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Abstract 

In the past few decades, several aqueous oxidants have been employed (e.g., permanganate, 

persulfate) to remediate petroleum hydrocarbons. However, the majority of the research in this field 

has been focused primarily on the use of oxidants in treating fresh water at low groundwater 

temperature. In this study, bench experiments were carried out to investigate the effectiveness of 

persulfate (PS) as an oxidant to remediate petroleum hydrocarbons in alternative settings (saline 

environments at high groundwater temperature). Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), 

Trimethylbenzenes (TMBs), and Naphthalene were the target organic compounds investigated. 

 

Three important aspects were examined during this laboratory study: 1) the evaluation of (alkaline 

activated and non-activated) persulfate as a chemical oxidation agent; 2) the investigation of the 

effect of different temperatures (10°C versus 30°C); and 3) the examination of the effect of different 

persulfate concentration (20 versus 100 g/L) on the reactivity of persulfate.  

 

The results showed the high potential of persulfate to remediate the target contaminants under certain 

conditions. In general, alkaline-activated persulfate showed a higher potential than the non-activated 

persulfate. However, precipitations of calcium hydroxide were observed due to the reaction between 

sodium hydroxide and the high concentration of calcium which will limit the use of alkaline-activated 

persulfate in this particular groundwater setting 

 

The results also showed that the initial concentration of persulfate and the system temperature can 

play important roles in enhancing the effectiveness of PS to oxidize the target contaminants. For 

instance, the oxidation rate of the target contaminants was seen to be dramatically increased by 

increasing the persulfate addition from 20 to 100 g/L as well as with increasing the system 

temperature from 10°C to 30°C. However, increasing both factors (temperature and concentration) 

accelerated the decomposition rate of PS.  

 

Lowering the system pH was tremendously successful in order to enhance the oxidation rate of all 

compounds. Moreover, the expected effect of the radicals scavenging at acidic pH by Cl- and Br – 

,which was reported in the literatures (e.g., Pignatello et al., 2006; Grebel et al., 2010; Suri et al., 
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2010), was not observed in this study which might be attributed to the contribution of the produced 

halogen radicals to the contaminant oxidation. 
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Chapter 1 
Introduction 

Many natural resources show some degree of anthropogenic impact, including the widespread 

contamination of groundwater by hazardous chemicals. Groundwater represents 98% of the available 

fresh water of the planet. Thus, protecting and restoring groundwater quality is of global strategic 

importance (Alvarez & Illman, 2006). Common organic groundwater contaminants include petroleum 

hydrocarbons. The extensive use of petroleum hydrocarbons as an energy source as well as raw 

materials for many synthetic products has resulted in widespread soil and groundwater contamination 

by this class of contaminants. Soil and groundwater contamination is commonly the result of 

unintentional release of chemical products that occurs during production, storage or transportation 

activities due to leaky underground storage tanks, pipelines, oil exploration activities, holding pits 

near production oil wells and refinery wastes. Once these contaminants enter the subsurface, they can 

persist as a non-aqueous phase liquid (NAPL) in the vadose zone and the near-water table zone in 

aquifers (Hamed, 2005). These hazardous releases in the environment are an ongoing concern that 

can result in long term contamination (Christensen & Larsen, 1993) that represents a significant 

technical and economical challenge because underground contamination is difficult to locate and 

remove by a traditional extraction and excavation method (Alvarez & Illman, 2006). Therefore, there 

is an urgent need for wider application of cost-effective, environmentally friendly in-situ remediation 

approaches that can be employed for the cleanup of contaminated sites. 

 

Research and development over the last three decades have led to various subsurface remediation or 

controlling strategies such as: 1) containment of contaminated zones (e.g., concrete or slurry walls), 

2) ex-situ treatment (e.g., excavation), 3) natural attenuation, and 4) in-situ treatment (e.g., in-situ 

bioremediation, chemical oxidation) (Domenico & Schwartz, 1998). 

 

In-situ treatment or remediation approaches have become attractive due to favourable economics, 

simple preparation of the treatment solution, and the advantage of degrading contaminants in place. 

In-situ mass transformation techniques are based on the knowledge that many contaminants are 
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amenable to be fully or partially degraded by biological, chemical and physical processes. In-situ 

chemical oxidation (ISCO) is one of the promising remediation methodologies (Domenico & 

Schwartz, 1998). Compared with in-situ bioremediation which is typically limited by rates of 

contaminant desorption and dissolution (Ogram et al., 1985), the transformations in ISCO are near 

immediate, and therefore treatment is far more rapid than with biological techniques (Siegrist et al., 

2006).  

 

The application of ISCO as a remediation method for subsurface organic contaminants is still 

relatively new. Over the last 10 years, there has been a significant research and development in the 

employment of ISCO for the remediation of organic contaminants, especially NAPLs (e.g. Huling & 

Pivetz, 2006; Siegrist et al, 2006). ISCO technology involves injecting chemical oxidants (e.g., 

hydrogen peroxide or Fenton’s reagent, persulfate, permanganate and ozone) into the vadose or 

saturated zone to reduce the contaminant mass through oxidization (Pignatello et al., 2006; Tsitonaki 

et al., 2010). 

 

One of the recently used oxidants for ISCO application is sodium persulfate (Na2S2O8). In addition to 

the advantages of having high water solubility and benign residual products, sodium persulfate (PS) is 

very stable and can persist in the subsurface for weeks (Huling & Pivetz, 2006). In this study, bench 

experiments were carried out to investigate the effectiveness of persulfate as an oxidation agent to 

remediate petroleum hydrocarbons in alternative settings (saline environments at high groundwater 

temperature). Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Trimethylbenzenes (TMBs), 

and Naphthalene were the target investigated organic compounds during this project. The main 

objectives of this study were: 1) the evaluation of (alkaline activated and non-activated) persulfate as 

a chemical oxidation agent; 2) the investigation of the effect of different temperature (10°C versus 

30°C); and 3) the examination of the effect of different persulfate concentration (20 versus 100 g/L) 

on the reactivity of persulfate. 
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1.1 Persulfate mechanism 

When Persulfate salts are added to the water, they dissociate to persulfate anions (Eq. 1). These 

anions are strong oxidants and capable of electron transfer with an estimated standard oxidation 

potential of E° = 2.01 V, as written in Eq. 2 (House, 1962).          

                                  
Na2S2O8 → 2Na+ + S2O8

2-  (1) 

S2O8
2- + 2 e- → 2SO4

2-  (2) 

 
The persulfate anions are relatively stable oxidants and their reactivity may increase at low pH by 

yielding more reactive oxidants. In alkaline, neutral and diluted acid solutions (pH > 3; [H+] < 0.5M), 

persulfate decomposes according to Eq. 3 (Kolthoff & Miller, 1951). In strongly acid solutions (pH < 

3; [H+] > 0.5M), the persulfate anions are catalyzed by hydrogen ions. Moreover, hydrolysis of the 

persulfate anion in strong acid will yield Caro’s acid H2SO5   which hydrolyzes further to hydrogen 

peroxide H2O2 (Eq. 4 – 5) (Kolthoff & Miller, 1951; FMC, 2001). The produced H2SO5 or H2O2 are 

kinetically faster oxidants than persulfate anions and their reactivity with the organic contaminants 

are much faster (FMC, 2001). 

                                                             
S2O8

2- + H2O → 2HSO4
- + ½ O2 (E°=2.01 V) (3) 

H2S2O8 + H2O → H2SO5
   + H2SO4 (E°=1.81 V) (4) 

H2SO5 + H2O → H2O2 + H2SO4 (E°=1.77 V) (5) 

  
However, the reaction rates for persulfate ions with the organic contaminant becomes much faster 

when these ions generate free sulfate radicals (SO4
•-) under free radical oxidation processes (e.g., heat, 

OH-) Eq. 6 (Tsitonaki et al., 2010). With an oxidation potential of E° = 2.60 V, the sulfate radicals 

can effectively initiate radical chain reactions to oxidize organic compounds (i.e., M in Eq. 7) (Berlin 

et al., 1986). For instance, the oxidation rate for Benzene was observed to be five times faster when 

free sulfate radicals were generated (Neta et al., 1977).  

                                               
S2O8

-2 + (heat, OH-) → 2SO4
•- (E°=2.60 V) (6) 

SO4
•- + M → M• + products  (7) 

  
Moreover, radical interconversion reactions may occur in neutral and acid solutions to produce 

hydroxyl radicals ((•OH) E° = 2.7 V) Eq. 8 (Hayon et al., 1972). The rate for this reaction is relatively 
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slow (K8 < 3 x 103 M-1 s-1). However, the reaction may become very rapid under alkaline conditions 

with a rate constant of (K9 = 6.5 ± 1.0 x 107 M-1 s-1) Eq. 9 (Hayon et al., 1972). Thus, hydroxyl 

radicals are likely the dominant radicals for organic oxidation under alkaline conditions. In contrast, 

sulfate radicals overcome hydroxyl radicals in neutral or acidic solutions (Liang et al., 2006). Much 

like the sulfate radicals, hydroxyl radicals can also initiate radical chain reactions to oxidize organic 

compounds (i.e., M in Eq. 10) (Berlin et al., 1986), or produce another oxidant such as hydrogen 

peroxide Eq. 11 (Waldemer et al., 2007). These studies demonstrate the complexity in persulfate 

chemistry and show that numerous reactions may be involved in the transformation process. 

  
All pHs: SO4

•- + H2O → SO4
2- + •OH + H+  (8) 

Alkaline pH: SO4
•- + OH- → SO4

2- +•OH  (9) 

OH• + M → M• + products  (10) 

2OH• → H2O2  (11) 

In terms of persulfate persistence, four reactions have been suggested to be responsible for the 

decomposition of PS (Kolthoff & Miller, 1951; House, 1962; Sra et al., 2010). Unanalyzed reaction 

through homolytic cleavage of PS to produce hydrogen sulfate and oxygen (Eq. 3), acid catalyzed 

reaction to yield Caro’s acid (Eq. 5), free radical oxidation processes (Eq. 6), and persulfate reactions 

with transition metal catalysts and other reductants (e.g., reduced organic or inorganic). Accordingly, 

when constant concentration of PS is applied in two different systems, higher decomposition rate of 

PS would be expected in a strongly acid solution and/or in the presence of aquifer solids.  

1.2 Halide Ions Effect 

There have been few studies examining the effect of halide ions on the contaminant destruction. For 

instance, significant increase in oxidation rate of estrogens with the addition of NaCl was reported 

(Suri et al., 2010). In contrast, Fenton oxidation of 1,2-dibromoethane was almost completely stopped 

by the addition of 1 mM NaBr (Pignatello et al., 2006). Cl- and Br- are well-known radical scavengers 

as it shown in Eq. 12 - 13 (Peyton, 1993); Eq. 14 - 17 (Grebel et al., 2010). Interestingly, traces of Br- 

in a NaCl stock were found to have a greater effect than Cl- itself, demonstrating the significant 

inhibition effect of Br- (Grebel et al., 2010). This consequence was attributed to the higher reaction 

rate of radicals with Br- than the one with Cl- Eq. 12 and 17. Still, both ions have the capability to 

react rapidly with the free radicals which as a result may slow or inhibit the oxidation of the target 

organics (Grebel et al., 2010). 
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SO4

•- + Cl- → SO4
2- + Cl• (K12 for = 2 x 108 M-1 s-1) (12) 

SO4
•- + Br- → SO4

2- + Br• (K13 for = 3.5 x 109 M-1 s-1) (13) 

OH• + Cl- ↔ ClOH•- (K14 for = 4.3 x 109 M-1 s-1) 

(K14 rev = 6.1 x 109 M-1 s-1) 

(14) 

ClOH•-+ H+ ↔ Cl• + H2O (K15 for = 2.1 x 1010 M-1 s-1) 

(K15 rev = 2.5 x 105 M-1 s-1) 

(15) 

OH• + Br- ↔ BrOH•- (K16 for = 1.1 x 1010 M-1 s-1) 

(K16 rev = 3.3 x 107 M-1 s-1) 

(16) 

BrOH•-+ H+ ↔ Br• + H2O (K17 for = 4.4 x 1010 M-1 s-1) 

(K17 rev = 1.4 M-1 s-1) 

(17) 

 
Moreover, these scavenging reactions were found to be more pronounced at low pH (Jayson et al., 

1973). The destruction of cyclohexanol by OH• was reduced in the presence of halides at low pH, and 

the destruction rate was reported to increase with increasing pH (Grebel et al., 2010). Similar 

observation was reported when Fenton reaction of 2,4-dichlorophenoxyacetic acid was inhibited due 

to the presence of Cl- > 0.01 M at pH = 2.8 (Pignatello et al., 2006). The effect of pH on these results 

can be explained by comparing the rate constants for the forward and reverse reactions in Eq. 14 - 17 

(Liao et al., 2001). In neutral and alkaline conditions, the rate constants for the reverse reactions in 

Eq. 14 was found to be slightly larger than the rate constants for the forward OH• scavenging 

reactions. This indicates the high possibility of OH• regeneration by dissociating back the formed 

halogen radicals. On the other hand, in acidic solution, the rate constants for the forward reactions in 

Eq. 15 and 17 were considerably larger than the rate constants for the reverse reactions, 

demonstrating high OH• scavenging at low pH.  

 

When radicals are scavenged by halide ions, they are converted to radical reactive halogen species 

(i.e., Cl•, Br• in Eq. 15 - 17), that may take part in the contaminant oxidation but react more 

selectively with electron-rich organic compounds (Grebel et al., 2010). At 25ºC, standard reduction 

potentials (E°) of 2.59 V, 2.04 V have been proposed for Cl• and Br•, respectively (Isse et al., 2011). 

Furthermore, the presences of halide ions might affect the decomposition rate of persulfate by 

increasing the solution ionic strength. Increasing the ionic strength by the addition of salt resulted in a 

lower decomposition rate of persulfate (Kolthoff & Miller, 1951). Although, the presence of halogen 
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radicals would appear efficient to treat contaminated water with electron-rich compounds, escalating 

the production of theses radicals might lead to the production of toxic gases (e.g., X2 in Eq. 19) 

(Grebel et., 2010) which would limit its efficiency. 

 
X• + Xˉ ↔ X2

•ˉ   (18) 

2X2
•ˉ → 2X2 + 2Xˉ   (19) 

1.3 Alkalinity Effect 

Alkalinity, reported as CaCO3, is another radical scavenger which may compete with the organic 

contaminants for the highly reactive radicals. In turn, this may affect the rate of contaminant 

oxidation. Lower oxidation rate of TCE was associated with increasing the level of carbonate (CO3
2-) 

(Linag et al., 2006). Similarly, the oxidation rate of 1,4-dioxane by hydroxyl radical slowed down 

when bicarbonate (HCO3
-) and carbonate were present (Mehrvar et al., 2001).  

 

As the form of alkalinity anions present in a solution is pH dependent (e.g., CO3
2-, HCO3

-, H2CO3), 

the scavenging reaction rates by these anions are also expected to be affected by pH. Increasing the 

scavenging reaction rate with increasing pH has been experienced in many studies. This consequence 

can be attributed to the rapid decay of sulfate and hydroxyl radicals when they react with hydroxyl 

ions (OHˉ) at alkaline pH (Dogliotti, 1967). Another possible reason is that the carbon dioxide formed 

from the oxidation of organic compounds may lead to the formation of more scavenging carbonate 

ions (Xu et al., 1989). However, increasing the production of CO2 will bring about lower pH, which 

should increase the oxidation rate for the contaminants. Increasing the scavenging reaction rate under 

alkaline solution might also be explained by the dramatically different reaction rates of different 

alkalinity forms at different pH Eq. 20 - 24.For instance, the reaction rate in acidic solution pH ≤ 3.5, 

where H2CO3 would be the dominant species, is much slower comparing to that in a solution buffer at 

pH ≥ 6.35, where HCO3
-
 is the dominant species. While in alkaline pH ≥ 10.33, CO3

2- would be the 

dominant species and the rate of radical scavenging reaction is considerably faster. This hypothesis is 

in agreement with a study done by Liang et al. (2006). At a neutral pH, TCE oxidation by persulfate 

was not affected by the presence of bicarbonate/carbonate concentrations within the range of 0 - 9.20 

mM. The author also reported a decrease in the TCE oxidation rate with an increase in the level of 

carbonate species at elevated pHs.  
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When radicals are scavenged by carbonate ions, they are converted to reactive carbonate radicals in 

the form of CO3
•− regardless the radicals are scavenged by CO3

2-, HCO3
- or H2CO3 Eq. 20 (Zuo et al., 

1999); Eq. 21 (Huie & Clifton, 1990); Eq. 22 - 23 (Buxton & Elliot, 1986); Eq. 24 (Czapski, 1999)). 

This has been confirmed after a pKa of CO3
•- < 0 was reported (Czapski, 1999). The produced CO3

•- is 

also a strong oxidant (E° ≈ 1.65 V at pH = 7), and may oxidize but more selectively the electron-rich 

organic compounds by the electron transfer mechanism (Zuo et al., 1999; Mazellier et al., 2007). 

Moreover, at pH < 6, an increase in redox potential by 59 mV per pH unit was suggested by Linag 

(Linag et al., 2006). The authors also suggested that the yield redox potential is dependent to a lesser 

degree between 6 and 11 and is almost independent above a pH of 11 (E° = 1.59 V). 

 

SO4
•- + CO3

2-  → SO4
2- + CO3

 •- (K20 =6.1 x 106 M-1 s-1) (20) 

SO4
•- + HCO3

-  → SO4
2- + CO3

 •- + H+ (K21 =2.8 x 106 M-1 s-1) (21) 

OH• + CO3
2-  → OH- + CO3

 •- (K22 = 3.0 x 108 M-1 s-1) (22) 

OH• + HCO3
-  → H2O + CO3

 •- (K23 = 8.5 x 106 M-1 s-1) (23) 

OH• + H2CO3 
 → H2O + H+ + CO3

 •- (K24 = 7.0 x 104 M-1 s-1) (24) 

 
 

The impact of Br-, Cl- , and (bi)carbonate on the inhibition of the oxidation rates of contaminants at 

neutral pH was observed to follow this order: Br- > CO3
2- > Cl- > HCO3

- (Grebel et al., 2010; Liao et 

al., 2001). When these constituents are present together in water, the opposite reaction behavior at 

different pH must be considered and the proper control of pH should be used to gain the highest 

efficiency from the radical oxidation process. 
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Chapter 2 
Materials and Methods 

2.1 Materials 

Reagent grade sodium persulfate (Na2S2O8>98%, Sigma Aldrich), diluted with ultra pure water, was 

used for the oxidation experiments. The contaminated groundwater that was used to conduct the 

experiments was collected from a site in Saudi Arabia. The collected sample from the site was 

analyzed by ALS laboratory group for specific conductance, alkalinity, total dissolved solids, anion 

and cation content. Standard methods (APHA 1998) were employed for all analyses. The 

characteristics of the groundwater sample are illustrated in Table 2.1. The groundwater sample 

containers were shipped to the laboratory on ice, then preserved with a 10% sodium azide solution 

(v/v) (Added 43 mL/4.3L =1 g/L) to inhibit biodegradation of organic compounds, and stored in the 

fridge until use. 

 

2.2 Experimental Procedure 

A laboratory batch experiment was carried out to evaluate the effectiveness of persulfate oxidation of 

selected VOCs over time. Twenty-five mL borosilicate VOA vials with PTFE septa and screw caps 

were employed as reaction systems. Batch reactor experiments were designed with (5 mL) headspace 

Table  2.1 Characteristics of the groundwater 
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to accommodate the expected gas production throughout the reaction. Temperature was maintained at 

10°C or 30°C, by using constant temperature incubators. When using activated persulfate as an 

oxidant, pH was initiated at 12 by adding sodium hydroxide (NaOH). pH was then maintained 

between 10 and 12, when high concentrations of persulfate were added (100 g/L), by regularly adding 

NaOH through Mininert® valve caps. Vials containing only contaminated groundwater were 

prepared and used as control samples for the experiment. Initial VOCs analyses showed that the water 

samples contain 83 mg/L of BTEX, 2.9 mg/L of TMBs, and 0.3 mg/L of Naphthalene. 

 

For the oxidation experiment, alkaline-activated and non-activated persulfate were added via syringe 

to the vials that contained VOC contaminated groundwater. The added oxidant was calculated to 

achieve a final concentration of 20 g/L or 100 g/L in the reaction vials. The reactors were then 

capped, shaken to completely mix, and incubated at 10°C or 30°C. During sampling, using a ground 

glass syringe (with a stainless steel syringe tip), 19.0 mL was removed for VOCs analyses and 0.5 mL 

for persulfate analyses. The analyses were performed at the Organic Chemistry Laboratory, 

Department of Earth and Environmental Sciences, University of Waterloo. Analyses of Benzene, 

Toluene, Ethylbenzene, Xylenes, Trimethylbenzenes, and Naphthalene were performed using a HP 

5890 capillary gas chromatography (GC) equipped with a flame ionization detector and a HP7673A 

auto sampler. The GC calibration was checked with standards to verify the validity of the calibration 

within ± 10%. Dichloromethane (1 mL) was injected in the reactors followed by extraction and 

analysis as described by Freitas & Barker (2008). Bulk PHC fractions F1 (C6 to C10), F2 (C10 to C16) 

and TPH (F1 + F2) were obtained from chromatographs generated during PHC analysis. Sodium 

persulfate concentrations were measured using the spectrophotometric methods of Huang et al. 

(2002). Tests were conducted in triplicate at time points 1, 8, 15, 26, 40, 56 and 98 days. One 

replicate was utilized for analysis of pH when required. 
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Chapter 3 
Results and Discussion 

Prior to the interpretation of the results, there is a main factor that should be considered and 

discussed. This factor might affect the oxidation rates of the contaminants rather than the oxidation 

potential of PS. The effectiveness of PS oxidation seems to be related to the initial concentration of 

the organic compounds, inorganic ions, and their kinetic reactions with the free radicals (Tsitonaki et 

al., 2010). It seems that for the same organic compound, a lower oxidation rate would be expected 

with higher concentrations as well as with the presence of inorganic species.  

 

3.1 The Role of Temperature in the Oxidation of Petroleum Contaminants by 
Persulfate in Saline Environment 

Generally, the reaction rate is temperature dependence. In most cases the rate of reaction doubles for 

every 10°C rise in temperature (Tyagi, 2009). Increasing the temperature will increase the number of 

molecules having the minimum necessary energy, threshold energy, to be effective in producing 

chemical changes. Additionally, increasing the temperature will make molecules move faster and 

hence increase the chances for more collisions and reactions between molecules (Tyagi, 2009). 

Moreover, in persulfate chemical oxidation, sulfate free radical can be generated by activating 

persulfate thermally (Eq. 3). Therefore, at relatively higher system temperature (30°C), a higher rate 

of sulfate and hydroxyl radical generation would be expected than a system with a temperature of 

10°C. This would result in a higher rate of oxidation for the contaminants. Nevertheless, high 

temperature in some cases has been suggested to reduce the mineralization efficiency of the total 

organic carbon (Peyton, 1993). This was attributed to the extremely quick release of reactive radicals. 

Too many radicals will favour radical-radical reactions over radical-organic reactions which will 

reduce the organic oxidation efficiency. Thus, controlling temperature is essential to gain the most 

efficiency of radicals especially when radical scavengers are present in high concentration. 

 

Figure (3.1 (a & b)) shows the influence of temperature over a range of (10°C - 30°C) on persulfate 

oxidation of Total Petroleum Hydrocarbons (TPH). Higher oxidation rate of TPH with PS at higher 

temperature was apparent in all experiment conditions. 
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At 10°C, control reactors that contained only contaminated groundwater demonstrated almost no 

change in all various gasoline compounds by processes other than the chemical oxidation. 

Insignificant TPH loss was observed in control reactors at 30°C, most likely due to the thermal 

treatment of Volatile Organic Compounds (VOCs) at 30°C. Nearly identical results were obtained in 

the PS  experiment at 10°C. These results established the similarity between the thermal treatment at 

30°C, without PS, and the contaminant oxidation by PS at 10°C. In contrast, the results from reactors 

contained PS at 30°C showed the capability of the oxidant to oxidize most of the target contaminants.  

 

3.1.1 Oxidation with Non-Activated Persulfate 

When non-activated PS was added at low temperature 10°C, more than 83% of the total organic 

compounds and 87% of the initial persulfate remained in the solution by the end of the experiment 

(Figure 3.1 (a)). These results demonstrated extremely low oxidation rate of the target contaminants 

by PS at low temperature, most likely due to the low sulfate anions reactivity with the organic 

compounds at low temperature. On the other hand, 50% of the initial PS concentration was 

decomposed when PS was activated thermally at 30°C. The thermally activated PS was capable to 

completely oxidize TPH in  ̴98 days.  

 

Although, higher decomposition rate of PS was observed at higher temperature, significant 

concentration of the oxidant remained in the reactors without being decomposed (Figure. 3.2 (a)). 

 

The pH measurements that were conducted throughout the two experiments showed that the pH did 

not change in the lower temperature system while the pH dropped severely to values around 1.5 in the 

higher temperature system. Several reactions might contribute to this enormous drop of pH. First, 

Uncatalyzed degradation of persulfate through homolytic cleavage to produce hydrogen sulfate and 

oxygen perhaps accounted for some of the H+ generation (Eq. 3). The organic oxidation might also 

contribute to the generated acidity. For instance, the oxidation of one mole of Benzene produces 30 

H+ as described in Eq. 25 (Sra, 2010). Finally, when the pH decreases to < 3 further H+ production 

occurred due to the persulfate degradation through the acid-catalyzed reaction (Eq. 5). 
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C6H6 + 15S2O8
2- + 12H2O → 6CO2 + 30SO4

2- + 30H+   (25) 

 

According to the data in Table 3.1, 1,2,4-TMB was the most degradable compound with the addition 

of PS at 30°C . Benzene was the most persistent compound and the high-to-low order of oxidation 

rates was: 1,2,4-TMB > 1,2,3-TMB > 1,3,5-TMB > Naphthalene > P,M-xylene > Toluene >O-xylene 

>  Ethylbenzene > Benzene. 

 

3.1.2 Oxidation with Alkaline-Activated Persulfate 

It is worth noting that in the alkaline-activated PS experiments, the alkaline pH ≈12 was only attained 

initially; the pH was deliberately uncontrolled to avoid the expected scavenging reaction by 

carbonates at alkaline pH which was observed in a preliminarily experiment. In the preliminarily 

experiment, controlling pH at 12 showed a very limited potential of PS to oxidize the target 

contaminants after 40 days. The technique of not controlling the pH was tremendously successful in 

the higher temperature system 30°C in the current experiment. After five days, pH dropped to pH ≈ 

1.5 resulted in total removal of the organic compounds, most likely in neutral and acidic pH, during 

the first 56 days (Figure 3.1 (b)). In contrast, insignificant drop in pH was observed in the 10°C 

system and very slow oxidation rates for the organic compounds were observed with 75% of the total 

TPH remaining in solution. The slight drop in pH from 12 to 10 was perhaps not sufficient to prevent 

the free radicals from being scavenged by the carbonate species. The rate of PS decomposition was 

observed to be a temperature dependant (Figure 3.2 (b)). Higher decomposition rate of PS was seen 

at 30°C comparing to the one at 10°C where (48%) and (17%) of the initial PS concentration were 

decomposed, respectively. The data in Table 3.1 showed that 1,2,3-TMB was the most rapidly 

degradable compound and the high-to-low order of the oxidation rates was: 1,3,5-TMB > 1,2,4-TMB 

> P,M-xylene > Toluene > O-xylene > Ethylbenzene > 1,2,3-TMB > Benzene > Naphthalene.  

 

In general, alkaline-activated PS has showed an extremely high potential to oxidize the target 

contaminants. However, white precipitations of calcium hydroxide at a strong alkaline pH = 12 - 10 

were observed due to the reaction between sodium hydroxide and calcium carbonate as presented in 

Eq. 26. These species were tested and differentiated from calcium carbonate (CaCO3) by adding a 
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solution of HCl and no reaction was observed. The effect of these species on the water quality and the 

possibility of blocking the porous media in the field might undervalue the use of alkaline-activated PS 

in this particular groundwater setting. 

CaCO3 + 2 NaOH ↔ Ca(OH)2
 + Na2CO3  (26) 

The data for the oxidation by PS for each compound exhibited a good fit to a pseudo-first-order 

model (r2 > 0.94) by exponential regression analysis (Table 3.1). The kobs for TMBs were the largest 

followed by Xylenes > Toluene > Ethylbenzene > Benzene > Naphthalene. The kob trend for some 

compounds in this study (e.g., xylenes and TMBs) is in disagreement with the reported trend for the 

same compounds by Sra (2010). This could be due to the difference in the initial concentration of the 

compound between the two studies. For the same organic compound, a lower oxidation rate would 

most likely be associated with higher concentrations (Tsitonaki et al., 2010). Although the TPH in 

this experiment was ~ 4 times higher than those in Sra (2010) experiment, the kob was higher. The 

oxidation rate coefficients in this study were ~ 2 to 6 times higher when non-activated PS was added 

in both experiments. This difference was likely due a slightly lower temperature (20°C) in Sra (2010) 

as opposed to the 30°C in this experiment. In contrast, the difference between the calculated kob when 

alkaline-activated PS was used in both studies was < 2.  

 

3.1.3 Impact on Bulk PHC Fractions 

Analyses for Petroleum Hydrocarbon (PHC) fractions (F1, F2, and F3) were conducted at the 

beginning of the experiments. F1 was accounted for 97% of the initial concentration while 2.9% and 

less than 0.1% were reported for F2 and F3, respectively. Due to the extremely low concentration of 

F2 and F3, the results for these particular fractions were neglected. However, the decomposition of F2 

and F3 might cause an increase in the concentration of the lower molecular weight F1 and F2 which 

must be considered. 

 

All control reactors demonstrated insignificant oxidation of F1 over the experiment period. Similar 

results were observed when PS was added in a low temperature system 10°C. In contrast, gradual 

decrease in F1 concentration was observed when PS was added in a high temperature system 30°C 

(Figure 3.3 (a & b)). However, a higher oxidation rate of F1 was apparent in the alkaline-activated 
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PS system than in the non-activated PS. Full removal of F1 was achieved in   ̴ 56 and   ̴ 89 days, 

respectively. 
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 Figure 3.1 The effect of temperature (10ºC vs. 30ºC) on the oxidations of (TPH) by (a) non-activated PS and (b) alkaline-

activated PS during the 98 days of the oxidation experiment. 
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 Figure 3.2  The concentration of the residual PS in both (a) non-activated PS and (b) alkaline-activated PS experiments of 

oxidizing TPH at (10ºC  and 30ºC). 
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  Figure 3.3 The effect of temperature (10ºC  vs. 30ºC) settings on the oxidations of F1 by (a) non-activated PS and (b) alkaline-

activated PS. The figure illustrates the change in concentrations during the 98 days of the oxidation experiments. 
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Table  3.1 List of the rate constants of different VOCs observed at 10ºC and 30ºC after the 98 days oxidation experiments with 

non-activated and alkaline-activated PS 
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3.2 The Effect of Persulfate Concentration in the Oxidation of Petroleum 
Contaminants by Persulfate in Saline Environment 

In general, reaction rates are concentration dependent. This is due to the large increase in the number 

of high energy collisions for the reaction (Tyagi, 2009). Moreover, the production rate of free radicals 

can be enhanced by increasing the oxidant concentration (Huang et al., 2002). Therefore, a higher rate 

of free radicals generation would be expected in a system with a relatively higher PS concentration of 

(100 g/L) than a system with PS concentration of (20 g/L). This apparently would result in a higher 

rate of oxidation for the contaminant.  

 

Figure 3.4 (a & b) illustrates the influence of increasing the initial PS concentration from 20 g/L to 

100 g/L on the oxidation of (TPH). Higher oxidation rate of TPH at higher PS concentration was 

observed in all experiments. 

 

Control reactors that contain only dissolved gasoline components demonstrated insignificant loss of 

any monitored gasoline compounds or TPH. In contrast, the results from reactors that contained PS 

showed large losses of most target contaminants. However, the oxidation rate of the target 

contaminants was considerably increased by increasing PS concentration from 20 to 100 g/L.  

 

3.2.1 Oxidation with Non-Activated Persulfate 

At a constant temperature, higher oxidation rate of the total organic compounds was observed with 

increasing initial concentration of non-activated PS. For instance, at a constant temperature of 10°C, 

increasing PS concentration from 20 to 100 g/L was responsible for enhancing the total oxidation of 

contaminants from 17% to 62% during the 98 days period (Figure 3.4 (a)). Moreover, the effect of 

increasing PS concentration was enhanced at the higher constant temperature (30°C). This led to 

almost total oxidation of the target contaminants (Figure 3.4 (b)). This enhancement in the oxidation 

rates could be explained by the increase of both the concentration of oxidant and the temperature 

(Huang et al., 2002). This result is in agreement with a study done by Navarro et al.  (2007) where 
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temperature and PS concentration were reported to significantly accelerate 1,4 dioxane oxidation. The 

fast release of reactive free radicals may cause them to be scavenged by the existing ions (e.g. 

chloride and bromide ions) in the water. The positive aspect of this process could the production of 

free halogen radicals that will also oxidize the target contaminants. However, the negative side of this 

process is the fact that this might end up producing toxic gases (e.g. Cl2, Br2). A pale brown gas with 

a bleach smell was observed, most likely bromine gas, in the reactor with 100 g/L of PS at 30°C. 

However, further analysis is required to accurately identify the produced gases in the reactor cells.  

Thus, controlling concentration and temperature is essential to maximize the effectiveness of radicals, 

especially when radical scavengers are present in groundwater at high concentrations. 

 

3.2.2 Oxidation with Alkaline-Activated Persulfate 

In this case, increasing the initial PS concentration from 20 to 100 g/L enhanced the rate of oxidation 

for the target contaminants by alkaline-activated PS.  

In a constant low temperature system at 10° C, increasing the initial PS concentration dramatically 

increased the oxidation rate of the organic compounds. For instance, the addition of 100 g/L of PS 

resulted in a total oxidation for the organic compounds in almost 56 days. In contrast, only 29% of the 

total contaminants were oxidized over the 98 days period when lower concentrations (20 g/L) of 

alkaline-activated PS were used (Figure 3.5 (a)). Similar but more pronounced results were observed 

in a constant high temperature system 30° C. While it took 40 days for the organic compounds to be 

fully oxidized when low concentrations (20 g/L) of PS were added, full oxidation was achieved in 

less than one week when higher concentrations (100 g/L) of PS was used (Figure 3.5 (b)). 

 

The pH of the solutions in all experiments decreased from the initial pH values due to the generation 

of H+ during PS decomposition (Eq. 3). As expected, decreased in the pH levels and larger 

decomposition rates of PS were observed to be associated with increasing the concentrations of PS in 

the experiments as demonstrated in Figures 3.6 & 3.7. This is due to the larger generation of H+ ions 

during the oxidation of the contaminants at the high PS concentration settings (Eq. 25). The 

significant decrease of pH to ≤ 3 caused the PS to decompose much faster presumably through the 

acid-catalyzed reaction (Eq. 4).  
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During the batch experiment at low PS concentrations (20 g/L), the pH was initially ≈ 12. Throughout 

the experiment, the pH was deliberately uncontrolled to avoid the expected scavenging reaction by 

carbonate at high pH values that was observed in the preliminary experiment. On the other hand, for 

the high PS concentration (100 g/L) experiment, the pH was monitored and maintained between 10 

and 12 by adding sodium hydroxide during sampling. This experiment was conducted to investigate 

the ability of high PS concentrations in reducing the expected scavenging reaction by carbonate 

species at high pH. Controlling pH was achieved by regularly adding NaOH through Mininert valve 

caps during the sampling points. This technique was successful in a system with a low temperature of 

10°C. However, controlling the pH at 30°C was not successful as the pH dropped rapidly from pH ≈ 

12 to pH ≈ 3 in the first three days of the experiment and before the first sampling point was 

performed. This result indicated that most of the oxidation of the contaminants in this particular 

condition occurred in a neutral and acidic pH. 

 

Precipitations of calcium hydroxide were observed during the alkaline-activated PS which might 

undervalue the use of alkaline activation in this particular groundwater setting.  These Precipitates are 

most likely the results of the reaction between sodium hydroxide and calcium carbonate as shown in 

Eq. 26. Further to that, a pale brown gas with a bleach smell was also observed during this experiment 

suggesting the formation of toxic gases such as Br2 gas. The high concentration of PS could be the 

reason behind the formation of bromine gases, because the increase of PS concentrations amplified 

the chances for more collision between these reactive radicals and other inorganic species (e.g. 

chloride, bromide) as described in Eq. 19.  

 

In general, the data for the oxidation by PS for each compound exhibited a good fit to a pseudo-first-

order model by exponential regression analysis (Tables 3.2 & 3.3). The observed pseudo-first-order 

rate constants (kobs) were found to increase with the increase of PS concentrations.  

 

3.2.3 Impact on Bulk PHC Fractions 

All control reactors demonstrated insignificant oxidation of F1 over the experiment period. Similar 

results were observed at a constant temperature system of 10°C when 20 g/L of PS was used in both 
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non-activated and alkaline-activated settings.  In contrast, gradual decreases in F1 concentrations 

were observed when 100 g/L of  PS was used in both non-activated and alkaline-activated settings at 

10°C  (Figure 3.8 (a) & 3.9 (a)), respectively. The trend of decreasing F1 with increasing the 

concentration of PS was much more pronounced in the high temperature system 30°C (Figure 3.8 (b) 

& 3.9 (b)). This result indicated that both increasing temperature and PS concentration were 

responsible for increasing the production rate of free radicals which enhanced the total F1 oxidation. 

In general, highest oxidation rate of F1 was observed in alkaline-activated PS at high PS 

concentrations (100 g/L). 
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 Figure 3.4 The effect of increasing the concentration of non-activated PS from 20 to 100 g/L on the oxidation of (TPH). The 

figures above show the change of concentrations during the 98 days of the oxidation experiments at (a) 10ºC and (b) 30ºC.  
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 Figure 3.5 The effect of increasing the concentration of alkaline-activated PS from 20 to 100 g/L on the oxidation of (TPH). The two 

figures illustrate the change in concentration of TPH during the 98 days of the oxidation experiments at (a) 10ºC and (b) 30ºC.  
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 Figure 3.6 The effect of increasing the concentration from 20 to 100 g/L on the decomposition rate of non-activated PS at (a) 

10ºC and (b) 30ºC. 
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  Figure 3.7 The effect of increasing the concentration from 20 to 100 g/L on the decomposition rate of alkaline-activated PS at (a) 

10ºC and (b) 30ºC. 
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 Figure 3.8 The effect of increasing the concentration of non-activated PS from 20 to 100 g/L on the oxidation of (F1). The above 

figures show the change of concentrations of F1 during the 98 days of the oxidation experiments at (a) 10ºC and (b) 30ºC. 
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 Figure 3.9 The effect of increasing the concentration of alkaline-activated PS from  20 to 100 g/L on the oxidation of (F1). The 

figures illustrate the change in F1 concentrations over the 98 days of the oxidation experiments at (a) 10ºC and (b) 30ºC. 
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Table  3.2 List of the rate constants of different VOCs observed at (10ºC) with different PS concentrations (20 g/L and 100 g/L) 

after the 98 days of the oxidation experiments by non-activated and alkaline-activated PS. 



 

 

 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  3.3 List of the rate constants of different VOCs observed at (30ºC) with different PS concentrations (20 g/L and 100 g/L) 

after the 98 days of the oxidation experiments by non-activated and alkaline-activated PS. 
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3.3 Conclusion and Suggestions 

Three important aspects were examined during this laboratory study: 1) the effect of activation 

(alkaline activation) of PS on the effectiveness of PS as a chemical oxidation agent; 2) investigating 

the effect of different temperatures (10ºC versus 30°C) on the reactivity of PS; and 3) examining the 

effect of different PS concentrations (20 versus 100 g/L) on the oxidation rates by PS on selected 

organic contaminants.  

 

The results showed the high potential of PS to oxidize the target contaminants under certain 

conditions. In general, the alkaline-activation of PS has demonstrated an enhancement of the 

oxidation capabilities of PS on the target contaminants when compared with the potential of the non-

activated PS. However, precipitations of calcium hydroxide that observed during this experiment, 

which are believed to be caused by the reaction between sodium hydroxide and calcium carbonate, 

will undervalue the use of alkaline-activated PS in this particular groundwater setting. Moreover, 

increasing the concentration of PS was not favored in all experimental conditions. This is due to the 

accumulation of solid precipitations as well as the production of pale brown gases, most likely Br2, as 

products of the reactions between the free radicals and the presence of high concentrations of 

inorganic species (e.g., bromide) in this specific water sample that was used for the experiment. 

 

The results also showed that both the initial concentration of PS and the system temperature can play 

important roles in the reactivity of PS. For instance, the oxidation rate of the target contaminants was 

observed to increase dramatically by increasing the concentration of PS from 20 to 100 g/L. 

Similarly, the oxidation rate coefficients increased by increasing the system temperature from 10ºC to 

30ºC. These results demonstrated that the effect of PS on oxidizing the target contaminants is a site 

specific and can vary from one site to another based on the chemical characteristics of the 

groundwater as well as the temperature of the groundwater in the site. Therefore, in the systems 

where the groundwater temperature is naturally elevated, the application of PS will naturally enhance 

and increasing the PS concentration will further enhance and speed up the oxidation process. On the 

other hand, utilizing PS as an oxidation agent in low temperature system in an effective way might 

require both enhancements (thermal and high concentrations) in order to achieve the same yield as the 

scenario in elevated temperature aquifers.  
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The decrease of the system’s pH was very helpful in avoiding the expected scavenging action of free 

radicals by carbonate species at alkaline pH, which resulted in a greater oxidation rate for all 

compounds. Moreover, the effect of the expected scavenging of radicals at acidic pH by Cl- and Br – 

in all experiments conditions was minimized perhaps due to the production of free halogen radicals 

that contributed in oxidizing the target compounds as well.  
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Chapter 4 
Monitoring Oxidation of BTEX by Persulfate in Groundwater Using 

Stable Isotopes 

Overview: 
 
In this study, bench top batch experiments were carried out to investigate the roles that carbon and 

hydrogen isotope analyses can play in the assessment of the effectiveness of persulfate as an 

oxidation agent to remediate petroleum hydrocarbons in saline environments at elevated groundwater 

temperature.  

 

The chemical oxidation of Benzene, Toluene, Ethylbenzene, ρ-Xylenes and o-Xylenes by non-

activated PS at 30ºC, was accompanied by significant carbon isotope fractionations with isotope 

enrichment factors of -2.0‰, -1.6‰, -1.6‰, -0.6‰ and -1.4‰, respectively. Similar results were 

observed when alkaline-activated PS was used with carbon enrichment factors of -2.0‰, -1.2‰, -

1.1‰, -0.4‰ and -1.3‰, respectively.  

 

In contrast, the chemical oxidation by PS was associated with insignificant hydrogen isotope 

fractionations, when it is compared to the average hydrogen fractionations during transformations by 

other chemical or biochemical processes, with isotope enrichment factors of -10.9‰, -6.6‰, -2.5‰, -

5.6‰ and -9.4‰ for Benzene, Toluene, Ethylbenzene, ρ-Xylenes and o-Xylenes, respectively. 

Similar results were observed when alkaline-activated PS was utilized with hydrogen enrichment 

factors of -10.6‰, -6.4‰, -2.1‰, -7.4‰ and -7.1‰, respectively. 

 

Two-dimensional isotope fractionations were also calculated and ᴧ values were obtained in non-

activated PS experiment were 5.5, 4.1, 1.6, 9.3, and 6.7 for Benzene, Toluene, Ethylbenzene, ρ-

Xylene and o-Xylene, respectively. Nearly identical results were observed with the alkaline-activated 

PS experiment were the ᴧ  values were 5.3, 5.3, 1.9, 18.5, and 5.5, respectively. The data obtained in 

these experiments demonstrated the potential of utilizing the two-dimensional isotope analyses to 

assess the transformation pathway and to show the differences in the isotope fractionations when 

compounds undergoes chemical oxidation or biodegradation.  
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4.1 Introduction 

Due to the widespread use of petroleum products, the soluble, mobile and toxic monoaromatics 

Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), has become contaminants of major concern 

in groundwater. For example this group can make up to 18% (w/w) in a standard gasoline blend 

(Christensen et al., 1996). As the result of terrestrial oil spills and leaking underground storage tanks, 

contamination of shallow aquifers by these chemicals has become a serious environmental problem. 

Research and development over the last three decades have led to various subsurface remediation or 

controlling strategies such as: 1) containment of contaminated zones (e.g., concrete or slurry walls), 

2) ex-situ treatment (e.g., excavation), 3) natural attenuation, and 4) in-situ treatment (e.g., in-situ 

bioremediation, chemical oxidation) (Domenico and Schwartz, 1998).  

 

The application of in-situ chemical oxidation (ISCO) as a remediation method of subsurface organic 

contaminants is still relatively new. Over the last 10 years, there has been significant research and 

development in ISCO for the remediation of organic contaminants (e.g. Hood, 2000; Watts & Teel, 

2006). ISCO technology involves the injection of chemical oxidants (e.g., hydrogen peroxide or 

Fenton’s reagent, persulfate, permanganate and ozone) into the vadose or saturated zone to reduce the 

contaminant mass through oxidization (Masten & Davis, 1997; USEPA, 1999; Nimmer et al., 2000). 

In the past few decades, several aqueous oxidants have been employed to remediate petroleum 

hydrocarbons (e.g., Huling & Pivetz, 2006; Siegrist et al, 2006; Tsitonaki et al., 2010). One is sodium 

persulfate (Na2S2O8). In addition to the advantages of having high water solubility and benign 

residual products, sodium persulfate (PS) is very stable and can persist in the subsurface for weeks 

(Huling & Pivetz, 2006). The persistence of PS in the subsurface will allow for advective, dispersive, 

and diffusive mechanisms to transport PS away from the injection locations to ensure greater 

coverage of the treatment zone (Sra et al., 2010).  

 

However, under field conditions, concentrations of hydrocarbons can decrease due to displacement of 

contaminated water by the injected persulfate solution rather than oxidation of hydrocarbons. 

Moreover, hydrocarbon concentrations may remain elevated even though destruction occurs, due to 

continuous dissolution of hydrocarbons from the source zone of the light non-aqueous phase liquid 

(NAPL). Therefore, it is very useful to couple this study with an isotopic investigation to better 

understand which processes are active and how extensive the remedial reactions have been. This in 
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turn will help to successful use of compound specific isotope analysis (CSIA) as a monitoring tool in 

real life scale treatments at field sites. In this study, the isotopic fractionation factors of carbon and 

hydrogen that are associated with the chemical oxidation of BTEX by PS were determined. 

 

CSIA is a technique that provides isotopic characterization of individual compounds. In recent years, 

the use of CSIA in groundwater contaminant studies have become a valuable methodology that is 

employed routinely in field studies as an indicator of chemical and biological degradations of organic 

contaminants in groundwater (e.g., Sturchio et al., 1998; Slater et al., 2001; Schmidt et al., 2004; 

Fischer et al., 2009). The study of isotopes in groundwater contaminated with organic has provided 

unambiguous proof of its oxidation and provided an in-situ measurement of the rate of oxidation (e.g., 

Hukeler et al., 2001; Morasch et al., 2002; Mancini et al., 2003; Fischer et al., 2008). In most of the 

ISCO studies, decreasing concentrations of parent hydrocarbons and increasing the concentration of 

by-products have been used as indicators of contaminant destruction. Therefore, measurements of the 

isotope values of organic contaminants in groundwater samples can be utilized as an additional line of 

evidence. For example, the stable isotope ratios of carbon (13C/12C) during oxidation are expected to 

show gradual 13C enrichment in the remaining residues, indicating preferential oxidation of 12C-

enriched molecules. The measured isotope variation, which is usually reported in delta notation δ13C, 

is defined by the following equation. 

 

 

(1) 

 

Here, (13C/12C) compound is the isotope ratio of the organic compound, (13C/12C) ref is the isotopic ratio of 

the international reference material (V-PDB, Vienna Pee Dee Belemnite for carbon) and δ13Ccompound 

is the isotopic ratio of the specific compound in any sample. All isotopic values are reported in permil 

(‰) relative to an international reference material by using the delta notation (δ). Moreover, the 

Rayleigh equation has been employed to calculate the isotopic enrichment factor (𝜀), the ratio 

between the specified isotopic abundance and the natural abundance of that isotope. For instance, the 

quantification of carbon isotopic enrichment can be expressed as shown in Eq. 2. 
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Where, δ 13C0 is the initial carbon isotopic ratio when it has not yet been degraded and δ13C is the 

isotopic ratio after oxidation has occurred; 𝑓 is the fraction of the compound remaining at this stage of 

oxidation and 𝜀 is the isotopic enrichment factor. 

 

Moreover, the transformation pathways can be characterized more precisely by using a two-

dimensional isotope fractionation analysis (2D-CSIA) (Elsner et al., 2005; Zwank et al., 2005; Fischer 

et al., 2008; 2009; Herrmann et al., 2009). Prior to the isotope-sensitive bond change, carbon and 

hydrogen fractionation are equally influenced by rate limitations (Elsner et al., 2005). Therefore, any 

rate limitations that mask the values of the kinetic isotope effect (KIE) are cancelled out and the ratio 

between the isotope enrichment factors for the two elements can be seen as a fingerprint of the initial 

bond cleavage reaction within a distinct oxidation pathway (Herrmann et al., 2009). The lambda 

notation (ᴧ) is used for the ratio between the isotope enrichment factors for the two elements 

(Herrmann et al., 2009). For instance, the slope of the linear regression for hydrogen (∆δ2H) versus 

carbon (∆δ13C) is given in Eq. 3. Alternatively, ᴧ values can be assessed by the ratio of hydrogen to 

carbon isotope enrichment factors. 

  

(ᴧbulk) = ∆δ2H / ∆δ13C ≈ 𝜀Hbulk/ 𝜀Cbulk 

 

 (3) 

 

4.2 Experimental 

4.2.1 Materials 

Reagent grade sodium persulfate (Na2S2O8>98% -Sigma Aldrich), diluted with ultra pure water, was 

used for the oxidation experiments. Contaminated groundwater, used to conduct the experiments, was 

collected from a site in Saudi Arabia. Samples of site groundwater were analyzed by ALS laboratory 
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group for specific conductance, alkalinity, total dissolve solids, anion and cation content. Standard 

methods (APHA 1998) were employed for all analysis and characteristics of the groundwater are 

presented in Table 2.1. Groundwater samples were shipped to the laboratory on ice, then preserved 

with a 10% sodium azide solution (v/v) (Added 43 mL/4.3L =1 g/L) to inhibit biodegradation of 

organic compounds, and stored in the fridge until they were used.  

4.2.2 Experimental Procedure 

A laboratory batch experiment was carried out to evaluate the effectiveness of persulfate oxidation of 

BTEX over time. Twenty-five mL borosilicate VOA vials with PTFE septa and screw caps were 

employed as reaction systems. Batch reactor experiments were designed with (5 mL) headspace to 

accommodate any expected gas production throughout the reaction. Temperatures were maintained at 

10ºC and 30ºC, by using constant temperature incubators. Vials containing only contaminated 

groundwater were prepared and used as control samples for the experiment. Initial BTEX 

concentration was analyzed and the results are shown in Table 4.1. 

 

 

 

 

 

 

 

4.2.3 Concentration measurements 

For the oxidation experiment, persulfate was added via syringe to the vials that contained 

contaminated groundwater. The added oxidant was calculated to achieve a final concentration of 

20g/L in the reaction vials. The reactors were then capped, shaken, (to completely mix and reach 

equilibrium), and incubated at 10ºC or 30ºC. For sampling, a ground glass syringe (with a stainless 

Table  4.1 Initial BTEX concentrations 
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steel syringe tip) was used and 19.0 mL was removed from the reactor vial for BTEX analyses and 

0.5 mL for persulfate analyses. The analyses were performed at the Organic Chemistry Laboratory, 

Department of Earth and Environmental Sciences, University of Waterloo. Analyses of Benzene, 

Toluene, Ethylbenzene, and Xylenes (BTEX), were performed using a HP 5890 capillary gas 

chromatography (GC) equipped with a flame ionization detector and a HP7673A auto sampler. The 

GC calibration was checked with standards to verify the validity of the calibration within ± 10%. 

Dichloromethane (1 mL) was injected in the reactors followed by extraction and analysis as described 

by (Freitas & Barker (2008)). Tests were conducted in triplicate at time points 1, 8, 15, 26, 40, 56 and 

98 days. One replicate was utilized for analysis of pH when required 

4.2.4 Isotope analyses 

Two 25 mL vials were collected for isotopic analyses and kept in the fridge until they were analyzed. 

Later, the samples were diluted and prepared in 40 mL vials for the isotopic analyses. Organic 

compounds were extracted from the vials via a head space solid phase micro extraction (SPME) and 

then analyzed for both compound specific carbon and hydrogen stable isotopes separately. These 

isotopic analyses were carried out in the Isotope Tracer Technologies Inc., Waterloo, Canada. 

GC/TC/IRMS and GC/C/IRMS systems were used to perform the hydrogen and carbon CSIA, 

respectively. The system consisted of an HP 6890 Series gas chromatograph (Agilent Technologies, 

Santa Clara, CA, USA) and Delta plus XL Continuous-Flow Isotope Ratio Mass Spectrometer (CF 

IRMS) (Thermo Finnigan, Bremen, Germany). BTEX compounds were converted to hydrogen gas 

for the δ2H analyses and they were converted to CO2 gas to perform the δ13C analyses. The δ2H values 

were reported relative to Vienna Standard Mean Ocean Water (VSMOW) a water standard from the 

International Atomic Energy Agency (IAEA, Vienna, Austria), while δ13C values were reported 

relative to the Vienna Pee Dee Belemnite (VPDB) international standard reference material. The 

analytical uncertainties for δ13C and δ2H were typically below ± 0.5‰ and ±5.0‰, respectively.  
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4.3 Results and Discussion 

4.3.1 BTEX Oxidation by Persulfate 

Figures 4.1 – 4.5 show the change in concentration of BTEXs during the chemical oxidation 

experiment by non-activated and alkaline-activated PS. Control reactors that contained only BTEX 

compounds demonstrated insignificant loss of all analyzed gasoline compounds by processes other 

than the chemical oxidation. Moreover, similar results were obtained when PS was added to the 

reactors at low temperature 10ºC, while reactors that were kept at 30ºC showed the capability of the 

PS to oxidize the target contaminants efficiently. The reactivity of PS with the contaminants was 

considerably higher at the higher temperature. All of BTEX compounds decreased exponentially with 

time when PS was added. The high-to-low order of oxidation rates was as follows: 

 ρ-Xylene > Toluene > o-Xylene > Ethylbenzene > Benzene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.1 The change of concentrations vs. time of Benzene through the 98 days of the 

oxidation experiments. Non-activated (top) and alkaline-activated (bottom) PS.  
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Figure  4.2 The change of concentrations vs. time of Toluene through the 98 days of the 

oxidation experiments. Non-activated (top) and alkaline-activated (bottom) PS.  

Figure  4.3 The change of concentrations vs. time results of Ethylbenzene over the 98 days 

of the oxidation experiments. Non-activated (top) and alkaline-activated (bottom) PS.  
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Figure  4.4 The change of concentrations vs. time of ρ-Xylene during the 98 days of the  

oxidation experiments with non-activated (top) and alkaline-activated (bottom) PS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.5 The change of concentrations vs. time of o-Xylene over the 98 days of the oxidation 

experiments with non-activated (top) and alkaline-activated (bottom) PS.  
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4.3.2 Carbon and Hydrogen Isotope Fractionation during BTEX Oxidation 

 

Carbon isotope fractionation 

The decrease of BTEX concentrations at 30ºC with time was accompanied by a gradual increase of 

the δ13C values (Figure 4.6). The strongest 13C/12C fractionation was detected when non-activated PS 

was added for o-Xylene with an absolute shift of ∆ 13C = 7.6‰, followed by Ethylbenzene ∆ 13C = 

6.4‰. A moderate fractionation was found for Toluene ∆ 13C = 5.8‰, and Benzene ∆ 13C = 5.2‰. 

Smallest but still significant fractionation was observed for p-Xylene ∆ 13C = 2.9‰. The 13C/12C 

fractionation with the addition of alkaline-activated PS however was less pronounced and followed 

the order:  Ethylbenzene ∆13C = 4.7‰ > Toluene ∆13C = 4.2‰ > Benzene ∆13C = 3.3‰ > o-Xylene 

∆13C = 2.0‰ > ρ-Xylene ∆13C = 0.9‰.  

 

Accordingly, the gradual increase in the δ13C versus time followed almost a linear trend. In general, 

enrichments in the δ13C during the transformation of each compound were observed in all experiment 

conditions. The chemical oxidation of Benzene, Toluene, Ethylbenzene, ρ-Xylene and o-Xylene by 

non-activated PS at 30ºC, was accompanied by significant carbon isotope fractionations with isotope 

enrichment factors of -2.0‰, -1.6‰, -1.6‰, -0.6‰ and -1.4‰, respectively. Similar results were 

observed when alkaline-activated PS was added with carbon enrichment factors of -2.0‰, -1.2‰, -

1.1‰, -0.4‰ and -1.3‰, respectively. 

 

Strong carbon isotope fractionation was also observed during the chemical oxidation of 

trichloroethylene (TCE), tetrachloroethylene (PCE), and cis-1,2-dichloroethylene (cDCE), when 

permanganate  was used as an oxidant (Poulson & Narakora, 2002; Hunkeler et al., 2003). However, 

the significant carbon enrichment factor obtained in this study for Toluene is in contrast with the one 

associated with Fenton-like oxidation where a small carbon isotope enrichment factor (𝜀) of -0.2‰ 

was reported (Ahad & Slater, 2008). The differences between the results obtained from this study and 

the Ahad & Slater (2008) study are most likely due to the different oxidation mechanism involving 

sulfate radicals versus hydroxyl radicals (which are the dominant oxidants during Fenton-Like 

oxidation). However, the reaction mechanisms involving sulfate radicals remains uncertain (Tsitonaki 

et al., 2011). 

 



 

43 

 

Hydrogen isotope fractionation 
In general, BTEX oxidation by persulfate has shown little hydrogen isotope fractionation (Figure 

4.7). One reason for this result may be the absence of C-H bond cleavage and the breaking of C-C in 

the initial step during the chemical oxidation by PS. 

 

During the chemical oxidation by non-activated PS at 30ºC, all BTEX compounds showed only a 

small 2H/1H shift of ≤ 26.6‰ (Table 4.2). Although these fractionations are larger than those 

observed for the carbon isotopes, they are relatively small when they are compared to the average 

hydrogen fractionation during transformation by other chemical or biochemical process. Strongest 
2H/1H fractionation was observed for Toluene with an absolute shift ∆ 2H = 26.6‰, followed by 

Benzene ∆2H = 18.6‰. Small fractionations were detected for o-Xylene ∆2H = 8.9‰, and ρ-Xylene 

∆2H = 6.2‰. On the other hand, the smallest fractionation was observed for Ethylbenzene ∆ 2H = 

1.6‰. Similar 2H/1H fractionations were observed with the addition of alkaline-activated PS. The 

high-to-low order of 2H/1H shifts can be demonstrated as follows:  Benzene ∆2H = 18.7‰ > o-Xylene 

∆2H = 8.9‰ > Toluene ∆2H = 8.1‰ > ρ-Xylene ∆2H = 5.7‰ > Ethylbenzene ∆2H = 1.4‰.  

 

Consequently, the chemical oxidation of Benzene, Toluene, Ethylbenzene, ρ-Xylene and o-Xylene by 

non-activated PS at 30ºC, was accompanied by insignificant hydrogen isotope fractionations with 

isotope enrichment factors of -10.9‰, -6.6‰, -2.5‰, -5.6‰ and -9.4‰, respectively. Similar results 

were observed when alkaline-activated PS was added with hydrogen enrichment factors of -10.6‰, -

6.4‰, -2.1‰, -7.4‰ and -7.1‰, respectively. 

 

 

4.3.3 Two-dimensional Isotope Fractionation Analyses 

For the 2D-CSIA approach, lambda (ᴧ) values were calculated as the ratio of hydrogen to carbon 

enrichment factors (ᴧ = ∆δ2H / ∆δ 13C ≈ 𝜀H / 𝜀C) (Fischer et al., 2009). The resultant ᴧ values when 

non-activated PS was used are 5.5, 4.1, 1.6, 9.3, and 6.7 for Benzene, Toluene, Ethylbenzene, ρ-

Xylene and o-Xylene, respectively. Nearly identical results were observed with the alkaline- activated 

PS and the ᴧ  values for Benzene, Toluene, Ethylbenzene, ρ-Xylene and o-Xylene were 5.3, 5.3, 1.9, 

18.5, and 5.5, respectively. In general the ᴧ values produced by these two different PS addition were 
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insignificant when compared with the uncertainties of the analytical methodologies for measuring 

carbon and hydrogen isotopes where (±5.0‰) for hydrogen and (±0.5‰) for carbon analyses. The 

only compound that showed some significant fractionation in the ᴧ values between the different PS 

additions was ρ-Xylene. The ᴧ  values during the chemical oxidation of ρ-Xylene by non-activated 

and alkaline-activated PS at 30ºC were calculated based on only one sampling point due to the lack of 

material (very low concentrations) for this particular compound. Thus, the experiment on this 

compound needs to be re-conducted on higher concentration samples and in shorter sampling 

intervals. 

 

The initial step of BTEX oxidation by SO4
•- can be suggested from the result in this study. The 

aromatic ring in each compound, particularly at the C-C bond, is attacked by SO4
•- causing an electron 

transfer from the organic compound to the SO4
•- as suggested in Eq. 4 (Snook & Hamilton, 1974; 

Chawla & Fessenden, 1975; Forsey 2004). Considering this step as the rate-determining of the 

reaction, large carbon isotope enrichment due to the breaking of the C-C is obtained. In contrast, an 

insignificant fractionation in the hydrogen enrichment is observed indicating no cleavage on the C-H 

has occurred in the initial step.  

 

The (2D-CSIA) data obtained in this experiment was compared with other biochemical studies to 

show the potential of isotope effect to assess the transformation pathways (Figures 4.8 – 4.10). 

Unfortunately, for Ethylbenzene, no two dimensional data was reported in the literature to allow the 

comparison. In general, the hydrogen and carbon isotope fractionations during the chemical oxidation 

of BTEXs by PS were smaller than the isotope fractionations during other transformation processes 

(e.g., sulfate reduction, denitrification). This result demonstrated that chemical oxidation is a very fast 

process. In general, faster reaction steps show smaller isotopic fractionations than slower steps 

because the oxidant/organism is not selective (Hunkeler & Morasch, 2010). Moreover, the data 

  

 

 

(4) 
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showed the differences and similarities in the kinetic isotope effect when a contaminant undergoes 

chemical oxidation, aerobic, or anaerobic transformation (Table 4.3). For instance, the results show 

that the initial reactions under chemical oxidation were associated with quite large 𝜀C and only a small 

𝜀H. This result is quite similar to the isotope fractionation associated with an aromatic ring-

monooxygenation (Morasch et al., 2002; Fischer et al., 2008). Moreover, similar 𝜀C was obtained 

under sulfate-reducing condition. Yet, the 𝜀H was observed to spread over a wide range (Ahad et al., 

2000; Vogt et al., 2008), which was not observed under the chemical oxidation condition in this 

study. Thus, combined analyses of carbon and hydrogen isotopes may be a more robustness method 

to assess the transformation pathways of BTEX than measuring carbon isotopes only. 
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 Figure  4.6 Double logarithmic plots of carbon isotopic fractionations according to the Rayleigh equation of the changes in 

concentrations versus the shifts in the isotopic ratios of Benzene, Toluene, Ethylbenzene, ρ-Xylene and o-Xylene. The slopes 

represent the calculated isotopic enrichment factors (ε). 
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Figure  4.7 Double logarithmic plots of hydrogen isotopic fractionations according to the Rayleigh equation of the changes in 

concentrations versus the shifts in the isotopic ratios of Benzene, Toluene, Ethylbenzene, ρ-Xylene and o-Xylene. The slopes represent 

the calculated isotopic enrichment factors (ε). 
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Table  4.2 Carbon and hydrogen isotope fractionation values as well as enrichment factors (𝜀C, 𝜀H) caused by chemical oxidation of 

BTEXs by PS. 
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4.4 Conclusion and Suggestions 

In the control reactors (i.e. no addition of PS), BTEX concentrations as well as carbon and hydrogen 

isotopic signatures remained stable. Similar results were obtained when PS was added to the low 

temperature system 10ºC, indicating that the reactivity of PS with the objective contaminants was 

considerably influenced by the change in temperature.  

 

Significant carbon isotope fractionations were observed during the chemical oxidation of BTEX by 

PS at 30ºC. In contrast, the chemical oxidation of BTEX was accompanied by little or no hydrogen 

isotope fractionation. This could be due the absence of C-H bond cleavage and the presence of C-C 

breaking in the initial step during the chemical oxidation by PS 

 

In general, the hydrogen and carbon isotope fractionations associated with the chemical oxidation of 

BTEXs by PS were smaller than the isotope fractionations during biodegradation demonstrating that 

chemical oxidation by PS is probably a fast process.  

 

Moreover, the combined analyses of carbon and hydrogen isotopes showed higher potential to assess 

the transformation pathways of BTEXs than measuring one isotope only. 
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Figure  4.8 Concurrent Carbon and hydrogen enrichment factors (𝜀C, 𝜀H) for Benzene during the chemical oxidation by PS compared 

with recently published values for aerobic and anaerobic degradations of Benzene.



 

 

 

51 

 

 

Figure  4.9 Concurrent Carbon and hydrogen enrichment factors (𝜀C, 𝜀H) for Toluene during the chemical oxidation by PS compared 

with recently published values for aerobic and anaerobic degradations of Toluene.
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Figure  4.10 Concurrent Carbon and hydrogen enrichment factors (𝜀C, 𝜀H) for Xylenes during the chemical oxidation by PS compared 

with recently published values for aerobic and anaerobic degradations of Xylenes.
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Compound Transformation Type 

Isotope 

Enrichment 
ᴧ = ∆δ2H/∆δ13C 

≈ 𝜀H/𝜀C 
Reference 

𝜀C 𝜀H 

Benzene Chemical oxidation, alkaline-activated persulfate, 30ºC -2.0 -10.9 5.5 This study 

Benzene Chemical oxidation, Non-activated persulfate, 30ºC -2.0 -10.6 5.3 This study 

Benzene Aerobic -1.47 -12.8 8.7 (Hunkeler et al., 2001) 

Benzene Aerobic -3.41 -11.2 3.3 (Hunkeler et al., 2001) 

Benzene Aerobic -1.7 -11 6.5 (Fischer et al., 2008) 

Benzene Aerobic -4.3 -17 4.0 (Fischer et al., 2008) 

Benzene Aerobic -2.6 -16 6.2 (Fischer et al., 2008) 

Benzene Denitrifying -2.4 -29.0 12.1 (Mancini et al., 2003) 

Benzene Denitrifying -2.2 -35.0 15.9 (Mancini et al., 2003) 

Benzene Denitrifying -2.6 -47.0 18.1 (Mancini et al., 2008) 

Benzene Denitrifying -2.8 -47.0 16.8 (Mancini et al., 2008) 

Benzene Denitrifying -1.9 -31.0 16.3 (Mancini et al., 2008) 

Benzene Sulfate-reducing -3.6 -79.0 21.9 (Mancini et al., 2003) 

Benzene Sulfate-reducing -1.9 -59.0 31.1 (Fischer et al., 2008) 

Table  4.3 Concurrent Carbon and hydrogen enrichment factors (𝜀C, 𝜀H) and calculated (ᴧ) values for BTEXs during the chemical 

oxidation by PS compared with recently published values for aerobic and anaerobic degradations of BTEX. 
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Benzene Sulfate-reducing -2.9 -78.0 26.9 (Fischer et al., 2009) 

Benzene Sulfate-reducing -2.9 -69.0 23.8 (Fischer et al., 2009) 

Benzene Sulfate-reducing -3 -77.0 25.7 (Fischer et al., 2009) 

Benzene Methanogenic -1.9 -60.0 31.6 (Mancini et al., 2003) 

Benzene Methanogenic -2.1 -59.0 28.1 (Mancini et al., 2003) 

Benzene Methanogenic -0.8 -34.0 42.5 (Mancini et al., 2008) 

Benzene Methanogenic -1.1 -38.0 34.5 (Mancini et al., 2008) 

Toluene Chemical oxidation, alkaline-activated persulfate, 30ºC -1.6 -6.6 4.1 This study 

Toluene Chemical oxidation, Non-activated persulfate, 30ºC -1.2 -6.4 5.3 This study 

Toluene Aerobic -1.1 -16.0 14.5 (Morasch et al., 2002) 

Toluene Aerobic -0.4 -28.0 70.0 (Morasch et al., 2002) 

Toluene Aerobic -0.4 -8.6 21.5 (Vogt et al., 2008) 

Toluene Aerobic -1.8 -2.0 1.1 (Vogt et al., 2008) 

Toluene Denitrifying -2.7 -35.0 13.0 (Vogt et al., 2008) 

Toluene Denitrifying -5.6 -79.0 14.1 (Vogt et al., 2008) 

Toluene Denitrifying -6.2 -79.0 12.7 (Vogt et al., 2008) 

Toluene Denitrifying -5.7 -78.0 13.7 (Vogt et al., 2008) 

Toluene Denitrifying -3 -45.0 15.0 (Vogt et al., 2008) 

Toluene Denitrifying -3.8 -58.0 15.3 (Vogt et al., 2008) 

Toluene Denitrifying -2.9 -50.0 17.2 (Vogt et al., 2008) 
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Toluene Anoxygenic phototrophic -4.0 -23.0 5.8 (Vogt et al., 2008) 

Toluene Fe(III)-reducing -1.3 -34.6 26.6 (Tobler et al., 2008) 

Toluene Fe(III)-reducing -1.3 -37.2 28.6 (Tobler et al., 2008) 

Toluene Fe(III)-reducing -2.9 -98.4 33.9 (Tobler et al., 2008) 

Toluene Sulfate-reducing -2 -66.0 33.0 (Vogt et al., 2008) 

Toluene Sulfate-reducing -2.6 -80.0 30.8 (Vogt et al., 2008) 

Toluene Sulfate-reducing -2.3 -68.0 29.6 (Vogt et al., 2008) 

Toluene Sulfate-reducing -2.4 -74.0 30.8 (Vogt et al., 2008) 

Toluene Sulfate-reducing -2.7 -88.0 32.6 (Vogt et al., 2008) 

Toluene Sulfate-reducing -2.8 -81.0 28.9 (Vogt et al., 2008) 

Toluene Sulfate-reducing -2.8 -87.0 31.1 (Vogt et al., 2008) 

Toluene Sulfate-reducing -1.5 -46.0 30.7 (Fischer et al., 2009) 

Toluene Sulfate-reducing -1.8 -55.0 30.6 (Fischer et al., 2009) 

Toluene Sulfate-reducing -1.9 -70.0 36.8 (Fischer et al., 2009) 

Toluene Sulfate-reducing -0.6 -16.0 26.7 (Fischer et al., 2009) 

Toluene Sulfate-reducing -2.5 -107.0 42.8 (Herrmann., et al 2009) 

Toluene Sulfate-reducing -6.7 -126.0 18.8 (Herrmann., et al 2009) 

Ethylbenzene Chemical oxidation, alkaline-activated persulfate, 30ºC -1.6 -2.5 1.6 This study 

Ethylbenzene Chemical oxidation, Non-activated persulfate, 30ºC -1.1 -2.1 1.9 This study 

p-Xylene Chemical oxidation, alkaline-activated persulfate, 30ºC -0.6 -5.6 9.3 This study 
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p-Xylene Chemical oxidation, Non-activated persulfate, 30ºC -0.4 -7.4 18.5 This study 

p-Xylene Sulfate-reducing -1.2 -19 15.8 (Herrmann., et al 2009) 

o-Xylene Chemical oxidation, alkaline-activated persulfate, 30ºC -1.4 -9.4 6.7 This study 

o-Xylene Chemical oxidation, Non-activated persulfate, 30ºC -1.3 -7.1 5.5 This study 

o-Xylene Sulfate-reducing -2.6 -29.6 11.4 (Steinbach et al., 2004) 

o-Xylene Sulfate-reducing -2.3 -41.0 17.8 (Herrmann., et al 2009) 

o-Xylene Sulfate-reducing -0.7 -25.0 35.7 (Herrmann., et al 2009) 
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Appendix A: Total petroleum hydrocarbons (TPH) and persulfate 
analyses 

Total Petroleum Hydrocarbons 
Analysis (TPH) 

 
LEGEND 

  
  

0.0 = NOT DETECTED = < MDL 

  
GC= Gas Chromatographic Repeat 

Total Petroleum Hydrocarbons 
Analysis (TPH) 

 
All results are dilution corrected 

 
      Start Date 20-Oct-10 

    Sample 
Identification Date 

Temperature 
(ºC) Day TPH (Total) Persulfate 

    
µg/L g/L 

 

Non-Activated Persulfate 
Experiment 

   
      1-Con-1 21-Oct-10 10C 1 100964.6415 

 1-Con-2 21-Oct-10 10C 1 105970.4803 
 1-Con-3 21-Oct-10 10C 1 105100.6422 
 2-Con-1 28-Oct-10 10C 8 104701.5615 
 2-Con-2 28-Oct-10 10C 8 104470.2746 
 2-Con-3 28-Oct-10 10C 8 104276.4664 
 3-Con-1 4-Nov-10 10C 15 107296.0166 
 3-Con-2 4-Nov-10 10C 15 102831.9666 
 3-Con-3 4-Nov-10 10C 15 102404.7866 
 4-CON-1 15-Nov-10 10C 26 101337.5334 
 4-CON-2 15-Nov-10 10C 26 101289.9454 
 4-CON-3 15-Nov-10 10C 26 101301.6699 
 5-Con-1 29-Nov-10 10C 40 92013.97173 
 5-Con-2 29-Nov-10 10C 40 88802.1729 
 5-Con-3 29-Nov-10 10C 40 91281.33257 
 6-Con-1 15-Dec-10 10C 56 95412.04772 
 6-Con-2 15-Dec-10 10C 56 97039.53577 
 6-Con-3 15-Dec-10 10C 56 98019.74647 
 7-Con-1 26-Jan-11 10C 98 98164.31741 
 7-Con-2 26-Jan-11 10C 98 100018.6599 
 7-Con-3 26-Jan-11 10C 98 97986.88258 
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      1 PER-1 (20g) 21-Oct-10 10C 1 103486.499 18.6 

1 PER-2 (20g) 21-Oct-10 10C 1 104191.1975 18.4 
1 PER-3 (20g) 21-Oct-10 10C 1 104719.5287 18.8 
2 PER-1 (20g) 28-Oct-10 10C 8 99387.67926 16.1 
2 PER-2 (20g) 28-Oct-10 10C 8 98670.20118 16.4 
2 PER-3 (20g) 28-Oct-10 10C 8 96986.08762 19.9 
3 PER-1 (20g) 4-Nov-10 10C 15 94927.09798 13.9 
3 PER-2 (20g) 4-Nov-10 10C 15 86760.30281 17.9 
3 PER-3 (20g) 4-Nov-10 10C 15 97861.29807 17.9 
4-PER-1(20g) 15-Nov-10 10C 26 91835.65083 14.8 
4-PER-2(20g) 15-Nov-10 10C 26 95177.94105 14.4 
4-PER-3(20g) 15-Nov-10 10C 26 97110.81535 14.4 
5 PER-1 (20g) 29-Nov-10 10C 40 82992.51503 16.3 
5 PER-2 (20g) 29-Nov-10 10C 40 84876.60752 15.8 
5 PER-3 (20g) 29-Nov-10 10C 40 82984.60128 17.4 
6 PER-1 (20g) 15-Dec-10 10C 56 85885.81718 15.8 
6 PER-2 (20g) 15-Dec-10 10C 56 91299.01989 15.8 
6 PER-3 (20g) 15-Dec-10 10C 56 #DIV/0! 17.5 
7 PER-1 (20g) 26-Jan-11 10C 98 85799.4395 15.7 
7 PER-2 (20g) 26-Jan-11 10C 98 86817.27709 17.5 
7 PER-3 (20g) 26-Jan-11 10C 98 85375.37913 15.2 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-
values are dilution corrected 

1 PER-1 (100g) 21-Oct-10 10C 1 90433.65214 99.9 
1 PER-2 (100g) 21-Oct-10 10C 1 94753.91937 105.8 
1 PER-3 (100g) 21-Oct-10 10C 1 94077.90362 108.7 
2 PER-1 (100g) 28-Oct-10 10C 8 80193.33511 135.6 
2 PER-2 (100g) 28-Oct-10 10C 8 76881.17259 99.3 
2 PER-3 (100g) 28-Oct-10 10C 8 79188.07578 103.3 
3 PER-1 (100g) 4-Nov-10 10C 15 73193.29631 104.4 
3 PER-2 (100g) 4-Nov-10 10C 15 75600.28561 110.1 
3 PER-3 (100g) 4-Nov-10 10C 15 72221.16574 96.0 
4-PER-1 (100g) 15-Nov-10 10C 26 64668.47822 94.5 
4-PER-2 (100g) 15-Nov-10 10C 26 65380.07497 105.3 
4-PER-3 (100g) 15-Nov-10 10C 26 64869.41835 115.2 
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5 PER-1 (100g) 29-Nov-10 10C 40 52557.21342 113.1 
5 PER-2 (100g) 29-Nov-10 10C 40 50924.15063 101.4 
5 PER-3 (100g) 29-Nov-10 10C 40 52784.49908 105.3 
6 PER-1 (100g) 15-Dec-10 10C 56 47244.39908 97.2 
6 PER-2 (100g) 15-Dec-10 10C 56 49358.88893 107.2 
6 PER-3 (100g) 15-Dec-10 10C 56 50080.51823 109.8 
7 PER-1 (100g) 26-Jan-11 10C 98 33402.48733 97.4 
7 PER-2 (100g) 26-Jan-11 10C 98 36566.05865 99.4 
7 PER-3 (100g) 26-Jan-11 10C 98 35616.12461 92.5 

      1-Con-1 21-Oct-10 30C 1 105043.4257   
1-Con-2 21-Oct-10 30C 1 106222.6956   
1-Con-3 21-Oct-10 30C 1 104332.2632   
2-Con-1 28-Oct-10 30C 8 100174.8823   
2-Con-2 28-Oct-10 30C 8 100668.3335   
2-Con-3 28-Oct-10 30C 8 100336.5719   
3-Con-1 4-Nov-10 30C 15 98644.433   
3-Con-2 4-Nov-10 30C 15 97295.37791   
3-Con-3 4-Nov-10 30C 15 93217.92266   
4-CON-1 15-Nov-10 30C 26 92884.91331   
4-CON-2 15-Nov-10 30C 26 94626.23561   
4-CON-3 15-Nov-10 30C 26 93545.40718   
5-Con-1 29-Nov-10 30C 40 80893.09816   
5-Con-2 29-Nov-10 30C 40 81762.81612   
5-Con-3 29-Nov-10 30C 40 82970.5514   
6-Con-1 15-Dec-10 30C 56 86856.96115   
6-Con-2 15-Dec-10 30C 56 86083.31771   
6-Con-3 15-Dec-10 30C 56 85993.98214   
7-Con-1 26-Jan-11 30C 98 104051.224   
7-Con-1 26-Jan-11 30C 98 104188.5791   
7-Con-2 26-Jan-11 30C 98 100470.6083   
7-Con-3 26-Jan-11 30C 98 GC 98620.27929   

      1 PER-1 (20g) 21-Oct-10 30C 1 103850.5429 19.2 
1 PER-2 (20g) 21-Oct-10 30C 1 105427.5838 19.2 
1 PER-3 (20g) 21-Oct-10 30C 1 104092.2004 18.8 
2 PER-1 (20g) 28-Oct-10 30C 8 61302.00638 16.1 
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2 PER-2 (20g) 28-Oct-10 30C 8 59525.19632 15.6 
2 PER-3 (20g) 28-Oct-10 30C 8 59803.65361 15.6 
3 PER-1 (20g) 4-Nov-10 30C 15 42998.63854 15.4 
3 PER-2 (20g) 4-Nov-10 30C 15 44577.19853 16.5 
3 PER-3 (20g) 4-Nov-10 30C 15 35342.39459 15.2 
4-PER-1 (20g) 15-Nov-10 30C 26 31169.41943 13.8 
4-PER-2 (20g) 15-Nov-10 30C 26 29571.11877 14.6 
4-PER-3 (20g) 15-Nov-10 30C 26 28716.57855 14.2 
5 PER-1 (20g) 29-Nov-10 30C 40 20567.99379 15.8 
5 PER-2 (20g) 29-Nov-10 30C 40 15683.83132 12.4 
5 PER-3 (20g) 29-Nov-10 30C 40 8908.732818 14.8 
6 PER-1 (20g) 15-Dec-10 30C 56 9732.646612 12.0 
6 PER-2 (20g) 15-Dec-10 30C 56 5374.698254 15.1 
6 PER-3 (20g) 15-Dec-10 30C 56 4408.372247 14.9 
7 PER-1 (20g) 26-Jan-11 30C 98 2325.853299 10.4 
7 PER-2 (20g) 26-Jan-11 30C 98 4832.948672 9.6 
7 PER-3 (20g) 26-Jan-11 30C 98 2384.506113 8.7 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-
values are dilution corrected 

1 PER-1 (100g) 21-Oct-10 30C 1 95709.50044 102.9 
1 PER-2 (100g) 21-Oct-10 30C 1 95538.80134 103.8 
1 PER-3 (100g) 21-Oct-10 30C 1 95461.20713 116.6 
2 PER-1 (100g) 28-Oct-10 30C 8 5182.906991 93.5 
2 PER-2 (100g) 28-Oct-10 30C 8 #DIV/0! NS 
2 PER-3 (100g) 28-Oct-10 30C 8 5091.009805 105.8 
3 PER-1 (100g) 4-Nov-10 30C 15 15506.42105 106.3 
3 PER-2 (100g) 4-Nov-10 30C 15 15056.1113 107.2 
3 PER-3 (100g) 4-Nov-10 30C 15 15287.978 99.8 
4-PER-1 (100g) 15-Nov-10 30C 26 21093.1187 86.6 
4-PER-2 (100g) 15-Nov-10 30C 26 20334.18972 86.6 
4-PER-3 (100g) 15-Nov-10 30C 26 23545.12032 87.6 
5 PER-1 (100g) 29-Nov-10 30C 40 22528.34623 72.8 
5 PER-2 (100g) 29-Nov-10 30C 40 22280.9103 72.8 
5 PER-3 (100g) 29-Nov-10 30C 40 23536.15297 72.8 
6 PER-1 (100g) 15-Dec-10 30C 56 17568.85481 51.6 
6 PER-2 (100g) 15-Dec-10 30C 56 18212.79941 50.4 
6 PER-3 (100g) 15-Dec-10 30C 56 17484.55625 48.0 
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7 PER-1 (100g) 26-Jan-11 30C 98 2942.613097 23.6 
7 PER-2 (100g) 26-Jan-11 30C 98 12718.24563 23.6 
7 PER-3 (100g) 26-Jan-11 30C 98 14019.48079 23.6 

      

 

NaOH Activated 
Persulfate 

Experiment 
    

      1-CON-NaOH-1 21-Oct-10 10C 1 104357.9325 
 1-CON-NaOH-2 21-Oct-10 10C 1 106681.944 
 1-CON-NaOH-3 21-Oct-10 10C 1 107637.1831 
 2-CON-NaOH-1 28-Oct-10 10C 8 102728.1321 
 2-CON-NaOH-2 28-Oct-10 10C 8 102981.2468 
 2-CON-NaOH-3 28-Oct-10 10C 8 102797.6559 
 3-CON-NaOH-1 4-Nov-10 10C 15 100171.4112 
 3-CON-NaOH-2 4-Nov-10 10C 15 101366.6328 
 3-CON-NaOH-3 4-Nov-10 10C 15 102054.699 
 4-CON-NaOH-1 15-Nov-10 10C 26 97762.73293 
 4-CON-NaOH-2 15-Nov-10 10C 26 97496.507 
 4-CON-NaOH-3 15-Nov-10 10C 26 97412.26001 
 5-CON-NaOH-1 29-Nov-10 10C 40 88385.68493 
 5-CON-NaOH-2 29-Nov-10 10C 40 90185.41939 
 5-CON-NaOH-3 29-Nov-10 10C 40 90604.30135 
 6-CON-NaOH-1 15-Dec-10 10C 56 92577.16963 
 6-CON-NaOH-2 15-Dec-10 10C 56 94405.42185 
 6-CON-NaOH-3 15-Dec-10 10C 56 98715.00061 
 7-CON-NaOH-1 26-Jan-11 10C 98 96512.76102 
 7-CON-NaOH-2 26-Jan-11 10C 98 96981.91441 
 7-CON-NaOH-3 26-Jan-11 10C 98 97280.49547 
 

      1-PER-(20g)-NaOH-1 21-Oct-10 10C 1 105095.5621 19.0 
1-PER (20g)-NaOH-2 21-Oct-10 10C 1 106274.0817 18.0 
1-PER (20g)-NaOH-3 21-Oct-10 10C 1 104800.6478 17.4 
2-PER-(20g)-NaOH-1 28-Oct-10 10C 8 96315.05678 16.1 
2-PER (20g)-NaOH-2 28-Oct-10 10C 8 97176.95043 18.1 
2-PER (20g)-NaOH-3 28-Oct-10 10C 8 97048.8857 16.1 
3-PER-(20g)-NaOH-1 4-Nov-10 10C 15 92613.38955 16.2 
3-PER (20g)-NaOH-2 4-Nov-10 10C 15 93060.7039 15.6 



 

69 

 

3-PER (20g)-NaOH-3 4-Nov-10 10C 15 93888.58182 14.8 
4-PER-(20g) NaOH-1 15-Nov-10 10C 26 85954.48901 15.6 
4-PER-(20g) NaOH-2 15-Nov-10 10C 26 85980.17071 15.4 
4-PER-(20g) NaOH-3 15-Nov-10 10C 26 85332.66584 16.5 
5-PER-(20g)-NaOH-1 29-Nov-10 10C 40 78159.84952 14.4 
5-PER (20g)-NaOH-2 29-Nov-10 10C 40 76438.85013 15.8 
5-PER (20g)-NaOH-3 29-Nov-10 10C 40 77565.45194 14.0 
6-PER-(20g)-NaOH-1 15-Dec-10 10C 56 79315.2926 15.4 
6-PER (20g)-NaOH-2 15-Dec-10 10C 56 85263.93306 16.0 
6-PER (20g)-NaOH-3 15-Dec-10 10C 56 83199.5189 15.8 
7-PER-(20g)-NaOH-1 26-Jan-11 10C 98 74189.67874 15.2 
7-PER (20g)-NaOH-2 26-Jan-11 10C 98 75825.16786 15.9 
7-PER (20g)-NaOH-3 26-Jan-11 10C 98 74628.12975 14.2 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-
values are dilution corrected 

1-PER-(100g)-NaOH-1 21-Oct-10 10C 1 86345.00496 96.0 
1-PER (100g)-NaOH-2 21-Oct-10 10C 1 96014.40009 96.0 
1-PER (100g)-NaOH-3 21-Oct-10 10C 1 96051.5432 85.9 
2-PER-(100g)-NaOH-1 28-Oct-10 10C 8 69460.18304 108.3 
2-PER (100g)-NaOH-2 28-Oct-10 10C 8 45594.81274 109.1 
2-PER (100g)-NaOH-3 28-Oct-10 10C 8 30309.63231 102.5 
3-PER-(100g)-NaOH-1 4-Nov-10 10C 15 56605.62807 103.4 
3-PER (100g)-NaOH-2 4-Nov-10 10C 15 63888.76961 106.3 
3-PER (100g)-NaOH-3 4-Nov-10 10C 15 66707.51039 109.1 
4-PER-(100g) NaOH-1  15-Nov-10 10C 26 47959.10679 101.4 
4-PER-(100g) NaOH-2  15-Nov-10 10C 26 55178.49158 97.4 
4-PER-(100g) NaOH-3  15-Nov-10 10C 26 52722.06455 107.3 
5-PER-(100g)-NaOH-1 29-Nov-10 10C 40 14078.5879 101.4 
5-PER (100g)-NaOH-2 29-Nov-10 10C 40 20338.26785 93.7 
5-PER (100g)-NaOH-3 29-Nov-10 10C 40 5930.476973 98.5 
6-PER-(100g)-NaOH-1 15-Dec-10 10C 56 11124.54166 99.6 
6-PER (100g)-NaOH-2 15-Dec-10 10C 56 1621.788121 96.0 
6-PER (100g)-NaOH-3 15-Dec-10 10C 56 13214.14159 106.1 
7-PER-(100g)-NaOH-1 26-Jan-11 10C 98 6508.978499 105.3 
7-PER (100g)-NaOH-2 26-Jan-11 10C 98 3226.571747 92.5 
7-PER (100g)-NaOH-3 26-Jan-11 10C 98 2865.042512 100.4 
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1-CON-NaOH-1 21-Oct-10 30C 1 106639.9214   
1-CON-NaOH-2 21-Oct-10 30C 1 106863.6093   
1-CON-NaOH-3 21-Oct-10 30C 1 106595.3688   
2-CON-NaOH-1 28-Oct-10 30C 8 100121.26   
2-CON-NaOH-2 28-Oct-10 30C 8 98244.17259   
2-CON-NaOH-3 28-Oct-10 30C 8 100284.8664   
3-CON-NaOH-1 4-Nov-10 30C 15 96229.05892   
3-CON-NaOH-2 4-Nov-10 30C 15 90682.89637   
3-CON-NaOH-3 4-Nov-10 30C 15 97994.61141   
4-CON-NaOH-1 15-Nov-10 30C 26 92090.54323   
4-CON-NaOH-2 15-Nov-10 30C 26 88466.78309   
4-CON-NaOH-3 15-Nov-10 30C 26 90145.94359   
5-CON-NaOH-1 29-Nov-10 30C 40 78041.94761   
5-CON-NaOH-2 29-Nov-10 30C 40 79601.9023   
5-CON-NaOH-3 29-Nov-10 30C 40 82306.12525   
6-CON-NaOH-1 15-Dec-10 30C 56 81634.45458   
6-CON-NaOH-2 15-Dec-10 30C 56 84042.51743   
6-CON-NaOH-3 15-Dec-10 30C 56 82691.12339   
7-CON-NaOH-1 26-Jan-11 30C 98 75775.5372   
7-CON-NaOH-2 26-Jan-11 30C 98 77637.50706   
7-CON-NaOH-3 26-Jan-11 30C 98 72935.03747   

      1-PER(20g)-NaOH-1 21-Oct-10 30C 1 103834.0887 17.8 
1-PER(20g)-NaOH-2 21-Oct-10 30C 1 105075.8702 17.8 
1-PER(20g)-NaOH-3 21-Oct-10 30C 1 103664.2377 19.4 
2-PER(20g)-NaOH-1 28-Oct-10 30C 8 60499.9847 14.2 
2-PER(20g)-NaOH-2 28-Oct-10 30C 8 51040.11102 15.4 
2-PER(20g)-NaOH-3 28-Oct-10 30C 8 49941.98904 14.7 
3-PER(20g)-NaOH-1 4-Nov-10 30C 15 44181.05217 16.2 
3-PER(20g)-NaOH-2 4-Nov-10 30C 15 43746.4809 15.6 
3-PER(20g)-NaOH-3 4-Nov-10 30C 15 42879.41161 16.2 
4-PER-(20g) NaOH-1 15-Nov-10 30C 26 21621.60707 13.2 
4-PER-(20g) NaOH-2 15-Nov-10 30C 26 19508.77555 13.2 
4-PER-(20g) NaOH-3 15-Nov-10 30C 26 19597.5123 12.4 
5-PER(20g)-NaOH-1 29-Nov-10 30C 40 7550.807752 12.6 
5-PER(20g)-NaOH-2 29-Nov-10 30C 40 5571.994401 12.0 
5-PER(20g)-NaOH-3 29-Nov-10 30C 40 5380.711815 12.8 
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6-PER(20g)-NaOH-1 15-Dec-10 30C 56 901.2213649 13.2 
6-PER(20g)-NaOH-2 15-Dec-10 30C 56 932.9114833 13.0 
6-PER(20g)-NaOH-3 15-Dec-10 30C 56 1113.492591 10.1 
7-PER(20g)-NaOH-1 26-Jan-11 30C 98 1152.1865 9.1 
7-PER(20g)-NaOH-2 26-Jan-11 30C 98 958.4009118 10.0 
7-PER(20g)-NaOH-3 26-Jan-11 30C 98 3050.363906 9.6 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-
values are dilution corrected 
Used mininert valve tops instead of scew cap septa tops - Waleed added in NaOH through valve 

1-PER(100g)-NaOH-1 21-Oct-10 30C 1 94045.00683 88.9 
1-PER(100g)-NaOH-2 21-Oct-10 30C 1 86983.55144 98.5 
1-PER(100g)-NaOH-3 21-Oct-10 30C 1 91097.91197 94.0 
2-PER(100g)-NaOH-1 28-Oct-10 30C 8 1938.987173 96.0 
2-PER(100g)-NaOH-2 28-Oct-10 30C 8 1601.539193 109.1 
2-PER(100g)-NaOH-3 28-Oct-10 30C 8 1479.649206 91.9 
3-PER(100g)-NaOH-1 4-Nov-10 30C 15 12456.97958 100.6 
3-PER(100g)-NaOH-2 4-Nov-10 30C 15 650.5653168 104.4 
3-PER(100g)-NaOH-3 4-Nov-10 30C 15 386.6443097 104.4 
4-PER-(100g) NaOH-1 15-Nov-10 30C 26 356.2456979 100.4 
4-PER-(100g) NaOH-2 15-Nov-10 30C 26 291.168421 94.5 
4-PER-(100g) NaOH-3 15-Nov-10 30C 26 321.5534678 103.3 
5-PER(100g)-NaOH-1 29-Nov-10 30C 40 435.1293205 88.6 
5-PER(100g)-NaOH-2 29-Nov-10 30C 40 370.4513519 95.5 
5-PER(100g)-NaOH-3 29-Nov-10 30C 40 455.1273234 101.4 
6-PER(100g)-NaOH-1 15-Dec-10 30C 56 1370.38092 96.0 
6-PER(100g)-NaOH-2 15-Dec-10 30C 56 336.0411908 106.1 
6-PER(100g)-NaOH-3 15-Dec-10 30C 56 217.8557987 92.4 
7-PER(100g)-NaOH-1 26-Jan-11 30C 98 13506.83226 74.8 
7-PER(100g)-NaOH-2 26-Jan-11 30C 98 14378.56098 76.8 
7-PER(100g)-NaOH-3 26-Jan-11 30C 98 #DIV/0! N/A 
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Appendix B: Petroleum hydrocarbon analysis 

ORGANIC GEOCHEMISTRY 
LABORATORY LEGEND 

  
  

0.0 = NOT DETECTED = < MDL 
 

  
GC repeat = Gas Chromatographic Repeat 

Petroleum Hydrocarbon 
Analysis 

 
All results are dilution corrected 

 

 Report Date:  Feb 3, 2011 
 

Units are μg/L (ppb) 
 

      Start Date 20-Oct-10 
    Sample Identification Date Temperature (ºC) Day F1 Fraction 

 

F2 Fraction 

   
(nC6 to nC10) (nC10 to nC16) 

 
Non-Activated Persulfate Experiment 

   
      1-Con-1 21-Oct-10 10C 1 95996.7 4967.9 

1-Con-2 21-Oct-10 10C 1 100539.7 5430.8 
1-Con-3 21-Oct-10 10C 1 99646.6 5454.0 
2-Con-1 28-Oct-10 10C 8 99425.7 5275.9 
2-Con-2 28-Oct-10 10C 8 99213.1 5257.2 
2-Con-3 28-Oct-10 10C 8 98950.2 5326.2 
3-Con-1 4-Nov-10 10C 15 102571.4 4724.6 
3-Con-2 4-Nov-10 10C 15 98344.3 4487.7 
3-Con-3 4-Nov-10 10C 15 97957.5 4447.3 
4-CON-1 15-Nov-10 10C 26 97084.2 4253.4 
4-CON-2 15-Nov-10 10C 26 97052.0 4237.9 
4-CON-3 15-Nov-10 10C 26 97048.6 4253.1 
5-Con-1 29-Nov-10 10C 40 88280.9 3733.1 
5-Con-2 29-Nov-10 10C 40 85235.5 3566.6 
5-Con-3 29-Nov-10 10C 40 87600.9 3680.4 
6-Con-1 15-Dec-10 10C 56 91631.6 3780.4 
6-Con-2 15-Dec-10 10C 56 93160.5 3879.0 
6-Con-3 15-Dec-10 10C 56 94135.3 3884.4 
7-Con-1 26-Jan-11 10C 98 93957.8 4206.5 
7-Con-2 26-Jan-11 10C 98 95552.7 4465.9 
7-Con-3 26-Jan-11 10C 98 93655.3 4331.6 
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1 PER-1 (20g) 21-Oct-10 10C 1 98148.0 5338.5 
1 PER-2 (20g) 21-Oct-10 10C 1 98707.9 5483.3 
1 PER-3 (20g) 21-Oct-10 10C 1 99335.5 5384.1 
2 PER-1 (20g) 28-Oct-10 10C 8 94293.6 5094.1 
2 PER-2 (20g) 28-Oct-10 10C 8 93609.2 5061.0 
2 PER-3 (20g) 28-Oct-10 10C 8 94155.2 2830.9 
3 PER-1 (20g) 4-Nov-10 10C 15 90675.9 4251.2 
3 PER-2 (20g) 4-Nov-10 10C 15 82437.6 4322.7 
3 PER-3 (20g) 4-Nov-10 10C 15 93544.2 4317.1 
4-PER-1(20g) 15-Nov-10 10C 26 87805.6 4030.1 
4-PER-2(20g) 15-Nov-10 10C 26 91080.7 4097.3 
4-PER-3(20g) 15-Nov-10 10C 26 92898.5 4212.3 
5 PER-1 (20g) 29-Nov-10 10C 40 79412.5 3580.0 
5 PER-2 (20g) 29-Nov-10 10C 40 81131.5 3745.1 
5 PER-3 (20g) 29-Nov-10 10C 40 79304.9 3679.7 
6 PER-1 (20g) 15-Dec-10 10C 56 81127.7 4758.1 
6 PER-2 (20g) 15-Dec-10 10C 56 86297.1 5001.9 
6 PER-3 (20g) 15-Dec-10 10C 56 #DIV/0! #DIV/0! 
7 PER-1 (20g) 26-Jan-11 10C 98 80091.9 5707.6 
7 PER-2 (20g) 26-Jan-11 10C 98 81170.0 5647.2 
7 PER-3 (20g) 26-Jan-11 10C 98 79688.1 5687.3 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-values are 
dilution corrected 

1 PER-1 (100g) 21-Oct-10 10C 1 87470.8 2962.8 
1 PER-2 (100g) 21-Oct-10 10C 1 91700.1 3053.8 
1 PER-3 (100g) 21-Oct-10 10C 1 90928.6 3149.3 
2 PER-1 (100g) 28-Oct-10 10C 8 76850.9 3342.4 
2 PER-2 (100g) 28-Oct-10 10C 8 72240.6 4640.5 
2 PER-3 (100g) 28-Oct-10 10C 8 74631.7 4556.3 
3 PER-1 (100g) 4-Nov-10 10C 15 68393.4 4799.9 
3 PER-2 (100g) 4-Nov-10 10C 15 69964.7 5635.6 
3 PER-3 (100g) 4-Nov-10 10C 15 66741.6 5479.6 
4-PER-1 (100g) 15-Nov-10 10C 26 59723.9 4944.6 
4-PER-2 (100g) 15-Nov-10 10C 26 60037.4 5342.7 
4-PER-3 (100g) 15-Nov-10 10C 26 59568.2 5301.2 
5 PER-1 (100g) 29-Nov-10 10C 40 46884.5 5672.7 
5 PER-2 (100g) 29-Nov-10 10C 40 45351.0 5573.1 
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5 PER-3 (100g) 29-Nov-10 10C 40 46821.1 5963.4 
6 PER-1 (100g) 15-Dec-10 10C 56 40848.4 6396.0 
6 PER-2 (100g) 15-Dec-10 10C 56 42018.9 7340.0 
6 PER-3 (100g) 15-Dec-10 10C 56 42832.5 7248.0 
7 PER-1 (100g) 26-Jan-11 10C 98 28874.9 4527.6 
7 PER-2 (100g) 26-Jan-11 10C 98 31377.1 5189.0 
7 PER-3 (100g) 26-Jan-11 10C 98 30773.2 4842.9 

      1-Con-1 21-Oct-10 30C 1 99561.1 5482.3 
1-Con-2 21-Oct-10 30C 1 100638.2 5584.5 
1-Con-3 21-Oct-10 30C 1 98900.1 5432.2 
2-Con-1 28-Oct-10 30C 8 95277.2 4897.6 
2-Con-2 28-Oct-10 30C 8 95742.8 4925.6 
2-Con-3 28-Oct-10 30C 8 95409.4 4927.2 
3-Con-1 4-Nov-10 30C 15 94529.8 4114.6 
3-Con-2 4-Nov-10 30C 15 93196.3 4099.1 
3-Con-3 4-Nov-10 30C 15 89200.8 4017.1 
4-CON-1 15-Nov-10 30C 26 89223.9 3661.0 
4-CON-2 15-Nov-10 30C 26 90875.1 3751.2 
4-CON-3 15-Nov-10 30C 26 89806.7 3738.7 
5-Con-1 29-Nov-10 30C 40 77748.1 3145.0 
5-Con-2 29-Nov-10 30C 40 78585.1 3177.7 
5-Con-3 29-Nov-10 30C 40 79721.1 3249.5 
6-Con-1 15-Dec-10 30C 56 83554.1 3302.9 
6-Con-2 15-Dec-10 30C 56 82802.3 3281.0 
6-Con-3 15-Dec-10 30C 56 82725.5 3268.5 
7-Con-1 26-Jan-11 30C 98 101311.5 2739.7 
7-Con-1 26-Jan-11 30C 98 101517.9 2670.7 
7-Con-2 26-Jan-11 30C 98 97871.3 2599.4 
7-Con-3 26-Jan-11 30C 98 GC 95941.3 2679.0 

      1 PER-1 (20g) 21-Oct-10 30C 1 98526.8 5323.7 
1 PER-2 (20g) 21-Oct-10 30C 1 99983.0 5444.6 
1 PER-3 (20g) 21-Oct-10 30C 1 98842.2 5250.0 
2 PER-1 (20g) 28-Oct-10 30C 8 55878.3 5423.7 
2 PER-2 (20g) 28-Oct-10 30C 8 53416.5 6108.7 
2 PER-3 (20g) 28-Oct-10 30C 8 53611.3 6192.3 
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3 PER-1 (20g) 4-Nov-10 30C 15 37659.5 5339.2 
3 PER-2 (20g) 4-Nov-10 30C 15 39157.3 5419.9 
3 PER-3 (20g) 4-Nov-10 30C 15 29437.7 5904.7 
4-PER-1 (20g) 15-Nov-10 30C 26 25985.2 5184.2 
4-PER-2 (20g) 15-Nov-10 30C 26 24978.0 4593.2 
4-PER-3 (20g) 15-Nov-10 30C 26 24243.8 4472.7 
5 PER-1 (20g) 29-Nov-10 30C 40 18070.5 2497.5 
5 PER-2 (20g) 29-Nov-10 30C 40 13977.3 1706.5 
5 PER-3 (20g) 29-Nov-10 30C 40 7990.1 918.6 
6 PER-1 (20g) 15-Dec-10 30C 56 7978.5 1754.1 
6 PER-2 (20g) 15-Dec-10 30C 56 3833.2 1541.5 
6 PER-3 (20g) 15-Dec-10 30C 56 3097.0 1311.4 
7 PER-1 (20g) 26-Jan-11 30C 98 2060.2 265.7 
7 PER-2 (20g) 26-Jan-11 30C 98 4544.0 289.0 
7 PER-3 (20g) 26-Jan-11 30C 98 2120.4 264.1 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-values are 
dilution corrected 

1 PER-1 (100g) 21-Oct-10 30C 1 92533.8 3175.7 
1 PER-2 (100g) 21-Oct-10 30C 1 92427.2 3111.6 
1 PER-3 (100g) 21-Oct-10 30C 1 92230.7 3230.5 
2 PER-1 (100g) 28-Oct-10 30C 8 3031.8 2151.1 
2 PER-2 (100g) 28-Oct-10 30C 8 #DIV/0! #DIV/0! 
2 PER-3 (100g) 28-Oct-10 30C 8 2861.4 2229.6 
3 PER-1 (100g) 4-Nov-10 30C 15 14834.3 672.1 
3 PER-2 (100g) 4-Nov-10 30C 15 14365.3 690.8 
3 PER-3 (100g) 4-Nov-10 30C 15 14573.2 714.8 
4-PER-1 (100g) 15-Nov-10 30C 26 20013.4 1079.7 
4-PER-2 (100g) 15-Nov-10 30C 26 19326.0 1008.2 
4-PER-3 (100g) 15-Nov-10 30C 26 22162.5 1382.6 
5 PER-1 (100g) 29-Nov-10 30C 40 21154.4 1373.9 
5 PER-2 (100g) 29-Nov-10 30C 40 21011.6 1269.3 
5 PER-3 (100g) 29-Nov-10 30C 40 22166.2 1369.9 
6 PER-1 (100g) 15-Dec-10 30C 56 16709.6 859.2 
6 PER-2 (100g) 15-Dec-10 30C 56 17253.2 959.6 
6 PER-3 (100g) 15-Dec-10 30C 56 16596.4 888.2 
7 PER-1 (100g) 26-Jan-11 30C 98 2667.5 275.2 
7 PER-2 (100g) 26-Jan-11 30C 98 12358.4 359.9 
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7 PER-3 (100g) 26-Jan-11 30C 98 13370.6 648.9 

      

 

NaOH Activated 
Persulfate Experiment 

    
      1-CON-NaOH-1 21-Oct-10 10C 1 98942.2 5415.7 

1-CON-NaOH-2 21-Oct-10 10C 1 101081.8 5600.1 
1-CON-NaOH-3 21-Oct-10 10C 1 102044.0 5593.2 
2-CON-NaOH-1 28-Oct-10 10C 8 97568.8 5159.3 
2-CON-NaOH-2 28-Oct-10 10C 8 97832.5 5148.7 
2-CON-NaOH-3 28-Oct-10 10C 8 97588.4 5209.2 
3-CON-NaOH-1 4-Nov-10 10C 15 95747.4 4424.0 
3-CON-NaOH-2 4-Nov-10 10C 15 96957.1 4409.6 
3-CON-NaOH-3 4-Nov-10 10C 15 97551.2 4503.5 
4-CON-NaOH-1 15-Nov-10 10C 26 93592.6 4170.1 
4-CON-NaOH-2 15-Nov-10 10C 26 93372.2 4124.3 
4-CON-NaOH-3 15-Nov-10 10C 26 93311.5 4100.8 
5-CON-NaOH-1 29-Nov-10 10C 40 84723.4 3662.2 
5-CON-NaOH-2 29-Nov-10 10C 40 86414.1 3771.3 
5-CON-NaOH-3 29-Nov-10 10C 40 86854.4 3749.9 
6-CON-NaOH-1 15-Dec-10 10C 56 88849.2 3728.0 
6-CON-NaOH-2 15-Dec-10 10C 56 90249.8 4155.6 
6-CON-NaOH-3 15-Dec-10 10C 56 94333.7 4381.3 
7-CON-NaOH-1 26-Jan-11 10C 98 93881.4 2631.3 
7-CON-NaOH-2 26-Jan-11 10C 98 94370.4 2611.5 
7-CON-NaOH-3 26-Jan-11 10C 98 94699.5 2581.0 

      1-PER-(20g)-NaOH-1 21-Oct-10 10C 1 99747.4 5348.1 
1-PER (20g)-NaOH-2 21-Oct-10 10C 1 100930.8 5343.2 
1-PER (20g)-NaOH-3 21-Oct-10 10C 1 99516.0 5284.6 
2-PER-(20g)-NaOH-1 28-Oct-10 10C 8 91346.9 4968.1 
2-PER (20g)-NaOH-2 28-Oct-10 10C 8 92294.0 4882.9 
2-PER (20g)-NaOH-3 28-Oct-10 10C 8 94271.0 2777.9 
3-PER-(20g)-NaOH-1 4-Nov-10 10C 15 88358.8 4254.6 
3-PER (20g)-NaOH-2 4-Nov-10 10C 15 88897.5 4163.3 
3-PER (20g)-NaOH-3 4-Nov-10 10C 15 89658.2 4230.4 
4-PER-(20g) NaOH-1 15-Nov-10 10C 26 82193.3 3761.2 
4-PER-(20g) NaOH-2 15-Nov-10 10C 26 82192.8 3787.4 
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4-PER-(20g) NaOH-3 15-Nov-10 10C 26 81646.2 3686.5 
5-PER-(20g)-NaOH-1 29-Nov-10 10C 40 74728.7 3431.1 
5-PER (20g)-NaOH-2 29-Nov-10 10C 40 73107.4 3331.4 
5-PER (20g)-NaOH-3 29-Nov-10 10C 40 74160.5 3405.0 
6-PER-(20g)-NaOH-1 15-Dec-10 10C 56 75480.4 3834.9 
6-PER (20g)-NaOH-2 15-Dec-10 10C 56 80887.1 4376.8 
6-PER (20g)-NaOH-3 15-Dec-10 10C 56 78960.0 4239.5 
7-PER-(20g)-NaOH-1 26-Jan-11 10C 98 71748.9 2440.8 
7-PER (20g)-NaOH-2 26-Jan-11 10C 98 73419.6 2405.5 
7-PER (20g)-NaOH-3 26-Jan-11 10C 98 72263.4 2364.7 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-values are 
dilution corrected 

1-PER-(100g)-NaOH-1 21-Oct-10 10C 1 83620.4 2724.6 
1-PER (100g)-NaOH-2 21-Oct-10 10C 1 92785.2 3229.2 
1-PER (100g)-NaOH-3 21-Oct-10 10C 1 93032.5 3019.0 
2-PER-(100g)-NaOH-1 28-Oct-10 10C 8 67048.9 2411.3 
2-PER (100g)-NaOH-2 28-Oct-10 10C 8 43609.2 1985.6 
2-PER (100g)-NaOH-3 28-Oct-10 10C 8 28635.4 1674.2 
3-PER-(100g)-NaOH-1 4-Nov-10 10C 15 53747.6 2858.0 
3-PER (100g)-NaOH-2 4-Nov-10 10C 15 60745.1 3143.6 
3-PER (100g)-NaOH-3 4-Nov-10 10C 15 63234.2 3473.3 
4-PER-(100g) NaOH-1  15-Nov-10 10C 26 46379.7 1579.4 
4-PER-(100g) NaOH-2  15-Nov-10 10C 26 52490.1 2688.4 
4-PER-(100g) NaOH-3  15-Nov-10 10C 26 50174.9 2547.1 
5-PER-(100g)-NaOH-1 29-Nov-10 10C 40 13433.8 644.8 
5-PER (100g)-NaOH-2 29-Nov-10 10C 40 19526.3 812.0 
5-PER (100g)-NaOH-3 29-Nov-10 10C 40 5686.0 244.5 
6-PER-(100g)-NaOH-1 15-Dec-10 10C 56 9431.9 1692.6 
6-PER (100g)-NaOH-2 15-Dec-10 10C 56 1447.0 174.7 
6-PER (100g)-NaOH-3 15-Dec-10 10C 56 12803.2 411.0 
7-PER-(100g)-NaOH-1 26-Jan-11 10C 98 6024.5 484.5 
7-PER (100g)-NaOH-2 26-Jan-11 10C 98 2906.8 319.8 
7-PER (100g)-NaOH-3 26-Jan-11 10C 98 2530.3 334.7 

      1-CON-NaOH-1 21-Oct-10 30C 1 101066.8 5573.1 
1-CON-NaOH-2 21-Oct-10 30C 1 101313.4 5550.3 
1-CON-NaOH-3 21-Oct-10 30C 1 101114.9 5480.5 
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2-CON-NaOH-1 28-Oct-10 30C 8 95233.9 4887.3 
2-CON-NaOH-2 28-Oct-10 30C 8 93453.0 4791.1 
2-CON-NaOH-3 28-Oct-10 30C 8 95403.2 4881.6 
3-CON-NaOH-1 4-Nov-10 30C 15 92116.0 4113.0 
3-CON-NaOH-2 4-Nov-10 30C 15 86729.6 3953.3 
3-CON-NaOH-3 4-Nov-10 30C 15 93883.4 4111.2 
4-CON-NaOH-1 15-Nov-10 30C 26 88346.9 3743.6 
4-CON-NaOH-2 15-Nov-10 30C 26 86335.0 2131.7 
4-CON-NaOH-3 15-Nov-10 30C 26 86437.0 3709.0 
5-CON-NaOH-1 29-Nov-10 30C 40 74911.0 3130.9 
5-CON-NaOH-2 29-Nov-10 30C 40 76407.2 3194.7 
5-CON-NaOH-3 29-Nov-10 30C 40 78983.9 3322.2 
6-CON-NaOH-1 15-Dec-10 30C 56 78455.3 3179.2 
6-CON-NaOH-2 15-Dec-10 30C 56 80525.4 3517.1 
6-CON-NaOH-3 15-Dec-10 30C 56 79114.1 3577.0 
7-CON-NaOH-1 26-Jan-11 30C 98 73656.2 2119.4 
7-CON-NaOH-2 26-Jan-11 30C 98 75431.7 2205.8 
7-CON-NaOH-3 26-Jan-11 30C 98 70820.1 2114.9 

      1-PER(20g)-NaOH-1 21-Oct-10 30C 1 98588.8 5245.3 
1-PER(20g)-NaOH-2 21-Oct-10 30C 1 99825.3 5250.6 
1-PER(20g)-NaOH-3 21-Oct-10 30C 1 98466.9 5197.3 
2-PER(20g)-NaOH-1 28-Oct-10 30C 8 56961.9 3538.1 
2-PER(20g)-NaOH-2 28-Oct-10 30C 8 47771.8 3268.4 
2-PER(20g)-NaOH-3 28-Oct-10 30C 8 46779.0 3162.9 
3-PER(20g)-NaOH-1 4-Nov-10 30C 15 39494.1 4686.9 
3-PER(20g)-NaOH-2 4-Nov-10 30C 15 39041.2 4705.2 
3-PER(20g)-NaOH-3 4-Nov-10 30C 15 38526.7 4352.7 
4-PER-(20g) NaOH-1 15-Nov-10 30C 26 18985.8 2635.8 
4-PER-(20g) NaOH-2 15-Nov-10 30C 26 17378.1 2130.6 
4-PER-(20g) NaOH-3 15-Nov-10 30C 26 17499.9 2097.6 
5-PER(20g)-NaOH-1 29-Nov-10 30C 40 6588.0 962.8 
5-PER(20g)-NaOH-2 29-Nov-10 30C 40 4802.7 769.3 
5-PER(20g)-NaOH-3 29-Nov-10 30C 40 4726.1 654.6 
6-PER(20g)-NaOH-1 15-Dec-10 30C 56 629.3 271.9 
6-PER(20g)-NaOH-2 15-Dec-10 30C 56 795.9 137.0 
6-PER(20g)-NaOH-3 15-Dec-10 30C 56 830.5 283.0 
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7-PER(20g)-NaOH-1 26-Jan-11 30C 98 1058.2 94.0 
7-PER(20g)-NaOH-2 26-Jan-11 30C 98 856.4 102.0 
7-PER(20g)-NaOH-3 26-Jan-11 30C 98 2839.7 210.6 

      Samples diluted 1:5 in H2O for analytical analysis (due to very high concentration of persulfate)-values are 
dilution corrected 
Used mininert valve tops instead of scew cap septa tops - Waleed added in NaOH through valve 

1-PER(100g)-NaOH-1 21-Oct-10 30C 1 91015.7 3029.3 
1-PER(100g)-NaOH-2 21-Oct-10 30C 1 84143.3 2840.3 
1-PER(100g)-NaOH-3 21-Oct-10 30C 1 88072.8 3025.1 
2-PER(100g)-NaOH-1 28-Oct-10 30C 8 978.1 960.9 
2-PER(100g)-NaOH-2 28-Oct-10 30C 8 838.6 762.9 
2-PER(100g)-NaOH-3 28-Oct-10 30C 8 772.6 707.1 
3-PER(100g)-NaOH-1 4-Nov-10 30C 15 11880.0 577.0 
3-PER(100g)-NaOH-2 4-Nov-10 30C 15 570.0 80.5 
3-PER(100g)-NaOH-3 4-Nov-10 30C 15 341.4 45.2 
4-PER-(100g) NaOH-1 15-Nov-10 30C 26 282.5 73.8 
4-PER-(100g) NaOH-2 15-Nov-10 30C 26 238.6 52.5 
4-PER-(100g) NaOH-3 15-Nov-10 30C 26 279.1 42.4 
5-PER(100g)-NaOH-1 29-Nov-10 30C 40 407.8 27.4 
5-PER(100g)-NaOH-2 29-Nov-10 30C 40 268.4 102.1 
5-PER(100g)-NaOH-3 29-Nov-10 30C 40 266.4 188.8 
6-PER(100g)-NaOH-1 15-Dec-10 30C 56 272.6 1097.8 
6-PER(100g)-NaOH-2 15-Dec-10 30C 56 256.2 79.9 
6-PER(100g)-NaOH-3 15-Dec-10 30C 56 127.4 90.4 
7-PER(100g)-NaOH-1 26-Jan-11 30C 98 13070.3 436.5 
7-PER(100g)-NaOH-2 26-Jan-11 30C 98 13838.1 540.5 
7-PER(100g)-NaOH-3 26-Jan-11 30C 98 #DIV/0! #DIV/0! 
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Appendix C: Concentration vs. isotope analysis of Benzene 

Time Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

0 1-Control 10°C 23.2810 -30.77 -41.91 
8 2-Control 10°C 23.4498 -30.30 -43.27 

15 3-Control 10°C 22.6661 -31.22 -41.97 
26 4-Control 10°C 22.5402 -30.36 -37.24 
40 5-Control 10°C 20.0108 -30.29 -39.12 
56 6-Control 10°C 21.4737 -30.53 -41.87 
98 7-Control 10°C 21.9449 -30.73 -37.89 

     
     0 1-per (20g) 10°C 22.3385 -30.68 -38.38 

8 2-per (20g) 10°C 22.1339 -30.70 -36.17 
15 3-per (20g) 10°C 21.4844 -30.21 -36.45 
26 4-per (20g) 10°C 21.0310 -30.26 -41.84 
40 5-per (20g) 10°C 18.5902 -30.41 -39.61 
56 6-per (20g) 10°C 20.1158 -30.06 -36.46 
98 7-per (20g) 10°C 20.3699 -30.61 -41.4 

     
     0 1-Control 30°C 23.0732 -30.42 -43.55 

8 2-Control 30°C 22.9481 -30.43 -46.72 
15 3-Control 30°C 21.7761 -30.52 -45.15 
26 4-Control 30°C 21.4495 -30.48 -44.56 
40 5-Control 30°C 20.6184 -30.28 -43.95 
56 6-Control 30°C 19.9741 -30.50 -44.22 
98 7-Control 30°C 23.0011 -30.18 -39.49 

     
     0 1-per (20g) 30°C 22.3364 -30.18 -44.72 

8 2-per (20g) 30°C 18.1261 -29.68 -36.96 
15 3-per (20g) 30°C 12.9656 -29.26 -40.70 
26 4-per (20g) 30°C 9.9185 -28.85 -38.20 
40 5-per (20g) 30°C 4.0759 -26.82 -26.09 
56 6-per (20g) 30°C 0.3566 BQL B.D.L 
98 7-per (20g) 30°C 0.0023 BQL B.D.L 
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Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

1-con-NaOH 10°C 23.1 -30.02 -42.02 
2-con-NaOH 10°C 22.9 -29.80 -44.3 
3-con-NaOH 10°C 22.4 -30.08 -38.63 
4-con-NaOH 10°C 21.6 -29.74 -39.51 
5-con-NaOH 10°C 19.6 -29.75 -38.48 
6-con-NaOH 10°C 20.9 -29.96 -43.38 
7-con-NaOH 10°C 21.6 -30.01 -37.56 

    
    1-per-NaOH (20g) 10°C 22.8 -29.37 -34.25 

2-per-NaOH (20g) 10°C 21.8 -29.63 -40.41 
3-per-NaOH (20g) 10°C 20.4 -29.10 -36.71 
4-per-NaOH (20g) 10°C 18.9 -29.27 -36.63 
5-per-NaOH (20g) 10°C 16.9 -29.32 -40.72 
6-per-NaOH (20g) 10°C 18.1 -29.13 -40.42 
7-per-NaOH (20g) 10°C 17.4 -29.30 -34.15 

    
    1-Control-NaOH 30°C 22.7 -30.18 -44.17 

2-Control-NaOH 30°C 22.7 -30.76 -44.77 
3-Control-NaOH 30°C 21.6 -30.29 -39.96 
4-Control-NaOH 30°C 20.6 -30.25 -40.1 
5-Control-NaOH 30°C 18.2 -29.95 -39.93 
6-Control-NaOH 30°C 19.2 -30.22 -45.75 
7-Control-NaOH 30°C 18.3 -30.35 -40.16 

    
    1-per-NaOH (20g) 30°C 22.2 -29.70 -48.60 

2-per-NaOH (20g) 30°C 15.3 -29.04 -30.06 
3-per-NaOH (20g) 30°C 12.4 -28.80 -31.50 
4-per-NaOH (20g) 30°C 6.7 -28.56 -34.69 
5-per-NaOH (20g) 30°C 2.0 -24.42 -29.81 
6-per-NaOH (20g) 30°C 0.1 BDL B.D.L 
7-per-NaOH (20g) 30°C 0.0 BDL B.D.L 
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Appendix D: Concentration vs. isotope analysis of Toluene 

TTime Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

0 1-Control 10°C 42.4172 -30.21 -35.43 
8 2-Control 10°C 42.5814 -29.86 -30.59 

15 3-Control 10°C 42.0595 -29.88 -35.35 
26 4-Control 10°C 41.8378 -29.82 -34.7 
40 5-Control 10°C 37.8457 -29.67 -37.45 
56 6-Control 10°C 39.9453 -30.12 -36.91 
98 7-Control 10°C 39.8429 -30.56 -33.62 

     
     0 1-per (20g) 10°C 42.4874 -29.90 -37.36 

8 2-per (20g) 10°C 39.5527 -29.75 -38.61 
15 3-per (20g) 10°C 38.2837 -29.40 -36.7 
26 4-per (20g) 10°C 37.5320 -29.38 -42.18 
40 5-per (20g) 10°C 33.1182 -29.53 -36.64 
56 6-per (20g) 10°C 34.3505 -29.68 -42.18 
98 7-per (20g) 10°C 32.0726 -28.97 -39.06 

     
     0 1-Control 30°C 43.1405 -29.64 -45.7 

8 2-Control 30°C 41.1991 -29.55 -42.1 
15 3-Control 30°C 39.2350 -29.45 -45.06 
26 4-Control 30°C 38.0885 -29.15 -41.81 
40 5-Control 30°C 33.1536 -28.99 -45.13 
56 6-Control 30°C 34.7869 -29.65 -44.15 
98 7-Control 30°C 39.7144 -29.84 -49.39 

     
     0 1-per (20g) 30°C 42.6278 -29.17 -39.33 

8 2-per (20g) 30°C 19.8291 -27.98 -32.75 
15 3-per (20g) 30°C 7.2813 -26.36 -33.50 
26 4-per (20g) 30°C 0.9737 -23.36 -12.67 
40 5-per (20g) 30°C 0.0087 BDL B.D.L 
56 6-per (20g) 30°C 0.0142 BDL B.D.L 
98 7-per (20g) 30°C 0.0038 BDL B.D.L 



 

83 

 

Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

1-con-NaOH 10°C 43.5612 -29.13 -40.31 
2-con-NaOH 10°C 42.0145 -29.83 -35.59 
3-con-NaOH 10°C 41.3355 -30.18 -36.32 
4-con-NaOH 10°C 40.0614 -29.74 -38.53 
5-con-NaOH 10°C 36.7289 -29.69 -40.95 
6-con-NaOH 10°C 39.0751 -29.71 -43.11 
7-con-NaOH 10°C 38.6026 -29.15 -41.66 

    
    1-per-NaOH (20g) 10°C 43.0966 -28.18 -39.34 

2-per-NaOH (20g) 10°C 38.8850 -28.06 -39.16 
3-per-NaOH (20g) 10°C 36.5027 -27.40 -44.55 
4-per-NaOH (20g) 10°C 33.4002 -27.64 -37.67 
5-per-NaOH (20g) 10°C 29.6634 -27.40 -42.26 
6-per-NaOH (20g) 10°C 31.3750 -27.39 -41.49 
7-per-NaOH (20g) 10°C 26.9847 -27.60 -39.35 

    
    1-Control-NaOH 30°C 43.7402 -29.72 -47.29 

2-Control-NaOH 30°C 40.9246 -29.75 -43.55 
3-Control-NaOH 30°C 38.4192 -29.35 -43.67 
4-Control-NaOH 30°C 36.6236 -29.70 -42.83 
5-Control-NaOH 30°C 31.8739 -29.25 -48.56 
6-Control-NaOH 30°C 32.7714 -29.31 -50.95 
7-Control-NaOH 30°C 27.7459 -29.20 -43.61 

    
    1-per-NaOH (20g) 30°C 42.7289 -28.92 -38.27 

2-per-NaOH (20g) 30°C 19.1317 -27.78 -31.11 
3-per-NaOH (20g) 30°C 9.4728 -26.65 -30.10 
4-per-NaOH (20g) 30°C 0.9980 -24.64 B.D.L 
5-per-NaOH (20g) 30°C 0.0088 BDL B.D.L 
6-per-NaOH (20g) 30°C 0.0040 BDL B.D.L 
7-per-NaOH (20g) 30°C 0.0045 BDL B.D.L 
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Appendix E: Concentration vs. isotope analysis of Ethylbenzene 

Time Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

0 1-Control 10°C 3.6689 -28.32 -171.32 
8 2-Control 10°C 3.6015 -28.97 -169.53 

15 3-Control 10°C 3.5163 -29.10 -172.03 
26 4-Control 10°C 3.4704 -29.61 -171.71 
40 5-Control 10°C 3.1792 -30.12 -171.66 
56 6-Control 10°C 3.3223 -27.57 -169.84 
98 7-Control 10°C 3.3014 -27.85 -172.90 

     0 1-per (20g) 10°C 3.6627 -29.25 -167.11 
8 2-per (20g) 10°C 3.3266 -28.62 -168.72 

15 3-per (20g) 10°C 3.1645 -28.08 -168.72 
26 4-per (20g) 10°C 3.1147 -28.35 -169.91 
40 5-per (20g) 10°C 2.7968 -28.38 -168.64 
56 6-per (20g) 10°C 2.8666 -27.51 -167.37 
98 7-per (20g) 10°C 2.7050 -27.50 -166.34 

     0 1-Control 30°C 3.7344 -28.38 -178.05 
8 2-Control 30°C 3.4082 -27.70 -175.21 

15 3-Control 30°C 3.1897 -27.95 -175.2 
26 4-Control 30°C 3.0760 -27.72 -175.65 
40 5-Control 30°C 2.6977 -27.50 -177.19 
56 6-Control 30°C 2.8100 -27.60 -175.99 
98 7-Control 30°C 3.3615 -27.78 -175.07 

     0 1-per (20g) 30°C 3.6881 -28.26 -170.50 
8 2-per (20g) 30°C 1.6893 -26.39 -168.87 

15 3-per (20g) 30°C 0.6269 -25.63 B.D.L 
26 4-per (20g) 30°C 0.0539 -21.78 B.D.L 
40 5-per (20g) 30°C 0.0004 BDL B.D.L 
56 6-per (20g) 30°C 0.0028 BDL B.D.L 
98 7-per (20g) 30°C 0.3281 BDL B.D.L 
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Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

1-con-NaOH 10°C 3.7954 -26.27 -164.65 
2-con-NaOH 10°C 3.5831 -27.35 -164.68 
3-con-NaOH 10°C 3.4666 -27.42 -167.13 
4-con-NaOH 10°C 3.3447 -27.36 -166.85 
5-con-NaOH 10°C 3.0759 -27.56 -166.21 
6-con-NaOH 10°C 3.2517 -27.47 -166.48 
7-con-NaOH 10°C 3.1432 -27.63 -167.33 

    1-per-NaOH (20g) 10°C 3.7220 -27.71 -177.89 
2-per-NaOH (20g) 10°C 3.2974 -27.04 -175.01 
3-per-NaOH (20g) 10°C 3.0621 -26.54 -180.81 
4-per-NaOH (20g) 10°C 2.7897 -26.03 -175.03 
5-per-NaOH (20g) 10°C 2.4869 -26.55 -179.05 
6-per-NaOH (20g) 10°C 2.6216 -26.61 -175.8 
7-per-NaOH (20g) 10°C 2.2102 -26.11 -179.84 

    1-Control-NaOH 30°C 3.8325 -27.29 -193.46 
2-Control-NaOH 30°C 3.4123 -27.17 -193.27 
3-Control-NaOH 30°C 3.1663 -26.60 -196.38 
4-Control-NaOH 30°C 2.9719 -27.08 -194.79 
5-Control-NaOH 30°C 2.5818 -27.03 -191.94 
6-Control-NaOH 30°C 2.6229 -27.25 -191.48 
7-Control-NaOH 30°C 2.1305 -26.85 -195.93 

    1-per-NaOH (20g) 30°C 3.7013 -27.38 -172.70 
2-per-NaOH (20g) 30°C 1.6121 -26.82 -171.24 
3-per-NaOH (20g) 30°C 0.8074 -26.31 B.D.L 
4-per-NaOH (20g) 30°C 0.0481 -22.66 B.D.L 
5-per-NaOH (20g) 30°C 0.0026 BDL B.D.L 
6-per-NaOH (20g) 30°C 0.0000 BDL B.D.L 
7-per-NaOH (20g) 30°C 0.2234 BDL B.D.L 
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Appendix F: Concentration vs. isotope analysis of p-Xylene 

Time Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

0 1-Control 10°C 10.0385 -28.19 -72.72 
8 2-Control 10°C 9.7843 -29.40 -68.75 

15 3-Control 10°C 9.6106 -29.23 -71.49 
26 4-Control 10°C 9.4383 -29.75 -72.73 
40 5-Control 10°C 8.6180 -29.48 -72.69 
56 6-Control 10°C 8.9899 -28.22 -69.58 
98 7-Control 10°C 8.8296 -28.28 -76.11 

     0 1-per (20g) 10°C 10.1118 -28.01 -85.4 
8 2-per (20g) 10°C 9.2977 -28.83 -85.27 

15 3-per (20g) 10°C 8.8648 -28.56 -87.92 
26 4-per (20g) 10°C 8.6124 -28.58 -90.32 
40 5-per (20g) 10°C 7.3489 -28.73 -84.5 
56 6-per (20g) 10°C 7.2572 -27.72 -89.88 
98 7-per (20g) 10°C 6.0851 -27.96 -90.6 

     0 1-Control 30°C 10.2151 -28.16 -80.82 
8 2-Control 30°C 9.1623 -28.58 -77.57 

15 3-Control 30°C 8.5649 -28.89 -77.45 
26 4-Control 30°C 8.0842 -28.56 -82.99 
40 5-Control 30°C 6.9639 -28.44 -82.21 
56 6-Control 30°C 7.1666 -28.07 -85.27 
98 7-Control 30°C 8.6471 -27.83 -85.13 

     0 1-per (20g) 30°C 10.1805 -28.94 -74.94 
8 2-per (20g) 30°C 3.0790 -26.91 -66.68 

15 3-per (20g) 30°C 0.6594 -26.39 B.D.L 
26 4-per (20g) 30°C 0.0164 -25.99 B.D.L 
40 5-per (20g) 30°C 0.0055 BDL B.D.L 
56 6-per (20g) 30°C 0.0015 BDL B.D.L 
98 7-per (20g) 30°C 0.0000 BDL B.D.L 
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Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

1-con-NaOH 10°C 10.3719 -26.54 -85.28 
2-con-NaOH 10°C 9.7279 -27.57 -81.78 
3-con-NaOH 10°C 9.4514 -28.06 -86.75 
4-con-NaOH 10°C 9.0774 -27.73 -84.17 
5-con-NaOH 10°C 8.3616 -28.18 -81.65 
6-con-NaOH 10°C 8.8435 -28.04 -83.14 
7-con-NaOH 10°C 8.4069 -28.11 -88.11 

    1-per-NaOH (20g) 10°C 10.2701 -26.71 -83 
2-per-NaOH (20g) 10°C 9.2948 -26.89 -84.73 
3-per-NaOH (20g) 10°C 8.7872 -26.86 -90.8 
4-per-NaOH (20g) 10°C 7.9643 -26.28 -89.99 
5-per-NaOH (20g) 10°C 7.0400 -26.73 -84.76 
6-per-NaOH (20g) 10°C 7.3463 -26.31 -88.17 
7-per-NaOH (20g) 10°C 5.8556 -26.31 -89.09 

    1-Control-NaOH 30°C 10.4758 -27.04 -109.91 
2-Control-NaOH 30°C 9.1710 -27.01 -113.02 
3-Control-NaOH 30°C 8.3503 -27.40 -111.84 
4-Control-NaOH 30°C 7.8351 -27.77 -106.78 
5-Control-NaOH 30°C 6.6533 -27.39 -106.22 
6-Control-NaOH 30°C 6.6244 -27.59 -110.86 
7-Control-NaOH 30°C 5.0445 -27.16 -114.35 

    1-per-NaOH (20g) 30°C 10.2235 -27.41 -73.47 
2-per-NaOH (20g) 30°C 4.4222 -27.54 -67.70 
3-per-NaOH (20g) 30°C 1.7515 -26.44 B.D.L 
4-per-NaOH (20g) 30°C 0.0177 BDL B.D.L 
5-per-NaOH (20g) 30°C 0.0028 BDL B.D.L 
6-per-NaOH (20g) 30°C 0.0018 BDL B.D.L 
7-per-NaOH (20g) 30°C 0.0015 BDL B.D.L 
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Appendix G: Concentration vs. isotope analysis of o-Xylene 

Time Sample Identification Concentration  δ 13C   δ2H 
mg/L ‰ ‰ 

0 1-Control 10°C 6.2112 -28.55 -22.96 
8 2-Control 10°C 6.1618 -29.14 -22.19 

15 3-Control 10°C 6.1519 -28.77 -21.82 
26 4-Control 10°C 6.1260 -30.48 -21.37 
40 5-Control 10°C 5.6693 -29.52 -21.74 
56 6-Control 10°C 5.9369 -28.46 -21.59 
98 7-Control 10°C 5.9316 -28.28 -21.34 

     0 1-per (20g) 10°C 6.2076 -28.08 -23.69 
8 2-per (20g) 10°C 5.8565 -28.35 -25.72 

15 3-per (20g) 10°C 5.6925 -27.49 -28.89 
26 4-per (20g) 10°C 5.6331 -27.81 -24.23 
40 5-per (20g) 10°C 4.9389 -27.78 -21.94 
56 6-per (20g) 10°C 4.9979 -26.86 -24.94 
98 7-per (20g) 10°C 4.3712 -27.15 -22.42 

     0 1-Control 30°C 6.3283 -27.98 -25.81 
8 2-Control 30°C 5.9201 -27.78 -24.6 

15 3-Control 30°C 5.7283 -27.73 -27.24 
26 4-Control 30°C 5.6462 -27.54 -21.31 
40 5-Control 30°C 5.0957 -27.51 -23.42 
56 6-Control 30°C 5.3909 -27.69 -22.9 
98 7-Control 30°C 6.0143 -27.23 -25.14 

     0 1-per (20g) 30°C 6.2600 -28.21 -31.39 
8 2-per (20g) 30°C 2.3470 -27.17 -22.46 

15 3-per (20g) 30°C 0.5826 -25.38   
26 4-per (20g) 30°C 0.0249 -20.54 B.D.L 
40 5-per (20g) 30°C 0.0083 BDL B.D.L 
56 6-per (20g) 30°C 0.0059 BDL B.D.L 
98 7-per (20g) 30°C 0.0108 BDL B.D.L 

     
 

BDL: Below Detection Limit 
  

 
BQL: Below Quantification Limit 
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Sample Identification Concentration  δ 13C   δ2H 

mg/L ‰ ‰ 
1-con-NaOH 10°C 6.3679 -26.18 -20.53 
2-con-NaOH 10°C 6.0802 -27.19 -20.67 
3-con-NaOH 10°C 6.0184 -27.51 -19.79 
4-con-NaOH 10°C 5.8788 -27.48 -20.81 
5-con-NaOH 10°C 5.4975 -27.93 -18.58 
6-con-NaOH 10°C 5.8314 -28.29 -19.01 
7-con-NaOH 10°C 5.7235 -28.38 -22.89 

    1-per-NaOH (20g) 10°C 6.2593 -27.81 -20.55 
2-per-NaOH (20g) 10°C 5.7604 -26.38 -23.53 
3-per-NaOH (20g) 10°C 5.5287 -26.94 -22.19 
4-per-NaOH (20g) 10°C 5.1327 -26.39 -25.38 
5-per-NaOH (20g) 10°C 4.6879 -26.60 -29.75 
6-per-NaOH (20g) 10°C 4.9586 -26.83 -20.07 
7-per-NaOH (20g) 10°C 4.2240 -26.50 -26.47 

    1-Control-NaOH 30°C 6.4239 -27.31 -27.43 
2-Control-NaOH 30°C 5.8688 -27.80 -29.22 
3-Control-NaOH 30°C 5.7093 -27.04 -26.7 
4-Control-NaOH 30°C 5.3969 -27.45 -27.61 
5-Control-NaOH 30°C 4.9133 -27.11 -24.77 
6-Control-NaOH 30°C 5.1373 -27.29 -26.24 
7-Control-NaOH 30°C 4.5439 -26.83 -27.81 

    1-per-NaOH (20g) 30°C 6.2353 -28.27 -23.56 
2-per-NaOH (20g) 30°C 3.1255 -27.74 -16.26 
3-per-NaOH (20g) 30°C 1.4711 -26.26 -14.65 
4-per-NaOH (20g) 30°C 0.0374 BDL B.D.L 
5-per-NaOH (20g) 30°C 0.0058 BDL B.D.L 
6-per-NaOH (20g) 30°C 0.0034 BDL B.D.L 
7-per-NaOH (20g) 30°C 0.0066 BDL B.D.L 
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