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Abstract 

In fractured geologic media, flow and contaminant transport are predominantly controlled by the 

fractures, their distribution and connectivity. The accurate characterization of fractured geologic 

medium, imaging of fracture patterns and their connectivity have been a challenge for decades. Given 

the complexities of fractured networks in the subsurface and Dense Non Aqueous Phase Liquid 

(DNAPL) contamination, in this thesis, transient hydraulic tomography (THT), a recently developed 

tool for characterizing aquifer heterogeneity is evaluated under laboratory conditions to delineate 

discrete fractures. Laboratory experiments and modeling studies are also conducted to understand 

TCE plume behavior. 

A dolomite rock sample, which is 91.5 cm in length, 60.5 cm in height and 5 cm thick, was 

fractured in the laboratory to perform the experiments. After the fractured block was enclosed in a 

flow cell, flow-through and pumping tests were conducted to characterize the fractured rock block. 

The data from the pumping tests were then analyzed using the SSLE code developed by Zhu and Yeh 

[2005] and transient hydraulic tomography (THT) was conducted to image the fracture pattern and 

their connectivity through the delineation of K and Ss distributions (the tomograms).  Synthetic 

pumping tests, identical in configuration to the laboratory ones were also conducted using 

HydroGeoSphere (HGS) [Therrien et al, 2009] in a synthetic replica of the fractured block to 

compare the observed and simulated drawdowns. Then synthetic THT analysis was performed 

utilizing the synthetic pumping test data to compare the tomograms obtained from the THT analysis 

of synthetic and laboratory pumping tests.  

Results suggest that the THT analysis of multiple laboratory pumping tests captured the fracture 

pattern and their connectivity quite well and they became more vivid with the additional pumping 

tests. The estimated high hydraulic conductivity (K) and low specific storage (Ss) zones clearly show 

the fractures and their connectivity. The pattern of K and Ss tomograms obtained from the analyses of 

synthetic and laboratory pumping tests were similar. Estimated K and Ss values for the fractures and 

the matrix may not exactly replicate the actual K and Ss values for the fractured rock, but the model 

also provides uncertainty estimates associated with the resulting K and Ss tomograms. 

In this study, two cases of transient hydraulic tomography (THT) analysis of the laboratory 

pumping tests were performed by changing the location of 2nd and 3rd pumping tests among the three 

to examine if there is any significant impact of these pumped location on the pattern of resulting 
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hydraulic conductivity (K) and specific storage (Ss). The initial pumping test was the same for two 

cases. Results show that the patterns of estimated K and Ss tomograms obtained from these two cases 

are similar, although the pumped locations (2nd and 3rd tests among the three) utilized for the inversion 

were different for two cases suggesting that the location of these later pumping tests does not 

significantly impact the estimates for this fractured rock block. However, the initial test should be 

selected carefully as that seems to set the pattern of the tomograms.  

The estimated K and Ss tomograms were validated by predicting five independent pumping tests 

conducted in the fractured rock block. These five pumping tests were not included during the 

construction of the K and Ss tomograms. For most of the independent pumping tests, good 

correspondence between the simulated and observed drawdown was achieved.  

The study indicates that, it is possible to delineate discrete fractures, their pattern and connectivity 

by carefully applying of THT analysis of multiple pumping tests based on the inverse code SSLE 

[Zhu and Yeh, 2005]. In addition, hydraulic tomography seems to be a cost effective tool for 

characterizing fractured rock since it does not require the detailed information on fracture geometry 

parameters such as aperture, trace length, orientation, spatial distribution, and connectivity, which are 

difficult to quantify. These parameters are usually unavailable between boreholes. Therefore, THT 

appears to be a promising approach in delineating fractures and their connectivity in subsurface. 

However, it is still at the early stage as the study was conducted in the laboratory under controlled 

conditions. Small scale field experiments need to be conducted to validate THT as a tool for the 

characterization of hydraulic parameters of fractured rocks. 

Upon completion of the hydraulic characterization, several conservative tracer tests were conducted 

using bromide (Br-) as a conservative tracer to aid in the design of TCE dissolution experiment. Once 

the tracer experiments were completed, a known volume of pure phase TCE was injected at a known 

location in the flow cell to create a well-defined source zone. A constant hydraulic gradient was 

maintained by fixing the hydraulic heads at the two head tanks to induce steady groundwater flow 

through the flow cell. Water samples were obtained at a down gradient monitoring port for 3 months 

to obtain a long-term breakthrough curve of TCE in the aqueous phase. The purpose of this 

experiment was to study TCE dissolution behaviour in the fractured rock sample. Then 

HydroGeoSphere (HGS) was used to model the aqueous phase TCE transport using two separate 

approaches: 1) the Discrete Fracture Network modeling approach and 2) the stochastic continuum 

approach, to investigate whether they can capture the dissolution behavior. 
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Both approaches were able to capture the pattern of the breakthrough curve in the fractured rock. 

The discrete fracture approach captured the observed TCE plume and the dissolution behavior quite 

well. On the other hand, the stochastic continuum approach, in which the fractured rock block was 

treated as porous medium having a heterogeneous K field obtained from THT analysis, also appeared 

to be promising in capturing the aqueous phase transport of TCE. Despite some early time deviation, 

the simulated breakthrough curve captured the overall observed concentration profile. However, the 

stochastic continuum approach seems to be more cost effective as it does not require detailed 

information about fracture aperture and their spatial distribution which are difficult if not impossible 

to obtain between boreholes. Note that, the studies were conducted based on a laboratory experiment 

conducted in a controlled environment. The experimental block was well characterized and the 

geometry of the experimental block as well as the flow through the system was well understood from 

the hydraulic and tracer experiments. Thus small scale field experiment is required to support this 

conclusion. 
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Chapter 1 
Introduction 

1.1 Problem Statement 

Flow and transport through fractured geologic media have been an ever present challenge for 

hydrogeologists. Fractures are very common in subsurface geologic formations, and typically are the 

major conduits for groundwater flow and solute transport in a fractured media. The spatial 

distribution of these fractures, their connectivity and fracture hydraulic properties thus determine the 

extent of groundwater flow and contamination. Therefore, delineation of these fractures and their 

connectivity, and understanding the transports processes through them are critical in predicting flow 

and transport behavior through the fractured geologic media as well as to prevent and remediate 

groundwater contamination. 

1.2 Review of Fractured Rock Characterization Approaches 

Subsurface flow and transport are controlled by the hydraulic properties of the medium (i.e. porosity, 

hydraulic conductivity (K), specific storage (Ss) and their spatial variability, which are critical to 

estimate for any geologic media. In a fractured geologic medium, the high contrast of these hydraulic 

properties between the fractures and the matrix along with their spatial variability make it even more 

challenging to characterize the medium accurately. 

The difficulties to characterize a fractured geologic medium have led to the development of 

different mathematical models based on different conceptualizations of fractured rock, For example, 

the equivalent porous media concept [e.g., Bear, 1972] assumes that in a large enough volume of the 

fractured formation, fracture density is sufficiently high so that the representative elementary volume 

(REV) of the fractured media behaves mathematically like a porous medium.  

A fractured geologic medium consists of two distinct voids or pore spaces consisting of matrix pore 

spaces (primary pores) and fractures of variable sizes (secondary pores). Fractures (secondary pores) 

can be characterized as open conduits, but typically consist only a small percentage of the total 

volume of the medium. On the other hand, matrix pores (primary pores) are small, consist a larger 

portion of the total volume of the media in comparison to the fractures, but have a smaller lateral 

continuity [Duguid and Lee, 1977]. The effect of the different characteristics of these two types of 

pore spaces and the slow mass transfer process between the fracture and the matrix has led to the 

creation of dual porosity/mass transfer model [e.g., Bibby, 1981; Moench, 1984; Zimmerman et al., 
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1993; McKenna et al., 2001]. The dual porosity model assumes that a fractured medium contains two 

interacting overlapping continua: primary porosity or the matrix continuum that stores the bulk of the 

fluid and the high permeability, secondary porosity or the fracture continuum that stores as well as 

conducts fluid. On the other hand, in a dual permeability model [e.g., Duguid and Lee, 1977; Gerke 

and Vangenuchten, 1993a; b; Illman and Hughson, 2005] both the fracture and matrix continua 

conduct and store water. The dual permeability model considers matrix and fracture flow separately 

and assumes mass exchange between these two heterogeneous continua through a fracture-matrix 

interaction parameter. These models overcome the problem related to the slow mixing process 

between the fracture and the matrix, but they are only appropriate when a large volume of fractured 

media is considered, where fracture density is significantly high. Thus, flow and transport behavior 

predicted by these models are averaged over a large volume of fractured media, which may not be 

adequate when finer details to the fractured geologic medium including information on discrete 

fractures are required. For example, the prediction of rapid ground water flow and transport through 

the fracture network may necessitate the need for explicit accounting of discrete features. This need 

has therefore led to the development of discrete fracture network models  [e.g., Long et al., 1982; 

Schwartz et al., 1983; Smith and Schwartz, 1984; Dershowitz and Einstein, 1988; Dverstorp and 

Andersson, 1989; Cacas et al., 1990a;b; Dverstorp et al., 1992; Slough et al., 1999; Benke and 

Painter, 2003; Darcel et al., 2003;Park et al., 2001a; b; 2003; Cvetkovic et al., 2004; Painter and 

Cvetkovic, 2005; Wellman and Poeter, 2005]. Some of the discrete fracture network (DFN) models 

determine the fracture aperture using the well known “cubic law” [Romm, 1966] and assign an 

“effective hydraulic aperture” to each fracture, which is proportional to the cubic root of the flow rate 

through the corresponding fracture. However, the idea of DFN is not only to image the large or 

dominant fractures but also thousands of fractures having different size and shape. The discrete 

fracture network models are almost always built by surveying the fractures and their geometry at a 

given site. It relies on the accurate measurements of the fracture size, shape, aperture and their spatial 

distribution. Thus it requires hydraulic and tracer tests performed at a very high spatial resolution and 

use of specialized geophysical tools to collect detailed deterministic and/or statistical information of 

the geometry of fractured zone and the spatial distribution of fracture apertures. Neuman [1987, 2005] 

discussed difficulties and limitations associated with discrete fracture approach in detail, thus a 

stochastic continuum concept [e.g., Tsang et al., 1996; Di Federico and Neuman, 1998a; b; Di 

Federico et al., 1999; Vesselinov et al., 2001a, 2001b; Hyun et al., 2002; Ando et al., 2003; Illman 

and Hughson, 2005] may be utilized to model flow and transport in fractured geologic media. The 
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stochastic continuum concept emphasizes more on the hydraulic test results performed on a suitable 

scale than the fracture geometric data [Neuman, 2005]. It represents fractured rock as equivalent 

homogeneous porous medium with ground water flow governed by Darcy’s law and treats the 

fractures and their properties as the spatially correlated random fields [Selroos et al., 2002]. 

Over the past few decades, different techniques have been established to characterize fractured 

media. For example, Hsieh et al. [1985] conducted cross-hole hydraulic tests at the Oracle site in 

Arizona consisting of fractured granite and obtained the anisotropy of hydraulic conductivity (K) and 

specific storage (Ss) by treating the fractured rock as a uniform, anisotropic medium. Neuman and 

Depner [1988] applied the stochastic continuum approach to fractured rock. They measured hydraulic 

conductivity at small and large scales by packer tests and cross-hole tests respectively at the fractured 

granitic rocks near Oracle, Arizona and estimated anisotropic covariance function of log hydraulic 

conductivities at the site.  

Numerous single-hole pneumatic injection tests in unsaturated fractured tuffs at the Apache Leap 

Research Site (ALRS) in central Arizona, USA, conducted by Guzman et al. [1996] were interpreted 

by Illman and Neuman [2000] and Illman [2005] using type curve methods. Vesselinov and Neuman 

[2001] analyzed selected single-hole pneumatic injection tests at the ALRS using a numerical inverse 

model by treating the medium to be medium. Moreover,  Illman and Neuman [2001] interpreted one 

of many cross-hole pneumatic injection tests at the same site, while steady-state analysis  [Illman and 

Neuman, 2003] and asymptotic approach [Illman and Tartakovsky, 2005a; b] were utilized to interpret 

the rest of the tests to infer the bulk pneumatic properties and fracture connectivity of the unsaturated 

fractured tuffs. Illman and Tartakovsky [2006] modified the asymptotic solution developed by Illman 

and Tartakovsky [2005a; b] to interpret three dimensional cross-hole hydraulic tests in fractured 

granite at the Grimsel site in Switzerland. 

Vesselinov et al. [2001a, 2001b] interpreted the cross-hole pneumatic injection tests [Illman, 1999] 

in the unsaturated fractured tuffs using a numerical inverse model. They analyzed the data in two 

ways: (1) considering the pressure responses at one borehole monitoring interval at a time treating the 

fractured rock spatially uniform and (2) considering the pressure responses at borehole monitoring 

intervals from multiple tests simultaneously and thus introduced pneumatic tomography to delineate 

subsurface heterogeneity in both permeability and porosity. 

 Le Borgne et al. [2006] and Williams and Paillet [2002] used cross-borehole flow meter pulse tests 

to characterize subsurface connections between discrete fractures. In this method, hydraulic stress is 
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applied to a borehole through short period of pumping and the propagation of the pulse through the 

flow system is monitored using a flow meter during stressed period. 

In an effort to improve the characterization approaches of fractured rock, Day-Lewis et al. [2000] 

combined geostatistical simulation and non-linear regression with hydraulic head data to infer 

fracture hydraulic connectivity. Their approach relied on simulated annealing and hydraulic 

connection data to identify fracture zone geometry. In a different study at the US Geological Survey 

Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA, 

Day-Lewis et al. [2003] identified preferential flow paths in fractured rock using time-lapse 

difference-attenuation radar tomography. Day-Lewis et al. [2006] analyzed the tracer and cross-hole 

radar difference-attenuation data from the same site and constructed a suite of ground water flow and 

transport models based on geophysical data. They combined time-lapse geophysical data with 

conventional hydrologic characterization and found that the combination improved the fractured rock 

characterization.  

Few of these hydrologic and geophysical approaches made significant advances in identifying 

fracture connectivity in space, although the characterization approaches are still under considerable 

debate [e.g., Illman, 2004, 2006; Knudby and Carrera, 2005; Knudby and Carrera, 2006]. Recent 

advances in characterizing subsurface heterogeneity using hydraulic tomography (HT) and pneumatic 

tomography (PT) [e.g., Gottlieb and Dietrich, 1995; Butler et al., 1999; Vasco et al., 2000; Yeh and 

Liu, 2000; Vesselinov et al., 2001a; b; Bohling et al., 2002; 2007; Liu et al., 2002; 2007; Brauchler et 

al., 2003; McDermott et al., 2003; Zhu and Yeh, 2005; 2006; Illman et al., 2007; 2008; 2009; Li et al., 

2007; 2008; Hao et al., 2008; Castagna et al, 2011; Liu and Kitanidis, 2011] may lead to a promising 

solution of this ever challenging problem of mapping fracture pattern, their hydraulic parameters and 

their connectivity in a fractured geometric media. 

1.3 Hydraulic Tomography 

During a hydraulic tomography (HT) survey, water is sequentially extracted from or injected into 

different areas of an aquifer and the corresponding pressure responses are monitored at other intervals 

to obtain drawdown or buildup data set. Yeh and Liu [2000] developed a geostatistical inverse 

algorithm called sequential successive linear estimator (SSLE) to analyze HT data. SSLE is an 

iterative geostatistical inverse method that analyzes available head data from sequential pumping test 

to estimate distribution of hydraulic parameters. In the laboratory  Liu et al. [2002] and Illman et al. 
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[2007, 2008 and 2010] demonstrated the effectiveness of steady state hydraulic tomography (SSHT) 

using SSLE to estimate the heterogeneity in hydraulic conductivity (K). Zhu and Yeh [2005; 2006] 

extended SSLE to analyze transient hydraulic tomography (THT) data. THT uses the transient records 

from sequential pumping tests conducted at the different vertical intervals of the aquifer to estimate 

the aquifer heterogeneity not only in hydraulic conductivity (K) but also specific storage (Ss). Liu et 

al. [2007] demonstrated encouraging results from the laboratory sandbox experiment for THT. They 

not only identified the K and Ss distribution in the laboratory sandbox using THT but also successfully 

reproduced the observed drawdown as a function of time of an independent aquifer test using 

estimated K and Ss field. Straface et al. [2007] estimated transmissivity and storativity fields, 

consistent with the site geology by applying THT to a well field at Montalto Uffugo Scalo, Italy.  

Berg and Illman [2011] showed promising results in characterizing a highly heterogeneous 

glaciofluvial aquifer – aquitard system by performing transient hydraulic tomography (THT)  using 

the SSLE at the North Campus Research Site, located at the University of Waterloo, Waterloo, 

Ontario. They conducted 9 pumping tests in the field in a 3D network of pumping and monitoring 

wells and performed THT in 3D by inverting each individual test as well as sequentially interpreting 

4 pumping tests with SSLE to estimate hydraulic conductivity (K) and specific storage (Ss) 

distributions as well as their uncertainties. Inversion of individual pumping tests was able to capture 

the main aquifer zone, however the details were lacking in comparison to the THT analysis of 4 

pumping tests. They validated the resulting K and Ss distributions from both individual and multiple 

tests visually by comparing them to stratigraphy and permeameter K estimates. They also simulated 

these 9 pumping tests using estimated K and Ss tomograms and compared the simulated drawdown to 

the observed records. The study showed that it is possible to map the K and Ss distributions of a 

highly heterogeneous porous medium and their uncertainties by analyzing individual as well as 

multiple pumping tests by means of THT code of Zhu and Yeh [2005]. However, inversion of 

multiple pumping tests improves not only the estimate K and Ss field but also their ability to predict 

independent pumping tests. 

1.4 Studies of Hydraulic Tomography in Fractured Rock 

In a fractured medium, fractures usually have higher hydraulic conductivity (K) and lower specific 

storage (Ss) values than the rock matrix. Thus, while pumping tests are conducted, pressure 

propagates rapidly through connected fractures unlike the rock matrix, thereby delineating high 

hydraulic conductivity and low specific storage distributions of the fractured media. Hao et al. [2008] 
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recently applied HT data analysis algorithm SSLE to a synthetically generated fractured media to 

investigate the feasibility of HT to detect fracture zones and their connectivity. The hypothetical 

fractured rock aquifer was a 2D vertical square domain which was 40 m by 40 m in dimension. 

Constant head boundaries of 100 m were assigned around the domain. The domain consisted of 1m 

by 1 m elements and they created orthogonal fracture zone sets consisting of five vertical and two 

horizontal facture zones embedded in a rock matrix. They satisfactorily imaged the high hydraulic 

conductivity zones from the observation data collected from multiple pumping tests, which reflected 

the fracture pattern and its connectivity in the synthetic fractured aquifers although estimated values 

of K and Ss fields were smoother than the true fields. They found that, fracture pattern and 

connectivity became more vivid and the estimated hydraulic properties approached true values as the 

number of wells and monitoring ports increased.  

Illman et al. [2009] interpreted two cross-hole pumping tests at the Mizunami Underground 

Research Laboratory (MIU) construction site in central Japan and analyzed them using the THT code 

of Zhu and Yeh [2005] to map the three-dimensional distribution of K and Ss, their connectivity, as 

well as their  uncertainty. They were able to identify two fast flow pathways or conductive fault zones 

at the site, although they used only two cross-hole pumping tests for inversion purposes. Moreover, 

the pumping tests were not conducted in a controlled environment. They assessed the soundness of 

the estimated fracture K and Ss tomograms using three different approaches: (1) by comparing the 

calibrated and observed drawdown records as well as predicted the drawdown responses at the 

monitoring intervals that were not used in the construction of the K and Ss tomograms; (2) by 

comparing the estimated K and Ss tomograms to previously known fault locations, and (3) by utilizing 

coseismic groundwater pressure changes recorded during several large earthquakes as a means to 

evaluate the K and Ss tomograms. The K and Ss tomograms estimated by Illman et al. [2009] were 

encouraging. The THT analysis produced connective pathways of high K and low Ss zones but due to 

the availability of only 2 cross-hole tests for the analysis, the K and Ss tomograms did not provide 

details to the faults at the site. In addition, there were no additional pumping tests available to validate 

the K and Ss tomograms. The results obtained from the study conducted by Illman et al. [2009] was 

the motivation to conduct a laboratory fractured rock block experiment in which THT can be 

evaluated in a controlled setting.  
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1.5 DNAPL Dissolution Studies 

Contamination of groundwater by dense non-aqueous phase liquids (DNAPL) is very common. These 

organic liquids usually have high density, low viscosity and relatively low solubility. Because of 

these characteristics, once spilled on the ground, these liquids rapidly migrate downward. Once in the 

subsurface, DNAPLs become a potential long term source of groundwater contamination due to the 

low groundwater velocity as well as their low solubility [Pankow and Cherry, 1996]. Mass transfer 

between the non-aqueous to aqueous phase is an important process for DNAPLs commonly found in 

contaminated groundwater. This mass transfer process determines the concentration of the chlorinated 

solvents in groundwater, which often exceeds drinking water standards, although the mass transfer is 

believed to be a slow process. Therefore, during the last few decades, numerous studies have been 

conducted to understand the DNAPL dissolution process. 

Several laboratory column or sandbox experiments were conducted over the last two decades to 

understand the process and significant progress has been made in developing correlations to describe 

the mass transfer between the non-aqueous phase to aqueous phase in a relatively homogeneous 

porous medium [Miller et al., 1990; Powers et al., 1992, 1994a, b; Geller and Hunt, 1993; Imhoff, 

1994a, b, 2002; Nambi and Powers, 2000; Saba and Illangasekare, 2000]. 

When a dense non-aqueous phase liquid is spilled, it infiltrates into the ground leaving behind 

droplets trapped in the pore spaces and pools on top of the impermeable layer. The trapped droplets in 

pore spaces constitute DNAPLs at residual saturation. These trapped residual DNAPL remains 

immobile under typical hydraulic gradients [Pankow and Cherry, 1996]. Several active remediation 

techniques have been developed for removal of DNAPLs in the source zone [Mackay and Cherry, 

1989; Pankow and Cherry, 1996; Rao et al., 1997; Dekker and Abriola, 2000 b; Rathfelder et al., 

2001; Saenton et al., 2002; Brooks et al., 2002; 2004; McGuire et al., 2006; Page et al., 2007 etc.]. 

However, most of the efforts have failed to remove the source completely. Moreover, the high 

expense for complete cleanup makes it an impractical choice in most cases. The failure and expense 

of complete cleanup has led to an increased interest in partial source-zone remediation followed by 

passive or natural remediation that does not require expensive maintenance other than monitoring. 

Several studies [Jawitz et al., 2003., 2005; Lemke et al., 2004b; Soga et al., 2004; Fure et al., 2006; 

Park and Parker, 2005; McGuire et al., 2006; Page et al., 2007 etc] were conducted to assess the 

utility of this approach. However, one of the important factors in designing remediation system is the 

time length required to dissolve the source, which is determined by the dissolution rate of DNAPL 
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mass. Thus a sound understanding of the fundamental processes that control the dissolution of 

DNAPL is needed. 

The dissolution of DNAPL source may be either equilibrium controlled or kinetic. The dissolution 

process (either equilibrium or kinetic) determines the time required to dissolve the source and the 

concentration in the dissolved plume [Borden and Piwoni, 1992]. Unger et al. [1998] suggested that 

different DNAPL mass transfer models can have significant impacts on source depletion rates through 

an extensive numerical analysis in synthetic heterogeneous aquifers under natural-gradient conditions. 

From the multi-realization analysis based on the compositional, multiphase flow model, CompFlow 

[Unger, 1995; Unger et al.,1996;1998], they found the type of the dissolution model (equilibrium 

versus kinetic) to have more influence on source-zone depletion or mean dissolution time than the 

parameters controlling multiphase flow or degree of heterogeneity in the aquifer's permeability. 

However, the synthetic aquifer used for the simulations were based on the Borden aquifer which is 

known to be low in heterogeneity in terms of hydraulic conductivity. 

 Maji and Sudicky [2008] presented a comparison of the various alternative DNAPL-aqueous-phase 

mass transfer models developed through laboratory column experiments for the prediction of DNAPL 

source-zone depletion time. They incorporated various dissolution models into the compositional, 

multiphase flow model, CompFlow [Unger, 1995; Unger et al.,1996,1998)] and predicted the time 

required for the complete depletion of a DNAPL source due to natural dissolution in order to 

investigate the influence of mass transfer characteristics in DNAPL source depletion and contaminant 

flux reduction. The hydrogeologic setting used for the simulations was representative of a 

heterogeneous fluvial aquifer in Southwest Germany, which was comprehensively characterized in 

three dimensions for hydrogeological parameters. The hydraulic conductivity heterogeneity at this 

site is considerably higher than at the Borden site. They found the type of the dissolution model, the 

parameters controlling dissolution rate and the aquifer heterogeneity to have equal influence on the 

DNAPL source depletion and dissolved flux reduction. Therefore they suggest that it is equally 

important to characterize the heterogeneity of the aquifer hydraulic conductivity and have knowledge 

of the dissolution kinetics prior to the design of a remediation methodology. 

Fried et al. [1979]; Abriola and Pinder [1985a, b]; Hunt et al. [1988a, b]; Anderson et al. [1992a, 

b], Johnson and Pankow [1992], Geller and Hunt [1993] etc. studied the dissolution of residual 

DNAPL located above and below the water table. These studies suggested that long contact times 

between the DNAPL and groundwater result in a dissolved concentration near or at equilibrium, at 
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least around the source zone. Numerical studies [e.g., Abriola and Pinder, 1985a, b; Pinder and 

Abriola, 1986, Corapcioglu and Baehr, 1987; Unger et al., 1995 etc] utilized the local equilibrium 

assumption (LEA) to explain the mass transfer between the non-aqueous and the aqueous phases. The 

local equilibrium assumption (LEA) implies that the dissolved concentration of contaminant in the 

groundwater at the source corresponds to its solubility in water. 

Frind et al. [1999] simulated the dissolution of the Borden emplaced- DNAPL source field 

experiment and they found that the dissolution at the Borden emplaced source occurred mostly at or 

close to equilibrium except at late-time. They attribute the late time tailing to the decreasing mole 

fraction rather than the mass transfer kinetics. However, the hydraulic conductivity at Borden is 

relatively homogeneous. They suggested the mass transfer to be an equilibrium process at the 

homogeneous medium, while the situation may be different for a heterogeneous medium.  

 Several laboratory studies conducted in relatively heterogeneous sand [e.g., Mayer and Miller, 

1996; Powers et al., 1998; Nambi and Powers, 2000 etc] suggest that the heterogeneity of the 

medium has a significant impact on the dissolution behavior. Laboratory experiments conducted by 

Schwille [1988] and Lamarche [1991] suggest equilibrium mass transfer takes place at early time 

while non-equilibrium mass transfer occurs at the tailing stage. Powers et al. [1991] investigated the 

circumstances under which mass transfer process would not follow the equilibrium behavior. They 

identified several factors that accelerate non-equilibrium mass transfer such as small areal extent 

spills, high Darcy velocities, large size of NAPL blobs and low residual NAPL saturations. Powers et 

al. [1992] correlated the mass transfer rate to the Reynolds number, the median grain size, and a 

porous medium uniformity index based on a laboratory column experiment. Powers et al. [1994a] 

developed a phenomenological model where they described the NAPL blobs by spheres of different 

radii and proposed a general correlation for transient dissolution rates in terms of porous media 

properties, the Reynolds number and NAPL properties. Similar to Schwille [1988] and Lamarche 

[1991], Powers et al. [1994b] also suggested an equilibrium mass transfer takes place at early time 

and kinetic mass transfer at later time. Imhoff et al. [1994a] developed a new experimental technique 

using gamma attenuation to determine the mass transfer rate coefficient and showed mass transfer 

rate coefficient to be a function of Darcy flux and DNAPL volumetric content. Imhoff et al. [1994a, 

b] graphically compared the mass transfer rates expressed in terms of Sherwood number as a function 

of the Reynolds number obtained from several different investigations [Miller et al., 1990; Parker et 

al., 1991; Geller and Hunt, 1993; Powers et al., 1992]. Imhoff et al. [1996] investigated dissolution 
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fingering, an important kinetic dissolution process on the basis of an experimental observation and 

Imhoff and Miller [1996] modeled the dissolution fingering phenomenon. Trapped NAPL ganglia 

within the pore space reduce the permeability of the medium to aqueous phase flow. Imhoff and 

Miller [1996] suggest that when fluid flow is imposed on such a system, the aqueous phase may 

interact with dissolution-induced permeability changes and lead to fingered patterns, known as 

dissolution fingering.  Other Laboratory investigations and modeling studies [Hunt et al., 1988a; b; 

Conrad et al., 1992; Malone et al., 1993; Wilkins et al., 1995; Imhoff et al., 1998; Saba and 

Illangasekare, 2000; Nambi and Powers, 2003; Phelan et al., 2004 etc] also found evidence of non-

equilibrium effects in mass transfer processes and treated the mass transfer as a non-equilibrium 

process.    

Field data, however, frequently indicates contaminant concentrations in groundwater below their 

corresponding equilibrium values [Mackay et al., 1985; Feenstra, 1986; Feenstra and Cherry, 1988], 

also supporting kinetic dissolution behavior. This lower concentration or kinetic dissolution behavior 

may result from dilution by clean water, trapped DNAPL droplets at the dead end pores or residual 

zones at low permeability areas that get dissolved later than the DNAPLs in high permeability areas 

[Frind et al. 1999]. 

In a fractured geologic medium, the DNAPLs preferentially migrate along the fractures under the 

influence of gravitational, viscous and capillary forces. DNAPL in the hydraulically active fractures 

acts as a persistent source of aqueous phase contamination, until all of the mass disappears through 

dissolution. On the other hand, some DNAPL mass gets trapped in the dead end fractures which may 

cause the pooling of DNAPL. A portion of the DNAPL mass also diffuses to the rock matrix having 

very low permeability [Mackay and Cherry, 1989; Parker et al., 1991]. In the 1970s and 1980s, the 

urgent need to safely dispose radioactive waste in fractured geologic media led to several studies 

[e.g., Neretnieks, 1980; Schwartz et al., 1983; Keller et al., 1986 etc] to understand the flow and 

transport through fracture rock. Fracture–matrix interaction has been the focus of the researchers for 

decades [e.g., Neretnieks, 1980; Neretnieks et al., 1982; Maloszewski and Zuber, 1993; Liu et al., 

2004a; Wu et al., 2010] and matrix diffusion has been gradually considered as one of the most 

important mechanisms controlling the contaminant transport processes in fractured geologic media. 

The matrix diffusion process in a fractured porous media is considered as the transient attenuation 

mechanism that retards the aqueous phase contaminant migration along the fractures [Neretnieks, 

1980; Therrien and Sudicky, 1996; VanderKwaak and Sudicky, 1996]. In absence of attenuation 
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process such as sorption, matrix diffusion, biological or chemical transformation, advective 

contaminant migration in dissolved phase can result into rapid contamination along the fractures. The 

DNAPL mass diffused into the matrix reenters the adjacent fractures once the DNAPL in the fractures 

are completely dissolved and gets flushed in aqueous phase with flowing water [Neretnieks, 1980; 

Therrien and Sudicky, 1996; VanderKwaak and Sudicky, 1996; Slough et al., 1999]. 

Over the past few decades, several studies [e.g., Tang et al., 1981; Rasmuson et al., 1982; Sudicky 

and Frind, 1982; Pruess and Narasimhan, 1985; Berkowitz, 2002; Liu et al., 2003, 2004a; Hu et al., 

2004; Reimus and Callahan, 2007 etc.] have been conducted to understand and model transport 

phenomena in fractured porous media. 

VanderKwaak and Sudicky [1996] developed a transient two dimensional groundwater flow and 

contaminant transport model to study DNAPL dissolution in discrete fracture networks. The model 

accounted for matrix diffusion, equilibrium sorption and nonlinear relative transmissivity and was 

based on local equilibrium partitioning of contaminant dissolution. They found that the time required 

for dissolution depends on the flow and transport properties of fractures and matrix as well as the 

fracture connectivity.  

Dickson and Thomson [2003] predicted the fate of DNAPLs in a fractured rock system through 

laboratory dissolution experiments conducted in two dolomitic limestone having variable aperture 

fractures using 1,1,1-trichloroethane and Trichloroethene. They showed three distinct and 

characteristic stages of effluent concentration profile, which are initial pseudosteady stage, transient 

stage, and tailing stage. They also developed an empirical model describing the initial pseudosteady 

and transient stages of dissolution, using the experimental data. The developed empirical model 

relates the Sherwood number (Sh) to various dimensionless numbers such as the Reynolds (Re) 

number, tracer aperture ratio and the normalized aperture saturation obtained from the dissolution 

experiments. The Sherwood number is a ratio that represents the mass transfer rate to the diffusion 

rate and is the product of the lumped mass transfer coefficient and a characteristic length squared 

divided by the free water diffusion coefficient. Reynolds number is also a dimensionless number 

calculated from the characteristic length, density, kinematic viscosity and dynamic viscosity of the 

fluid. As the empirical model was developed using experimental data, it is valid under certain range 

of Reynolds number (Re).They note that their model is sensitive to a morphology index, which 

represents the ratio of DNAPL-water interfacial area to DNAPL volume. They utilized the empirical 
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model to predict effluent concentration data from two separate and independent dissolution 

experiments.  

A more recent laboratory experiment conducted by Schaefer et al. [2009] investigated DNAPL 

architecture and dissolution in a discretely fractured sandstone using Tetrachloroethene (PCE). They 

found effluent DNAPL concentrations to approach equilibrium condition as the flow velocity through 

the fracture decreases, indicating that PCE dissolution into the mobile water is mass-transfer-

controlled. From lumped mass transfer coefficient estimated using the same approach as Dickson and 

Thomson [2003], they suggest that the DNAPL dissolution rate in fractures is a relatively slow 

process compared to that in sand. They attribute this slow dissolution rate to the heterogeneity, 

DNAPL distribution and decreased efficiency of mixing and mass transfer in fractures relative to 

unconsolidated media. At the end, they described DNAPL dissolution by a Reynolds number 

correlation that incorporates DNAPL architecture in terms of friction loss aperture and DNAPL-water 

interfacial area. 

 Most of the dissolution studies in fractured rock consider empirical relationships based on 

Sherwood and Reynolds numbers. Certainly a large number of studies show that one can use such 

relationships. However, this may be due to the fact that there have been no methods to accurately 

characterize the heterogeneity of the fractured porous medium and DNAPL distribution.  

Here, a TCE dissolution experiment was performed in a hydraulically well characterized fractured 

dolomite in the laboratory in order to investigate the DNAPL dissolution behavior in a controlled 

environment and predict DNAPL dissolution through a different approach. I first try to image the 

heterogeneity patterns of hydraulic conductivity of the fractured rock with hydraulic tomography and 

then use an equilibrium dissolution model HydroGeoSphere (HGS) [Therrien et al., 2009] to simulate 

the TCE breakthrough curve. The purpose of this portion of the study is to investigate if DNAPL 

dissolution behavior can be predicted with an equilibrium dissolution model when the heterogeneity 

distribution and the location of the DNAPL are known.                                                                     

1.6 Objectives of the Study 

The main objectives of this study are:   

• to investigate the utility of transient hydraulic tomography (THT) along with the inverse 

algorithm SSLE developed by Zhu and Yeh [2005] to image the K and Ss heterogeneity 
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pattern of fractured geologic media and their uncertainties. This includes the delineation of 

the pattern of discrete fractures and their connectivity; 

• to investigate the transport behavior of aqueous phase Trichloroethylene (TCE) undergoing 

dissolution from a source zone in discrete fractures and;  

• to investigate whether the transport behavior of the aqueous phase of TCE in a fractured rock 

block can be captured through numerical modeling with HydroGeoSphere (HGS) by treating 

dissolution as an equilibrium process using: 

1) a Discrete Fracture Network Approach –  where a discretely fractured domain is used for 

the simulation and the fractures are assigned an aperture thickness; and 

2) a Stochastic Continuum Approach – where the domain is treated as a porous medium 

with the hydraulic conductivity (K) field obtained from THT analysis. 

1.7 Thesis Content 

Given the complexities of fractured networks in subsurface and Dense Non Aqueous Phase Liquid 

(DNAPL) contamination, laboratory experiments were designed with an intention to demonstrate 

hydraulic tomography as a tool to delineate discrete fractures and understand TCE plume behavior.  

A dolomite rock sample, which is about 91.5 cm in length, 60.5 cm in height and 5 cm thick, was 

fractured in the laboratory to perform the flow and transport experiments. After the fractured block 

was enclosed into a flow cell, flow-through and pumping tests were conducted to characterize the 

fractured rock block. The data from the pumping tests were then included in the SSLE code 

developed by Zhu and Yeh [2005] and transient hydraulic tomography (THT) was conducted to 

delineate the K and Ss distributions (or tomograms from now on) and their uncertainty estimates. 

Imaging of the K and Ss tomograms, if they are conducted at a high enough resolution can result in the 

imaging of the fracture pattern and their connectivity. 

Upon completion of the hydraulic characterization, several conservative tracer tests were conducted 

using bromide (Br-) as a conservative tracer to aid in the design of TCE dissolution experiment. Once 

the tracer experiments were completed, a known volume of pure phase TCE was injected at a known 

location in the flow cell to create a well-defined source zone. A constant hydraulic gradient was 

maintained by fixing the hydraulic heads at the two head tanks to induce steady groundwater flow 

through the flow cell. Water samples were obtained at a down gradient monitoring port for 3 months 
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to obtain a long-term breakthrough curve of TCE in the aqueous phase. The purpose of this 

experiment was to study TCE dissolution behaviour in the fractured rock sample. Then 

HydroGeoSphere (HGS) was used to model the aqueous phase TCE transport using two distinct 

approaches – 1) the Discrete Fracture Network modeling approach and 2) the stochastic continuum 

approach, to investigate whether they can capture the transport behavior. 

This thesis is organized into 10 chapters. The hydraulic tests and the transient hydraulic 

tomography (THT) studies are described first, which are presented in Chapter 2 through Chapter 5. 

Then the tracer tests, TCE dissolution experiment and the dissolution modeling approaches are 

explained, which are presented in Chapter 7 through Chapter 9. The main conclusions of THT and 

TCE dissolution studies conducted in the fractured rock sample are summarized in Chapter 10. 
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Chapter 2 
Rock Sample and Experimental Set-up 

2.1 Description of the Rock Sample 

A dolostone rock sample was obtained for the laboratory experiments from a rock supplier for home 

landscaping called Stone Landscapes, Waterloo, Ontario. According to Stone Landscapes, the rock 

specimen is from Wiarton, Ontario and from a geological formation called Guelph Formation. The 

Guelph Formation is a carbonate ramp sequence and mainly composed of tan to dark brown, 

microcrystalline to fine crystalline, pervasive and massive dolomites [Zheng and Coniglio, 1998].  

The dolomite rock sample (Figure 2.1) was approximately 91.5 cm in length, 60.5 cm in height and 

5 cm thick (36 in x 24in x 2in). The rock sample was bent holding with C-clamps placing a triangular 

bar underneath, in order to induce tension fractures. Figure 2.2 is a photograph of the rock specimen 

after it was fractured in the laboratory. Dimensions of the rock block and the fractures are shown in 

Figure 2.3. 

 

Figure 2.1: Photograph of the Dolostone Rock Sample 

 

Figure 2.2: Photograph of the Dolomite Rock Sample Fractured in the Laboratory 
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Figure 2.3: Dimensions of the Fractured block 

2.2 Preparation of the Flow Cell 

The fractured rock was enclosed in a flow cell (Figure 2.6) to perform hydraulic tests.  Titanium putty 

(Devcon, Danvers, MA, USA) was used to attach the brass fittings that were used as ports to the front 

surface of the rock and to seal the edge of the fractures (Figure 2.4) leaving the left and right end of 

the fractured rock open. Then resin (Environmental Technology, Inc., CA, USA) which is usually 

used for surface finishing was carefully poured to cover the front, back, top and bottom surface of the 

rock (Figure 2.5) to prevent any evaporation, leakage and to make the surfaces smooth. After the resin 

dried and hardened, water was injected to the left most port (Figure 2.5) which came out to the other 

side and vice versa which ensured that the horizontal fracture did not become sealed. The same 

procedure was repeated for the vertical fractures to ensure that they were not sealed.    
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Figure 2.4: Photograph of the Sealed Fractures and the Ports 

 

Figure 2.5: Photograph of the Fractured Rock Block Covered with Resin 

The sealed fractured block was then placed into the flow cell leaving sufficient room (~6 in) for 

water reservoirs at the left and right ends. The flow cell was constructed of stainless steel and 

plexiglass was used as a front plate. The dimensions of the flow cell are  122 cm in length, 65 cm in 

height and 6.5 cm thick (48 in x 26 in x 2.5 in). Silicon was used to seal between the box and the rock 

block. 
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Figure 2.6: a) Schematic Diagram of the Flow cell and b) Photograph of the Tank Holding the 

Fractured Block 

The fractured block had constant head reservoirs at the left and right boundaries and “no-flow” 

conditions at the remaining outer boundaries. The left and right edge of the rock was open to the 

constant head reservoirs allowing water flow through the fracture. 

2.3 Pressure Transducers and Data Collection 

The flow cell was equipped with 29 ports that could be used to monitor water pressure or to pump 

water from it. Red ovals in the schematic diagram (Figure 2.6a) show their locations. Designs of the 

ports are shown in Figure 2.7. The port locations were designed to mimic borehole placement in the 

field. That is, the ports were placed along vertical and slanted lines resembling boreholes as shown in 

Figure 2.7 Each port was connected to a 0-1 PSIG  pressure transducer (model 209, Alpha Controls & 

Instrumentation, Markham, ON, Canada)) to record pressure head at different locations of the 

fractured domain during the hydraulic tests. Seventeen pressure transducers were placed on fractures, 

ten were installed on the matrix and two were utilized to record pressure head in the constant head 

reservoirs. Ports placed on fractures were also utilized for water extraction during the pumping tests. 
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Figure 2.7: Design of Ports 

2.4 Experimental Set-up for the Hydraulic Tests 

2.4.1 Flow-Through Tests 

After the fractured block was enclosed in a flow cell, four flow-through tests were conducted 

following the work of Illman et al. [2007, 2010] to estimate effective hydraulic conductivity of the 

fractured block. Flow-through tests were conducted by fixing the hydraulic gradient across the rock 

sample and measuring the water outflow rate at the effluent dripping point using a graduated cylinder. 

Hydraulic gradient across the rock block was fixed by setting drip points at the end reservoirs at 

different heights. A peristaltic pump (MasterFlex, Model 7550-30, Cole-Parmer, Montreal, QC, 

Canada) was used to supply water continuously into the influent reservoir and the drip point 

maintained constant head. Figure 2.8 is a schematic diagram of the experimental set-up for the flow-

through tests. 
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Figure 2.8: Experimental Set-up of the Flow-through Tests 

2.4.2 Pumping Tests 

Upon completion of the flow-through tests, 17 pumping tests were conducted at each of the fracture 

ports. A peristaltic pump was used to extract water from the pumping port and a pulse dampener was 

used in between the pump and the pumped port to reduce the noise resulting from oscillations of the 

peristaltic pumps.  

 

Figure 2.9: Experimental Set-up of the Pumping Tests 

Figure 2.9 shows the experimental set-up for the pumping tests. Twenty-seven pressure transducers 

(0-1 PSIG model 209, Alpha Controls & Instrumentation, Markham, ON, Canada) recorded pressure 

responses at different heights of the fractured domain and two of them recorded pressure head in the 

constant head reservoirs during each test. Both reservoirs were fixed at the same level and the 
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constant head was maintained throughout the test by putting back the extracted water to the top of the 

tank, from where it went to the both reservoirs. Pumping tests were conducted at each of the 17 

fracture ports to collect as much information as possible. 
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Chapter 3 
Hydraulic Tests  

3.1 Flow-Through Tests and Estimated Hydraulic Properties  

Four flow-through tests were conducted to estimate an effective hydraulic conductivity of the 

experimental block and to estimate the hydraulic aperture. Flow rate was measured in both directions 

(left to right and right to left) by fixing the hydraulic gradient across the fractured block and for two 

different hydraulic gradients in each direction. Table 3-1 provides a summary of the flow-through 

tests and Table 3-2  summarizes the estimated hydraulic properties from the flow-through tests.  

Table 3-1: Summary of the Flow-Through Tests 

Test Direction of Flow 
Hydraulic 

Gradient 

Flow Rate 

(mL/s) 

Test 1 Left to Right 0.05 0.28 

Test 2 Left to Right 0.13 0.50 

Test 3 Right to Left 0.06 0.27 

Test 4 Right to Left 0.13 0.51 

 

From the flow-through tests, the hydraulic aperture of the horizontal fracture was estimated using 

the Cubic Law, given by equation (1) [Romm, 1966] – 

𝑒ℎ = ( 12µ𝑄𝐿
𝜌𝑔𝑊𝛥𝐻

)1 3�                                                                                              [1] 

where, eh is hydraulic aperture (L), µ (ML-1T-1) is the fluid viscosity at room temperature (20°C), Q 

(L3T-1) is the discharge or flow rate through fracture, L (L) is the fracture length in the direction of 

flow, W (L) is the fracture width perpendicular to the direction of flow, ρ (ML-3) is the fluid density at 

room temperature, g (LT-2) is the acceleration due to gravity, and ΔH (L) is the hydraulic head loss 

across the fracture plane. 

The estimated values of hydraulic aperture of the horizontal fracture from four different flow-

through tests varied from 0.047 cm to 0.05 cm, which are listed in Table 3-2.  
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Reynolds number (Re) was calculated for the estimated hydraulic aperture to check if the flow was 

laminar. Reynolds number (Re) is given by equation (2) [Bear, 1972] - 

𝑅𝑒 = 𝑉𝑑𝜌
𝜇

                                                                               [2] 

where, Re is the Reynolds number, V (LT-1) is the Darcy velocity, d (L) is the characteristics length 

(fracture aperture in this case), ρ (ML-3)  and μ (ML-1T-1)  are the density and viscosity of water 

respectively at room temperature. Reynolds number (Re) for the different hydraulic apertures 

estimated from different flow through tests are listed in Table 3-2. 

The flow is considered to be laminar and linear when the Reynolds number (Re) is in between 1 to 

10 and the Darcy’s law is applicable to the flow condition [Bear, 1972]. From Table 3-2 it can be 

seen that Re was comparatively larger for the larger hydraulic gradient (Test 2 and 4) as the velocity 

increases with increasing hydraulic gradient and vice versa. However, Reynolds number (Re) 

estimated from each flow-through test ranged from 4.7 to 8.88 (within the range of 1-10) which imply 

that the flow through the fracture was laminar and linear, where Darcy’s law is applicable. 

From the flow-through tests, the effective hydraulic conductivity (Keff) of the fractured block was 

estimated using Darcy’s Law, given by equation (3) - 

𝑄 = −𝐾𝐴𝑑ℎ
𝑑𝑙

                                                                                   [3] 

where, Q (L3T-1) is the discharge or flow rate through the system, K (LT-1)  is effective hydraulic 

conductivity (Keff) of the aquifer; A (L2)  is bulk cross-sectional area and 𝑑ℎ 
𝑑𝑙

  is the hydraulic gradient 

across the system. Estimated effective hydraulic conductivity (Keff) from four different flow-through 

tests are listed in Table 3-2, which varied from 1.30 ×10-2 cm/s to 1.70×10-2 cm/s. 
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Table 3-2: Estimated Hydraulic Properties from Flow-Through Tests 

Test Hydraulic Aperture (cm) 
Reynolds No 

(Re) 
Effective K (cm/s) 

Test 1 0.05 4.87 1.70×10-2 

Test 2 0.047 8.70 1.30×10-2 

Test 3 0.048 4.70 1.50×10-2 

Test 4 0.047 8.88 1.30×10-2 

3.2 Pumping Tests Description 

Pumping tests were conducted at each of the ports completed on a fracture using a peristaltic pump. 

The left and right end of the domain was set as constant head boundaries and the rest of the outer 

boundaries of the fractured rock were treated to be no-flow. The duration of each pumping test ranged 

from 3 to 10 minutes. During each test, pressures were recorded at 30 to 31 ports (described in section 

2.3) located along the fractures, matrix and constant head reservoirs, while pumping took place at one 

port located on a fracture. Similar to Illman et al. [2007, 2011], pressure transducers were calibrated 

prior to each pumping test for three different reservoir heads. To develop a static, initial condition, 

head data were recorded at each pressure transducer for several minutes before starting each pumping 

test. Then each pumping test was run until steady-state conditions which were visually confirmed by 

observing the stabilization of all head measurements on the data logger connected to a computer. 

During all of the pumping tests recorded hydraulic heads in ports completed on fractures reached 

steady-state within 2 to 3 seconds after the water extraction was started and no drawdown was 

observed at any of the matrix ports, which was expected due to the very high contrast between the 

hydraulic conductivity of the fracture and matrix.  
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Table 3-3: Summary of the Pumping Tests 

Pumped 

Port 

Pumping Rate 

(mL/s) 

Duration 

(min) 

Maximum Observed 

Drawdown (cm) 

Port of Maximum 

Drawdown 

Port 1 4 10 8 Port 3 

Port 3 2.5 10 10 Port 15 

Port 4 2.5 10 10.4 Port 3 

Port 5 4 10 17.3 Port 11 

Port 6 2.5 10 10 Port 11 

Port 7 2.5 5 7.8 Port 19 

Port 8 4 10 9.5 Port 7 

Port 9 4 10 5.9 Port 8 

Port 11 4 10 17 Port 13 

Port 12 4 10 19.7 Port 13 

Port 13 4 10 18.7 Port 12 

Port 14 2.5 10 16.2 Port 15 

Port 15 1.7 10 14.9 Port 16 

Port 16 1 10 11.7 Port 15 

Port 17 2.5 3 29.7 Port 18 

Port 18 1.7 10 21.3 Port 17 

Port 19 1 10 18.4 Port 18 
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Figure 3.1: Observed drawdown at fracture and matrix ports during a pumping test at port 5. 

The pumped port is indicated by the black rectangular box. 

Table 3-3 summarizes all the pumping tests. Figure 3.1 shows the drawdown responses recorded at 

the fracture and matrix ports during the pumping test at port 5. Drawdown at the pumping port has 

been highlighted with black rectangular box in Figure 3.1. In this case the pumping rate is 4 mL/s. 

Pumping and observation ports are indicated on Figure 2.9. Similar plots for the remaining 16 

pumping tests are provided in Appendix A . 

3.3 Pumping Tests Simulated Using HydroGeoSphere 

The groundwater flow and solute transport code, HydroGeoSphere (HGS) was used to simulate the 

pumping tests in a synthetic replica of the fractured block to compare the observed and simulated 

drawdown. 
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The domain used for the forward simulation was 91.5 cm in length by 60.5 cm in height and 5 cm 

thick (one element thick) and was composed of variably-sized rectangular elements. The element size 

varied from 0.05 cm by 0.01 cm to 1.375 cm by 1.375 cm. The finer elements were located along the 

fracture and the coarser elements were located near the boundary. The boundary conditions were 

constant head (63.5 cm) for left and right boundaries and no flow for the remaining outer boundaries.  

Figure 3.2a shows domain used for simulating the pumping tests and Figure 3.2b shows the fracture 

faces.  The darker areas in Figure 3.2a indicate the highly refined areas of the model domain. 

 

Figure 3.2: a) Mesh Used for Forward Pumping Tests and b) Fracture Faces. 

An aperture thickness, obtained from the flow-through tests were assigned to the fractures and very 

low hydraulic conductivity (K = 1.00×10-7 cm/s) was assigned to the matrix to simulate the pumping 

tests. HGS calculated the fracture hydraulic conductivity (Kf) from the aperture thickness using 

equation (4) [Therrien et al., 2009].  

𝐾𝑓 = 𝜌𝑔𝑊𝑓
2

12µ
                                                                                                   [4] 

where, Kf [LT−1] is the fracture hydraulic conductivity, Wf (L) is the fracture aperture; ρ (ML-3) and μ 

(ML-1T-1) are the density and viscosity of water, respectively. 

Matrix hydraulic conductivity (Km) and specific storage (Ss) values (Given in Table 3-4) for both 

fractures and matrix were obtained from the literature [i.e, De Marsily, 1986; Domenico and 

Schwartz, 1997; Schwartz and Zhang, 2003 etc.]. I started with the literature values and simulated the 
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pumping test at port 5 (indicated in Figure 2.9). The parameters were then adjusted for this test 

through trial-and-error until a good match was obtained between the observed and simulated 

drawdown curves. The manual calibration resulted in higher specific storage values (for both 

fractures and matrix) than the literature values to match early time observed drawdown. Table 3-4 

summarizes the calibrated parameters.  These parameters were then utilized to simulate 8 more 

pumping tests having flow rates identical to the laboratory tests, using HGS in the discretely fractured 

domain to compare the observed and simulated drawdown. Pumped ports and the corresponding 

pumping rates are listed in Table 3-5. Pumping and observation ports are indicated in Figure 2.9.  

Table 3-4: Parameters Used to Simulate the Pumping Tests using HGS (Calibrated for the test 

at port 5) 

Parameter Source 

Aperture (cm) 0.049 
Flow-through Tests (0.047 cm  

– 0.05 cm) 

Fracture Hydraulic Conductivity, Kf (cm/s) 17.46 Calculated by HGS 

Matrix Hydraulic Conductivity, Km (cm/s) 1.00×10-7 

De Marsily, 1986; Domenico 

and Schwartz, 1997; Schwartz 

and Zhang, 2003 etc 

(1.00×10-7 cm/s to 1.00×10-4 

cm/s) 

Fracture Specific Storage, Ssf (cm-1) 8.00×10-4 
Singhal and Gupta, 2010 

1.00×10-9 cm-1 to 1.00×10-6 cm-1 

Matrix Specific Storage, Ssm (cm-1) 3.0×10-3 

Singhal and Gupta, 2010 

(1.00×10-9  cm-1 to 1.00×10-6 

cm-1) 
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Table 3-5: Pumping number and Rates for the synthetic pumping tests simulated using HGS. 

Pumped Port Pumping Rate (mL/s) 

Port 3 2.5 

Port 5 4 

Port 7 2.5 

Port 12 4 

Port 13 4 

Port 15 1.7 

Port 16 1 

Port 18 1.7 

Port 19 1 

 

Observed and simulated drawdown curves at the pumping and the monitoring ports during the 

pumping test at port 5 that was calibrated to adjust the parameters; are shown in Figure 3.3. The solid 

line represents observed drawdown and the dashed line represents simulated drawdown. Drawdown at 

the pumping port has been highlighted with black rectangular box in Figure 3.3.  Similar plots for the 

remaining 8 pumping tests that were simulated using the parameters obtained from the calibration of 

the test at port 5 are provided in Appendix B. 

Examination of Figure 3.3 (and additional figures in Appendix B) reveals that, for all of the 

pumping tests, a good match between the observed and simulated drawdown was obtained for the 

steady state portion of the drawdown curves at the fracture observation ports. However, simulated 

early time drawdown deviated from the observed quite a bit, especially at the ports closer to the 

pumping port. The early-time drawdown is controlled by the specific storage (Ss), while the late time 

drawdown is dominated by the hydraulic conductivity (K) of the aquifer. Thus, the early time 

deviation may be due to the fact that, during all of the pumping tests fracture ports reached steady 

state within 2 to 3 seconds after the water extraction was started and for the synthetic case, it was 

difficult to reproduce the early-time drawdown within such a short period of time. Storage at the pulse 

damper during the pumping tests in the laboratory could also be responsible for this early time 
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deviation. Similar to the observed cases, there was no drawdown at the matrix ports for the simulated 

cases due to the very low matrix hydraulic conductivity.  

 

Figure 3.3: Observed and Simulated Drawdown during Pumping Test at Port 5. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The 

pumped port is indicated by the black rectangular box. 
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Chapter 4 
Transient Hydraulic Tomography 

One of the main objectives of this study was to investigate the utility of transient hydraulic 

tomography (THT) based on the inverse algorithm SSLE developed by Zhu and Yeh [2005] to image 

the K and Ss tomograms as well as their uncertainties and to examine whether the delineation of 

discrete fractures and their connectivity are possible or not. To achieve this objective, transient 

hydraulic tomography (THT) was conducted in the fractured rock by inverting both synthetic and 

laboratory data.  

Steady-state hydraulic tomography (SSHT) uses one data point per drawdown curve (Figure 4.1a) 

and estimates hydraulic conductivity (K), while THT uses several data points per drawdown curve 

(Figure 4.1b) from multiple pumping tests to estimate hydraulic conductivity (K) and specific storage 

(Ss) of the aquifer. Thus, THT incorporates significantly more information of the aquifer from each 

pumping test. This is the reason why THT was chosen to delineate discrete fractures.  

 

Figure 4.1: a) Head Data Required for SSHT and b) Head Data Required for THT 

4.1 Inverse Model  

The theory behind SSLE is briefly presented here after Zhu and Yeh [2005]. They describe fully 

saturated, three-dimensional, transient groundwater flow in a heterogeneous, porous media by 

equation (5): 

 



 

 32 

𝛻 ∙ [𝐾(𝑥)𝛻𝐻] +  𝑄�𝑥𝑝� =  𝑆𝑠(𝑥) 𝜕𝐻
𝜕𝑡 

                                                  [5] 

where, H is total head [L], x is the spatial coordinate x = {x1,x2,x3} [L], Q(xp) is the pumping rate 

[1/T] at location xp, K(x) is the hydraulic conductivity [LT-1], and Ss (x) is specific storage [L-1], and 

boundary and initial conditions are given by equation (6) and (7) respectively: 

𝐻|Γ1 = 𝐻1, [(𝐱)∇𝐻]∙n|Γ2 = q                                                    [6] 

𝐻|𝑡=0 = 𝐻0                                                                   [7] 

where, H1 is prescribed total head at the Dirichlet boundary (Γ1), q is the specified flux [LT-1] at the 

Neumann boundary Γ2,  n is a unit vector normal to the union of Γ1 and Γ2 and H0 is the initial total 

head.  

SSLE is an extension of the SLE (successive linear estimator) approach [i.e., Yeh et al., 1996; Yeh 

and Zhang, 1996; Zhang and Yeh, 1997; Hughson and Yeh, 2000 etc.]. The SLE approach is similar 

to cokriging [Yeh et al., 1995a] that seeks mean parameter fields conditioned on available point data 

as well as geologic and hydrologic structures (i.e., spatial covariance functions of parameters and 

hydraulic heads, and their cross-covariance functions). Unlike cokriging, SLE updates both 

conditional means and covariances of the estimates using a linear estimator based on differences 

between observed and simulated hydraulic heads successively to consider the nonlinear relation 

between information and parameters [Zhu and Yeh 2005]. This allows the non-linear relation between 

head and K to be handled more effectively, thus allowing systems with higher σ2
ln K to be handled. 

Instead of including data sets simultaneously, the SSLE approach relies on the SLE concept to 

sequentially include data sets from each pumping test and updates covariances and cross covariances 

in the estimation process. As hydraulic tomography (HT) experiments generate large amounts of data, 

classical inverse parameter estimate approaches may experience significant computational burden, 

numerical instabilities [Yeh, 1986; Hughson and Yeh, 2000] and even non-uniqueness. To process the 

large amount of data efficiently and characterize aquifer heterogeneity, Zhu and Yeh [2005] 

developed the geostatistical inverse algorithm SSLE that includes observation data from individual 

pumping tests sequentially, instead of analyzing all of them simultaneously. The sequential method 

reduces the computational load and avoids solving huge systems of equations and therefore reduces 

numerical difficulties.  
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SSLE treats the natural logs of hydraulic parameter fields as spatial stochastic processes to address 

the issue of non-uniqueness. It assumes that 𝑙𝑛𝐾 = 𝐾� + 𝑓 and 𝑙𝑛𝑆𝑠 = 𝑆 � + 𝑠  where 𝐾�  and 𝑆 �  are 

mean values, and f and s are perturbations. Transient hydraulic head is represented by 𝐻 =  𝐻� + h, 

where 𝐻� is the mean and h is the perturbation. Therefore, SSLE requires the mean parameter 

distributions, conditioned on the observations of the pumping tests. Any available 'hard' data (direct 

hydraulic parameter estimates from slug tests, permeameter tests, grain size analysis, etc.) can also be 

incorporated in SSLE to condition the estimates [Yeh and Liu, 2000; Zhu and Yeh, 2005].  

Substituting the stochastic variables into the groundwater flow equation (5) and taking the 

conditional expectation and conditioning with some observations (hydraulic head and parameter 

estimates) the mean flow equation becomes: 

∇∙ [𝐾�con(x) ∇𝐻�con] + (𝑥𝑝) = 𝑆̅con (𝑥𝑝)𝛿𝐻
�𝑐𝑜𝑛
𝛿𝑡

                                                [8] 

where, 𝐾�con, 𝐻�con and 𝑆̅con are conditional effective hydraulic conductivity, hydraulic head, and 

specific storage respectively [Zhu and Yeh, 2005].  

The following paragraph is quoted from Zhu and Yeh [2005] to precisely describe the estimation 

process. “The estimation procedure starts with a weighted linear combination of direct measurements 

of the parameters and transient head data at different locations to obtain the first estimate of the 

parameters. The weights are calculated based on statistical moments (namely, means and covariances) 

of parameters, the covariances of heads in space and time, the cross covariance between heads and 

parameters. The first estimate is then used in the mean flow equation (8) to calculate the heads at 

observation locations and sampling times (i.e., forward simulation). Differences between the observed 

and simulated heads are determined subsequently. A weighted linear combination of these differences 

is then used to improve the previous estimates." 

Once SSLE meets the convergence criteria (number of iterations or if the change in the estimated 

parameters is below a previously set value) for a specific pumping test, it starts analyzing the data set 

from the next pumping test and the procedure continues until all of the pumping tests have been 

analyzed. SSLE updates the estimates of hydraulic parameters (K and Ss) after each iteration is 

completed and the following iteration starts with these updated values of parameters (K and Ss). This 

process continues until the model has gone through the last iteration of the last test. As SSLE includes 

pumping tests sequentially, final inversion results many not be consistent with the 1st data set. To 

address this issue, Zhu and Yeh [2005] introduced a looped iteration scheme that reanalyzes the data 
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set from earlier tests after the analysis of each test is completed and the process continues throughout 

the inversion. 

4.2 Inverse Model Set-up  

THT analysis of synthetic data (synthetic THT from now on) was performed, before performing 

transient hydraulic tomography (THT) analysis utilizing laboratory data (real THT from now on). 

Synthetic THT was conducted inverting three of the nine synthetic pumping tests conducted by HGS, 

described in section 3.3). Upon completion of the synthetic THT, two cases of the real THT were 

performed by inverting two different sets of pumping tests conducted in the fractured dolostone 

enclosed in a flow cell (Figure 2.9), described in section 3.2. Each of the two real THT cases was 

conducted inverting three laboratory pumping tests. 

All stochastic inversions of individual pumping tests were performed using 30 to 32 processors for 

the synthetic case and 8 to16 processors for the real case on a PC-cluster (consisting of 1 master and 

12 slaves each with Intel Q6600 Quad Core CPUs running at 2.4 GHz with 16 GB of RAM per slave) 

at the University of Waterloo. The operating system managing the cluster was CentOS 5.3 based on a 

64-bit system.  

4.2.1 Model Domain used for Synthetic and Real THT Analysis 

This section describes the model domain that was used for the synthetic as well as the real THT 

analysis. A 91.5 cm by 60.5 cm and 5 cm (one element) thick domain was used for the inversion of 

both synthetic and laboratory data and the domain was composed of variably-sized rectangular 

elements. The domain was discretized into 14140 nodes and 6900 elements. The element size varied 

from 0.5 cm by 0.5 cm to 1.75 cm by 1.75 cm. The finer elements are located along the ports to match 

the port location and the element center and the coarser elements are located near the boundary. The 

boundary conditions were constant head for left and right boundaries and no flow for the remaining 

outer boundaries. The hydraulic head for both the left and right boundary of the model domain was 

63.5 cm which was identical to the actual experiment. Figure 4.2 shows the computational grid used 

for the both synthetic and real THT analysis. 
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Figure 4.2: Computational grid Used for THT analysis. 

4.2.2 Model Input for both the Synthetic and the Real THT Analysis 

This section describes the model (SSLE) inputs for both the synthetic and the real THT analyses. 

SSLE inputs include mean K and Ss values for the model domain, estimates or guesses of variances 

and the correlation scales for both parameters, volumetric discharge (Q) from each pumping test and 

observed pressure head data at various selected times per drawdown curve from each pumping tests. 

Here, the model was not conditioned with additional data, although point (small-scale) measurements 

of K and Ss can also be input to the model to condition the estimates. 

One can estimate the mean values or initial homogeneous field of K and Ss in a number of ways. 

For example, literature values of effective hydraulic conductivity (Keff) and specific storage (Ss eff) that 

are considered reasonable for the aquifer can be used as initial model input. An alternative could be 

estimating a geometric mean of the small-scale measurements (i.e., core, slug, and single-hole data), 

if small-scale data are available. The initial homogeneous K and Ss field can also be populated by the 

equivalent hydraulic conductivity and specific storage estimates obtained by analyzing the pumping 

test data sets treating the medium to be homogeneous.  

Here, the latter option was chosen and the initial homogeneous K and Ss were estimated by 

coupling PEST [Doherty, 2005] with forward SSLE [Zhu and Yeh 2005] and matching the drawdown 

responses at the pumping port. The homogeneous K and Ss for the fractured rock were estimated by 

matching the pumping port drawdown for 3 individual laboratory pumping tests conducted at Ports 3, 
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5 and 7 (port are indicated in Figure 2.9). The model domain and the boundary conditions used for the 

parameter estimation purpose was the same as the one described in section 4.2.1. Estimates of 

homogeneous K and Ss along with the corresponding confidence intervals are presented in Table 4-1.  

Table 4-1: Parameters Estimated by PEST 

Pumped Port Port 3 Port 5 Port 7 

Estimated K (cm/s) 2.80×10-2 1.40×10-2 3.00×10-2 

Max K (cm/s) 3.90×10-2 1.70×10-2 4.00×10-2 

Min K (cm/s) 2.10×10-2 1.10×10-2 2.00×10-2 

Estimated Ss (/cm) 1.30×10-3 2.00×10-2 4.00×10-3 

Max Ss (/cm) 7.50×10-3 4.00×10-2 2.00×10-3 

Min Ss (/cm) 2.30×10-3 1.00×10-2 9.00×10-3 

 

From Table 4-1 it is seen that the estimates of homogeneous K and Ss from all 3 cases were close to 

one another. Therefore arithmetic mean of the estimated homogeneous K and Ss (K= 1.4×10-2 cm/s 

and Ss = 5.0×10-3 cm-1) were incorporated into SSLE for the inversion of the synthetic as well as the 

laboratory data. The model starts the inversion (for both synthetic and real THT) with these 

homogeneous estimates of K and Ss and updates them at the end of each iteration and the following 

iteration starts with these updated values of K and Ss. This process continues until the model goes 

through the last iteration of the last test. 

SSLE also requires the estimates of the hydrogeologic structure (correlation length and the 

variances of the K and Ss) for inversion. One can assume correlation length and the variances or 

conduct a geostatistical analysis of small scale data to estimate the variance and the correlation 

length. Here, a correlation length of 1 cm and a variance of 5 were used for the THT analyses (for 

both synthetic and real cases), which were determined through trial and error. It is a well-known fact 

that it is difficult to estimate the variance and the correlation scale accurately and thus the estimation 

always involves some uncertainty. Here, a unit correlation length (1cm) was used for the THT 

analyses, as larger correlation implies homogeneous field of hydraulic properties. However, a 

previous numerical study conducted by Yeh and Liu [2000] has shown that the variance and the 
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uncertainty in the correlation scales have negligible effects on the estimated K field based on 

hydraulic tomography (HT), because HT utilizes a large number of head measurements, which 

already hold information of the detailed site-specific heterogeneity [Zhu and Yeh, 2005, 2006; Liu et 

al., 2007]. 

As mentioned earlier, the synthetic THT analysis was performed by inverting three synthetic 

pumping tests sequentially, which include the tests at the ports 5, 7 and 3. Pumped ports are indicated 

in Figure 4.3a and the pumping rate and the test order are listed in Table 4-2. The pumping tests 

utilized in the construction of synthetic THT were identical to the ones used in real THT case 1 

described in the following paragraph.  

Here, two cases of real transient hydraulic tomography (THT) analysis were performed changing 

the locations of 2nd and 3rd pumping tests among the three, to compare the estimated hydraulic 

conductivity (K) and specific storage (Ss) field and evaluated if the estimated K and Ss pattern changes 

by changing these later pumping locations. However, the 1st test included to the inverse model was 

the same for both cases. Real THT case 1 includes 3 pumping tests; tests at ports 5, 7 and 3 which are 

identical to one used to perform synthetic THT. Pumped ports are indicated in Figure 4.3a. In real 

THT case 2, tests at ports 5, 16 and 19 were inverted sequentially to estimate the K and Ss tomograms 

for the fractured dolostone. Pumped ports are indicated in Figure 4.3b. The pumping tests analyzed to 

perform each of the two real THT cases, their order and pumping rates are summarized in Table 4-2.  

 

Figure 4.3: a) Pumping Tests Included in Synthetic THT as well as Real THT Case 1 and b) 

Pumping Tests Included in Real THT Case 2. 
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Table 4-2: Summary of Pumping Tests Analyzed for the Synthetic and Real THT Cases 

THT Cases Test Order Pumping Test Location Extraction Rate (mL/s) 

Synthetic 

THT 

Test 1 Port 5 4 

Test 2 Port 7 2.5 

Test 3 Port 3 2.5 

Real THT 

Case 1 

Test 1 Port 5 4 

Test 2 Port 7 2.5 

Test 3 Port 3 2.5 

Real THT 

Case 2 

Test 1 Port 5 4 

Test 2 Port 16 1 

Test 3 Port 19 1 

 

The locations for the pumping tests were selected for their ability to stress the entire fractured 

block. For example, for all the THT cases pumping test at port 5 (Figure 4.3) was included first for 

inversion followed by two other tests with lower pumping rates. The reason behind it was that, 

pumping test at port 5 (Figure 4.3) stressed all the fractures more or less as it is located approximately 

at the middle of the fractured block and it had the highest flow rate, thus had the highest signal to 

noise ratio.  Illman et al. [2008] showed that including the data with the highest signal-to-noise ratio 

first into inverse SSLE appeared to improve the results. After the test at port 5, in real THT case 1, 

pumping tests at port 7 and port 3 and in case 2, tests at port 16 and port 19 were included in the 

inverse model. Results not included here showed that the change in the order of the second and third 

pumping tests did not change the pattern of the resulting K and Ss tomograms significantly. 

For the synthetic as well as two real THT cases, 4 data points (at 0.5s, 1s, 3s and 20s) were 

extracted from each observation port (both fracture and matrix observation ports) to represent the 

entire drawdown curve and the transient behavior in detail. The total number of observed data points 

used from each pumping test ranged from 116 to 120. In total, 356 drawdown records from 3 different 

pumping tests were utilized to perform synthetic as well as each of the 2 real THT cases. 
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Figure 4.4 shows the extracted data points per drawdown curve at the fracture observation ports 

from the synthetic pumping test at port 5 for the synthetic THT analysis, while Figure 4.5 shows the 

same from the laboratory pumping test at port 5 for each of the two real THT analysis. In Figure 4.4 

Figure 4.5 the solid line represents the drawdown curve at each fracture port and the circles represent 

the data points used for inversion. Similar plots showing the data points extracted from the fracture 

observation ports from rest of the pumping tests utilized for the construction of the synthetic and the 

real THT cases are included in Appendix C. 

 

Figure 4.4: Selected Data Points at the Fracture Observation Ports from pumping test at port 5 

for Synthetic THT analysis. The solid line represents the drawdown curve at each fracture port 

and the circles represent the data points used for inversion.  
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Figure 4.5: Selected Data Points at the Fracture Observation Ports from pumping test at port 5 

for Real THT cases 1 and 2. The solid line represents the drawdown curve at each fracture port 

and the circles represent the data points used for inversion.  

Matrix observation ports are not included in Figure 4.4 and Figure 4.5, as none of the matrix ports 

responded during the synthetic or laboratory pumping tests. Zero drawdown was input to the inverse 

model for each matrix observation port for both synthetic and real THT cases. 
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Chapter 5 
Transient Hydraulic Tomography Results  

5.1 K and Ss Tomograms Obtained from Synthetic THT 

Figure 5.1 represents the K – Tomogram and Figure 5.2 represents the Ss – Tomogram obtained from 

the inversion of synthetic pumping tests. Figure 5.1a; b; c and Figure 5.2a; b; c represent the K and Ss 

– tomograms after including 1 test, 2 tests and 3 tests respectively. Figure 5.1d and Figure 5.2d show 

the variance estimates associated with the estimated K and Ss – Tomograms, respectively, for the 

inverse modeling of 3 tests. Red ovals indicate pumped locations used in synthetic THT, while 

observation intervals are indicated by the black ovals. 

 

Figure 5.1: K - Tomograms (cm/s) obtained from synthetic THT analysis: a) K - Tomogram 

after 1 Test; b) K – Tomogram after 2 Tests; c) K – Tomogram after 3 Tests and d) Variance 

associated with the Estimated K- Tomogram (Figure 5.1c). Pumped locations are indicated by 

the red ovals, while observation intervals are indicated by the black ovals. The image in each 

figure represents the x-z plane through the middle of the domain thickness. 
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Figure 5.2: Ss - Tomograms (cm-1) obtained from the synthetic THT analysis: a) Ss - Tomogram 

after 1 Test; b) Ss – Tomogram after 2 Tests; c) Ss – Tomogram after 3 Tests and d) Variance 

associated with the Estimated Ss – Tomogram (Figure 5.2c). Pumped locations are indicated by 

the red ovals, while observation intervals are indicated by the black ovals. The image in each 

figure represents the x-z plane through the middle of the domain thickness. 

The high K – zone in Figure 5.1a; b and c and low Ss – zone in Figure 5.2a; b and c clearly show 

the fracture pattern and their connectivity, indicating that the synthetic THT analysis captured the 

fracture pattern quite well. The high K (Figure 5.1a, b and c) and low Ss (Figure 5.2a, b and c) zones 

do not continue to the edge of the rock, which may be due to the boundary effect.  

The purpose of conducting synthetic THT analysis was to examine how good THT is in imaging 

the fractured rock when there is no experimental noise in the data set. Later a comparison of the K 

and Ss tomograms obtained from the inversion of synthetic pumping tests to those obtained from real 

THT case 1 is represented, as the pumping tests utilized for real THT case 1 were identical to the 

synthetic case. 
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5.2 K and Ss Tomograms Obtained from Real THT Cases 

Figure 5.3 shows the K – Tomogram and Figure 5.4 shows the Ss – Tomogram obtained from the 

inversion of 3 pumping tests (Case 1). Figure 5.3a; b; c and Figure 5.4a; b; c represent the K – 

tomogram and Ss – tomogram after1 test, 2 tests and 3 tests respectively.  Figure 5.3d and Figure 5.4d 

shows the variance associated with the Estimated K and Ss – Tomogram (in Figure 5.3c) respectively. 

Red ovals indicate pumped locations used in case 1, while observation intervals are indicated by the 

black ovals. 

 

Figure 5.3: K - Tomograms (cm/s) obtained from the inversion of three pumping tests in Case 1: 

a) K -  Tomogram after 1 Test; b) K – Tomogram after 2 Tests; c) K – Tomogram after 3 Tests 

and d) Variance associated with the Estimated K- Tomogram in Case 1 (Figure 5.3c). Pumped 

locations are indicated by the red ovals, while observation intervals are indicated by the black 

ovals. The image in each figure represents the x-z plane through the middle of the domain 

thickness. 
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Figure 5.4: Ss - Tomograms (cm-1) obtained from the inversion of three pumping tests in Case 1: 

a) Ss -  Tomogram after 1 Test; b) Ss – Tomogram after 2 Tests; c) Ss – Tomogram after 3 Tests 

and d) Variance associated with the Estimated Ss – Tomogram in Case 1 (Figure 5.4c). Pumped 

locations are indicated by the red ovals, while observation intervals are indicated by the black 

ovals. The image in each figure represents the x-z plane through the middle of the domain 

thickness. 

From the K - tomograms (Figure 5.3a; b and c) and Ss - tomograms (Figure 5.4a; b and c) obtained 

from 3 tests in real THT case 1, it is evident that transient hydraulic tomography (THT) captured the 

fracture pattern quite well and they become more vivid with addition of each test. The high K – zone 

in Figure 5.3a; b and c and low Ss – zone in Figure 5.4a; b and c clearly show the fractures and their 

connectivity, although the high K (Figure 5.3a, b and c) and low Ss (Figure 5.4a, b and c) zone do not 

continue to the edge of the rock, which could be due to the boundary effect. Similar pattern of K and 

Ss were obtained from synthetic THT analysis.  



 

 45 

Similar K and Ss tomograms were obtained from the inversion of 3 pumping tests in real THT case 

2. Figure 5.5a; b; c and Figure 5.6a; b; c represent the K – and Ss – tomograms after one, two and 

three tests respectively. Figure 5.5d and Figure 5.6d show the variance associated with the Estimated 

K and Ss - Tomograms (in Figure 5.5c and Figure 5.6c) respectively. Red ovals indicate pumped 

locations used in real THT case 2, while observation intervals are indicated by the black ovals. 

 Examination of Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6 revealed that the pattern of 

estimated K and Ss tomograms and the variance associated with the estimates remained similar in 

these two cases of THT analysis, although the pumped locations utilized for the inversion were 

different for two cases.  

Estimated K and Ss values for the fractures and the matrix may not exactly replicate actual values. 

Estimated matrix hydraulic conductivity (K) and specific storage (Ss) values seem to be higher than 

the literature values (listed in Table 3-4). One of the reasons behind it could be that SSLE is a porous 

media code and for a porous media code it is difficult to handle the high contrast between the fracture 

and matrix hydraulic conductivity (K) and specific storage (Ss) values. Moreover, all the inversions 

were conducted for 20 seconds (as all the fracture observation port reached steady-state within 2 to 3 

seconds and no drawdown was observed in the matrix ports) and it is almost impossible to estimate 

matrix hydraulic conductivity (K) and specific storage (Ss) within this short period of time as no flow 

takes place in the matrix during this time period. It is a well known fact that, estimating hydraulic 

conductivity (K) and specific storage (Ss) of a fractured rock has been a challenge for decades and the 

estimation often involves uncertainty. The advantage of SSLE is that, it gives the variance associated 

with estimates. The variance maps associated with estimated K- tomograms (Figure 5.3d, Figure 5.5d) 

and Ss – tomograms (Figure 5.4d, Figure 5.6d) indicate that the matrix estimates have a high degree of 

uncertainty, reflecting the observation of no drawdowns at these ports. However, the goal of this 

study was to image fracture pattern and their connectivity using THT analysis based on inverse 

algorithm SSLE, which has been clearly achieved. 
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Figure 5.5: K - Tomograms (cm/s) obtained from the inversion of three pumping tests in Case 2: 

a) K -  Tomogram after 1 Test; b) K – Tomogram after 2 Tests; c) K – Tomogram after 3 Tests 

and d) Variance associated with the Estimated K- Tomogram in Case 2 (Figure 5.5c). Pumped 

locations are indicated by the red ovals, while observation intervals are indicated by the black 

ovals. The image in each figure represents the x-z plane through the middle of the domain 

thickness. 
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Figure 5.6: Ss - Tomograms (cm-1) obtained from the inversion of three pumping tests in Case 2: 

a) Ss -  Tomogram after 1 Test; b) Ss – Tomogram after 2 Tests; c) Ss – Tomogram after 3 Tests 

and d) Variance associated with the Estimated Ss – Tomogram in Case 2 (Figure 5.6c). Pumped 

locations are indicated by the red ovals, while observation intervals are indicated by the black 

ovals. The image in each figure represents the x-z plane through the middle of the domain 

thickness. 
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Chapter 6 
Discussion and Findings from THT 

In this chapter, the K and Ss tomograms obtained from the inversion of synthetic pumping tests to 

those obtained from real THT case 1 are compared first and then the performance of THT analyses of 

the laboratory data (THT case 1 and THT case 2) are assessed.  

6.1 Comparison of K and Ss tomograms obtained from synthetic THT to those 
obtained from the inversion of laboratory data 

Here K and Ss tomograms generated by synthetic THT are compared to those generated by the real 

THT case 1 to examine how the estimates from the inversion of noise free data match the estimates 

from the inversion of laboratory data that contains experimental noise.  

Visual assessment reveals that the patterns of estimated K and Ss tomograms generated by the 

synthetic THT (Figure 5.1 and Figure 5.2) and the ones generated from the inversion of laboratory 

data (real THT case 1) (Figure 5.3 and Figure 5.4) are quite similar. 

Figure 6.1a and b represents the scatter plots of K and Ss values, respectively, obtained from the 

synthetic THT analysis to those obtained from the THT analysis of laboratory data (real THT case 1). 

The solid line represents the 1:1 line. From Figure 6.1a and b, it can be seen that the data points 

cluster around the 1:1 with some bias indicating a good match between these two sets of tomograms. 

Two criteria, the average absolute error norm (L1) and the mean squared error norm (L2) were used 

to quantitatively evaluate the soundness-of-fit between the two sets of tomograms. Both L1 and L2 

norms were calculated so that the average absolute error and mean squared error can be compared. 

The L1 and L2 norms are computed using the equations (9) and (10) respectively -  

 𝐿1 = 1
𝑛
∑ |χi − χi � |𝑛
𝑖=1                                                                [9] 

𝐿2 =  1
𝑛
∑ (χi − χi �)2𝑛
𝑖=1                                                            [10] 

where, χi and χi �  represent the estimates from the two sets of data, n is the total number of data points 

and i indicates the data number. To compute the L1 and L2 norms, K and Ss values for each element 

of the model domain estimated by synthetic THT and real THT case 1 were evaluated. Corresponding 
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L1 and L2 norms for the K and Ss estimates are included on each scatter plot. The smaller the L1 and 

L2 norms, the more consistent are the two data sets. 

The visual assessment, scatter plots (Figure 6.1) and L1 and L2 norms presented on each scatter 

plot (Figure 6.1) indicate a good fit between these two sets of tomograms (K and Ss tomograms 

obtained from the synthetic THT analysis to those obtained from the THT analysis of laboratory data 

case 1) suggesting that the noise in the experimental data was too small to significantly impact the 

estimates.  

 

Figure 6.1: Scatter plots of (a) K and (b) Ss values from Synthetic THT to THT analysis of 

laboratory data (THT case1). The solid line represents the 1:1 line. 

6.2 Performance assessment of THT analysis of Laboratory data in imaging 
fractured rock 

Here, the performance of the THT analysis of laboratory data (real THT case 1 and real THT case 2)  

is assessed by - 1) visual assessment of estimated K and Ss patterns generated by 2 real THT cases; 2) 

comparison of K and Ss estimates obtained from two real THT cases; 3) comparison of estimated K 

values obtained from the THT analysis of laboratory pumping tests to those obtained from the flow 

through tests; 4) simulating the pumping tests that were used for the construction of THT cases using 

the estimated K and Ss tomograms and comparing the simulated drawdowns to the observed (i.e., 

calibration); and 5) simulating 5 independent pumping tests that were not included in inversion using 

the estimated K and Ss tomograms and comparing the simulated drawdowns to the observed (i.e., 
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prediction). For both the calibrations and predictions the simulated and observed drawdown from 

each pumping test are quantitatively compared by estimating corresponding R2 values, mean absolute 

error (L1) and the mean square error (L2) norms along with qualitative assessment to evaluate how 

well fractured block is captured by THT analysis based on the inverse algorithm SSLE. 

6.2.1 Visual Assessment 

The estimated K and Ss pattern generated by 2 THT cases are visually compared with the photograph 

of the fractured dolostone (Figure 2.2) to evaluate how well the fracture pattern is captured by THT 

analysis based on the SSLE code. The visual comparison of snapshot of the fractured dolostone 

(Figure 2.2) and estimated K and Ss tomograms (Figure 5.3; Figure 5.4; Figure 5.5 and Figure 5.6) 

reveal that the transient hydraulic tomography (THT) analysis of the laboratory pumping tests 

captured the fracture pattern and their connectivity quite well. The high K – zone in Figure 5.3a; b; c 

(case 1) and Figure 5.5a; b; c (case 2) and low Ss – zone in Figure 5.4a; b; c (case 1) and Figure 5.6a; 

b; c (case 2) clearly show the fractures and their connectivity, although the high K and low Ss zone do 

not continue to the edge of the rock, which may be due to the boundary effect, as pointed out earlier. 

6.2.2 Comparison of K and Ss Estimates from two real THT Cases 

Here the K and Ss tomograms generated by real THT case 1 are compared to the ones generated by 

real THT case 2 to evaluate if there is any significant impact of the location of pumped port on the 

estimates. Visual assessment reveals that the patterns of estimated K and Ss tomograms in case 1 

(Figure 5.3 and Figure 5.4) and case 2 (Figure 5.5 and Figure 5.6) are similar, although the locations 

of 2nd and 3rd pumping tests utilized for the inversion were different for these two cases.  

Figure 6.2a and b represent the scatter plots of K and Ss values, respectively, from real THT Case 1 

to Case 2. The solid line represents the 1:1 line. From Figure 6.2a and b it can be seen that the data 

points cluster around the 1:1 line with some bias indicating a good fit between the K and  Ss estimates 

from Case 1 and Case 2.  

Two criteria, the average absolute error norm (L1) and the mean squared error norm (L2) were used 

to quantitatively evaluate the goodness-of-fit between the two sets of tomograms. Corresponding L1 

and L2 norms for the K and Ss estimates are included on each scatter plot  



 

 51 

 

Figure 6.2: Scatter plots of (a) K and (b) Ss values from Case 1 to Case 2. The solid line 

represents the 1:1 line. 

These results indicate that the changing the location of the 2nd and 3rd pumping tests do not 

significantly impact the estimates from hydraulic tomography in this fractured rock block. A similar 

observation was noted by Illman et al. (2009). However, the first pumping test (1st data set) included 

to the inverse model must be selected carefully, as the choice of the first pumping test seems to set 

that pattern of the estimates in this case. Here the pumping test at port 5 (Figure 4.3) was inverted 1st 

during all the THT cases. As described in section 4.2.2, pumping test at port 5 (Figure 4.3) had the 

highest flow rate and stressed all the fractures more or less as it is located approximately at the middle 

of the fractured block. Illman et al. [2008] also showed a similar finding. They found that including 

the data with the highest signal-to-noise ratio first into the HT code improve the results. The main 

reason behind it could be that SSLE updates the tomogram after each iteration and uses a weighted 

linear combination of the differences between the simulated and observed pressure heads to improve 

the estimates. Therefore, the K and Ss distribution estimated in the beginning of inversion process 

significantly impact the estimated tomograms.  

6.2.3 Comparison of estimated K values obtained from real THT cases with the ones 
obtained from the flow through tests 

To quantitatively compare the K estimates from real THT cases with the effective hydraulic 

conductivity (Keff) obtained from flow-through tests, the geometric mean of K estimates obtained from 
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each of the two real THT cases was calculated. The comparison is presented in Table 6-1, which 

reveals that the geometric mean of THT K estimates and effective hydraulic conductivity values 

obtained from the flow-through tests are similar. 

Table 6-1: Comparison of THT K Estimates with the Effective K obtained from Flow-through 

Tests 

 Flow-Through 

Test 1 

Flow-

Through 

Test 2 

Flow-

Through 

Test 3 

Flow-

Through 

Test 4 

Estimated Effective Keff  (Flow-

through Test) (cm/s) 
1.70×10-2 1.30×10-2 1.50×10-2 1.30×10-2 

Geometric Mean of Estimated 

K (real THT Case 1) (cm/s) 
1.30×10-2 

Geometric Mean of Estimated 

K (real THT Case 2) (cm/s) 
1.00×10-2 

6.2.4 THT Calibration 

The K and Ss tomograms estimated from the two THT cases were used to reproduce the three 

pumping tests (tests at ports 5, 7 and 3 in real THT case 1 and tests at 5, 16 and 19 in case 2), that 

were used for their creation. Forward simulations were performed using SSLE [Zhu and Yeh 2005] 

and the model domain used for the simulation was same as the one used for inversion, which is 

described in section 4.2.1.  

Comparisons of observed and calibrated drawdown curves in real THT case 1 are presented in 

Figure 6.3; Figure 6.4; and Figure 6.5. Figure 6.3 represents the observed and simulated drawdown 

curves at the monitoring ports during the pumping test at port 5. The solid line represents observed 

drawdown curve while the dashed line represents calibrated drawdown curve. Drawdown data that 

were input into the THT algorithm are also included in this plot as the black circles. Similar 

comparisons of observed and simulated drawdown curves at the monitoring ports during the pumping 

tests at ports 7 and 3 for case 1 are provided in Figure 6.4 and Figure 6.5 respectively. 

Good matches between the observed and calibrated drawdown curves at the monitoring intervals 

were obtained during all three pumping tests in real THT case 1. However, the observed and 
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simulated drawdowns during the tests at ports 7 and 3 seemed to match better in comparison to the 

ones during the test at port 5, which was the 1st test included in the inversion. As no looping was 

conducted during the inversion, estimates from the later tests (pumping tests at ports 7 and 3) became 

dominant, leading to a better match between the observed and simulated drawdown during the tests at 

ports 7 and 3. However, for the calibrated pumping tests, there was no drawdown at the matrix ports, 

which was consistent with the observed cases. 

Similar plots comparing the observed and calibrated drawdown curves in real THT case-2 

presented in Appendix D also showed good matches between the observed and simulated drawdown 

curves at the monitoring intervals during the calibrated pumping tests. Thus overall, simulated 

drawdown responses using K and Ss tomograms estimated by THT captured the observed drawdown 

behaviors in the monitoring ports quite well, indicating that THT did a good job in capturing the 

fracture pattern and their connectivity. 
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Figure 6.3: Observed and Calibrated Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 5 in real THT Case 1. The solid line represents observed 

drawdown curve while the dashed line represents calibrated drawdown curve. The black circles 

indicate the match points. 
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Figure 6.4: Observed and Calibrated Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 7 in real THT Case 1. The solid line represents observed 

drawdown curve while the dashed line represents calibrated drawdown curve. The black circles 

indicate the match points. 
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Figure 6.5: Observed and Calibrated Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 3 in real THT Case 1. The solid line represents observed 

drawdown curve while the dashed line represents calibrated drawdown curve. The black circles 

indicate the match points. 

Figure 6.6 represents the scatter plots of observed versus simulated drawdowns from the 3 pumping 

tests that were utilized for the construction of real THT case 1. The pumped port is mentioned in bold 

letters on each plot. The solid line is a 1:1 line indicating a perfect match. The dashed line is a best fit 

line, and the parameters describing this line, coefficient of determination (R2) as well as L2 norm for 

the corresponding tests are included on each plot.  

R2 values indicate the quality of match between the simulated and observed drawdowns. Two data 

sets are considered to have a high correlation when the R2 value is close to 1 and the data set clusters 
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around the 1:1 line. The slope and the intercept of the linear model fit are the indication of bias. 

Similar calibration scatter plots for THT case 2 can be found in Appendix D. 

From Figure 6.6, it can be seen that for the test at port 5 the points cluster around the 1:1 with some 

bias and the linear model fit indicates that the simulated drawdowns underestimate the observed. For 

the 2nd (test at port 7) and 3rd (test at port 3) pumping tests, the estimated drawdown was found to 

improve significantly. Improvement can be seen clearly from the plots as the data points cluster 

around the 1:1 line and the linear model fit almost overlaps the 1:1 line for the tests at port 7 and 3. 

Corresponding R2 values also indicate a good correlation between observed and calibrated 

drawdowns. The larger the R2 values, the more closely the estimates agree. The matches observed for 

the calibration scatter plots for real THT case 2 provided in Appendix D are similar to those for real 

THT case 1. However, in case 2 is the pumping tests at port 16 (2nd test) and port 19 (3rd test) had 

poorer match than the 2nd and 3rd pumping tests in real THT case 1. 

To further quantitatively compare the simulated and observed drawdown values, the mean absolute 

error (L1) and the mean square error (L2) norms were calculated using equations (9) and (10) 

respectively, for the pumping tests used for the construction of two real THT cases. To compute the 

L1 and L2 norms, observed and simulated drawdown were evaluated at each monitoring port. The L1 

and L2 norms and corresponding R2 values for the pumping tests utilized for real THT case 1 and case 

2 are presented in Table 6-2 and Table 6-3 respectively. The smaller the L1 and L2 norms and larger 

R2 values are the more consistent are the estimates. In Table 6-2 and Table 6-3, the L1 and L2 norms 

appear to be the largest for the pumping test that was inverted 1st, and found to improve significantly 

with the addition of each test, which is consistent with the R2 values, indicating a better match 

between the observed and simulated drawdown for the later pumping tests (tests at port 7 and 3). This 

is attributed to the fact that no looping was conducted during the inversion and therefore the estimates 

from the later tests (pumping tests at ports 7 and 3) became more dominant, leading to a better match 

between the observed and simulated drawdowns during the tests at ports 7 and 3. 
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Figure 6.6: Calibration Scatter plots for real THT Cases 1. The pumped port is shown in bold 

letters on each plot. The solid line is a 1:1 line indicating a perfect match. The dashed line is a 

best fit line, and the parameters describing this line as well as L2 norm for the corresponding 

tests are on each plot. 
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Table 6-2: L1, L2 norms and R2 values of observed versus simulated drawdown from pumping 

Tests at Ports 5, 7 and 3 (Case 1) 

Pumped Port L1 L2 R2 

Port 5 1.60 6.56 0.90 

Port 7 0.29 0.20 0.99 

Port3 0.12 0.05 0.99 

 

Table 6-3: L1, L2 norms and R2 values of observed versus simulated drawdown from pumping 

Tests at Ports 5, 16 and 19 (Case 2) 

Pumped Port L1 L2 R2 

Port 5 1.62 6.58 0.86 

Port 16 0.34 0.29 0.92 

Port 19 0.31 0.72 0.94 

 

6.2.5 Prediction of Pumping Tests Using Estimated K and Ss Tomograms from real 
THT cases 

The K and Ss tomograms estimated for the two real THT cases were used to predict 5 pumping tests 

(tests at ports 4, 6, 12, 15 and 18), that were not used in the construction of the tomograms, also 

referred to as independent pumping tests. Forward simulations were performed using SSLE [Zhu and 

Yeh 2005] and the model domain was same as the one used for the inversion, which is described in 

section 4.2.1.  

Comparisons of observed and predicted drawdown curves in real THT case 1 are presented in 

Figure 6.7 (test at port 4); Figure 6.8 (test at port 6); Figure 6.9 (test at port 12); Figure 6.10 (test at 

port 15) and Figure 6.11 (test at port 18). The solid line represents observed drawdown curve while 

the dashed line represents the drawdown predicted by the THT tomograms. Similar plots comparing 

the observed and predicted drawdown curves for the 5 pumping tests for case-2 are included in 

Appendix D.  
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Examination of Figure 6.7; Figure 6.8; Figure 6.9; Figure 6.10 and Figure 6.11 reveals that, during 

the independent tests, the simulated drawdown matched the observed for most of the monitoring 

intervals, but there are some exceptions for ports near the pumped port due to excessive noise 

resulting from pumping. However, the simulated and observed drawdowns seem to match better at 

later time. At early time, some of the matches are poor and some are of intermediate to fair quality. 

The drawdown is controlled by the specific storage (Ss) at early time and hydraulic conductivity (K) at 

late time. As discussed earlier, estimated tomograms do not exactly replicate the actual values for the 

fractured rock, which led to these deviations between observed and predicted drawdowns. However, 

there was no drawdown (real THT case 1) or a very small drawdown (real THT case 2) at the matrix 

ports for the simulated cases, which was consistent with the observed matrix drawdown. 
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Figure 6.7: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 4 in Case 1. The solid line represents observed drawdown 

curve while the dashed line represents predicted drawdown curve. 
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Figure 6.8: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 6 in Case 1. The solid line represents observed drawdown 

curve while the dashed line represents predicted drawdown curve. 
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Figure 6.9: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 12 in Case 1. The solid line represents observed drawdown 

curve while the dashed line represents predicted drawdown curve. 



 

 64 

 

Figure 6.10: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 15 in Case 1. The solid line represents observed drawdown 

curve while the dashed line represents predicted drawdown curve. 
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Figure 6.11: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports 

during the Pumping Test at Port 18 in Case 1. The solid line represents observed drawdown 

curve while the dashed line represents predicted drawdown curve. 

Figure 6.12 shows the scatter plots of observed versus simulated drawdowns for the 5 independent 

pumping tests for real THT case 1. The pumped port is shown in bold letters on each plot. The solid 

line is the 1:1 line indicating a perfect match. The dashed line is a best fit line, and the parameters 

describing this line, coefficient of determination (R2) as well as L2 norm for the corresponding tests 

are included on each plot. Similar scatter plots for the independent pumping tests for real THT case 2 

can be found in Appendix D. 

From Figure 6.12, it can be seen that for most tests the data points cluster around the 1:1 line with 

some bias indicated by the slope of the linear model fit. The only exception is the pumping test at port 



 

 66 

18, suggesting comparatively poor estimates for the pumping test at that port. The scatter plots for the 

independent tests in real THT case 2 provided in Appendix D also show similar matches between the 

observed and simulated drawdowns. Corresponding R2 values also indicate a good correlation 

between observed and predicted drawdowns. The larger the R2 values, the more closely the estimates 

agree.  

To further quantitatively compare the simulated and observed drawdown values, the mean absolute 

error (L1) and the mean square error (L2) norms were calculated for each of the 5 predicted pumping 

tests using the same procedure described in section 6.1. To compute the L1 and L2 norms the 

observed and simulated drawdowns were evaluated at each monitoring port. The L1 and L2 norms as 

well as R2 values for the predicted pumping tests in real THT case 1 and case 2 are presented in Table 

6-4 and Table 6-5 respectively. The smaller the L1 and L2 norms and the larger the R2 values, the 

better the matches between the observed and simulated drawdown.  
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Figure 6.12: Validation Scatter plots for real THT Cases 1. The pumped port is shown in bold 

letters on each plot. The solid line is a 1:1 line indicating a perfect match. The dashed line is a 

best fit line, and the parameters describing this line as well as L2 norm for the corresponding 

tests are on each plot. 
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Table 6-4: L1, L2 norms and R2 values of observed versus simulated drawdown from pumping 

Tests at Ports 4, 6, 12, 15 and 18 (Case 1) 

Pumped Port L1 L2 R2 

Port 4 1.04 4.08 0.75 

Port 6 0.75 1.42 0.92 

Port 12 0.48 1.07 0.92 

Port 15 0.50 0.89 0.83 

Port 18 0.82 5.03 0.50 

 

Table 6-5: L1, L2 norms and R2 values of observed versus simulated drawdown from pumping 

Tests at Ports 4, 6, 12, 15 and 18 (Case 2) 

Pumped Port L1 L2 R2 

Port 4 1.45 5.21 0.85 

Port 6 1.28 4.20 0.88 

Port 12 1.32 4.82 0.89 

Port 15 0.59 1.05 0.88 

Port 18 0.97 2.74 0.93 

 

SSLE being a porous media code, it is difficult to handle the high contrast between the fracture and 

matrix hydraulic conductivity (K) and specific storage (Ss) values for the model. Therefore, the 

estimated K and Ss values for the fractures and the matrix may not exactly replicate actual values, 

which led to the deviation in the drawdown responses at the monitoring intervals during some of the 

pumping tests. But for most cases, simulated drawdown responses captured the observed drawdown 

behaviors in the monitoring ports quite well, indicating that THT analysis of the laboratory data did a 

good job in capturing the geometry of the fractured block, which is encouraging. Based on this study 

it can be said that hydraulic tomography appears to be a promising tool to delineate fracture pattern 

and their connectivity, which has been a challenge for hydrogeologists for decades. The advantage of 
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HT is that, it does not require the accurate measurements of the fracture size, shape, aperture, detailed 

deterministic or statistical information of the geometry of fractured zone and the spatial distribution 

of fracture apertures; the information typically not available between boreholes. Rather, THT relies 

on pumping test data, which are relatively easy to collect and comparatively less expensive. Thus, 

THT holds a significant potential as a fractured rock characterization tool. 

Illman et al. [2007] discusses the non-uniqueness of estimated K-tomograms, as there could be an 

infinite number of solutions to the steady-state inverse problem for a heterogeneous K field, even 

when all of the forcing functions are fully specified. Similarly non-uniqueness of computed 

heterogeneous K and Ss field could also be an issue for the transient inverse problem. But this is not 

the case here. Yeh et al. [1996]; Yeh and Liu, [2000]; Liu et al. [2002] and Yeh and Simunek [2002] 

argue that when data are available at all estimated locations, the inverse problem becomes well-posed 

and ultimately lead to a unique solution. Moreover, Yeh et al. [2011] suggest that the problem of non-

unique solution arises from a lack of information required to make the problems well defined. They 

also suggest the necessary conditions for a inverse model of groundwater flow to be well defined, 

which are presented here after Yeh et al. [2011] –“full specifications of 1) flux boundaries and 

source/sink, and 2) heads everywhere in the domain at least at three times (one of which is t=0) and 

head change everywhere over the times must be nonzero for transient flow”. They examined through 

numerical experiments that when the necessary conditions are fulfilled, the inverse problem results to 

a unique solution. Here THT analysis of multiple pumping tests was conducted, thus making more 

data available for analysis than typical pumping test. The method is robust. Here it is visually 

confirmed that the K and Ss tomograms obtained from the inverse problem are consistent with the 

fracture patterns of the experimental block (Figure 2.2). In addition, estimated tomograms were 

validated through the prediction of independent pumping tests, which should provide more 

confidence in the solution of the inverse problem. 

6.3 Conclusions and Findings from THT Analysis 

This study leads to the following major findings and conclusions regarding the THT analysis of 

multiple pumping tests based on the inverse algorithm SSLE conducted in a fractured rock block in 

the laboratory. 

It is possible to delineate discrete fractures, their pattern and connectivity by carefully applying 

THT analysis of multiple pumping tests along with the inverse code SSLE developed by Zhu and Yeh 
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[2005]. From the estimated K and Ss - tomograms obtained from THT analysis of laboratory and 

synthetic data, it is evident that THT captured the fracture pattern quite well and they became more 

distinct with addition of each test. Estimated K and Ss values for the fractures and the matrix may not 

exactly replicate the actual values but the model also provides uncertainty estimates associated with 

the resulting K and Ss tomograms, which are given in the corresponding variance maps. However, the 

purpose of the study was to capture the fracture pattern (the pattern of K and Ss tomograms) using 

THT, which has been achieved here. The high hydraulic conductivity (K) and low specific storage 

(Ss) zone clearly show the fractures and their connectivity, although the high K and Low Ss zone do 

not continue to the edge of the rock, may be due to the boundary effect.  

Here two cases of transient hydraulic tomography (THT) analysis were performed using the 

laboratory pumping tests changing the location of 2nd and 3rd pumping tests to examine if there is any 

significant impact of these later pumping tests locations on the pattern of resulting hydraulic 

conductivity (K) and specific storage (Ss). Results show that the patterns of estimated K and Ss 

tomograms in real THT case 1 and case 2 are similar, although the pumped locations (2nd and 3rd test) 

utilized for the inversion were different for two cases. It indicates that, changing the location of 2nd 

and 3rd pumping tests does not have significantly impact on the estimates. However, the initial 

pumping test must be selected carefully as that seems to set the pattern of the estimated tomograms. 

K and Ss tomograms generated by the real THT cases were used to simulate the pumping tests that 

were used for the construction of THT. These results revealed that the simulated drawdown responses 

captured the observed drawdown behavior quite well for most of the cases. 5 independent pumping 

tests (that were not included during the inversion) were also simulated using estimated K and Ss 

tomograms generated by each of the two real THT cases to evaluate to what extent they can predict 

independent pumping tests. For most cases, the predicted drawdown responses from the independent 

pumping tests captured the observed behavior at later time, while at early time predicted drawdown 

deviates from the observed for some tests. All the inverse simulations were run for 20 seconds and the 

matrix ports had no drawdown (in real THT case 1) or a very small drawdown (in real THT case 2) 

for all the calibrated and predicted cases, which was consistent with the observed data. SSLE being a 

porous media code, it is difficult for the model to handle the high contrast between the fracture and 

matrix hydraulic conductivity (K) and specific storage (Ss) values. Thus, estimated K and Ss values 

may not exactly replicate the actual values for the fractured rock, which leads to the little deviation in 

the simulated drawdown responses at the monitoring intervals. But overall, simulated drawdown 
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responses captured the observed behaviors both at the fracture and matrix ports quite well, indicating 

that the K and Ss tomograms estimated using THT successfully captured fracture pattern and their 

connectivity. 

It can be concluded that the results from this study are encouraging in that the pattern of K and Ss 

tomograms generated by THT analysis based on the inverse algorithm SSLE, are consistent with the 

fracture pattern. THT appears to be a promising approach in delineating fractures and their 

connectivity in the subsurface. However, it is still at the early stage as the study was conducted based 

on the laboratory experiments in a controlled environment. Thus small scale field experiments need to 

be done to validate THT as a tool to characterize fractured rock. 
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Chapter 7 
Tracer Tests 

Upon completion of the hydraulic tests, two tracer tests were conducted using bromide (Br-) as 

conservative tracer to aid in the design of Trichloroethene (TCE) dissolution experiment. The tracer 

tests and the results obtained from the tests are described in this chapter. 

7.1  Description 

The preparation of the flow cell has been described in section 2.2. Tracer tests were conducted by 

fixing the hydraulic gradient across the rock sample. The hydraulic gradient was fixed by setting drip 

points at the end reservoirs at different heights. A peristaltic pump was used to supply water 

continuously into the influent reservoir and the drip point was maintaining constant head in the 

influent and effluent reservoirs. Figure 7.1 represents the schematic diagram of the experimental set-

up for the tracer experiments, where injection and all the sampling ports are indicated. Figure 7.2a 

shows the photograph of the flow cell and in Figure 7.2b injection and sampling ports on the 

horizontal fracture are indicated on the photograph with rectangular white box. 

 

Figure 7.1: Schematic Diagram of the Experimental Set-up for the Tracer Experiments. The 

white ovals indicate the sampling ports. S1, S2, S3 and S4 are the four sampling ports.  

Before injecting the tracer a steady flow field was established by fixing the hydraulic gradient 

across the rock sample and the flow rate was measured at the effluent dripping point. Once the flow 

field became stable, 100 mg/L bromide (Br-) solution was injected into a hole below the flow path 

marked as “injection” (port 2) in Figure 7.1. The hole was made and filled with sand prior to the 

enclosure of the fractured block into the flow cell. Before the hole was filled with sand, the porosity 
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and hydraulic conductivity of the sand were measured in the laboratory, which were approximately 

0.1 cm/s and 0.4 – 0.5 respectively. A brass fitting was placed on the rock to cover the hole using 

titanium putty (Devcon, Danvers, MA, USA). To hold the sand in place, a stainless steel mesh was 

placed underneath the brass fitting. The injection and sampling ports were equipped with Swagelok 

fittings (brass Swagelok tube fitting bored-through male connector, 1/16 in. Tube OD x 1/8 in. Male 

NPT) in order to hold the stainless steel needle used for injection or sample collection and a one-way 

luer stopcock to prevent any fluid loss while injecting or sampling. The bromide (Br-) solution was 

injected into the sand filled hole (marked as port 2 in Figure 7.1) using a peristaltic pump connected 

to the needle at a known rate by opening the stopcock. After a certain time, the injection was stopped 

and the stopcock was closed. Each sampling port was also equipped with a Swagelok fitting to hold 

the needle used to collect the sample and a one-way luer stopcock to prevent any fluid loss while 

sampling. Deionised (DI) water used for all the tracer experiments. 

 

Figure 7.2: a) Photograph of the Experimental block and b) Injection and sampling ports. 

Injection and sampling ports are indicated in the flow cell with white rectangular box. S1, S2, 

S3 and S4 are the four sampling ports. 

During each tracer test, the ambient flow rate was approximately 2.7 mL/min. After the flow field 

was established, a tracer solution with bromide (Br-) at a concentration of 100 mg/L was injected into 

port 2 (Figure 7.1) at a rate of 15 mL/min during the 1st test and 14 mL/min during the 2nd tests for 60 

seconds. The down gradient monitoring ports 3, 5, 7, 9 indicated in Figure 7.1 were sampled 

periodically. During sampling each cycle, port 3 was sampled first, as it was the closest to the source 

(injection port) and then port 5, 7 and 9 (Figure 7.1) were sampled respectively. The duration of the 
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experiment was approximately 23 minutes and 36 minutes for the 1st and 2nd tracer experiments, 

respectively. Each of the 4 sampling ports was sampled 10 times during the 1st test, while each of 

them was sampled 15 times during the 2nd test. In total 40 and 60 samples were collected during the 

1st and 2nd tracer experiment respectively. 

Samples were collected using 1.5mL vials, which were filled to the top to avoid volatilization and 

mass loss in the head space.  Water samples taken during each tracer test were chilled in a refrigerator 

at 4°C until they were analyzed. A dionex ICS-2000 Ion Chromatograph (IC) equipped with an Ion-

Eluent Generator and conductivity detector was used to determine the bromide concentrations. The 

procedure of analysis can be found in Appendix E. 

7.2 Results and Discussion 

Similar results were obtained from both tracer experiments. Bromide breakthrough curves at the 

monitoring ports 3, 5, 7 and 9 (indicated in Figure 7.1) from tracer experiment 1 and 2 are presented 

in Figure 7.3 and Figure 7.4 respectively. The solid black line parallel to the vertical axis in Figure 

7.3 and Figure 7.4 shows the time when injection was stopped. The pattern of the break through curve 

at a specific monitoring port obtained from each test was identical. Vertical fracture ports 11, 13, 14, 

16, 17, 19 (indicated in Figure 7.1) were also sampled once at the end of each experiment and no 

bromide was detected.  
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Figure 7.3: Bromide Break-though Curves at the Monitoring Port during Tracer Test 1. The 

black vertical line indicates the injection stop time. 

Examination of Figure 7.3 and Figure 7.4 shows that the bromide concentration reached its peak at 

all of the monitoring ports within a few second of injection. In both tracer experiments, the volume of 

injected solution was larger than the hole, used for injection. Therefore, the bromide mass reached 

flow path (horizontal fracture) as soon as it was injected, leading to the peak concentration at the 

monitoring ports within a few seconds of injection. This was the reason why the highest bromide 

concentration was found at port 3 (closest to the source) during the 1st sample. The peak arrival time 

at ports 5, 7 and 9 (indicated in Figure 7.1) increased as the distance from the source increased. A 

quick calculation revealed that the peak arrival time at the monitoring ports roughly matched the flow 

velocity.  
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Figure 7.4: Bromide Break-though Curves at the Monitoring Port during Tracer Test 2. The 

black vertical line indicates the injection stop time. 

Similarly, from Figure 7.3 and Figure 7.4 it can be found that the peak concentration was the 

highest for port 3, decreased gradually for ports 5, 7 and 9. Thus, the breakthrough curve became 

broader along the flow path. During each test, the highest peak concentration was found at the 

monitoring port (port 3) that was sampled 1st in each cycle. The peak concentration went down 

gradually along the flow path, as the sampling port move further from the source.  
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Table 7-1: Injected Mass and the Mass Crossing Sampling Ports during Tracer Test 1 

Injected Mass Mass Crossing Sampling Ports 

Port Mass (mg) Port Mass (mg) 

2 1.5 

3 0.9 

5 0.98 

7 0.87 

9 0.5 

Table 7-2: Injected Mass and the Mass Crossing Sampling Ports during Tracer Test 2 

Injected Mass Mass Crossing Sampling Ports 

Port Mass (mg) Port Mass (mg) 

2 1.4 

3 0.95 

5 1.2 

7 0.71 

9 0.72 

 

The mass crossing each sampling port during each tracer experiment was estimated from the 

bromide breakthrough curves using trapezoidal rule. Table 7-1 and Table 7-2 summarize the injected 

mass as well as the mass crossing the sampling ports during tracer experiment 1 and 2 respectively. 

From Table 7-1and Table 7-2, it is evident that there is a significant difference in the injected mass 

and the mass crossing the sampling ports. During both tests, mass crossing port 5 is the closest to the 

injected. Although highest peak was found at port 3, mass crossing port 3 was less than the one that 

past port 5. Port 3, being the closest to the injection port, I assume, I missed the peak at port 3 where 

the bromide concentration reached its peak as soon as it was injected. The difference between injected 

mass and the mass that passed the sampling port became larger for port 7 and 9, as the sampling port 

moves further from the source. This difference is attributed to the bromide mass lost in samples 

collected at the ports closer to the source. 
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From the experience of the tracer experiments I decided to inject a TCE volume less than the pore 

volume of the sand that was used to fill the source hole, so that it does not overflow the hole and 

reach the flow path (horizontal fracture) as soon as it is injected, allowing me to capture entire 

breakthrough curve. Regarding sampling, I decided to sample only one down gradient monitoring 

port (port 9) during the trichloroethene (TCE) dissolution experiment instead of sampling 4 ports to 

prevent the mass loss. Port 9 was chosen to collect samples because it was the closet to the effluent 

reservoir. 
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Chapter 8 
TCE Dissolution Experiment 

After completing the tracer experiments, a known volume of Trichloroethene (TCE) was injected into 

a small reservoir to create a well characterized source zone. A constant flow field was established to 

conduct TCE dissolution experiment. In this chapter, the TCE dissolution experiment and the results 

obtained from the experiment are discussed. 

8.1 Experimental Set-up and Description 

The experimental set-up for the TCE dissolution experiment was same as the one used for the tracer 

experiments, described in section 7.1. Figure 8.1 represents the schematic diagram of the 

experimental set-up for the TCE dissolution experiment, where the injection and sampling ports are 

indicated as “Injection” and “Sample” respectively. Figure 8.2a is a photograph of the flow cell and in 

Figure 8.2b, the injection and sampling ports are indicated on the photograph with rectangular white 

box. All parts of the experimental system that would be in contact with water in the tank were 

constructed or sealed with inert materials. For example, the influent and effluent reservoirs were 

made of stainless steel. As mentioned in section 2.2, titanium putty (Devcon, Danvers, MA, USA) 

was used to attach the brass fittings (that were used as ports) to the front surface of the rock and 

sealed around it as well as to seal along the length of the fractures. Similar to the tracer tests, injection 

and sampling ports were equipped with Swagelok fittings to hold the stainless steel needle used for 

injection or sample collection and a one-way luer stopcock to prevent any fluid loss while injecting or 

sampling. Deionised (DI) water was used for the TCE dissolution experiment. 

Before injecting TCE into the fractured rock, a steady flow field was established by fixing the 

hydraulic gradient across the rock sample and the flow rate was measured at the effluent drip point 

using graduated cylinder. Hydraulic head of the left and right reservoirs were approximately 60cm 

and 59 cm respectively, although they varied quite a bit. Once the flow field was stable, 2.25mL (3.3 

gm) of pure phase (99%) TCE (Sigma Aldrich, St. Louis, MO, USA) was injected in a small reservoir 

using a syringe into the flow cell to create a source zone. The source zone was created by injecting 

the TCE into the sand filled hole below the flow path marked as “Injection” in Figure 8.1. The 

volume of injected TCE was selected based on the porosity of the sand (F-35 Bag sand, US Silica, 

Frederick, MD, USA) that was used to fill the hole. The sand porosity was measured at the laboratory 
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which was 40% to 50%. I decided to inject 2.25 mL TCE assuming the pore volume to be 35%, so 

that it does not overflow the reservoir. It is assumed that injected TCE occupies the bottom part of the 

reservoir. The source hole, where the TCE was injected has been described in section 7.1.  

 

Figure 8.1: Schematic Diagram of the experimental set-up for the TCE dissolution experiment. 

The white oval indicates the sampling port. 

 

Figure 8.2: a) Photograph of the experimental block and b) Injection and sampling ports. 

Injection and sampling ports are indicated in the flow cell with white rectangular box. 

After the injection, the down gradient monitoring port indicated as “Sample” in Figure 8.1 was 

sampled periodically using a needle for 86 days to monitor the TCE breakthrough curve. In total, 175 

samples were withdrawn during the first 86 days referred to as the“1st part” of the TCE dissolution 

experiment. To monitor the TCE breakthrough in the fractured rock sample, only one down gradient 

monitoring port was sampled to reduce the mass loss that was discussed at the end of section 7.2. The 
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rate of flow through the fracture was also measured periodically at the effluent dripping point 

throughout the experiment. 

To conduct the 2nd part of the dissolution experiment, after 86 days of injection, flow through the 

fractured domain was shut off over a period of three weeks to let TCE diffuse into the flow path. 

After this period of flow shutoff, water flow through the fractured rock block was resumed and 

sampling continued for another two weeks to observe the anticipated rebound in concentration at the 

monitoring port. 

Samples were collected in 2mL vials and they were filled to the top to avoid volatilization and 

mass loss in the head space.  Each water sample withdrawn during the dissolution experiment was 

chilled in a refrigerator at 4°C until they were analyzed. TCE concentrations were determined using a 

Hewlett Packard 5890 Series II gas chromatograph (GC) equipped with a Ni63 ECD detector. The 

procedure of analysis is included in Appendix E.  

8.2 Results and Discussion 

Figure 8.3 shows the TCE breakthrough curve over 86 days which is also plotted along with the flow 

rate through the fractured rock block. In Figure 8.3, the left axis shows the TCE concentration and the 

right axis shows the flow rate. The solid black circles represent the TCE concentration, while the 

black rectangles represent the flow rate over time. 

Examination of Figure 8.3 reveals that the flow rate was mostly stable throughout the experiment, 

with an exception at early time. The measured flow rate at the effluent drip point varied in between 2 

mL/min to 3 mL/min except at very early time. At very early time flow rate went down to 1mL/min 

to 1.2mL/min due top very frequent sampling. Very frequent sampling (every 15 minutes) following 

the injection of TCE was likely responsible for this early time fluctuation of flow rate, as it became 

stable when the sampling was slowed down.   

From the TCE concentration profile in Figure 8.3 it can be seen that at the monitoring port, TCE 

concentration reached its peak after 20 to 25 hours of injection which was about 67 ppm and declined 

gradually to 1ppm after 12 days and 0.1 ppm after 86 days of injection.  

TCE mass removed through dissolution was estimated from the TCE concentration profile using 

trapezoidal rule which revealed that only 21% of the injected mass was recovered in 86 days.  

Therefore, TCE concentration at the monitoring port reached its tailing stage instead of staying at the 

peak, although the source was not depleted completely. One potential explanation may be the 
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physical diffusive phenomenon due to the development of a concentration gradient over time between 

the source zone and the flow path. As the injected TCE was sitting at the bottom of the sand filled 

hole below the flow path, a layer of dissolved TCE developed in between the source zone and the 

flow path within a few hours of injection. Thus, after a few hours of injection, TCE had to diffuse 

from the source zone to the flow path through this dissolved layer, which was the anticipated 

phenomenon behind the TCE concentration going down gradually at the monitoring port before the 

complete depletion of the source zone. To investigate this, flow through the fractured domain had 

been shut off for three weeks and the 2nd part of the dissolution experiment (TCE rebound) was 

conducted. 

 

Figure 8.3: TCE Breakthrough Curve from the 1st part of Dissolution Experiment and Flow 

Rate over Time. Solid black circles represent the TCE concentration while the black rectangles 

represent the flow rate over time. 
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During the 2nd part of the dissolution experiment, the flow through the fractured domain was turned 

off to investigate whether an increase in TCE concentration due to TCE diffusion through the 

dissolved layer to the flow path is observed or not. The flow was resumed after three weeks and the 

down gradient monitoring port was being sampled again for another two weeks to examine if there is 

any rebound in TCE concentration at the monitoring port.  

Figure 8.4a represents the TCE concentration profile over 121 days (1st and 2nd part of the 

dissolution experiment) and a portion of the breakthrough curve, indicated by a rectangular box in 

Figure 8.4a has been expanded in Figure 8.4b for ease of visualization. Similar to Figure 8.3, in 

Figure 8.4a and b, the left axis shows the TCE concentration and the right axis shows the flow rate. 

The solid black circles represent the TCE concentration, while the black rectangles represent the flow 

rate over time. 

 

Figure 8.4: a) TCE Concentration Over 121 Days and b) Rebound in TCE Concentration. Solid 

black circles represent the TCE concentration while the black rectangles represent the flow rate 

over time. 

Examination of Figure 8.4a and b reveal that, a slight rebound was observed in TCE concentration. 

TCE concentration increased to 2 ppm from 0.1 ppm and started to decrease again within a few 

minutes of starting the flow. In 121 days, the total dissolved mass was estimated to be 21.2 % of the 

injected mass.  
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To examine whether the rest of the mass diffused into the matrix, TCE concentration that could be 

diffused into the matrix in 121 days (to different distances from the fracture) was calculated using 1-

D diffusion equation given by equation (11) – 

𝐶𝑖 (𝑥, 𝑡) =  𝐶0𝑒𝑟𝑓𝑐[ 𝑥
2�𝑡𝐷𝑑

]                                                      [11] 

where, Ci is the TCE concentration at a distance x from the fracture at time t, Co is the initial 

concentration and  erfc[y] is the complementary error function. In equation (11), Dd is the effective 

diffusion coefficient given by 𝐷𝑑 = 𝐷0τ, where, 𝐷0 is the free solution diffusion coefficient and τ is 

tortuosity. The free solution diffusion coefficient (𝐷0) and tortuosity (τ) values used for the 

calculation were 1.0×10-5 cm2/s [i.e., Perry, 1984; Pankow and Cherry, 1996] and 0.1 respectively. 

Estimated diffusive TCE front is shown in Figure 8.5 and the calculated concentration at 

corresponding distances are listed in Table 8-1. From Figure 8.5 and Table 8-1 it is evident that TCE 

penetrated about 0.1 cm (1 mm) into the rock matrix. Penetrated TCE mass into the rock matrix (both 

side of the horizontal fracture) was then estimated by multiplying the average concentration 

(arithmetic mean of all 9 concentrations given in Table 8-1) by the penetration volume. Penetration 

volume and estimated penetrated TCE mass into the rock matrix are also presented in Table 8-1. 

From Table 8-1, it is evident that approximately 0.02 gm of TCE could be penetrated into the rock 

matrix, which is only 0.61% of total injected mass. Therefore, the rest of the TCE mass is probably 

still present at the bottom of the hole. 

 

Figure 8.5: The Profile of Estimated Diffusing TCE Front into the Rock Matrix 
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Table 8-1: Estimated TCE concentration and Diffused Mass in the Rock Matrix 

Distance From 

Fracture (cm) 
Concentration (mg/L) 

Average 

Concentration 

(mg/L) 

Volume 

(cm3) 

Mass 

(gm) 

0.01 5.72E+02 1.50E+02 68.63 0.02 

0.015 3.68E+02 

0.02 2.18E+02 

0.025 1.19E+02 

0.03 5.92E+01 

0.04 1.11E+01 

0.05 1.44E+00 

0.1 1.42E-07 

0.15 0.00E+00 

 

 The dissolution experiment in the laboratory helped to understand the TCE dissolution behavior in 

a fractured rock environment. Upon completion of the laboratory experiment, the transport of aqueous 

phase TCE originating from the source zone was modeled using: 1) assumed hydraulic properties of 

the fractured block based on the discrete fracture network modeling concept and, 2) the estimated K 

distribution obtained from the THT analysis of cross-hole pumping tests. This modeling effort is 

described in the next chapter. 
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Chapter 9 
Numerical Modeling of Aqueous Phase TCE Transport 

Upon completion of the laboratory TCE dissolution experiment, Hydrogeosphere (HGS) was used to 

simulate the 1st portion (0 – 86 days) of the aqueous phase TCE breakthrough curve. The aqueous 

phase TCE was simulated using two approaches: 1) discrete fracture network modeling approach and 

2) stochastic continuum approach. The goal of theses modeling study was to capture the pattern 

breakthrough curve as well as to compare the results from these two approaches. 

9.1 Discrete Fracture Network Modeling Approach 

In the discrete fracture network modeling approach, a discretely fractured domain, with known 

geometry of fractures of the laboratory fractured block was used for the simulation. A uniform 

aperture thickness estimated from the flow-through tests was assigned to all fractures and a very low 

hydraulic conductivity (K) was assigned to the matrix. 

9.1.1 Model Set-up 

A model domain, 91.5 cm in length, 60.5 cm in height and 1 cm thick (one element thick) was used 

for the dissolution modeling using the discrete fracture network modeling approach. The model 

domain was the same as the one used for simulating the pumping tests using HGS, described in 

section 3.3, with the only exception that the thickness of the model domain is different. The model 

domain used for simulating TCE dissolution was of unit thickness and composed of variably-sized 

rectangular elements. The element size varied from 0.05 cm by 0.01 cm to 1.375 cm by 1.375 cm. 

The finer elements are located along the fracture and the coarser elements are located near the 

boundary.  

Figure 9.1a) shows the mesh used for simulating the aqueous phase TCE transport, where the 

location of the source is indicated with a black circle and Figure 9.1b) shows the fracture faces. The 

model domain was very finely discretized around the source zone indicated in Figure 9.1a, to account 

for the steep concentration gradient, expected to develop from the source zone into the flow path. The 

darker areas in Figure 9.1 indicate the highly refined areas of the model domain. 

The flow boundary conditions were constant head for left and right boundaries and no flow for the 

remaining outer boundaries. Equilibrium dissolution from the immobile phase was simulated for the 
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source zone. For equilibrium dissolution, aqueous phase concentration is same as the contaminant 

solubility. The boundary condition assigned at the source zone assumes that an immobile liquid phase 

dissolves into water until all dissolvable material is exhausted. In this transport boundary condition, 

each chosen nodes is assigned a first-type concentration value which is equal to the mass of 

dissolvable material per unit volume of porous medium and the concentration is maintained until all 

the material associated with a node is dissolved [Therrien et al., 2009]. Equation (6) describes the 

transport boundary condition. 

∫ ∫ − 𝛻[𝑞𝐶 − 𝐷𝛻𝐶]𝑉𝑛𝑖
𝑇0
0 𝑑𝑉𝑛𝑖𝑑𝑡 =  𝑀𝑜𝑖𝑛𝑖                                       [6] 

           C= Co, when 0 ≤ t < To        

where, To is the dissolution time, Vni is the volume associated with node ni, Moini initial mass stored 

at node ni, q is the Darcy flux, C is the concentration, Co is the aqueous phase solubility, and D is the 

dispersivity. 

 

 

Figure 9.1: a) Mesh Used for TCE Dissolution Modeling using Discrete Fracture approach and 

b) Fracture Faces.  

9.1.2 Model Input 

A uniform aperture value, obtained from flow-through tests was assigned to the fractures and a very 

low hydraulic conductivity (1.0×10-7 cm/s) was assigned to the matrix to simulate aqueous phase TCE 
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transport. As described in section 3.3, HGS calculates the fracture hydraulic conductivity (Kf) from 

the aperture thickness. The matrix hydraulic conductivity (Km) used for the transport modeling was 

determined through manual calibration of pumping test at port 5, simulated using HGS to match the 

simulated drawdown with the observed, described in section 3.3. The experimental rock is 

representative of Guelph formation. Therefore, a porosity value representative of the Guelph 

formation obtained from Zheng [1999] was used as matrix porosity. According to Zheng [1999], the 

bulk porosity of Guelph dolomite can range from 0.1% to 14.4%. Here the matrix porosity was 

chosen to be 0.1% as the experimental rock seems to be quite tight. 

To simplify the transport modeling, a model domain having a unit thickness was used for the 

simulation, by scaling down the thickness by a factor of 5. Before conducting transport simulations, 

the flow through the fractured domain was simulated by fixing the hydraulic gradient across the 

model domain to match the experimental flow velocity. As the domain thickness was scaled down by 

a factor of 5, the fluid flux through the domain, volume of the source zone and the injected mass were 

also reduced by the same factor. 

The source zone was assigned the hydraulic conductivity of sand that was measured in the 

laboratory using the falling head method. The porosity of the sand was also measured in the 

laboratory which was used as the source zone porosity for dissolution modeling. TCE solubility to 

water at room temperature (20°C) was obtained from literature [e.g., Russel et al., 1992; Pankow and 

Cherry, 1996]. Initially I started with the literature value (1.0×10-5 cm2/s ) [i.e., Perry, 1984; Pankow 

and Cherry, 1996 etc.] for the free solution diffusion coefficient of TCE, but the manual calibration 

resulted in a higher value (3.1×10-3 cm2/s) than the literature value to match the break-through curve. 

Other transport parameters used for dissolution modeling such as tortuosity and dispersivity were also 

determined through trial and error. The simulation was conducted several times by varying each of 

these parameters manually until a good match between the observed and simulated break-through 

curves was obtained. Among the transport parameters, dispersivity was found to affect the pattern of 

the breakthrough curve most. Table 9-1 summarizes the flow and transport parameters used to obtain 

the simulated breakthrough curve presented here.  
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Table 9-1: Flow and Transport Parameters Used for TCE Dissolution Modeling in Discrete 

Fracture Approach 

Parameters Used Source 

Fracture 

Aperture (cm) 0.049 Flow-through tests 

Fracture Hydraulic 

Conductivity, Kf (cm/s) 
17.5 Calculated by HGS 

Longitudinal Dispersivity  

(cm) 
1.96 

 

Transverse Dispersivity  (cm) 0.176  

Matrix 

Matrix Hydraulic 

Conductivity, Km (cm/s) 
1.0×10-7 

De Marsily, 1986; Domenico and 

Schwatrz, 1997; Schwartz and Zhang, 

2003 etc. (1.0×10-7 cm/s to1.0×10-4 

cm/s) 

Matrix Porosity  0.1% 
Zheng, 1999 (0.1% – 14.4%) 

Source Hydraulic 

Conductivity, Ks (cm/s) 
0.1 

Hydraulic conductivity of sand (used to 

fill the source hole) measured in the 

laboratory. 

Source 

Source Porosity  50% 
Porosity of sand (used to fill the source 

hole) measured in the laboratory. 

Tortuosity 0.65  

Free Solution Diffusion 

Coefficient (cm2/s) 
3.1×10-3 

Perry, 1984; Pankow and Cherry, 

1996. (1.0×10-5 cm2/s) 

TCE Solubility (mg/L) 1000 

Russel et al., 1992; Pankow and 

Cherry, 1996. (1000 mg/L – 1100 

mg/L) 
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9.2 Stochastic Continuum Modeling Approach 

In the stochastic continuum modeling approach, the model domain was treated as a porous medium 

and the hydraulic conductivity (K) field obtained from Transient Hydraulic Tomography (THT) was 

utilized for simulating aqueous phase TCE transport using HGS. 

9.2.1 Model Set up 

A model domain, 91.5 cm in length, 60.5 cm in height and 5 cm thick (one element thick)  was used 

for the transport modeling using the stochastic continuum approach. The model domain was same as 

the one used for transient hydraulic tomography (THT) analysis using SSLE, described in section 

4.2.1. The model domain was composed of variably-sized rectangular elements and it was discretized 

into 14140 nodes and 6900 elements. The element size varied from 0.5 cm by 0.5 cm to 1.75 cm by 

1.75 cm. The finer elements are located along the ports to match the port location and the element 

center and the coarser elements are located near the boundary.  

Figure 9.2 shows the mesh used for simulating TCE dissolution using the stochastic continuum 

approach, where the location of the source is indicated with a black circle. Here the model domain 

used for the simulation was same as the one used for inversion, as the K-tomogram obtained from the 

THT analysis was used for dissolution modeling. Therefore, in this case, the model domain was not 

finely discretized around the source zone like the discrete fracture approach, described in section 

9.1.1, although it would have been useful to deal with the concentration gradient, expected to develop 

from the source zone into the high K zone. 

The flow boundary conditions were constant head for left and right boundaries and no flow for the 

remaining outer boundaries.  The transport boundary condition, assigned to the source zone was same 

as the one described in section 9.1.1. 
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Figure 9.2: Mesh Used for TCE Dissolution Modeling using Stochastic Continuum Approach 

9.2.2 Model Input 

In this case, to simulate the transport of aqueous phase TCE, each element of the model domain was 

assigned a hydraulic conductivity (K) obtained from the THT analysis (case 1), described in section 

5.2. All the elements in the model domain were also assigned a bulk porosity value. (The 

experimental rock is representative of Guelph formation. Therefore, a porosity value representative of 

the Guelph formation obtained from Zheng [1999] was used for the model domain. According to 

Zheng [1999], the bulk porosity of Guelph dolomite can range from 0.1% to 14.4%. Here the bulk 

porosity was chosen to be 1%. Before conducting transport simulations, the flow through the porous 

medium was simulated by fixing the hydraulic gradient across the model domain to match the 

experimental flow velocity.  

Similar to the discrete fracture approach, here TCE solubility to water at room temperature (20°C) 

was obtained from literature [e.g., Russel et al., 1992; Pankow and Cherry, 1996 etc.]. Initially I 

started with the literature value [i.e., Perry, 1984; Pankow and Cherry, 1996 etc.] for the free solution 

diffusion coefficient of TCE, but the manual calibration resulted in values (1×10-7 cm2/s in case 1 and 

1×10-6 cm2/s in case 2 ) little lower than the literature value to match the break-through curve. Other 

transport parameters used for dissolution modeling such as tortuosity and dispersivity were also 

determined through trial and error. The simulation was conducted several times by varying each of 

these parameters manually until a good match between the observed and simulated break-through 

curves was obtained. Among the transport parameters, dispersivity was found to affect the pattern of 
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the breakthrough curve most. Two best cases simulated using different transport parameters are 

presented here. Table 9-2 and Table 9-3 summarize the flow and transport parameters utilized to 

simulate TCE dissolution in case 1 and case 2 respectively using stochastic continuum approach. 

Table 9-2: Flow and Transport Parameters Used for TCE Dissolution Modeling in Stochastic 

Continuum Approach (Case 1) 

Parameters Used Source 

Porous 

Medium 

Hydraulic Conductivity, K 

(cm/s) 

K-Tomogram 

Obtained from 

THT analysis 

(Case 1) 

THT analysis of laboratory 

pumping Tests (Case 1) 

Longitudinal Dispersivity  

(cm) 
91  

Transverse Dispersivity  (cm) 5.76  

Vertical Transverse 

Dispersivity  (cm) 
6.76  

Porosity  1% 
Zheng, 1999 

(0.1% – 14.4%) 

Tortuosity 0.65  

TCE 

Free Solution Diffusion 

Coefficient (cm2/s) 
1.00×10-7 

Perry, 1984; Pankow and 

Cherry, 1996. 

(1.0×10-5 cm2/s) 

Solubility (mg/L) 1000 

Russel et al., 1992 ( US 

EPA Ground Water Issue, 

1992); Pankow and Cherry, 

1996; 

(1000 mg/L – 1100 mg/L) 
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Table 9-3: Flow and Transport Parameters Used for TCE Dissolution Modeling in Stochastic 

Continuum Approach (Case 2) 

Parameters Used Source 

Porous 

Medium 

Hydraulic Conductivity, K (cm/s) 

K-Tomogram 

Obtained 

from THT 

analysis 

(Case 1) 

THT analysis of laboratory 

pumping Tests (Case 1) 

Longitudinal Dispersivity  (cm) 91  

Transverse Dispersivity  (cm) 6.76  

Vertical Transverse Dispersivity  

(cm) 
6.76  

Porosity  1% 
Zheng, 1999 

(0.1% – 14.4%) 

Tortuosity 0.65  

TCE 

Free Solution Diffusion Coefficient 

(cm2/s) 
1.0×10-6 

Perry, 1984; Pankow and 

Cherry, 1996. 

(1.0E×10-5cm2/s) 

Solubility (mg/L) 1100 

Russel et al., 1992 ( US 

EPA Ground Water Issue, 

1992); Pankow and 

Cherry, 1996; 

(1000 mg/L – 1100 mg/L) 



 

 94 

9.3 Results and Discussion 

9.3.1  Discrete Fracture Network Modeling Approach 

Comparison of the observed and simulated TCE concentration profiles (simulated using the discrete 

fracture network modeling approach) is presented in Figure 9.3a. In Figure 9.3b, the selected portion 

of the breakthrough curve, indicated with the black rectangular box (in Figure 9.3a), has been 

expanded to examine how the simulated concentration matched the observed data at early time. The 

solid black circles represent the observed TCE concentration from the laboratory experiment, while 

the diamonds represent the simulated concentration using the discrete fracture network modeling 

approach.  

 

Figure 9.3: a) Observed and Simulated Breakthrough Curves (using discrete fracture network 

modeling approach) and b) Observed and Simulated Breakthrough Curves at Early Time. The 

solid black circles represent the observed TCE concentration in the laboratory experiment 

while the diamonds represent the simulated concentration. 

From Figure 9.3, it can be seen that a good match was obtained between the observed and 

simulated breakthrough curves using the discrete fracture network modeling approach indicating that 

this approach can capture the TCE breakthrough curve quite well.  

The time stepping is probably responsible for the steps or plateaus in simulated concentration in 

Figure 9.3b. The convergence criteria of the model was set in a way that, if the change in estimated 
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concentration was below the convergence criteria (a previously set threshold), a previously set time-

step multiplier came into effect leading to a larger time-step. This process continued until the change 

in estimated concentration was below the convergence criteria. Once the change in estimated 

concentration was above the previously set threshold, the time step was cut down by the same factor 

leading to a smaller time-step. This back and forth adjustment of time-step was probably responsible 

for the steps or plateaus in simulated concentration in Figure 9.3b.  

 

Figure 9.4: Scatter Plot of Observed and Simulated TCE Concentration (using the discrete 

fracture network modeling approach). The solid line is a 1:1 line indicating a perfect match. 

The dashed line is a best fit line, and the parameters describing this line are on the plot. 

Figure 9.4 is a scatter plot comparing simulated and observed TCE concentration at the sampling 

port. The solid line is a 1:1 line indicating a perfect match. The dashed line is a best fit line, and the 

parameters describing this line are included on the plot. The scatter plot is presented as an assessment 

of how well the simulated breakthrough curve was able to capture the observed. The R2 value 

indicates the Correlation between the simulated and observed values. The correspondence between 

the simulated versus the observed concentration values can be considered to be good when the data 

set clusters around the 1:1 line and the R2 value is close to 1. The slope and the intercept of the linear 

model fit are the indication of bias. From Figure 9.4, it is seen that the data points cluster around the 

1:1 line indicating a good match between the observed and simulated breakthrough curve. The R2 

value was also very close to 1 (0.95) indicating that simulated concentration profile captured the 

observed pattern quite well. 
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As mentioned in section 9.1.2, the simulation was conducted several times changing some of the 

parameters such as dispersivity and free solution diffusion coefficient until a good match between the 

observed and simulated breakthrough curves was obtained and the simulated breakthrough curve 

shown here is the one that best matched the observed. The set of parameters used to produce the 

simulated breakthrough curve are listed in Table 9-1 and section 9.1.2 describes how the parameters 

were selected. Note that, a similar match can be obtained using a different combination of transport 

parameters such as dispersivity and free solution diffusion coefficient, which suggest non-uniqueness 

of the parameters.  

The purpose of modeling the TCE breakthrough curve using the discrete fracture network modeling 

approach was to investigate whether the TCE breakthrough curve can be captured in a fractured rock 

environment when the fracture geometry, fracture aperture and the flow through the system are well 

known. In this case, the geometry of the fractured rock, fracture aperture and the flow through the 

system were well characterized through the hydraulic and tracer tests conducted ahead of the 

dissolution experiment. The fracture geometry of the numerical model closely resembles the fracture 

patterns in the rock block in the laboratory. Also, the mesh was very finely refined around the source 

zone to deal with concentration gradient expected to develop over time from the source zone into the 

flow path, discussed in section 8.2. Finally, result shows that it is possible to capture the pattern of 

TCE dissolution in a fractured rock environment using discrete fracture network modeling approach. 

9.3.2 Stochastic Continuum Modeling approach 

In this case, the hydraulic conductivity (K) field obtained from “Real THT analysis Case 1” was used 

and the model domain was treated as a porous medium to simulate the transport of aqueous phase 

TCE. As mentioned in section 9.2.2, the simulation was conducted several times by varying the 

parameters until a good match between the observed and simulated breakthrough curves was attained 

and the two best cases are presented here.  

A comparison of observed and simulated TCE concentration profiles (stochastic continuum 

modeling approach) for case 1 is presented in Figure 9.5a. In Figure 9.5b a selected portion of the 

breakthrough curve indicated with the black rectangular box (in Figure 9.5a) has been expanded to 

examine how the simulated concentration matched the observed at early time. A similar comparison 

of observed and simulated breakthrough curves for case 2 is presented in Figure 9.7a and Figure 9.7b. 

The solid black circles represent the observed TCE concentration from the laboratory experiment, 
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while the diamonds represent the simulated concentration using the stochastic continuum modeling 

approach.                                                                                                                                                           

 

Figure 9.5: a) Observed and Simulated Breakthrough Curves in Case 1 (using the stochastic 

continuum modeling approach) and b) Observed and Simulated Breakthrough Curves at Early 

Time. The solid black circles represent the observed TCE concentration in the laboratory 

experiment while the diamonds represent the simulated concentration. 

Examination of Figure 9.5 reveals that the match between the observed and simulated 

concentration profiles in case 1 is fair except at early time (0 – 20 hours). At early time, the simulated 

concentration was lower than the observed in case 1 (Figure 9.5b). On the other hand, from Figure 9.7 

it can be seen that at early time, simulated concentrations matched the observed quite well for case 2. 

But in case 2 (Figure 9.7b) the simulated peak concentration was much higher than observed and the 

peak arrived earlier in the simulated case than the observed. In case 2 (Figure 9.7a), the simulated 

TCE concentration was found to be a little higher than the observed at the tailing stage too, which was 

expected as the peak concentration was much higher than the observed in this case. 

There could be couple of reasons behind the deviation of the simulated TCE breakthrough curve 

from one observed one, which are - 

• In the stochastic continuum modeling approach, the mesh was not finely discretized around 

the source zone what was done for the discrete fracture network modeling approach to deal 
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with the concentration gradient expected to developed overtime from the source zone into the 

high K zone, discussed in section 8.2. 

• The estimated hydraulic conductivity (K) field from the THT analysis used to simulate the 

aqueous phase TCE transport might play a role behind this deviation. As discussed in section 

5.2  estimated hydraulic conductivity (K) values may not exactly replicate actual K values for 

the fractured block.  

• At early time of the dissolution experiment in the laboratory, flow through the fractured rock 

(Figure 8.3) fluctuated quite a bit due to very frequent sampling, which was discussed in 

section 8.2, while in the synthetic case the flow rate was stable throughout the duration of the 

simulation. Therefore, the flow rate for the synthetic case did not exactly match the observed 

at early time, which may have caused the discrepancy between the observed and simulated 

concentration. 

However, the overall the pattern of the TCE breakthrough curve was captured using the stochastic 

continuum modeling approach for both cases 1 and 2. However, it was difficult to match both the 

peak arrival time and the peak concentration simultaneously. 

 

Figure 9.6: Scatter Plot of Observed and Simulated TCE Concentration in Case 1 (using the 

stochastic continuum modeling approach). The solid line is a 1:1 line indicating a perfect match. 

The dashed line is a best fit line, and the parameters describing this line are on the plot. 
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Figure 9.7: a) Observed and Simulated Breakthrough Curves in Case 2 (using the stochastic 

continuum modeling approach) and b) Observed and Simulated Breakthrough Curves at Early 

Time. The solid black circles represent the observed TCE concentration in the laboratory 

experiment while the diamonds represent the simulated concentration. 

 

Figure 9.8: Scatter Plot of Observed and Simulated TCE Concentration in Case 2 (using the 

stochastic continuum modeling approach). The solid line is a 1:1 line indicating a perfect match. 

The dashed line is a best fit line, and the parameters describing this line are on the plot. 
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Figure 9.6 and Figure 9.8 are the scatter plots comparing simulated and observed TCE 

concentrations at the sampling port in cases 1 and 2 respectively. The solid line is a 1:1 line indicating 

a perfect match. The dashed line is a best fit line, and the parameters describing this line are included 

on each plot. From Figure 9.6 and Figure 9.8, it is seen that the data points cluster around the 1:1 line, 

indicating a fair match between the observed and simulated breakthrough curves, although some bias 

is evident due to the deviation of simulated concentrations from the observed values, which has been 

discussed above. The R2 values were close to 1 in both cases (0.86 in case 1 and 0.88 in case 2) 

indicating a good correspondence between the simulated and observed TCE concentration in both 

cases. 

The set of parameters used to produce the simulated breakthrough curves in case 1 (Figure 9.5) and 

case 2 (Figure 9.7) are listed in Table 9-2 and Table 9-3 respectively. As mentioned earlier, the 

simulation was conducted several times changing some of the transport parameters such as 

dispersivity and free solution diffusion coefficient until a good match between the observed and 

simulated break through curves was obtained.  The simulated breakthrough curves represented here 

are the ones that best matched the observed. Note that, similar matches can be obtained using a 

different combination of transport parameters such as dispersivity and free solution diffusion 

coefficient, suggesting the non-uniqueness of the parameters.  

9.3.3 Conclusion 

The purpose of the transport modeling was to investigate whether it is possible to capture the pattern 

of the observed TCE breakthrough curve in a fractured rock block using:  

1) the discrete fracture network modeling approach, in which the fracture geometry and the flow 

through the system were exact replica of the experimental block and 

2) the stochastic continuum modeling approach, in which the model domain was treated as a 

porous medium. 

The discrete fracture network modeling approach captured the pattern of the TCE breakthrough 

curve based on the experiments in this fractured rock block quite well. On the other hand, the 

stochastic continuum modeling approach also captured the overall pattern of TCE breakthrough curve 

despite some early time deviation. 

These studies are still at the early stage and were conducted under laboratory conditions in a 

controlled environment. The experimental block and the flow through the system were well 
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characterized through the hydraulic and tracer experiments. Thus small scale field experiment is 

required to validate these approaches to predict DNAPL plume behavior in the field. However, it 

would be very expensive and time consuming to model TCE dissolution in the field using the discrete 

fracture approach, as it requires detailed deterministic and statistical information of the geometry of 

fractured zone and the spatial distribution of fracture apertures, which information are not available 

between boreholes. On the other hand, stochastic continuum approach could be comparatively less 

expensive and time consuming, as it does not require these detail information about the spatial 

distribution of fractures. 
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Chapter 10 
Conclusions and Recommendations 

10.1 Conclusions 

The main conclusions of this thesis are presented in two groups; 1) conclusions from transient 

hydraulic tomography (THT) analysis in a fractured rock and 2) conclusions from the TCE 

dissolution experiment and dissolution modeling. 

Conclusions from the transient hydraulic tomography (THT) analysis are – 

• It is possible to delineate discrete fractures, their pattern and connectivity of a laboratory 

scale fractured rock by careful application of THT analysis of multiple pumping tests along 

with the inverse code SSLE developed by Zhu and Yeh [2005]. The high hydraulic 

conductivity (K) and low specific storage (Ss) zone clearly showed the fractures and their 

connectivity. 

• Estimated K and Ss values for the fractures and the matrix may not exactly replicate the actual 

K and Ss values for the fractured rock but the model also provides uncertainty estimates 

associated with the resulting K and Ss tomograms.  

• The estimated K and Ss tomograms were able to capture the observed drawdown behaviors at 

the monitoring ports, while conducted the independent pumping tests using the estimates 

from THT analysis, indicating the soundness of the estimates. 

• Changing the location of the 2nd and 3rd pumping tests did not have significantly impact on 

the estimates. However, Initial pumping tests must be selected carefully based on their ability 

to stress the entire aquifer. 

• THT appears to be a promising approach to delineate fracture pattern given that the study was 

conducted based on the laboratory experiment in a controlled environment. However, the 

study is still at the early stage and small scale field experiment needs to be conducted to 

validate THT as a tool to characterize the fractured rock.  
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Conclusions from TCE dissolution experiment and dissolution modeling studies are – 

• Both the discrete fracture network approach and the stochastic continuum approach appear to 

be promising in capturing the pattern of the TCE breakthrough curve based on the laboratory 

experiments in the fractured rock. In stochastic continuum approach, some early time 

deviation was evident, but the simulated breakthrough curve captured the overall observed 

pattern of TCE breakthrough.  

• Note that, the studies were conducted based on a laboratory experiment conducted in a 

controlled environment. The experimental block and the flow through the system were well 

characterized through the hydraulic and tracer experiments. 

10.2 Recommendations 

Some recommendations for future works are listed below- 

• Application of THT to small scale field site to characterize a fractured rock aquifer. 

• Inclusion of pumping test data for a longer period of time.  

• Inclusion and assessment of different pumping strategies such as cross-hole and single-hole 

tests. 

• Simulation of TCE dissolution using equivalent porous medium approach as well as for 

different spatial distributions of fractures using discrete fracture approach to investigate if the 

observed pattern of the break-through curve can be captured. 

• Conducting a small scale TCE dissolution experiment in the field to observe the dissolution 

behavior and model the dissolution using different approaches to validate the laboratory scale 

studies in the field. 
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Appendix A 
Pumping Test Data 

 

Figure A1: Observed drawdown at fracture and matrix ports during a pumping test at port 1. The 

pumped port is indicated by the black rectangular box. 
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Figure A2: Observed drawdown at fracture and matrix ports during a pumping test at port 3. The 

pumped port is indicated by the black rectangular box. 
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Figure A3: Observed drawdown at fracture and matrix ports during a pumping test at port 4. The 

pumped port is indicated by the black rectangular box. 
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Figure A4: Observed drawdown at fracture and matrix ports during a pumping test at port 6. The 

pumped port is indicated by the black rectangular box. 
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Figure A5: Observed drawdown at fracture and matrix ports during a pumping test at port 7. The 

pumped port is indicated by the black rectangular box. 
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Figure A6: Observed drawdown at fracture and matrix ports during a pumping test at port 8. The 

pumped port is indicated by the black rectangular box. 
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Figure A7: Observed drawdown at fracture and matrix ports during a pumping test at port 9. The 

pumped port is indicated by the black rectangular box. 
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Figure A8: Observed drawdown at fracture and matrix ports during a pumping test at port 11. The 

pumped port is indicated by the black rectangular box. 
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Figure A9: Observed drawdown at fracture and matrix ports during a pumping test at port 12. The 

pumped port is indicated by the black rectangular box. 
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Figure A10: Observed drawdown at fracture and matrix ports during a pumping test at port 13. The 

pumped port is indicated by the black rectangular box. 

   

 

 

 

 

 

 

 



 

 114 

 

Figure A11: Observed drawdown at fracture and matrix ports during a pumping test at port 14. The 

pumped port is indicated by the black rectangular box. 
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Figure A12: Observed drawdown at fracture and matrix ports during a pumping test at port 15. The 

pumped port is indicated by the black rectangular box. 
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Figure A13: Observed drawdown at fracture and matrix ports during a pumping test at port 16. The 

pumped port is indicated by the black rectangular box. 
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Figure A14: Observed drawdown at fracture and matrix ports during a pumping test at port 17. The 

pumped port is indicated by the black rectangular box. 
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Figure A15: Observed drawdown at fracture and matrix ports during a pumping test at port 18. The 

pumped port is indicated by the black rectangular box. 
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Figure A16: Observed drawdown at fracture and matrix ports during a pumping test at port 19. The 

pumped port is indicated by the black rectangular box. 
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Appendix B 
    Pumping Tests Conducted using HGS 

 

Figure B1: Observed and Simulated Drawdown during Pumping Test at Port 3. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B2: Observed and Simulated Drawdown during Pumping Test at Port 7. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B3: Observed and Simulated Drawdown during Pumping Test at Port 12. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B4: Observed and Simulated Drawdown during Pumping Test at Port 13. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B5: Observed and Simulated Drawdown during Pumping Test at Port 15. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B6: Observed and Simulated Drawdown during Pumping Test at Port 16. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B7: Observed and Simulated Drawdown during Pumping Test at Port 18. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Figure B8: Observed and Simulated Drawdown during Pumping Test at Port 19. The solid line 

represents observed drawdown and the dashed line represents simulated drawdown. The pumped port 

is indicated by the black rectangular box. 
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Appendix C                                                                                      
Drawdown Data Included in the Inverse Model            

 

Figure C1: Selected Data Points at the Fracture Observation Ports from pumping test at port 7 for 

Synthetic THT analysis. The solid line represents the drawdown curve at each fracture port and the 

circles represent the data points used for inversion.  
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Figure C2: Selected Data Points at the Fracture Observation Ports from pumping test at port 3 for 

Synthetic THT analysis. The solid line represents the drawdown curve at each fracture port and the 

circles represent the data points used for inversion. 
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Figure C3: Selected Data Points at the Fracture Observation Ports from pumping test at port 7 for 

real THT case 1 (inversion of laboratory pumping tests). The solid line represents the drawdown 

curve at each fracture port and the circles represent the data points used for inversion.  
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Figure C4: Selected Data Points at the Fracture Observation Ports from pumping test at port 3 for 

real THT case 1 (inversion of laboratory pumping tests). The solid line represents the drawdown 

curve at each fracture port and the circles represent the data points used for inversion.  
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Figure C5: Selected Data Points at the Fracture Observation Ports from pumping test at port 16 for 

real THT case 2 (inversion of laboratory pumping tests). The solid line represents the drawdown 

curve at each fracture port and the circles represent the data points used for inversion. 
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Figure C6: Selected Data Points at the Fracture Observation Ports from pumping test at port 19 for 

real THT case 2 (inversion of laboratory pumping tests). The solid line represents the drawdown 

curve at each fracture port and the circles represent the data points used for inversion. 
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Appendix D 
   THT Calibrations and Predictions – Case 2 

 

 

Figure D1: Observed and Calibrated Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 5 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents calibrated drawdown curve. The solid circles indicate the match 

points. 
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Figure D2: Observed and Calibrated Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 16 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents calibrated drawdown curve. The black circles indicate the match 

points. 
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Figure D3: Observed and Calibrated Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 19 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents calibrated drawdown curve. The black circles indicate the match 

points. 
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Figure D4: Calibration Scatter plots for real THT Cases 2. The pumped port is mentioned in bold 

letters on each plot. The solid line is a 1:1 line indicating a perfect match. The dashed line is a best fit 

line, and the parameters describing this line as well as L2 norm for the corresponding tests are on each 

plot. 
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 Figure D5: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 4 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents predicted drawdown curve. 
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Figure D6: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 6 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents predicted drawdown curve. 
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Figure D7: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 12 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents predicted drawdown curve. 
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Figure D8: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 15 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents predicted drawdown curve. 
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Figure D9: Observed and Predicted Drawdown (cm) versus Time (s) at the monitoring ports during 

the Pumping Test at Port 18 in real THT Case 2. The solid line represents observed drawdown curve 

while the dashed line represents predicted drawdown curve. 
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Figure D10: Validation Scatter plots for real THT Cases 2. The pumped port is mentioned in bold 

letters on each plot. The solid line is a 1:1 line indicating a perfect match. The dashed line is a best fit 

line, and the parameters describing this line as well as L2 norm for the corresponding tests are on each 

plot. 
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Appendix E 
IC and GC Analysis Methods 

E1 IC Analytical Procedure 

For the analysis a 2.0mL sample was removed and added to a plastic 5ml Dionex IC autosampler vial.  

The sample is then place on a Dionex AS-40 autosampler.   A 25 µl sample was then injected onto a 

Dionex ICS-2000 Ion Chromatograph equipped with an Ion-Eluent Generator and conductivity 

detector.  A Dionex IonPac AS18 column (4x250mm) was used.  The mobile phase used was 30mM 

KOH at a flow rate of 1.0 ml/min.  The chromatograph was obtained on a Dell p4-3GHz computer 

using Dionex Chromeleon 6.5 software. 

Table E-1: Method Detection Limit (MDL) 

Anion MDL (mg/L) 

Bromide (Br-) 0.5 

E2 GC Analytical Procedure 

For the analysis a 2.0mL sample was removed and added to 2 ml of internal standard solution (500 

µg/L of 1, 2-Dibromoethane in pentane) in a 5ml. glass screw cap vial with Teflon-faced septum. The 

sample was placed on an orbital shaker for 15 minutes at 300 RPM. The supernatant was then 

removed, placed in a 2 mL glass crimp-top GC vial and put on a Hewlett Packard 5890 Series II gas 

chromatograph equipped with a Ni63 ECD detector.  Using a HP 7673 liquid auto sampler a 1uL 

sample was injected onto a DB-624 capillary column. The detector temperature was 300C, injection 

temperature was 200C and the column temperature ramp is 50C to 150C at a rate of 15C/min and 

then held for 1 min. The carrier gas is pre-purified helium with a total flow rate of 25 mL/min and the 

make-up gas is 5% methane, 95% argon. 

Table E-2: Method Detection Limit (MDL) 

Compound MDL (µg/L) 

Trichloroethylene (TCE)    1.0 
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E3 Quality Control and Quality Assurance Program 

Quality control procedures are used to estimate and evaluate the information on the analytical data 

and to determine if operations are in order or if corrective action is necessary.  To evaluate these 

procedures; precision, accuracy, detection limits and other quantifiable and qualitative indicators are 

monitored.  These measures are used to monitor the program and to ensure that all data generated are 

suitable for their intended use.   

Analytical quality control involved method blanks which are carried through the entire analytical 

procedures, as well as spiked blanks which are spiked with the analytes from an independent source 

in order to monitor the execution of the analytical method, with percent recoveries recorded (%R).   

The two blanks and approximately eight spiked blanks are analyzed every time sampling is 

undertaken.  Calibrations are conducted in accordance with requirements, which were specific to the 

particular instrumentation and procedures. 

Method detection limits were determined for each compound as the minimum concentration of a 

substance that can be identified, measures and reported with 99% confidence that the analyte 

concentration is greater than zero.  The method detection limits were determined from the analysis of 

samples from a solution matrix containing the analyte of interest.  Detection limits for all compounds 

studied, as given in Table E-1 and Table E-2, were determined using the EPA procedure for Method 

Detection Limit (MDL) (US EPA, 1982). 
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