fr_1(Pi_1) | Pe_1, Tx1] = Pr_1-
Hence, after some algebraic manipulation, the optimal-value function V;*(Py_1, zx—1) equals

_ 1 (1 4 (N—k+1 o g
POTS — Pg_lxkfl + §$£_1A$k71 + ngél]élm (5%5 (N——k@) ng — <N — kxkl) nk> .

When the matrix © + 1 = 20 is positive definite, the unique solution of the above mini-
mization problem becomes

1

Therefore, the optimal value function V*(P._1, zx_1) equals

* = 1 ©
Vk (Pk—laxk:—l) = POTS — PkT_lxk_l + 51’%_1 (m + G) Th—1-

This completes the induction. Using equation (2.1.1)) and zy = S, it can be shown that nj
obtained in (B.1.4) equals £, which is the naive strategy.

]
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B.2 Optimal Execution Strategy Under Additive Jump Market
Price Models

Below, we provide a proof for Theorem [5.3.2

Proof. We prove by induction on k£ that the optimal execution and the optimal-value function
are given by:

* Q 1 a a
Vi(Py—1,x-1) = PgS — 51‘%_1 (@T — A — G) Tp_1 — (Pk_l + b, — E% (k) — TOéO)TJ,‘k_l — ¢,
nj_y = A (by —EX(k) + E3(k— 1)+ 0" — Alzpn), k=2,3,...,N, (B.2.1)

where Ay, b, and ¢, are defined as in equations ([5.3.5) and (5.3.6)), and the matrix Ay is

symmetric.

For k = N, optimal execution n}, equals xy_1. From equation ([5.3.3)), the optimal-value
function in the last period becomes

. _ 1 H+HT
VN(PN_l,xN_l) = P(;FS — P£_137N—1 + 5.%7]\}_1 fl’N—la (B.2.2)

Hence, equation (B.2.1)) holds for £ = N with Ay = 07 + 0, by = E%(N) + 70, and
cy = 0. Notice that the matrix Ay is symmetric. Assume that the statement (B.2.1)) holds
for k + 1, particularly:

Vi (P, zi) = (B.2.3)
_ 1
POTS — 51‘5 (@T — App1 — G) T — (Pk +bpy1 —ESZ(E+1) — TOéS)TIk — Ckt1,

where Ayq is symmetric. We will prove the correctness of (B.2.1)) for k. Applying Bellman’s
principle of optimality in the kth step yields

Vk*(Pkfl, [L’kfl) = min E [—nff’k + Vk*+1(Pka ilj'k) | Pkfl, $k,1:| . (B24)

ng€ER™

Substituting (B.2.3)) into equation (B.2.4)), the objective function in (B.2.4]) becomes

~ = 1
E[-nl P, + P] S — ng(@T — Agy1 — G)zp — (Pp + bpy1 — EX(k+ 1) — 7ad) 2y,
— k1 | Po1, Tp—1]

~ 1
= OTS — §I£_1(9T —Agr1 — G)rg—1 — (Pk—l + bga1 — Eaj(k‘ +1)+ Ef}(k))Txk_l

1 a a T
+ in{Aank + (bep1 — EZ(k+1) + E% (k) + (07 — Ap1) wem1)” i — cppa-

Note that this function to be minimized is quadratic in ng. Moreover, from the induction
hypothesis the matrix Ay is symmetric. In addition, the matrix Ay, is positive definite
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by assumption, and consequently the objective function is convex. It is straightforward to
verify that the solution is attained at

= —Agly (bepr — B (k + 1) + E% (k) + (07 — Apr) wpo1) -

Whence the optimal-value function V;*(Py_1, xx—1) equals

1 -
Py § = Sty (07 = Apy1) Ay (07 = Ap)™ + 07 — Apyy — G) (B.2.5)
— a a a a T
— (Poo1 + (0" = A )AL (bhpr — EZ(k+ 1) + EZ (k) + byyr — B (k+ 1) + E% (k) 2
1

_§@H4—E§%+4)+E}wnTAﬁl@HJ—E§%+J)+E§%N—cHL

Substituting equations ([5.3.5)) and (5.3.6)) in (B.2.5]) yields the correctness of equation (B.2.1)
for k. Furthermore, equation (5.3.5)) and the symmetry assumption of Ay, yield the matrix
Ay is symmetric. This completes the induction. O

We now prove the statement in Proposition [5.3.1]

Proof. By a simple induction we can prove that, when G = G7 and E% (k) = E7 for

k=1,2,..., N, equations (5.3.5) and (5.3.6) yield

N+2—k N-k+2,.., .
A = (—N = k) 0, b=y (BY 4 7af). (B.2.6)

Positive definiteness of © implies that the matrix A, is positive definite, for every k =
1,2,...,N. Hence, the assumption in Theorem [5.3.2] is satisfied and stochastic dynamic
programming offers a unique solution. Substituting equations (B.2.6)) in (5.3.7)), we get:

__ 1 . (N-k
TN —k+17kt 2

*

i O (B% 4+ o), k=12, N—1, (B27)

or equivalently

(N—k+1)

5 @*WE;+n£», k=2,3,...,N.(B.2.8)

v, =(N—k+2) <NZ1+

Applying equation (B.2.7)), equation (B.2.8) and equation (2.1.1]), we get:

* 1 * * (Nik) — a a
nk = m(xk_2 - nk_l) - 9 @ 1 ( J + 7-060)
1 . N—k+1) _ .
N —k
N )
=nj_1 + O (EY + 1af), k=23,...,N—1. (B.2.9)
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Now, we use equations (B.2.7) and (B.2.9) to prove (5.3.8)) by induction on k¥ < N — 1.
Equation (B.2.7) for £ = 1 directly implies the correctness of (5.3.8) for £k = 1. Assuming
EE

that equation ([5.3.8]) holds for k£ — 1, we will prove it for k. Using equation (B.2.9)), we have
5 (N +3-2k)
N 2

which proves the correctness of equation ([5.3.8)) for £k = 2,3,..., N — 1, and the induction

is complete.

Since S0 ni = S, for k = N we must have

n = O (B +raf) + 07 (B +7af) = o - M=o (my 4 raf).

B - ~ 5, 1 N—-1
ny=8-S1'nj =5—(N- 1)N+§@_1 (E% +7a8) Y (N +1—2k)
k=1
S (N — 1) - a a
- B e (e ).
which shows the correctness of (5.3.8) for k = N. O
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B.3 Optimal Execution Strategy Under Multiplicative Jump Price
Models

In this Appendix, we prove Theorem [5.3.3} Recall that EF (k) and Cov’} (k) denote the
expected value and covariance matrix of J™ (k). Moreover, we refer to the m x m identity
matrix, and the m X m zero matrix as I and 0, respectively. Moreover, we denote the
m-vector of all ones with e.

Proof. By backward induction on k, we prove that optimal execution is given by (5.3.13)),
matrices A, and C} are symmetric, and the optimal-value function is given by equation

(5.3.14).

For k = N, the constraint xnx = 0 yields the optimal execution nj, must equal xn_;.
Using equation ([5.3.3)), the optimal-value function in the last period becomes

. - 1 H+ HT
VN(PN_l,xN_l) = POTS - P]z;—lxN—l + éle\ﬂfflfxl\f—la (B31)

which is obtained from substitution Ay =0, By = [ and Cy = —H;fT in equation (}5.3.14)).
Note that matrices Ay and Cy are symmetric.

Assume that statement ((5.3.14)) holds for £+1, i.e., the optimal-value function Vi* ; (Py, 1)
is given by

Vk*Jrl(Pk,Ik) == POTS — PgAk+1Pk - PgBk+1$k - $£Ck+1$k, (B32)

with A1 and Cyy; are symmetric. We now prove the correctness of equation (j5.3.14)) for
k. Bellman’s principle of optimality implies

Vi(Po_t,251) = min E [—nfﬁk+vk*+1(Pk,xk) | Py, xk_l]. (B.3.3)

nkeRnL
Substituting equation (B.3.2)) into equation (B.3.3)), we obtain:

Vk*(Pk—l,l'k—l) = (B34)
min E |:P0TS — ngﬁk — PkTAk+1Pk — PgBk+1xk — mngJrll'k | P]gfl, $k71:| .

niER™

Given Py_; and xj_1, equation xy = xp_; — ny and the execution price model ([5.2.6)), the
terms n} P, and 21 Cj 17, in the objective function of the minimization problem in (B.3.4)
are deterministic. Hence:

- - H H
E [ngpk | Pk—la afk_1:| = ank = ’I’L% <Pk_1 — Tnk> = n;;FPk_l — ng?nk, (B.3.5)

E [l'ngJrlxk | Pkfl, .%k,l] = (wk,1 — nk)TCkJrl(xk,l — nk) (B.3.6)
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Define £}, = e + Ta® + J™(k) + 7/25mZ,. Using market price dynamics (5.2.6)), we get:
E [P Biyiak | Poo1, ak-1) = Py LpBrsa(ze-1 — ni) — nf GT By (zp—1 — i), (B.3.7)

where L = Diag (E(Ly)). Similarly, using the market price dynamics (5.2.6), the term
Pl A1 B, is stated as:

Pr A P, = (B.3.8)
Pl Diag (Ly) Api1Diag (Ly,) Po—y — 2P Diag (L) Apy1Gny, + nil G Aj1Gny,.
In addition
E [Pl Diag (Ly) Ag+1Diag (L) Pe—1 | Pic1, 2p-1] =
Bl (Apsr o B [LLf | Poc1, w-1]) Prt,
where o denotes the Hadamard product.
Since E(Zy) = 0 and the random vectors Z; and J™(k) are independent, we obtain
E [£,.L]] = E[L]E[L,]T + 72™(™)T + Cov% (k).
Hence,
E [P Diag (L)) Ay1Diag (Ly) Peo1 | Pie1, @p_1] (B.3.9)
= Pl (LeApr Ly + (7Z2™(2™)" + Cov2(k)) 0 Ajt1) P
Taking expectation from ([B.3.8) and substituting equation , we have
E [Pl Ak Py | Pocr, mpoa] = Py (Aggr. * (78™(E™)T + Cov(k)) + Ly Agi1 Li) Pen
—2PF | LiAp1Gng +nlGT Apy1Gny,. (B.3.10)

Substituting equations (B.3.5)), (B.3.6), (B.3.7) and (B.3.10) into equation (B.3.4)), the
objective function of the minimization problem in (B.3.4) is reduced to:
POTS — $£710k+1xk,1 — P]zllLkBk+133k71 (B.3.11)
—PL (A + (r2™(E™)T + CovB(k)) + Ly Ag1Li) Pe—a

1
+ (l’,{_l (ZCk—I—l + Bg+1G) + PkT_l (—I + LgBry1 + 2LkAk+1G)) ng + inng_an,

where Dyyq is as in equation ([5.3.11)). Hence, the minimization problem in (B.3.4) is
quadratic in ng. Since Dy is assumed to be positive definite, the unique solution is attained
at

* — T
nj =—Dp ! (zi_1 (2Ckt1 + Bi1G) + Py (=1 + L Biy1 + 2L ApaG)) . (B.3.12)

Substituting nj, into (B.3.11)) and after some algebraic manipulation, the optimal-value
function V;*(Py_1, k1) becomes

V]:(Pkfla xkfl) = P(;‘FS - P/?_1Akpk—1 - P]?_lkakfl - x;‘f_lexH,

where the matrices Ay, By and C} are given by equations ([5.3.12]). Notice that when Ag,,
and Cyyq are symmetric, equations (5.3.12)) indicate that A and Cj are also symmetric.
This completes the induction. O
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B.4 Analytical Formulae for Expected Execution Costs

Assuming that the true model for the market price is the multiplicative model ((5.2.6)), closed-
form expressions for the expected execution costs of the naive strategy and the execution
strategy ([5.3.8]) can be easily derived. The following proposition presents these formulae.

Proposition B.4.1. Let the true model for the market price be the multiplicative model
(5-2.6), and for every k, ER(k) = E%, for some constant EY. Assume that the permanent
impact matriz is symmetric and the matriz © is positive definite. Then the expected (true)
execution cost of the execution strategy n*, optimal under the additive jump diffusion model,

given in equation (5.3.8), equals

N N

E|PI'S-Y PIn;| =5"PR +ST—S+S—TZL’H N-kas_p (B.4.1)
0 PR 0 N N 0 R
k=1 =
N-1
a a\T o1 [ k(N — k) E—1, -1\ g, N —2k—1) ,
X (B3 +7a8)" © <2N (LG —Grt ) s+ =" Ry
N-1
a a\T -1 N(NQ_l) N -k 2 k—1

o ! (Ef’7 + mg) ,

where L < Diag (e + 1ot + E’}’) Here the superscript k in the term L* is the exponent of
L.

Proof. Let the market price evolves according to the multiplicative jump diffusion model in
(5.2.6). Whence, following the optimal execution strategy n* given in equation (5.3.8)), the
total amount received at the end of the time horizon equals

N N N -
_ I N+1-2k) 4\ . o
g = (Pkl_nk> :Z k- 1( (2)9 1(7'ao+EJ)>
k=1 k=1
N /8 (N+1-2k) TH (S8 (N+1-2k)
- I S A e et | a, pa el e S e St | a, pa ]
;(N 5 O (raf + J)) T(N 5 O~ (raf + j))

After simplifying the expression in the right-hand-side of the above equation and using the
2
equalities S0 (N 41— 2k)% = w and 3.0 (N + 1 — 2k) = 0, we arrive at

N N 5 N
. ST (N +1—2k) T A
fiie S5 - L o
k=1 k=1 k=1
a a N(N2 B 1) a a\T ~— - a a
—STES - 7127_ (Ej + TO[O) @ IH@ 1 (EJ + TO[O) .
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Therefore, the expected value of the execution cost becomes

N N N
_ ~ ST N +1-2k
E|P/S-> Plni| = PfS- ~ 2 BlPa] + (B% +7a3)" ©7! > (Q)E[Pk_l]
k=1 k=1 k=1
. H - N(N?-—
+5Tms -+ (127_) ( aj -+ TQS)T eilﬂ—@il ( ?] -+ 7'0(8) . (B42)

Since the random variables Z and J™(k) are independent of Py 1, using the conditional
expectation theorem, see, e.g., (Varadhan) 2001)), we get

E[P] =E[E[P;|P;]] (B.4.3)
—E [Diag(Pk_l) (e toram 4 ri2ymy, Jm(k))} —Gni = LE[P,_] - Gni,

where L = Diag(e + 7of" + E7). Therefore,

N

N-2 N-1
S E[Pa] =P+ )Y (LE[Ps] - Gnj_)) =R+ LP+ > LE[P]— Y Gnj.
k=1 k=2 k=1 k=1

Using equation (B.4.3), the summation Y1 * E[P;] can be further simplified and we get

iE[Pkl] = (i L’“) Zlgyf 'Gn;. (B.4.4)

k=1 k=1 i=1
Applying the expression for n* in equation (5 , and the equation

N—-k

> (N +1-2i) = k(N - k),

=1

we get
N N N-1
N -k k(N —k

Soip =30 (R- Mtes) 4 3 M e 4 v

k=1 k=1 =1
Similarly by using equation (B.4.3), we may show that

N N-1 ~1N—k

> (N+1-20)E[Pq]=> (N-2k—1) L’%-ZZ N —2(k+1i) + 1) LF'Gn;.

k=1 k=0

k=1 =1

Applying the expression of n* in equation (|5 and the equations
N—k

> (N =2(k+i)+1) = —k(N — k),

=1

=
B

(N =2(k+4) +1)(N +1—2i) = (N;k>(N2—1—2k:(k;+N)),

1
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the value of S>0 (N + 1 — 2k)E[P,_1] equals

N-—1
> (N -2k-1)LFR
k=0
N—-1N—-k & .
_ _ S (N+1-2) _
=Y > (N-2k+i)+1)LF G (N - (21)@ 1(m3+Ef7))
k=1 =1
N-1 N-1
= (N —2k—1)LFPy + WL’HGS'
k=0 k=1
N-—1
N —k
+ ( c )(NQ —1-2k(k+ N)LF7'GOo7 (1 + EY).
k=1

We use this quantity to compute the third term in the right-hand-side of equation (B.4.2]).
Therefore, the expected execution cost in (B.4.2) is reduced to (B.4.1)). m

When (E% + 70§) = 0, the execution strategy ({5.3.8) is reduced to the naive strategy.

Therefore, equation (B.4.1) with (E% 4 7a§) = 0 yields the expected execution cost of the
naive strategy.

Corollary B.4.1. The (true) expected execution cost of the naive strategy n equals

N
PyS =Y Plny

k=1

E

. 7. s /N—k
=STP) + STmS + 5 > ! (TGS - PO) . (B.4.5)
k=1
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