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Abstract

Stochastic approximation is concerned with characterisation of the long term be-
haviour of recursive random algorithms. For example, does the aclgorithm converge
to a unique fized point. for all initial points? This problem is well-understood. via
the Ivushner-Clark theorem. only if the so-called associated ordinary differential
equation (ODE) has exactly one locally asymptotically stable equilibrium point. In
this case. it is known that. under some fairly reasonable assumptions. the random
algorithm converges. with probability one, to the equilibrium point of the ODE.
However. if the ODE has multiple locally asymptotically stable equilibria, not much
is currently known about convergence of the algorithm to any specific one of these
equilibria. The primary objective of the thesis is the investigation of this prob-
lem, both qualitatively and quantitatively. We study random fields generated by
discrete algorithms. and then draw relationships between dynamics on the contin-
uous (associated ODE) and discrete phase spaces. A novel computer algorithm,
which estimates probabilities of convergence of a simple discrete system to particu-
lar stable equilibria of the ODE, is introduced. Simulation results suggest that the
probabilities so estimated are almost independent of the initialisation of the dis-
crete system. We reformulate the analysis of evolution of densities of algorithms,
under the action of the Frobenius-Perron operator, on a new space, i.e. the space
of normalised positive distributions. Endowed with a suitable metric. it is shown

that the resulting metric space is complete.
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Chapter 1

Preliminaries and Motivation

1.1 Introduction

Counsider a recursive random algorithm of the form
Wnt1 = Wn + 7nh(wn7 :Bn) y (11)

where the w,’s and z,’s are in R (the generalisation to vectors in IR” is straight-
forward), {v.} is a sequence of positive decreasing-to-zero real numbers such that
ShYn =00, h: R xIR — R is a continuous function, and {z,} is a sequence of

random variables that are distributed according to some given law. We may write

Wpy1 = Wn+ 'Yﬂi"(wn) + 'Yn[h(wm Zn) — E(wn)]

= W+ '71177'(wn) + 7"611 ’ (12)
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where

k(=) = E{h(z.zn) | Zo. -+ .Tn_1] - (1.3)

for - € R. The main objective of this thesis is the characterisation of the long term
behaviour of the {w,} sequence, in the case when the so-called associated ODE (see
[1] and [2] for details)

i = h(zx)

corresponding to (1.1) has multiple locally asymptotically stable equilibria. For
example, does {w,}32, converge to a fized point? This is a classic stochastic ap-
prozimation problem. Stochastic approximation finds application in a wide variety
of problems arising in engineering, science. and economics. for example. The pri-
mary application of the type of problem addressed in this thesis is in the area of
unsupervised artificial neural learning. Neural learning is a process of updating the
free parameters of a network of neurons in order to achieve specific desired design
objectives. Unsupervised learning is that paradigm of neural learning where there
is no external critic to supervise the learning process. In the framework of neural
networks, (1.1) is interpreted as follows. The {w,}3%, sequence denotes iterates of
a network weight, z,, is an input received at time n, which causes w, to be updated
to take account of new information. The randomness of inputs is a result of con-
tamination by external noise signals. The 7, serve as ‘training parameters’ that
modulate the correction terms. The requirement that ‘7-,, — 0 as n = oo reflects
the desire to gradually “phase out” the corrections in order to ensure convergence
of the algorithm. The condition that 3_, 7. = oo is to ensure that the algorithm

does not converge prematurely, i.e. that it converges to the “right” point or set.
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Over the years, the area of stochastic approximation has received a lot of atten-
tion from a myriad of researchers. Arguably, the seminal publication in this area
was authored by Robbins and Monro, in 1951 (see [7] for details). The essence
of the so-called Robbins-Monro procedure for dosage is outlined below. For each
dosage 6 of some chemical product, you make an experiment that delivers some ef-
fect X depending on §. In other words, X is a random variable whose distribution
depends on 6. The issue is to determine the value of & for which the mean effect
is a, viz. E[X | §] = a. The Robbins-Monro procedure consists of conducting a

series of experiments with changing values of 8 according to
Ons1 = 00 + 'Yn(a - xn+1) ) (1.4)

where z,4; is the result of the experiment made with #,. One can prove that,
under some reasonable assumptions, 8, converges to the desired solution (see [1]
for details).

In 1968, Fabian [18] proved the asymptotic normality of stochastic approxima-

tion algorithms of the form
Un-{-—l = (I__ n"'arn)Un + n-—O.S(a-i-E)@ﬂv; + n—a—-O.SﬁTn ,

where U,, Vi, T, € R*, T, &, € R*** and o, f € R. The V,’s are random
vectors, and hence so are the U,’s. Fabian showed that, under some conditions,
the asymptotic distribution of ngU,1 is normal with a mean p and a covariance

matrix M. To this end, he characterised the asymptotics of {U,} by describing the
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asymptotics of its mean E[[,,] and covariance matrix E[{,{7], where

Uper = (I =0 °A)0, + 077V, ,

U, = (n— l)gUn, and A is a constant k£ x k diagonal matrix.

Another landmark paper in this area was published in 1977, by Ljung [2].
He considered a class of algorithms which includes stochastic approximation al-
gorithms, recursive identification algorithms, and algorithms for adaptive control
of linear systems. This paper was the first to attempt to characterise the limits of
sequences {w,}52, in equation (1.1) by studying ODEs which were approximately
satisfied by the asymptotic part of a natural continuous parameter interpolation of
{wn}2,- The method used is very technical and complicated. In 1978, Kushner
and Clark [1] achieved what [2] had achieved earlier, using a relatively less cum-
bersome method. The technique pioneered by Ljung is nowadays referred to as the
ODE method, and constitutes a central part of this thesis. The work of [1] and
[2] led to the birth of a celebrated theorem on the convergence of {w,}3%,, the
so-called Kushner-Clark theorem. The general idea behind this theorem is that,
under some conditions, it is possible to derive an autonomous deterministic ODE
that is associated with a given learning algorithm (which is, usually, in the form
of a non-autonomous random difference equation). This association is in the sense
that the asymptotic paths of the ODE and the algorithm are close with a large
probability and, eventually, the solution of the algorithm tends, with probability
one (wpl in short), to a uniformly asymptotically stable solution of the ODE. This

ability to associate a deterministic autonomous ODE to the asymptotic part of the
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difference equation, even when the latter has additive (or other) noise, is subtle and

very useful in applications.

Essentially, the Kushner-Clark theorem establishes that if the associated OQDE
& = h(z) (1.5)

corresponding to the random algorithm (1.1) has exactly one asymptotically stable
equilibrium point Z, then, under some fairly reasonable assumptions (see Section
1.4), wp, B  as n — co. However, if (1.5) possesses multiple locally asymptotically
stable equilibria, nothing is currently known about the convergence of {w,} to a
specific element of the set {z| 2(z) = 0}. In fact, this is still an open problem in this
area. Since the pioneering work of Ljung, Kushner, and Clark in the late 1970’s,
there has been minimal progress made to date in tackling the above problem. This,
in part, is due to the almost intractability of the problem. In addition, because this
problem commonly arises in engineering applications, many researchers have been
more focussed on the “practicality” of stochastic approximation algorithms rather
than in a more mathematically rigorous treatment of the problem.

Since the emergence of the Kushner-Clark theorem, only a few papers have
appeared, specifically targetting the problem mentioned above. In 1996, Fort and
Pages [8] established and proved a theorem that allowed them to transfer the con-
vergence of solutions of the associated ODE to {w,} ,, if the ODE has no pseudo-
cycle. The latter include bona fide periodic orbits as well as isolated equilibria.
Their approach is primarily a development of the original proof of the Kushner-

Clark theorem. They made further assumptions on the ODE: continuity of h,
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convergence of every bounded maximal solution toward some zero of h, and finally,
a simple dynamics for the ODE (i.e. no pseudocycle). The proof of their theorem
amounts to proving that {w,}%, has only one limiting point in {z| k(z) = 0}. Fur-
thermore, they performed numerical simulations when the ODE does have pseudo-
cycles. Finally, if one of the elements of {z| h(z) = 0} is a saddle point Z, Fort and
Pagés have shown that the sequence {w,}32, will not converge to Z.

The main thrust of this thesis is the investigation of convergence of {w,}, if
the associated ODE has multiple locally asyvmptotically stable equilibria. We at-
tempt to characterise this convergence to specific elements of the set {z| h(z) = 0}.
The formal mathematical analysis will hinge on principles drawn mainly from the
areas of dvnamical svstems theory. probability theory. and stochastic processes. To
this end. both analytical and numerical approaches will be utilised. The organisa-

tion of the thesis is outlined below.

1.2 Thesis Organisation

In Section 1.3, we outline some key concepts and definitions that will be encoun-
tered throughout the thesis. Then, in the rest of this chapter, we introduce the
theory behind the notion of an associated ODE. To this end, we start off by stat-
ing the Kushner-Clark theorem. Then we elaborate the technical details behind
the derivation of the ODE. Next, we present some exa.zﬁples to illustrate how this
theory works and also to highlight the difficulty of characterising convergence of
{wn}2%, to a specific element of the set {z| 2(z) = 0}, particularly if the ODE

has more than one locally asymptotically stable equilibrium. We close the chapter
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with an introduction to the rudiments of artificial neural networks, particularly the
notion of learning and how it relates to the subject matter of this thesis.

Chapter 2 is a systematic study of the dynamical behaviour of Ljung’s automatic
classifier {2], which is essentially a two-dimensional discrete random algorithm. This
algorithm seeks to classify a one-dimensional set of data, and thus addresses a very
basic classification problem. We perform qualitative and quantitative analyses of
both the algorithm and its associated ODE, in the case when the latter has two
locally asymptotically stable equilibria. The underlying motivation is the desire
to characterise the relationship between dynamics on the discrete and continuous
phase spaces. In chapter 3, we introduce and investigate the notion of a stationary
density of the Frobenius-Perron operator associated with an algorithm, and how
this may be exploited to help understand the long term behaviour of {w,}32, if the
associated ODE has multiple locally asymptotically stable equilibria. We introduce
an appropriate space for the analysis of densities under iteration of the Frobenius-
Perron operator. We find stationary densities for both linear and nonlinear random
algorithms, the stationary densities for the latter being “determined” numerically.
We emphasize that this chapter is motivated and strongly influenced by the work
of [20], [3], and [5].

Chapter 4 investigates some generalisations of Ljung’s doubly-triangular pdf.
Essentially, we consider pdfs whose underlying components are overlapping. We
then derive and analyse the associated system of ODEs. We close the chapter
by performing the usual (akin to Chapter 2) simulations. Finally, Chapter 5 is a

summary and conclusion of our work. In addition, we give a brief description of
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possible future research directions.

1.3 Some Basic Definitions

In this section. we give definitions of some essential concepts that will be encoun-

tered throughout the thesis.

Definition 1.1 A sequence of continuous functions {fo}, fn: I — R¥*, is said to

be equicontinuous on [ if, for each € > 0, there is a § > 0 such that for all t;,t2 € I
[|fn(t1) — fa(t2)|| < € whenever |t —i2| <6,

for all n, and where || - || denotes the Euclidean norm.

Definition 1.2 A sequence {fn}, fan: 1 — R *, is said to be uniformly bounded if

there ezists an M > 0 such that
I <M, forallt €l and alln.

The following result is the well-known Arzeld-Ascoli theorem [25]:

Theorem 1.1 If {g.}, g : I = R*, is a uniformly bounded and equicontinuous
sequence of functions, then there ezists a subsequence which converges uniformly on

I.

Definition 1.3 Consider a sequence of random variables, {X,.}, defined on a prob-

ability space (Q, F,P). We say that X,, converges to X with probability one (w.p.1)
n—oc

if P(B) =0, where B = {w| Xa(w) A X(w)}.
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Let (Q2,F,P) be a finite probability space and D; < D, < --- < D, a sequence

of decompositions.

Definition 1.4 A sequence of random variables &, ---,&, is called a martingale

(with respect to the decomposition D; < D, < --- <D, ) if
1. & is Di-measurable,
2. E(§41|Dx) =&, 1 <k <n-—-1.

Consider a system of ODEs given by
z= f(tvz) ’ (t,l’) € ]R'I X IR" H m(to) =29, (tDaxO) € U ) (E)

where f: U - R", with U an open set in R' x R™. Assume that (E) possesses
an isolated equilibrium at the origin. In other words, f(¢,0) = 0 for all ¢ > 0.
Furthermore, suppose that ¢é(¢,%0,Zo0) is a unique solution of (E) which depends

continuously on the initial data (¢g, zo)-

Definition 1.5 The equilibrium = = 0 of (E) is stable if, for every € > 0 and any

to € R ¥, there exists a §(e,to) > 0 such that
|(t,to, zo)| < € for all t > tg

whenever

o] < &(e, o) -

Definition 1.6 The equilibrium = =0 of (E) is locally asymptotically stable if



CHAPTER 1. PRELIMINARIES AND MOTIVATION 10

1. it 1s stable. and

2. for every to > 0, there ezists an n(tys) > 0 such that
!]irI?o @(t’ t01 J:0) =0

whenever |zo| < 7.

Definition 1.7 The set of all zo € R" such that ¢(t.tg,z0) = 0 as t — co for

some to > 0 is called the domain of attraction of the equilibrium z = 0 of (E).

1.4 The Main Theorem

Theorem 1.2 Let {w(n)} de given by
w(n + 1) = w(n) + v(n)h[w(n),x(n)}, n=20,1,--- (1.6)

where n denotes the iteration number, {w(n)} is a sequence of vectors in R" that
are the object of interest, and x(n) € R" is an input vector received at time n ,
which causes w(n) to be updated to take account of new information. Assume that

(1.6) satisfies the following set of conditions:

i. {v(n)} is a decreasing sequence of positive real numbers, such that

(0) Y (n)=oo,and

n=1

() ~v(n) =0 as n—o0. (1.7)
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7. The sequence of vectors {w(n)} is bounded wpl.
#i. h(-,-) ts a continuous R "-valued function on R" x R".

w. The conditional ezpectation (see [1]) defined by
h(z) = E[h(z,x(n)) | x(0),---,x(n ~ 1)], (1.8)

where z € R is a reqular (i.e. non-random) variable. ezists. The statisti-
cal ezpectation is taken with respect to x(n), under the assumption that the

probability density function (pdf) of the random variable x(n) s known.

v. Assume that

lim Plsup | S 9(€G) 12 ¢} =0, (1.9)

for each € > 0, and where {£(2)} is a sequence of R "-valued random variables

defined by

w(n+1) = w(n)+y()h[w(n)]+v(n){k[w(n),x(n)] — hlw(n)]}

= w(n) + 7AW (n)] + ¥(n)E(n) - (1.10)

Then, {w(n)} converges to a solution of the system of ODEs

dzgt) — R(2(%)), (1.11)

where t denotes continuous time, and z € R".



CHAPTER 1. PRELIMINARIES AND MOTIVATION 12

The followring eztra condition specifies criteria which ensure the convergence of

{w(n)} to a particular solution of (1.11).

vi. Let zg be a locally asymptotically stable equilibrium solution to (1.11}. with
domain of attraction DA(zp). If there is a compact set A C DA(zg) such that

w(n) € A infinitely often, then

w(n) =>2zo wpl, as n — oc.

Note: By “infinitely often”, we mean that there erists an infinite sequence of

integers {n;}2,, ni < Nis1, t 2 1, such that w(n) € A for all 7.
Remarks on the noise condition (v)
Equation (1.10) may be rewritten as

w(n + 1) — w(n)
v(n)

= h[w(n)] +&(n), n >0,

which resembles the well-known Euler difference scheme for approximating solutions
of ODEs. Thus, if £(n) is suitably constrained, we expect {w(n)} to converge (wpl)
to a particular solution of the system of ODEs given by (1.11). The condition
given by (1.9) is not usually straightforward to verify in most practical applica-
tions. However, it may be shown to hold under the following conditions [1], viz.

{2, 7(7)€(7)} is 2 martingale sequence, and

Y~ 4P(i) < oo for some p > 1. (1.12)
=0
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Remarks on conditional expectation

The conditional expectation in (1.8) is taken with respect to x(n), since the values
{x(0),---,x(n — 1)} are given. From (1.6), this implies that {w(1),---,w(n)} is

known. Replacing z by w(n) leads to
R(w(n)) = Elh(w(n),x(n)) | x(0), -+, x(n — 1)],

where the conditional expectation is still with respect to x(n). Note that w(0) is
given in most practical implementations of (1.6). Usually, it is randomly picked
(for symmetry-breaking purposes) from a predetermined set. Finally, note that if
{z(n)} is a sequence of independent, identically distributed (i.i.d. for short) random

variables, then the conditioning is redundant, i.e. we have that

h(w(n)) = E[h(w(n),x(n))] -

1.5 Derivation of the associated ODE

The basic goal of stochastic approximation, using ODE and compactness methods,
is to investigate the asymptotic properties of the sequence {w(n)}, and to relate
them to properties of the associated ODE. In order to do this, we need to interpo-
late {w(n)} and {3 ,~v(?)é(3)} into continuous time processes. Then, we define
sequences of left shifts which bring the asymptotic parts of these two sequences to
a neighbourhood of the time origin [1].

Define the piecewise linear interpolations, w°(.) and M°(.), of {w(n)} and
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{r) +(0)E(4)}. respectively:

wi(t,) = w(n), and

wo(t) = (—t"—‘";—(lrl")—t)w(n)+(t7?nt)")w(n+1), t € [tnrtasr)»  (1.13)
where t, 2 S0 y(i), to = 0.

M(ta) = gv(i)é(i), and

M°(t) = &-;‘E—)—l M°(t,) + ())z\4°(t,,+1 t € [tnytngr) - (1.14)

Next. define the corresponding piecewise constant right continuous interpolations:

w’(t) = w°(¢t,), and

MOt) = M%), (1.15)

for t € [tn.tns1). Equation (1.13) implies that

wot) = i = Do Eo b)) 4y (m)h(w(n)) + v(n)é(n)]
v(n) v(n)
= w(n)+ (t —ta)R(W(n)) + (¢ ~ ta)€(n) - (1.16)

From (1.10), we have that

w(n) = w(n —1)+7(n—=1)k(w(n —1)) +v(n — 1){(n - 1)
n—1 n—l1

= w(0)+ > v(Dh(w(@)) + X v(2)EE) - (1.17)

1=0 1=0
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Substituting (1.17) into (1.16) gives

wi(t) = w(0) + 3 v(ER(W(k)) + S A(R)EE) + (£ — ta)h(w(n)) +
k=0 k=0

(t - tn)é(n)
= w(0) + [ B(®O(s)ds + 3 1RIECK) + (¢~ ta)e(r),  (118)
k=0

where

[ R(s))ds = 3= ARIRW(R) + (¢ — ta)h(w(n)) (1.19)

Y k=20

From (1.14), note that
MO(t) = M°(ta) + (t — ta)é(n) -
Therefore (1.18) may be rewritten as
wo(t) = w(0) + [ *R(WO(s))ds + MO(2) . (1.20)

To get our sequence of left shifts, define the functions w™(.) and M"(.) on (—o0, o)
by:

w0 —tn
w(0) , t< —t,

and

(1.22)

MOt +t,) — M°(t,) , t= —tn
M™(t) =
_MO(t") ) i< —'tn
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Using (1.20), equation (1.21) becomes (for t > —t,,)

w'(t) = wo(t+tn)

= w(0)+ ‘/:Hn h(WO(s))ds + MPO(t + t,) .

From (1.17), we may write

w(0) = w(n) — 3 Y(REW(K) — 3 A(R)EC) »
k=0 =0

which is then substituted into (1.23) to give

tttn _ n—1 _
wi(t) = win)+ { L R snas - Zv(k)h(W(k))} +
k=0

[M°(t + ta) — M°(ta)]

16

(1.23)

tn _ n-1 _
= wi(n)+ { / T R(WO(s))ds — 3 v'(k)h(W(k))} + M"(t) . (1.24)

k=0

Noting that

/ T R (WO(s))ds = Ey(k)f—z(w(k)) + / R (w(s))ds
0 k=0 tn

equation (1.24) becomes

t4tn _ )
wi(t) = wm)+ [ RW(s))ds + M(1)

= w(n)+ 4[; h(W°(tn + s))ds + M™(2) .

(1.25)

Using (1.9), it can be shown that M"(¢) — 0 as n — oc, for fixed £. Also, it can
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be shown that the sequence {w™(.)} is equicontinuous and uniformly bounded on
each finite interval in (—o0, 00).
Thus, by the Arzela-Ascoli theorem, there exists a subsequence, also indexed

by n, and a continuous bounded function w(.) such that
w™(t) = w(t) as n = oo, (1.26)
uniformly on finite time intervals. We may rewrite (1.25) as

wh(t) = w™(0)+ /Otf’z(w“(tn +5))ds + M™(¢%)

= w"(0)+ /: E(w"(s))ds + M™(t) + e (t) (1.27)
where

e"(t) = ‘/()‘{E(Wo(tn +5)) — h(w"(s))}ds
= /t':*"n{]-t(v‘vo(u)) — R(wO(u))}du .

From this, it can be shown that e*(¢) — 0 as n — oco. From (1.26), it follows that
w®(0) = w(0) as n — oo.
Therefore, (1.27) implies that

w™(t) = w(0) + /Ot h(w(s))ds, as n ~ oo . (1.28)
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Finally, combining (1.26) and (1.28) yields
w(t) = w(0) +_/: h(w(s))ds ,
which gives
w(t) = h(w(t)), (1.29)

the sought-after ODE associated with (1.10). The proof of result (vi) of the main
theorem exploits the convergence of {w(n)} to a solution of (1.29), as detailed on

pages 42-43 of {1].

1.6 Some simple examples

1.6.1 Example 1

Consider the iteration formula [1]
Wntl = We + ¥ah(wWn), wa, ER , (1.30)

where it is assumed that {w, } is bounded, and that {v,} is a sequence of R *-valued
parameters satisfying condition (i) of the main theorem. The function A(.) is a
random variable whose probability density function is specified below. Furthermore,
let h;(.), 7 =1,2, be continuous bounded R -valued functions on IR, and let «f.)

be a continuous function on IR with values in [0,1]. Let the random variable h(wy),
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parameterised by w,, be defined by

P{h(wn) = h1(wn) | wo, -, wn} = a(wa),

P{h(wn) = ho(wn) | wo, -, wn} = 1—a(w,) . (1.31)

(Note that, in the spirit of the main theorem, algorithm (1.30) may be generalised
to R". Thatis, wn € R", h; :R" =+ R",7=1,2,and a: R — [0,1].)

Our goal is to investigate the long term behaviour of (1.30). Since this difference
equation has a random term, it is very difficult, if not outrightly impossible, to
obtain an approximation of its long term behaviour by direct techniques. We shall
use ODE and compactness methods, outlined in the previous section, to find an
associated deterministic autonomous ODE. Then, if all the conditions of the main
theorem are met, the ODE will have the same asymptotic properties as (1.30).

Define the following quantities:
h(w) = a(w)hi(w) + [ — a(w)]ha(w) , (1.32)

and

€n = h(wa) — h(w,) . (1.33)

Then, it is clear that E[, | wo,-~-,ws] =0 wpl. It can further be shown that,
since the h;(.) are bounded, var{¢,} is bounded uniformly in n.

Define the series
M, =3 7&. (1.34)

=0
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Then we have that

n—1

E[Mn I'LL’Q,"','LUn] = E[‘YngnIu’Oa"'s‘lun]'{'E[Z’ﬁéi lee"'swn]

=0

n—1
= YnE[fn | wo, - wn] + E[D_ viki | wo. - -, wn)

=0
n—1
= E[D 7| wo, -, wn)
=0
= E[Macy |wo, - wal , (1.35)
and
E|M,|<oo foreach n. (1.36)

We conclude that {M,} is a martingale sequence. Employing (1.32) and (1.33), we

may rewrite (1.30) as

Wil = W + Ynh(wn) + Ynubn - (1.37)
Now assume that
S yi<oo. (1.38)
=0

If {sm} is a martingale sequence, Doob’s inequality [1] states that

Elsml®

5 , foreach €>0. (1.39)
€

P{supm>o0 | sm [> €} < mh_ggo

Applying this to our problem yields

E|Yi, vkl

€2

P{supmza | 3_vi€i |2 €} <lim (1.40)

i=n
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The RHS of (1.40) may be manipulated to obtain

E{Xr. v|&l}

m 1~ V4
Iim E l Za:n 7151 l < lim

m—o0 €2 - m—aoo 62
;. — ’ y ’ E y
].i =n Zk_n Jezk “ §J H gk ]] ) (l. 11)

Furthermore, let the sequence {§} be such that there exists another sequence

{Re(7,k)} satisfying

E[l & Il & ] < Re(j, k) for all {j, k} , and that Y Re(j k) < oo. (1.42)

Jk

Employing (1.42) in (1.41) yields

RHS < lim S Loken Vit Re(7, k)
m—+oo 62

< L% lim [ max {v;w}] x i i Re(7, k)

2 . :
€ m=+0 jk=n..m j=nk=n

2 _ m m
- ’Yne-;l\« x mh.—Il?;lc Z Z Re(j,k), where n < N <m is fixed

j=n k=n
— 0 asn—oc. (1.43)
From (1.40), this implies that
P{supm>n | E‘y;& [>€e}—0 as n - oo (1.44)

i=n

Equation (1.44) holds for any € > 0 and for any realisation of {£;}. The interpreta-
tion of (1.44) is that, even though £; may not tend to zero as ¢ — oo, the sequence

of tails of the series 3_~ . v:£; does converge to zero as n — oc. This is a relatively
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strong condition on the sequence of random variables {&;}.

Finally, as in the previous section, define the piecewise linear interpolations
w®(.). M°(.), the piecewise constant interpolations ©°(.), M°(.), and the left shifts
w™(.), M"(.). Then, in exactly the same way as before, it can be shown that the
sequence {w”(.}} has a convergent subsequence in C(—o0,0c), and that all limits
satisfy

(t) = h(z),

the sought-after associated ODE.

1.6.2 Example 2: Numerical Simulations

Consider the two-dimensional Hebbian algorithm {12]

w(n +1) = w(n) + 7(n)y(n)[x(n) — w(r)u(n)] (1.45)

applied to a linear neuron, where u(n) = xT(n)w(n), y(n) = u(n), and w(n) =
[wi(n) wa(n)]T. The sequence of learning parameters, {7y(n)}, is defined as in the
previous example. Suppose that the neuron receives time-varying input signals
which are defined by

k;, with probability 0.5

x(n) = (1.46)
ko, with probability 0.5
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where k; and k, are given by

k 0.5 k —0.25
O R Land k| Y | = . (1.47)

k12 0.25 ka2 —-0.5

Hence, for x(n) = k;, we have that

wi(n+1) = wi(n)+y(n)knwi(n) + kpw(n)] x
(k11 — knwi(n) — kiawi(n)we(n)] ,
wa(n +1) = wa(n)+v(n)[kuwi(n) + kipwe(n)] x

[klg - kuwl (n)wg(n) - klgwg(n)] . (148)

Analogously, for x(n) = k;, we obtain

wi(n +1) wi(n) + y(n)[kawi(n) + kowa(n)] x

[kzl hand kglwf(n) - k22w1 (n)wz(n)] ,

wa(n+1) = wa(n) +(n)[kawi(n) + kaws(n)] x

(k22 — knwi(n)ws(n) — kppwi(n)] - (1.49)
Denoting z(t) = [z1(t) z2(t)]T, we obtain the associated system of ODEs

th
20 = L utt) - 20 Eti , (1.50)
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where
£1(t) = 0.5 21 st (karke; + kuikyy) ’
P2t 5i(t) (kazka; + Kioky;)
and

2 2
g2(t) = 0.5 { 3 zml(t)zi(t) kamka; + klmku]} .

m=1 y=1
Following (1.48) and (1.49), it can be shown that the fixed points of the algo-
rithm (1.45) are (0,0), and

+(0.894,0.447) , if x(n) =k; with probability 1
+(0.447,0.894) , if x(n) = ko with probability 1.

From this information alone, it is not immediately clear to which fixed point the
sequence {(w;(n),wy(n))} will converge if signals defined by (1.46) are used. To
illustrate the ambiguity of this problem, we perform numerical runs of (1.45), with
(w;1(0), w2(0)) randomised in [-1, 1]. Fig 1.1 (left) shows the results of performing
20 runs of (1.45). The learning parameter used is of the form v, = (n+1)7%%. Now
from (1.50), it can be shown that the associated system of ODEs has two locally
asymptotically stable equilibria, viz. #(0.707,0.707), and an unstable equilibrium
point at (0,0).

Numerically solving (1.50), using a 4** order Runge-Kutta scheme, and with
initial conditions randomised in [0,1], for example, we obtain the results displayed

in Fig 1.1 (right).
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Figure 1.1: Temporal evolution of: left: {(w1(n),w2(n))} right: {(z1(%), z2(¢))}
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1.6.3 Comments on numerics
It is important to note that the Kushner-Clark theorem is not applicable to this

problem, since the associated system of ODEs has two competing locally asymptot-
ically stable equilibria. The numerics suggest that the sequence {(w;(n), w2(n))}
approaches the two locally asymptotically stable equilibria of the associated sys-

tem of ODEs (see Fig 1.1 (left)). Note that Fig 1.1 (right) depicts {(z1(%), z2(¢))}

evidently approaching the equilibrium point (0.707, 0.707).
The fundamental issue arising from this example is encapsulated in the following

set of questions: How often does {(wi(n), w2(n))} converge to either of the two fized
points? Is this dependent on initial conditions of the algorithm? Given an initial

condition, can we say with what probability the algorithm will converge to either of

the two fized points?
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These questions articulate and underpin the core theme of this thesis. As pre-
viously stated, this is very much an open problem in the area of stochastic ap-
proximation. The thesis seeks to qualitatively and quantitatively investigate this

problem.

1.7 The neurobiological connection

The operation of the brain depends on the flow of information through elaborate
circuits consisting of networks of neurons or nerve cells. Information is relayed from
one cell to the next at specialised points of contact: the synapses. Most neurons
share certain structural features that malke it possible to distinguish three regions
of the cell: the cell body, the dendrites, and the aezon. The cell body contains the
nucleus of the neuron and the biochemical infrastructure for synthesizing enzymes
and other molecules essential to the life of the cell. The dendrites provide the main
physical surface on which the neuron receives incoming signals. The axon provides
the pathway over which signals can travel from the cell body, for long distances, to
other parts of the brain and nervous system. Fig 1.2 (left) depicts the structure of
a pyramidal cell, one of the most common types of cells occurring in the cerebral
cortex.

Information is relayed from one neuron to the next via a chemical transmitter
generated and stored at the synapses. From the dendrités, through the cell body,
the axon, and right up to the synaptic terminals, information is transmitted in
the form of electrical signals. The firing of a neuron, which is the generation

of nerve impulses, reflects the activation of hundreds of synapses by impinging
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Figure 1.2: left: morphology of a pyramidal cell right: nonlinear model of a neuron

neurons. Some synapses are ezcitatory in that they tend to promote firing, whereas
others are inhibitory and so are capable of neutralising signals that otherwise would
excite a neuron to fire. At any instant, a neuron has some threshold, which an
excitation must exceed to initiate an impulse. This, except for the fact and time
of its occurrence, is determined by the neuron, not by the excitation. Between the
time of arrival of impulses upon a neuron and its own propagated impulse, there is

a synaptic delay, characteristically more than 5 x 10~* seconds [10].

1.7.1 Artificial neural networks

An artificial neuron is a mathematical model which attempts to reproduce the
functional characteristics of a biological neuron. An interconnection of these neu-
rons is termed an artificial neural network (ANN) [12]. It is worth mentioning,
at the onset, that artificial neurons and their corresponding networks are far from
even approximating their biological counterparts. This is not surprising since the

brain is indeed a highly complicated structure, the mechanics of which is not yet
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fully understood. At the heart of the current surge in artificial neural networks
research lies the challenging prospect of mechanising intellectual tasks which pre-
viously have been performed only by humans. Already, some significant progress
has been made in this direction. Some of the examples that come to mind are
[9): weather forecasting, handwritten-character recognition, automated fingerprint
identification, automated disease diagnosis, speech recognition, image processing,
security /speaker identification, etc. Many of these tasks involve the ability to clas-
sify or sort data.

A nonlinear model of a neuron is depicted in Fig 1.2 (right). Essentially, the
model consists of a finite set of input signals x = {z, ..., Zp}, a corresponding set
of weights w = {wk1,..., Wkp}, a linear summing junction, a nonlinear activation
function ¢, a threshold i, and an output y;.

Below, we provide clarification of the nomenclature used:

e The linear combiner is an attempt to represent the integrating property of
the brain. The brain routinely receives a myriad of different signals from
the environment, integrates them, and produces a response which, in turn,

determines an appropriate course of action to be taken.

e The neuron is assumed to be the kt* member of the network under consid-
eration. The notation wx; means that the referenced weight links input j to

neuron k.

® u; is called the internal activity of neuron k. It is the linear combiner output
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for this particular neuron, viz.

U = W;J;X .

® An activation function, (.), is a smooth, nonlinear function that constrains
the amplitude of the output signal to a desired range. The smoothness aspect

of this function captures the graded response characteristic of the brain.

® A threshold, 6, has the effect of applying an affine transformation to u; as
shown by

v = ug — O,

where vi is the activation potential of neuron k. The output of neuron k is

given by

p
v = (O wriz —6i)

=]

o(vk) -

When 6, < 0, it is called a bias. The net input to ¢(.) may increase or

decrease, depending on whether we apply a bias or a threshold term.

e We say that a neuron is linear if ¢ is the identity function. In that case, we

have that yr = vg.

e There is a wide range of possible nonlinear activation functions. One of the
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most commornly used ones is the so-called logistic function:

1
1 + exp(—av)’

(o) =

where £ is the slope of the linear approximation to (v) at zero, as illustrated

i Fig 1.3.

1T/
o] ' /

0.4 /

0.2+ /';

A
'{'
<o
»
»~
o

Figure 1.3: The logistic function with a =1

@ It is of interest to note that the activation function used in the first neu-
ron model, due to McCulloch and Pitts [10], is a (discontinuous) threshold

function:

1,fv>0
w(v) =
0,fv<0

This choice of ¢ fails to represent the graded response aspect of the brain
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that was mentioned above. They made the assumption that the brain is
characterised by a binary input-output response function, which is contrary

to experience.

1.7.2 Learning and generalisation in ANNs

One of the fundamental characteristics of the human brain is its ability to learn from
the environment, and to generalise. Needless to say, this capability is essential for
the survival of the human species. The origin of this adaptive behaviour in biological
systems is the subject of Ashby’s book {11]. The task of replicating this property
in ANNs is currently a subject of intense research.

Learning in ANNs is an iterative procedure (algorithm) by which the free param-
eters of a network are adapted through e continuing process of stimulation by the
environment in which the network is embedded [12].

There is a whole wide range of different learning schemes, each being determined
by the manner in which the free parameters are adapted. Normally, the parameters
are altered so as to attain a desired design goal such as the minimisation of an error

function [13]. A typical learning rule is of the form
wji(n + 1) = wji(r) + Lwji(n),

where n denotes the iteration number, and Awj;(n) is the weight update at iteration
n. Essentially, the weight update determines the type of learning rule. A realistic
learning rule has to converge, in some sense, as n — oo. This means that the weight

vector should tend to a finite limiting value as n — cc.
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Learning (also called training) involves repeatedly presenting the network with
a finite set of training ezamples and updating the weights until stabilisation is
achieved. The weights are updated according to some rule, preferably one that
complies with the desired design objectives. Often. three different versions of the
same learning rule have been given: the on-line version where the modification is
calculated after the presentation of each input signal (pattern), the off-line version
where the previous modifications are averaged over the cycle of all patterns, and
the continuous version where the discrete changes induced by the off-line algorithm
are approximated continuously by a differential equation governing the evolution
of the weights in time [13]. In the spirit of research in this field, the updating
rule should make neurobiological sense. The concept of generalisation refers to the
network producing reasonable outputs for inputs not encountered during training.
Of course, these post-training inputs (validation set) have to be from the same
‘family’ as the training examples.

The earliest ! demonstration that neural networks could actually be trained
to perform certain tasks which, hitherto, could only be performed by humans is
due to Rosenblatt [14]. He coined the term perceptron for the simplest form of a
neural network used to classify linearly separable patterns. These are patterns that
lie on opposite sides of a hyperplane. A more technical definition is given below.
Essentially, a perceptron consists of a single McCulloch—_Pitts neuron as described
in Section 1.6.1. Consider a set of incoming signals, {x}, divided into two disjoint
T

classes C; and C», say. A perceptron will find a separating hyperplane g(x) = w* x,

1The first proof of the so-called Perceptron Convergence Theorem is due to Agmon [16].
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such that

g(x) > 0 fxe(C,, and

gx) < 0 ifxeC,.

The vector w denotes the free parameters of the network. We say that the two
classes of patterns are linearly separable if there exists a w such that the two in-
equalities above are satisfied. The algorithm developed by Rosenblatt recursively
determines the vector w for which the inequalities are true. He established the
convergence, in a finite number of steps, of an error-correction procedure for an
elementary perceptron to a classification or dichotomy of the input signals, pro-
viding such a dichotomy exists. Rosenblatt’s now famous Perceptron Convergence

Theorem is stated below [15].

Theorem 1.3 Consider a set of vectors, xX;,---,Xn, tn some fized finite dimen-

sional Fuclidean space, that are assumed to satisfy the single hypothesis that there

exists a vector w. such that
xfw.>6>0,i=1,---,N.
Then consider an infinite sequence
Xi1, Xizy Xiz, ++, (1< <N for every k),

such that each vector, X1, - - - , XN, occurs infinitely often. Now construct a sequence
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of vectors. Wg, Wy, -+, Wn.---, Tecursively as follows:
wg s arbitrary ,

and
W1 if wl_x;,>8

wﬂ—l + xin if wz—lxin S g
Then, the sequence {Wn} is convergent in the sense that there ezists an indez m <

oo such that

Wm =Wm+l =wm+2=-~'=w,

It is worth mentioning that there are numerous variants of this theorem in the
literature (see [12], {17], and references therein). The one stated above is enough
to illustrate convergence in one dimension. The Perceptron Convergence Theorem
single-handedly revolutionised research in the discipline of artificial neural networks.

Most neural learning algorithms are generally (systems of) difference equations
of the form (1.1), and whose long term behaviour may be investigated using stochas-
tic approximation techniques. Needless to say, understanding the asymptotics of

these algorithms is essential in designing effective training strategies.



Chapter 2

Dynamics of Ljung’s Automatic

Classifier

2.1 Introduction

The purpose of this chapter is two-fold. First, we examine the system of ODEs
associated with Ljung’s automatic classifier [2]. This analysis is performed in the
continuous time phase space. In the second half of the chapter, we focus on the
discrete phase space. The connection between the dynamics on these two phase
spaces is understood, via the celebrated Kushner-Clark theorem [1], only if the
associated system of ODEs has a single locally asymptotically stable equilibrium.
As previously stated, we are interested in extending the Kushner-Clark theorem to
cover the case when the associated system of ODEs has multiple locally asymptot-
ically stable equilibria. In other words, we seek to resolve the question: to which

one of these stable equilibria is the discrete system most likely to converge? To

35
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tackle this problem, both analytical and numerical techniques will be adopted. We
choose to study Ljung’s classification algorithm because of its relative simplicity,
viz. it classifies a one-dimensional set of data, which is the most basic classification
problem.

Ljung [2] considered an automatic classifier which receives scalar valued signals
{x(t)} that may belong to two a priori unknown classes 4 and B, with probabilities
A and 1 — ) respectively, and where A € [0, 1] is a free parameter. The signals are
distributed according to a specified rule, viz. the doubly-triangular probability

density function (pdf) shown in Fig. 2.1 and algebraically defined by

Me+3) , 3Ze<=2
“AMe+1) , 2<e<-1
Alp)=3 1=A)(p—-1) , 1<p<?2 (2.1)
(A=1)p—=3) , 2<¢<3

0 , otherwise.

Figure 2.1: pdf of the random signals to be classified

The classifier is tasked with determining a number c(?) such that ¢(t) is classified



CHAPTER 2. DYNAMICS OF LIUNG’S AUTOMATIC CLASSIFIER 37

as A if o(t) < c(t) and as B otherwise. The number ¢(t) is given by

c(t) = s[za(t) + z5(t)], (2.2)

N =

where

At — 1)+ nlp(t) —za(t—1)] , ife(t) <c(t—-1)

z4(2 —1) , otherwise

za(t) = (2.3)

The iterates {zp(¢)} are defined in a similar manner. The ~, are decreasing-to-
zero positive real numbers, such that 3 (2,7 = oco. It is assumed that {¢(¢)} is a
sequence of independent identically-distributed (z.7.d.) random variables. Further-
more, from Fig. 2.1, it is desirable that c(t) — ¢y as ¢ — oo, where ¢ € (—1,1).
This ensures that no samples are misclassified.

Ljung’s contribution to this problem is outlined below. First, he derived a
system of ODEs associated with the discrete system, part of which is given in (2.3).
Then he demonstrated, by numerically integrating the ODE vector field, that the
number of stable equilibria increases from one to two, as A is increased from 0.5
to 0.99. When A = 0.5, the system of ODEs has one globally asymptotically
stable equilibrium at (z],z3) = (—2,2). Following the Kushner-Clark theorem
[1], (za(%),zB(t)) — (—2,2) with probability 1 (wpl for short) as ¢ — oo, giving
the correct classification rule ¢ = 0. When A = 0.99, the system of ODEs has
two locally asymptotically stable equilibria at (z],z3) = (—2,2) and (z}",z57) =
(—2.258,—1.372). In this case, the Kushner-Clark theorem is not applicable, and

the problem of determining the long-term behaviour of (z4(t),zg(t)), and hence
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¢(t), is almost intractable. In view of this difficulty, Ljung performed numerical
simulations of the discrete system. In 257 of these simulations, the classifier c{t)
converged to the undesired value ¢™ = —1.815 only once, while converging to the
desired value ¢* = 0 the rest of the time. When ¢(¢) converges to the desired value,
all the samples are correctly classified, and when it converges to the undesired value,
33% of the samples are misclassified. It is interesting to ask how often convergence
to ¢~ happens. Of course, Ljung had only one ‘bad’ run in 257 simulations. But,
what is the meaning of his results, especially with regard to the convergence of
(za(t),zp(#))? Can we conclude, from his experiment, that the discrete system
converges with probability one to (—2,2)? Why, or why not? These questions set
the stage for the spirit of this chapter.

We mention that Ljung furnishes neither the 4; nor the initial condition
(z4(0), z5(0)) that he uses in his simulations leading to his Fig 4. Furthermore, it is
important to note that he only performs 1000 iterations. It is quite feasible that his
Fig 4 might change if more iterations are carried out. It is also interesting to note
that we “failed” to reproduce his Fig 4. Instead, we only managed to get Fig 2.2
(left). The learning parameter used is v, = (n+10)~%, with @ = 0.15 and the initial
condition used is (z4(0),z5(0)) = (—0.1,0.1). 240 runs were performed. Similar
results were obtained for other choices of a and 7,. A different sequence {@n}
was used for each simulation. Contrary to Ljung's results, we do not obtain the
“misbehaving” trajectory, i.e. we do not get the classification rule ¢** = —1.815. For
the case A = 0.5, we obtained Fig 2.2 (right). Note that the classifier is converging

to c* = 0, as expected.
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Figure 2.2: time histories of ¢(n), with: left: A = 0.99 right: A = 0.5. In both Figs.,
note that only one typical run is shown.

Another interesting question is: What is happening to the associated system
of ODEs, as A is tincreased from 0.5 to 0.992 Ljung did not adequately address
this problem. Intuitively, the drop in classifier performance when c¢(t) — —1.813
suggests some kind of bifurcation phenomenon. In this chapter, we derive and
analyse the associated system of ODEs, which is parameterised by A. Numerical
experiments are conducted to help explain how and why the classifier performance
drops as A is increased from 0.5 to 0.99.

By construction, the iterates are confined to the region D:3>zp > T4 >
—3. We will prove this in Section 2.4. The equilibria of the associated system of
ODEs are contained in D. We are interested in tracking the temporal evolution
of (za(t),zp(t)) inside D, with a view to delineating probabilistic “domains of
attraction” of the two equilibria of the system of ODEs, when A = 0.99. In other
words, we are trying to establish a prediction rule that will tell us which set of
initial points (z4(0), z5(0)) € D will lead to (z4(t), z5(t)) converging to one or the

other of the two equilibria. To this end, both analytical and numerical techniques
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are emploved. Finally. we also study pathological sequences of {((#)} that steer

(za(t),z5(t)) away from equilibria of the associated system of ODEs, in the region

D.

2.2 Computation of the associated system of ODEs

The sought-after system of ODEs is of the form

za = fa(za,zB,A)
iB = fB(IAava’\) ) (2‘4)
where f4 and fp are defined by
falza.zg,A) < E o —z4], ¢<c
= [e—zafip)e
= -z [ Aleie+ [ ofile)de, (2.3)
and
fa(za,z8,0) E Elp—z8], ¢>c
= [lo-za)fiw)de
3
= 2 [ f@lo+ [ ehlede, (26)

and where E_ denotes the statistical expectation with respect to ¢.
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Then, using (2.1). {(2.3), and (2.6), we obtain the ODEs

r

0,c< -3
MG +B-—z4)5 —3zac—3za+1)}, -3 < c< -2

c=3

—%{%-{-IA}-F/\{— 3 +%(1:A—l)—§+2AC}, —2<c< -1

22 =2z, -1<c<1

) 2 = Aza+ (1 - MG -5+ —za(1 = A —c+1),1<c<?
—2A = Az + 21— A) =31 =Nza+ (A = 1)(5 - 22 + 19
—za(A—1)(S —3c+4),2<c<3

\ =22 —Az4+ 21 -A) —za(l-A) = (A =1),c2>3
(2.7)
and

—2A—Azp—2(A—1)—z5(1—A), c< -3
ML -2 -3+ Azp(4 +3c+$) — L+ 24

%zg—:z:g, -3<c< -2

MS+S -1 —dzp(S+c+i)+20 -2+ (A-1)zp, 2<c< -1
ip = (2—z)(1—=1A), —-1<c<1
1=-NEG-5+%5) -0 -Nzs(c—F) - FA -1+
lA=1)zp,1<c<?2

A-1)EE-S - -(A-1)zp(8c-%—-2),2<c<3
2 3 2 2 2

0,c>3

\

(2.8)

From (2.7) and (2.8), we note that f4 and fg are piecewise-defined continuous func-
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tions. The significance of this fact will be apparent in our discussion on existence
and uniqueness of solutions of the associated syvstem of ODEs. in Section 2.3. Now,

for —1 < ¢ < 1. equations (2.7) and (2.8) vield the system of ODEs

.'i?A = _)\(2 + IA)

g = (1-A{2—=zp). (2.9)

Solving (2.9) for equilibria gives

(I;v .‘Z:;) = (—'2~ 2) . (2'10)

The Jacobian matrix of (2.9), evaluated at the point (z}, z3), is

—A 0
0 —(1-2X)

J(z5.273) =

which implies that (z7, z3) is asymptotically stable since both eigenvalues of J(z3, z3)

are strictly negative.

2.3 Stability and bifurcation analysis of the asso-

ciated system of ODEs

At the onset, we stress that the analysis in this section is valid for any (piecewise-

defined) continuous compactly-supported probability density function, not just fa.
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To understand (2.5) and (2.6), we consider the family of ODEs given by

i = —aa [ Ao+ [ ofielde faaa.cs )

5 =~z [~ Ao+ ["ohtele ™ fo(zazan),  (@11)

where [ fa(w)de = 1, and ¢ f 0.5(z4 + zp). Recall, from Section 2.2. that

fa and fg are piecewise-defined continuous functions. Furthermore, via the Fun-
damental Theorem of Calculus, we have that both fi(z4,zB,A) and fB(T4,TB,A)

are differentiable with respect to z, and zg, viz.

% = 0.5(zg — J:A)f,\(c) - ./_coo fA(‘r’)d‘r’

Oza

a

a_f:; = 0.5(zp — z4) fa(c)
g_g = 0.5(zg — z4)fr(c)

a o0
5{% = 0.5(1:19—J:A)j",\(c:)—/c falp)dey .

Note that the above partial derivatives are all piecewise-defined continuous func-
tions. Thus, the family of ODEs given in (2.11), with the initial point (z.4(0), z5(0))
specified, has a unique solution existing on some region J C R? [25]. In addition,
since both fa(za,z5,A) and fg(za,zp,A) are bounded, it follows that we have

global existence of solutions [25].
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The family of ODEs in (2.11) has the equilibrium point(s) implicitly given by

o (P(E) 2(1—2,\)-1)(6))

(I;,.’Z‘g) =

Q@) 1-Q(9

Ple) ¥ [ efierde

def <
Qo) ¥ [ Aol
Linearising (2.11) about (Z;,Z;) yields the Jacobian matrix

G-Q G

J(fufz) = ]

G G+Q-1

where

o
| -

G Z(z, - 2)fr(8) 20,

(2.12)

(2.13)

(2.14)

and Q is as defined in (2.13) and such that 0 < @ < 1. Observe that, since (2.14)

is symmetric, it follows that both its eigenvalues are real. This implies that (Z;, Z2)

can be a saddle point, a node, but not a spiral or centre. From (2.14), we have that

tr J(i’l,ig) = 2G— 1 .

and

det J(Z1,2:)=Q(1 -@Q)—G.
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The eigenvalues of (2.14) are given by

def trExitr?—4 xdet
- )

)7

. 2
= 5{2G—1:t\/4(G2+Q2—Q)+1} :
Thus, (Z;, Z,) is asymptotically stable if and only if
tir J(i’l,fz) < 0 and det J(.’El, -'2'2) >0 N

implying that
G<% and Q(1-Q)>G.

Note that, since 0 < @ <1, we have that 0< Q(1 — @) < 1 (see Fig 2.3).

0251 /-\
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K, ;Y
021 / \
/ 3
/ \
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i \
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0.11 |
\

0.05 1 \
f
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Q

Figure 2.3: @(1 — @) in the interval [0, 1].
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This implies that (Z,.%2) is asvmptotically stable if and only if G < Q(1 — @),

which gives the necessary condition
0<fa@) < (Z2—21)7" . (2.15)

If det J(Z,%2) < 0, then (Z,, Z,) is a saddle point. Thus, (Z;,Z2) is a saddle point
whenever Q(1 — Q) < G. If det J(Z,,Z;) > 0 and tr J(Z;,T2) > 0, then we have
that Q(1 — Q) > G and G > 1, which is impossible. Thus, (Z:.%2) can not be an
unstable node.

In the case det J(Z;,Z;) < 0, the stable and unstable eigenspaces are given by

1
E span l
G m—-G+Q) /|

E» % span ,
G Hu2z— G+ Q)

respectively, where

o %{2G-1-\/RG2+Q2-Q)+1}
u %{2@-1+\/RG2+Q2-Q)+1}.

Remark 2.1 Note that Q(1 —Q)=01iQ =0 or Q =1, which, for fi given by

(2.1), corresponds to € = —3 or ¢ =3, respectively. The equilibria in these cases

are, respectively, (Z1,%2) = (ko, 2(1—21)) and (Z1,Z2) = (2(1 —2A), k1), where the
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values of ko. k; € R are forced by 0.5(T| + ;) = ¢. The above ODE equilibria are
both neutrally stable. Note that these two cases (i.e. @ = 0 and Q@ = 1) correspond

to a situation when the classifier fails to distinguish the two clusters A and B.

Recall that the Kushner-Clark theorem (1] shows that. under some conditions, if the
associated system of ODEs possesses only one locally asymptotically stable equilib-
rium. then the discrete system will converge wpl to that equilibrium. However, the
theorem does not tell us anything about what happens if the system of ODEs has
multiple locally asymptotically stable equilibria. Furthermore, recall that Ljung
[2] showed that if X is increased from 0.5 to 0.99, the number of stable equilibria
appears to increase from one to two. Below, we determine how the number and
stability of the equilibria vary with A and briefly discuss their basins of attraction.

To investigate the behaviour of the classifier as ) is varied, we proceed as follows.

From (2.12), we have that

Sder 1 {P(E) 2(1 —2)) — P(E)}
=< ,

Q(%) 1 —-Q(3)
Define
des [P(c) 2(1—2))—P(c)
me ¥ G+ ) -

_ P(o)1 —Q(e)] + Q(o)[2(1 — 2)) — P(c)] — 2cQ(c)[1 — Q(e)]
B Q(e)[1 — Q(a)]

9

(2.16)

where P(-) and Q(-) are defined in (2.13). The equilibria of (2.11) may be computed
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by finding the zeros ¢ of the numerator of (2.16)
Fa(e) € P(e)[1 — Q(a)] + [2(1 — 23) — P(e)]Q(c) — 2¢Q(c)[1 — Q(c)]

and then applying (2.12) to obtain

= = e efie)de [ efale)dy (2.17)
T ey T TP T falplde -

Some computer-generated plots of Fi(c) versus c, for various parameter values

are shown in Figs 2.4-2.5 (left). Note that the roots of Fy(c) are the ¢ values

associated with (Z,, Z2).
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Figure 2.4: Fy(c) with left: A = 0.5, and right: A = 0.981

The plots show that the qualitative behaviour of the zeros of Fi(c) is dependent

on the parameter A\. When A = 0.5, Fi(c) has only one zero, at ¢, = 0. This
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zero always exists, and never loses its stability as A varies. Numerically, at A =~

0.981, a saddle-node (S-N for short) bifurcation occurs. In other words, a new zero

appears. at ¢g &= —1.600. As X increases, this zero branches to vield two new zeros.

This bifurcation phenomenon is illustrated in Fig 2.5 (right), which is generated as

follows: Solve the equation Fy(c) = 0 for ¢(A), where A € [0,1]. Then plot c())

versus A. In Fig 2.5 (right), we have only considered a small ‘window’ of A values,

essentially to accentuate the emergence of the two new zeros.

At A = 0.99, we have the two zeros {¢;,63} = {—1.874,—1.277} as depicted

in Fig 2.5 (left).

{-1.874, —1.277, 0}. From (2.17), the corresponding equilibria are (Z,;, Z;,)

We now have three roots of Fi(c), namely: {&, ¢, &}

(—2.258, '-1.372), (521,522) = (—2.033, —1.075), and (531,2_:32) = (—2, 2) re-

spectively. It can be shown, via the computation of respective Jacobian matri-



CHAPTER 2. DYNAMICS OF LIUNG'S AUTOMATIC CLASSIFIER 50

ces, that (7,;,72) and (Z3,, Z32) are locally asymptotically stable, with eigenvalues
{—0.5618. —0.0802} and {—0.9900, —0.0100} respectively, while (2, T22) is a sad-
dle point.

We now turn our attention to the problem of delineating the boundary between
the basins of attraction of (Z1;,Z12) and (Zai1, Z32), inside the region D. Note that
this boundary is a segment of the stable eigenspace of (Z,;,%22). From (2.14), we

have that

) _0.886 0.066
J(T21.T22) = , (2.18)
0.066 0.018

with eigenvalues —0.8910 and 0.0224. Corresponding eigenvectors are

vi = [1 —0.072)7, and

vo = [1 13.834]7 (2.19)

respectively. Therefore, the angles (measured relative to the z;-axis) associated

with v; and vs are a; = —1.50 rad and @, = 0.07 rad, in that order. Thus, the

stable eigenspace is given by

1
E* = span )
—0.072
while the unstable eigenspace is
1

EY = span

13.834
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The equation of the stable eigenspace of the saddle point is given by
zy = —0.0723z; — 1.222 . (2-20)

To reconstruct the stable eigenspace, we pick an arbitrary initial point in D, as
close as possible to (Z21, £22) and lying on the line given by (2.20). Then, integrate,
backwards in time, the corresponding system of ODEs.

Note that, in the invariant region D, the saddle point (Zs;,Z2;) lies in the
interval —2 < ¢ < —1. Thus, to approximate the stable eigenspace, we need only

to consider the following system of ODEs, which is obtained from (2.7) and (2.8),

T4 = —1.815—0.495z4 — 0.33¢® — 0.495¢% + 1 4(0.495¢2 + 0.99¢)

ip = —0.145 + 0.33¢® -+ 0.495¢? — 5(0.495 + 0.495¢2 + 0.99¢) — 0.01zp ,
(2.21)

where ¢ %/ 0.5(z4 + zg). Now, pick two initial points (—2.036, —1.0748) and
(—2.030. —1.0730), lying to the left and to the right of (Z2;, Z22) on the line given
by (2.20), respectively. Using these initial points, find a particular solution of (2.21)
for ¢ < 0. This is then plotted in the (z4, zg) phase space. The resulting plot gives
the boundary between the domains of attraction of (Z11, Z12) and (Z3;, Z32), which
is depicted in Fig 2.6. The latter indicates that (Z31,Z32) has a relatively larger
domain of attraction than (Z;1,Z:2). We note that the boundary shown in Fig 2.6
is valid only inside the triangular region D. The part of this boundary lying outside
of D is a numerical artefact, resulting from using the MAPLE view plot function.

Essentially, one can only view objects inside a box, [—3, 3]? in our case. MAPLE is
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unable to view objects inside a triangular region. for example.
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Figure 2.6: The domains of attraction of (Z;;,Z;2) = (—2.258,-1.372) and
(Z31.Z32) = (—2,2), inside the invariant region D in ODE space

Recall that, by the Kushner-Clark theorem, if the associated system of ODEs
has a single locally asymptotically stable equilibrium zo with domain of attraction
DA(zp), and for which there exists a compact set A C DA(z) such that x,, € 4
infinitely often, then wpl X, — 2z as n — oco. In the current problem (A = 0.99),
the associated system of ODEs has two locally asymptotically stable equilibria, and
a saddle point, as shown previously. The issue at hand is the following: to which
one of these stable equilibria is {(za(n),z5(n))} lLkely to converge, as n — oo,
and how will this be affected by the choice of initial conditions? Of course, the
same question may be asked if the associated system of ODEs possesses more than

two stable equilibria. To rephrase the problem, we seek to develop a feeling for
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the probability that the discrete system will converge to the undesired classifier
¢" = —1.815, given that we choose (according to some rule) our initial conditions
inside D.

It is interesting to note that, in Fig 4 of Ljung’s [2] paper, even though his
simulations always start in the ODE basin of attraction of (—2,2) (i.e. ¢(0) = 0),
the presence of noise causes the discrete system to go to the other equilibrium, i.e.
(—2.258, —1.372). Finally, having delineated the boundary between the equilibria
(Z11,%12) and (Z21,T22) in the ODE phase space, we now turn our attention to
investigating how dynamics in this (continuous) space relate to those in the discrete
space. To this end, we begin by constructing a probabilistic vector field for the

discrete algorithm.

2.4 Construction and analysis of a probabilistic
vector field for the discrete algorithm

We begin by recalling that, according to Ljung's classification scheme, ¢ € A iff

@ < cand ¢ € B iff ¢ > ¢, where %! 0.5(z4 + zp). Furthermore, z4 and zp are

updated depending cn whether ¢ is classified as belonging to A or B. That is

w<c = za=z4+7t)(¢—z4a), and

o>c = zp=zp+v(t){y—zB). (2.22)

Note that only one of either z4 or zp can be updated at any particular time.
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Now, from the definition of ¢, we have that 4 < ¢ < rg. Therefore

p<c = ra<p<cor ¢g<zyg<c,and

@>c¢c = c<ep<Ig Or ¢ >ITB>C. (2.23)

Following (2.22) and (2.23) above, we see that 4 and zp may be updated
positively or negatively. For example, x4 1s updated positively if o < cand p—z4 >
0, and negatively if ¢ < cand p — z4 < 0. Based on this observation, we shall
construct a probabilistic vector field of the discrete algorithm. We envisage that
this vector field will shed some light on the difficult problem of determining the
long term behaviour of the algorithm in the case when the associated system of
ODEs possesses multiple asymptotically stable equilibria. Consider Ljung’s doubly-
triangular pdf with A = 0.99. In this case, the associated system of ODEs has two
locally asymptotically stable equilibria, namely: (—2,2) and (—2.258, —1.372), and
a saddle point at (—2.033, —1.075). To construct the associated vector field, we
proceed as follows. Suppose that —2 < z4 < —1 and zg = 0. Then we have that
—1 < ¢ < —-0.5. Fig 2.7 (left) gives a summary of this scenario.

From Fig 2.7 (left), if ¢ < z4, the shaded area to the left of z4 represents
the probability that =4 is decreased. The unshaded area lying between 74 and -1
gives the probability that z4 is increased. Note that for ¢» > z4, it may happen
that 1 < ¢ < 3. This yields ¢ > zp = 0 > c, implying that zp would be
updated positively. Similarly, we may consider the following cases, for example:
-l<zy<0andzg =0, -3 < z4< —-2and zp =0,0< zp <1 and

z4o=0,l<zp<2andzs=0,2<zp<3andzy =0, zp =3 and 4 = 0,
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Figure 2.7: left: Computing the probabilities that z4 and zp are decreased or
increased, for the case —2 < z,4 < —1 and zg = 0 right: Sketch of the probabilistic
discrete vector field with A = 0.99. Arrows indicate possible jump directions. The
length of each arrow indicates the probability of going in a particular direction.
zp=3and z4 = -3,z24=—-3 and zg =0, 24 = —2 and z5 = 2, T4 = —2.258
and rp = —1.372. Based on this analysis, we obtain the probabilistic vector field
sketch shown in Fig 2.7 (right). It is important to note that this is a time- and
place-dependent random vector field with dissipation, such that, conditioned on the
immediately previous position, the current position is independent of all earlier
pbsitions. In addition, the magnitude of jumps in this random field diminishes
with time. However, this time dependence of jumps is not shown in Fig 2.7 (right).
Instead, the arrows in the above figure illustrate only the probabilities of going in
any one of the four directions at a given point in the discrete space.

Furthermore, Fig 2.7 (right) shows that starting on the ODE’s stable equilibria
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does not guarantee that the algorithm will remain at these equilibria for all time.
There is a non-zero probability that (z 4(f), zg(¢)) will be knocked off the equilibria.
even on the first iteration of the algorithm. The arrows and their magnitudes
(not drawn to scale here) represent the probability that the algorithm will go in a
particular direction at any point in D. Also included in the diagram are various ¢
values. Note that, because z g may be decreased for —3 < z4 < —2, any initial point
of the algorithm near (—2,2) may lead to ¢(¢) migrating towards the neighbourhood
of (—2.258,—1.372). This observation leads us to the conclusion that the point
(—2,2) is not an asymptotically stable equilibrium of the algorithm. In fact, it
i1s not even an equilibrium. Note also that there is no positively invariant region
contained inside the discrete region D. The idea of domain of attraction of an
equilibrium (of the algorithm) is meaningless in this problem, chiefly as a result of
the random nature of the input signals {(¢)}-

The foregoing discussion leads to the following question: In discrete space, is
D positively inveriant? To resolve this question, we need to determine whether the
statement —3 < T4(t) < ¢(t) < zp(t) < 3 is true for all ¢ € Z*. First, recall that
c(t) €05 x (za(t) + zp(t))- Then, we proceed as follows: By construction, we
have that —3 < z4(1) < ¢(1) < z8(1) < 3. Now suppose that the statement is true
for t = k, viz. —3 < z4(k) < c(k) < zp(k) < 3, where k € Z*. Consider the case
z5(t) < ¢(t) < 3, and suppose that (k) — za(k) = €(k) > 0, where €(k) is a small
positive jump. We conclude that zg(k) is increased (i.e. zg(k) < zp(k+1)), while

z 4(k) remains intact. In other words,

zg(k+1) = za(k)+y(k)e(k)
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< zp(k) + e(k)

= (k)

< 3,

and

za(k+1) =z4(k) < zp(k).

This implies that —3 < z4(k+ 1) < e¢(k+1) < zg(k + 1) < 3. That is, the
statement is true for t =k + 1.

Next, consider the case ¢(t) < ¢(t) < zg(t). Then, if we suppose that ¢o(k) —
zg(k) = e(k) < 0, where ¢(k) is a small negative jump, we have that zg(k) is

decreased while z4(k) is unaltered. That is,

zp(k+1) = zp(k)+v(k)e(k)
> zg(k) + (k)
= (k)

> k),

and

zalk+1) =za(k) .

Once again, this yields —3 < z4(k + 1) = z4(k) < e(k+1) < zg(k +1) < 3,
where the rightmost inequality holds because zg(k) < 3 is decreased. The rest of

the proof proceeds in exactly the same way as in the previous case.
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The remaining cases, namely r4(t) < () < ¢(f) and —3 < ©(t) < z4(t). may
be treated in a similar way. Therefore, by mathematical induction, the statement
—3 < z4(t) < ¢(t) < rp(t) < 3istruefor t = 1, t = 2,...., viz. it is true for all
t € Z*. We conclude that D is positively invariant in discrete space.

As mentioned before, each point in discrete space is characterised by a set
of direction vectors, whose lengths give the probability of being ‘nudged’ in that
direction. Also, the sum of all these lengths, at the point under consideration, is
always unity. On the other hand, the ODE vector field consists of single arrows at
each point on the continuous time phase space. These arrows represent the average
paths of the discrete (random) vector field, since the associated system of ODEs
(2.11) is constructed by averaging (i.e. taking the expected values with respect to
) the random terms ¢ — 4 and ¢ — zg. Fig 2.8 shows the expected value vector
field and the direction field of the associated system of ODEs. These plots are only
valid inside D. We now give a brief outline of how these two vector fields were
constructed.

Recall that, by construction, —3 < z,4(¢) < ¢(t) < zg(t) < 3 for all £ € Z*.
In the expected value vector field, each point (z4,zp) in the discrete space D is
characterised by four arrows pointing up, down, right and left, giving the expected
value of a2 jump in that direction. Let the expected value of a jump to the right of
z 4 be denoted by J74, and that to its left by J 4. Similarly, let the expected value

of a jump upwards of zp be denoted by JZ2, and that in the downward direction
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by J7Z. Defining ¢ by ¢ =4 3(xa + zB), we have the following

(=4

T4 de PS .
Ji4(za,zB. A) =f[ (p—za)falp)dy , sincezs < g < ¢,

Ta
4 def [T4 .
Jireacn ) 2 [ (e —zalfalp)de , since ~3<p < a4,

3
JiB(za,zB, ) = f (¢ —zB)falp)dy , sincezg < ¢ < 3,
g

and

zg def [*B .
Ji%(za.zB,A) = (w—zB)falp)dy , sincec< ¢ < g .
[+

Finally, setting A = 0.99 in the above formulae and using the MAPLE fieldplot
routine, we plot and display J74, Ji4, J®, and J;? in a single diagram, viz. Fig.
2.8 (right). The ODE direction field, as displayed in Fig. 2.8 (left), was constructed
in the following way. Define the vector field of the system of ODEs in (2.11) by

ia= filzaze, ) E [ (o —za)fale)de,

-0

i = flzazs,)) ¥ [Tlo-an)filelde .

Then put the above system of equations into the MAPLE dfieldplot routine, with
A =0.99 and for —3 < z4 < 3, —3 < zp < 3. As mentioned previously, the arrows
in the direction field of the ODEs represent the average paths of the discrete vector
field.

The existence of the two locally asymptotically stable equilibria of (2.11), viz.
(—2,2) and (—2.258,—1.372), is evident in both Figs. 2.8 (left) and (right). In
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Fig. 2.8 (right). there is some indication that the scale of arrows is smallest around

these stable points. In other words, the expected values of the various jumps are

minimal (but still non-zero) in the regions immediately surrounding (—2,2) and

(—2.258, —1.372). This is true for Fig 2.8 (left) as well. Note that both Figs

(left) and (right) will change with t as ¥(t) does.

. 2.8
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Figure 2.8: left: Direction field for the ODE associated with Ljung’s algorithm with
A = 0.99 right: Expected value vector field (discrete) for Ljung’s algorithm with
A = 0.99. Both figures reveal the existence of two stable points at (—2,2) and

(—2.258, —1.372).

In the next section, we explore the possibility of characterising and delineating

probabilistic “domains of attraction” of (-2,2) and (-2.258,-1.372) inside D. The

term “domain of attraction” is used loosely in this context, for reasons cited previ-

ously.
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Figure 2.9: “Domain of attraction” of (—2,2) in discrete space with A = 0.99 and
Tn = 7%:5-_-1-, as discussed in the text

2.5 A crude experiment to map probabilistic “do-
mains of attraction” for the case A\ = 0.99

The motivation for this numerical exploration arises from the question of whether
the choice and location of initial conditions inside D has any influence on the
subsequent convergence of the discrete algorithm. For A = 0.99, we recall that the
associated system of ODEs possesses two locally asymptotically stable equilibria.
Naturally, it is interesting to ask which one of these two points the algorithm is
most likely to converge to, with initial conditions picked inside D.

In what follows, a brief descriptive outline of the experiment is given. The
region D is evenly discretised into a 100 x 100 grid. with each grid point then heing
used to initialise the algorithm. Subsequently, we run the algorithm N times and

compute (z4(N),z5(N)) each time. Each time, we compute the distance between
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(xa(N),zg(N)) and (—2.2). If this distance is less than some specified § > 0. we
record the grid point used to initialise the algorithm. Finally. we display all grid
points that lead to convergence of the algorithm to within a distance of 4.

A typical result of this experiment is displayed in Fig 2.9. The clear region de-
notes those grid points that, as initial conditions, yield sequences {(za(n),zg(n))}
that converge to (—2,2) to within a distance of § = 0.4 in N = 10000 iterations.
The dots denote those points that fail this test. We note that there is a “fuzzy”
boundary between the two classes of grid points at roughly zg = 1. It is also worth
noting that there are some points, near zg = 3, that do not converge to (—2,2)
to within the stipulated distance. It is suspected that these will disappear as the
number of iterations is increased. Fig 2.9 is a rough sketch of the probabilistic
“domain of attraction” of the point (—2,2). Note that we can not conclude that
those points which did not converge to within the stipulated distance of (—2,2)
converge to (—2.258, —1.372). We are using the term “domain of attraction™ with
much trepidation, since it does not carry the same conventional meaning as used
in the study of deterministic dynamical systems.

It is interesting to note that it is possible that the algorithm may freeze at some
pseudo-equilibrium point. This all depends on the choice of the learning parameter,

“n- This problem is explained in the next section.
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2.6 Explaining the problem of freezing of an algo-
rithm at a pseudo-equilibrium point

Recall that the learning parameter v, obeys the constraints: 4, — 0 asn — oo, and
Y20 n = oo [1]. Clearly, there is a whole range of v,’s satisfying these constraints.
A central problem in the convergence of neural learning algorithms is the selection of
an appropriate learning parameter, v,. It turns out that if 4, — 0 foo quickly, then
there arises a danger of the algorithm getting frozen at some pseudo-equilibrium
point, as n — oco. The other key problem concerns numerical round-off errors. To
avoid these problems, care must be taken choosing a learning parameter that is
decaying neither too quickly nor too slowly. Note that if the learning parameter
converges too slowly, then the algorithm converges slowly as n — oo, resulting in
the accumulation of numerical round-off errors over time. In theory, the choice
of 7., with the above problems in mind, should ensure that the algorithm is not
trapped at pseudo-equilibria and that round-off errors are minimal. However, in
practice, striking this balance is a remarkably difficult problem.

To motivate and demonstrate the problem of freezing of an algorithm at a

pseudo-equilibrium point, we consider the non-autonomous deterministic system
def
Tn+i = (l - 771)1.!1 = f(z,,,n) 1

where v, is the usual learning parameter. Note that z* = 0 appears to be a stable

fixed point of this system, since | f/(0,n) |=1— v, < 1 for all n. The iterates z,
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may be expressed in closed form as

n—1

Lo H(l - %)

k=0
n—1
= IOer:o In(1-&)

Tn

n—1
~ xoe_ Zk=0 Tk R

Depending on how quickly 7. goes to zero, two cases arise. These are discussed
below.
Case 1

If v; — 0 slowly enough (e.g. v = =), then 725 v — 00, as n — oo. Thus. we

L+1
have that z,, — 0 as n — oo. This behaviour may be observed for any v = (T-:T)P"
where p € [0,1]. To illustrate this case, assume that v = Z7. Then from above.

we have that

n-—1l 1
xn ~ 206— k=0 k+1
n-—-1
k=0
= zge (—'f--)
- -dt
~ Ig€ L
To
= — =0 a n—o0,
n

which shows that z, approaches 0 relatively slowly (not exponentially).
Case 2
If 9« — 0 too quickly (e.g. 7 = (TI:T)_’)’ then 39 — ' # oo (where T'is a

constant). Then, we have that z, — zoe~T # 0. In this case, the sequence {z,} has
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frozen at a pseudo-equilibrium point. This occurs for any & = (k—_:l—),, with p > 1.
To reinforce the meaning of the phenomenon of freezing. consider the continuous
time ODE

j—: = a(f)z(f), (2.24)

where a(t) is a real, time-varying, and decreasing-to-zero parameter that is analo-
gous to <, in the discrete domain. The point z* = 0 is an equilibrium of (2.24).
Then, the issue is the following: Is it feasible that if a(t) — O fast enough, then z(t)
does not approach 0 as t — o0 ? The answer to this is YES, as the examples below
illustrate.

Example 1

Suppose that a(t) = —k, where k is a positive real constant. Then
z(t) =zoe™™ 5 0ast — oo . (2.25)

Example 2

Suppose that a(¢) = —1. Then we have that

x(t) = moe(‘[‘o a(s)ds) = :BOTtO — O ast > o0. (2.26)

Example 3

Suppose a(t) = —. Then we get

z(t) = xue("?o‘*?) 5 zge w #£0. (2.27)
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Remark 2.2 In ezample 3. we have ezhibited an a(t) such that r(t) does not
approach 0 as t — oc. Instead. in this ezample, z(t) ‘converges to a pseudo-
equilibrium point of the ODE. A similar situation would occur for any a(t) = —;
with p > 1. Finally. we remark that ezample 3 highlights the significance of judi-
ciously choosing a(t). and hence the learning parameter in the discrete domain, so

that the solution of the ODE (algorithm) converges to a true equilibrium point.

2.7 Evolution of Dirac probability distributions
under Ljung’s algorithm, with a doubly tri-
angular pdf for the input signals

In this section. we perform a numerical study to determine how an initial condition
with unit probability temporally evolves, using Ljung’s automatic classifier. Recall
that our phase space is the upper triangular region D : —3 < 74 < zg < 3. The

algorithm emploved to perform this investigation is outlined below.

e Divide [—3,3]% into a grid of npts x npts cells, where typically, npts = 100.

6
npts

Each cell is of size del = and has a midpoint (z.4.zg) which is considered

to hold the mass of the cell. Phase space is the upper triangular region D.

¢® Initially, assign unit mass to a point (z4(0),z5(0)), and a mass of zero to the

rest of the points. Store this “information™ in a matrix P.

¢® Determine where the point (z4.zg) could go after a single iteration as follows.

Note that one must know the current value of 4,, the training parameter.
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Where (r4.t5) goes depends upon the ¢ value that is picked (according to
the doubly-triangular pdf). Since either x4 or x5 can be changed, one must

examine all grid cells that lie in the same horizontal and vertical lines as

(za,TB).

e Suppose that we consider z4 as getting updated. Pick a grid cell and deter-
mine its left and right endpoints, say z;,z;. The following issue arises: For
what values of  does z4 get mapped to z,,7,% Solve for these ¢ values, and
denote them by ¢, ¢, respectively. Note that one must check the feasibility
of these v values. as a result of the ‘geometry’ of the doubly-triangular pdf.

The ¢ values are computed as follows:

1 = z4(n) + Y{e1 — za(n)},

which yields
L SR (2.28)
Similarly, we get
_ {z2—za(n)}
pr= L 4 y(n). (2.29)

Then, the probability of choosing this range of ¢ values is given by

prob= [ " Ale)deo (2.30)

where fy is Ljung’s doubly-triangular pdf. As mentioned above, it is crucial

to note that the values ¢; and . given by (2.28) and (2.29) may not be
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feasible. In other words, they may not lie in the range [—3. 3] nor may they
lie in the range [—3. c] responsible for updating r 4. This must be checked in
each case. and appropriately remedied. Also. one must check that the total

sum of the probabilities of transferring to the various horizontal and vertical

cells is unity.

e Store the updated mass in a matrix PP. which is initialised with zero entries.

Iterate PP according to
PP[i.j] = PP[i,j] + prob x P[k,l],

where 1, 7 are the indices of the point being mapped to and k,! are the indices

of the point being mapped from.

e®Set Pli,j] = PP[i,j], and repeat the computations, recursively.

Some plots resulting from simulations of the above algorithm are shown in Figs.
2.10-2.13. Fig 2.10 (left) is a 3-dimensional “impulse™ plot showing all those grid
points (r4,zp) € D at which the mass is greater than some arbitrary threshold,
f = 0.001 in this case, after 1000 iterations of the algorithm, with the unit mass
initialised at (0,0), and A = 0.5. We note that the separation of the mass “humps”
is a numerical artefact, dependent on the value of the th;eshold t > 0. The smaller
the threshold, the bigger the separation of the “humps”, and vice-versa. The height
of each “impulse” at each grid point gives the mass at that point. In theory, after
N iterations of the algorithm, the total sum of masses at all the grid points in

phase space D should be unity. In practice. however, because of the thresholding
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mentioned above. this sum will only be approximately unity.

In Fig 2.10 (left), it is clear that the entire mass migrates towards (—2.2).
This behaviour is observed no matter where the algorithm is initialised inside D.
Recall that, for A = 0.5, the associated system of ODEs has exactly one globally
asymptotically stable equilibrium at (—2,2). Fig 2.10 (right) depicts all those grid
points (z4,zp) at which the mass is greater than the threshold 7 = 0.001 after
1000 iterations of the algorithm, with the unit mass initialised at (0.0), and for
A = 0.99 (essentially, this captures the results of Ljung’s simulations in Fig 4 of
his paper [2]). In this case, the associated system of ODEs possesses two locally
asymptotically stable equilibria, located at (—2,2) and (—2.258,—1.372). It is
clear that there is migration of a major portion of mass towards (—2,2) and a
minor one towards (—2.258,—1.372). Fig 2.11 (left) shows the results of running
the algorithm, starting with a unit mass positioned at (—2,2), with A = 0.99. In
this case, the mass remains centred around (—2,2). Fig 2.11 (right) depicts the
results when a unit mass is initialised at (—2.258, —1.372), with A = 0.99. That is,
we start the algorithm on the equilibrium point (of the associated system of ODEs)
(—2.258,—1.372). Surprisingly, it is evident that a major portion of the mass
migrates towards (—2,2), while only a relatively minor portion remains centred
around (—2.258, —1.372).

Figs. 2.12 - 2.13 show projections, on the (z4,zg) plane, of Figs. 2.10 - 2.11.
Here, each dot on the (z4,zp) plane denotes mass at a particular grid point in D.
In all the plots, we used v, = %25, which has a relatively slow rate of convergence.

This is desirable in the sense that it minimises the chances of the algorithm getting
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Figure 2.10: 3-dimensional “impulse” plot of all grid points whose associated masses
are greater than ¥ = 0.001 after 1000 iterations of the algorithm. as described in
the text, with left: A = 0.5. and right: A = 0.99. In both cases, the unit mass
is initialised at the grid point (0,0). As discussed in the text, the height of each
~impulse” gives the mass at the grid point under consideration.

trapped at some pseudo-equilibrium point, as previously discussed. Furthermore,
we have only shown plots for fixed A values. If we change the value of A, the
variation in the plots is minimal - but a description of how this happens is beyond

the scope of the thesis.

Comments on simulation results

@ The simulation results suggest that the density of mass around the two equi-
libria (inside D) of the associated ODE is almost independent of the initial
condition of the algorithm. This mass density is indicative of the probability
that the algorithm will converge to each respective equilibrium point, given
some arbitrary initial point (z4(0), z5(0)) € D. Thus, the achievement of the
algorithm is that, given some arbitrary initial point (z4(0),z5(0)) € D, we
are able to say, in relative terms, what the probability of landing on (-2,2) or

(-2.258,-1.372) is. The problem of numerically quantifying this probability is
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Figure 2.11: 3-dimensional “impulse™ plot of all grid points whose associated
masses are greater than # = 0.001 after 1000 iterations of the algorithm, as de-
scribed in the text, with left: (z4(0),z5(0)) = (-2, 2), and right: (z4(0),z5(0)) =
(—2.258.—-1.372). In both cases, A = 0.99.

straightforward, since each dot or “impulse” represents a fraction of the unit

mass.

e Even though it is clear that the algorithm can converge to either of the equi-
libria, it is possible to “perversely” pick individual sequences of ¢’s that steer
the algorithm elsewhere. These sequences have probability zero. We discuss

this phenomenon below.

Consider the annotated picture of Ljung’s doubly-triangular pdf shown in Fig
2.14 (left). Suppose that z4 = —2, and —1 < zp < 0, giving —2 < ¢ < —1. Now,
let d = min(—1,zp). Then, artificially restrict ¢ € [c,d] and construct a new pdf,

ga, which mimics fx. That is,

-’\((P—d)'{'d—i—c'{'%(c_d) ) ‘r’e [Csd]

a(w) =
0 , elsewhere
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Figure 2.12: Grid points whose associated masses are greater than 7 = 0.001 after
1000 iterations of the algorithm, as described in the text, with left: A = 0.5, and
right: A = 0.99. Note that both these Figs. are projections of Figs. 2.10 - 2.11
on the (z4,rp) phase plane. In both cases, the unit mass is initialised at the grid
point (0.0).

Note that restricting s to the closed interval [c, d] ensures that rp is decreased

for all n. The probability that z g is decreased is given by
d
Pr(zp is decreased) = / arx(w)dy .

Select individual infinite sequences of ¢»’s from the closed interval [c, d] according to
gx and feed these into Ljung’s algorithm. Set A = 0.5. This ensures that the asso-
ciated ODE has only one globally asymptotically stable equilibrium, viz. (—2,2).
Then, depending on the location of (z4(0),z5(0)) € D, the iterates (z4,zp) will
not converge to (—2,2) since zpg is always decreasing. Furthermore, if ¥n — 0 ‘fast
enough’. then (z4.zg) will freeze at some pseudo-equilibrium point (z%.z%), say.
To numerically illustrate the effect of selecting »’s as described above, we proceed

as follows. Initialise the algorithm at (z4(0),z5(0)) = (—2,—0.5). Then choose a
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Figure 2.13: Grid points whose associated masses are greater than ¢ = 0.001 after
1000 iterations of the algorithm, as described in the text. The unit mass is initialised
at left: (—2,2) right: (—2.258,—1.372). In both cases, we set A = 0.99
sequence of ¢’s according to gx. Feed this sequence into Ljung’s algorithm and it-
erate. The results of this simulation corroborate our theoretic predictions. That is.
T4 = —2 is unchanged, while zg decreases progressively as n — oo, finally freezing
at zp ~ —2, which lies on the line 4 = zp (a part of the boundary of D). Fig2.14
(right) displays the results of this experiment. Fig 2.15 is a schematic diagram of
the observed dynamics of the iterates (z4,zp) as n — oo. It is important to stress,
at this point, that whether z3 — —2 or not is dependent on the {(,} sequence.
For example, if we set ¢z, = (g, a constant for all n, then it is clear that zg — o as
n — oo. By the same token, if @, — —2, then it follows that zg =+ —2 as n — oo.
Note that, since zg is decreasing, it may be shown that there exists an N > 0
such that zg < —1 for all n > N. This implies that the interval [c, d], from which

the ¢’s are sampled, shrinks as n — oo. Furthermore, this implies that

Pr(zp is decreased) - 0 as n — oo.
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Figure 2.14: left: Relevant regions that are used in the construction of a pathological
sequence of inputs to steer the algorithm away from the globally asymptotically
stable equilibrium (—2,2), when A = 0.5 right: Evolution of the sequence {zg(n)}
resulting from the use of a pathological sequence of inputs {¢n}, as described in
the text.

Note that the numerics suggest that both ¢ and rp are moving towards —2 as

n — oo, and that ¢ < zg for all n. That is, there is always a non-zero probability,

no matter how small, that zg is decreased.
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Figure 2.15: Dynamics of (z4,zp) using a pathological {¢2,} sequence as input to
the algorithm
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Figure 2.16: Illustration of the fact that for zg < —1, the interval [c. d] diminishes

2.8 Investigation of pathological sequences of in-

puts

This section seeks to elaborate on the idea of selectively choosing ¢'s so that the
iterates (z4,zp) are steered away from the equilibrium point (—2, 2} of the associ-
ated system of ODEs. As before, set z4(n) = —2, —1 < zg(n) < 0. Then we get

that —1.5 < ¢, < —1. We will select ¢o's such that zg(n) is decreased for all rn.
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Recall that rg(n) is decreased if ¢ < s < zg. The sought-after sequence of *'s is
constructed by randomly choosing {:>.} according to gx. As discussed before, we
have that d, ~ zg(n).

Consider the sequence

v = (Lrola 21000y (r’n) 3 (2'31)

where 5, € [cn.d,]. Now, let P, denote the probability of choosing ¢, from [cp, dn]-

This is given by
dn
P, = a(w)dy . (2.32)

where g, is a2 pdf that mimics Ljung’s doubly-triangular pdf. The probability of
realising (2.31) is given by the product

Br=P xPy,x..xP,. (2.33)
As mentioned above, zg(n) decreases if and only if
1+ %:I:B(n) <o<zn). (2.34)
Recall that zg(n) is updated according to the rule
zp(n + 1) = z5(n) + m[en — z8(n)] - (2.35)
From (2.34) and (2.35), we obtain the following inequalities

zp(n+1) < zp(n), (2.36)
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and

zp(n+1) > (1 —0.51)zs(n) ~ ¥n - (2.37)

From (2.37), we obtain
zB(2) > (1 = 0.5m)zB(1) = m, (2.38)

and

zp(3) > (1 = 0.57%2)[(1 = 0.5m1)zp(L) = n] — 72 - (2.39)

The right hand side of (2.37) may be expressed in closed form as

n n—1 n
zp(n+1) > zp(1) J[I(1 - 057v)+ > {—% I[ 1 -057)} -

i=1 k=1 J=k+1
nl—a n-! - —_—c
~ zp(l)e” T = Y ko T T _pma (9 40)
k=1

where the last line is obtained by setting v, =n~® , a € (0,1) and by asymptot-

ically expanding [T7_,(1 — ;) as follows. Denote

Fo=TI0-7))-

=1

Then we have that

InF, = > In(l-;%)
j=1

R

- Z 7~ %, for n large enough

=1
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Z 1 1
—_ _nl—o - =
; (F/n)e n
1
~ —nl'°/: t™°dt
n]—a
-1 -a[no—l —1
nl-o

, for 1 ,
— for large n

leading to

nl—o

F, ~e = .

Returning to (2.36) and (2.37), we note that (2.36) implies that zg(n) is monoton-
ically decreasing. Now, from (2.37), if we can show that rg(n) is bounded below
by “something”, then we will be able to conclude. using the monotone convergence
theorem, that zg(n) converges. In fact, showing that zg(n) is bounded below is
quite difficult, since the bound depends on the particular choice of the sequence
{©n}, as we show below.

From (2.32), we have that
dn TR
= do ~ do . 2.41
P /;ﬂ ga(w)de /0 P ar(p)dy (2.41)

From this, it is clear that if zg — -2, then P, — f:.‘,z gr(e)de = 0. That is, the
probability of choosing any ¢, from [c.,d,] approaches.zero as n — oc. Further-
more, this yields 8, — 0 as n — oc. The issue is whether or not zp(n) converges to

—2. Clearly, as discussed previously, this depends on the {(>,} sequence. Suppose
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that <, = ¢~ > —2 € [¢,d]. Then

-

P ~ gr(w)de .
0.5(¢*—2)

Clearly, P, does not approach 0 as n — oc in this case. Note that P, is the
probability of picking the n*® element of the sequence shown in (2.31) from the
closed interval [c,, dn]. Now, because lim,_,o0 3 1wy P; = 1, we conclude that 3, — 0,
as n — co. In other words, the probability of realising any particular pathological

sequence ¢ = (1, P2, ..- ,©n) approaches zero as n — oo.

Remark 2.3 Even though it is feasible to select a pathological sequence of inputs
that steers the iterates away from the equilibrium point of the associated ODE, the
probability of realising such a sequence approaches zero as n — oc. This implies
that the fraction of sequences {n} that steer iterates away from the equilibrium

approaches zero as n — 00.

2.9 A look at the special case A\ =1

When A = 1, the doubly-triangular pdf of the previous section degenerates to

©w+3 . =3<pe< -2
AlP)=9 —(p+1) , —2<p<-1 (2.42)
0 , otherwise .

We seek to determine what the classifier ¢(¢) (previously defined in Section 2.1)

converges to in this case. Intuitively, we expect that c(t) = —2 as t = oc. However,
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we have to investigate whether Ljung’s model reproduces this. As before. we obtain

the following system of ODEs:

,

0 c< -3
. S +(3-24)5 —3zac—Hza+1) . —3<c< =2
T4 =« . s (2.43)
LG +za)—S+3(za-1)P—2+z4c , —2<c< -1
—(I,1+2) 7 CZ_I
\
and )
—(zp +2) . c< =3
. i-5-3F+(G+3%+S)es , —3<c< 2
ip=1 7 ) (2.44)
%+—§-—§—(-2-+c+§)1'3 ., —2<c< -1
0 , c> -1
Now for ¢ > —1, we have the system
T = —(r4+2
A (za4+2) (2.45)
zg = 0

which has a line of equilibrium points (z],z3) = (—2, k), where & > 0. Hence, the
classifier converges to

c==-1, (2.46)

where the value of & depends on the initial condjtion.. Note that & > 0, since
¢* > —1. It is clear that an unusual bifurcation has occurred, since we now have
infinitely many equilibria - all lying on the line 4 = —2. This is shown in Fig 2.17.

From (2.45), we have that 74 > 0if z4 < —2 and T4 < 0 if z4 > —2. This
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- $ < 3 2 1 ' A
=
-3
- ~omet

T o2

" ca)

Figure 2.17: Plot of phase space of the associated system of ODEs (with A = 1)
showing a continuum of equilibria, as discussed in the text
implies that the equilibrium (—2, k) is neutrally stable. Also, we observe that the
invariant region is now given by D : —1 > x5 > 14 > —3. Thus, (z],z;) € D for
all £ >0.

In a similar manner, it can be shown that the associated system of ODEs (2.43)-
(2.44) yields one locally asymptotically stable equilibrium and a saddle point, viz.
(—2.333,—-1.667) € D and (—2.000, —0.667) & D, respectively. Hence, the classifier

c(t) converges to —2 as t — oo.

Remark 2.4 From the foregoing considerations, it is evident that the special case
A = 1 represents a breakdoun of Ljung’s model. The case A = 0 displays similar
behaviour. In this case, the classifier c(t) converges to 2, the mean value of the

right hand component triangle of the pdf.
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2.10 Closing remarks

The numerical simulations performed in this chapter do help in developing a feeling
for the long term behaviour of the {(z4(n).zg(n))} sequence, provided we are given
some starting value (z4(0).z5(0)) € D. However. there is an inherent limitation in
this approach, viz. tracking of individual trajectories of the algorithm will not give
any illuminating picture, since {(z4(n), zg(n))} is not ergodic in most applications.
To be able to make any general comments about the convergence of iterates, there
is a need to encompass all possible starting values (z4(0),zp(0)). One way to do
this is to define a probability density function over all possible initial states of the

algorithm, and then track the temporal evolution of this density. This idea is the

subject of the next chapter.



Chapter 3

Evolution of Densities of

Algorithms

3.1 Introduction

Consider the usual [1] noise-driven neural learning algorithm

Tntl — Sn(zn) + ‘Yngrx N (3’1)

where S, (z,) %) 4o + Yah(zs), and {£,} is a sequence of i.i.d. random variables
with common density g. The rest of the symbols retain their usual connotations.
Note that the map S, explicitly depends on n. Furthermore, for A(-) bounded,
(3.1) gives |Tns1 — Tn] = TnlR(Zn) + &| = 0 as n — oo, since 7, > 0asn = oo .
However, this observation does not imply that {z.} is a Cauchy sequence. To see

this, consider, for example, the sequence {z,,} generated by the terms z, = 33, ; ,

83
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i.e. the individual terms of {z,} are partial sums of the harmonic series. Then we
have that |zpy; — 2, = ;;—'_ﬁ — 0 as n — oc. On the other hand, clearly, z, - o
as n — oc. Alternatively, we may write (3.1) as Zn41 — 2n = Ya[R(Zn) + &} — 0
as n — oo. This implies that (3.1) approaches the identity map I : Zny; = Zn as
n — oo. The latter is known to have infinitely many fixed points.

In this Chapter, and essentially throughout the thesis, we are interested in the
long term behaviour of the {z,} sequence. For example, do the iterates converge
te a unique fized point, for all initial points zo? It is well-known {1] that if the
associated ODE

& = h(z) (3.2)

has exactly one globally asymptotically stable equilibrium #, then, wpl, (3.1) con-
verges to . However, if (3.2} possesses more than one stable equilibrium, not much
is known about the convergence of (3.1) to these stable equilibria. It is the primary
goal of this chapter to get a glimpse of what goes on in this latter situation.

As with any random process (see [26],{27]), it is not possible to obtain meaningful
convergence results of (3.1) by simply tracking individual trajectories as is the case
for ergodic transformations. Instead, more meaningful results may be obtained
by an examination of the evolution of densities of {z,} [5]. The utility of this
approach lies in the fact that it takes into account all possible initial states. An
initial probability density function f, is defined over all the possible initial states
of the algorithm. The idea is then to find how this prescribed density of initial
states evolves over time. Ultimately, one hopes to find a (limiting) stationary

density f. for the sequence of densities {f,}. It is this stationary deasity that
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may hold the key to understanding the intricacies of the convergence properties of
an algorithm, especially if the associated ODE has multiple locally asymptotically
stable equilibria.

In this chapter, we will study the evolution of densities, under the action of the
so-called Frobenius-Perron operator corresponding to the map S,, of both the full

nonlinear algorithm (3.1) as well as its linearised counterpart
ITntl = QnZn +'Tn§n y (33)

where a, = 1 + ,A'(£) and # is an equilibrium point of (3.2). A brief description
of the above operator is given in Section 3.3.
We now digress to show how (3.3) is derived from (3.1). Let £ be a stable

equilibrium point of the associated ODE (3.2). Furthermore, assume that

def .
Tp = T+ €,

where €, — 0 as n — co. Taking a Taylor expansion of k(-) about #, we have that
h(z,) = enh’(£) + O(€2) , for n large enough .

Plugging the last expression back into (3.1), and ignoring higher order terms in €,,
gives

€ntl = [1 + 7,171,,(:{‘»)]6" + 7n€-n ’

where £, =4 R(Z + €n, n) — h(& + €,)- Setting an i+ TaR'(Z) yields the desired
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result. where €, is a dummy variable. Note that a,, € (0.1). and that a, — 1~ as
n — oc.

To give a flavour of the spirit of this chapter. consider the unperturbed linearised
algorithm given by

Tnet = (1 — An7%)z,, (*)
where A > 0, a € (0,1). The iterates z, may be expressed in closed form as follows:

n—1

In =1 H(l — AkTe).
k=1

We wish to characterise the long term bahaviour of z,. To this end, we proceed in

the following way. Let

n—1
B. ¥ T[a - ),

k=1

which gives

n—1
InB, = Y In(l-Ak™")

k=1
n—-1
~ =A Z k= , for k sufficiently large.
k=1
In view of this, we get
Bn ~ e_A 2:;11 k=
Now, it may be shown that
n-—1 l=c
Sk I
k=1 l-a
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which implies that

l—a

" —0asn—00.

A
Z, ~ Ti€ 1-a

Next, let us perturb (*) by adding a forcing term to it, viz.
ZTne1 = (1 — ’\n—a)xn +n7%r,, (=)

where r, is a deterministic forcing term. For this perturbed algorithm, Chung [19]
proved that if r, — 0 faster than n™¢, where € > 0, then z,, — 0 as n — oo. The

following theorem [19] summarises his results:

Theorem 3.1 Suppose that {b,}, n > 1, is a sequence of real numbers such that
forn 2 ng,

] Cn d
Dﬂ+1£(l—n_,)b"+;;¢-’

where s € (0,1), s <t,cn>¢c>0,c >0. Then

~

= - c
hmn—)oont ’bn S - -
C

A proof of this result may be found in [19].

Fabian [18] considered the special case = 1 of (*x), and proved that z, — 0
if and only if n=' 7, r; — 0 as n — oco. His result is consistent with intuition,
since n™! =%, r; may be interpreted as the mean of the sequence {r;}7_,. In other
words, he showed that if the mean of {rg}7_, converges to zero, then the iterates

z,, will converge to zero as well, as n — oo. During the course of this work, we have

been interested in generalising Fabian’s result to the case when a # 1, viz. proving
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the conjecture that 2, — 0 if and only f n7® ¥ 7_, 7; — 0 as n — oc. However.
we suspect that the latter may not be true. since the term n™® 3°7_, r; is not the
usual mean of the sequence {ri}7_,.

The ultimate goal is to examine the long term behaviour of the sequence {z,}5%,
in the case when {r,} is a sequence of random variables, with some prescribed
probability density function. In this case, it is not guaranteed that r, — 0 as

n — co. However, we point out that if the sequence {r,} of random variables is

compactly supported, and
T4 = (1 — A7)z, +n""r,, wherey > a,

then Theorem 3.1 guarantees that z, — 0 as n — oo.
In light of the above examples, we shall now proceed to formulate a framework
for the analvsis of sequences of densities generated by iteration of the Frobenius-

Perron operator.

3.2 The Space LH(X, A, i)

Conventionally, most authors (see [5], for example) formulate the analysis of the
sequence of densities {f.}3%, in the space L} of probability density functions.
However, as will be shown in Section 3.4, this space is not always appropriate. ¥or
completeness, we give a brief description of L}. Let (X, A, ) be a measure space,

where A is a o-algebra in X, and where 4 is a measure on A. Consider the set I of
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all real-valued functions f whose absolute values are integrable over X. i.e.

[ 1fldu<os,

where, in. most practical applications, p is Lebesgue measure. Note that ' is a linear
space, since everyv finite linear combination of integrable functions is integrable.

Now define the subset 'o C ' by 'y = {f € T | f = 0 a.e.}. Then the real
valued functional p defined below is 2 norm on the factor space I'/Ty, where I'/T¢ "

is denoted by LY(X, A, u):
p:L1-+]R,p(f):/xlfld,u,forallfeLl. (3.4)

It is usual to denote p(f) by | fll,- L*(X,A,u) is a metric space with the metric
given by

p(f,g)=|If —gll,, for all f,g € LY (X, A, p) . (3.5)

The “conventional” space on which densities are defined is denoted by L5 (X, A, i) C

LY(X_A.p). and defined by
Lh(X,Au)={f|f200nd [ fdu=1}. (3.6)

It is well-known that the space L}, is complete with respect to the L! norm. The

utility of this fact will become apparent in later sections of this Chapter.
Definition 3.1 Any function f € L (X, A, i) is called a density.

Remark 3.1 It turns out that, under some conditions, the sequence of densities
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{fu}=, converges to elements outside of the space LL(X. A, ). This necessitates
the definition of a broader space. the space of all objects to which one can associate
a distribution, that includes LL(X. A, p). We will return to this issue in Sections

8.4 and 8.5.

3.3 The Frobenius-Perron Operator

Suppose that we have a non-singular, measurable transformation S: X — X on a
measure space (X, A, u). For our purposes, S shall be defined as the deterministic
part of the algorithm under consideration. For example, in equation (3.3), it is given
by S(zn) = anza. Let f € LL(X,A, ) be an arbitrary density. The Frobenius-
Perron operator, P : L}, — L}, describes the evolution of f induced by S. In other
words, if f defines the distribution of initial conditions, i.e. points xo € X, then
Pf gives the resulting distribution of points z; = Szo. Define the action of P on

f as follows

/Pf(:r:),u(dr) =/_ f(z)u(dz) , for A€ A (3.7)
A S—1(A)

This relationship uniquely defines P (see [5] for details). From (3.7), it may be

shown that P has the following properties.

1. P is a linear operator. That is,
P(Mfi+def2) =MPHh + 2P, (3.8)

forallfl,f2 € Ll, Alt)'?e]R'-
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2. For fe L.
Pf>0if f>0 on X. (3.9)

[ PR@udz) = [ flutd). (3.10)

4. ¥S, =So " BmES 5 and P, is the Frobenius-Perron operator corresponding

to S,, then P, = P, where P is the Frobenius-Perron operator corresponding

to S.

. In the special case when X = IR, choosing A = [0, z|, we have that

(¥

Pi@) = |

du .
z /s-!([o;-n flu)du

Note that (3.9) and (3.10) imply that Pf is also a density.

Definition 3.2 Any function f € LL(X,A,p) that satisfies Pf = f is called a

stationary density of P.

To illustrate the computation of the Frobenius-Perron operator, consider the map
Tntl =0T, & € (031) L

where S(z,) = az,, and X = R. For any f € L}, the associated Frobenius-

Perron operator is

d
Pfz) = — /S OO0
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= % * Flu)du

= 255,
O Q

fe

where [a,z] C R . In light of this, we get

falz) & Pf(a)

1 T
= a';f('a—,,)-

3.4 An example showing the inadequacy of L}

To motivate the need for a broader space of densities that encompasses L}, consider
the iteration of a uniform pdf
1 . z€e(—4%1
flz)= =7 (3.11)
0 , elsewhere
under the Frobenius-Perron operator defined above. The action of P on f generates

a sequence of densities, { f,}, defined by

_‘;1; » T € (_Q’ Q,:)
falz) & Prf(2) = 2r 2 (3.12)
0o , elsewherg .

Suppose that m < n, and consider the densities f, and f,. As illustrated in Fig

3.1, we wish to compute the L! distance between f,, and f,. We obtain
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fm fn

m
- -ap apn &n

Figure 3.1: Iteration of a uniform pdf f under P associated with the map S(z) =
az, a € (0,1).

[ fo = fmlls = [P f(z) = P"f(z)]hh
= 2(1-a"™)

< 21-a")—»2 asn—oo. (3.13)

Thus, {fn} is not Cauchy in L}. This implies that L}, is not an appropriate space
for the analysis of evolution of densities under the action of this Frobenius-Perron
operator. What is needed is to view these densities as special cases of distributions.
We examine this idea in detail in the next section, where we show that the limiting
distribution of the sequence {f.} is the so-called “Dirac distribution”.

In view of the above example, we now formally introduce the space of normalised
positive distributions, denoted by ﬁ;(X )- The motivation for the work in the next
section comes from a paper of Forte and Vrscay [20]. Essentially, they look at
a similar space, but with more general distributions. In this thesis, we focus on

a subset of their space, the space of normalised positive distributions mentioned

above.
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3.5 A Suitable Metric Space of Distributions

Let X be a compact and connected subset of R . Distributions are defined as con-
tinuous linear functionals over a suitable space of test functions, denoted as D(X).
The space of distributions on X. denoted by D'(X). is the set of all continuous

linear functionals on D(X). In other words, the set of F': D(X) — R such that

1. For any sequence of test functions {,(t)}32, that converges in D(X) to ¥(t),

the sequence of numbers {F(¥,)}32, converges to the real number F'(') in

the usual sense [22].
2. F(ayy + cothz) = a1 F(¥1) + c2F(2) , c1,¢2 € R, ¢y, Y2 € D(X).
The space D'(X) includes the following as special cases:

a. Functions f € L!, for which the corresponding distributions are given by

F(¢) = [ fle)p(a)dz , for all ¥ € D(X) -

b. The Dirac distribution, §(z — @), which may be defined in the distributional
sense as follows: For a point a € X, F(») = ¥(a), for all ¥» € D(X). This is

often symbolically expressed as

F¥) = [ $(z)8(z - a)ds



CHAPTER 3. EVOLUTION OF DENSITIES OF ALGORITHMS 95

In this thesis, we are interested in the space of normalised positive distributions,

denoted as —ljf,_(X), and defined by
Dy(X)={FeD'(X)| F(1)=1, and F(¢)>0 V$ € CT(X)}, (3.14)

where C® = {p € C®| ¥(z) > 0, 2 € X}. The physical motivation for the
assumptions F(¢) > 0 and F(1) = 1 is that we wish to interpret the values of the
distributions as probability measures, in a manner analogous to integrals of density
functions in L}. In fact, note that L}h(X) C D (X).

In the following analysis involving the space D-'_,_(X ), we shall restrict our test
functions to a subset of C$°, namely, positive C* functions that are Lip, on X,

viz. D(X) % Lip}(X), where

Lipi (X) = {# € Lip;(X)| ¢(z)>0, forall z € A}, (3.13)
and where
Lipy(X)={¢: X 5 R| [¢¥(z1) — ¥(x2)] < d(z1.72) , forall z;,z, € X}.

The following property is very important in formulating a representation theory for

distributions in D, (X).

Theorem 3.2 For any distribution F' € ﬁ;(X ), there ezists a sequence of test
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Sfunctions f, € Lipf(X), n = 1.2.- -, such that for all v € LipF(X),
Jm Faw) = Jlim [ flreiz)ds
“ F).

This result is a rather simple specialisation of a theorem for the case F € D'(X),
which was stated in [20]. By recourse to the above result, it will be convenient to

express the distribution F € D’ (X) symbolically as
F(y) = d
() = [ flaybia)da,

even though there may not exist a pointwise function f(z) which defines F (e.g.
the Dirac distribution). Fo: notational convenience. given f € L}, we will write
“f e ﬁ; " meaning that one can associate a distribution F € D/ (X) to f. (In the
same way, we can write “6 € D/ (X)”, where ¢ is the Dirac distribution function.)

In {20], a metric was introduced over the space D'(X). Following this treatment,

we introduce a metric over the space 'D‘;(X) :
gy, (£,6) = Subyerippiy || [F = 9)(@w(2)dal} , for all £.g € DL(X) . (3.16)

A major difference is the use of Lip] test functions in this metric, as opposed to
test functions inside the unit C* ball used in [20]. Our restriction to normalised
positive distributions permits the use of Lip{ functions, as we now show.

Given two test functions ¥1(z) , ¥2(z) such that ¥(z) = ¢2(z) + ¢, wherec € R
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and f.g € —5;,(.’\:), then
[ Faa(@)z = [ g@pala)dz = [ few(a)dz - [ gla)in(z)da .

In other words, the metric will not be affected by translations in the test functions.

This allows us to use Lip; functions as is done for probability measures [21].
Theorem 3.3 The metric space (_D.;_(X), d—ﬁ;) is complete.

Proof

Let {f,}2, be a Cauchy sequence in (E;(X ), dﬁ;). In other words, for any € > 0,
there exists an NN(e) such that dﬁg_ (frs fm) < €, for all n,m > N(e). From the
definition of dp;, in (3.16), it follows that for any fixed ¢ € Lipf{ (X), the sequence

of real numbers {¢,(¥)}o>,, where
ta(¥) = [ fale)(2)dz ,

is a Cauchy sequence on R. The latter is true since, for any ¥ € Lip{(X), we
have that [tn(1) — tm (V)| < SUPyerit (x)[tn(¥) = tm(¥)| = dpt (fa, fm) < €, for all
n,m > N(e). Let #(x¢) denote the limit of this sequence. Note that #(«) > 0 for
each ¥ € Lipt(X), since {t.(¥)}, is non-negative. By setting F(¥) = (), we
define a continuous linear functional F on Lip} (X). Furthermore, since ¢,(1) = 1,
it follows that #(1) = 1. Therefore F(1) = 1, implying that F € _5;(}[ ). This
procedure can be easily extended to all C$° test functions on X" by noting (via the
Mean Value Theorem) that M~ x ¥ € Lip}(X), where M = [|¢'||. Therefore,

the metric space (ﬁ; (X), dﬁ;) is complete. m]
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We now illustrate the use of the metric space (ﬁ;_ (X, d-ﬁ;) in the investigation
of the Frobenius-Perron operator P corresponding to the linear map S(z) = az.
o € (0,1). Note that P will now have to be a2 mapping from _D_:_(X) to itself. We
proceed in a manner analogous to that described in Section 3.3, with particular
reference to the example considered in that section. Now, for any f € _D—;(.Y). the

distribution g = Pf is defined by the linear functional

Q) = A q(z)é(z)dz
= [ (PHEw(z)s
= o7 [ fEW(a)ds
‘/X f()¥(ay)dy, (3.17)

where ¥ € D(X). In the penultimate line, X, ©f {y € X | y = S(z), z € X}.
Theorem 3.4 P is contractive in (_D_;(X),dﬁ;).

Proof
Suppose that ¥ € Lip} (X), and define % (y) = a~'¥(ay). Then

l¥(z) — ¥ )| = o Yp(az) - v(ay)]
S iI -yl L)

which implies that ¥ € Lip} (X). In addition, define

L = {¢ € Lipt(X)| ¥(z) = o™ "¥(az), for some ¥ € Lipf (X)} .
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Then, (3.16) yields

dp (Pf, Pg) Supavez,ip{f(,\')“_/x[f“gl(y)d'(ay)dyl}

= supger{al [ If - 9l)d(w)dyl}

< a swp {l[ [f-gl(@¥()dyl}, since L C Lipf(X)
veLipf (X)

= adp, (f19). (3.18)

which gives the desired result. By Banach’s Fixed Point Theorem, there exists a
unique fixed point of the operator P in the metric space (:5; (X). dﬁ;). O
This resolves the difficulty encountered in Section 3.4. Our limiting density is
a distribution. Together, theorems 3.3 and 3.4 imply that there exists a unique

f- € ﬁ;(X) such that
1. Pf. = f., and
2. dp: (P"f,f.) = 0,25 n — oo forany f € D (X).

The last statement follows from the observation that
dy, (P f, £.) = dgy (P(P"' ), P(P"™ £.)) < a"dpy, (f, f-) =0, as n— 0.

We now show that f. = d(z), the Dirac delta “function”. Let F be the Dirac

distribution, i.e.

F()

/X 8(z)y(z)dz
= %(0).
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Then, from (3.17). Q. the distribution associated with the Frobenius-Perron oper-

ator. 1s

Qw) = [ swwiay)dy
= %(0),

which gives the desired result.

3.6 Densities of linearised algorithms

The previous section has given us a complete description of the linear map
Tn4l = QZn , @ € (07 1), (3'19)

where S(z,) =4 az,. The main thrust of this section is to investigate the long term
behaviour of sequence of densities { f,} for generalisations and noise-driven versions
of (3.19). This section illustrates that the set { f,} does converge to elements outside
of L}, and hence the need for a broader space _ﬁ;(}{) that includes L},. However,
in the rest of this chapter, we shall formulate the analysis of {f,} in L}, following
the treatment of Mackey and Lasota [5]. Analysis in the space of distributions
ﬁ;(X ) is difficult and beyond the scope of this thesis. Besides, it appears that the
space L}, is sufficient for the study of random processes, viz. limiting densities do

not converge to Dirac-like distributions.



CHAPTER 3. EVOLUTION OF DENSITIES OF ALGORITHMS 101

The most general linearised algorithm that we will consider is of the form
Tn+l = CnTn + Ynkn . (320)

where {£,} is a sequence of 7.i.d. random variables, and a, = 1 + 7,A/(%) < 1, so

that Z is a stable equilibrium point of the ODE
z = h(z).

The parameter «,, is called the gain of the algorithm (also referred to as the learning

parameter in neural networks literature) and has the usual properties, viz.
Yo = 0 as n — oo, and Z'Vn:oo-

For latter purposes, we now take a brief detour to show that lim, e ([T}=; @;) = 0.
Write
Qp.-..a1 = H[l + b7, (3.21)
J=1
where b %/ R’(z) < 0. Now denote the right hand side of (3.21) by R,. Thus we
have that

R, — e{E;;‘ In[1+b"rj]} , (3.22)

which yields
R, ~ RO>4S g (3.23)

If {y:}2, satisfies the usual conditions (see Chapter 1, Section 1.4), we have that
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T_17; = o0 as n — oc. This yields
R,—0asn— o, (3.24)
implying that lim,oe([17=; @) = 0. Below, we study the following linearised (see
Section 3.1 for details) variations of algorithm (3.1):
1. Tn+l = CGnln .
. ZTpy1 = @Zp + Ynén , Wwherea € (0,1) ,
i, Tpyi = QnTn + Ynén , and

IV, Thy1 = anZn + & (unattenuated noise amplitude) .

3.6.1 Algorithm (i)

Applving result 5 on page 91, it can be shown that the n** iterate of the density
f(z) is given by 7
P.f(z) = o' flag'z) (3.25)

where P, is the n*® Frobenius-Perron operator. Note that P, acting on f contracts
it in the z direction and expands it in the y direction. In other words, the RHS of
(3.25) gets more “spiked” around the origin, as n — oc. Each a, gives a different
operator, leading to a sequence of operators { Py, Py, ..., Pn}. Now, iterating these

operators, (3.25) becomes

1
PoPacs..Pif(2) = ———Ff (a f_al) . (3.26)



CHAPTER 3. EVOLUTION OF DENSITIES OF ALGORITHMS 103

Consider an arbitrary bounded interval [-A. A] C IR, where A > 0. Then

A

A ey
/_A P.P._,..P.f(z)dz =/ = flz)dr, (3.27)

T an-..ag

which approaches %% f(z)dr = 1 as n = oo. In other words, for any A > 0,
there exists an n such that the right hand side of (3.27) is approximately unity.
This suggests that the sequence of densities {f,}72; converges to é(z), where the
convergence is understood in the sense of distributions. We illustrate this in the

following way: Suppose f(z) = fo > 0for z € [—3, 37}, and zero elsewhere. Then

0, forz g [_21;-_23. a)...ap

Pn"-Plf(x) = oo T o ,on
JQ a)...0n el
an...a; * forz € [— 2fo 7 2fo .

Since 3:1': — oo as n — 0o, this suggests that {f,}52, converges to §(z). To

close, note that (7) may be re-expressed as

T4l = Zp + 'Ynhl(j)mn )

giving the associated ODE
= zh'(2), (3.28)

where A’ (£) < 0. We will return to this ODE in Section 3.6.5, where, in addition,

we shall give an interpretation of the above results.
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3.6.2 Algorithm (iii)

This represents the most general linear model that we will study. It will be straight-
forward to look at (ii) and (iv) once we have analysed this algorithm. Let F,(p) be
the Laplace transform of the pdf of z,, and G(p) be that of the pdf of £,. Then,
F.(anp) is the transform of the pdf of anz,, and G(v.p) is that of the pdf of vnén.
Following [3] and [4], we then have that

Fr1(p) = Falanp)G(onp) - (3.29)

Now, (3.29) may be expressed in closed form as follows

n—1
Fa(p) = Fo (P H QJ) H G (7’:}7 II a,) . (3.30)

1=0 i=k+1

Assume that the pdf of z¢ is given by
fl‘o(:) = 6(2‘ - IQ) .

Then the pdf of [T}y @;Zo is

n—-1 -1 - n—1 ..
(1‘[ a,) 5 (” =0 _EIJ:‘_’ “’) . (3.31)
J

=0 J=0

The Laplace transform of (3.31) is then

n—1 -1
f (II %) ’ (-TI—— - zo) de = eIl e (332)
ay .
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Equations (3.30) and (3.32) give

n—1 n—t

7=0

Whence, (3.30) reduces to

n—1 n—1 n—1
Fap)=e?*Ilixi ] ¢ (n-p 1 a.-) : (3.34)

k=0 1=k+1

We shall choose a pdf of v, such that the product in (3.34) is easily computed.
Following [3], one possible form, which allows Gaussian and other more general

distributions, is

Gp) =€ . BER . (3.35)

which yields

n—1 n
G (‘ykp H a; {B'Ykp( e ) b

t=k+1

Therefore, assuming that (3.35) holds, we get

HG (‘rkp H az) = exp{Bp" nfv (nff a.-) }. (3.36)

i=k+1 k=0 \l=k+

Substituting (3.36) back into (3.34) yields

n-—1 n—1 n-1 n
Fu(p) = exp{—pzo [] &; + 8" 3_ % ( II a;) }- (3.37)

3=0 k=0 1=k+1
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The density of z, is thus given by

falz) = L7 {exp{—pzo H a; + 8p" Z Tk ( nl:[ Qs) 3 (3.33)

7=0 k=0 i=k+1

where £-! denotes the inverse Laplace transform. For n = 2, (3.38) becomes

~ ;- n—1
fn(;t) = 0.5 U (I — To II Q') X
{ﬁ Tieo i (H?:Ll-}-l Qi )2 } 7=0 ’

— n—1
exp { (:r Zo HJ—O CYJ) 5 } ‘ (3.39)
B Zlc—o Vi (Ht—k-'l-l a,)

where 7 is the Heaviside step function. From the analysis in equations (3.21)-(3.24),
we recall that

n—1

Ha,———)Oasn-—)oo. (3.40)

=0

Let us now examine the quantities in the denominator of (3.39), viz.

"‘fﬁz (H ) . (3.41)

k=0 i=k41

From (3.21)-(3.24), it follows that

-1 2
(H a.-) ~ep{ lim— 1yt - e 17}

i=k+1
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where we have set v; ef 17, a€(0,1),and b %f h'(£) < 0. Consequently, we have

that

—Q

n-—1
(n - 1)"‘*} Y viexp {—1—2_—ba—(k + 1)"‘*} :

k=0

n—1
T, ~ B erp{l 2 [(n—1)'7" — (k+ 1)“"]}
k=0

= ﬁexp{

l—a

The leading behaviour of the partial sum on the RHS of the preceding equation is

found by examining the corresponding integral

def [m1 —2a 2 I-a
I, —]c; (z+1) exp{ 1_O‘_(:I:-}-l) }d:z:,

where, without loss of generality, we have set v =f (k + 1)~®. Integrating I, by

n=¢ 20 .
Iy~ — T exp{— n } R

parts yields

which implies that

2b n—< 2b e
T, ~ ,Bexp{l _a(n— l)l-a} X {——ig—exp ('l—anl )}

n®—0a n—o0. (3.42)

"2
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We may express (3.39) as

r

falz) = X

Furthermore. for = > zo [I7=5 ;. (3.42) implies that

im f,(z)=

since {F}°° approaches infinity at a relatively much slower rate than

I —T

exp { —OI-—IJ-=—°——’—} approaches zero. On the other hand, when z = zo H,—o aj,

we have that

im fa(z) =

n—o00

The above analysis suggests that {f,}3, converges to ¢(z).

3.6.3 Algorithm (ii)

Two cases arise, viz.
(a) a > 1 (unstable equilibrium), and

(b) a € (0,1) (stable equilibrium).

L r—rg nn:l OJ'>‘
- 2 ( J=0 -1
0.5 x {T—’:} X exp {— o . x> zo][}5

0.5 x 0.5 . r=20[128 o
1=0 7

n-1
0 , T < Tg I'IJ-=0 a;

108

Before looking at these separate cases, we derive f,(z) for this algorithm. We make

the same assumptions as in the determination of fn(z) for algorithm (iii) above.
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We obtain
Fn+1 (p) = Fn(ap)G(Al'np) -

which may be expressed in closed form as

n—1
Fa(p) = Fo(e"p) TT G(ma™*"'p) .
k=0
The sought-after density is thus
Y2 n (r - 01“1‘0)2
fu(z) = 0.5 {—} U(z — a™zo) exp 4 — 22 Z0) L (3.43)
T, T,
where
n—1
Tn dé.f BQZn Z ,),za—?(k-{-l) . (3‘44)
k=0
Case (a): Recall that
2 3 4
m(1+z)=x—%+f§-%+m, lz]<1,
which gives
2 I
—1n(1—:r)=:z:+-2—+-é—+..., [z < 1.

In the special case v =4 (k + 1)~%, we have that

n—1

Z'y;‘;:tk“ =—In(l—=z).

k=0
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- . d . . .
Now setting x =/ 2. and using the previous notation. we get

1
T, = —3a*" In(1 — i) 0. asn oo, (3.45)

since In(1 — %) < 0. Thus, from (3.43) and using the same analysis as before. we

have that

(z — a™xg)

. 2
falz) = 0.5 {T—'}z U(z — a"zg) exp {—-—~—T——-} —0asn—o00. (3.46)
Following our previous analysis, we conclude that {f,}32, converges pointwise to
zero.
Case (b): Note that we can no longer employ the geometric sum used in Case (a),
since &7 > 1 in the present case. Equation (3.45) is not valid for this case. Let

n-1 k+1
def 1
.Y gy ot () -

k=0

In the special case v = (k+ 1)~%,and r =4 =z .-we have that

n

T,=8a"% . (3.47)
k=1 k

Now suppose that f(k) f -‘-’15 Then, employing the Maclaurin-Euler sum formula

gives

T, ~ B> /n %e“”dt , for z>0, (3.48)
1
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which may be integrated by parts to show that T,, - 0 as n — oc. From (3.43).

this suggests that {f,}22, converges to é(z).

3.6.4 Algorithm (iv)

With the usual assumptions on the densities of £, and z,, the density of algorithm

(iv) is given by

7=0 k=0 \i=k+1

falz)= L1 {exp (—pxonﬁ a; +ﬁp”ni:1 ( nﬁl a;) ) } )

which, for n = 2, yields

L n—1 _ -1 \2
fa(z) = 0.5 {1}2 U(z — zo [] ;) exp {-..(I zo [1720 @) } ,
T 7=0 T,
where U is the Heaviside step function and
def =l ot : Bne
> (.-IJH a") ~ o 70 (3.49)

where « and b are as previously defined and the asymptotic expansion is arrived

at in a way similar to that performed for algorithm (iii). Consequently, we obtain

that

T, — 00, asn—o00,

and thus

fa(z) — 0, asn —00.
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To close our analysis of linearised algorithms, we now consider the usual noise-driven

algorithm
Tntl = QnZn + 606, , (3.50)

where
= 1 1
an =1+ k() , =Gy and 5n=(n—+_T)-;vr:lés'

In other words, the noise amplitude 4, and the parameter a, decay at different
rates. The problem is to determine the stationary density of (3.30), assuming that

we know the relative sizes of 7 and s. We have already derived the following results:

(a) 0<r<l,r=3s= {fn}2, converges to §(z), in the distributional sense,

(b) s =0 {(i.e. unattenuated noise amplitude): f,(z) POty 0,as n — occ.

Now, we seek to examine the long term behaviour of the density sequence {fn}52,
of (3.50) for cases (c) and (d) below, inclusive of the special case.

(c) r > s, special case: r = 2s,

(d) r<s.
From previous results and with the usual assumptions on the densities of £, and
zgo, we have that the density of (3.50) is given by

falz)y =Lt {exp (—pxorﬁ aj + Bp"ni &7 ( nf_[ a;) ) } . (3.51)
k=0 i=k+1

=0
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For n = 2. this vields

L
11

fale) =05 { -}

{— ==zl “")2} NS

n-—1
U(z — 2o [] @) exp T

7=0

where U is the Heaviside function and

- 2 n—1 n— 2
i "é’ﬁzfaz( i a,-) — B> (k+1) ( i a;) RS
k=0

i=k+1 k=0 1=k+1

It can be shown that

To ~ —%n"’z’ >0, (3.54)
which implies that
—% , T=2s
In—>4{ 400 , 7>2s (3.35)
0 , r<2s

as n — o0o. This gives

05{-2=} U(z)exp {22} , r=2s

, T>2s

fa(z) — (3.56)
For r < 2s, the above results suggest that {fn}i2, converges, in the distributional
sense, to 6(z). This is an improvement on Chung’s result (see Theorem 3.1 in
Section 3.1) in the sense that we now have a tighter bound on the parameter r to

guarantee that z,, — 0 as n — oo.
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3.6.5 Closing remarks

Algorithm (iii) may be expressed in the form
Tn+l = Tn + '/nl-zl(i)zn + Tnkn ,

giving the associated ODE
:=:zh'(%),

where h'(£) < 0. Note that 2 = 0 is the stable equilibrium of this ODE. It is

straightforward to show that the ODE solution is given by
=(t) = 2(0)e"E) 50, as t 5 00

Therefore from the results in Sections 3.6.1-3.6.4, we conclude that the behaviours
of the ODE solutions and the sequence of densities are in accord only for algorithms
(1) and (iii). In these cases, the stationary density of {z,}%2, is concentrated about
2 = 0, the stable fixed point of the associated ODE.

We have derived stationary densities of linearised algorithms of the general form
given by algorithm (iii). Note that the stationary densities so derived are localised,
about £. To obtain a full stationary density of {z,}32,, one needs to piece together
the various local stationary densities which correspond to different stable equilibria

of the associated ODE. If we assume that fn is characterised by a pdf of the form

Gip)=€e’", BER ,



CHAPTER 3. EVOLUTION OF DENSITIES OF ALGORITHMS 115

then. depending on the amplitude of £,, we obtain two different types of local
stationary densities, viz. §(z), and an exact replica of the pdf of £,. In the case of
the &(z) stationary density, it is possible that different masses may be ‘sitting” on
each of the stable equilibria. The almost intractable problem is to quantify masses
that are associated with each localised §(z) distribution. If achieved, this would
give an answer to the question: to which one of the stable equilibria is the algorithm
most likely to converge? However, mention must be made that this is a very difficult

problem, beyond the scope of this thesis.

3.7 Densities of nonlinear algorithms

Consider an algorithm in the form
Tnyl = Sn(xn) + Ynén , (3.57)

where S explicitly depends on n (refer to equation (3.1) to see an example of such

an §). In order to study this problem, let us first look at a simpler version, viz.
Tat1 = S(Zn) + Tnén . (3.58)
where S does not depend on n. From (3.58) above, let

Zn = 'Ynfﬂ . (3'59)
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The density of =, is given by
Gn(z) = - (r) (3.60)
" 'Tng Tn ’ ’

where g is the pdf of the random variable £&,. Suppose that f, € LH(X) is the
density of z,. By (3.58), T,+1 is the sum of two independent random variables.
Note that S(z,) and =z, are independent since in calculating 1, ..., T,, we only need

&0y -eenbn—-1- Let w : IR — IR be an arbitrary, bounded, measurable function. Then,

the mathematical expectation of w(z,4;) is

Efw(znu)] = [o w(@)fari(z)dz . (3.61)

Furthermore, using (3.58) and the fact that the joint density of (z,, z,) is _Y-ln- fa(y)g(Z),

we have that

Blw(enen)] = = o [ w(S@) + oo Didyds . (3.62)

Now using the change of variables z = S(y) + =, ¥y = y, we obtain the Jacobian

9(=y) _,
d(z,y)

Thus, (3.62) is transformed to

Elwann)l = = fo fo w@fa@leCoDidedy. (369
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Equating (3.61) and (3.63) vields

-5
Jg @ (@) = [p wlz) {} = ﬁ(y)g(f—#)dy} dz ,

which gives

fua@) = — fo Fala(E=2 D)y (3:64)

From (3.64), define the operator P, : L, — L} by

= -5
Pofle) = = fo Fola(==Lyay (3.69)

n

for f € Lp.
We now digress for a moment to introduce the Koopman operator (see [5] for de-

tails), which is adjoint to the Frobenius-Perron operator.

Definition 3.3 Let (X,A,u) be a measure space, S : X = X a non-singular

transformation, and f € L. The operator U : L™ — L™ defined by
Uf(z) = f(5(=))

is called the Koopman operator with respect to S.

As a result of the non-singularity of 5, U is well-defined since fi(z) = f2(z) a.e.

implies that f1(S(z)) = f2(S(z)) a.e.. Listed below are some essential properties

of U:

LUMA+XAR)=MUfLi+AUf forall fi,fa € L%, A, € R;
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2. For every f € L™,
WU fllee < i fllze -

We note that [5] refers to any operator satisfying this property (e.g. P) as

contractive, which is not the usual definition of contractive operators.

3. For every f, € L}, fo € L.
<Pfi,fo>=<f.Ufr >

so that U is adjoint to the Frobenius-Perron operator.

Suppose that S is non-singular. Therefore the Frobenius-Perron and Koopman

operators, P and U respectively, corresponding to S exist. Furthermore, let

Ir—y

hoz(y) = g(—2) . (3.66)

n

Then (3.65) and (3.66) yield

P.flz) = ;1- o F@)has(S@))dy
= 7' < f,Uhnz >, since hn(S(y)) = Uhn-(y)

= ;' < Pf,h,r >, since Pand U are adjoint operators

1 r—y -
= = g {PAwy (3.67)

n
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r—y

Using the change of variable Z=* = ¢, (3.67) becomes

Pof(z) = [ 9(6)Pf(z —at)dt . (3.68)
Consequently, since v, — 0 as n — oo, we should expect that, in some sense,
littnsoa Pof(z) = f]R g(t)Pf(z)dt = Pf(z) . (3.69)

The theorem below ascertains the validity of (3.69).

Theorem 3.5 For the system defined by (3.58),
limnoool[Paf — Pflli =0, for all f € Lp(X),
where P is the Frobenius-Perron operator corresponding to S and P, is given by

(3.68).

The proof of this theorem is similar to that of Theorem 10.6.1 in [5], and we choose

to omit it (see [5] for details). A corollary of the above theorem is given below.

Corollary 3.1 Suppose that S and g are given and that we have a sequence {fn}

generated by forr = Pafn , and such that

[fo = fdli = 0asn—oc. (3.70)

Then f. is a stationary density for the Frobenius-Perron operator corresponding to

S. Thatis, Pf. = f. .



CHAPTER 3. EVOLUTION OF DENSITIES OF ALGORITHAMIS 120

Proof of Corollary

Write
Tjﬂf- = fn+l +T5n(f- = fn) . (3-71)
Then
[Paf.—fudli = lfasr + Polfe — fa) = fulls
< ”fn+1 - f-“l + ”_Pn(f- - fn)ul
< | fast = folli + lIf- = Falli . using the contractivity (3] of Pn
€ €
< -4 == N .
< 2+2 €, foralln > N,

which implies that
W Pnf. — fulli = 0as n — co. (3.72)

However, Theorem 3.5 also gives
|Pnf. — Pf.|, = 0asn — oc. (3.73)
Combining (3.72) and (3.73) yields

Pf.=f.. (3.74)
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We return to our original algorithm given in (3.37), viz.
Tntl = Sn(xn) + Ynbn » (3-75)

where now S explicitly depends on n. As before, the noise amplitude is damped
and {£,} is a sequence of i.7.d. random variables with common density g. Suppose

that the Frobenius-Perron operator associated with S,, is P,. and is such that
P pasn o, (3.76)

where P is a limiting operator. In a similar manner to the derivation at the be-
ginning of this section, it may be shown that the Frobenius-Perron operator corre-

sponding to (3.75) is given by
P.f(z) = /m g(£)Paf(z — yat)dt . for all f € L.

The following issue arises: Assuming (3.76), does it follow that P, Y poasn—
oo ¢ In what follows, we state and prove an equivalent of Theorem 3.5. The following

result [5] will be useful:

Lemma 3.1 For every f € L', I C R bounded or not, -
lim [ |f(z+h) - flz)ldz = 0.

The proof of this result may be found in [5].
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Theorem 3.6 For the system defined by (3.75).
limpool[Paf — Paflli =0, forall f € LH(X),

where P, is the Frobenius-Perron operator corresponding to S,, and P, is the oper-

ator corresponding to (3.75).
Proof
Write
Pof(z) = Paf(z) = [ 9(t}{Puf(z — 3nt) = Puf(z)}dt

Pick an arbitrarily small § > 0. Since g is an integrable function on R, there must

exist an r > 0 such that
)
dy < — .
/Mng(y) v g (*)

To compute an upper bound for ||P,f — P,f||1, we proceed as follows.

IPuf = Pufli £ R JR 9WNPaf(z — 7ny) — Paf(z)|dzdy

where

L /]R /lyKrg(y)anf(I = tmy) = Paf(z)ldydz ,

and

L% /]R /M? I Paf(z — Yay) — Paf(z)|dydz .
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We consider each of these integrals in turn. First, since P, f is integrable, Lemma

3.1 implies that there exists an N > 0 such that

./]R [Prf(z — ¥ny) — Paf(x)ldz < g , foralln > N and for |y| < r.
Hence
é ) é
< = < - = —. 7
L<gf ow)y<s o oy =3 (3.77)

For I, we use the triangle inequality to write

LS fo [ WP f@yds + o [ g)Pfle —ray)dyds . (378)

lvi>
Using the change of variables v = y and z = z — 7,y, we get the Jacobian

A(z,y) _

a(z,v) 1,

which yields

/]R /nylzrg(y)f’nf (z — Tmy)dydz = /R /MZT g(v) P, f(z)dvdz
= [, 9o x [ Pof()ds
= /MZf g(v)dv (sigce /IR. P, f(z)dz =1)

g (by assumption (*) above) , (3.79)

IA
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and

/]R ‘[yl>r9(y)Pnf($)dydr = /[y|>rg(y)dy X/IR P f(z)dz

é
< -. .
. (3.80)
Hence, combining (3.78), (3.79) and (3.80) gives
é
L=y (3.81)
Therefore, (3.77) and (3.81) imply that
nl:i_'nolo ”-P.nf - Pnf”! =0.
]

An equivalent of Corollary 3.1 is stated and proved below.

Corollary 3.2 Suppose that S,, and g are given and that we have a sequence {f,}
generated by fo41 = Pnfa and such that f, = f. asn — co. In other words, given

an arbitrary € > 0, there exists an N such that

Ifo= fuli < 5, foralln> N. (3.82)

Furthermore, suppose that P,, the Frobenius-Perron operator associated with S,,

is such that P, - P as n — oc, where P s a limiting operator. Then f. is a

stat:onary density for P, viz. Pf. = f..



CHAPTER 3. EVOLUTION OF DENSITIES OF ALGORITHMS 125

Proof of Corollary
Write
_P—ﬂf- = fn+l +ﬁn(f- - frx) .

This gives
[Pafe = folli £ Mfats = fulls + IPa(fe = fa)lls

< Nfarr = felii +Ife = fallx
e, foralln > N,

IN

which implies that
|Pnfe — fulli = 0 as n — oo. (3.83)

Now, from (3.76) and Theorem 3.6, we get that
"Pnf- - Pf-“l — 0 and ”-an- —Pnf-lll —0asn—o00.

This leads to
”-an.—Pf."l —+0asn — oo,

which, in combination with (3.83), gives Pf. = f.. ]
This result tells us nothing about a specific f.. In fact, in the particular case

given by (3.75), f. is not unique since P is the Frobenius-Perron operator associated

with the identity map I introduced in Section 3.1.
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3.7.1 An example where the associated ODE has two stable

and one unstable equilibria

Consider the deterministic algorithm
= def
Tniyl = Tn + Mmh(za) = Sn(xn) s (3-84)
where we assume that
h(zp) = ~Zn(x + 22, +0.5) .
The associated ODE is thus given by
. 2 ~y def
z = —z(z*+ 2z +0.5) = g(z).

This ODE has two stable equilibria, ] = 0 and z3 = —1.707, and a single unstable
equilibrium, viz. 3 = —0.293. The multipliers of the stable equilibria are given by
g'(0) = —0.5 and ¢’(—1.707) = —2.414, implying that —1.707 is the relatively more
attractive of the two. The graph depicting (3.84) is shown in Fig 3.2.

The following question arises: to which one of ] or z3 is {zn} likely to converge
as n — 00, given an arbitrary starting value zo?
Note that with the given %, we have that S, : [0,23] — [0,z3]). Thus, we focus on
the dynamics inside the box outlined in Fig 3.2. The Frobenius-Perron operator

associated with the transformation S, is formulated below. Pick an interval [z, 0] C
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Figure 3.2: z,,; with a cubic h

[~1.707,0] so that the counter-image of [z, 0] under S, is given by

ST 0) = [9un().0] U [g2a(2), =1 + (27) /2 + 7a] U
[g5.n(2), =1 = (29)°5\/2 + 7] , (3.85)

where g; n(z), 7 = 1...3 are the three solutions of the equation £ = S,(y). Following

(5], the Frobenius-Perron operator corresponding to Sy is defined by

d
Pof(e) = gz [, FO0

3
= Y f(gin(z))gjn(z) - (3.86)

i=1

This tells us how S, transforms a given density f into a new one FP,f. To see

how (3.86) works, pick an initial density f(z) = 0.586 for z € [—1.707,0], and zero
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elsewhere. Then (3.86) becomes

3
P.f(z) =0.586>_ gj.(z), for z € [—1.707,0] . (3.87)

J=1

Substituting this expression for P, f in place of f on the right hand side of (3.86)

vields

3 3
PP, f(z) = 0.386 >_ {Zg;'l(gk.z(l‘))} Gra(T) - (3.88)

k=1 (=1

Similarly, we obtain that

3 3 3

PP P f(z) = 0586 3D ) gi1(9k2(913(2))) gk 2(91.3(2)) g1 5(2) -

I=1 k=1 j=1

Given an initial density f € L}, we seek to determine lim,, o Pr... P f. This limit,
if it exists, gives the sought-after stationary density. With this in mind, we return

to the cubic equation z = S,(y), which gives

1
¥ +20° + 5—(m— 2y + ;I- =0. (3.89)

2’}’ n

We wish to find the three roots of {3.89), viz. g1..(T). g2.a(z), and gsn(z). Now,
we may write (3.89) as

Y +ay’+ay+az=0,

where ¢y = 2, az = 37—(% — 2) ;and a3 = . Let Q = {3az —a?), R =
(92,2, — 27a3 — 24}), § = (R + /(Q® +R?)s,and T = (R - /(@ + R))5.

Furthermore, let D = Q® + R? be the discriminant. Now, it may be shown that,
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for z € [—1.707, 0], we have that D < 0 if and only if

225 270 10
(1458 + 972 + 378+v,)% < (62.5 + 7° +tz 738

).

Clearly, for any fixed z € [—1.707,0], the LHS of this inequality approaches a fixed
positive real number as n — oo. On the other hand, the RHS of the inequality
approaches +oco0 as n — oo. Therefore, there will be a “cross-over” value, vy say,
for which the above inequality holds for all n > N. From the definitions of Q and

R above, we have that

R
—— = B, (Ty. + 18 + 272) ,
v=gz = (T )

def _ Tn -
Bn = 0.5‘/———-——-_—-——(2.5% 3)3 — 0" asn — oco. (3.90)

Now, since there exists an IV such that D < 0 (for z € [-1.707,0]) for all n > N,

where

it is well-known [6] that all the roots of (3.89) are real and distinct for alln > N.

These roots are given by

Gin(z) = % T cos(z) — = (3.91)

=) 3 (3.92)

and

9 =
gan(z) = 3 o cos(§+ 3)7 3 (3.93)
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where

0 < arccos{Bn(Tn + 18 + 272)} . (3.94)

It may be shown that only g3.(z) maps the closed interval [—1.707,0] to itself, for
all n. Hence, g3 n(z) is the only root we need to use in evaluating the Frobenius-
Perron operator corresponding to S,. From (3.86), the sought-after operator is
given by

Pof(z) = f(gan(z))g30(2) (3-95)

for an arbitrary initial density f € L. We choose an initial pdf given by: f(z) =
0.586 for z € [—1.707,0], and zero elsewhere. Then (3.95) becomes

Paf(z) = 0.586g}, () - (3.96)
Hence we get the following iterates

P, P, f(z) = 0.586g3,, (95.2(2))g3,.2(2) »

and

PP P f(z) = 0-5869:",.1(93.2(93.3(-'5)))93.2(93.3(5'3)).9:'3.3(3) .

In a similar way, higher iterates of P,...P,f(z) may be computed. Now, analyt-
ically determining limp—oo Pan...P1f(z) is intractable. However, a numerical ap-
proach is feasible. Fig 3.3 shows P, f(z), PP, f(z), and Py P3P, P, f(z) respectively,
for z € [-1.707,0]. The learning parameter used is vn %! (n + 3)7%%°. The plots

suggest that P,...P,f(z) converges, in the distributional sense, to two Dirac distri-
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butions centred at the two stable equilibria as n — oco. It should be noted that

these two Dirac distributions emerge at different rates. The one located at —1.707

has a relatively bigger mass compared to the one located at the origin. This dis-

tribution of mass is clearly related to the magnitudes of the multipliers of the two

stable equilibria. However, it is not clear how one might go about actually quanti-

fying these masses. Finally, note that these numerical results validate the idea of

linearisation of A(z) about each stable point before deriving the local densities, as

previously done.

3.7.2 A stationary density for the perturbed operator P,?

This section investigates the behaviour of the perturbed system

Tntl = Sn(zn) + 7'16'1 ’

(3.97)
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where S, (z,) df Tn + Inh(zn) and h(z,) is as defined in the previous example. As

usual, assume that {£.} is a2 sequence of i.7.d. random variables, each with density
g- The density of the random variable v,&, is v 'g(47 z). The Frobenius-Perron

operator associated with (3.97) is given by [5]

— Sa(y)

oy )dy . (3.98)

Poflz) =" [p, Fwlo

where f € L} is an arbitrary initial density of all the possible initial states of
(3.97). From (3.98), we may find P,f. P,P,f,....P Pn_1...P.f. The issue is to
characterise

lim P, P._,..P.f, (3.99)

n-+o00

provided that such a limit exists. Now assume that

g(z) = —‘/15—; BER (3.100)

a mean zero and unit variance Gaussian distribution. Furthermore, assume that
the initial density f is given by -

, T €[-2,1}

flz)= (3.101)

O W

, elsewhere.

Computation of P,P,_;...P:f

The analytic computation of the iterates P,,...P, f, for n > 1, is not usually possible.

However, a numerical approach to this computation is available. Nonetheless, the
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latter approach is not that straightforward and easy, as it involves the evaluation
of iterated integrals of increasing complexity. We now outline one possible way
of performing the numerical computations of iterates of the operator P,. First,
compute

z— Sl(y)
B!

Puf(z) = [, )dy | (3.102)

where A, = [-15,15] € R. Then approximate (3.102) by a polynomial, using
the MAPLE interp function. This polynomial has a finite support. The choice of

the size of this support is arbitrary. Denote this polynomial fit by w;(z). Next,

compute
Pof@) =" [, fwaE=2ay
which gives
PyPif(z) = 73" /A l wx(x)g(f:%’—))dy. (3.103)

In a similar way, compute P3P, P, f, P4P3P,P, f, etc. Even after the polynomial
fits have been determined, the (symbolic) numerical integration of iterates of the
perturbed operator is still relatively intensive and consumes a substantial amount of
CPU time. Figs 3.4-3.5 show the first four of these iterates. The learning parameter

used is v, = (n +4)709%,

3.7.3 Comments on numerics

The plots in Figs 3.4-3.5 suggest that the stationary density of the sequence of
perturbed operators consists of two Dirac distributions, g; and u, say, centred at

Z; = —1.707 and Z, = 0 respectively, the two locally asymptotically stable equilibria
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of the associated ODE. We may express the stationary density as ;1

where the component Dirac masses are

and

such that m; + m, = 1, and where D(X) is a suitable space of test functions
for example D(X) =4 Lip{ (X). In this example, it is not immediately obvious
what the values of m,; and m, will be, primarily as a result of the difficulty of

constructing the set of functions {¥| ¥ € Lipf (X)}. Also, as previously discussed

mp

sup

weD(X) {/

sup
veED(X)

{f P(t)ua(t — T2) dt}—

mt—xn&}=

sup {w(jl)} ’

veD(X)

sup {¥(Z2)},
veD(X)

134
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in Section 3.5, analysis in the space ﬁ;(){) is daunting. Finally, the result in
Section 3.7.2 is in accord with the one found in Section 3.7.1, thereby justifying the
idea of linearising A about a stable equilibrium prior to performing a local analysis
of the stationary density. The local stationary densities obtained before, via the

linearisation procedure, are Dirac distributions centred at the stable equilibria of

the associated system of ODEs.

3.8 Closing remarks

Chapter 3 has primarily been a systematic study of densities of both nonlinear and

linearised algorithms (see Sections 3.6 and 3.7). Our results suggest that densities
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of linearised algorithms studied here do reproduce the same local characteristics as
the nonlinear equations from which they are derived.

We recall that Mackey and Lasota [5] studied algorithms of the form

$n+1=5(1n)+56ﬂs 0<exl,

where S(z,) is not explicitly dependent on n, and where {£,} is a sequence of .i.d.
random variables. Our work in this direction is new, because we look at more
general algorithms. i.e.

Tntl = Sn(-'rn) + Ynén »

where now S,(z,) is explicitly dependent on n, and {v,} is a decreasing-to-zero se-
quence of positive real numbers such that 3, 9, = oo. Thus, our proof of Theorem
3.6 is new, and more general than that in [5].

Using the notion of density, we have been able to improve Chung's result (see
Theorem 3.1) by computing a tighter upper bound on the parameter r. Finally, it is
important to emphasize that the numerical experiments performed in this Chapter

are indispensable - they provide tremendous insights into a difficult problem.



Chapter 4

Some Generalisations of Ljung’s

Problem

4.1 Introduction

In Chapter 2, a doubly-triangular pdf was assumed for the input signals {o(#)}.
All the analysis performed in that chapter was based on the characteristics of this
single pdf. Needless to say, this particular pdf is very basic and does simplify a
lot of the computations carried out in Chapter 2. A particular feature of the pdf
which makes the computations straightforward is the fact that the two component
triangles do not overlap. The present chapter generalises the problem to include
overlapping components of the pdf. Essentially, we look af two examples, viz.: (a) a
pdf consisting of two overlapping triangles, and (b) one consisting of two Gaussian
distributions. The primary purpose of this chapter is to investigate the effect of

changing the pdf of {¢>(¢)} on the dynamics of the discrete algorithm, inside the

137
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invariant region D. As before, both analytical and numerical techniques will be

adopted.

4.2 The overlapping doubly-triangular pdf

Suppose that the input signals, to be classified by Ljung’s algorithm, are distributed

according to the pdf

lf:?i((»"*'l-l-dl)
1—;;’\'(0'1—1—99) )
Fra() = | Lo -1-9)+ Fle-1+02) .
2.‘\3’(‘:9" 1+0)
;'\g'(l+0‘2'—’~r7) )
0 )

\

“l—-0o1<p<-—1
-l<py<l—0;
l—oa<p<-1l+0

2 <P 1 (4.1)
-l+o1<p<l1
1<',9<1+Ug

elsewhere

where A € [0,1] and 0, 02 € R*. Furthermore, assume that o; > 2 — 02. The

latter ensures that the two component triangles of (4.1} are overlapping in the

interval {1 — o5, —1 4+ 0], as depicted in Fig 4.1. Note that the left triangle has area

1 — A. while the one on the right hand side has area A. The pdf under consideration

is a superposition of these two component triangles. As usual, it is assumed that

{»(t)} is a sequence of i.i.d. random variables.
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Figure 4.1: pdf of the random variable to be classified by classifier.

4.2.1 Computation of the associated system of ODEs

As before, we obtain the following associated system of ODEs

in = =24 fualelde+ [ efelelde,
~1-a -1-0
. 1402 1402
i = —z5 [ he@det [ ehalp)e, (4.2)

where ¢ &/ 0.5(z4 + zg). Note that it is desirable to have ¢ € [1 — g2, —1 + 03].

4.2.2 Stability and bifurcation analysis of the associated

system of ODEs

As in Chapter 2, we now investigate the stability and bifurcations of equilibria of
(4.2) as X varies, for fixed o; and o,. The system of ODEs specified in (4.2) has

the equilibrium point (Z 4, Zp), implicitly given by

2 5)=(P<a> E¢—P(E))
2@ 1-0@) )
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where ¢ </ 0.5(F4 + Tg), and

Ple) ¥ [ ehalede.

Q@) ¥ [ fule)ds, and

—l—a

E. 2 [ ohalolde. (43)
Define
w Plo) E,—Ple)
el = oot 1000 2
P()[1 — Q(o)] + Q(e)[E, — P(e)] — 2¢Q(e)[1 — Q(¢)]

01 = 0(e)  (44)

where P(c). Q(c), and E_. are as defined in (4.3). To analyse the parameter-

dependent dynamics of the zeros of (4.4), we need only look at the numerator

Fao(e) € P(e)[1 - Q(e)] + Q(O)[E, — P(e)] — 2¢Q(0)[1 — Q(c)] -

Figs 4.2-4.3 (left) show plots of F) ,(c) versus c, for some selected parameter values.
It is evident that a saddle-node (S-N for short) bifurcation occurs as A — 0%, leading
to the birth of two new equilibria. We also note that, in contrast to Ljung’s non-
overlapping doubly-triangular pdf example of Chapter 2, no bifurcation of equilibria
occurs as A — 1~. This will be exemplified later in this section. Instead, the only
zero of F) ,(c) shifts towards €=1,as A - 17.

For A > 0.056 and for {o1,02} = {1.0,1.5}, the function F),(c) has only one

root, namely &;. This root, which is parameterised by A, always exists, as A — 0%.
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Figure 4.2: F),(c) with left: A = 0.1, and right: A = 0.056. In both cases, o3 = 1.0
and o, = 1.5.
Numerically, at A = 0.056, a S-N bifurcation occurs. In other words, a new zero
appears at & =~ —0.483. As A — 0%, & branches into two new zeros, viz. {¢1.%2}-
This is depicted in the bifurcation diagram Fig 4.3 (right), which is generated as
follows: Fix {01, 02} = {1.0,1.5}, and solve F),(c) = 0 for ¢(A), where A € [0,1].
Then plot ¢()) versus A. Note that in Fig 4.3 (right) we have only considered a small
‘window’ of A values, i.e. A € (0,0.056), essentially to accentuate the emergence of
the two new zeros & () and &(A). The root &(A) = 0.040 for A € (0,0.056), and
is not shown in Fig 4.3 (right). '

It is important to point out that &3 does not lose its stability with the emer-
gence of &, and &. At A = 0.03, we have that {&,,&} = {—0.830,—0.162}. Con-

sequently, we now have a total of three different roots of Fj,(c), viz. {ci, 2, &} =
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Figure 4.3: left: F),(c) with A = 0.03. o, = 1.0, and o3 = 1.5 right: Plot of zeros,
C1(A) and ¢(A), of Fyo(c) with o, = 1.0, 0, = 1.5, for A € (0.0.036). A line drawn
upward from A = 0.03 will cut the curve at the two zeros of F),(c) shown on the
left figure.

{—0.830,—0.162,0.040}. The corresponding equilibria are (z;;,z;2) = (—1.2347,

—0.4254), (z21,z22) = (—1.0113,0.6873), and (z3;,z32) = (—0.9983,1.0791), re-
spectively. It may be shown, via the computation of Jacobian matrices for (4.2),
that (z,,z;2) and (z31,%32) are locally asymptotically stable, with eigenvalues
{—0.5492, —0.1250} and {—0.9682,—0.0243}, respectively. Similarly, (zs;, Z22) is
a saddle point, with eigenvalues {—0.8946,0.0318}. Now, assuming that ¢ €

[=1 + o1, 1], (4.2) simplifies to

Ta = —(—1——-&311[1 —(1+01)%] - (1=2)

Tall + 0o
20']2 (231 A[ 1]
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+“2;*’IA[(1 C o) —1] - (1;3*’:,1(-1 + 02— 0s)
A
e e (e R R O
_a- )1'.4( 1+co)(~ 2+0'1+0'2)——/\-I,4( =14+ 02) (=24 01 + 02)
A

—2%%“@ —(~1+0)!) = Gra-1+a)le+1 =)

1—2A 1—-2A

A+ v o)+ a4 o~ @+ )]

1 A
+§[—( > )+}—%][(-—1+01)3—(1—02)3]
A o) + S+ onli(-1 4 01) — (1= )]

1
A . /\
+§g[c3—(—1+al)] 5 %( ~14+0o9)[? = (-1+a,)%,
and
zg = —Tf’ng(l — Cz) —_ 0%2:3(—1 + 0’2)(1 —_ C)

A A

+—-2-:Z:B[(l “+ 0'2)2 - 1] — —zp(1 + o02)
203 o2

+ A (1- 3)-&-——)\ (=1 +02)(1 —¢?)
3020 /T 242 2

—32—3[(1 +on)® =1+ ;7%(1 to(l4o)?—1].  (45)

Returning to an analysis of the limiting case A —+ 17, we consider the following

example. Assume that o; = 1.00, o2 = 1.50, and A = 0.99. Thus, (4.5) yields the
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Jacobian matrix

F 1 F 1
Jzazp) = 1n(za,zB) 21(T4.TB) ’ (4.6)

Fio(za,z8) Fzz(-’l'—‘m zB)

where
Fi(za.za) = —0.065+2.5x 107" (24 + 75)2 — 0.055(z4 + z5)
—0.110z4(xa +z8 + 1),
Fu(za,zs) ¥ —0.110z4(za+ z5 + 1) +0.055(z4 + z5)? + 0.055(z4 + ) ,
Fia(za.zs) = 0.110zp(za +25+1) — 0.055(z4 + z5)% — 0.055(z4 + z5) ,
and

Fy(z4,28) wf —0.935—-2.5x10"' (2 4+25)?+0.055(z 4 +z5)+0.110z5(za+T5+1) .

Also. using the above parameter values, we get the following equilibria for (4.3):

(211, Z12) = (=2.794, —=5.109), (221, Z22) = (0.439,1.471), and (za;,z32) = (0.787,2.138).

However, since (4.5) holds only for ¢ € [—1+0,,1] = [0, 1], the only valid equilibrium

point is (z21,Z22), with eigenvalues {—0.1680,—0.5018} and corresponding eigen-
0.7568 —0.6536

vectors , . As discussed earlier in this Section, recall
0.6336 0.7568

that F).(c) has only one zero as A = 1~. Thus, since we are taking A = 0.99, there
is only one equilibrium in the invariant region D: =1 —0, < T4 <zp <l+o02 =

D: -2 <z4 <z < 2.5. In light of this, we deduce that (z3,z22) is globally
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asymptotically stable. Thus, following the Kushner-Clark theorem [1], we conclude

that the algorithm converges wp! to (x21, T22)-

4.2.3 Numerical Simulations

In a manner similar to Chapter 2, it may be shown that the invariant region for
(4.2)isgivenby D: -1 —0y <24 < zp <1+ 09. Figs 4.4-4.5 show simulations
of ¢(t) for specified parameter values and initial conditions. In all the plots, we set
o1 = 1.0, o2 = 1.5, and v, = (n + 10)™%, where a = 0.25. The free variables are A
and the initial condition (z4(0),zg(0)). Note that 10° iterations of the algorithm
are performed. and that only one “run” is shown. A different sequence {(>,} is used
for each simulation of the algorithm. In Fig 4.4, when A = 0.1, the associated ODE
has only one stable equilibrium, and thus, in accordance with the Kushner-Clark
theorem [1], we expect the algorithm to converge wpl to (31, T3.). On the other
hand, when A = 0.03, a S-N bifurcation has occurred, leading to the emergence of
a second stable equilibrium, viz. (z3;,Z;2)- In this case, as has been previously
pointed out in Chapter 2, the Kushner-Clark theorem is not applicable.

The numerics suggest that, for A < 0.03, Ljung’s algorithm converges, with a
relatively high frequency, to (z31,z32)- Note that, because (z1;, z12) and (z31,Z32)
are in relative proximity, the algorithm is likely to oscillate between the two equilib-
ria, until v, is sufficiently small. This is why we need a comparatively high number
of iterations, i.e. 10°, in this example.

Finally, we track the evolution (inside D) of a unit mass, as outlined in the algo-

rithm introduced in Chapter 2. We use the same parameters and initial conditions
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o Y 2 3 a s e £ 0 ’ 10
"

Figure 4.4: typical time histories of ¢(n), with left: A = 0.1 right: A = 0.03. In
both cases, (z4(0),zg(0)) = (—0.1,0.1).

as in Figs 4.4-4.5. The invariant region D is discretised into npts x npts cells, where
npts = 100. Then, 1000 iterations of the algorithm are performed. The results of
these simulations are shown in Figs 4.6-4.7.

For the case A = 0.03, the numerics suggest that, given any (z4(0),z5(0)) € D,
Ljung’s algorithm converges, with a relatively high frequency, to the stable equi-
librium point (—1.2347, —0.4254). These simulation results also suggest that the
density of mass surrounding each of the two stable equilibria is almost independent

of the grid point used to initialise the algorithm.
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Figure 4.5: typical time histories of c(n), with leftt (z4(0),zp(0)) =
(—1.2347.—0.4254) right: (z4(0),zp(0)) = (—0.9983,1.0791). In both cases,
A =0.03.

4.2.4 Degeneracy at A =1

When A =1, the pdfgiven in (4.1) degenerates to

Lp—1+0y) , 1—02<p<1

~

froor@)=9 H(l—p+02) , 1<p<l+o, (4.7)

o2

o

, otherwise

This is illustrated in Fig 4.8 (left). As usual, we seek to determine the long-term
behaviour of Ljung’s algorithm, and hence ¢(t). First, we obtain the associated

system of ODEs, viz.:

ia = —zaf  ho@do+ [ ohalp)de,
—-1l-o —il=0o

in = —zs [ heledot [ phe(e)s. (43)
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3,

Figure 4.6: Grid points in D whose associated masses are greater than = 0.001
after 1000 iterations of the algorithm described in Chapter 2, with left: A = 0.1,
and right: A = 0.03. In both cases, the unit mass is initialised at the grid point
(—0.1,0.1).

Simplifying this system of ODEs yields

.
0, c<l—o09

szlc® = (1= 02)*] + gpx(o2 = 1 = 24)[¢* = (1 — 02)]
—;lg-IA(Ug—l)(C—*1+O'2), l1—-02<c<1

BTl = (1 =02+ gz(oe -1 —z4)[1 - (1 - 02)’] — (02 — 1)z
Th =< —3;2(c3 -1+ 2—;3(1',4 +140)(c*—1)-

;13-(1+0'2)(c—1):r,4, l<ce<l+o0,

;}2,[1 —(1=02)3+ 2—;5(472 —1-za)[l = (1 —3)*] = (02— 1)za

—szl(1+ 020 — 1] + gz(oa + 1+ za)[(1 + 02)2 —1]—

i(l-!-dz):u ., c21l+02
(4.9)
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Figure 4.7: Grid points in D whose associated masses are greater than ¥ = 0.001
after 1000 iterations of the algorithm, with A = 0.03. The unit mass is ini-
tialised at the point left: (za4,zp) = (—1.2347,—0.4254), and right: (z4,zp) =
(—0.9983,1.0791).

and

wzll = (1 =02’ + 57(02 =1 —z)[1 — (1 = 02)’] = 7-(02 — 1)z
~5zl(1+ 02 =1 + gz (02 + 1 + 25)[(1 + 02)* - 1]

—-0—12-(02 +1l)tg. c<1~o0,

;};(1 -+ 7:2;(0'2 —1—z)(1-¢%) — ;13-(0'2 — 1)1 —c)zsB

ip = —5;—;-[(1 +o02)? —1]+ ;ﬁ;’(o’z +1+zg)[(1+02)*—1]
—;1;(1'*”0‘2)123, 1—0’2SC<1

—5zl(1+02)* = ] + g5z (02 + 1+ z8)[(1 + 02)* ~ ]

—;1-;(1+0’2)(1+02—c)z3, 1<c<l+o;
2 -

0, otherwise.
(4.10)
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Figure 4.8: left: pdf with A = 1 right: Plot of phase space of the associated system
of ODEs, with A = 1, showing the continuum of equilibrium points, as described in
the text.

For ¢ > 1 4+ o,. we obtain the system

. 1 1 1
T4 = 52[1 —(1 -0+ ’273(02 —l-z4)[1=(1-02)% - ;;(0'2 —1)za
1 1 1
_§a_§[(1 +02)° —1] + 2—02(02 +1l+z)(1+02)2—1]— 3(1 +03)T4 .
g = 0, (4.11)

which consists of a line of equilibria given by (Z4,Zg) = (1. k), where k > 1 + 20,.
Thus, the classifier converges to the classification rule ¢ = -’2= + 3. Recalling that
the invariant region is given by D : 1 — 03 < 4 < zp < 1 + 02, we deduce that
(1,k) € Donly if 1 < k£ < 1+ 0. It is clear that an unusual bifurcation has
occurred, resulting in the emergence of a continuum of equilibria, all lying on the
line r4, = 1. This degeneracy of the classifier is shown in Fig 4.8 (right). Once
again, this signals a breakdown of Ljung’s classification model. Similar behaviour

may also be observed for the parameter value A = 0.
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4.3 The “double Gausstan’” pdf

Suppose that the input signals. to be presented to Ljung’s algorithm, are distributed

according to the pdf
Helz) =Ai(z) + (1 =N f2(z), A€]0,1], (4.12)

where f; and f; are normalised Gaussians centred about —1 and 1, with variances
o1 and o4 respectively. That is,

1 —2—;!-(:+1)2
T ———e

fl( ) 0'1‘\/2-7—?' ’

folz) = ——mme Y

oV 27 ’

and

It

(4.13)

where 0y, 0, € R*. For the parameter values oy = 0, = 0.1 and A = 0.3, the pdf
defined by (4.12) is depicted in Fig 4.9. As usual, we obtain the following system
of ODEs:

ia = —z4 /_ ; Fro(z)dz + /_ & zfro(z)dz |
ip = —zp f°° f,\,,(:z)dz+/;w zfro(z)dz - (4.14)

This system has the equilibrium point implicitly given by

—_ - _ P(E) E::"'P(a) -
(xAs:EB) - (Q(E)’ 1 — Q(E) ) ) (410)
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Figure 4.9: Double Gaussian pdf with o; = o, = 0.1, and A =0.3
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where & %/ 0.5(Z4 + zB), and

P(c) %t

Q(c)
E.

def

d_e_f

1 2 3
x

| zhala)dz,
/-:o fao(z)dz , and

/]R zf(z)dr=1-2X\.

Furthermore, linearisation of (4.14) yields the Jacobian matrix

J(IA’ zB) =

[ o Frela)dz
+0.25(zg — T4)fae(c)
0.25(zp — z4) fre(c)

0.25(zp — iA)pr(C) W

__fcco fo\.f(x)dz
+0,25(1‘B - l'A)fA.a(C) )

152

(4.16)

(4.17)
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To simplify (4.17), we need to approximate the integrals [°__ fi,(z)dr and

I fre(z)dz. To this end, we shall begin by focussing on the limiting case oy, 07 —
0t. Note that, in this case, the two component Gaussians are tightly packed about
their respective means, and we shall see they behave like the two separated com-
ponent triangles in Chapter 2. Note also that when o, and o, are large, it is not
possible to perform analytic approximations of the above integrals. Now, for oy, o

arbitrarily small, there are three cases to consider, viz.:

ii. c< —1.
These cases describe three different regions of the (z4,zp) phase space, as illus-
trated in Fig 4.10.

Case i

Employing (4.12), we have that

MA@+ =3 [ fale)ds
b ) e 0o ()

0’1\/27? —oo 09 27 J-oo

[ frotariz

(4.18)

Let

¥ [ G g

-0
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Figure 4.10: The three regions of phase space corresponding to the three cases, as
discussed in the text.

Using the change of variables u = :W‘”;, and keeping in mind that —1 < c <1,

we get that

P J
e ¥ du

I(c)

o1

-0

o ei‘l
= a’n/.‘i/ e‘"zdu+01\/§/°‘ e du
—00 0
ci‘l
= a”/g--i-al\/i/" e~ du .
0

2 -
Furthermore, using the change of variables s = rzc‘—f{-f—);, we obtain

ci‘! 2 1 L et 2
01\/5/"‘ e du = o1v2 (C+ 1) f u~le 2\ ) *ds
) 0

4 g1

1 1, oL sﬂ.)za
= -2~(c+ 1)/ s77e *\*1/ ds. (4.19)
o :



CHAPTER 4. SOME GENERALISATIONS OF LIUNG’S PROBLEM

Finally, letting y = 3 (-‘-"‘—1)2 s in (4.19) gives

2 oy

2 €
%(c+1)/ols-i'e"f(%) ‘ds = %/0-%("‘

), aso; = 0F

g1 1
ZTI(=
V2 (2

™
= 0O 5 .
In view of this, we conclude that

[I(C) ~ a1V 27 .

Similarly, it may be shown that

c =1 )2
I,(c) < / e—(m) dz

e=1
= 0’2\/2-[;;% e'“2du
—o0

— 0.aso, — 0,

since ¢ — 1 < 0. Hence, we have that

c A
/_oo He(z)dz ~ P x o, V2 | as o1, 02 = 0F
= A.

(4.20)

(4.21)

(4.22)
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By the same token. it may be shown that
[T helz)dz ~ 1=, as01. 02 0% . (4.23)

Therefore, for —1 < ¢ < 1 and o, o2 — 0%, (4.17) simplifies to

( —A+025(zp — Ta)faolc) 0.25(xp — z4)fre(c)

J(:EA? IB) ~
\ 0.25(zg — z4) fao(c) —(1—=A)+0.25(zg — T4)faelc)
( —A 0
— ,as oy, o2 = 0. (4.24)
\ 0 —(1=A)

Now, it may be shown that, for o;, 02 = 0t and —1 < ¢ < 1, (4.14) yields

i4 ~ —Aza+1)

ip ~ (1=A)1—-=z8), (4.23)

giving the equilibrium point (—1.1) whose components are the means of the two
Gaussians constituting the pdf f,. Furthermore, the Jacobian matrix associated
with (4.14), and evaluated at (—1,1), is given by
- 0
J (—1, 1) = ’
0 —(1-=AX) )
which is similar to (4.24). Thus, (-1,1) is asymptotically stable and yields the clas-

sification rule & = 0. We conclude that, for oy, 02 = 0% and —1 < ¢ < 1, the
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system of ODEs in (4.14) always possesses a locally asymptotically stable equilib-
rium point. viz. (-1,1). This is similar to the result obtained in Chapter 2. for
the doubly-triangular pdf. There, we “recovered” the means (of the component
triangular distributions) -2 and 2. Note that. as ¢;. 02 — 0%, the two Gaussians
making up the pdf degenerate to two Dirac distributions located at -1 and 1.
Case ii

After performing the usual sequence of “operations™ (see Case z) on (4.18), let

c=1

c+1
Ii(c) &/ 01\/__[‘”_"}7; e~* du, I(¢) %f agx/ff_"_j? e~ du, I3(c) =4 o1V?2 [S e~ du,

oavV2

and I4(c = o0, '\/_fc—l e *’du. Similar to Case 7, it may be shown that, as
a2 V2

01,02 = 07, Li{(c) ~ o1V2m, I(c) ~ o2v2r, Is(c) = 0, and I4(c) = 0. In

view of these asymptotic expansions, we have that, for o;,0, — 0%,
/C f/\.a’(x)dzﬂ';xa’lv T+ — x02V2n —l
-0 a1V 2 T2V 2
and

/°° Frolz)dz = 0.

Whence, (4.17) yvields

-1+ 0.25(323 - .‘J:A)f,\',(c) 0.25(:1:3 - IA)f,\_d(C)
J(x.‘h J:B) ~ ’
0.25(zp — z4) fae(c) 0.25(15 —z4)fae(c)

which implies that
-1 0

0 0

J(Z:A, $B) ~
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Thus, the linearisation of (4.14) becomes

i'A = —I

zg = 0,

which has infinitely many neutrally stable equilibria of the form (0, k), where & is
limited by the fact that ¢ = % > 1.

Case il

It can be shgwn, in a manner similar to the two preceding cases, that (as 0,,02 =

0%) [Lo fao(z)dz — 0 and [7° fro,(z)dz ~ 1. Thus, (4.17) gives

0.25(1'3 -_ IA)f,\_,(C) 0.25(.‘23 - .'L'A)f,\',(C)
J(IAv IB) ~
0.25(zp — za)faw(c) —1+0.25(zg — x4)fas(c)

which implies that

0 0
J(za,z8) ~
0 -1
This gives the linearisation of (4.14)
Ty = 0
g = —ZIB,

which has infinitely many neutrally stable equilibria of the form (k,0), where k <
—2.
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Summary of the three cases

We recall that the foregoing analysis, of the system of ODEs given in (4.14), is valid
only for the limiting case ¢y,07, — 07.

Case i

The linearisation of (4.14) always possesses a locally asymptotically stable equilib-
rium, viz. (-1,1).

Case ii

The linearisation of (4.14) has infinitely many neutrally stable equilibria of the form
(0, k), where £ > 2.

Case iii

The linearisation of (4.14) has infinitely many neutrally stable equilibria of the form

(k,0), where k < —2.

4.3.1 Stability and bifurcation analysis of the associated
system of ODEs

From (4.15), define the function

def P(e) (1 —=2A)— P(c)

el = ot 10w
P(c)[1 = Q(c)] + Q(e)[(1 —2X) = P(c)] = 2cQ(c)[1 — Q()]
Q(e)[1 — Q(c)] ’

—2c

(4.26)



CHAPTER 4. SOME GENERALISATIONS OF LJIUNG’S PROBLEM

where P(c¢) and Q(c) are as defined in (4.16).

160

The equilibria of (4.14) may be

computed by finding the zeros ¢ of the numerator

Fro(c) € P(e)[1 — Q(e)] + [(1 — 24) — P(e)]Q(c) — 2¢Q(e)[1 — Q(&)]

and then applying (4.13). Some computer-generated plots of Fj.(c) versus c, for

various parameter values, are shown in Figs 4.11-4.12 (left).
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Figure 4.11: F),(c) with left: A = 0.5, and right: A = 0.993. In both cases,

gy =02 = 0.1.

As before, the numerics suggest that the qualitative behaviour of the zeros

of F\.(c) is dependent on the parameters oy, 02, and A. When A = 0.5 and

01, = o3 = 0.1, Fy,(c) has only one zero at ¢, = 0. From (4.15), the corresponding

equilibrium point, which is globally asymptotically stable, is (-1,1). Numerically,

at A =~ 0.993, a S-N bifurcation occurs. In other words, a new zero appears, at
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Figure 4.12: left: F),(c) with A = 0.998, oy = o, = 0.1 right: Bifurcation of zeros
of Fy,(c) with oy = 02 = 0.1

Co &= —0.911. As ) increases, this zero branches to yield two zeros, viz. {&;,é}-
This is depicted in the bifurcation diagram Fig 4.12 (right), which is generated in
exactly the same way as before.

At A = 0.998, we have that {¢;,é3} = {—0.790,—0.988}. The corresponding
equilibria, one stable and the other a saddle point, may be computed from (4.15).
In view of the Kushner-Clark theorem [1], for fixed o1 = 02 = 0.1 and for A < 0.99,
it follows that the discrete system converges wpI to (—1,1). We now focus on the
case A > 0.99. :

Consider the case A = 0.998, which is illustrated in Fig 4.12 (left). The equi-
libria are (z;;,z12) = (—1,1), (z21,222) = (—1.004,—0.575), and (z3;,z32) =
(—1.073,—-0.904), with eigenvalues {—0.9980, —0.0020}, {—0.9360,0.0294}, and
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_ ) . 1.0000
{—0.5060. —0.1612}. respectively. The corresponding eigenvectors are
0.0000
0.0000 0.9988 0.0484 4 0.7939 0.6081
* b A an 3
1.0000 —-0.0484 0.9988 —0.6081 0.7939

From this, we conclude that (z,;,;2) and (z31,Z32) are locally asymptotically sta-
ble, while (z2;,222) is a saddle point. As usual, the issue is what the long-term
behaviour of the algorithm is going to be, given the existence of two “competing”
stable equilibria. To address this problem. the following numerical experiments are

performed:

a. c¢(n) versus n, given an arbitrary initial grid point (z4(0).z5(0)) € D:-5<

z4 < zg < 3, the invariant region.

b. The usual simulation of a unit Dirac mass initialised at some arbitrary grid

point in D : -1.209 < 4 < zg < 1.201.

4.3.2 Numerical Simulations

Figs 4.13-4.14 below show various plots of c¢(n) versus n, for some prescribed
parameter values. In all the plots, the learning parameter used is of the form
Yo = (n 4+ 10)™%, with « = 0.15. In each case, five different runs of the algorithm
are performed. '

The simulation results suggest that, with a relatively high frequency, the dis-
crete algorithm converges to the equilibrium point (—1,1). It is interesting to
note that, from Fig 4.13 (right), initialising the algorithm at the stable equilibrium

(—1.073, —0.904) still leads to convergence to (—1,1). Note that for the parameters
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Figure 4.13: time histories of «¢,, with left (za(0),z5(0))
(—0.9999999998, 0.9999999) right: (z4(0), z(0))
(—1.072578826, —0.9043046980). In both cases, A = 0.998 and o, = 0, = 0.1.

used in Fig 4.14 (right), the system of ODEs given in (4.14) has only one globally
asymptotically stable equilibrium, at (—1,1).

Finally, we simulate a unit mass inside D : —1.209 < z4 < zp < 1.201. The
simulation results for this experiment are shown in Figs 4.15-4.16. Note that when
A = 0.5 (07 = 03 = 0.1), the system of ODEs (4.14) has exactly one globally asymp-
totically stable equilibrium. This fact is reflected in Figs 4.14 (right) and 4.15 (left).
Furthermore, it is interesting to observe that initialising the algorithm at the stable
equilibrium (—1.0726, —0.9043) does not guarantee that it will remain there for all
time. In fact, the simulations suggest that there is a reasonably high probability
that, with this stable point used to initialise the algorithm, the algorithm converges
to the equilibrium (—1,1). This is borne out by Figs 4.16 (left) and 4.13 (right).
We also mention that, for the double Gaussian pdf, the algorithm was implemented
by finding a polynomial fit to the pdf, which is then used to compute the associated

cumulative distribution function. This approach helps optimise the runtime of the



CHAPTER 4. SOME GENERALISATIONS OF LIUNG’S PROBLEM 164

Gap

Figure 4.14: time histories of c,, with left: A = 0.998 and o) == 02 = 0.1
right: A = 0.5 and 0, = o2 = 0.25. In both cases, (z4(0),z5(0)) = (—3.00,2.99).

algorithm.

- - -'s
-t$ -t <38 3 as t " -ts -t -“s [} 3} t s
D s

Figure 4.15: Grid points in D whose associated masses are greater than ¢ = 0.001
after 1000 iterations of the algorithm, with left: A = 0.5, and right: A = 0.998. In
both cases, the unit mass is initialised at the point (z4,z5) = (—1.0,1.0).
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Figure 4.16: Grid points in D whose associated masses are greater than 7 = 0.001
after 1000 iterations of the algorithm, with the unit mass initialised at the point
left: (za,zB) = (—1.073,—0.904), and right: (za,zg) = (—0.1,0.1). In both cases,
A =0.998.

4.4 Closing remarks

It is interesting to note that, in situations where the pdf consists of overlapping
components, the extra stable fixed point becomes quite significant, viz. the ‘like-
lihood’ of the algorithm converging to the ‘wrong’ classifier seems to significantly
increase. This observation is partly accounted for by the fact that the ‘basins of at-
traction’ (in discrete space) of the fixed points of the associated ODE overlap and
the fixed points themselves are in relative proximity. As a result, the algorithm
tends to oscillate between the fixed points, and takes longer to settle down to just

one of them.



Chapter 5

Conclusion and Future Research

Directions

Throughout this thesis, we have strongly emphasized the importance of both an-
alytical and numerical approaches in addressing the problem under consideration.
This interplay between theory and numerics is not only crucial, but is also the only
hope for adequately tackling this problem. Needless to say, there are certain areas
of this problem where analytic work alone is almost impossible. In the same vein,
there are a lot of instances where numerical work by itself is insufficient.

We have made a couple of significant contributions to the understanding of
this problem. Apart from defining an appropriate space _ﬁ;(X ) for densities (see
Chapter 3), we have also been able to sharpen and a:tiéulate some existing ideas
about the possible use of the notion of stationary density in the analysis of random
algorithms of the type considered in the thesis. The main problem encountered in

this endeavour stems from the computational aspects of the exercise. Essentially,
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we found that computing the iterates PnPn_;...P1f of the perturbed Frobenius-
Perron operator (see Chapter 3, section 3.7) presents some serious numerical dif-
ficulties, mainly because it involves the computation of iterated integrals of in-
creasing complexity. Compounded with this, the way the learning parameter v,
is defined renders the convergence of P.P,_,..P,f, as n — oo, painfully slow.
Clearly, a potential problem for further investigation is the efficient computation
of lim, oo PnPn-1..-P1f-

However, in spite of the aforementioned difficulties, we did obtain some indica-
tions, depending on the amplitude of {£.}, that the stationary density of {zn}32,
consists of Dirac distributions located at the stable equilibria of the associated ODE.
Furthermore, we obtained indications that working with linearised algorithms gives
the same local stationary densities (in the neighbourhoods of the stable equilib-
ria of the associated ODE) as when one looks at the full nonlinear algorithms.
Encouraging as this might be, it must be pointed out that formulating the anal-
ysis of the sequence of densities {f,}32, in the metric space (ﬁ;(.’f),dﬁ;) still
remains a tremendously daunting problem. It is interesting to note that, even
after lim, o0 PrnPn-1...P1f has been computed, it is still a challenging problem
determining what the probability of convergence (of the discrete system) to any
particular one of the myriad of locally stable equilibria of the associated ODE is,
especially if the stationary density consists of Dirac distributions positioned at these
stable equilibria.

We have also developed a computer algorithm (see Chapter 2) that crudely

quantifies the probability of the discrete algorithm converging to a stable equilib-
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rium of the associated ODE. in the case when the latter has multiple locally stable
equilibria. It must be emphasized that this algorithm is limited by the fact that
only those values of iterates (of the Dirac mass) that are greater than some arbi-
trary (threshold) value are considered. This clearly implies that the “probability”
so calculated can only be a very crude estimate of the true value.

In Chapter 3, we proved the completeness of the metric space (F_,_(X),dﬁl).
Furthermore, for the linear map S(z) = az, a € (0,1), we showed that the as-
sociated Frobenius-Perron operator P is contractive in (ﬁ;(‘x)’dﬁl ). The open
challenge is to show that the nonlinear operator P,, of Section 3.7, is contractive
in this metric space as well. In Chapter 3, we studied deunsities of algorithms of the

form

oty = S,,(:r,,) + Ynén »

where S,(zn) o+ Yah(zn). These algorithms are more general than those

considered by Mackey and Lasota [5], viz.
Tne1 = S(zn) +€n, 0<ekl,

where S(-) is not explicitly dependent on n. As a result, our proof of Theorem
3.6 in Section 3.7 is new - it is more general than that of Mackey and Lasota
[5]. In addition, in Chapter 3, we improved Chung’s result (see Theorem 3.1} by
establishing a tighter bound on the parameter r.

Finally, it must be noted that, throughout this thesis, we have assumed {,}

to be a sequence of i.i.d. random variables. This assumption does simplify some
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potentially ‘murky’ conceptual and computational territory (see Chapter 3). Never-
theless, it is interesting to ask how realistic this assumption is. and to also explore
situations where it fails outrightly. Certainly. it is true that. in the majority of

applications, this assumption does not hold.
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