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Abstract

We investigate the linear stability and perform the bifurcation analysis for Hopfield
neural networks with a general distribution of delays, where the neurons are identical. We
start by analyzing the scalar model and show what kind of information can be gained with
only minimal information about the exact distribution of delays. We determine a mean
delay and distribution independent stability region. We then illustrate a way of improving
on this conservative result by approximating the true region of stability when the actual
distribution is not known, but some moments or cumulants of the distribution are. We
compare the approximate stability regions with the stability regions in the case of the
uniform and gamma distributions. We show that, in general, the approximations improve
as more moments or cumulants are used, and that the approximations using cumulants give
better results than the ones using moments. Further, we extend these results to a network of
n identical neurons, where we examine the stability of a symmetrical equilibrium point via
the analysis of the characteristic equation both when the connection matrix is symmetric
and when it is not. Finally, for the scalar model, we show under what conditions a Hopf
bifurcation occurs and we use the centre manifold technique to determine the criticality
of the bifurcation. When the kernel represents the gamma distribution with p = 1 and
p = 2, we transform the delay differential equation into a system of ordinary differential
equations and we compare the centre manifold computation to the one we obtain in the
ordinary differential case.
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Chapter 1

Introduction

In this thesis we investigate the linear stability and perform the bifurcation analysis for
Hopfield neural networks with a general distribution of delays, where the neurons are
identical. Hopfield neural networks are a particular type of an artificial neural network
consisting of n coupled units, where each unit (or node) is connected to all other units. They
have been popularized by the physicist John Hopfield [32, 33] who used them as content
addressable memory systems. The Hopfield model has an energy function associated with
it, where the units converge to states which are local minima in the energy function, i.e. if
a state is a local minimum in the energy function it is a stable equilibrium for the network.
The network converges to a state if it is given only part of the state, i.e. it is able to recover
the entire memory from only a partial memory [28, 33, 62]. Therefore the Hopfield network
provides a model for understanding human memory. Under certain conditions, the system
can also be shown to exhibit a global attractor and in this case it can be used as a model
for signal and image processing [22].

The Hopfield network can be improved by introducing time delays into the model to
account for the time it takes for the signal to travel among the units or for the processing
time at a given unit. Such an addition explained the instabilities of the equilibrium points
of the system which occurred when implementing the model into real electrical circuits,
which were not predicted by previous theory [47]. In this thesis we study Hopfield neural
networks with distributed time delays which take into account the fact that the signal
conduction and processing may not take exactly the same amount of time in every case.
Thus the Hopfield model is further improved by accounting for the natural variability
inherent in a physical or biological system.

In this thesis we focus on linear stability analysis for several reasons. The conditions
found using linear stability analysis give the exact transition from stability to instability,
i.e. we are able to determine the true boundary of stability where the equilibrium point
loses stability. This means that we can derive delay dependent conditions for stability,
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i.e. we are able to quantify how much delay the system can tolerate. Another reason is
that more work has been done on Hopfield networks with distributed delay using Liapunov
functions than linear stability analysis.

In the first section of this introductory chapter we present the underlying motivating
factor of artificial neural networks, biological neurons. We review the structure of a neuron,
the transmission of neural signals, and ways in which the communication between these
biological neurons can be modeled. In the following section we define artificial neural
networks and we give the physical interpretation behind the development of the Hopfield
model. In the final section of this chapter we present Hopfield neural networks with time
delays and give a literature review of Hopfield models with discrete and distributed delays.

1.1 Biology of Neurons

The human brain and the other parts of the nervous system are composed of nerve cells
(neurons) and glial cells. The latter are supportive cells of the nervous system, and their
main function consists in providing physical and functional support to neurons. Neurons
are cells that are specialized for the reception, conduction, and transmission of electro-
chemical signals. There are 100 billion neurons and an estimated 100 trillion connections
(synapses) among them [51]. They come in an incredible variety of shapes, sizes and
properties, but share typical anatomical features as seen in Figure 1.1.

The cell body (soma) constitutes the metabolic centre and contains the cell’s nucleus.
Many extensions called dendrites branch out from the cell body and receive incoming
synaptic signals from other neurons. A single long cylindrical fiber called the axon also
projects from the cell body and branches out at its ends. The propagation of the electro-
chemical nerve signal is called an action potential. An action potential is a self-regenerating
wave of electrochemical activity that allows a neuron to carry a signal over the length of
the axon to the terminal branches, which form connections with adjacent neurons [51, 62].

Next we describe why there is an electric potential across the membrane of the axon,
how it propagates, and ways it can be modeled. The axon membrane is made of two layers
of lipid molecules separating the intracellular cytoplasm of the axon and the extracellular
fluid, and of ionic channels (or pores), enzymes, pumps, and receptors. The pores act like
gates in the lipid barrier through which substances can be transferred from one side to the
other.

In the late 1940s a series of experiments carried out by Hodgkin and Huxley [30] and
others proved the existence of an electrical potential across the axon membrane. In the
resting state, the cytoplasm inside all neurons contains an ionic composition that makes
the cell interior more negative in potential than the exterior of the cell. Such a voltage is
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Synaptic gap

Cell body

Nucleus

Figure 1.1: The anatomy of a neuron.

maintained at a metabolic expense by pumps located in the membrane. The two layers of
lipids act like a thin insulator and thus the membrane of the axon has the property of capac-
itance, i.e. separation of charge. Therefore the membrane potential Vm(t) = Vint(t)−Vext(t)
(difference between the intracellular and extracellular voltages) allows the capacitance C
to build up a charge Q. By Faraday’s Law we have

Q = CVm.

When the voltage across the capacitor changes, a current will flow. The capacitive current
IC is obtained by differentiating the above equation with respect to time,

IC(t) = C
dVm(t)

dt
. (1.1)

Charged ions (like Na+, K+, Ca2+, or Cl−) flow through the pores, which open or
close in response to local conditions like the voltage across the excitable membrane (the
resistance to the penetration of ions changes as the potential difference is changed). The
starting point of the propagation of the action potential requires the integrated excitatory
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inputs in the soma to be greater than a certain threshold voltage. If this threshold is
surpassed, the sodium channels open letting Na+ ions enter the cell. After a slight delay,
the potassium channels open, letting K+ ions exit the cell. The sodium pores then close in
response to a decrease in the voltage difference, followed by the closing of the potassium
channels. This process repeats and thus the spike-like signal is transported down the axon
without attenuation or change in shape [16].

Hodgkin and Huxley [30] proposed an electric circuit model for an ionic channel which
consists of a battery and a resistor in series. The battery models the force due to the
difference in concentration of ions inside and outside the cell, and the resistor models
the permeability of the channel to the specific ion. Then by Kirchhoff’s Voltage Law, the
voltage drop across the membrane is equal to the sum of the voltage drop across the battery
(Eion) and the voltage drop across the resistor:

Vm = Eion +RIion,

where Iion is the current through the resistance R given by Ohm’s Law. Thus

Iion(t) =
Vm(t)− Eion(t)

R
. (1.2)

The cell is then modeled by a resistor-capacitor (RC) circuit (as seen in Figure 1.2) with
a current source Iext, representing the synaptic current or the applied current injected into
the cell experimentally. Applying Kirchhoff’s Current Law, we have IC + Iion = Iext, and

Eion

R

C

Figure 1.2: The RC circuit describing the current flow across the axon membrane.

from equation (1.1) we get

C
dVm(t)

dt
= −Iion(t) + Iext(t). (1.3)

Using (1.2) we then obtain

C
dVm(t)

dt
= − 1

R
(Vm(t)− Eion(t)) + Iext(t).
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We note that under certain conditions, membranes of some nerve cells do exhibit an RC
circuit type of behaviour [38]. Equation (1.3) is similar to the first of the four differential
equations in the Hodgkin and Huxley model, where Iion is further expanded as a sum of
the potassium, sodium and leak currents. The other three differential equations in the
Hodgkin and Huxley model were chosen to fit the data and describe the dynamics of the
closing and opening of the ionic channels.

To extend equation (1.3) to a network of n neurons, we let the external current coming
into neuron k to be Iextk = Isynk,j + Iappk , where Isynk,j is the synaptic current coming
from neuron j into neuron k, and Iappk is the experimentally applied current to neuron k.
Therefore we have

Ck
dVmk
dt

= −Iionk +
n∑

j=1,j 6=k

Isynk,j + Iappk , k = 1, . . . , n. (1.4)

The synaptic current can be modeled by

Isynk,j = gsynj(Vmj)(Vmk − Vsyn), (1.5)

where gsynj represents the synaptic conductance and depends on the presynaptic voltage
Vmj , and Vsyn represents the synaptic reversal potential [39].

There are a multitude of mathematical models that characterize biological neurons and
try to give insights into the processes that occur inside the neuron or to describe the
communications among them. But we will finish reviewing the biological processes here.
Next we will define artificial neural networks and develop a model that describes them.

1.2 Artificial Neural Networks

Artificial neural networks (or neural networks) are biologically motivated machines that
are designed to perform tasks the same why the brain would perform a task or a function.
Such networks are implemented using electronic components or simulated in software on
a computer [62]. They are built to have nodes corresponding to neurons, and connec-
tions between them corresponding to the synapses. The architecture of these nodes and
connections is inspired by the architecture of the biological nervous system.

Neural networks aspire to capture the following properties of the brain: i) capability of
organizing neurons into ensembles that process specific kind of information, ii) connectivity,
i.e. the ability of each neuron to connect to a large number of other neurons, iii) plasticity,
i.e. the modification of the synaptic coupling, which represents the ability to learn and to
adapt to the environment.
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The benefits of a neural network are the ability to perform fast computations through
its massively parallel distributed structure, the ability to learn and to generalize, i.e. the
network produces reasonable outputs for inputs not encountered during training, and the
ability to provide insight for the interpretation of neurobiological phenomena [28].

A model of a neuron (node) in the network is presented in Figure 1.3. An input signal

 

Inputs 

Nonlinearity Output 

Activation 

function 

Summation 

junction 

Synaptic    

weights 

  x1 

  x2 

  x3 

  xn 

  Σ 

ak1 

ak2 

ak3 

akn 

 fk (⋅⋅⋅⋅) 

 (⋅⋅⋅⋅) 
yk . 

. 

. 

 

. 

. 

. 

 

Figure 1.3: Spatial model of a neuron (node) in an artificial neural network proposed in
[28].

xj, j = 1, . . . , n, at synapse j connected to neuron k is multiplied by the synaptic weight
akj. This synaptic weight represents the strength of the connection and it is positive if
it is excitatory or negative if it is inhibitory. The matrix [akj] formed by the synaptic
strengths is called the connection matrix. The summing junction is a linear combiner of
all the input signals. The activation function fk, k = 1, . . . , n, is a nonlinear element that
has the property of limiting the amplitude of the output signal yk,

fk

(
n∑
j=1

akjxj

)
= yk, k = 1, . . . , n. (1.6)

The function fk, k = 1, . . . , n, models the property of nonlinearity of biological neurons.
This function [14, 22, 33, 47] is usually taken to be monotonically increasing and differen-
tiable on (−∞,∞), satisfying

fk(0) = 0, f ′k(v) ≤ f ′k(0) for any v ∈ R, k = 1, . . . , n, (1.7)
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and
lim

v→±∞
fk(v) = ±1, k = 1, . . . , n. (1.8)

The most commonly used form is a sigmoidal-shaped function like the hyperbolic tangent
function, fk(v) = tanh(ckv). By introducing and varying the parameter ck = f ′k(0), called
the amplifier gain, we obtain different shapes of the tanh function as seen in Figure 1.4.

0

v

1612−8

0.0

−16−20 −4

1.0

−1.0

204 8

0.5

−12

−0.5

Figure 1.4: The activation function f(v) = tanh(cv), for different values of the amplifier
gain, c. As c is increased, the activation function approaches the step function f(v) = 1 if
v > 0, f(v) = −1 if v < 0.

An extension to the model in (1.6) is to take into account the temporal nature of the
input data. One way of modeling the temporal behaviour is to represent each neuron as
an RC circuit whose output then passes through a nonlinear element. In these terms, the
inputs xj, j = 1, . . . , n, represent potentials and the synaptic weights akj denote conduc-
tances. The balancing equation for the electric currents flowing through neuron k is given
by Kirchhoff’s Current Law:

ICk + IRk = Isynk + Iappk , (1.9)

where ICk is the current through the capacitor, IRk is the current through the resistor,
Iappk is an exterior applied current, and Isynk is the synaptic current. The synaptic current
is the sum of all the currents coming from all the other neurons,

Isynk(t) =
n∑
j=1

akjxj(t), (1.10)

as seen in Figure 1.5. Let the voltage across the RC circuit of neuron k be given by vk.
Then, by Faraday’s Law, the capacitive current is

ICk = Ck
dvk(t)

dt
, (1.11)
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where Ck is the capacitance of neuron k. The resistive current is given by Ohm’s Law,

IRk =
vk(t)

Rk

, (1.12)

where Rk is the resistance of neuron k. After passing through the RC circuit, the current
then passes through the nonlinear element, and thus the change in voltage across the
nonlinear element is given by

fk(vk(t)) = xk(t). (1.13)

Substituting equations (1.10) – (1.13) into equation (1.9) we obtain the temporal extension
of equation (1.6),

Ck
dvk(t)

dt
= −vk(t)

Rk

+
n∑
j=1

akjfj(vj(t)) + Iappk(t), k = 1, . . . , n. (1.14)

This is depicted in Figure 1.5 and represents a system of n ordinary differential equations
(ODEs). System (1.14) is referred to as the Hopfield neural network.

Let vk(t0) = v0k, for k = 1, . . . , n, be the initial conditions corresponding to (1.14).
Since fk, k = 1, . . . , n, is chosen to be a bounded continuously differentiable function, all
solutions are bounded and the right-hand side of (1.14) is C1. Thus the initial value
problem has a unique solution defined on [t0,∞) [49].

 

Nonlinearity 

vk (t) 

IRk 

Rk 

ICk 

Inputs 

  akn 

Iappk 

  x3(t) 

  x2(t) 
ak2x2(t) 

ak3x3(t) 

aknxn(t) 
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  ak2 

  ak3 

ak1x1(t) 
  ak1 

Σakj xj (t) 

Ck 

  x1(t) 
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Output 

. 

. 

. 

 

. 

. 
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Current 
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 fk (⋅⋅⋅⋅) 

 (⋅⋅⋅⋅) 
xk (t) 

Figure 1.5: Representation of the Hopfield neural network (1.14) as an RC circuit. Arrows
represent the direction of the electric current.

Using the energy function

E(v)(t) = −1

2

n∑
k=1

n∑
j=1

akjvkvj +
n∑
k=1

1

Rk

∫ vk

0

f−1
k (v) dv −

n∑
k=1

Iappkvk,
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acting as the Liapunov function of the system, Hopfield [33] proved that when the connec-
tion matrix is symmetric (akj = ajk), model (1.14) acts like a content-addressable memory,
i.e. (1.14) is characterized by a set of stable equilibria. Initial points that are close to a
particular equilibrium and far from others will converge to that nearby stable state. The
location of a particular equilibrium point is thought of as the information of a particular
memory. From a partial information about this memory (i.e. initial condition close enough
to the fixed point) we are able to determine the complete memory.

In the next section we improve the model in (1.14) by introducing time delays to take
into account the fact that it takes a certain amount of time for the signal to travel from
neuron j to neuron k.

1.3 Hopfield Neural Network with Time Delays

In many biological and physical models, time delays play an important role. They arise
for example due to age structure, gestation, maturation, or for neural networks, due to
the delay in the propagation of the electrochemical signal among neurons. In the previous
section we developed the Hopfield model (1.14), where we assumed that the communication
between two neurons (or nodes) was instantaneous. In reality, it takes time for the signal
to travel among neurons since axons have a certain length, and because of the processing of
the signal at synaptic gaps [38]. Also, in electric circuits, the communication between two
nodes is delayed due to the time it takes for the signal to travel through different elements.

To take these facts into account, System (1.14) can be transformed into a system of
delay differential equations (DDEs),

Ck
dvk(t)

dt
= −vk(t)

Rk

+
n∑
j=1

wkjfj(vj(t− τkj)) + Ik, k = 1, . . . , n, (1.15)

where τkj represents the time it takes for the electric signal to travel from neuron j to
neuron k. The above model is called a DDE with discrete delay, where the derivative of
the state at time t depends on the value of the state at fixed prior times. We note that
the formal definition of a DDE will be presented in Chapter 2, where we give an overview
of delay differential equations.

In most applications, including neural networks, the time delays are not fixed. The
delay in the signal transmission among neurons varies due to the multitude of axon sizes
and shapes and due to intrinsic biological processes. Hence (1.14) can be represented as a
DDE with distributed delay,

Ck
dvk(t)

dt
= −vk(t)

Rk

+
n∑
j=1

wkjfj

(∫ ∞
0

vj(t− u)gkj(u) du

)
+ Ik, k = 1, . . . , n, (1.16)
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where the signal delay u from neuron j to neuron k occurs with a certain probability given
by the kernel gkj(u). The distribution gkj(u) is a probability density function (p.d.f.) with
mean delay τkj =

∫∞
0
ugkj(u) du. In the above model, the derivative of vk at time t depends

on the value of vj, j = 1, . . . , n, over the entire past interval (−∞, t].

We note that for given initial conditions, since the left-hand side of (1.15) and (1.16) is
Lipschitz (as fk, k = 1, . . . , n, is chosen to be continuously differentiable), Theorem 2.3 from
[26] guarantees the local existence and uniqueness of solutions of the above two systems.

In most neural models, time delays are assumed to be fixed (as in model (1.15)). In the
next section we review results from the literature, where Hopfield networks with discrete
delay are studied.

1.3.1 Hopfield Neural Networks with Discrete Delay

The stability and bifurcation of Hopfield models of the form (1.15) have been studied
extensively and in this section we present a few previously obtained results. The addition
of time delays to the Hopfield network is first introduced by Marcus and Westervelt [47] to
explain instabilities of equilibria that occurred when implementing real electrical circuits,
which were not predicted by previous theory. Their goal is to give sufficient conditions that
guarantee the local stability of the trivial equilibrium, without requiring the connection
matrix to be symmetric, assuming that the neurons are identical and that no exterior
current is applied. With these assumptions, after scaling their parameters, the system
becomes

x′k(t) = −xk(t) +
n∑
j=1

wkjf(xj(t− τ)), k = 1, . . . , n. (1.17)

After linearization, the system decouples into n DDEs,

x′k(t) = −xk(t) + βzkxk(t− τ), k = 1, . . . , n,

where β = f ′(0) is the amplifier gain and zk are the eigenvalues of the connection matrix
[wkj]. The characteristic equation also decouples into n equations, (λk + 1)eλkτ = βzk,
k = 1, . . . , n. Therefore they obtain the delay independent region of stability for the origin
in the complex plane as seen in Figure 1.6. We note that for τ = 0 the stability region is
the half plane to the left of the line 1/β, and as τ → ∞ the stability region is given by
the circle of radius 1/β. They also analyze the delay dependent region of stability. They
show that if τ < τc (where τc = −π/βzmin/2 is the critical value for the delay) only fixed
point attractors are observed, but if τ > τc the system also exhibits oscillatory attractors.
They conclude numerically that the basin of attraction for sustained oscillations decreases
as the delay decreases.
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Figure 1.6: Linear delay independent region of stability of the trivial equilibrium of system
(1.17) for different values of τ .

Gopalsamy and He [22] investigate the delay independent region of stability for the
Hopfield network,

x′k(t) = −bkxk(t) +
n∑
j=1

wkjfj(cjxj(t− τkj)) + Ik, k = 1, . . . , n. (1.18)

They provide sufficient conditions for the existence of a global attractor, without assuming
that the connection matrix is symmetric, or that the neurons are identical. Using the
Liapunov functional

V (x)(t) =
n∑
k=1

(
|xk(t)|+

n∑
j=1

|wkj||cj|
∫ t

t−τkj
|xj(u)| du

)
they show that the unique equilibrium point x∗k of (1.18) is globally asymptotically stable
for each constant applied current Ik if

max
1≤k≤n

[
|ck|
bk

n∑
j=1

|wkj|

]
< 1. (1.19)

Under this condition, the Hopfield model (1.18) can be used in applications to signal and
image processing, where the existence of a global attractor associated with a specific input
is paramount.
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Bélair et al. [5] analyze the Hopfield model (1.17) by depicting the connection matrix
[wkj] as a signed directed graph. They define a network to be frustrated if the signed
directed graph has a negative cycle. One of their main results requires a network not to
be frustrated, in order for the delay induced instability of the trivial solution of (1.17) to
be impossible. They analyze a frustrated network of three neurons with no self-connection
(wii = 0) and show that the stability of the origin is lost giving rise to a Hopf bifurcation.
Using the centre manifold technique, they show the Hopf bifurcation is supercritical.

Gopalsamy and Leung [23] analyze a system of two identical neurons with no self-
feedback and show that if w2β1β2 > 1, then the trivial solution of (1.17) (with n = 2)
becomes unstable when τ > τc, where τc depends on the connection strength w and the
amplifier gains β1 and β2. They also show that Re (dλ/dτ)|τ=τc

> 0, and thus prove that
the transversality condition for the Hopf bifurcation to occur is satisfied. They calculate
the amplitude of the periodic solution and show that the Hopf bifurcation is supercritical
using perturbation theory.

Campbell et al. [11] analyze a ring of n identical neurons,

x′k(t) = −xk(t) + wsfs(xk(t− τs) + w[f(xk−1(t− τ)) + f(xk+1(t− τ))], k mod n.

Here, the architecture of the network is simplified, since a neuron communicates with only
its two nearest neighbors, but the self-connection delay (τs) differs from the delay between
two distinct neurons (τ). They give delay independent and dependent conditions that
guarantee the asymptotic stability of the trivial solution of the linearized system. Since
the characteristic equation has two pairs of pure imaginary roots, they present conditions
under which the above system undergoes an equivariant Hopf bifurcation. They show,
using the centre manifold reduction, that all branches of the periodic solutions are either
supercritical or all are subcritical.

In the next section we are going to look at previously obtained results for models where
the delay is distributed.

1.3.2 Biological and Physical Models with Distributed Delay

Models with distributed delay take into account the fact that biological and physical events
such as gestation, maturation, regeneration, recovery period from a disease, or signal con-
duction may not take exactly the same time in every case. Such models have been developed
mostly in applications to population biology [15, 21, 42] and epidemiology [3, 8], and only
recently to neural networks. The majority of these models use specific kernels, usually the
uniform distribution or the gamma distribution with p = 1 (called the weak kernel) and
p = 2 (called the strong kernel). The uniform distribution with mean delay τ is given by

g(u) =

{
1
ρτ
, if u ∈

[
τ
(
1− ρ

2

)
, τ
(
1 + ρ

2

)]
0, otherwise,

(1.20)
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where parameter ρ ∈ (0, 2] controls the width and height of the distribution. The gamma
distribution with mean delay τ = p/a is given by

ga,p(u) =
up−1ape−au

Γ(p)
, (1.21)

where parameters a, p > 0 control the shape of the distribution. These distributions will
be discussed in more detail in Subsections 2.4.2 and 2.4.3. When p in (1.21) represents an
integer then Γ(p) = (p− 1)! and a scalar equation with one gamma distributed delay can
be shown to be equivalent to a system of p+ 1 ordinary differential equations. We present
details about this reduction, often called the linear chain trick, in Section 2.5. We note
that distributed delay models include the discrete delay models if we take the kernel to be
the Dirac distribution. For example, if gkj = δ(t−τkj), then system (1.16) with distributed
delay becomes system (1.15) with discrete delay.

Thiel et al. [58] introduce distributed delay in three previously analyzed biological
models and show that complex dynamics are abolished. They first extend a previously de-
veloped model that describes the dynamics of pyramidal cells in the hippocampus, where
the delay is uniform distributed. The widening of the distribution (i.e. increasing ρ in
(1.20)) causes the membrane voltage to oscillate with a regular period, abolishing irregular
fluctuations. Further they analyze the Mackey-Glass model, which models the concentra-
tion of white blood cells, where again the delay is uniform distributed. They demonstrate
that the previously observed aperiodic behaviour changes into regular fluctuations when
the width of the distribution is sufficiently increased. Lastly they analyze the logistic equa-
tion with a gamma distributed delay and show that the wider the distribution, the lower
the amplitude of the oscillations. As the variance of the distribution increases, the limit
cycle is abolished, and the solutions approach a stable equilibrium. In all three examples,
Thiel et al. conclude that the introduction of the distributed delay simplifies the behaviour
of the system.

In [60, 61], Wolkowicz et al. study the global asymptotic behaviour of a chemostat
model with a gamma distributed delay which describes the lag in the process of nutrient
conversion. They show that the corresponding discrete delay model can be obtained as
the limiting case of the distributed delay model. In other words, if in the limit p in
(1.21) approaches infinity while the mean delay p/a is held fixed (which corresponds to
the variance p/a2 approaching zero), the results of the distributed delay model yield those
for the corresponding system with discrete delay. They also note that changing the mean
delay has a much larger effect on stability than changing the variance.

A general assumed principle is that a system with a distribution of delays is more
stable than the same system with a discrete delay (this principle has not yet been proven).
MacDonald [46] demonstrates that increasing the discrete delay τ in the linear scalar
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model, x′(t) = −ax(t) − bx(t − τ), destabilizes the equilibrium point and it can never be
restabilized. However, for the modified equation

x′(t) = −ax(t)− b
∫ ∞

0

g(u)x(t− u) du (1.22)

with a gamma distributed delay, increasing the mean delay, τ =
∫∞

0
ug(u) du, can also

destabilize the equilibrium point, but it will always be restabilized for large enough τ ,
for any value of p. The above DDE represents the linearization of the scalar Hopfield
model (1.16), which we consider in Chapter 3. Bernard et al. [7] have studied the stability
of the trivial solution of (1.22) and concluded that the uniform and gamma distributed
delays increase the stability region of the equilibrium point when compared to a discrete
delay. More results supporting the principle that a model with distributed delay is more
stable than one with discrete delay are cited below (see [4, 24, 36, 64]). In Chapter 4 we
show that if in the limit the mean delay of a general distribution approaches infinity, the
region of stability of the symmetric equilibrium point of the Hopfield model (1.16), where
the neurons are identical, is always greater than the stability region of the corresponding
model with discrete delay.

In practice, one is not able to determine the exact distribution of delays when trying
to model real physical systems. Hence developing a theory for general kernels is very im-
portant. In this thesis we obtain linear stability and Hopf bifurcation results for Hopfield
neural networks with a general distribution of delays. Next we give a review of the liter-
ature where results for distributed DEs with general kernels have been obtained. In the
population biology literature there are several such papers. Faria and Oliveira [20] address
the local and global stability of n-dimensional Lotka-Volterra system

x′k(t) = rkxk(t) [1− bkxk(t)− Lk(xt)] , k = 1, . . . , n,

where bk ∈ R, rk > 0 and Lk : C → R are linear bounded operators,

Lk(xt) =
n∑
j=1

lkj

∫ 0

−τ
(xj)t(θ) dηkj(θ),

for some lkj ∈ R and ηkj are normalized functions of bounded variations. Using matrix
theory, they give conditions on the interaction coefficients of the system that guarantee
asymptotic stability, independent of the distribution functions ηkj.

Ruan [53] considers Hutchinson’s equation with distributed delay,

ẋ(t) = rx(t)

[
1− 1

K

∫ ∞
0

x(t− u)g(u) du

]
,
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which models a population of insects, where the delay represents the time between egg
laying and hatching. He shows that if the mean delay is less than 1/r the equilibrium
point x∗ = K is asymptotically stable, for any distribution of delays g(u).

Using averaging theory, Atay [4] studies the stability of functional differential equations
near a Hopf bifurcation under delayed feedback of the form

ẋ(t) = Lxt + εg(xt; ε) + εκf(xt; ε), where xt ∈ C([−τ, 0],Rn.)

He shows that when the delays act towards destabilizing the system, the discrete delay is
locally the most destabilizing among distributions having the same mean delay. He also
obtains this result globally for distributions that are symmetrically distributed about their
mean.

Jirsa and Ding [36] analyze an n× n linear system with a common delay,

ẋi = −xi +
N∑
j=1

aij

∫ ∞
0

f(τ, d)xj(t− τ)dτ,

where d represents the width of the distribution f . They show that if f(τ, d) is a p.d.f.
which is positive definite then the trivial solution of the system becomes less unstable as
d increases, i.e. the discrete delay (for which d = 0) is the most destabilizing.

In [7], Bernard et al. obtain stability results of the trivial equilibrium of the scalar
equation (1.22) where the kernel is arbitrary. They find the sufficient condition on the
mean delay,

E <
π(1 + a/b)

c
√
b2 − a2

, b > |a|, (1.23)

where E =
∫∞
τmin

ug(u) du and c = sup{c| cos(x) = 1− cx/π, x > 0} ≈ 2.2764, such that the
trivial solution of (1.22) is asymptotically stable. They also obtain stronger conditions on
E when the distribution is symmetric about the mean, and when it is positively skewed.
For the symmetric distribution case, they show that the region of stability of the distributed
delay model is always greater than the region of stability of the corresponding delay model
since their sufficient condition is

E <
arccos(−a/b)√

b2 − a2
, b > |a|, (1.24)

which represents the true boundary of stability for the corresponding model with one fixed
delay E. We note that in their paper they consider general distributions which have nonzero
minimum delay, i.e. are defined on [τmin, 0), where τmin > 0 represents the minimum delay.
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For the uniform distribution, this can be achieved naturally by incorporating the constraint
ρ < 2. The gamma distribution can be reformulated to achieve this as follows,

g(u) =

{
0, for 0 ≤ u < τmin

ap

Γ(p)
(u− τmin)p−1e−a(u−τmin), for τmin ≤ u.

Distributions with nonzero minimum delay are called delay distributions with a gap, while
if τmin = 0, they are called delay distributions without a gap [46]. We note that in this
thesis we only consider delay distributions without a gap. In applications, using delay
distributions with a gap describes the fact that the probability of having zero delay is
extremely small. For example, a situation where the minimum delay must be strictly
greater than zero occurs when modeling agricultural commodity markets. In this type of
models the delay is related to the biological constraints (gestation plus growth period)
where τmin > 0 represents the finite minimum time that must elapse before a decision to
alter production is translated into an actual change in supply [6].

In [1], Adimy et al. study a model describing blood cell production in the bone marrow.
They work with general kernels defined on [τ , τ ], where τ and τ represent the minimum
and maximum delays, respectively. By constructing a Liapunov functional, they show that
the trivial equilibrium is globally asymptotically stable if it is the only equilibrium. They
also determine conditions for a Hopf bifurcation at the nontrivial equilibrium point to
occur for any general distribution of delays. They verify the criticality of the bifurcation
numerically.

Yuan and Bélair [64] perform the stability and Hopf bifurcation analysis for the generic
scalar DDE

ẋ(t) = F

(
x(t),

∫ ∞
τmin

x(t− τ)k(τ) dτ

)
,

where the distribution k(τ) is defined on [τmin, 0). They obtain a conservative region
of stability for the above model with a general distribution of delays. When the kernel
represents the uniform and gamma distributions, they determine sufficient conditions for
the linear stability of the equilibrium point of the above DDE. For the gamma distribution,
their sufficient condition gives a larger stability region than the one of the corresponding
model with a discrete delay for any τmin ≥ 0. Whereas, for the uniform distribution, their
sufficient condition gives a larger stability region than the one of the corresponding model
with a discrete delay when τmin = 0 or when τmin > 0 with the restriction that the ratio
τmin/ρ is small enough (where ρ represents the width of the distribution). For a general
delay distribution with a gap, they determine the direction of the Hopf bifurcation and the
stability of the periodic solution using the Liapunov-Schmidt method, which was proposed
by Stech in [56]. They apply their results to a model for the control of granulopoiesis and
to a model of white blood cell production. We note that in Chapter 5 of this thesis we
propose a method of determining the direction of the Hopf bifurcation and the stability
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of the periodic solution for the scalar Hopfield model with a general distribution of delays
(without a gap) using the centre manifold technique.

We now go back to neural models and present a few results for the Hopfield networks
with distributed delay. We first note that the work of Faria and Oliveira [20] discussed
above can be viewed as the linearization of a Hopfield-type neural network about an equi-
librium point. Liao et al. [43] consider a two-neuron neural network with distributed delay,

x′1(t) = −x1(t) + a1f

[
x2(t)− w2

∫ ∞
0

g(u)x2(t− u) du

]
,

x′2(t) = −x2(t) + a2f

[
x1(t)− w1

∫ ∞
0

g(u)x1(t− u) du

]
,

where the kernel g represents a gamma distribution with p = 1. Parameter ai corresponds
to the range of the potential variable xi, and wi measures the inhibitory influence of the
past history, i = 1, 2. They study the linear stability of the above system using the Routh-
Hurwitz criterion. They prove the existence of a Hopf bifurcation at a critical value of the
mean delay, which acts as a bifurcation parameter. They find the periodic solution and
determine its stability using perturbation theory.

In [54], Ruan and Filfil study a two-neuron neural network with discrete and distributed
delay,

1

a10

x′1(t) + x1(t) = F

[
f1 + c12x2(t− σ12) + b11

∫ t

−∞
x1(τ)K11(t− τ) dτ

]
,

1

a20

x′2(t) + x2(t) = F

[
f2 + c21x1(t− σ21) + b22

∫ t

−∞
x2(τ)K22(t− τ) dτ

]
,

where the kernel again represents a gamma distribution with p = 1. The discrete delays
describe the neural interaction history, while the distributed delays describe the neural
feedback. Using the linear chain trick they transform the above system into a system
of four DEs which only exhibit discrete delays. They give conditions under which the
equilibrium point is locally asymptotically stable and also under which a Hopf bifurcation
occurs. They verify their results numerically and show that the behaviour of the system
is governed by the discrete delays.

The previously mentioned paper by Gopalsamy and He [22] investigates the global delay
independent region of stability for the Hopfield network with distributed delay,

x′k(t) = −bkxk(t) +
n∑
j=1

wkjfj

(
cj

∫ ∞
0

gkj(u)xj(t− u) du

)
+ Ik, k = 1, . . . , n, (1.25)

17



where bk > 0 and the kernel gkj is a general gamma distribution of the form (1.21). They
use a Liapunov functional similar to the one in the discrete case,

V (x)(t) =
n∑
k=1

(
|xk(t)− x∗k|+

n∑
j=1

|wkj||cj|
∫ ∞

0

gkj(u)

(∫ t

t−u
|xj(s)− x∗k| ds

)
du

)
,

where x∗k is the unique equilibrium point of (1.25). They prove that if (1.19) is satisfied,
then the fixed point is globally asymptotically stable for each constant applied current Ik.

In his Master’s Thesis, Grégoire-Lacoste [24] investigates the global stability of the
unique equilibrium point of a Hopfield neural network with distributed delay. He also
performs local stability analysis to determine the boundary of stability of the equilibrium
point for the uniform, exponential, triangular, and gamma distributions. The results are
compared to the results of the corresponding system with a fixed delay. It is observed that
if the equilibrium point is stable for a system with discrete delay τ , it remains stable when
the delay is replaced by any of the studied distributions with mean delay τ . Also for all
the considered distributions, the region of stability of the equilibrium point of the model
with distributed delay is greater than the stability region of the equilibrium point of the
corresponding discrete delay model.

Chen [12] considers the neural network with a general distribution of delays,

x′i(t) = −fi(xi(t)) +
n∑
j=1

aij

∫ t

−∞
Kij(t− s)gj(xj(s)) ds+ Ii, k = 1, . . . , n, (1.26)

where fi, i = 1, . . . , n, is differentiable, gi, i = 1, . . . , n, is globally Lipschitz with Lipschitz
constant ki, and the kernel Kij is arbitrary. The Hopfield network can be seen as a special
case of the above equation. Using matrix theory and constructing the Liapunov functional,

V (y)(t) =
n∑
i=1

ξi

{
|yi(t)|+

n∑
j=1

kj|aij|
∫ ∞

0

Kij(s)

(∫ t

t−s
|yj(τ)| dτ

)
ds

}
,

he proves the existence, uniqueness and global asymptotic stability of the equilibrium point
of (1.26).

In Chapters 3 and 4 of this thesis, we study the stability of hyperbolic equilibrium
points, where the stability of the trivial equilibrium of the corresponding linearized system
determines the stability of the equilibrium point of the nonlinear system. An advantage
of using linearization is that the conditions found using the linear stability analysis give
the exact transition from stability to instability, i.e. we are able to determine the true
boundary of stability where the equilibrium point loses stability. Since part of this method
consists of analyzing the roots of the characteristic equation, a disadvantage of using this
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approach is that sometimes it is necessary to place certain assumptions on the model in
order to simplify the expression for the characteristic equation. Another method of showing
an equilibrium point is stable is constructing a suitable Liapunov function and using it to
determine sufficient conditions for stability. In this case the true boundary of stability is
not determined explicitly, only a conservative region of stability is found which guarantees
the stability of the equilibrium point under specific conditions on the parameters in the
system. An advantage of using Liapunov functions is that they can be applied to more
general systems and thus the obtained conditions give stronger results. Disadvantages
of using this method include the fact that Liapunov functions are difficult to obtain in
practice, give only conservative stability results, and are usually used to prove the global
stability of a unique equilibrium point. The difficulties of the Liapunov function method
are increased when a system has multiple equilibrium points, where it might be necessary
to find a different Liapunov function for each equilibrium point. In Chapter 6 we compare
our results obtained using the linearization method with the results obtained in [22] using
the Liapunov approach.

In the next chapter we give an overview of DDEs with emphasis on systems with
distributed delay. We present the definition, existence and uniqueness theorems and show
how to arrive at the characteristic equation associated with the system. We also discuss
in more detail the Dirac, uniform and gamma distributions.
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Chapter 2

Delay Differential Equations - An
Overview

In this chapter we present an overview of delay differential equations. We first give the
formal definition, present the initial value problem and state existence and uniqueness
theorems. For the rest of the chapter, we then focus on delay differential equations with
one distributed delay, showing how to arrive at the characteristic equation. We finish the
chapter by discussing the uniform and gamma distributions, and show how a scalar delay
differential equation with a gamma distributed delay can be transformed into a system of
ordinary differential equations.

2.1 Definition, Initial Value Problem, Existence and

Uniqueness Theorems

A delay differential equation is a differential equation where the highest order derivative
only occurs with one value of the argument, and this argument is not less than the argument
of the unknown function and its lower order derivatives appearing in the equation. For
example,

x′(t) = x2(t− 1) + x(t)

is a delay differential equation, while

x′(t− 5) = x3(t)− x4(t)

is not.
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More formally, for r > 0, let C = C([−r, 0],Rn) be the Banach space of continuous
functions mapping the interval [−r, 0] into Rn. We designate the norm on this space to be

||φ||r = sup
−r≤θ≤0

||φ(θ)|| ,

where ||·|| is the Euclidean norm on Rn. If x is a function defined at least on [t− r, t] with
values in Rn, we define a new function xt ∈ C by

xt(θ) = x(t+ θ), for − r ≤ θ ≤ 0.

For D ⊆ Rn, let CD = C([−r, 0], D) be the set of continuous functions mapping [−r, 0] into
D.

Definition 1 If J ⊆ R, f : J × CD → Rn is a given function and “·” represents the
right-hand derivative, then we say that the relation

ẋ(t) = f(t,xt) (2.1)

is a delay differential equation on J × CD.

We note that the right-hand derivative of a function x(t) : R→ R is given by

lim sup
h→0+

x(t+ h)− x(t)

h
.

For a given t0 ∈ J and φ0 ∈ CD, the initial value problem (IVP) associated with the
DDE in (2.1) is {

ẋ(t) = f(t,xt), t > t0
x(t) = φ0(t− t0), t0 − r ≤ t ≤ t0,

(2.2)

i.e. the initial condition at t0 must specify x for the whole past interval, t ∈ [t0−r, t0]. The
function φ0 is called the initial function, t0 the initial instant, and [t0 − r, t0] the initial
set. We note that φ0 is a known continuous function, which does not necessarily satisfy
the DDE. Thus the solutions might not be differentiable at t = t0.

Equation (2.1) is a general type of equation and includes:
(i) ODEs when r = 0,

ẋ(t) = f(t,x(t)),

(ii) DDEs with discrete delays, for example

ẋ(t) = f(t,x(t),x(t− r1), . . . ,x(t− rn)), where r = max
1≤i≤n

ri,
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(iii) or DDEs with distributed delay,

ẋ(t) =

∫ 0

−r
f(t, θ,x(t+ θ)) dθ.

In this case, the delay can be infinite, i.e.

ẋ(t) =

∫ 0

−∞
f(t, θ,x(t+ θ)) dθ,

and thus the initial condition becomes x(t) = φ0(t− t0) for t ∈ (−∞, t0].

Next, we formally define the solution of a DDE.

Definition 2 A function x(t) is a solution of equation (2.1) on [t0 − r, β) if there are
t0, β ∈ R with β > t0 such that x ∈ C([t0−r, β), D), [t0, β) ⊂ J , and x(t) satisfies equation
(2.1) for t ∈ [t0, β).

We note that a function x(t) is a solution to the IVP (2.2) on [t0 − r, β) if x(t) is a
solution of equation (2.1) and xt0 = φ0.

As in the case of ODEs, finding a solution to the IVP (2.2) is equivalent to solving the
corresponding integral equation,{

xt0 = φ0

x(t) = φ0(0) +
∫ t
t0
f(s,xs) ds, t0 ≤ t < β.

Before presenting existence and uniqueness theorems, we need the following definition.

Definition 3 Let f : J ×CD → Rn and let S ⊂ J ×CD. Then f is Lipschitz on S if there
exists L ≥ 0 such that

||f(t,φ)− f(t,ψ)|| ≤ L ||φ−ψ||r ,
whenever (t,φ) and (t,ψ) ∈ S.

The existence, uniqueness, continuation of solutions, and continuous dependence the-
orems are very similar to the ones corresponding to ordinary differential equations. We
next state the local existence and uniqueness theorems for DDEs with finite delay. Their
proofs can be found in Section 2.2 in [26] and will not be reproduced here.

Theorem 1 (Local Existence) Suppose Ω is an open subset in R× C. Let f : Ω→ Rn be
continuous on its domain. If (t0,φ0) ∈ Ω, then there is a solution of the IVP (2.2) passing
through (t0,φ0) that exists on [t0 − r, t0 + δ) for some δ > 0.
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Theorem 2 (Uniqueness) Suppose Ω is an open subset in R × C. Let f : Ω → Rn be
continuous and Lipschitz on each compact set in Ω. If (t0,φ0) ∈ Ω, then there is a unique
solution of the IVP (2.2) passing through (t0,φ0).

In the case of DDEs with infinite delay, Kolmanovskii and Myshkis [40] have stated
and proved an existence and uniqueness theorem (Theorem 2.3 in Chapter 3) by imposing
some restrictions on the metric space C((−∞, 0],Rn). We consider the IVP{

ẋ(t) = f(t,xt), t > t0
xt0(θ) = φ0(θ), −∞ < θ ≤ 0.

(2.3)

Since C((−∞, 0],Rn) is not a complete metric space, one must regulate the behaviour of the
considered functions as t→ −∞ by indicating an appropriate subset K ⊆ C((−∞, 0],Rn)
which is [40]. Some examples of K are [40]:
(1) the Banach space of functions ψ ∈ C((−∞, 0],Rn) such that eptψ(t) is bounded and
uniformly continuous, with the norm

||ψ||K = sup
−∞<t≤0

ept||ψ(t)||,

where p is fixed;
(2) the Banach space of the same functions as in (1), with p = 0 for which

||ψ||K = sup
−∞<t≤0

||ψ(t)||+
∫ 0

−∞
||ψ(t)|| dt <∞;

(3) the space C((−∞, 0],Rn) equipped with the metric

dK(u1,u2) =
∞∑
i=1

1

2i
||(u1 − u2)|[−i,0]||

1 + ||(u1 − u2)|[−i,0]||
.

We now state the theorem of existence and uniqueness for DDEs with infinite delay whose
proof can be found in [40, page 103].

Theorem 3 (Existence and Uniqueness for DDEs with infinite delay)
Let φ0 ∈ K, the functional f : [t0,∞) × K → Rn be continuous and for any (t,ψ) ∈
[t0,∞) × K there are ε, L > 0 for which the inequality ||f(t + σ,ψ1) − f(t + σ,ψ2)|| ≤
L||ψ1−ψ2||K is valid if σ ∈ (0, ε),ψi ∈ K, (ψi)−σ = ψ, max

−σ≤θ≤0
||ψi(θ)−ψi(0)|| < ε, i = 1, 2.

Then there is a tφ0 ∈ (t0,∞] such that
(a) there exists a solution x of (2.3) on the interval [t0, tφ0);
(b) on any interval [t0, t1] ⊂ [t0, tφ0) this solution is unique.

In the next section we look in greater detail at DDEs with a distribution of delays. In the
following sections, we will discuss equilibrium points, linearization and the characteristic
equation associated with these type of equations.
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2.2 DDEs with Distributed Delay

For the rest of the chapter we will restrict our discussion to DDEs with one distributed
delay of the form,

ẋ(t) =

∫ ∞
0

f(x(t),x(t− u))g(u) du, (2.4)

where f : Rn × Rn → Rn. Here the delay u occurs with a certain probability given by the
kernel g(u), which is a p.d.f. Let us look at the formal definition of a p.d.f. [31].

Definition 4 Let U denote a random variable of the continuous type on a one-dimensional
space S, which consists of an interval or a union of intervals. Let a function g(u) be
nonnegative such that ∫

S
g(u) du = 1.

Whenever a probability set function P (S), S ⊂ S, can be expressed in terms of such a g(u)
by

P (S) = Prob(U ∈ S) =

∫
S

g(u) du,

then g(u) is called a p.d.f. of U .

In our case, we only consider p.d.f.’s defined on S ⊆ [0,∞), since these particular ones give
rise to DDEs (by Definition 1). In other words, for equation (2.4) to be a DDE, the kernel
g(u) must equal zero for u < 0. We note that equation (2.4) also encompasses DDEs with
finite distributed delay, when S is a finite interval or a union of finite intervals, or when
g(u) is zero outside a finite interval. Since g(u) = 0 for u 6∈ S, by the above definition we
have ∫ ∞

0

g(u) du = 1. (2.5)

The mean value (in our case, mean delay) of the p.d.f. g(u) is given by

τ =

∫ ∞
0

ug(u) du. (2.6)

The kernel g(u) is usually taken in the literature to be the uniform or gamma distri-
butions, which will be discussed in more detail in Subsections 2.4.2 and 2.4.3. We note
that if g(u) represents the Dirac distribution, which is characterized by the following two
properties

δ(u) =

{
0, for u 6= 0

“infinite”, for u = 0
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and ∫ ∞
−∞

f(u)δ(u) du = f(0),

then we recover the corresponding ODE system,

ẋ(t) =

∫ ∞
0

f(x(t),x(t− u))δ(u) du = f(x(t),x(t)). (2.7)

Also, if g(u) represents the Dirac distribution τ units shifted to the right, which has the
two properties

δ(u− τ) =

{
0, for u 6= τ

“infinite”, for u = τ

and ∫ ∞
−∞

f(u)δ(u− τ) du = f(τ), (2.8)

then system (2.4) becomes a DDE system with one discrete delay τ ,

ẋ(t) =

∫ ∞
0

f(x(t),x(t− u))δ(u− τ) du = f(x(t),x(t− τ)), (2.9)

by property (2.8). Therefore model (2.4) encompasses the corresponding ODE model and
also the model with one discrete delay, if the kernel is chosen to be the Dirac distribution.

In Chapters 3 and 4 we study the dependence of the linear stability of the equilibrium
points on the mean delay. Thus we want to transform equation (2.4) so that the mean
delay appears explicitly. First we note that as τ → 0, then the distribution g(u) approaches
the Dirac distribution δ(u), since g(u) is nonzero on (0,∞) and thus, as the mean delay
approaches 0, the entire weight of the distribution gets compressed closer and closer to
u = 0. Hence as τ → 0, we recover the non-delayed model (2.7). Having dealt with the
case τ = 0, we now restrict to the case τ > 0 (which, biologically, is the most interesting
case). Making the change of variables s = t/τ, v = u/τ , system (2.4) becomes

dx

ds

ds

dt
=

1

τ

dx

ds
=

∫ ∞
0

f(x(τs),x(τs− τv))g(τv)τ dv.

We let “′” denote the right-hand derivative with respect to s and we define

ĝ(v) = τg(τv), (2.10)

then (2.4) becomes equivalent to

x′(s) = τ

∫ ∞
0

f(x(s),x(s− v))ĝ(v) dv. (2.11)
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The new distribution ĝ(v) is still a p.d.f. since∫ ∞
0

ĝ(v) dv =

∫ ∞
0

τg(τv) dv
u=τv
=

∫ ∞
0

τg(u)
1

τ
du =

∫ ∞
0

g(u)du = 1, (2.12)

by property (2.5), with mean value∫ ∞
0

vĝ(v) dv =

∫ ∞
0

τvg(τv) dv
u=τv
=

∫ ∞
0

ug(u)
1

τ
du =

1

τ

∫ ∞
0

ug(u) du =
1

τ
τ = 1, (2.13)

by (2.6). Therefore ĝ(v) has mean delay 1 and we will call it the normalized distribution.

In the next section we will discuss the equilibrium points of (2.11), we show how to
obtain the linear system associated with (2.11) and compute the characteristic equation.

2.3 Equilibria, Linearization, Characteristic Equation

In Chapters 3 and 4 we analyze the linear stability of the equilibrium points of models with
distributed delay via the characteristic equation. The stability of the equilibrium points
depends on whether the characteristic equation has negative, positive or zero roots. The
goal of this section is to show how to arrive at an expression for the characteristic equation
associated with the general system (2.11).

To start, we note that an equilibrium point of the corresponding nondelayed model

x′(s) = τf(x(s),x(s)) (2.14)

satisfies
0 = f(x∗,x∗).

An equilibrium point of (2.11) is a constant solution x(s) = x∗ for all s ∈ R and satisfies

0 =

∫ ∞
0

f(x∗,x∗)ĝ(v) dv = f(x∗,x∗)

∫ ∞
0

ĝ(v) dv = f(x∗,x∗),

by property (2.12). Hence the equilibrium points are not altered by the inclusion of delay.

Since system (2.11) is autonomous, i.e. of the form x′(s) = f(xs), without loss of
generality, we take the initial instant from now on to be s0 = 0. Then, given the initial
function φ0 ∈ C[(−∞, 0],Rn], we can define the IVP associated with DDE (2.11) to be{

x′(s) = τ
∫∞

0
f(x(s),x(s− v))ĝ(v) dv, s > 0

x(s) = φ0(s), s ≤ 0.
(2.15)

We are now ready to define the concepts of stability, instability and asymptotic stability
of an equilibrium point of the above IVP [15].
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Definition 5 If x∗ is an equilibrium solution of (2.15) on Rn, then it is called stable if
given any ε > 0 there exists a corresponding δ = δ(ε) > 0 such that ||φ0(s)− x∗|| < δ for
all s ≤ 0 implies that any solution of (2.15) exists on Rn and satisfies ||x(s)−x∗|| < ε for
all s > 0. Otherwise, x∗ is said to be unstable.

If an equilibrium solution x∗ of (2.15) is stable and in addition there exists a constant
δ0 > 0 such that ||φ0(s)−x∗|| < δ0 for all s ≤ 0 implies that ||x(s)−x∗|| → 0 as s→ +∞,
then x∗ is called asymptotically stable.

Next we linearize system (2.11) about the equilibrium point x∗. Let y(s) = x(s)− x∗
and since f(x∗,x∗) = 0, by Taylor’s Theorem we have

f(x,xs) = f(x∗,x∗) +A(x(s)− x∗) +As(x(s− v)− x∗) + h.o.t.

= Ay(s) +Asy(s− v) + h.o.t. ,

where “h.o.t. ” stands for “higher order terms”, A is an n × n matrix representing the
Jacobian matrix with respect to the first argument of f evaluated at (x∗,x∗),

A =



∂f1

∂x1

∂f1

∂x2

· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2

· · · ∂f2

∂xn
...

...
...

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x∗,x∗)

and As is an n × n matrix representing the Jacobian matrix with respect to the second
argument of f evaluated at (x∗,x∗),

As =



∂f1

∂(xs)1

∂f1

∂(xs)2

· · · ∂f1

∂(xs)n
∂f2

∂(xs)1

∂f2

∂(xs)2

· · · ∂f2

∂(xs)n
...

...
...

...
∂fn
∂(xs)1

∂fn
∂(xs)2

· · · ∂fn
∂(xs)n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x∗,x∗)

where ∂fi/∂(xs)j, i, j = 1, . . . , n, represents the derivative of fi with respect to the jth

component of the second argument.

Therefore we call the linear system

y′(s) = τAy(s) + τAs

∫ ∞
0

y(s− v)ĝ(v) dv (2.16)
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the linearization of (2.11) about x∗. We now show how to obtain the characteristic equation
associated with (2.16), which will give conditions under which the trivial solution of (2.16)
is asymptotically stable. We let the solutions of (2.16) to be of the form y(s) = eλsC,
where C is a nontrivial constant vector, then

λeλsC = τAeλsC + τAs

∫ ∞
0

eλ(s−v)Cĝ(v) dv.

This is equivalent to (
λI − τA− τAs

∫ ∞
0

e−λvĝ(v) dv

)
C = 0.

Since C 6= 0, in order to solve the above system, we impose that the determinant of the
matrix inside the brackets to be zero. Hence, we obtain the characteristic equation to be

∆(λ) = det

(
λI − τA− τAs

∫ ∞
0

e−λvĝ(v) dv

)
= 0. (2.17)

We can also write the above characteristic equation in terms of the Laplace transform of
ĝ(v), but first let us define the Laplace transform and look into conditions that guarantee
its existence.

Definition 6 Let f(t) be a function on [0,∞). The Laplace transform of f is the function
F defined by the integral [52]

F (s) = L (f(t)) =

∫ ∞
0

e−stf(t) dt.

The domain of F (s) is all the values of s for which the limit

lim
N→∞

∫ N

0

e−stf(t) dt

exists.

A function f(t) is said to be of exponential order α if there exist positive constants T and
M such that |f(t)| ≤MeαT , for all t ≥ T . The following theorem guarantees the existence
of the transform, provided the function f(t) does not grow faster than an exponential
function of the form MeαT (Theorem 2, Section 7.2 in [52]).

Theorem 4 If f(t) is piecewise continuous on [0,∞) and of exponential order α, then its
Laplace transform F (s) exists for all s > α.
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We next state a property of Laplace transforms which will be used in Section 2.4.3:

If F (s) = L (f(t)) then F (n)(s) = L ((−1)ntnf(t)), (2.18)

where the superscript (n) represents the nth derivative of F with respect to s [52].

By Definition 6, the Laplace transform of ĝ(v) is

Ĝ(λ) = L (ĝ(v)) =

∫ ∞
0

e−λvĝ(v) dv.

Therefore we can rewrite the characteristic equation (2.17) as

∆(λ) = det
(
λI − τA− τAsĜ(λ)

)
= 0. (2.19)

For the linear system (2.16), it has been proven [29] that its trivial solution is asymp-
totically stable if and only if all the roots of the corresponding characteristic equation have
negative real parts.

To see under what conditions the asymptotic stability of the trivial solution of the
linear system (2.16) guarantees the asymptotic stability of the equilibrium point of (2.11),
we need the following definition [26]:

Definition 7 We say that x = 0 is a hyperbolic equilibrium point of (2.16) if none of the
roots of the characteristic equation (2.17) have zero real part.

If x = 0 is a hyperbolic equilibrium point of (2.16), then the asymptotic stability or
instability of x∗ as a solution of (2.11) is guaranteed by that of the trivial solution of the
linearized system (2.16) [45].

In chapters 3 and 4, we will investigate the stability region of equilibrium points of
DDEs with a general distribution of delays via the analysis of the characteristic equation.
We will also approximate this region of stability when the distribution is unknown, and
verify our results by comparing our approximations to the true region of stability of DDEs
with uniform and gamma distributed delay. Thus, in the next section we will have a closer
look at these two distributions.

2.4 Distributions

Before presenting the uniform and the gamma distributions, we will give an overview of
the moments and cumulants of a distribution, which will be needed in Chapters 3 and 4 for
approximating the linear stability region of a model with a general distribution of delays.
We note that in all our computations we will be using the normalized distribution ĝ(v).
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Definition 8 The nth raw moment (or nth moment about zero) of a distribution ĝ is the
expected value of vn,

mn = E[vn] =

∫ ∞
0

vnĝ(v) dv, (2.20)

where E is the expectation operator.

We can easily see, by (2.12) and (2.13), that m0 = m1 = 1 and that mn > 0 for all n. The
first moment, m1, represents the mean of the distribution. The variance of the distribution
is given by

σ2 = E[(v −m1)2] = E[v2 − 2m1v +m2
1],

and since E is a linear operator we have

σ2 = E[v2]− 2m1E[v] +m2
1

= m2 − 2m2
1 +m2

1

= m2 −m2
1.

Therefore the second moment is related to the variance of the distribution via m2 = σ2 +1.
The ratio E[(v−m1)3]/σ3 is used as a measure of the lopsidedness of the distribution, i.e.
skewed to the right or to the left. Thus the third moment is related to the skewness of the
distribution [31].

The moments can also be defined using the moment-cumulant generating function,

M(t) = E[eitv] =

∫ ∞
0

eitvĝ(v) dv. (2.21)

Then, the moments mn are given by [50]

dn

dtn
M(t)

∣∣∣∣
t=0

= inmn. (2.22)

From (2.22) we have
M(0) = m0 = 1,

M ′(0) = im1 = i,

M ′′(0) = i2m2,

M ′′′(0) = i3m3,

(2.23)

and so on.

Instead of using the moments of a distribution, sometimes it is preferable to use the
cumulants.
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Definition 9 The cumulants, κn, of a distribution ĝ are given by [50]

dn

dtn
lnM(t)

∣∣∣∣
t=0

= inκn, (2.24)

where M(t) is the moment-cumulant generating function, as defined in (2.21).

We easily see that κ0 = lnM(0) = ln 1 = 0. There is a direct relationship between the
moments and the cumulants of a distribution. Let us calculate the first three cumulants.
From (2.24), we have that

iκ1 =
d lnM(t)

dt

∣∣∣∣
t=0

=
M ′(t)

M(t)

∣∣∣∣
t=0

=
M ′(0)

M(0)
= i (2.25)

from the first two equations in (2.23). For the second cumulant we get

i2κ2 =
d2 lnM(t)

dt2

∣∣∣∣
t=0

=
d

dt

(
M ′(t)

M(t)

)∣∣∣∣
t=0

=
M ′′(t)M(t)− [M ′(t)]2

M2(t)

∣∣∣∣
t=0

=
M ′′(0)M(0)− [M ′(0)]2

M2(0)

= i2 (m2 − 1)

(2.26)

from the first three equations in (2.23). For the third cumulant we have

i3κ3 =
d3 lnM(t)

dt3

∣∣∣∣
t=0

=
d

dt

(
M ′′(t)M(t)− (M ′(t))2

M2(t)

)∣∣∣∣
t=0

=
M ′′′(0)(M(0))3 − 3(M(0))2M ′(0)M ′′(0) + 2M(0)(M ′(0))3

(M(0))4

= i3 (m3 − 3m2 + 2)

(2.27)

from (2.23). Therefore, from (2.25) – (2.27) we have

κ1 = 1,

κ2 = m2 − 1,

κ3 = m3 − 3m2 + 2.

(2.28)
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We note that the first cumulant represents the mean value, the second cumulant is the
variance of the distribution, and the third cumulant is related to the skewness of the
distribution.

To obtain a general recursive formula for the nth cumulant in terms of the first n
moments, we use Faá di Bruno’s formula [37],

dn

dtn
f(g(t)) =

∑ n!

r1!r2! · · · rn!
f (r1+r2+···+rn)(g(t))

n∏
j=1

(
g(j)(t)

j!

)rj
,

where the sum is over all n-tuples of nonnegative integers (r1, r2, . . . , rn) satisfying the
constraint

1 · r1 + 2 · r2 + · · ·+ n · rn = n. (2.29)

From (2.24), we see that in our case, g(t) = M(t), and f(t) = ln(t) with its nth derivative
given by

f (n)(t) =
(−1)n−1(n− 1)!

tn
.

Using this and Faá di Bruno’s formula, equation (2.24) becomes

inκn =
∑ n!

r1!r2! · · · rn!

(−1)r1+r2+···+rn−1(r1 + r2 + · · ·+ rn − 1)!

(M(t))n

n∏
j=1

(
M (j)(t)

j!

)rj ∣∣∣∣∣
t=0

=
∑ n!

r1!r2! · · · rn!

(−1)r1+r2+···+rn−1(r1 + r2 + · · ·+ rn − 1)!

(M(0))n

n∏
j=1

(
M (j)(0)

j!

)rj
=
∑ (−1)r1+r2+···+rn−1(r1 + r2 + · · ·+ rn − 1)!n!

r1!r2! · · · rn!

n∏
j=1

(
ijmj

j!

)rj
,

where we used (2.22). We notice that

n∏
j=1

ijrj = i
∑n
j=1 jrj = in,

by (2.29). Therefore the nth cumulant is given by

κn =
∑ (−1)r1+r2+···+rn−1(r1 + r2 + · · ·+ rn − 1)!n!

r1!r2! · · · rn!

n∏
j=1

(
mj

j!

)rj
.

where the sum is over all n-tuples of nonnegative integers (r1, r2, . . . , rn) satisfying (2.29).
To exemplify the above formula, we use it to determine the third cumulant. For n = 3, we

32



have (r1, r2, r3) ∈ {(3, 0, 0), (1, 1, 0), (0, 0, 1)}. Therefore

κ3 =
2!3!

3!

(m1

1!

)3

− 3!

1!1!

(m1

1!

)(m2

2!

)
+

3!

1!

(m3

3!

)
= 2(m1)3 − 3m1m2 +m3

= 2− 3m2 +m3,

which is exactly the expression we derived in (2.27).

In the next three subsections we give the definitions of the Dirac, uniform and gamma
distributions, we then compute their Laplace transforms, moments and cumulants.

2.4.1 The Dirac Distribution

As presented in Section 2.2, the Dirac distribution τ units shifted to the right is charac-
terized by the following two properties

g(u) = δ(u− τ) =

{
0, for u 6= τ

“infinite”, for u = τ

and ∫ ∞
−∞

f(u)δ(u− τ) du = f(τ).

By Definition 6, the Laplace transform of the Dirac distribution is given by

L (g(u)) =

∫ ∞
0

e−λuδ(u− τ) du = e−λτ .

The normalized distribution is given by

ĝ(v) = τg(τv) = τδ(τv − τ). (2.30)

Using (2.21), we compute the moment-cumulant generating function,

M(t) =

∫ ∞
0

eitvĝ(v) dv =

∫ ∞
0

eitvτδ(τv − τ) dv
v=u/τ

=

∫ ∞
0

eitu/ττδ(u− τ)
1

τ
du = eit.

From here we get that
dn

dtn
M(t) = ineit.

Using (2.22), the moments are then given by mn = 1 for all n = 0, 1, 2, . . .. Further, we
have that lnM(t) = it and thus

d

dt
lnM(t) = i ⇒ dn

dtn
lnM(t) = 0 for all n = 2, 3, . . . .

Therefore, from (2.24), we have that κ1 = 1 and κn = 0 for all n 6= 1.
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2.4.2 The Uniform Distribution

The general uniform distribution with mean delay τ is given by

g(u) =

{
1
ρτ
, if u ∈

[
τ
(
1− ρ

2

)
, τ
(
1 + ρ

2

)]
0, elsewhere,

where 0 < ρ ≤ 2. The parameter ρ controls the width and height of the distribution.
Figure 2.1 shows examples of this distribution for different values of ρ, but having the
same mean delay, τ = 2. As ρ decreases the width of the distribution decreases and the
height increases. Hence, as ρ→ 0, the uniform distribution becomes the Dirac distribution,
δ(u− τ). Hence we have

lim
ρ→0

∫ ∞
0

f(x(t),x(t− u))g(u) du =

∫ ∞
0

f(x(t),x(t− u))δ(u− τ) du = f(x(t),x(t− τ)),

i.e. as ρ becomes smaller and smaller, the DDE in (2.4) with a uniform distribution of delays
(with mean delay τ) approaches the DDE with one discrete delay τ (equation (2.9)).

Using Definition 6, we obtain the Laplace transform of g(u),

L (g(u)) =

∫ τ(1+ρ/2)

τ(1−ρ/2)

e−λu

ρτ
du = −e

−λu

ρτλ

∣∣∣∣u=τ(1+ρ/2)

u=τ(1+ρ/2)

=
1

ρτλ
[e−τλ(1−ρ/2) − e−τλ(1+ρ/2)].

If we let ρ→ 0, we get

lim
ρ→0

L (g(u)) = lim
ρ→0

1

τλ

[
τλ

2
e−τλ(1−ρ/2) +

τλ

2
e−τλ(1+ρ/2)

]
= e−τλ,

which is exactly the Laplace transform of δ(u− τ). Thus, as expected, we obtain that

lim
ρ→0

L (g(u)) = L (δ(u− τ)).

By (2.10), the normalized distribution becomes

ĝ(v) =

{
1
ρ
, if v ∈ [1− ρ

2
, 1 + ρ

2
]

0, elsewhere.
(2.31)

As seen in Section 2.3, the Laplace transform of ĝ(v) is needed when determining the
characteristic equation and thus we compute it here,

Ĝ(λ) = L (ĝ(v)) =

∫ 1+ ρ
2

1− ρ
2

e−λv

ρ
dv = −e

−λv

ρλ

∣∣∣∣v=1+ρ/2

v=1−ρ/2
=

1

ρλ
[e−λ(1−ρ/2) − e−λ(1+ρ/2)]. (2.32)
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Figure 2.1: The uniform distribution for ρ = 0.8, 1, 2 and mean delay τ = 2.

From the definition in (2.20), the moments are given by

mn =

∫ ∞
0

vnĝ(v) dv =
1

ρ

∫ 1+ρ/2

1−ρ/2
vn dv

=
1

(n+ 1)ρ

[(
1 +

ρ

2

)n+1

−
(

1− ρ

2

)n+1
]
.

(2.33)

Using this and the expression in (2.28), we compute the first few moments and cumulants
for ρ = 2, ρ = 1 and ρ = 4/5, as shown in Table 2.1. These will be useful in Chapters 3
and 4 when approximating the region of stability of the equilibrium points of systems with
uniform distributed delay.

We note that the third cumulant is always zero for any ρ,

κ3 =
1

4ρ

[(
1 +

ρ

2

)4

−
(

1− ρ

2

)4
]
− 1

ρ

[(
1 +

ρ

2

)3

−
(

1− ρ

2

)3
]

+ 2 = 0, (2.34)
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Table 2.1: Moments and cumulants of the uniform distribution.

ρ m0 m1 m2 m3 κ0 κ1 κ2 κ3

2 1 1 4/3 2 0 1 1/3 0
1 1 1 13/12 5/4 0 1 1/12 0

4/5 1 1 79/75 29/25 0 1 4/75 0

where we substituted (2.33) (with n = 2 and n = 3) into (2.28).

In the next subsection we discuss the gamma distribution: its definition, Laplace trans-
form, moments and cumulants.

2.4.3 The Gamma Distribution

The gamma distribution is given by

g(u) =
up−1ape−au

Γ(p)
,

where a, p ≥ 0 are parameters determining the shape of the distribution. Γ is the gamma
function defined by Γ(0) = 1 and Γ(p+ 1) = pΓ(p). We will only consider p in the gamma
distribution to be a positive integer and in this case Γ(p) = (p − 1)!. We note that the
gamma distribution is defined on the infinite interval [0,∞). We mention that for p = 1
the gamma distribution becomes the exponential distribution, g(u) = ae−au.

To compute the mean delay of the gamma distribution, we first show by induction that
for any nonnegative integer α we have∫ ∞

0

wαe−βw dw =
α!

βα+1
. (2.35)

For α = 0 we have ∫ ∞
0

w0e−βw dw = −e
−βw

β

∣∣∣∣∞
0

= 0 +
1

β
=

0!

β
. (2.36)

We assume (2.35) is true. Integrating by parts with u = wα+1 and dv = e−βwdw, we have∫ ∞
0

wα+1e−βw dw = −w
α+1e−βw

β

∣∣∣∣∞
0

−
∫ ∞

0

−(α + 1)wαe−βw

β
dw

= 0 +
α + 1

β

α!

βα+1

=
(α + 1)!

βα+2
. (2.37)
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From (2.35), (2.36) and (2.37), we conclude that the statement in (2.35) is true. Therefore
using (2.35), the mean delay becomes

τ =

∫ ∞
0

ug(u) du =

∫ ∞
0

upape−au

(p− 1)!
du =

ap

(p− 1)!

p!

ap+1
=
p

a
.

The gamma distribution for a fixed value of the mean delay τ = 2, for p = 1, 2, 4, and 8
is shown in Figure 2.2. As p increases, the peak becomes narrower and the position of the

0

g 0.3

0.1

u

0.6

0.5

0.4

0.2

0.0

54321

Figure 2.2: The gamma distribution for p = 1, 2, 4, 8 and mean delay τ = 2.

maximum tends to u = τ = 2. We see from Figure 2.2 that as p becomes larger and larger,
the gamma distribution approaches the Dirac distribution, δ(u− τ). Therefore we have

lim
p→∞

∫ ∞
0

f(x(t),x(t− u))g(u) du =

∫ ∞
0

f(x(t),x(t− u))δ(u− τ) du = f(x(t),x(t− τ)),

i.e. as p becomes larger and larger, the DDE in (2.4) with a gamma distribution of delays
(with mean delay τ) approaches the DDE with one discrete delay τ (equation (2.9)).

37



We next compute the Laplace transform of the gamma distribution. Let f(u) = e−au,
then

F (λ) = L (e−au) = (λ+ a)−1,

F ′(λ) = −(λ+ a)−2,

F ′′(λ) = 2(λ+ a)−3,

F ′′′(λ) = −6(λ+ a)−4,

and so on. In general we have

F (p−1)(λ) = (−1)p−1(p− 1)!(λ+ a)−p

= L ((−1)p−1up−1e−au),

by property (2.18). Multiplying both sides by ap/(p−1)!, we obtain the Laplace transform
of the gamma distribution,

L

(
up−1ape−au

(p− 1)!

)
=

(
a

λ+ a

)p
. (2.38)

We substitute a = p/τ into (2.38) to obtain the Laplace transform in terms of the mean
delay τ ,

L (g(u)) =

(
p/τ

λ+ p/τ

)p
=

(
λ+ p/τ

p/τ

)−p
=

(
1 +

λτ

p

)−p
.

Letting p→∞ with τ fixed, we have

lim
p→∞

L (g(u)) = lim
p→∞

(
1 +

λτ

p

)−p
n=p/(λτ)

=

[
lim
n→∞

(
1 +

1

n

)n]−λτ
= e−λτ ,

which is the Laplace transform of δ(u−τ). Hence, as in the case of the uniform distribution,
we have that

lim
p→∞

L (g(u)) = L (δ(u− τ)).

By (2.10), the normalized distribution is given by

ĝ(v) = τg(τv) =
(τ a)pvp−1e−aτv

(p− 1)!
=
ppvp−1e−pv

(p− 1)!
, (2.39)

with the nth moment given by

mn =

∫ ∞
0

vnĝ(v) dv =
pp

(p− 1)!

∫ ∞
0

vn+p−1e−pv dv =
pp

(p− 1)!

(n+ p− 1)!

pn+p
,
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by (2.35). Therefore the nth moment of the gamma distribution is

mn = p−n
(n+ p− 1)!

(p− 1)!
. (2.40)

Using this and (2.28), we obtain the first few moments and cumulants for p = 3, p = 4
and p = 5, which are shown in Table 2.2. These will be used in the next two chapters
when approximating the linear stability of the equilibrium points of DDEs with a gamma
distributed delay.

Table 2.2: Moments and cumulants of the gamma distribution.

p m0 m1 m2 m3 κ0 κ1 κ2 κ3

3 1 1 4/3 20/9 0 1 1/3 2/9
4 1 1 5/4 15/8 0 1 1/4 1/8
5 1 1 6/5 42/25 0 1 1/5 2/25

The Laplace transform of the normalized gamma distribution is computed in a very
similar way to the procedure used in obtaining (2.38),

Ĝ(λ) = L (ĝ(v)) =

(
p

λ+ p

)p
. (2.41)

The uniform and gamma distributions are the most used distributions in models with
distributed delay. In the next subsection we show how one can transform a p.d.f. defined
on the whole real axis into one that is defined only on the positive real axis, and thus could
be used in systems with distributed delay.

2.4.4 Other Distributions

As seen in the last two subsections, the uniform and gamma distributions are only defined
on the positive real axis, making them the most frequently used distributions in the liter-
ature of DDEs with distributed delay. As mentioned at the beginning of Section 2.2, only
distributions defined on the positive real axis give rise to DDEs. In this subsection we
show through a particular example how one can transform a p.d.f. defined on the whole
real axis into one that is defined only on the positive real axis. We examine the Gaussian
distribution (also referred to as the normal distribution) and scale it so that its integral
from [0,∞) is equal to 1. The Gaussian distribution is given by

Gaussian(u) =
1

σ
√

2π
exp

[
−(u− τ)2

2σ2

]
, (2.42)
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defined on (−∞,∞), where τ represents its mean value and σ its standard deviation. Our
scaled Gaussian distribution defined on [0,∞) is

g(u) = K exp

[
−(u− τ)2

2σ2

]
, (2.43)

where K (to be determined) is the scaling factor such that∫ ∞
0

g(u) =

∫ ∞
0

K exp

[
−(u− τ)2

2σ2

]
= 1. (2.44)

To find K, we will make use of the following identity∫ ∞
0

e−w
2/2 dw =

√
π

2
, (2.45)

and of the error function given by erf(x) = 2
∫ x

0
e−t

2
dt/
√
π, which is equivalent to

erf

(
x√
2

)
=

√
2

π

∫ x
√

2

0

e−w
2/2 dw, (2.46)

where we made the change of variables w = t
√

2 for the error function to be consistent
with the expression in (2.45). We let y = (u− τ)/σ and thus (2.44) becomes

1 = K

∫ ∞
−τ/σ

e−y
2/2σ dy

= Kσ

(∫ 0

−τ/σ
e−y

2/2 dy +

∫ ∞
0

e−y
2/2 dy

)
= Kσ

√
π

2

(√
2

π

∫ τ/σ

0

e−y
2/2 dy + 1

)

= Kσ

√
π

2

(
erf

(
τ

σ
√

2

)
+ 1

)
,

by (2.45) and (2.46). Therefore the scaling factor is given by

K =

√
2

σ
√
π
[
erf
(
τ/(σ
√

2)
)

+ 1
] .

And thus the scaled Gaussian distribution defined on [0,∞) is given by

g(u) =

√
2

σ
√
π
[
erf
(
τ/(σ
√

2)
)

+ 1
] exp

[
−(u− τ)2

2σ2

]
.

40



By (2.10), our normalized Gaussian distribution then becomes

ĝ(v) = τg(τv) = τK exp

[
−τ

2(v − 1)2

2σ2

]
= K̂ exp

[
−(v − 1)2

2σ̂2

]
,

with mean 1 and standard deviation σ̂ = σ/τ , where

K̂ =

√
2

σ̂
√
π
[
erf
(
1/(σ̂
√

2)
)

+ 1
] . (2.47)

We next compute Ĝ(λ) = L (ĝ(v)), the Laplace transform of ĝ(v),

Ĝ(λ) = K̂

∫ ∞
0

exp[−λv] exp

[
−(v − 1)2

2σ̂2

]
dv

= K̂

∫ ∞
0

exp

[
−v

2 − 2v + 1 + 2σ̂2λv

2σ̂2

]
dv

= K̂

∫ ∞
0

exp

[
−(v − 1 + σ̂2λ)2 − σ̂4λ2 + 2σ̂2λ

2σ̂2

]
dv

= K̂ exp

[
σ̂2λ2

2
− λ
] ∫ ∞

0

exp

[
−(v − 1 + σ̂2λ)2

2σ̂2

]
dv

= K̂σ̂ exp

[
σ̂2λ2

2
− λ
] ∫ ∞

(σ̂2λ−1)/σ̂

e−w
2/2 dw. (2.48)

where we made the change of variables w = (v− 1 + σ̂2λ)/σ̂. When σ̂2λ− 1 ≥ 0, equation
(2.48) becomes

Ĝ(λ) = K̂σ̂eσ̂
2λ2/2−λ

(∫ ∞
0

e−w
2/2 dw −

∫ (σ̂2λ−1)/σ̂

0

e−w
2/2 dw

)

= K̂σ̂eσ̂
2λ2/2−λ

√
π

2

[
1− erf

(
σ̂2λ− 1√

2σ̂

)]
, (2.49)

using (2.45) and (2.46). When σ̂2λ− 1 < 0, equation (2.48) becomes

Ĝ(λ) = K̂σ̂eσ̂
2λ2/2−λ

(∫ ∞
0

e−w
2/2 dw +

∫ 0

(σ̂2λ−1)/σ̂

e−w
2/2 dw

)
= K̂σ̂eσ̂

2λ2/2−λ

(∫ ∞
0

e−w
2/2 dw +

∫ (1−σ̂2λ)/σ̂

0

e−w
2/2 dw

)

= K̂σ̂eσ̂
2λ2/2−λ

√
π

2

[
1 + erf

(
1− σ̂2λ√

2σ̂

)]
, (2.50)

41



From (2.47)–(2.50) and using the fact that the error function is an odd function, we obtain
the Laplace transform of ĝ(v),

Ĝ(λ) =
eσ̂

2λ2/2−λ

erf
(
1/(σ̂
√

2)
)

+ 1

[
1 + erf

(
1− σ̂2λ

σ̂
√

2

)]
. (2.51)

The moment-cumulant generating function can be determined in a similar way to the
procedure we used in obtaining (2.51). But since the computations for determining the
stability region would be too tedious using the cumbersome expression in (2.51), we refrain
from using the scaled Gaussian distribution in later chapters, and only use the uniform and
gamma distributions to verify our results for DDEs with a general distribution of delays.

In the final section of this chapter, we present a method of transforming a scalar DDE
with a gamma distributed delay into a system of ODEs. This is a good way of verifying
the results obtained for DDEs with distributed delay, and also we will use this reduction
in Chapter 5 to check whether the computation of the centre manifold of a scalar DDE is
performed correctly.

2.5 The Linear Chain Trick

A scalar DDE with a gamma distributed delay can be shown to be equivalent to a system of
p+1 ODEs. This transformation is called the linear chain trick [45, 46]. Such an approach
may seem attractive as the model can then be analyzed using the theoretical and numerical
methods for ODEs. However, it will only be practical if p is a small integer, while real
data may call for much larger and/or noninteger p. This can be seen in a paper by Yan
[63], where data for the pre-symptomatic infectious period in an outbreak of mumps was
fit by a gamma distribution with p = 70.

We present the linear chain trick reduction by considering the scalar Hopfield model

dx(s)

ds
= −ατx(s) + wτ

∫ ∞
0

f (x(s− v)) ĝp(v) dv + cτ, (2.52)

with initial condition x(s) = φ0(s), for s ∈ (−∞, 0], (2.53)

where ĝp(v) represents the normalized gamma distribution given in (2.39). The above
equation with p = 1 and p = 2 is used in Chapter 5 to verify whether the general calculation
of the centre manifold for any distribution is consistent with these two particular cases.

First we do a change of variables, t = s− v, then equation (2.52) becomes

dx(s)

ds
= −ατx(s) + wτ

∫ s

−∞
f (x(t)) ĝp(s− t) dt+ cτ. (2.54)
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To transform equation (2.54) into a system of ODEs, let

x0(s) = x(s) (2.55)

xq(s) =

∫ s

−∞
f(x(t))ĝq(s− t) dt, q = 1, . . . , p, (2.56)

where

ĝq(s− t) =
(τ a)q(s− t)q−1e−aτ(s−t)

(q − 1)!
=
pq(s− t)q−1e−p(s−t)

(q − 1)!
, (2.57)

since the mean delay is τ = p/a. We note that lim
v→∞

ĝq(v) = 0 and

ĝq(0) =

{
p, if q = 1,
0, if q > 1.

(2.58)

Substituting (2.55) and (2.56) into (2.54), we obtain

dx0(s)

ds
= −ατx0(s) + wτxp(s) + cτ. (2.59)

Next, we take the derivative of xq(s) with respect to s using Leibniz Rule,

dxq(s)

ds
=

∫ s

−∞
f(x(t))

∂ĝq(s− t)
∂s

dt+ f(x(s))ĝq(0). (2.60)

We consider two cases.
Case 1: q = 1
From (2.58) and (2.57) we have ĝ1(0) = p and ĝ1(t− s) = pe−p(s−t), and thus

∂ĝ1(s− t)
∂s

= −p2e−p(s−t) = −pĝ1(s− t).

Therefore, using (2.55) and (2.56), equation (2.60) becomes

dx1(s)

ds
= −

∫ s

−∞
f(x(t))pĝ1(t− s) dt+ pf(x(s)) = p[f(x0(s))− x1(s)]. (2.61)

Case 2: q > 1
From (2.58) we have ĝq(0) = 0. From (2.57) we obtain,

∂ĝq(s− t)
∂s

=
pq(q − 1)(s− t)q−2e−p(s−t)

(q − 1)!
+
−ppq(s− t)q−1e−p(s−t)

(q − 1)!

= p

[
pq−1(s− t)q−2e−p(s−t)

(q − 2)!
− pq(s− t)q−1e−p(s−t)

(q − 1)!

]
= p[ĝq−1(s− t)− ĝq(s− t)].
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Using (2.56), equation (2.60) becomes

dxq(s)

ds
=

∫ s

−∞
f(x(t))p[ĝq−1(s− t)− ĝq(s− t)] dt = p[xq−1(s)− xq(s)]. (2.62)

From (2.59), (2.61) and (2.62) we obtain the system of ODEs
x′0(s) = −ατx0(s) + wτxp(s) + cτ
x′1(s) = p[f(x0(s))− x1(s)]
x′q(s) = p[xq−1(s)− xq(s)], for q = 2, . . . , p.

(2.63)

From (2.53), (2.55) and (2.56), the initial conditions for this ODE system are

x0(0) = x(0) = φ0(0),

xq(0) =

∫ 0

−∞
f(x(t))ĝq(0− t) dt =

∫ ∞
0

f(φ0(−t))ĝq(t) dt, for q = 1, . . . , p.

We note that in the engineering literature when p = 1, system (2.63) is called a model with
a first order lag, and when p = 2 it is called model with a second order lag.

To verify whether (2.52) and (2.63) are equivalent in terms of their linear stability, we
next compare their characteristic equations. Let x∗ be an equilibrium point of (2.52), i.e.

0 = −ατx∗ + wτf(x∗) + cτ.

Letting y(s) = x(s)−x∗ and using the above identity, the linearized equation corresponding
to (2.52) becomes

y′(s) = −ατy(s) + βτ

∫ ∞
0

y(s− v)ĝp(v) dv,

where β = wf ′(x∗). This is the scalar version of (2.16) and by (2.19), its characteristic
equation is given by

∆DDE(λ) = λ+ ατ − βτL (ĝ(v)).

Since ĝ(v) represents the normalized gamma distribution, by (2.41) the characteristic equa-
tion becomes

∆DDE(λ) = λ+ ατ − βτ
(

p

λ+ p

)p
= 0. (2.64)

Now we turn to the ODE system (2.63). Let (x∗0, x
∗
1, . . . , x

∗
p) be an equilibrium point

satisfying 
0 = −ατx∗0 + wτx∗p + cτ
0 = p[f(x∗0)− x∗1]
0 = p[x∗q−1 − x∗q], for q = 2, . . . , p.
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Letting yq(s) = xq(s)−x∗q, q = 0, . . . , p, and using the above equations, the linearized ODE
system becomes 

y′0(s) = −ατy0(s) + wτyp(s)
y′1(s) = p[β̄y0(s)− y1(s)]
y′q(s) = p[yq−1(s)− yq(s)], for q = 2, . . . , p.

,

where β̄ = f ′(x∗0) = β/w. The above linear system can be written as y′(s) = Ay(s), where
y = [y0, y1, . . . , yp]

T and A is a (p+ 1)× (p+ 1)−matrix of the form

A =


−ατ 0 0 . . . wτ
pβ̄ −p 0 . . . 0
0 p −p . . . 0
...

...
. . .

...
...

0 0 . . . p −p

 .

Therefore the characteristic equation corresponding to the ODE system is given by

∆ODE(λ) = det(λI −A) =

∣∣∣∣∣∣∣∣∣∣∣

λ+ ατ 0 0 . . . −wτ
−pβ̄ λ+ p 0 . . . 0

0 −p λ+ p . . . 0
...

...
. . .

...
...

0 0 . . . −p λ+ p

∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant over the first row, we get

∆ODE(λ) = (λ+ατ)

∣∣∣∣∣∣∣∣∣
λ+ p 0 . . . 0
−p λ+ p . . . 0
...

...
. . .

...
0 0 −p λ+ p

∣∣∣∣∣∣∣∣∣+(−1)p+1wτ

∣∣∣∣∣∣∣∣∣
−pβ̄ λ+ p . . . 0

0 −p λ+ p . . . 0
...

...
. . .

...
0 0 . . . −p

∣∣∣∣∣∣∣∣∣ .
Since the above two matrices are lower and upper triangular, respectively, we obtain

∆ODE(λ) = (λ+ ατ)(λ+ p)p + (−1)p+1wτβ̄(−p)p = (λ+ ατ)(λ+ p)p − βτpp = 0,

which has the same zeros as the characteristic equation (2.64) corresponding to the DDE
(2.52). Therefore (2.52) and (2.63) are indeed equivalent in terms of linear stability.

In the next chapter, we will analyze the scalar DDE of the form (2.11) with a general
distribution of delays in terms of its linear stability. We will develop a method of approxi-
mating the stability by using only the first few moments or cumulants of the distribution.
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Chapter 3

Stability of the Scalar DDE with
Distributed Delay

In this chapter we investigate the linear stability of the equilibrium points of the scalar DDE
of the form (2.11) with one distributed delay via analysis of the characteristic equation.
First we show what can be determined without choosing a particular distribution, or with
minimal information about a distribution. Next we illustrate a way of approximating
the region of stability when the actual distribution is not known, but some moments or
cumulants of the distribution are. Finally, we compare the approximate stability regions
with the stability regions for the uniform and gamma distributions and show that the
approximations using cumulants give better results than the ones using moments. The
results of this chapter have been already published in [10], but will be presented here in
greater detail.

3.1 Distribution Independent Results

In this chapter we consider the scalar DDE,

ẋ(t) =

∫ ∞
0

f(x(t), x(t− u))g(u) du. (3.1)

where the kernel g(u) is a p.d.f. with mean delay τ > 0. Since we will study the dependence
of the linear stability of the equilibrium point on the mean delay, we transform the above
equation so that the mean delay appears explicitly, as presented in Section 2.2,

x′(s) = τ

∫ ∞
0

f(x(s), x(s− v))ĝ(v) dv, (3.2)

46



where the scaled kernel ĝ(v) is given in (2.10) and has mean delay 1.

We assume that the DDE (3.2) has an equilibrium point x∗, i.e.

0 = τ

∫ ∞
0

f(x∗, x∗)ĝ(v) dv = f(x∗, x∗),

by (2.12). We let y(s) = x(s) − x∗ and linearizing (3.2) about x∗, as presented in Sec-
tion (2.3), we obtain the scalar version of equation (2.16),

y′(s) = −αy(s) + β

∫ ∞
0

y(s− v)ĝ(v) dv, (3.3)

where −α is the derivative of f with respect to its first argument, and β is the derivative
of f with respect to its second argument. We note that when α > 0, (3.3) represents the
linearization of the scalar Hopfield model we developed in Chapter 1. Thus, we chose the
minus sign in front of α in order for model (3.3) to be consistent with system (1.16).

Setting y(s) = ceλs, we derive the characteristic equation

∆(λ) = λ+ ατ − βτ
∫ ∞

0

e−λvĝ(v) dv = 0, (3.4)

which represents the scalar version of (2.17). Using Definition 6, this can also be written
as

∆(λ) = λ+ ατ − βτĜ(λ) = 0,

where Ĝ(λ) is the Laplace transform of ĝ(v).

Changes of stability of the equilibrium point will take place when the characteristic
equation has a root with zero real part. In the following we will describe where in the
parameter space such changes may occur, and hence determine the region of stability of
the equilibrium point. We will consider the parameter α as fixed and describe the stability
region in the β, τ parameter space for the two cases: α > 0 and α < 0.

In the study of systems with discrete delays, it is common to describe the delay inde-
pendent stability region. Such results give a conservative estimate of the stability region
which is useful if one is unable to accurately estimate the time delay in the system. In this
section we will formulate similar results for equation (3.2). In particular we will give one
result which is independent of all aspects of the distribution and one which is independent
of all aspects save the mean delay. This latter may be especially useful as the mean delay
is often all one may be able to estimate for a particular system.

Before presenting our results, we state Rouché’s Theorem [13] from Complex Variable
Theory, which will be used to prove our first result. Its proof can be found in [13, page
313] and we will not reproduce it here. We present it as a lemma:
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Lemma 1 (Rouché) Let two functions f1(z) and f2(z) be analytic on and inside a simple
closed contour C and assume that they do not reduce to zero at any point of C.
If |f2(z)| < |f1(z)| on C, then the functions f1(z) and f1(z) + f2(z) have the same number
of zeros inside the region bounded by C.

We now state and prove our first result which will help locate the region of stability of
the equilibrium point.

Theorem 5 Assume that Ĝ(λ) is analytic in Re(λ) ≥ 0, i.e. in the right-half complex
plane. If 0 < |β| < α then the characteristic equation has no roots with positive real part.
If 0 < |β| < −α then the characteristic equation has one root with positive real part.

Proof. Let f1(λ) = λ+ατ and f2(λ) = −βτĜ(λ), and consider the contour in the complex
plane, C = C1 ∪ C2, given by

C1 : λ = Reiθ, −π
2
≤ θ ≤ π

2

C2 : λ = iy, −R ≤ y ≤ R,

where R is a positive real number. On C1 we have f1(λ) = Reiθ + ατ , thus

|f1(λ)| = |R cos θ + iR sin θ + ατ |

=
√

(R cos θ + ατ)2 +R2 sin2 θ

=
√
R2 + α2τ 2 + 2Rατ cos θ

But Rατ cos θ ≥ −|Rατ cos θ| = −R|α|τ | cos θ| ≥ −R|α|τ , and thus we have

|f1(λ)| ≥
√
R2 + α2τ 2 − 2R|α|τ =

√
(R− |α|τ)2 = |R− |α|τ |. (3.5)

Now, f2(λ) = −βτĜ(Reiθ). Thus

|f2(λ)| =
∣∣∣∣−βτ ∫ ∞

0

e−Re
iθvĝ(v) dv

∣∣∣∣
≤ |β|τ

∫ ∞
0

|e−Reiθv|ĝ(v) dv,

since ĝ(v) is nonnegative. But

|e−Reiθv| = |e−Rv cos θ−iRv sin θ| = e−Rv cos θ ≤ 1,
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since Rv cos θ ≥ 0 for θ ∈ [−π/2, π/2]. Therefore

|f2(λ)| ≤ |β|τ
∫ ∞

0

ĝ(v) dv = |β|τ, (3.6)

using the fact that ĝ(v) is a p.d.f. From (3.5) and (3.6) we have that on C1, |f1(λ)| > |f2(λ)|
for R sufficiently large.
On C2, f1(λ) = iy + ατ , therefore

|f1(λ)| = |iy + ατ | =
√
α2τ 2 + y2 ≥ |α|τ. (3.7)

Further f2(λ) = −βτĜ(iy), thus

|f2(λ)| = | − βτ
∫ ∞

0

e−iyvĝ(v) dv| ≤ |β|τ
∫ ∞

0

|e−iyv|ĝ(v) dv = |β|τ. (3.8)

Thus from (3.7) and (3.8) we have that on C2, |f1(λ)| > |f2(λ)| if |α| > |β|.
Further, note that if α 6= 0, and β 6= 0 then both f1 and f2 do not reduce to zero anywhere
on C. Hence by Lemma 1, if |α| > |β| > 0 and R is sufficiently large then f1(λ) and
∆(λ) = f1(λ) + f2(λ) have the same number of zeros inside C. Let R → ∞ then f1(λ)
and ∆(λ) have the same number of zeros with Re(λ) > 0. Now f1(λ) has just one zero at
λ = −ατ . Therefore, if α > 0, ∆(λ) has no zeros in the right-half complex plane, and if
α < 0, ∆(λ) has one zero in the right-half complex plane. The results follow. �

From this theorem, we can conclude that the trivial solution of equation (3.3) (and
hence the equilibrium point of equation (3.2)) is locally asymptotically stable if α > 0 and
|β| < α and unstable if α < 0 and |β| < −α.

We can next determine a region in the parameter space where the equilibrium point is
unstable for any distribution ĝ(v). The proof of the following result is similar to the proof
of Theorem 3.1 in [1].

Theorem 6 The equilibrium point of (3.2) is unstable when β > α.

Proof. Note that we only need to consider the case when β > |α|, since from Theorem 5
we already have instability for α < β < −α when α < 0. We focus on the real roots of the
characteristic equation (3.4), hence we assume ∆(λ) : R→ R. Now

d∆(λ)

dλ
= 1 + βτ

∫ ∞
0

ve−λvĝ(v) dv > 0, (3.9)

since β > 0. Thus ∆(λ) is a strictly increasing function. For λ = 0 we have

∆(0) = τ(α− β) < 0,
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since β > α. If λ ≥ 0 then |e−λv| ≤ 1, and thus the integral term is bounded,∫ ∞
0

e−λvĝ(v) dv ≤
∣∣∣∣∫ ∞

0

e−λvĝ(v) dv

∣∣∣∣ ≤ ∫ ∞
0

|e−λv|ĝ(v) dv ≤
∫ ∞

0

ĝ(v) dv = 1.

It follows that
lim

λ→+∞
∆(λ) = +∞.

Since ∆(λ) is continuous, we conclude that ∆(λ) has a unique real root which is positive,
i.e. the characteristic equation has at least one root with positive real part. The result
follows. �

Some additional information about the stability region may be obtained from the char-
acteristic equation (3.4). First note that the characteristic equation has a zero root if
α − β = 0, for any distribution. For α > 0, from Theorems 5 and 6, stability is gained
as this line is crossed by decreasing the parameter β, and thus the line β = α forms part
of the boundary of the stability region. For α < 0 we need to determine how the eigen-
value changes as this line is crossed in the parameter space. We will focus on varying the
parameter β, the analysis for the variation of α is similar.

To begin, we note that from ∆(λ) = 0 we have

d∆

dβ
=
∂∆

∂β
+
∂∆

∂λ

dλ

dβ
= 0,

and therefore
dRe(λ)

dβ
= Re

(
dλ

dβ

)
= −Re

(
∂∆

∂β
/
∂∆

∂λ

)
. (3.10)

In particular, we need to evaluate this when λ = 0, i.e. along the line β = α,

dRe(λ)

dβ

∣∣∣∣
λ=0, β=α

= −Re

(
∂∆

∂β
/
∂∆

∂λ

∣∣∣∣
λ=0,β=α

)

= −Re

(
−τ
∫∞

0
e−λvĝ(v) dv

1 + βτ
∫∞

0
ve−λvĝ(v) dv

∣∣∣∣
λ=0,β=α

)
=

τ

1 + ατ
,

since ĝ(v) is a p.d.f. with mean delay 1. From this it is easy to conclude that

dRe(λ)

dβ
≶ 0 along the line β = α, with α < 0 and τ ≶ − 1

α
. (3.11)
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It follows that for α < 0 and τ < −1/α, the equilibrium point becomes stable as β is
decreased through the line β = α. Hence, for α < 0 the line segment β = α, τ < −1/α
forms part of the stability boundary.

We also note that from (2.13) and (3.9) we have

d∆(λ)

dλ

∣∣∣∣
β=α, τ=−1/α

= 1−
∫ ∞

0

vĝ(v) dv = 0,

since the point (α,−1/α) is on the line β = α corresponding to the characteristic equation
having one zero root (i.e. λ = 0). Thus the point (α,−1/α) is always a double zero root
of the characteristic equation for any distribution.

To further define the boundary of stability, we need to determine where the characteris-
tic equation has a pair of pure imaginary roots, ±iω. This occurs when we set λ = iω, ω > 0
in the characteristic equation (3.4), i.e.,

iω + ατ − βτ
∫ ∞

0

e−iωvĝ(v) dv = 0. (3.12)

Separating this into real and imaginary parts, we find that for the characteristic equation
to have a pair of pure imaginary roots, the parameters must satisfy the following equations

ατ = βτ
∫∞

0
cos(ωv) ĝ(v) dv

def
= βτC(ω),

−ω = βτ
∫∞

0
sin(ωv) ĝ(v) dv

def
= βτS(ω).

(3.13)

Fixing α, we can formally define curves, parameterized by ω, in the βτ -plane along which
the equations in (3.13) are satisfied. These curves are given by

β =
α

C(ω)
, τ = −ωC(ω)

αS(ω)
, (3.14)

for all ω > 0 such that C(ω) and S(ω) are nonzero. The values of ω such that C(ω) = 0
or S(ω) = 0 define discontinuities in the curves and do not correspond to roots of the
characteristic equation (3.12). In the light of Theorems 5 and 6, the curves in (3.14) that
form part of the stability boundary must lie in the region β ≤ −|α|.

To obtain explicit expressions for the curves given in (3.14), we need to evaluate C(ω)
and S(ω) which requires knowledge of the distribution ĝ(v). We can, however, determine
how the number of eigenvalues changes as one crosses one of these curves. Taking the
derivative of τ in (3.14) with respect to ω we obtain

dτ

dω
= − 1

αS(ω)

(
C(ω) + ω

C ′(ω)S(ω)− S ′(ω)C(ω)

S(ω)

)
. (3.15)
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From equations (3.12) and (3.13), the characteristic equation when λ = iω can be written
as

0 = ∆(iω) = iω + ατ − βτ (C(ω)− iS(ω)) (3.16)

= ατ − βτC(ω) + i[ω + βτS(ω)] (3.17)

= U(ω) + iV (ω). (3.18)

Using this, we compute the rate of change of the real part of λ with respect to β. From
(3.16) we have

∂∆

∂β
= −τC(ω) + iτS(ω).

Since λ is a complex number, from (3.17) and (3.18) we get

∂∆

∂λ
=
dV

dω
− idU

dω
= 1 + βτS ′(ω) + iβτC ′(ω).

Substituting these into (3.10) and evaluating the expression along the curves where λ = iω,
we get

dRe(λ)

dβ

∣∣∣∣
λ=iω

= −Re

(
∂∆

∂β
/
∂∆

∂λ

∣∣∣∣
λ=iω

)
= −Re

(
−τ(C(ω)− iS(ω))

1 + βτS ′(ω) + iβτC ′(ω)

)
= τRe

(
C(ω)− iS(ω)

(1 + βτS ′(ω)) + iβτC ′(ω)

)
=

τ

H2(ω)
(C(ω) + βτC(ω)S ′(ω)− βτS(ω)C ′(ω))

=
τ

H2(ω)

(
C(ω) + ω

C ′(ω)S(ω)− S ′(ω)C(ω)

S(ω)

)
, (3.19)

where H2(ω) = (1 + βτS ′(ω))2 + (βτC ′(ω))2 is a positive function of ω and we have used
βτ = −ω/S(ω) from (3.14). Comparing (3.19) with (3.15) we obtain

dRe(λ)

dβ

∣∣∣∣
λ=iω

=
α

β

ω

H2(ω)

dτ

dω
, (3.20)

since τS(ω) = −ω/β, again from (3.14). Thus whether the number of eigenvalues with
positive real part is increasing or decreasing as β is increased through a point on one of
the curves defined by (3.14) depends on the sign of α and whether τ is an increasing or
decreasing function of ω at that point (since the curves in (3.14) only form part of the
stability boundary for β negative).

We can also obtain the following distribution independent results.
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Theorem 7 Under the conditions of Theorem 5, the equilibrium point of (3.2) is locally
asymptotically stable in the following regions of parameter space

(1) |β| < α

(2) β ≤ −|α| and 0 < τ < − 1

β
.

Proof. Result (1) follows from Theorem 5 and the subsequent discussion. To see (2),
consider equations (3.13). From the first equation, we have∣∣∣∣αβ

∣∣∣∣ ≤ ∫ ∞
0

| cos(ωv)|ĝ(v) dv ≤
∫ ∞

0

ĝ(v) dv = 1.

While from the second equation, we have∣∣∣∣− 1

βτ

∣∣∣∣ ≤ ∫ ∞
0

∣∣∣∣sin(ωv)

ωv

∣∣∣∣ vĝ(v) dv ≤
∫ ∞

0

vĝ(v) dv = 1.

Thus equations (3.13) have a solution only if |β| ≥ |α| and τ ≥ 1/|β|. In particular, for
β < 0 this means the system cannot have pure imaginary roots if β ≤ −|α| and τ < −1/β
and hence for this range of β, the stability cannot change. Result (2) follows. �

We note that, in the case α > 0, the second result of this theorem is similar to Theorem 9
in [53], although we have proven it in a different way.

The results of Theorems 6 and 7 are illustrated in Figure 3.1.

Theorem 7 describes the region of stability of the equilibrium point with either no
knowledge of the distribution of delays or knowledge of only the first moment of the dis-
tribution, i.e. the mean delay, τ . From the proof of Theorem 7, it is clear that the curves
given by equations (3.14) must lie outside the stability region described by the theorem.
Thus this region is only a conservative estimate of the full region in the parameter space
where the equilibrium point is stable. In the next section we will show how one may im-
prove this approximation by using more information from the distribution. We note that
it is only necessary to consider β ≤ −|α|, given the results of Theorems 6 and 7.

3.2 Approximating the Boundary of the Stability Re-

gion

In practice, we may not know the exact distribution of delays in a system, however, we may
be able to determine some statistical properties of the distribution. In the following we
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Figure 3.1: Illustration of the distribution independent stability results described by The-
orems 6 and 7. (I) No distribution independent stability results are known for this region.
(II) Region of stability described by Theorem 7. (III) Region of instability described by
Theorem 6.

show how to approximate the true boundary of stability, using only the first few moments
or cumulants of the distribution. In the previous section, we established that the boundary
of the stability region (in the βτ -plane) consists of all or part of the line β = α and the
curve(s) defined parametrically by equations (3.14) for β ≤ −|α|. In this section, we shall
show how partial knowledge of the distribution, ĝ(v), can allow us to approximate these
latter curves.

54



3.2.1 Approximations using Moments

In this subsection we present a method of approximating C(ω) and S(ω) given in (3.13) in
terms of the moments of ĝ(v). Thus we show how we can determine curves in the βτ -plane
that approximate the curves in (3.14), which form part of the true stability boundary.

We start by expanding the moment-cumulant generating function M(t) given in (2.21)
in its Taylor series about t = 0,

M(t) =

∫ ∞
0

eitvĝ(v) dv =
∞∑
n=0

dn

dtn
M(t)

∣∣∣∣
t=0

tn

n!
=
∞∑
n=0

inmn
tn

n!
, (3.21)

using (2.22). The radius of convergence of the above series is given by [48]

R = lim sup
n→∞

∣∣∣∣mn

n!

(n+ 1)!

mn+1

∣∣∣∣ = lim sup
n→∞

(n+ 1)mn

mn+1

.

If the above limit exists, the series in (3.21) converges for |t| < R.

Substituting t = −ω into (3.21), we can then relate the integral term in the character-
istic equation (3.12) to the moments of ĝ(v) as follows,∫ ∞

0

e−iωvĝ(v) dv =
∞∑
n=0

(−1)ninmn
ωn

n!

= m0 − im1ω + i2m2
ω2

2!
− i3m3

ω3

3!
+ i4m4

ω4

4!
− i5m5

ω5

5!
+ · · ·

= m0 − im1ω −m2
ω2

2!
+ im3

ω3

3!
+m4

ω4

4!
− im5

ω5

5!
− · · ·

=

(
m0 −m2

ω2

2!
+m4

ω4

4!
− · · ·

)
− i
(
m1ω −m3

ω3

3!
+m5

ω5

5!
− · · ·

)
=
∞∑
n=0

(−1)nω2n

(2n)!
m2n − i

∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
m2n+1. (3.22)

From the definitions of C(ω) and S(ω) in (3.13), we have

C(ω) = Re

(∫ ∞
0

e−iωvĝ(v) dv

)
,

S(ω) = −Im

(∫ ∞
0

e−iωvĝ(v) dv

)
.

(3.23)

55



Using this and (3.22), we obtain

C(ω) =
∞∑
n=0

(−1)nω2n

(2n)!
m2n,

S(ω) =
∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
m2n+1.

(3.24)

The radius of convergence of the series for C(ω) is given by

RC = lim sup
n→∞

∣∣∣∣ m2n

(2n)!

(2n+ 2)!

m2n+2

∣∣∣∣ = lim sup
n→∞

(2n+ 1)(2n+ 2)m2n

m2n+2

,

and for S(ω) is given by

RS = lim sup
n→∞

∣∣∣∣ m2n+1

(2n+ 1)!

(2n+ 3)!

m2n+3

∣∣∣∣ = lim sup
n→∞

(2n+ 2)(2n+ 3)m2n+1

m2n+3

.

Truncating the series for C(ω) in (3.24) up to M terms and the series for S(ω) up to N
terms, we obtain the following approximations for C(ω) and S(ω) in terms of the moments,

C(ω) ≈
M∑
n=0

(−1)nω2n

(2n)!
m2n and S(ω) ≈

N∑
n=0

(−1)nω2n+1

(2n+ 1)!
m2n+1. (3.25)

Thus we define approximation (M,N) as the approximation for C(ω) and S(ω) if we use
the first M terms in the series for C(ω) and the first N terms in the series for S(ω).
We note that these approximations should improve as ω approaches 0 or as M and N
increase. We note that the above approximations will only be useful for ω < R̄, where
R̄ = min{RC , RS}.

For example, in the case of the gamma distribution, substituting the expression for the
moments given in (2.40), we obtain

RC = lim sup
n→∞

(2n+ 1)(2n+ 2)

p−2(2n+ p)(2n+ p+ 1)
= p2,

RS = lim sup
n→∞

(2n+ 2)(2n+ 3)

p−2(2n+ p+ 1)(2n+ p+ 2)
= p2.

Thus for the gamma distribution, the approximations are only useful for ω < p2.

For the uniform distribution, we first rewrite the expressions for the moments given in
(2.33) as

mn =

(
1 + ρ

2

)n+1
(1−Kn+1)

(n+ 1)ρ
, where K =

1− ρ/2
1 + ρ/2

, and K ∈ [0, 1).
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Therefore we have

RC = lim sup
n→∞

(2n+ 1)(2n+ 2)
(
1 + ρ

2

)2n+1
(1−K2n+1)

(2n+ 1)ρ

(2n+ 3)ρ(
1 + ρ

2

)2n+3
(1−K2n+3)

= lim sup
n→∞

(2n+ 2)(2n+ 3)(
1 + ρ

2

)2

=∞,

and

RS = lim sup
n→∞

(2n+ 2)(2n+ 3)
(
1 + ρ

2

)2n+2
(1−K2n+2)

(2n+ 2)ρ

(2n+ 4)ρ(
1 + ρ

2

)2n+4
(1−K2n+4)

= lim sup
n→∞

(2n+ 3)(2n+ 4)(
1 + ρ

2

)2

=∞.

Since both RC and RS approach infinity in the case of the uniform distribution, the two
series in (3.24) converge for any ω > 0.

In the case of the Dirac distribution, from Section 2.4.1 we have that mn = 1 for all
n = 0, 1, 2, . . .. Substituting this into (3.24), we get that C(ω) = cos(ω) and S(ω) = sin(ω).
As for the uniform distribution, the two radii of convergence approach infinity, and therefore
the approximations are defined for any ω > 0. Next, we substitute (2.30) into (3.23) to get

C(ω) = Re

(∫ ∞
0

e−iωvτδ(τv − τ) dv

)
= Re

(∫ ∞
0

e−iωu/ττδ(u− τ)
1

τ
du

)
(where u = τv)

= Re
(
e−iωτ/τ

)
(by property (2.8))

= Re
(
e−iω

)
= cos(ω).

Similarly we get S(ω) = −Im (e−iω) = sin(ω). Therefore, for the Dirac distribution, the
approximations using moments in (3.25) represent the truncated Taylor series expansions
for C(ω) and S(ω). When all the moments are substituted, we then recover the exact
expression for C(ω) and S(ω) given in (3.23).

When the distribution is not known, but with knowledge of some moments of ĝ(v), we
may obtain an approximation for the curve(s) in (3.14). The results for different cases are
summarized in Table 3.1, where we used the fact that m0 = m1 = 1.
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Table 3.1: Approximations using moments for C(ω), S(ω) and equations (3.14), where M
andN relate to the number of terms used in the summation for C(ω) and S(ω), respectively.

(M,N) C(ω) S(ω) β τ

(0, 0) 1 ω α − 1

α

(0, 1) 1 ω − m3

6
ω3 α

6

α(m3ω2 − 6)

(1, 0) 1− m2

2
ω2 ω

2α

2−m2ω2

m2ω
2 − 2

2α

(1, 1) 1− m2

2
ω2 ω − m3

6
ω3 2α

2−m2ω2

3(m2ω
2 − 2)

α(6−m3ω2)

In particular, we see that approximation (0, 0) is just the single point (α,−1/α) in
the βτ -plane, which corresponds to the characteristic equation having a double zero root.
Since τ > 0, this approximation exists only for α < 0. For both positive or negative α,
this approximation predicts that the region of stability is the entire half plane to the left
of the line β = α.

When α > 0, approximation (0, 1) represents the line β = α and thus it predicts no
stability region. When α < 0, since m3 > 0 (by the definition in (2.20)), we have

1− m3ω
2

6
≤ 1 or

6

6−m3ω2
≥ 1, for ω ≥

√
6

m3

.

Multiplying by −1/α we get

τ =
6

α(m3ω2 − 6)
≥ − 1

α
.

Hence, when α < 0, approximation (0, 1) represents the line β = α with τ ≥ −1/α.
Therefore for negative α, this approximation predicts the region below the horizontal line
τ = −1/α and to the left of the vertical line β = α is stable, whereas the region above the
horizontal line τ = −1/α and to the left of the vertical line β = α is unstable.

For approximation (1, 0), from the expression for β in Table 3.1 we obtain

ω2 =
2

m2

(
1− α

β

)
. (3.26)

Thus in the βτ -plane, approximation (1, 0) using moments is given by

τm(1,0) = − 1

β
, ω =

√
2

m2

(
1− α

β

)
, (3.27)
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where, for α < 0 we require β ≤ α in order for ω to be defined. We note that approximation
(1, 0) always underestimates the region of stability. For β ≤ −|α|, this approximation
recovers the results of Theorem 7. For β > −α (α > 0) the curve enters the region of
distribution independent stability and thus gives a worse estimate than Theorem 7.

For approximation (1, 1), we substitute (3.26) and m2ω−2 = −2α/β into the expression
for τ to obtain

τ = − 6α/β

α[6− 2m3(β − α)/(m2β)]
= − 1

β − m3

3m2
(β − α)

= − 1(
1− m3

3m2

)
β + m3

3m2
α
.

Therefore in the βτ -plane, approximation (1, 1) using moments is given by

τm(1,1) = − 1(
1− m3

3m2

)
β + m3

3m2
α
, ω =

√
2

m2

(
1− α

β

)
, (3.28)

where, again for α < 0, we require β ≤ α in order for ω to be defined. Approximation
(1, 1) is a hyperbola with a vertical asymptote at β = να/(ν−1), where ν = m3/(3m2) > 0
(since the moments are positive). The relationship between approximation (1, 1) and the
results of Theorem 7 will depend on the value of ν, and hence on the moments of the
particular distribution. However, for large β, we can say that if ν < 1 then

1 ≤ 1

1− ν + να/β
,

since να/β → 0 as β →∞. Dividing the above inequality by −β we get that

τm(1,0) = − 1

β
≤ − 1

(1− ν) β + να
= τm(1,1),

Therefore if ν < 1, then for large β, approximation (1, 1) always lies above approximation
(1, 0).

For α > 0, the curve in (3.28) enters the region β < |α| if its vertical asymptote is to
the right of the line β = −α, i.e. if

να

ν − 1
> −α ⇔ ν

1− ν
< 1.

Thus, for α > 0, the curve given by approximation (1, 1) enters the region of distribution-
independent stability if ν ∈ (0, 1/2) ∪ (1,∞).

In the next subsection we approximate the boundary of stability where λ = iω using
the cumulants of ĝ(v).
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3.2.2 Approximations using Cumulants

In this subsection we approximate the curves in (3.14), which form part of the true bound-
ary of stability of the equilibrium of (3.2), using the first few cumulants of ĝ(v). We start
by expanding lnM(t) in its Taylor series around zero,

lnM(t) =
∞∑
n=0

dn

dtn
lnM(t)

∣∣∣∣
t=0

tn

n!
=
∞∑
n=0

inκn
tn

n!
,

by (2.24). Exponentiating and using (2.21), we get∫ ∞
0

eitvĝ(v) dv = exp

[
∞∑
n=0

inκn
tn

n!

]
,

We then substitute t = −ω into this to obtain a relationship between the integral term in
the characteristic equation (3.12) and the cumulants of ĝ(v),∫ ∞

0

e−iωvĝ(v) dv = exp

[
∞∑
n=0

(−1)ninκn
ωn

n!

]

= exp

[
∞∑
n=0

(−1)nω2n

(2n)!
κ2n − i

∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]

= exp

[
∞∑
n=0

(−1)nω2n

(2n)!
κ2n

]
cos

[
∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]

− i exp

[
∞∑
n=0

(−1)nω2n

(2n)!
κ2n

]
sin

[
∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]
.

Using (3.23), we then obtain

C(ω) = exp

[
∞∑
n=0

(−1)nω2n

(2n)!
κ2n

]
cos

[
∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]
,

S(ω) = exp

[
∞∑
n=0

(−1)nω2n

(2n)!
κ2n

]
sin

[
∞∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]
.

(3.29)

The radius of convergence of the series inside the exponential function is given by

R1 = lim sup
n→∞

∣∣∣∣ κ2n

(2n)!

(2n+ 2)!

κ2n+2

∣∣∣∣ = lim sup
n→∞

(2n+ 1)(2n+ 2)κ2n

κ2n+2

,
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Table 3.2: Approximations using cumulants for C(ω), S(ω) and equations (3.14), where
M is the numbers of terms used in the sum inside the exponential function in (3.30), and
N is the numbers of terms used in the sum inside the sine and cosine functions in (3.30).

(M,N) C(ω) S(ω) β τ

(0, 0) cos(ω) sin(ω)
α

cos(ω)
−ω cos(ω)

α sin(ω)

(0, 1) cos
(
ω − κ3

6
ω3
)

sin
(
ω − κ3

6
ω3
) α

cos
(
ω − κ3ω3

6

) −
ω cos

(
ω − κ3ω3

6

)
α sin

(
ω − κ3ω3

6

)
(1, 0)

cos(ω)

exp
(
κ2
2
ω2
) sin(ω)

exp
(
κ2
2
ω2
) α exp

(
κ2ω2

2

)
cos(ω)

−ω cos(ω)

α sin(ω)

(1, 1)
cos
(
ω − κ3ω3

6

)
exp

(
κ2
2
ω2
) sin

(
ω − κ3ω3

6

)
exp

(
κ2
2
ω2
) α exp

(
κ2ω2

2

)
cos
(
ω − κ3ω3

6

) −
ω cos

(
ω − κ3ω3

6

)
α sin

(
ω − κ3ω3

6

)

and the radius of convergence of the series inside the cosine and sine functions is given by

R2 = lim sup
n→∞

∣∣∣∣ κ2n+1

(2n+ 1)!

(2n+ 3)!

κ2n+3

∣∣∣∣ = lim sup
n→∞

(2n+ 2)(2n+ 3)κ2n+1

κ2n+3

.

By truncating the sum inside the exponential function up to M terms and the sums inside
the sine and cosine functions up to N terms in (3.29), we obtain the following approxima-
tions for C(ω) and S(ω) in terms of cumulants,

C(ω) ≈ exp

[
M∑
n=0

(−1)nω2n

(2n)!
κ2n

]
cos

[
N∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]
,

S(ω) ≈ exp

[
M∑
n=0

(−1)nω2n

(2n)!
κ2n

]
sin

[
N∑
n=0

(−1)nω2n+1

(2n+ 1)!
κ2n+1

]
.

(3.30)

We note that these approximations are only useful for ω < R̂, where R̂ = min{R1, R2}.
The first four approximations using cumulants can be seen in Table 3.2, where we used the
fact that κ0 = 0 and κ1 = 1.

In the previous subsection, we showed that when the kernel is a Dirac distribution,

C(ω) = cos(ω) and S(ω) = sin(ω). (3.31)

These are exactly the values for C(ω) and S(ω) from the first row of Table 3.2 and thus
approximation (0, 0) using cumulants recovers the results for the corresponding equation
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with one fixed delay τ , i.e. model (3.1) where g(u) = δ(u− τ),

ẋ(t) =

∫ ∞
0

f(x(t), x(t− u))δ(u− τ) du = f(x(t), x(t− τ)). (3.32)

We also note that, since from Section 2.4.1 we have that κn = 0 for all n = 2, 3, . . .,
all approximations using cumulants for the Dirac distribution are the same and equal to
approximation (0, 0). Substituting (3.31) into (3.13), we have

ατ = βτ cos(ω),
−ω = βτ sin(ω).

From the first equation we have that

ω = arccos (α/β) + 2jπ, j ∈ Z, (3.33)

with the restriction β < −|α| in order for the arccosine function to be defined. Squaring
and adding the two equations we get α2τ 2 + ω2 = β2τ 2. Solving for τ and substituting
(3.33) we obtain approximation (0, 0) to be

τκ(0,0) =
1√

β2 − α2
arccos

(
α

β

)
, β < −|α|. (3.34)

In the above expression we have used (3.33) with j = 0 in order for the curve in (3.34)
to be in the second quadrant and the closest to the β-axis, i.e. we chose the curve that
forms part of the boundary of the stability region. We note that since the above curve is
only defined for β < −|α|, it never enters the distribution independent region of stability,
|β| < α described by result (1) of Theorem 7. For α > 0, −1 < α/β < 0 and thus
arccos (α/β) > π/2 > 1. Therefore

τm(1,0) = − 1

β
≤ 1√

β2 − α2
<

1√
β2 − α2

arccos

(
α

β

)
= τκ(0,0).

Hence, for α > 0, we can conclude that approximation (0, 0) using cumulants always lies
above approximation (1, 0) using moments. We also notice that

lim
β→−α−

τκ(0,0) =
π

0+
= +∞, (3.35)

i.e. the curve described by (3.34) with α > 0 has a vertical asymptote at β = −α. For
α < 0, we have that

lim
β→α−

τκ(0,0) = lim
β→α−

− 1√
1− α2/β2

(
− α

β2

)
2
√
β2 − α2

2β

= lim
β→α−

−β√
β2 − α2

α

β2

√
β2 − α2

β

= − 1

α
.
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Thus when α < 0, we can only conclude that approximation (0, 0) using cumulants ap-
proaches −1/α as β → α−. We note that for distributions symmetric around their mean
(like the uniform distribution for example), by Theorem 4.0.5 from [7], approximation (0, 0)
using cumulants represents a conservative boundary of stability, i.e. if τ < τκ(0,0) then the

equilibrium point x∗ of (3.2) is locally asymptotically stable.

For approximation (0, 1), we substitute the values of C(ω) and S(ω) from Table 3.2
into (3.13) to get

ατ = βτ cos
(
ω − κ3

6
ω3
)
,

−ω = βτ sin
(
ω − κ3

6
ω3
)
.

(3.36)

Squaring and adding the two equations we have α2τ 2 + ω2 = β2τ 2, and thus

ω = τ
√
β2 − α2. (3.37)

From the first equation in (3.36), we get

κ3

6
ω3 − ω + arccos

(
α

β

)
= 0.

Substituting (3.37), we obtain a third degree equation for τκ(0,1),

[τκ(0,1)]
3κ3

6
(β2 − α2)

√
β2 − α2 − τκ(0,1)

√
β2 − α2 + arccos

(
α

β

)
= 0.

Since the explicit expression for τκ(0,1) would be too cumbersome, we can only conclude that

τκ(0,1) is undefined at β = −|α|, but we cannot make any comparisons between approxima-

tion (0, 1) and the other approximations.

For approximation (1, 0), using the fact that cos(ω) = α exp
(
κ2ω2

2

)
/β and substituting

this into the value for τ from Table 3.2, we get

τκ(1,0) = −ωe
κ2ω2/2

β sin(ω)
,

where for α > 0 we require ω ∈ (π/2, π) and for α < 0 we require ω ∈ (0, π/2) in order to
obtain the curve closest to the τ -axis. But as seen in (2.28), the second cumulant represents
the variance of a distribution, i.e. κ2 = σ2, where σ is the standard deviation, and thus κ2

is always nonnegative. Thus we have that eκ2ω
2/2 ≥ 1. Also, since ω is in either (0, π/2) or

(π/2, π) we have that ω/ sin(ω) > 1. Therefore,

τm(1,0) = − 1

β
< −ωe

κ2ω2/2

β sin(ω)
= τκ(1,0),
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i.e. approximation (1, 0) using cumulants always lies above approximation (1, 0) using mo-
ments.

We cannot make any general comparisons between approximation (1, 1) using cumulants
and the other approximations, but we will see in Sections 3.3 and 3.4 how this approxima-
tion behaves for specific distributions (uniform and gamma) and how it compares to the
other approximations in those particular cases.

We note that in practice, the cumulants of a distribution are as easy or difficult to com-
pute as its moments, due to the recursive relationship between cumulants and moments
(see equation (2.28)). An advantage of choosing to work with cumulants is that they are
more reliable numerically. We expect to see better numerical results with the approxima-
tions using cumulants since the truncation of the expansion occurs inside the exponential,
sine and cosine functions (see (3.30)), whereas in the approximations using moments, the
truncation occurs inside a polynomial (see (3.25)).

In the following two sections we apply the approximations using moments and cumu-
lants to specific distributions and compare them to the true boundary of stability.

3.3 Verifying the Approximations for the Uniform Dis-

tribution

In this section we will apply the approximation procedures we derived in the previous
section to the uniform distribution, thus determining approximations for the boundary of
the region of stability. We will then compare these approximations with the true boundary
derived from the characteristic equation.

The normalized uniform distribution as given in (2.31) is

ĝ(v) =

{
1
ρ
, if v ∈ [1− ρ

2
, 1 + ρ

2
]

0, elsewhere.

We will look at three different cases: ρ = 2, ρ = 1, and ρ = 4/5. Substituting the values for
the moments given in Table 2.1 into Table 3.1, we obtain the corresponding approximations
using moments for β and τ as seen in Table 3.3. These approximations represent curves
in the βτ -plane parameterized by ω. For the moment approximations, we can actually
eliminate ω and have τ as a function of β, as seen at the end of Subsection 3.2.1.

All four approximations using moments can be seen in Figures 3.2 – 3.4. Approximation
(0, 0) using moments represents the point (α,−1/α) when α < 0. Approximation (0, 1)
using moments represents the line β = α, with the restriction τ ≥ −1/α for α < 0.
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Table 3.3: Approximations using moments for equations (3.14) when the kernel represents
a uniform distribution with ρ = 2, ρ = 1, and ρ = 4/5.

ρ = 2 ρ = 1 ρ = 4/5

(M,N) β τ β τ β τ

(0, 0) α − 1

α
α − 1

α
α − 1

α

(0, 1) α
3

α(ω2 − 3)
α

24

α(5ω2 − 24)
α

150

α(29ω2 − 150)

(1, 0)
3α

3− 2ω2

2ω2 − 3

3α

24α

24− 13ω2

13ω2 − 24

24α

150α

150− 79ω2

79ω2 − 150

150α

(1, 1)
3α

3− 2ω2

2ω2 − 3

α(3− ω2)

24α

24− 13ω2

13ω2 − 24

α(24− 5ω2)

150α

150− 79ω2

79ω2 − 150

α(150− 29ω2)

From (3.27), approximation (1, 0) using moments represents the curve τ = −1/β, with
the restriction β ≤ α for α < 0, and corresponds to the dotted curve in Figures 3.2 – 3.4.
When α > 0, approximation (1, 0) enters the distribution independent stability region
|β| < α at β = −α, τ = 1/α.

From (3.28), approximation (1, 1) using moments is given by

ρ = 2 : τ = − 2

β + α
, ω =

√
3

2

(
1− α

β

)
,

ρ = 1 : τ = − 13

8β + 5α
, ω =

√
24

13

(
1− α

β

)
,

ρ =
4

5
: τ = − 79

50β + 29α
, ω =

√
150

79

(
1− α

β

)
,

with again the restriction β ≤ α for α < 0. Approximation (1, 1) using moments is
depicted as the dashed black curve in Figures 3.2 – 3.4. We note that when α > 0, for
ρ = 2 approximation (1, 1) has a vertical asymptote at β = −α, and thus never enters
the distribution independent stability region, whereas for ρ = 1 and ρ = 4/5, it enters the
region |β| < α when τ = 13/(3α) and τ = 79/(21α), respectively.

Since the third cumulant is always zero for any ρ as seen in (2.34), from Table 3.2 we see
that approximation (0, 1) using cumulants is identical to approximation (0, 0) using cumu-
lants, and approximation (1, 0) using cumulants is identical to approximation (1, 1) using
cumulants. Substituting the values for the cumulants given in Table 2.1 into Table 3.2,
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we obtain the corresponding approximations using cumulants as seen in Table 3.4. These
approximations represent curves in the βτ -plane parameterized by ω. Approximation (0, 0)
(and thus (0, 1)) using cumulants corresponds to the curve depicted by crosses, and ap-
proximation (1, 0) (and thus (1, 1)) using cumulants corresponds to the curve depicted by
circles in Figures 3.2 – 3.4. From (3.35), we know that for α > 0 approximation (0, 0) (and
in this case also (0, 1)) using cumulants has a vertical asymptote at β = −α and thus never
enters the distribution independent stability region |β| < α.

Table 3.4: Approximations using cumulants for equations (3.14) when the kernel represents
a uniform distribution with ρ = 2, ρ = 1, and ρ = 4/5. Approximation (0, 1) using
cumulants is identical to approximation (0, 0) using cumulants, and approximation (1, 1)
using cumulants is identical to approximation (1, 0) using cumulants.

ρ = 2 ρ = 1 ρ = 4/5

(M,N) β τ β τ β τ

(0, 0)
α

cos(ω)
−ω cos(ω)

α sin(ω)

α

cos(ω)
−ω cos(ω)

α sin(ω)

α

cos(ω)
−ω cos(ω)

α sin(ω)

(1, 0)
α exp

(
ω2

6

)
cos(ω)

−ω cos(ω)

α sin(ω)

α exp
(
ω2

24

)
cos(ω)

−ω cos(ω)

α sin(ω)

α exp
(

2ω2

75

)
cos(ω)

−ω cos(ω)

α sin(ω)

We now turn to the exact representation of the curves where the characteristic equation
has a pair of pure imaginary roots. Since our scalar equation with uniform distributed delay
is similar to the linearization of the delay equation used by Adimy et al. [2] to represent the
dynamics of a pluripotent stem cell population, the computations that follow are similar
to those found in [2]. From the definitions for C(ω) and S(ω) in (3.13) we have

C(ω) =
1

ρ

∫ 1+ρ/2

1−ρ/2
cos(ωv) dv =

2 cos(ω) sin(ρω/2)

ρω
,

S(ω) =
1

ρ

∫ 1+ρ/2

1−ρ/2
sin(ωv) dv =

2 sin(ω) sin(ρω/2)

ρω
.

(3.38)

Substituting these into equations (3.14), we see that the curves are defined (parametrically
in terms of ω) by

β =
αρω

2 cos(ω) sin(ρω/2)
, τ = −ω cos(ω)

α sin(ω)
. (3.39)

Due to the singularities at ω = kπ, ω = (2k + 1)π/2 and ω = 2kπ/ρ for k = 0, 1, . . ., these
equations define multiple curves in the βτ -plane. To determine which curve(s) form part
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of the stability boundary we analyze the rate of change of the real part of the eigenvalues
as one of the curves is crossed, using the formula (3.20) derived in the Section (3.1). Since
τ in (3.39) does not depend on ρ, we can determine the sign of dRe(λ)/(dβ)|λ=iω in (3.20)
for any ρ.

First, we compute the derivative τ from (3.39) with respect to ω,

dτ

dω
= − cos(ω)

α sin(ω)
− ω

α

(
− sin2(ω)− cos2(ω)

)
sin2(ω)

= − cos(ω)

α sin(ω)
+

ω

α sin2(ω)
.

When α > 0, from (3.39) we need only to consider ω values such that cos(ω)/ sin(ω) < 0,
and thus

dτ

dω
=

1

α

(
−cos(ω)

sin(ω)
+

ω

sin2(ω)

)
> 0.

When α < 0, we rewrite the derivative as

dτ

dω
=

1

α sin2(ω)
(ω − sin(ω) cos(ω)).

But we only consider values of ω such that cos(ω)/ sin(ω) > 0 in this case, therefore

sin(ω) cos(ω)

ω
=

∣∣∣∣sin(ω) cos(ω)

ω

∣∣∣∣ =

∣∣∣∣sin(ω)

ω

∣∣∣∣ | cos(ω)| < 1.

Thus ω − sin(ω) cos(ω) > 0 and dτ
dω

< 0. We therefore determine that α dτ
dω

> 0, for any
value of α. Using this and the fact that we only consider β < 0, we conclude from (3.20)
that

dRe(λ)

dβ

∣∣∣∣
λ=iω

< 0.

In other words, the real part of λ decreases (increases) as β increases (decreases), as the
curves where λ = iω are crossed. It follows from this computation that the boundary of
the stability region is formed by the curve closest to the τ axis.

For ρ = 2, the parametric equations in (3.39) become

β =
αω

cos(ω) sin(ω)
, τ = −ω cos(ω)

α sin(ω)
. (3.40)

Due to the singularities at ω = kπ and ω = (2k + 1)π/2 for k = 0, 1, . . ., these equations
define multiple curves in the βτ -plane, which lie either in the second or fourth quadrant.
Since we are interested in τ > 0, the only curves of interest are those in the second quadrant.
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For α > 0, the curve forming the boundary of the stability region is defined by equa-
tion (3.40) with with ω ∈ [π

2
, π]. Some simple properties of this curve are as follows.

Since

lim
ω→π

2
+
β =

απ/2

cos(π/2) sin(π/2)
= −∞,

lim
ω→π

2
+
τ = −π/2 cos(π/2)

α sin(π/2)
= 0.

the curve has a horizontal asymptote, τ = 0, as ω approaches π/2 from the right. Further
we have that

lim
ω→π−

β =
απ

cos(π) sin(π)
= −∞,

lim
ω→π−

τ = −π cos(π)

α sin(π)
= +∞.

But we notice that substituting sin(ω) = αω/(β cos(ω)) from the first equation in (3.40)
into the second equation, we get

τ = −β cos2(ω)

α2
,

and therefore,

lim
ω→π−

τ = − β

α2
.

Hence the curve forming the boundary of stability has an oblique asymptote, τ = −β/α2,
which is approached as ω → π−. This curve corresponds to the solid black line in Fig-
ure 3.2(a). We note that stability is always recovered when τ is sufficiently large, i.e. for
τ > −β/α2.

For α < 0, the curve forming the boundary of the stability region is defined by equa-
tion (3.40) with ω ∈ [0, π

2
]. Since

lim
ω→0+

β = lim
ω→0+

α

− sin2(ω) + cos2(ω)
= α,

lim
ω→0+

τ = −cos(ω)− ω sin(ω)

α cos(ω)
= − 1

α
,

the curve approaches the point (β, τ) = (α,−1/α) as ω → 0+. We also have that

lim
ω→π

2
−
β =

απ/2

cos(π/2) sin(π/2)
= −∞,

lim
ω→π

2
−
τ = −π/2 cos(π/2)

α sin(π/2)
= 0.
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Thus the curve has a horizontal asymptote, τ = 0, as ω approaches π/2 from the left. This
curve corresponds to the solid black curve in Figure 3.2(b). In this case, stability is lost as
soon as τ crosses the solid black curve.

1
α

β−α α0

τ

(a) α > 0

1
α

α 0

τ

β

(b) α < 0

Figure 3.2: Stability region for the uniform distribution with ρ = 2. The region of distri-
bution independent stability lies between the solid and dashed gray lines when α > 0. The
true region of stability lies between the solid gray line and the solid black curve which is
defined by equations (3.40). The approximations using moments are defined in Table 3.3:
approximation (0, 0) using moments predicts that the region of stability is the entire half
plane to the left of the line β = α, approximation (0, 1) using moments predicts no stability
region for α > 0 , whereas for α < 0, it predicts the region below τ = −1/α and to the
left of β = α to be stable, approximation (1, 0) using moments corresponds to the dotted
curve, and approximation (1, 1) using moments corresponds to the dashed black curve.
The approximations using cumulants are defined in Table 3.4: approximations (0, 0) and
(1, 0) using cumulants correspond to the curves depicted by the black crosses and black
circles, respectively. Approximation (0, 1) using cumulants is identical to approximation
(0, 0), and approximation (1, 0) using cumulants is identical to approximation (1, 1).
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For ρ = 1, the parametric equations in (3.39) are given by

β =
αω

2 cos(ω) sin(ω/2)
, τ = −ω cos(ω)

α sin(ω)
. (3.41)

These equations define multiple curves in the βτ -plane with singularities at ω = kπ and ω =
(2k + 1)π/2 for k = 0, 1, . . .. For α < 0 the closest curve to the τ axis is defined by equa-
tion (3.41) with ω ∈ [0, π

2
] and for α > 0 with ω ∈ [π

2
, π]. Properties of these curves

are obtain in a similar way to the case ρ = 2. For α < 0, the curve approaches the point
(β, τ) = (α,−1/α) as ω → 0. For α > 0, the curve has a vertical asymptote at β = −απ/2,
which is approached as ω → π−, since

lim
ω→π−

β =
απ

2 cos(π) sin(π/2)
= −απ

2
,

lim
ω→π−

τ = −π cos(π)

α sin(π)
= +∞.

For any α, the curves in (3.41) have a horizontal asymptote, τ = 0, which is approached
as ω → π/2. The curves forming the stability boundary correspond to the solid black lines
in Figure 3.3. We note that for α > 0, if −απ/2 < β < α then stability is always recovered
when τ is sufficiently large, but for α < 0 stability is lost as soon as τ crosses the solid
black curve.

For ρ = 4/5, the parametric equations in (3.39) become

β =
2αω

5 cos(ω) sin(2ω/5)
, τ = −ω cos(ω)

α sin(ω)
. (3.42)

These equations define multiple curves in the βτ -plane with singularities at ω = kπ and ω =
(2k + 1)π/2 for k = 0, 1, . . .. For α < 0 the curve closest to the τ axis is defined by equa-
tion (3.42) with ω ∈ [0, π

2
] and for α > 0 with ω ∈ [π

2
, π]. For α < 0, the curve approaches

the point (β, τ) = (α,−1/α) as ω → 0. For α > 0 we have that

lim
ω→π−

β =
2απ

5 cos(π) sin(2π/5)
= − 2απ

5 sin(2π/5)
,

lim
ω→π−

τ = −π cos(π)

α sin(π)
= +∞.

Thus the curve have a vertical asymptote at β = −2απ/(5 sin(2π/5)), which is approached
as ω → π−. For any α, the curves in (3.42) have a horizontal asymptote, τ = 0, which is
approached as ω → π/2. The curves which form the boundary of stability correspond to
the solid black lines in Figure 3.4. We note that for α > 0, if −2απ/(5 sin(2π/5)) < β < α
then stability is always recovered when τ is sufficiently large, but for α < 0 stability is lost
as soon as τ crosses the solid black curve.
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(a) α > 0

1
α

α 0

τ

β

(b) α < 0

Figure 3.3: Stability region for the uniform distribution with ρ = 1. The region of distri-
bution independent stability lies between the solid and dashed gray lines when α > 0. The
true region of stability lies between the solid gray line and the solid black curve which is
defined by equations (3.41). The approximations using moments are defined in Table 3.3:
approximation (0, 0) using moments predicts that the region of stability is the entire half
plane to the left of the line β = α, approximation (0, 1) using moments predicts no stability
region for α > 0 , whereas for α < 0, it predicts the region below τ = −1/α and to the
left of β = α to be stable, approximation (1, 0) using moments corresponds to the dotted
curve, and approximation (1, 1) using moments corresponds to the dashed black curve.
The approximations using cumulants are defined in Table 3.4: approximations (0, 0) and
(1, 0) using cumulants correspond to the curves depicted by the black crosses and black
circles, respectively. Approximation (0, 1) using cumulants is identical to approximation
(0, 0), and approximation (1, 0) using cumulants is identical to approximation (1, 1).

Comparing the approximations with the true boundary of the stability region in Fig-
ures 3.2 – 3.4 we can make several conclusions. The approximations using cumulants give
better results than those using moments. No approximation using cumulants enters the
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(a) α > 0

1
α

α 0

τ

β
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Figure 3.4: Stability region for the uniform distribution with ρ = 4/5. The region of
distribution independent stability lies between the solid and dashed gray lines when α > 0.
The true region of stability lies between the solid gray line and the solid black curve which
is defined by equations (3.42). The approximations using moments are defined in Table 3.3:
approximation (0, 0) using moments predicts that the region of stability is the entire half
plane to the left of the line β = α, approximation (0, 1) using moments predicts no stability
region for α > 0 , whereas for α < 0, it predicts the region below τ = −1/α and to the
left of β = α to be stable, approximation (1, 0) using moments corresponds to the dotted
curve, and approximation (1, 1) using moments corresponds to the dashed black curve.
The approximations using cumulants are defined in Table 3.4: approximations (0, 0) and
(1, 0) using cumulants correspond to the curves depicted by the black crosses and black
circles, respectively. Approximation (0, 1) using cumulants is identical to approximation
(0, 0), and approximation (1, 0) using cumulants is identical to approximation (1, 1).

distribution independent region. We note that the approximations using cumulants from
Table 3.4 recover the exact expression for τ in (3.39). All approximations seem to improve
as the number of moments or cumulants used increases. This corresponds to increasing N
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and M in the approximations for C(ω) and S(ω) so is as expected. For negative α, all
approximations and the exact boundary of stability pass through or approach the point
(β, τ) = (α,−1/α). In this case all approximations are close to the exact boundary of
stability and seem to give better results than for positive α. For α > 0 all approxima-
tions are better for large negative β. This is expected for the moment approximations (see
(3.27) and (3.28)) and approximation (0, 0) using cumulants (see (3.33)), since larger neg-
ative β implies smaller ω. We also note that the approximate stability regions are always
conservative, i.e. they underestimate the region of of stability.

3.4 Verifying the Approximations for the Gamma Dis-

tribution

In this section we will apply the approximation procedures we derived in Subsections 3.2.1
and 3.2.2 to the gamma distribution, thus determining approximations for the boundary of
the region of stability. We will then compare these approximations with the true boundary
of stability derived from the characteristic equation.

Recall that the normalized gamma distribution as given in (2.39) is

ĝ(v) =
ppvp−1e−pv

(p− 1)!
.

We will look at three different cases: p = 3, p = 4, and p = 5. We leave out the p = 1
and p = 2 cases, since their (1, 1) approximation using cumulants predicts a much larger
stability region with boundaries that are off the graph. Substituting the values for the
moments given in Table 2.2 into Table 3.1, we obtain the corresponding approximations
using moments as seen in Table 3.5. The approximate curves in Table 3.5 are curve in
the βτ -plane parameterized by ω. All four approximations using moments can be seen in
Figures 3.5 – 3.7. Approximation (0, 0) using moments represents the point (α,−1/α), (α <
0). Approximation (0, 1) using moments represents the line β = α, with the restriction
τ ≥ −1/α, for α < 0. Approximation (1, 0) using moments corresponds to the dotted curve
and represents the curve τ ≥ −1/β with the restriction β ≤ α for α < 0. Approximation
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Table 3.5: Approximations using moments for equations (3.14) when the kernel represents
a gamma distribution with p = 3, p = 4, and p = 5.

p = 3 p = 4 p = 5

(M,N) β τ β τ β τ

(0, 0) α − 1

α
α − 1

α
α − 1

α

(0, 1) α
54

α(20ω2 − 54)
α

16

α(5ω2 − 16)
α

25

α(7ω2 − 25)

(1, 0)
3α

3− 2ω2

2ω2 − 3

3α

8α

8− 5ω2

5ω2 − 8

8α

5α

5− 3ω2

3ω2 − 5

5α

(1, 1)
3α

3− 2ω2

9(2ω2 − 3)

α(27− 10ω2)

8α

8− 5ω2

2(5ω2 − 8)

α(16− 5ω2)

5α

5− 3ω2

5(3ω2 − 5)

α(25− 7ω2)

(1, 1) using moments is depicted as the dashed black curve and is given by

p = 3 : τ = − 9

4β + 5α
, ω =

√
3

2

(
1− α

β

)
,

p = 4 : τ = − 2

β + α
, ω =

√
8

5

(
1− α

β

)
,

p = 5 : τ = − 15

8β + 7α
, ω =

√
5

3

(
1− α

β

)
,

with again the restriction β ≤ α for α < 0. We note that when α > 0, for p = 3 approx-
imation (1, 1) has a vertical asymptote at β = −5α/4 and for p = 4 approximation (1, 1)
has a vertical asymptote at β = −α and thus it never enters the distribution independent
stability region, whereas for p = 5 approximation (1, 1) enters the region |β| < α when
τ = 15/α.

Next, we substitute the values for the cumulants given in Table 2.2 into Table 3.2
to obtain the corresponding approximations using cumulants as seen in Tables 3.6 – 3.8.
Figures 3.5 – 3.7 show the four approximations using cumulants: approximation (0, 0)
corresponds to the curve depicted by black crosses, approximation (0, 1) corresponds to
the curve depicted by gray crosses, approximation (1, 0) corresponds to the curve depicted
by black circles, and approximation (1, 1) corresponds to the curve depicted by gray circles.
From (3.35), for α > 0 approximation (0, 0) using cumulants has a vertical asymptote at
β = −α and thus never enters the distribution independent stability region |β| < α.

We now turn to the exact representation of the curves where the characteristic equation
has a pair of pure imaginary roots. We start by determining the exact expressions for C(ω)
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Table 3.6: Approximations using cumulants for equations (3.14) when the kernel represents
a gamma distribution with p = 3.

(M,N) β τ

(0, 0)
α

cos(ω)
−ω cos(ω)

α sin(ω)

(0, 1)
α

cos (ω − ω3/27)
−ω cos (ω − ω3/27)

α sin (ω − ω3/27)

(1, 0)
α exp (ω2/6)

cos(ω)
−ω cos(ω)

α sin(ω)

(1, 1)
α exp (ω2/6)

cos (ω − ω3/27)
−ω cos (ω − ω3/27)

α sin (ω − ω3/27)

Table 3.7: Approximations using cumulants for equations (3.14) when the kernel represents
a gamma distribution with p = 4.

(M,N) β τ

(0, 0)
α

cos(ω)
−ω cos(ω)

α sin(ω)

(0, 1)
α

cos (ω − ω3/48)
−ω cos (ω − ω3/48)

α sin (ω − ω3/48)

(1, 0)
α exp (ω2/8)

cos(ω)
−ω cos(ω)

α sin(ω)

(1, 1)
α exp (ω2/8)

cos (ω − ω3/48)
−ω cos (ω − ω3/48)

α sin (ω − ω3/48)

and S(ω). From (3.23) we have that

C(ω) = Re

(∫ ∞
0

ĝ(v)e−iωv dv

)
= Re

(
pp

(p− 1)!

∫ ∞
0

vp−1e−(p+iω)v dv

)
= Re

(
pp

(p− 1)!

(p− 1)!

(p+ iω)p

)
= Re

(
pp(p− iω)p

(p2 + ω2)p

)
=

(
p

p2 + ω2

)p
Re (p− iω)p , (3.43)
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Table 3.8: Approximations using cumulants for equations (3.14) when the kernel represents
a gamma distribution with p = 5.

(M,N) β τ

(0, 0)
α

cos(ω)
−ω cos(ω)

α sin(ω)

(0, 1)
α

cos (ω − ω3/75)
−ω cos (ω − ω3/75)

α sin (ω − ω3/75)

(1, 0)
α exp (ω2/10)

cos(ω)
−ω cos(ω)

α sin(ω)

(1, 1)
α exp (ω2/10)

cos (ω − ω3/75)
−ω cos (ω − ω3/75)

α sin (ω − ω3/75)

where we used identity (2.35). Similarly we obtain,

S(ω) = −
(

p

p2 + ω2

)p
Im (p− iω)p . (3.44)

We note that for the remaining of this section all the computations and simplifications
are done using the symbolic algebra language MapleTM.

For p = 3 we have,

C(ω) =
243(3− ω2)

(9 + ω2)3
and S(ω) =

27ω(27− ω2)

(9 + ω2)3
. (3.45)

Using these we can get expressions for β and τ parameterized by ω, but in this case we
can actually obtain an expression for β as a function of τ . We start by substituting (3.45)
into (3.13) to obtain

α(9 + ω2)3 = 243β(3− ω2), (3.46)

−ω(9 + ω2)3 = 27βτω(27− ω2). (3.47)

From (3.47) we have that (9 + ω2)3 = 27βτ(ω2 − 27). Using this into (3.46) we obtain an
equation in ω2, which does not depend on β,

ατ(ω2 − 27) = 9(3− ω2) ⇒ ω2 =
27(ατ + 1)

ατ + 9
.

We substitute the expression for ω2 into (3.46) to obtain β as a function of τ ,

β = −8(ατ + 3)3

τ(ατ + 9)2
(3.48)
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For α > 0, ω is defined for all τ ≥ 0 and the curve lies in the second quadrant with a
horizontal asymptote at τ = 0 and a vertical asymptote at β = −8α, since

lim
τ→0+

β = −216

0+
= −∞,

lim
τ→+∞

β = −8α.

For α < 0, ω is defined for τ ≤ −1/α which corresponds to β ≤ α, or τ > −9/α
which corresponds to β > −8α. However, as noted above, we only consider curves where
β is negative, and thus only the portion of the curve with τ ≤ −1/α will form part of the
stability boundary. This curve has a horizontal asymptote at τ = 0.

Next, we analyze the rate of change of the real part of the eigenvalues as the curve in
(3.48) is crossed, using the formula (3.20). We start by differentiating (3.45),

C ′(ω) =
927ω(ω2 − 9)

(ω2 + 9)4
and S ′(ω) =

81(ω4 − 54ω2 + 81)

(ω2 + 9)4
.

Substituting these and (3.45) into (3.15), after simplifying, we obtain

dτ

dω
=

432ω

α(ω2 − 27)2
.

Therefore (3.20) becomes

dRe(λ)

dβ

∣∣∣∣
λ=iω

=
432ω2

β(ω2 − 27)2H2(ω)
< 0,

since β < 0. Thus the real part of λ decreases (increases) as β increases (decreases), as the
curve where λ = iω is crossed.

The region of stability for p = 3 can be seen in Figure 3.5. For α > 0 the equilibrium
point is locally asymptotically stable when

β < α and β > −8(ατ + 3)3

τ(ατ + 9)2
.

For α < 0 the equilibrium point is locally asymptotically stable when

β < α and β > −8(ατ + 3)3

τ(ατ + 9)2
with τ < −1/α,

i.e., τ is underneath the solid black curve as seen in Figure 3.5. We note that for α > 0, if
−8α < β < α then stability is always recovered when τ is sufficiently large, but for α < 0
stability is lost as soon as τ crosses the solid black curve.
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Figure 3.5: Stability region for the gamma distribution with p = 3. The region of distribu-
tion independent stability lies between the solid and dashed gray lines when α > 0. The
true region of stability lies between the solid gray line and the solid black curve which is
defined by equations (3.48). The approximations using moments are defined in Table 3.5:
approximation (0, 0) using moments predicts that the region of stability is the entire half
plane to the left of the line β = α, approximation (0, 1) using moments predicts no stability
region for α > 0 , whereas for α < 0, it predicts the region below τ = −1/α and to the left
of β = α to be stable, approximation (1, 0) using moments corresponds to the dotted curve,
and approximation (1, 1) using moments corresponds to the dashed black curve. The ap-
proximations using cumulants are defined in Table 3.6: approximations (0, 0), (0, 1), (1, 0)
and (1, 1) using cumulants correspond to the curves depicted by the black crosses, gray
crosses, black circles and gray circles, respectively.

For p = 4, from (3.43) and (3.44) we have

C(ω) =
256(ω4 − 96ω2 + 256)

(16 + ω2)4
and S(ω) =

4096ω(16− ω2)

(16 + ω2)4
. (3.49)
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Substituting these into (3.13) we get

α(16 + ω2)4 = 256β(ω4 − 96ω2 + 256), (3.50)

−ω(16 + ω2)4 = 4096βτω(16− ω2). (3.51)

From (3.51) we have that (16 + ω2)4 = 4096βτ(ω2 − 16). Using this into (3.50) we obtain
an equation in ω2,

16ατ(ω2 − 16) = ω4 − 96ω2 + 256.

We solve for ω2 to get

ω2
± = 8(ατ + 6±

√
α2τ 2 + 8ατ + 32).

We substitute the expression for ω2
± into (3.50) to obtain β± as a function of τ ,

β± =
(ατ + 8±

√
α2τ 2 + 8ατ + 32)4

8τ(ατ + 4±
√
α2τ 2 + 8ατ + 32)

We first show that β+ is always positive by proving that A = ατ+4+
√
α2τ 2 + 8ατ + 32 > 0

for any τ > 0. When ατ + 4 > 0, obviously A > 0. When ατ + 4 < 0, we have
(ατ + 4)2 < (ατ + 4)2 + 16. Taking the square root on both sides we get

−(ατ + 4) <
√

(ατ + 4)2 + 16,

which is equivalent to
ατ + 4 > −

√
α2τ 2 + 8ατ + 32,

i.e. A > 0. In both cases we get that β+ is positive, and hence the curve given by β+ will
not form part of the stability boundary as a consequence of Theorems 6 and 7. Therefore,
in what follows we only consider β−, which we rename β− = β,

β =
(ατ + 8−

√
α2τ 2 + 8ατ + 32)4

8τ(ατ + 4−
√
α2τ 2 + 8ατ + 32)

. (3.52)

For α > 0, we have that ατ + 6 > 0. In order for ω− to be defined, we impose that

ατ + 6 ≥
√
α2τ 2 + 8ατ + 32.

Squaring both sides we get α2τ 2 + 12ατ + 36 ≥ α2τ 2 + 8ατ + 32. This is equivalent to
ατ + 1 ≥ 0, which is always true and hence ω− is defined for all τ > 0. The curve in (3.52)
has a horizontal asymptote at τ = 0, since

lim
τ→0+

β =
(8− 4

√
2)4

8(0+)(4− 4
√

2)
= −∞.
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Next we investigate whether it has a vertical asymptote by rationalizing both the numerator
and the denominator in (3.52),

lim
τ→+∞

β = lim
τ→+∞

(ατ + 8−
√
α2τ 2 + 8ατ + 32)4

8τ(ατ + 4−
√
α2τ 2 + 8ατ + 32)

(ατ + 8 +
√
α2τ 2 + 8ατ + 32)4

(ατ + 8 +
√
α2τ 2 + 8ατ + 32)4

× ατ + 4 +
√
α2τ 2 + 8ατ + 32

ατ + 4 +
√
α2τ 2 + 8ατ + 32

= lim
τ→+∞

−(32 + 8ατ)4(ατ + 4 +
√
α2τ 2 + 8ατ + 32)

128τ(ατ + 8 +
√
α2τ 2 + 8ατ + 32)4

= −(8α)4(2α)

128(2α)4

= −4α.

Thus the curve in (3.52) has a vertical asymptote at β = −4α.

For α < 0, we must have ατ + 6 > 0, otherwise ω− < 0. We further impose ατ + 6 ≥√
α2τ 2 + 8ατ + 32, which is equivalent to ατ + 1 ≥ 0. Therefore ω− is defined only for

τ ≤ −1/α which corresponds to β ≤ α. This curve has a horizontal asymptote at τ = 0.

Next, we investigate how the real part of λ changes as we cross the curve in (3.52). We
start by differentiating C(ω) and S(ω) in (3.49),

C ′(ω) = −1024ω(ω4 − 160ω2 + 1280)

(ω2 + 15)5
and S ′(ω) =

4096(5ω4 − 160ω2 + 256)

(ω2 + 16)5
.

Substituting these and (3.49) into (3.15), after simplifying, we obtain

dτ

dω
=
ω(ω4 − 32ω2 + 1280)

8α(ω2 − 16)2
.

Therefore (3.20) becomes

dRe(λ)

dβ

∣∣∣∣
λ=iω

=
ω2(ω4 − 32ω2 + 1280)

8β(ω2 − 16)2H2(ω)
< 0,

since β < 0. Thus the real part of λ decreases (increases) as β increases (decreases), as
the curves where λ = iω are crossed. The region of stability for p = 4 can be as seen in
Figure 3.6. For α > 0 the equilibrium point is locally asymptotically stable when

β < α and β >
(ατ + 8−

√
α2τ 2 + 8ατ + 32)4

8τ(ατ + 4−
√
α2τ 2 + 8ατ + 32)

.
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For α < 0 the equilibrium point is locally asymptotically stable when

β < α and β >
(ατ + 8−

√
α2τ 2 + 8ατ + 32)4

8τ(ατ + 4−
√
α2τ 2 + 8ατ + 32)

with τ < −1/α,

i.e., τ is underneath the solid black curve as seen in Figure 3.6. We note that for α > 0, if
−4α < β < α then stability is always recovered when τ is sufficiently large, but for α < 0
stability is lost as soon as τ crosses the solid black curve.

For p = 5, from (3.43) and (3.44) we have

C(ω) =
78125(ω4 − 50ω2 + 125)

(25 + ω2)5
and S(ω) =

3125ω(ω4 − 250ω2 + 3125)

(25 + ω2)5
. (3.53)

Substituting these into (3.13) we get

α(25 + ω2)5 = 78125β(ω4 − 50ω2 + 125), (3.54)

−ω(25 + ω2)5 = 3125βτω(ω4 − 250ω2 + 3125). (3.55)

From (3.55) we have that (25+ω2)5 = −3125βτ(ω4−250ω2 +3125). Using this into (3.54)
we obtain an equation in ω2,

−ατ(ω4 − 250ω2 + 3125) = 25(ω4 − 50ω2 + 125).

We solve for ω2 to get

ω2
± =

25(5ατ + 25± 2
√

5α2τ 2 + 30ατ + 125)

ατ + 25
.

We then use this to obtain from (3.54) an expression of β in terms of τ . Similarly to the
case p = 4, we show that when using ω+, we have that β > 0 and hence it cannot form
part of the stability boundary. When substituting ω−, we obtain,

β =
2(3ατ + 25−

√
5α2τ 2 + 30ατ + 125)5

τ(ατ + 25)3(11ατ + 25− 5
√

5α2τ 2 + 30ατ + 125)
. (3.56)

For α > 0, we have that ατ + 5 > 0 and ατ + 25 > 0. We next impose that

5(ατ + 5) ≥ 2
√

5α2τ 2 + 30ατ + 125.

Squaring both sides and simplifying we get α2τ 2 + 26ατ + 25 > 0, which is always true and
hence ω is defined for all τ > 0. The curve in (3.52) has a horizontal asymptote at τ = 0,
since

lim
τ→0+

β =
2(25− 4

√
5)5

253(0+)(25− 25
√

5)
= −∞.
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Figure 3.6: Stability region for the gamma distribution with p = 4. The region of distribu-
tion independent stability lies between the solid and dashed gray lines when α > 0. The
true region of stability lies between the solid gray line and the solid black curve which is
defined by equations (3.52). The approximations using moments are defined in Table 3.5:
approximation (0, 0) using moments predicts that the region of stability is the entire half
plane to the left of the line β = α, approximation (0, 1) using moments predicts no stability
region for α > 0 , whereas for α < 0, it predicts the region below τ = −1/α and to the left
of β = α to be stable, approximation (1, 0) using moments corresponds to the dotted curve,
and approximation (1, 1) using moments corresponds to the dashed black curve. The ap-
proximations using cumulants are defined in Table 3.7: approximations (0, 0), (0, 1), (1, 0)
and (1, 1) using cumulants correspond to the curves depicted by the black crosses, gray
crosses, black circles and gray circles, respectively.

Rationalizing both the numerator and the denominator in (3.56) similarly to the case p = 4,
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we obtain

lim
τ→+∞

β = −512(11 + 5
√

5)

(3 +
√

5)5
α ≈ −2.89α.

Thus the curve in (3.56) has a vertical asymptote at β ≈ −2.89α.

For α < 0, when ατ + 5 < 0, we must impose ατ + 25 < 0, i.e. τ > −25/τ , otherwise
ω2
− < 0. In this case we have 3ατ + 25 < 0 and 11ατ + 25 < 0 and thus β in (3.56) is

always negative. This curve has a horizontal asymptote at τ = −25/α as β → −∞, and a
vertical asymptote β = 0 as τ →∞. When ατ + 5 > 0, we have ατ + 25 > 0. We impose

5ατ + 25 > 2
√

5α2τ 2 + 30ατ + 125,

which is equivalent to
(ατ + 1)(ατ + 25) > 0.

Since ατ + 25 > 0, we must have ατ + 1 > 0, i.e. τ ≤ −1/α. In summary, ω is defined for
τ ≤ −1/α or τ > −25/α. This curve has a horizontal asymptote at τ = 0 as β → −∞.
In the βτ -plane, we only consider the curve with τ ≤ −1/α which corresponds to β ≤ α,
since it is closer to the β-axis and thus it will form part of the stability boundary.

Next, we investigate how the real part of λ changes as we cross these lines. We differ-
entiate C(ω) and S(ω) in (3.53) to obtain

C ′(ω) = −156250ω(3ω4 − 250ω2 + 1875)

(ω2 + 25)6
,

S ′(ω) = −15625(ω6 − 375ω4 + 9375ω2 − 15625)

(ω2 + 25)6
.

Substituting these and (3.53) into (3.15), after simplifying, we have

dτ

dω
=

10000ω(ω4 − 30ω2 + 625)

α(ω4 − 250ω2 + 3125)2
.

Therefore (3.20) becomes

dRe(λ)

dβ

∣∣∣∣
λ=iω

=
10000ω2(ω4 − 30ω2 + 625)

β(ω4 − 250ω2 + 3125)2H2(ω)
< 0,

since β < 0. Thus the real part of λ decreases (increases) as β increases (decreases), as
the curves where λ = iω are crossed. The region of stability for p = 5 can be as seen in
Figure 3.7. For α > 0 the equilibrium point is locally asymptotically stable when

β < α and β >
2(3ατ + 25−

√
5α2τ 2 + 30ατ + 125)5

τ(ατ + 25)3(11ατ + 25− 5
√

5α2τ 2 + 30ατ + 125)
.
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For α < 0 the equilibrium point is locally asymptotically stable when

β < α and β >
2(3ατ + 25−

√
5α2τ 2 + 30ατ + 125)5

τ(ατ + 25)3(11ατ + 25− 5
√

5α2τ 2 + 30ατ + 125)
with τ < −1/α,

i.e., τ is underneath the solid black curve as seen in Figure 3.7. We note that for α > 0,
if −2.89α < β < α then stability is always recovered when τ is sufficiently large, but for
α < 0 stability is lost as soon as τ crosses the solid black curve.

We next compare the approximations to the true boundary of stability in Figures 3.5 –
3.7. The approximations using cumulants give better results than those using moments.
No approximation using cumulants enters the distribution independent region. We note
that the approximate stability regions are always conservative (i.e. they underestimate the
region of stability), except for the approximate stability region predicted by approximation
(1, 1) using cumulants, which predicts a larger stability region than the actual one. Not
all approximations improve as the number of moments or cumulants used increases: in
all cases, approximation (1, 1) using cumulants gives a worse estimate than approximation
(1, 0) using cumulants. Also, for p = 3, approximation (0, 1) using cumulants gives a worse
estimate than approximation (0, 0) using cumulants. For negative α, all approximations
and the exact boundary of stability pass through or approach the point (β, τ) = (α,−1/α).
In this case all approximations are close to the exact boundary of stability and seem to
give better results than for positive α. For α > 0 all approximations are better for large
negative β. This is expected for the moment approximations (see (3.27) and (3.28)) and
approximation (0, 0) using cumulants (see (3.33)), since larger negative β implies smaller
ω. In all cases, approximation (1, 0) using cumulants gives the best estimate of the true
boundary of stability.

In the next chapter we expand the results in this chapter by applying them to an
n × n Hopfield network. We analyze the linear stability of the symmetric equilibrium of
system (1.16) when the neurons are identical. We determine the distribution independent
region of stability and approximate the boundary of stability using the first few moments
or cumulants of a distribution.
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Figure 3.7: Stability region for the gamma distribution with p = 5. The region of distribu-
tion independent stability lies between the solid and dashed gray lines when α > 0. The
true region of stability lies between the solid gray line and the solid black curve which is
defined by equations (3.56). The approximations using moments are defined in Table 3.5:
approximation (0, 0) using moments predicts that the region of stability is the entire half
plane to the left of the line β = α, approximation (0, 1) using moments predicts no stability
region for α > 0 , whereas for α < 0, it predicts the region below τ = −1/α and to the left
of β = α to be stable, approximation (1, 0) using moments corresponds to the dotted curve,
and approximation (1, 1) using moments corresponds to the dashed black curve. The ap-
proximations using cumulants are defined in Table 3.8: approximations (0, 0), (0, 1), (1, 0)
and (1, 1) using cumulants correspond to the curves depicted by the black crosses, gray
crosses, black circles and gray circles, respectively.
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Chapter 4

Stability of the Hopfield Neural
Network with Distributed Delay

In this chapter, we analyze the linear stability of the neural network (1.16) when the neurons
are identical, where the kernel g(u) represents a general distribution. We determine the
distribution independent region of stability and try to improve on this conservative result
by approximating the boundary of stability using the first few moments or cumulants of
the distribution. We are able to also show that as the mean delay τ of the distribution
becomes larger and larger, the stability region of the network with a distributed delay is
less conservative than the corresponding system with one fixed delay τ . Hence we are
able to partially prove the conjecture that a system with distributions of delays is more
stable than the corresponding one with a fixed delay. The results of this chapter have been
already published in [35], but will be presented here in greater detail.

We start by dividing system (1.16) by Ck and assuming that the injected current is
constant, we obtain

v̇k(t) = −αkvk(t) +
n∑
j=1

wkj

∫ ∞
0

fj(vj(t− u))gkj(u) du+ Fk, k = 1, . . . , n, (4.1)

where αk = 1/(RkCk), wkj = akj/Ck, and Fk = Ik/Ck.

For the rest of the chapter, in order to simplify our calculations we shall assume that
all neurons are identical, hence αk ≡ α, fk(vj) ≡ f(vj), and gkj(u) ≡ g(u) for all k, j =
1, . . . , n. Then the above model is reduced to

v̇k(t) = −αvk(t) +
n∑
j=1

wkj

∫ ∞
0

f(vj(t− u))g(u) du+ Fk, k = 1, . . . , n. (4.2)
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We note that α is always positive since it represents the inverse of the product between the
resistance and capacitance. We next transform the above system so that the mean delay τ
of the distribution g(u) appears explicitly. As noted in Section 2.2, when τ → 0 we recover
the non-delayed model

v̇k(t) = −αvk(t) +
n∑
j=1

wkjf(vj(t)) + Fk, k = 1, . . . , n. (4.3)

For τ > 0 we make the change of variables s = t/τ, v = u/τ and thus by (2.11), system
(4.2) becomes

v′k(s) = −ατvk(s) + τ
n∑
j=1

wkj

∫ ∞
0

f(vj(s− v))ĝ(v) dv + τFk, k = 1, . . . , n, (4.4)

where “′” represents the right-hand derivative with respect to s, and the normalized dis-
tribution ĝ(v) is given in (2.10).

In the following, in order to further simplify our calculations, we investigate the linear
stability of the symmetric equilibrium point v∗ = (v∗, v∗, . . . , v∗)T of the above model. Sys-
tem (4.4) possesses a symmetric equilibrium point, v∗ = (v∗, v∗, . . . , v∗)T , if the following
equations are satisfied

αv∗ − Fk =

(
n∑
j=1

wkj

)
f(v∗), k = 1, . . . , n. (4.5)

Given the properties of f in (1.7) and (1.8), we can always guarantee the existence of such
an equilibrium by either adjusting the external inputs for a particular connection matrix,
or by adjusting the connection strengths when particular external inputs are applied. In
particular, if Fk = 0, k = 1, 2, . . . , n the system admits the trivial equilibrium point,
v∗ = 0.

Let yk(s) = vk(s)−v∗ and β = f ′(v∗). We note that, since f is monotonically increasing,
β is nonnegative. We next expand f(vj) into its Taylor series around vj = v∗,

f(vj) = f(v∗) + f ′(v∗)(vj − v∗) + h.o.t. = f(v∗) + βyj + h.o.t.

From (4.4) we have

y′k(s) = −ατyk(s)− ατv∗ + τ
n∑
j=1

wkj

∫ ∞
0

[f(v∗) + βyj(s− v) + h.o.t. ]ĝ(v) dv + τFk.
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Using (2.12) and (4.5), we then obtain the linearization of (4.4) about v∗,

y′k(s) = −ατyk(s) + βτ

n∑
j=1

wkj

∫ ∞
0

yj(s− v)ĝ(v) dv, k = 1, . . . , n. (4.6)

In order to analyze the linear stability of the trivial solution of (4.6), we compute the
characteristic equation associated with the above system. To do so, it is easier to look at
the analogous vector form of (4.6),

y′(s) = −ατy(s) + βτW

∫ ∞
0

y(s− v)ĝ(v) dv, (4.7)

where y = (y1, . . . , yn)T and W is an n × n matrix with the (kj)th entry given by wkj.
Let zk, k = 1, . . . , n, be the eigenvalues of W , then there exists a matrix P such that
W = PEP−1 [34]. Matrix E is an upper triangular matrix in Jordan canonical form,
and the columns of P are the n generalized eigenvectors associated with the eigenvalues
zk. Thus E = D+N , where D is a diagonal matrix with zk as its diagonal elements, and
N is a nilpotent matrix with zeros on the main diagonal, and zeros and/or ones on the
upper off-diagonal, i.e.

E =


z1 ∗ 0 · · · 0
0 z2 ∗ · · · 0
...

. . . . . .
...

. . . ∗
0 · · · 0 zn

 , (4.8)

where ∗ represents 0 or 1. With the change of variables y = Px, equation (4.7) becomes

Px′(s) = −ατPx(s) + βτPEP−1

∫ ∞
0

Px(s− v)ĝ(v) dv.

We multiply the above equation by P−1 to obtain

x′(s) = −ατx(s) + βτE

∫ ∞
0

x(s− v)ĝ(v) dv.

Substituting x = eλsC and letting Ĝ(v) represent the Laplace transform of ĝ(v) as given
in Definition 6, we have [

(λ+ ατ)I − βτĜ(v)E
]
C = 0,
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where I represents the n× n identity matrix. To obtain the characteristic matrix, we set
the determinant of the coefficient matrix equal to zero, and using (4.8) we then have

∆(λ) = det

(λ+ ατ)I − βτĜ(v)


z1 ∗ 0 · · · 0
0 z2 ∗ · · · 0
...

. . . . . .
...

. . . ∗
0 · · · 0 zn



 = 0.

We notice that the coefficient matrix is upper triangular, and therefore the characteristic
equation becomes,

0 = ∆(λ)

=
n∏
k=1

∆k(λ)

=
n∏
k=1

(
λ+ ατ − βτzkĜ(v)

)
=

n∏
k=1

(
λ+ ατ − βτzk

∫ ∞
0

e−λvĝ(v) dv

)
. (4.9)

Since the characteristic equation is a product of the ∆k(λ)’s, λ is a root of ∆(λ) if and
only if it is a root of ∆k(λ) for some k. Therefore, the linear stability of (4.6) may be
determined by studying the roots of ∆k(λ), k = 1, . . . , n. In Section 4.1 we will do this
by assuming that the connection matrix W is symmetric, i.e. all its eigenvalues zk are real
[34]. In Section 4.2, we consider the case when W is not symmetric, i.e. its eigenvalues
may be complex.

4.1 Connection Matrix with Real Eigenvalues

In this section we assume that the eigenvalues of the connection matrix W are real, i.e.
zk ∈ R for all k = 1, . . . , n. We start by describing the distribution independent region of
stability, which we present in the following subsection. Then in the following subsection,
we improve on this conservative result by approximating the region of stability using the
first few moments or cumulants of a distribution.
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4.1.1 Distribution Independent Results

In this subsection we will give one result which is independent of all aspects of the distri-
bution and one which is independent of all aspects save the mean delay. The main results
of this subsection generalize to n dimensions the theorems presented in Chapter 3 for the
scalar case.

Changes of stability of the equilibrium point of (4.6) will take place when the charac-
teristic equation (4.9) has a root with zero real part. In the following we determine where
in the parameter space such changes may occur, and hence describe the stability region in
the zτ -plane, which represents the common region of stability of all regions of stability in
the zkτ -planes for k = 1, . . . , n. In other words, the stability in the zτ -plane guarantees
stability in any of the zkτ -planes, k = 1, . . . , n.

As for the scalar case, we start by locating the region of stability of the equilibrium
point using Lemma 1 (Rouché).

Theorem 8 Assume that Ĝ(λ) is analytic in Re(λ) ≥ 0, i.e. in the right-half complex
plane. If 0 < |zk| < α/β for each k = 1, . . . , n, then the characteristic equation has no
roots with positive real part.

Proof. Let h(λ) = λ + ατ and fk(λ) = −βτzkĜ(λ), k = 1, . . . , n. We again consider the
contour in the complex plane, C = C1 ∪ C2, given by

C1 : λ = Reiθ, −π
2
≤ θ ≤ π

2

C2 : λ = iy, −R ≤ y ≤ R,

where R is a positive real number.

Similarly to the proof of Theorem 5, we show that on C1, |h(λ)| > |fk(λ)| for each k =
1, . . . , n, if R sufficiently large. Since α > 0 and β ≥ 0, on C2 we have that |h(λ)| > |fk(λ)|
if α > β|zk| for each k = 1, . . . , n.

Further, if β 6= 0 and zk 6= 0 for k = 1, . . . , n, then h and fk, k = 1, . . . , n, do not
reduce to zero anywhere on C. Hence by Lemma 1, if α/β > |zk| > 0 for each k = 1, . . . , n,
and R is sufficiently large then h(λ) and ∆k(λ) = h(λ) + fk(λ), k = 1, . . . , n, have the
same number of zeros inside C. Let R →∞ then h(λ) and ∆k(λ) have the same number
of zeros with Re(λ) > 0. Since α is positive, h(λ) and thus ∆k(λ) have no zeros in the
right-half complex plane. Therefore the characteristic equation ∆(λ) =

∏n
k=1 ∆k(λ) has

no roots with positive real part. �

The next result determines a region in the parameter space where the equilibrium point
is unstable for any distribution ĝ(v).
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Theorem 9 The equilibrium point v∗ of (4.4) is unstable if at least one zk, k = 1, . . . , n,
satisfies zk > α/β.

Proof. We first pick one zr for which we have zr > α/β. We next investigate the real
roots of ∆r(λ) and thus we assume ∆r(λ) : R → R. Similarly to the proof of Theorem 6,
we show that ∆r(λ) has a unique real root which is positive. Therefore the characteristic
equation ∆(λ) =

∏n
k=1 ∆k(λ) has at least one root with positive real part. The result

follows. �

Note that for any distribution, the characteristic equation has a zero root (or zero roots)
if for at least one k, zk = α/β. From Theorem 8, we have that the equilibrium point v∗

of (4.4) is locally asymptotically stable if |zk| < α/β, i.e. if all zk, k = 1, . . . , n, are inside
the region |z| < α/β in the zτ -plane. From Theorem 9, we have that v∗ is unstable if at
least one zk, k = 1, . . . , n, is in the region z > α/β in the zτ -plane. Therefore stability is
gained as the line z = α/β is crossed by decreasing z, and thus this line forms part of the
boundary of the stability region.

To further define the boundary of stability, we need to determine where the character-
istic equation has a pair of pure imaginary roots, λ = ±iω. We consider the most generic
case: suppose that for one k, ∆k(λ) has a pair of pure imaginary roots, i.e.

∆k(iω) = iω + ατ − βτzk
∫ ∞

0

e−iωvĝ(v) dv = 0. (4.10)

Separating this into real and imaginary parts we find

ατ = βτzk
∫∞

0
cos(ωv) ĝ(v) dv

def
= βτzkC(ω),

−ω = βτzk
∫∞

0
sin(ωv) ĝ(v) dv

def
= βτzkS(ω).

(4.11)

Consider

z =
α

βC(ω)
, τ = −ωC(ω)

αS(ω)
, (4.12)

for all ω > 0 such that C(ω) and S(ω) are nonzero. Equations (4.12) represent curves in
the zτ -plane parameterized by ω. We then choose the curve which is the closest to the
τ -axis. If all zk, k = 1, . . . , n, lie below this curve then the equilibrium point of (4.6) is
stable. Hence the curve described by (4.12) and closest to the τ -axis forms part of the
boundary of stability. In the light of Theorems 8 and 9, the curves in (4.12) which form
part of the stability boundary must lie in the region z ≤ −α/β.

We next determine whether the real part of the eigenvalue increases or decreases as we
cross the lines in (4.12). As in (3.15), taking the derivative of τ in (4.12) with respect to
ω we obtain

dτ

dω
= − 1

αS(ω)

(
C(ω) + ω

C ′(ω)S(ω)− S ′(ω)C(ω)

S(ω)

)
. (4.13)
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Using the definitions of C(ω) and S(ω) from (4.11), we rewrite (4.10) as

0 = ∆k(iω) = iω + ατ − βτzk (C(ω)− iS(ω))

= ατ − βτzkC(ω) + i[ω + βτzkS(ω)]

= Uk(ω) + iVk(ω)

(4.14)

Next we compute the rate of change of the real part of λ with respect to zk. Since

∆(λ) = ∆k(λ)
n∏
r=1
r 6=k

∆r(λ),

we have that

∂∆

∂zk

∣∣∣∣
λ=iω

= −βτ [C(ω)− iS(ω)]
n∏
r=1
r 6=k

(iω + ατ − βτzr (C(ω)− iS(ω))) .

and

∂∆

∂λ

∣∣∣∣
λ=iω

=
∂∆k

∂λ

∣∣∣∣
λ=iω

n∏
r=1
r 6=k

∆r(iω) +
n∑
l=1
l 6=k

∆k(iω)
∂∆l

∂λ

∣∣∣∣
λ=iω

n∏
r=1
r 6=k,l

∆r(iω)

=
∂∆k

∂λ

∣∣∣∣
λ=iω

n∏
r=1
r 6=k

∆r(iω),

where we used the fact that ∆k(iω) = 0. Since λ is a complex number, from (4.14) we get

∂∆

∂λ

∣∣∣∣
λ=iω

=

(
dVk
dω
− idUk

dω

) n∏
r=1
r 6=k

∆r(iω)

= [1 + βτzk (S ′(ω) + iC ′(ω))]
n∏
r=1
r 6=k

(iω + ατ − βτzr (C(ω)− iS(ω))) .

Similarly to (3.10), we then have

dRe(λ)

dzk

∣∣∣∣
λ=iω

= −Re

(
∂∆

∂zk
/
∂∆

∂λ

∣∣∣∣
λ=iω

)
= −Re

(
−βτ(C(ω)− iS(ω))

1 + βτzk(S ′(ω) + iC ′(ω))

)
.
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And thus, as in (3.19), we obtain

dRe(λ)

dzk

∣∣∣∣
λ=iω

=
βτ

H2(ω)

(
C(ω) + ω

C ′(ω)S(ω)− S ′(ω)C(ω)

S(ω)

)
, (4.15)

where H2(ω) = (1 + βτzkS
′(ω))2 + (βτzkC

′(ω))2 is a positive function of ω and we have
used that βτzk = −ω/S(ω) from (4.11). Comparing (4.15) to (4.13) we see that

dRe(λ)

dzk

∣∣∣∣
λ=iω

= − βτ

H2(ω)
αS(ω)

dτ

dω
=
α

zk

ω

H2(ω)

dτ

dω
,

where we used the fact that β = α/(zkC(ω)) from the first equation in (4.11), and ατS(ω) =
−ωC(ω) from the second equation in (4.12). Thus whether the number of eigenvalues with
positive real part is increasing or decreasing as zk is increased through a point on one of
the curves defined by (4.12) depends on the sign of zk and whether τ is an increasing or
decreasing function of ω at that point.

We can also obtain the following distribution independent result. Its proof is similar
to the proof of Theorem 7.

Theorem 10 Assume that Ĝ(λ) is analytic in Re(λ) ≥ 0. Then the equilibrium point v∗

of (4.4) is locally asymptotically stable if, for each k = 1, . . . , n, either

(1) |zk| <
α

β
,

or

(2) − 1

βτ
< zk ≤ −

α

β
.

Theorem 10 describes the region of stability of the equilibrium point with either no knowl-
edge of the distribution of delays or knowledge of only the first moment of the distribution,
i.e. the mean delay, τ . We note that if all zk, k = 1, . . . , n, satisfy the condition in (1), then
the equilibrium v∗ of (4.4) is locally asymptotically stable for any value of the mean delay
τ and for all distributions ĝ(v). We call this the distribution independent stability region.

The results of Theorems 9 and 10 are illustrated in Figure 4.1. The stability region in
the shaded area is a conservative result and is independent of the distribution, save the
mean delay.

In practice the results of Theorem 10 are useful only if one is able to compute β = f ′(v∗).
This might not be trivial since one has to solve the nonlinear system (4.5). But since we
know from (1.7) that β ≤ f ′(0) = γ, we can use this to obtain the following corollary to
Theorem 10.
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−α α z
β

I

β

II III

Figure 4.1: Illustration of the distribution independent stability results described by The-
orems 9 and 10. (I) No distribution independent stability results are known for this region.
(II) Region of stability described by Theorem 10: all zk’s must lie to the right of the curve
−1/(βτ) and be less than −α/β, or have norm less than α/β. (III) Region of instability
described by Theorem 9: at least one of the zk’s must be greater than α/β.

Corollary 1 Assume that Ĝ(λ) is analytic in Re(λ) ≥ 0. Then the equilibrium point v∗

of (4.2) is locally asymptotically stable if, for each k = 1, . . . , n, either

(1) |zk| <
α

γ
,

or

(2) − 1

γτ
< zk ≤ −

α

γ
.

The results of the above corollary and their comparison to Theorem 10 are presented in
Figure 4.2. Since β ≤ γ, it is clear that the stability result presented in Corollary 1 is more
conservative than the result of Theorem 10, but it might be more useful in practice since
one only needs to know the neuron gain, γ = f ′(0).

To further characterize the stability region we need to use information from the distri-
bution. In the next subsection we will show how one may find a better approximation to
the region of stability than that given by Theorem 10 (shaded area in Figure 4.1) by using
the first few moments or cumulants of the distribution. We note that it is only necessary
to consider zk < −α/β, given the results of Theorems 8 and 9.
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Figure 4.2: Comparison between the stability results described by Corollary 1 and the
ones presented in Theorem 10. The stability region guaranteed by Corollary 1 (the dark
gray region) is more conservative than the one guaranteed by Theorem 10 (the light gray
region), but it is easier to obtain since it is only dependent on the neuron gain γ.

4.1.2 Approximating the Boundary of the Stability Region

In the following we apply the approximation procedure we developed in Chapter 3 in
order to find a better estimate for the true boundary of stability than the conservative one
described in the previous subsection in Theorem 10.

Recall that the boundary of the stability region in the zτ -plane consists the line z =
α/β and the curve(s) defined parametrically by equations (4.12) for z ≤ −α/β. In this
subsection, we approximate these latter curves the same way we approximated the curves
in (3.14). The computations are very similar to the ones in Subsections 3.2.1 and 3.2.2
and thus we do not replicate them here.

As described in Subsection 3.2.1, we obtain the approximations using moments for the
curve(s) in (4.12), as seen in Table 4.1. Approximation (0, 0) using moments does not
exist since we only consider τ > 0, i.e. this approximation predicts that the stability region
is the entire half plane to the left of zk = α/β. Approximation (0, 1) using moments
represents the line zk = α/β, i.e. this approximation predicts that there is no stability
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Table 4.1: Approximations using moments for C(ω), S(ω) and equations (4.12), where M
andN relate to the number of terms used in the summation for C(ω) and S(ω), respectively.

(M,N) C(ω) S(ω) zk τ

(0, 0) 1 ω
α

β
− 1

α

(0, 1) 1 ω − m3

6
ω3 α

β

6

α(m3ω2 − 6)

(1, 0) 1− m2

2
ω2 ω

2α

β(2−m2ω2)

m2ω
2 − 2

2α

(1, 1) 1− m2

2
ω2 ω − m3

6
ω3 2α

β(2−m2ω2)

3(m2ω
2 − 2)

α(6−m3ω2)

region. Approximation (1, 0) using moments is given by

τm(1,0) = − 1

βzk
, ω =

√
2

m2

(
1− α

βzk

)
. (4.16)

The above approximation always underestimates the region of stability. For zk ≤ −α/β,
it recovers the results of Theorem 10. For zk > −α/β the curve enters the region of
distribution independent stability and thus gives a worse estimate than Theorem 10. Ap-
proximation (1, 1) using moments is given by

τm(1,1) = − 1(
1− m3

3m2

)
βzk + m3

3m2
α
, ω =

√
2

m2

(
1− α

βzk

)
. (4.17)

The above approximation is a hyperbola with a vertical asymptote at zk = να/(β(ν − 1)),
where ν = m3/(3m2) > 0. The relationship between approximation (1, 1) using moments
and the results of Theorem 10 will depend on the value of ν, and hence on the moments
of the particular distribution. As shown in Subsection 3.2.1, for large zk, we can say that
if ν < 1 then approximation (1, 1) using moments always lies above approximation (1, 0)
using moments. Also, the curve in (4.17) enters the region of distribution-independent
stability if ν ∈ (0, 1/2) ∪ (1,∞).

Next, as described in Subsection 3.2.2, we determine the approximations using cumu-
lants for the curve(s) in (4.12), as seen in Table 4.2. Recall that approximation (0, 0) using
cumulants recovers the results for the corresponding equation with one fixed delay τ , i.e.
model (4.2) where g(u) = δ(u− τ). This approximation is given by

τκ(0,0) =
1√

β2z2
k − α2

arccos

(
α

βzk

)
, zk < −α/β. (4.18)
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Table 4.2: Approximations using cumulants for C(ω), S(ω) and equations (4.12), where
M is the numbers of terms used in the sum inside the exponential function in (3.30), and
N is the numbers of terms used in the sum inside the sine and cosine functions in (3.30).

(M,N) C(ω) S(ω) zk τ

(0, 0) cos(ω) sin(ω)
α

β cos(ω)
−ω cos(ω)

α sin(ω)

(0, 1) cos
(
ω − κ3

6
ω3
)

sin
(
ω − κ3

6
ω3
) α

β cos
(
ω − κ3ω3

6

) −
ω cos

(
ω − κ3ω3

6

)
α sin

(
ω − κ3ω3

6

)
(1, 0)

cos(ω)

exp
(
κ2
2
ω2
) sin(ω)

exp
(
κ2
2
ω2
) α exp

(
κ2ω2

2

)
β cos(ω)

−ω cos(ω)

α sin(ω)

(1, 1)
cos
(
ω − κ3ω3

6

)
exp

(
κ2
2
ω2
) sin

(
ω − κ3ω3

6

)
exp

(
κ2
2
ω2
) α exp

(
κ2ω2

2

)
β cos

(
ω − κ3ω3

6

) −
ω cos

(
ω − κ3ω3

6

)
α sin

(
ω − κ3ω3

6

)

Since arccos (α/(βzk)) > 1 for zk < −α/β, from (4.16) and (4.18), we can conclude that
approximation (0, 0) using cumulants always lies above approximation (1, 0) using mo-
ments. Also, the curve in (4.18) has a vertical asymptote at zk = −α/β and thus it never
enters the distribution independent region of stability, |zk| < α/β described by result (1)
of Theorem 10. For approximation (1, 0) using cumulants, from Table 4.2, we get

τκ(1,0) = − ωeκ2ω
2/2

βzk sin(ω)
,

where ω ∈ (π/2, π) in order to obtain the curve closest to the τ -axis. Since κ2 ≥ 0 and
ω/ sin(ω) > 1, we have

τm(1,0) = − 1

βzk
< − ωeκ2ω

2/2

βzk sin(ω)
= τκ(1,0),

i.e. approximation (1, 0) using cumulants always lies above approximation (1, 0) using mo-
ments.

We cannot make any general comparisons between approximations (0, 1) and (1, 1)
using cumulants and the other approximations, but we will see in the following subsections
how these approximations behave for specific distributions (uniform and gamma) and how
they compare to the other approximations in those particular cases.
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4.1.3 Verifying the Approximations for the Uniform Distribution

In this subsection we apply the approximation procedure we derived in the previous subsec-
tion to the uniform distribution. We compare these estimates for the boundary of stability
to the true boundary of stability. We again look at the three cases: ρ = 2, ρ = 1, and
ρ = 4/5.

Substituting (3.38) into equations (4.12), we obtain the true boundary of stability in
the zτ -plane, as shown by the black solid curve in Figures 4.3 and 4.4(a) (detail on how
these curves are obtained is presented in Section 3.3). Thus the true region of stability
lies between the solid gray line and the solid black curve, where the region of distribution
independent stability lies between the solid and dashed gray lines. If all the zk, k = 1, . . . , n,
lie between the solid gray line and the solid black curve, then the equilibrium point v∗ of
(4.4) (where ĝ(v) is given in (2.31)) is locally asymptotically stable.

Substituting the values for the moments from Table 2.1 into the expressions for zk and
τ from Table 4.1, we get the approximations using moments as seen in Figures 4.3 and
4.4(a). Approximation (0, 0) using moments does not exist. Approximation (0, 1) using
moments represents the line zk = α/β. Approximation (1, 0) using moments represents
the dotted curve and enters the distribution independent stability region |zk| < α/β at
zk = −α/β, τ = 1/α. Approximation (1, 1) using moments is depicted as the dashed black
curve. For ρ = 2 it has a vertical asymptote at zk = −α/β, and thus it never enters the
distribution independent stability region, whereas for ρ = 1 and ρ = 4/5, it enters the
region |zk| < α/β when τ = 13/(3α) and τ = 79/(21α), respectively.

The approximations using cumulants are obtained by substituting the values for the
cumulants from Table 2.1 into the expressions for zk and τ from Table 4.2, as seen in
Figures 4.3 and 4.4(a). Since the third cumulant is zero by (2.34), approximation (0, 1) is
identical to approximation (0, 0), and approximation (1, 1) is identical to approximation
(1, 0). Approximation (0, 0) (and thus (0, 1)) using cumulants corresponds to the curve
depicted by crosses, and approximation (1, 0) (and thus (1, 1)) using cumulants corresponds
to the curve depicted by circles. Approximation (0, 0) (and in this case also (0, 1)) using
cumulants has a vertical asymptote at zk = −α/β and thus never enters the distribution
independent stability region |zk| < α/β.

The conclusions about the approximations and their comparison to the true region of
stability are the same as the ones we made at the end of Section 3.3.

4.1.4 Verifying the Approximations for the Gamma Distribution

In this subsection we will apply the approximations to the gamma distribution and compare
these estimates to the true boundary of stability derived from the characteristic equation.
We again look at the three different cases: p = 3, p = 4, and p = 5.
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(a) Uniform, ρ = 2
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−α α

3α
13

α
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τ

z

(b) Uniform, ρ = 1

Figure 4.3: Stability region for the uniform distribution with ρ = 2 and ρ = 1. The region
of distribution independent stability lies between the solid and dashed gray lines. The
true region of stability lies between the solid gray line and the solid black curve: if all
zk, k = 1, . . . , n, lie in this region, then the equilibrium v∗ of (4.4) is locally asymptotically
stable. Approximation (0, 0) using moments predicts that the region of stability is the
entire half plane to the left of the line zk = α/β, approximation (0, 1) using moments
predicts no stability region, approximation (1, 0) using moments corresponds to the dotted
curve, and approximation (1, 1) using moments corresponds to the dashed black curve.
Approximation (0, 0) (and thus (0, 1)) using cumulants corresponds to the curve depicted
by crosses. Approximation (1, 0) (and thus (1, 1)) using cumulants corresponds to the curve
depicted by circles.

Substituting (3.43) and (3.44) into equations (4.12), we obtain the true boundary of
stability in the zτ -plane, as shown by the black solid curve in Figures 4.4(b) and 4.5
(detail on how these curves are obtained is presented in Section 3.4). Thus the true
region of stability lies between the solid gray line and the solid black curve, where the
region of distribution independent stability lies between the solid and dashed gray lines.
If all the zk, k = 1, . . . , n, lie between the solid gray line and the solid black curve, then
the equilibrium point v∗ of (4.4) (where ĝ(v) is given in (2.39)) is locally asymptotically
stable.

Substituting the values for the moments from Table 2.2 into the expressions for zk and
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(b) Gamma, p = 3

Figure 4.4: Stability region for the uniform distribution with ρ = 4/5 and for the gamma
distribution with p = 3. The region of distribution independent stability lies between the
solid and dashed gray lines. The true region of stability lies between the solid gray line and
the solid black curve: if all zk, k = 1, . . . , n, lie in this region, then the equilibrium v∗ of
(4.4) is locally asymptotically stable. Approximation (0, 0) using moments predicts that the
region of stability is the entire half plane to the left of the line zk = α/β, approximation
(0, 1) using moments predicts no stability region, approximation (1, 0) using moments
corresponds to the dotted curve, and approximation (1, 1) using moments corresponds to
the dashed black curve. Approximations (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants
correspond to the curves depicted by black crosses, gray crosses, black circles and gray
circles, respectively. In the case of the uniform distribution, approximation (0, 0) using
cumulants is identical to approximation (0, 1), and approximation (1, 0) using cumulants
is identical to approximation (1, 1).

τ from Table 4.1, we get the approximations using moments as seen in Figures 4.4(b)
and 4.5 . Approximation (0, 0) using moments does not exist. Approximation (0, 1) using
moments represents the line zk = α/β. Approximation (1, 0) using moments represents
the dotted curve and enters the distribution independent stability region |zk| < α/β at
zk = −α/β, τ = 1/α. Approximation (1, 1) using moments is depicted as the dashed
black curve. For p = 3 approximation (1, 1) using moments has a vertical asymptote at
β = −5α/4 and for p = 4 it has a vertical asymptote at β = −α, and thus they never
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enter the distribution independent stability region, whereas for p = 5 it enters the region
|β| < α when τ = 15/α.

The approximations using cumulants are obtained by substituting the values for the
cumulants from Table 2.2 into the expressions for zk and τ from Table 4.2, as seen in
Figures 4.4(b) and 4.5. Approximation (0, 0) corresponds to the curve depicted by black
crosses, approximation (0, 1) corresponds to the curve depicted by gray crosses, approxi-
mation (1, 0) corresponds to the curve depicted by black circles, and approximation (1, 1)
corresponds to the curve depicted by gray circles. Approximation (0, 0) using cumulants
has a vertical asymptote at zk = −α/β and thus never enters the distribution independent
stability region |zk| < α/β.

The conclusion about the approximations and their comparison to the true region of
stability are the same as the ones we made at the end of Section 3.4.

4.2 Connection Matrix with Complex Eigenvalues

In this section we analyze the stability of the equilibrium point v∗ of (4.4), for a general
interconnection matrixW . In this case, the eigenvalues ofW can be complex, zk = ak+ibk,
with ak, bk ∈ R. We will determine conditions on these eigenvalues, in terms of the model
parameters α, β and τ , that guarantee that the equilibrium point is locally asymptotically
stable.

With definition of zk above, the characteristic equation (4.9) becomes

0 = ∆(λ) =
n∏
k=1

∆k(λ) =
n∏
k=1

(
λ+ ατ − βτ(ak + ibk)

∫ ∞
0

e−λvĝ(v) dv

)
, (4.19)

where α, β, τ > 0. To determine the stability region we need to determine conditions such
that all roots of (4.19) have negative real parts.

Theorem 11 In the limit τ → 0, the equilibrium point v∗ of (4.4) is locally asymptotically
stable if ak < α/β for each k = 1, 2, . . . , n.

Proof. As mentioned at the beginning of the chapter, when τ → 0, model (4.2) approaches
the non-delayed model (4.3). We obtain the characteristic equation corresponding to (4.3)
the same way we obtained (4.19),

0 =
n∏
k=1

(λ+ α− β(ak + ibk)).
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Figure 4.5: Stability region for the gamma distribution with p = 4 and p = 5. The region
of distribution independent stability lies between the solid and dashed gray lines. The
true region of stability lies between the solid gray line and the solid black curve: if all
zk, k = 1, . . . , n, lie in this region, then the equilibrium v∗ of (4.4) is locally asymptotically
stable. Approximation (0, 0) using moments predicts that the region of stability is the
entire half plane to the left of the line zk = α/β, approximation (0, 1) using moments
predicts no stability region, approximation (1, 0) using moments corresponds to the dotted
curve, and approximation (1, 1) using moments corresponds to the dashed black curve.
Approximations (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants correspond to the curves
depicted by black crosses, gray crosses, black circles and gray circles, respectively.

Thus all roots of the characteristic equation have negative real parts if ak < α/β for
k = 1, 2, . . . , n. The result follows. �

We next consider the case τ > 0. We will study the roots of (4.19) by considering the
roots of each factor, ∆k(λ). If bk = 0, from Section 4.1, we know that when |ak| < α/β then
all roots of ∆k(λ) have negative real parts. Further, a standard result [41, 57] indicates
that as the coefficients of ∆k(λ) are varied, the number of roots with positive real parts
can only change by a root passing through the imaginary axis. Now λ = 0 is a root of
∆k(λ) only when ak = α/β and bk = 0. Further, using the definitions of C(ω) and S(ω) in
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(4.11), λ = iω, ω > 0, is a root of ∆k(λ) when ak, bk, α, β, τ satisfy the following equation

0 = ∆k(iω) = iω + ατ − βτ(ak + ibk) (C(ω)− iS(ω)) . (4.20)

Separating (4.20) into the real and imaginary parts we obtain

ατ = βτakC(ω) + βτbkS(ω),

−ω = βτakS(ω)− βτbkC(ω).
(4.21)

To analyze these equations we need the following basic properties of C(ω) and S(ω).

Lemma 2 Let C(ω) and S(ω) be defined as in (4.11). Then C(0) = 1, S(0) = 0, C ′(0) =
0, S ′(0) = 1 and C2(ω) + S2(ω) ≤ 1 for any distribution.

Proof. The first four results follow directly from the definitions of C(ω) and S(ω) in
(4.11),

C(0) =

∫ ∞
0

cos(0)ĝ(v) dv = 1,

S(0) =

∫ ∞
0

sin(0)ĝ(v) dv = 0,

C ′(0) =

∫ ∞
0

−v sin(0)ĝ(v) dv = 0,

S ′(0) =

∫ ∞
0

v cos(0)ĝ(v) dv = 1,

where we used properties (2.12) and (2.13). For the last result, note that

C2(ω) =

(∫ ∞
0

cos(ωv) ĝ(v) dv

)2

=

∫ ∞
0

cos(ωv) ĝ(v) dv

∫ ∞
0

cos(ωw) ĝ(w) dw

=

∫ ∞
0

cos(ωv) ĝ(v)

∫ ∞
0

cos(ωw) ĝ(w) dw dv

=

∫ ∞
0

∫ ∞
0

cos(ωv) cos(ωw) ĝ(v)ĝ(w) dw dv.

Similarly,

S2(ω) =

∫ ∞
0

∫ ∞
0

sin(ωv) sin(ωw) ĝ(v)ĝ(w) dw dv.
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Adding the two expressions we get

C2(ω) + S2(ω) =

∫ ∞
0

∫ ∞
0

[cos(ωv) cos(ωw) + sin(ωv) sin(ωw)] ĝ(v)ĝ(w) dw dv

=

∫ ∞
0

∫ ∞
0

cos(ωv − ωw) ĝ(v)ĝ(w) dw dv

≤
∣∣∣∣∫ ∞

0

∫ ∞
0

cos(ωv − ωw) ĝ(v)ĝ(w) dw dv

∣∣∣∣
≤
∫ ∞

0

∫ ∞
0

|cos(ωv − ωw)| ĝ(v)ĝ(w) dw dv

≤
∫ ∞

0

∫ ∞
0

ĝ(v)ĝ(w) dw dv

=

∫ ∞
0

ĝ(v) dv

∫ ∞
0

ĝ(w) dw

= 1. �

Now we can obtain extensions of result (1) of Theorem 10 and its corollary to the case
when the eigenvalues of the connection matrix are complex.

Theorem 12 The equilibrium point v∗ of (4.4) is locally asymptotically stable if |zk| <
α/β, for each k = 1, 2, . . . , n.

Proof. Squaring and adding equations (4.21) we obtain

α2τ 2 + ω2 = β2τ 2a2
kC

2(ω) + β2τ 2b2
kS

2(ω) + 2β2τ 2akbkC(ω)S2(ω)

+ β2τ 2a2
kS

2(ω) + β2τ 2b2
kC

2(ω)− 2β2τ 2akbkC(ω)S2(ω)

= β2τ 2a2
k(C

2(ω) + S2(ω)) + β2τ 2b2
k(C

2(ω) + S2(ω))

= β2τ 2(C2(ω) + S2(ω))(a2
k + b2

k).

Therefore the magnitude of zk is given by

|zk| =
√
a2
k + b2

k =

√
α2τ 2 + ω2

βτ
√
C2(ω) + S2(ω)

.

Then by the last result of Lemma 2, a necessary condition on the magnitude of zk for a
pure imaginary root of ∆k(λ) to exist is

|zk| ≥
√
α2τ 2 + ω2

βτ
≥ α

β
. (4.22)
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Clearly this cannot be satisfied if |zk| < α/β, so the result follows. �

Theorem 12 represents the distribution independent stability region, since if all zk, k =
1, . . . , n, have magnitude less than α/β, then equilibrium point v∗ of (4.4) is locally asymp-
totically stable for any distribution ĝ(v). We note that this region is the delay independent
region of stability of the corresponding model with one fixed delay τ , i.e. model (4.2) where
g(u) = δ(u− τ).

As mentioned in Section 4.1, β = f ′(v∗) might be difficult to compute in practice, but
using the fact that β ≤ γ, we can obtain the following corollary to the above theorem.

Corollary 2 The equilibrium point v∗ of (4.4) is locally asymptotically stable if |zk| <
α/γ, for each k = 1, 2, . . . , n.

These conditions are easier to check, since we only require knowledge of the neuron gain
γ = f ′(0).

To get more precise conditions for stability, we solve for ak and bk from (4.21),

ak =
ταC(ω)− ωS(ω)

βτ(C2(ω) + S2(ω))
,

bk =
ταS(ω) + ωC(ω)

βτ(C2(ω) + S2(ω))
.

(4.23)

For fixed α, β and τ , system (4.23) represents a curve in the complex plane parameterized
by ω > 0. But λ = −iω, ω > 0, is also a root of ∆k(λ), and in this case ak, bk, α, β, τ satisfy
the equation

0 = ∆k(−iω) = −iω + ατ − βτ(ak + ibk) (C(ω) + iS(ω)) .

Separating into the real and imaginary parts we obtain

ατ = βτakC(ω)− βτbkS(ω),

−ω = βτakS(ω) + βτbkC(ω).

Solving for ak and bk, we have

ak =
ταC(ω)− ωS(ω)

βτ(C2(ω) + S2(ω))

bk = − ταS(ω) + ωC(ω)

βτ(C2(ω) + S2(ω))
.

(4.24)
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Therefore the curve in (4.24) is symmetric to the curve in (4.23) about bk = 0. Thus, the
two systems (4.23) and (4.24) can be represented by one system,

ak =
ταC(ω)− ωS(ω)

βτ(C2(ω) + S2(ω))
def
= R(ω),

bk =
ταS(ω) + ωC(ω)

βτ(C2(ω) + S2(ω))
def
= I(ω),

(4.25)

if we let ω ∈ R. As shown above, the curve represented in (4.25) is symmetric about
bk = 0. When ω = 0, this curve passes through the point (α/β, 0) with infinite slope, since

dak
dω

∣∣∣∣
ω=0

=
(ταC ′(ω)− S(ω)− ωS ′ω)βτ(C2(ω) + S2(ω))

β2τ 2(C2(ω) + S2(ω))2

∣∣∣∣
ω=0

− (ταC(ω)− ωS(ω))βτ(2C(ω)C ′(ω) + 2S(ω)S ′(ω))

β2τ 2(C2(ω) + S2(ω))2

∣∣∣∣
ω=0

= 0,

where we used the fact that C ′(0) = S(0) = 0 from Lemma 2, and thus

dak
dbk

=
dak
dω

dω

dbk
= 0.

From (4.22), we also have that points on the curve in (4.25) lie on or outside the circle
a2
k + b2

k = α2/β2.

Let ω̄ be the smallest positive value such that I(ω̄) = 0. If I(ω) 6= 0 for ω 6= 0, then
let ω̄ =∞. Then we have the following distribution dependent result.

Theorem 13 Let α, β and τ be fixed. The equilibrium point v∗ of (4.4) is locally asymptot-
ically stable if for each k = 1, 2, . . . , n the point (ak, bk) lies inside the curve (R(ω), I(ω)), ω ∈
[−ω̄, ω̄] where R(ω) and I(ω) are defined by (4.25) and

M(ω) =
√
R2(ω) + I2(ω) =

√
α2τ 2 + ω2

βτ
√
C2(ω) + S2(ω)

, for ω ∈ [0, ω̄], (4.26)

is an increasing function of ω.

Proof. From Theorem 12, all roots of ∆k(λ) have negative real parts if |zk| < α/β. For
fixed α, β and τ , this corresponds to the point (ak, bk) lying inside the circle a2

k+b2
k = α2/β2.

As discussed above, if ak and bk are moved outside this circle the number of roots of ∆k(λ)
with positive real parts can only change if there is root with zero real part for some values
of ak and bk.
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Condition (4.26) avoids the anomaly of the curve (R(ω), I(ω)), ω ∈ [0, ω̄] spiraling back
on itself, since it imposes that the magnitude of the points on this curve to be an increasing
function of ω. From this and the properties of the curve (R(ω), I(ω)), ω ∈ [−ω̄, ω̄] discussed
above, a root with zero real part will occur when ak = R(ω), bk = I(ω) for some ω ∈ [−ω̄, ω̄].
The result follows. �

−α
γ γ

α−α α Re(z)

Im(z)

β β

Figure 4.6: Illustration of the stability region described by Theorems 11 – 13 and Corol-
lary 2. The region to the left of the grey line is the stability region for τ → 0. If all eigen-
values of the connection matrix lie inside the dark gray disk with boundary |zk| = α/β,
then the equilibrium point v∗ of (4.4) is stable for any mean delay or any distribution.
The actual stability region (the light gray tear drop region) will depend on the particular
distribution and the value of the mean delay τ . The region inside the smaller circle of
radius α/γ also guarantees stability for any mean delay and any distribution; it is more
conservative, but it is easier to obtain, since it only requires knowledge of the neuron gain
γ = f ′(0).

The results of Theorems 12, 13 and Corollary 2 are depicted in Figure 4.6. As in [47],
we represent the condition given by each theorem by a region in the complex plane such
that if all the zk, k = 1, 2, . . . , n, lie inside this region then the condition is satisfied. We
will refer to this region as the stability region of the equilibrium point v∗ of (4.4). The
region to the left of the grey line is the stability region for τ → 0 given by Theorem 11.
The distribution independent region of stability (for τ > 0) is shown in dark gray. The
larger circle shows the result of Theorem 12 and the smaller one that of Corollary 2. The
actual stability region (light grey) described by Theorem 13 encompasses this conservative
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region. Its shape depends on the particular distribution and the value of the mean delay.

As mentioned in Chapter 1, a commonly held belief is that a system with a distribution
of delays is more stable than the same system with a fixed delay [4, 7, 24, 36, 46, 64]. The
following shows this is true for our system, for large enough mean delay.

Theorem 14 In the limit τ →∞, the stability region of the equilibrium v∗ of (4.4) with
the Dirac distribution (i.e. a fixed delay) lies inside or is the same as the stability region
of the equilibrium v∗ of (4.4) with any other distribution.

Proof. From Theorem 13 the stability region of the equilibrium point for any distribu-
tion is the region in the complex plane enclosed by the curve (R(ω), I(ω)), ω ∈ [−ω̄, ω̄]
where R(ω) and I(ω) are defined by (4.25). In the limit τ → ∞, this curve is given by
(R∞(ω), I∞(ω)), ω ∈ [−ω̄, ω̄] where R∞(ω) and I∞(ω) are defined by

R∞(ω) = lim
τ→∞

R(ω) =
αC(ω)

β(C2(ω) + S2(ω))
,

I∞(ω) = lim
τ→∞

I(ω) =
αS(ω)

β(C2(ω) + S2(ω))
.

For the case of a Dirac distribution, i.e. a fixed delay, the stability region is as defined
above, with C(ω) = cos(ω) and S(ω) = sin(ω). As τ → ∞ this region becomes the circle
|zk| = α/β. The result then follows from the fact that

R∞(ω)2 + I∞(ω)2 =
α2

β2(C2(ω) + S2(ω))
≥ α2

β2
,

by the last result of Lemma 2. �

We note that the behaviour of the stability region as the mean delay τ varies can be
quite different for different distributions. As presented in [47], the size of the region of
stability of the model with fixed delay decreases monotonically as τ increases. As τ →∞,
the stability region approaches the delay independent region of stability, |zk| < α/β. For
the model with other distributions, we do not necessarily have this uniform convergence as
the mean delay becomes larger and larger. For example, for the gamma distribution with
p = 3, there exists a particular value of the mean delay, τ = τc, such that if all eigenvalues
of the connection matrix are inside the tear drop region given by

|zk| =
√
α2τ 2

c + ω2

βτc
√
C2(ω) + S2(ω)

, (4.27)

then the equilibrium point is locally asymptotically stable for any value of the mean delay.
But unlike the model with fixed delay, the value of τc is not infinity. This is depicted in
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Figure 4.7(a). As τ increases the region of stability decreases until it reaches a minimum
stability region at τ = τc, represented by the inner-most black curve. For τ > τc, the
region of stability increases until it reaches the stability region for τ →∞, depicted by the
outer gray curve. Hence stability can be regained as we increase the mean delay, which
cannot be achieved for the model with fixed delay. For real eigenvalues of the connection
matrix, the value of τc corresponds to the maximum of the boundary of stability. As seen
in Figure 4.7(b), at this maximum, the boundary of stability has a vertical slope (depicted
as the dash black line) and if all zk, k = 1, . . . , n, are to the right of this line and less than
α/β, then the equilibrium point is stable for any value of the mean delay. If any of the
zk’s are located to the left of the vertical line, the stability can be regained for sufficiently
large τ .

cτ=τ

Im(z)

infinity

Re(z)

τ=τ

(a) Complex zk’s

τ

z
β

τc

β
−α α

(b) Real zk’s

Figure 4.7: (a) As τ increases, the region of stability decreases until it reaches a minimum
stability region at τ = τc, represented by the inner-most black curve. For τ > τc, the region
of stability increases until it reaches the stability region for τ →∞, depicted by the outer
gray curve. Thus if all zk, k = 1, . . . , n, are inside the boundary corresponding to τ = τc,
the equilibrium point is stable for any value of the mean delay. (b) For real eigenvalues
of the connection matrix, the value of τc corresponds to the maximum on the boundary
of stability (i.e. where the curve has a vertical slope in the zτ -plane). Thus in the region
between the dash black and solid gray lines, the equilibrium is stable for any value of the
mean delay.
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We illustrate our results with an example, where we analyze a three dimensional network
with a particular connection matrix. We investigate the stability region of the equilibrium
point of the nonlinear model in (4.2) with n = 3 and of its corresponding model with
a fixed delay as we vary β. We perform the numerical simulations using the XPPAUT
package [17].
Example. Consider the connection matrix

W =

 0 1 0
−65/64 0 1/16
65/64 1 0


with eigenvalues z1 = 1/4, z2,3 = −1/8 ± i. We let α = 1 and Fk = 0 for k = 1, 2, 3,
and τ = 3 (this value of τ is in fact the critical value of the mean delay, i.e. if the three
eigenvalues of W are inside the region given by (4.27) with τc = 3, then the equilibrium
point is stable for any value of the mean delay). We let g(u) to represent the gamma
distribution with p = 3 and the signal function to be f(v) = tanh(βv). We compare the
stability region of the equilibrium point of the three dimensional nonlinear model in (4.2)
to the stability region of the equilibrium point of the corresponding model with a fixed
delay τ = 3.

For β = 0.5 the three eigenvalues of the connection matrix lie within the boundary
of stability for the distributed delay model (the solid black curve) and also within the
boundary of stability for the model with one fixed delay (the curve depicted by crosses),
as seen in Figure 4.8(a). In this case, the three eigenvalues of W also lie inside the delay
and distribution independent region of stability (the gray circle), hence Theorem 12 or
Theorem 13 predicts that the equilibrium point of the model for both distributed and
fixed delay is stable. This is seen in Figures 4.8(b) and (c), where all neurons converge to
the steady state solution.

For β = 1.2 the three eigenvalues of the connection matrix lie within the boundary
of stability for the distributed delay model (the solid black curve), but two of them lie
outside the boundary of stability for the fixed delay model (the curve depicted by crosses),
as seen in Figure 4.9(a). Thus Theorem 13 predicts that the equilibrium of the distributed
delay model is stable, but cannot predict anything about the stability of the equilibrium
of the fixed delay model. Figure 4.9(b) shows the neurons in the distributed delay model
converging to the steady state solution, whereas the neurons in the fixed delay model
oscillate, as seen in Figure 4.9(c).

For β = 1.5 the three eigenvalues of the connection matrix lie outside both the boundary
of stability for the distributed and fixed delay models, as seen in Figure 4.10(a). Thus
Theorem 13 cannot be applied to predict anything about the stability of the equilibrium
point of the two models. Figures 4.10(b) and (c) show the three neurons oscillating for
both the distributed and fixed delay models.
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(a) β = 0.5 (τ = 3, α = 1)
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(b) Distributed delay (gamma, p = 3)
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Figure 4.8: (a) The stability boundary of the distributed delay model is given by the black
curve and of the model with fixed delay by the curve depicted by crosses. The gray circle
represents the delay and distribution independent region of stability given by Theorem 12.
The eigenvalues of the connection matrix are plotted as dots. Theorem 12 or Theorem 13
predicts that, for β = 0.5, the equilibrium of the model is stable for both distributed and
fixed delay. This is confirmed by numerical simulations: all three neurons converge to the
steady state solution in the model with (b) distributed and (c) fixed delay.
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(a) β = 1.2 (τ = 3, α = 1)
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(b) Distributed delay (gamma, p = 3)
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Figure 4.9: (a) The stability boundary of the distributed delay model is given by the
black curve and of the fixed delay model by the curve depicted by crosses. The gray circle
represents the delay and distribution independent region of stability given by Theorem 12.
The eigenvalues of the connection matrix are plotted as dots. Theorem 13 predicts that,
for β = 1.2, the equilibrium of the distributed delay model is stable, but cannot predict
anything about the stability of the equilibrium point of the fixed delay model. This is
confirmed by numerical simulations: (b) all three neurons in the distributed delay model
converge to the steady state solution; (c) all three neurons in the fixed delay model oscillate.
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Figure 4.10: (a) The stability boundary of the distributed delay model is given by the black
curve and of the model with fixed delay by the curve depicted by crosses. The gray circle
represents the delay and distribution independent region of stability given by Theorem 12.
The eigenvalues of the connection matrix are plotted as dots. For β = 1.8, Theorem 12
cannot be applied to predict the stability of the equilibrium point of the distributed and
fixed delay models. This is confirmed by numerical simulations: all three neurons in the
(b) distributed and (c) fixed delay models oscillate.
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We note that for β = 1.5, the stability of the equilibrium point of the distributed delay
model can be recovered by increasing the mean delay. As τ is increased beyond the critical
value τc = 3, the boundary of the stability region becomes larger and eventually encom-
passes the three eigenvalues, as seen in Figure 4.11(a). When τ = 20, Theorem 13 predicts
that the equilibrium of the distributed delay model is stable. On the other hand, for the
fixed delay model, as τ becomes larger, the boundary of the stability region becomes smaller
and thus the stability of the equilibrium point can never be recovered. Figure 4.11(b) shows
the neurons in the distributed delay model converging to the steady state solution, whereas
the neurons in the fixed delay model oscillate, as seen in Figure 4.11(c). �

In the next subsections we obtain approximations for the boundary of the stability
region, (R(ω), I(ω)), ω ∈ [−ω̄, ω̄], using the approximations for C(ω) and S(ω) derived
in Subsection 4.1.2. We then compare these approximations with the exact boundary of
stability in the case of the uniform and gamma distributions.

4.2.1 Approximating the Boundary of the Stability Region

In the following we apply the approximation procedure we developed in Chapter 3 in
order to find a better estimate for the true boundary of stability than the conservative
one described by Theorem 12. We note that in this subsection, all the computations and
simplifications are done using the symbolic algebra language MapleTM.

From Theorem 13, we have that the boundary of stability is given by the curve
(R(ω), I(ω)), ω ∈ [−ω̄, ω̄] where R(ω) and I(ω) are defined by (4.25). The boundary
of stability can thus be approximated by substituting the approximations for C(ω) and
S(ω) from Tables 4.1 and 4.2 into (4.25).

In particular, approximation (0, 0) using moments is given by

∣∣zm(0,0)

∣∣ =

√
α2τ 2 + ω2

βτ
√
ω2 + 1

.

Thus points on the above curve lie on or outside the circle a2
k + b2

k = α2/β2 if

α2τ 2 + ω2

β2τ 2(ω2 + 1)
≥ α2

β2
,

which is equivalent to τ ≤ 1/α. Therefore, for τ > 1/α approximation (0, 0) using moments
gives a worse estimate than Theorem 12.

We cannot make any general comparisons between the other approximations using
moments and Theorem 12, but we will see in the following two subsections how these
approximations behave in the case of the uniform and gamma distributions.

114



τ=20

τ=3

−1.0

−0.5

0.0

−2 −1−4 0

1.0

−3

0.5

(a) β = 1.5 (τ = 20, α = 1)

-0.01

-0.005

0

0.005

0.01

0.015

v1,v2,v3

0 50 100 150 200 250 300
t

(b) Distributed delay (gamma, p = 3)

-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600

(c) Fixed delay

Figure 4.11: (a) For the distributed delay model, the boundary of the stability when τ = 20
is represented by the dark gray curve, and for τ = 3 by the black curve. When τ = 20, the
boundary of stability is larger than the one when τ = 3, encompassing the three eigenvalues
of W , and hence the stability of the equilibrium point of the distributed delay model is
recovered by increasing the delay. For the fixed delay model, the boundary of the stability
when τ = 20 is represented by the gray crosses, and for τ = 3 by the black crosses. When
τ = 20, the boundary of stability is smaller than the one when τ = 3, thus the stability of
the equilibrium point of the fixed delay model is never recovered by increasing the delay.
This is confirmed by numerical simulations: when τ = 20, (b) all three neurons in the
distributed delay model converge to the steady state solution; (c) all three neurons in the
fixed delay model oscillate.
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Points on the curves defined by approximations (0, 0) and (0, 1) using cumulants have
magnitudes given by ∣∣zκ(0,0)

∣∣ =
∣∣zκ(0,1)

∣∣ =

√
α2τ 2 + ω2

βτ
.

Thus ∣∣zκ(0,0)

∣∣2 =
∣∣zκ(0,1)

∣∣2 ≥ α2

β2
.

Points on the curves defined by approximations (1, 0) and (1, 1) using cumulants have
magnitudes given by ∣∣zκ(1,1)

∣∣ =
∣∣zκ(1,0)

∣∣ =
eκ2ω

2/2
√
α2τ 2 + ω2

βτ
.

Since κ2 is always positive, we again have that

∣∣zκ(1,0)

∣∣2 =
∣∣zκ(1,1)

∣∣2 ≥ α2

β2
.

Therefore all four approximations using cumulants lie outside the circle a2
k + b2

k = α2/β2,
i.e. outside the distribution independent stability region described by Theorem 12.

In the following two subsections we apply the approximations using moments and cu-
mulants to specific distributions and compare them to the true boundary of stability. Since
the curve represented in (4.25) is symmetric about bk = 0, we will only graph the approx-
imations and the true region of stability in the upper half complex plane, i.e. for ω > 0.

4.2.2 Verifying the approximations for the Uniform Distribution

In this subsection we compare the approximations using moments and cumulants to the
true boundary of stability of the equilibrium point v∗ of (4.4) when ĝ(v) represents the
normalized uniform distribution in (2.31). We again look at the three cases: ρ = 2, ρ = 1,
and ρ = 4/5.

We substitute the values for the moments from Table 2.1 into the expressions for C(ω)
and S(ω) from Table 4.1, and then we use these into (4.25) to obtain approximations
to R(ω) and I(ω), thus determining the approximate stability boundary using moments.
The first four approximations using moments are illustrated in Figures 4.12 and 4.13(a):
approximations (0, 0), (0, 1), (1, 0) and (1, 1) using moments are represented by the dotted
gray curve, dashed gray curve, dotted black curve, and dashed black curve, respectively.

We substitute the values for the cumulants from Table 2.1 into the expressions for C(ω)
and S(ω) from Table 4.2, and then we use these into (4.25) to obtain approximations to
R(ω) and I(ω), thus determining the approximate stability boundary using cumulants.
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The first four approximations using cumulants are illustrated in Figures 4.12 and 4.13(a).
Since by (2.34), κ3 = 0, we again have that approximation (0, 0) using cumulants is iden-
tical to approximation (0, 1) and is represented by the curve depicted by crosses. Also,
approximation (1, 0) using cumulants is identical to approximation (1, 1) and is represented
by the curve depicted by circles.

We next determine the true boundary of stability. From (3.38) we obtain

C2(ω) + S2(ω) =
4

ρ2ω2
sin2

(ρω
2

)
.

Substituting this and (3.38) into (4.25) we obtain

ak =
ρω (τα cos(ω)− ω sin(ω))

2βτ sin (ωρ/2)
= R(ω),

bk =
ρω (τα sin(ω) + ω cos(ω))

2βτ sin (ωρ/2)
= I(ω).

(4.28)

The above curve is represented by the solid black line in Figures 4.12 and 4.13(a). From the
figures we can see that the magnitude of points on the this curve is an increasing function
of ω, for ω ∈ [0, ω̄], where ω̄ is the smallest positive ω such that I(ω) = 0. In order to
apply Theorem 13, we show this analytically, i.e. we show M ′(ω) > 0, where M(ω) is given
in (4.26). For any distribution, we have

M ′(ω) =
ω(C2(ω) + S2(ω))− (α2τ 2 + ω2)(C(ω)C ′(ω) + S(ω)S ′(ω))

βτ(α2τ 2 + ω2)(C2(ω) + S2(ω))3/2
.

Thus a sufficient condition to guarantee M ′(ω) > 0 is to show that

N(ω) = C(ω)C ′(ω) + S(ω)S ′(ω) < 0. (4.29)

For the uniform distribution, we first differentiate (3.38) to obtain

C ′(ω) =
ρω cos(ω) cos(ρω/2)− 2 sin(ρω/2)(sin(ω) + cos(ω))

ρω2
,

S ′(ω) =
ρω sin(ω) cos(ρω/2)− 2 sin(ρω/2)(sin(ω)− cos(ω))

ρω2
.

Substituting this and (3.38) into the expression for N(ω) and simplifying, we get

N(ω) =
2 sin(ρω/2)[ρω cos(ρω/2)− 2 sin(ρω/2)]

ρ2ω3
.

The sign of sin(ρω/2) and cos(ρω/2) in the above expression will depend on what interval
the angle ρω/2 belongs to. The parameter values used to generate Figures 4.12 and 4.13(a)
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are α = 2, β = 2 and τ = 1/2. For these specific values we get ω̄ = 2.03. Therefore we
have that ρω/2 ∈ [0, ρω̄/2] ⊂ [0, π). If ρω/2 ∈ [π/2, π), then clearly N(ω) < 0. For
ρω/2 ∈ [0, π/2), we have that tan(ρω/2) > ρω/2, or ρω − 2 tan(ρω/2) < 0, which is
equivalent to ρω cos(ρω/2)−2 sin(ρω/2) < 0. From this we again conclude that N(ω) < 0.
Therefore, by Theorem 13, the curve in (4.28) represents the true boundary of stability,
i.e. if all zk, k = 1, . . . , n, lie inside this curve, then the equilibrium point v∗ of (4.4) is
locally asymptotically stable.

β

−α

β

α

Im(z)

Re(z)

(a) Uniform, ρ = 2

β
−α

β
α

Im(z)

Re(z)

(b) Uniform, ρ = 1

Figure 4.12: Stability region for the uniform distribution with ρ = 2 and ρ = 1 when
τ = 1/2. The true region of stability lies between the solid black curve and the real-axis.
Without delay, the stability region lies to the left of the solid gray line. Approximations
(0, 0), (0, 1), (1, 0) and (1, 1) using moments are represented by the dotted gray curve,
dashed gray curve, dotted black curve, and dashed black curve, respectively. Approxi-
mation (0, 0) using cumulants is identical to approximation (0, 1) using cumulants and is
represented by the curve depicted by crosses. Approximation (1, 0) using cumulants is
identical to approximation (1, 1) using cumulants and is represented by the curve depicted
by circles.

In the next subsection we compare the approximations to the true boundary of stability
when the kernel is a gamma distribution.
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Im(z)
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(b) Gamma, p = 3

Figure 4.13: Stability region for the uniform distribution with ρ = 4/5 and for the gamma
distribution with p = 3 when τ = 1/2. The true region of stability lies between the
solid black curve and the real-axis. Without delay, the stability region lies to the left
of the solid gray line. Approximations (0, 0), (0, 1), (1, 0) and (1, 1) using moments are
represented by the dotted gray curve, dashed gray curve, dotted black curve, and dashed
black curve, respectively. Approximations (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants
are represented by the curves depicted by black crosses, gray crosses, black circles, and
gray circles, respectively. In the case of the uniform distribution, approximation (0, 0)
using cumulants is identical to approximation (0, 1) using cumulants, and approximation
(1, 0) using cumulants is identical to approximation (1, 1) using cumulants.

4.2.3 Verifying the Approximations for the Gamma Distribution

In this subsection we plot the true region of stability for the gamma distribution (i.e. ĝ(v)
represents the normalized gamma distribution in (2.39)) in order to compare it to the
approximations using the moments and the cumulants. We again look at the three cases:
p = 3, p = 4 and p = 5.

We substitute the values for the moments from Table 2.2 into the expressions for C(ω)
and S(ω) from Table 4.1, and then we use these into (4.25) to obtain approximations
to R(ω) and I(ω), thus determining the approximate stability boundary using moments.
The first four approximations using moments are illustrated in Figures 4.13(b) and 4.14:
approximations (0, 0), (0, 1), (1, 0) and (1, 1) using moments are represented by the dotted
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gray curve, dashed gray curve, dotted black curve, and dashed black curve, respectively.

We substitute the values for the cumulants from Table 2.2 into the expressions for C(ω)
and S(ω) from Table 4.2, and then we use these into (4.25) to obtain approximations to
R(ω) and I(ω), thus determining the approximate stability boundary using cumulants.
The first four approximations using cumulants are illustrated in Figures 4.13(b) and 4.14:
approximations (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants are represented by the curves
depicted by black crosses, gray crosses, black circles, and gray circles, respectively.

We next determine the true boundary of stability. From (3.43) and (3.44), we have

C(ω)2 + S2(ω) =

(
p

p2 + ω2

)2p [
(Re (p− iω)p)

2
+ (Im (p− iω)p)

2
]

=

(
p

p2 + ω2

)2p

|p− iω|2p

=

(
p

p2 + ω2

)2p

(p2 + ω2)p

=

(
p2

ω2 + p2

)p
.

Substituting this, (3.43) and (3.44) into (4.25) we obtain

ak =
α

β
p−pRe (p− iω)p +

ω

βτ
p−pIm (p− iω)p = R(ω),

bk = −α
β
p−pIm (p− iω)p +

ω

βτ
p−pRe (p− iω)p = I(ω).

(4.30)

The above curve is represented by the solid black line in Figures 4.13(b) and 4.14. From
the figures we can see that the magnitude of points on the this curve is an increasing
function of ω, for ω ∈ [0, ω̄]. Next we show that this is the case analytically. For p = 3, we
differentiate (3.45) to obtain

C ′(ω) =
972ω(ω2 − 9)

(ω2 + 9)4
,

S ′(ω) =
81(ω4 − 54ω2 + 81)

(ω2 + 9)4
.

Substituting this and (3.45) into the expression for N(ω) in (4.29) we get

N(ω) = − 2187ω

(ω2 + 9)4
.
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For p = 4, differentiating (3.49) we have

C ′(ω) = −1024ω(ω4 − 160ω2 + 1280)

(ω2 + 16)5
,

S ′(ω) =
4096(5ω4 − 160ω2 + 256)

(ω2 + 16)5
.

Thus N(ω) becomes

N(ω) = − 262144ω

(ω2 + 16)5
.

For p = 5, from (3.53) we obtain

C ′(ω) = −156250ω(3ω4 − 250ω2 + 1875)

(ω2 + 25)5
,

S ′(ω) = −15625(ω6 − 375ω4 + 9375ω2 − 15625)

(ω2 + 25)5
,

and hence N(ω) is given by

N(ω) = −48828125ω

(ω2 + 25)5
.

In all three cases we obtain that N(ω) < 0. We can then apply Theorem 13 to conclude
that the curve in (4.30) represents the true boundary of stability in the case of the gamma
distribution, i.e. if all zk, k = 1, . . . , n, lie inside this curve, then the equilibrium point v∗

of (4.4) is locally asymptotically stable.

In conclusion, for both the uniform and gamma cases, we notice that the approximations
seem to improve as more moments or cumulants are added, except for approximation (0, 1)
using moments, which gives a worse estimate than approximation (0, 0) using moments.
Approximation (0, 1) using moments is very different than all other approximations, since
it is the only one that enters the region Re(z) > α/β. We note that approximation (1, 1)
using cumulants lies very close to the true boundary of stability. We again observe that
the approximations using cumulants give better results than the ones using moments.

In Figures 4.15 and 4.16 we plot the true boundary of stability for the uniform distri-
bution (with ρ = 1) for different values of τ . In contrast with Figure 4.7 which plots the
stability region for the gamma distribution (with p = 3) for different values of τ , we can
see that for the uniform distribution, the true stability region and the approximations of
the stability region decrease as the mean delay τ increases. In Figure 4.15(a) we show a
comparison between the true region of stability and the approximation (0, 0) using mo-
ments and how they behave as τ increases. In Figure 4.15(b) we compare the true region
of stability and the approximation (0, 0) using cumulants for different values of τ . We note
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(a) Gamma, p = 4

β
−α

β
α

Im(z)

Re(z)

(b) Gamma, p = 5

Figure 4.14: Stability region for the gamma distribution with p = 4 and p = 5 when
τ = 1/2. The true region of stability lies between the solid black curve and the real-axis.
Without delay, the stability region lies to the left of the solid gray line. Approximations
(0, 0), (0, 1), (1, 0) and (1, 1) using moments are represented by the dotted gray curve,
dashed gray curve, dotted black curve, and dashed black curve, respectively. Approxima-
tions (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants are represented by the curves depicted
by black crosses, gray crosses, black circles, and gray circles, respectively.

again that the approximation (0, 0) using cumulants recovers the stability results of the
corresponding model with fixed delay τ . Hence in Figure 4.15(b) also shows a compar-
ison between the stability regions of the distributed and fixed delay models for different
values of τ . In Figure 4.16(a) we show a comparison between the true region of stabil-
ity and the approximation (1, 0) using moments and how they behave as τ increases. In
Figure 4.16(b) we compare the true region of stability and the approximation (1, 0) using
cumulants for different values of τ . In both Figures 4.15 and 4.16, it is again confirmed
that the approximations using cumulants give better results.

In the next chapter we investigate the stability of nonhyperbolic equilibrium points of
the scalar Hopfield model using the centre manifold technique.
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(a) Moments
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(b) Cumulants

Figure 4.15: The stability region for the uniform distribution with ρ = 1 for different values
of τ is compared to the approximation (0, 0) using moments in (a) and to approximation
(0, 0) using cumulants in (b). Without delay, the stability region lies to the left of the black
line zk = α/β. The true boundary of stability is depicted as the thin gray line, the thick gray
line, the thick black line, and the thin black line for τ = 0.05, τ = 0.2, τ = 0.5, and τ = 100,
respectively. Approximation (0, 0) using (a) moments or (b) cumulants is shown as gray
circles, gray dash line, black circles, and black dotted line for τ = 0.05, τ = 0.2, τ = 0.5,
and τ = 100, respectively.
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Figure 4.16: The stability region for the uniform distribution with ρ = 1 for different values
of τ is compared to the approximation (1, 0) using moments in (a) and to approximation
(1, 0) using cumulants in (b). Without delay, the stability region lies to the left of the black
line zk = α/β. The true boundary of stability is depicted as the thin gray line, the thick gray
line, the thick black line, and the thin black line for τ = 0.05, τ = 0.2, τ = 0.5, and τ = 100,
respectively. The approximation (1, 0) using (a) moments or (b) cumulants is shown as gray
circles, gray dash line, black circles, and black dotted line for τ = 0.05, τ = 0.2, τ = 0.5,
and τ = 100, respectively.
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Chapter 5

Calculating the Centre Manifold for
the Scalar Model

In this chapter we will study the stability of nonhyperbolic equilibrium points of the scalar
Hopfield model with a general distribution of delays. A nonhyperbolic equilibrium point is
an equilibrium point for which at least one root of the associated characteristic equation
has a zero real part. In the case of hyperbolic equilibrium points, as discussed in Sec-
tion 2.3, the stability of the equilibrium point of the nonlinear system is guaranteed by the
stability of the equilibrium point of the corresponding linear system. For nonhyperbolic
equilibrium points, the linear system does not provide enough information regarding the
stability of the equilibrium point of the nonlinear system. In this case we construct a centre
manifold, which is a nonlinear manifold tangent to the centre eigenspace. If the rest of the
eigenvalues of the characteristic equation have negative real parts, then the centre manifold
is attracting and thus the behaviour of solutions near the nonhyperbolic equilibrium point
is well approximated by the flow on this manifold [26]. Nonhyperbolic equilibrium points
often occur at bifurcation points of a DE and thus the centre manifold analysis also gives
insights into the nature of the bifurcation. For our model, we show under what conditions
a Hopf bifurcation can occur and we use the centre manifold technique to determine the
criticality of the Hopf bifurcation.

We start by laying the theoretical basis to the computation of the centre manifold, then
we apply the theory to the scalar Hopfield model with a general distribution of delays. We
then verify our results when the kernel is a gamma distribution. In this case the scalar
DDE can be transformed into a system of ODEs, where we can apply the theory of ODEs
to compute the centre manifold and determine the criticality of the Hopf bifurcation. And
finally, we apply the approximations we developed in Chapter 3 to predict the criticality of
the Hopf bifurcation when the distribution of delays is not known, but the first moments
or cumulants of the distribution are.
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We consider the scalar Hopfield model,

ẋ(t) = −αx(t) + w

∫ ∞
0

f(x(t− u))g(u) du+ c,

where α > 0, w, c ∈ R, g(u) is a p.d.f. and f ∈ Cr with r large enough for our subse-
quent calculations. After we perform the change of variables presented in Section 2.2 and
renaming s back to t, the above DDE becomes

x′(t) = −ατx(t) + wτ

∫ ∞
0

f(x(t− v))ĝ(v) dv + cτ.

For reasons that will become clear later in the section, we rewrite the above DDE as

x′(t) = −ατx(t) + wτ

∫ 0

−∞
f(x(t+ θ))ĝ(−θ) dθ + cτ. (5.1)

where we let v = −θ. Let φ0 ∈ C = C((−∞, 0],R) be a given function, then the corre-
sponding initial condition is

x(t0 + θ) = φ0(θ), θ ≤ 0. (5.2)

If φ0 and f satisfy the conditions of Theorem 3, then there exists a unique solution to the
IVP (5.1)–(5.2) on any interval [0, t] ⊂ [0, tφ0), where tφ0 ∈ [0,∞].

We assume the above equation admits an equilibrium solution x∗ satisfying

0 = −ατx∗ + wτf (x∗) + cτ. (5.3)

We next shift the equilibrium to zero and separate the linear and nonlinear terms. Let
y(t) = x(t)−x∗, β̄ = f ′(x∗), γ̄ = f ′′(x∗), and δ̄ = f ′′′(x∗). Then the Taylor series expansion
of f about x∗ is

f(x(t+ θ)) = f(x∗) + β̄y(t+ θ) +
γ̄

2
(y(t+ θ))2 +

δ̄

6
(y(t+ θ))3 + h.o.t.

Using this along with (5.3), we obtain

y′(t) = −ατy(t)− wτf(x∗)− cτ + wτf(x∗) + wβ̄τ

∫ 0

−∞
y(t+ θ)ĝ(−θ) dθ

+
wγ̄τ

2

∫ 0

−∞
(y(t+ θ))2ĝ(−θ) dθ +

wδ̄τ

6

∫ 0

−∞
(y(t+ θ))3ĝ(−θ) dθ + cτ + h.o.t.

126



Simplifying and renaming back to x, we have

x′(t) = −ατx(t) + βτ

∫ 0

−∞
x(t+ θ)ĝ(−θ) dθ + γτ

∫ 0

−∞
(x(t+ θ))2ĝ(−θ) dθ

+ δτ

∫ 0

−∞
(x(t+ θ))3ĝ(−θ) dθ + h.o.t. ,

where we let β = wβ̄, γ = wγ̄/2, and δ = wδ̄/6.

In the following section we present the theoretical background for calculating the centre
manifold for a scalar DDE with one distributed delay. The theoretical basis for analyzing
Hopf bifurcations and calculating the centre manifold has been rigourously developed for
DDEs with finite delay [26]. In Section 2.1, we saw that under the right constraints imposed
on the function space, the existence and uniqueness results carry over from DDEs with finite
distributed delay to the ones with infinite distributed delay (see Theorem 3). Under similar
constraints on the function space, Hino et al. [29] obtain results on the decomposition
of the function space in terms of the eigenvalues of the infinitesimal generator of the
solution operator for the linearized equation corresponding to DDEs with infinite delay
(Theorem 3.1 on page 144 in [29]).

In this chapter we assume that within the appropriate restricted function space, the
Hopf bifurcation and centre manifold theory holds for DDEs with infinite delay. In Sec-
tions 5.3 and 5.4, we test this assumption by transforming our DDE model with a gamma
distributed delay into an ODE system, for which the Hopf bifurcation and centre mani-
fold theory is well established. We then compare the centre manifold computation for the
DDE case to the one we obtain in the ODE case. In the literature, the Hopf bifurcation
and centre manifold theory has been applied to DDEs with infinite delay, and hence it is
assumed that it holds [43, 44, 54, 55]. In these papers, the authors only take into con-
siderations gamma distributed delays, and therefore their models are equivalent to ODE
systems. We note that in [56, 64], the analysis of the Hopf bifurcation problem for DDEs
with infinite delay is based on the method of Liapunov-Schmidt, which avoids all reference
to the infinite dimensional nature of the problem.

5.1 Theoretical Background

In this section we present the theoretical background for calculating the centre manifold
for the scalar DDE (5.1). We start by defining the flow for the above DDE as a mapping
from C which takes the initial function φ0(θ) into the function xt(θ) = x(t + θ), θ ≤ 0.
Hence we can rewrite the DDE as

x′(t) = L(xt) + F (xt), (5.4)
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where L : C → R is a linear mapping defined by

L(φ) = −ατφ(0) + βτ

∫ 0

−∞
φ(θ)ĝ(−θ) dθ, (5.5)

and F : C → R is a nonlinear functional defined by

F (φ) = γτ

∫ 0

−∞
(φ(θ))2ĝ(−θ) dθ + δτ

∫ 0

−∞
(φ(θ))3ĝ(−θ) dθ + h.o.t. (5.6)

We can extend (5.4) to a differential equation for xt(θ) as follows [18, 19, 59]

d

dt
xt(θ) =


d

dθ
xt(θ), θ < 0,

L(xt) + F (xt), θ = 0.

(5.7)

In the following subsection we examine the linearized equation corresponding to (5.1)
in more detail.

5.1.1 Linear Equation

Since in this chapter we investigate nonhyperbolic equilibrium points, the linearized equa-
tion

x′(t) = −ατx(t) + βτ

∫ 0

−∞
x(t+ θ)ĝ(−θ) dθ (5.8)

cannot give enough information about the stability of the equilibrium point of (5.1). In
this section we present what information we can draw from the linearization. We first
compute the characteristic equation by substituting x(t) = ceλt into the above equation,

∆(λ) = λ+ ατ − βτ
∫ 0

−∞
eλθĝ(−θ) dθ = 0. (5.9)

We assume that the characteristic equation has m roots with zero real part and the rest of
the roots have negative real parts. In this case there exists a decomposition of the solution
space for the linear DDE

x′(t) = L(xt) (5.10)

as C = N ⊕ S, where N is an m-dimensional subspace spanned by the solutions to (5.10)
corresponding to the eigenvalues with zero real part, S is infinite dimensional, and N and S
are invariant under the flow associated with (5.10) [29]. We further assume, for simplicity,
that all the eigenvalues with zero real part have multiplicity one.
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The following results can be found in [29]. The centre eigenspace N is the null space
of (λI − A)k, where A is the infinitesimal generator associated with the solution operator
of (5.10), T (t) : C → C, xt(; , φ) = T (t)φ and satisfies

D(A) =

{
φ ∈ C :

dφ

dθ
∈ C, dφ

dθ
(0) = Lφ

}
Aφ =

dφ

dθ
. (5.11)

Let {φ1(t), φ2(t), . . . , φm(t)} be a basis for N and {λ1, λ2, . . . , λm} the corresponding
eigenvalues. If λk = 0 then φk(t) = ck, where ck is a solution of ∆(0)ck = 0. If λk = iω
then −iω is also a root of the characteristic equation, and we let λk+1 = −iω. In this case
φk(t) = Re(eiωtck) and φk+1(t) = Im(eiωtck), where ck is a solution of ∆(iω)ck = 0. Since
we are working with a scalar model, ck is just a scalar constant, and thus we can choose
ck = 1 in all cases. Therefore for λk = 0 we have φk(t) = 1, and for λk = iω, λk+1 = −iω
we have φk(t) = Re(eiωt) = cos(ωt) and φk+1(t) = Im(eiωt) = sin(ωt).

We can also write the basis for N as an 1 ×m matrix, with the kth column given by
φk,

Φ(t) = [φ1(t) | φ2(t) | · · · | φm(t)]. (5.12)

Since, the eigenspace N satisfies AN ⊆ N [29], for bkj ∈ R, we have that

Aφk = bk1φ1 + bk2φ2 + · · ·+ bkmφm, k = 1, . . . ,m, (5.13)

i.e. Aφk is a linear combination of the basis functions. We note that the basis functions
may also be treated as functions on C by changing their argument to θ ∈ (−∞, 0]. From
(5.11) and (5.13) we have that

Φ′ = [φ′1 | φ′2 | · · · | φ′m]

= [Aφ1 | Aφ2 | · · · | Aφm]

= [b11φ1 + · · ·+ b1mφm | b21φ1 + · · ·+ b2mφm | · · · | bm1φ1 + · · ·+ bmmφm]

= [φ1 | φ2 | · · · |φm]

 b11 · · · b1m
...

. . .
...

bm1 · · · bmm


= ΦB. (5.14)

Thus we showed that Φ satisfies the matrix ODE, Φ′ = ΦB. Since the only eigenvalue of
B is λ [29], we can conclude that B is a block diagonal matrix with block [0] for the zero
eigenvalue and block [

0 ω
−ω 0

]
(5.15)
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for the pair of complex conjugate eigenvalues ±iω. From (5.5) and (5.9) we have

L
(
eλkθ

)
= −ατ + βτ

∫ 0

−∞
eλkθĝ(−θ) dθ = λk.

Thus for λk = 0 we have L(φk) = 0, and for λk = iω we have

L
(
eλkθ

)
= L

(
Re
(
eλkθ

))
+ iL

(
Im
(
eλkθ

))
= L(φk) + iL(φk+1) = iω.

Therefore

L(φk) = 0 and L(φk+1) = ω.

But φk(0) = 1 and φk+1(0) = 0, hence we have that

L(φk) = −ωφk+1(0) and L(φk+1) = ωφk(0).

For example if φ1, φ2, and φ3 are the basis functions corresponding to λ1 = 0, λ2 = iω and
λ3 = −iω, respectively, then we have

Φ(0)B = [φ1(0) | φ2(0) | φ3(0)]

 0 0 0
0 0 ω
0 −ω 0


= [0 | − ωφ3(0) | ωφ2(0)]

= [L(φ1) | L(φ2) | L(φ3)]

And thus we can conclude that
L (Φ) = Φ(0)B. (5.16)

The solution space will be decomposed by defining an equation dual to (5.10). Let
C∗ = C([0,+∞),R). For ψ ∈ C∗ and φ ∈ C, we define the bilinear form [27],

〈ψ, φ〉 = ψ(0)φ(0)− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

ψ(ξ − θ)ĝ(−θ)φ(ξ) dξ dθ. (5.17)

This is used to define the dual equation [29]

y′(s) = LT (ys), s ≤ 0, (5.18)

where ys = y(s+ ξ), ξ ≥ 0 and LT is a linear mapping on C∗ given by

LT (ψ) = ατψ(0)− βτ
∫ ∞

0

ψ(ξ)ĝ(ξ) dξ.
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The corresponding DE is

y′(s) = ατy(s)− βτ
∫ ∞

0

y(s+ w)ĝ(w) dw, s ≤ 0.

Substituting y(s) = ce−λs into the above equation, we obtain the characteristic equation
corresponding to the above DE, which is exactly (5.9). Thus the trivial solutions of (5.9)
and the above DE have the same eigenvalues.

Let

Ψ(s) =

 ψ1(s)
...

ψm(s)


be a basis for the solutions of (5.18) corresponding to the m eigenvalues with zero real
part. We note that ψj, j = 1, . . . ,m, can be considered as functions on C∗ if we change
their argument to ξ ∈ [0,+∞). Similar to the proofs for Φ, one can show that

Ψ′ = −BΨ and LT (Ψ) = −BΨ(0), (5.19)

where B is the same block diagonal matrix as in (5.15). For any ζ ∈ S, we have [26]

〈ψj, ζ〉 = 0, j = 1, . . . ,m. (5.20)

Further we can choose a basis Ψ so that

〈Ψ,Φ〉 = I, (5.21)

where 〈Ψ,Φ〉 is an m × m matrix with the (jk)th entry given by 〈ψj, φk〉, and I is the
m×m identity matrix. For any ζ ∈ N we have [26]

ζ = Φu where u = 〈Ψ, ζ〉 ∈ Rm.

In the next subsection we take a closer look at the nonlinear equation.

5.1.2 Nonlinear Equation

In this subsection we analyze the nonlinear equation (5.4). Since the characteristic equation
(5.9) has m eigenvalues with zero real part and the rest have negative real part, there exists
an m dimensional centre manifold which is attracting and the behaviour of solutions to
the nonlinear equation is well approximated by the flow on this manifold [26]. The points
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on the local centre manifold of x = 0 can be expressed as a sum of the linear part in N
and the nonlinear part in S,

W c
loc(0) = {φ ∈ C : φ = Φu+ h(u)}, (5.22)

where Φ(θ), θ ∈ (−∞, 0] is given in (5.12) as the basis of N , u ∈ Rm, h(u) ∈ S and
||u|| is sufficiently small. The solution to (5.4) on this centre manifold is then given by
x(t) = xt(0), where xt(θ) is a solution of (5.7) satisfying

xt(θ) = Φ(θ)u(t) + h(θ,u(t)). (5.23)

Substituting this into (5.7), we obtain

[
Φ(θ) +

∂h

∂u

]
u′(t) =


Φ′(θ)u(t) +

∂h

∂θ
, θ < 0,

L (Φ(θ))u(t) + L (h(θ,u(t)))

+F (Φ(θ)u(t) + h(θ,u(t))) , θ = 0.

Using (5.14) and (5.16), the above ODE becomes

[
Φ(θ) +

∂h

∂u

]
u′(t) =


Φ(θ)Bu(t) +

∂h

∂θ
, θ < 0,

Φ(0)Bu(t) + L (h(θ,u(t)))

+F (Φ(θ)u(t) + h(θ,u(t))) , θ = 0.

(5.24)

We next obtain an ODE for u(t) and a PDE for h(θ,u(t)). To obtain the equation for
u(t) we use the bilinear form in (5.17). First we note that for any u, since h(θ,u(t)) ∈ S,
by (5.20) we have that

〈Ψ(ξ), h(θ,u(t))〉 = 0. (5.25)

And therefore 〈
Ψ(ξ),

∂h

∂u
(θ,u(t))

〉
= 0. (5.26)

We next apply the bilinear form in (5.17) to Ψ and (5.24). For the left-hand side of (5.24)
we have 〈

Ψ,

[
Φ(θ) +

∂h

∂u

]
u′(t)

〉
= 〈Ψ,Φ(θ)u′(t)〉+

〈
Ψ,

∂h

∂u
u′(t)

〉
= 〈Ψ,Φ(θ)〉u′(t) +

〈
Ψ,

∂h

∂u

〉
u′(t)

= u′(t) (5.27)
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where we used (5.21) and (5.26). Since the right-hand side of (5.24) is defined as piece-wise,
when we apply the bilinear form we get

〈Ψ,Φ(θ)Bu(t)〉+ Ψ(0)L (h(θ,u(t))) + Ψ(0)F (Φ(θ)u(t) + h(θ,u(t)))

− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

Ψ(ξ − θ)ĝ(−θ)∂h
∂ξ

(ξ,u(t)) dξ dθ.
(5.28)

Using integration by parts, (5.5), (5.17), (5.19) and (5.25), we obtain

Ψ(0)L (h(θ,u(t)))− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

Ψ(ξ − θ)ĝ(−θ)∂h
∂ξ

(ξ,u(t)) dξ dθ

= Ψ(0)

(
−ατh(0,u(t)) + βτ

∫ 0

−∞
h(θ,u(t))ĝ(−θ) dθ

)
− βτ

∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

Ψ(ξ − θ)∂h
∂ξ

(ξ,u(t)) dξ ĝ(−θ) dθ

= −ατΨ(0)h(0,u(t)) + βτ

∫ 0

−∞
Ψ(0)h(θ,u(t))ĝ(−θ) dθ

− βτ
∫ θ=0

θ=−∞
[Ψ(0)h(θ,u(t))−Ψ(−θ)h(0,u(t))] ĝ(−θ) dθ

+ βτ

∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

Ψ′(ξ − θ)h(ξ,u(t))ĝ(−θ) dξ dθ

= −
(
ατΨ(0)− βτ

∫ θ=0

θ=−∞
Ψ(−θ)ĝ(−θ) dθ

)
h(0,u(t))

− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

BΨ(ξ − θ)h(ξ,u(t))ĝ(−θ) dξ dθ

= −LT (Ψ(ξ))h(0,u(t))− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

BΨ(ξ − θ)h(ξ,u(t))ĝ(−θ) dξ dθ

= BΨ(0))h(0,u(t))− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

BΨ(ξ − θ)h(ξ,u(t))ĝ(−θ) dξ dθ

= B 〈Ψ(ξ), h(θ,u(t))〉
= 0.

Therefore from the above result, (5.27) and (5.28), we obtain the following system of ODEs
for u(t),

u′(t) = Bu(t) + Ψ(0)F (Φ(θ)u(t) + h(θ,u(t))) . (5.29)
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Using this in (5.24) we obtain a partial differential equation (PDE) for h(θ,u(t)),

∂h

∂u
[Bu(t) + Ψ(0)F (Φ(θ)u(t) + h(θ,u(t)))] + Φ(θ)Ψ(0)F (Φ(θ)u(t) + h(θ,u(t)))

=


∂h

∂θ
, θ < 0,

L(h(θ,u(t))) + F (Φ(θ)u(t) + h(θ,u(t))), θ = 0.

(5.30)

We need to solve the above PDE for h(θ,u(t)) and then substitute it into (5.29) in order
to determine the behaviour of solutions on the centre manifold. In order to solve (5.30),
we assume that h(θ,u(t)) may be expanded in a power series in u,

h(θ,u(t)) = h2(θ,u(t)) + h3(θ,u(t)) + · · · ,
where

h2(θ,u(t)) = h11(θ)u2
1(t) + · · ·+ h1m(θ)u1(t)um(t) + h22(θ)u2

2(t) + · · ·+ hmm(θ)u2
m(t),

and similarly for h3 and higher order terms. We next write F in series form and expand
each Fj about Φ(θ)u(t),

F = F2(Φ(θ)u(t) + h(θ,u(t))) + F3(Φ(θ)u(t) + h(θ,u(t))) +O(||u||4||)
= F2(Φ(θ)u(t)) +DF2(Φ(θ)u(t))h2(θ,u(t)) + F3(Φ(θ)u(t)) +O(||u||4).

From here we can see that only h2 is needed to calculate up to the third order terms in
(5.29). Substituting the expansions of F and h into the first part of (5.30) we obtain the
following equation containing second order terms

∂h2

∂θ
+O(||u||3) =

∂h2

∂u
Bu(t) + Φ(θ)Ψ(0)F2(Φ(θ)u(t)) +O(||u||3). (5.31)

Equating terms with like powers of u1, . . . , um in the above equation yields a system of
ODEs for hjk(θ), j, k = 1, . . . ,m. This system is linear and it is solved to find the general
solutions for the hjk(θ) in terms of arbitrary constants. To determine these arbitrary
constants, we use the second part of (5.30),

∂h2

∂u

∣∣∣∣
θ=0

Bu(t) + Φ(0)Ψ(0)F2(Φ(θ)u(t)) +O(||u||3)

= L(h2(θ,u(t))) + F2(Φ(θ)u(t)) +O(||u||3).

(5.32)

Equating terms with like powers of u1, . . . , um in the above equation yields a system of
equations for the arbitrary constants. Once h2 has been calculated, we can proceed to
the next order of approximation and calculate h3. We can then use these into (5.29) to
analyze the flow of solutions on the centre manifold. Since (5.29) is an ODE, whether the
equilibrium is attracting or not on the centre manifold will be determined using the well
established theory of ODEs.

In the next section we apply the theory we have just developed to our DDE (5.1).
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5.2 Computation of the Centre Manifold for our Model

In this section we compute the centre manifold for DDE (5.1). The computations can be
quite cumbersome and thus will be implemented in the symbolic algebra package MapleTM.
The MapleTM code can be seen in Appendix A and adapts the MapleTM implementation
of the centre manifold calculation for DDEs with discrete delays presented in [9] to DDEs
with distributed delay.

The linearized system (5.8) is identical to the linear system we studied in Chapter 3.
The characteristic equation (5.9) has a zero root when β = α and a pair of pure imaginary
roots when

ατ = βτ
∫ 0

−∞ cos(ωθ) ĝ(−θ) dθ = βτC(ω),

ω = βτ
∫ 0

−∞ sin(ωθ) ĝ(−θ) dθ = −βτS(ω),
(5.33)

where

C(ω) =

∫ 0

−∞
cos(ωθ) ĝ(−θ) dθ and S(ω) = −

∫ 0

−∞
sin(ωθ) ĝ(−θ) dθ. (5.34)

We note that the minus sign in front of the integral in the expression for S(ω) makes S(ω)
consistent with the definition we used for S(ω) in Chapters 3 and 4.

The curves in the βτ -plane along which equations (5.33) are satisfied are given by

β =
α

C(ω)
, τ = −ωC(ω)

αS(ω)
, (5.35)

for all ω > 0 such that C(ω) and S(ω) are nonzero. From Theorems 5 and 6, we know
that the curves defined by (5.35) can only exist in the region β < −α and thus they can
never intersect the line β = α. Therefore the characteristic equation cannot have a pair
of pure imaginary roots and a zero root simultaneously. For the rest of the chapter, we
assume that we are at a critical point in the parameter space such that equations (5.35)
are satisfied, i.e. the characteristic equation has a pair of pure imaginary roots. We also
assume that at such a critical point all the other roots of the characteristic equation have
negative real parts. From Section 3.1 we have that

dRe(λ)

dβ

∣∣∣∣
λ=iω

=
α

β

ω

H2(ω)

dτ

dω
, (5.36)

and thus
dRe(λ)

dβ

∣∣∣∣
λ=iω

6= 0 if
dτ

dω
6= 0.

If the above condition is met, since the characteristic equation (5.9) has one pair of pure
imaginary roots, the DDE (5.1) satisfies the conditions for a Hopf bifurcation to occur as
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the bifurcation parameter passes through a point on the curves in (5.35) (Theorem 1.1,
Section 11.1 in [26]). To determine the criticality of this Hopf bifurcation, we compute the
centre manifold of the equilibrium point at the Hopf bifurcation.

From Subsection (5.1.1) we have that the basis for centre eigenspace N is given by

Φ(θ) =
[

cos(ωθ) | sin(ωθ)
]
. (5.37)

Since m = 2, the vector u(t) is given by

u(t) =

[
u1(t)
u2(t)

]
,

and matrix B is

B =

[
0 ω
−ω 0

]
.

To determine the criticality of the Hopf bifurcation, we only need to find the terms up
to and including those which are O(||u(t)||3) in (5.29). Thus we only need the quadratic
terms in the series for h,

h2(θ,u(t)) = h11(θ)u2
1 + h12(θ)u1u2 + h22(θ)u2

2.

We next find the basis Ψ(ξ), ξ ≥ 0, for the centre eigenspace of the dual equation. We
first determine a general basis Ψg(ξ) in the same way we found Φ(θ),

ψg1(ξ) = Re(e−iωξ) = cos(ωξ)

and
ψg2(ξ) = Im(e−iωξ) = − sin(ωξ).

Thus the general basis corresponding to centre eigenspace of the dual equation is given by
the matrix

Ψg =

[
cos(ωξ)
− sin(ωξ)

]
. (5.38)

We next want to find a basis Ψ such that 〈Ψ,Φ〉 = I. The elements of the new basis Ψ
will be a linear combinations of those of Ψg, i.e. Ψ = KΨg, where K is a 2× 2 matrix of
constants. We thus impose

I = 〈Ψ,Φ〉 = 〈KΨg,Φ〉 = K〈Ψg,Φ〉.

From here we have that K = 〈Ψg,Φ〉−1, where

〈Ψg,Φ〉 =

[
〈ψg1 , φ1〉 〈ψg1 , φ2〉
〈ψg2 , φ1〉 〈ψg2 , φ2〉

]
, (5.39)
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and the bilinear form 〈ψ, φ〉 is defined in (5.17). We calculate the elements in (5.39) by
substituting (5.37) and (5.38) into (5.17). We first compute

C ′(ω) = −
∫ 0

−∞
θ sin(ωθ) ĝ(−θ) dθ and S ′(ω) = −

∫ 0

−∞
θ cos(ωθ) ĝ(−θ) dθ.

Since from (5.33), βτ = −ω/S(ω), we then have

〈ψg1 , φ1〉 = cos(0) cos(0)− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

cos(ω(ξ − θ))ĝ(−θ) cos(ωξ) dξ dθ

= 1 +
ω

S(ω)

∫ θ=0

θ=−∞

(∫ ξ=θ

ξ=0

cos(ω(ξ − θ)) cos(ωξ) dξ

)
ĝ(−θ) dθ

= 1 +
ω

S(ω)

∫ θ=0

θ=−∞

(
sin(ωθ) + ωθ cos(ωθ)

2ω

)
ĝ(−θ) dθ

= 1 +
1

2S(ω)

∫ θ=0

θ=−∞
sin(ωθ)ĝ(−θ) dθ +

ω

2S(ω)

∫ θ=0

θ=−∞
θ cos(ωθ)ĝ(−θ) dθ

=
1

2
− ω

2

S ′(ω)

S(ω)
,

〈ψg1 , φ2〉 = cos(0) sin(0)− βτ
∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

cos(ω(ξ − θ))ĝ(−θ) sin(ωξ) dξ dθ

=
ω

S(ω)

∫ θ=0

θ=−∞

(∫ ξ=θ

ξ=0

cos(ω(ξ − θ)) sin(ωξ) dξ

)
ĝ(−θ) dθ

=
ω

S(ω)

∫ θ=0

θ=−∞

θ sin(ωθ)

2
ĝ(−θ) dθ

= −ω
2

C ′(ω)

S(ω)
,

〈ψg2 , φ1〉 = − sin(0) cos(0) + βτ

∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

sin(ω(ξ − θ))ĝ(−θ) cos(ωξ) dξ dθ

= − ω

S(ω)

∫ θ=0

θ=−∞

(∫ ξ=θ

ξ=0

sin(ω(ξ − θ)) cos(ωξ) dξ

)
ĝ(−θ) dθ

=
ω

S(ω)

∫ θ=0

θ=−∞

θ sin(ωθ)

2
ĝ(−θ) dθ

= −ω
2

C ′(ω)

S(ω)
,
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〈ψg2 , φ2〉 = − sin(0) sin(0) + βτ

∫ θ=0

θ=−∞

∫ ξ=θ

ξ=0

sin(ω(ξ − θ))ĝ(−θ) sin(ωξ) dξ dθ

= − ω

S(ω)

∫ θ=0

θ=−∞

(∫ ξ=θ

ξ=0

sin(ω(ξ − θ)) sin(ωξ) dξ

)
ĝ(−θ) dθ

= − ω

S(ω)

∫ θ=0

θ=−∞

(
− sin(ωθ) + ωθ cos(ωθ)

2ω

)
ĝ(−θ) dθ

=
1

2S(ω)

∫ θ=0

θ=−∞
sin(ωθ)ĝ(−θ) dθ − ω

2S(ω)

∫ θ=0

θ=−∞
θ cos(ωθ)ĝ(−θ) dθ

= −1

2
+
ω

2

S ′(ω)

S(ω)
.

Thus (5.39) becomes

〈Ψg,Φ〉 =
1

2S(ω)

[
S(ω)− ωS ′(ω) −ωC ′(ω)
−ωC ′(ω) −S(ω) + ωS ′(ω)

]
.

Taking its inverse and letting D(ω) = S2(ω)− 2ωS(ω)S ′(ω) + ω2 [(C ′(ω))2 + (S ′(ω))2], we
obtain

K =
2S(ω)

D(ω)

[
S(ω)− ωS ′(ω) −ωC ′(ω)
−ωC ′(ω) −S(ω) + ωS ′(ω)

]
.

Now we can compute our new basis Ψ(ξ) = KΨg(ξ), but since later we only need this
basis evaluated at ξ = 0, we only display Ψ(0),

Ψ(0) =

[
ψ10

ψ20

]
=

2S(ω)

D(ω)

[
S(ω)− ωS ′(ω)
−ωC ′(ω)

]
. (5.40)

We can now define the ODEs for h11(θ), h12(θ) and h22(θ). The left-hand side of (5.31)
becomes

∂h2

∂θ
=
dh11(θ)

dθ
u2

1 +
dh12(θ)

dθ
u1u2 +

dh22(θ)

dθ
u2

2. (5.41)

The first term in the right-hand side of (5.31) is given by

∂h2

∂u
Bu =

[
2h11(θ)u1 + h12(θ)u2 h12(θ)u1 + 2h22(θ)u2

] [ ωu2

−ωu1

]
= −ωh12(θ)u2

1 + 2ω[h11(θ)− h22(θ)]u1u2 + ωh12(θ)u2
2. (5.42)

For the second term in the right-hand side of (5.31), we first need to compute F2(Φ(θ)u).
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Since Φ(θ)u = cos(ωθ)u1 + sin(ωθ)u2, from (5.6) and (5.34) we then have

F2(Φ(θ)u) = γτ

∫ 0

−∞
[cos(ωθ)u1 + sin(ωθ)u2]2ĝ(−θ) dθ

= γτ

∫ 0

−∞

[
cos2(ωθ)u2

1 + 2 cos(ωθ) sin(ωθ)u1u2 + sin2(ωθ)u2
2

]
ĝ(−θ) dθ

= γτ

∫ 0

−∞

[
1 + cos(2ωθ)

2
u2

1 + sin(2ωθ)u1u2 +
1− cos(2ωθ)

2
u2

2

]
ĝ(−θ) dθ

= γτ

(
1 + C(2ω)

2
u2

1 − S(2ω)u1u2 +
1− C(2ω)

2
u2

2

)
.

Now Φ(θ)Ψ(0) = cos(ωθ)ψ10 + sin(ωθ)ψ20, and thus the second term in the right-hand
side of (5.31) becomes

Φ(θ)Ψ(0)F2(Φ(θ)u) = γτ [cos(ωθ)ψ10 + sin(ωθ)ψ20]
1 + C(2ω)

2
u2

1

− γτ [cos(ωθ)ψ10 + sin(ωθ)ψ20]S(2ω)u1u2

+ γτ [cos(ωθ)ψ10 + sin(ωθ)ψ20]
1− C(2ω)

2
u2

2,

(5.43)

where the expression for ψ10 and ψ20 are given in (5.40). Equating the coefficients of
u2

1, u1u2 and u2
2 in (5.41), (5.42) and (5.43) we obtain the following system of ODEs,

dh11(θ)

dθ
= −ωh12(θ) + γτ [cos(ωθ)ψ10 + sin(ωθ)ψ20]

1 + C(2ω)

2
dh12(θ)

dθ
= 2ωh11(θ)− 2ωh22(θ)− γτ [cos(ωθ)ψ10 + sin(ωθ)ψ20]S(2ω)

dh22(θ)

dθ
= ωh12(θ) + γτ [cos(ωθ)ψ10 + sin(ωθ)ψ20]

1− C(2ω)

2
.

This is a system of linear ODEs which can be solved in MapleTM for h11(θ), h12(θ) and
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h22(θ) in terms of the three arbitrary constants c1, c2, and c3,

h11(θ) = − 1

6ω

[
−6ωc3 cos2(ωθ) + 6ωc2 sin(ωθ) cos(ωθ) + 3γτψ20 cos(ωθ)

− 3γτψ10 sin(ωθ) + γτψ10 sin(ωθ)C(2ω)− 2γτψ10 cos(ωθ)S(2ω)

−2γτψ20 sin(ωθ)S(2ω)− γτψ20 cos(ωθ)C(2ω)− 6ωc1 + 3ωc3] ,

h12(θ) =
1

3ω

[
6ωc2 cos2(ωθ) + 6ωc3 sin(ωθ) cos(ωθ) + 2γτψ10 cos(ωθ)C(2ω)

+ 2γτψ20 sin(ωθ)C(2ω) + γτψ10 sin(ωθ)S(2ω)

−γτψ20 cos(ωθ)S(2ω)− 3ωc2] ,

h22(θ) =
1

6ω

[
−6ωc3 cos2(ωθ) + 6ωc2 sin(ωθ) cos(ωθ)− 3γτψ20 cos(ωθ)

+ 3γτψ10 sin(ωθ) + γτψ10 sin(ωθ)C(2ω)− 2γτψ10 cos(ωθ)S(2ω)

−2γτψ20 sin(ωθ)S(2ω)− γτψ20 cos(ωθ)C(2ω) + 6ωc1 + 3ωc3] .

(5.44)

We next determine the three constants of integration using (5.32). To compute L(h2(θ,u(t)))
we need h2(0,u(t)) and thus substituting θ = 0 into the above expressions we have

h11(0) =
1

6ω
[γτψ20C(2ω) + 2γτψ10S(2ω)− 3γτψ20 + 6ωc1 + 3ωc3] ,

h12(0) =
1

3ω
[2γτψ10C(2ω)− γτψ20S(2ω) + 3ωc2] ,

h22(0) = − 1

6ω
[γτψ20C(2ω) + 2γτψ10S(2ω) + 3γτψ20 − 6ωc1 + 3ωc3] .

(5.45)

In the calculation of L(h2(θ,u(t))) we also need
∫ 0

−∞ h2(θ,u(t))ĝ(−θ) dθ, and thus we next
compute∫ 0

−∞
h11(θ)ĝ(−θ) dθ =

1

6ω
[γτψ20C(ω)C(2ω) + γτψ10S(ω)C(2ω) + 3ωc3C(2ω)

+ 2γτψ10C(ω)S(2ω)− 2γτψ20S(ω)S(2ω) + 3ωc2S(2ω)

− 3γτψ20C(ω) −3γτψ10S(ω) + 6ωc1] ,∫ 0

−∞
h12(θ)ĝ(−θ) dθ = − 1

3ω
[−2γτψ10C(ω)C(2ω) + 2γτψ20S(ω)C(2ω)

+ γτψ20C(ω)S(2ω) + γτψ10S(ω)S(2ω)

− 3ωc2C(2ω) +3ωc3S(2ω)] ,∫ 0

−∞
h22(θ)ĝ(−θ) dθ = − 1

6ω
[γτψ20C(ω)C(2ω) + γτψ10S(ω)C(2ω) + 3ωc3C(2ω)

+ 2γτψ10C(ω)S(2ω)− 2γτψ20S(ω)S(2ω) + 3ωc2S(2ω)

+ 3γτψ20C(ω) +3γτψ10S(ω)− 6ωc1] .

(5.46)

140



Therefore equation (5.32) becomes

−ωh12(0)u2
1 + 2ω[h11(0)− h22(0)]u1u2 + ωh12(0)u2

2

+ γτψ10

(
1 + C(2ω)

2
u2

1 − S(2ω)u1u2 +
1− C(2ω)

2
u2

2

)
= −ατ

[
h11(0)u2

1 + h12(0)u1u2 + h22(0)u2
2

]
+ βτ

[
u2

1

∫ 0

−∞
h11(θ)ĝ(−θ) dθ + u1u2

∫ 0

−∞
h12(θ)ĝ(−θ) dθ + u2

2

∫ 0

−∞
h22(θ)ĝ(−θ) dθ

]
+ γτ

(
1 + C(2ω)

2
u2

1 − S(2ω)u1u2 +
1− C(2ω)

2
u2

2

)
.

Substituting (5.45) and (5.46) into the above equation and equating the coefficients of
u2

1, u1u2 and u2
2 yields a system of three equations for c1, c2, and c3, which is solved in

MapleTM. Let E(ω) = C2(2ω) + S2(2ω) + C2(ω) + 4S2(ω) − 2C(ω)C(2ω) − 4S(ω)S(2ω),
then the three constants of integration are given by

c1 =
γτS(ω)

2ω(1− C(ω))
,

c2 =
γτS(ω)[C(ω)S(2ω)− 2S(ω)C(2ω)]

ωE(ω)
,

c3 =
γτS(ω)[C2(ω) + S2(ω)− C(ω)C(2ω)− 2S(ω)S(2ω)]

ωE(ω)
.

(5.47)

Plugging in the above values into (5.44), we obtain the expressions for h11(θ), h12(θ) and
h22(θ) which will be substituted into equation (5.29). Since (5.29) is an ODE of the form[

u′1(t)
u′2(t)

]
=

[
0 ω
−ω 0

] [
u1(t)
u2(t)

]
+

[
M(u1, u2)
N(u1, u2)

]
,

where M and N represent nonlinear functions, the stability of the equilibrium point and
the criticality of the Hopf bifurcation is determined by the sign of the cubic coefficient [25]

a =
1

16
[Mu1u1u1 +Mu1u2u2 +Nu1u1u2 +Nu2u2u2 ]−

1

16ω
[Mu1u2(Mu1u1 +Mu2u2)

−Nu1u2(Nu1u1 +Nu2u2)−Mu1u1Nu1u1 +Mu2u2Nu2u2 ] ,
(5.48)

where Mu1u2 denotes ∂2M/∂u1∂u2(0, 0), and so on. If a < 0 the periodic solutions are
stable limit cycles, while if a > 0 the periodic solutions are repelling.

In our case we have

M(u1, u2) = ψ10F (Φ(θ)u(t) + h(θ,u(t)))

N(u1, u2) = ψ20F (Φ(θ)u(t) + h(θ,u(t))) ,
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where

F (Φ(θ)u(t) + h(θ,u(t)))

= γτ

∫ 0

−∞
[cos(ωθ)u1 + sin(ωθ)u2 + h11(θ)u2

1 + h12(θ)u1u2 + h22(θ)u2
2]2ĝ(−θ) dθ

+ δτ

∫ 0

−∞
[cos(ωθ)u1 + sin(ωθ)u2 + h11(θ)u2

1 + h12(θ)u1u2 + h22(θ)u2
2]3ĝ(−θ) dθ.

After performing the calculations and simplifications in MapleTM (see Appendix A), we
obtain the cubic coefficient to be

aDDE =
τψ10

8
(2γc3C(ω) + 8γc1C(ω) + 3δC(ω) + 2γc2S(ω))

− τψ20

8
(−2γc2C(ω) + 8γc1S(ω) + 2γc3S(ω) + 3δS(ω)) ,

(5.49)

where ψ10 and ψ20 are given in (5.40), and c1, c2 and c3 are given in (5.47).

Since the curves in (5.35) that form part of the stability boundary must lie in the region
β ≤ −α where α > 0, from (5.36) and (3.15), we have that

dRe(λ)

dβ

∣∣∣∣
λ=iω

≶ 0 if µ =
dτ

dω
≷ 0,

where

µ = − 1

αS(ω)

(
C(ω) + ω

C ′(ω)S(ω)− S ′(ω)C(ω)

S(ω)

)
. (5.50)

Since our calculations are formal, i.e. they assume that the centre manifold theory holds
for DDEs with infinite distributed delay although it has not been rigorously proven, we
summarize the results of this section in the following conjecture.

Conjecture 1 If µ 6= 0, as β passes through a critical value βc on the curves in (5.35),
there is a Hopf bifurcation at the equilibrium point x∗ of (5.1). If µ > 0 then x∗ is
locally asymptotically stable (unstable) for β > βc (β < βc). If µ < 0 then x∗ is locally
asymptotically stable (unstable) for β < βc (β > βc). The periodic solutions are stable
(unstable) if aDDE < 0 (aDDE > 0).

In the next two subsections, we compute the cubic coefficient aDDE in the specific
cases of the weak and strong kernels, i.e. the gamma distribution with p = 1 and p = 2,
respectively.
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5.2.1 The Cubic Coefficient in the Case of the Weak Kernel

When ĝ(−θ) is the weak kernel, i.e. ĝ(−θ) = eθ, we have

C(ω) =
1

1 + ω2
, S(ω) =

ω

1 + ω2
,

C(2ω) =
1

1 + 4ω2
, S(2ω) =

2ω

1 + 4ω2
,

C ′(ω) = − 2ω

(1 + ω2)2
, S ′(ω) =

1− ω2

(1 + ω2)2
.

(5.51)

Plugging the expressions for C(ω) and S(ω) obtained above into (5.33) we get that ατ = −1
and ω2 = −1− βτ . Therefore α must be negative in order for the characteristic equation
to have a pair of pure imaginary roots. We note that in this case equation (5.1) does not
represent a scalar Hopfield model (for which α is positive), but we still compute the cubic
coefficient in this case in order to observe how it compares to the cubic coefficient of the
corresponding ODE model.

From (5.51) we obtain

ψ10 = 1, ψ20 =
1

ω
,

and
c1 =

γτ

2ω2
, c2 = 0, c3 = − γτ

3ω2
.

Substituting the above expressions into (5.49), we obtain aDDE = 0. Hence, in the case of
the weak kernel, we cannot conclude anything about the stability of the periodic solutions
or even if they exist. In fact, plugging in (5.51) into (5.50), we get

µ = 0 ⇒ dRe(λ)

dβ

∣∣∣∣
λ=iω

= 0,

and therefore Conjecture 1 cannot predict whether a Hopf bifurcation can occur at the
equilibrium point x∗ of (5.1) in the weak kernel case.
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5.2.2 The Cubic Coefficient in the Case of the Strong Kernel

When ĝ(−θ) represents the strong kernel, i.e. ĝ(−θ) = −4θe2θ, we have

C(ω) =
4(4− ω2)

(4 + ω2)2
, S(ω) =

16ω

(4 + ω2)2
,

C(2ω) =
4(4− 4ω2)

(4 + 4ω2)2
, S(2ω) =

32ω

(4 + 4ω2)2
,

C ′(ω) =
8ω(ω2 − 12)

(4 + ω2)3
, S ′(ω) = −16(3ω2 − 4)

(4 + ω2)3
.

(5.52)

Therefore from (5.40) and (5.47) we get

ψ10 =
32

ω2 + 36
, ψ20 =

4(12− ω2)

ω(ω2 + 36)
, (5.53)

and

c1 =
8γτ

ω2(ω2 + 12)
, c2 =

128γτ

3ω(ω4 + 88ω2 + 144)
, c3 = − 16γτ(ω2 + 12)

3ω2(ω4 + 88ω2 + 144)
. (5.54)

Substituting (5.52) into (5.50), we get

µ =
ω(ω2 + 4)2

8β(4− ω2)
6= 0 ⇒ dRe(λ)

dβ

∣∣∣∣
λ=iω

6= 0. (5.55)

Hence Conjecture 1 predicts that a Hopf bifurcation does occur in this case. Plugging
in (5.52), (5.53) and (5.54) into (5.49), we obtain that, for the strong kernel, the cubic
coefficient is given by

aDDE =
ω2 + 4

2β2ω2(ω2 + 36)(ω2 + 12)(ω4 + 88ω2 + 144)

×
[
(3βδ − 2γ2)ω8 + (300βδ − 320γ2)ω6 + (3600βδ − 2752γ2)ω4

+(5184βδ − 7168γ2)ω2 − 4608γ2
]
.

(5.56)

In this case, the sign of aDDE is given by the expression inside the square brackets.

We next exemplify the predictions of Conjecture 1 by looking at a particular example.
Let α = 2, then substituting the expressions for C(ω) and S(ω) from (5.52) into (5.35), we
obtain

β =
(ω2 + 4)2

2(4− ω2)
, τ = −ω

4 + 4

8
, (5.57)
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where the interval for ω is chosen such that we obtain the closest curve to the τ -axis, i.e. the
curve which forms part of the stability boundary. From Section 3.1, the region of stability
of the equilibrium point x∗ of (5.1) is the region to the right of the curve in (5.57) and to
the left of the vertical line β = α. This region of stability can be seen in Figure 5.1(a), as
the region between the solid black curve and the solid gray line. For a particular value of
the mean delay, say τc = 0.6, we obtain the critical values of β and ω, by solving system
(5.57). In this case we get βc = −17.07 and ωc = 2.97, as seen in Figure 5.1(a). Thus
we have that the equilibrium point is stable for −17.07 = βc < β < α and unstable for
β < βc = −17.07.

τ

β

cτ

cβ

1.0

−12

0.0

840−4

0.75

−8

0.5

0.25

−16−20−24−28

(a) Stability diagram, strong kernel

cβ β

(b) Predicted bifurcation diagram

Figure 5.1: (a) Stability region for the gamma distribution with p = 2 when α = 2. The
region of stability of the equilibrium point x∗ of (5.1) lies between the solid black curve
defined by equations (5.57) and the solid gray line. For τc = 0.6, we obtain βc = −17.07
and ωc = 2.97; (b) When f = tanh(0.176x), w = −100, c = 19.421, Conjecture 1 predicts
that as β passes through the critical value βc = −17.07, there is a Hopf bifurcation at
the equilibrium point x∗ = 1 of (5.1) giving rise to stable periodic solutions in the region
β < βc = −17.07.

Let f = tanh(Ax), x∗ = 1 and w = −100. Then A solves the equation β/w =
A sech2(A) since β̄ = f ′(x∗) and c = α − w tanh(A) by (5.3). In this case we obtain
A = 0.176, c = 19.421, γ = 0.523 and δ = 0.160. From (5.55), we have µ > 0 if ω > 2.
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Calculating aDDE in (5.56) at the critical parameter values, we obtain aDDE < 0. Using
Conjecture 1 we predict that as β passes through the critical value βc = −17.07, there is a
Hopf bifurcation at the equilibrium point x∗ = 1 of (5.1) giving rise to stable periodic so-
lutions in the region β < βc = −17.07. Hence Conjecture 1 predicts a bifurcation diagram
as seen in Figure 5.1(b). We check this prediction numerically in Section 5.4.

In the next two sections we verify the predictions of Conjecture 1 by transforming the
DDE (5.1) with ĝ(−θ) representing the weak and strong kernels into equivalent systems
of ODEs, computing the cubic coefficient for the ODE cases, and performing numerical
simulations.

5.3 The Equivalent Two Dimensional ODE System

In this section we verify the results we obtained in Subsection 5.2.1 by transforming the
scalar DDE (5.1) where ĝ(−θ) represents the weak kernel (i.e. the gamma distribution with
p = 1) into a two dimensional ODE system.

Applying the linear chain trick presented in Section 2.5, equation (5.1) becomes{
x′0(t) = −ατx0(t) + wτx1(t) + cτ
x′1(t) = f(x0(t))− x1(t)

(5.58)

We assume the above system admits an equilibrium solution (x∗0, x
∗
1) satisfying{

0 = −ατx∗0 + wτx∗1 + cτ
0 = f(x∗0)− x∗1.

(5.59)

We next shift the equilibrium to zero and separate the linear and nonlinear terms. Let
y0(t) = x0(t)− x∗0 and y1(t) = x1(t)− x∗1. Then the Taylor series expansion of f about x∗0
is

f(x0) = f(x∗0) + β̄y0 +
γ̄

2
y2

0 +
δ̄

6
y3

0 + h.o.t. , (5.60)

where β̄ = f ′(x∗0), γ̄ = f ′′(x∗0), and δ̄ = f ′′′(x∗0). Using this along with (5.59) and renaming
back to x0 and x1, we have x′0(t) = −ατx0(t) + wτx1(t)

x′1(t) = β̄x0(t)− x1(t) +
γ̄

2
(x0(t))2 +

δ̄

6
(x0(t))3 + h.o.t.

This can be written in vector form as x′ = Ax+ F (x), where x = [x0, x1]T , i.e.[
x′0
x′1

]
=

[
−ατ wτ
β̄ −1

] [
x0

x1

]
+

[
0

γ̄x2
0/2 + δ̄x3

0/6 + · · ·

]
. (5.61)
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For a Hopf bifurcation to occur, the characteristic equation must have a pair of pure
imaginary roots. The two eigenvalues are given by

λ1,2 =
tr(A)

2
±
√

[tr(A)]2 − 4 det(A)

2

= −ατ + 1

2
±
√

(ατ + 1)2 − 4τ(α− β)

2
, (5.62)

where β = β̄w. Hence A has a pair of pure imaginary roots, λ1,2 = ±i
√
−1− βτ , if

ατ = −1 and β < α. From (5.62) we also have that

dRe(λ)

dβ

∣∣∣∣
λ=iω

= 0,

and thus the Hopf Bifurcation Theorem ([25], Theorem 3.4.2) cannot guarantee the exis-
tence of a Hopf bifurcation.

We next perform a change of variables so that the linear part in (5.61) is in standard
block diagonal form. When λ1,2 = ±iω, the matrix A becomes

A|λ=±iω =

 1 −w(ω2 + 1)

β
β/w −1

 .
The corresponding eigenvectors are given by

u1 =

[
1

β/w

]
,u2 =

[
ω
0

]
.

We let P = [u1 | u2 ] and with the change of variables x = Py, where y = [y0, y1]T ,
system (5.61) becomes[

y′0
y′1

]
=

[
0 ω
−ω 0

] [
y0

y1

]
+ P−1

[
0

F (x0)

]
, (5.63)

where F (x0) = γ̄x2
0/2 + δ̄x3

0/6 + h.o.t. , x0 = y0 + ωy1, and

P−1 =
1

ωβ

[
0 ωw
β −w

]
.

System (5.63) is now in standard form,[
y′0
y′1

]
= B

[
y0

y1

]
+

[
M(y0, y1)
N(y0, y1)

]
, B =

[
0 ω
−ω 0

]
, (5.64)
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where M and N represent nonlinear functions of second order or higher given by

M(y0, y1) =
w

β
F (y0 + ωy1),

N(y0, y1) = − w

ωβ
F (y0 + ωy1).

Computing the partial derivatives of M and N and plugging them into (5.48), we obtain
the cubic coefficient associated with system (5.58) to be aODE = 0, which is exactly what
we arrived at in Subsection 5.2.1. As in the DDE case, we cannot determine whether
periodic solutions exist or whether they are attracting or repelling.

In fact, we notice that when ατ = −1, system (5.58) is a Hamiltonian system,
x′0 =

∂H
∂x1

(x0, x1)

x′1 = −∂H
∂x0

(x0, x1),

where the Hamiltonian function is given by

H(x0, x1) = x0x1 +
wτ

2
x2

1 + cτx1 −
∫
f(x0)dx0. (5.65)

The solutions of system (5.58) lie on the level curves H(x0, x1) = constant. In Figure 5.2
we plot the level curves of H(x0, x1) = constant for f(x0) = tanh(x0), α = −2, τ = 0.5, w =
−10 and c = 5.616. We notice that the equilibrium point (x∗0, x

∗
1) = (1, tanh 1) of (5.58) is

a centre and thus a Hopf bifurcation does not occur for this system.

5.4 The Equivalent Three Dimensional ODE System

In this section we verify the results we obtained in Subsection 5.2.2 by transforming the
scalar DDE (5.1) where ĝ(−θ) represents a gamma distribution with p = 2 (called the
strong kernel) into a three dimensional ODE system. We perform the centre manifold
calculation for the ODE system and compare the sign of the cubic coefficient with the sign
of the expression we obtained in Subsection 5.2.2.

Applying the linear chain trick presented in Section 2.5, equation (5.1) becomes
x′0(t) = −ατx0(t) + wτx2(t) + cτ
x′1(t) = 2[f(x0(t))− x1(t)]
x′2(t) = 2[x1(t)− x2(t)].

(5.66)
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Figure 5.2: The solutions of the Hamiltonian system (5.58) (when f(x0) = tanh(x0), α =
−2, τ = 0.5, w = −10, c = 5.616) lie on the level curves H(x0, x1) = constant, with
H(x0, x1) given in (5.65). The equilibrium point (x∗0, x

∗
1) = (1, tanh 1) of (5.58) is a centre

and thus a Hopf bifurcation does not occur for this system.

We assume the above equation admits an equilibrium solution (x∗0, x
∗
1, x
∗
2) satisfying

0 = −ατx∗0 + wτx∗2 + cτ
0 = f(x∗0)− x∗1
0 = x∗1 − x∗2.

(5.67)

Using(5.60) and (5.67), we obtain
x′0(t) = −ατx0(t) + wτx2(t)

x′1(t) = 2[β̄x0(t)− x1(t) +
γ̄

2
(x0(t))2 +

δ̄

6
(x0(t))3 + h.o.t. ]

x′2(t) = 2[x1(t)− x2(t)].

This can be written in vector form as x′ = Ax+ F (x), where x = [x0, x1, x2]T , i.e. x′0
x′1
x′2

 =

 −ατ 0 wτ
2β̄ −2 0
0 2 −2

 x0

x1

x2

+

 0
γ̄x2

0 + δ̄x3
0/3 + h.o.t.
0

 . (5.68)
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The characteristic equation corresponding to the linear system x′ = Ax is given by

0 = det(λI −A) = λ3 + (ατ + 4)λ2 + 4ατ − 4βτ, (5.69)

where β = β̄w. A Hopf bifurcation occurs when the characteristic equation has a simple
pair of pure imaginary roots, no other root with zero real part and dRe(λ)/dβ|λ=iω 6=
0 ([25], Theorem 3.4.2). Substituting λ = iω into (5.69) and separating into real and
imaginary parts we obtain

4ατ − 4βτ = 4ω2 + ω2ατ,

4ατ + 4 = ω2.
(5.70)

From (5.69) we get

∂∆

∂β
= −4τ and

∂∆

∂λ
= 3λ2 + 2(ατ + 4)λ.

Therefore

dRe(λ)

dβ

∣∣∣∣
λ=iω

= −Re

(
∂∆

∂β
/
∂∆

∂λ

∣∣∣∣
λ=iω

)
= − 12τω2

9ω4 + (2ατω + 8ω)2
6= 0.

Thus by Theorem 3.4.2 from [25] we conclude that system (5.66) does undergo a Hopf
bifurcation .

We next perform a change of variables so that the linear part of (5.68) is in standard
block diagonal form. From (5.70) we get that ατ = (ω2 − 4)/4 and τ = −(ω2 + 4)2/(16β)
and thus matrix A becomes

A|λ=±iω =


4− ω2

4
0 −w(ω2 + 4)2

16β
2β/w −2 0

0 2 −2

 .
with eigenvalues λ1 = iω, λ2 = −iω and λ3 = −3 − ω2/4. We note that since λ3 is
always negative, the stability of the equilibrium point is dictated by the flow on the centre
manifold [25]. The corresponding eigenvectors are

u1 =

 4− ω2

4β/w
4β/w

 ,u2 =

 4ω
2βω/w

0

 ,u3 =

 (ω2 + 4)2

−8β(ω2 + 4)/w
64β/w

 .
We let P = [u1 | u2 | u3] and with the change of variables x = Py, where y = [y0, y1, y2]T ,
the system becomes y′0

y′1
y′2

 =

 0 ω 0
−ω 0 0
0 0 −3− ω2/4

 y0

y1

y2

+ P−1

 0
F (x0)

0

 , (5.71)
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where F (x0) = γ̄x2
0 + δ̄x3

0/3 + h.o.t. , x0 = (4− ω2)y0 + 4ωy1 + (ω2 + 4)2y2, and

P−1 =


− 16

ω4 + 40ω2 + 144

32w

β(ω4 + 40ω2 + 144)

w(ω2 + 20)

4β(ω2 + 36)
4(ω2 + 12)

ω(ω4 + 40ω2 + 144)

w(ω4 + 24ω2 − 48)

2βω(ω4 + 40ω2 + 144)

w(ω2 − 12)

2βω(ω2 + 36)
1

ω4 + 40ω2 + 144
− 2w

β(ω4 + 40ω2 + 144)

w

4β(ω2 + 36)

 .

System (5.71) is now in standard form,[
y′0
y′1

]
= B

[
y0

y1

]
+G(y0, y1, y2)

y′2 = Cy2 +H(y0, y1, y2),

(5.72)

where

B =

[
0 ω
−ω 0

]
and C = −3− ω2/4.

Since the centre manifold is tangent to the centre eigenspace, we can represent it as a local
graph

W c = {(y0, y1, y2) : y2 = h(y0, y1), h(0) = Dh(0) = 0} ,
where h : U → R is defined on some neighborhood U ⊂ R2 of the origin [25]. We consider
the projection of the vector field on y2 = h(y0, y1) onto the centre eigenspace,[

y′0
y′1

]
= B

[
y0

y1

]
+G(y0, y1, h(y0, y1)). (5.73)

If the origin of the above reduced system is locally asymptotically stable then the origin
of (5.72) is also locally asymptotically stable [25]. We approximate h(y0, y1) as

h(y0, y1) = ay2
0 + by0y1 + cy2

1 (5.74)

and we calculate its coefficients by substituting it into

Dh(y0, y1)[Bh(y0, y1) +G(y0, y1, h(y0, y1))]− Ch(y0, y1)−H(y0, y1, h(y0, y1)) = 0.

Equating the coefficients of y2
0, y0y1 and y2

1 in the above expression we obtain a system of
three equations which is solved in MapleTM for a, b and c,

a = − 8wγ̄(ω8 + 16ω6 − 32ω4 + 1280ω2 + 2304)

β(ω10 + 140ω8 + 5344ω6 + 64128ω4 + 241920ω2 + 248832)
,

b =
128wωγ̄(ω4 − 8ω2 − 16)

β(ω8 + 128ω6 + 3808ω4 + 18432ω2 + 20736)
,

c = − 128wω2γ̄(5ω4 + 56ω2 + 80)

β(ω10 + 140ω8 + 5344ω6 + 64128ω4 + 241920ω2 + 248832)
.
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Plugging these into (5.74) we obtain the approximation for h(y0, y1), which will be substi-
tuted into the reduced system (5.73). This system is of the form (5.64) with M and N
given by

M(y0, y1) =
32w

β(ω4 + 40ω2 + 144)
F ((4− ω2)y0 + 4ωy1 + (ω2 + 4)2h(y0, y1)),

N(y0, y1) =
w(ω4 + 24ω2 − 48)

2βω(ω4 + 40ω2 + 144)
F ((4− ω2)y0 + 4ωy1 + (ω2 + 4)2h(y0, y1)).

Letting γ̄ = 2γ/w and δ̄ = 6δ/w and computing the partial derivatives of M and N in
MapleTM and plugging them into (5.48), we obtain the cubic coefficient associated with
system (5.66),

aODE =
(ω2 + 4)3

2β2ω2(ω2 + 36)(ω2 + 12)(ω4 + 88ω2 + 144)

×
[
(3βδ − 2γ2)ω8 + (300βδ − 320γ2)ω6 + (3600βδ − 2752γ2)ω4

+(5184βδ − 7168γ2)ω2 − 4608γ2
]
.

The sign of aODE is determined by the sign of expression in the square brackets, which is
identical to the expression in the square brackets that we obtained in (5.56). Thus the sign
of aODE is the same as the sign of aDDE and therefore we obtained the same result about
the criticality of the Hopf bifurcation as in Subsection 5.2.2.

We next perform numerical simulations using the XPPAUT package [17] to verify our
results. Using the same nonlinear function f and parameter values as in the example at the
end of Subsection 5.2.2, i.e. f(x) = tanh(0.176x), α = 2, τ = 0.6, w = −100 and c = 19.421,
we generate a bifurcation diagram for system (5.66) as seen in Figure 5.3, which shows
that as β passes through the critical value βc = −17.07, there is a Hopf bifurcation at
the equilibrium point (x∗0, x

∗
1, x
∗
2) = (1, tanh 0.176, tanh 0.176) giving rise to stable periodic

solutions in the region β < βc = −17.07. This bifurcation diagram verifies the predictions
of Conjecture 1, which indicated the same bifurcation diagram in Figure 5.1(b). For
β = −15 > βc, the numerical simulation in Figure 5.4(a) shows that x0(t) approaches
x∗0 = 1 for large t, i.e. the equilibrium point (x∗0, x

∗
1, x
∗
2) = (1, tanh 0.176, tanh 0.176) of

(5.66) is stable. For β = −18 < βc, x0(t) approaches a stable periodic solution as seen in
Figure 5.4(b), i.e. the equilibrium point (x∗0, x

∗
1, x
∗
2) = (1, tanh 0.176, tanh 0.176) of (5.66)

is unstable.

In the following section we show how the approximations we developed in Chapter 3
can be applied to the centre manifold calculations in Section 5.2.
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Figure 5.3: Bifurcation diagram for system (5.66) generated using the XPPAUT pack-
age (where stable periodic solutions are depicted by solid points). When f(x) =
tanh(0.176x), α = 2, τ = 0.6, w = −100 and c = 19.421, as β passes through the criti-
cal value βc = −17.07, there is a Hopf bifurcation at the equilibrium point (x∗0, x

∗
1, x
∗
2) =

(1, tanh 0.176, tanh 0.176) of (5.66) giving rise to stable periodic solutions in the region
β < βc = −17.07, which is exactly what Conjecture 1 predicted.

5.5 Approximations

In this section we apply the approximations in terms of the first few moments or cumulants
of a distribution along with Conjecture 1 to predict whether model (5.1) can undergo a
Hopf bifurcation at the equilibrium point and to determine the direction and criticality
of the bifurcation. To do so, we must determine the sign of µ in (5.50) and aDDE in
(5.49) using the approximations for C(ω) and S(ω) that we developed in Chapter 3. The
expressions for µ and aDDE are evaluated at the critical value of the parameters. We fix
α and for a particular value of the mean delay, τc, we solve system (5.33) for βc and ωc.
Figure 5.5 shows the true and an approximate boundary of stability for a given distribution.
The true stability region is between the solid black curve and the vertical solid gray line.
The approximate stability boundary is depicted as the dotted curve. It can be seen that
the point (βc, τc) is on the true boundary of stability, while the point (β∗c , τc) is on the
approximate boundary of stability. The value for βc is obtained by solving system (5.33),
where we substitute the exact expressions for C(ω) and S(ω) from (5.34). The value for
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Figure 5.4: Numerical simulations for system (5.66) when f(x) = tanh(0.176x), α = 2, τ =
0.6, w = −100 and c = 19.421. (a) For β = −15 > βc, x0(t) approaches x∗0 = 1 for large
t, i.e. the equilibrium point (x∗0, x

∗
1, x
∗
2) = (1, tanh 0.176, tanh 0.176) of (5.66) is stable. (b)

For β = −18 < βc, x0(t) approaches a stable periodic solution, i.e. the equilibrium point
(x∗0, x

∗
1, x
∗
2) = (1, tanh 0.176, tanh 0.176) of (5.66) is unstable.

β∗c is obtained by solving system (5.33), where we use the approximations for C(ω) and
S(ω) from Tables 3.1 and 3.2.

When µ > 0, if aDDE is negative, Conjecture 1 predicts a supercritical Hopf bifurcation
as seen in Figure 5.6(a), while if aDDE > 0, the Hopf bifurcation is predicted as subcritical
as seen in Figure 5.6(b).

We now draw a few conclusions about the approximations using moments for any
distribution. From Table 3.1, the approximations (0, 0) and (0, 1) using moments give
C(ω) = 1. In this case the denominator of c1 in (5.47) is zero and hence c1 is undefined.
Since the expression for aDDE in (5.49) is in terms of c1, this makes aDDE undefined.
Therefore we cannot use the approximations (0, 0) and (0, 1) using moments to predict
the criticality of the bifurcation. From Table 3.1, for the approximations (0, 0) and (0, 1)
using moments we have S(ω) = ω and S(ω) = ω−m3ω

3/6, respectively. Therefore we can
conclude that we must have knowledge of the second moment of a particular distribution
in order to make predictions about the criticality of the Hopf bifurcation.

For the approximation (0, 0) using moments, substituting C(ω) = 1 and S(ω) = ω into
(5.50) we obtain µ = 0. Thus for this approximation we cannot use Conjecture 1 to predict
whether (5.1) can undergo a Hopf bifurcation at the equilibrium point.
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Figure 5.5: Stability diagram showing the true and approximate boundaries of stability
for a given distribution. The true stability region is between the solid black curve and the
vertical solid gray line. The approximate stability boundary is depicted as the dotted curve.
The critical point (βc, τc) belongs to the true boundary of stability, while the approximate
critical point (β∗c , τc) belongs on the approximate boundary of stability.

For the approximation (0, 1) using moments, substituting C(ω) = 1 and S(ω) = ω −
m3ω

3/6 into (5.50) we obtain

µ = − 12ωm3

β(ω2m3 − 6)2
> 0,

since m3 > 0 for any distribution. Therefore for this approximation Conjecture 1 predicts
that a Hopf bifurcation occurs at the equilibrium point x∗ of (5.1) and that x∗ is locally
asymptotically stable for β > β∗c .

From Table 3.1, for the approximation (1, 0) using moments, we have C(ω) = 1−m2ω
2/2

and S(ω) = ω. Then (5.50) becomes

µ =
ωm2

α
> 0,

since m2 > 0 for any distribution. Therefore for this approximation Conjecture 1 predicts
that a Hopf bifurcation occurs at the equilibrium point x∗ of (5.1) and that x∗ is locally
asymptotically stable for β > β∗c .

155



*
cβ β

(a) Supercritical bifurcation at β∗
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(b) Subcritical bifurcation at β∗
c

Figure 5.6: Approximate bifurcation diagrams as predicted by Conjecture 1: (a) a super-
critical Hopf bifurcation occurs if µ > 0 and aDDE < 0. (b) a subcritical Hopf bifurcation
occurs if µ > 0 and aDDE > 0.

For the approximation (1, 1) using moments, we have C(ω) = 1−m2ω
2/2 and S(ω) =

ω −m3ω
3/6. Then (5.50) becomes

µ =
12ω(3m2 −m3)

α(ω2m3 − 6)2
.

Thus µ > 0 (µ < 0) if 3m2 > m3 (3m2 < m3) and by Conjecture 1 we predict that a Hopf
bifurcation occurs at the equilibrium point x∗ of (5.1) and that x∗ is locally asymptotically
stable (unstable) for β > β∗c .

We cannot make any general statements about the criticality of the Hopf bifurcations for
the approximations (1, 0) and (1, 1) using moments or for any of the approximations using
cumulants. Neither can we make any predictions about whether for the approximations
using cumulants a Hopf bifurcation occurs at the equilibrium point. For these cases we
use Conjecture 1 for the particular values of the moments or cumulants, as we do in
the next two subsections where we apply the approximations in the specific cases of the
uniform distribution with ρ = 2 and of the gamma distribution with p = 3. We continue
to use the same f and parameter values as in the previous examples in this chapter,
f = tanh(Ax), x∗ = 1, w = −100, where A solves the equation β/w = A sech2(A) and
c = α−w tanh(A). We note that in each case the values of A, c, γ and δ depend on β = βc.
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Table 5.1: The critical values for β and ω in the case of the uniform distribution with ρ = 2
and of the corresponding approximations using moments and cumulants. Approximation
(0, 1) using cumulants is identical to approximation (0, 0), and approximation (1, 1) us-
ing cumulants is identical to approximation (1, 0). “M” stands for approximation using
moments and “C” stands for approximation using cumulants.

τ = 0.45 τ = 0.6 τ = 0.8

Exact βc = −11.19 ωc = 1.96 βc = −9.69 ωc = 2.09 βc = −9.25 ωc = 2.20
M (1, 0) β∗c = −2.50 ω∗c = 1.64 - - - -
M (1, 1) β∗c = −7.00 ω∗c = 1.39 β∗c = −5.33 ω∗c = 1.43 β∗c = −4.50 ω∗c = 1.47
C (0, 0) β∗c = −5.29 ω∗c = 1.96 β∗c = −4.02 ω∗c = 2.09 β∗c = −3.40 ω∗c = 2.20
C (1, 0) β∗c = −10.02 ω∗c = 1.96 β∗c = −8.33 ω∗c = 2.09 β∗c = −7.62 ω∗c = 2.20

5.5.1 Applying the Approximations in the Case of the Uniform
Distribution with ρ = 2

In this subsection we apply the approximations for C(ω) and S(ω) in the case of the
uniform distribution with ρ = 2 to predict whether (5.1) can undergo a Hopf bifurcation
and if so to determine the direction and criticality of the bifurcation.

Following the procedure presented in Section 3.3, we generate a stability diagram for
the uniform distribution with ρ = 2 when α = 2 as seen in Figure 5.7. The true boundary
of stability is depicted as the solid black curve. Approximations (1, 0) and (1, 1) using
moments correspond to the dotted and dashed black curves, respectively. Approximations
(0, 0) and (1, 0) using cumulants correspond to the curves depicted by the black crosses
and black circles, respectively. Approximation (0, 1) using cumulants is identical to ap-
proximation (0, 0), and approximation (1, 1) using cumulants is identical to approximation
(1, 0), since by (2.34), the third cumulant is always zero for the uniform distribution.

In Table 5.1 we present the values for βc, ωc, β
∗
c and ω∗c , which we obtain numerically in

MapleTM, for the three different critical values of the mean delay, τc = 0.4, 0.6 and 0.8 in the
case of the exact distribution, of the approximations (1, 0) and (1, 1) using moments and of
the approximations (0, 0) and (1, 0) using cumulants. The value for βc is obtained by solving
system (5.33), where we substitute the exact expressions for C(ω) and S(ω) from (3.38).
The value for β∗c is obtained by solving system (5.33), where we use the approximations
for C(ω) and S(ω) from Tables 3.1 and 3.2, and the values for the moments and cumulants
from Table 2.1. We can see that the points (βc, τc) in Table 5.1 belong to the true boundary
of stability, while the points (β∗c , τ

∗
c ) belong to the approximate stability curves, as seen in

Figure 5.7. For the approximation (1, 0) using moments, when τc = 0.6 and 0.8, we have
βc > −2 = −α, i.e. the approximate curve enters the distribution independent region of
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Figure 5.7: Stability diagram showing the true and approximate boundaries of stability for
the uniform distribution with ρ = 2 when α = 2. The true region of stability is between
the solid black curve and the vertical solid gray line. Approximations (1, 0) and (1, 1) using
moments correspond to the dotted and dashed black curve, respectively. Approximations
(0, 0) and (1, 0) using cumulants correspond to the curves depicted by the black crosses
and black circles, respectively. Approximation (0, 1) using cumulants is identical to ap-
proximation (0, 0), and approximation (1, 1) using cumulants is identical to approximation
(1, 0). The horizontal gray lines indicate the three critical values of τ : 0.4, 0.6 and 0.8.

stability predicted by Theorem 7 and thus we do not use this approximation in these two
cases.

Evaluating the expressions for µ and aDDE in (5.50) and (5.49), respectively, at the
critical value of the parameters from Table 5.1 we obtain, in all cases,

µ|β=βc > 0, aDDE|β=βc < 0,

µ|β=β∗
c
> 0, aDDE|β=β∗

c
< 0.

Thus, for DDE (5.1) when the kernel is a uniform distribution with ρ = 2, Conjecture 1
predicts a supercritical Hopf bifurcation as seen in Figure 5.1(b). Approximations (1, 0)
using moments when τc = 0.4, approximation (1, 1) using moments and all of the ap-
proximations using cumulants for all three critical values of τ also predict that there is a
supercritical Hopf bifurcation at the equilibrium point x∗ of (5.1) as seen in Figure 5.6(a),
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only that this Hopf bifurcation occurs as β passes through the critical value β∗c , instead of
βc.

In the next subsection, we apply the approximations in the case of the gamma distri-
bution with p = 3.

5.5.2 Applying the Approximations in the Case of the Gamma
Distribution with p = 3

In this subsection we apply the approximations for C(ω) and S(ω) in the case of the gamma
distribution with p = 3 to predict whether (5.1) can undergo a Hopf bifurcation and if so
to determine the direction and criticality of the bifurcation.

Following the procedure presented in Section 3.4, we generate a stability diagram for
the gamma distribution with p = 3 when α = 2 as seen in Figure 5.8. The true boundary
of stability is depicted as the solid black curve. Approximations (1, 0) and (1, 1) using
moments correspond to the dotted and dashed black curves, respectively. Approximations
(0, 0), (0, 1), (1, 0) and (1, 1) using cumulants correspond to the curves depicted by the
black crosses, gray crosses, black circles and gray circles, respectively.

In Table 5.2 we present the values for βc, ωc, β
∗
c and ω∗c , which we obtain numerically

in MapleTM, for the three different critical values of the mean delay, τc = 0.4, 0.6 and 0.8
in the case of the exact distribution, of the approximations (1, 0) and (1, 1) using moments
and of the approximations (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants. The value for
βc is obtained by solving system (5.33), where we substitute the exact expressions for
C(ω) and S(ω) from (3.45). The value for β∗c is obtained by solving system (5.33), where
we use the approximations for C(ω) and S(ω) from Tables 3.1 and 3.2, and the values
for the moments and cumulants from Table 2.2. We can see that the points (βc, τc) in
Table 5.2 belong to the true boundary of stability, while the points (β∗c , τ

∗
c ) belong to the

approximate stability curves, as seen in Figure 5.8. For the approximation (1, 0) using
moments, when τc = 0.6 and 0.8, we have βc > −2 = −α, i.e. the approximate curve enters
the distribution independent region of stability predicted by Theorem 7 and thus we do not
use this approximation in these cases. Approximations (0, 1) and (1, 1) using cumulants
are not defined for τ = 0.8 and thus no critical value for β can be found in these two cases.
This can be seen in Figure 5.8, where approximations (0, 1) and (1, 1) using cumulants are
below the horizontal line τ = 0.8.

Evaluating the expressions for µ and aDDE in (5.50) and (5.49), respectively, at the
critical value of the parameters from Table 5.2 we obtain, in all cases,

µ|β=βc > 0, aDDE|β=βc < 0,

µ|β=β∗
c
> 0, aDDE|β=β∗

c
< 0.
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Figure 5.8: Stability diagram showing the true and approximate boundaries of stability for
the gamma distribution with p = 3. The true region of stability is between the solid black
curve and the vertical solid gray line. Approximations (1, 0) and (1, 1) using moments
correspond to the dotted and dashed black curve, respectively. Approximations (0, 0),
(0, 1), (1, 0) and (1, 1) using cumulants correspond to the curves depicted by the black
crosses, gray crosses, black circles and gray circles, respectively. The horizontal gray lines
indicate the three critical values of τ : 0.4, 0.6 and 0.8.

Hence, applying Conjecture 1, we get that the equilibrium point x∗ of (5.1) when the
kernel is a gamma distribution with p = 3 undergoes a supercritical Hopf bifurcation as
seen in Figure 5.1(b). Approximations (1, 0) using moments when τc = 0.4, approximation
(1, 1) using moments and all of the approximations using cumulants (if defined) for all
three critical values of τ also predict that there is a supercritical Hopf bifurcation at the
equilibrium point x∗ of (5.1) as seen in Figure 5.6(a), only that this Hopf bifurcation occurs
as β passes through the critical value β∗c , instead of βc.

In conclusion, when defined, all of the approximations in the case of the uniform distri-
bution with ρ = 2 and of the gamma distribution with p = 3 predict the correct criticality
and direction of the Hopf bifurcation, except that the bifurcation occurs at a shifted critical
value of β.

160



Table 5.2: The critical values for β and ω in the case of the gamma distribution with p = 3
and of the corresponding approximations using moments and cumulants. “M” stands for
approximation using moments and “C” stands for approximation using cumulants.

τ = 0.4 τ = 0.6 τ = 0.8

Exact βc = −11.43 ωc = 2.23 βc = −9.49 ωc = 2.41 βc = −8.66 ωc = 2.57
M (1, 0) β∗c = −2.50 ω∗c = 1.64 - - - -
M (1, 1) β∗c = −8.13 ω∗c = 1.37 β∗c = −6.25 ω∗c = 1.41 β∗c = −5.31 ω∗c = 1.44
C (0, 0) β∗c = −5.29 ω∗c = 1.96 β∗c = −4.02 ω∗c = 2.09 β∗c = −3.40 ω∗c = 2.20
C (0, 1) β∗c = −6.35 ω∗c = 2.41 β∗c = −5.01 ω∗c = 2.76 - -
C (1, 0) β∗c = −10.02 ω∗c = 1.96 β∗c = −8.33 ω∗c = 2.09 β∗c = −7.62 ω∗c = 2.20
C (1, 1) β∗c = −16.70 ω∗c = 2.41 β∗c = −17.82 ω∗c = 2.75 - -

In the next and final chapter we present the conclusions of this thesis and possible
directions for future work.
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Chapter 6

Discussion and Conclusions

In this thesis we have studied the linear stability and Hopf bifurcation of Hopfield neural
networks with a general distribution of delays, where the neurons are identical. In the first
chapter, we presented biological neuronal networks as the underlying motivating factor of
artificial neural networks and gave the physical interpretation behind the development of
the Hopfield model. We discussed how time delays arise in biological and physical models
and reviewed the literature on such models. We indicated why it is important to keep the
delay distributions in a model as general as possible. In the second chapter, we gave an
overview of DDEs with emphasis on DDEs with infinite distributed delay.

In the third chapter, we investigated the linear stability of a generic scalar DDE with
one distributed delay, whose linearization represents the linearization of the scalar Hop-
field model. We showed how to obtain the distribution independent region of stability
of an equilibrium point when the kernel is arbitrary. This region is similar to the delay
independent region of stability for equations with discrete delays. For the equation we
studied, the distribution independent region of stability is the same as the delay indepen-
dent region if the distributed delay is replaced by a discrete delay equal to the mean of
the distribution. We showed how to reformulate the distribution so that the mean delay
occurs as a natural parameter in the distribution. This allowed us to determine a region
of stability which depends on the mean delay, but is independent of other properties of
the distribution. Both the distribution independent region of stability and the mean delay
dependent region (described by Theorem 7) are conservative estimates of the true region
of stability of the equilibrium point. We then formulated an approach to approximate the
boundary of the true region of stability using the first few moments or cumulants of the
distribution. We showed that approximation (1, 0) using moments is always conservative,
i.e. it underestimates the region of stability, since this approximation recovers the results
of Theorem 7. We also showed approximation (0, 0) using cumulants always recovers the
results of the corresponding model with one fixed delay, and for distributions symmetric
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around their mean this approximation represents a conservative boundary of stability by
Theorem 4.0.5 from [7]. By comparing our approximations to the true stability region
boundary in the specific cases of the uniform and gamma distributions, we found, in gen-
eral, that the approximations improved as more moments or cumulants are included. The
approximations using cumulants gave better results than those using moments. No ap-
proximation using cumulants entered the distribution independent region of stability or
the mean delay dependent region and in almost all cases, the approximate stability regions
were always conservative.

We now compare our conservative stability result from Theorem 7 and the approximate
stability regions we obtained in Section 3.2 with another conservative stability result from
the literature. As noted in the introductory chapter of this thesis, Bernard et al. [7]
obtain sufficient conditions on the mean delay such that the equilibrium point of (3.1) is
locally asymptotically stable. For our parameters, when τmin = 0, condition (1.23) from
[7] translates into

τ <
π(1− α/β)

c
√
β2 − α2

, β < −|α|, (6.1)

where c ≈ 2.2764. For the symmetric distribution case, their stronger stability result (1.24)
translates into

τ <
arccos(α/β)√

β2 − α2
, β < −|α|. (6.2)

When α > 0 their sufficient condition in (6.1) gives a larger conservative stability region
than the stability region described by Theorem 7 since we can show that

− 1

β
<
π(1− α/β)

c
√
β2 − α2

for all β < −α.

When α < 0, the above inequality is satisfied only for small enough β and hence their
conservative stability region gives a worse estimate than our result in Theorem 7 for β close
enough to −|α|. We note that the stronger condition in (6.2) represents the true boundary
of stability of the equilibrium point of the corresponding discrete delay model. Hence,
for distributions symmetric around their mean, the curve described by (6.2) represents
approximation (0, 0) using cumulants.

Conditions (6.1) and (6.2) differ only when α is small or negative [7]. Thus for α
positive and large enough, condition (6.1) is equivalent to condition (6.2), which represents
approximation (0, 0) using cumulants. For the uniform and gamma distributions, we found,
in general, that the approximations improved as more cumulants were added and thus the
higher approximations using cumulants should give a better estimate of the true boundary
of stability than the sufficient condition in (6.1). For example, in Figure 3.6(a) for the
gamma distribution with p = 4 and α = 2, condition (6.1) corresponds to the curve depicted
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by black crosses, since it is equivalent to approximation (0, 0) using cumulants. We can see
that condition (6.1) gives a better result than approximation (1, 0) using moments (which
also represents the result in Theorem 7), but gives a worse estimate of the true boundary of
stability than approximation (1, 1) using moments and all the other three approximations
using cumulants.

For small positive α, for example α = 0.01, we compare condition (6.1) represented
by the gray solid curve to our approximations in Figure 6.1(a). We see that the result in
(6.1) gives a worse estimate for the region of stability than all the approximations, except
approximation (1, 0) using moments.

0

τ

β

(a) α = 0.01

α 0

τ

β

α
1

(b) α = −2

Figure 6.1: Stability region for the gamma distribution with p = 4 for (a) α = 0.01; (b)
α = −2. The true region of stability lies between the solid black curve and the vertical
line β = α. Approximation (1, 0) using moments corresponds to the dotted curve, and
approximation (1, 1) using moments corresponds to the dashed black curve. Approxima-
tions (0, 0), (0, 1), (1, 0) and (1, 1) using cumulants correspond to the curves depicted by
the black crosses, gray crosses, black circles and gray circles, respectively. Condition (6.1)
is represented by the gray solid curve .

For negative α, for example α = −2, condition (6.1) is represented by the gray solid
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curve in Figure 6.1(b). We can see that for β large enough, the result in (6.1) gives a
worse estimate of the boundary of stability than all the approximations, whereas for β
small enough, it gives a better result than approximation (1, 0) using moments. We note
that for general distributions, our approximations cannot guarantee conservative regions of
stability, whereas the condition in (6.1) is a conservative stability result for any arbitrary
kernel and the condition in (6.2) is a conservative stability result for any symmetric kernel.

In the fourth chapter, we extended the results for the scalar DDE to the Hopfield
neural network consisting of n identical neurons by examining the linear stability of a
symmetric equilibrium point both when the connection matrix is symmetric and when
it is not. We again obtained several distribution independent results. For the case of
a symmetric connection matrix, we obtained a conservative region of stability which is
independent of the properties of the distribution save the mean delay. For the case of
a general connection matrix, we determined the region of stability as the mean delay τ
approaches zero for any distribution. We also showed that as in the limit τ approaches
infinity, the region of stability of the distributed delay model is always greater or equal to
the region of stability of the corresponding discrete delay model. Hence we were able to
partially prove the conjecture that a system with a distribution of delays is more stable
than the corresponding one with a discrete delay. We also obtained a conservative region
of stability for any value of the mean delay and for any distribution, which coincides with
the delay independent region of stability for the discrete delay model.

Our distribution independent results for the n dimensional Hopfield model compare
favorably with others found in the literature. To see this, we compare our distribution
independent stability result described by Theorem 12 with an equivalent result obtained
in [22] using Liapunov functionals. In their paper, without assuming that the connection
matrix is symmetric or that neurons are identical, Gopalsamy and He find sufficient con-
ditions that guarantee the existence and stability of a global attractor for systems of the
form (1.16). For our model, the sufficient condition (1.19) translates into

||W ||∞ = max
1≤k≤n

n∑
j=1

|wkj| <
α

β
, (6.3)

where ||W ||∞ represents the maximum row sum matrix norm of W . Whereas, our con-
servative mean delay and distribution independent stability region given by Theorem 12
is

ρ(W ) = max
1≤k≤n

|zk| <
α

β
, (6.4)

where ρ(W ) is called the spectral radius of W . But by Theorem 5.6.9 from [34] we have
that ||W ||∞ ≤ ρ(W ) for any matrix W . Therefore the stability result using Liapunov
functionals from [22] always gives a stronger, but more conservative result than our result in
Theorem 12. We illustrate this through our example presented in Section 4.2. In this case,
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||W ||∞ ≈ 2 and ρ(W ) ≈ 1. Using (6.3) we cannot conclude anything about the stability
of the equilibrium point for values of β greater than 0.5. Whereas our most conservative
result in (6.4) guarantees stability for β < 1.

Our distribution independent results are all conservative estimates of the true stability
region, thus we gave a general formulation for the boundary of this region. See equation
(4.12) for the symmetric connection matrix case and Theorem 13 for the general connection
matrix case. Using examples, we showed that the variation of the boundary of the stability
region as the mean delay varies can be quite different for different distributions. There
exists a particular value of the mean delay τ = τc, such that if all eigenvalues of the
connection matrix are inside the boundary of stability with τ = τc, then the equilibrium
point is stable, but unlike the discrete delay model, the value of τc is not necessarily infinity
for other distributions.

We next showed how the boundary of the region of stability can be approximated using
the first few moments or cumulants of the distribution. The approximations gave good
results when compared to the true region of stability of the equilibrium point of the uniform
and gamma distributed models. We again found that the approximations using cumulants
always gave better results than the approximations using moments, and that in most cases
the approximations improved as more cumulants or moments were added. In conclusion,
the distribution independent and approximation approaches may be valuable for studying
models of real applications. In such situations, the exact distribution is generally unknown,
but it may be reasonable to obtain the mean, variance and possibly other moments of the
distribution.

Finally, in the fifth chapter, we performed the Hopf bifurcation analysis of the scalar
Hopfield model using the centre manifold technique. The theoretical basis for analyzing
Hopf bifurcations and calculating the centre manifold has been rigourously developed for
DDEs with finite delay. Assuming the theory still holds for DDEs with infinite delay within
the appropriate restricted function space, we performed the centre manifold reduction for
the scalar Hopfield model with a general distribution of delays. We showed under what
conditions a Hopf bifurcation occurs and computed the cubic coefficient, which determines
the criticality of the Hopf bifurcation. We verified our results by transforming the scalar
Hopfield model with weak and strong kernels into the corresponding ODE systems. In
both ODE cases, we arrived at the same results as for the DDE case. This seems to
imply that the centre manifold technique does indeed work for DDEs with infinite delay
and represents a motivation for such a theory to be developed. Further, we showed how
to apply the approximations in order to predict the direction and criticality of the Hopf
bifurcation. For the case of the uniform distribution with ρ = 2 and the gamma distribution
with p = 3, all the approximations predicted the correct direction and criticality of the
bifurcation, except that the Hopf bifurcation occurred at a shifted critical value of the
bifurcation parameter.
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Possible directions for future work include:

• extending all our results to Hopfield models with delay distributions with a gap
(where the minimum delay is not zero),

• applying our linear stability analysis and centre manifold computation to different
models other than Hopfield neural networks,

• extending the centre manifold calculation to higher dimensions,

• showing that the stability region for the distributed delay model is always greater
than the corresponding model with discrete delay for any general kernel,

• finding a relationship among the approximations as more moments or cumulants are
added,

• predicting whether a certain approximate stability region is conservative or not.
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Appendix A

MapleTM Implementation of the
Centre Manifold Computation for the
scalar DDE with Distributed Delay

This appendix presents the implementation of the centre manifold computations presented
in Section 5.2 in the symbolic algebra package MapleTM10. The commands will be preceded
by a >. Since no output is printed, each command will be followed by a colon. The
comments are introduced by a number sign. This code adapts the MapleTM implementation
of the centre manifold calculation for DDEs with discrete delays presented in [9] to DDEs
with distributed delay.

> restart: with(linalg):

> # Define the linear system, where x is x(t) and

# xt is \int_0^{-infinity}x(t+theta)\hat g(-theta) d theta

lin:=-alpha*tau*x+beta*tau*xt;

> # The characteristic equation

char_eq:=lambda+alpha*tau-beta*tau*int(exp(lambda*theta)*g(-theta),

theta=-infinity..0):

> # Define simplifying relations at bifurcation point

char_eq_iomega:=I*omega+alpha*tau-beta*tau*(C(omega)+I*(-S(omega))):

eq_Re:=coeff(char_eq_iomega,I,0):

eq_Im:=coeff(char_eq_iomega,I,1):

simpres:=[tau=omega/beta/(-S(omega)), alpha=beta*C(omega)]:

> # Basis Phi for centre eigenspace (CE)

Phi:=array(1..2,[cos(omega*theta), sin(omega*theta)]):

> # A basis, Psi_gen, for the CE of the dual problem
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> Psi_g:=array([[cos(omega*xi)],[-sin(omega*xi)]]):

> # Find basis, PPsi, for CE of dual problem which satisfies

# <PPsi,Phi>=I; bilinear_form is the bilinear form < , >

# PPsi is the basis for the CE of the dual problem;

# C_p(omega)=C’(omega) and S_p(omega)=S’(omega)

bilin_psig1_phi1:=1/2-omega/S(omega)/2*S_p(omega):

bilin_psig1_phi2:=-omega/S(omega)/2*C_p(omega):

bilin_psig2_phi1:=-omega/S(omega)/2*C_p(omega):

bilin_psig2_phi2:=-1/2+omega/S(omega)/2*S_p(omega):

bilinear_form:=array(1..2,1..2,[[bilin_psig1_phi1,bilin_psig1_phi2],

[bilin_psig2_phi1,bilin_psig2_phi2]]):

K:=inverse(bilinear_form):

PPsi:=map(simplify,multiply(K,Psi_g)):

> # The matrix Psi(0) will be a place holder for now

# Save values of Psi(0) for later use

Psi0:=matrix(2,1):

Psi0_res:=map(simplify,map(eval,subs(xi=0,evalm(PPsi)))):

Psi0_vals:=[Psi0[1,1]=Psi0_res[1,1],Psi0[2,1]=Psi0_res[2,1]]:

> # B is the matrix of the eigenvalues

B:=matrix([[0,omega],[-omega,0]]):

> # u1 and u2 are the coordinates on the centre manifold (CM)

u:=matrix([[u1],[u2]]):

> # h is the Taylor expansion of the nonlinear terms of the CM

h:=h_11(theta)*u1^2+h_12(theta)*u1*u2+h_22(theta)*u2^2:

> # Setup the differential equations to solve for the h_ij

delhs:=matrix(1,1,[map(diff,h,theta)]):

dhdu:=matrix([[diff(h,u1),diff(h,u2)]]):

F2_inside_int:=combine(expand(gamma0*tau*(u1*cos(omega*theta)

+u2*sin(omega*theta))^2)):

F2_x_ce:=matrix([[subs(cos(2*omega*theta)=C_2om(omega),sin(2*omega*theta)

=-S_2om(omega),F2_inside_int)]]):

derhs:=map(collect,map(expand,evalm(multiply(dhdu,multiply(B,u))+

multiply(Phi,multiply(Psi0,F2_x_ce)))),[u1,u2],distributed,factor):

hdes:=evalm(delhs-derhs):

de1:=coeff(coeff(hdes[1,1],u1^2),u2,0):

de2:=coeff(coeff(hdes[1,1],u1),u2):

de3:=coeff(coeff(hdes[1,1],u2^2),u1,0):

des:={de1,de2,de3}:

fns:={coeff(h,u1^2),coeff(coeff(h,u1),u2),coeff(h,u2^2)}:
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temp:=dsolve(des,fns):

changeC:=[_C1=C1,_C2=C2,_C3=C3]:

hsoln:=simplify(expand(evalc(subs(changeC,value(temp))))):

> # Evaluate h_ij at theta=0

hsoln0:=simplify(eval(subs(theta=0,hsoln))):

> # Evaluate \int_0^{-infinity} h(theta,u) \hat g(-theta) d theta

hsoln1:=combine(hsoln):

g_hsoln:=simplify(subs(cos(omega*theta)=C(omega),sin(omega*theta)

=-S(omega), cos(2*omega*theta)=C_2om(omega),

sin(2*omega*theta)=-S_2om(omega),hsoln1)):

int_gh:=u1^2*h_11(theta)+u1*u2*h_12(theta)+u2^2*h_22(theta):

> # Evaluate x on the CE and CM

x_cm_ce:=[x=subs(theta=0,hsoln0,h), xt=subs(g_hsoln,int_gh)]:

> # Solving the boundary conditions for C1, C2,C3

bclhs:=map(eval,subs(hsoln0,theta=0,evalm(derhs))):

bcrhs:=matrix(1,1,[map(collect,simplify(evalm(subs(simpres,x_cm_ce,

evalm(lin)))+F2_x_ce[1,1]),[u1,u2])]):

consts:=[C1,C2,C3]:

bceq:=subs(hsoln0,evalm(bclhs-bcrhs)):

bc1:=collect(coeff(coeff(bceq[1,1],u1,2),u2,0),consts):

bc2:=collect(coeff(coeff(bceq[1,1],u1,1),u2,1),consts):

bc3:=collect(coeff(coeff(bceq[1,1],u1,0),u2,2),consts):

bcs:={bc1,bc2,bc3}:

consts:=convert(consts,set):

Csoln:=solve(bcs,consts):

> # Determine the nonlinear terms of ODE for u(t) on the CM

# ODE_nonlin = Psi(0) F(Phi(theta) u + h(theta,u)), F=F2+F3

F2a:=gamma0*tau*(u1*cos(omega*theta)+u2*sin(omega*theta)+h)^2:

F2b:=subs(hsoln,F2a):

F2c:=combine(F2b):

F2:=simplify(subs(cos(omega*theta)=C(omega),sin(omega*theta)=-S(omega),

cos(2*omega*theta)=C_2om(omega),sin(2*omega*theta)=-S_2om(omega),

cos(3*omega*theta)=C_3om(omega),sin(3*omega*theta)=-S_3om(omega),F2c)):

F3a:=delta*tau*(u1*cos(omega*theta)+u2*sin(omega*theta)+h)^3:

F3b:=subs(hsoln,F3a):

F3c:=combine(F3b):

F3:=simplify(subs(cos(omega*theta)=C(omega),sin(omega*theta)=-S(omega),

cos(2*omega*theta)=C_2om(omega),sin(2*omega*theta)=-S_2om(omega),

cos(3*omega*theta)=C_3om(omega),sin(3*omega*theta)=-S_3om(omega),

cos(4*omega*theta)=C_4om(omega),sin(4*omega*theta)=-S_4om(omega),
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cos(5*omega*theta)=C_5om(omega),sin(5*omega*theta)=-S_5om(omega),

F3c)):

> # Define the nonlinear part of the ODE

nonlin:=matrix([[F2+F3]]):

ODE_nonlin:=multiply(Psi0,nonlin):

> # Get quadratic and cubic terms for evaluation of normal form

# quad contains the coefficients of the quadratic terms of ODE_nonlin

quad:=array(1..2,1..3):

quad[1,1]:=coeff(coeff(ODE_nonlin[1,1],u1,2),u2,0):

quad[1,2]:=coeff(coeff(ODE_nonlin[1,1],u1,1),u2,1):

quad[1,3]:=coeff(coeff(ODE_nonlin[1,1],u1,0),u2,2):

quad[2,1]:=coeff(coeff(ODE_nonlin[2,1],u1,2),u2,0):

quad[2,2]:=coeff(coeff(ODE_nonlin[2,1],u1,1),u2,1):

quad[2,3]:=coeff(coeff(ODE_nonlin[2,1],u1,0),u2,2):

> # cub contains the coefficients of the necessary cubic terms

# of ODE_nonlin; we only get those terms we need to evaluate

# the criticality of the Hopf bifurcation

cub:=array(1..2,1..4):

cub[1,1]:=coeff(coeff(ODE_nonlin[1,1],u1,3),u2,0):

cub[1,3]:=coeff(coeff(ODE_nonlin[1,1],u1,1),u2,2):

cub[2,2]:=coeff(coeff(ODE_nonlin[2,1],u1,2),u2,1):

cub[2,4]:=coeff(coeff(ODE_nonlin[2,1],u1,0),u2,3):

> # Find the cubic coefficient that determines the criticality

# of the Hopf bifurcation (Guckenheimer and Holmes p. 152)

a:=collect(simplify(1/8*(3*cub[1,1]+cub[1,3]+cub[2,2]+3*cub[2,4]

-1/omega*(quad[1,2]*(quad[1,1]+quad[1,3])-quad[2,2]*(quad[2,1]

+quad[2,3])-2*quad[1,1]*quad[2,1]+2*quad[1,3]*quad[2,3]))),

[Psi0[1,1],Psi0[2,1]],distributed,factor):

a_final:=subs(simpres,Csoln,Psi0_vals,a):
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[25] J. Guckenheimer and P.J. Holmes. Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. Springer-Verlag, New York, 1983. 141, 147, 150, 151

[26] J.K. Hale and S.M. Lunel. Introduction to Functional Differential Equations. Springer-
Verlag, New York, 1993. 10, 22, 29, 125, 127, 131, 136

[27] B.D. Hassard. Theory and Applications of Hopf Bifurcation, volume 41 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1981. 130

[28] S. Haykin. Neural Networks: A Comprehensive Fundation. Macmillan College Pub-
lishing Company, New York, 1994. 1, 6

[29] Y. Hino, S. Murakami, and T. Naito. Functional differential equations with infinite
delay. Springer-Verlag, Berlin, 1991. 29, 127, 128, 129, 130

[30] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol., 117:500–544, 1952.
2, 4

[31] R.V. Hogg and A.T. Craig. Introduction to mathematical statistics. Prentice Hall,
United States, 1995. 24, 30

[32] J.J. Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proc. Natl. Acad. Sci. Biophys., 79:2554–2558, 1982. 1

[33] J.J. Hopfield. Neurons with graded response have collective computational properties
like those of two-state neurons. Proc. Natl. Acad. Sci. Biophys., 81:3088–3092, 1984.
1, 6, 9

[34] R.A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cam-
bridge, 1985. 88, 89, 165

[35] R. Jessop and S.A. Campbell. Approximating the stability region of a neural network
with a general distribution of delays. Neur. Net., 23:1187–1201, 2010. 86

[36] V.K. Jirsa and M. Ding. Will a large complex system with delays be stable? Phys.
Rev. Lett., 93:070602, 2004. 14, 15, 108

174



[37] C. Jordan. Calculus of Finite Differences. AMS Chelsea Publishing, New Jersey, 1965.
32

[38] C. Koch. Biophysics of Computation: Information Processing in Single Neurons.
Oxford University Press, New York, 1999. 5, 9

[39] C. Koch and I. Segev, editors. Methods in Neuronal Modeling: From Ions to Networks.
MIT Press, Cambridge, MA, second edition, 1998. 5

[40] V.B. Kolmanovskii and A.D. Myshkis. Introduction to the Theory and Applications
of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999. 23

[41] V.B. Kolmanovskii and V.R. Nosov. Stability of functional differential equations,
volume 180 of Mathematics in Science and Engineering. Academic Press, London,
England, 1986. 102

[42] Y. Kuang. Delay differential equations: with applications in population dynamics,
volume 191 of Mathematics in Science and Engineering. Academic Press, New York,
1993. 12

[43] X. Liao, K.-W. Wong, and Z. Wu. Bifurcation analysis on a two-neuron system with
distributed delays. Physica D, 149:123–141, 2001. 17, 127

[44] X. Liao, K.-W. Wong, and Z. Wu. Hopf bifurcation and stability of periodic solutions
for van der Pol equation with distributed delay. Nonlin. Dynam., 149:23–44, 2001.
127

[45] N. MacDonald. Time lags in biological models, volume 27 of Lecture notes in biomath-
ematics. Springer-Verlag, Berlin; New York, 1978. 29, 42

[46] N. MacDonald. Biological Delay Systems: Linear Stability Theory. Cambridge Uni-
versity Press, Cambridge, 1989. 13, 16, 42, 108

[47] C.M. Marcus and R.M. Westervelt. Stability of analog neural networks with delay.
Phys. Rev. A, 39(1):347–359, 1989. 1, 6, 10, 107, 108

[48] J.E. Marsden and M.J. Hoffman. Basic Complex Analysis. W.H. Freeman and Com-
pany, New York, NY, 1999. 55

[49] R.K. Miller and A.N. Michel, editors. Ordinary Differential Equations. Academic
Press, New York, 1982. 8

[50] C.L. Nikias and A.P. Petropulu. Higher-order Spectra Analysis. PTR Prentice Hall,
New Jersey, 1993. 30, 31

175



[51] J.P.J. Pinel. Biopsychology. Allyn and Bacon, Pearson Education Company, Needham
Heights, 2000. 2

[52] E. B. Saff R. K. Nagle and A. D. Snider. Fundamentals of differential equations and
boundary value problems. Pearson Addison Wesley, Boston, MA, 2008. 28, 29

[53] S. Ruan. Delay differential equations for single species dynamics. In M.L. Hbid
O.Arino and E. Ait Dads, editors, Delay Differential Equations and Applications,
chapter 11, pages 477–515. Springer, Dordrecht, The Netherlands, 2006. 14, 53

[54] S. Ruan and R.S. Filfil. Dynamics of a two-neuron system with discrete and distributed
delays. Physica D, 191:323–342, 2004. 17, 127

[55] S. Ruan and G.S.K. Wolkowicz. Bifurcation analysis of a chemostat model with a
distributed delay. J. Math. Anal. Appl., 204:786–812, 1996. 127

[56] H.W. Stech. Hopf bifurcation calculations for functional differential equations. J.
Math. Anal. Appl., 109:472–491, 1985. 16, 127

[57] G. Stépán. Retarded Dynamical Systems: Stability and Characteristic Functions, vol-
ume 210 of Pitman Research Notes in Mathematics. Longman Group, Essex, 1989.
102

[58] A. Thiel, H. Schwegler, and C.W. Eurich. Complex dynamics is abolished in delay
recurrent systems with distributed feedback times. Complexity, 8(1):102–108, 2003.
13

[59] W. Wichert, A. Wunderlin, A. Pelster, M. Oliver, and J. Groslambert. Delay induced
instabilities in nonlinear feedback systems. Phys. Rev. E, 49:203–219, 1994. 128

[60] G.S.K. Wolkowicz, H. Xia, and S. Ruan. Competition in the chemostat: A distributed
delay model and its global asymptotic behaviour. SIAM J. Appl. Math., 57:1281–1310,
1997. 13

[61] G.S.K. Wolkowicz, H. Xia, and J. Wu. Global dynamics of a chemostat competition
model with distributed delay. J. Math. Biol., 38:285–316, 1999. 13

[62] J. Wu. Introduction to Neural Dynamics and Signal Transmission Delay. Series in
Nonlinear Analysis and Applications. Walter de Gruyter, Berlin, 2001. 1, 2, 5

[63] P. Yan. Separate roles of the latent and infectious periods in shaping the relation
between the basic reproduction number and the intrinsic growth rate of infectious
disease outbreaks. J. Theoret. Biol., 251:238–252, 2008. 42

176



[64] Y. Yuan and J. Bélair. Stability and Hopf bifurcation analysis for functional differential
equations with distributed delay. SIAM J. Appl. Dyn. Syst., 10(2):551–581, 2011. 14,
16, 108, 127

177


	List of Tables
	List of Figures
	Introduction
	Biology of Neurons
	Artificial Neural Networks
	Hopfield Neural Network with Time Delays
	Hopfield Neural Networks with Discrete Delay
	Biological and Physical Models with Distributed Delay


	Delay Differential Equations - An Overview
	Definition, Initial Value Problem, Existence and Uniqueness Theorems
	DDEs with Distributed Delay
	Equilibria, Linearization, Characteristic Equation
	Distributions
	The Dirac Distribution
	The Uniform Distribution
	The Gamma Distribution
	Other Distributions

	The Linear Chain Trick

	Stability of the Scalar DDE with Distributed Delay
	Distribution Independent Results
	Approximating the Boundary of the Stability Region
	Approximations using Moments
	Approximations using Cumulants

	Verifying the Approximations for the Uniform Distribution
	Verifying the Approximations for the Gamma Distribution

	Stability of the Hopfield Neural Network with Distributed Delay
	Connection Matrix with Real Eigenvalues
	Distribution Independent Results
	Approximating the Boundary of the Stability Region
	Verifying the Approximations for the Uniform Distribution
	Verifying the Approximations for the Gamma Distribution

	Connection Matrix with Complex Eigenvalues
	Approximating the Boundary of the Stability Region
	Verifying the approximations for the Uniform Distribution
	Verifying the Approximations for the Gamma Distribution


	Calculating the Centre Manifold for the Scalar Model
	Theoretical Background
	Linear Equation
	Nonlinear Equation

	Computation of the Centre Manifold for our Model
	The Cubic Coefficient in the Case of the Weak Kernel
	The Cubic Coefficient in the Case of the Strong Kernel

	The Equivalent Two Dimensional ODE System
	The Equivalent Three Dimensional ODE System
	Approximations
	Applying the Approximations for the Uniform Distribution
	Applying the Approximations for the Gamma Distribution


	Discussion and Conclusions
	Appendix: MapleTM Implementation of the Centre Manifold Computation
	Bibliography

