
A Case Study of a

 Very Large Organization

by

Colin Mark Werner

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2011

©Colin Mark Werner 2011

 ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

Very Large Organization (VLO) is an organization that produces hardware and software, which together

form products. VLO granted access to data pertaining to seven different products and their development

projects. One particular product is of interest to VLO since it was not as successful as the other products.

The focus of this thesis is to study the problematic product and compare it to the other six products in

order to draw some conclusions regarding the problematic product. The goal of this study is to indicate

areas of improvement, which can help VLO improve future products.

This thesis explores and answers the following research questions focused around the problematic

product. Was the product indeed a failure? If so, what caused the product to fail? What indications that

the product would fail were evident during the product’s development? What could VLO have done in

order to prevent the product from becoming a failure? What can VLO learn from the failure? Are there

data from the non-problematic products that indicate what VLO excels at?

This thesis analyzes the data from all seven products and their projects in order to answer the research

questions. Analyzing the non-problematic products is important in order to draw comparisons to the

problematic product. As a result of this research, this thesis uncovers a variety of issues with the

problematic product and identifies six areas for possible improvement. These six areas are: hardware

research and development, decoupling of software from hardware, requirements management, maximal

use of resources, developer order and priority of vital features, and schedule alignment. This thesis

concludes that even though none of these six problematic areas can be pinpointed as the singular root

cause of the problematic product’s failure, addressing these problems will improve the likelihood of

product success.

 iv

Acknowledgements

First, I would like to thank and acknowledge Daniel Berry, my supervisor, for his continued and excellent

support throughout graduate school and finally with the completion of this thesis.

I would also like to thank my two reviewers, Joanne Atlee and Derek Rayside, for providing their input

into this thesis. I would also like to thank my parents for their support throughout my graduate career and

this thesis.

Finally, a big thank you to Erin. She provided me with all the support one could ever ask for. I thank

her for her understanding throughout my graduate career and especially with writing this thesis.

Thank you all!

 v

Table of Contents
AUTHOR'S DECLARATION ... ii	

Abstract .. iii	

Acknowledgements ... iv	

Table of Contents ... v	

List of Figures ... vii	

List of Tables ... viii	

Chapter 1 INTRODUCTION .. 1	

Chapter 2 DETAILED DESCRIPTION OF PRODUCTS AND RESEARCH QUESTIONS 2	

2.1 Product Components and Life Cycle ... 2	

2.2 Research Questions .. 3	

2.3 Product Classification .. 4	

2.4 Organizational Behaviour .. 5	

Chapter 3 DATA MINING METHOD .. 7	

3.1 Source Control Repositories .. 7	

3.2 Change Request Reports .. 8	

3.3 Customers’ Acceptances .. 9	

3.4 Project Dates .. 9	

3.5 Employee Opinions ... 9	

3.6 Document Database ... 10	

Chapter 4 ANALYSIS OF DATA ... 11	

4.1 Non-Problematic Projects .. 12	

4.1.1 Pj1 ... 12	

4.1.2 Pj2 ... 13	

4.1.3 Pj3 ... 14	

4.1.4 Pj4 ... 15	

4.1.5 Pj5 ... 16	

4.1.6 Pj7 ... 17	

4.1.7 Indications of Successful Outcome ... 17	

4.2 The Problematic Project: Pj6 ... 18	

4.2.1 Revolutionarily New Hardware Component .. 19	

4.2.2 Adding New Hardware Components .. 21	

 vi

4.2.3 Hardware Schedule Delays ... 21	

4.2.4 Implications of Hardware on Software ... 22	

4.2.5 Creation of New User Interface Design Team .. 23	

4.2.6 Indications of a Failed Outcome ... 24	

Chapter 5 POSSIBLE SOLUTIONS ... 27	

5.1 Hardware Research and Development ... 27	

5.2 Decoupling of Hardware and Software ... 28	

5.3 Requirements Management ... 29	

5.4 Maximal Use of Resources .. 30	

5.5 Development Order and Priority of Vital Features .. 31	

5.6 Schedule Alignment ... 32	

Chapter 6 FUTURE & RELATED WORK ... 34	

6.1 Related Work ... 34	

6.2 Future Work ... 36	

6.2.1 Further Analysis of Data ... 36	

6.2.2 Research and Planning .. 37	

6.2.3 Change Requests ... 38	

Chapter 7 CONCLUSIONS ... 39	

Appendix A : Collected Data ... 41	

References .. 56	

 vii

List of Figures
Figure 1: Layered Architecture .. 2	

Figure 2: Breakdown of Hardware Platforms .. 5	

Figure 3: Project 1 Source Commits versus Time ... 43	

Figure 4: Project 1 Code Complete and Acceptances versus Time ... 43	

Figure 5: Project 2 Source Commits versus Time ... 45	

Figure 6: Project 2 Code Complete and Acceptances versus Time ... 45	

Figure 7: Project 3 Source Commits versus Time ... 47	

Figure 8: Project 3 Code Complete and Acceptances versus Time ... 47	

Figure 9: Project 4 Source Commits versus Time ... 49	

Figure 10: Project 4 Code Complete and Acceptances versus Time ... 49	

Figure 11: Project 5 Source Commits versus Time ... 51	

Figure 12: Project 5 Code Complete and Acceptances versus Time ... 51	

Figure 13: Project 6 Source Commits versus Time ... 53	

Figure 14: Project 6 Code Complete and Acceptances versus Time ... 53	

Figure 15: Project 7 Source Commits versus Time ... 55	

Figure 16: Project 7 Code Complete and Acceptances versus Time ... 55	

 viii

List of Tables
Table 1: Product Classifications .. 4	

Table 2: Comparison of Data from the Seven Projects ... 11	

Table 3: Project 1 Data .. 42	

Table 4: Project 2 Data .. 44	

Table 5: Project 3 Data .. 47	

Table 6: Project 4 Data .. 48	

Table 7: Project 5 Data .. 50	

Table 8: Project 6 Data .. 52	

Table 9: Project 7 Data .. 54	

 1

Chapter 1
INTRODUCTION

The practice of software engineering is a difficult subject to research, requiring detailed examination of

actual software product development projects.19 One of the largest problems is that commercial software

products are typically very large and extremely costly to develop, and no company will develop one for

the sole purpose of concluding research about its development. However, on the flip side, decreasing the

size of the product to make it more affordable as a research subject will have the ill effect of losing

external validity, since the development of a smaller scale product is not typical in a commercial setting2.

To begin, a small experiment should be first performed with a high degree of control in order to provide

internal validity. To obtain external validity, a case study of the development of a large-scale product

must be performed, which is where a research institution can benefit from partnering with a commercial

organization that produces software. Moreover, it is very likely that the commercial organization can also

benefit from the results of partnering with the research institution. This thesis is an example of Very

Large Organization (VLO) partnering with a research institution.

VLO is a technological firm that produces hardware and software for customers around the world. This

thesis provides an in-depth analysis of seven products, Pd1, Pd2, Pd3, Pd4, Pd5, Pd6, and Pd7, produced

by VLO. Each product has its own development project, Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, and Pj7, each of

which provided the data to be analyzed. A lot of data from VLO were analyzed to examine the process,

the products, the projects, and the organization itself. There is one product, Pd6, and its accompanying

project, Pj6, that garnered elevated interest from customers and employees. In particular, Pd6 was

deemed to be a failure. Therefore, the six other products were analyzed in order to compare and draw

some conclusions with respect to Pd6. This thesis poses a set of research questions that will also be

answered through analysis of the seven projects developed by VLO.

This thesis is organized as follows: Chapter 2 has a detailed description of the products and the

associated research questions that this thesis will answer. Chapter 3 details how and what data were

gathered. Chapter 4 analyzes, compares, and discusses the extracted data for each project. Chapter 5

provides a variety of possible solutions to some of the problems raised in Chapter 4. Chapter 6 describes

related work and some other potential areas of future work. Chapter 7 draws some conclusions about the

research performed. Finally, Appendix A contains all of the extracted data.

 2

Chapter 2
DETAILED DESCRIPTION OF PRODUCTS AND RESEARCH

QUESTIONS

This section outlines the products produced by VLO, introduces a series of research questions, and

discusses other important information that may impact the answers to the research questions. VLO

produces hardware-and-software products, each of which includes an embedded systems layer and an

applications layer. Generally speaking, when VLO releases a new product, the product consists of new

hardware accompanied with its own new embedded system and an applications layer. Occasionally, VLO

may release new software for hardware that is already in market, thus having both old and new hardware

running the same software. The software release process model used for the majority of releases is based

on an iterative waterfall model in which each subsequent release builds directly on top of the previous

release. Using an iterative model does not mean that software production is strictly iterative. There exist

multiple exceptions in which new features or additions are included in a product in order for the product

to succeed in a highly competitive market.

2.1 Product Components and Life Cycle

In this thesis, seven different products at VLO are analyzed; each of these products has a corresponding

development project. The seven products together took VLO more than three years to develop and

release. Each product consists of three components: hardware, an embedded system, and an applications

layer. Each component is part of a layered architecture, in which each layer depends on the lower layer.

See Figure 1 below.

Applications

Embedded System

Hardware

Figure 1: Layered Architecture

 3

While it is possible to work concurrently on the three components of the system, it is neither ideal nor

easy. Typically, the hardware and the embedded system are highly cohesive and require a more complex

integration. For instance, complications tend to arise with the introduction of new hardware that operates

in a manner slightly different from the manner that old hardware does. These complications are hard to

predict and generally cannot be discovered until the actual hardware is delivered. Thus, parallel work on

the hardware and the embedded system is difficult. Unfortunately, more problems exist at the highest

level of abstraction, in the application layer, which depends directly on the embedded system to interact

with the hardware. However, work on the application layer can still be carried out concurrently with the

implementation of a non-functioning application programming interface (API), also known as a stub

interface, which corresponds to what the embedded system will eventually supply. Any change in

hardware can be masked behind the façade of the embedded system so that the development of the

application layer can proceed. Problems arise when an entirely new component is being added to a

product, and the addition involves work across all three layers. Unfortunately, this situation occurs quite

often in the fast-paced and high-demand technology market. However, this difficulty provides more

incentive to develop a general solution that can be applied under many different scenarios.

VLO does not invest a lot of time or energy on requirements engineering. Generally speaking, a team

of marketing specialists initiates a product release. The first task for a marketing specialist is determining

what requests are in the market, i.e., what the customers desire. Typically, these desires are new features

on top of a previously released product. The requests from the marketing specialists are formally

captured in a document, which also notes the priority of the request and is then passed on to a team of

technical experts and executives. The team of experts and executives evaluate the requests and negotiate

with the marketing specialists until a succinct list of approved requests is drawn up. Generally speaking,

only the highest priority requests are accepted. Other lower priority requests are typically deferred until a

later release. The list of approved requests acts as the requirements document and is presented to the

development teams for design and implementation.

2.2 Research Questions

For this thesis, the seven products analyzed are Pd1, Pd2, Pd3, Pd4, Pd5, Pd6, and Pd7. Each product has

a corresponding development project denoted by Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, and Pj7. The product of

particular interest is Pd6, which is viewed as largely unsuccessful, both internally at VLO and externally

by customers. Although the internal view of Pd6 is not publically expressed, there is nothing to stop a

customer from exercising the right to free speech and publishing his or her opinions. Based on these

 4

published opinions, it is clear that Pd6 is widely acknowledged as at least a partial, if not a complete,

failure. This thesis analyzes the data from the seven projects with the ultimate goal of drawing some

conclusions about the development of Pd6. It should be noted that the majority of the information

gathered is from the associated development project of the applications portion of each product. In order

to fully analyze Pj6, this thesis will answer the following five research questions (RQs). RQ1: What

caused Pd6 to fail? (Answered in Section 4.2) RQ2: What indications were there during Pd6’s

development that Pd6 would fail? (Answered in Section 4.2) RQ3: What could VLO have done in order

to prevent Pd6 from becoming a failure? (Answered in Chapter 5) RQ4: What can VLO learn from the

failure? (Answered in Chapter 5) RQ5: Are there indications from Pd1, Pd2, Pd3, Pd4, Pd5, or Pd7 that

indicate areas that VLO is excelling at? (Answered in Section 4.1.7).

2.3 Product Classification

Before analysis can be performed and comparisons are made, it is important to classify each product

according to a variety of criteria. First, the relative size and complexity o

f each product is comparable; each successive product builds upon the previous. Second, each product is

classified whether it is being released on in-market hardware, new hardware, or possibly both.

Furthermore, it is important to note how many different hardware platforms a particular product supports.

Product In-Market New Hardware Number of Hardware Platforms

Pd1 Yes Yes 7

Pd2 No Yes 4

Pd3 Yes No 12

Pd4 No Yes 2

Pd5 No Yes 4

Pd6 No Yes 2

Pd7 No Yes 1

 Table 1: Product Classifications

The classifications of the seven products, shown in Table 1, are used to evaluate whether a valid

comparison can be made between two products. These classifications are important for two reasons. The

 5

first is that not all of the products may be usefully compared with others. The second is that these

classifications may help to explain any oddities in the data. However, the number of hardware platforms

shown in Table 1 is slightly misleading and deserves further clarification. If the hardware is new, the way

in which it is new should be documented. For example, if the hardware is changing from a 800 MHz

processor to a 900 MHz processor produced by the same company with the same specifications, then it

can be reasonably assumed that even though the hardware is new, the amount of work needed would be

less than that for adding a dual-core 2.2 GHz processor or adding an entirely new component such as a

touch screen to a personal computer.

Figure 2: Breakdown of Hardware Platforms

The graph in Figure 2 displays a more detailed breakdown of hardware platforms. Here again, more

explanation is required. First, each unique hardware platform has a physical design, a set of components,

and a layout that is completely distinct from any other. However, taking any one platform as a base

platform and subsequently changing or adding small components on top of the base platform creates a

derived hardware platform. The number of unique and derived hardware platforms is useful information

for the analysis in Chapter 4.

2.4 Organizational Behaviour

It is important to document how VLO was evolving throughout the seven projects. VLO grew a

considerable amount between Pj1 and Pj7. The growth was both in depth, as multiple satellite offices

were opened, and in breadth, as additional employees were hired at existing locations. This thesis does

 6

not discuss whether the growth experienced by VLO was sustainable. However, the organizational

behavior is an important consideration as it can have a profound effect on the employees and therefore on

the products. It is also important to note the market in which VLO is a major competitor has become

even more competitive as other organizations entered the market with new similar products. The extra

competition induced more customer demands on VLO to produce high quality competitive products.

Thus, a major shift in organizational behaviour occurred to deal with the added demand. Since the

competition affected all the competing organizations similarly, it is not considered in this thesis.

 7

Chapter 3
DATA MINING METHOD

This section describes the methods taken to acquire the data studied in this thesis. However, since these

projects all occurred in the past, research can be performed only with saved data and through discussions

with current employees that were employed during a particular project. Part of the problem with data

mining is finding where to look for data, especially relevant data. The information provided by VLO was

extremely beneficial for analysis in this thesis and for the software research community, even though only

a small amount of information was available to study. In particular, seven consecutive projects, each to

develop a single product, were selected and data about the development project for each product were

collected from source control repositories, change request (CR) reports, customers’ acceptances, project

schedules, and employee surveys. The majority of the data collected pertains to only the application

layers for the products. These data are acceptable because the application layer is the highest level of

abstraction and the last to be completed. Also, the application layer is the last to start, so there is a

smaller window of opportunity to discover problems, whereas the other layers have more time to uncover

and fix potential problems. The application layer is also more interesting to study because of its heavy

dependency on lower level components. Finally, some of the projects do not contain a complete set of

data; in particular, each of Pj1 and Pj2 is missing the CR reports.

3.1 Source Control Repositories

The most important information gathered is the number of source commits (SCs) from the source control

repository for each project. A SC is a single source commit by a single developer to the source control

repository. The data is simply counted as each SC occurred, so there is no advance notice of outstanding

changes to be committed. A SC may consist of a list of requested items, each of which is a feature

request, a CR, a software bug fix, or a non-functional change such as an optimization or a change to the

document. Therefore, the actions a developer may take for a single SC can be any combination of editing

an existing file, deleting an existing file, or adding a new file to the source control repository. It is also

important to note that this thesis does not classify the SCs based on content; for simplicity, each and every

SC is considered to be of equal value.

The information gathered with each SC consists of the SC number, which is a sequential number

assigned by the source control repository, the date the source code associated with SC was committed to

 8

the source control repository, the name of the developer who completed the SC, and a brief description of

the SC items written by the developer. However, all of this information is superfluous for the purposes of

this thesis. Therefore, this thesis counts only the number of SCs per month by project. These compressed

data, along with some empirical analysis can be found in Appendix A. For the purposes of this thesis, a

project is code complete when the last SC has been submitted to the source control repository. Therefore,

the code complete percentage at any given time is comparing the running total number of SCs at that time

to the final total number of SCs, which is when the last SC is committed. This definition is useful

because the projects discussed are all past projects, and therefore the actual code completion dates are

known for each project. In general, a product is released to customers before its project is code complete

and therefore provides interesting points to analyze. In particular, a useful statistic for comparison is the

percentage of code completion of a project when the first acceptance is received from one of the

customers of its product.

3.2 Change Request Reports

At VLO, a process exists that must be followed when a new requirement or a change in an existing

requirement is desired, usually due to a customer’s influence. When a change is required, a CR must be

submitted. A CR includes details of what is desired, why the change is required, and by when the change

is expected. Generally speaking, a CR blocks a project release; otherwise the importance of the CR is

minimized. Once a CR has been submitted, it is assigned a unique number in the CR-tracking system at

VLO. The marketing team is the first to see the CR to decide whether its requested change is worth

pursuing. Next, the teams that would be involved in implementing the change must provide an impact

analysis of the change. This analysis includes estimates for development, testing, localization,

certification, or any other areas that may be affected by the change. Normally, it is very difficult to

compile a complete list of all the teams that may be affected by a particular change. Therefore, many a

CR does not include a complete list of estimates. This deficiency is itself a problem, as other work that

was not in the original impact analysis is often discovered and consequently delays the completion of a

CR. After the information is gathered, the CR is sent to a CR committee, which decides whether to

approve or reject the CR.

If a CR is approved for implementation, a new CR for each affected component is created in the CR-

tracking system. Each new CR contains all the information documented in the original CR and includes a

reference to the original CR number. Each new CR is sent to the appropriate team for design and

implementation. In a perfect scenario, no other work is necessary and each team is able to complete its

 9

work within the estimated time frame. Occasionally, complications arise because not all the appropriate

teams were consulted prior to approving the original CR. These complications prevent VLO from

completing a CR in a timely fashion.

For this thesis, the following CR data were obtained: CR number, title, project, submitter, and date

submitted. More information from the CR database is available; however, this information lies outside

the scope of this thesis. Also, only approved CRs were queried, as rejected CRs had no impact on the

project. However, Chapter 6 explores how the discarded data may be of significant use in future research.

Also, the number of CRs per month by project is compiled and can be found in Appendix A.

3.3 Customers’ Acceptances

There are many customers worldwide that use products from VLO. However, note that there is a distinct

difference between a customer of VLO and a consumer of the products produced by VLO. In particular,

VLO sells its products to customers; each customer then resells the product to the consumer. VLO does

not sell directly to the end users. Thus, it is an important part of each customer’s reputation to only sell

products that will appease customers. As an organization, it is vitally important for VLO to consider the

customers first, as they pay VLO for the various products. Therefore, satisfying the customers is the most

important priority for VLO. For each product, the database contains which customer accepted, when it

was accepted, and a variety of other details pertaining to the various hardware platforms and software

versions.

3.4 Project Dates

Project dates play a very important role in answering the RQs. Unfortunately, VLO does not have an

easily accessible database with dates. Therefore, it is very difficult to find out what the first estimated

shipping date was for each project, as well as any subsequent changes to a particular date or why a change

in the data occurred. However, an actual date of acceptance is easy to obtain, as it is generally a much-

celebrated day. Schedule slippage is a very good indication of a problematic project. VLO does not have

a specific location or database with the various dates. The dates were compiled through a variety of

sources, including e-mails, project documentation, and directly from employees.

3.5 Employee Opinions

Perhaps the most valuable resource at VLO is its thousands of employees. For the purposes of this thesis,

various employees were asked for their opinions. The resulting discussions proved to be useful because

 10

they indicated which projects were problematic. These opinions provided data that were not officially

documented by VLO. Even though any particular employee may be biased, the opinions of several

employees help determine and validate answers to the RQs.

3.6 Document Database

VLO maintains an internal document database utilized by the entire organization, including the software

division. Theoretically, all documents written within the company are housed in the database, however,

in practice a document is often not entered into the database, or a document once entered is not kept up to

date. Each of the seven projects had a unique placeholder within the database, so all related documents

were extracted from the database and analyzed. The types of documents found included meeting minutes

from status, stakeholder, and executive meetings. However, not all projects had all three different types

of meetings documented in the database. Since these meetings were generally held on a weekly basis, the

minutes were a valuable asset in gathering a snapshot at any given time during the project. Typically, the

minutes noted the current set of target dates, noting any slippage or foreseeable slippage, future and

completed milestones, and finally any risk items that were of concern. The documents offer a snapshot

perspective of a particular project at a single point in the past. The documents explicitly reflect a series of

chronological events that are an integral part in the development of a particular project. This information

is essential when trying to piece together exactly what occurred during development and provides insights

that may have been forgotten. All of this information is useful when answering the RQs.

 11

Chapter 4
ANALYSIS OF DATA

This section begins with a brief discussion of Pj1, Pj2, Pj3, Pj4, Pj5, and Pj7. A more detailed analysis of

Pj6 follows, which draws on the data and analysis of the other six non-problematic projects. In Table 2,

below, each project is listed with the summarized data from Appendix A and a relative rank for each

datum. The data for each project include the project’s numbers of SCs, CRs, and acceptances; the

project’s development time measured in months; the code completion percentage at the apex of the

project’s bell curve of SCs over time; and the code completion percentage at the project’s first acceptance

by any customer. At the bottom of the table, the maximum, minimum, and average of each datum is

calculated. The code completion percentage for a particular project at first acceptance is simply the

percentage of SCs which have source code committed to the source control repository at the date of the

project’s first customer acceptance. The code completion percentage at the apex of the bell curve column

indicates what percentage of SCs had source code committed to the source control repository at the peak

of the project’s bell curve on the number of SCs versus time graph. More detailed graphs for individual

projects can be found in Appendix A.

Project	

N
um

ber	
 of	

SCs	

Rank	

N
um

ber	
 of	

CRs	

Rank	

N
um

ber	
 of	

Acceptances	

Rank	

Tim
e	

Rank	

Percentage	

Code	

Com
plete	
 at	

Apex	
 of	
 Bell	

Curve	

Rank	

Percentage	

Code	

Com
plete	
 at	

First	

Acceptance	

Rank	

Pj1	
 5184	
 6	
 85	
 5	
 702	
 4	
 26	
 2	
 58.06	
 2	
 72.45	
 4	

Pj2	
 8508	
 3	
 62	
 6	
 253	
 6	
 18	
 6	
 38.72	
 6	
 88.15	
 1	

Pj3	
 7185	
 5	
 94	
 4	
 2090	
 1	
 30	
 1	
 43.81	
 3	
 87.92	
 2	

Pj4	
 12767	
 2	
 215	
 1	
 1152	
 3	
 25	
 3	
 42.45	
 5	
 72.05	
 5	

Pj5	
 7956	
 4	
 105	
 3	
 1184	
 2	
 22	
 5	
 34.72	
 7	
 65.79	
 7	

Pj6	
 17262	
 1	
 148	
 2	
 309	
 5	
 23	
 4	
 42.55	
 4	
 67.88	
 6	

Pj7	
 4477	
 7	
 49	
 7	
 46	
 7	
 15	
 7	
 68.24	
 1	
 87.47	
 3	

Maximum	
 17262	
 	
 	
 215	
 	
 	
 2090	
 	
 	
 30	
 	
 	
 68.24	
 	
 	
 88.15	
 	
 	

Minimum	
 4477	
 	
 	
 49	
 	
 	
 46	
 	
 	
 15	
 	
 	
 34.72	
 	
 	
 65.79	
 	
 	

Average	
 9048	
 	
 	
 108	
 	
 	
 819	
 	
 	
 23	
 	
 	
 46.93	
 	
 	
 77.39	
 	
 	

Table 2: Comparison of Data from the Seven Projects

 12

4.1 Non-Problematic Projects

This section explores the six non-problematic projects: Pj1, Pj2, Pj3, Pj4, Pj5, and Pj7. First, the data for

each project is discussed in order to answer the RQ5, “are there indications from Pd1, Pd2, Pd3, Pd4, Pd5,

or Pd7 that indicate areas that VLO is excelling at?”. Pd1, Pd2, Pd3, Pd4, Pd5, and Pd7 were not perfect,

however, the general consensus, internally and externally, is that each of these products was certainly not

a failure. It is important to note that Pd1 is not the first product produced by VLO. In fact, VLO had

already earned a reputation of producing first-class products before the inception of Pj1.

4.1.1 Pj1

When VLO began working on Pj1, the organization was fairly mature, thus even though Pj1 is the first

project analyzed, the performance of Pj1 is not a measure of the maturity of VLO. However, this project

was one of two projects that involved releasing software to hardware platforms that already existed in the

market, which is referred to as an in-market release. This project spanned three unique hardware

platforms and an additional four other variants for a total of seven different hardware platforms, which

ranks second only to Pd3 for total number of hardware platforms. Unfortunately, this project lacked any

meeting minutes or schedules from the document database, but the database did contain some documents

that outlined some of the lessons learned and complaints from the perspective of the developers for this

project.

The resonating view from within the organization was the large number of hardware platforms for this

single project. The employees also felt that this project had too many CRs to handle in a single project.

In general, a large number of CRs would normally indicate poor requirements engineering. However, the

data indicate that Pj1 had only eighty-five CRs, which ranks Pj1 fifth most for total number of CRs

among the seven projects. The fact that employees voiced an opinion about the number of CRs and that

Pj1 only ranks fifth most with respect to number of CRs is alarming. This indicates that VLO did not

listen to the employees, especially since the number of CRs almost triples for Pj4.

Pj1 ranked second lowest in the total number of SCs, which is relatively low among the projects. The

graph of the number of SCs versus time for this project shows its bell curve peaking during the seventh

month of development. This curve is typical also for most of the projects; therefore it is reasonable to

compare the curves of the various projects. In general, a project starts slowly, but as it proceeds, the

amount of work gradually increases until the apex of the project’s bell curve is reached and then it

gradually tapers off until completion. At the apex of the bell curve, 58.06% of all SCs for Pj1 had source

 13

code committed to the source control repository, which is slightly higher than the average among the

seven projects.

A more interesting statistic is that Pd1 received its first acceptance when the code was 72.45%

complete, which is slightly below average for other projects. This is not necessarily a negative sign, since

it is common for one hardware platform to have priority over another and thus to be worked on prior to

other hardware platforms. Pj1 was being released in-market as well as with new hardware, so priority was

given to the new hardware over the in-market hardware. These circumstances explain the slightly lower

than average percentage at which the first acceptance was received compared with the other six projects.

Another interesting statistic about Pj1 is that it ranked in the bottom half or below average in every

category, except for time taken to develop. This project was the second longest in time to develop,

possibly indicating a correlation between the number of hardware platforms and time. However,

numerous other mitigating factors can cause an increase in the duration of the development of a project.

Finally, all of these data indicate that Pj1 does not compare well with Pj6. This is mainly due to the

high number of supported hardware platforms. Also, the fact that Pj1 was developed for in-market

devices inhibits comparisons with Pj6.

4.1.2 Pj2

Pd2 involved two unique and two derived hardware platforms for a total of four hardware platforms. Pj2,

to build Pd2, experienced an accelerated start, culminating with only 38.72% of the SCs being submitted

by the apex of the bell curve at the three-month mark. However, this project stretched out for an

additional fifteen months past the apex of the bell curve. The number of SCs for Pj2 ranks third most,

even though it is still below the average. Pj2 had fewer CRs than Pj1. However, the marketing team

stated that there were a large number of CRs deferred from Pj1 to Pj2 that were now being deferred to

Pj3, so more and more CRs were being deferred. The increased number of deferred CRs is a direct side

affect of the fact that fewer changes were being accepted. Also, the increased number of deferred CRs

indicates that the organization is not simply accepting CRs blindly and including them in projects and that

the change control process at VLO is working. However, in both Pj1 and Pj2, employees expressed a

concern with the number of CRs, so even with the decreased number of total CRs, there is a recurring

problem with CRs and likely indicates an area that VLO could further improve on.

Pj2 received the first acceptance with 88.15% of SCs having source code committed to the source

control repository, which is the highest percentage amongst the seven projects. This high percentage

 14

indicates that Pj2 had a full set of dedicated resources for this project, which was duly noted in the project

minutes. Also, given that this project finished in eighteen months, which is the second shortest, indicates

that all the resources necessary were available and allocated to work on Pj2. This percentage is also a

clear indication that customers did not prematurely accept the product. However, such an indication is

valid only in hindsight since the project is now complete and the total number of SCs for this project will

remain static. Analyzing and using this statistic as a real-time indicator of when a project is complete and

can actually be released is discussed in Chapter 6.

The high number of SCs, the low number of CRs, the high percentage of SCs committed by the first

acceptance, the short time frame to receive the first acceptance, and the relatively short time frame from

project inception to completion indicate that Pj2 is a model project for VLO. Ideally, the process and

practices used for this project should be implemented and used on future projects.

4.1.3 Pj3

Pj3 is unique among the six non-problematic projects. Pd3 did not include any new hardware platforms;

it was comprised solely of an in-market upgrade to the software of virtually all previously released

hardware platforms that met the minimum requirements for this project. This project had four unique

hardware platforms and another eight variants for a total of twelve hardware platforms, which is the most

of any of the seven projects. However, even though Pd3 had the highest number of hardware platforms,

Pj3 ranks only fifth most for the total number of SCs. This relatively low number of SCs indicates that

the number of new features included in this project was limited and that the purpose of this project was to

bring the vast majority of in-market products to the same level of software and to fix any major problems

that customers had previously reported. The number of CRs for Pj3 is comparable to those for Pj1 and

Pj2, although Pj3 has still slightly more. Unfortunately, the initial concerns for this project are not as well

documented as Pj1 and Pj2; thus it is impossible to determine whether the number of CRs or the number

of hardware platforms was still continuing to be a major concern to employees at VLO.

Pj3, with a duration of thirty months, took by far the longest to develop. Pj3 also had, by far, the most

acceptances, almost doubling those of the second ranked project. It should be noted that each acceptance

is for one hardware platform. Since there were twelve hardware platforms supported by this product, the

most of any of the products, it is reasonable to expect that there would be more acceptances for this

project than any other. That Pd1 and Pd3 had the highest number of hardware platforms and that Pj1 and

Pj3 had the longest project development time suggest that a project’s development time increases with the

number of hardware platforms of its product. However, there are other factors that may increase a

 15

project’s development time, for example the number of CRs can cause a project duration to be extended.

Although the official schedule dates were not documented, the various status reports indicate that Pj3

suffered very little schedule slippage, which is impressive given the size of this project, although not

surprising since this product involved no new hardware platforms.

Most notably, Pj3 had the second highest percentage of SCs submitted by the first acceptance with

87.92%. This is a clear indication that the software was not prematurely accepted; although as previously

noted this indication is useful only after the project is complete. Also, it is important to note that this

project did not release any new hardware platforms; therefore the hardware platforms were mature

enough and well enough known by VLO. Thus, the level of quality expected and achieved on this

product was higher than normal. Unfortunately, this project has the least in common with the other

projects, and thus makes for a difficult comparison, especially to Pj6, which is the project of interest.

4.1.4 Pj4

Pj4 was the first project for a product that was released for only new hardware platforms; also Pd5, Pd6,

and Pd7 were released for only new hardware platforms. This similarity should allow for easier

comparisons among Pj4, Pj5, Pj6, and Pj7. Also, given that this project was released at a date closer to

the release date of Pj6, the results of such comparisons are more meaningful. Pj4 consisted of creating

two entirely new hardware platforms. It had the second most changes and more notably the most CRs of

any project. These last two factors indicate that there was a great amount of work required in order to

support the two new hardware platforms, which contained components that were considerably different

from those of any previous hardware platforms. Even though each of the hardware platforms contained

components that had never been included into a project before, these components were evolutionarily

different, not revolutionarily different. Thus, even though there was a great deal of work involved, this

sustainable growth was incremental and similar to growth that VLO had experienced before and therefore

was more than capable of. Finally, this project can easily be compared with Pj6 due to the similarities

across all data; the ease of comparison will be vital in answering the RQs.

It is also noteworthy to consider that the first acceptance for Pj4 was received with only 72.05% of the

total SCs for this project, approximately another 3,500 SCs were committed after the first acceptance.

This well-below average number is alarming because it indicates that the project was prematurely

accepted. The number of hardware platforms supported by this project cannot justify this below-average

statistic since there were only two hardware platforms. However, as previously discussed, the priority of

one of the hardware platforms could have been higher than the other, and this was the case for Pj4. The

 16

first acceptance received for Pj4 was for the higher priority hardware platform, or the lead platform, as

this is confirmed in the data. The lower priority hardware platform did not receive an acceptance until

month nine, which was two months after the first acceptance for the lead hardware platform. When the

lower priority hardware platform received the first acceptance, the code was 82.42% complete, which is

above average for the seven projects and 10% above the higher priority platform. In the end, no schedule

slippage was documented for this project, and the minutes indicate that acceptances were even received

from customers before the originally planned date.

Pj4 ranks third highest for total acceptances and had the third longest development time. However, Pj4

did not experience a typical bell curve with respect to SCs versus time. Pj4 started with a high volume of

SCs for the first five months and then the volume steadily decreased over the following ten months. The

reasons for this peculiar curve are unknown but are also not very concerning. Overall, this project has the

most in common with Pj6 and thus can be more easily compared with Pj6.

4.1.5 Pj5

Pd5 was originally slated to have three hardware platforms, each of which was new and unique to VLO.

However, during month twelve, VLO added to Pd5 an additional fourth hardware platform, which, like

the other three, was completely new and not derived. The knowledge of the late addition is instrumental

in understanding the analysis of this particular project and is essential for comparing Pj5 with Pj6.

Amazingly, even with the unplanned additional hardware platform, the originally scheduled dates slipped

by only two weeks.

Overall, the data for this project are average when compared to the other six projects. This project

ranks fourth in total number of SCs, third in number of CRs, and fifth in total development time. Despite

the fact that the number of SCs was average, this project is one of only two, the other being Pj6, which

experienced a secondary spike in the graph plotting the number of SCs versus time. However, the late

addition of the fourth hardware platform is clearly a reasonable explanation for this second spike.

This project is not average with respect to the percentage completion in the bell curve of the number of

SCs versus time, for which it ranks last with 34.72%. Although, this project does have two distinct

spikes, the data are slightly skewed because of the second spike, which is attributed to the late addition of

a hardware platform. Also, Pj5 ranks last with only 65.79% of SCs at the time of the first acceptance,

which notably occurred before the fourth hardware platform was even added to this project. Therefore,

these statistics for Pj5 are skewed and not as meaningful when compared to that of the other projects.

 17

Overall, the data indicate that this project was extremely different from the other six. However, the

addition of the new hardware platform is an explicit reason for this difference. Yet even with the

additional hardware platform, this project did not appear to be problematic because it did not cause delays

for the originally planned hardware platforms. In fact, if the data for Pj5 resembled those for the other

projects, then Pj5 would actually be considered problematic because the late addition of the hardware

platform would have caused problems for the first three hardware platforms. In the end, even though the

data from both Pj5 and Pj6 appear to be similar on the surface, the data in Pj5 can be explained by the late

additional hardware, thus differentiating Pj5 from Pj6. Therefore, the two projects cannot be easily

compared.

4.1.6 Pj7

Pj7 is by far the smallest project, which explains why this project ranks last in the total number of SCs,

total number of CRs, total number of customer acceptances, and development time. Also, this product

featured a single hardware platform. The data for Pj7 indicate that VLO can succeed with incremental

advancements on previous projects. The scheduled dates for this project were met with few exceptions.

It is also a positive note that Pj7 occurred after Pj6, and thus VLO had recovered from Pj6. Pj7 does

indicate that VLO has an excellent understanding of the technology it produces and is able to do what

VLO knows quite well. The data from this project simply indicate that VLO knows the details of this

particular technology niche and is able to accurately predict how to move forward in an evolutionary

manner. However, when revolutionary changes occur, VLO does not succeed in the same manner, as

indicated by the data for Pj6.

4.1.7 Indications of Successful Outcome

This section summarizes the answer to RQ5, which questions, “are there indications from Pd1, Pd2, Pd3,

Pd4, Pd5, or Pd7 that indicate areas that VLO is excelling at?”. In fact, the data for Pj1, Pj2, Pj3, Pj4, Pj5,

and Pj7 indicate that VLO does many things well. First, the data indicate that VLO has refined the

process to incrementally release products over time, which is good practice according to Ruhe et al and

“implicitly reduces many of the risks associated with delivering large software projects”.10 Even though

the new products are not revolutionary, they are nonetheless advancing forward with market demand.

The data for these six projects also demonstrate that VLO can take a previous product, upgrade the

hardware, add some novel changes to the software, and launch a new product. The data clearly show that

 18

VLO is able to accurately estimate the effort required to implement new features, because VLO is an

expert in this domain. Thus, VLO knows its niche very well.

4.2 The Problematic Project: Pj6

Pj6 is the project with an elevated interest for a variety of reasons. The primary reason is that consumers

believed Pd6 was a failure, or at least not the booming success that VLO had intended. It is very difficult

to determine when a product is indeed a failure. Nevertheless, in the eyes of the customers, Pd6 was not

ready for launch when it was released, and it did not meet customers’ expectations, especially when

compared to competitors’ offerings. It is also important to note that the customers were eagerly

anticipating the launch of Pd6 with high expectations caused by their delight with the previous products

from VLO and the promises made by VLO about Pd6. The expectations for Pd6 were enormous, which

VLO failed to meet. Thus, Pd6 is considered to be a failure by customers. As described by Charette5,

software failures can be detrimental to an organization so it is vital for VLO to avoid having recurring

failures.

Moreover, the view of Pj6 from employees at VLO is not overly positive. Many employees thought the

project deadlines were too tight given the requirements for the product. It is important to note that there

was an extremely hard deadline for this project that VLO had committed to with the various customers.

As such, many employees believed the project was launched too soon, despite the fact that employees

worked exceedingly hard in order to complete the requirements specification for the product. The

employees’ view is an excellent indication that Pd6 was a failure, and it should serve as a clear lesson to

the management at VLO that the employees know a product and the state of its project well and may offer

some insight as to the readiness of a project for release.

In order to fully analyze Pj6, comparisons are made to other projects in order to pinpoint which factors

contributed to the outcome of Pj6. First, the projects should be compared at a high level in order to

determine which components of the projects are similar. In Section 4.1, each of the six non-problematic

projects is discussed in detail with respect to: hardware platform types, development time, in-market

releases, various data points from Appendix A, and other peculiar details about each project. This

analysis determines whether useful comparisons can be made to Pj6.

To start, Pj6 must be summarized. Pd6 consisted of one new unique hardware platform and one

additional derived platform, which had one small component of hardware changed, which is a relatively

low number of hardware platforms compared to other products with new platforms. In terms of hardware

 19

platforms, Pj6 most resembles Pj4 and Pj7. However, comparisons can be made also with Pj2 and Pj5.

The rest of this section explores other aspects of Pj6 that may provide clear answers to some of the RQs

posed in this thesis.

4.2.1 Revolutionarily New Hardware Component

The hardware platform designed for Pd6 was revolutionary because VLO was attempting to design and

include a hardware component that had yet to be developed. This hardware platform was not

evolutionary as were the hardware platforms of Pd1, Pd2, Pd3, Pd4, Pd5, and Pd7. The revolutionarily

new hardware component was deemed necessary by VLO in order to maintain an important part of

VLO’s reputation. However, the introduction of the revolutionarily new hardware component was also

very risky because it had yet to be developed. Even under these circumstances, the potential benefit

outweighed the risk because the revolutionarily new hardware component would differentiate the product

amongst the competition. Therefore the decision was made to move forward with the design and creation

of the revolutionarily new hardware component to be included in Pd6.

When creating a product with a revolutionarily new hardware component, an organization must

perform adequate research prior to committing the revolutionarily new hardware component to the

project. The amount of research that VLO undertook before the decision was made to include the

revolutionarily new hardware component in Pd6 is unknown; however, there is evidence which indicates

not enough prior research was performed. However, there does not exist a strict enough criterion in order

to conclude whether enough research was performed; just the outcome of the project indicates that the

technology was not thoroughly researched. This topic is discussed in more detail in Chapter 6.

Problems with the hardware platform emerged right from the beginning in Pj6. The first version of the

hardware platform, which was a simplified version of the expected final hardware, was delayed. The

implications of hardware platform delays are discussed in Section 4.2.3. Despite the delay, VLO

proceeded with the regular development process with the initial version of the hardware platform. It is

standard industry practice to have hardware platform revisions throughout the development period of a

project. However, the differences between versions are generally small tweaks, as most of the major

changes should have been performed during the research and development of the prototype and first

version of the hardware platform. With Pj6, the differences between hardware revisions were critical

changes to the fundamental functionality of the hardware platform. These sorts of changes had many

implications and a particularly colossal impact on the software, especially the embedded system that

controlled the hardware platform and ultimately impacting the application layer. The initial hardware

 20

platform version was received with the caveat that major changes were expected. This initial version of

hardware was so drastically different than the planned second version that much of the software

development was postponed until the second version of hardware had been received. The third version of

hardware was received shortly after the second, with only minor tweaks from the second.

Unfortunately, by month four, less than five months prior to the planned launch date, the third version

of the hardware was not functioning properly, causing problems that could not be solved in the software.

Therefore, a fourth version of the hardware was necessary. In fact, the fourth version of hardware was

actually a slight modification of the first version. The fact that the third version of the hardware was

deemed inadequate shortly upon arrival indicates that not enough research was conducted during its

research and development before committing it to the project. Nonetheless, a CR was initiated that

required a fourth version and the appropriate process was followed. However, the CR was not officially

approved until the end of month five, which was more than half way into the development time allocated

for Pj6. Moreover, at this point, the project was already two months behind schedule.

When the fourth and final version of hardware was delivered, Pj6 was now into the eighth month, three

months behind schedule. Finally, VLO could now proceed with completing the software, specifically the

portion of the embedded system that controls the revolutionarily new hardware component of the

hardware platform. However, it is important to realize that the first hardware version received at month

three was practically identical to the fourth and final hardware version. In hindsight, the net minor

changes to the hardware platform between the first and fourth version cost VLO approximately five

months of delay. The five months that it took VLO to produce final hardware from the first version

should have occurred during the research and development stage prior to committing the revolutionarily

new hardware component to the project. In the end, evidence indicates that VLO had prematurely

committed to the revolutionarily new hardware component before the specification for the hardware was

complete. Once the second and third versions arrived, albeit late, the software teams could now begin

implementation. However, the fourth version, which was essentially the same as the first caused the

software teams to discard much of the software developed for the second version in order to develop the

software nearly from scratch for the fourth and final hardware version. It is evident that not enough prior

research was performed before committing the revolutionarily new hardware component to the project.

The impacts that hardware changes have on software are discussed in Section 4.2.4.

 21

4.2.2 Adding New Hardware Components

While Pd6 included a revolutionarily new hardware component, it also had another an evolutionary

hardware component that affected hardware, the embedded system, and the application layer as much as

the revolutionarily new hardware component. In fact, this evolutionary hardware component had been

around for at least ten years and had been in competing products for the past couple years. In theory, this

addition should not have been problematic for VLO since VLO has always been adding new evolutionary

components to products. In actuality, the additional evolutionary hardware component caused problems

in each of the three departments responsible for each layer in the architecture. These problems,

compounded with the problems relating to the revolutionarily new hardware component, heavily

contributed to the slow down of the project.

The additional evolutionary hardware component affected the embedded system and also included a

very complex implementation at the application layer. This feature was heavily dependent upon the

hardware, but it was dependent also upon software that was developed externally to VLO, complicating

matters even more. Employees surveyed felt that this additional evolutionary hardware component was

considered to be one of the major contributors to the delays extending the implementation of the

application layer. The possibility of such a delay is an unfortunate aspect of developing a product with

multiple layers. Any delay that occurs at a lower level usually occurs at the early stages of a project and

does not cause an organization to panic. However, any delay at the upper layer, which is the last layer to

be completed, is scrutinized by the entire organization because it is the last stage of the project to be

completed. Ultimately, the team responsible for the application layer develops a negative reputation by

the rest of the organization, even if the application layer is completed within the originally estimated time,

but was late to start because it was dependent upon lower layers.

There are two questions related to this section that will be answered in Chapter 5. The first is whether

an evolutionary hardware component should even be included in a project that also includes a

revolutionarily new hardware component. The second is whether the dependency issues that the

application layer experienced could have been avoided.

4.2.3 Hardware Schedule Delays

The initial version of hardware for Pd6 was delayed by eighteen days. Although this delay is relatively

small, it occurred with the first version of the hardware, which could potentially delay future work. A

 22

delay that occurs early on in a project is often impossible to make up, because an early delay could

potentially be compounded and ultimately cause worse delays throughout the project launch date.

Relative to the original schedule, the second version of hardware was twelve days late. So the work

leading to the second version actually made up six days. Unfortunately, thereafter the delay started to

grow. The third version of hardware was twenty days late. So, the accumulated hardware delay increased

by eight days. In the end, the final version of hardware was delayed by over sixty days, which is a large

proportion of the originally planned schedule. The majority of the delays are attributed to the multiple

hardware revisions described in Section 4.2.1. These data further reinforce the conclusion from Section

4.2.1 that not enough time was spent on prototyping the hardware platform before committing it to the

product.

4.2.4 Implications of Hardware on Software

At VLO, as depicted in Figure 1, each product has three layers: hardware, embedded system, and

application layer. The hardware and embedded system are intimately linked, especially since the

embedded system is tweaked and optimized for the specific hardware platform used in the project.

Nonetheless, an embedded system can be designed and developed to accommodate a variety of hardware

platforms at the cost of non-optimal performance on all platforms. Of course, it is debatable whether this

flexibility across hardware platforms is desirable; this is a decision that must be made by VLO. The

products designed by VLO are part of a larger complete end-to-end system, including every hardware

platform deployed. Therefore, the desire for software developed by VLO to support multiple hardware

platforms is not a requirement since VLO also designs and manufactures custom proprietary hardware.

Also, in order to maintain a competitive advantage, it is not desirable to allow competitors to be able to

design and build hardware that is capable of running the software that VLO develops. Thus, it is

reasonable that the embedded system would be heavily dependent on the hardware platform. However,

given that VLO has released multiple product lines, it is expected of VLO to have a refined process to

mitigate issues between software and hardware. This is especially important, as VLO should be able to

predict the effect hardware has on software and perhaps even take a proactive step in developing an

embedded system that is robust enough to remove as much of the dependency on hardware as possible.

At the top of the architecture hierarchy is the application layer. The application layer depends on the

embedded system. It is conceivably easier to design an application layer that depends less on the

embedded system using one or more of the industry-standard software engineering design patterns.

Design patterns, such as the façade or the proxy pattern, could be used to create a defined layer of

 23

abstraction between the application and embedded system. The extra layer of abstraction allows

development of the application layer to be performed through a simulator. However, the application layer

still needs to be tested in a production environment. Software and hardware dependencies are not unique

to VLO. But, it is important for an organization to realize and anticipate delays at a lower level that may

cause further delay at higher levels of abstraction.

4.2.5 Creation of New User Interface Design Team

While VLO was developing Pd6, the organization established a new team with the directive to research,

design, and document all user interface requirements for all future projects. The first project that would

employ the expertise of the new user interface design team was Pj6. The theory behind the new team was

that if a single team of experts collectively developed the user interface requirements, then all aspects of

the user interface would be consistent across all products. The expectations of this team of experts was to

produce a user interface that was thoroughly thought out, researched, and tested through user

experiments, user feedback, and focus groups.

The theory behind the user interface design team was excellent; however, as the team to began to work,

three major complications arose with the team and thus falling prey to Brooks Law. First, the team was

not working in parallel with other teams, who were dependent upon the user interface requirements to

complete initial development estimates. The disconnect between the teams delayed other tasks such as

test design and testing, which depended upon the user interface requirements. Second, the user interface

team was not working in alignment with the project deadlines. Third, the user interface specifications

produced by the user interface design team were not meeting the expectations set by management for Pd6.

Despite the fact that development teams were not initially impressed with the user interface requirements,

the implementation of the user interface proceeded. It was not until the implementation was practically

completed that users across the organization started to discover that the user interface offered a poor

experience. The user interface design team then rewrote the user interface specifications and the

development teams implemented them with the same unsatisfactory results. The user interface design

team kept coming back with more requirements, until finally during month six of development, upper

management abandoned the entire user interface specification created by the user interface design team

and dictated exactly how the user interface would appear.

In the end, the user interface specifications were not aligned with the project schedule and the results

were unsatisfactory. The user interface design team also frustrated development teams that had worked

on previous projects at VLO and had an excellent idea of how the user interface should look and feel.

 24

Initially, the development teams disagreed with the user interface design teams, but the development

teams still implemented the user interface specifications because of the expertise of the user interface

team. Since the user interface is what the customer directly interacts with, it is imperative that the user

interface be superb. Unfortunately, the user interface design team was new to VLO and designed the

entire Pd6 user interface from scratch and thus became a contributing factor in the poor outcome of Pj6.

The new user interface design team is another area that VLO should have spent more time researching

before committing to a project, much like the revolutionarily new hardware component. The user

interface design team had multiple complications through its infancy, but was able to recover from this

project and to eventually produce satisfactory results in later projects.

4.2.6 Indications of a Failed Outcome

This section finishes answering RQ1, “what caused Pd6 to fail?”, and RQ2, “what indications were there

during Pd6’s development that Pd6 would fail?”. As Charette5 described, it is very rare for a project to

one or two reasons; however, some reasons may have a greater influence. Thus while answering RQ1

and RQ2, this section discusses the originally planned and actual dates for Pj6, number of SCs for Pj6,

and internal opinions from employees. These three factors provide clear indications of failure. However,

indications of failure do not necessarily imply that Pd6 is a failure.

First, let’s examine the originally planned schedule and the actual dates. There were four important

milestones tracked in Pj6. The four critical milestones are the hardware delivery, the completion of the

embedded system, the completion of the application, and the first customer acceptance. The first

milestone is hardware delivery. As discussed in Section 4.2.3, hardware versions were continually

delayed, culminating with the fourth and last version being eight weeks late. Interestingly, the actual date

of final hardware delivery was four weeks after the originally planned date for the first customer

acceptance was to have been received by VLO, which was obviously delayed as well. The severity of the

delay in the delivery of the hardware was the first indication that Pd6 was a failure.

The second and third milestones are related to the embedded system and applications layer software.

As discussed in Section 4.2.4, software is dependent upon hardware. The embedded system feature

completion date was delayed ten weeks and the application layer completion date was delayed fifteen

weeks. Therefore, the application layer accounted for only five weeks of the total delay, however, with

knowledge of the ten-week delay for the embedded system, the application layer could be perceived as

the entire fifteen weeks. This longer perceived delay is an unfortunate aspect of being dependent upon

other layers, but having no dependents.

 25

The fourth milestone to examine is the date of the first customer acceptance. The first customer

acceptance was received eleven weeks later than originally planned. However, it is also important to note

VLO was under immense pressure to release this product by a specific date, which was set and agreed

upon by both customers and VLO. Therefore, the customer may have prematurely accepted the product

by a specific date, even though under normal circumstances the customer would not have accepted the

product.

It is important to place the dates into context and to consider the relationship between the dates before

judging whether they are indicators of failure. The development process, from start until the first

customer acceptance, lasted sixty weeks. Therefore, the hardware delay consisted of 13% of the

development schedule, the embedded system delay was 10%, and the application layer delay was 8%.

Note that development continued after the originally planned sixty-week schedule on multiple major

maintenance releases that continued for an additional forty-eight weeks, almost doubling the initial

estimated development schedule. Even though maintenance releases are part of the development process,

a maintenance release usually corrects catastrophic errors and the effort required does not usually double

the development. There are three possible conclusions. The first is that the development estimate was

inaccurate. The second is that other factors and dependencies caused the development process to be

delayed. The third is or a mixture of both the first and second. The root cause is difficult to determine.

However, many of the development delays revolved around the revolutionarily new hardware component

and the difficulties with the addition of the new user interface design team. Ultimately, it took an

additional 48 weeks to achieve the quality that VLO sought, even though the product was first released 48

weeks prior to achieve the desired product quality.

An important note about the development time is that it does not accurately reflect the planning process

that VLO had undertaken prior to the beginning of the development process. In this thesis, the start of the

development time of a project is the time stamp on the earliest piece of data discovered about the project.

The planning stage started much before the nominal start date drawn from the data.

The SCs for a project are an indicator of the actual amount of work performed on a particular project.

Pj6 has the largest number of SCs out of any of the seven projects discussed in this thesis. Also, as seen

in the graph of Figure 13, Pj6 did not exhibit a one-peak bell curve like many other projects. Pj6’s graph

had two distinct peaks. A simple explanation for the two peaks would have been the addition of new

features in subsequent releases, as seen in Pj7 or the addition of hardware as in Pj5. However, no new

features or hardware were added, and therefore, the only explanation for the two peaks is that the project

 26

was not ready at the actual launch and required more work. When the first customer acceptance was

received, only 67.88% of all SCs for this project had been completed. The remaining 32.22% were

completed in subsequent maintenance releases. The mere fact that Pj6’s first customer acceptance

occurred with so few completed SCs indicates that Pj6 continued to evolve and to mature for at least

another year.

Finally, internal employee users of Pd6 across the organization were not impressed with the quality of

Pd6 prior its to launch, especially in comparison to other competing products. Employees felt that the

product was incomplete and rushed to market. The employees also thought the project had too many new

complicated features implemented in a very tight schedule, which was marred by hardware complications

and churn of user interface requirements. Employees thought also that Pd6 was released a year too soon,

since development continued for an additional year until Pd6’s quality had increased to the initially

desired and expected level.

Other indicators of failure include multiple dates being delayed by a large margin, the relatively large

number of SCs after the initial launch, and the plain and simple perception of employees at VLO.

Notwithstanding these indications that the outcome was a failure, it is difficult to consider the outcome of

Pj6 a failure because the product did indeed launch, even if it continually improved throughout the

following year. The outcome of project was not considered a groundbreaking success, but the outcome of

Pj6 cannot be considered an absolute failure since other organizations have failed to even launch

products. In summary, and to answer RQ1 and RQ2, the indications of a failure can clearly be seen

through major schedule delays and the mere fact that the product was failing to entice employees at VLO.

Fortunately, there are numerous possible solutions to some of the difficulties faced by VLO. These are

discussed in Chapter 5.

 27

Chapter 5
POSSIBLE SOLUTIONS

As good as any organization might be, there is no organization, VLO included, which cannot gain from

some form of improvement. The indications of a failed outcome discussed in Section 4.2.6 are the most

obvious areas to start looking for possible solutions. Also, it is important for VLO to document each

change made to the organization and to determine whether it had a positive, negative, or negligible impact

in order to decide whether or not the change was worth implementing. Even though there are clearly

defined indications that the outcome was a failure, it is very difficult to provide a viable solution for

VLO. For example, the schedule delay is an obvious fault, but determining a solution is difficult because

the root cause of the delay is unknown. Even though root cause may not be identifiable, it is better to at

least make some improvements, even if they are small and do not actually solve the root cause. A small

improvement may actually help uncover the root cause as well. The solutions in this section will answer

RQ3, “what could VLO have done in order to prevent Pd6 from becoming a failure?”, and RQ4, “what

can VLO learn from the failure?”. This section discusses possible solutions for the following six problem

areas: hardware research and development, requirements management, maximizing available resources,

maintaining focused releases, and alignment of schedules.

5.1 Hardware Research and Development

As discussed in Section 4.2.1, VLO encountered many problems with the hardware platform in Pd6,

especially with the revolutionarily new hardware component. These problems highlight the importance of

the prototyping stage. Also, since hardware is the basis for the entire project, adequate time must be spent

on developing the hardware platform before committing it to a particular project. Even though VLO has

produced hardware with a revolutionarily new hardware component in the past, all of the recently

released products, except Pd6, were based on a steadily evolving hardware platform. Although it is not

easy to determine the exact amount of research and development that must be performed in order for a

product to succeed, there are clear indications when not enough research and development was

performed. There has been considerable research performed on this aspect which VLO should take

advantage of, such as Hooper et al,21 which offers a “methodology and accompanying tools to aid users in

identifying requirements before building a system”.21 Prior research has also been performed that

compares on the effectiveness of various types of prototyping.22 Competing organizations are all under

immense pressure to produce the next best product, so it is all too easy for an organization to prematurely

 28

release a revolutionary product in order to reach the market first. However, a premature release may not

be in the best interest of the organization in the long term. As DeMarco described, that all late projects

have one thing in common, they all started late.4 Thus the hardware prototyping was started too late and

ultimately caused the entire project to be late.

There exists an alternative to attempting to develop a revolutionarily new hardware component along

with other new software features. The alternative is to invest an entire project schedule on the

revolutionarily new hardware to ensure that the hardware is right and then simply take the software from

the preceding product. This ensures that the single focus of the product is to introduce revolutionarily

new hardware. It also provides an easy test harness as the new product can simply be compared to the old

product, since all the software features should be the same.

The first indication that not enough research and development was performed at the beginning of Pj6 is

that the first hardware version received by Pj6’s software development teams was drastically different

from the expected final hardware version, as the final hardware version was still being actively

developed. In the end, VLO reverted to the simpler initial hardware version for product launch, but only

after five months of development time had been wasted. The solution is to perform adequate research

before project schedules are committed. It is also important to keep the rest of the hardware platform as

simple as possible, so that adequate attention is focused on the revolutionarily new component. The

prioritization of hardware components is discussed in Section 5.5.

5.2 Decoupling of Hardware and Software

Due to the delays that occurred with the design of the hardware platforms caused by the revolutionarily

new hardware component and the addition of an evolutionarily new hardware component as discussed in

Sections 4.2.1 and 4.2.2, it is a worthwhile investment for VLO to find ways to decouple hardware and

software development. There are quantitative methods described by Kang et al3 that could be applied to

in order to refactor both software and hardware. The decoupling of hardware and software development

would ultimately allow for parallel development of the hardware platform and the software allowing

schedules to overlap, and ultimately leading to earlier detection of problems. Also, there are a multitude

of other benefits to decoupling hardware and software, such as increasing effectiveness of debugging and

increasing the possibility of reproduction. 24 Even if decoupling hardware and software development does

not solve the root cause of project delay, the decoupling could lead to a more successful outcome if VLO

undertakes another challenging product like Pd6 in the near future. Also, as previously discussed, the

 29

decoupling of hardware and software development may cost VLO market share, as it could open a

potential security hole as other organizations may be able to develop hardware that can run the software

produced by VLO.

Even though decoupling hardware and software development may seem to be a great idea, decoupling

also poses a technical question with serious ramifications that VLO must answer before considering

implementing any decoupling: can VLO effectively decouple hardware and software development while

maintaining control over what devices the software will operate on? VLO must carefully approach this

problem. Ideally, a solution should be designed from the bottom up with appropriate amounts of

preparation and requirements documents to be reviewed by teams across the organization. Although,

decoupling hardware and software development is not easy, it would help alleviate the impact that

hardware development delays have on software development, as was the case with Pj6. The most

extreme decoupling involves the organization to develop only hardware or only software at any give time,

this is also discussed in Section 5.1.

5.3 Requirements Management

Effective and efficient requirements management allows an organization to have a solid grasp on what

features a product will support before the product is even developed. However, incorrect requirements

management can cause a project to fail. Blyth et al indicate that the most crucial aspect of software

engineering is the gathering of requirements.6 A succinct and accurate requirements speciation allows the

entire organization to have a clear understanding of what the specified product will do. This

understanding requires four steps. First, the organization must write correct requirements. Second, the

organization must ensure that a diverse committee reviews requirements. Third, the requirements must be

kept up to date if any changes are required, and requirements will change.7 20 Fourth and finally, the

requirements must then be adhered to from implementation to completion of the project.

At VLO, the addition of the user interface design team, previously discussed in Section 4.2.5, was a

factor in the outcome of Pj6. The user interface design team was new to VLO and initially produced

requirements that were unsatisfactory, a clear indication that VLO does not effectively perform

requirements management. To start, the user interface design team was developing the user interface

specification in isolation without the input from other groups that had years of experience working on

previous projects, leading to a specification that produced an ineffective user interface. Under these

circumstances, it is desirable to ensure that a representative from each of the various groups, including

 30

management, is present when writing requirements, especially given that this team was new to VLO. One

way to achieve this representation is Joint Applications Development (JAD), which was created by Drake,

Josh, and Crawford at IBM.1 There is no evidence to suggest that JAD will always work, but studies by

Liou et al indicate that JAD and other similar methods do increase the effectiveness of software

engineering, especially requirements specification.14 However, given that the user interface design team

was new to VLO, it probably would have been better to involve a cross functional group instead of having

the new team dictate the requirements. Finally, the requirements must also be written in accordance with

the project schedule, as late requirements are less useful and probably harmful to the project’s schedule.

An appropriate amount of time must be allocated for requirements engineering, which should always be

performed at the beginning of a project lifecycle.9

In order to have effective requirements management, requirements need to be researched and

documented prior to the implementation stage. If the requirements for a feature in a product are not

written before product development begins, then the feature should not be included in the product. Teams

should also immediately remove features whose requirements are incomplete from a product, as these

features cannot be properly implemented. Building a prototype is an effective method to mock-up

features during or prior to the requirements elicitation. However, the caveat is that these prototypes

should be done at an early stage of the product and should be immediately discarded once the

requirements have been gathered, as the purpose of the prototype has been fulfilled. After the

requirements have been elicited, a requirements specification document should be carefully written

succinctly describing all the requirements for the project in an unambiguous fashion. This document will

define the product and allow project schedules to be created based on the effort estimates of the

requirements.

5.4 Maximal Use of Resources

Since VLO is a very large organization and employs a large number of people, all of whom are the most

valuable resources, it is vital to maximize the use of these resources. Maximizing the use of people does

not imply simply maximizing the number of people. VLO must effectively and efficiently use its people.

VLO should not simply hire new employees and place them on a critical path of a product, as discussed

with the user interface design team in Section 4.2.5. This is not effective people management. There are

solutions to overcome Brooks law, such as utilizing extreme programming,13 however, in this case it

could have been much more beneficial to simply create a cross functional team or even team up

employees from different departments.

 31

VLO should attempt to utilize the available resources by conducting pre-release alpha and beta

programs within the organization, such programs have been shown to have a profound effect on pre-

release software and production software, if the programs are correctly conducted.28 Conducting

controlled experiments with employees, or even potential customers, will produce results. These

programs ensure that a small representative population has actually used a product and therefore can

provide feedback that should help improve the product before it is released. Note that it is imperative for

alpha and beta programs to be correctly administered in order to obtain useful results. Adding incentives

for active participation or removing privileges for inactive participation is an effective way to encourage

people to actively participate and provide essential feedback.

Finally, there are indications that VLO does not fully understand expanding market demands. Since the

marketing teams effectively decide the direction of future products, it is important to perform adequate

market research and employ methodologies to ensure the right product is chosen to develop.31 However,

no matter the amount of market research performed, it is vital to have a process in order to achieve the

vision set out by the marketing teams. Problems may arise with the marketing teams that are technical in

nature and prohibit the product from performing in the desired manner; therefore these cannot be

committed to a project. The disconnect that may exist between development and marketing teams needs

to be minimized by partnering marketing experts with technical experts in order to achieve a mutual

decision for the direction of a product. The importance of leveraging this knowledge transfer has been

well documented.30 With teamwork, the marketing demands can be technically reviewed before being

committed and will ultimately be better positioned to succeed.

5.5 Development Order and Priority of Vital Features

None of Pj1, Pj2, Pj3, Pj4, Pj5, and Pj7 contained a revolutionarily new hardware component; each

contained new features and enhancements, none of which could be considered trivial, but were not

revolutionarily new. Pj6 was considered revolutionary with respect to both hardware and software, but it

also included various new features and additional new hardware components. That being said, the focus

of Pj6 was not clear. Even though VLO has previously shown that it can incrementally produce products

with feature enhancements and new hardware components, VLO did not continually produce

revolutionarily new products. Generally, it is not wise to overcommit, especially under extremely tight

immovable deadlines. It is far better to concentrate on one key aspect. This concentration is vital when a

new revolutionarily component is being developed. Under these circumstances, it would have been better

for VLO to focus the majority of its available resources on the revolutionarily new hardware component.

 32

A concentrated focus would give the revolutionarily new hardware component the best chance of

achieving its potential.

The feature enhancements and other new hardware components committed to Pj6 were not major

selling points and thus should have been deferred. Another option would have been to split the project

and stagger the releases into sprints, so that the most important features were developed and released first,

these sprints would be consistent with the findings of Molokken-Ostvold et al.11 Each sprint would have

allowed VLO to concentrate on one aspect of the project and ensure that it was done right the first time.

That the project continued its development for an additional year after the initial release indicates that

although features were completed, the quality was not satisfactory. Given the number of new features in

the product, if VLO had concentrated on a select few features then each feature would be higher quality

than what was initially released, even though fewer features would be included in the initial release. Only

once the product had launched should additional features be considered on an individual basis in

maintenance releases. If the initial launch did not meet expectations, then VLO could determine whether

there is merit in pursuing additional features. If VLO had enough resources, other features could have

been developed in parallel and committed to the project, only when completed. Ultimately, the key is to

minimize the number of features and then concentrate on only the core features deemed absolutely

necessary.

5.6 Schedule Alignment

Effective requirements management and prioritization of features, as previously discussed in Sections 5.3

and 5.5, should enable VLO to be able to align a project schedule within customer expectations. Without

effective requirements management and feature prioritization, VLO was unable to make accurate

estimates and undoubtedly committed to implement more features than can realistically be accomplished

within the committed schedule. In essence, VLO should ensure that accurate and detailed estimates can

be provided for each requested feature, if it is not possible then the feature should not be committed to the

project. There are a variety of cost estimation tools, such as the Constructive Cost Model (COCOMO

II)26 originally developed by Barry Boehm, or Wideband Delphi, PROBE, The Planning Game described

in “Applied Software Project Management”.25 However, estimating the cost of a revolutionarily new

component is more difficult. Thus, if a revolutionarily new hardware component is being added, then a

sufficient amount of prototyping must have occurred beforehand in order to form an estimate. As well,

launch date of the project and the features that must be included should be explicitly defined. It is not

uncommon for a customer to demand many more features than can be accomplished before the requested

 33

launch date; in this case VLO needs to renegotiate with customers, adjust the customers’ expectations, or

simply walk away if the demands are unreasonable. The alignment of schedules with realistic customer

demands is a vital negotiation tool that must be implemented in order to achieve a desirable and more

importantly successful outcome.

It is also important to align the schedule with the stages of the typical software engineering lifecycle.

These stages include requirements engineering, design, implementation, and testing. Szoke found that

there is a great amount of emphasis on project scheduling, but the methods “used are imprecise and

require significant manual efforts.”27 Szoke developed a method that “can significantly accelerate project

scheduling production (>50%) and project realization (>10%) through automated schedule production.”27

Alignment is especially important with the requirements engineering stage, which specifies the software

requirements. It is impossible to design, implement, or test software if the requirements are incomplete.

A common misconception is that delaying the start of implementation by two months, for example,

implies that the completion of implementation will be delayed by more than two months. Delaying the

implementation in order to fully complete the requirements will ultimately result in a much smoother

implementation. Thus, the schedule needs to align with the completion of the requirements engineering

phase and other phases should not be started until the previous stage is complete. Finally, as DeMarco

stated “all projects that finish late have this one thing in common: they started late”,4 the project schedule

must be realistic. If a project will take one year to develop, then the release date must be at least one year

away.

 34

Chapter 6
FUTURE & RELATED WORK

6.1 Related Work

There has been a lot of research on a variety of issues discussed in this thesis, including but not limited to

requirements engineering, prototyping revolutionary products, user experiments, and prioritizing and

schedule projects. However, there appears to be a gap that needs to be bridged between research

organizations and commercial organizations.32 One of the reasons for the gap is the lack of external

validity that controlled experiments exhibit.19 This thesis contains a large amount so this thesis can serve

as a starting point for a wide variety of potential further research. However, first it is vital to look at what

past related research has been performed on areas from this thesis.

Ellis and Berry are a prime example of bridging the gap between research organizations and

commercial organizations. Ellis and Berry demonstrate why empirical evidence is hard to come by and

the important role that empirical evidence plays in validating results from research organizations. In

particular, Ellis and Berry concentrate on the requirements engineering field. The results are based on the

studies performed by Ellis and Berry and previous empirical research work by Hoffman et al,33 Paech et

al,34 Curtis et al,35 and Lubars et al.36 The main contributions from Ellis and Berry are to the requirements

engineering process, especially with respect to requirements discovery and management (RDM) and

introduce an RDM maturity model along with “six RDM capability areas and a technique for assessing an

organization’s scores in these areas”.19

Coldrick et al wrote a paper “A Decision Framework for R&D Project Selection”31 which is entirely

applicable to VLO. Coldrick et al state that the development of revolutionary products is essential to

organizations in order to maintain a competitive advantage, which emphasizes the importance of good

research and development. Next Coldrick et al indicate that R&D budgets are usually vastly large and the

number of possible products to research is practically limitless. Therefore, it is a critical for the

organization to select optimal projects to pursue. Coldrick et al “present a project selection model that

recognizes the different types of R&D projects and their particular requirements.”31 The model is

applicable to projects and organizations of all sizes, so there is a definite relevance to this thesis. The

ultimate goal of the model is “provide a formal, structured methodology to assist engineers and

management in the decision making process.”31 This model is consistent with the need for VLO to assess

 35

where to focus research and development and when a particular technology has been prototyped enough

and is ready to be committed to an actual product.

Finally, in “The Road Ahead for Mining Software Repositories ” by Hassan,12 Hassan describes how

software repositories are being transformed from static to dynamic assets. With this transformation,

decision-making processes can be guided based on the dynamic software repositories. This field of study

focuses on two primary aspects. First, “the creation of techniques to automate and improve the extraction

of information from repositories”12 and second “the discovery and validation of novel techniques and

approaches to mine important information from these repositories.”12

There are several ways an organization can mine their own software repositories in order to increase

effectiveness. In particular, there are four related to VLO. The first use is to help organizations better

understand large software systems. This can be achieved by looking through historical information about

a project, for example in order to determine a particular design decision was made. Crubranic et al

describe a tool, Hipikat, which “provides developers with efficient and effective access to the group

memory for a software development project that is implicitly formed by all of the artifacts produced

during the development.”38 The second use better enables an organization to effectively manage change

propagation, which plays a vital role in large software systems that contain many coupled components.

By using data mined from the software repository, an organization can predict what components may be

affected by a particular change. Hassan and Holt have developed a several heuristics to predict such

change propagation and show that “historical dependencies outperform traditional dependency

information when propagating changes.”39 The third use is in predicting and identifying bugs. This is

accomplished by cross referencing source control repositories with defect tracking repositories, as a

Graves et al has found the biggest predictor of defects is previous defects and previous code changes.37

However, there are static code analysis tools, such as Coverity,41 that can be used to predict where defects

may occur.40 The fourth use is to mine unofficial methods of communication, such as instant messaging

or e-mails. By gathering this information, an organization can determine when to add new developers to

a project and to discover the overall morale of employees. Hassan and Rigby used the content of mailing

lists to determine the level of developer morale before and after a release, the results of “shows promise

in understanding why developers join and leave a project.”42 There is a wealth of untapped information in

software repositories at VLO that when mined could contribute to the success of future products.

 36

6.2 Future Work

There are three areas that merit for more research. The first is to analyze the data that were not

considered in this thesis. The second is to find criteria for determining when enough research has been

done about a new hardware component. Finally, the CR process can be analyzed to improve or otherwise

enhance the CR process.

6.2.1 Further Analysis of Data

There are data collected but not analyzed that would benefit from research in the mining repositories

field.12 The data that are most interesting are SCs and customers’ acceptances. As previously discussed, a

SC may represent a feature request, a CR, a software bug, or a non-functional change such as

optimization or change to documentation. This thesis considers all SCs to be of equal value, so there is

the potential to study the distribution of SCs and SC types across the various projects. A new study

would determine whether a particular type of SC was more prominent in any one particular project. Some

questions of interest are: Were particular SCs directly associated with one particular piece of hardware in

a particular project? How many SCs were regressions and related to previous SCs?

Measuring and monitoring SCs versus time is also interesting. It can even be further expanded to

monitor changes of any aspect of the software engineering process, in particular requirements. The

question is whether changes can be tracked and be used to effectively determine a criterion that indicates

when a particular module is mature enough and the next stage of the project can commence. For

example, determining when to switch from the requirements phase to the development phase is a difficult

and important decision. Ideally, the switch should be made when the requirements specification can be

implemented without any further clarification. However, if the changes to the requirements specification

are accurately tracked, then audits can be performed, and the criterion evaluated in order to determine

whether a requirements specification is mature enough to proceed with implementation. This criterion

does not imply that no changes to the requirements specification will occur; it simply indicates when the

next phase can be initiated. A modified criterion can be applied to SCs and test plans respectively for the

development phase and for the verification phase.

The next kind of data for further research is the customer acceptance data. The customer acceptance

database is accurate and detailed and contains an exhaustive history. This thesis examines the

relationship between the customer acceptance data and the number of completed SCs by that date.

However, a study relating customer acceptances with specific hardware and customer timelines is of

 37

notable interest. Such a study would help determine whether a particular piece of hardware was given

priority over another by VLO. This study could potentially uncover other problematic areas, especially if

a customer acceptance was received for the same product and the same piece of hardware multiple times.

Multiple customer acceptances for the same product and hardware platform would be of interest to

determine whether there is an underlying reason for the multiple customer acceptances. It is also possible

there was a particular issue that the root cause was difficult to determine. A study that explores these

issues may uncover some solutions that could help VLO in the future. Finally, on occasion a customer

acceptance comes with a condition from the customer. An analysis of the conditions is another area for

future research.

6.2.2 Research and Planning

The study of this thesis uncovered a lot of data that question whether sufficient research and planning for

revolutionarily new features was performed. When enough research has been done is difficult to

determine. Many an organization performs only a small amount of research before committing a

revolutionarily new feature to a product. Thus this topic is in dire need of future research. In some

circumstances, an organization, particularly a start-up, may have no other option. According to Lewis et

al, it is clear that commercial organizations are racing to keep up with the revolutionary changes in just

about everything, which is clearly not representative of where the academics have been focusing.8

However, a mature organization, such as VLO, should be able to devote enough resources for the

necessary research.

To start, a preliminary survey should be developed in order to determine how much research other

companies perform when developing revolutionarily new features. Next, based on the preliminary

survey, particular organizations should be chosen to assess the amount of prior research they performed.

Such a study would benefit multiple competing organizations, as it would effectively enable an

organization to optimize the amount of research on any one particular revolutionarily feature while all but

guaranteeing a successful outcome. Finally, the results would be a set of criteria that would enable an

organization to make an informed decision of when a feature is ready to be committed would be

extremely beneficial to a multitude of organizations.

Another potential area of future work is to develop contingency plans for an organization that does not

perform enough research. Some of the questions that should be researched are: What kind of planning

can an organization do ahead of time in order to make up time lost in the future due to lack of research?

Is there a way for an organization to successfully deploy a premature project? These questions are not

 38

easy to answer, but they may provide some possible solutions to problems faced by many organizations

today.

Finally, there are a multitude of studies that indicate that project estimates do not accurately represent

the actual amount of work required, especially with respect to software.16 17 18 It is conceivably even

harder to provide estimates for technologies that are yet undeveloped and immature. Hence, it is worth

studying how to plan and provide estimates for revolutionarily new technologies.

6.2.3 Change Requests

CRs are an important aspect of requirements engineering. Although this thesis does not reveal any

problems per se with the CR practices at VLO, there is still a lot of information regarding the CRs and the

CR process could be analyzed. For example, a month can elapse from the time a CR is submitted until

the CR is approved for implementation. This month is a relatively large duration for a project whose

duration is less than a year. Therefore, is it possible to make the CR process more efficient?

Another possible study is to find a method to determine whether a CR is worth the extra effort. The

ultimate goal of this study would be to develop criteria that enable an organization to decide whether to

approve a CR based on the history of previous CRs. If successful, the results of such a study could

reduce the number of CRs.

Finally, another possible study is to develop a method to determine whether all impacted teams have

been mentioned in a CR. When a CR is submitted it includes estimates for development, testing, and lists

other parts of the organization thought to be affected by the CR. It is very difficult but important to

ensure that a CR has been reviewed by all of its impacted teams. If a CR with an incomplete impact

analysis is accepted, then the full impact of the CR cannot be assessed. Occasionally, a CR has been

accepted and development work has started, but some time later, unexpected impacts are discovered that

cause delay. One possible solution to this problem is having an up-to-date trace matrix to determine the

actual impact of any change. Ultimately, any improvement to the CR process is beneficial.

 39

Chapter 7
CONCLUSIONS

VLO allowed this author access to resources for analysis. Seven different products, Pd1, Pd2, Pd3, Pd4,

Pd5, Pd6, and Pd7, were selected to study for this thesis. Each product had its own development project,

Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, and Pj7, which provided the data for analysis. First, this thesis describes and

categorizes each of the seven products. Next, a set of research questions are posed that guide the analysis

throughout this thesis. The questions are listed along with the section where the answer can be found:

RQ1: What caused Pd6 to fail? (Section 4.2)

RQ2: What indications were there during Pd6’s development that Pd6 would fail? (Section 4.2)

RQ3: What could VLO have done in order to prevent Pd6 from becoming a failure? (Chapter 5)

RQ4: What can VLO learn from the failure? (Chapter 5)

RQ5: Are there indications from Pd1, Pd2, Pd3, Pd4, Pd5, or Pd7 that indicate areas that VLO is
excelling at? (Section 4.1.7)

The data extracted from the projects include the number of source commits, the number of change

requests, number of customers’ acceptances, various project dates, employee opinions, and a variety of

product and project documents from a database.

The data for Pj1, Pj2, Pj3, Pj4, Pj5, and Pj7 were first analyzed and any indications of the reasons these

projects had successful outcomes were noted. Next, the data for Pj6 were analyzed and compared with

those of the six other projects. Several intriguing factors were discovered about Pj6. To start, there was

the addition of new hardware to Pd6. Pd6 included a revolutionarily new hardware component plus other

additional components that had not been included in any previous product. These additional hardware

components both caused severe delays in the delivery of the hardware to other teams. These delays also

had an effect on the software, much of which depends directly on the hardware platform. Finally, during

the development of Pd6, a new user interface design team was given the sole responsibility of designing

the user interface specification for this project from the ground upwards. All of these factors contributed

to the poor outcome of Pj6.

There are six possible lessons to learn from Pj6 for VLO. First, VLO must not release hardware until

its major issues are resolved. Unfortunately, sometimes these issues may not arise until the hardware and

the software have been integrated. Second, VLO must decouple the hardware and the software as much

as possible, which would help to avoid as much dependency as possible. Third, VLO must ensure that an

 40

effective and efficient process is in place in order to manage the requirements across each project.

Fourth, VLO must maximize the use of its resources, especially employees, to ensure the right product is

being built. Fifth, VLO must accurately prioritize features to ensure that the quality of the essential

features is not sacrificed in order to add non-critical features. Sixth and final is that VLO must align the

schedules across the organization to ensure that each and every employee is aware and working towards

the schedule. Applying these six lessons to a project does not guarantee the outcome of the project will

be a success. However, it will undoubtedly help VLO to succeed in the long run.

There are three areas of interest for future research. First, there are an abundance of data that have not

been studied. These data include source commits and customers’ acceptances. Second, development of

criteria for deciding whether enough research in a revolutionarily new hardware platform has taken place

in order to advance to the next development stage. Finally, the change request process could benefit from

some in-depth research.

The overall underlying message throughout this thesis is that inadequate requirements engineering in a

project can and will plague the entire duration of the project. It is not necessarily true that delaying the

commencement of the implementation phase of development will cause an equal or greater delay in the

completion of the implementation phase. Many organizations are under pressure to deliver products by a

deadline, so they tend to start the implementation before the requirements engineering is complete. The

requirements engineering phase needs to be completed prior to the start of implementation, otherwise the

implementers will not know exactly what to implement. It is equivalent to starting the construction of a

building without a complete set of blue prints.

However, even with proper requirements engineering, the requirements specification could still very

well be wrong. This situation occurred twice with Pj6, once with the revolutionarily new hardware

component and once again with the user interface design. However, even with requirements engineering,

each of these situations did not have desirable outcomes due to the fact that the requirements were wrong.

Therefore, it is vital that VLO devote enough time to perform adequate prototyping, researching

requirements, and ultimately writing requirements specifications.

 41

Appendix A:
Collected Data

This appendix contains the compiled data collected and referenced in this thesis, including data from

the source control repositories, change request reports, and customers’ acceptances for all the

products discussed.

 42

Project 1

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 2	
 0	
 0.04	
 0.04	
 0	
 0.00	
 0.00	

2	
 11	
 0	
 0.21	
 0.25	
 0	
 0.00	
 0.00	

3	
 20	
 0	
 0.39	
 0.64	
 0	
 0.00	
 0.00	

4	
 16	
 0	
 0.31	
 0.95	
 0	
 0.00	
 0.00	

5	
 82	
 0	
 1.58	
 2.53	
 0	
 0.00	
 0.00	

6	
 1218	
 44	
 23.50	
 26.02	
 0	
 0.00	
 0.00	

7	
 1661	
 12	
 32.04	
 58.06	
 0	
 0.00	
 0.00	

8	
 746	
 9	
 14.39	
 72.45	
 6	
 0.85	
 0.85	

9	
 489	
 7	
 9.43	
 81.89	
 26	
 3.70	
 4.56	

10	
 406	
 2	
 7.83	
 89.72	
 58	
 8.26	
 12.82	

11	
 198	
 5	
 3.82	
 93.54	
 72	
 10.26	
 23.08	

12	
 150	
 1	
 2.89	
 96.43	
 52	
 7.41	
 30.48	

13	
 71	
 0	
 1.37	
 97.80	
 47	
 6.70	
 37.18	

14	
 47	
 1	
 0.91	
 98.71	
 114	
 16.24	
 53.42	

15	
 13	
 2	
 0.25	
 98.96	
 71	
 10.11	
 63.53	

16	
 20	
 2	
 0.39	
 99.34	
 41	
 5.84	
 69.37	

17	
 11	
 0	
 0.21	
 99.56	
 32	
 4.56	
 73.93	

18	
 1	
 0	
 0.02	
 99.58	
 43	
 6.13	
 80.06	

19	
 11	
 0	
 0.21	
 99.79	
 28	
 3.99	
 84.05	

20	
 1	
 0	
 0.02	
 99.81	
 27	
 3.85	
 87.89	

21	
 7	
 0	
 0.14	
 99.94	
 24	
 3.42	
 91.31	

22	
 1	
 0	
 0.02	
 99.96	
 16	
 2.28	
 93.59	

23	
 0	
 0	
 0.00	
 99.96	
 13	
 1.85	
 95.44	

24	
 0	
 0	
 0.00	
 99.96	
 14	
 1.99	
 97.44	

25	
 0	
 0	
 0.00	
 99.96	
 2	
 0.28	
 97.72	

26	
 2	
 0	
 0.04	
 100.00	
 7	
 1.00	
 98.72	

TOTAL:	
 5184	
 85	
 100.00	

	

693	
 98.72	

	

	
 	
 	

Total	
 Acceptances1:	
 702	

	
 	
 Table 3: Project 1 Data

1 The number of acceptances is only shown until the end of the development schedule, which explains why the total

number of acceptances is higher than the total number in the table.

 43

Figure 3: Project 1 Source Commits versus Time

Figure 4: Project 1 Code Complete and Acceptances versus Time

 44

Project 2

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 1	
 0	
 0.01	
 0.01	
 0	
 0.00	
 0.00	

2	
 1368	
 8	
 16.08	
 16.09	
 0	
 0.00	
 0.00	

3	
 1925	
 6	
 22.63	
 38.72	
 0	
 0.00	
 0.00	

4	
 1412	
 10	
 16.60	
 55.31	
 0	
 0.00	
 0.00	

5	
 1224	
 5	
 14.39	
 69.70	
 0	
 0.00	
 0.00	

6	
 824	
 4	
 9.69	
 79.38	
 0	
 0.00	
 0.00	

7	
 746	
 7	
 8.77	
 88.15	
 5	
 1.98	
 1.98	

8	
 348	
 6	
 4.09	
 92.24	
 13	
 5.14	
 7.11	

9	
 269	
 7	
 3.16	
 95.40	
 32	
 12.65	
 19.76	

10	
 125	
 4	
 1.47	
 96.87	
 24	
 9.49	
 29.25	

11	
 143	
 5	
 1.68	
 98.55	
 40	
 15.81	
 45.06	

12	
 84	
 0	
 0.99	
 99.54	
 38	
 15.02	
 60.08	

13	
 17	
 0	
 0.20	
 99.74	
 30	
 11.86	
 71.94	

14	
 6	
 0	
 0.07	
 99.81	
 33	
 13.04	
 84.98	

15	
 12	
 0	
 0.14	
 99.95	
 14	
 5.53	
 90.51	

16	
 0	
 0	
 0.00	
 99.95	
 8	
 3.16	
 93.68	

17	
 1	
 0	
 0.01	
 99.96	
 7	
 2.77	
 96.44	

18	
 3	
 0	
 0.04	
 100.00	
 2	
 0.79	
 97.23	

TOTAL:	
 8508	
 62	
 100.00	

	

246	
 97.23	

	

	
 	
 	

Total	
 Acceptances1:	
 253	

	
 	
 Table 4: Project 2 Data

 45

Figure 5: Project 2 Source Commits versus Time

Figure 6: Project 2 Code Complete and Acceptances versus Time

 46

Project 3

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 462	
 9	
 6.43	
 6.43	
 0	
 0.00	
 0.00	

2	
 440	
 7	
 6.12	
 12.55	
 0	
 0.00	
 0.00	

3	
 979	
 8	
 13.63	
 26.18	
 0	
 0.00	
 0.00	

4	
 1267	
 13	
 17.63	
 43.81	
 0	
 0.00	
 0.00	

5	
 767	
 8	
 10.68	
 54.49	
 0	
 0.00	
 0.00	

6	
 364	
 8	
 5.07	
 59.55	
 0	
 0.00	
 0.00	

7	
 985	
 3	
 13.71	
 73.26	
 0	
 0.00	
 0.00	

8	
 515	
 4	
 7.17	
 80.43	
 0	
 0.00	
 0.00	

9	
 254	
 2	
 3.54	
 83.97	
 0	
 0.00	
 0.00	

10	
 284	
 7	
 3.95	
 87.92	
 16	
 0.77	
 0.77	

11	
 184	
 3	
 2.56	
 90.48	
 86	
 4.11	
 4.88	

12	
 145	
 2	
 2.02	
 92.50	
 175	
 8.37	
 13.25	

13	
 80	
 1	
 1.11	
 93.61	
 191	
 9.14	
 22.39	

14	
 104	
 2	
 1.45	
 95.06	
 184	
 8.80	
 31.20	

15	
 73	
 1	
 1.02	
 96.08	
 122	
 5.84	
 37.03	

16	
 48	
 4	
 0.67	
 96.74	
 64	
 3.06	
 40.10	

17	
 49	
 5	
 0.68	
 97.43	
 107	
 5.12	
 45.22	

18	
 36	
 3	
 0.50	
 97.93	
 86	
 4.11	
 49.33	

19	
 28	
 3	
 0.39	
 98.32	
 66	
 3.16	
 52.49	

20	
 30	
 0	
 0.42	
 98.73	
 84	
 4.02	
 56.51	

21	
 10	
 0	
 0.14	
 98.87	
 49	
 2.34	
 58.85	

22	
 7	
 1	
 0.10	
 98.97	
 29	
 1.39	
 60.24	

23	
 11	
 0	
 0.15	
 99.12	
 90	
 4.31	
 64.55	

24	
 10	
 0	
 0.14	
 99.26	
 52	
 2.49	
 67.03	

25	
 4	
 0	
 0.06	
 99.32	
 49	
 2.34	
 69.38	

26	
 16	
 0	
 0.22	
 99.54	
 90	
 4.31	
 73.68	

27	
 4	
 0	
 0.06	
 99.60	
 178	
 8.52	
 82.20	

28	
 6	
 0	
 0.08	
 99.68	
 108	
 5.17	
 87.37	

29	
 2	
 0	
 0.03	
 99.71	
 84	
 4.02	
 91.39	

30	
 21	
 0	
 0.29	
 100.00	
 51	
 2.44	
 93.83	

TOTAL:	
 7185	
 94	
 100.00	
 	
 	
 1961	
 93.83	
 	
 	

	
 	
 	
 	
 	
 	
 	
 Total	
 Acceptances1:	
 2090	
 	
 	
 	
 	

 47

Table 5: Project 3 Data

Figure 7: Project 3 Source Commits versus Time

Figure 8: Project 3 Code Complete and Acceptances versus Time

 48

Project 4

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 555	
 0	
 4.35	
 4.35	
 0	
 0.00	
 0.00	

2	
 1885	
 21	
 14.76	
 19.11	
 0	
 0.00	
 0.00	

3	
 1543	
 24	
 12.09	
 31.20	
 0	
 0.00	
 0.00	

4	
 1436	
 21	
 11.25	
 42.45	
 0	
 0.00	
 0.00	

5	
 1553	
 10	
 12.16	
 54.61	
 0	
 0.00	
 0.00	

6	
 1259	
 24	
 9.86	
 64.47	
 0	
 0.00	
 0.00	

7	
 967	
 26	
 7.57	
 72.05	
 24	
 2.08	
 2.08	

8	
 760	
 15	
 5.95	
 78.00	
 92	
 7.99	
 10.07	

9	
 564	
 16	
 4.42	
 82.42	
 63	
 5.47	
 15.54	

10	
 604	
 9	
 4.73	
 87.15	
 134	
 11.63	
 27.17	

11	
 578	
 20	
 4.53	
 91.67	
 60	
 5.21	
 32.38	

12	
 246	
 5	
 1.93	
 93.60	
 57	
 4.95	
 37.33	

13	
 237	
 6	
 1.86	
 95.46	
 64	
 5.56	
 42.88	

14	
 133	
 4	
 1.04	
 96.50	
 60	
 5.21	
 48.09	

15	
 126	
 5	
 0.99	
 97.49	
 76	
 6.60	
 54.69	

16	
 112	
 3	
 0.88	
 98.36	
 76	
 6.60	
 61.28	

17	
 69	
 1	
 0.54	
 98.90	
 40	
 3.47	
 64.76	

18	
 21	
 2	
 0.16	
 99.07	
 46	
 3.99	
 68.75	

19	
 43	
 2	
 0.34	
 99.40	
 42	
 3.65	
 72.40	

20	
 53	
 1	
 0.42	
 99.82	
 29	
 2.52	
 74.91	

21	
 3	
 0	
 0.02	
 99.84	
 34	
 2.95	
 77.86	

22	
 4	
 0	
 0.03	
 99.87	
 114	
 9.90	
 87.76	

23	
 0	
 0	
 0.00	
 99.87	
 57	
 4.95	
 92.71	

24	
 0	
 0	
 0.00	
 99.87	
 31	
 2.69	
 95.40	

25	
 16	
 0	
 0.13	
 100.00	
 20	
 1.74	
 97.14	

TOTAL:	
 12767	
 215	
 100.00	
 	
 	
 1119	
 97.14	
 	
 	

	
 	
 	
 	
 	
 	
 	
 Total	
 Acceptances1:	
 1152	
 	
 	
 	
 	

Table 6: Project 4 Data

 49

Figure 9: Project 4 Source Commits versus Time

Figure 10: Project 4 Code Complete and Acceptances versus Time

 50

Project 5

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 0	
 1	
 0.00	
 0.00	
 0	
 0.00	
 0.00	

2	
 1	
 0	
 0.01	
 0.01	
 0	
 0.00	
 0.00	

3	
 211	
 0	
 2.65	
 2.66	
 0	
 0.00	
 0.00	

4	
 1391	
 5	
 17.48	
 20.15	
 0	
 0.00	
 0.00	

5	
 1159	
 8	
 14.57	
 34.72	
 0	
 0.00	
 0.00	

6	
 1086	
 6	
 13.65	
 48.37	
 0	
 0.00	
 0.00	

7	
 540	
 16	
 6.79	
 55.15	
 0	
 0.00	
 0.00	

8	
 846	
 9	
 10.63	
 65.79	
 26	
 2.20	
 2.20	

9	
 409	
 2	
 5.14	
 70.93	
 72	
 6.08	
 8.28	

10	
 229	
 15	
 2.88	
 73.81	
 52	
 4.39	
 12.67	

11	
 247	
 9	
 3.10	
 76.91	
 79	
 6.67	
 19.34	

12	
 274	
 10	
 3.44	
 80.35	
 40	
 3.38	
 22.72	

13	
 301	
 8	
 3.78	
 84.14	
 67	
 5.66	
 28.38	

14	
 392	
 3	
 4.93	
 89.06	
 52	
 4.39	
 32.77	

15	
 329	
 6	
 4.14	
 93.20	
 33	
 2.79	
 35.56	

16	
 324	
 4	
 4.07	
 97.27	
 110	
 9.29	
 44.85	

17	
 107	
 1	
 1.34	
 98.62	
 117	
 9.88	
 54.73	

18	
 76	
 1	
 0.96	
 99.57	
 92	
 7.77	
 62.50	

19	
 17	
 1	
 0.21	
 99.79	
 102	
 8.61	
 71.11	

20	
 10	
 0	
 0.13	
 99.91	
 114	
 9.63	
 80.74	

21	
 6	
 0	
 0.08	
 99.99	
 62	
 5.24	
 85.98	

22	
 1	
 0	
 0.01	
 100.00	
 45	
 3.80	
 89.78	

TOTAL:	
 7956	
 105	
 100.00	
 	
 	
 1063	
 89.78	
 	
 	

	
 	
 	
 	
 	
 	
 	
 Total	
 Acceptances1:	
 1184	
 	
 	
 	
 	

Table 7: Project 5 Data

 51

Figure 11: Project 5 Source Commits versus Time

Figure 12: Project 5 Code Complete and Acceptances versus Time

 52

Project 6

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 0	
 3	
 0.00	
 0.00	
 0	
 0.00	
 0.00	

2	
 71	
 2	
 0.41	
 0.41	
 0	
 0.00	
 0.00	

3	
 1664	
 15	
 9.64	
 10.05	
 0	
 0.00	
 0.00	

4	
 2051	
 8	
 11.88	
 21.93	
 0	
 0.00	
 0.00	

5	
 2215	
 10	
 12.83	
 34.76	
 0	
 0.00	
 0.00	

6	
 1344	
 14	
 7.79	
 42.55	
 0	
 0.00	
 0.00	

7	
 1888	
 9	
 10.94	
 53.49	
 0	
 0.00	
 0.00	

8	
 1880	
 14	
 10.89	
 64.38	
 0	
 0.00	
 0.00	

9	
 604	
 2	
 3.50	
 67.88	
 13	
 4.21	
 4.21	

10	
 809	
 8	
 4.69	
 72.56	
 14	
 4.53	
 8.74	

11	
 903	
 18	
 5.23	
 77.80	
 1	
 0.32	
 9.06	

12	
 373	
 5	
 2.16	
 79.96	
 5	
 1.62	
 10.68	

13	
 572	
 16	
 3.31	
 83.27	
 27	
 8.74	
 19.42	

14	
 418	
 3	
 2.42	
 85.69	
 40	
 12.94	
 32.36	

15	
 1074	
 15	
 6.22	
 91.91	
 20	
 6.47	
 38.83	

16	
 775	
 3	
 4.49	
 96.40	
 13	
 4.21	
 43.04	

17	
 417	
 1	
 2.42	
 98.82	
 13	
 4.21	
 47.25	

18	
 135	
 1	
 0.78	
 99.60	
 55	
 17.80	
 65.05	

19	
 58	
 1	
 0.34	
 99.94	
 30	
 9.71	
 74.76	

20	
 10	
 0	
 0.06	
 99.99	
 28	
 9.06	
 83.82	

21	
 0	
 0	
 0.00	
 99.99	
 25	
 8.09	
 91.91	

22	
 0	
 0	
 0.00	
 99.99	
 14	
 4.53	
 96.44	

23	
 1	
 0	
 0.01	
 100.00	
 8	
 2.59	
 99.03	

TOTAL:	
 17262	
 148	
 100.00	
 	
 	
 306	
 99.03	
 	
 	

	
 	
 	
 	
 	
 	
 	
 Total	
 Acceptances1:	
 309	
 	
 	
 	
 	

Table 8: Project 6 Data

 53

Figure 13: Project 6 Source Commits versus Time

Figure 14: Project 6 Code Complete and Acceptances versus Time

 54

Project 7

M
onth	

N
um

ber	
 of	

Source	

Com

m
its	

N
um

ber	
 of	

Change	

Requests	

Percentage	

of	
 Source	

Com

m
its	

Percentage	

Code	

Com
plete	

N
um

ber	
 of	

Acceptances	

Percentage	

of	

Acceptances	

Cum
ulative	

Percentage	

of	
 Total	

Acceptances	

1	
 0	
 4	
 0.00	
 0.00	
 0	
 0.00	
 0.00	

2	
 6	
 3	
 0.13	
 0.13	
 0	
 0.00	
 0.00	

3	
 44	
 8	
 0.98	
 1.12	
 0	
 0.00	
 0.00	

4	
 716	
 16	
 15.99	
 17.11	
 0	
 0.00	
 0.00	

5	
 912	
 8	
 20.37	
 37.48	
 0	
 0.00	
 0.00	

6	
 1377	
 2	
 30.76	
 68.24	
 0	
 0.00	
 0.00	

7	
 419	
 3	
 9.36	
 77.60	
 0	
 0.00	
 0.00	

8	
 442	
 4	
 9.87	
 87.47	
 3	
 6.52	
 6.52	

9	
 253	
 0	
 5.65	
 93.12	
 2	
 4.35	
 10.87	

10	
 156	
 0	
 3.48	
 96.60	
 2	
 4.35	
 15.22	

11	
 120	
 0	
 2.68	
 99.29	
 3	
 6.52	
 21.74	

12	
 31	
 1	
 0.69	
 99.98	
 23	
 50.00	
 71.74	

13	
 0	
 0	
 0.00	
 99.98	
 5	
 10.87	
 82.61	

14	
 0	
 0	
 0.00	
 99.98	
 0	
 0.00	
 82.61	

15	
 1	
 0	
 0.02	
 100.00	
 1	
 2.17	
 84.78	

TOTAL:	
 4477	
 49	
 100.00	
 	
 	
 39	
 84.78	
 	
 	

	
 	
 	
 	
 	
 	
 	
 Total	
 Acceptances1:	
 46	
 	
 	
 	
 	

Table 9: Project 7 Data

 55

Figure 15: Project 7 Source Commits versus Time

Figure 16: Project 7 Code Complete and Acceptances versus Time

 56

References	

1. Joint Applications Development Wikipedia article. URL:

http://en.wikipedia.org/wiki/Joint_application_design.

2. Perry, D.E.; Sim, S.E.; Easterbrook, S.M.; "Case studies for software engineers," Software

Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on , vol., no., pp.

736- 738, 23-28 May 2004; doi: 10.1109/ICSE.2004.1317512;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1317512

&isnumber=29176.

3. Kang, Byung-Kyoo; Bieman, James M.; “A quantitative framework for software restructuring,”

Journal of Software Maintenance: Research and Practice, vol. 11, 1999.

4. DeMarco, Tom; , "All Late Projects Are the Same," Software, IEEE , vol.28, no.6, pp.104, Nov.-

Dec. 2011; doi: 10.1109/MS.2011.134;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=6055668

&isnumber=6055650.

5. Charette, R.N.; , "Why software fails [software failure]," Spectrum, IEEE , vol.42, no.9, pp. 42-

49, Sept. 2005; doi: 10.1109/MSPEC.2005.1502528;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1502528

&isnumber=32236.

6. Blyth, A.J.C.; Chudge, J.; Dobson, J.E.; Strens, M.R.; , "A framework for modelling evolving

requirements," Computer Software and Applications Conference, 1993. COMPSAC 93.

Proceedings., Seventeenth Annual International , vol., no., pp.83-89, 1-5 Nov 1993; doi:

10.1109/CMPSAC.1993.404219;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=404219

&isnumber=9093.

7. Kelly, Allan; “Why do requirements change?,” Overload Journal, vol. 59, Feb 2005; URL:

http://accu.org/index.php/journals/319.

8. Lewis, T.; Power, D.; Meyer, B.; Grimes, J.; Potel, M.; Vetter, R.; Laplante, P.; Pree, W.;

Pomberger, G.; Hill, M.D.; Larus, J.R.; Wood, D.A.; Weide, B.W.; , "Where is software headed?

A virtual roundtable," Computer , vol.28, no.8, pp.20-32, Aug 1995; doi: 10.1109/2.402054;

 57

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=402054

&isnumber=9058.

9. Bowles, J.B.; , "Better software reliability by getting the requirements right," Reliability and

Maintainability Symposium, 2006. RAMS '06. Annual , vol., no., pp.110-115, 23-26 Jan. 2006;

doi: 10.1109/RAMS.2006.1677359;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1677359

&isnumber=34933.

10. Ruhe, G.; Greer, D.; , "Quantitative studies in software release planning under risk and resource

constraints," Empirical Software Engineering, 2003. ISESE 2003. Proceedings. 2003

International Symposium on , vol., no., pp. 262- 270, 30 Sept.-1 Oct. 2003; doi:

10.1109/ISESE.2003.1237987;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1237987

&isnumber=27773.

11. Molokken-Ostvold, K.; Jorgensen, M.; , "A comparison of software project overruns - flexible

versus sequential development models," Software Engineering, IEEE Transactions on , vol.31,

no.9, pp. 754- 766, Sept. 2005; doi: 10.1109/TSE.2005.96;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1514444

&isnumber=32435.

12. Hassan, A.E.; , "The road ahead for Mining Software Repositories," Frontiers of Software

Maintenance, 2008. FoSM 2008. , vol., no., pp.48-57, Sept. 28 2008-Oct. 4 2008; doi:

10.1109/FOSM.2008.4659248;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=4659248

&isnumber=4659234.

13. Opelt, K.; , "Overcoming Brooks' Law," Agile, 2008. AGILE '08. Conference , vol., no., pp.208-

211, 4-8 Aug. 2008; doi: 10.1109/Agile.2008.55;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=4599478

&isnumber=4599440.

14. Liou, Y.I.; Chen, M.; , "Integrating group support systems, joint application development, and

computer-aided software engineering for requirements specification ," System Sciences, 1993,

Proceeding of the Twenty-Sixth Hawaii International Conference on , vol.iii, no., pp.4-12 vol.3,

 58

5-8 Jan 1993; doi: 10.1109/HICSS.1993.284291;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=284291

&isnumber=7027.

15. Grimstad, S.; , "Understanding of estimation accuracy in software development projects,"

Software Metrics, 2005. 11th IEEE International Symposium , vol., no., pp.2 pp.-42, 1-1 Sept.

2005; doi: 10.1109/METRICS.2005.50;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1509320

&isnumber=32322.

16. Ferens, D.V.; , "The conundrum of software estimation models," Aerospace and Electronic

Systems Magazine, IEEE , vol.14, no.3, pp.23-29, Mar 1999; doi: 10.1109/62.750425;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=750425

&isnumber=16219.

17. Grimstad, S.; , "Understanding of estimation accuracy in software development projects,"

Software Metrics, 2005. 11th IEEE International Symposium , vol., no., pp.2 pp.-42, 1-1 Sept.

2005; doi: 10.1109/METRICS.2005.50;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1509320

&isnumber=32322.

18. Moloekken-OEstvold, K.; Joergensen, M.; Tanilkan, S.S.; Gallis, H.; Lien, A.C.; Hove, S.W.; ,

"A survey on software estimation in the Norwegian industry," Software Metrics, 2004.

Proceedings. 10th International Symposium on , vol., no., pp. 208- 219, 14-16 Sept. 2004; doi:

10.1109/METRIC.2004.1357904;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1357904

&isnumber=29794.

19. Ellis, Keith; Berry, Daniel M.; “Quantifying the Impact of Requirements Definition and

Management Process Maturity on Project Outcome in Business Application Development”; 2011;

URL: http://se.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/EllisBerry.pdf.

20. M.M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution”, Proceedings of the

IEEE 68(9), pp. 1060–1076 (September 1980).

 59

21. James W. Hooper and Pei Hsia. 1982. Scenario-based prototyping for requirements identification.

In Proceedings of the workshop on Rapid prototyping. ACM, New York, NY, USA, 88-93.

DOI=10.1145/1006259.1006275 http://doi.acm.org/10.1145/1006259.1006275.

22. Davis, A.M.; , "Operational prototyping: a new development approach," Software, IEEE , vol.9,

no.5, pp.70-78, Sep 1992; doi: 10.1109/52.156899;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=156899

&isnumber=4064.

23. J. Bowers and J. Pycock, “Talking Through Design: Requirements and Resistance in Cooperative

Prototyping”, pp. 299–305 in Proceedings of the 1994 Computer-Human Interaction Conference

(CHI’94), ACM SIGCHI, New York, NY (1994).

24. Power.org, “Debugging Multicore Software Using Virtual Hardware”, 2008-05-30,

https://www.power.org/events/powercon/paris/Virtutech-Multicore_Debug_PAC_EU_May-

2008v6.pdf.

25. Stellman, Andrew, “Applied Software Project Management”, Sebastopol, CA : O’Reilly, 2006.

26. COCOMO II, http://csse.usc.edu/csse/research/COCOMOII/cocomo_main.html, Accessed

December 13, 2011.

27. Szoke, A.; , "A Proposed Method for Automated Project Scheduling using Goals and Scenarios,"

International Requirements Engineering, 2008. RE '08. 16th IEEE , vol., no., pp.339-340, 8-12

Sept. 2008; doi: 10.1109/RE.2008.23

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=4685702

&isnumber=4685636.

28. Li, P.L.; Kivett, R.; Zhiyuan Zhan; Sung-eok Jeon; Nagappan, N.; Murphy, B.; Ko, A.J.; ,

"Characterizing the differences between pre- and post- release versions of software," Software

Engineering (ICSE), 2011 33rd International Conference on , vol., no., pp.716-725, 21-28 May

2011; doi: 10.1145/1985793.1985894;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=6032513

&isnumber=6032438.

29. Marczak, S.; Kwan, I.; Damian, D.; , "Investigating Collaboration Driven by Requirements in

Cross-Functional Software Teams," Requirements: Communication, Understanding and

 60

Softskills, 2009 Collaboration and Intercultural Issues on , vol., no., pp.15-22, 31-31 Aug. 2009

doi: 10.1109/CIRCUS.2009.2;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=5457327

&isnumber=5457324.

30. F. Samer and L. Sproull, “Coordinating expertise in software development teams,” Management

Science, vol. 46, no. 12, pp. 1554–1568, 2000.

31. Coldrick, S.; Lawson, C.P.; Ivey, P.C.; Lockwood, C.; , "A decision framework for R&D project

selection," Engineering Management Conference, 2002. IEMC '02. 2002 IEEE International ,

vol.1, no., pp. 413- 418 vol.1, 2002; doi: 10.1109/IEMC.2002.1038468;

URL: http://ieeexplore.ieee.org.proxy.lib.uwaterloo.ca/stamp/stamp.jsp?tp=&arnumber=1038468

&isnumber=22257.

32. H. Kaindl, S. Brinkkemper, J. A. Bubenko, Jr., B. Farbey, S. J. Greenspan, C. L. Heitmeyer, J. C.

S. P. Leite, N. R. Mead, J. Mylopoulos, and J. I. A. Siddiqi. Requirements engineering and

technology transfer: Obstacles, incentives and improvement agenda. Requirements Engineering,

7(3):113–123, 2002.

33. H.F. Hofmann, F. Lehner; Requirements engineering as a success factor in software projects.

IEEESoftware, 18(4):58–66, 2001.

34. B. Paech, T. Koenig, L. Borner, and A. Aurum. An analysis of empirical requirements

engineering survey data.In Engineering and Managing Software Requirements, Part 3, pages

427–452, Berlin, Germany, 2005. Springer.

35. B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design process for large

systems. Communications of the ACM, 31(11):1268–1287, 1988.

36. M. Lubars, C. Potts, and C. Richter. A review of the state of the practice in requirements

modeling. In Proceedings of the IEEE International Symposium on Requirements Engineering

(RE), pages 2–14, 1993.

37. T.L. Graves, A.F. Karr, J.S. Marron, and H.P. Siy. Predicting Fault Incidence Using Software

Change History. IEEE Transactions on Software Engineering, 26(7):653–661, 2000.

38. D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A Project Memory for Software

Development. IEEE Trans. Software Eng., 31(6):446–465, 2005.

 61

39. A.E. Hassan and R.C. Holt. Predicting Change Propagation in Software Systems. In Proceedings

of the 20th International Conference on Software Maintenance, Chicago, USA, Sept. 2004.

40. D. R. Engler, D. Y. Chen, and A. Chou. Bugs as Inconsistent Behavior: A General Approach to

Inferring Errors in Systems Code. In SOSP, pages 57–72, 2001.

41. Coverity, http://www.coverity.com.

42. P. C. Rigby and A. E. Hassan. What Can OSS Mailing Lists Tell Us? A Preliminary

Psychometric Text Analysis of the Apache Developer Mailing List. In MSR [4], page 23.

