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Abstract 

Although a considerable amount of research exists on geometrical aspects of 5-axis flank milling, the 

dynamics of this efficient milling operation have not yet been given proper attention. In particular, 

investigating machining chatter in 5-axis flank milling remains as an open problem in the literature. 

The axial depth of cut in this operation is typically quite large, which makes it prone to machining 

chatter. In this thesis, chatter in 5-axis flank milling is studied by developing analytical methods of 

examining vibration stability, generating numerical simulations of the process, and conducting 

experimental investigations. 

The typical application of 5-axis milling includes the machining of thermal resistant steel alloys at 

low cutting speeds, where the process damping dominates the machining vibration. The results of 

experimental study in this thesis showed that the effect of process damping is even stronger in flank 

milling due to the long axial engagement. Accordingly, the first part of the thesis is devoted to 

studying process damping, and in the second part, the modeling of chatter in flank milling is 

presented. 

Linear and nonlinear models have been reported in the literature that account for process damping. 

Although linear models are easier to implement in predicting stability limits, they could lead to 

misinterpretation of the actual status of the cut. On the other hand, nonlinear damping models are 

difficult to implement for stability estimation analytically, yet they allow the prediction of “finite 

amplitude stability” from time domain simulations. This phenomenon of “finite amplitude stability” 

has been demonstrated in the literature using numerical simulations. In this thesis, that phenomenon is 

investigated experimentally. The experimental work focuses on uninterrupted cutting, in particular 

plunge turning, to avoid unduly complications associated with transient vibration. The experiments 

confirm that, because of the nonlinearity of the process damping, the transition from fully stable to 

fully unstable cutting occurs gradually over a range of width of cut. The experimental investigation is 

followed by developing a new formulation for process damping based on the indentation force model. 

Then, the presented formulation is used to compute the stability lobes in plunge turning, taking into 

account the effect of nonlinear process damping. The developed lobes could be established for 

different amplitudes of vibration. This is a departure from the traditional notion that the stability lobes 

represent a single boundary between fully stable and fully unstable cutting conditions.  
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Moreover, the process damping model is integrated into the Multi-Frequency Solution and the 

Semi Discretization Method to establish the stability lobes in milling. The basic formulations are 

presented along with comparisons between the two approaches, using examples from the literature. A 

non-shallow cut is employed in the comparisons. Assessing the performance of the two methods is 

conducted using time domain simulations. It is shown that the Semi Discretization Method provides 

accurate results over the whole tested range of cutting speed, whereas higher harmonics are required 

to achieve the same accuracy when applying the Multi Frequency Solution at low speeds. Semi 

Discretization method is modified further to calculate the stability lobes in flank milling with tools 

with helical teeth. In addition to the tool helix angle and long axial immersion, the effect of 

instantaneous chip thickness on the cutting force coefficients is considered in the modified 

formulation of Semi Discretization as well.  

Considering the effect of chip thickness variation on the cutting force coefficients is even more 

important in the modeling of 5-axis flank milling, where the feedrate, and consequently the chip 

thickness, varies at each cutter location. It also varies along the tool axis due to the additional rotary 

and tilt axis. In addition to the feedrate, the tool and workpiece engagement geometry varies at each 

cutter location as well. The actual feedrate at each cutter location is calculated by the dynamic 

processing of the toolpath. The tool and workpiece engagement geometry is calculated analytically 

using the parametric formulation of grazing surface at the previous and current passes. After 

calculating the instantaneous chip thickness and tool/workpiece engagement geometry, they are 

integrated into the Semi Discretization Method in 5-axis flank milling to examine the stability of 

vibration at each cutter location. While the presented chatter analysis results in establishing stability 

lobes in 3-axis flank milling, it results in developing a novel approach in presenting the stability of 

the cut in 5-axis flank milling. The new approach, namely “stability maps”, determines the unstable 

cutter locations of the toolpath at each spindle speed. The accuracy of established 3-axis flank milling 

stability lobes and 5-axis stability maps is verified by conducting a set of cutting experiments and 

numerical simulations.  
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Chapter 1 

Introduction 

Machining of curved surfaces is a critical stage in the production of many industrial parts such as 

dies, molds and jet engine turbine blades. Because of the high dimensional accuracy and surface 

finish requirements, the machining cost of such surfaces is high, typically $15,000 to $50,000 for a 

small impeller. Flank milling leads to higher efficiency in the production of curved surfaces, where 

the machined surface is cusp-free and the material removal rate is high due to the large axial 

immersion. Nevertheless, the low radial immersion, thin chip thickness, and flexible workpiece make 

the process highly prone to machining chatter in the finishing passes. The excessive vibration of the 

tool and/or workpiece can result in damage or bad surface finish of such expensive parts. 

Accordingly, a good measure to reduce the production cost would be to avoid machining chatter 

while maintaining or even increasing the material removal rate.  

Because of simplicity in programming, 3-axis machining is commonly used to machine curve 

surfaces. However, 5-axis machining brings more efficiency to the process by adding increased 

flexibility to the toolpath planning. This is due to the possibility of matching the curvatures of the tool 

and surface in a 5-axis toolpath, leading to a shorter toolpath and scallop height. Therefore, 5-axis 

machining has been a topic of interest for researchers over the past few decades, especially for those 

concerned with the geometrical aspects of the process. Many methods have been presented in the 

literature for the determination of the tool’s position and orientation on the surface. These methods 

employ the geometric properties of the tool and surface, such as the tangent planes and curvatures, to 

find the optimum orientation of the tool at each cutter location.  

Mechanistic modeling of 3-axis flank milling has been developed extensively in the literature, 

including methods to improve dimensional accuracy by minimizing tool deflection. Yet little research 

exists about the mechanics and dynamics, especially chatter in 5-axis flank milling. Without chatter 

predictive models, one would most likely use conservative removal rates, which result in lower 

productivity. In other words, including the dynamics in the planning of 5-axis flank milling appears to 

be a necessity if productivity in the machining of curved surfaces is to be enhanced.  
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1.1 Thesis Objective 

The main objective of the thesis is to establish a chatter predictive model for 5-axis flank milling. 

The model will be used to predict the stability of vibration at each cutter location along the toolpath. 

As well, the stability analysis method needs to be computationally cost effective to be applicable in 

the stability analysis of toolpaths at different cutting parameters, such as spindle speed and feedrate. 

This goal will be achieved by extending the chatter predictive models already in the literature. 

However, several research goals must be met to prepare the necessary tools for extending these 

models. 

Because of the large axial immersion in flank milling, ploughing forces are an important ingredient 

of this operation. These forces are recognized as the major source of process damping in machining. 

Empirical models of process damping are applicable only for the tested tool geometry and vibration 

amplitude. Therefore, in this thesis, an analytical process damping model is developed and then 

employed in the modeling of 5-axis flank milling. 

Due to the tilt and rotary motions in 5-axis milling, the tool/workpiece engagement geometry varies 

at each cutter location. Indeed, calculating the tool/workpiece engagement geometry has been a 

favorite topic for many researchers. However, the existing methods are not efficient in the finishing 

passes where the chip thickness is thin. In this thesis, an analytical method is developed to calculate 

the tool/workpiece engagement geometry in the finishing passes. The calculated geometry will be 

employed in the mechanistic modeling of cutting forces and in formulating chatter in 5-axis flank 

milling.    

1.2 Thesis Organization 

This thesis is divided into two parts. The first part includes the development of the process damping 

model, which is implemented in the modeling of chatter in milling in the second part. The first part is 

presented in Chapters 3 and 4, and the second part in Chapters 5 and 6.  

In Chapter 2, the main literature and background associated with modeling regenerative chatter, 

process damping, and 5-axis flank milling is reviewed. In Chapter 3, an experimental study is carried 

out to investigate the effect of process damping on machining chatter. In Chapter 4, an analytical 

process damping model is developed and used in the frequency domain calculation of stability 

borders in plunge turning. In Chapter 5, the process damping model is employed in the frequency and 

time domain calculations of stability borders in milling. The efficiency and accuracy of the time and 

frequency domains are compared to each other in this chapter as well. In Chapter 6, the chatter 
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predictive model of flank milling is developed. The instantaneous chip thickness and tool/workpiece 

engagement geometry are calculated by post processing the toolpath; these are then employed in the 

time domain analysis and numerical simulation of 5-axis flank milling. In the final chapter, Chapter 7, 

some concluding remarks and suggestions for future work are provided.  
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Chapter 2 

Background and Literature Review 

In this chapter, some geometric parameters of turning and milling that are used throughout this thesis 

are defined. Then, the various cutting force models and methods of combining them with the dynamic 

model of machine tools to formulate the regenerative chatter model are reviewed. This is followed by 

a study of the geometry and dynamics of 5-axis flank milling.  

2.1 Geometry of Turning and Milling Operations 

In this section the machining parameters used in this thesis are defined. Geometry of plunge turning is 

explained first, followed by milling with helical teeth. 

2.1.1 Turning 

 

 

(a) 

 

(b) 

Figure 2-1: Schematic of plunge turning 

A schematic of plunge turning is shown in Figure 2-1. The tool moves in the X direction with a 

constant feedrate, st, provided by the machine tool servo motor. The cutting speed, v, depends on the 

spindle rotational speed, Ω, and cuter radius, R: v=ΩR. The hatched areas in Figure 2-1 (a, b) show 

the uncut chip. h designates uncut chip thickness, and  b its width. According to Figure 2-1, the chip 

thickness in plunge turning is equal to the feedrate, st. The shown plunge turning follows the 

orthogonal cutting geometry where the cutting edge is perpendicular to the cutting velocity. In most 

of the common machining operations, the cutting edge is not perpendicular to the cutting velocity; in 

such cases, it is described by the oblique cutting geometry [1]. 
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2.1.2 Milling 

Figure 2-2 shows the schematic of flank milling with a cylindrical tool with helical teeth. The helix 

angle is denoted by ψ. In this operation, the cutting speed is determined by the tool rotation speed, Ω, 

and its radius, R. Unlike the single cutting edge of turning, the cutter has several cutting edges in 

milling; j=1..n. The location of each cutting edge is determined by the angle φ measured clockwise 

from Y direction. Each cutter is engaged with the workpiece only for some part of its rotation period, 

between the start and exit angles: φst<φ<φex . The start and exit angles are determined by the radial 

immersion, br. Moreover, the chip thickness varies at each rotation angle, unlike turning where it is 

constant.  Mertolutti [2] showed that the real tooth path is trochoidal, but it can be approximated by a 

circular path if the feedrate is negligible compared to the cutting speed. Assuming a circular tooth 

path, according to Figure 2-2, the chip thickness at each rotation angle is 

 ( )sin
t

h s ϕ=  (2.1) 

According to Equation (2.1), the chip thickness in Figure 2-2(b) varies between stsinφst at the start 

and zero at the exit. This type of milling is known as climb or down-milling, where the cutting speed 

and feed are in the same direction. When these vectors oppose each other, the process is called up-

milling or conventional, for which the chip thickness starts from zero and finishes at stsinφex.   

(a) 

 

(b) 

Figure 2-2: Schematic of down-milling with endmills with helical teeth. 
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Following the notation of plunge turning, the cutting forces at the tool/workpiece interface are 

resolved into the normal to the machined surface direction, Fr, and tangent to it, Ft. In addition to 

these two elements, the cutting force has another component in the direction parallel to the tool axis 

(the Z direction), due to the oblique cutting geometry.  

2.2 Cutting Forces 

2.2.1 Analytical Modeling 

Merchant [3] assumed the orthogonal cutting shear zone to be a thin plane, shear plane. The cutting 

forces were then computed by applying the laws of plasticity on the shear plane:  

 
( )
( )

( )
( )

cos sin
,

sin cos sin cos
t s r s

c c c c

F bh F bh
β α β α

τ τ
ϕ ϕ β α ϕ ϕ β α

   − −
= =   

+ − + −      
 (2.2) 

In Equation (2.2), τs, α , β , and φc are the shear stress on the shear plane, tool rake angle, friction 

angle and shear angle, respectively. The shear angle, φc, is calculated analytically [3] or measured 

experimentally [1]. Likewise, Lee and Shaffer [4] and Palmer and Oxly [5] developed the cutting 

forces based on the thick shear plane assumption. 

According to Equation (2.2), the cutting forces are a function of the uncut chip area, bh. In the next 

section, the cutting force models are briefly presented.   

2.2.2 Mechanistic modeling 

In the mechanistic modeling, the cutting forces are related to the uncut chip thickness through 

empirical cutting force coefficients, Kt and Kr [6 and 7].  

 ,
t t r r

F K bh F K bh= =  (2.3) 

This cutting force model is adopted for various machining operations in the literature [8-10]. The 

cutting force coefficients are specific to each machining operation and are extracted from cutting 

experiments. For example, in turning the cutting forces in the X and Y directions are measured at 

different feedrates, h, and constant chip width, b. Then the cutting coefficients are extracted by linear 

curve fitting of the recorded forces at different chip thicknesses, h. In milling, the linear curve fitting 

is performed on the average magnitude of cutting forces.  

Although the established models are employed successfully in the analysis of machine tool 

dynamics, surface error, etc., they have to be repeated for each machining operation with different 
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cutter geometry and workpiece material. To avoid such costly experiments, the cutting force 

coefficients in a variety of practical machining operations such as turning, drilling and milling are 

calculated by mathematically incorporating the experimentally measured orthogonal cutting force 

coefficients in the oblique cutting mechanics of them [1 and 11-13].   

Koenigsberger and Sabberwal [14] showed that the cutting force coefficients are actually 

exponential functions of uncut chip thickness, h. Considering the exponential relation between the 

cutting force coefficients and uncut chip thickness, one can rephrase the linear cutting forces model of 

Equation (2.3) to the following exponential model [15]:  

 

t

r

t t

r r

F bK h

F bK h

α

α

=

=
 (2.4) 

Since the uncut chip thickness varies around the cutting arc in milling, application of the 

exponential cutting force model results in a more accurate simulation of this process. Many 

investigations have been carried out in the literature to study the effect of variable cutting force 

coefficients on the predicted cutting forces and milling dynamics [16-19]. 

2.3 Machining Chatter 

2.3.1 Stability Lobes 

Tobias and Fishwick in [20] and Tlusty and Polacek in [21] identified the feedback between 

subsequent cuts – regeneration – as the main source of vibration instability in machining. To briefly 

explain the mechanism of regeneration, the uncut chip thickness in plunge turning shown in Figure 

2-1(b) is modified by considering the tool dynamic deflection in the feed direction, X(t), as 

demonstrated in Figure 2-3. The total uncut chip thickness consists of not only the feed-generated 

part, st, but also the part generated due to the phase difference between the surface waviness produced 

during the previous and present tool passes: 

 ( ) ( )t
h s X t X t T= + − −  (2.5) 

X(t) is the tool deflection and T is the tool passing period. The phase difference between the two 

consecutive waves is denoted by ε in Figure 2-3.  
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Figure 2-3: Regeneration of waviness on the machined surface 

The authors of [20] and [21] also formulated the dynamics of regenerative chatter by combining the 

structural dynamics of the machine tool and the mechanics of orthogonal cutting, resulting in a linear 

Delay Differential Equation, DDE, with constant coefficients. They solved the DDE to determine the 

border of stable width of cut at each spindle speed and established the “stability lobes”. A schematic 

of stability lobe diagram is demonstrated in Figure 2-4. These lobes determine the width of cut at 

which the vibration becomes unstable for each spindle speed. The gray area above the lobes shows 

the unstable region, and the white area below them shows the stable region. At the widths of cut 

below the critical width of cut, bcr, the cut is stable for any spindle speed.   

 

Figure 2-4: Stability lobe diagram 
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The critical width of cut corresponding to the plunge turning of Figure 2-3 depends on the 

tangential cutting force coefficients and on the real part of the frequency response function between 

the tool and workpiece, Re(G):  

 
( )( )

1

2 min Re
cr

t

b
K G

−
=  (2.6) 

The stability diagram is a practical tool to achieving higher productivity. In milling operations, the 

cutting force direction and chip thickness vary around the arc of cut due to tool rotation. Therefore, 

the dynamics of regeneration is described by a DDE with time varying coefficients [22]. In [23], the 

average direction was used and the single point chatter analysis approach was applied to milling. 

Opitz and Bemardi [24] also used the average value of the coefficients to calculate the stability 

borders. Recently, Budak and Altintas [25] approximated the coefficients by a finite number of 

Fourier expansion coefficients. Although they formulated the Multi Frequency Solution, MFS, they 

showed that only the first term of the Fourier expansion, the zero order, suffices for most of the 

milling operations. Insperger and Stepan [26] used the Semi Discretization Method, SDM, to examine 

the stability of milling. These authors showed that neglecting the higher orders of the Fourier 

expansion coefficients in [25] results in the elimination of period-doubling instability in highly 

interrupted milling operations. Merdol and Altintas [27] obtained results similar to [26] by using a 

large number of higher harmonics in the MFS of [27]. 

2.3.2 Process damping 

The results of cutting experiments in the literature confirm the accuracy of predicted stability borders 

at high cutting speed, but the theoretical predictions at low speed were significantly lower than those 

observed in actual cutting tests. Figure 2-5 shows the stability lobes which agree better with 

experimental evidence.  

Sisson and Keg [28] recognized that the damping generated at the cutter/workpiece interface is the 

main source of the high stability at low speed. Recently, Huang and Wang [29] carried out a 

theoretical and empirical study to detect the sources of process damping and evaluated their 

participation in the dissipation of energy at low cutting speed. They summarized the sources of 

process damping as deriving from the change in direction and magnitude of shear and ploughing 

forces. According to their study, the energy dissipated by the change in the magnitude of ploughing 

force is ten times greater than for other sources. Ploughing forces are generated from the interaction 

of the tool cutting edge and flank face with workpiece surface undulations.  
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Figure 2-5: Increased stability at low cutting speed due to process damping 

To enhance the accuracy of stability estimation at low speed, Peters et al. [30] modeled the inner 

and outer Dynamic Cutting Force Coefficients, DCFC, as complex numbers to include the process 

damping in the prediction model. These coefficients were obtained experimentally using sinusoidal 

excitations while executing turning operations. Tlusty [31] analyzed the DCFC measurements carried 

out in several laboratories in a CIRP keynote paper. It was realized by all laboratories that the 

imaginary part of the inner modulation of DCFC represents the process damping; it depends strongly 

on the material being cut, tool clearance angle, tool wear, cutting speed and feedrate. Tlusty and 

Heczko [32] estimated the inner modulation coefficient from transient vibration instead of sinusoidal 

excitation. By using complex cutting coefficients instead of real numbers at each cutting speed, 

independent of the instantaneous vibration amplitude, the process damping model remains linear. 

Recently, Altintas et al. [33] measured the damping in the cut also using sinusoidal excitation. They 

identified the damping value by explicitly representing the process damping as an additional dashpot 

in the vibratory model whose coefficient is inversely proportional to the cutting speed. 

Although the experimentally determined damping models are linear and accordingly simple to use 

in the analytical prediction of process stability, the identification process should be repeated for 

different workpiece materials, tool geometries and feedrates. Indeed, Tlusty in his critical review [31] 

found significant discrepancies in the measured imaginary part of the DCFE. Perhaps such 

discrepancies can be attributed to variations in the amplitude of excitation or tool conditions. 

Wu [34] presented a model in which the tool and workpiece interaction is represented by an 

indentation of the workpiece surface undulations by the tool. In this model, the ploughing force is 
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assumed to be proportional to the volume of the material extruded under the cutting edge and flank 

face. Elbestawi et al. [35] and Lee et al. [36] applied this ploughing force model in numerical 

simulations and showed that the ploughing force acts like an additional damper. This model was 

employed in other numerical simulations of machining chatter in ball-end milling [37] and [38] and 

was shown to represent reality more closely. It should be noted, however, that the numerical 

computations of the extruded volume  requires  high resolution in discretizing the surface undulations, 

which makes establishing the stability lobes diagram a time-consuming task. In addition, the 

indentation model is nonlinear, since the extruded volume is computed only for the part of the 

vibratory cycle when the tool is moving into the workpiece; otherwise, it is zero when the tool is 

moving away from the workpiece. It is also nonlinear because it depends on the surface undulations 

amplitude. Chiou et al. [39 and 40] represented the indentation pulse with its first order Fourier 

transform and thus managed to approximate the nonlinear damping model with a linear model. A 

basic assumption of small amplitude vibration was made in that approximation. The authors in [39] 

and [40] integrated that approximate linear model into their analytical development for establishing 

the stability lobes.  

While the viscous model of process damping has been implemented in several works to establish 

the lobes in turning (e.g., [41] and [33]), few cases have been reported for milling. Budak and Tunc 

[42] considered the effect of process damping as an additional damper in the zero order MFS. They 

identified the additional damping coefficients by measuring the stability limits experimentally and 

fitting the results to the stability model. Kurata et al. [43] identified the process damping coefficient 

through inverse chatter analysis of plunge turning, and then used it in the prediction of stability lobes 

in milling. Eynian and Altintas [44] integrated the experimentally identified viscous dampers in the 

zero order MFS as well, but they used rotating tool modes to alleviate the effect of neglecting higher 

harmonics. Bachrathy and Stepan [45] used Liang’s piecewise linear damper in SDM to calculate the 

stability lobes, linearizing the damping model around the periodic solution of the vibratory system. 

2.4 5-axis Flank Milling 

2.4.1 Tool Placement 

A considerable amount of research has been reported in the literature that aims at increasing the 

geometrical accuracy of surfaces produced by flank milling [46]. Most of these efforts have focused 

on developing tool placement and movement strategies to machine ruled surfaces [47-54]. 
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The primary methods of tool placement [51] in flank milling employ the ruled line, Lr, on the 

surface to orient the tool, as shown in Figure 2-6. For this reason, the tool’s axis is planned to be 

parallel to Lr while it is tangent to a point on the ruled line. Figure 2-7 shows the projections of the 

tool and workpiece on the plane perpendicular to Lr. The machined surface will be exact only at the 

tangent point, A, and overcut happens at the other points along Lr due to the natural twist of the 

surface. Moving the tangent point along the ruled line results in the distribution of error along the 

ruled line. Rubio et al. [51] chose the contact point to be at the middle Lr. 

Several methods have been developed to decrease the maximum overcut by shifting the tool or by 

twisting it around the surface normal at the contact point [52, 48, 55 and 56]. Stute et al. [57], giving 

up the idea of orienting the tool parallel to the ruled line, defined the tool position using the 

coordinates of two points on its axis. These coordinates are obtained by shifting the intersection 

points of the ruled line with the guiding rails in the direction of surface normal. Liu [47] chose the 

two contact points to be at the quarter and three quarter distance from the guiding rails. Rubio et al. 

[58, 59 and 50] first placed the tool parallel to the ruled line while it touches its middle point. Then, 

by twisting the tool around the surface normal, they found two points on the guiding rails that the tool 

could touch. Mathematically, it is achieved by numerical solution of a system of seven algebraic 

equations. The method provides smaller overcuts at a higher computational cost.  

Due to the high computational cost of the Rubio’s method, it could not be used in commercial 

programs. Bedi et al. [54], neglecting the ruled line on the surface, placed a cylindrical tool tangent to 

both the guiding curves at the same parametric value. This way, the tool’s axis sweeps a ruled 

surface. They further improved their method using an optimization scheme to place the tool tangent to 

three points on the surface [53]. Using these methods, they also calculated the grazing surface 

analytically as an offset surface to the ruled surface swept by the tool’s axis. This method will be 

further discussed in Chapter 6. Recently, some methods employed the swept surface formulation to 

minimize the overcut in the tool path planning [60 and 61]. 
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Figure 2-6: Placing a cylindrical tool on a ruled surface parallel to the ruled line, Lr 

 

 

Figure 2-7: Projection of a cylindrical tool and a ruled surface on a ruled line, showing the 

overcut along the ruled line 

2.4.2 Mechanics and Dynamics of 5-axis Flank Milling 

Besides the geometric improvement of toolpath, increasing productivity of machining curved 

surfaces by optimizing the cutting parameters has been of great interest. For this reason, predictive 

models have been established to analyze the mechanics and dynamics of 5-axis machining. The 

predictive models calculate the actual feedrate and tool/workpiece engagement by kinematic and 

geometric analysis of the toolpath, respectively. Then they incorporate the calculated feedrate and 

tool/workpiece engagement in the mechanistic models of cutting forces. In the following two 

sections, the variation of actual feedrate and calculation of the tool/workpiece engagement are 

reviewed, after which the mechanistic modeling of 5-axis milling is addressed. 
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2.4.2.1 Variation of feedrate 

The rotational motion of the tool results in different feedrates along the cutter axis. Also, depending 

on the rotational to translational motion ratio at each point along the toolpath, the actual feedrate will 

be smaller than the programmed feedrate. Altintas and Ferry in [62], and Larue and Altintas in [63], 

calculated the different feedrates along the cutter axis by the dynamic analysis of the 5-axis motion. 

They showed the effect of the feedrate variation on the cutting force level but did not study its effect 

on chatter. Ismail and Ziaei [64] conducted some cutting experiments to investigate the effect of 

feedrate variation on chatter. They used offline feedrate scheduling for chatter suppression in 5-axis 

milling of a turbine blade. Although a significant improvement in stability is observed in their 

experiments, they did not provide any mathematical chatter prediction method in 5-axis milling.  

2.4.2.2 Calculation of tool/workpiece engagement 

The tool/workpiece engagement calculation has been one of the interesting topics in the literature. 

The presented methods for tool/workpiece engagement calculation can be categorized into: analytical 

methods, vector-based methods, solid modelers and image-based methods.  

El-Mounayri et al. [65] obtained the engagement area by applying a spline representation of the 

cutting edge. They determined the engaged points by calculating the intersection of the cutting edge’s 

curve with the solid model of the workpiece, and then used the engaged area approximation in a 

mechanistic model to predict the cutting forces in a 3-axis ball end milling. Their method can be used 

for general 3-D milling operations. Fussell et al. [66] used the Z-map method to approximate the 

tool/workpiece engagement area. In this method, the part is represented by a set of vectors parallel to 

the Z axis. The vector set is updated at each tool movement according to its intersection with the 

tool’s swept envelope. Later, they generalized the method using a vector set parallel to the surface 

normal [67]. In these methods, the ray tracing methods are implemented to calculate the intersection 

of the vectors with the tool swept envelope. Bailey et al. [68] employed a solid modeler method to 

predict the cutting forces in 3-axis machining of dies and molds. Roth et al. [69] employed the 

rendering engine of computer graphics to track the cutting geometry. Ferry and Altintas [62] also 

used a solid-modeler to determine the engagement condition in flank milling of engine impellers. 

While numerical methods for tool/workpiece engagement are useful in roughing operations where the 

radial immersion is large, they may not be efficient in the finishing cut where that immersion is low 

and essentially uniform. Such low immersion would necessitate high resolution in discretizing the 

tool and stock to achieve reasonable accuracy in the computed cutting forces.   
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2.4.2.3 Mechanistic modeling of 5-axis flank milling  

In the above works, dynamic cutting force modeling has been neglected. Budak and Ozturk [70] 

developed a mechanistic cutting force model in 5-axis ball end milling. They calculated the 

engagement condition analytically due to the straight forward formulation of the ball part of the tool. 

They extended their work later to simulate the dynamic cutting force in the same process [71]. They 

also calculated the stability lobes for 5-axis ball end milling of sculptured surfaces. Recently, Ferry 

and Altintas [62] presented a mechanistic cutting force model to calculate the static force in flank 

milling. They later developed their model to study the chatter in flank milling [72]. Although they 

used the Nyquest criterion to determine whether the process is stable or not, they did not calculate the 

stability lobes. 

2.5 Summary 

The feedback between the subsequent cuts causes regenerative chatter and vibration instability in 

machining. Regenerative chatter has been formulated by delay differential equations in the literature. 

These equations are obtained by combining the mechanistic models of cutting forces and the dynamic 

models of machine tools. For the stability analysis of the delay differential equations, both time and 

frequency domain methods are presented in the literature. The result of the analysis is presented in the 

form of stability lobe diagrams that determine the border between stable and unstable depth of cuts at 

each spindle speed. Stability lobes provide a useful tool for optimizing the cutting parameters and 

increasing the productivity while avoiding adverse effects of machining chatter.  

Recently, the mechanistic models of cutting forces have been extended to simulate 5-axis flank 

milling. To extend the existing mechanistic models to 5-axis flank milling, most of the investigations 

in the literature have focused on complicated tool/workpiece engagement and chip thickness 

calculations due to the tilt and rotary axis. Yet, the established models are limited to the simulation of 

cutting forces without considering machining chatter. Most recently, the frequency domain solution 

of machining chatter has been extended to 5-axis flank milling, but the model under-estimated the 

stability borders due to neglecting the process damping; the long axial immersion results in a 

significant source of process damping. Therefore, in addition to the calculation of tool/workpiece 

engagement and instantaneous chip thickness, an accurate modeling of process damping is required to 

model chatter in 5-axis flank milling. 

The indentation of material under the flank face of the tool has been recognized as the main source 

of process damping. This model has been employed in the numerical simulation of several machining 
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operations. A few empirical and analytical damping models have also been presented in the literature 

based on the indentation force. These models have been used in the time and frequency domain 

methods of stability analysis. Nonetheless, the empirical models are applicable only for the tested tool 

geometry and vibration amplitude, and the analytical models have been developed based on the small 

amplitude assumption.    

In this thesis, the indentation force is approximated by an equivalent viscous damper to simulate 

process damping. The coefficient of presented damper is calculated analytically in terms of the tool 

clearance angle, amplitude of vibration, the length of generated waves, tool wear and workpiece 

material. Having developed the equivalent viscous model of process damping, this is integrated into 

the time and frequency domain methods of modeling chatter in turning and milling, leading to the 

development of an accurate and efficient time domain model of chatter in 5-axis flank milling. The 

presented model is used to establish the stability diagrams for 5-axis flank milling toolpaths, as they 

determine the stable and unstable cutter locations throughout these paths.  
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Chapter 3                                   

Experimental Investigation of Process Damping Nonlinearity in 

Machining Chatter 

In this chapter, the indentation model of ploughing force is integrated into the numerical simulation of 

turning operation to investigate the effect of process damping on the stability of machining chatter.  

In the next section, the vibratory model used to simulate the machine tool dynamics is explained. 

The indentation model of ploughing forces is given in Section 3.2. The numerical calculation of 

extruded material volume and the effect of simulation resolution on the calculated volume are 

discussed in Section 3.3. Then, the presented numerical simulation scheme is used to examine the 

accuracy of the stability lobes established using two linear process damping models from the 

literature: the empirical model of [33] and the analytical model of [39]. While the steady state of tool 

vibration is either stable or unstable, according to the linear process damping model, the numerical 

simulation shows an intermediate situation of finite amplitude stability due to the increased process 

damping at higher vibration amplitude. The experimental results presented in Section 3.5 confirm the 

state of finite amplitude of stability and the effect of process damping on its development.  

3.1 Dynamic Model 

The vibratory model used in this chapter to describe the dynamics of turning is shown in Figure 3-1. 

To simplify the simulation and concentrate on the modeling of process damping, the tool is assumed 

to be rigid in the tangential direction, X, and is modeled by a single degree of freedom system in the 

feed direction, Y. The workpiece is assumed rigid in both directions. The equation governing the 

motion of the tool in the feed direction, normal to the cut, is: 

yMy Ky Cy F+ + =�� �  (3.1) 

M, K, and C are the modal mass, stiffness, and damping of the tool, respectively. st in Figure 3-1 

stands for feed per revolution, y(t) is current vibration, y(t-T) is the vibration in the previous 

revolution, T is the time of one revolution, R is the workpiece radius, and ε is the phase angle between 

the current vibration displacement and the vibration displacement in the previous revolution. 

The tool oscillatory motion in the feed direction, y(t), along with its transition motion in the cutting 

direction, x(t), generate waviness on the machined surface, as shown in Figure 3-1. The generated 

wavelength, L, depends on the chatter frequency fc and the cutting velocity, v:  
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c

v
L

f
=  (3.2) 

 

Figure 3-1: Vibratory model and regeneration of waviness 

The chatter frequency is usually close to the natural frequency of the system. The cutting forces 

exerted on the tool in the feed, Fy and cutting, Fx, directions consist of shearing and ploughing forces.  

y

x x

ys y

xs p

pF F F

F F F

= +

= +
 (3.3) 

In Equation (3.3), the index p stands for ploughing and the index s designates shearing. The 

shearing forces are obtained using the mechanistic regenerative force model, as follows: 

( ) ( ) , and    ;         
xs t ys r xs t

F bK h F K F h s y t T y t= = = + − −  (3.4) 

In Equation (3.4), b, Kr, Kt, and h are the width of cut, radial, and tangential cutting force 

coefficients, and chip thickness, respectively. The chip thickness consists of the feed per revolution st 

and the regenerative term (y(t-T)-y(t)). The chip thickness cannot be negative because it implies tool 

disengagement. In this case, h=0.  
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The ploughing forces are added using the indentation force model presented by Wu [34]. The 

mechanism of the indentation and the numerical calculation of these forces are given in the next 

section. 

3.2 Ploughing Force Model 

The ploughing forces in [34] and [35] arise due to the indentation of the tool into the workpiece 

undulations. The material extruded under the flank face and wear land of the tool, as it moves into the 

generated undulation, is shown in Figure 3-1 and Figure 3-2. The radial ploughing force is 

proportional to the extruded volume according to: 

( ) ( ) ( ) ( );     
yp sp

F x K V x V x S x b= =  (3.5) 

S(x), the dark area in Figure 3-1, is the cross-sectional area of the extruded volume. For a unit 

width of cut, b=1 and S(x) =V(x). In the tangential direction, the ploughing force is computed 

assuming coulomb friction with coefficient µ from: 

( ) ( )xp ypF x F xµ=  (3.6) 

Ksp is a constant coefficient that depends on the physical properties of the material. Wu [34] 

estimated this coefficient using an analogy with the force required for the indentation of unit volume 

of similar material under a cylindrical indenter. Using this analogy, Ksp was determined from:  

1.29  (1 2 )
sp

E
K

ρ υ
=

−
 (3.7) 

where E and υ are the Young modulus and Poisson ratio, respectively. ρ is the extent of the 

deformation zone, which is obtained by measuring the residual stresses resulting from the plastic 

deformation of the material. This value is usually between 0.2 and 2 mm; for AISA 1018 steel (the 

material employed in this work), it was measured at 1mm. Taking E=207 GPa and υ=0.3, Ksp will be 

4×1014 N/m3. The volume of the extruded material is either calculated by numerical integration or 

approximated analytically. 

3.3 Numerical Calculation of the Extruded Volume 

A considerable task in the application of the indentation model is to calculate the volume of the 

extruded material accurately. A numerical chatter simulation example is provided here in which the 

indentation force model is used to represent the ploughing forces. Although similar time domain 

simulations exist in the literature [35-38], the numerical procedure is briefly explained here for the 

sake of completeness and to highlight the parameters that affect the indentation force. 
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In a numerical simulation of machining chatter in the time domain, at each time step ∆t, the chip 

thickness and consequently the cutting forces are calculated using Equation (3.4). To compute the 

indentation forces at time step i, one needs to keep track of the tool displacements at previous time 

steps, from (i-1) to (i-J). The shaded area, S(xi), shown in Figure 3-2 at time step i is calculated from: 

( )
1

1

0

( )
2

J

i j j

j

v t
S x z z

−

+

=

∆
= +∑  (3.8) 

J is the number of points on the surface undulation involved in the computation of the extruded 

volume; they are indicated by solid circles in Figure 3-2. The J points are obtained by numerical 

search of the differences, z’s , between the coordinates on the surface undulation and the 

corresponding coordinates on the flank face and wear land.  

 

Figure 3-2: Numerical computation of extruded volume due to indentation of the tool into 

surface undulations 

Elbestawi et al. [35] showed that the ploughing force acts as a damper. It was shown that the 

extruded volume wave has 90⁰ phase difference with the displacement, and it was non-zero for the 

negative range of the vibration velocity where the tool was moving into the workpiece undulation. 

Outside that range, it was zero. The 90⁰ phase difference with the displacement makes it act as a 

damping force, and having a non-zero value over a portion of the vibratory cycle makes it nonlinear. 
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Figure 3-3 shows several cases of Smax computed for different values of: a) clearance angle γ, b) 

wave length L, c) vibration amplitude A, and d) wear land W. As expected, Smax, and hence process 

damping, increases for: smaller γ, shorter L, and larger W. Such behavior is indeed intuitive and 

agrees with experimental observations. The relationship with the amplitude A, however, needs some 

discussion. Figure 3-3c shows the strong dependency of the process damping on the vibration 

amplitude: it increases rapidly at higher amplitudes. This strong relationship shows the limitation of 

the linear damping representations, whether complex DCFC or explicit viscous damper, obtained 

from cutting tests using sinusoidal excitations at particular amplitudes. It also shows the limitation of 

the linear approximation developed by Chiou et al. [39] by assuming small amplitude vibration. The 

adequacy of linearization of the nonlinear process damping “pulse” is demonstrated in Section 3.4. 

Also examined in Section 3.4 is the performance of linear and the nonlinear damping models in 

assessing the stability of the cut. The comparison will be conducted using the experimental data and 

vibratory model of Altintas et al. [33].  

 

 

Figure 3-3: The effect of γ, A, L and W on the volume of the extruded material per unit width 

of cut 
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3.3.1 The Effect of Simulation Resolution on the Calculated Ploughing Force 

The biggest portion of time in the numerical simulation of chatter is consumed in calculating the 

indentation area at each simulation time step. It is important to investigate the resolution ∆θ, shown in 

Figure 3-1, required to represent the indentation pulse accurately. This investigation is described 

below.  

Figure 3-4 shows the numerically calculated S(x), while the tool indents a sinusoidal undulation of 

length L=3.7 mm and amplitude A=0.03 mm, for ∆θ = 0.1, 0 .07, 0.05, 0.03, and 0.01o. They are 

drawn in solid lines with increasing thickness, with the thickest being associated with the highest 

resolution of 0.01 o. Also shown in Figure 3-4 is the analytically calculated S(x) as a broken line. The 

procedure used for computing S(x) analytically is explained in the next chapter. By increasing the 

simulation resolution ∆θ from 0.1 o to 0.01 o, the numerically computed S(x) converges to that 

obtained analytically. The figure shows that, at the coarse resolution of 0.1o, only a small fraction of 

the pulse is captured, which would translate into gross underestimation of the process damping. The 

situation improves as the resolution increases to 0.07, 0.05, and then to 0.03 o. It is only with the 

highest resolution of 0.01 o that the numerically computed area is practically identical to that evaluated 

analytically. To put things in perspective, for the ∆θ =0.010 resolution required to achieve accurate 

results, the number of simulation steps for a single revolution of the workpiece will be 36,000. At 

each simulation step, the indentation area needs to be computed, which involves searching for the 

engaged section of the tool into the surface undulation, computing the elemental areas, and summing 

them up. This is a lengthy procedure that takes a considerable amount of time.  
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Figure 3-4: Effect of discretization resolution on the accuracy of numerically computed 

indentation areas for L=3.7mm, γ=7⁰, W=0.04mm, and A=0.03mm 

3.4 . Linear versus Nonlinear Process Damping 

In this section, two linear process damping models are studied and compared with the [34] nonlinear 

indentation model. The first (approximate) linear model was developed by Chiou et al. [39], assuming 

small amplitude vibration, which allowed computing the extruded volume analytically. Accordingly, 

the volume of the extruded material per unit width of cut is computed from: 

 

2

0                ; 0

      ; 0
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y
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y y

v
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≤



�

� �
 (3.9) 

This model will be referred to as Model 1 in this chapter. Equation (3.9) shows the damping to be 

proportional to the square of the wear land W and inversely proportional to the cutting speed v. Figure 

3-5 compares the extruded volume per unit width of cut, S, computed from Equation (3.9) with that 

calculated numerically for two waves of different amplitudes – namely, a small amplitude of A= 

0.003 mm and a large amplitude of A=0.03 mm. Figure 3-5 shows that the extruded volume from 

Equation (3.9) is close to reality at the small amplitude, whereas it deviates significantly from the 

actual volume at the larger amplitude. As will be seen later in this section, the amplitude of vibration 
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at the stability limit depends on the feed per revolution, st; accordingly, the assumption of small 

amplitude could lead to underestimating process damping for typical feedrates.  

In addition to the small amplitude assumption, Chiou et al. [39] approximated the nonlinear 

process damping “pulse” with its Fourier transform first harmonic term. This, in effect, linearized the 

process damping and allowed the authors to use a linear model in establishing the stability lobes 

analytically. Figure 3-6 shows this approximation as a broken line. It is a crude approximation, and 

deviates significantly from the actual pulse in the outer regions.  

The other linear model considered here is that of Altintas et al. [33], which will here be designated 

as Model 2. In this model, the process damping is expressed as:  

  

p

yp

c
F b

v

y
=

�
 (3.10) 

 

 

Figure 3-5: The indentation area calculated numerically and using Model 1 [39] 

approximation for two waves with different amplitudes 

 



 

 25 

 

Figure 3-6: Indentation area computed numerically and its approximation using the first 

harmonic term of its Fourier Transform 

Equation (3.10) shows the damping term as an additional viscous dashpot whose value bcp/v is 

inversely proportional to the velocity v. cp was named by the authors as the “process damping 

coefficient” and was determined experimentally from sinusoidal excitation. The tools used had a 

flank clearance angle of 7ο. cp was obtained for different materials using tools with varying amounts 

of flank wear. The experiments in [33] showed a linear relationship between the wear land and the 

process damping, unlike the model presented in [39] that considered the relationship to be quadratic. 

The results from cutting tests of AISI 1045 steel using sinusoidal excitation at an amplitude A= 0.035 

mm yielded cp = 0.611×106 (N/m). 

Next, a case study is presented that compares the stability predictions from Model 1 and Model 2. 

The vibratory model is that of [33], whose parameters were: K = 6.48×106 (N/m), M = 0.56 (Kg), and 

C = 145 (N.s/m). The cutting force coefficient for AISI 1045 in the normal to the cut direction was 

estimated at Kr = 1384 MPa. The operation was a plunge turning of a 35 mm diameter shaft at a 

feedrate of st = 0.05 (mm/rev). A small W = 0.04 mm is assumed to account for tool edge radius and 

to allow comparing between the two models. It should be mentioned that the assumption of such a 

wear land does not affect the prediction from Model 2, since cp = 0.611×106 (N/m) associated with a 

new tool will be used. On the other hand, as will be seen, in the range of examined speed, the effect of 

that wear land is small on the stability prediction from Model 1.  
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The established stability lobes from Models 1 and 2 are shown in Figure 3-7.The details regarding 

establishing these lobes can be found in [39] and [7], respectively. Figure 3-7 also shows results of 

experiments conducted in [33], where a solid circle indicates a stable cut and + indicates an unstable 

cut. The following observations can be made from this figure: 

• Model 1 fails to identify the status of the cut almost in all cases, especially for speeds below 

1500 RPM. The assumption of a wear land of only 0.04 mm helped increase the lower 

stability slightly at the lower speed, but in general, the lower stability border is close to what 

would have been obtained had the damping been ignored altogether. 

• Model 2 succeeds in identifying the status of the cut in most cases. Apparently, it fails to 

identify that the process is unstable in four cases at and below 1000 RPM. This apparent 

failure might be due to misjudging the process as unstable, whereas in reality it is in a state of 

“finite amplitude stability”, as explained below.   

In establishing stability lobes using a linear chatter model, the amplitude of vibration is assumed to 

stay constant at the border of stability, decreases to zero below the border, and increases till the tool 

starts jumping out of the cut beyond the border. The amplitude of vibration at the border of stability is 

not defined. The amplitude at which the tool starts jumping out of the cut was considered by Shin and 

Tobias [73] as the critical amplitude Acr that, from geometry, could be obtained from: 

2sin( / 2)
t

cr

s
A

ε
=  (3.11) 

To examine the amplitudes of vibration associated with linear models, numerical simulations were 

conducted of Model 2 at 1000 RPM. As can be seen from Figure 3-7, at 1000 RPM, the limit width of 

cut is 1.1mm. The simulations were conducted below and above that limit at b=0.7 and 1.2 mm, 

respectively. The results at b=0.7 mm showed the vibration y died down to zero, the force normal to 

the cut Fy reached a steady, DC, value of 45 N, and the thickness h reached a steady value of 0.05 

mm, which is equal to the feedrate st =0.05 mm/rev. At b=1.2 mm, the vibration y continued to grow 

until it stabilized close to the end of the cut at a constant value of 0.033 mm, the chip thickness h at 

that latter section dropped to zero periodically, and the corresponding Fy also dropped to zero 

periodically. The picture just described has been known for a long time (see, for example, Tlusty and 

Ismail [74]). The important issue here is the amplitude at which the vibration stabilizes. This 

amplitude is actually Acr, which could be computed from Equation (3.11), and in the current case, is 

0.033 mm. If we assume that the amplitude of vibration at the boundary of stability is Acr , then we 

can see the potential source of error in employing a process damping coefficient, like cp, obtained 
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from sinusoidal excitation at a different amplitude. cp would be accurate if it has also been estimated 

using excitation amplitude Acr. Needless to say, estimating cp from sinusoidal excitation at amplitudes 

that would cover one lobe for a range of feedrates would be an arduous and time-consuming task. 

Addressing such a task could be a subject for future research. 

Numerical simulations were also conducted using the nonlinear indentation force model. The same 

vibratory model, feedrate and cutting coefficient of Altintas et al. [33] were used. A wear land of 0.04 

mm was assumed and Ksp= 4×1014 N/m3 was utilized. The extruded volume at each time step was 

computed numerically following the procedure described in Section 3.3. Figure 3-8(a), (b), and (c) 

show the simulation results at 1000 RPM and feedrate 0.05 mm/ rev., for b=0.5, 0.7 and 1.0 mm, 

respectively. At b=0.5 mm, Figure 3-8(a), the cut is stable, the vibration oscillation dies down to zero, 

the corresponding Fy stabilized at 30 N, and h reached a static value of 0.05 mm. At b=0.7 mm, 

Figure 3-8(b), the vibration grows and stabilizes close to the end of the cut at an amplitude of 0.02 

mm, the corresponding Fy had a strong AC component but did not drop to zero, and h also stabilized 

and did not drop to zero. This is a case of finite amplitude stability. At b=1 mm, Figure 3-8(c), the 

vibration grows and stabilizes at an amplitude of 0.033 mm (which is equal to Acr), the corresponding 

Fy grew and dropped to zero periodically, and h  grew and  also dropped periodically to zero, 

signaling the tool jumping out of the cut. The behavior in Figure 3-8(a) and (c) for the nonlinear 

damping model are similar to that observed employing the linear model for fully stable and fully 

unstable, respectively. The difference between the linear model and nonlinear model is the case of 

finite amplitude stability in Figure 3-8(b) associated with the nonlinear model. 

Many simulation runs were conducted for the nonlinear model at 1000 RPM. Figure 3-9 

summarizes the results obtained expressed in terms of the amplitude of vibration. The blank circles 

are associated with the cuts using a tool with wear land of W=0.04 mm. Plotted in the figure, solid 

circles are also the results of simulations where process damping was neglected altogether. From 

Figure 3-9, the following observations can be made: 

• For both cases, with and without process damping, Acr at which the tool jumps out of the cut 

is the same. Actually, Acr is also the same when a linear process damping model was 

employed. 

• When process damping is neglected, the transition from fully stable, where the vibration is 

zero, to fully unstable, where the tool jumps out of the cut with amplitude Acr, is sharp. 

• Including the process damping effect with W=0.04 mm shifted the limit of full stability from 

b=0.4 mm to b=0.5 mm. 
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• For the worn tool, the transition from fully stable to fully unstable occurs gradually over a 

range of width of cut from b=0.5 mm to b=1 mm. This gradual transition was also reported 

by Chandiramani and Pathala [75] and Jemielniak and Widota [76].       

The comparisons conducted above between the linear damping models showed the deficiency in 

Model 1 where small amplitude vibration was assumed, as well as a potential source of error in 

Model 2, due to estimating the process damping parameter from sinusoidal excitation at particular 

amplitude. It also showed the ability of the nonlinear damping model to predict cases of finite 

amplitude stability. These finite amplitude cases were demonstrated using numerical simulations. 

Cutting experiments are presented next to verify the occurrence of these cases of finite amplitude 

stability.  

 

Figure 3-7: Stability lobes established from Model 1 [39] and Model 2 [33], and experimental 

results: circles stable and + unstable from [33] 
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Figure 3-8: Numerical simulations using the nonlinear model at 1000 RPM for a) b=0.5 mm, 

b) b=0.7 mm, and c) b=1.0 mm 

 

Figure 3-9: Steady state vibration amplitude obtained from numerical simulations with 

nonlinear process damping and with no damping 
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3.5 Experimental Evidences of Finite Amplitude Stability 

Numerical simulations employing the process damping nonlinear model demonstrated the 

occurrence of “finite amplitude stability” [75, 76]. This finite amplitude stability implies that, over a 

range of width of cut, the vibration amplitude stabilize at values between zero and the critical 

amplitude, Acr , given in Equation (3.11), at which point the tool starts jumping out of the cut. There 

has been some experimental evidence of gradual increase in surface roughness and peak spectral 

value of measured acceleration [77], as the cut went from (according to the definition of the authors) 

stable, to marginal, to unstable. The experiments of Clancy and Shin [77] showed the peak spectral 

acceleration to increase more gradually for a sharp tool compared to that recorded for worn tools. 

This inconsistency might have been due to the finite frequency resolution used in measuring the 

acceleration spectra, or to the width of cut not increasing sufficiently for the vibration amplitude to 

reach Acr. It should be mentioned, however, that the objective of Clancy and Shin [77] was to develop 

a multi-dimension chatter model in turning rather than to study the effect of process damping on the 

vibration amplitude. To the best knowledge of the current author, there has not been a study reported 

in the literature that explicitly investigated the phenomenon of finite amplitude stability 

experimentally. Such a study is conducted in this work.  

A schematic of the experimental setup is depicted in Figure 3-10. Because of equipment 

availability, the experiments were conducted on a 3-axis milling machine rather than on a lathe. The 

workpiece was clamped in a tool holder that was mounted in the spindle. The tool was clamped in a 

fixture mounted on a Kistler 9255 table dynamometer, which in turn was clamped to the machine 

table. In effect, the required plunge turning configuration was achieved, in which the workpiece 

rotates and the tool executes the feed motion in the radial direction. 

A parting tool with a TiN insert of a 4mm edge and a 7ο clearance angle was used. The tool was 

mounted on the table dynamometer such that the edge was parallel to the spindle axis in the Y-Z 

plane of the machine. The AISI 1018 steel workpiece had a 100 mm (4”) diameter for a length of 50 

mm and a 25.4 mm (1”) diameter for 76 mm length. It was clamped in a 1” collet chuck and the 

overhang length could be adjusted to achieve the required modal parameters.  
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Figure 3-10: (a) Experimental setup, (b) Schematic of the experimental setup 

(a) 

(b) 
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For an overhang length of 90 mm, the measured FRF in the Y direction at the bottom end of the 

workpiece is shown in Figure 3-11. It shows a strong mode at 390 Hz. The flexibility on the tool side 

was negligible compared to that on the workpiece. All cutting tests were conducted with the feed in 

the Y direction. This direction is also normal to the cut surface, and accordingly the vibratory model 

could be represented by a single degree of freedom system. By curve-fitting the Frequency Response 

Function (FRF) in Figure 3-11, the modal parameters were found to be: 

7 .
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Figure 3-11: Measured frequency response function at the end of workpiece in the feed 

direction 

All tests presented here were conducted at a feedrate of 0.05 mm/rev. Instead of measuring the 

vibration displacement using, for instance, a proximity probe, the cutting force signal was employed 

to assess the finite amplitude stability phenomenon. Recall that when the tool starts jumping out of 

the cut, the amplitude of vibration is Acr or greater, the chip thickness is h = 0 mm, and the cutting 

force becomes zero. A low-pass filter was applied to the measured forces to attenuate frequencies 

higher than 700 Hz. To illustrate the effect of implementing the filter, the measured force and its 

spectrum for filtered and un-filtered signals are shown in Figure 3-12. The cut was conducted at 300 
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RPM with a sharp tool and width of cut b=1.8mm. As can be seen, the filtering does not affect the 

signal at 390 Hz, whereas it attenuates the signal at frequencies higher than 700 Hz. 

 

(a) 

 

(b) 

Figure 3-12: a) Filtered and unfiltered measured cutting forces at 300 RPM and b=1.8mm, 

using a sharp tool; b) the corresponding frequency spectra 
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A set of cutting experiments was conducted at 550 RPM. The feed was in the Y direction in the Y-

Z plane, which meant that the feed was in the radial direction of the workpiece. The average length of 

cut was 18 mm. For the 550 RPM and 4”diameter, this meant that the cutting speed varied from 175.5 

m/min on the outside to 113.3 m/min at the end of the cut closer to the center of the workpiece. This 

variation in speed, as the cut progressed towards the center, translates at the 390 Hz frequency into 

variation in surface wave length from 7.5 mm at the outside to 4.8 mm at the inside. Two tools were 

used, a sharp tool and a worn tool with a wear land of 0.08 mm. Figure 3-13 shows the measured 

forces for the sharp tool for widths of cut: 1.5 mm in Figure 3-13(a) and 1.6 mm in Figure 3-13(b). In 

Figure 3-13(a), the cut was stable and we can hardly see any oscillatory component in the signal. 

However, in Figure 3-13(b), the cut was unstable, the oscillatory component dominates the signal, 

and the force fluctuates over the whole cut between zero and 130 N. The chip was broken into small 

pieces due to the tool jumping out of the cut repeatedly. Figure 3-13 indicates that the process 

damping associated with this sharp tool for surface undulations 4.8-7.5 mm in length was negligible, 

and that the transition from completely stable at 1.5 mm to completely unstable at 1.6 mm was steep. 

This picture will change for the worn tool, as presented next. 

For the worn tool, the cutting tests were conducted at widths of cut: b=2.7, 3.0, 3.1, 3.3, 3.4, and 

3.5 mm. Figure 3-14(a), (b), and (c) show the measured forces at b=2.7, 3.3, and 3.4 mm, 

respectively. The cut at 2.7 mm in Figure 3-14(a) is completely stable. The cut at 3.4 mm in Figure 

3-14(c) is completely unstable, where the force periodically drops to zero and the chip is in the form 

of small pieces associated with the tool’s repeated disengagement. Figure 3-14(b) shows the force in 

the first 10 seconds of the cut to contain an oscillatory component; however, it is not big enough for 

the force to drop to zero. The collected chip over the first 10 seconds shows variation in thickness, yet 

it is small and does not cause the chip to break into small pieces. The remainder of the cut in Figure 

3-14(b) shows it to be completely stable. Over the first 10 seconds of the cut, the wave length of 

surface undulations varies from 7.5 mm to 6.8 mm. For this range of wave length, the process 

damping was insufficient to make the cut completely stable, and thus the process can be classified as 

a case of “finite amplitude stability”. The measured force profiles obtained at b= 3, and 3.1 mm were 

similar to that in Figure 3-14(b). 

The amplitudes of the oscillatory (AC) components of the measured forces at 550 RPM were 

divided by the corresponding widths of cut and plotted in Figure 3-15 to help assess the change 

profile of the vibration amplitude as the process went from completely, o7r fully, stable to completely 

unstable. The solid triangles show the normalized values for the sharp tool, whereas the solid circles 
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show the normalized values for the worn tool. As can be seen, the transition associated with the sharp 

tool is steep, from fully stable at b=1.5 mm to fully unstable at b=1.6 mm. On the other hand, the 

transition is gradual for the worn tool, from fully stable at b=2.7 mm to fully unstable at b= 3.4 mm; 

in between, the process is in a state of “finite amplitude stability”. It is interesting to see that, for both 

tools, the normalized AC component of the force reaches the same value of 63 N at full instability. 

This should be expected, since both occur at the same vibration amplitude Acr.  

Computer simulations were also conducted for the cases at 550 RPM. The measured modal 

parameters at the end of the workpiece given above, together with the cutting force coefficient in the 

direction normal to the cut of Krc=1330 MPa and Ksp =4×1014 N/m3, were utilized. The normalized 

amplitudes of AC forces obtained from simulations are also plotted in Figure 3-15. The blank 

triangles correspond to the sharp tool and the blank circles to the worn tool. The simulations agree 

with the experimental results for the sharp tool, and they also show the same sharp transition from 

fully stable to fully unstable. The simulations associated with the worn tool show the transition to be 

more uniform and smooth than that obtained from experiments. This smooth behavior agrees with the 

numerical simulations reported in [75] as well as those shown above in Figure 3-9. The discrepancy 

in behavior over the transition region between simulation and experiment could be due to the 

underlying assumptions of the indentation force model, especially those employed in Equation(3.7); 

this discrepancy warrants further investigation. Nevertheless, both simulations and experiments show 

the transition from fully stable to fully unstable for the worn tool to occur over a range of width of 

cut. For the worn tool, the process damping is significant, and it is the nonlinearity of this damping 

model that causes such gradual transition from fully stable to fully unstable.  

A further experimental proof of the “finite amplitude stability” is shown in Figure 3-16 and Figure 

3-17. The cutting experiment was conducted at 300 RPM (width of cut, b= 1.8 mm), using a sharp 

tool. It should be mentioned here that an attempt was made to use a worn tool and, due to excessive 

process damping, the cut was completely stable at the full width of the cutting edge. Because of the 

shorter wave lengths associated with the lower speed of 300 RPM, process damping did arise with the 

sharp tool, and it increased as the cut progressed closer to the center of the workpiece. Figure 3-16 

shows the measured force over 47 seconds. There are four darkened sections of the force time trace, 

labeled: A, B, C and D. The corresponding surface undulation wave lengths are: 3.9, 3.5, 3.4 and 3.3 

mm, respectively. Figure 3-17 shows photographs of the collected chips corresponding to sections A, 

C and D. In section A, the force periodically drops to zero, indicating a fully developed chatter. In the 

photograph the corresponding chip is broken into small pieces, clearly showing the result of the tool 
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jumping out of the cut at the chatter frequency. The force in section D and the corresponding smooth 

chip show a fully stable cut. In this section, the process damping is high enough to make the cut fully 

stable. In section B, the AC component of the force is large but not large enough to cause the force to 

drop to zero periodically. In section C, the AC component is smaller than that in section B, but is still 

significant. The chip corresponding to section C shows strong undulations due to the large vibration 

amplitude, yet this amplitude is not large enough to cause the chip to break into small pieces similar 

to that in section A. To summarize: the measured forces and the collected chip clearly show the cut to 

be fully stable in D, fully unstable in A, and in a state of finite amplitude stability in sections B and C.  

The frequency spectra corresponding to the different sections of the measured force in Figure 3-16 

are shown in Figure 3-18. The spectral line at 390 Hz increases in amplitude, from zero at section D, 

to 6 at B, to 25 at C, and finally to 90 at A. The spectra in B, C and D might lead one to assess the 

status of cut as simply unstable, and that chatter has taken place. From a practical point of view, this 

would be a reasonable conclusion, since the produced surfaces in the three cases are unacceptable. 

The problem arises, however, when cutting experiments are conducted to verify a linear chatter 

model. If, for instance, the cut is judged unstable according to the spectrum in B, it would mean that 

the linear model has predicted the stability limit incorrectly. This example accentuates the difficulties 

encountered in discerning the boundary of instability and in verifying linear chatter models at low 

cutting speeds where process damping is prominent. It also demonstrates the importance of properly 

addressing the nonlinearity of that damping in establishing chatter models.          
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Figure 3-13: Measured cutting forces at 550 RPM using a sharp tool: a) b=1.5 mm, and b) 

b=1.6mm 

 

 

Figure 3-14: Measured cutting forces at 550 RPM with worn tool: a) b=2.7mm, b) b=3.3 mm, 

and c) b=3.4 mm 
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Figure 3-15: The measured and simulated amplitude of AC component of the cutting force 

normalized by its corresponding width of cut:  ● Measured with the worn tool, ○ simulated 

with the worn tool, ▲ measured with a sharp tool, and ∆ simulated with a sharp tool 

 

Figure 3-16: Measured cutting force at 300 RPM with sharp tool and b=1.8mm 
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Figure 3-17: Produced chip at 300 RPM: A) unstable, C) Finite amplitude vibration, D) 

stable cuts 

 

C D 
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Figure 3-18: Measured frequency spectra corresponding to sections A, B, C and D given in 

Figure 3-16 

3.6 Summary 

The two linear process damping models investigated here showed that the model based on small 

amplitude vibration leads to underestimating the stability limit, and that the accuracy of a damping 

model obtained from sinusoidal excitation depends on the amplitude of excitation in relationship to 

the feedrate employed in the verification experiments. The experimental work conducted in this 

chapter confirmed the finite amplitude stability phenomenon associated with nonlinear process 

damping. This phenomenon makes it difficult to discern the boundary of stability in verification 

experiments of linear damping models. The experiments also showed that, in the presence of process 

damping, the transition from fully stable to fully unstable conditions occurs gradually over a range of 

width of cut. This is in agreement with numerical simulations reported in the literature as well as 

those conducted in the current work. The numerical simulations, however, showed gradual change to 

be smoother than that observed here experimentally. This discrepancy might be due to the underlying 

assumptions in the ploughing force model, which warrants further investigation. Nevertheless, the 

general behavior from experiments was consistent with simulations in terms of the change in 
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vibration amplitude from zero to a critical value for cases where process damping was negligible as 

well as for cases where it was significant. 

Although numerical simulations have allowed the integration of nonlinear indentation force into 

machining chatter models, it requires high discretization resolution for accurate numerical simulation, 

as has been shown in this chapter. Needless to say, establishing the stability lobes in this way over a 

typical range of cutting speed using time domain simulation would be a lengthy task. Developing a 

new process damping model that can be employed in the analytical methods of calculating stability 

lobes and preserves finite amplitude stability is addressed in the next chapter.  
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Chapter 4 

Analytical Stability Lobes Including Nonlinear Process Damping 

Effect on Machining Chatter 

The objective of the current chapter is to develop a linearized model of the process damping while 

preserving the vibration-amplitude dependence of the indentation pulse on the resulting stability. The 

developed process damping model will be used to establish the stability lobes analytically taking into 

account the effect of nonlinear process damping. The developed lobes could be established for 

different amplitudes of vibration. This is a departure from the traditional notion that the stability lobes 

represent a single boundary between fully stable and fully unstable cutting conditions. 

The analytical computations of the new process damping model are described in the next section. 

These involve the computations of the indentation area and equivalent viscous damping of the 

indentation force. A faster method for computing this equivalent damping will also be presented; it 

will be shown to greatly speed up the establishment of stability lobes. Section 4.2 will present an 

approach to establishing the lobes at particular amplitudes of vibration as well as boundary lobes 

analytically. For this reason, the established process damping model is integrated into the frequency 

domain calculation of stability lobes. The analytically established lobes will be tested in the 

subsequent section against time domain simulations as well as against the lobes presented by Altintas 

et al. [33], using an empirical damping model. This will be followed by experimental verifications of 

the proposed approach using plunge turning of steel and employing sharp and worn tools. It will be 

shown that the analytically established lobes yield practically the same results obtained from time 

domain simulations, and that they are in good agreement with results obtained from cutting tests. 

4.1 Analytical Representation of Process Damping 

In this section, the geometry of the indentation area will be discussed, along with the analytical 

computation of that area. This is utilized in formulating the equivalent viscous damping that will be 

employed in establishing the stability lobes. An analytical formula to compute the equivalent 

damping will also be presented. 
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4.1.1 Analytical Computation of Indentation Area 

(a) (b) 

 

(c) (d) 

Figure 4-1: Geometry of indentation area: a) W=0, L<L*, b) W=0, L>L*, c) W≠ o, L<L*, and 

d) W≠ o, L>L* 

Figure 4-1 shows the indentation areas for different situations: (a) and (b) are for sharp tools, whereas 

(c) and (d) are for a worn tool with wear land W. In (a) and (c), the clearance angle γ is greater than 

the maximum magnitude of slope η of the wave, which is smaller than the slope in (b) and (d). Cases 

associated with sharp tools were discussed previously [78]; clearly, in Figure 4-1(b), there is no 

indentation and thus process damping is not involved. This situation will occur at wave lengths equal 

to or greater than L*, for which η becomes equal to γ: 

*

2
tan( ) tan( ) A

L

π
η γ= =  (4.1) 

 Below L
*, even for a sharp tool, the process damping would contribute to the stability of the 

system. In Figure 4-1(c), the flank face intersects with the back side, (0-L/4), of surface undulation, 

whereas in Figure 4-1(d), it intersects with the front side, (L/4-3L/4), creating a triangular shape. 
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Liang and co-workers [39, 40] treated the case (d), for which they assumed small amplitude vibration 

and expressed the indentation area by the equation:  
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where v is the cutting speed in the tangential direction. The approximation in Equation (4.2) will be 

utilized in the current work in establishing the lower bound stability lobes, where the vibration 

amplitude is close to zero. Notice that Equation (4.2) is only valid for W>0 and accordingly does not 

deal with sharp tools. In time domain simulations, all the possibilities of indentations in Figure 4-1 

are treated in the same way which, as mentioned earlier, consumes considerable time. Here, the area 

of indentations will be computed analytically, and therefore one must recognize the different 

scenarios above and compute that area, S(x), accordingly. 

Figure 4-2 shows a cross-sectional area in the XY plane of the extruded volume at tool position 

(x,y). The indentation area S(x) (dark area) is surrounded by three geometries: surface undulation (ys), 

wear land (yw), and flank face of the tool (yf). Each of these boundaries can be described as a function 

of χ and x, as follows:  

 

( ) ;   2 /sin  

( ) ( )

L

 , tan

( ) ( )

s

f w

w s

y A

y y x W

y y x

λχ λχ π

χ β χ β γ

χ

=

= + − − =

=

=

 (4.3) 

The flank face is shown to intersect with the back side of the wave at the point (x’, y’). Hence, the 

area bounded by these geometries is 
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To perform the integrals in Equation (4.4), the intersection point (x’,y’) must first be found. To 

simplify finding this intersection, the sine was is replaced by two 3rd order polynomials, one for the 

back side, in the range –L/4 to L/4, and the other for the front side, in the range L/4 to 3L/4. These two 

polynomials are 
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Note that ao and a2 =0, because the back side is asymmetric around the X and Y axes. The front side 

of the wave is a mirror image of the back side around x= L/4. The coefficients a3 and a1 were found 

by equating the original sine with the polynomial representing the back side at two points (e.g., at 

x=L/6 and L/12). They were found to be: a3 = - 38.58 A/L3 and a1= 6.27 A/L. Figure 4-3 shows the 

polynomials superimposed on the original sine wave for a wave of amplitude A=0.03mm and wave 

length L=3.7 mm.   

The intersection point (x’,y’) between the flank face and the surface wave at a tool position x will 

be obtained from: 

 ( ) ( )s f
y yχ χ=  (4.6) 

The intersection point is obtained by simply finding the roots of the cubic equation Equation (4.6). 

The intersection will be assumed first to occur with the back side of the wave, but if x’> L/4, then the 

polynomial in Equation (4.6) will be switched to that of the front side. With the tool position (x,y) and 

intersection point (x’,y’) now available, the integrals in Equation (4.4) are performed to obtain the 

indentation area S(x) analytically.     

     

 

 

Figure 4-2: Geometry of tool indentation into surface undulations 
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Figure 4-3: Polynomials used to approximate a sine wave of L=3.7mm, A=0.03mm 

The indentation area is updated for the tool positions during the downward motion of the tool in the 

range of x=L/4 to 3L/4. Thus, multiplying by the width of cut b and Ksp, we get the indentation force 

pulse responsible for process damping. The damping in this way is nonlinear, since it operates over a 

portion of the vibratory cycle and is zero over the remainder of the cycle. Presented next is the 

development to replace this nonlinear damper by an equivalent linear viscous damper that will allow 

establishing the stability lobes analytically. 

4.1.2 Equivalent Viscous Damping 

The idea of replacing a nonlinear damper, for example a coulomb friction, by an equivalent linear 

viscous damper, Ceq, is well accepted [79] in evaluating the steady state response of a vibratory 

system under harmonic excitation. This idea is utilized here to replace the nonlinear process damper 

by a viscous damper to establish the stability lobes analytically. In these lobes, the response of the 

system in the frequency domain will be employed. Implicit in establishing the lobes from the 

behavior of the vibratory system in the frequency domain is that the system is vibrating at steady 

amplitude at the chatter frequency. Recently, Budak and Tunc [41 and 42] used the equivalent viscous 

damping approach to estimate Ksp from chatter experiments. In the current work, Ksp is assumed 

available and the objective is to develop a method to establish the lobes that account for different 

states of the cut, namely fully stable, fully unstable, and finite amplitude stability. The development 
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of Ceq was described in [42]. It is also described next to maintain consistency in the terminology 

utilized throughout the current work.  

The energy dissipated by the indentation force in one vibration cycle of amplitude A and 

wavelength L is Ei: 
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Since the toolpath is assumed to be a sinusoidal wave of amplitude A and length L, y(x) and, 

consequently, 
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On the other hand, the energy dissipated by a viscous damper with coefficient Ceq on a similar 

wave is 
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By equating Ei and Ed, one can find Ceq in terms of A, L, γ and W: 
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 (4.8) 

 

The effect of A, L, W, and γ on Cd is shown in Figure 4-4 for a range of tool and vibration wave 

parameters.  Cd depends on tool and vibration wave geometry and therefore can be considered the 

“shape damping factor”. As expected, Cd increases by increasing A and W, but decreases by 

increasing γ and L. It is interesting to see the decline in damping accompanying the increase in 

clearance angle. That might explain the decrease in stability associated with the presence of a stable 

built-up edge that could increase the effective clearance angle. It is also important to see the strong 

dependence of the damping on the amplitude of vibration.  
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Figure 4-4: Variation of Cd in relation to: a) clearance angle γ, b) wave length L, (c)vibration 

amplitude A, and (d) wear land width W 

Although Equation (4.8) represents an analytical formulation for Cd, it is not a closed-form 

equation explicit in terms of A, γ, L and W. It relies on the computations of the indentation area S(x) 

that in turn depends on the intersection point between the tool flank or wear land and surface 

undulations. The intersection point, in case of the flank face, is obtained from solution of a cubic 

equation, as described earlier. All in all, expressing S(x) explicitly in the above parameters that would 

lead to performing the integral in Equation (4.8) analytically proved unmanageable. Instead, the 

integral was evaluated numerically by using ∆x=L/50. This process also consumes time, albeit much 

shorter than that used in time domain simulations. To address this shortcoming, it was decided that a 

data base for Cd that covers a typical range of the parameters involved should be generated. This data 

base was envisioned to be in the form of look-up tables that would circumvent the need to perform 

the computational elements required to find Cd , in every iteration, in the course of establishing the 

lobes. Fortunately, the effort to generate such a data base has resulted in a concise expression of Cd, 

as described next. 

4.1.3 Analytical Formulation of Equivalent Damping 

The analytical and empirical process damping models in the literature, [40] and [33], took the form:   
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 w

dC W
βα=  (4.9) 

Equation (4.9) shows the effect of tool wear W. However, it is evident from the behavior of Cd  in 

Figure 4-4 that the strong effect of the clearance angle γ and especially the vibration amplitude A 

cannot be overlooked. For this reason, computations of Cd were conducted for all of the following 

parameters: 

• Clearance angle γ at 5, 7 and 9o. 

• Wear land width W: 0.02-0.12 mm at increments of 0.02 mm. W=0 was also computed for 

cases where L<L*.    

• Wave length L: 0.6 L*-2L* at increments of 0.2L*, and 3L* -10L* at increments of 1L*.   

• Amplitude of vibration A: 0.01-0.10 mm at increments of 0.01 mm. The case of A=0.005 mm 

was also computed to demonstrate that the model presented here approaches that of Liang 

and co-workers [39 and 40], as the vibration amplitude approaches zero. 

In total, 2046 computations were performed to obtain the shape damping factor Cd using the 

procedure described in Section 4.1.1. Initially, attempts were made to have a single expression of Cd 

through curve fitting all of the generated data that include L, W, γ and A.  The correlation coefficient 

was poor and the decision was made to have Cd (that is, a function of L and W) for a particular γ and a 

particular level of vibration amplitude. An example of computed data and their curve fitting is shown 

in Figure 4-5. The circles show the computed values for different L for the case A=0.03 mm, W=0.06 

mm and γ = 7o. It shows Cd to behave differently in the region L>L* from that where L<L*. This 

behavior was consistent for all other cases, and accordingly the data was fitted into two different 

functions: linear for L<L* and exponential for L>L*.  The solid line in Figure 4-5 shows the results 

of curve fitting. Although there is discontinuity in slope at L=L*, the fitting in the two regions is 

excellent. The expressions for Cd are given in Equation (4.10). 
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Figure 4-5: Computed data and curve fitting results of Cd at A=0.03mm, γ=7⁰, and W=0.06 

mm 

W and L in Equation (4.10) are in millimeters. For L>L*, Cd takes the same form as that suggested 

by Liang and coworkers [39 and 40], except that the exponent for L is now βL instead of zero. For 

L<L*, the linear expression for Cd is new and, to the best of my knowledge, has not been reported in 

the literature. The values of coefficients and exponents obtained from curve-fitting of the different 

cases are listed in Table 4-1. Also listed in Table 4-1 are the values of the coefficient α and the 

exponent βW associated with the Liang model, where the assumption of small amplitude vibration was 

made. 

The following observations can be made from Table 4-1: 

• βW  is practically 2 for all cases, which is consistent with Liang’s model.  

• The absolute value of βL reaches a steady value of -0.33 for large amplitudes, while for 

smaller amplitudes it diminishes in the direction towards A=0.   

• The absolute values of the coefficients p and α exhibit a consistent trend of increasing with 

the increase in the amplitude of vibration A. They also show a consistent decreasing trend 

with the increase in the clearance angle γ. 

The consistent increase in absolute values of p and α in the direction of increased vibration 

amplitude is of particular interest. It led to curve-fitting these coefficients over the amplitude range in 
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Table 4-1, and excellent results were obtained by fitting p into a linear relationship with A, whereas α 

was fitted into a quadratic relationship. The correlation coefficients were 0.99 for both fittings. 

Accordingly, p and α are expressed as: 

1 0

2 2 1 0

p pp a A a

a A a A aα α αα

= +

= + +
 (4.11) 

The coefficient a1
p  and a0

p  associated with p, and a2
α, a

2
α and a2

α associated with α are listed in 

Table 4-2 for γ=5, 7 and 9⁰. 

Table 4-1: Computed α, βW,  βL  and p for different combinations of tool clearance angle and 

vibration amplitude 

γ 

 

A(mm) 

5⁰ 7⁰ 9⁰ 

α  βW βL p(×10-2) α  βW βL p(×10-2) α  βW βL p(×10-2) 

Liang[39] 0.250 2.00 0.00 - 0.250 2.00 0.00 - 0.250 2.00 0.00 - 

0.005 0.254 1.98 -0.21 0.17 0.270 1.97 -0.16 0.12 0.296 1.99 -0.14 0.09 

0.01 0.410 1.98 -0.28 0.34 0.331 1.97 -0.25 0.24 0.308 1.98 -0.20 0.19 

0.02 0.540 1.99 -0.32 0.68 0.459 1.98 -0.31 0.49 0.401 1.97 -0.30 0.38 

0.03 0.625 2.00 -0.33 1.03 0.554 1.99 -0.32 0.73 0.496 1.99 -0.32 0.57 

0.04 0.670 2.00 -0.33 1.37 0.618 2.00 -0.33 0.97 0.561 1.99 -0.32 0.75 

0.05 0.756 2.00 -0.33 1.71 0.667 2.00 -0.33 1.22 0.609 2.00 -0.33 0.94 

0.06 0.805 2.00 -0.33 2.05 0.714 2.00 -0.33 1.46 0.651 2.00 -0.33 1.13 

0.07 0.848 2.00 -0.33 2.39 0.755 2.00 -0.33 1.70 0.688 2.00 -0.33 1.32 

0.08 0.881 2.00 -0.33 2.74 0.791 2.00 -0.33 1.95 0.723 2.00 -0.33 1.51 

0.09 0.924 2.00 -0.33 3.08 0.824 2.00 -0.33 2.19 0.7.54 2.00 -0.33 1.70 

0.10 0.957 2.00 -0.33 3.42 0.854 2.00 -0.33 2.44 0.783 2.00 -0.33 1.89 

Table 4-2: Coefficients of Equation (4.11) 

a 

γ 

0

p
a (х10-2) 1

p
a (х10-2) 

0
aα  1

aα  2
aα  

5⁰ -0.0044 34.26 0.254 13.300 -65.140 

7⁰ -0.002 24.38 0.231 11.580 -55.210 

9⁰ 0.0015 18.87 0.238 9.333 -39.760 
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Equation (4.10) and Equation (4.11) along with Table 4-1 and Table 4-2 provide a much simpler 

and faster approach for computing Cd at different amplitudes, wavelengths, clearance angles and flank 

wear widths. Obtaining Cd in this way provides a great advantage in establishing the stability lobes 

using the iterative approach described next. 

4.2 Establishing Stability Lobes Including Process Damping 

In establishing the lobes in this work, other sources of process damping such as changes in the 

magnitude and direction of the shear force are neglected in comparison with the indentation of 

material underneath the flank face of the tool. This is a reasonable assumption, based on the study 

conducted by Huang and Wang  [29], where the authors showed that the energy dissipated by the 

other sources is small compared to that dissipated by the indentation. 

The dynamic model used in this part is the same as the one presented in Chapter 3. A similar shear 

force model is also used, but the ploughing force is represented by the equivalent viscous damper 

developed in this chapter. Thus, the equation of motion is 

 ( ); ( , , )T

r t s eq
My Ky Cy K b s y y C C C A L b+ + = + − = +�� �  (4.12) 

According to Equation (4.10), Ceq is a function of A, L, W, b and γ, but only A, b and L depend on 

the cutting conditions. γ and W are parameters of the tool and are known a priori. For this reason, Ceq 

appears in Equation (4.12) as a function of only A, b and L.  

If there is no process damping and Ceq.=0, then Equation (4.12) will be the classic regenerative 

chatter formulation, which is well developed in  the literature [7]. In this case, the stability lobes are 

obtained by sweeping the chatter frequency, ωc, (rad/s) in the vicinity of the system’s natural 

frequency, and calculating the depth of cut b and spindle speed at the border of stability from 
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In Equation (4.13), n is the lobe number, which is actually the number of full vibration waves over 

one revolution of the workpiece, ε is the phase angle between waves in subsequent revolutions, T is 

the time of one revolution, and ϕ is the phase angle between the displacement of the vibratory 
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system and the exciting force. Re (Λ) and Im (Λ) are the real and imaginary parts of the frequency 

response function, FRF, of the vibratory system, respectively. In this section, Equation (4.13) will be 

employed in an iterative solution to find the stability lobes in the presence of Ceq, which is a function 

of A, b and L.   

Before describing the iterative procedure, it is worthwhile recalling that, due to the nonlinear nature 

of process damping, the process can be in three states: fully stable, where the amplitude of vibration is 

zero; fully unstable, where the amplitude of vibration is Acr or slightly larger; and finite amplitude 

stability, where the vibration stabilizes at an amplitude between zero and Acr. This suggests that there 

are two distinct outer boundaries: one between fully stable and finite amplitude stability, and the other 

between finite amplitude stability and fully unstable. In theory, one might even have a particular 

boundary within the finite stability region at specified amplitude, say As, below which the amplitude 

is smaller than As, whereas it is greater than As above that boundary. The procedure to establish the 

lobes at a particular amplitude is designated here as “Fixed Amplitude Lobes”, while the procedure to 

establish the lobes for the upper bound or lower bound stability lobes will be designated “Boundary 

Lobes”. The former is described first.      

      

Fixed Amplitude Lobes: 

1- Choose a chatter frequency, ωc, in the vicinity of the tool natural frequency and n the lobe 

number. 

2- Set Ceq=0. 

3- Calculate b and T from Equation (4.13).  

4- Update 
c

v
L

f
=  , where fc is chatter frequency in Hz. The speed v is obtained from T and the 

radius of the workpiece. 

5- Update Ceq(As,L,b) using new L, b and Equation (4.8) or Equation (4.10). 

6- Repeat steps 3-5 until b converges to the desirable tolerance.  

The tolerance for convergence will be discussed in Section 4.3. The procedure above is repeated 

using increments of ∆ωc over a frequency range that depends on the wave number n, and then the 

whole procedure is repeated for different n.  

Boundary Lobes: 

Lower bound: amplitude A≈0; 

In this case, the same procedure described above for fixed amplitude lobes is followed with the 

provision that Ceq is what would be obtained from Liang’s model, first line in Table 4-1. Notice that 
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this model is only applicable for L>L
*. This is fine, since for small amplitude of vibration, Equation 

(4.1) shows that L* also becomes small. This situation could only materialize at extremely low cutting 

speed combined with high frequency of vibration, which is not the focus of this work. 

Upper bound: amplitude A= Acr.     

Equation (3.11) shows Acr to be a function of ε, which is obtained from Equation (4.13). 

Consequently, in addition to L and b, the amplitude A should be updated as well in each iteration.  

1. Choose a chatter frequency, ωc, in the vicinity of the tool natural frequency, and the lobe 

number n. 

2. Set  Ceq=0. 

3. Calculate b, ε and T from Equation (4.13). 

4. Update 
c

v
L

f
= . 

5. Update Acr using Equation (3.11). 

6. Update Ceq(Acr,L,b) using Equation (4.8) or Equation (4.10) for new L, Acr and b. 

7. Repeat steps 3-6 until b converges to the desirable tolerance. 

Similar to the procedure above, steps 1-7 are repeated using the increments of ∆ωc, and the whole 

procedure is repeated for different wave number n.  

Assessing the performance of the above procedures is conducted in the next section. The 

assessment is done against numerical simulations as well as the lobes established using an empirical 

process damping model [33]. The vibratory system parameters given in [33] will be utilized along 

with the cutting coefficients. The specific indentation coefficient Ksp = 4×105 N/mm3 will be utilized. 

4.3 Comparisons With Time Domain Simulation and Empirical Model 

Altintas et al.  [33] conducted plunge turning experiments to develop an empirical model for the 

process damping. They represented the process damping effect by an additional dashpot acting on the 

vibratory system. Accordingly, they expressed the process damper for AISI 1045 steel in the 

following form: 

6

p

6.11 10
C  . /b N s m

v

×
=  (4.14) 

The authors obtained Cp by harmonic excitation at 0.035 mm amplitude. The parameters of the 

vibratory model in [33] were: K = 6.48×106 (N/m), M = 0.56 (Kg), and Cs = 145 (N.s/m). The cutting 

force coefficient for AISI 1045 in the feed direction was estimated at Kr=1380 MPa. The workpiece 

was a 35 mm diameter shaft cut at a feedrate st = 0.05 (mm/rev). The tool had a clearance angle γ of 
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7o. The above parameters will be employed in this section to establish the lobes following the 

developed procedures above and to compare with the lobes computed using the empirical damping 

factor in Equation (4.14). Although the tool used in [33] was sharp, a small W = 0.04 mm is assumed 

here to account for tool edge radius (hone radius).  

Before comparing the lobes obtained using the procedures developed here with the Lobes and 

experimental results in [33], it is important first to test the accuracy in determining the equivalent 

damping using Equation (4.10) with that following the detailed computations described in sections 

3.1 and 3.2. Notice that the equivalent damping is updated in each iteration involved in establishing 

the width of cut at a particular chatter frequency ωc and wave number n. For this test, we will 

establish the upper bound lobes at Acr and fixed amplitude lobes at As =0.020 mm. Notice that, from 

Equation (3.11), the minimum value of Acr occurs at Acr=
2

ts ; and accordingly, for st=0.05 mm/rev, 

the minimum Acr will be 0.035 mm. Figure 4-6 shows the computed lobes using the fast (section 

4.1.3) and detailed method (section 4.1.2), the former is drawn in a broken line, whereas the latter is 

drawn in a solid line. The lobes from the two methods coincide for 20 µm and Acr amplitudes. With 

such excellent agreement, the fast method will be employed for the remainder of this chapter.

 

 

Figure 4-6: Upper bound and fixed amplitude lobes computed using equivalent damping 

from quick method of Equation (4.10), (broken lines) and detailed method of Section 4.1.2 (solid 

line) 
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Figure 4-7: Convergence of b and L at 1000 RPM when computing the lobes shown in Figure 

4-6 

Another issue should also be resolved before conducting the comparisons with [33], namely the 

convergence tolerance allowed in the iterative procedure. Figure 4-7shows the convergence of the 

width of cut b and wave length L for a point at 1000 RPM on the upper bound lobes in Figure 4-6.  

The criterion used was for the percentage change in b in two subsequent iterations not to exceed a set 

value. The figure shows the effect of tightening the tolerance from 4% to 1% to 0.01%. It shows that 

1% is sufficient, that insignificant improvement was gained by using 0.01 %, and thus 1% was chosen 

as the convergence tolerance. Figure 4-7shows that it took only 7 iterations for b and L to stabilize. 

An important test of the proposed method is to compare it with the time domain simulation. In the 

time domain simulation, the nonlinear nature of the indentation pulse is treated directly, while in the 

proposed method the nonlinear pulse is replaced by an equivalent viscous damper. The test is now 

described by comparing with the lobes in Figure 4-9. The results of this simulation are presented in 

Figure 3-8 to explain finite amplitude stability qualitatively. However, they are repeated here to 

compare the results with the developed stability lobes, quantitatively. The simulations were 

conducted at 1000 RPM for three depths of cuts: b=0.5, 0.7 and 1.0 mm. The results of simulations 

are shown in Figure 4-8. For b=0.5mm, which is below the stability lobes, the vibration dies down to 

zero. For b=1.0 mm, which is above the upper stability lobes, the vibration amplitude stabilizes at 

0.035 mm, which is equal to Acr. For b=0.7mm, the vibration stabilizes at 0.02 mm. As a matter of 
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fact, the point at 0.7 mm width of cut is close to  the fixed amplitude stability lobes shown in Figure 

4-9 that were established at As =0.02 mm. This test demonstrates the viability of employing the 

equivalent damping approach in establishing the lobes from the frequency domain and establishing 

lobes at a particular amplitude of vibration. 

Having demonstrated the accuracy of the iterative approach, it is also important to compare the 

times needed for the different methods of computing the stability including process damping: time 

domain simulation, iterative approach using the detailed computation method described in sections 

3.2, and the iterative approach using the quick computation method of section 3.3. On a PC with a 2.2 

GHz processor, it took three hours to compute the steady state vibration of case (b) in Figure 4-8 in 

the time domain simulation using 36,000 steps/revolution; it took ten minutes to compute one single 

lobe at a frequency resolution of 0.5 Hz using the detailed method; and it took only two seconds to 

compute the entire, upper or lower, bound stability lobes using the quick method. This is a drastic 

reduction in computation time.   

   

 

Figure 4-8: Tool vibration from numerical simulations in the time domain at 1000 RPM and: 

a) b=0.5 mm, fully stable, (b) b=0.7 mm, finite amplitude stability at As =0.02 mm, and (c) b=1.0 

mm, fully unstable (Repeated from Chapter 3) 

Figure 4-9 shows the upper and lower bound stability lobes established using the current 

procedures and those established using the empirical damping model of Altintas [33]. Recall that the 
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damping factor in [33] was determined from harmonic excitation at amplitude of 0.035mm. 

Accordingly, this coefficient would be most accurate if the vibration amplitude during cutting is also 

0.035mm, as it could lead to inaccuracies at other amplitudes. In the present case, the feedrate is 0.05 

mm/rev, and Acr will be close to 0.035 mm. This makes the comparison at this feedrate between [33] 

and the upper bound lobes associated with Acr more meaningful. Figure 4-9 shows the lobes 

established using Cp to be higher, especially below 1500 RPM, than the upper bound lobes 

established using the procedure developed in this work. This difference could be attributed to the fact 

that, in our procedure, the indentation of the tool into the workpiece is considered to be the only 

source of process damping, whereas the empirical model includes all potential sources. The results of 

cutting tests conducted in [33] are also included in Figure 4-9, where + designates cases that were 

considered unstable and ο designates those considered stable. It is interesting to see that four of the 

unstable cases are below the empirical lobes but only two of them are below the upper bound lobes. 

Figure 4-9 also shows the lower bound lobes in thin line. It shows four experimental cases that were 

judged stable to be above these lobes. Since it was not mentioned in [33] how the stability condition 

was recognized, it is difficult to make a reasonable conclusion in terms of accuracy of the lobes 

established using the indentation equivalent damping and those using empirically determined damper. 

For instance, some of the points within the upper and lower lobes could be cases of finite amplitude 

stability that were misclassified one way or the other. To illustrate this point, lobes at fixed amplitude 

of 0.01 mm are also included in Figure 4-9. Two of the cases considered to be stable are below these 

lobes, with a third point being close to the border. 

Further comparisons with time domain simulations are given in Figure 4-10(a). The objective of 

this figure is to further prove that the analytical stability lobes can be established at specific amplitude 

of vibration, say As, other than those associated with the lower bound and Acr. The figure shows the 

lobes established at As= 10 µm over the speed range 500- 1400 RPM. The figure also shows the lobes 

at As = 20 µm, as well as the lower bound lobes for comparison. Four sets of points (Pi, Qi),i =1-4, are 

chosen above and below As=10 µm for time domain simulations. They are chosen at 550, 625, 750 

and 1000 RPM. The widths of cut at these point sets are close to the corresponding widths on the 

lobes As=10 µm but none of them lies exactly on lobes themselves. It should be realized that the 

closer the test point gets to the analytical lobes the longer simulation times it takes for the vibration to 

stabilize at constant amplitude. Having the points exactly on the lobes would make the simulation 

time unmanageable. The simulation results are shown in Figure 4-10(b) for the four sets. The 

corresponding amplitudes of vibration at steady state are listed in Table 4-3. Also listed in Table 3 are 
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the widths of cut b0’s at the lower bound as well as the widths of cut b10’s at the As = 10 µm lobes.  

From the table, it can be seen that the resulting amplitudes at the four sets of points, regardless of the 

differences in speed and width of cut, are indeed close to 10 µm. At 1000 RPM, the deviation in 

amplitudes from10 µm appears larger at P4 and Q4, 0.31 and 15.15 µm, respectively. At this speed, 

due to the large wavelength, the area between lower bound, As=10 µm, and As=20 µm is narrow, and 

the slightest shift in width of cut leads to large deviation in vibration amplitude.  Figure 4-10(a) 

shows P4 located closer to As=20 µm lobes, and its amplitude of 15.15 µm is thus closer to 20 µm, as 

it should be. Q4 point on the other hand is below the lower bound and its vibration amplitude of 

0.31µm is negligible compared to the vibration amplitudes computed at the other test cases. 

 

 

Figure 4-9: Stability lobes computed using the empirical damping model in [33] and the 

developed iterative method: Experimental results reproduced from [33]: + judged fully 

unstable, ο judged fully stable 
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Figure 4-10: a) As=10 µm and As=20 µm specific amplitude, and lower bound analytical 

lobes; b) numerical simulation results at Pi and Qi , i=1..4 

 

Table 4-3: Widths of cut at points P and Q and their corresponding amplitudes of vibration 

obtained from time domain simulations. 

 

Presented next are experimental results to further verify the proposed method of constructing the 

stability bands. 

4.4 Experimental Verification 

The experimental setup of Section 3.5 is used in this section to verify the accuracy of the 

established stability boundaries. The force signal was utilized in assessing the status of the cut. The 

experiments were conducted at moderate speeds mainly to allow comparisons between the sharp and 

 Width of cut [mm] Vibration amplitude [µm] 

I RPM b0 Qi b10 Pi Qi A10 Pi 

1 550 0.7266 1.00 1.1350 1.30 7.65 10 10.43 

2 625 0.6698 0.78 0.8421 0.90 7.85 10 12.25 

3 750 0.6166 0.66 0.6691 0.70 8.85 10 10.28 

4 1000 0.5607 0.50 0.5611 0.62 0.31 10 15.15 
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worn tools. Such comparisons are important in demonstrating the viability of the iterative approach to 

establishing the lobes analytically including process damping.  

The cutting force coefficients in the feed direction were estimated from stable cutting to be: Kr= 

1800, 1330 and 1130 MPa for st=0.035, 0.05 and 0.075 mm/rev, respectively. Also for each feedrate, 

two different tools were used in the experiments, a sharp and a worn tool with W=0.08 mm wear land. 

For the sharp tool, a wear land of W=0.04 mm was assumed to account for the tool edge radius.  

The boundary lobes calculated for each feedrate are shown in Figure 4-11, Figure 4-12, and Figure 

4-13. Each figure consists of two subfigures: (a) for the worn tool and (b) for the sharp tool. These 

figures also show the results of the experimental cutting tests: + for fully unstable, ο for fully stable, 

and ∆ for finite amplitude stability. When the measured cutting force signal at steady state stayed 

above zero, the cut was judged to be either fully stable or at a state of finite amplitude stability. It was 

fully stable when the force signal showed no appreciable oscillations; otherwise, it was a state of 

finite amplitude stability. When the measured steady state force dropped to zero at some portion of its 

vibration cycle, the cut was judged fully unstable. Zero cutting force is an indicator of tool/workpiece 

separation due to vibration amplitude exceeding Acr. In this case, the produced chip is broken into 

small pieces due to the periodic tool/workpiece disengagement. While the chip is continuous for 

stable and finite amplitude stability cases, in the latter case, it shows significant thickness variation. 

Examples of measured forces and their spectra as well as photographs of the chip can be found in the 

investigation of the nonlinearity of process damping reported in Section 3.5.   

In Figure 4-11, for st=0.035 mm/rev, the lower and upper bound stability lobes are close to each 

other with a narrow region of finite amplitude stability. For st=0.05 mm/rev in Figure 4-12, the finite 

amplitude stability region is wider than that associated with the 0.035 feed in Figure 4-11. Now, cases 

of finite amplitude stability can be seen between the upper and lower bound lobes, even for the sharp 

tool. For st=0.075 mm/rev, in Figure 4-13, the region of finite amplitude stability is even larger than 

that at 0.05 mm/rev. Although the cutting test results are inconsistent with the calculated lobes in 

some cases, the agreement is good between experimental measurements and the analytical lobes. The 

discrepancy between experimental points and calculated lobes is more visible for st=0.035. It seems 

that, at this low feedrate the contribution of other factors (e.g., workpiece runout) cannot be ignored 

in determining the stability of the cut. 
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Figure 4-11: Upper bound (thick line) and lower bound (thin line) lobes for St=0.035 mm/rev; 

cutting test results: + fully unstable, o fully stable, ∆ finite amplitude stability 

 

Figure 4-12: Upper bound (thick line) and lower bound (thin line) lobes for St=0.05 mm/rev; 

cutting test results: + fully unstable, o fully stable, ∆ finite amplitude stability 
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Figure 4-13: Upper bound (thick line) and lower bound (thin line) lobes for St=0.075 mm/rev; 

cutting test results: + fully unstable, o fully stable, ∆ finite amplitude stability 
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Figure 4-14: Upper and lower stability lobes computed for a sharp tool assuming W=0.03 mm 

at a) st=0.035 mm/rev, b) st =0.05 mm/rev, and c) st =0.075 mm/rev 

To explain some of the discrepancies observed above with the sharp tools, recall that a small wear 

land W=0.04 mm was assumed to account for the effect of cutting edge radius. As observed by Budak 

and Tunc [41], the existence of edge radius affects the chip formation process as well as the process 

damping. Moreover, the edge radius results in a static indentation component [34] that operates along 
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the full length of the surface undulation, 0<x<L, whereas in the presented model, only the dynamic 

part in the range L/4<x<3L/4 is considered. For the sharp tool in our experiments, this radius was 

measured at 50 µm.  Further work is needed to better integrate the effect of the edge radius into the 

stability lobes computations. Nevertheless, the assumption of having a small wear land was based on 

observations of cutting tests conducted at high speed when compared with the analytical lobes 

established with and without wear. The 0.04mm value leads to reasonable results, except for the cases 

mentioned above. However, the stability lobes were redone assuming W=0.02 and 0.03 mm. The 

0.02mm led to lower stability lobes that were in bigger disagreement with the experimental results, 

while W=0.03 mm, on the other hand, led to better agreement in several cases.  Figure 4-14(a), (b) 

and (c) show the lobes associated with the sharp tools, re-established with W=0.03 mm for the three 

feederates 0.035, 0.05 and 0.075 mm, respectively. By comparing these figures with those established 

with W=0.04 mm, the following observations can be made.  

• In Figure 4-14(a), the fully unstable case at b=1.2mm and v=111 m/min is now above the 

upper bound stability lobes as it should be, instead of being in the region of finite amplitude 

stability in Figure 4-11(b). 

• In Figure 4-14(b), the fully unstable case at b=1.8mm and v=97m/min is now above the 

upper bound stability lobes, as it should be, instead of being in the region of finite amplitude 

stability in Figure 4-12(b). However, the fully stable case in Figure 4-12(b) has now moved 

inside the finite stability region in Figure 4-14(b). 

• In Figure 4-14(c), the two fully unstable cases at b=2mm, v=177m/min, b=2.2mm and 

v=177min are now above the upper bound stability lobes, as they should be. However, the 

case of fully stable in Figure 4-13(b) has now moved inside the region of finite amplitude 

stability in Figure 4-14(c). 

The above discussion shows W in the range 0.03-0.04mm accounts reasonably well for the effect of 

edge radius. It is one potential source of uncertainty. Another source of uncertainty in establishing the 

lobes including process damping, whether for sharp or worn tools, is the value of the specific 

indentation coefficient Ksp. In the current work, Ksp = 4×105 N/mm3 was chosen for AISI 1018 steel. 

This value was obtained from [34], and as could be seen from the experimental results described 

herein, it led to good agreement with the analytical stability lobes. Budak and Tunc [41] conducted 

chatter experiments and in a reverse approach estimated Ksp at 0.7×105 N/mm3 for AISI 1050 steel. 

The physical and mechanical properties of 1018 and 1050 are close, which would not explain the 
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large difference between the two values. Nevertheless, one must recognize potential sources of 

uncertainty and assess the impact of changing values of some parameters on the resulting stability. 

The iterative procedure developed here should help assess such impact, as it is concise and fast. 

4.5 Summary 

An iterative procedure was developed to establish the stability lobes analytically including process 

damping. Upper and lower bound stability lobes were established instead of the traditional stability 

lobes that represent a single boundary between stable and unstable regions. Having two boundaries of 

stability allowed having a region in between where the process is in a state of finite amplitude 

stability. In this way, the effect of process damping nonlinearity was preserved. It was also shown that 

stability lobes can be established for specified amplitudes of vibration. The developed approach 

produced the same results obtained from time domain simulations and agreed reasonably well with 

cutting experiments. The developed approach relied on replacing the nonlinear damping pulse by an 

equivalent viscous damper. A compact expression of this damper was developed, whose coefficients 

were computed from tables. While a large number of computations were conducted to compile these 

tables, further work will be needed to expand the tables to cutting speeds lower than those covered 

here; further work will also be need to determine more values of tool clearance angle and larger 

amplitudes of vibration. A drastic reduction in computations time was achieved with the developed 

iterative approach when compared with time domain simulations. On a PC with 2.2 GHz processor, it 

took three hours of simulation time to compute the steady state vibration of case (b) in Figure 4-8, but 

only two seconds of computation time to establish the entire stability lobes over a wide range of 

cutting speeds. This drastic time reduction was the main achievement of this work. 

In the next chapter, the developed damping model will be employed in time and frequency domain 

methods of calculating the stability lobes in milling.   
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Chapter 5 

Stability Lobes in Milling Including Process Damping  

In this chapter, the equivalent viscous model of process damping is integrated into two well accepted 

methods of calculating the stability lobes in milling: the Multi-Frequency Solution (MFS) and the 

Semi Discretization Method (SDM). Assessing the performance of the two methods is conducted 

using time domain simulations. It is shown that the Semi Discretization Method provides accurate 

results over the whole tested range of cutting speed, whereas higher harmonics are required to achieve 

the same accuracy when applying the Multi Frequency Solution at low speeds.  

Moreover, the finite amplitude stability is shown to occur in milling, as well. The amplitude 

dependent equivalent viscous damper model is used in SDM to calculate the upper stability lobes. A 

set of cutting experiments are conducted to verify the accuracy of the predicted upper and lower 

stability lobes. 

The 2DOF dynamic model used in this investigation is described in the next section. Since 

numerical simulations are used to compare the performance of MFS and SDM, a brief description of 

the numerical simulation model is presented in Section 5.2. In this section, a more effective approach 

to identifying the onset of instability from the simulation results will be presented. The formulations 

and computation steps of MFS and SDM are given in Sections 5.3 and 5.4, respectively. Section 5.5 

will present the results of examples conducted to compare the two approaches in establishing the 

lobes. Moreover, the effect of including higher harmonics in MFS and choosing a proper 

discretization size in SDM will be discussed in that section. In these examples, the cut is not highly 

interrupted (non-shallow immersion). It will be shown that the zero order MFS stability lobes agree 

well with the ones obtained from SDM at high cutting speeds. The two methods, however, disagree 

considerably at low speeds and high damping when the zero order is utilized. This disagreement 

diminishes by adding higher harmonics to MFS at the expense of longer simulation time. The 

occurrence of finite amplitude stability in milling is investigated in Section 5.6. Having demonstrated 

that finite amplitude stability also happens in milling, computing the lower and upper stability lobes 

in milling is addressed in the subsequent section. Experimental verifications of upper and lower 

stability lobes will be presented in Section 5.7. These experiments show the close agreement between 

the lobes from SDM and the actual cutting tests. 
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5.1 Dynamic Model 

The 2DOF system, shown in Figure 5-1, is used to describe the dynamics of the vibratory model. The 

modal stiffness, mass and damping in the cutting, Y, and feed, X, directions, Ky, Kx, My, Mx, Cy and 

Cx, are usually obtained from experimental modal analysis. The tool has N cutting edges and the 

immersion angle of the jth tooth, φj, j=1..N, is measured clockwise from the Y direction. One can 

express the immersion angle as a function of time and tool rotational speed, Ω, as 

( )
2

1
j

t j
N

π
ϕ = Ω + −  (5.1). 

The cutting force components on the jth tooth are Fr and Ft in the radial and tangential directions, 

respectively. The forces arise due to the shearing and ploughing mechanisms. Therefore, the 

tangential and radial cutting forces are composed of the shearing, with subscript s, and ploughing with 

subscript p, according to: 
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The shear forces are computed from: 
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where b is the axial depth of cut and Kt and Kr are the tangential and radial cutting force coefficients 

measured experimentally. In Equation (5.3), g(φj) is a window function between the tool engagement 

start and exit angles: φst , and φex . In Figure 5-1(b), the uncut chip thickness consists of the part 

produced by the tool rotation and feed motion, and the other part by the regeneration of surface 

waves: 

 ( ) ( ) ( ) ( )( )i   s nt jh t ts r r t Tϕ= + − −  (5.4) 

where r(t) is the tool displacement in the radial direction, and T is the tooth passing period: 

2 /T Nπ= Ω . 

In Equation (5.4), negative chip thickness implies disengagement of the tool from the workpiece 

due to the vibration amplitude reaching high values. In this case, the chip thickness is actually zero. 

The tangential and radial forces are divided into “harmonic”, FH, and “regenerative”, Freg, parts as 

follows: 



 

 72 

 
( ) ( ) ( ) ( )( )s ;in

t

H reg

ts ts ts

H reg

ts j t j ts j t

F F F

F g K bs F g K b r t r t Tϕ ϕ ϕ

= +

= = − −
 (5.5) 

The regenerative part is associated with the vibration in subsequent cuts, while the harmonic part is 

associated with the rotational angle and the feed per tooth. It is called “harmonic” because the static 

force “pulse” could contain a significant number of harmonics, depending on the cut geometry.    

 

 

 

Figure 5-1: (a) 2DOF vibratory model, (b) uncut chip thickness, and indentation of 

undulations under the flank face of the tool 
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The ploughing force is calculated using Wu’s indentation model [34], where the radial ploughing 

force is assumed to be proportional to the volume, V, of the material extruded underneath the flank 

face: 

 ( ) . ;rp j spF g K V V bSϕ= =  (5.6) 

where Ksp is the specific indentation force; it is measured experimentally [39, 43] or computed 

analytically [34]. The tangential ploughing force is modeled using the Coulomb friction:
 

tp rpF Fµ=
,
 

where µ is the Coulomb friction coefficient. In Equation (5.6), S, shown in Figure 5-1(b), is the area 

of the cross section of the extruded material. Following the development in Chapter 4, the process 

damping effect is represented by an equivalent linear viscous damper. It is expressed as: 

 ;
sp d

rp eq eq

K bC
F C r C

v
≈ =�  (5.7) 

where v is the tangential velocity and Cd is designated as the “shape damping factor”, since it is 

computed from the geometrical parameters of the tool and surface undulations. In this section, small 

amplitude vibration will be assumed, and thus Cd will be obtained from: 

2 0.25dC W=  

where W is the wear land width shown in Figure 5-1(b). This leads to the following expression for the 

equivalent damper:  

2

 
4

eq sp

W
C K b

v
=  

The small amplitude vibration assumption is justified in establishing stability boundaries below 

which the vibrations die down. Above these boundaries, the vibrations grow and eventually stabilize 

at finite amplitudes. In fact, such boundaries are commonly used in the literature to define stability 

limits.     

The summation of radial and tangential forces acting on all teeth engaged in the cut results in the 

total cutting forces acting on the tool in the X and Y directions: 
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Substituting the chip thickness from Equation (5.4) in the mechanistic force model of Equation 

(5.3), the radial and tangential shearing forces are obtained in terms of tool deflections in the radial 
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direction. Also, the ploughing forces are obtained in terms of the tool radial velocity in Equation (5.7). 

The radial deflection of the tool can be expressed in terms of its components in the X and Y 

directions: 

 
( )
( )

; sin cos ;
j jj j

x t
r

y t
ϕ ϕ

 
 = = =   

 
r p r p  (5.9) 

Therefore, one can express the tangential and radial forces in terms of tool deflections in the X and 

Y directions as: 

 ( ) ( ) ( ) ( ) ( )
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t t
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F s
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F K

µ
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Substituting Equation (5.10) into Equation (5.8), the total cutting forces are obtained: 
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Having calculated the cutting forces, the governing equation of the system is expressed as: 

 
0

0 0 0
; ;

0 0 0

t

x x x

y y y

s
b

M K C

M K C

  
+ + = + +  

  

     
= = =     
     

Mp Kp Cp A ∆p Bp

M K C

�� � �

 (5.12) 

which is a linear DDE with time varying coefficients.  

Presented next is a procedure to accentuate the identification of the onset of process instability 

from the results of time domain simulations of Equation (5.12).  

5.2 Numerical Simulation 

In this part, Wu’s indentation force model, Equation (5.6), is used in a numerical scheme to 

simulate the tool vibration. The 2DOF vibratory system and the cutting force model described in the 

previous section is used in the simulation.  
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The total simulation time is divided into finite time intervals of ∆t. The tool deflection at each time 

step, ( )q q t= ∆p p , is then calculated by employing the cutting forces computed at the previous time 

step in Equation (5.12) . The entire procedure is described in the following steps: 

1- Divide the tool revolution period into Nt divisions: ∆t=NT/ Nt.  

2- Record the undulation height at each discrete point in a vector of Nt elements, z, assuming 

that all of the elements of z are zero at q=0. Also, assume that the tool vibration starts from 

0 0 0= =p p�  

3- At each time step, q, calculate the immersion angle for each tooth, j=1..N, from 

( )
2

1
j

q t j
N

π
ϕ = ∆ Ω + −  

4- If φst< φj < φex , calculate the regenerated chip thickness as rpq-zn, where zn is the undulation 

height associated with φj and extracted from vector z. Add the feed produced chip thickness, 

stsin(φj), to the regenerated part to obtain the total chip thickness, h. Also, calculate the 

indentation force using the numerical search explained in Section 5.2.1. If φst> φj, φj > φex, or 

h<0 , then the total cutting forces are zero. 

5- Substitute the calculated chip thickness and extruded volume in Equation (5.5) and Equation 

(5.6), respectively, to obtain Ft and Fr. Then, resolve them into X and Y directions, and add 

them together for j=1..N to obtain the total cutting forces at time step q.  

6- Having calculated the total cutting forces at time step q, the tool deflection at the following 

time step q+1 is estimated from 

1 1

q q q q

− −= − − +p M Kp M Cp F�� �  

1q q t+ = ∆p p� ��
 

1q q t+ = ∆p p�
. 

Update the undulation height in the corresponding element of vector z. If h>0, then update 

it with rpq+1. If h<0, deduct stsin(φj) from the current height. 

5.2.1 Computation of Extruded Volume 

The volume of the extruded material is calculated from the shaded area shown in Figure 5-1(b) and 

the axial depth of cut, b. The shaded area is bounded by the tool flank face and the workpiece surface 

undulations. This area is calculated at each simulation time step numerically. Figure 5-2 illustrates 

how the shaded area is calculated. The tool edge is at point A, whereas B is the point on the surface 

undulation generated by the tool edge in the previous time step. The corresponding point on the flank 
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is point C. The distance d = (B – C) is checked; if greater than zero, then there is penetration and the 

area ABC is calculated and multiplied by the axial depth of cut. The points B-2B-1, etc. are the points 

on the workpiece surface at (t-2∆t), (t-3∆t), .., where ∆t is the simulation time step. The 

corresponding points on the flank face are C-2C-1, ... The elemental shaded area, say B-2B-1 C-1C-2, is 

calculated from ϕ∆






 +
=

−−
−−−−

R
dd

CCBB
2

21
2112

,  where R is the radius of the cutter, and ∆φ is the 

incremental cutter rotational angle corresponding to ∆t. Note that R∆φ is an approximation of the 

length of the elemental area, which necessitates that ∆φ be kept small. This would mean the 

simulation takes longer when taking into account process damping. For more details on computing 

the indentation area, also see [37].  

  

 

Figure 5-2: Calculation of the extruded material volume 

 

We should mention that the indentation forces are applied when the cutting tooth is penetrating into 

the workpiece, and that they are zero when the tooth is moving out from the workpiece. The above 

model of process damping is a simplification of a more complicated interaction between the cutting 

edge, the flank face and the workpiece material. This interaction is highly dependent on the edge 

condition and, in particular, on tool wear.  
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5.2.2 Case Study 

The parameters of the 2DOF system given in [25] will be utlized in the current simulations. The 

modal stiffnesses, natural frequencies and damping coefficients in the X and Y directions are: 

65.6 10 / , 603 , 115.29 . /x x xK N m f Hz C N s m== × =
 

65.7 10 / , 666 , 95.35 . /
y y y

K N m f Hz C N s m== × =
 

The cutting force coefficients for the Aluminum workpiece are Kt=700 Mpa and Kr=0.07. The 

specific indentation force for Aluminum is reported at Ksp=1.5×105 N/mm2 in [35]. The friction 

coefficient is 0.3. The tool is a 25.4mm diameter endmill with three straight (nonhelical) teeth. The 

clearance angle of the tooth is 7⁰. The simulation is conducted at feedrate st=0.07 mm/tooth, ½ 

immersion up-milling, and speed 1500 RPM. Two different axial depths of cut are employed: 2 and 

2.5 mm. The total tool displacements in the feed direction for both depths of cut are shown in Figure 

5-3(a) and( b). All traces are normalized by the corresponding axial depth of cut. These normalized 

displacements seem to be the same at b=2 and 2.5 mm. However, by looking closely at the 

components of the total displacement, a dramatic difference emerges. According to Equation (5.5), 

the cutting force, and consequently the total tool deflection, consists of the harmonic and regenerative 

parts: 

H reg= +p p p  

The harmonic component, PH , is independent of tool vibration, and the regenerative part, Preg, 

determines the stability of the cut. Preg is comprised of the vibrations in subsequent cuts. If the 

amplitude of Preg dies down to zero, the system will be stable; otherwise, it will be unstable. To 

extract Preg from the total displacement, the simulation is repeated by leaving out the regenerative part 

of the chip thickness. In other words, the simulation is run once to compute the total displacement P, 

and a second time without the inclusion of the regenrative part of the chip, to obtain PH. Preg is 

obtained by subtracting PH from P. This procedure was followed to obtain the normalized 

displacement components at the depths of cut b=2 and b=2.5 mm. They are shown in Figure 5-3(c) 

and (d). Now the difference between the two cases is clear: the regenrative component Preg dies down 

to zero at b=2mm (it is a stable cut), while, on the other hand, Preg grows at b=2.5 mm (it is an 

unstable cut). Eventually, Preg stabilizes at a finite amplitude due to nonlinearities in the system [74].  

Figure 5-4 shows the frequency spectra of the time traces shown in Figure 5-3. The triangles show 

the tooth passing frequency ωs and its harmonics, the bold circle shows the chatter frequency, ωc, and 

the thin circles indicate side bands at the tooth passing frequency around the chatter frequency, e.g. 
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c s
ω ω± . The tooth passing frequency, 75 Hz, dominates the tool total vibration signals in Figure 5-4 

(a) and ( b). In (b), however, the chatter frequency at 643 Hz is also visible, albiet much smaller than 

the spectral line at the tooth-passing frequency. The situation is completely different when the spectra 

of the regenerative components in Figure 5-4(c) and (d) are examined. The distiction between the 

stable cut in (c), where the chatter frequency is hardly visible, and the unstable cut in (d), where the 

chatter frequency dominates, is indeed very clear. With this enhaced method of identifying stability 

boundaries, the comparison between MFS and SDM will be presented in Section 5.5. The algorithms 

of MFS and SDM including process damping are presented first in the following two sections.As 

MFS and SDM algorithms are already available in the literature [25 and 26], the emphasis in the next 

two sections will be on including the viscous damping model into these algorithms. 

 

   

 

Figure 5-3: The total deflection and regenerative part in the feed direction, normalized by the 

depth of cut at 1500 RPM and b=2mm (a and c), and b=2.5mm (b and d) 
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Figure 5-4: Frequency spectra of the time traces in Figure 5-3 

5.3 Multi-Frequency Solution (MFS) 

In this section, the equivalent viscous damper model of Equation (5.7) is integrated into the MFS of 

[25] to calculate the milling stability lobes. Since the chip component associated with the feedrate and 

tool rotation is not involved in the stability process, it is not included in the cutting forces in Equation 

(5.11), which leads to: 

 b= +F A∆p Bp�  (5.13) 

The directional coefficient matrices A and B are periodic with the tooth passing period, T. 

Therefore, they can be expressed in the Fourier expansion form: 

 
0 0

1 1
; ; ;s s s s

T T

il t il t il T il T

l l l l

l l

e e e dt e dt
T T

ω ω ω ω
∞ ∞

− −

=−∞ =−∞

= = = =∑ ∑ ∫ ∫A A B B A A B B  (5.14) 

At the border of stability, assume a harmonic solution at the chatter frequency ωc:  

 ci t
e

ω=p p  (5.15) 

Consequently, the delay term in Equation (5.13) is 

 ( )1 c ci T i t
e e

ω ω−= −∆p p  (5.16) 

Substituting Equations(5.14), (5.15) and (5.16) in Equation (5.13), the cutting forces can be 

expressed in the Fourier expansion form, as well: 
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( )c si k t

k

k

e
ω ω

∞
+

=−∞

= ∑F F  (5.17) 

Moreover, the response of the linear system of Equation (5.12) to the harmonic excitation of 

Equation (5.17) can be expressed in terms of the system frequency response function, G(ω), at the 

frequencies of excitation: 

 ( ) ( ) ( ) ( )
1

2;c si k t

k c s

k

k e i
ω ωω ω ω ω ω

∞
−+

=−∞

= + = − +∑p F G G K M C  (5.18) 

By substituting Equations (5.17) and (5.18) into Equation (5.13), the following expression is 

obtained: 
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(5.19) 

Applying the orthogonality property to both sides of Equation (5.19), the coefficients of the cutting 

force, Fk, are expressed in the following recursive equation: 
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 (5.20) 

Equation (5.20) can be cast in the following matrix equation: 
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where Q is the number of harmonics considered in the solution. Equation (5.21) is rearranged into the 

following eigenvalue problem:  
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1
1 ci T

b e
ω− −

= Λ

= − Λ = −
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 (5.22) 

Having calculated Λ from the eigenvalues ofC, b will be the real part of  

 
( )1 c

R I

i T

i

e
ω−

Λ + Λ

−
 (5.23) 

where R
Λ

 and I
Λ

 are the real and imaginary parts of Λ. Also, because the width of cut b is a real 

quantity, the imaginary part of Equation (5.23) has to be zero. Applying these two conditions, the 

axial depth of cut at the border of stability is: 

 

2 2

R I

t R

b
K

Λ + Λ
= −

Λ
 (5.24) 

Since Ceq in matrix C depends on the axial depth of cut itself, at each spindle speed the following 

iterative procedure is performed to determine the axial depth of cut at the border of stability: 

1- Choose a frequency grid for ωc in the vicinity of tool dominant natural frequency. 

2- Set initial axial depth of cut, b=0. 

3- CalculateΑ ,B and C from Equations (5.21) and (5.22), respectively. Then calculate Λ 

corresponding to each eigenvalue ofC. For all of the Λ with negative real part and

Im 0
1 ci T

e
ω−

Λ 
= 

− 
, calculate the depth of cut from Equation (5.24).  

4- Update the initial b with the minimum value obtained from the entire frequency grid. 
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5- Repeat steps 3 and 4 until the change in the obtained depth of cut becomes smaller than a pre-

defined tolerance. To calculate the stability lobes, this procedure is executed for a span of 

spindle speeds. 

5.4 Semi-Discretization Method (SDM) 

In this section, the equivalent viscous damper of Chapter 4 given in Equation (5.7) is integrated into 

the SDM of [26] to calculate the stability lobes. Similar to MFS, the harmonic part of the cutting 

force is neglected.  Accordingly, Equation (5.12) can be re-written in the state space form: 
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(5.25) 

This equation can be transformed into the discretized time domain. To do so, the state of tool 

vibration, q(t), during one delay period, T, is represented by m discrete time intervals of length 

∆t=T/m. In the following derivation, the system state at each discrete time, q(і∆t), and the time 

varying coefficients at each discrete time, L(i∆t) and R(i∆t), will be denoted by qi, Li and Ri, 

respectively.  

At each interval, the time varying coefficients are assumed to stay constant; for example, during the 

i
th interval, L(t) and R(t) are approximated by Li and Ri, respectively. Also, if the time interval length 

is small enough, the system delay term, q(t-T), during the ith interval can be estimated by 0.5(qi-m+qi-

m+1). Applying these approximations, the DDE of Equation (5.25) is transformed into the following 

linear ordinary differential equation in the [i∆t, (i+1)∆t] time interval: 

 ( )1

1

2
i i i i i m i m− − += + +q L q R q q�  (5.26) 

By combining the homogeneous and particular solutions of Equation (5.26), the system state during 

the ith time interval is obtained as  

 ( )( ) 1

0 1

1
( )

2
i it t

i i i i m i m
t e

− −

− + −= − +L
q C L R q q  (5.27) 

where C0 is a constant depending on the initial condition of tool vibration and is determined by 

applying the continuity condition at t=i∆t : 
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Moreover, by applying the continuity condition at the other end of interval, t=(i+1)∆t, the system 

state at the (i+1)
th discrete point is obtained in terms of its state at the ith, (i-m+1)

th, and (i-m)
th time 

steps: 
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1 1
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e e
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q q I L R q q  (5.29) 

One can rearrange Equation (5.29) into the following matrix form: 
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(5.30) 

which, in turn, leads to the following recursive equation, mapping the system state during one delay 

period to its state during the following delay period through the system transition matrix, Φ: 

 
1 2 3; ...

i m i m+
′ ′ ′ ′= =Π ΦΠ Φ Φ Φ Φ Φ  (5.31) 

According to the Floquet theorem, if all of the eigenvalues of the transition matrix were located 

inside a unit circle in the complex plane, the system is stable; otherwise, it is unstable. Applying this 

theory, the stability of the cut at a certain spindle rotational speed, Ω=1/NcT, and axial depth of cut is 

examined.  At each spindle speed, this criterion needs to be applied on a grid of depths of cut to 

determine the border of stability. This is in contrast to MFS, where the limit width is calculated 

following an iterative procedure. To plot the stability lobes in SDM, the falling inside the unit circle 

criterion is applied on a grid of spindle speeds and depths of cut.  

Presented next are examples comparing the performance of MFS and SDM in establishing the 

stability lobes in milling including the linear viscous model of process damping. 

5.5 Stability Lobes from MFS and SDM 

In this section, the lobes computed using SDM and MFS will be compared for the ½immersion up-

milling example given in [25]. The dynamic and cutting coeficients of this example were given in 

Section 5.2.   
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In the first case, a tool wear width W=0.08 mm will be assumed to account for process damping. 

The stability lobes computed using SDM are shown in Figure 5-5. Also shown in this figure are the 

results of numerical simulations at several spindle speeds; the circles designate stable cut, whereas 

crosses indicate unstable cuts. An excellent agreement can be observed between the lobes computed 

using SDM and the numerical simulations. All circles fall below the stability boundaries and all 

crosses fall above these boundaries. This agreement verifies that the SDM algorithm including the 

linear viscous damping model of process damping is accurate in predicting stability over the whole 

tested speed range. Having said that, it must be realized that the accuracy of SDM depends on the 

resolution of discretization represnted by the parameter m. According to Equation (5.30), a higher 

number of divisions results in a bigger transition matrix, Φ, and consequently lengthier computations 

to extract its eigenvalues. Therefore, choosing the minimum number of devisions, m, to achieve the 

desired accuracy is critical for enhancing the efficiency of SDM. To illustrate this point, Figure 5-6 

shows the calculated limit depth of cut at 1000 RPM using different values of m. By increasing the 

number of divisions from m=30, in increments of 5, the calculated limit depth of cut decreases from 

14 mm and converges to 5.5 mm. Increasing of the number of devisions was stopped when the 

percentage change in the calculated depth of cut dropped below 1%. Figure 5-7 shows the results of 

investigating the effect of m at different spindle speeds, for the worn tool with W= 0.08 mm as well as 

for a sharp tool with W=0 mm. At each spindle speed, the minimum number of divisions to meet the 

1% criterion was determined. Figure 5-7 shows that higher number of divisions, m, is required for: 

1.  Lower spindle speed. 

2.  Higher level of process damping. 

The first reason is understandable, since a lower speed means a larger tooth-passing period, and 

thus a larger m would be needed to cover that period accurately. The second reason to increase m, the 

higher process damping, is not obvious: is it the increase in process damping or the increase in 

damping in general that neccessitates using a larger m? Attempts to answer this question will be given 

later.  
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Figure 5-5: Stability lobes computed using SDM and MFS; numerical simulation results: 

stable (circles) and unstable (crosses) 

 

 

Figure 5-6: Depth of cut at stability border computed using SDM with different numbers of 

division 



 

 86 

 

 

Figure 5-7: Minimum number of divisions required to achieve 1% accuracy in the prediction 

of axial depth of cut using SDM 

The stability lobes computed using the zero order MFS are also shown in Figure 5-5; the lobes 

agree closely with those computed from SDM at the higher speed range above 2300 RPM. Below 

2300 RPM, however, the zero order solution deviates significantly from the lobes obtained from 

SDM. Below 2300 RPM, the zero order solution also yields lobes that are in disagreement with the 

simulation results; all of the circles are above these lobes. This disagreement clearly shows that even 

for this non-shallow cut, the zero order solution underestimates the boundary limits at the low speed 

range. The MFS approach improves drastically by including the first and then both the first and 

second harmonics. By adding these harmonics, the lobes obtained from MFS converge to those 

obtained from SDM and get closer to the time domain simulations.   
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Figure 5-8: Frequency spectra of the regenerative parts of tool displacement normalized by 

the axial depth of cut: (a) at 1200 RPM and b=5.5 mm, and (b) 8000 RPM and 1.3 mm 

Figure 5-8 shows frequency spectra of the regenerative parts of the tool displacement in the X 

direction, normalized by the axial depth of cut for the cases: (a) 1200 RPM and depth of cut b=5.5 

mm, and (b) 8000 RPM and b=1.3 mm. The cut in both cases is unstable. Figure 5-8(b) shows a high 

spectral line at the chatter frequency, and the side bands at the tooth passing frequency corresponding 

to 8000 RPM to be small. In comparison, the spectrum of the tool displacement at the low cutting 

speed of 1200 RPM shows the spectral line at the chatter frequency to be smaller and the side bands 

at the tooth passing frequency to be much more significant. Whereas the vibration energy is 

concentrated at a single frequeny for the higher speed of 8000 RPM, it is spread over several 

frequencies dictated by the tooth-passing frequency at the lower speed of 1200 RPM. This explains 

the need to include higher harmonics in MFS at low speed, even for the current non-shallow 

immersion cut. This may also explain the need to use higher resolution, bigger m, in SDM to discern 

among close eigenvalues resulting from the solution of the transfer matrix.      

It is also examining if the need for higher harmonics in MFS and larger m in SDM is associated 

with increased damping in general. For this reason an example is given here where process damping 

is excluded by using a sharp tool with W=0 mm. The example will show two cases: (a) using the same 

parameters given in Section 5.2 where the modal damping ratios are ξx=0.039 and ξy=0.035., (b) using 

the same parameters in (a), except the damping ratios are artificially doubled to ξx=0.078 and 
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ξy=0.070. Figure 5-9 shows that the computed lobes from the zero order MFS agree closely with those 

obtained from SDM over the entire tested speed range for the low damping case. These lobes also 

agree well with the numerical simulations conducted at several speeds. Figure 5-10, at twice the 

damping ratios, shows that the zero order solution is inaccurate at low speed and two harmonics had 

to be included to bring the lobes closer to those obtained from SDM and to the simulation results. In 

other words, it is the increase in damping, irrespective of the source, that dictates including higher 

harmonics in the MFS approach. For the SDM approach, m=120 was used throughout the entire speed 

range based on the results presented in Figure 5-7. Obviously, that was an overly conservative 

approach, and a better procedure should be developed to automate the selection of m at different 

speed intervals. Such a procedure was not attempted here and could be a subject for future reseach.  

 

Figure 5-9: Stability lobes without process damping, ξx=0.039 and ξy=0.035; stable (circles) 

and unstable (crosses) obtained from numerical simulations 
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Figure 5-10: Stability lobes without process damping but with double structural damping, 

ξx=0.078 and ξy=0.070; stable (circles) and unstable (crosses) obtained from numerical 

simulations 

Figure 5-11 further explains the need to include higher harmonics in the MFS at increased damping 

and low speed. It is an adaptation of the explanation given by Merdol and Altintas [27]. In [27], 

however, the explanation was illustrated using the real part of the frequency response function of the 

vibratory system. For better visual impact, the imaginary part of G(ω) is utilized here.  

Figure 5-11(a) and (b) correspond to the lightly damped system, whereas (c) and (d) correspond to 

the highly damped system. (a) and (c) are associated with the low speed of 1200 RPM, while (b) and 

(d) are associated with the high speed of 8000 RPM. In all cases, G is evaluated at the chatter 

frequency ωc (thick line) as well as by shifting it to ωc± ωs (thin lines), where ωs is the tooth-passing 

frequency. At high speed, Figures (b) and (d), there is practically no interference between the side 

response functions and the middle one. This explains the accurate results from the zero order solution 

at high speed, regardless whether the damping was low or high. At low speed and light damping, in 

(a) there is some interference, which increases significantly in (c) when the damping is doubled. This 

example clearly shows the reason for the need to include higher harmonics in the MFS approach at 

low speed and high damping, as these harmonics contribute significantly to the dynamics of the 

system.
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Figure 5-11: The imaginary part of frequency response functions G(ω), thick line, and G(ω 

±  ωs), thin line: (a) ξx=0.039 and ξy=0.035 , 1200 RPM, (b) ξx=0.039 and ξy=0.035, 8000 RPM, 

(c) ξx=0.078 and ξy=0.070, 1200 RPM, and (d) ξx=0.078 and ξy=0.070, 8000 RPM 

It is intersting to see that Figure 5-10 shows the lower border of stability to increase below 2500 

RPM. The computed stability from the three independent methods, MFS with two harmonics, SDM 

and the time domain simulation agree on this increasing trend. It is an example where the only source 
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of damping is that associated with the vibratory model. This increasing trend of stability at the low 

speed can be attributed to the strong modulation of the system vibration by the tooth harmonics. Such 

modulation could prevent the concentration of vibration energy at any particular frequency and thus 

lead to higher stability. It should be realized, however, that the damping ratios in this theoretical 

example, ξx=0.078 and ξy=0.070 were made unusually high and not typical of those measured on 

machine tools. Perhaps, for this reason, the increasing trend in stability at low speed independent of 

process damping has not been reported in the literature, to the best knowledge of the current author. 
 

The above comparisons show that SDM is consistantly closer to the simulation results, and 

accordingly will be adopted in the remainder of this chapter. 
 

5.6 Finite Amplitude Stability in Milling 

Figure 5-12(a) shows a schematic of chip thickness variation during ½immersion up-milling 

operation, which was addressed in Section 5.1. In this operation, hH (shown as the gray area) varies 

from zero at φj=0⁰ to st at φj=90⁰. Because of the zero hH at the beginning of the cut, the tool jumps 

out of the cut even for the smallest vibration amplitude. Therefore, finite amplitude stability due to 

process damping nonlinearity is not possible in this operation. In other words, when the minimum 

magnitude of h
H is zero, the lower stability lobes separate the two states: stable and unstable. 

However, if the minimum hH is greater than zero, finite amplitude stability due to process damping 

nonlinearity may occur in milling. Figure 5-12(b) shows a schematic of chip thickness variation when 

the tool enters the cut at φst=45⁰ and exits at φex=135⁰. In this operation, the chip thickness varies 

between 
2

t
s

and st, and the amplitude of vibration can stabilize due to the additional process 

damping, without the tool jumping out of the cut. 
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Figure 5-12: Schematic of the total chip thickness in (a) ½ immersion up-milling operation, 

and (b) arc of cut between φst=45⁰⁰⁰⁰ and φex=135⁰⁰⁰⁰ 

 

Figure 5-13: (a) Lower lobes calculated for ½immersion up-milling (b) lower (thin line), and 

upper (thick line) lobes for φst=45⁰⁰⁰⁰, and φst=135⁰⁰⁰⁰; numerically simulated stable (circles), 

unstable (crosses) and finite amplitude stability (triangles) points 



 

 93 

 

Figure 5-14: The regeneration component of tool deflection in the feed direction, and total 

cutting forces resulting from simulation at P1 (a and b) and P2 (c and d) for ½ immersion up-

milling 

 

Figure 5-15: The regeneration component of tool deflection in the feed direction, and total 

cutting forces resulting from simulation at P3 (a and b) and P4 (c and d), where the cutting arc is 

between φst=45⁰⁰⁰⁰ and φex=135⁰⁰⁰⁰ 
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Figure 5-16: The regeneration component of tool deflection in the feed direction, and total 

cutting forces resulting from simulation at P3 (a and b) and P4 (c and d), where the cutting arc is 

between φst=45⁰⁰⁰⁰ and φex=135⁰⁰⁰⁰ 

The lower lobes, calculated using SDM for ½immersion up-milling, are reproduced from Section 

5.5 in Figure 5-13(a). Also shown in this figure are the numerically simulated stable and unstable 

cases. According to this figure, at the same speed, the unstable and stable points are close but at 

opposite sides of lower stability lobes. No finite amplitude stability is detected between the stable and 

unstable points. For illustration purposes, the results of simulation at P1 and P2 are shown in Figure 

5-14. The regeneration component of tool deflection and cutting force are normalized by the axial 

depth of cut. The amplitude of regeneration component dies down to zero at P1, below the lower 

stability lobes, and grows at P2, above the lobes. The vibration amplitude stabilizes at 3 µm due to the 

tool periodic disengagement from the cut. The drop of the cutting force to zero is an indication of tool 

disengagement.   

The lower lobes are computed also for milling between φst=45⁰, and φex=135⁰. The lower bound 

lobes are shown in Figure 5-13(b). Numerical simulations are carried out to examine the steady state 

of a set of cutting points; in this figure, the status of the cut is demonstrated with circles, triangles, 

and crosses. The circles stand for stable, the triangles for finite amplitude stability due to process 

damping nonlinearity, and the crosses for the unstable points. The amplitude of regeneration 

component dies down to zero at the stable points, similar to P1 in Figure 5-13(a), but it increases at 
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the unstable and finite amplitude stability points. To compare the finite amplitude stable points with 

the unstable ones, the results of numerical simulation at P3 and P4 are shown in Figure 5-15. The 

amplitude of regenerated vibration at P4 stabilizes at 100 µm, and the cutting force drops to zero due 

to tool disengagement. At P3, the amplitude of vibration stabilizes at 30 µm, but the steady state 

cutting force never drops to zero during any tooth-passing period. At P3, the amplitude of vibration is 

even larger than the amplitude of unstable point, P2, in ½immersion up-milling. The frequency 

spectra of the regeneration component of tool deflection at P1, P2, P3 and P4 are shown in Figure 5-16. 

The amplitude of regeneration at the chatter frequency at P1 is almost zero. At the rest of the points, 

the amplitude increases from P2 to P4. Although the amplitude at P3 is twice its magnitude at P2, the 

tool does not jump out of the cut at P3. That is why the cut at this point is regarded as finite amplitude 

stable due to process damping, whereas it is unstable at P2. Accordingly, the finite amplitude stability 

due to process damping occurs in this particular cut where the minimum thickness of the harmonic 

component of chip is greater than zero. 

5.6.1 Upper Bound Lobes in Milling 

The region of finite amplitude stability due to process damping falls between the lower and upper 

stability lobes. Having calculated the lower stability lobes in Section 5.5 and demonstrated the 

feasibility of finite amplitude stability in milling in the previous section, the calculation of upper 

stability lobes in milling is presented in this section. Apart from calculating the coefficient of 

equivalent viscous damper, the rest of the procedure is similar to that of the lower lobes presented in 

Section 5.5. 

The upper lobes determine the axial depth of cut at which the tool jumps out of the cut. The 

amplitude of vibration in the radial direction at the moment of disengagement depends on h
H. In 

turning, hH equals the feed per revolution, st, but in milling, it changes according to  

 ( )sinH

t
h s ϕ=  (5.32) 

where φ is the angular position of the engaged tooth. Consequently, depending on the angular position 

of the cutting tooth at the moment of separation, the amplitude of vibration varies. In this work, 

however, the disengagement is assumed to happen at the angular position corresponding to the 

minimum value of hH  between φst and φex; for example, in ½immersion up-milling, this angle is 0⁰, 

and in down-milling, it is 180⁰. Substituting the minimum value of h
H into Equation (3.11), the 

amplitude of vibration in the radial direction at the point of separation is obtained as 
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( )( )min sin

;
2

t

cr st ex

s
A

ϕ
ϕ ϕ ϕ= < <  (5.33) 

This amplitude, unlike in turning, does not stay constant during any one tooth-passing period at 

steady state. The amplitude of vibration varies due to the cutting interruption and harmonic excitation 

at the tooth-passing frequency. The variation of vibration amplitude, in turn, results in the variation of 

the viscous damping coefficient. To simplify the computation of the damping coefficient in Equation 

(4.10), the amplitude of vibration in the radial direction is assumed to stay constant during one tooth 

passing period. For instance, in the case of Figure 5-13(b), the minimum hH is 0.05mm and happens at 

φ=45⁰ or φ=135⁰. Accordingly, Acr is calculated at 0.035mm from Equation (3.11). The amplitude of 

vibration in the radial direction is assumed to stay constant at 35 µm during one tooth engagement, 

and the following steps are executed to calculate the upper stability lobes shown in Figure 5-13(b):  

1- For Acr=35 µm, and γ=7⁰, the constants in Equation (4.10) are extracted from Table 4-1 at 

α=0.586, βw=2, and βL=-0.33.  

2- The natural frequency and modal stiffness of the tool in the X and Y directions are typically 

close to each other. Therefore, the chatter frequency is assumed to be equal to the average 

natural frequency: fc=(fx+fy)/2. If the tool structural stiffness in the X and Y directions were 

different, the chatter frequency would be selected equal to the natural frequency of the 

compliant mode.  

3- Having calculated the chatter frequency in step 2, the wavelength is obtained from L=ΩR/fc 

4- By substituting L from step 3, and α=0.586, βw=2, βL=-0.33, and W=0.08mm in Equation 

(4.10), Ceq is calculated at each spindle speed. 

The calculated Ceq is employed in the SDM, presented in Section 5.4, to calculate the upper bound 

lobes. The computed finite amplitude region reasonably agrees with the results of numerical 

simulation. The slight over-estimation of the upper lobes is associated with the assumption made 

about the amplitude of vibration. Tool deflection in the radial direction during one tooth-passing 

period at P4 is shown in Figure 5-17. In the beginning of engagement, where the tool jumps out of the 

cut, the amplitude of vibration is close to 35µm. Although the amplitude stays fairly constant during 

the rest of the tooth-passing period, it is less than 35 µm. In the next section, this issue will be further 

elaborated.  
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Figure 5-17: The regeneration component of tool deflection in the radial direction during one 

tooth-passing period at the steady state for P4, shown in Figure 5-13(b) 

5.7 Experimental Verification 

In this section, a set of milling experiments are presented to verify the accuracy of the developed 

methods in the prediction of stability borders. A 25.4mm diameter endmill with a single carbide insert 

was used to eliminate the effect of runout. The clearance angle was 7⁰, and a flank wear width of 0.08 

mm was generated by grinding. The feedrate, st, was kept constant at 0.05 mm/tooth. Impact tests at 

the free end of the tool in the X and Y directions were performed. The following modal parameters 

were obtained: 

4.74x

N
K

mµ
= , 4.27 ,y

N
K

mµ
=

 

346 
x
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65.30 . /
x

C N s m= ,

60.78 . / ,yC N s m=
 

0.015x yζ ζ= =
 

The cutting force coefficients for the Aluminum workpiece were obtained from a set of cutting 

tests using a sharp insert: 
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The specific indentation force, Ksp , and the coulomb friction coefficient, µ, for the Aluminum 

workpiece were reported at 1.5×1014 N/m3 and 0.3, respectively, in [35]. The workpiece was clamped 

on a Kistler 9255 table dynamometer, which in turn was clamped to the DCKEL-MAHO 5-axis 

milling center. Impact tests were also conducted on the workpiece in the X and Y directions. These 

tests showed the rigidity on the workpiece side to be much higher than that measured on the tool, and 

thus the flexibility of the workpiece as mounted on the machine table could be neglected.  

The cutting forces were recorded at each axial depth of cut and spindle speed. Chatter development 

was identified from the force time plots. 

5.7.1 Half and Full Immersion Cuts 

Two cut geometries are utilized in this section: ½ immersion up-milling and full immersion. Because 

the minimum chip thickness is zero in both of these cases, a finite amplitude stability region due to 

process damping will not exist, and a single boundary lobes is established. Figure 5-18 shows the 

measured forces for the ½ immersion cutting and speed 1500 RPM; (a) at axial depth of cut 1mm (a 

stable cut) and (b) at 1.5 mm (an unstable cut).
  

 

Figure 5-18: Samples of measured cutting forces in ½ immersion up-milling test: (a) stable 

point, 1500 RPM, b=1 mm, (b) unstable point, 1500 RPM, b=1.5 mm 
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Figure 5-19 and Figure 5-20 show the stability lobes computed using SDM for the ½ immersion 

up-milling and full immersion, respectively. The results from experimental tests are also shown in 

these figures. In both cases the experimental results are in close agreement with the SDM lobes. This 

further verifies the SDM as an accurate and effective way for establishing the lobes in milling using 

the viscous damping model of process damping.  

 

Figure 5-19: Stability lobes computed using SDM, and experimentally measured stable 

(circles) and unstable (crosses) points for ½ immersion up-milling 
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Figure 5-20: Stability lobes computed using SDM, and experimentally measured stable 

(circles) and unstable (crosses) points for full immersion 

5.7.2 Cutting Between φst=45⁰⁰⁰⁰ and φex=145⁰⁰⁰⁰ 

This test is designed to study the occurrence of finite amplitude stability due to process damping 

when the minimum hH is nonzero. The upper and lower stability lobes shown in Figure 5-21 are 

computed using SDM. To compute the upper stability lobes, the procedure of Section 5.6.1 is 

employed, and the amplitude of vibration during one tooth engagement is assumed to remain constant 

at Acr=25µm. Since the feedrate in this test is 0.05 mm/tooth, Acr associated with the minimum chip 

thickness is calculated at 25µm. Also shown in this figure are the experimentally measured stable, 

unstable and finite amplitude stability cuts demonstrated by circles, crosses and triangles, 

respectively. Some samples of the measured stable, unstable and finite amplitude stability cutting 

forces are shown in Figure 5-22. The drop of the cutting forces to zero, depicted in Figure 5-22(c), is 

regarded as an indication of tool disengagement and unstable cuts. All of the stable points are located 

below the lower lobes. However, many unstable points fall below the upper lobes. To investigate the 

reason of stability over-estimation, numerical simulation is conducted at 950 rpm and b=2.5 mm, 

which is an unstable point according to the experiments and finite amplitude stability point according 

to the computed upper bound. The regeneration component of the radial deflection of tool during one 

tooth-passing period at the steady state is shown in Figure 5-23. According to this figure, the 
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amplitude of vibration gradually grows and reaches 25 µm at the end of engagement where the tool 

jumps out of the cut. Thus, assuming 25 µm for the amplitude of vibration during the entire tooth-

passing period will result in the over-estimation of vibration amplitude and increased process 

damping. The upper bound lobes computed using Acr=10 µm and Acr=15 µm are shown in Figure 

5-21. The lobes calculated using Acr=15 µm still over-estimate the finite amplitude stability borders, 

but the ones at Acr=10 µm seem to be close to the experimental evidence. 

 

Figure 5-21: Calculated lower bound lobes (thin line), upper bound lobes using Acr=25 µm 

(dotted line), upper bound lobes using Acr =15 µm (dashed line) and upper bound lobes using Acr 

=10 µm (thick solid line) for φst=45⁰⁰⁰⁰, and φex=145⁰⁰⁰⁰; experimentally measured stable (circles), 

unstable (crosses) and finite amplitude stability (triangles) 
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Figure 5-22: Samples of (a) stable, (b) finite amplitude stability, and (c) unstable cutting 

forces measured in φst=45⁰⁰⁰⁰ and φex=145⁰⁰⁰⁰;  (a) 920 rpm b=2mm, (b) 920 rpm b=3mm, and (c) 910 

rpm b=3.5mm 

 

Figure 5-23: The regeneration component of tool deflection in the radial direction during one 

tooth-passing period at steady state: 950 rpm, b=2.5mm of φst=45⁰⁰⁰⁰, and φex=145⁰⁰⁰⁰. 

For further investigation, the stability lobes are calculated for the same cutting system, but with 

four cutting teeth and no runout. Figure 5-24 shows the lower and upper bound lobes obtained for a 
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system similar to Figure 5-21, except that the number of cutting teeth is now four. By increasing the 

number of teeth, the cut becomes less interrupted and the amplitude of vibration stays relatively 

constant during the tooth engagement. Figure 5-25 shows the regeneration component of the tool 

deflection in the radial direction simulated at 750 RPM, b=1mm, and N=4 during one tooth passing 

period; the amplitude of vibration stays close to 25µm during the entire period. The stability of the cut 

at a set of spindle speed and depth of cuts is examined using numerical simulations and the results are 

shown in Figure 5-24. In this case, the upper bound lobes obtained from Acr=25µm accurately predict 

the border between finite amplitude stability and unstable cuts.   

 

Figure 5-24: Computed upper (thick line) bound lobes using Acr=25µm and lower bound 

lobes (thin line) of φst=45⁰⁰⁰⁰, φex=145⁰⁰⁰⁰, and with four cutting teeth; stable (circles), unstable 

(crosses) and finite amplitude stability (triangles) points obtained from numerical simulation 

 



 

 104 

 

Figure 5-25: The regeneration component of tool deflection in the radial direction during one 

tooth-passing period at steady state, 750 rpm, b=1mm of φst=45⁰⁰⁰⁰, φex=145⁰⁰⁰⁰, and four cutting 

teeth 

5.8 Summary 

The basic formulation of the Multi Frequency approach, MFS, was extended in this work to include 

the effect of process damping at higher harmonics. It has been long argued in the literature that the 

zero order is sufficient to establish the stability lobes for most milling operations, and that higher 

harmonics are only needed in cases of shallow immersion cuts. In this work, it was demonstrated that, 

even for non-shallow cuts, these higher harmonics are needed at lower cutting speeds and higher 

damping levels. 

The linear viscous damping model of process damping was also added in the formulation of the 

Semi Discretization Method. SDM was found to yield excellent results throughout the tested speed 

range, provided that a sufficient number of discretization points within the tooth period are utilized. 

The effect of this number on the accuracy of the computed stability boundary was investigated. It was 

found that larger number of divisions is required at lower speeds and higher damping. Accordingly, a 

conservative large number of divisions was utilized in this work to assess the performance of MFS 

and SDM. Even with that large number, SDM was more accurate and generally faster in establishing 

the stability lobes than with MFS. For instance, on a PC with a 2.2 GHz processor, the lobes in Figure 

5-5 for ½ immersion up-milling example were calculated in 40, 290 and 690 seconds using zero, zero 
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+ first, and zero+ first + second order MFS, respectively. While the accuracy improved by adding 

higher harmonics, the computation time increased drastically. In comparison, it took only 100 

seconds to compute the same lobes accurately using SDM. 

In this chapter, an effective procedure was also developed to better recognize the onset of 

instability from time domain simulations. This was accomplished by running the simulation with and 

without the regenerative component of the chip thickness, and identifying the onset of instability from 

the vibration associated with the regeneration component only. This method of simulation will be 

used in the remainder of the thesis to distinguish stable from unstable milling.  

Moreover, it was found that at higher levels of structural damping, the stability of the process 

increases at low speed (beyond the obvious increase due to the elevated level of damping). This was 

demonstrated on a theoretical example with unusually high modal damping ratios of 7 and 7.8% and 

in the absence of any damping due to tool/workpiece interaction. This finding could help design tools 

to machine particular materials, like Titanium, at low speeds.   

Besides establishing the stability lobes for milling, the occurrence of finite amplitude stability in 

this operation due to process damping was studied as well. The results of numerical simulation 

showed that finite amplitude stability is feasible in milling if the thinnest part of the harmonic 

component of chip was nonzero. Then, the lower and upper bounds of finite amplitude stability region 

were developed using SDM and amplitude dependent process damping model. The accuracy of the 

presented upper and lower bounds were examined by conducting a series of cutting experiments. 

While the experimental results showed a great agreement with the lower bound, they also revealed 

that the accuracy of the upper bound depends on the correct approximation of Acr.  
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Chapter 6 

Modeling of Chatter in Flank milling 

In this chapter, the Semi Discretization Method, SDM, is employed to model chatter in flank milling 

using cutters with helical teeth. Process damping is included in the model using the equivalent 

viscous damper approach. The development is demonstrated first in straight cutting of plain surfaces. 

Stability lobes are established for these surfaces using an effective flank wear that also accounts for 

tool radial runout. A new approach of presenting the stability of the cut at different locations along 

the toolpath is developed; it is designated as the stability maps. The stability maps are established for 

5-axis flank milling of three surfaces. Unlike stability lobes, stability maps are toolpath specific, and 

are verified in this study using numerical simulations and cutting experiments. 

In the next two sections, the coordinate systems and toolpath planning strategy used in this chapter 

are described briefly. In Section 6.3, the governing equations for tool vibration are derived; a 2 degree 

of freedom (2 DOF) vibratory system will be employed to represent the dynamics of the system. The 

system’s flexibility is restricted to the tool side, and the workpiece will be assumed rigid. A nonlinear 

mechanistic model will be used to formulate the cutting forces. The start and exit angles and the 

actual feedrate at each cutter location are calculated in Sections 6.4 and 6.5, respectively. Next, the 

Semi Discretization Method (SDM) for the helical teeth and including process damping will be 

presented in Section 6.6. In Section 6.7, the presented method will be illustrated in straight cutting of 

flat surfaces to establish the stability lobes; stability maps will also be presented in this section. The 

accuracy of stability lobes and maps for flat surfaces is verified by conducting cutting experiments. In 

section 6.8, the developed method will be applied to examining the stability of the cut at each cutter 

location in 5-axis flank milling of three curved surfaces. These predictions are verified using 

experimental measurements and numerical simulations. Finally, stability maps are established for the 

flank milling cases and shown to agree with numerical simulations over a wide range of spindle 

speed.   

6.1 Coordinate System 

In tool path planning of 5-axis flank milling, tool position is determined in a coordinate system 

attached to the workpiece, Cwp. This coordinate system is shown in Figure 6-1. Two other coordinate 

frames are used in this chapter: the tilt/rotary table frame Ctr and the tool Ct frame. Ctr is attached to 
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the tilt/rotary table center and does not rotate with the table. This frame is used to calculate the tool 

and workpiece relative motion, which determines the actual feedrate. Ct is attached to the tool tip, and 

it does not rotate with tool. This frame is suitable for following the dynamics of the tool, and was 

used in the previous sections to describe tool vibration (XYZ). In this part the flexibility is assumed to 

be dictated by the tool. In cases where thin blades and the like are being machined, the flexibility of 

the workpiece should also be taken into account. 

 

 

Figure 6-1: Coordinate frames of tilt/rotary table, workpiece and tool 

6.2 Tool Path Planning 

Knowing the parametric formulation of two curves ( )R v and ( )S v on a surface in Cwp, Bedi et al. 

[53, 54] placed a cylindrical tool on the surface such that the tool would be tangent to both curves at 

the same parametric coordinate v , as shown in Figure 6-2. Since the tool is tangent to the guiding 
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curves (rails), they are precisely machined. However, overcut might yet happen at other points on the 

surface. 

 

Figure 6-2: Tool path planning strategy: cylindrical tool tangent to two curves on the surface  

Details of the derivations to find the tool locations and tool axis orientations along the path are 

available in [53 and 54]. For the sake of completeness, these derivations are briefly recapitulated 

below.   

Applying the tangency condition at each tool position, 
lj

v ; jl=1..Nl, as illustrated in Figure 6-2, 

results in the following set of nonlinear algebraic equations: 

1 1 1 1

2 2 2 2

cos sin

cos sin

p q R

p q R

β β

β β

+ =


+ =
 (6.1) 

where 

1 2 2( ) sin cos
l l j j j j jl l l l l

j j m b m m m
p R Rβ β= − + +R S R S R S Ri i i  

1 2 2( ) sin cos
l l j j j j jl l l l l

j j b b b m b
q R Rβ β= − + +R S R S R S Ri i i  

2 1 1( ) sin cos
l l j j j j jl l l l l

j j m b m m m
p R Rβ β= − + +R S S R S R Si i i  

2 1 1( ) sin cos
l l j j j j jl l l l l

j j b b b m b
q R Rβ β= − + +R S R R S R Si i i . 
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In this equation, Rjl and Sjl are the values of the curves R(v ) and S(v ), respectively, at 
lj

v , and 

(Rtjl, Rbjl, Rmjl) and (Stjl, Sbjl, Smjl) are the Frenet frames at the tangent points [80]. R is the radius of the 

cutter. The numerical solution of Equation (6.1), for each value of 
lj

v , yields the two unknown 

angles β2 and β1. These are the angles between the surface normal and the lines connecting the tool 

center to the contact points on the guiding curves. Since these angles are located in the planes normal 

to the guiding curves, one can use them to calculate the coordinates of two points on the tool axis, V1jl 

and V2jl. Having calculated V1jl and V2jl, the tool position and orientation are now fully defined at 

location jl. This process is repeated at all locations, jl=1..Nl, to generate the cutter location file, CL, 

along the path. 

Having calculated the coordinates of two points on the tool axis, V1jl and V2jl, the tool orientation 

vector is obtained as the vector connecting these two points: a(v)=V2(v )-V1(v ). The magnitude of 

this vector represents the axial depth of cut: b≡|a(v )|.  

It was shown by Bedi et al. [54] that the tool axis will sweep a ruled surface ( , )S u v , where u is 

the parametric variable along the tool axis. On the other hand, the imprint of the tool on the 

workpiece, which is the machined surface, will not necessarily be a ruled surface. This imprint is 

referred to as the “grazing” surface; it is determined by shifting the surface swept by the tool axis, 

( , )S u v , in the direction normal to it by the radius R. Accordingly, the analytical formulation of the 

grazing surface is written as: 

( , )
( )

( , ) ( , ) . .
( , )

( )

d

d
R

d

d

 
× 

 = +

×

S
a

G S
S

a

u v
v

v
u v u v

u v
v

v

 (6.2) 

For a surface made in several passes, the grazing surface left in the previous cut, say ( , )pG u v , 

will represent the original material to be removed to generate the machined surface ( , )G u v  in the 

current pass. In this paper, ( , )G u v will be the finishing pass. Both ( , )G u v and ( , )pG u v will be 

utilized to compute the start and exit angles of the cutting edges into the stock, as will be shown in 

Section 6.4. 
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6.3 Dynamic Model 

The dynamic model of the system is shown in Figure 6-3 and is described in the tool coordinate 

system. The structural model has two orthogonal modes in the Xt and Yt directions. The workpiece is 

assumed rigid as well as the tool in the axial direction. In Figure 6-3, Kx, Mx and Cx are the modal 

stiffness, mass and damping coefficients in the Xt direction, respectively. Likewise, Ky, My and Cy are 

the modal stiffness, mass and damping coefficient in the Yt direction. These parameters are obtained 

from impact modal testing performed at the free end of the tool. The modal parameters are assumed 

not to change at different cutter locations throughout the toolpath. 

The equation governing the vibration of the tool in the Xt and Yt directions, p, is 

 
0 0 0

; ; ;
0 0 0

x x x

y y y

M K C

M K C

     
+ + = = = =     

     
Mp Kp Cp F M K C�� �  (6.3) 

In this equation, F is the vector of total cutting forces and is calculated by adding together the 

elemental cutting forces along the tool axis, as explained below. 

 

(a) 

 

 

 

 

 

(b) 

Figure 6-3: (a) Discretizing engaged length of the tool and feed vectors. (b) Dynamic model, 

chip thickness, and start and exit angles of the axial element je 
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Figure 6-3 (a) shows the engaged part of the tool at position jl; jl =1..Nl. The distance between V1jl 

and V2jl determines the axial engagement of the tool: 

 2j 1jb
l l lj = −V V  (6.4) 

The tool is divided into Ne disks of equal thickness, ∆z=bjl/Ne. The center of the je
th disk at position 

jl is designated C jl, je. This center is V1 jl at the top disk, and V2 jl at the bottom disk; these designations 

were kept the same as those used by Bedi et al. [53, 54]. In the following, however, the subscripts jl 

and je will be dropped whenever extra subscripts are needed to describe variables, or wherever it is 

intuitive to follow those variables. At each disk, je=1..Ne, the position of cutting tooth, jc=1..Nc, is 

determined by its angular position φ with respect to Yt according to:  

 
(2 1). tan2

( 1). e

c

c

j z
t j

N R

ψπ
φ

− ∆
= Ω + − +  (6.5) 

where Nc is the number of teeth, ψ is the tool helix angle, and Ω is the spindle rotational speed. Notice 

that subscripts of some variables are dropped whenever the definition of the variable is obvious. For 

example, the angle φ could have subscripts to define the tooth, and the elemental disk, but that is 

easily understood. If φ falls between the start, φst, and exit, φex, angles, then the jc
th tooth is engaged in 

the cut. The start and exit angles in 5-axis machining vary at each cutter location and at each 

elemental disk. The calculation of these angles will be addressed in Section 6.4. 

The elemental tangential and radial forces are calculated using the following force model: 

 
t ts tp

r rs rp

F F F

F F F

= +

= +
 (6.6) 

Fts and Frs are the incremental tangential and radial shear forces acting on the jc
th tooth respectively, 

and similarly Ftp and Frp are the ploughing forces. 

The ploughing forces are modeled using the equivalent viscous model established in Chapter 4: 

 
( ) ( )

( )

1
; . ;

0cos

.

st ex

rp eq eq sp d

st ex

tp rp

z
F g C r C K C g

or

F g F

ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕψ

ϕ µ

< <∆
= = = 

> >

=

�
 (6.7) 

where r is the tool radial deflection at the axial element je and tooth jc, and ‘.’ designates the first 

degree time derivative. In this chapter, the damping shape factor, Cd , is 0.25W
2, where W is the tool 

wear. This implies that small amplitude vibration is assumed. For a cutter with helical teeth one 

would expect the wear to vary from one tooth to the next as well as along the tooth edge. This is 

further complicated by tool runout.  In the present model a uniform wear land of a constant value will 



 

 112 

be assumed for all the elemental disks. The value of W will be designated “effective wear” and will be 

estimated from experimental evidence. The estimation of effective wear and its effect on the predicted 

stability borders will be discussed in Section 6.7.  

In the previous chapters, the shear forces were assumed to be linear functions of the uncut chip 

thickness and the cutting force coefficients were estimated empirically. Yet, the estimated coefficients 

are shown to be nonlinear functions of the uncut chip thickness [14] themselves. Due to the additional 

rotational axis in 5-axis machining, the feedrate, and consequently the uncut chip thickness, varies at 

each cutter location and each elemental disk. Accordingly, instead of applying the linear mechanistic 

model of previous chapters, the following nonlinear mechanistic force model is used to simulate the 

shear forces: 

 

 ( ) ( ). . , . .t r

ts t rs r
F g K h z F g K h z

α αϕ ϕ= ∆ = ∆   (6.8) 

where h is the instantaneous chip thickness. αt, αr, Kt and Kr are the constant cutting force 

coefficients, which are estimated experimentally.  For aluminum alloy 6061-T6 [17], they were 

estimated at:  

 
2

2

1250 , 0.933

568 , 0.789

t t

r r

N
K

mm

N
K

mm

α

α

= =

= =

 (6.9) 

In Equation (6.8), to obtain the radial and tangential shear forces in N using the coefficients of 

Equation (6.9), one needs to insert the chip thickness, h, and element thickness, ∆z, in mm.  The 

instantaneous chip thickness, h, consists of a harmonic component, hH, due to the tool feed motion, 

and a regeneration component, hreg, due to the vibration in subsequent teeth engagement: 

 ; sin , ,
stH reg H reg T

a

ex

upmilling
h h h h f h r r

downmilling

ϕ ϕ
θ θ

ϕ ϕ

 −
= + = = − = 

−
 (6.10) 

where fa is the feed/tooth on element je at cutter location jl.  The chip harmonic component, over the 

elemental disk engagement in the cut, is shown with the gray area in Figure 6-3. The regenerated part 

of the chip thickness at each angular position is produced due to the tool vibration in the current cut 

and the undulations left on the surface machined by the preceding tooth. Keeping track of workpiece 

surface undulations in 5-axis machining is not an easy task. In the current work, the tool vibration 

during the preceding tooth engagement will be taken as the surface undulation. This assumption is 
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reasonable as long as the tool tangential speed is much higher than the feed motion, which is the 

situation here.  

The tool radial displacement, r, is composed of the displacements in the Xt and Yt directions 

according to: 

( ) ( ) [ ]
( )
( )

; sin cos ;
x t

r
y t

ϕ ϕ ϕ ϕ
 

= = =  
 

r p r p  (6.11) 

Substituting the uncut chip thickness from Equation (6.10) in Equation (6.8) results in the 

following: 

 

 
( ) ( )

( ) ( )

sin

sin

t

r

T

ts t a

T

rs r a

F g K f r r

F g K f r r

α

α

ϕ θ

ϕ θ

= + −

= + −
 (6.12) 

Landers and Ulsoy in [17] employed the nonlinear force model in the frequency domain calculation 

of stability lobes. For this reason, they linearized the cutting force model around the harmonic part of 

chip thickness:  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

ˆ ˆsin ; sin

ˆ ˆsin ; sin

t t

r r

T

ts t a t t t t t

T

rs r a r r r r t

F g K f g K r r K K s

F g K f g K r r K K s

α α

α α

ϕ θ ϕ α θ

ϕ θ ϕ α θ

−

−

≈ + − =

≈ + − =
 (6.13) 

In Equation (6.13), the first terms of radial and tangential forces do not affect the stability of the 

cut. Therefore, by neglecting these parts, one can express the shear forces as 

 
( ) ( )
( ) ( )

ˆ

ˆ

T

ts t

T

rs r

F g K r r

F g K r r

ϕ

ϕ

= −

= −
 (6.14) 

Equation (6.14) is a linear mechanistic model, for which the cutting force coefficients, ˆ
tK  and ˆ

rK , 

vary at each elemental disk, je=1..Ne, and tooth rotation angle, φ.  

Combining the shear and ploughing forces from Equation (6.14) and (6.7), respectively, the total 

tangential and radial cutting forces on the cutting tooth jc of the je element is obtained as: 

 
( ) ( ) ( )

( ) ( ) ( )

ˆ

ˆ

T

t t eq

T

r r eq

F g K r r g C r

F g K r r g C r

ϕ ϕ µ

ϕ ϕ

= − +

= − +

�

�
 (6.15) 

Substituting the tool radial displacement from Equation (6.11) in Equation (6.15) returns the 

tangential and radial cutting forces in terms of tool deflection in the Xt and Yt directions: 
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 ( ) ( ) ( )
ˆ

( ) ( )
ˆ 1

tt

eq

r r

KF
g t t T g C

F K

µ
ϕ ϕ

    
= − − +    

     
r p p rp�  (6.16) 

These forces are projected onto the Xt and Yt directions: 

 ( ) ( )
cos sin

;
sin cos

x t

y r

F F

F F

ϕ ϕ
ϕ ϕ

ϕ ϕ

− −     
= =     −   

T T  (6.17) 

The total cutting forces are computed by the summation of the elemental forces acting on all 

cutting teeth, jc=1..Nc, of all elemental disks, je=1..Ne: 

 
1 1

e c

e c

N N
x

j j y

F

F= =

 
=  

 
∑∑F  (6.18) 

By inserting Equation (6.16) into Equation (6.17), and then the result into Equation (6.18), the total 

cutting forces are calculated in terms of the tool deflections, p: 
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 (6.19) 

By substituting the total cutting force, F, as a function of tool deflection in the X and Y directions, 

p, from Equation (6.19) in Equation (6.3), the equation governing the vibration of the 2 DOF system 

is obtained as a DDE with time-varying coefficients. In Section 6.6, SDM will be used to determine 

the stability of the system described by this DDE. Before doing so, the calculation of start and exit 

angles, as well as the actual feedrate at each elemental disk and each cutter location, will be explained 

in the next two sections.   

6.4 Start and Exit Angles 

The start, φst, and exit, φex, angles associated with each elemental disk depend on the grazing 

surface generated in the previous cut, ( , )pG u v , and the grazing, or the machined surface, ( , )G u v , 

in the current cut. This is illustrated in Figure 6-4 for the down-milling operation. In this case, φst is 

determined by the intersection of the disk with ( , )pG u v , whereas φex is found at the tangent (grazing 
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point) of the disk with the machined surface ( , )G u v . Both the tangent and intersection points are 

determined in the workpiece coordinates, Cwp. They have to be transferred to the tool coordinates, Ct, 

to compute the entry and exit angles as explained below.                                                   

 

Figure 6-4: Start and exit angles for down-milling 

The tangent point is obtained by simply substituting, in Equation (6.2), the 
ej

u , and 
lj

v parameters 

corresponding to the elemental disk je and tool movement step jl. This yields ( , )
e lj jG u v . As 

indicated in Figure 6-4, its corresponding Cartesian coordinates are  Xex, Yex and Zex in Cwp. The 

subscript “ex” refers to exit. While obtaining the tangent point is straight-forward enough, finding the 

intersection point between the elemental disk and the surface grazed in the previous cut is more 

involved. This is illustrated with the help of Figure 6-5.   
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Figure 6-5: Intersection of sphere and normal plane with the surface generated in the 

previous cut 

The intersection point can be thought of as the intersection point of three geometrical entities: a 

sphere, whose center coincides with the disk center, Cjl,je, and its radius equal to the tool radius; the 

plane of the disk that contains Cjl,je and is normal to the tool axis; and the surface, ( , )pG u v , grazed 

in the previous cut. Mathematically, this intersection is obtained by solving the following equations: 

,

2
2

,

( , ). ( ) . ( ) 0

( , ) 0

l l e l

l e

p j j j v j

p j j
R

− =

− − =

G a C a

G C

u v v v

u v
 (6.20) 

The numerical solution of Equation (6.20) yields two intersection points, as shown in Figure 6-5. 

Knowing the initial conditions and the direction of motion of the tool, the proper intersection point is 

selected. The Cartesian coordinates of this intersection point will be designated Xst, Yst, and Zst where 

the subscript “st” refers to start. Again, this intersection point is obtained in Cwp.   

Since the simulation of the dynamics is done in the tool coordinate system, the exit (Xex,Yex,Zex)wp 

and entry (Xst,Yst,Zst)wp points in Cwp must be transferred to (Xex,Yex,Zex) and (Xst,Yst,Zst), respectively, in 

Ct. This transformation is conducted according to the expression in Equation (6.21): 
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1 1

XZ t wp

t wp

X X
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where; 
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 −
 
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A and C are the tilt and rotary angles, and (V2
x, V2

y, V2
z) are the Cartesian coordinates of the tool 

tip in Cwp. Having obtained (Xex,Yex,Zex) and (Xst,Yst,Zst) following the above transformation, the start 

and exit angles, which are measured from the axis Yt of the tool coordinate frame Ct, are obtained 

from Equation (6.22).   

1 1tan , tanst ex
st ex

st ex

X X

Y Y
ϕ ϕ− −= =  (6.22) 

6.5 Chip Thickness 

h is the uncut chip thickness at the tooth jc, elemental disk je, and tool location jl. It consists of 

harmonic, hH, and regenerated, hreg, components, as expressed in Equation (6.10). The harmonic part 

depends on the feedrate, fa, which varies at each cutter location and elemental disk. The calculation of 

actual feedrate is addressed in this section.  

Due to the tilt and rotary axes, the feedrate vector for each disk is different [62, 69]. This is 

indicated in Figure 6-3(a). This feedrate vector is the relative velocity vector between the tool and the 

workpiece; for disk je, it can be determined from: 

1, ,

,
l e l e

l e

j j j j

j j
t

+ −
=

∆

C C
f  (6.23) 
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where t∆ is the time it takes for the disk center to move from the jl
th to the (jl+1)

th position. This time 

is determined by the programmed feedrate and the interpolation strategy that the post-processor uses 

for the synchronization of linear and rotational axes. In the DECKEL-MAHO 5-axis machining 

center, TNC 430 used in the current work, the processor employs the pseudo-distance parameter (of 

inconsistent units) for interpolation, as follows: 

2 2 2 2 2

tr tr trds X Y Z= ∆ + ∆ + ∆ + ∆ + ∆A C  (6.24) 

where: 

j 1 jl l
2 2( )
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tr tr

tr
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Y

Z
+

∆ 
 ∆ = − 
 ∆ 

V V  (6.25) 

V2jl is the tool tip location at step jl with respect to the tilt/rotary frame Ctr. Notice that, in our setup, 

the increment (V2jl+1-V2 jl) in Ctr is the same as (V2 jl +1-V2 jl) measured relative to a fixed datum (home 

position) on the machine  [81]. To apply Equation (6.24), V2 jl; jl =1..Nl must be transformed first from 

Cwp to Ctr. For this change, the transformation in Equation (6.26) is applied: 

. . ;
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In Equation (6.26), A and C are in degrees and Utr�wp is the vector, as shown in Figure 6-1, which 

goes from the origin of Ctr to that of Cwp.  

Having calculated the pseudo-distance parameter, the elapsed time to move from position jl to jl +1 

is obtained from: 

program

ds
t

f
∆ =  (6.27) 

where fprogram is the programmed feedrate. Substituting t∆ in Equation (6.23), we get 
,l ej jf . In this 

study, a straight cylindrical tool is used, and thus only the component of 
,l ej jf perpendicular to the tool 
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axis,
 ,j jl e

t
f , contributes to the chip thickness. As such, the chip thickness expression presented here is 

a simplification of that developed by Ferry and Altintas [62] for tapered endmills. The subscript “t” 

refers to the “tangent” to the tool. This tangent feed component determines the feed per tooth, fa. 

Equation (6.28) gives this feed per tooth acting on disk je at tool position jl. Notice that, in Equation 

(6.28), full subscripts are included for clarification: 
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6.6 Stability Analysis Using SDM 

The cutting forces obtained in Equation (6.19) are substituted in Equation (6.3), and the resulting 

DDE is rearranged in the following state space form: 
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 (6.29) 

The presented state space equation follows the same format as Equation (5.25), with the difference 

between the two equations being in the formation of the directional coefficient matrices, A and B. In 

Equation (6.29), they are made of the elemental matrices obtained from each axial disk je=1..Ne. For 

each disk, the start and exit angles vary, as do the cutting force coefficients at each angular position of 

cutting tooth. After calculating the directional coefficient matrices, they are applied in the SDM 

procedure explained in Section 5.4 to determine the stability of cut. In the next section, the method 

will be illustrated in the machining of flat surfaces using straight cuts. The results will be presented in 

the form of stability lobes, and the stability map concept will be introduced. 
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6.7 Milling of Flat Surfaces Using Helical Tool 

In this section, SDM is used to develop stability lobes and maps of milling of flat surfaces at 

different radial immersions. A set of cutting experiments is also carried out to verify the accuracy of 

the presented method in the prediction of cutting stability. The tool used in the experiments was a 4-

flute 25.4 mm diameter HSS endmill with helical teeth mounted on a DECKEL-MAHO 5-axis 

machining center. The following parameters were identified from the modal analysis of the frequency 

response functions, FRF, measured at the free end of the tool, using hammer impact: 

 

7

7

338 , 1.8 10 0.03

350 , 0.9 10 0.03

x x x

y y y

N
f Hz K

m

N
f Hz K

m

ζ

ζ

= = × =

= = × =

 (30) 

 

As the workpiece was aluminum alloy 6061-T6, the cutting force coefficients of Equation (6.9) are 

used. Also, Ksp for the aluminum alloy was reported at 1.5×1014 N/m3 in [35].  

6.7.1 Stability Lobes 

In 3-axis machining, the tilt and rotary angles of utilized machine are kept at zero; hence, the feedrate 

remains constant throughout the toolpath and is the same along the tool axis. The start and exit angles, 

φst and φex, are determined with respect to the tool radial immersion, and fa, the feed/tooth, follows the 

programmed feedrate. In the conducted flat surface milling experiments the feedrate was maintained 

at 0.05 mm/tooth. Note that although constant feedrate, fa, is used in this part, the variation in the 

instantaneous chip thickness is still considered in establishing the lobes.  

At each point in a grid of spindle speeds and axial depths of cut, the maximum eigenvalue of the 

transition matrix of Equation (5.31) is calculated, and the stability criterion is applied. Then, the 

stability lobes are established by plotting the contour of stability outcome on the grid. Figure 6-6 

shows the stability lobes of  ½ immersion up-milling operation. Three sets of stability lobes are 

established at wear land W=40, 60 and 80 µm.  
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Figure 6-6: Stability lobes of ½ immersion up-milling computed for different wear: 

W=0.04mm (dashed line), W=0.06mm (solid line), and W=0.08mm (dotted line); Experimentally 

measured stable (circles) and unstable (crosses) points 

 

Figure 6-7: Time traces of measured cutting forces in ½ immersion up-milling at 500 RPM 

and: (a) b=1.5mm, (b) b=2mm, and the corresponding power spectra at: (c) at b=1.5mm, (d) 

b=2mm 
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The stability of the cut is also examined experimentally at the points shown with the crosses and 

circles in Figure 6-6.  The cutting forces were recorded using a Kistler 9255 table dynamometer, and 

the force signal was employed to determine if the cut was stable, o, or unstable, +. Examples of the 

recorded stable and unstable forces are shown in Figure 6-7. The spindle speed was 500 RPM, and the 

forces were normalized by the axial depth of cut. The frequency spectra of the demonstrated signals 

are shown in parts (c) and (d). According to the frequency spectra, the amplitude of the force at the 

chatter frequency, fc, is close to 10N/mm at b=2mm, and zero at b=1.5mm. The former is shown as an 

unstable cut (with a cross) in Figure 6-6, and the latter as stable (with a circle). 

Comparing the experimentally measured stable and unstable points with the computed lobes, it can 

be seen that they agree, for the most part, with the borders predicted using W=60µm. This agreement 

is a source of concern, considering the fact that a sharp tool was utilized in the cutting tests. One must 

keep in mind, however, that there could be other sources of damping in the cut besides the indentation 

mechanism. Also, tool runout was not included in the model. In the present experiments, the radial 

runout of the tool was measured at 15µm. This value of runout relative to the feed/tooth of 50 µm 

could affect the stability limit by disturbing the natural regeneration of the chip thickness, according 

to the study carried out by Grenon [ 82]. There is a need either to modify the model to explicitly 

include tool runout, or to compile more experimental evidence to provide better estimates of process 

damping values for typical tools and set ups.  Such investigations were not conducted in the present 

work and could be a subject for future research. 

Nonetheless, W=60µm was used as the effective tool flank wear to calculate the stability lobes of ¼ 

and ⅛ immersion up-milling, shown in Figure 6-8 and Figure 6-9, respectively. With the exception of 

a few points, in both cases the calculated lobes agree reasonably well with the measured stable and 

unstable points. This provides a further justification for the approach of employing an effective wear 

value that is established empirically. The agreement also verifies the accuracy of the presented 

method in the prediction of stability borders in milling with helical teeth and including process 

damping. 

Having verified the formulation using cuts with simple uniform geometry, a new concept is 

developed next to present the stability of a cut of varying geometry. Rather than establishing the 

stability lobes, which show the limit width of cut versus speed, a stability map will be established for 

known toolpath and workpiece/engagement geometry versus speed. First, the stability map will be 

established for symmetric flat surface to show the close association between stability maps and 

stability lobes. 
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Figure 6-8: Computed stability lobes of ¼ immersion up-milling, and experimentally 

measured stable (circles) and unstable (crosses) points 

 

 

Figure 6-9: Computed stability lobes of ⅛ immersion up-milling, and experimentally 

measured stable (circles), and unstable (crosses) points 
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6.7.2 Stability Maps  

Figure 6-11 shows the cutting forces recorded while ⅛ immersion up-milling of the flat surface 

illustrated in Figure 6-10. The feedrate was kept at 0.05 mm/tooth in the Yt direction , and the axial 

depth of cut varied between 1 and 6 mm along the 200 mm long toolpath. 

 

Figure 6-10: The triangular flat surface geometry 

In Figure 6-10, the total length of the cut is 200 mm.  The stability of the cut will be evaluated at 

increments of 1 mm along the toolpath. Accordingly, jl=1..200 along the path would indicate cutter 

location. With respect to the geometry of the surface, the tool tip has moved jl mm in Yt direction at 

the jl
 th cutter location, and its axis is aligned with the Zt direction. The recorded forces are 

demonstrated in terms of the cutter location instead of time. The profile of the cutting force at 425 

RPM, part (a), follows the variation in the axial depth of cut, which changes from 1mm at either end 

to 6 mm in the middle, as does the recorded force at 1100 RPM, except for the excessive vibration 

observed between cutter locations 60 and 140. According to the ⅛ immersion stability lobes 

established in Figure 6-9, at 425 RPM, the cut is stable for axial depths of cut less than 6 mm, and is 

unstable for axial depths of cut more than 3mm at 1100 RPM. With respect to the geometry of the flat 

surface, at cutter location 60, the axial depth of cut exceeds 3mm, and stays above that until cutter 

location 140. 
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(a)

 

(b) 

Figure 6-11: Measured cutting force in the Yt direction for the triangular surface at: (a) 425 

RPM, and (b) 1100 RPM. 

The stability of ⅛ immersion up-milling at each cutter location, jl =1..200, and a grid of spindle 

speeds is examined by calculating the maximum eigenvalue of the transition matrix in Equation 
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(5.31). The contour of the instability criterion outcome is plotted in Figure 6-12. The points inside the 

gray areas are unstable, while the ones inside the white areas are stable. The map is symmetric around 

the middle of the cut at jl =100, with the upper half being a mirror image of the lower half;  it simply 

follows the symmetry of the triangular surface. In fact, the lower half of the map, jl =1..100, is an 

alteration of the ⅛ immersion stability lobes, shown in Figure 6-9, between b=1 and 6mm, in which 

the vertical axis of the depth of cut has been replaced by the cutter location number. This diagram will 

be referred to as the stability map; it shows the stable and unstable cutter locations of a toolpath 

versus spindle speed.  

Cutting experiments of the flat triangular surface were conducted at several spindle speeds. The 

cutting forces were recorded similar to Figure 6-11 and were used to determine the stable and 

unstable cutter locations. The results of measurements are also plotted in Figure 6-12. At each spindle 

speed, the stable cutter locations are marked with circles and the unstable ones with crosses. Excellent 

agreement is observed between the computed maps and the experimental results. 

 

Figure 6-12: Stability maps of ⅛ immersion up-milling of flat triangular surface, and 

experimentally measured stable (circles) and unstable (crosses) cutter locations 

Stability maps were established for ¼ immersion up-milling of the flat triangular surface, as shown 

in Figure 6-13. Also shown in this figure are the experimentally measured stable and unstable cutter 

locations throughout the toolpath. Similar to Figure 6-12, the stable cutter locations are marked with 



 

 127 

circles and the unstable locations with crosses. The unstable cutter locations all fall inside the gray 

areas and the stable ones inside the white areas; only at 565 RPM are some stable cutter locations 

detected inside the gray areas. However, these points are adjacent to the stability borders, and 

therefore even small fluctuations in spindle speed may cause the vibration to fall in the stable region. 

Having verified the developed method in milling the triangular flat surface at 2 immersions, the 

method will be applied next to 5-axis flank milling of three curved surfaces. 

 

Figure 6-13: Computed stability map of ¼ immersion up-milling of the flat triangular 

surface, and experimentally measured stable (circles) and unstable (crosses) cutter locations 

6.8 5-Axis Flank Milling 

In this part of the study, a time domain simulation is used to investigate chatter in 5-axis flank milling 

of three curved surfaces. The cutting forces and torques during the finishing pass of three curved 

surfaces are also measured to examine the accuracy of the simulations. SDM is then used to 

determine the stability of the cut at each cutter location, and the stability map associated with each 

surface is established and verified by numerical simulations.  

The basic surface chosen for testing is constructed using two quadratic Bezier curves, L1(v ) and   

L4(v ), with the following parametric equations: 
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where Bl
2
(v ), i=1..3, are the quadratic Bezier basis functions. L1(v ) and L4(v ) are plane curves; 

they are defined in Cwp and their coordinates are in millimeter. L1(v ) and L4(v ) are separated in the 

Zwp direction by 30mm, which translates into surface height of 30mm. Two other surfaces are also 

tested; one is bounded by the curves L3(v ) and L4(v ) and its height is 5mm, and the other is 

bounded by L1(v ) and L2(v ), with a height of 15mm, where L2(v ) and L3(v ) are constructed out 

of L1(v ) and L4(v ), as shown in Equation (6.32). 
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A top view in the direction of Zwp of the bounding curves of the three surfaces is given in Figure 

6-14. For each tested surface, the bounding curves, e.g.,  L1(v ) and L4(v ), would correspond to      

R(v ) and S(v ), respectively, shown in Figure 6-2. Table 6-1 lists R(v ) and S(v ) combinations of 

the three test surfaces, along with their heights.  

For each test surface, the tool path is generated by rolling a 25.4mm diameter, 4-flute cylindrical 

tool with 30o helix angle on its corresponding top and button curves. For force calculations and 

chatter prediction, the surface machined in the previous path, Gp(u , v ), is generated using the same 

tool path, with the exception that it is offset by a constant amount of 2mm in the Ywp direction, to 

produce the machined surface G(u , v ) in the current cut. This relationship is given in Equation 

(6.33). 
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Figure 6-14: Top view of test surfaces, with their generating curves (rails) 

Table 6-1: Geometry of test surfaces 

Test surface ( )R v  ( )S v  Surface height (mm) 

1 
3( )L v  4( )L v  5 

2 
1( )L v  2( )L v  15 

3 
1( )L v  4( )L v  30 

6.8.1 Numerical Simulation and Experimental Results 

For the numerical simulation, the engaged part of the tool is divided into 60 elemental disks. At each 

tool position along the path, φst and φex are calculated for all the disks using the method presented in 

Section 6.4. For instance, Figure 6-15 shows these angles at a point midway along the path used to 

machine Surface 3. As can be seen, these angles vary for disks at different heights from the tool tip. 

For the same disk, these angles also vary from one tool position to the next.  

The tool used was 25.4 mm in diameter, with four teeth at a helix angle of 30o. The spindle speed 

was set at 1750 RPM, and the programmed feedrate was 2000 mm/min. The actual feedrate for each 

elemental disk was calculated following the procedure presented in Section 6.5. As an example, the 

actual feedrate at the tool tip for test surface 3 is shown in Figure 6-21(a); its maximum value is only 

750 mm/min at the end of the tool path, while it drops drastically to a mere 145 mm/min in the 
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middle section of the cut. The feedrate is used to calculate the feed/tooth and the resulting harmonic 

component of the chip thickness, as explained in Section 6.5. The regenerated component of the chip 

thickness is calculated from the vibrations associated with the previous time step. With the chip 

thickness now available, the cutting forces acting on each tooth are calculated, along with the 

ploughing forces using the indentation model. They are then resolved along the tool coordinates Xt 

and Yt, summed up for all teeth engaged in the cut, for all disks, to account for the total forces acting 

on the tool at one position. These forces are then applied to the tool dynamic model to compute the 

resulting vibration. In essence, beyond finding the chip thickness and the entry and exit angles, the 

procedure of simulating chatter in the time domain is the same as that already available in the 

previous chapters, and so the details of the simulation procedure will not be repeated here.   

 

Figure 6-15: Start, φst, and exit, φex, angles for all of the elemental disks of the tool, at 

midpoint along the tool path to generate Surface 3 

The same three surfaces were also machined on the 5-axis DEECKEL-MAHO machining centre, 

employing the same cutting conditions: spindle speed=1750 RPM and programmed feedrate= 2000 

mm/min. An impact test was used to measure the receptance at the tool tip, as is shown in Figure 

6-16. The modal parameters are extracted by the curve fitting of the measured receptances; the fitted 

curves are shown in this figure, as well. The extracted modal parameters are also reported in Table 2.  
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Figure 6-16: Measured receptances in the Xt and Yt directions, and the curve fitted on them 

to extract the modal parameters 

In the tested frequency range, the frequency response function shows two modes in the Xt direction 

and only one mode in the Yt direction.  

Table 2: The modal parameters of the tool in the Xt and Yt directions. 

 K[N/m] fn [Hz] ξ 

X 
Mode 1 2×10

7
 390 0.02 

Mode 2 0.87×10
8
 433 0.02 

Y 1.1×10
7
 389 0.02 

 

Since only one degree of freedom in considered at each direction, the most flexible mode of 

direction Xt is taken into account and the one at 433Hz is neglected in the modeling. The low natural 

frequencies reported here are associated with the tool and rotary dynamometer assembly as they are 

mounted in the machine. A Kistler rotary dynamometer was mounted in the spindle. For each surface, 

the workpiece was first prepared for the finishing pass by following a tool path that is offset by 2 mm 

in Ywp from the final path. This, in effect, left 2mm radial depth of cut that had to be removed in the 

finishing pass.  
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The simulated and measured cutting forces and torque associated with the first test surface (height 

5mm) are shown in Figure 6-17. There are differences at the beginning and end of the plots between 

the simulated and measured values; these differences are attributed to extra material at these locations 

associated with the tool leading in and out of the stock that were not included in the simulation. It 

should also be mentioned here that, in machining this narrow surface, 5 mm, at the low immersion of 

2mm, tooth impacts and tool runout would contain significant harmonics that could excite the 

structural modes and possibly get magnified because of the dynamic response of the dynamometer 

itself. As can be seen, in the spectrum of the un-filtered data in Figure 6-18(a), the 11th and 13th 

harmonics of the tool rotational speed are magnified compared to the lower harmonics. For this 

reason, a low pass filter was applied, as shown in Figure 6-18 (b), to reduce the effect of the 

“magnification factor” and bring them closer to the higher harmonics of the forces generated in the 

simulation. This is evident by comparing the spectrum of the filtered measured force in Figure 

6-18(b) with the corresponding spectrum obtained from the simulation in Figure 6-18(c). Fortunately, 

the filtering was only needed for the measured forces associated with the 5 mm surface, and no 

filtering was applied for the measured forces when machining the 15 and 30 mm surfaces. No 

filtering was applied for the measured torques for the three surfaces. With the above in mind, we can 

see the close agreement between the measured and simulated torque and force plots. Close ups of the 

measured and simulated torque and forces obtained around the middle of the tool path is also included 

in Figure 6-17; again, excellent agreement can be seen. No chatter was observed, either in simulation 

or in experiment, while machining Surface 1. To assess the role of process damping, the simulation 

was also run for this surface without including the ploughing forces. Figure 6-19 shows the simulated 

torque in this case; it indicates machining instability in the mid section of the tool path where the 

feedrate drops to a low level. This obviously contradicts the experimental evidence presented in 

Figure 6-17 and shows, beyond a doubt, the importance of including the process damping in the 

simulation model for the present surface and cutting conditions.  
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Figure 6-17: Measured (a, e, i and b), measured and filtered (f and j), and simulated (c, g and 

k) torque and cutting forces in machining test surface 1, height 5mm; close up (d, h and l) of 

torque and cutting forces at middle of tool pass; simulated (solid line); measured and filtered 

(dotted line) 

 

 

 

Figure 6-18: Power spectra of: a) un-filtered measured (b) filtered measured, and (c) 

simulated force in machining Surface 1, height 5mm 
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Figure 6-19: Simulated torque without including process damping in machining test Surface 

1 

   

 

Figure 6-20: Measured (b, e and h) and simulated (a, d and g) torque and cutting forces in 

machining test Surface 2, height 15 mm, (c, f and i); close up of torque and cutting forces at 

middle of tool pass; simulated (solid line); measured (dotted line) 
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The simulated and measured torque and cutting forces obtained in machining test surface 2, height 15 

mm, are shown in Figure 6-20. Here, there was no need to filter the measured force signals. As can be 

seen, the agreement between simulated and measured torque and forces is excellent, and no chatter 

was detected in machining this surface. 

    Results of simulation and experimental work for test surface 3, height 30mm, are shown in Figure 

6-21 and Figure 6-22. Chatter occurred in machining this surface. In Figure 6-21(a), the feedrate 

computed at the tool tip is plotted against the distance traveled along the tool path. It can be seen that 

the feedrate throughout the travel is well below the programmed feedrate of 2000 mm/min. In 

particular, the feedrate drops drastically around the midpoint, where there was a considerable rotary 

motion combined with little translation of the tool. Figure 6-21(b) shows the same feedrate along the 

path, this time plotted against travel time. Figure 6-21(c, d) show the simulated and measured torques, 

respectively. Apart, from the beginning and end of the plots, the agreement is good. Figure 6-22 

shows the measured and simulated forces obtained in machining this surface. Figure 6-22 (a) and (b) 

show the simulated components while figures (c) and (d) show the corresponding measured values. 

Close ups of the measured and simulated forces, superimposed on one another, are shown in Figure 

6-22 (e) and (f). Two regions are indicated in Figure 6-22(a) and (c); part A around the middle of the 

path, and part B close to the end. The power spectra of the simulated and measured time traces of 

these regions are shown in Figure 6-22 (g), (h), and Figure 6-22 (i), (j), respectively. The power 

spectra of the simulated and measured forces in region B show the rotational speed and its 3rd and 5th 

harmonics. No chatter was observed in this region. On the other hand, chatter was detected in the 

power spectra of region A, where the tool vibration modes modulated by the rotational speed are 

clearly visible at 420 Hz and 478 Hz. In this region, the feedrate, and consequently the chip thickness, 

become so small and the dynamic cutting force coefficient so large, that machining instability takes 

place. Such observation was also made by Ismail and Ziaei [64] in 5-axis machining of a turbine 

blade.  
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Figure 6-21: Results for test Surface 3, height 30 mm, a) feedrate at the tool tip versus 

distance travelled along tool path, b) feedrate at the tool tip versus time, c) simulated torque, d) 

measured torque 
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Figure 6-22: Simulated (a, b) and measured (c, d) cutting forces in the X and Y directions; (e, 

f) close ups of the measured (thin line) and simulated (thick line) forces; power spectra of the 

simulated (g, h) and measured (i, j) cutting forces in regions A and B 

6.8.2 SDM Results and Stability Maps 

The SDM is applied to study the stability of tool vibration while it travels along the toolpath of three 

surfaces. At each cutter location the maximum eigenvalue of the transition matrix is calculated from 
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Equation (5.31). Notice that the actual feedrate and start and exit angles vary at each cutter location 

and at each axial elemental disk.  

 

Figure 6-23: Flank milling of Surface 1, height 5 mm: (a) computed maximum eigenvalue of 

the transition matrix,  (b) measured cutting torque, (c), and (d) the frequency spectra of the 

measured cutting torque at t=6 sec and 11 sec 

Figure 6-23 (a) shows the calculated eigenvalues along the toolpath of Surface 1 of 5mm height. 

According to this figure, the maximum eigenvalue never exceeds 1, indicating a stable cut at all of the 

cutter locations. This agrees with the measured cutting torque in (b). Figure 6-23(c) and (d) show the 

frequency spectra of the measured torque at the midway of the toolpath, at t=6 sec, and at the end, at 

t=11 sec. Neither spectrum exhibits vibration at the chatter frequency. The eigenvalues calculated for 

Surface 2 are shown in Figure 6-24(a). Except around the middle of the toolpath where the maximum 

eigenvalue merely exceeds 1, it stays below 1 in almost all of the cutter locations. The measured 

cutting torque while machining Surface 2 and its frequency spectra at t=6 sec and t=10 sec are shown 

in (b), (c) and (d), respectively. They show that the whole cut was stable, which agrees closely with 

the stability predicted by SDM. 
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Figure 6-24: Flank milling of Surface 2, height 15 mm; (a) computed maximum eigenvalue of 

the transition matrix, (b) measured cutting torque, (c), and (d) the frequency spectra of the 

measured cutting torque at t=6 sec and 10 sec  

 

Figure 6-25: Flank milling of Surface 3, height 30 mm; (a) maximum eigenvalue of the 

transition matrix (b) measured cutting torque (c, and d) the frequency spectra of the measured 

cutting torque at t=10 sec, and 15 sec, respectively, for Surface 3 
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For Surface 3 of height 30 mm, the curve of maximum eigenvalue is shown in Figure 6-25(a). It 

stays below 1 at the beginning and end of toolpath, but fairly exceeds 1 at the middle of the toolpath. 

This curve predicts a stable cut at the beginning and end, and an unstable cut in the middle section. It 

agrees well with the cutting tests. The torque spectrum at the midway of toolpath, t=10sec, shows 

clear peaks at the chatter frequency, which is depicted by circles in part (c) of the figure. These peaks 

disappear at the end of toolpath at t=15sec. 

The maximum eigenvalue of the transition matrix was calculated at each cutter location for a grid 

of spindle speeds to plot the stability map for each surface. Note that the feedrate values at each 

spindle speed would change to preserve the feedrate profile shown in Figure 6-21. Figure 6-26 shows 

the stability map of Surface 1. The points inside the gray areas are unstable, and the points inside the 

white areas are stable. At 1750 RPM, the cut is stable throughout the entire toolpath, which agrees 

with the experimental results. However, by increasing the spindle speed, the effect of process 

damping decreases and unstable region appears at 2300 RPM. By further increasing the spindle 

speed, the size of unstable regions increases. Nevertheless, there remain some entirely stable 

channels, such as those around 2800 RPM or between 4500 and 6000 RPM.

 

Figure 6-26: Computed stability map of Surface 1 of height 5 mm, and numerically simulated 

stable (circles) and unstable (crosses) points 
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Figure 6-27: Computed stability map of Surface 2 of height 15 mm, and numerically 

simulated stable (circles) and unstable (crosses) points 

 

Figure 6-28: Computed stability map of Surface 3 of height 30 mm, and numerically 

simulated stable (circles) and unstable (crosses) points 
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The stability map of Surface 2 is shown in Figure 6-27. At 1750 RPM, the cut is stable for most of 

the toolpath. Only at the middle is it close to the border of instability.  By increasing the speed, the 

unstable regions emerge and increase in size. There are some stable channels (e.g., between 5000 and 

6000 RPM), albeit narrower than those observed in Surface 1. 

Figure 6-28 shows the stability map of surface 3 of height 30 mm. At around 1750 RPM, the 

unstable regions start to appear around the midway of the toolpath, but the cut is stable at the 

beginning and end. By increasing the cutting speed, the unstable regions grow. After 2000 RPM, the 

cut is unstable during the entire toolpath, except for the two stable regions around 3000 RPM and 

between 5000 and 6000 RPM. Note that these two regions appear as closed areas inside the unstable 

region. The numerical simulation was executed at 5500 RPM, and the computed torque is shown in 

Figure 6-29. Excessive oscillations are observed both at the beginning, 0<t<2.1, and at the end of the 

toolpath, 3.9<t<4.9, but the middle of cut is stable, as predicted by the map. 

 

Figure 6-29: The cutting torque obtained by the numerical simulation of machining Surface 3 

at 5500 RPM 

Also shown in Figure 6-26, Figure 6-27, and Figure 6-28 are the results of numerical simulations at a 

set of spindle speeds and cutter locations. The circles show the stable points, and the crosses mark the 

unstable points. In each case, the regeneration component of tool displacement in the Yt direction was 

extracted following the method presented in the previous chapter. Examples of simulation results at 

the 30th cutter location of surface 1 and (a) 5000 RPM, stable point, and (b) 3500 RPM, unstable 

point, are given in Figure 6-30. Here, y is the total tool deflection and yH is the harmonic component, 



 

 143 

and thus y-y
H indicates the regeneration component. At the stable point, the amplitude of the 

regeneration component of tool deflection dies down to zero, while at the unstable point it increases 

and stabilizes when the tool jumps out of the cut [74]. The stability at all points, shown with circles 

and crosses in Figure 6-26, Figure 6-27, and Figure 6-28, was determined in a similar fashion. The 

results of numerical simulations further verify the accuracy of the stability maps. 

 

Figure 6-30: Results of numerical simulations for Surface 1 of height 5 mm; regeneration 

component of tool deflection in Y direction at cutter location 30 for: (a) 5000 RPM and (b) 3500 

RPM 

The stability maps can be used in toolpath planning or in selecting the spindle speed to avoid 

chatter. As an example, Figure 6-31(a) shows the cutting torque obtained from numerical simulation 

of machining Surface 2 at 4500 RPM. To maintain the feedrate profile employed at 1750 RPM, the 

programmed feedrate was increased proportionally to fprogrammed=5143 mm/min. However, it might not 

always be possible to maintain the same feedrate profile while changing the spindle speed if one or 

more of the feed axes hits a saturation point. In this work, it is assumed that no saturation point is 

reached. For Surface 1, one can predict the stable and unstable cutter locations from the stability map 

in Figure 6-27; there, all of the cutter locations of the toolpath are unstable except for those between 

positions 42nd and 64th. The simulated cutting torque shows chatter vibration at the first and final two 

seconds of the toolpath; otherwise, it is stable in between. This agrees with the stability map. The 

map, however, shows all the cutter locations to be stable at 5500 RPM. The numerical simulation was 



 

 144 

repeated at 5500 RPM and the programmed feedrate was changed accordingly to fprogrammed=6285 

mm/min. The simulated torque is illustrated in part (b), which shows the chatter disappearing at the 

beginning and end, as planned. 

According to the stability maps, an entirely stable toolpath can be achieved by using different 

spindle speeds at different cutter locations (by moving between the gray areas). Yet, one should 

notice that, changing the spindle speed during the flank milling of blades or impellers might result in 

a bad surface finish. Therefore, the spindle speed is recommended to be set at a value inside one of 

the stability channels, and then, be kept constant at that speed for the entire toolpath.   

 

 

Figure 6-31: Numerically simulated torque while machining Surface 2 at height 15 mm with 

(a) 4500 RPM, unstable at the beginning and end of toolpath, and (b) 5500 RPM, stable along 

the full toolpath 

6.9 Summary 

A discretized time domain model of chatter was presented for flank milling. The dynamics of the 

tool was represented by a 2 DOF vibratory system, the shear forces were modeled by a nonlinear 

mechanistic model to account for the instantaneous chip thickness, and the effect of process damping 

was considered using the equivalent viscous model of ploughing forces. The Semi Discretization 

Method was employed to determine the stability of cut at each cutter location of 3- and 5-axis flank 

milling toolpaths.  
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The stability lobes of 3-axis flank milling were established using the presented time domain model. 

Moreover, stability maps were presented in this paper as toolpath-specific stability diagrams that 

determine the stable and unstable cutter locations along the toolpath at each spindle speed. The 

stability maps thus provide an effective means for optimizing the cutting parameters to achieve higher 

productivity in flank milling without encountering machining chatter. They are also computationally 

more efficient than the numerical simulation. For example, while the simulation of each case in 

Figure 6-31 took eight hours on a PC with a 2.2 GHz processor, the entire stability map in Figure 

6-27 was generated in two hours.  
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Chapter 7 

Conclusions and Future Work 

In the first part of this thesis, presented in Chapters 3 and 4, the effect of process damping on 

machining chatter was investigated. The conducted investigation led to establishing stability lobes for 

continuous cutting that depend on the vibration amplitude. These lobes define the finite amplitude 

stability region where the vibration stabilizes at certain amplitudes without tool/workpiece 

disengagement.  

Time and frequency domain methods along with the equivalent viscous model of process damping 

were employed in the second part of the thesis, in Chapters 5 and 6, to determine the stability of the 

cut in milling. For illustration of the developed method, stability lobes in straight cutting of flat 

surfaces were established. This led to establishing “stability maps” as a new concept that presents the 

stability in milling of general surfaces along planned toolpaths. The main contributions of this work 

are summarized below. 

7.1 Contributions  

a) Experimental confirmation of the phenomenon of finite amplitude stability due to the non-

linearity associated with process damping. 

In the conventional assessment of chatter using linear models, the machining is either stable or 

unstable; the vibration amplitude dies down to zero in the former and it increases until the tool 

disengages from the workpiece periodically in the latter. Previous numerical studies showed that the 

transition from the fully stable to fully unstable cut occurs gradually over a range of widths of cut due 

to the nonlinearity associated with process damping. This phenomenon, however, was not studied 

experimentally until it was addressed successfully in the current work.  The experimental 

investigation provided a much-needed insight into the chatter phenomenon by helping to better assess 

the stability of the cut, and to explain a major source of uncertainty involved in linear process 

damping models. In fact, the accuracy of two linear process damping models, existing in the 

literature, was re-examined in light of the new results. The analytical model, based on small 

amplitude assumption, was found to be accurate only if it was used to predict the lower border 

between the stable and finite amplitude stability cuts. The other model, extracted from experimental 

data, was found to be accurate only if it was used to predict the stability where the tool/workpiece 
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disengagement occurs at the same amplitude at which the sinusoidal excitation of the tool was carried 

out in the identification tests of the damping coefficients.  

The results of the experimental investigation were published in [83]. 

b) Developing a new formulation for the equivalent viscous model of process damping. 

The equivalent viscous damper approach has been used in the literature to represent process damping. 

The coefficient of the equivalent damper was either extracted from experimental data collected at 

specific vibration amplitude and tool geometry, or it was approximated using the assumption of small 

amplitude vibration. In either case, employing the damping model to compute the stability borders led 

to errors in establishing the stability lobes.  

In this work, a new formulation was presented for the equivalent viscous model of process 

damping. The new damping formulation includes two independent parts: the first part was referred to 

as the “damping shape factor”; it depends on geometrical entities only that include: the wear land and 

clearance angle of the cutting edge, the vibration amplitude and wavelength of the undulations left on 

the machined surface. The second part, the specific indentation force and coulomb friction 

coefficients, depends on the mechanical properties of the workpiece. While the second part can be 

obtained from experimental work reported in the literature, the formulation of the first part was 

developed in this work. One can compute quickly the coefficient of the equivalent viscous damper at 

different wear, tool clearance angle, wavelength, and vibration amplitude for a wide range of 

geometries. 

Having developed the new amplitude-dependent formulation of process damping, it was integrated 

into the frequency domain method for establishing stability lobes. It enabled estimating the lobes at 

specific amplitudes. It is a novel approach to the commonly used stability lobes where the vibration 

amplitude is not defined. The lobes associated with small amplitudes define the lower bound of a 

finite amplitude stability region due to process damping, and the ones associated with the feedrate 

define the upper bound. Using the new approach, stability bands could be defined rather than “single 

border” boundary stability lobes.  

The formulation of the equivalent damper and computing the amplitude-dependent lobes was 

published in a journal article [84]. 
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c) Formulating the Semi Discretization Method (SDM) and Multi Frequency Solution (MFS) in 

the presence of process damping to establish stability lobes in milling.   

The equivalent viscous damper was integrated into two commonly used methods of computing the 

stability lobes in milling: Multi-Frequency Solution (MFS) and Semi-Discretization Method (SDM). 

In the literature, SDM and zero order MFS were shown to lead to similar stability lobes, except for 

highly interrupted cuts where the higher harmonics of MFS had to be included for accurate prediction 

of stability. In this thesis, the inclusion of the higher harmonics in MFS was shown to be necessary at 

low speed and high damping, even if the cut was not highly interrupted.  

The stability lobes in milling including the effect of process damping were established and verified 

experimentally in this work. An article has been submitted to the Journal of Machine Tools and 

Manufacturing on formulating the MFS and SDM in the presence of process damping. 

The formulation of SDM and MFS including process damping was published in a journal article 

[85]. 

d) Modeling chatter in 5-axis flank milling  

A dynamic model was developed in this thesis to simulate chatter in 5-axis flank milling. The 

tool/workpiece engagement geometry and actual feedrate were computed by post-processing the 

designed toolpath, and then they were integrated into the numerical simulation of tool vibration while 

it travels along the 5-axis toolpath. Comparing the results of numerical simulation with the 

experimental evidences verified the accuracy of the developed dynamic model. It also showed the 

important role of process damping in stabilizing the vibration in flank milling; the effect of process 

damping was included in the simulation using the indentation force model. The results of numerical 

simulation and experimental measurements were published in [86].  

e) Determining the stability of the cut in flank milling using SDM, and introducing the stability 

maps 

The SDM was used to determine the stability of the cut in flank milling. In the first step, the stability 

lobes in milling using tools with helical teeth were developed for straight cuts of plane surfaces. In 

developing the stability lobes, the effect of process damping was included using the equivalent 

viscous model, and the effect of instantaneous chip thickness was considered using a nonlinear 

mechanistic model. In the second step, the stability of the cut at each cutter location of a known 5-

axis toolpath was determined using the developed SDM formulation. The developed method of 
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determining the stability of the cut is computationally efficient and thus one can repeat the analysis at 

different spindle speeds and feedrates for optimization purposes. This was not viable when using the 

numerical simulations, due to their long computation time.     

For straight cuts where the geometry of the cut and feedrate stay constant throughout the toolpath, 

stability lobes are used to determine the stable and unstable depth of cut at each spindle speed. In 5-

axis flank milling the geometry of the cut and actual feedrate vary at each cutter location, and 

therefore, stability lobes are difficult to establish. In this work, “stability maps” were presented as a 

novel method of demonstrating the stability of the cut in 5-axis flank milling; they determine the 

stability of the cut at each cutter location of 5-axis flank milling toolpaths over a range of spindle 

speeds. Having designed the toolpath, the tool/workpiece engagement and actual feedrate at each 

cutter location are computed using the various methods available in the literature. These data are then 

integrated into the SDM formulation presented in this thesis to produce the stability maps for a 

particular toolpath. The stability maps provide a practical means to adjust the cutting parameters, such 

as spindle speed and feedrate and avoid machining chatter throughout the toolpath. These maps can 

be established for the machining of curved surfaces. 

7.2 Future Work 

a) Modifying the formulation of equivalent viscous damper with respect to the complexities 

involved the geometry of cutting edges.   

In computing the coefficient of equivalent viscous damper, the complex geometry of the cutting edge 

was neglected and only the flank wear was represented by a flat wear land. According to this 

approximation, process damping is zero for sharp tools, unless the clearance angle is smaller than the 

surface undulation slope. Nevertheless, experimental evidence shows the effect of process damping at 

low cutting speed, even for sharp tools at relatively lower undulations slope. Therefore, one needs to 

rectify the geometric modeling of the cutting edge in computing the coefficient of the equivalent 

damper. For instance, the hone radius of the cutting edge was neglected in this thesis. Although the 

hone radius is negligible for worn tools, ignoring it for sharp tools causes inaccuracies.  The effect of 

the hone radius was compensated by an effective flank wear that was determined experimentally. 

Better modeling of the geometry of the cutting edge can result in eliminating the need for determining 

effective wear from experimental data. 
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b) Including the effect of run-out in the formulation of SDM in milling using tools with helical 

teeth 

In this thesis, a constant effective tool wear was estimated from experimental measurements to 

account for the variable wear along the helical teeth of the milling tool. The estimated value of the 

effective wear, 60µm, in the experiments was higher than expected for the sharp tool used in the 

cutting. This was explained by the effect of tool runout.  Such runout is inevitable for cutters with 

multiple teeth and it tends to increase the stability of the cut. Therefore, considering the effect of 

runout in the formulation of SDM presented in this work would result in more realistic 

approximations of tool wear. 

c) Determining the stability of the cut in flank milling using tools with more complex geometries 

In the machining of blades and impellers, the typical axial engagement of the tool is higher than the 

values studied in this work. The higher engagement is achieved by using stiffer tools such as conical 

and tapered endmills. Using tools with alternating helix or uneven pitch has further contributed to the 

stability of the cut in flank milling. In this thesis, the cutter used for flank milling was a cylindrical 

endmill with helical teeth. This tool was utilized to simplify the geometry of the cut and concentrate 

on the concepts and methodologies investigated herein. Extending the presented modeling to tools 

with more complicated geometries that are common in the machining of curved surfaces can make it 

more useful in a wider range of engineering applications. 

d) Employing the stability maps in  increasing  productivity by optimizing the cutting 

parameters 

The main purpose of developing the chatter predictive models is to identify the chatter-free range of 

machining parameters, and then to adjust them within that range to achieve higher production. In this 

thesis, stability maps were developed to determine the chatter-free spindle speeds associated with the 

designed toolpath and feedrate. One can integrate these maps in procedures to maximize the material 

removal rate and to define the chatter-free range of optimized cutting parameters. Computationally, 

generating these maps is efficient, and accordingly, they are suitable for determining the stability of 

the cut at a range of cutting parameters such as spindle speed and feedrate in the optimization 

procedure.  

Moreover, stability maps determine the unstable cutter locations of the toolpath at a range of 

spindle speeds. They can therefore be used to modify the tool placement strategy at the unstable cutter 
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locations and avoid chatter. They can also be employed in scheduling the feedrate, or spindle speed, 

throughout the toolpath.  
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