
Stochastic Approximation of Artificial Neural 
Network-Type Learning Algorithms: A Dynamical 

Systems Approacl-i 

Issael Ncube 

-4 thesis 

presented to the University of 

in fulfilment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Applied Mathematics 

U;atertool Ontario. Canada. 2001 

@ Isïael Ncube ZOO1 



National Library Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 
395 Wellington Street 395. rue Wellington 
Ottawa ON KI  A ON4 Ottawa ON KI A ON4 
Canada Canada 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence allowing the exclusive permettant à la 
National L i 7 r q  of Canada to BibIiothèque nationale du Canada de 
reproduce, loan, distribute or se0 reproduire, prêter, distribuer ou 
copies of this thesis in microform, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfiche/nlm, de 

reproduction sur papier ou sur format 
électronique. 

The author retains ownership of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels 
may be printed or otherwise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation, 



The Universir>- of narerloo reguires the signatures of au persons using or ph* 

tocopying this rhesis. Please sign below. and give address and date. 



Abstract 

Stochastic approsimation is concerned with characterisation of the long term be- 

haviour of recursive random dgorithms. For esample, does the  algo rithm converge 

t o  a unique  fixed point. for al1 ini t ial  points? This problem is well-understood. via 

the Kusiiner-Clark theorem. only if the so-cded associated ordinary differential 

equation (O DE) lias esactly one loca.11~- aspptot ica l1~-  stable equilibrium point. In 

this case. it is known that . under some fair-- reasonable açsurnptions. the random 

algorithm converges. n-ith probability one, to the equilibrium point of the ODE. 

Homever. if the ODE has multiple locally asymptotically stable equilibria. not much 

is currently knov-n about convergence of the algorithm to an' epecific one of these 

equilibria. The prirnary objective of the thesis is the inxeestigation of this prob- 

lem. bot h qualit atively and quantit ativelj-. W e  study random fields generated by 

discrete algorithms. and then draw relationships between dynamics on the contin- 

uous (associated ODE) and discrete phase spaces. A novel computer algorithm. 

which es tirnates probabilit ies of convergence of a simple discrete system to particu- 

lar stable equilibria of the ODE. is introduced. Simulation results suggest that the 

probabilities so estimated are almost independent of the initialisation of the dis- 

crete sj-stem. mie reformdate the analysis of evolution of densities of algorithms. 

under the action of the Frobenius-Perron operator, on a new space. i.e. the space 

of normalised positive distributions. Endowed mith a suit able metric. it is shown 

that the resulting metric space is complete. 
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Chapter 1 

Preliminaries and Motivation 

1.1 Introduction 

Consider a recursive random algori thm of the form 

where the wn7s and xn7s axe in IR (the generalisation to vectors in IRr is straight- 

forward), (7,) is a sequence of positive decreasing-to-zero real numbers such that 

Zn y, = ca, h : IR x IR -t R is a continuous function, and {x,} is a sequence of 

random variables that are distributed according to some given law. We may write 



for z E R . The main objective of this thesis is the characterisation of the long term 

behaviour of the {w,} sequence, in the case when the so-cded associaled ODE (see 

[l] and [Z] for details] 

correspondhg to (1.1) has multiple locally as~mptotically stable equilibria. For 

e~arnple~  does {w,)~=, converge t o  a f i ed  point? This is a classic stochastic ap- 

proximation problem. Stochastic approximation h d s  application in a wide variety 

of problems arising in engineering, science. and economics. for example. The pri- 

mary application of the type of problem addressed in this thesis is in the area of 

unsupervised artificial neural learning. Neural learning is a process of updating the 

free parameters of a network of neurons in order to achieve specific desired design 

objectives. Unsupervised learning is that paradigm of neural learning where there 

is no extemal critic to supervise the learning process. In the framework of neural 

networks, (1.1) is interpreted as follows. The (wn)~==,  sequence denotes iterates of 

a network weight, x, is an input received at time n, which causes w, to be updated 

to take account of new information. The ruidomness of inputs is a result of con- 

tamination by ex3erna.l noise signals. The 7, serve as 'training parameters' that 

modulate the correction ternis. The requirement that y, + O as n -t m reflects 

the desire to gradually "phase outn the corrections in order to ensure convergence 

of the aigorithm. The condition that C. -i, = a, is to ensure that the algorithm 

does not converge prematwely, i.e. that it converges to the "right" point or set. 



Over the years, the area of stochastic approximation has received a lot of atten- 

tion from a myriad of researchers. Arguably, the seminal publication in this area 

was authored by Robbins and Monro, in 1951 (see [7] for details). The essence 

of the s-cded Robbins-Monro procedure for dosage is outlined below. For each 

dosage 9 of some chemical product, you maire an experiment that delivers some ef- 

fect X depending on 8. In other words, X is a random cxiable mhose distribution 

depends on 9. The issue is to determine the value of B for which the mem effect 

is a, viz. E[X 1 O ]  = a. The Robbins-Monro procedure consists of conducting a 

series of experiments with changing values of 0 according to 

where x,,~ is the result of the experiment made with 8,. One can prove that, 

under some reasonable assumptions, en converges to the desired solution (see [Il 

for det ails). 

In 1968, Fabian [lS] proved the a.sp.ptotic nonnality of stochastic approxima- 

tion algorithm of the form 

where U,, V,, Tn E E t k ,  rn, en E E t k X k  and a, /3 E IR. The VnYs are random 

vectors, and hence so are the Un's. Fabian showed that, under some conditions, 

the asymptotic distribution of n ) ~ ,  is n o m d  with a mean p and a covariance 

matrix M. To this end, he characteriçed the asymptotics of (on) by describing the 



as-ymptotics of its mean E[G-J and covariance rnatrix E [ C ' ~ E ~ A ] ,  where 

- dcf Un = (n - 1) $Un, and A is a constant k x 1; diagonal matrix. 

Another landmark paper in this area Rias published in 1977, by Ljung [2]. 

He considered a class of algorithms which includes stochastic approximation al- 

gori thms, recursive identification algorithms, and algorithms for adaptive control 

of linear systems. This paper was the Grst to attempt to characterise the limits of 

sequences  un)^=, in equation (1.1) by studying ODES which were approxirnately 

satisfied by the asymptotic part of a natural continuous parameter interpolation of 

{wn)n=,. The method used is very technical and complicated. In 1978, Kushner 

and C1a.k [1] achieved what [2] had achieved earlier, using a relatively less cum- 

bersome method. The technique pioneered by Ljung is nowadays referred to as the 

ORE rnethod, and constitutes a central part of this thesis. The work of [l] and 

[2] led to the birth of a celebrated theorem on the convergence of { w , ) ~ , ~ ,  the 

so-called Iiushner-Clark theorem. The general idea behind this theorem is that, 

under some conditions, it is possible to derive an autonomous deterministic ODE 

that is associated with a given leaming algorithm (which is, usually, in the fonn 

of a non-autonomous random difXerence equation). This association is in the sense 

that the asymptotic paths of the ODE and the algorithm are close with a large 

probability and, eventually, the solution of the algorithm tends, with probability 

one (wpl  in short), to a uniformly zsymptotically stable solution of the ODE. This 

ability to associate a deterministic autonornous ODE to the asgptotic part of the 
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difference equation, even when the latter has additive (or other) noise, is subtle and 

very useiul in applications. 

Essentidy, the Kushner-Clark theorem establishes that if the associated ODE 

corresponding to the random algorithm (1.1) has exactly one asymptotically stable 

equilibrium point 2,  then, under some fairly reaçonable assumptions (see Section 

1.4), w, 3' 2 Î as n m. However, if (1.5) possesses multiplelocally asymptotically 

stable equilibria, nothing is currently knonn about the convergence of {w,} to a 

specific element of the set { X I  h ( z )  = O). In fact, this is still an open problem in this 

area. Since the pioneering work of Ljung, Kushner, and Clark in the late 19707s, 

there has been minimal progress made to date in tadrling the above problem. This, 

in part, is due to the h o s t  intractability of the problem. In addition, because this 

problem commonly arises in engineering applications, many researchers have been 

more focussed on the "practicality" of stochastic approximation algorithms rather 

than in a more mathematicdy rigorous treatment of the problem. 

Since the emergence of the Kushner-Clark theorem, only a few papers have 

appeared, specifically targetting the problem mentioned above. In 1996, Fort and 

Pagès [8] established and proved a theorem that allowed them to transfer the con- 

vergence of solutions of the associated ODE to {w,):=~, if the ODE has no pseudo- 

cycle. The latter indude bona fide periodic orbits as weU as isolated equilibria. 

Their approach is primarily a development of the original proof of the Kushner- 

Clark theorem. They made further assumptions on the ODE: continuity of 6, 



convergence of every bounded masimal solution toward some zero of h. and finally, 

a simple dynamics for the ODE (Le- no pseudocycle). The proof of their theorem 

amounts to proving that { w . } ~ = ~  has only one limiting point in {r h ( s )  = O). Fur- 

thennore, they performed numerical simulations when the ODE does have pseudo- 

cycles. Finally? if one of the elements of 1x1 h(x) = O) is a saddle point 5 ,  Fort and 

Pagès have shown that the sequence {w,):=~ will not converge to 2.  

The main thrust of this thesis is the investigation of convergence of {w,)F=:=, if 

the associated ODE has multiple locally a~~yrnptotically stable equilibria. We at- 

tempt to characterise this convergence to specific elernents of the set ( X I  L(x) = 0). 

The formal mathematical analysis will hinge on principles drawn mainly from the 

areas of dynamical systems theory. probability theory. and stochastic processes. To 

this end. both analytica.! and numerical approaches will be utilised. The organisa- 

tion of the thesis is outlined below. 

1.2 Thesis Organisation 

In Section 1.3, we outline some key concepts and definitions that will be encoun- 

tered throughout the thesis. Then, in the rest of this chapter, we introduce the 

theory behind the notion of an associated ODE. To this end, we start off by stat- 

ing the Kushner-Clark theorem. Then we elaborate the technical details behind 

the derilation of the ODE. Nexct, we present some examples to illustrate how this 

theory works i s d  also to highlight the difficulty of characterising convergence of 

{ u > ~ } : = ~  to a spec$c element of the set { I I  &(z) = O), particularly if the ODE 

has more than one locally asymptotically stable equilibrium. We dose the chapter 
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with an introduction to the rudiments of artificid neural networks, particularly the 

notion of leaming and how it rdates to the subject matter of this thesis. 

Chapter 2 is a systematic study of the dynamical behaviour of Ljung's automatic 

classifier [2], which is essentidy a two-dimensional discrete random algorit hm. This 

algorithm seeks to cl as si^ a one-dimensional set of data, and thus addresses a very 

basic classification problem. We perform qualitative and quantitative analyses of 

both the algorithm and its associated ODE, in the case when the latter has two 

locally asymptotically stable equilibria. The underlying motivation is the desire 

to characterise the relationship between dynamics on the discrete and continuous 

phase spaces. In chapter 3, we introduce and investigate the notion of a stationary 

density of the FTO beniw-Perron operator  associated with an algorithm, and how 

this may be exploited to help understand the long term behaviour of {w,)n=, if the 

associated ODE has multiple locally asymptotically stable equilibria. We introduce 

an appropriate space for the analysis of densities under iteration of the Frobenius- 

Perron operator. We find stationary densities for both Linear and nonlinear random 

dgorithms, the stationary densities for the latter being "determined" numerically. 

we emphasize that this chapter is motivated and strongly infiuenced by the work 

of 1201, Pl, and [SI. 

Chapter 4 investigates some generalisations of Ljung's doubly-triangular pdf. 

Essentially, we consider pdfi whose underlying components are overlappirag. Mie 

then derive and analyse the associated system of ODES. We close the chapter 

by performing the usual (akin to Chapter 2) simulations. Finally, Chapter 5 is a 

stimmary and conclusion of our work. In addition, we give a brief description of 



possible future research directions. 

1.3 Some BasicDefinitions 

In this section. ure give definitions of some essentid concepts thw will be encoun- 

tered throughout the thesis. 

Definition 1.1 A sequence of continuow functions {fn) , f, : I -t ntk ,  is said to 

be equicontinuous on 1 if, for each e > O.  there is a b > O such that for all t l .  t2  E I 

for all n, and where II - I I  denotes the Euclidean n o m .  

Definition 1.2 A sequence { f,}, fn : 1 -t R ", is said to  be 2mnifomly bounded if 

there exists an 1'11 > O such that 

Ilfn(t)ll 5 M ,  for a l l t  E 1 and a l l n .  

The following result is the welI-hown ArzelZ-Ascoli theorem [25]: 

Theorem 1.1 If {gn), g, : 1 + IR ', is a aniformly bounded and epicontinuous 

sequence of functions, then there ezists a subsequence which converges unifomly on  

Definition 1.3 Consider a sequence of random variables, {X,), defined o n  a prob- 

ability space ( R , 3 ,  P). W e  say that Xn converges t o  A' with probability one (w.p.1) 
n+w 

;f P ( B )  = O ,  where B = {wl & (w)  f* X ( w ) ) .  
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Let (0, F, P) be a finite probability space and DL 5 V2 5 . . 5 V,, a sequence 

of decompositions. 

Definition 1.4 A sequence of random variables cl, - -,en is called a martingale 

(with. respect to the decomposition VI 5 V2 5 - - 5 Vn) if 

Consider a system of ODES given by 

where f : U -t IR ", with U an open set in IR ' x IR ". Assume that (E) possesses 

an isolated equilibrium at the origin. In other words, f ( t ,  O)  = O for all t 2 0. 

Furthemore, suppose that +(t, to, xo) is a unique solution of (E) which depends 

continuously on the initial data (to, x0)- 

Definition 1.5 The equilibrium x = O of (El 13 stable if, for  every c > O and any 

to E IR+? there ezists a b ( ~ ,  to) > O such that 

wheneuer 

l xo l  < J(G t o )  

Definition 1.6 The equilibrium x = O of (E) is locally c~syrnptotically stable if 
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1- it 6 stable. and 

2. for every to 2 O ,  there exists an q( tO)  > O such that 

whenever lzol < r ) .  

Definition 1.7 The set of al2 xo E R n  such that #(t, t o , x o )  -t O as t + CG for 

some to 2 O is called the domain of attraction of the eqvilibriurn x = O of (W. 

1.4 The Main Theorem 

Theorem 1.2 Let { w ( n ) )  5e given by 

where n denotes the zteration number, { w ( n ) }  is a sequence of vectors in IRr that 

are the object of interest, and x(n)  E Etr is an input uector recezved ut tirne n , 

which causes w(n) t o  be updated to take account of new i n f o n a t i o n .  Assume that 

(1.6) satisfies the following set of conditions: 

i. Iy(n)) is a decteasing sequence of positive real numbers, such that 

m 

(a) ~ ( n )  = os , and 
n=l 

(b)  ~ ( n )  -+O us n -t m.  
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éi, The  sequence of vectors ( w ( n ) }  is bomded wpl. 

iii. h( - ,  -) is a continuous IRr-valued fiilnction o n  IR x IR 

iv. The  conditional expectation (see [ I l )  de@ed by 

where z E IRr is a regular (Le.  non-randorn) variable. exists. The  statistz- 

cal expectation is taken wzth respect to  x(n) ,  under  the assumption that  t he  

probability density function (pdf l  of the random variable x (n )  is knoutn. 

v. Assume that 
m 

for each E > 0, and where (c(i)} is a seqzlence of Rr-valued random van'ables 

defined by 

Then ,  {w(n)) converges t o  a solution of the systern of ODES 

where t denotes continuous time, and z E IRr. 



The folZouring extra condition specifies criteria which ensure the convergence of 

{ w ( n  )} to a particular sol-ution of (1.  I l ) .  

wi- Let zo be a local./ asymptotically stable eqailibriurn solution t o  (1.11). with 

domain of attraction D A ( z o ) -  If there is a compact set -4 c DA(zo) svch that 

w(n) E -4 in jh i te ly  often, then  

w ( n )  -+zo w p l ,  as n +CG. 

Note: By %n.ni tely  often", we mean that there ez i s t s  a n  infinite s epence  of 

integers { n i } z l ,  ni < i 2 1, such that w(n) E A for al1 i. 

Remarks on the noise condition (v) 

Equation (1.10) may be rewritten as 

which resembles the well-honm Euler difference scheme for approximating solutions 

of ODES. Thus, if [(n) is suitably constrained, we expect {w(n)) to converge (wpl) 

to a particular solution of the system of ODEs given by (1.11). The condition 

given by (1.9) is not usually straightforward to verie in most practical applica- 

tions. However, it may be shown to hold under the following conditions [l], viz. 

{C:=o r(i)e(i)) is a martingale sequence, and 

00 

yP(i) < cm for some p > 1. 
i=O 



Remarks on conditional expectation 

The conditional expectation in (13) is taken with respect to x(n),  since the d u e s  

{x(O), - - , x(n - l)} are given. From (1.61, this implies that {w(l), - . , w ( n ) )  is 

known. Replacing z by w(n) leads to 

where the conditional expectation is still with respect to x(n) .  Note that w(0) is 

given in most practical implementations of (1.6). Usually, i t  is randomly picked 

(for symmetry-breaking purposes) from a predetermined set. Finally, note that if 

(x(n)) is a sequence of independent,  identically distn'buted (i.i.d. for short) random 

mriables, then the conditioning is redundant, Le. we have that 

1.5 Derivation of the associated ODE 

The basic goal of stochastic approximation, using ODE and compactness methods, 

is to investigate the asymptotic properties of the sequence { w ( n ) ) ,  and to relate 

them to properties of the associated ODE. In order to do this. we need to interpo- 

late ( ~ ( n ) )  and {ELa ~ ( i ) t ( i ) )  into continuous time processes. Then, we defme 

sequences of left sbifts which bring the asymptotic pârts of these two sequences to 

a neighbourhood of the time origin [il. 

Define the piecevise lineaî interpolations, wO(.) and Mo( . ) ,  of {w(n)) and 



w o ( t , )  = w(n) and 

wO(t)  = - %(n) + ( t  - t n )  w ( n  + l), t E [t,, tnil) , (1.13) 
r(n) r (4  

M O ( t )  = (f n+l - j q t , )  + ( t  - t n ) ~ o ( f , + l ) ,  t E [ tn ,  L+l) . (1.14) 
r(4 r(4 

Xext . dehe the corresponding piecewise constant right continuons interpolations: 

wO(t )  = wO(tn) , and 

W( t )  = M O ( t n )  , 

for t E [t,. tn,l ). Equation (1 .13)  irnplies that 

From (1.10), we have that 
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Substituting (1.17) into (1.16) gives 

From (1.14), note that 

Therefore (1.18) may be rewritten as 

To get our sequence of left shifts, define the functions wn (.) and M n  (.) on (-rn; oc) 

by: 

and 



u s h g  (1.20). equation ( 1.21) becomes (for t > -tn ) 

From (l.lï), we may write 

n- 1 n-l 

which is then substituted into (1.23) to give 

Noting that 

equation (1.24) becomes 

Using (1.9)- it can be shown that M r L ( t )  + O as n + oc, for fixed t .  .&O, it can 
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be shown that the sequence {wn(.)) is equkontinuous and uniformly bounded on 

each finite interval in (-car oo). 

Thus, by the Arzelà-Ascoli theorem, t here exkt s a subsequence, also indexed 

by n, and a continuous bounded function w(.) such that 

unifordy on finite time intenals. We may rewrite (1.25) as 

t 

en(t) = 1 {&(*'(in + s ) )  - &(vvn(.s)))ds 

From this, it c m  be shown that en(t) -t O as n + m. From (1.26), it follows that 

Therefore, (1 -27) implies that 
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Finallc combining (1.26) and (1.23) yields 

which gives 

W ( t )  = &(w(t)) , 

the sought-after ODE associated with (1.10). The proof of result (vi) of the main 

theorem exploits the convergence of {w (n ) ) to a solution of (1 .BI, as detailed on 

pages 42-43 of [Il. 

1.6 Some simple examples 

1.6.1 Example 1 

Consider the iteration formula [l] 

where it is assumed that {w,} is bounded, and that is a sequence of IR +-valued 

paxameters satisfying condition (i) of the main theorem. The function h(.) is a 

random variable whose probability density function is speGfied below. Furthemore, 

let hi ( . ) ,  i = 1,2, be continuous bounded R-valued functions on IR, and let a(.) 

be a continuous function on IR with values in [O, 11. Let the random variable h (w, ) , 



parameterised by w,, be defined by 

(Note that, in the spirit of the main theorem, algorithm (1.30) may be generalised 

to IRr. That is; w, E R r ,  hi : IRr -t IRr, i = 1,2: and cr : IR' -t [0,1].) 

Our goal is to investigate the long term behaviour of (1.30). Since this difference 

equation has a random term, it is very difficult, if not outrightly impossible, to 

obtain a n  approximation of its long term behaviour by direct techniques. We s h d  

use ODE and compactness methods, outlined in the previous section, to find an 

associated deterministic a.iltonomous ODE. Then, if ail the conditions of the main 

theorem are met, the ODE will have the same asymptotic properties as (1.30). 

Define the following quantities: 

and 

Then, it is clear that E[en 1 wo, - - , wn] = O wpl. It can further be shown that, 

since the hi(-)  are bounded, var(&} is bounded uniformly in n. 

Define the series 
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Then we have that 

E[Mn 

and 

E 1 Mn 1< cm for each n . (1.36) 

1% conclude that {Mn) is a martingale sequence. Employing (1.32) and (1.33), we 

%on- assume that 
n 

If {s,} is a martingale sequence, Doob's inequality [l] states that 

Applying this to our problem yields 



The RHS of (1.40) may be manipulated to obtain 

Furthemore, let the sequence {c l )  be such that there exists another sequence 

{RE ( j ,  k) ) satisfying 

Employing (1.42) in (1.41) yields 

From 11-40), this implies that 

Equation (1.44) holds for any E > O and for any realisation of The interpreta- 

tion of (1.44) is that, even though J; may not tend to zero as i + oo, the sequence 

of tails of the series Ci=, y;&- does converge to zero as n + m. This is a relatively 



strong condition on the sequence of random variables {ci). 
Finally, as in the previous section, define the piecewise linear interpolations 

d(.). Mo(.) ,  the piecewise constant interpolations züO(.), M O  (.), and the left shifts 

Mn(.). Then, in exactly the same way as before, i t  can be shown that the 

sequence {w" (.)) has a convergent subsequence in C(-oo, oo), and that all Emits 

the sought-after associated ODE. 

1.6 .2 Example 2: Numerical Simulations 

Consider the two-dimensional Heb bian algorit hm [ 121 

applied to a linear neuron, where u(n)  = xT(n)w(n), y(n)  = u(n), and w ( n )  = 

[wl (n)  w2 (n)lT. The sequence of learning parameters, {-y (n)}, is defined as in the 

previous example. Suppose that the neuron receives time-vasying input signals 

which are dehed by 

kr , with probability 0.5 

kz, with probabiiity 0.5 
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where kl and k2 are given by 

kl - der and k2 = 

Hence, for x(n)  = kl, we have that 

Analogously, for x(n) = k2, we obtain 

Denoting z ( t )  = [zl ( t )  z2(t)JT, we obtain the associated system of ODES 



Following (1.48) and (1.49), it can be shown that the f i e d  points of the algo- 

rithm (1.45) are (0, O ) ,  and 

&(0.894,0.447) , if x(n)  = ki with probability 1 

I(0.447,0.894) , if x(n)  = k2 with probability 1 . 

From this information alone, it is not immediately clear to which fixed point the 

sequence {(wl (n), w2 (n) )) will converge if signals defined by (1.46) are used. To 

illustrate the ambiguity of this problem, we perform numerical nuis of (1.45), with 

(wl (O) ,  w2(0)) randomised in (-1, 11. Fig 1.1 ( l e f i )  shows the results of per fodng 

20 runs of (1.45). The learning parameter used is of the form 7, = (n + l)-0-25. NOW 

fiom (1.50), it can be shown that the associated system of ODES has two locdy  

asymptotically stable equilibria, viz. f (0.70?,O.?O'i), and an unstable equilibrium 

point at (0,O). 

Numerically solving (1.50), using a 4th order Runge-Kutta scheme, and with 

initial conditions randomised in [OJ], for example, we obtain the results displayed 

in Fig 1.1 (right). 



Figure 1.1: Temporal evolution of: le f i  ((wi (n), w z ( n ) ) )  right: {(zl (t) , z2(t))) 

1.6.3 Comrnents on numerics 

It is important to note that the Kushner-Clark theorem is not applicable to this 

problem, since the associated system of ODEs has two competing 1oca.lly asymptot- 

ically stable equiübria. The numerics suggest that the sequence {(wl (n) , w2(n))) 

approaches the two locally asymptotica.lly stable equilibria of the associated sys- 

tem of ODEs (see Fig 1.1 (lefi)). Note that Fig 1.1 (right) depicts {(zl(t), z z ( t ) ) )  

evidently approaching the equilibrium point (0.707, 0.707). 

The fundamental issue arising from this example is encapsulated in the following 

set of questions: How open  does {(wl (n) ,  wa(n))) converge to either of the two f ied 

points? 1s this dependent on initial conditions of the algorithml Given a n  initial 

condition, can we Say with what probability the algorithm will converge t o  either of 

the two fked points? 



These questions articulate and undevin the core theme of this thesis. As pre- 

viously stated, this is very much an open problem in the area of stochastic a p  

proximation. The thesis seeks to qualitatively and quantitatively investigate this 

problem. 

1.7 The neurobiological connection 

The operation of the brain depends on the flow of information through elaborate 

circuits consisting of networks of neurons or nerve ceus. Information is relayed from 

one c d  to the next at specialised points of contact: the synapses. Most neurons 

share certain stnictural features that make it possible to distinguish three regions 

of the cell: the cell body, the detidrites- and the azon. The cell body contains the 

nucleus of the neuron and the biochemical infrastructure for synthesizing enzymes 

and other molecules essential to the life of the cell. The dendrites provide the main 

physical surface on which the neuron receives incoming signals. The axon provides 

the pathway over which signals can travel from the ceU body, for long distances, to 

other parts of the brain and nervous system. Fig 1.2 ( le f t )  depicts the structure of 

a pyramidal cell, one of the most common types of cells occurring in the cerebrd 

cortex. 

Information is relayed from one neuron to the next via a chernical transmitter - 

generated and stored at the synapses. From the dendrites, through the cell body, 

the axon, and right up to the synaptic terminais, information is trnnsmitted in 

the form of electrical signals. The fihng of a neuron, which is the generation 

of nerve impulses, reflects the activation of hundreds of synapses by impinging 
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Figure 1.2: lefl: morphology of a pyramidal ceil right: nonlinear model of a neuron 

neurons. Some synapses are excitatory in that they tend to promote firing, whereas 

others are inhibitory and so are capable of neutralising signals that otherwise would 

excite a neuron to fixe. At asy instant, a neuron has some threshold, which an 

excitation must exceed to initiate an impulse. This? except for the fact and time 

of its occurrence, is deterrnined by the neuron, not by the excitation. Between the 

time of arriva1 of impulses upon a neuron and its own propagated impulse, there is 

a synaptic delay, characteristicdy more than 5 x seconds [IO]. 

1 .?.1 Artificial neural networks 

An artificial neuron is a mathematical model which attempts to reproduce the 

functional characteristics of a biological neuron. An interconnection of these neu- 

rons is termed an artijcial neural network ( A N N )  [12]. It is worth mentioning, 

at the onset, that artificial neurons and their corresponding networks are fur from 

even approximating their biological counterparts. This is not surprising since the 

brain is indeed a highly complicated structure, the mechanics of which is not yet 



M y  understood. At the heart of the current surge in artScid neural networks 

research lies the challenging prospect of mechanising intellectual tasks which pre- 

vious- have beea performed only by humans. Already, some significant progress 

has been made in this clirection. Some of the examples that corne to mind are 

[9] : weather forecas ting, handwri t t  en-character recognition, automated hgerprint 

identification, automated disease diagnosis, speech recognition, image processing, 

security/speaker identification, etc. Many of these taslis involve the ability to clas- 

sif;y or sort data. 

A nonlinear model of a neuron is depicted in Fig 1.2 (right).  Essentially, the 

model consists of a h i t e  set of input signals x = { x ~ ,  ..., x,), a corresponding set 

of weights w = {wki, .. . , wkp), a linear summing junction, a nonlineax activation 

function v, a threshold and an output yk. 

Belon.. we provide clarification of the nomenclature used: 

The linear combiner is an attempt to represent the zntegrating property of 

the brain. The b a i n  routinely receives a myriad of different signals from 

the environment, integrates them, and produces a response which, in turn, 

determines an appropriate course of action to be taken. 

The neuron is assumed to be the kth member of the network under coasid- 

eration. The notation wkj means that the referenced weight links input j to 

neuron k. 

uk is c d e d  the interna1 activity of neuron k. It is the linear combiner output 
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for this particular neuron, viz. 

An activation function, p(.), is a smooth, nonlinear function that constrains 

the amplitude of the output signal to a desired range. The smoothness aspect 

of this function captures the graded response characteristic of the brain. 

-4 threshold, Bk,  has the effect of applying an saine transformation to ue as 

shonm by 

vk = uk - ek , 

where v b  is the activation potential of neuron k. The output of neuron k is 

given by 

When ek < O ,  it is c d e d  a Lias. The net input to y(.) may increase or 

decrease, depending on whether we apply a b i s  or a threshold terrn. 

We Say that a neuron is linear if y is the identity function. In that case, we 

have that yk = vk. 

There is a wide range of possible nonlinear activation functions. One of the 



most commody used ones is the so-called Loyistic fiL~.ction: 

where 2 is the dope of the linear approximation to y(v) at zero, as illustrated 

in Fig 1.3. 

Figure 1.3: The logistic function with a = 1 

It is of interest to note that the activation function used in the first neu- 

ron model, due to McCulloch and Pitts [IO], is a (discontinuous) threshold 

function: 

This choice of 9 fails to represent the graded response aspect of the brain 
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that was mentioned above. They made the assirmption that the brain is 

characterised by a binary input-output response function, which is contrary 

to experience. 

1.7.2 Learning and generalisat ion in ANNs 

One of the fundamental characteristics of the human brain is its ability to learn fiom. 

the environment, and to generalise. Weedless to Say: this capability is essentid for 

the survival of the human species. The origin of this adaptive behaviour in biological 

systems is the subject of Ashby's book [Il]. The tasho of replicating this property 

in ANNs is currently a subject of intense research. 

Learning in ANNs is an iterative procedure (algorithm) b y which the free param- 

eters of a network are adapted through a contiming process of stimulation by  the 

envirozrnent in whzch the network is enbedded [12]. 

There is a whole wide range of different learning schemes, each being determined 

by the marner in which the free parameters are adapted. Normally, the parameters 

are altered so as to attain a desired design goal such as the minimisation of an error 

function [13]. A typical learning d e  is of the form 

where n denotes the iteration number, and Awji(n) is the weight update at iteration 

n. Essentidy, the weight update determines the type of learning d e .  A realistic 

learning d e  has to converge, in some sense, as n + oo. This means that the weight 

vector should tend to a finite limiting value as n + m. 



CHAPTER 1. PRELIMIN-4RIES -4ND MO T n  XTION 32 

Learning (also callecl training) involves repeatedy presenting the network with 

a h i t e  set of t ~ a i n h z g  examples and updating the weights until stabilisation is 

achieved. The weights are updated according to some rule, preferably one that 

complies nith the desired design objectives. Often. three different versions of the 

same learning d e  have been given: the on-line version where the modification is 

calcdated after the presentation of each input signal (pattern), the of-line version 

where the previous modifications are averaged oves the cycle of all patterns, and 

the contznuovs version where the discrete changes induced by the off-line algorithm 

are approximated continuously by a differenti al equation governing the evolution 

of the weights in time [13]. In the spirit of research in this field, the updating 

rule should make neurobiological sense. The concept of generalisation refers to the 

network producing reasonable outputs for inputs not encountered during training. 

Of course, these post-training inputs (validation set) have to be from the same 

'family' as the training examples. 

The earliest ' demonstration that neural networks could ac tudy  be trained 

to perform certain tasks which, hitherto, could only be performed by humans is 

due to Rosenblatt [14]. He coined the term perceptron for the simplest form of a 

neural network used to classify linearly separable patterns. These are patterns that 

lie on opposite sides of a hyperplane. A more technical definition is given below. 

Essentidy, a perceptron consists of a single McCulloch-Pitts neuron as described 

in Section 1.6.1. Consider a set of incoming signals, {x), divided into two disjoint 

classes Ci and C2, Say. A ppeiceptron will find a separating hyperplane g(x) = wTx, 

lThe first proof of the so-called Perceptron Convergence Theorem is due to Agrnon [16]. 
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such that 

g(x) > O if x E C i ,  and 

g(x) 5 O if x E C2. 

The vector w denotes the free parameters of the network. We Say that the two 

classes of patterns are linearly seporable if there exists a w such that the two in- 

equalities above are satidied. The algonthm developed by Rosenblatt recursively 

determines the vector w for which the inequalities are tme. He established the 

convergence, in a finite number of steps, of an error-correction procedure for an 

elementary perceptron to a classification or dichotomy of the input signds, p r e  

viding such a dichotomy exis ts. Rosenblatt 's now famous Perceptron Convergence 

Theorem is stated below [15]. 

Theorem 1.3 Consider a set of vectors, XI, - - , x ~ ,  in some jùed finite dimen- 

sional Euclidean space, that  are assurned to satisfy the single hypothesis that there 

exists a vector w, such that  

T xi W. > 0 > O  , i =  l , . . - , N .  

Then consider a n  infinite sequence 

Xjl,  Xi2 ,  X i3 ,  - , (1 5 iit 5 N for every k )  , 

such that each vector, xi, - - - , XN, occurs infinitely often. Now construct a sequence 
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of vertors. wo,  wl ,  - - , wn;r. - - - . recursively as follows: 

and 

Then, the seqzcence {w,) is convergent in the sense that there exists an index m < 

CQ such that 

It is worth mentioning that there are numerous variants of this theorem in the 

literature (see [12], [l?], and references therein). The one stated above is enough 

t O illus t rate convergence in one dimension. The Per cep tron Convergence Theorem 

single-handedly revolutionised research in the discipline of artificial neural networks. 

Most neural learning algorithms are generdly (systems of) difference equations 

of the form (1. l), and whose long term behaviour may be investigated using stochas- 

tic approximation techniques. Needless to Say, understanding the asymp totics of 

these algorit hms is essential in designing effective training strategies. 



Chapter 2 

Dynamics of Ljung's Automatic 

Classifier 

2.1 Introduction 

The purpose of this chapter is twefold. First, we examine the system of ODEs 

associated with Ljung's automatic classifier [2]. This analysis is performed in the 

continuous time phase space. In the second half of the chapter, we focus on the 

discrete phase space. The connection between the dynamics on these two phase 

spaces is understood, via the celebrated Kushner-Clark theorem [Il, only if the 

associated system of ODEs has a single locdy asymptotically stable equiiibrium. 

As previously stated, we are interested in extending the Kushner-Clark theorem to 

cover the case when the associated system of ODEs has multiple locally asymptot- 

ically stable equilibria. In other words, we seek to resolve the question: t o  which 

o n e  of these stable equi l ibea is the dismete  systern most likely t o  converge? To 
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taclde this problem, both analy-tical and numerical tediniques wiU be adopted. We 

choose to study Ljung's classification algorithm because of its relative sirnplicity, 

viz. it classifies a one-dimensional set of data, which is the most basic classification 

problem, 

Ljung [2] considered an automatic classifier which receives scalar valued signals 

{ ~ ( t ) )  that may belong to two a priori unknovm classes -1 and B, with probabilities 

X and 1 - A respectively. and where X E [O' 11 is a free parameter. The signals axe 

distributed according to a specified rde, viz. the doubl-triangular probabilit?? 

density hnction ( p d j )  shown in Fig. 2.1 and algebraicdy d e h e d  by 

Figure 2.1: pdf of the random signals to be classified 

The classifier is tasked with determining a number c ( t )  such that p(t)  is classified 
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as A if ~ ( t )  < c ( t )  and as B othemise. The n d e r  c ( t )  is given by 

where 

( X A ( ~  - 1) , otherwise 

The iterates {xB (t) ) are defined in a similor manner. The n are decreasing-to- 

zero positive real numbers, such that Cg, y, = m. It is assumed that { ~ ( t ) }  is a 

sequence of independent identically-distributed ( i é -d . )  random variables. Further- 

more, from Fig. 2.1, it is desirable that c ( t )  + Q as t -i oo, where E (-1,1). 

This ensures that no sarnples are misclassified. 

Ljung's contribution to this problem is outlined below. First, he derived a 

system of ODES associated with the discrete system, port of which is given in (2.3). 

Then he demonstrateci, by numerically integrating the ODE vector field, that the 

number of stable equilibria increases fkom one to two, as X is increased from 0.5 

to 0.99. When X = 0.5, the system of ODES has one globally asymptotically 

stable equilibrium at ( x ;  , x;) = (-2,2). Following the Kushner-Clark t heorem 

[l], (xa( t ) ,  x B ( t ) )  + (-2,2) with probability 1 (wpl for short) as t -+ m, giving 

the correct classification rule c* = O. When X = 0.99, the system of ODES has 

two locally asymptotically stable equilibria at (x;, 3;) = (-2,2) and (x;-, 2;-) = 

(-2.258, -1.372). In this case, the Kushner-Clark theorem is not applicable, a d  

the problem of determining the iong-term behaviour of (xa ( t ) ,  x B ( t ) ) ,  and hence 
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c ( t ) ,  is almost intractable. In vie=- of this difEculty, Ljung performed numerical 

simulations of the discrete system- In 257 of these simulations, the classifier c ( t )  

converged to the undesired value c" = -1.815 only once, while converging to the 

desired value cg = O the rest of the time. VTThen c ( t )  converges to the desired d u e ,  

a l l  the samples are correctly classified, and mhen it converges to the undesired value, 

33% of the samples are misclassified. It is interesting to ask how often convergence 

to c" happens. Of course, Ljung had only one 'bad' run in 257 simulations. But, 

what is the meaning of his results, especially with regard to the convergence of 

( x A ( t  ), x B ( t ) ) ?  Can we conclude, fiom his experirnent, that the discrete system 

converges with probabilzty one to (-2,2)? Why, or why not? These questions set 

the stage for the spirit of this chapter. 

W e  mention that Ljung furnishes neither the rt nor the initial condition 

(xa(0), xB (0)) that he uses in his simulations leading to his Fig 4. Furthermore, it is 

important to note that he only performs 1000 iterations. It is quite feasible that his 

Fig 4 might change if more iterations are carried out. It is also interesting to note 

that we «failedn to reproduce his Fig 4. Instead, we only managed to get Fig 2.2 

(left). The leaniing parameter used is y, = (n+10)-", with a = 0.15 and the initial 

condition used is (xA (O), ~ ~ ( 0 ) )  = (-0.1,O.l)- 240 nins were performed. Similar 

results were obtained for other choices of a and 7,. A different sequence (9,) 

was used for each simulation. Contrary to Ljung's results, we do not obtain the 

"misbehavingn trajectory, Le. we do not get the classification rule cm* = -1.815. For 

the case X = 0.5, we obtained Fig 2.2 (right). Note that the classifier is converging 

to c* = O, as expected. 



Figure 2.2: time histories of c(n) ,  with: le& X = 0.99 right: X = 0.5. In both Figs., 
note that only one typical nui is shown. 

Another interesting question is: What is happening t o  the associated system 

of ODEs, as X is increased from 0.5 to 0.997 Ljung did not adequately address 

this problem. Intuitively, the drop in classifier performance when c( t )  -t -1.815 

suggests some lcind of bifurcation phenornenon. In this chapter, we derive and 

analyse the associated system of ODEs, whidi is parameterised by A. Numerical 

experiments are conducted to help explain how and why the classifier performance 

drops as X is increased from 0.5 to 0.99. 

By construction, the iterates are confined to the region : 3 > x~ 2 sa > 

-3. W-e will prove this in Section 2.4. The equilibria of the associated system of 

ODEs are contained in D. We are interested in tracking the temporal evolution 

of ( x A  ( t )  , zB( t ) )  inside D, with a view to delineating probabilistic "domains of 

attraction" of the two equilibria of the system of ODEs, when A = 0.99. In other 

words, we are trying to establish a prediction rule that will tell us which set of 

initial points (xa(0), ~ ~ ( 0 ) )  E D will lead to ( x A ( t ) ,  x B ( t ) )  converging to one or the 

other of the two equilibria. To this end, both ûnalytical and numerical techniques 
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are employed. Finall. we also study pathological sequences of { y ( t ) }  that steer 

( x A ( t ) .  x ~ ( t ) )  an-ay from equilibria of the associated system of ODEs, in the region 
- 
D* 

2.2 Computation of the associated system of ODEs 

The sought-after system of ODEs is of the form 

where f A  and fB are dehed by 

and 

and where E, denotes the statistical expectation with respect to 9. 



Then, using (2-1)' (2.5), and (2.6), w e  obtain the ODES 

and 

From (2.7) and (2.8), we note that fa and fs are piecewise-defined continuous func- 



tions. The significance of this fact wiU be apparent in our discussion on existence 

and uniqiieness of solutions of the associated system of ODEs. in Section 2.3. Xow, 

for -1 5 c c 1' equations (2.7) and (2.8) yield the system of ODES 

Solving (2.9) for equilibria gives 

The Jacobian n u of (2.9), evaluated at  the point ( x i ,  x;), is 

n-hich implies that (x;, x;) is as~mptotically stable since both eigenvdues of J(x;, xi) 

are strictly negative. 

2.3 Stabilityand bifurcationanalysisof the asso- 

ciated system of ODEs 

At the onset, we stress that the analysis in this section is valid for any (piecewise- 

defined) continuous compactly-support ed probability density function, not just fA. 
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To understand (2.5) and (2.6), we consider the family of ODEs given by 

where Ir= f x (p )dp  = 1, and c dg 0.5(zA + z B )  Recall, from Section 2.2. that 

fA and fB are piecewise-defined continuous functions. Furthemore, via the Fun- 

damental Theorem of Calculus, we have that both f'(xa, x ~ ,  A )  and fB ( xA ,  TB, A) 

are differentiable with respect to X A  and x ~ ,  viz. 

Note that the above partial derivatives are all piecewise-dehed continuous func- 

tions. Thus, the f d y o f  ODEs givenin (2.11), with theinitial point (xn(0),x~(O)) 

specified, has a unique solution existing on some region J c IR [25] - In addition, 

since both fn(xn, XB, A)  and fB(xa, XB, A)  are bounded, it follows that we have 

global existence of solutions [25]. 
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The family of ODES in (2.11 ) has the equilibrium point (s) implicitly given by 

Linearising (2.11) about (al, f 2)  yields the Jacobian matrix 

where 
d e j  1 G = -(f 4 - 51)fA(E) 2 O , 

and Q is as defined in (2.13) and such that O < Q < 1. Observe that, since (2.14) 

is symmetric, it follows that both its eigendues are real. This implies that ( f 1, f 2 )  

c m  be a saddle point, a node, but not a spiral or centre. From (2.14), we have that 

and 

det J(zl, 5,) = Q(1- Q) - G - 



The eigenvalues of (2.14) are given by 

d . j  fr f Jfr2  -4 x det 
P -  2 

Thus, (al, z2) is as_vmptotically stable if and only if 

tr  J(11,Z2) < O and det J(al, 22) > O , 

implying that 
1 

G < - and Q(1- Q) > 
2 

- Q) 5 f (see Fig 2.3). 

Figure 2.3: Q(l - Q) in the interval [O, 11. 
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This implies that (FI. i2) is asgnptotically stable if and only if G < Q ( l  - Q), 

\&ch gives the necess- condition 

If det J ( z , ,  2,)  < O, then (Z1, Z2) is a saddle point. Thus, (51, 52) is a saddle point 

whenever Q(l - Q) < G. If det J(fl,fz) > O and tr J ( Z l .  F2) > O? then we have 

that Q(l - Q) > G and G > f ,  which is impossible. Thus, (Z1.Z2) can not be an 

unstable node. 

In the case det J(Zl, f 2) < 0, the stable and unstable eigenspaces are given by 

and 

respect ively, where 

Remark 2.1 No te  that Q(1- Q )  = O i f Q  = O or Q = 1 , which, for jA given by 

(2.1): corresponds t o  ë = -3 or E = 3 , respectively. The equilibria in these cases 

are, respectively, (zl, f ,) = (b, 2(1-2X)) and (21, Z2) = (2(1-2A), kl), where the 
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values of b. kl E IR are forced &y 0.5(F1 + F2) = E .  The aboue ODE equilibn'a a+e 

both neutrally stable. Note  that these two cases ( i - e .  Q = O and Q = 1) correspond 

to a situation when the  classzfier faik  t o  distinguish the t w o  clztsters A and B. 

Recall that the Iiushner-Clark theorem (11 shows that. under some conditions, if the 

associated system of ODEs possesses only one locally asymp totically stable equilib- 

rium. then the discrete system will converge a p l  to that equilibrium. However, the 

theorem does not tell us anything about what happens if the system of ODEs has 

multiple locally asymptotically stable equilibria. Furthemore, recall that Ljung 

[2] showed that if X is increased from 0.5 to 0.99, the number of stable equilibria 

appears to increase from one to two. Below, we determine how the number and 

stability of the equilibria varÿ with X and briefly discuss their basins of attractiori. 

To investigate the behaviour of the classifier as X is varied, we proceed as follows. 

From (2.12), we have that 

Define 

where P(-) and Q(-) are d&ed in (2.13). The equilibria of (2.1 1) may be computed 



by finding the zeros E of the numerator of (2.16) 

and then applying (2.12) to obtain 

Some computer-generated plots of FA(c) versus c. for various parameter \dues 

are shown in Figs 2.42.5 ( le f t ) .  Note that the roots of FA(c) are the C d u e s  

Figure 2.4: FA(c) with lefi: X = 0.5, and right: X = 0.981 

The plots show that the qualitative behaviour of the zeros of FA(c) is dependent 

on the parameter A. When X = 0.5, Fx(c) has only one zero, at fi = O. This 





ces- that (a,,, El*) and (IJi &) are locally asymptoticdy stable, with eigendues 

{-0.5618. -0.0802) and (-0.9900, -0.0100) respectivelc \\*hile (f *,, f 2 2 )  is a sad- 

dle point. 

W e  noir turn our attention to the problem of delineating the boundary between 

the basins of attraction of (Zl1, z12) and (Z31, f 32), inside the region D. Note that 

this boundar) is a segment of the stable eigenspace of (Z21r Z22). Fmm (2.14). we 

have that 
-0-886 0.066 

J ( ~ z I -  522)  = 
0.066 0.018 

with eigenvalues -O. 8910 and 0 .O224. Corresponding eigenvectors are 

vl = (1 - 0.0721~ , and 

v, = [l 1 3 . ~ 3 4 1 ~  

respectively. Therefore, the angles (measured relative to the xl-axis) associated 

with VI and vz are al = -1.50 rad and a 2  = 0.07 rad. in that order. Thus, the 

stable eigenspace is given by 

while the unstable eigenspace is 



The equation of the stable eigenspace of the saddle point is given by 

To reconstruct the stable eigenspace, we pi& an arbitrary initial point in D, as 

close as possible to (f 21, 2 2 2 )  and lying on the line given by (2.20). Then, integrate, 

backavards in time, the corresponding syst em of O D Es. 

Kote that, in the invariant region D, the saddle point (5 21, 52,) lies in the 

i n t e r d  -2 < c < -1. Thus, to approximate the stable eigenspace, we need only 

to consider the following system of ODES, which is obtained fiom (2.7) and (2.8). 

n-here c dg 0.5 ( rA  + zB)- hion-. pidi two initial points (-2.036, -1.0748) and 

(-2.030. -1.0750), lying to the left and to the right of (f 21: f 22) on the line given 

by (2.20): respectively. Using these initial points, find a particular solution of (2.21) 

for t < O. This is then plotted in the (xA, x ~ )  phase space. The resdting plot gives 

the boundary between the domains of attraction of (ZII ,  Z12) and (Z3,, Z32), which 

is depicted in Fig 2.6. The latter indicates that (if31, Zs2) has a relatively larger 

domain of attraction than (all, 212) .  We note that the boundary shown in Fig 2.6 

is valid only inside the triangular region D. The part of this boundary lying outside 

of D is a numerical artefact, resulting fiom using the MAPLE view plot f ' c t i o n .  

Essentiallx one can only view objects inside a box, [-3, 312 in our case. MAPLE is 



objects inside a triangular region. for example- 

Figure 2.6: The domains of attraction of (211,212) = (-2.258, -1.372) and 
(Z31. I J Z )  = (-2,2), inside the invariant region D in ODE space 

Recall that, by the Kushner-Clark theorem, if the associated system of ODEs 

has a single locally asymptotically stable equilibrium zo with domain of attraction 

D-4(zo), and for which there exists a compact set -4 c DA(zo)  such that x, E -4 

infinitely often, then wpl x, + ro as n + W. In the m e n t  problem ( A  = 0.99), 

the associated system of ODEs has two locally asymptotically stable equilibria, and 

a saddle point, as shown previously. The issue at hand is the following: to which 

one of these stable equilibria is { ( x n ( n ) , x g ( n ) ) )  likely - to  converge, as n -+ oo, 
and how will this be affected by the choice of initial conditions? Of course' the 

same question may be asked if the associated system of ODEs possesses more than 

two stable equilibria. To rephrase the problem, we se& to develop a feeling for 



the probability that the discrete system will converge to the undesired classifier 

c' = -1.815. given that we choose (according to some d e )  Our initial conditions 

inside D- 

It is interesting to note that? in Fig 4 of Ljung's [2] paper, even though his 

simulations always start in the ODE basin of attraction of ( -2,2) (i.e. c(0) = O ) ,  

the presence of noise causes the discrete system to go to the other equilibrium, i-e. 

(-2.258, - 1.372). Findy, having delineated the boundary between the equilibria 

( Z I 1 , E l 2 )  and I Z 2 )  in the ODE phase space, we non- tum our attention to 

investigating how dynamics in this (continuous) space relate to those in the discret e 

space. To this end, we begin by constructing a probabilistic vector field for the 

discrete algorithm. 

2.4 Construction and analysis of a probabilistic 

vector field for the discrete algorit hm 

We begin by recalling that, according to Ljung's classification scheme, 9 E A iff 

9 _< c and 9 E B iff q > c, where e dg 0.5(zA + z B )  Furthemore, za and xg are 

updated depending on whether 9 is classified as belonging to A or B. That is 

Note that only one of either xa or XB can be updated at any particular time. 
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xon-7 from the defbition of c, u-e have that x;i < c < XB . Therefore 

Following (2.22) and (2.23) above, w e  see that xa and XB may be updated 

positively or negatively. For example, X A  is updated positively if y c and p - X A  > 

0, and negatively if 9 5 c and p - ZA < O. Based on this obsemation, we s h d  

construct a probabilistic vector field of the discrete algorithm. We envisage that 

this vector field will shed some light on the difficult problem of determinhg the 

long term behaviour of the algorithm in the case when the associated system of 

ODEs possesses multiple asymptotically stable equilibria. Consider Ljung's doubly- 

trimgular pdf with X = 0.99. In this case. the associated system of ODEs has two 

locally aqmptotically stable equilibria, namely: (-2,2) and (-2.258, -1.372), and 

a saddle point at (-2.033, -1.075). To construct the associated vector field, we 

proceed as follows. Suppose that -2 < X A  < -1 and x s  = O. Then we have that 

-1 < c < -0.5- Fig 2.7 ( l e f t )  gives a summary of this scenario. 

From Fig 2.7 (left), if y < X A ,  the shaded area to the left of X A  represents 

the probability that X A  is decreased. The unshaded area lying between xa and -1 

gives the probability that xa is increased. Note that for y > X A ,  it rnay happen 

that 1 < 9 < 3. This yields p > XE, = O > c, implying that XB would be 

updated positively. Similarly, we mas consider the following cases, for example: 

-1 < XA < O and x~ = 0, -3 < ta < -2 and XB = 0, O < XB < 1 and 

X A  = 0, 1 < XB < 2 and X A  = 0, 2 < X B  < 3 and x~ = O, = 3 and +A t O, 
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Figure 2.1: left: Computing the probabilities that X A  and x~ are decreased or 
increased, for the case -2 < X A  < - 1 and xg = O right: Sketch of the probabilistic 
discrete vector field m-ith X = 0.99. Arrows indicate possible jump directions. The 
length of each arrow indicates the probability of going in a particular direction. 

XB = 3 and X A  = -3, T A  = -3 and XB = 0, X A  = -2 and XB = 2, ZA = -2.258 

and xs = -1.372. Based on this a n a s i s ,  we obtain the probabilistic vector field 

sketch shown in Fig 2.7 (right). It is important to note that this is a tirne- and 

place-d&endent random vector field with dissipation, such that, conditioned on the 

immediately previous position, the current position is independent of all earlier 

positions. In addition, the magnitude of jumps in this random field dhinishes 

with time. However, this time dependence of jumps is not shown in Fig 2.7 (right). 

Instead, the a.rrows in the above figure illustrate only the probabilities of going in 

an' one of the four directions at a given point in the &screte space. 

Furthermore, Fig 2.7 (right) shows that starting on the ODE'S stable equilibria 



does not guarantee that the algorithm d . I  remain at these equilibria for al1 time. 

There is a non-zero probability that ( x A ( t ) ,  x s ( t ) )  will be knocked off the equilibria. 

even on the first iteration of the algorithm. The arrows and their magnitudes 

(not drawn to scale here) represent the probability that the algorithm will go in a 

particulai. direction at an). point in D. Also included in the diagram are various c 

values. Note that, because xs may be decreased for -3 < xn < -2, any initial point 

of the algorithm near (-2,2) malp lead to c ( t )  migrating towards the neighbourhood 

of (-2.258, -1.372). This obsenation leads us to the conclusion rhat the point 

(-2,2) is not an asymptotically stable equilibrium of the algorithm. In fact. it 

is not even an equilibrium. Note also that there is no positively invariant region 

contained inside the discrete region D. The idea of domain of attraction of an 

equilibrium (of the algorithm) is meaningless in this problem, chiefly as a result of 

the random nature of the input signals 

The foregoing discussion leads to the following question: In d i s m t e  space, is 
- 
D positively invariant? To resolve this question, Ive need to determine whether the 

statement -3 < zr(t)  < c ( t )  < z B ( t )  < 3 is true for all t E Zf. First, recall that 

c ( t )  - 0.5 x (zA(t) + zB( t ) ) -  Then, we proceed as follows: %y construction, we 

have that -3 < xA(l)  < c(1) < r s ( l )  < 3. Now suppose that the statement is true 

for t = k, viz. -3 < z A ( k )  c c ( k )  < x g ( k )  < 3, where k E Z+. Consider the case 

x B ( t )  < ~ ( t )  < 3, and suppose that y(k) - x B ( k )  = ~ ( k )  > 0, where e ( k )  is a small 

positive jump. We conclude that x s ( k )  is increased (Le. x B ( k )  5 x g ( k  + l)), while 

x A ( k )  remains intact. In other words. 



and 

This implies that -3 < xa(k  + 1 )  < c(k + 1) < xs(k + 1) < 3. That is, the 

statement is true for t = k + 1. 
Next, consider the case c ( t )  < p(t) < x g ( t ) .  Then, if we suppose that y ( k )  - 

x B ( k )  = €(A-) < O, where ~ ( k )  is a smaU negative jump, we have that x g ( k )  is 

decreased while x A ( k )  is unaltered. That is: 

Once again, this yields -3 < xa(k + 1) = x ~ ( k )  c c(k + 1) < xB(k + 1) < 3, 

where the rightmost inequality holds because x ~ ( k )  < 3 is decreased. The rest of 

the proof proceeds in exactly the same way as in the previous case. 



The remaining cases. n a m e  x a ( t )  < y ( t )  < c(f) and -3 c y ( t )  < xe4( t ) .  may 

be treated in a similar wa): Therefore, by mathemacical induction. the statement 

-3 < x A ( t )  < c ( t )  < rs(f) < 3 is true for t = 1, t = 2, ...., viz. it is tme for d 

t E Z+. We conclude that D is positively invariant in discrete space. 

As mentioned before, each point in discrete space is characterised bp a set 

of direction vectors, whose lengths give the probability of being 'nudged' in that 

direction. Also, the sum of al1 these lengths, at the point under consideration, is 

always unicc On the other hand, the ODE vector field consists of single an:oWs at 

each point on the continuous time phase space. These arrows represent the average 

paths of the discrete (random) vector field, since the associated system of ODEs 

(2.11) is constructed by averaging (Le. taking the expected values with respect to 

y) the random t e m s  y - X A  and y - XB. Fig 2.8 shows the expected value vector 

field and the direction field of the associated system of ODEs. These plots are only 

valid inside B. We novv give a brief outline of how these two vector fields were 

constructed. 

Recall that, by construction, -3 < zn( i )  < c ( t )  < x s ( t )  < 3 for all t E Z+. 

In the expected value vector field, each point (xa, xB) in the discrete space D is 
characterised by four arrows pointing up, down, right and left, giving the expected 

value of a jump in that direction. Let the expected value of a jump to the right of 

xa be denoted by J:*, and that to its left by J;*. Similarly, let the expected value 

of a jump upwards of X B  be denoted by J,IB, and that in the downward direction 



by GB. Defining c by c d ~ f  (sa + zg ) , we have the following 

and 

Finally, setting X = 0.99 in the above fomulae and using the MAPLE fieldplot 

routine, we plot and display J,f*, J;*, JZ*, and J i B  in a single diagram, viz. Fig. 

2 .S ( right) . The ODE direction field, as dispIayed in Fig. 2.8 ( lef t) ,  was constructed 

in the following way. D e h e  the vector field of the system of ODEs in (2.11) by 

Shen put the above system of equations into the MAPLE dfieldplot routine, with 

X = 0.99 and for -3 < + A  < 3, -3 < tg < 3. AS mentioned previously, the arrows 

in the direction field of the ODEs represent the average paths of the discrete vector 

field. 

The existence of the two l o c d y  asqmptotically stable equilibria of (2.11), viz. 

(-2,2) and (-2.258, -1.372), is evident in both Figs. 2.8 (Ieft)  and (right). In 



Ffg. 2.8 (*hi). there is some indication that the scale of arrows is smallest around 

these stable points. IR other words, the expected d u e s  of the various jumps are 

minimal (but still non-zero) in the regions immediately sutrounding (-2,2) and 

(-2.258, -1.372). This is true for Fig 2.8 (Ieft)  as well. Note that  both Figs. 2.6 

- -- *&.de - . LI- - ai- - -y-- . *- 

Figure 2.8: left: Direction field for the  ODE associated with Ljung's algorithm with 
X = 0.99 right: Expected value vector field (discrete) for Ljung's algorithm with 
X = 0.99. Both figures reveal the existence of two stable points a t  (-2,2) and 
(-2.258, -1.372). 

In the next section, we explore the possibility of characterising and delineating 

probabilistic "domains of attraction" of (-2,2) and (-2.268 ,-1.372) inside D. The 

term "domain of attractionn is used loosely in this context, for reasons cited previ- 

ously. 



Figure 2.9: "Domain of attraction" of (-2,2) in discrete space with X = 0.99 and 
yn = as discussed in the text 

2.5 A crude experiment to map probabilistic "do- 

mains of attraction" for the case X = 0.99 

The motivation for this numerical exploration arises fkom the question of whether 

the choice and location of initial conditions inside D has any influence on the 

subsequent convergence of the discrete algorithm. For X = 0.99, we recall that the 

associated system of ODES possesses two locdy asymptotically stable equilibria. 

Naturally, it is interesting to ask which one of these two points the algorithm is 

most likely to converge to, with initial conditions picked inside D. 

In what follows, a brief descriptive outline of the experiment is given. The 

region D is evenly discretised into a. 100 x 100 grid. with each grid point then heinp 

used to initialise the algorithm. Subsequently, we run the algorithm N times and 

compute (xa(N), x B ( l V ) )  each time. Each time, we compute the distance between 



( ( ) ,  ( ) )  d (-2.2) If this distance is less than some specified 6 > O. we 

record the grid point used to initialise the algorirlun. Finall- w e  display all grid 

points that lead to convergence of the algorithm to mthin a distance of 6. 

A typical result of this experiment is displayed in Fig 2.9. The clear region de- 

notes those grid points that, as initial conditions, yield sequences {(xa(n), xB (n))) 

that converge to (-2,2) to within a distance of 6 = 0.4 in AT = 10000 iterations. 

The dots denote those points that fail this test. We note that rhere is a -fuzzyr 

boundary between the two classes of grid points at roughly xs = 1. It is also n-orth 

noting that there are some points, near x s  = 3, that do not converge to (-2,2) 

to within the stipulated distance. It is suspected that these will disappear as the 

number of iterations is increased. Fig 2.9 is a rough sketch of the probabilistic 

"domain of attractionn of the point (-2: 2). Note that ure can not conclude that 

those points m-hich did not converge to within the stipulated distance of (-2,2) 

converge to (-2.258, -1.3'72). W e  are using the term "domain of attractionn with 

much trepidation, since it does not carry the same conventional meaning as used 

in the study of deterministic dynamical systems. 

It is interesting to  note that it is possible that the algorithm may freeze at some 

pseudo-equilibrium point. This all depends on the choice of the leming parameter, 

y,. This problem is explained in the next section. 



2.6 Explaining the problem of freezing of an algo- 

rithm at a pseudo-equilibrium point 

Recall that the learning parameter y, obeys the constraints: y, + O as n + oot and 

rn = a, [il. Clearly, there is a whole range of 7,'s satisfjring these constraints. 

A central problem in the convergence of neural learning algori t hms is the selection of 

an appropriate learning parameter, y,. It t m s  out that if y, -+ O too quickly. then 

there Mses a danger of the algorithm getting frozen at some pseudo-equilibrium 

point, as n + m. The other key problem concems numerical round-off errors. To 

avoid these problems, care must be taken choosing a learning parameter that is 

decaying neither too pickly nor too slowly. Kote that if the learning parameter 

converges too slowly, then the algorithm converges slowly as n + m. resulting in 

the accumulation of numericd round-off errors over time. In theory. the choice 

of y,, with the above problems in mind, should ensure that the algorithm is not 

trapped at pseudo-equilibria and that round-off errors are minimal. However, in 

practice, stnbring this balance is a rernarkably dificult problem. 

To motivate and demonstrate the problem of freezing of an algorithm at a 

pseudo-equilibrium point, we consider the non-autonomous deterministic system 

where 7, is the usual learning paameter. Note that x' = O appears to be a stable 

fxed point of this system, since 1 f ' (0 ,  n) I= 1 - 7, < 1 for all n. The iterates x. 



n-l 

Dependiug on how quickly T~ goes to zero. two cases arise. These are cliscussed 

Case 1 

If yk -+ O slowly enough (e.g. 71- = &). then 71- + m: as n -+ oa Thus. we 

1 
have that z, + O as n + m. This behaviour may be observed for any yk = -, 

' Then from above. where p E [O. 11. To illustrate this case. assume that yk = K.  

we have that 

u-hich shows that x, approaches O relatively sloxvly (not exponentidy). 

Case 2 



fiozen at a pseudeequilibrium point. This occurs for any yc = - with p > 1. 

To reinforce the mea,ning of the phenornenon of fieezing? consider the continuous 

time ODE 

where a (t ) is a real, time-varying, and decreasing-t o-zero parameter that is a n a b  

gous to y, in the discrete domain. The point x' = O is an equilibnum of (2.24). 

Then, the issue is the following: Is it feasible that i f a ( t )  -i O fast enough, then x ( t )  

does not approach O as t -t co ? The mswer to this is YES, as the enamples below 

Example 1 

Suppose that a ( t )  = -k, xhere k is a positive real constant. Then 

Suppose that a ( t )  = -1. Then we have that 

Example 3 

Suppose a ( t )  = -B. Then we get 



Remark 2.2 In ezample 3. we have ezlribited an a ( t )  such that x ( t )  does not 

approach O as t + x .  Instead. i72 thzs example. r ( t )  bconverges' t o  a pseudo- 

1 equilibrium point of the ODE. A szmilur situation w ~ v l d  occur for any u ( t ) = - - tp 

wîth p > 1. Finally. we remark that ezample 3 highlights the szgnificance of judi- 

ciously choosing a( t ) .  and hence t h e  learnzng parameter  in the disc~ete domain. so 

that the solution of the ODE (algorithm) converges to a t m e  equilibrivm point. 

2.7 Evolution of Dirac probability distributions 

under Ljung's algorithm, with a doubly tri- 

angular pdf for the input signals 

In this section. we perform a numerical study to determine how an initial condition 

with unit probabiliq temporally evolves, using Ljung's automatic classifier. Recall 

that our phase space is the upper triangdar region D : -3 5 r~ 5 x s  5 3- The 

algorithm employed t o perform t his investigation is outlined belom-. 

Divide [-3, 312-into a grid of npts x npts cells, m-here typically, npts = 100. 

Each cell is of size del = & and has a midpoint (z -~ .  x B )  which is considered 

to hold the m a s  of the cell. Phase space is the upper triangular region D. 

Initially, assign unit mass to a point ( x A ( 0 ) ,  x B ( 0 ) ) ,  and a mass of zero to the 

rest of the points. Store this "information7 in a matrix P. 

Determine n-here the point (xa. xs) could go aiter a single iteration as follows. 

Note that one m u t  h o w  the current value of 7,, the training parameter. 



Where (rAr TB) goes depends upon the (3 d u e  that is picked (according to 

the doubl-triangular pdf). Since either z-4 or xs c m  be &anged, one must 

examine aJ grid cells that lie in the same horizontal and vertical lines as 

( X A ,  XB). 

r Suppose that we consider X A  as getting updated. Pid; a grid cell and deter- 

mine its left and right endpoints, say XI, 2 2 .  The following issue aises: F o r  

what values of does xa get mapped to xi, xz? Solve for these y values. and 

denote them by pl, y2 respectively Note that one must check the feasibility 

of these y~ values. as a result of the 'geometry' of the doubly-triangular pdf. 

The 9 values are computed as follows: 

tvhich yields 

Similady, we get 

Then, the probability of choosing this range of 9 values is given by 

where fx is Ljung's doubly-triangular pdf. As mentioned above, it is crucial 

to note that the values and ~2 given by (2.28) and (2.29) may not be 



feasible. In otlier rvords, the-  ma' not lie in the range [-3.31 nor ma? they 

lie in the range [-3. c] responsible for updaring r~ . This rnust be clieckecl in 

each case. and appropriately remedied. Also. one must check that the total 

sum of the probabilities of tramferring to the various horizontal and vertical 

a Store the updated mass in a matris PP. ahich is initialised with zero entries. 

Iterate PP according to 

where i ' j  are the indices of the point being mapped to and k, 1 are the indices 

of the point being mapped from. 

Set P[i, j ]  = PP[i,  j ] ,  and repeat the computations, recursivelv. 

Some plots resulting from simulations of the above algorithm are shown in Figs. 

2.10-2.13. Fig 2.10 (Zeft) is a Bdimensional "impulse' plot showing all those grid 

points (ra,xs) E D at which the mass is greater than some arbitrary threshold, 
- 
t = 0.001 in this case, after 1000 iterations of the algorithm, with the unit mass 

initialised at ( O 1  O), and X = 0.5. We note that the separation of the mass "humps" 

is a numerical artefact, dependent on the value of the keshold t > O. The srnider 

the threshold. the bigger the separation of the "hurnps" , and vice-versa. The height 

of each 'impulse" at each grid point gives the mass at that point. In theory, aftes 

N iterations of the algorithm, the total sum of masses at a l l  the grid points in 

phase space D çhould be unity. In practice. however. because of the thresholding 



mentioned above. this sum will only be approsimately unity. 

In Fig 2.10 (left), it is dear that the entire mass migrates ton-ards (-2.2). 

This behaviour is observed no matter where the algorithm is initialised inside 73. 

Recall that, for X = 0.5, the associated system of ODES has exactly one globdy 

asymptotically stable equilibrium at (-2,2). Fig 2.10 (right) depicts ail those grid 

points (ZA, xB) at which the mass is greater than the threshold T = 0.001 after 

1000 iterations of the algorithm, with the unit mass initialised at (0.0), and for 

X = 0.99 (essentially, this captures the results of Ljung's simulations in Fig 4 of 

his paper [2]). In this case, the associated system of ODEs possesses two locally 

asymptotically stable equilibria, located at (-2,2) and (-2.258, -1.372). It is 

c1ea.r that there is migration of a major portion of mass towards (-2,2) and a 

minor one towards (-2.258, -1.372). Fig 2.11 (left)  shows the results of running 

the algorithm, starting with a unit mass positioned at (-2,2): with X = 0.99. In 

this case, the mass remains centred around (-2,2). Fig 2.11 (right) depicts the 

results when a unit mass is initialised at (-2.238, -1.371), with X = 0.99. That is, 

we start the algorithm on the equilibrium point (of the associated system of ODEs) 

(-2.258, -1.372). Surprisingly, it is evident that a major portion of the mass 

migrates towards (-2,2), m-hile only a relatively minor portion remains centred 

around (-2.255, -1.372). 

Figs. 2.12 - 2.13 show projections, on the (xa, xs) plane, of Figs. 2.10 - 2.11. 

Here, each dot on the (xa, x s )  plane denotes mass at a particular grid point in D. 

In all the plots, we used y, = n-0*25 , which has a relatively slow rate of convergence. 

This is desirable in the sense that it minimises the chances of the algorithm getting 



Figure 2.10: 3-dimensional 'impulse" plot of all grid points whose associated masses 
are greater than 5 = 0.001 after ZOO0 iterations of the algorithm. as described in 
the text. with lep: X = 0.5. and right: X = 0.99. In both cases? the unit mass 
is initialised at the grid point (0,O). As discussed in the tex*, the height of each 
-impulser gives the mass at the grid point under consideration. 

trapped at some pseudo-equilibrium point, as previously discussed. Furthemore, 

we have only shom plots for h e d  X d u e s .  If we change the d u e  of A, the 

variation in the plots is minimal - but a description of how this happens is beyond 

the scope of the thesis. 

Comments on simulation results 

The simulation results suggest that the density of mass around the two equi- 

libria (inside D) of the associated ODE is h o s t  independent of the initial 

condition of the algorithm. This mass density is indicative of the probability 

that the algorithm will converge to each respective equilibrium point, given 

some arbitrary initial point (xa(0), ~ ~ ( 0 ) )  E D- Thus: the achie~rement of the 

algorithm is thato given some arbitrary initial point (+a(0),xs(O)) E D, we 

are able to sa); in relative terms, what the probability of landing on (-2,2) or 

(-2.266,-1.372) is. The problem of numericalllr quantifying this probabiiity is 
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Figure 2-11: 3-dimensional "impulse" plot of a.ll grid points whose associated 
masses are greater than T = 0.001 after 1000 iterations of the a lgo r i t h ,  as de- 
scribed in the tex?, with lefi: ( ~ ~ ( 0 ) .  x g ( 0 ) )  = (-2,2): and right: (xa(0). = 
(-2.2%. -1.372). In both cases: X = 0.99. 

straightforward, since each dot or "impulse" represents a fraction of the unit 

Even though it is clear that the algorithm can converge to either of the equi- 

libria, it is possible to "perverselyn pi& individual sequences of 9's that steer 

the algorithm elsewhere. These sequences have probability zero. We discuss 

this phenomenon below. 

Consider the m o t a t e d  picture of Ljung's doubly-triangular pdf shown in Fig 

2.14 (Zeft). Suppose that xa = -2, and -1 < xs < O, giving -2 < c < -1. Now, 

let d = min(-1, xg). Then, artificially restrict y E [c, d] and construct a netv pdf, 

g ~ ,  which mimics fx. That is, 



Figure 2.12: Grid points whose associated masses are greater than 5 = 0.001 after 
1000 iterations of the algorithrn, as described in the tex-, with Zefi X = 0.5, and 
right: X = 0.99. Note that both these Figs. are projections of Figs. 2.10 - 2.11 
on the (xA. xB) phase plane. In both cases, the unit mass is initialised at the grid 
point (O. O).  

Sote that restricting y's to the closed interval [c,d] ensures that x s  is decreased 

for all n. The probability that z~ is decreased is given by 

Select individual infinite sequences of y's from the closed interval [c, d] according to 

g~ and feed these into Ljung's algorithm. Set X = 0.5. This ensures that the asso- 

ciated ODE has only one g lobdy  asymptotically stable equilibrium, viz. (-2,2). 

Then, depending on the location of (xA(0), ~ ~ ( 0 ) )  E D, the iterates (ra, zs) niIl 

not converge to (-2,2) since XB is always decreasing. Furthemore, if 7, + O 'fast 

enough' . then (xa , X B  ) will freeze at some pseudeequilibrium point ( r ', 25) .  

To numericdly illustrate the eAect of selecting y's as described above, we proceed 

as follows. Initialise the algorithm at (xA (O), xa (O) )  = (-2, -0.5). Then choose a 
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Figure 2.13: Grid points whose associated masses axe greater than 5 = 0.001 ofter 
1000 iterations of the algorithm, as described in the text. The unit mass is initialised 
at l e f t  (-2,2) right: (-2.258, -1.372). In both cases, we set X = 0.99 

sequence of 9's according to g ~ .  Feed this sequence into Ljung's algorithm and it- 

erate. The results of this simulation corroborate o u  theoretic predictions. That is. 

2~ = -2 is unchanged, while xs decreases progressively as n -t m, finally freezing 

at x~ -2, which lies on the line X A  = x p  (a part of the boundary of D). Fig 2.14 

(right) displays the results of this experiment. Fig 2.15 is a schematic diagram of 

the observed dynarnics of the iterates (xA , XB ) as n + m. It is important to stress, 

at this point, that whether XB -t -2 or not is dependent on the {y,) sequence. 

For example, if we set 9, = 90, a constant for all n; then it is clear that XB + y0 as 

n + m. By the same token, if y, + -2, then it follows that X B  + -2 as n + oo. 
Note that, since XB is decreasing, it may be shown that there exists an N > O 

such that x p  < -1 for d n 3 N .  This implies that the interval [c, 4, from which 

the 9's are sampled, shrinks as n -t W. Furthemore, this implies that 

Pr(xB is decreased) + O as n -t m . 



' I L  

is inuc;iw 

Figure 2.14: Zeft: Relevant regions that are used in the construction of a pathological 
sequence of inputs to steer the algorithm away fiom the globally asymptotically 
stable equilibrium (-2,2), when X = 0.5 right: Evolution of the sequence {xs(n)} 
resulting from the use of a pathological sequence of inputs (9,). as described in 
the text. 

Xote that the numerics suggest that both c and xs are moving towards -2 as 

n -t m. and that c < xg for all n. That is, there is always a non-zero probability, 

no rnatter how s m d ,  that x~ is decreased. 



Figure 2.13: Dynamics of (xA, xg) using a pathological 
the algorithm 

A 

{y,} sequence as  input to 

Figure 2.16: Illustration of the fact that for xs < -1, the interval [co d] diminishes 

2.8 Investigation of pathological sequences of in- 

puts 

This section seeks to elaborate on the idea of selectively choosing y ' s  so that the 

iterates (la, xs ) are steered away irom the equilibrium point (-2,2) of the associ- 

ated system of ODES. As before, set x&) = -2, -1 < x B ( n )  < O- Then we get 

that -1.5 < c, < -1. We will select 9's such that x B ( n )  is decreased for ail n. 



Recall that rs(iz) is decreased if c < ; < TB. The sought-after sequence of y's is 

constructecl by randomly choosing (9,) according to g ~ .  -4s discussed before. we 

have that dn .- xB (n ) - 

Consider the sequence 

whère y, E [=. dn] . NOR-? let Pn denote the probability of choosing y, from [ç,, d,] . 

This is given by 

n-here g~ is a pdf that mimics Ljung's doubly-triangular pdf. The probability of 

realising (2.31) is given by the product 

-4s mentioned above, xB(n) decreases if and only if 

RecaLl that xB (n) is updated according to the rule 

From (2.34) and (2.35), we obtain the following inequalities 



X B ( ~  + 1) > (1 - O-Zyn)x~(n) -yn . 

From (2.37), we obtain 

and 

The right hand side of (2.37) may be expressed in closed form as 

where the last Line is obtained by setting rn = n-" a E (0,l) and bp asymptot- 

ically expanding n;=, (1 - -y j )  as follows. Denote 

Then we have that 

n 

zz - j-" , for n large enough 
j=l 



&Cr 

-- , for large n , 
1 - a  

leading to 

Returning to (2.36) and (2.37), we note that (2.36) implies that x B ( n )  is monoton- 

ically decreasing. NOR', fiom (2.3<), if we can show that rs(n) is bounded below 

by "something", then we will be able to conclude. using the monotone convergence 

theonin, that x s ( n )  converges. In fact, showing that xB(n)  is bounded below is 

quite diEcult, since the bound depends on the particular choice of the sequence 

{y,}, as we show below. 

From (2.32), we have that 

From this, it is cleax that if xs + -2, then P, -t J '  gA(y)dy = O. That is, the 

probability of choosing =y y, from [ ~ , d , ]  approaches-zero as n + a;. Further- 

more, this yields 8, + O as n + m. The issue is whether or not x s ( n )  converges to 

-2. Clearly, as discussed previously, this depends on the {Y,) sequence. Suppose 



that p, -+ 9- > -2 E [c, d]. Then 

Clearly, Pn does not approach O as n -t CG in this case. Kote that Pn is the 

probability of picking the nth element of the sequence shovm in (2.31) from the 

closed i n t e r d  [G, d.]. Nom-, because Lw,, C:=, Pi = 1, we conclude that 8, + 0, 
as n -t W. In other words, the probability of realising any particular pathological 

sequence y = (pl, 9 2 ,  ... , pn) approaches zero as n + m. 

Remark 2.3 Even though it is feasible t o  select a pathological sequence of  inpzts 

that steers the z te~ates  away from the equEtLiizb~wn point of the associated ODE. the 

probability of r e a k i n g  such a sequence approaches zero as n -t m. This implies 

that  the fraction of sepuences (p,) that steeî iterates away front the  equiibrium 

approaches zero as n -+ oo. 

2.9 A look at the special case X = 1 

When X = 1, the doubly-triangular pdf of the previous section degenerates to 

- - 3 < y < - 2  

O , otberwise . 

Wé seek to determine what the classifier c ( t )  (previously defined in Section 2.1) 

converges to in this case. Intuitively, we expect that c ( t )  -t -2 as t -t oc. However, 



11-e have to inves tigate n-hether Lj  ung's nioclel reproduces t his. -4s hefore. we oh tain 

the follawing system of ODES: 

and 

Son- for c 3 - 1, we have the system 

which has a line of equilibrium points (x;, x;) = (-2, k), where k > O. Hence, the 

classifier converges to 

where the value of k depends on the initial condition. Xote that k 2 0, since 

cm 2 -1. It is clear that an unusual bifurcation has occurred. since we now have 

iatinitely many equilibria - al1 lying on the line za = -2. This is shown in Fig 2.17. 

From (2.45), we have that xa > O if X A  < -2 and xa < O if x~ > -2. This 



Figure 2.17: Plot of phase space of the associated system of ODEs (with X = 1) 
showing a continuum of equilibria, as discussed in the tex* 

implies that the equilibrium (-2, k) is neutrally stable. Mso, we observe that the 

invariant region is non* given by D : -1 > zs 2 za > -3. Thus, ( x ; , x ; )  6 D for 

In a similar manner, it can be shown that the associated system of ODEs (2.43)- 

(2.44) yields one locally asymptotically stable equilibrium and a saddle point, viz. 

(-2.333; -1.667) E D and (-2.000, -0.667') @ D, respectively. Hence, the classifier 

c ( t )  converges to -2 as t + oo. 

Remark 2.4 From the foregoing considerations, zt is evident that the speczal case 

X = 1 represents a brealrdoum of Ljung k model. The case A = O ddisplays szmilar 

behaviour. In this case, the classifier c ( t )  converges to  2,  the mean v a h e  of the 

eght hand component tnangle of the pdf. 



2.10 Closing remarks 

The numerical simulations performed in this chaptes do help in developing a feeling 

for the long term behaviour of the { (za(n) .  x s ( n ) ) }  sequence, provided we are given 

some starting value ( ~ ~ ( 0 ) .  x B ( 0 ) )  E D. However. there is an inherent limitation in 

this approach, viz. tracliing of indiuidval trajectories of the algorithm WU not give 

a q  illuminating picture. since {(xa(n), x s ( n ) ) )  is not ergodic in most applications. 

To be able to make an). general comments about the convergence of iterates, there 

is a need to encompass all possible starting values (xa (O), ~ ~ ( 0 ) ) .  One way to do 

this is to define a probability density function over all possible initial States of the 

algorithm, and then track the temporal evolution of this densit>r. This idea is the 

subject of the next chapter. 



Chapter 3 

Evolution of Densities of 

Algorit hms 

3.1 Introduction 

Consider the usual [l] noise-driven neural learning algori t hm 

where S,(s,) dg x, + Ynh(2n), and {en} is o sequence of i.i.d. random variables 

with common density g. The rest of the symbols retain their usual connotations. 

Note that the map Sn explicitly depends on n. Furthemore, for il(+) bounded, 

(3.1) gives IZ,+~ - x,l = y,lh(xn) + 61 -t O as n + m, since 7, + O as n + m . 

However, this observation does not imply that {x,) is a Cauchy sequence. To see 

1 this, consider, for example, the sequence {x,) generated by the terms x,, = CL,, , 



i.e. the individual terrus of bn) are partial sums of the harmonic series- Then we 

have that IZ,+~ - xnl = 1 
n+l 

+ O as n -F oc. On the other hand, clearly, x, + oo 

as n + m. This implies that (3.1) approaches the identity map I : X,+I = x, as 

n + CU. The latter is k n o m  to have infinitely many Lxed points. 

In this Chapter, and essentially throughout the thesis, we are interested in the 

long term behaviour of the {x,} sequence. For example. do the iterates converge 

to a unique f i e d  point. for al1 initial points xo ? It is well-known [Il that if the 

associated ODE 

i = h ( x )  

has exactly one globally asymptotically stable equilibrium 2,  then, wpl, (3.1) con- 

verges to 5. However, if (3.2; possesses more than one stable equilibrium, not much 

is known about the convergence of (3.1) to  these stable equilibria. It is the primary 

goal of this chapter to get a glimpse of what goes on in this latter situation. 

-4s ai th any random process (see (261 ,[27]), it is not possible to obtain meaningfd 

conIrergence results of (3.1) by simply tracking individual trajectories as is the case 

for ergodic transformations. Instead, more meaningful results may be obtained 

by an examination of the evolution of densities of {x,} [SI. The utility of this 

approach lies in the fact that it takes into account aZZ possible initial states. An 

initial probability density function fo is defined over all-the possible initial states 

of the algorithm. The idea is then to fincl hou. this prescribed density of initial 

states evolves over time. Ultimately? one hopes to find a (limiting) stationary 

density f. for the sequence of densities { f,). It is this stationary density that 



may hold the key to understanding the intricacies of the convergence properties of 

~ L R  a lgor i th ,  especially if the associated ODE h a  multiple locally asyxnptotically 

stable equilibria. 

In this chapter, Ive will study the evolution of densities, under the action of the 

so-called Frobenius-Perron operator corresponding to the map Sn, of both the full 

nonlinear dgorithm (3.1) as well as its Iinearised counterpart 

where a, = 1 + y,h'(i) and 5 is an equilibrium point of (3.2). A brief description 

of the above operator is given in Section 3.3. 

We non- digress to show how (3.3) is derived from (3.1). Let t be a stable 

equilibrium point of the associated ODE (3.2). Furthermore, assume that 

where c -t O as n -t m. Taking a Taylor expansion of h( - )  about 5,  we have that 

h ( x , )  = E ~ & ' ( S )  + O(E;) for R large enough . 

Plugging the l u t  expression badc into (3.1), and ignoring higher order terms in E,, 

gives 

G,+I = [ 1+  ^~nc'(g)]~. + yn& , 

5, &f (f + en, 9, ) - (2  + & ) - Set ting an 1 + h'(2) yields the desird 



result. w-liere E,, is a ciummy variable. Sote tliat a,, E (O. 1). and that a, + 1- as 
f i  -f X .  

To give a flavour of the spirit of this chaprer. consider the unperturbed linearised 

algorithm given by 

xn+1 = (1 - )x, (*) 

where X > O, a E (0.1 ). The iterates x, may be expressed in closed form as follows: 

We 

the 

wish to characterise the long term bahaviour of x,. To this end. we proceed in 

foUowing way. Let 

m-hich gives 

n-1 

hB, = Ch(l-Ak-") 
k=l 

n-1 - - A  , for k sufficiently large. 
k 1  

In view of this, we get 

NOR., it may be shown that 
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n*hich implies that 
- A n l - o  

x, - xle 1-= + O a s n + c a .  

Kext. let us perturb (*) by adding a forcing term to it, viz. 

where r ,  is a deterministic forcing term. For this perturbed algorithm, Chung [19] 

proved that if r, + O faster than n+, where E > O, then x, + O as n + W. The 

following theorem [19] summarises his results: 

Theorem 3.1 Suppose that {b , ) ,  n 2 1, is a sepuence of real numbers such that 

where s E (O& s < t ,  ç, 2 c > O ,  c f >  O .  Then 

A proof of this result may be found in [19]. 

Fabian [18] considered the special case a = 1 of (**), and proved that x, -t O 

if and only if n-'C:=, rj + O as n + m. His result is consistent with intuition, 

since n-' x;=l rj may be interpreted as the mean of the sequence {ra) f=,  . In other 

words, he showed that if the mean of { r c ) ~ ,  converges to zero. then the iterates 

x, WU converge to zero as well, as n + m. During the course of this work, we have 

been interested in generalising Fabian's result to the case when a # 1, viz. proving 



the conjecture rhat 2, -t O if ancl on l -  if x;=, t-, + O as n + cc. However. 
we suspect that the latter nia-  not be true. sincc the term n-" xFi rj is not the 

usual mean of the sequence {rk}z==, . 

The ultimare goal is to examine the long term behaviour of the sequence {zn),D1 

in the case when {r,} is a sequence of ranclom variables, with some prescribed 

probabilit- density function. In this case, it is not guaranteed that r, -+ O as 

72 + m. However, we point out that if the sequence {r,) of random variables is 

compact- supported, and 

x,+l = (1 - Xn-a)x, + n"r, , where 7 > ci: , 

then Theorem 3.1 guarantees that xn + O as n + m. 

In light of the above examples. we s h d  now proceed to formulate a framework 

for the nnalysis of sequences of densities generated by iteration of the Frobenius- 

Perron operator. 

3.2 The Space Lh(X,  A, p )  

Conventionally, most authors (see [SI, for example) formulate the analysis of the 

sequence of densities {f,)F=l in the space LD of probability density functions. 

However, as will be shown in Section 3.4. this space is not always appropriate. For 

completeness, we give a brief description of Lb. Let (X, A, p )  be a measure space, 

where A is a O-algebra in X, and where p is a measure on A. Consider the set r of 



EIJOL I/'TIOAÏ OF DEArSITIES O F  ALGORITHAfi 

functions f whose absolute vdues are integrable over X. Le. 

where, in- most practical applications, p is Lebesgue measure. Kote that r is a linear 

space, since every finite linear combination of integrable functions is integrable. 

Non- define the subset ro c r by ro = {f E ï 1 f = O a-e.) .  Then the real 

kdalued functional p defined belo~v is a norm on the factor space r/ro_ where T/ro ' 
is denoted by L' (ri, A, p ) :  

It is usual to denote P( f )  by Il f I l l .  L1(X, A, P )  is a metric space n-ith the metric 

given by 

p ( f , g )  = I l f  -911, , for A f , g  E L 1 ( X ' , L d  - (3.5) 

The "conventional" space on &ch densities are defined is denoted by Lb(.'i, A, p )  C 

L l (-Y. A. p). and defined by 

It is well-known that the space LD is complete with respect to the L1 norm. The 

utility of this fact will become apparent in later sections of this Chapter. 

Definition 3.1 Any finction f E Lh(X, A, p )  is called a density. 

Remark 3.1 It t u m  out that, under some conditions, the sequence of densities . . 
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{f,,);f=, converges to eLem.etzts outside of th.e q a c e  Lb[..Y. L I ,  IL). This necessitates 

the definition of a broader space. the space of al1 objects to ivhich one c m  associate 

a distribution, that i n c h d e s  L g ( S .  A, p )  - W e  d l  return to  this i s s u e  in Sections 

3.4 and 3.5. 

3.3 The Frobenius-Perron Operator 

Suppose that we have a non-singular, meastuable transformation S : IT +- X on a 

measure space (-Y, A, p ) .  For our purposes, S s h d  be defined as the determiaistic 

part of the algorithm under consideration. For example, in equation (3.31, i t  is given 

by S(xn) = ansn. Let f E L b ( X ,  A , p )  be an arbitrw density. The Frobenius- 

Perron operator, P : Lb + Lb, describes the evolution of f induced by S. In other 

words. if f defines the distribution of initial conditions, Le. points t o  E -Y' then 

P f gives the resulting distribution of points xi  = Sxo. Define the action of P on 

This relationship uniquely defines P (see [5] for details). From (3.7), it may be 

shown that P has the following properties. 

1. P is a linear operator. That is, 
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2. For f E LI- 

n times 
4. Ifs, = S o  - - -  OS and Pn is the Frobenius-Perron operator corresponding 

to Sn, then Pn = Pn, where P is the Frobenius-Perron operator corresponding 

to S. 

5. In the special case when X = R , choosing A = [O, XI, we have that 

Note that (3.9) and (3.10) imply that P f is also a density. 

Definition 3.2 Any function f E L b ( X ,  A, P )  that satisfies P f = f is called a 

stationary density of P. 

To illustrate the computation of the Frobenius-Perron operator, consider the map 

d g  w-here S(x , )  - oz,, and X = R . For any f E Lb, the associated Frobenius- 

Perron operator is 



where [a. r]  c R . In light of this we get 

3.4 An example showing the inadequacy of Lb 

To motivate the need for a broader space of densities that encompasses Lb, consider 

the iteration of a unifonn pdf 

1 . r E ( - l l  
fixi = { 2: 2 )  

O , elsewbere 

under the Frobenius-Perron operator defined above. The action of P on f generates 

a sequence of densities, { f,,), defined by 

1 Q~ an 
9 x E ( - 1 7 ~ )  

O , elsewhere. 

Suppose that m. < n, and consider the densities f, and f,. As illustrated in Fig 

3.1, we wish to compute the L' distance between f, and fn. We obtain 



Figure 3.1: Iteration of a uniform pdf f under P associated mith the map S ( x )  = 
ax, a E (O? 1). 

Thus, {f,) is not Cauchy in Lb. This implies that Lb is not an appropriate space 

for the analysis of evolution of densities under the action of this Frobenius-Perron 

operator. What is needed is to view these densities as special cases of distributions. 

We examine this idea in detail in the next section, where we show that the limiting 

distribution of the sequence { f,} is the so-called "Dirac distribution". 

In view of the above example, we now formally introduce the space of normalised 

positive distributions, denoted by Dk (x). The motivation for the work in the next 

section cornes from a paper of Forte and Vrscay [20]. Essentidy, they look at 

a similar space, but with more general distributions. In this thesis, we focus on 

a subset of their space, the space of normalised positive distributions mentioned 

above. 
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3.5 A Suitable Metric Space of Distributions 

Let -Y be a compact and connected subset of IR .  Distributions are defined as con- 

tinuous lineu functionals over a suit able space of test functions, denoted as D (S) . 

The space of distributions on -Y. denoted by D'(-Y). is the set of al1 continuous 

linear functionals on D(I=). In otlier words, the set of F : D(S) + EL such that 

1. For an? sequence of test functions {+,(f ))=, that converges in D ( X )  to + (t ) , 

the sequence of numbers { F ( + , ) ) ~ ,  converges to the real number F(+)  in 

the usual sense [22]. 

The space D'(.x) includes the following as special cases: 

a. Functions f E L ' , for which the corresponding distributions are given by 

F($) = f(t)+(z)dr , for d $ E D(-y) 

b. The Dirac distribution, 6(x - a). which may be defined in the distributional 

sense as follows: For a point a f S. F(+) = w(a), for all $ E D ( X ) .  This is 

often symbolically expressed as 



In this thesis, we are interested in the space of n o r n a l i s e d  positive distributions, 

denoted as (-Y). and dehed by 

f 

D+(X)  = {F E D'(X)I F ( 1 )  = 1 , and F(+)  2 O V$ E CS(X)} , (3.14) 

where CF = {$ E Cm[ $ ( x )  2 O , x E X). The physical motivation for the 

assumptions F($) 2 O and F(1) = 1 is that we wish to interpret the d u e s  of the 

distributions as probability rneasures, in a marner analogous to integrds of density 

functions in Lb. In fact, note that Lb (X) C DL (s). 
In the foLlom-ing analysis involving the space D+(x), we shJU restnct our test 

functions to a subset of CF, namely, positive COD functions that are Lip, on x, 
viz. D(X) dgf Lip: (X), where 

Lip:(-Y) = {$ E Lipl(X')[ $(x) 2 0 for all r E X) , (3.15) 

and where 

The following property is very important in fomulating a representation theory for 

distributions in Dy (x) . 

Theorem 3.2 For any distribution F E D;(x), there ezists a s e p e n c e  of tes t  



funetions fn E L i p : ( S ) ,  n = 1.2. - . such that for al2 cv E L i P : ( S ) ,  

This result is a rather simple specialisation of a theorem for the case F E D f ( X ) ,  

which was stated in [20]. By recourse t o  the above result. it will be convenient to 

express the distribution F E D;(I i )  s>mbolicdy as 

even though there may not exist a pointWise function f (2) d i c h  defines F (e.g. 

the Dirac distribution). Fo; notational convenience. given f E Lb,  we will u r r i e  

"f E " tncaning that one can associate a distribution F E D ; ( A )  to f .  (In the 

same wav. - .  we can write &b E D:(X)",  where 6 is the Dirac distribution function.) 

In [20], a metric was introduced over the space D f ( X ) .  Followirig this treatment, 

we introduce a metric over the space D+ (-Y) : 

-4 major difference is the use of Lip: test functions in this metric? as opposed to 

test functions inside the unit CQ ball used in [ZO]. Our restriction to normalised 

positive distributions perrnits the use of Lip: functions, as we now show. 

Given two test factions J>i (x )  , $z(x) such that tli(x) = + Z ( X )  + C, where c E R 



In other words, the metric wiU not be dected by translations in the test functions. 

This dows  us to use Lzp, functions as is done for probability measures [21]. 

Theorem 3.3 The metn'c space (D:(x), d-1 ) is complete. 
D + 

Proof 

Let {fn)~=P, ,  be a Cauchy sequence in (D;(x), d- ). In other words, for a q  r > 0, 
D+ 

there exists an N ( E )  such that dD;(fn, f,) < E ,  for ail n,m > N ( E ) .  From the 

definition of dDt in (3.16), it follows that for any fixed 11. E Lip:(X), the sequence + 
of real numbers {t,,(+))E,, where 

is a Cauchy sequence on nt .  The latter is true since, for any 4 E Lip:(X), we 

have that ~tn(tj>) - tm(6) [ 5 S U P ~ ~ ~ ~ ~ : ( ~ )  Itn(+) - trn(d1) 1 = dg; ( f n r  fm)  < €7  for 

n, m > Let Y$) denote the limit of this sequence. Note that i ( 7 . j ~ )  3 O for 

each W E Lip:(X), since {tn(+))~==l is non-negative. By setting F ( ~ )  = q+), we 
define a continuous linear functional F on Lip:(S). Furthemore, since tn( l )  = 1, 

it follows that ql) = 1. Therefore F(1) = 1, implying that F E f>( iY) .  This 

procedure can be easiIy extended to aU CF test functions on X by noting (via the 

Mean Value Theorem) that M-' x + E Lip:(X), where M = ll+'llm. Therefore, 

the metric space (D+ (x), dD; ) is complete. O 



We non- iflustrate the use of the metric space (H+(X), d- *+ ) in the investigation 

of the Frobenius-Perron operator P corresponcling to the linear map S ( x )  = ûx. 

a E (0.1). Kote that P dl now have to be a mapping from z+(X) to itseif. We 

proceed in a manner analogous to that described in Section 3.3, with particular 

reference to the example considered in that section. KOTX-, for any f E D;(s). the 

distribution q = P f is defined by the l i n e ~  functional 

Theorem 3.4 P is contractive in (Dl (x)! dB; ) . 

which implies that 4 Lip:(X). In addition, define 

= (6 E Lip:(X)I ( )  = ( a )  , for some $ E Lip:(X)) . 



nrhich gives the desired result. By Banach's Fked Point Theorem, there exists a 

unique fixed point of the operator P in the metric space (Di (x) , dg; ) . O 

This resolves the difECUIty encountered in Sedion 3.4. Our limiting density is 

a distribution. Together, theorems 3.3 and 3.4 imply that there exists a unique 

f. E a+(~) such that 

1. Pf. = f,, and 

The Iast statement follows from the observation that 

We now show that f, = b ( x ) ,  the Dirac delta "function". Let F be the Dirac 

distribution, i.e. 
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Then, ftom (3.17). Q. the distribution associated n-ith the Frobenius-Perron oper- 

ator. is 

which gives the desired result. 

3.6 Densities of linearised algorit hms 

The previous section has given us a complete description of the linear map 

d-f  where S(xn) - ax,.  The main thrust of this section is to investigate the long term 

behaviour of sequence of densities {f,) for generalisations and noise-driven versions 

of (3.19). This section illustrates that the set {fn) does converge to elements outside 

of Lb, and hence the need for a broader space DL (-Y) that includes LD. However, 

in the rest of this chapter, we shall formulate the analysis of { j, } in Lb , following 

the treatment of Mackey and Lasota [SI. Analysis in the space of distributions 
-f 
D+(X)  is diff idt  and beyond the scope of this thesis. Besides, it appears that the 

space Lb is sdicient for the study of random processes, viz. limiting densities do 

not converge t O Dirac-like distributions. 
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The most general linearised algorithm that we will consider is of the form 

where {en) is a sequence of i.i.d. random variables, and a, = 1 + < 1, so 

that î is a stable equilibrium point of the ODE 

The parameter 7, is called the gain of the algorithm (also referred to as the Iearning 

parameter in neural networks literature) and has the usud properties, viz. 

For latter purposes, we nonr take a bnef detour to show that lim,,,, (&, a j )  = 0. 

def - 
where 6 = ht(i) < O. Non- denote the right hand side of (3.21) by R,,. Thus we 

have that 

whkh yields 

If ( ~ k ) g ,  satisfies the usual conditions (see Chapter 1, Section l.4), we have that 



implying that limn,,(n;,l aj) = O. Belo\\-. we study the following linearised (see 

Section 3.1 for details) variations of algorithm (3.1) : 

il.. = a,x, + En (unattenuated noise amplitude) . 

3.6.1 Algorithm (i) 

Applying result 5 on page 91, it can be shonm that the nth iterate of the density 

f (r) is given by 

where P, is the nth Frobenius-Perron operator. Note that Pn acting on f contracts 

it in the x direction and expands it in the y direction. In other words, the ILAS of 

(3.25) gets more "spiked" around the origin, as n + m. Each a, gives a different 

operator, leading to a sequence of operators {Pi, Pz, ..., Pn) No", iterating these 

operators, (3.23) becomes 
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Consider an arbitrary bounded inten-al [-A. -41 C IR, 11-here -4 > O. Then 

which approaches J_Q, f (x)dx = 1 as n + oo. In other words! for any A > 0' 

there exists an n such that the rïght hand side of (3.27) is approximately unit)- 

This suggests that the sequence of densities { f,)z=P=l converges to 6 ( x ) ,  where the 

convergence is understood in the sense of distributions. We illustrate this in the 

l 1 1 ,  and zero elsewhere. Then following way: Suppose f (x) = fo > O for x E [-z, 2fo 

0 , for # [- O\>OOn , O1;yoa-] , 

Since n ... cl  I + m as n + m, this suggests that {f,)Z, converges to 6(x). To 

close. note that (i) may be re-expressed as 

giving the associated ODE 
- 

2 = zhf (5)  , 

where X'(Î) < 0. we will retum to this ODE in Section 3.6.5, where, in addition, 

we shall give an interpretation of the above results. 



This represenrs the most general lineas niodel that w e  will study- It will be straight- 

fonvard to look at (ii) aucl (iv) once we have analysed this algorithm. Let F n ( p )  be 

the Laplace transfomi of the pdf of x,, and G(p)  be that of the pdf of en- Then, 

F,(anp)  is the transform of the pdf of a n x n ,  and G ( y , p )  is that of the pdf of 

FoUo\ving [3] and [4], w e  then have that 

Now, (3.29) may be expressed in closed form as follows 

Assume that the pdf of xo is @en bj- 

Then the pdf of ajzo is 

The Laplace transform of (3.31) is then 



Equations (3.30) and (3-32) give 

&%ence, (3.30) reduces to  

W e  shall choose a pdf of yncn such that the product in (3.34) is easily computed. 

Following [3], one possible form, whzch allows Gaussian and other more general 

distributions, is 

G ( p )  = eap" y B E R  (3.35) 

which yields 

Therefore, assuming that (3.35) ho& get 

Substituting (3.36) ba& into (3.34) yields 
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The density of x, is thus gix-en b>- 

where t-' denotes the inverse Laplace transfonu. For q = 2, (3.38) becoines 

2 
(T - xo n;;; a,) 

p XE; -it (nz!+, ai) 

where LI is the Heaviside step function. From the analysis in equations (3.21)-(3.24): 

Ive r e c d  that 

Let us now examine the quantities in the denominator of (3.39), viz. 

From (3.21)-(3.241, it follows that 



dcf --, def  - where we have set y; = 2 , û. E (O: 1): and b = hf (Z)  < O. Consequentll-, we have 

t hat 

The leading behaviour of the partial s u .  on the RHS of the preceding equation is 

found by examinirig the corresponding integral 

def where, without loss of generality, we have set yk = (k + 1)-" . lntegrating In by 

parts yields 

which implies that 



Furthermose. for r > z.0 a,, (3  .Q) implies that 

lim L(X)  = O 2 
n+cu 

since { ? ) O 5  approaches infinity at a reiatively much slower rate than 

approaches zero. On the other hand, when t = xo a j ,  

we have that 

lim fn(x) = m .  
n+oo 

The above analysis suggests that {fn):=, converges to d(x) .  

3.6.3 Algorithm (ii) 

TWO cases arise, viz. 

(a) a > 1 (unstable equilibrium) , and 

(b) a E (0 , l )  (stable equilibrium). 

Before looking at these separate cases, we derive f, (x) for this algorithm. We make 

the same assumptions as  in the determination of f , , (x)  for algorithm (iii) above. 



which may be expressed in closed form as 

The sought-after demie  is thus 

where 

Case (a): Recall that 

which gives 

In the special case r k  dg (k + 1)-5, we have that 



S'ow setting r 5: and using the previous notacion. Ive get 

1 
T,, = -3a2"ln(l- -) + m .  a s n  + a: 

a2 

since h(1 - 5 )  < O. Thus? from (3.43) and using the same analysis as before. ive 

have that 

Follotving our previous analysis, we conclude t hot { f, }:= P=l converges pointu*ise to 

zero. 

Case / b ) :  Note that we can no longer employ the geometric suril  used in Case (a), 

since 5 > 1 in the present case. Equation (3.45) is not valid for this case. Let 

In the special case yk dgf (k + 1)-5, and I %* a* we have that 

Xow suppose that f (k) dg $. Then, employing the Maclaurin-Euler sum formula 

gives 

T~ b ? l n r d t ,  for r > O ,  
t 
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nhïch may be integrated by parts to show that T, + O as n - m. From (3.43). 

this suggests that (f,)r=, converges to 6 ( x ) .  

3.6.4 Algorit hm (iv) 

MTith the usual assumptions on the densities of [, and xo, the density of algorithm 

(iv) is given by 

which, for 77 = 2, yields 

where C; is the Heaviside step function and 

where a and b are as previously defined and the asymptotic expansion is arrived 

at in a way similar to that performed for algorithm (iü). Consequently? we obtain 

that 

and thus 



To close our analysis of Linearised algorithms, we non- consider the usual noise-driven 

algori thm 

(3.50) 

In other words, the noise amplitude 6, and the parameter a, decay at clifferent 

rates. The problem is to determine the s ta t ionq density of (3.50), assuming that 

we know the relative sizes of r and s. We have akeady derived the following results: 

(a) O < r < 1, r = s * { fn)zZl converges to 6 ( x ) ,  in the distributional sense, 

pointurise 
(b) s = O (i.e. unattenuated noise amplitude): fn(x) -r O, as n + m. 

Now, we seek to examine the long term behaviour of the density sequence { f,)FZl 

of (3.50) for cases (c) and (d) below, inclusive of the special case. 

(c) r > s, special case: r = 2s, 

(d) r < S .  

From previous results and with the usual assumptions on the densities of En and 

xo, we have that the density of (3.50) is given by 



For 7 = 2. this yields 

n-here G is the Heak-iside function and 

It can be shoun that 

whkh implies that 

as n -t W. This gives 

For r c 2s, the above results çuggest that { f,)n=l converges, in the diçtributiond 

sense, to 6 ( x ) .  This is an improvement on Chung's result (see Theorem 3.1 in 

Section 3.1) in the sense that we nom- have a tighter bound on the parameter r to 

guarantee that x, + O as n + m. 
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3.6 -5 Closing remarks 

-4lgorithm (iii) mas be expressed in the form 

where h t ( i )  < O. Note that f = O is the stable equilibrium of this ODE. It is 

straightforward to show that the ODE solution is given by 

Therefore from the results in Sections 3.6.1-3.6.4, we conclude that the behaviours 

of the ODE solutions and the sequence of densities are in accord only for algorithms 

(i) and (iii). In these cases, the stationary density of {x,)r==, is concentrated about 

5 = 0. the stable fixed point of the associated ODE. 

We have derived stationary densities of linearised algorithms of the general form 

given by algorithm (iii). Note that the s ta t ionw densities so derived are localised, 

about 2. To obtain a full stationaxy density of {x,)n=, , one needs to piece together 

the various local stat ionary densities which correspond to different stable equilibria 

of the associated ODE. If we assume that tn is characterised by a pdf of the fonn 



then. depending on the amplitude of en? we obtain two different types of local 

stationary densities. viz. S I X ) ,  and an exact replica of the pdf of &,- In the case of 

the b ( x )  stationary densits it is possible that difhent masses may be 'sitting' on 

each of the stable equilibria. The almost intractable problem is to quanti@ masses 

that are associated with each Iocalised 6(x) distribution. If achieved, this wodd 

give an answer to the question: to which one of the stable equiZibn'a is the algorithm 

most likely to converge? However, mention must be made that this is a very difficult 

problem, beyond the scope of this thesis. 

3.7 Densities of nonlinear algorithms 

Consider an algorithm in the form 

where S explicitly depends on n ( d e r  to equation (3.1) to see an example of such 

an S). In order to study this problem, let us fmt look at a simpler version, viz. 

xn+i = S(G) + ~ n t n  : 

where S does not depend on n. Frorn (3.58) above, let 

Zn = ~ n t n  - 



The density of zn is given by 

where g is the pdf of the raodom vaxiable cn- Suppose that f, E L E ( S )  is the 

density of 3,. B y  (3.58),  x,+l is the sum of two independent randorn variables. 

3ote that S ( x , )  and zn are independent since in calculating 11, ..., x,, we only need 

G, -... &l. Let uj : R + Et be an arbitrq, bounded. measurable function. Then, 

the mathematical expectation of w(r,+, ) is 

using (3.58) and the fact that the joint density of (x , ,  2,) is hfn(y)g(h), 
n7e have that 

1 - 
E[w(xn+l )I = < IR JR w ( S ( Y )  + i)fn ( y ) g ( l ) d y d ~  . 

'Yn 

Xow using the change of variables x = S ( y  ) + t, y = y, we obtain the Jacobian 

Thus, (3.62) is transformed to  
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Equating (3.61) and (3.63) yields 

From (3.64), define the operator : Lb + Lb by 

for f E Lb. 

We nom- digress for a moment to introduce the K o o p m a n  operator (see [5] for de- 

tails)? which is adjoint to the Frobenius-Perron operator. 

Definition 3.3 Let ( X , h , p )  be a meclsure space, S : X + A' a non-singular 

transformation,  and f E LOD. T h e  operator U : Lm + Lm d e f i e d  by 

Ls called the K o o p m a n  operator &th respect to S. 

As a result of the non-singularity of S, is well-dehed since fi (x) = f2 (x) a-e. 

implies that fi ( S ( x ) )  = f2(S(x)) a-e.. Listed below are some essential properties 

of O-: 

1- Wlfi + A2f2) = AlUfl + A2Uf2 for ail fi ,  f2 E Lm, X i ,  X2 E IR: 
. - 
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2. For every f E La. 

KTe note that [5] refers to any operator satisfying this property (cg. P) as 

contractive, which is not the mual definition of contractive operators. 

so that U is adjoint to the Frobenius-Perron operator. 

Suppose that S is non-siagular. Therefore the Frobenius-Perron and Koopman 

operators. P and Ci respectively, corresponding t o  S exist . Furthexmore, let 

Shen (3.65) and (3.66) yield 

= < P j, h,, > , since P and U are adjoint operators 
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Using the change of niriahle 7 = t' (3.67) becomes 

Consequently, since yn -t O as n -+ 00, we should expect that, in some sense, 

The theorem belon- ascert ains the d i d i t y  of (3.69). 

Theorem 3.5 For the system defined by (9.581, 

where P is the Frobenius-Perron operator corresponding to S and F, ic given by 

(3.68). 

The proof of this theorem is similar to that of Theorem 10.6.1 in [5 ] ,  and we choose 

to omit it (see (51 for details). A corollary of the above theorem is given below. 

Corollary 3.1 Suppose that S and g are given and that we have a sequence {f,) 

generated 6 y fn+, = F, fn , and S U C ~  that 

Then f, i s  a stationary density for the Frobenius-Perron operator conesponding to 

S .  That is, P f, = f, . 



E E < - + - = E , for all n > ,V, 
- 2  2 

which implies that 

IlRf. - f.il1 + O as 7-i m. 

However, Theorem 3.5 also gives 

Combining (3.72) and (3.73) yields 



W e  return to our original algorithm given in (3.57) viz. 

tvhere non* S explicitly depends on n. As before. the noise amplitude is damped 

and {&,) is a sequence of i.i.d. random variables with common densit- g. Suppose 

that the Frobenius-Perron operator associated with Sn is Pn. and is such that 

LI-here P is a lirniting operator. In a similar manner to the deriiation at the be- 

ginning of this section, it may be shown that the Frobenius-Perron operator corre- 

sponding to  (3.75) is given by 

The following issue arises: Assuming (9.761, does it follow that Fn ''3 P as n + 
oo 4 In what follows, we state and prove an equivalent of Theorem 3.5. The following 

result [SI will be useful: 

Lemma 3.1 For every f E L1, I C R bounded or  not, . 

The proof of this result may be found in [5] .  
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Theorem 3.6 For the systern defitied by (3.75): 

where Pn is the Frobeniw-Perron operator corresponding to Sn and F, is the oper- 

ator corresponding to (3- 75). 

Pick an arbitrarily smrllt5 > O. Since g is an integrable function on IR, there must 

exist an r > O such that 

where 

and 
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We consider each of these integrds in t m .  First, since P, f is integrable, Lemma 

3.1 implies that there exists 

r 

an A- > O such that 

Hence 

For 12, we use the triangle inequality to write 

Using the change of &ables v = y and z = x - we get the Jacobian 

which yields 

b < - (by assumption (*) above) , (3.79) - 4 



and 

Hence, combining (3.7S), (3.79) and (3  -80) gives 

Therefore, (3.77) and (3.61) imply that 

-2n equivalent of Corollary 3.1 is çtated and proved below. 

Corollary 3.2 Suppose that Sn and g are gzven and that we have a sequence {f,,} 

generated by f,+i = Fnfn and such that fn + f. as n + m. In other words, gzven 

an arbitrary E > O ,  there &cts a n  N such that 

Furthemore, suppose that Pnj the Frobenius-Peron operator associated &th Sn, 

às svch that P, -t P as n -t os, where P is a limiting operator. Then f. is a 

stationary d e m - t y  for P ,  Mz. P f. = f-. 



This gives 

IIpnf- - f=IIi 5 IIfn+i - f=II i + IIpn(f- - f n  )Ili 

I Ilfn+i - f=lI 1 + Ilf- - fnlli 

< E ,  for d n  > N ,  - 

which implies that 

IIPnf. - f * l l l  + O aS 72 i m. 

Nom-, from (3.76) and Theorem 3.6, we get that 

This leads to 

which, in combination with (3.83), gives P f. = f.. CI 

This result tells us nothing about a specific f.. In fact, in the particular case 

given by (3.75), f. is not unique since P is the Frobenius-Perron operator associated 

with the identity map I introduced in Section 3.1. 
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3.7.1 An example where the associated ODE has two stable 

and one unstable equilibria 

Consider the detednis t ic  algorithm 

where we assume that 

The associated ODE is thus given by 

This ODE has two stable equilibria, xi = O and x; = -1.707, and a single unstable 

equilibrium, viz. x; = -0.293. The multipliers of the stable equilibria are given by 

g'(0) = -0.5 and gr(-1.707) = -2.414, implying that -1.707 is the relatively more 

attractive of the two. The graph depicting (3.84) is shown in Fig 3.2. 

The following question aises: to which one o f x i  or tj is {x,) likely to converge 

as n -r m, given an urbitrary startirtg value xo ? 

Sote that with the given h, we have that Sn : [O,rj] + [ O , x ; ] .  Thus, we focus on 

the dynamics inside the box outlined in Fig 3.2. The Frobenius-Perron operator 

associated with the transformation Sn is fomulated belon*. Pi& an interd [x, O] C 



Figure 3.2: x.+1 with a cubic h 

[-1 .70ï7 O] so that the counter-image of [x: O] under Sn is given by 

where gi,, ( x ) ,  i = 1...3 are the three solutions of the equation x = Sn (y). Following 

(51, the Frobenius-Perron operator corresponding to Sn is defined by 

This tells us how Sn tronsforms a given density f into a new one Pn f. To see 

how (3.86) works, pi& an initial density f (x) = 0.586 for x E [-1.707, O], and zero 



elsen-here. Then (3.86) becomes 

3 

Pn f (2) = 0.336 xgi,n(x) , for r E [ - l . i O i , O ]  . (3.87) 
j=l 

Substituting this ex~ression for Pn f in place of f on the right hand side of (3.86) 

yields 

Similady, we obtain that 

Given an initial density f E LL, we seek to determine Lm.,, Pn-..Pl f. This limita 

if it exists, gives the sought-after station- densite with this in mind, we return 

to the cubic equation x = &(y), \-hich gives 

\Ve wish to h d  the three roots of (3.89), viz. g n )  g ~ , , ( x ) ,  and g3,n(x)- NOW. 

1 mhere al = 2, al = K(7n - 2 )  .and a3 = ' 7n . Let Q = à(3a2 - a:),  R = . .- 

1 ,(9alaz - 2ïa3 - 2 4 ) ,  S = (R + Jm)f and T = ( R  - J ( Q ~  + ~ 2 ) ) f .  

Furthermore, let D = Q3 + R2 be the discriminant. Nom., it may be shown that, 



for x E [-1.707, O], we have that D < O if and only if 

Clearly, for any fixed x E [- 1 -707, O], the LHS of this Ïnequality approaches a h e d  

positive real number as n + oo. On the other hand, the RHS of the inequality 

approaches +oo as n -t w- Therefore, there will be a "cross-overn value, y~ Say, 

for which the above inequality holds for al1 n 3 N. From the definitions of Q and 

R above, we have that 

where 

Now, since there exists on Ar such that D < O (for x E [-1.707, O]) for all n 2 N ,  

it is well-known [6] that all the roots of (3.89) are real and distinct for al1 n > N. 

These roots are given by 

and 



It ma? be shonn that only g3,, (x) maps the dosed interval [- 1.707, O] to itself, for 

all n. Hence. g3,n(x)  is the only root we need to use in evaluating the Frobenius- 

Perron operator corresponding to S.. From (3.86), the sought-after operator is 

given by 

for an a r b i t r q  initial density f E Lb. W e  choose an initial pdf given by: f ( x )  = 

0.586 for x E [-1.707, O], and zero elsewhere. Then (3.95) becomes 

and 

In a similar way, higher iterates of Pn...Pi f (2) may be computed. Now, analyt- 

i c d y  determining b,, P, ... Pl f ( x )  is intractable. However, a numerical a p  

proadi is feasible. Fig 3.3 shows f i  f ( a ) ,  P2 Pl f (x ) , and P4 P3P2 Pl f (x) respectively, 

for z E [-1.707, O]. The leamhg parameter used is 7, %-! (n + 3)-0+99. The plots 

suggest t hat P.. . .Pl f (2 )  converges, in the distributional sense, tu two Dirac distri- 
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butions centred at the two stable equilibria as n -+ m. It should be noted that 

these two Dirac distributions emerge at different rates. The one located at -1.707 

has a relatively bigger mass compared to the one located at the origin. This dis- 

tribution of mass is clearly related to the magnitudes of the multipliers of the two 

stable equilibria. However, it is not clear how one rnight go about ac tudy quanti- 

6 i n g  these masses. Finally, note that these numerical resuits d i d a t e  the idea of 

linearisation of h(x) about each stable point before deriving the local densities. as 

previously done. 

3.7.2 A stationary density for the perturbed operator P,? 

This section investigates the behaviour of the perturbed system 

Xn+i = Sn(xn) i ~ n t n  r 



where S,(r,) cf x,, + 3n &(ln) and 6(r,) is as defined in the previous example. As 

usud, assume that {cn) is a sequence of i.i.d. random lariables, each with density 

g. The density of the random Mnable ?ntn is .i,-'g(-i,-lx) The Frobenius-Perron 

operator associated with (3.97) is given by [5] 

where f E Lb is an arbitrary initial density of ail the possible initiai states of 
-- -- - 

(3.97). From (3.98), we malr find Pl f. P2 Pl f ,..., P, P,-i ... Pif. The issue is to 

provided that such a limit exists. Won. assume that 

a mean zero and unit variance Gaussian distribution. Furthennore, assume that 

the initial densit). f is given by . 

, x E [+Il 

O , elsewhere . 

-- - 
Computation of P,P,-1 .-.Pl f 

The analytic computation of the iterates F,, ... Pl f for n > 1, is not usually possible. 

However, a numerical approach to this computation is available. Nonetheless, the 



latter approach is not that straiglitforward and easy, as it involves the elaluation 

of iterated integrals of increasing cornplexity. W e  non* outline one possible way 

of performing the numerical computations of iterates of the operator P,. First, 

compute 

where Al = [-15,153 c IR. Then approximate (3.102) by a polynomial, using 

the MAPLE interp function. This po l~~omia l  has a finite support. The choice of 

the size of this support is arbitrary. Denote this polynornial fit by wi (x). Next, 

compute 

which gives 

--- ---- 
In a simila. way, compute P3P2 Pl f i  P4 P3 PZPl  f i  etc. Even after the polynomial 

fits have been determined, the (symbolic) numerical integration of iterates of the 

perturbed operator is still relatively intensive and consumes a substantid amount of 

CPU t h e .  Figs 3.4-3.5 show the first four of these iterates. The learning parameter 

used is y, = (n + 4)-0-999. 

3.7.3 Cornments on numerics 

The plots in Figs 3.4-3.5 suggest that the stationary density of the sequence of 

perturbed operators consists of two Dirac distributions, pl and pz sa);, centred at 

II = -1.707 and f = O respectively, the two locally asymptotically stable equilibria 



-- 
Figure 3.4: lefi: Pl f (t) right: PZ PL f ( x )  

def of the associated ODE. we ma? express the s t a t i o n q  density as p - pi + p2, 

w-here the component Dirac masses are 

and 

such that ml + 7722 = 1, and where D ( S )  is a suitable space of test functions, 

for esample D ( S )  '5' Lip:(X). In this example, it is not immediately obvious 

what the values of ml and rnz will be, primarily as a result of the difficulty of 

constructing the set of functions ($1 $ E Lip:(X)}. -41~0, as previously discussed 



in Section 3.5, asalysis in the space D;(X) is daunting. FinaUy, the result in 

Section 3.7.2 is in accord with the one found in Section 3.7-1, thereby justifying the 

idea of linearising h about a stable equilibrium prior to performing a local analysis 

of the stationary density. The Iocal stationary densities obtained before, via the 

linearisation procedure, are Dirac distributions centred at the stable equilibria of 

the associated system of ODES. 

3.8 Closing remarks 

Chapter 3 has primarily been a systematic study of densities of both nonline~ and 

linearised algorithms (see Sections 3.6 and 3.7). Our resdts suggest that densities 



of linearised a lgor i tbs  studied liere do reproduce the same local characteristics as 

the nonlinear equations frorn n-hicli the)- are derived. 

lie r e c d  that Madiey and Lasota [J.] studied algorithrns of the form 

where S(xn) is not explicitk dependent on n, and where {cn) is a sequence of i i d .  

ranclom variables. Our work in this direction is ne=-. because nre look at more 

general algorirhms, i-e. 

&+1 = Sn(%) + yntn , 

where nolv Sn(xn) is esqdicitly dependent on n, and {y,) is a decreasing-tezero se- 

quence of positive real numbers such that C, T,, = W. Thus, our proof of Theorem 

3.6 is new? and more general than that in [j] . 

Using the notion of density, we have been able to improve Chung's result (see 

Theorem 3.1) by computing a tighter upper bound on the parameter r. Finally, it is 

important to emphasize that the numerical experiments performed in this Chapter 

are indispensable - they provide tremendous insights into a difficult problem. 



Chapter 4 

Some Generalisations of Ljung's 

Problem 

4.1 Introduction 

In Chapter 2, a doubly-triangular pdf $vas assumed for the input signals { ~ ( t ) ) .  

AL1 the analysis performed in that chapter was based an the characteristics of this 

single pdf. Needless to Say, this particular pdf is very basic and does simplify a 

lot of the computations carried out in Chapter 2. A particular feature of the pdf 

which makes the computations straightforward is the fact that the two component 

triangles do not overlap. The present chapter generalises the problem to include 

overlapping components of the pdf. Essentially, we look at two examples, viz.: (a) a 

pdf consisting of two overlapping triangles, and (b) one consisting of two Gaussian 

distributions. The primary purpose of this chapter is to investigate the effect of 

changing the pdf of { ~ ( t ) )  on the dynamics of the discrete a lgor i th ,  inside the 
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iniariant region D. -4s before. both analytical aiid numericd techniques d l  be 

adopted. 

4.2 The overlapping doubly-triangular pdf 

Suppose that the input signals, to be classified by Ljung's algorithm, are distributed 

accordîng to the pdf 

, 1 < ~ < 1 + 0 2  

, elsewhere 

where X E [O, 11 and ol , o2 E IR +. Furthermore, assume that ol > 2 - 02. The 

latter ensures that the two component triangles of (4.1) are overlapping in the 

interval [l - 02, - 1 + ul] ,  as depicted in Fig 4.1. Note that the left triangle has axa 

1 - A. whiie the one on the right hand side has area A. The pdfunder consideration 

is a superposition of these two component triangles. As usual, it is assumed that 

{ ~ ( t ) }  is a sequence of i.i. d. random mriables. 



Figure 4.1: pdf of the randorn variable to be classified by classifier. 

4.2.1 Computation of the associated system of ODEs 

As before, we obtain the following associated system of ODEs 

where c dgf 0-5(z1 + z B )  Note that it  is desirable to have c E [l - oz: -1 + al]. 

4.2.2 Stability and bifurcation analysis of the associated 

system of ODEs 

As in Chapter 2, we now investigate the stobility and bifurcations of equilibria of 

(4.2) as X varies, for fixed ol and 02. The system of ODES specified in (4.2) has 

the equilibrium point (ZA, 3 ~ ) ,  implicitly given by 



where P(c)? Q(c) ,  and E, are as clefined in (4.3). To analyse the parameter- 

dependent dynamics of the zeros of (4.4). we need O&- look at the numerator 

Figs 4.2-4.3 ( lef t )  show plots of FA,,(c) versus c, for some selected parameter values. 

It is evident that a saddle-node (S-N for short) bifurcation occurs as X + O+, leading 

to the birth of two new equilibria. We also note that, in contrast to Ljung's non- 

overlapping doubly-triiangular pdfexample of Chapter 2, no bifurcation of equilibrïa 

occurs as X -t 1- . This will be exemplified later in this section. Instead, the only 

zero of FA,(c) shifts towaxds C = 1, as X -+ 1-. 

For X > 0.056 and for (01, 02) = {1.0,1.5}, the function FxqU(c) has only one 

root. namely î3. This root, which is parameterised bp A, always exists, as X + O+. 
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Figure 4.2: Fx,,(c) with lefi: X = 0.1, and 
and oz = 1.5. 

right: X = 0.056. In both cases, al = 1.0 

Numerically, at X 0.056, a S-N bifurcation occurs. In other words, a new zero 

appears at E -0.483. As X + O*, & brandies into two new zeros, viz. {ëL, E Î } .  

This is depicted in the bifurcation diagram Fig 4.3 (right), which is generated as 

follows: Fix {ol, a2) = {l.O,l.5), and solve FAJc) = O for =(A), where X E [O, 11. 

Then plot c(X) versus A. Eote that in Fig 4.3 (right) we have only considered a s m d  

'window' of X values, i.e. X E (O, O.O56), essentidy to accentuate the emergence of 

the two new zeros E~(X) and &(A)- The root &(A) - 0.040 for X E (0,0.056), and 

is not shown in Fig 4.3 (righi). 

It is important to point out that C3 does not lose its stability with the emer- 

gence of El and E2. At X = 0.03, we have that {Cl, &) = {-0.630, -0.162). Con- 

sequently, we now have a total of three différent roots of FA,,(c), viz. {ël, &, 23) = 



Figure 4.3: left: FA,(c) with X = 0.03. ol = 1.0. and 0 2  = 1.5 Rght: Plot of zeros, 
&(A)  and &(A),  of FA.,(c) with ol = 1.0, oz = 1.5. for X E (0.0.056). A line draun 
upward from X = 0.03 wifi cut the c w e  at the two zeros of F A , ~ ( C )  shown on the 
left figure- 

{-0.S30, -0.162,0.040). The correspoading equilibria are (xli, riz) = (-1.2341, 

-0-4234), (121, 2 2 2 )  = (-l.oll3,0.6875), and ( ~ ~ 1 ,  x ~ ~ )  = (-0.9983,1.0791), re- 

spectively. II may be shown, via the computation of Jacobian matrices for (4.2), 

that (x x12) and (xJ1, x ~ ~ )  are l o c d y  asymptotically stable, with e igendues  

(-0.5492, -0.1250) and {-0.9682, -0.0243). respectively. Similady, (xzl, ~ 2 ~ )  is 

a saddle point, with e igendues  {-0.6946,0.0316}. Now, assuming that c E 

[-1 + cl ,  11, (4.2) simplifies to 



and 

Retuming to  an analysis of the limiting case X + 1- , we consider the following 

example. Assume thât 01 = 1.00, oz = 1.50, and X = 0.99. Thus, (4.5) yields the 
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Jacobian matris 

where 

and 

-41so. using the above parameter values. we get the foollowing equilibria for (4.5): 

(xl l ,  x12) = (-2.794: -5.109), ( x ~ ~ ,  x2*) = (0.439,1.471), and ( x ~ ~ ,  xS2) = (O.78ï'.2.136). 

However, since (4.3) holds only for c E [-1 +ci, l] = [O, 11, the only valid equilibrium 

point is ( x ~ ~ ,  x22), with eigenvalues {-0.16S0, -0 S O  1s) and corresponding eigen- 

vectors { ( O-''" ) , ( """ ) 1. AS ciiscusse~ e+.ier in this section rec. 
0.6536 O -7568 

that FA,m ( c )  has only one zero as X + 1- . Thus, since we are talring X = 0.99, there 

is only one equilibrium in the invariant region D : -1 - 01 < X A  5 xs < 1 + 02 = 
7 

D : -2 < X A  5 xr, < 2.5. In light of this, we deduce that ( x ~ ~ ,  xZ2)  is globaUy 



asymptotically stable. Thus, follon-ing the Icushner-Clark theorem [l]: ive conclude 

that the algonthm converges urpl to (12i 1 2 2 )  - 

4.2.3 Numericd Simulations 

In a manner similar to Chapter 2, it may be shown that the invariant region for 

(4.2) is given by D : - 1 - 01 < X A  5 XB < 1 + 0 2 .  Figs 4.4-4.5 show simulations 

of c ( t )  for specified parameter values and initial conditions. In a,ll the plots, we set 

al = 1.0, a;! = 1.5, and y, = (n  + IO)-", where a = 0.25. The free mriables are A 

and the initial condition (xa(0), xB(0)) Note that 105 iteratioas of the algorithm 

are performed. and that only one "nui" is shown. -4 different sequence {q,) is used 

for each simulation of the algorithm. In Fig 4.4, when X = 0.1. the associated ODE 

has only one stable equilibrium, and thus, in accordance with the Kushner-Clark 

theorem [l], we expect the algorithm to converge w p l  to ( ~ 3 ~ ~  x ~ ~ ) -  On the other 

hand, when X = 0.03, a S-N bifurcation has occurred, leading to the emergence of 

a second stable equilibrium, viz. (xl i ,  2 4 .  In this case, as has been previously 

pointed out in Chapter 2, the Kushner-Clark theorem is not applicable. 

The numerics suggest that, for X 5 0.03, Ljung's algorithm converges, with a 

relatively high frequency, to ( x ~ ~ ,  x ~ ~ )  - Note that, because (xil, x12) and (~31 ,  ~ 3 2 )  

are in relative proximity, the algorithm is likely to oscillate between the two equilib- 

ria, until y, is sufliciently small. This is why we need a comparatively high number 

of iterations, i.e. IO', in this example. 

Finally. we track the evolution (inside D) of a unit mass, as outlined in the algo- 

rithm introduced in Chapter 2. We use the same parameters and initial conditions 



Figure 4.4: typical t h e  histories of c (n ) ,  with lefi: X = 0.1 right: X = 0.03. In 
both cases, (xa(0), x B  (O) )  = (-0.1,O.l). 

as in Figs 4-4-45 The invariant region is discretised into npts x n p t s  cells, where 

npts = 100. Then, 1000 iterations of the algorithm are performed. The results of 

these s i d a t i o n s  are shown in Figs 4.6-4.7. 

For the case X = 0.03, the numerics suggest that, given q (re4 (0). r~ ( O ) )  E D. 

Ljung's algorithm converges, with a relatively high frequency, to the stable equi- 

librium point (-1.2347, -0.4254)- These simdation results also suggest that the 

density of mass surrounding each of the tnTo stable equilibria is almost independent  

of the grid point used to initialise the algorithm. 



CH-4PTER 4. SOME GENER4L ISATIOXS OF LJtrATG 'S PROBLEM 147 

Figure 4.5: typical tirne histories of c ( n ) .  ~ i t h  ieft: (+*(O), x s ( 0 ) )  = 
(-1.2347. -0.4254) right: (XA (O), ~ ~ ( 0 ) )  = (-0-99S3,1.0791). In both cases, 
X = 0.03. 

4.2.4 Degeneracy at X =1 

\?%en X = 1, the pdf given in (4.1) degenerates to 

This is illustrated in Fig 4.8 (lef t) .  As usud, we se& to determine the long-term 

behaviour of Ljung's algorithm, and hence c ( t ) .  First. we obtain the associated 

system of ODES, viz.: 



Figure 4.6: Grid points in D whose associated masses are greater than F = 0.001 
afier 1000 iterations of the algorithm described in Chapter 2, with le& X = 0.1, 
and right: A = 0.03. In both cases, the unit mass is initialised at the grid point 
(-O*l9 0.1). 

Simplifying this system of ODES yields 



Figure 4.1: Grid points in D whose associated masses are greater than T = 0.001 
&ter 1000 iterations of the algoxithm, with X = 0.03. The unit mass is ini- 
tiâlised at the point le& (xA, xB) = (-1.2347, -0.4254), and right: ( x A ,  xB) = 
(-0.9983,1.0791). 

and 



Figure 4.8: lefi: pdf with A = 1 right: Plot of phase space of the associated system 
of ODES, with X = 1, showing the continuum of equilibrium points. as described in 
the tex-- 

For c 3 1 + 02. we obtain the system 

which consists of a line of equilibria given by ( Z A Y  f ~ )  = (1. k). where k > 1 + 20, .  

Thus. the classifier converges to the classification rule f = + $. Recalling that 

the invariant region is given by D : 1 - 0 2  < x a  5 X B  < I + 0 2 ,  we deduce that 

(1, k) E D only if 1 < k < 1 + 02. It is clear that an unusual bifurcation has 

occurred, resulting in the emergence of a continuum of equilibria, all lying on the 

line X A  = 1. This degeneracy of the  classifier is shown in Fig 4.6 (r ight) .  Once 

again, this signals a breakdomm of Ljung's classification model. Similar behaviour 

may also be observed for the parameter value X = 0. 
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4.3 The "double Gaussian" pdf 

Suppose that the input signals. to Le presented to Ljung's algorithm, are distributed 

according to the pdf 

where f1 and f i  are normalised Gaussians centred about -1 and l? with variances 

al and 0 2  respectively. That is, 

where ul,  u2 E IR'. For the parameter values ul = o2 = 0.1 and A = 0.3, the pdf 

defined by (4.12) is depicted in Fig 4.9. As usud, we obtain the following system 

of ODES: 

This system has the equilibrium point implicitly given by 



Figure 4.9: Double Gaussian pdf with ol = 02 = 0.1' and X = 0.3 

where ë dg O.J(ZA + E B ) >  and 

Furthmore, linearisation of (4.14) yields the Jacobian matrix 
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To simpli- (4.17). w e  need to approximate the integrals Jc, f x , o ( x ) d r  and 

Jc* fA,,(x)dx. To this end, we shall begin by focussing on the limiting case 01 : 0 2  + 

O+. Note that, in this case, the two component Gaussians are tightly packed about 

their respective means, and we s h d  see they behave like the two separated com- 

ponent triangles in Chapter 2. Note also that when oi and 0 2  are large, it is not 

possible to perform analytic approximations of the above integrah. Non-, for 01, c2 

arbitrarily small, there are three cases to consider, viz.: 

Ü. c > l ,  and 

These cases describe three different regions of the (xa, xs) phase space, as illus- 

trated in Fig 4.10. 

Case i 

Employing (4.12), we have that 

Let 



CASE üi 

- - CASE u 

Figure 4.10: The three regions of phase 
discussed in the test. 

space corresponding to the t h e  cases, as 

Using the change of variables u = .2, and keeping in mind that -1 5 c 5 1, 

we get that 

2 s  u2 Furthemore, using the change of variables s = i;+ris, we obtain 



2 
Finallu. letting y = $ (y) s in (4.19) gives 

In view of this, we conclude that 

r1 ( c )  - al 6 . 
Similarly, it may be shown that 

since c - 1 < 0. Hence, we have that 



By the same token, it may be sliown that 

New. it may be shoihm that, for cl, + O+ and -1 < c < 1, (4.14) yields 

giving the equilibrium point (-1,l) whose components are the means of the two 

Gaussians constituting the pdf fx,- Furthemore, the Jacobian rnatrix associated 

with (4.14), and evaluated at (-Ill), is given by 

which is similar to (4.24). Thus, (-1,l) is asymptotically stable and yields the das- 

sification d e  E = O. We condude that, for 01, 0 2  + 0' and -1 < c < 1, the 
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system of ODES in (4.14) dways possesses a locally asyrnptoticallg stable equilib- 

rium point. viz. ( - 1 )  This is similar to the result obtained in Chapter 2. for 

the doubly-triangular pdf. There? Ive "recovered7 the means (of the component 

triangdar distributions) -2 and 2. Note that. as 0,' uz + OC. the two Gaussians 

making up the pdfdegenerate to two Dirac distributions located at -1 and 1. 

Case ii 

ilfter p e r f o d n g  the usual sequence of "operationsc (see Case i) on (4.18), let 

-2 4 2  

and &(c) dg u2\/2~% e - u 2 d ~ .  Similar to Case i, it may be shown that, as 
-2 d2 

4 1 ~ 0 2  + Of, II(c) - 0 1 6 ,  Iz(c)  - o 2 6 !  &(c) + 0, and &(c) + O. In 

view of these asymptotic expansions, we have that, for ol, 02 + O+', 

and 

which implies that 



CH-4PTER 4. SOME GE-YER-1LIS-4TIOA7S OF L JL:YG 'S PRO B LEAI 15s 

Thus, the linearisation of (4-14) beconies 

which h a  infinitely many neutrally stable equilibria of the fonn (O, k), where k is 

limited by the fact that C = > 1. 

Case iii 

It can be shown, in a manner similar to the two preceding cases, that (as 0 1 , ~ ~  + 

0') J", f ~ , , ( x ) d ~  + O and IC fAa(x)dx 1 . Thus, (4.17) gives 

which implies that 

This gives the linearisation of (4.14) 

which has infinitely many neutrally stable equilibria of the form (k, O) ,  where k < 

-2. 



Summary of the three cases 

W e  recall that the foregoing analysis, of the systern of ODEs given in (4.14). is valid 

only for the limiting .case al, a2 + O+. 

Case i 

The lùiearisation of (4.14) always possesses a locally asymp totically stable equilib- 

r i w ,  viz- (-1,l). 

Case ii 

The linearisation of (4.14) has infinitely mmy neutrally stable equilibria of the form 

(O, k). where k > 2. 

Case iii 

The linearisation of (4.14) has iafinitely many neutrally stable equilibria of the form 

(b ,  O) ,  where k < -2. 

4.3.1 Stability and bifurcation analysis of the associated 

system of ODEs 

From (4.15), define the function 
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w k r e  P(c)  and Q ( c )  are as definecl iii (4.16). The ecpilibria of (4.14) may be 

computed by finding the zeros C of the numerator 

and then applying (4.15). Some computer-generated plots of &(c) versus c, for 

various parameter values. are s h o n  in Figs 4.11-4.12 (lep). 

Figure 4.11: FA,,(c) with le& X = 0.5, and right: X = 0.993. In both cases, 
0 1  = 6 2  = 0-1. 

As before, the numetics suggest that the qualitative behaviour of the zeros 

of FA,,(c) is dependent on the parameters cri, 02, and A. When X = 0.5 and 

al = 0 2  = 0.1, FA,,(c) has only one zero at El = O. From (4.15), the corresponding 

equilibrium point, which is globdy asymptotically stable, is (-1,l) . Numerically, 

at A = 0.993, a S-N bifurcation occurs. In other words, a new zero appears, at 
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Figure 4.12: le@ FA,=(c) with X = 0.998, al = 0 2  = 0.1 nght: Bifurcation of zeros 
of FA,(c) with 01 = 0 2  = 0.1 

- 
q~ -0.911. -4s X increases, this zero branches to yield two zeros, viz. {E2 ? ë3}. 

This is depicted in the bifurcation diagram Fig 4.12 (hght), which is generated in 

exactly the same way as before. 

At X = 0.998, we have that {ë2, ë3} = (-0.790, -0.988). The corresponding 

equilibria, one stable and the other a saddle point, may be computed fiom (4.13). 

In new of the Kushner-Clark theorem [l], for fixed 01 = Q = 0.1 and for A < 0.99, 

it follows that the discrete system converges wpl to ( -1 , l ) .  We now focus on the 

case A > 0.99. 

Consider the case X = 0.998, which is illustrated in Fig 4.12 (Zeft). The equi- 

libria are (zl1, xi2) = (-1 1 )  ( x ,  x = (-1.004, -0.575), and ( ~ 3 ~ ~  ~ 3 ~ )  = 

(-1.073, -O.904), with eigendues {-0.9980, -0.0020), {-0.9360,0.0294), and 



{ -O.5060. -0.1612). respectivef!= The corresponding eigenvectors are { ( ::::O: ) - 
( :::::: ) }, { ( -0.0-2S4 0*99s8 ) ( 0.99SS ) }, ancl { ( -0.60Sl ) , (i:::: ) } - 

From this, nre conclude that (ql, t12) and ( x ~ ~ ,  xz2)  are locdy  asppto t icdy  sta- 

ble, while ( ~ ~ ~ ~ 1 ~ ~ )  is a saddle point. As usud. the issue is what the long-term 

behaviour of the algorithm is going to be, given the existence of two "competing" 

stable equili bria. To address this problern. the following numerical experiment s are 

perfonned: 

b- The usual simulation of a unit Dirac mass initialised at some arbitrary grid 

point in I) : -1.209 < za 5 ts c 1.201. 

4.3 -2 Numerical Simulations 

Figs 4.13-4.14 below show various plots of c(n)  versus n, for some prescribed 

parameter values. In all the plots, the leamhg parameter used is of the form 

T~ = (R + with a = 0.15. In each case, five dinerent runs of the algorithm 

are performed. 

The simulation results suggest that, with a relatively high frequency, the dis- 

crete algorithm converges to the equilibrium point (-1,l). It is interesting to 

note that, from Fig 4.13 (right), initialising the algorithm at the stable equilibrium 

(-1.0'73, -0.904) still leads to convergence to (-1,1). Note that for the parameters 
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Figure 4.13: time histories of , with left: ( x ~ ( 0 ) ,  x B ( 0 ) )  = 
(-0.9999999998,0.9999999) right: ( x A ( O ) ,  XB(W - - 
(-1.072578826, -0.9043046980). In both cases, X = 0.998 and 01 = 0 2  = 0.1. 

used in Fig 4.14 (tight), the system of ODEs given in (4.14) has only one globally 

asymptotically stable equilibrium, at ( - 1,l). 
Finally, we simulate a unit mass inside D : -1 -209 < xl 5 xs < 1.201. The 

simulation results for this experiment are shown in Figs 4.164.16. Note that when 

X = 0.5 (ol = c2 = 0.1), the system of ODEs (4.14) has exact- one globally asymp 

totically stable equilibrium. This fact is reflected in Figs 4.14 (right) and 4.15 (left). 

Furthemore, it is interesting to observe that initialising the algorithm at the stable 

equiIibrium (-1.0726, -0.9043) does not guarantee that it will remain there for all 

tirne. In fact, the simulations suggest that there is a reasonably high probability 

that, with this stable point used to initialise the algorithm, the algorithm converges 

to the equilibrium (-1,l). This is borne out by Figs 4.16 (left) and 4.13 (right). 

We dso mention that, for the double Gaussian pdf, the algorithm was implemented 

by f i n h g  a polynomial fit to the pdf, which is then used to compute the associated 

cumulative dis tribution function. This approach helps optimise the nintime of the 



Figure 4.14: time histories of G, with left: A = 0.998 and ol = 0 2  = 0.1 
n'ght: X = 0.5 and pl = 02 = 0.25. In both cases, (xa(0), x g ( 0 ) )  = (-3.00,2.99). 

algorit hm. 

Figure 4.15: Grid points in D whose associated masses are greater than 7 = 0.001 
after 1000 iterations of the algorith, with Le& X = 0.5, and right: X = 0.998. In 
both cases, the unit mass is initialised at the point ( x A ,  xg ) = (-1.0,1.0). 



Figure 4.16: Grid points in D whose associated masses are greater than ? = 0.001 
after 1000 iterations of the algorithm, with the unit mass initialised at the point 
le& (sa, x a )  = (-1.073, -0.904), and right: (xa, xB) = (-O.l,0.1). In both cases, 
X = 0.998. 

4.4 Closing remarks 

It is interesting to note that, in situations where the pdf consists of overiapping 

components, the extra stable fked point becomes quite significant, viz. the 'like- 

lihood' of the algorithm converging to the 'wrong' classifier seems to significantly 

increase. This observation is partly accounted for by the fact that the 'basins of at- 

traction' (in discrete space) of the fixed points of the associated ODE overlap and 

the fked points themselves are in relative prodsimity. As a resdt, the algorithm 

tends to oscillate between the fixed points, and t a e s  longer to settle down to just 

one of them. 



Chapter 5 

Conclusion and Future Research 

Directions 

Throughout this thesis, we have strongly emphasized the importance of both an- 

alytical and numerical approaches in addressing the problem under consideration. 

This interplay between theory and numerics is not only crucial, but is also the only 

hope for adequately tachrling this problem. Needless to sa): there are certain areas 

of this problem where analytic work done is almost impossible. In the same vein, 

there are a lot of instances where numerical work by itself is insufficient . 

We have made a couple of sigdicant contributions to the understanding of 

this problem. Apart from denning an appropriate space q ( ~ )  for densities (see 

Chapter 3), we have also been able to sharpen and articulate some existing ideas 

about the possible use of the notion of stationaq density in the analysis of random 

algorithms of the type considexed in the thesis. The main problem encountered in 

this endeavour stems from the computational aspects of the exercise. Essentially, 



CHAPTER 5- CONCL USION AND FUTURE RESE.4RCH DIRECTIOXS IGI 

-- - 
tve found that computing the iterates P,P,-le.-Pl f of the perturbed Frobenius- 

Perron operator (see Chapter 3, section 3.7) presents some serious numerical dif- 

ficulties, mainly because it involves the computation of iterated integrals of in- 

creasing complexïty. Compounded with this, the way the learning parameter 7, 
-- - 

is defined renders the convergence of P, P,-I...Pl f, as n + oo, painfdly slow. 

Clearly2 a potential problem for further investigation is the ef icient  computation 
-- - 

of li-+, PnPn,l---Pl f - 
However, in spite of the aforementioned Wculties, we did obtain some indica- 

tions, depending on the amplitude of {b},  that the stationary density of {x , ) :?~  

consists of Dirac distributions located at the stable equilibria of the associated ODE. 

Furthemore, we obt ained indications that working with linearised algorithms gives 

the same local stationary densities (in the neighbourhoods of the stable equilib- 

ria of the associated ODE) as when one looks at the fiill nonlinear algorithms. 

Encouraging as this might be, it must be pointed out that formulating the anal- 

ysis of the sequence of densities {fn}r=P,, in the metric space (D;(-Y). d-# ) still 
D+ 

remains a tremendously daunting problem. It is interesting to note that, even 
-- - 

after l i ~ , ,  P, Pn-i ... Pl f has been computed, it is stiil a challenging problem 

determining what the probability of convergence (of the discrete system) to any 

particular one of the myriad of locally stable equilibria of the associated ODE is, 

especidy if the stationary density consists of Dirac distributions positioned at these 

stable equilibria. 

We have also developed a cornputer algorithm (see Chapter 2) that crudely 

quantifies the probability of the discrete algorithm converging to a stable equilib- 



rium of the associated ODE. in the case when the latter has multiple locally stable 

equilibria. It must be emphasized that this algorithm is limited by the fact that 

ody those values of iterates (of the Dirac mass) that are greater than some arbi- 

t raq  (threshold) value are considered. This clearly implies that the "probability" 

so calculated can o d y  be a very crude estimate of the true value. 

In Chapter 3, we proved the completeness of the metric space (n+ (-Y) , d- ) . *+ 
Furthemore, for the linear map S ( x )  = ax,  a E- (0,1), 1~7e showed that the as- 

sociated Frobenius-Perron operator P is contractive in (Di (X) , d- ). The open 
D + 

challenge is to show that the nonlinear opeator F,, of Section 3.7, is contractive 

in this metric space as well. In Chapter 3, we studied densities of algorithms of the 

f orm 

rhere Sn (zn) %' zn + ̂ In h(xn)  These algorithms are more general than those 

considered by hlackey and Lasota [5] ,  viz. 

where S(-) is not explicitly dependent on n. -4s a result, our proof of Theorem 

3.6 in Section 3.6 is new - it is more general than that of Mackey and Lasota 

[5]. In addition, in Chapter 3, we improved Chung's result (see Theorem 3.1) by 

establishing a tighter bound on the parameter r .  

Finally, it m u t  be noted that, throughout this thesis, we have assumed {&) 

to be a sequence of i.i.d. randorn variables. This assumption does s impw some 
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potentially 'murky' conceptual and computational territory (see Chapter 3).  Y I ever- 

theless, it is interesting to ask how realistic this assumption is? a n c l  to also explore 

situations where it fails outrightly. Certainly. it is true that. in the majorit- of 

applications, this assumption does not hold. 
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