
HARDI Denoising using Non-local
Means on the R3 × S2 Manifold

by

Alan Kuurstra

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2011

c© Alan Kuurstra 2011



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Magnetic resonance imaging (MRI) has long become one of the most powerful and accu-
rate tools of medical diagnostic imaging. Central to the diagnostic capabilities of MRI is
the notion of contrast, which is determined by the biochemical composition of examined
tissue as well as by its morphology. Despite the importance of the prevalent T1, T2, and
proton density contrast mechanisms to clinical diagnosis, none of them has demonstrated
effectiveness in delineating the morphological structure of the white matter – the infor-
mation which is known to be related to a wide spectrum of brain-related disorders. It is
only with the recent advent of diffusion-weighted MRI that scientists have been able to
perform quantitative measurements of the diffusivity of white matter, making possible the
structural delineation of neural fibre tracts in the human brain. One diffusion imaging
technique in particular, namely high angular resolution diffusion imaging (HARDI), has
inspired a substantial number of processing methods capable of obtaining the orientational
information of multiple fibres within a single voxel while boasting minimal acquisition
requirements.

HARDI characterization of fibre morphology can be enhanced by increasing spatial and
angular resolutions, however, doing so drastically reduces the signal-to-noise ratio. Since
pronounced measurement noise tends to obscure and distort diagnostically relevant details
of diffusion-weighted MR signals, increasing spatial or angular resolution necessitates ap-
plication of the efficient and reliable tools of image denoising. The aim of this work is to
develop an effective framework for the filtering of HARDI measurement noise which takes
into account both the manifold to which the HARDI signal belongs and the statistical
nature of MRI noise. These goals are accomplished using an approach rooted in non-local
means (NLM) weighted averaging. The average includes samples, and therefore dependen-
cies, from the entire manifold and the result of the average is used to deduce an estimate
of the original signal value in accordance with MRI statistics. NLM averaging weights are
determined adaptively based on a neighbourhood similarity measure. The novel neigh-
bourhood comparison proposed in this thesis is one of spherical neighbourhoods, which
assigns large weights to samples with similar local orientational diffusion characteristics.
Moreover, the weights are designed to be invariant to both spatial rotations as well as
to the particular sampling scheme in use. This thesis provides a detailed description of
the proposed filtering procedure as well as experimental results with synthetic and real-
life data. It is demonstrated that the proposed filter has substantially better denoising
capabilities as compared to a number of alternative methods.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) has long become one of the most powerful and ac-
curate tools of medical diagnostic imaging. As MRI employs neither ionizing radiation
nor excessive levels of electromagnetic energy, it is known to be practically harmless to
the human body which makes it applicable to diverse groups of patients including infants,
high-risk pregnant women, and elders. Furthermore, recent advances in the design of mag-
netic coils, along with the advent of sophisticated tomographic techniques, has allowed
MRI to achieve sub-millimetre resolution, which has made it an extremely powerful diag-
nostic tool for early detection of abnormal developments in the brain. The spectrum of
neurological disorders which can be currently diagnosed based on the information provided
by MRI is impressively broad [52, 67, 68, 86, 96]. Central to the diagnostic capabilities of
MRI is the notion of contrast, which is determined by the biochemical composition of ex-
amined tissue as well as by its morphology. Prevalent in the current MRI practice are the
contrasts determined by T1/T2 relaxation times and proton density (PD). Despite the ex-
ceptional importance of these contrast mechanisms to clinical diagnosis, none of them has
demonstrated effectiveness in delineating the morphological structure of the white matter
– the information which is known to be related to a wide spectrum of brain-related dis-
orders [7, 36, 38, 69, 78, 84, 105, 106]. It is only with the recent advent of diffusion-weighted
MRI (DW-MRI) that scientists have been able to perform quantitative measurements of
the diffusivity of white matter, making possible the structural delineation of neural fibre
tracts in the human brain. [9, 10, 14].

The human brain consists of about 1011 nerve cells that can be subdivided into about
1000 different cell types, a complexity that far exceeds any other organ in the body. A
further complexity is evident in the way in which neuron cells of the brain interconnect and
function [51]. In contrast to other types of cells, each neuron communicates with its target
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cells by means of a protoplasmic protrusion, called an axon. Moreover, axons with similar
destinations tend to form bundles, known as neural fibre tracts. Thus, for example, the
neural bundles connecting two cortical regions are called U-fibres (between adjacent gyri),
association fibres (between different lobes), or commissural fibres (between the right and
left hemispheres), while those connecting cortex and deep-brain regions (e.g., the cortex
and thalamus or cortex and spinal cord) are called projection fibres [102]. Taken together,
these fibres play a fundamental role in the determination of brain connectivity, which is
still far from being completely understood. Yet, it is nowadays believed that through
reconstructing the pattern of connectivity of the neural fibre tracts in both healthy and
diseased subjects, it is possible to obtain an abundance of valuable diagnostic information
which can be used for early diagnostics of brain-related disorders, for assessing the damage
caused to the brain by stroke, tumours or injuries, as well as for planning and monitoring
of neurosurgeries [52, 67].

Neural fibre tracts form a principal part of the white matter, whose structural delin-
eation is critically important for our understanding of brain connectivity. Unfortunately,
traditional MRI is incapable of revealing the detailed anatomy of the white matter, since
the T1,T2 and PD contrasts used in traditional MRI are only sensitive to the chemical
composition of cerebral tissue, while the white matter is chemically uniform [52, Ch.5].
DW-MRI, on the other hand, can generate contrast based on the phenomenon of water
diffusion, which is an essential physical process for the normal functioning of living sys-
tems. In particular, DW-MRI is capable of measuring the apparent diffusion coefficients
(ADC) of cerebral tissue, which depend on the local tissue microstructure and can there-
fore be used as a probe of the physical properties of the white matter. Furthermore, since
water molecules tend to diffuse more freely along the direction of neural fibres, if one
can quantify the orientational preferences of diffusion, it is possible to deduce the axonal
orientations [67].

Establishing the main principles of diffusion imaging dates back to 1965, when Dr. Ste-
jskal and Dr. Tanner proposed to measure the diffusion constant of water molecules, com-
monly referred to as spins, using nuclear magnetic resonance and a pulsed magnetic field
gradient system [83]. Their measurement experiment – known as Pulsed Gradient Spin
Echo (PGSE) – is still the basis of diffusion protocols exploited by modern MRI scanners.
A principal attribute of PGSE is the application of a pair of diffusion-encoding magnetic
gradients. Whereas the first gradient is used to encode the spatial positions of the spins,
the second gradient tries to reverse the effect of spatial encoding after the spins are allowed
to diffuse for a predetermined amount of time known as the mixing time. The measure-
ment of spin displacement is manifested in an attenuation of the MR readout known as the
diffusion weighting. Diffusion weighting depends both on the amount of spin diffusion and
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on parameters related to the diffusion-encoding gradients. The latter is captured in the
q-value and determines a measurement’s location in the q-space. One of the most signifi-
cant results of the theory of diffusion imaging is that if one can measure the DW-MR signal
over a sufficiently large set of points in q-space, it is then possible to recover the ensemble
average (diffusion) propagator (EAP) – the function which quantifies the probability of a
spin being found at position r dr after the mixing time [83]. In particular, the DW-MR
signal is related to the EAP via Fourier transformation [25]. Needless to say, since the EAP
depends on the local microstructure of interrogated tissue, it is essential for understanding
the tissue composition and organization.

Diffusion spectral imaging (DSI) [95] attempts to recover the EAP directly, while mak-
ing no assumptions about tissue microstructure or the functional shape of the EAP. The
recovery can be performed by sampling the attenuation signal over a Cartesian grid in the
q-space, followed by the application of fast Fourier transformation. An alternative way to
sample the q-space is to put the sampling points on the surfaces of concentric spherical
shells [33]. It goes without saying that the major limitation of DSI is its acquisition re-
quirements, demanding roughly 500 DW-images with each acquisition’s diffusion-encoding
gradient corresponding to a point in q-space. Unfortunately, such acquisition require-
ments put DSI far beyond the scope of practical applications of DW-MRI. It is clearly
a very unfortunate fact, since DSI is the only method of DW-MRI allowing a model-free
reconstruction of the EAP, which is a fundamental descriptor of cerebral diffusion.

In diffusion tensor imaging (DTI) [2, 9, 14, 15, 53, 66, 73, 98], the EAP is assumed to be
a Gaussian probability density. With this assumption, the DW-MR signal is completely
described by the related 3 × 3 diffusion tensor. Recovering the diffusion tensor requires
six diffusion-encoding gradients and it is typical to restrict the corresponding q-values to
belong to a single spherical shell in q-space. DTI is capable of capturing the orientation of
neural fibre tracts, and hence the neuroanatomy of the white matter. Moreover, the values
of the diffusion tensor can provide information on the spatial pattern of diffusion flow,
which can be described in terms of relative and fractional anisotropy, lattice index, as well
as by linear, spherical, and planar diffusion measures [15,97]. What is even more important
is that all the above measures can be computed along specific fibre tracts based on the
results of fibre tractography [11, 13, 59–61, 81]. The spectrum of neurological disorders
which are now much better understood due to DTI is impressively broad. Alzheimer’s
dementia and non-Alzheimer forms of degenerative dementia [69,78], multiple sclerosis [38],
amyotrophic lateral sclerosis [36], ischemic stroke [2], epilepsy [7], brain tumours [67],
movement disorders [105], and schizophrenia [76] are only a few examples in a long list
of such diseases (for a thorough overview see, e.g., [52, 84]). Unfortunately, since the DTI
model assumes water diffusion to be unimodal, its application at the spatial locations
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where neural fibres cross, touch upon each other, or diverge is known to result in severe
underestimation artifacts [3, 4, 39,40,92,93,98].

To resolve the shortcomings of DTI, the method of High Angular Resolution Diffusion
Imaging (HARDI) has been proposed [6, 31, 40, 92, 93]. At the practical level, HARDI is
similar to DTI except that it requires a considerably higher number of encoding gradients,
typically between 80 and 100. The availability of more samples in the q-space allows for
the use of more accurate and realistic models to describe the EAP. Specifically, HARDI
data can be used to approximate the DW-MR attenuation signal as a function of spatial
orientation u ∈ S2 and, subsequently, subject the resulting estimate to the Funk-Radon
transform. The significance of this computation is in the fact that, with a very high
accuracy, the result approximates the orientation distribution function (ODF) of diffusion
flow, which is related to the EAP through a radial projection onto the spatial direction
defined by u. Thus, while the EAP quantifies the likelihood with which a spin is displaced
by r, the ODF quantifies the likelihood with which the spin is expected to move in direction
u. Consequently, the local maxima of the ODF can be expected to point at the directions
of the most likely diffusion flows. Despite the fact that the ODF is only a projection of
the true EAP, it is still capable of resolving multiple diffusion flows (and, hence, fibre
orientations) within a single voxel – an analysis which is impossible to achieve by means of
DTI. For this reason, the advent of HARDI has revolutionized neural fibre tractography,
whose precision has since been improved by orders of magnitude [59–61].

Although the last two decades has seen DW-MRI develop into an established research
tool with a great impact on health care and neuroscience, like any other MRI technique
it remains subject to artifacts and pitfalls [16, 54]. While improving angular and spatial
resolution allows for better characterization of fibre crossings, doing so drastically reduces
the signal-to-noise ratio (SNR). The pronounced measurement noises tend to obscure and
distort diagnostically relevant details of DW-MR signals [54], thereby necessitating appli-
cation of the efficient and reliable tools of image denoising. One classic method to decrease
MRI measurement noise is to average several (typically 3 to 10) measurements of the signal
on the expectation that the random contributions will cancel out. In HARDI, however,
an increased number of acquisitions would lead to prohibitive scan durations and alter-
native methods must be explored. A more efficient solution is to average similar samples
in the same dataset. Thus, for example, since HARDI signals are effectively band-limited
denoising can be accomplished by means of linear filtering. However, the spatial depen-
dency of diffusivity in brain tissue makes it impossible to find a single set of linear filter
parameters which is optimal for all types of diffusion signals. An adaptive filtering tech-
nique seems necessary. This thesis proposes a new type of non-local means (NLM) filtering
which possesses the required adaptivity property. The proposed NLM filtering, as opposed
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to similar methods in the field, includes in the average samples from all dimensions of the
signal domain. Moreover, the weights are designed to be based solely on a sample’s local
orientational diffusion characteristics, are invariant to spatial rotations, and are indepen-
dent of the particular sampling scheme in use. This thesis provides a detailed description
of the proposed filtering procedure, as well as experimental results with synthetic and real-
life data. It is demonstrated that the proposed filter has substantially better denoising
capabilities as compared to a number of alternative methods.
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Chapter 2

Literature Review

In virtually all realizations of MRI, attaining higher spatial resolution entails using longer
acquisition times. Apart from being highly undesirable from the perspective of patients’
comfort and compliance, longer acquisition times lead to motion-related artifacts, which
are the main foe of diffusion MRI [52, Ch.2]. On the other hand, the reduction of acquisi-
tion time results in a loss of spatial resolution as well as in an amplification of measurement
noises. Moreover, attaining high angular resolution in the recovery of the Ensemble Av-
erage Propagator (EAP) and EAP-related functions requires the use of strong encoding
gradients, which has the undesirable effect of further decreasing the signal-to-noise ratio
(SNR). Consequently, pronounced measurement noises tend to obscure and distort diag-
nostically relevant details of DW-MR signals [54], thereby necessitating application of the
efficient and reliable tools of image denoising. In this chapter, we review a number of
available filtering techniques developed specifically for HARDI denoising. First, however,
prerequisites regarding the mathematical nature of the HARDI signal are provided.

2.1 HARDI signal description

In this section we define the HARDI signal in a purely mathematical manner, devoid of
physical significance, and postpone the theory of signal acquisition until Chapter 3. It is
of fundamental importance to consider the manifold to which the HARDI signal belongs,
since proper filtering ought to take the signal domain into account. The HARDI signal
S(r,u) can be made precise as a scalar function defined on the product space R3× S2, i.e.
S(r,u) : R3 × S2 → R. In practice, the HARDI signal is measured over a discrete domain.
One illustration of sampling locations on the R3×S2 manifold is that of a discrete lattice of
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discrete locations on the unit sphere (see Figure 3.6 in Chapter 3). Whereas this portrayal
is particularly useful for visualizing denoising schemes based on the weighted averaging
of samples, a number of alternative signal descriptions are important for visualizing other
types of denoising approaches. One such description defines the HARDI signal as discrete
in R3 and continuous in S2 - visualized as a discrete collection of continuous spherical
functions {Sn(u)} where n is an indexing parameter and Sn(u) : S2 → R. The first
method of Section 2.4 took this view and proposed to denoise each spherical function
independently. Alternatively, the HARDI signal can be defined as continuous in R3 and
discrete in S2 - visualized as a discrete collection of continuous Euclidean images {Sk(r)}
where k is an indexing parameter and Sk(r) : R3 → R. The methods in Section 2.2 consider
the images in this collection to be independent and denoise each one separately. However,
the Euclidean images can also be coupled by combining them in a vector. This is done in
both Section 2.5 and Section 2.4. It is then proposed to denoise the resulting vector-valued
image S(r) : R3 → RK , where K is the number of elements in the indexing set of k.
Thus, whereas the methods in Section 2.2 smooth image intensities in the R3 domain, the
methods in Sections 2.4 and 2.5 smooth sampled spherical functions in the R3 domain.

In addition to defining the HARDI signal domain, it is also important to consider
the characteristics of HARDI measurement noise. The majority of filtering techniques
available in the imaging sciences are based on an assumption of additive white Gaussian
noise. Unfortunately, HARDI measurements follow a Rician distribution. Although it is
true that the Rician distribution can be closely approximated by a Gaussian distribution
for large SNR, HARDI often requires the use of strong diffusion-encoding gradients which
cause profound signal attenuation, bringing signal amplitudes near the noise floor. In these
circumstances, filtering techniques may benefit from taking into consideration the Rician
nature of the measurements.

2.2 Individual DW-image denoising

The methods summarized in this section are designed to denoise classical MR images. In
a straightforward approach, these methods can be applied individually to each DW-image
composing the HARDI signal. However, this strategy ignores the manifold to which the
signal belongs and, consequently, ignores pertinent information contained in the angular de-
pendencies between samples. Nevertheless, the following paragraphs provide a compressed
tour of available techniques relevant to MRI denoising.

The current arsenal of image denoising methods used in MRI is immense, which makes
their complete classification a non-trivial task. For this reason, only three groups of denois-
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ing methods which are germane to the present developments are mentioned below, while
the reader is referred to the references for a more comprehensive literature review. The
first group of denoising algorithms for MRI encompasses variational methods, which are
implemented through the solution of partial differential equations (PDE) [12, 37, 41, 57].
Thus, for example, [41] suggests an adaptation of the classical anisotropic diffusion filter
of [72] for noise reduction and enhancement of object boundaries in MRI. On the other
hand, the denoising method of [57] is based on minimization of an original cost functional,
whose associated gradient flow has the form of a fourth-order PDE. In [37], information
from both the body coil image and surface coil image are incorporated in the form of data
fidelity constraints. Finally, [12] introduces a maximum-a-posteriori (MAP) technique us-
ing a Rician noise model in combination with spatial regularization.

A second group of denoising methods takes advantage of the sparsifying properties of
certain linear transforms [5,8,48,49,70,74,94,101,103,107] (for a comprehensive review of
such methods, the reader is also referred to [75]). Thus, for instance, the method of [70]
is based on wavelet thresholding applied to squared-amplitude MR images, supplemented
by an “unbiasing” of the scaling coefficients to account for the non-central chi-square
distribution statistics. A different (robust) shrinkage scheme in the domain of a wavelet
transform is proposed in [74]. Using a different line of arguments, the wavelet denoising
method of [107] is applied to complex-valued MR images. Finally, in [5], the MR images
are enhanced by means of a wavelet-domain bilateral filter.

A third group of image denoising algorithms is based on the concept of non-local means
(NLM) filtering, which was originally proposed in [20–22], with later improvements re-
ported in [18, 29]. As a general rule, NLM filters estimate a noise-free intensity of a given
pixel as a weighted (linear) combination of the rest of the image pixels. Here, the weights
of the linear combination are determined based on a similarity measure between the neigh-
bourhoods of the “target” and “source” pixels. As a result, the performance of an NLM
filter is largely defined by the optimality of a chosen similarity measure with respect to
the properties of the image to be enhanced as well as those of the measurement noise.
Thus, for example, under the conditions of additive white Gaussian (AWG) noise contam-
ination, the above-referred NLM filters have been shown to outperform many variational
and wavelet-based filters in terms of noise removal and the quality of edge preservation.

Motivated by the success of NLM filtering in general image processing, the works in [28,
99] have extended the Gaussian-mode NLM filters to MR imagery. Additional reports on
the subject also include [34,62,63,100], where the filters are applied to squared-magnitude
MR images, followed by subtracting an estimation bias from the results thus obtained.
Specific to DW-MRI, [34] has reported improved quality of anisotropy maps computed
from the apparent diffusion coefficient and orientation distribution function.
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2.3 Kernel smoothing on S2

Perhaps the the most famous denoising method applied in imaging sciences is Gaussian
filtering, which reduces noise by convolving the noisy image with a Gaussian kernel. This
method can also be reformulated as the solution to a diffusion equation. Namely, it can
be shown that Gaussian kernel smoothing is equivalent to performing a diffusion process
on the initial data where the time duration of diffusion is related to the kernel’s effective
support. Special care must be taken when extending diffusion smoothing to non-Euclidean
space. Differential equations describing a diffusion process which is restricted to evolve on
a particular manifold must use a definition of the derivative which takes the manifold’s
geometrical shape into consideration.

A number of methods have been proposed to extend diffusion smoothing to the S2

manifold. Whereas some approaches have attempted to numerically solve the differential
equation for spherical diffusion, [24] and [26] proposed a solution using the equivalent op-
eration of kernel smoothing on S2. Both of the above references analytically constructed
the Gauss-Weierstrass kernel using spherical harmonics, albeit employing different deriva-
tions. It was shown that, analogous to the case in Euclidean space, spherical convolution
with the Gauss-Weierstrass kernel is equivalent to performing a spherical diffusion process.
The effective support of the kernel determines the degree of filtering and is related to the
time duration of the diffusion process. In particular, large kernel support is used to filter
low frequency signals and small support to filter high frequency signals. In application to
HARDI denoising, Gauss-Weierstrass kernel smoothing can be independently performed on
the spherical function at each spatial location. Unfortunately, the diverse types of spherical
functions encountered in HARDI make it impossible to find a single, optimal kernel width.

Improved performance can be gained from kernel smoothing by regarding the technique
as a weighted average, where weights are based on proximity. The average provides an
approximation of the estimated sample’s expected value. In the case of MRI statistics, the
expected value estimate can then be used to approximate the signal’s true amplitude by
removing a bias as described in Section 4.4 (see also Section 3.3).

2.4 Variational denoising of diffusion MRI

Variational methods fit a continuous function to measurements via the minimization of
an energy functional – an integral involving the unknown function. Noise is removed by
regularization, a technique employed to overcome the ill-posedness of many reconstruction
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problems. It is important to note that the numerical method used to minimize the func-
tional must take into account the geometric shape of the manifold to which the solution
belongs. In the case of the R3 × S2 manifold, these numeric methods become complicated
and, to simplify the problem, regularization is often performed in only one domain of the
product space. The denoising approach proposed by McGraw et al. in [64] used two dif-
ferent variational frameworks to separately regularize the HARDI signal in the S2 domain
and the R3 domain.

Regularization in the S2 domain was accomplished by smoothing splines, an adapta-
tion of archetypical interpolating splines. Interpolating splines are piecewise-polynomial
functions that minimize an energy functional with respect to additional interpolation con-
straints. The variational problem seeks to find a smooth function with low-valued deriva-
tives and the specific derivatives included in the energy functional determine the type of
spline minimizer. The method of smoothing splines, on the other hand, modifies this vari-
ational problem by relaxing the interpolation constraints and replacing them with a data
infidelity penalty functional in the objective. Thus, by varying the weight of the penalty
function, a trade-off between data fidelity and signal smoothness is introduced into the
solution. It should be noted that one can invert the roles of the above functionals, viewing
a data fidelity functional as the original objective and the spline functional as a roughness
penalty.

More specifically, McGraw et al. used a weighted combination of the thin-plate spline
and membrane spline. The energy functional of these splines measures the potential energy
stored in a hybrid membrane due to a deformation from its relaxed state. In the absence of
interpolation constraints or a data fidelity term, the minimizer is a constant function over
the sphere. Introducing data fidelity into the objective is equivalent to attaching springs
between the membrane and the observed data points. Therefore, the complete variational
problem minimizes the potential energy in both the membrane and the springs in order to
reach an equilibrium, while tuning parameters control the relative strength of the two op-
posing forces. Strong springs and a weak membrane produce a fluctuating minimizer which
passes through the observed data, whereas weak springs and a firm membrane produce a
smooth minimizing function which is allowed to deviate significantly from the observed
data. In practice, one tries to find parameters which result in a smooth solution that is
close to the observed data but not fitted to the noise. For example, stronger springs and
a weaker membrane are used to fit data whose noise-free signal is known to contain high
frequency components. On the other hand, weaker springs and a stronger membrane are
used to fit the noisy observations of a low frequency signal. However, the diverse types of
spherical functions encountered in diffusion imaging makes it impossible to find a single
set of optimal tuning parameters with respect to the underlying function regularity. Apart

10



from the underlying signal, the variance of measurement noise also informs the choice of
tuning parameters. In the case that measurement noise has small variance, strong springs
are used, while weak springs are used with large noise variance. Unfortunately, the vari-
ance of MRI measurement noise fluctuates with signal amplitude (see Figure 3.3) making it
impossible to find a single set of optimal tuning parameters with respect to noise variance.

Among the various numerical techniques available to solve spline variational problems,
McGraw et al. used a standard method of finite element methods (FEM). In particular,
the global coordinates of the FEM system were chosen to be spherical and the domain was
discretized into triangular elements using icosahedron sampling. Additionally, the fifth
order element shape functions given by Dhatt and Touzot [35] were used, as this element
guarantees C1 continuity across triangles.

Smoothing in the spatial domain R3 was accomplished via total variational (TV) reg-
ularization. TV was introduced by Rudin et al [79] and has proven to be successful in
removing noise while preserving edges. The variational minimization problem incorporates
a data fidelity term which brings the solution close to the observed data in the L2 sense and
a TV roughness penalty term which encourages the solution’s gradient to be small. Blom-
gren and Chan have investigated extending TV regularization to vector-valued images [17].
Considering the HARDI signal as continuous in R3 and discrete in S2, a vectorfield with
vectors corresponding to sampled spherical functions, McGraw et al. followed Blomgren
and Chan’s approach with two modifications. Blomgren and Chan proposed the TV norm
to be defined as the l2 norm of a vector containing each scalar image’s classical TV norm.
McGraw et al. modified the definition to use an l1 norm instead and achieved a decou-
pling which would permit a form of TV denoising to be performed on each DW-image
independently. However, McGraw et al. also introduced an adaptive weighting on the TV
regularization term which re-coupled the denoising problem. The TV norm was weighted
adaptively according to the generalized anisotropy index defined in [71], permitting strong
regularization in regions where sampled spherical functions have homogeneous anisotropy
and stopping denoising on anisotropic edges. The generalized anisotropic index is computa-
tionally more efficient to implement than the coupling term found in Blomgren and Chan’s
approach. The final variational problem was solved using a variational gradient descent
approach with the resulting partial differential equation being solved using “fixed-point
lagged diffusivity.”.

Both of the aforementioned variational approaches from [64] make use of a regulariza-
tion term. Regularization compensates for missing degrees of freedom in reconstruction
problems by cleverly including an a priori assumption about the solution. Formally, reg-
ularization can be based on a Bayesian estimation framework, which requires pre-defining
an a priori statistical model for the unknown image of interest. Since different prior models
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result in different estimation outcomes, the choice of prior is crucial. However, in the field
of medical imaging, there is no consensus as to which type of image prior should be used
and there does not seem to be any objective means to assess the validity of one prior over
another. Moreover, the incorrect definition of a prior model can result in a distorted ap-
pearance of diagnostically relevant features, which could potentially lead to misdiagnosis.
This is why, when little is known about the nature of the image of interest (as is typi-
cally the case in medical imaging due to inter-subject variability and the intrinsic intricacy
of biological tissues), it makes sense to design image reconstruction procedures to be as
independent as possible from a priori assumptions.

2.5 Total variation denoising of the ADC

The variational approach proposed by Kim et al. in reference [56] is similar to the spatial
regularization method reviewed in the second half of the previous section. However, instead
of denoising the raw HARDI signal, Kim et al. proposed to denoise the Apparent Diffusion
Coefficient (ADC) by fitting an ADC model (see Equation 3.34) to the observed HARDI
data. The adopted model was chosen to be continuous in the spatial domain R3, yet
discrete in the spherical domain S2. In this case, it is helpful to view both the ADC
parameter and corresponding image formation model as a vectorfield over R3; at each
spatial location exists a vector of samples taken from an underlying spherical function.
Kim et al. proposed a vector total variation approach for ADC regularization in the R3

domain. The recovered ADC can subsequently be substituted into the image formation
model to obtain the denoised HARDI data.

The energy functional to be minimized was composed of three terms. The first was a
data fidelity term forcing the ADC model to be close to the observed data. Data fidelity
was constructed with an L1 norm minimization rather than the more standard L2 norm
minimization. The second term was a vectorial TV regularization term, first introduced
by Blomgren and Chan for color images [17]. Kim et al. proposed to denoise the ADC
and, accordingly, regularization was implemented as the vectorial TV norm of the ADC
parameter. The final term in the energy functional was a constraint term which ensured
that the minimizing ADC solution only admit positive values. Negative ADC values would
imply signal amplification due to diffusion, a physical impossibility. The constraint term
was realized by an adaptation of the log barrier method. The minimizer was found numer-
ically using the gradient descent method, with the resulting partial differential equations
being solved by finite difference methods. Referring the reader to the discussion in the last
paragraph of the previous section, it is briefly noted here that although regularization rec-
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tifies the ill-posedness of the reconstruction problem, there is some ambiguity as to which
regularization term is most correct and the degree to which an incorrect choice will distort
the appearance of diagnostically relevant features.

2.6 NLM for diffusion MRI

The non-local means filter (NLM), which was originally proposed in [20–22], estimates the
noise-free intensity of a given “source” sample as a weighted average of other “target”
samples in the image. Whereas kernel smoothing schemes restrict large weights to be
assigned to target samples in the vicinity of the source sample, non-local means makes no
such restriction. Instead, the target sample’s weight in the average is decided solely on a
similarity measure between source and target neighbourhoods.

Nicolas Wiest-Daessle et al. proposed a number of NLM variants for the denoising of
diffusion-weighted MRI [99]. The filter most relevant to HARDI treats the signal as a
discretized vectorfield - i.e. at each discrete location in space is a vector of samples taken
from an underlying spherical function. Therefore, instead of estimating a source sample
as a weighted average of target samples, the proposed filter estimates a source vector as a
weighted average of target vectors. Correspondingly, each target vector’s contribution to
the average is determined by a similarity measure between vector neighbourhoods. Thus,
Wiest-Daessle et al. compare neighbourhoods which are localized in R3 but include all
information from S2. The method, however, seems slightly restrictive when considered from
the viewpoint of estimating a single sample. For example, when estimating a source sample,
only target samples with the same spatial orientation are included in the average. In other
words, it is inherently assumed that target samples with a different spatial orientation
are not similar to the source sample. The above considerations indicate that it may be
beneficial to investigate comparing neighbourhoods localized in S2 in order to increase the
number of relevant target samples included in the source sample estimation.
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Chapter 3

Theory

The purpose of this chapter is to provide the theoretical background of diffusion-weighted
(DW) magnetic resonance imaging (MRI). For completeness, a brief overview of classical
MRI theory is given in Section 3.1. Continuing, the developments of DW-MRI are provided
in Section 3.2. In particular, high angular resolution diffusion imaging (HARDI) acquisition
is described in Section 3.2.4, which provides the theory necessary to understand in what
sense neighbouring HARDI samples are “close” to each other. HARDI measurement noise
is described in Section 3.3. Finally, spherical harmonics, an important tool for HARDI
signal analysis, are introduced in Section 3.4.

3.1 Physics of magnetic resonance imaging

Living tissue in the human body is predominantly composed of water. In fact, the water
content of the human body is roughly 60%. MRI is able to leverage the predominance of
water in tissue by measuring its behaviour as a function of spatial location. By subjecting
water molecules to a sequence of magnetic pulses and measuring the response, data is
acquired permitting the detailed display of a subject’s internal structure. This section
contains a brief and simplified introduction to the physics of the MR imaging modality
which will be beneficial in understanding the future sections concerning diffusion-weighted
imaging. The information provided in this section is largely a summary of the references [25]
and [46].
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3.1.1 The spin

The water molecule, which is essential to the functioning of MRI, is composed of three
atoms: one oxygen atom and two hydrogen atoms. The MRI scanner manipulates hydrogen
atoms, which makes hydrogen’s atomic properties a fundamental subject of MRI. According
to the theory of quantum mechanics, each hydrogen nuclei posses the fundamental property
of spin. Spin was classically conceived as the rotation of an electrically charged particle
about an axis which induces a magnetic moment. Moreover, the direct relationship between
the particle’s angular momentum J (or spin property) and the induced magnetic moment
µ is given by

µ = γJ, (3.1)

where γ is the gyromagnetic constant, a proportionality constant with units rad/s/T, found
experimentally.

Although it is true that the atomic property of spin obeys the same mathematical laws
as angular momentum, a number of additional properties have been discovered which make
spin categorically different from orbital angular momentum. However, for our purposes, it
will be convenient to continue considering spin as the classical idea of a charged particle
rotating about an axis. It is important to note that due to the close relation between
spin and magnetic moment, it is standard to refer to the hydrogen magnetic dipoles µ as
‘spins’. The following sections explain how spins are harmonized in order to generate a
net magnetic effect which is measurable.

3.1.2 Larmor precession and alignment

Under normal circumstances, a collection of spins in a sample have no fixed orientation;
the orientations are randomly distributed throughout the sample and the magnetic effect
of any particular spin is counteracted by the magnetic effects of other spins in the sample.
However, it is possible to use an external magnetic field to align the spins in the same
direction. In the presence of an external magnetic field, B, a torque is exerted on the spins
akin to the torque experienced by a current loop when exposed to an external magnetic
field. The torque N on a spin µ is given by

N = µ×B. (3.2)

This torque requires that the hydrogen’s total angular momentum J change according to

dJ

dt
= N (3.3)
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Upon substituting (3.1) and (3.2). into (3.3), it is observed that:

dµ

dt
= γµ×B. (3.4)

If the external magnetic field B is along the z-axis and is constant in time, denoted
B0 = |B0|ẑ, then the solution to (3.4) is the well-known result of precession. Thus, the
external magnetic field causes the spin to precess about B0 (see Figure 3.1) analogous to
the precession of a spinning top about a gravitational field. The precession solution can
be written in Cartesian form as

µx(t) = µx(0) cos(ω0t) + µy(0) sin(ω0t)

µy(t) = µy(0) cos(ω0t)− µx(0) sin(ω0t)

µz(t) = µz(0) (3.5)

It is important to note that the angular frequency ω0 with which the spin precesses is
given by the Larmor equation

ω0 = γ|B0|, (3.6)

and is referred to as the Larmor frequency. An interesting consequence of (3.6) is that if
B0 is not spatially uniform, then spins located at positions with greater field intensity will
precess with increased frequency.

Figure 3.1: A spin precessing about B0

Although not evident from (3.5), in reality, a spin cannot precess about B0 indefinitely.
While precessing, the spin dissipates energy into the surrounding environment by means
of vibration and increased temperature. This process causes all spins to adjust exponen-
tially into a state of thermal equilibrium and alignment with B0 (see Figure 3.2). This
phenomenon, known as relaxation, is discussed in Section 3.1.5.
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Figure 3.2: The process of a spin aligning with B0 [52]

3.1.3 Resonance and in-phase precession

While the application of a static magnetic field B0 induces spin precession, other types of
magnetic fields induce different spin behaviour. In particular, an oscillating magnetic field
applied perpendicular to B0 rotates a spin out of alignment with B0. This phenomenon is
referred to as resonance and is noticeable in the name of magnetic resonance imaging.

The oscillating field, or rf pulse, is, as the name suggests, only applied for a short
duration and in the radio frequency range. Analyzing the effects of an rf pulse is best
accomplished using a rotating reference frame and more details can be found in references
[25, 46]. The analysis shows that rf pulses are characterized by their flip angle, the degree
to which they tip a spin. For example, a 90◦ pulse tips the spin perpendicular to B0

whereas a 180◦ pulse turns the spin upside-down. The flip angle is increased by increasing
the amplitude or duration of the rf pulse.

One important application of the rf pulse is the process of excitation. A spin which has
reached a state of alignment with B0 can be tipped into the transverse plane via application
of a 90◦ pulse. Once out of alignment, the spin again begins to precess about B0 (see
Figure 3.3). All spins which are simultaneously excited precess about B0 simultaneously
and in phase.

Figure 3.3: The process of excitation [52]

It is important to emphasize that only spins precessing with the same frequency as the
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rf pulse experience the excitation torque. If a spin’s precession frequency differs from the
rf oscillation frequency, not much happens except a little wobbling around B0. In the case
of a spatially non-uniform B0, the spin precession frequency varies with spatial location
(see Equation 3.6) and it is possible to selectively excite specific spins.

3.1.4 Idealized sample spin density measurement

An excited spin is essentially a rotating magnetic dipole which, according to Faraday’s law
of induction, can be detected through the voltage induced in a receiver coil (see Figure 3.4).
Faraday’s law states that a fluctuating magnetic flux through a closed circuit induces an
electromagnetic force (voltage) in that circuit. The voltage induced is proportional to the
rate of change of magnetic flux. Formally, Faraday’s law is stated

V (t) = −dΦ(t)

dt
, (3.7)

where V (t) is the voltage and Φ(t) is the magnetic flux.

Figure 3.4: Magnetic dipole cutting across a receiver coil

Due to the initially random orientations of the dipoles, spins will precess out of phase
on first application of an external magnetization field and no noticeable signal will be
detectable. Spins are brought to precess in phase through alignment and excitation, after
which spin dipoles constructively interfere to induce a measurable voltage signal. Naturally,
the frequency of the signal is equal to the Larmor frequency.

A more precise development can be made by considering the collective magnetization
of all the spins in a volume V , which is known as the magnetization vector M

M =
1

V

∑
i∈
protons

in V

µi. (3.8)

18



It is standard to make a simplifying assumption that the applied external magnetization
field is in the ẑ direction (i.e.. B0 = |B0|ẑ). In this case, only the transverse components of
the magnetization vector cut across the receiver coil to contribute to the induced voltage.
The transverse component of M is written

M⊥ = Mx x̂+My ŷ. (3.9)

After a number of idealizations and approximations have been made, the total voltage
induced in the receiver coil can be derived to be proportional to [46]

s(t) ∝
∫
|M⊥(r, t)| sin (ω0t)dr, (3.10)

where ω0 is the Larmor frequency. The high frequency oscillations are removed by a process
of demodulation and the resulting signal depends only on the transverse magnetization
vector, which is proportional to spin density. Thus, by appropriately normalizing the
demodulated signal, the spin density of the sample can be determined. It should be noted
that, rather than measure the spin density of an entire sample, it is also possible to measure
the spin density of a specific voxel. However, this requires the use of gradient magnetic
fields, the subject of Section 3.1.6.

3.1.5 Relaxation and the Bloch equation

The solution expressed in (3.5) seems to indicate that spins, and their corresponding mag-
netization vector, should oscillate indefinitely in the presence of a static external magnetic
field. The analysis, however, ignores interactions between the spins and their surrounding
environment. Rather than precess indefinitely, spin interactions cause the magnetization
vector to return to its thermal equilibrium position. Although properly understood in the
context of quantum mechanics, some understanding of these interactions can be gained
from a classical perspective. The phenomena are captured in the T1, T2, and T2* relax-
ation effects.

T1 relaxation describes the recovery of the magnetization vector’s Mz component to
thermal equilibrium as spins dissipate extra energy, acquired from excitation, into the sur-
rounding environment. T2 relaxation, on the other hand, describes the decay of M⊥ due to
an irreversible dephasing of the spins. Specifically, T2 relaxation is a loss of synchronization
which occurs as each spin’s Larmor frequency changes on account of neighbouring spins’
oscillating magnetic fields. It should be noted that the T1 and T2 relaxation are separate
processes transpiring over different timespans (i.e.. relaxation is not simply a rotation of
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the magnetization vector from the transverse plane to the ẑ direction) and it is typical for
M⊥ to decay faster than the recovery of Mz. T1 and T2 relaxation times are determined
by the substance’s biochemical composition, making both important for internal structure
analysis. By altering pulse sequence timing parameters, it is possible to allow either T1 or
T2 relaxation to dominate the received signal producing the T1-weighted and T2-weighted
images, respectively. Alternatively, proton density (PD) contrast is achieved by limiting
both relaxation effects.

The effect of T1 and T2 relaxation on the Magnetization vector are captured in the
phenomenological Bloch equation [25, 46]

dM

dt
= γ(M×B0) +

1

T1

(M0 −Mz)ẑ −
1

T2

M⊥. (3.11)

In the case that B0 = |B0|ẑ, the solution to the Bloch Equation is given by

Mx(t) = e−t/T2 [Mx(0) cos(ω0t) +My(0) sin(ω0t)]

My(t) = e−t/T2 [My(0) cos(ω0t)−Mx(0) sin(ω0t)]

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) (3.12)

Note the similarity to the pure precession solution of (3.5) with the addition of exponential
decays.

An additional relaxation effect, known as T2* relaxation, also occurs due to spin dephas-
ing. Small inhomogeneities in B0 cause small variances between spin Larmor frequencies
which results in dephasing. However, unlike T2 dephasing, T2* dephasing is reversible.
Hahn’s spin echo method is capable of recovering spin coherence via a refocusing pulse.
The refocusing pulse is an rf pulse with 180◦ flip angle, which inverses the spins’ orientation
in the transverse plane. Applied at a time τ after excitation, the refocusing pulse puts the
faster precessing spins behind the slower precessing spins. At a time 2τ after excitation
the fast spins catch up to the slow spins and all spins are back in phase. The following
common analogy provides a helpful illustration of the spin echo method. Imagine a race,
where every runner starts at the line (phase coherence after excitation) and runs with
different but constant speeds (different Larmor frequencies). After a time τ all runners
are at different positions (dephasing). However, if they simultaneously reverse directions
(refocusing pulse), maintaining their respective speeds, then at time 2τ all runners will
again be in line.
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3.1.6 Gradient magnetic fields and spatial resolution

The application of nuclear magnetic resonance to internal structure analysis requires spa-
tial resolution - the ability to recover the magnetization vector at every point in space.
Discrimination of spin characteristics with respect to spatial position is achieved by vary-
ing the Larmor frequency as a function of location. According to the Larmor Equation 3.6,
the addition of a persistent gradient magnetic field will gradually increase the precessional
frequency of the spins along the gradient direction. On the other hand, a pulsed gradient
magnetic field changes the phase of the spins along the gradient direction. The manipula-
tions of spin frequency and phase allow for slice selection and phase encoding, respectively.

Slice selection

Slice selection is a procedure used to selectively excite a single 2D plane of spins in the
sample. In accordance with the Larmor Equation 3.6, applying a linear gradient magnetic
field causes a linear spatial change in spin angular frequency along the gradient direction.
Thus, applying an rf pulse of a specific frequency will excite only those spins in spatial
locations with matching Larmor frequencies. For example, if the gradient magnetic field
direction is ẑ, then at each z location is a transverse plane with spins with the same Larmor
frequency (it is helpful to think of the entire volume as a stack of transverse planes, each
having a different Larmor frequency). By setting the rf pulse to match only one plane’s
Larmor frequency, only that slice of spins are excited. Spins not in the excited plane remain
aligned with B0 and do not contribute to the induced signal in the receiver coil.

Phase encoding and K space

Following slice selection, phase encoding enables the measurement of the magnetization
vector at each point in the selected slice, which we again consider to be the x-y transverse
plane. In order to precisely articulate the theory of phase encoding, it is first necessary to
state and discuss the mathematical equations resulting from the demodulation of the re-
ceived signal (3.10). Following demodulation, the signal received from real and quadrature
channels can be written in complex representation as (see [46] for more details)

s(t) ∝
∫
|M⊥(r, t)|ei(Ωt−φ(r,t))dr. (3.13)

The symbol Ω denotes the demodulation frequency and the angle φ(r, t) is the accumulated
phase of the spins at location r. The accumulated phase is calculated by integrating the

21



spin frequency with respect to time

φ(r, t) =

t∫
0

ω(r, τ)dτ, (3.14)

where frequency ω(r, t) is determined by Larmor Equation 3.6. In the absence of a gradient,
a spatially uniform external magnetic field produces a spatially uniform accumulated phase
of φ(r, t) = ω0t where ω0 is the Larmor frequency. However, if the external field is non-
uniform, then the accumulated phase depends on location r

φ(r, t) =

t∫
0

ω0 + ω′(r, τ)dτ = ω0t+ φ′(r, t). (3.15)

The additional terms ω′(r, t) and φ′(r, t) bring to attention the change in frequency and
therefore accumulated phase at spatial locations where the magnetic field differs from B0.

Phase encoding involves the application of pulsed gradients Gx and Gy to vary the
intensity of the magnetic field along the x̂ and ŷ directions of the transverse plane. The
deviation from B0 results in the spins at each (x,y) position accumulating a different phase
dependent on position

φ(x, y, t) = ω0t+ 2π(kxx+ kyy) (3.16)

kx =
γ

2π

t∫
0

Gx(τ)dτ (3.17)

ky =
γ

2π

t∫
0

Gy(τ)dτ (3.18)

With a demodulation frequency Ω = ω0 and accumulated phase given by (3.16), the
received signal (3.13) can be written

s(t) ∝
∫
|M⊥(x, y)|e−i2π(kxx+kyy)dxdy, (3.19)
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commonly rewritten

F (kx, ky) =

∫
f(x, y)e−i2π(kxx+kyy)dxdy, (3.20)

where F (kx, ky) denotes the received signal and f(x,y) represents |M⊥(x, y)|.

Inspection of (3.20) shows that the mathematical recovery of f(x, y) is possible using
the inverse Fourier transform. In practice, K space is sampled at a sufficient number of
points to recover f(x, y) (discretized) using the inverse fast Fourier transform. The pixel
intensity at each location in the recovered image f(x, y) is dictated by the spin density, T1
relaxation, and T2 relaxation specific to that location.

Ideally, f(x, y) should be recovered as a real-valued image, however, practical limita-
tions result in f(x, y) being complex-valued. This can occur, for example, if there is any
error in matching Ω to ω0. In this case, the signal measured in k-space is

F (kx, ky) =

∫
f(x, y)e−i2π(kxx+kyy)+iθdxdy =

∫
f(x, y)eiθe−i2π(kxx+kyy)dxdy, (3.21)

where θ is a global phase shift equal to (Ω − ω0). Taking the inverse Fourier transform
recovers the complex quantity f(x, y)eiθ. This problem is overcome by computing the MR
magnitude image

|f(x, y)| =
√
<{f(x, y)eiθ}2 + ={f(x, y)eiθ}2 (3.22)

or simply,
M =

√
(A cos(θ))2 + (A sin(θ))2. (3.23)

The above equation is instrumental in understanding the statistical nature of measurement
noises in MR magnitude images. An example of an MR magnitude image is shown in
Figure 3.5.
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Figure 3.5: MR image of the human brain

3.2 Diffusion-weighted magnetic resonance imaging

Despite the importance of traditional T1,T2, and PD contrasts to clinical diagnosis, they
have been unable to demonstrate effectiveness in delineating the morphological structure
of the white matter – the information which is known to be related to a wide spectrum
of brain-related disorders [7, 36,38,69,78,84,105,106]. It is only with the recent advent of
diffusion-weighted MRI (DW-MRI) that scientists have been able to perform quantitative
measurements of the diffusivity of white matter, making possible the structural delineation
of neural fibre tracts in the human brain. This section outlines developments in the DW-
MRI field which lead to the establishment of high angular resolution diffusion imaging
(HARDI).

3.2.1 Diffusion weighted imaging

As the name suggests, diffusion weighted imaging (DWI) is an MR imaging modality in
which the image voxel intensity is weighted by the strength of diffusion occurring in its
vicinity. The weighting is accomplished using the spin echo method of Hahn, discussed
in Section 3.1.5. Although Hahn recognized that spin echo was sensitive to diffusion,
it was Carr and Purcell who developed the initial framework for making quantitative
measurements of the diffusion coefficient. Later, Stejskal and Tanner introduced a novel
Pulsed Gradient Spin Echo (PGSE) experiment which greatly improved upon previous
techniques and remains the basis of the protocols implemented by modern scanners [83].

DWI employs two diffusion-encoding gradients, both denoted by g. The first gradient
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is applied prior to the refocusing pulse and the second gradient afterwards. The first
encoding gradient intentionally causes T2* dephasing along the gradient’s direction. The
spin echo method is then used in conjunction with a second encoding gradient to reverse the
dephasing. However, diffusion occurring in the direction of the encoding gradients during
the time between their application, known as the mixing time ∆, may impair the process of
phase correction. Returning to the race analogy of Section 3.1.5, imagine a runner who, at
the beginning of the race, initially jogs slowly (during the first encoding gradient, spin is in
a position with low gradient field intensity), yet after reversing directions begins to sprint
quickly (after refocusing and during the second encoding gradient, the spin has diffused into
a high gradient field intensity). Similarly, another runner might initially sprint quickly and
after reversing directions jog slowly. It is evident that the second runner will not be able
to catch up with the first runner. This analogy illustrates how diffusion works against the
spin echo method, inhibiting the refocusing of spin dephasing and causing an attenuation
of the received signal. Yet, it is the measurement of signal attenuation which facilitates
the determination of the diffusion coefficient.

Many of the early mathematical frameworks relating signal attenuation to the diffusion
coefficient were specific to the particular diffusion-encoding protocol in use. However, an
alternative and more general mathematical explanation was given by Torrey in 1956. Using
the Einstein relation, Torrey generalized the phenomenological Bloch Equation (3.11) to
include attenuation effects due to isotropic free Gaussian diffusion [87]

dM

dt
= γ(M×B0) +

1

T1

(M0 −Mz)ẑ −
1

T2

M⊥ +D∇2M, (3.24)

where D is the diffusion coefficient from Fick’s Law. More generally, D is referred to as
the apparent diffusion coefficient (ADC), a name indicating that many materials do not
permit the free Gaussian diffusion assumed in Torrey’s derivation. Many tissues have a
microstructure which inhibits spins along their random walks. These restrictions result
in the spins’ mean squared displacement per unit time being lower than that observed in
free water. Consequently, the measured diffusion coefficient in these materials is also lower
than what would be observed if the material truly followed free Gaussian diffusion.

The solution to the above Bloch-Torrey Equation when B0 = |B0|ẑ admits a transverse
magnetization vector with an additional term accounting for attenuation due to diffusion

|MD
⊥(r, t)| = |M⊥(r, t)|e−bD(r). (3.25)

This is the value obtained from K space reconstruction and a single voxel in the recon-
structed image is commonly rewritten in the notation

SD = S0 e
−bD, (3.26)
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with S0 absorbing effects due to spin density, T1 relaxation, and T2 relaxation. The b-value
appearing in the exponential depends on parameters specific to the diffusion-encoding
protocol in use. For instance, Stejskal and Tanner’s PGSE experiment admits a b-value
of b = (γδ|g|)2(∆− δ

3
), where δ is the duration of the diffusion-encoding pulse [83]. As is

evident from (3.26), the choice of b-value has an effect on the signal-to-noise ratio (SNR).
Large b-values increase signal attenuation and lead to the dominance of measurement noise.
Apart from b-value, the ADC at each spatial location also has an effect on the attenuation
of each pixel in the DW-image. Recovering the ADC is the main goal of DWI, since it is
the value which quantifies the strength of diffusion occurring local to the spatial location
of a pixel. Toward this end, the value of S0 is determined from an image acquired with no
diffusion-encoding gradient (b = 0) and eliminated from SD by dividing SD/S0. The ADC
is then recovered using the relation

D = − log(S0/SD)

b
. (3.27)

3.2.2 Diffusion tensor imaging

Diffusion weighted imaging is based on an assumption of isotropic diffusion. However,
it was later found that the ADC is direction dependent. Namely, the microstructure of
biological tissue often restricts diffusion in a direction dependent manner. For instance,
muscle tissue and cerebral white matter limit diffusion to be along fibre bundles [14, 27,
47, 82]. In response, diffusion tensor imaging (DTI) [2, 9, 14, 15, 53, 66, 73, 98], has been
developed for the measurement of anisotropic Gaussian diffusion and has found a broad
range of applications in fibre tractography [11,13,59–61,81].

In a 1965 paper, Stejskal investigated the effects of anisotropic diffusion on the ADC
in a PGSE framework [82]. Using a tensor description of diffusion, Stejskal modified the
Bloch equation to include the effects of anisotropic diffusion

dM

dt
= γ(M×B0) +

1

T1

(M0 −Mz)ẑ −
1

T2

M⊥ +∇T ·D · ∇M, (3.28)

where the diffusion tensor D is a matrix parametrizing Fick’s Law for anisotropic Gaussian
diffusion. The solution to the above equation when B0 = |B0|ẑ admits a transverse mag-
netization vector which is dependant on both spatial location r and the spatial orientation
of the diffusion-encoding gradient u = g/|g|

|MD
⊥ (r,u, t)| = |M⊥(r, t)|e−buTD(r)u. (3.29)
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Consequently, the value of a specific voxel in an image reconstructed from K space not only
depends on spatial location, but also on the orientation of the diffusion-encoding gradient.
It is common to consider the possible values of a single voxel in the reconstructed image
as a spherical function written in the notation

SD(u) = S0 e
−buTDu. (3.30)

Note that the value of the ADC (in this case equal to uTDu) is also dependent on spatial
orientation u and, due to the diffusion tensor description, is ellipsoidal.

Although anisotropic diffusion was addressed by Stejskal in 1965, it was not until 1994
that a method was provided by Basser to estimate the diffusion tensor using linear regres-
sion [9]. The estimation requires the measurement of at least seven independent MR images
- one in the absence of diffusion encoding to capture S0 and six more DW-images to fully
specify D. Typically, the six gradients are restricted to the same b-value and only the
spatial orientation is changed.

Using the diffusion tensor, one can describe the spin diffusion along three orthogonal
directions, with the principal eigenvector indicating the orientation of the underlying fibre
tract. However, the implicit assumption of anisotropic Gaussian diffusion limits the ADC
to a single orientational maximum. Consequently, proper functioning of DTI requires each
voxel to contain no more than a single fibre bundle and severe underestimation artifacts
occur in spatial locations where fibres cross, touch upon each other, or diverge [3,4,39,40,
92,93,98].

3.2.3 Diffusion spectral imaging

Biological tissue often embodies complicated diffusion processes which differ significantly
from the isotropic Gaussian model assumed by DWI and the anisotropic Gaussian model
assumed by DTI. Diffusion spectral imaging (DSI) provides a model independent approach
to characterizing complex types of diffusion. As with DTI, the foundation for DSI was
laid by Stejskal. In the same paper where he provided the Bloch equations modified for
anisotropic diffusion, Stejskal also included the development of a more general descrip-
tion of the diffusion process - the Ensemble Average Propagator (EAP). The EAP is a
probability density function quantifying the probability of a spin to be found in a volume
r dr after a given diffusion time. Since this probability depends on the local microstruc-
ture of interrogated tissue, the EAP is essential for understanding tissue composition and
organization.
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Central to DSI is the wave-vector, which is related to a number of the encoding gradient
parameters and defined to be equal to

q =
γ δ g

2π
, (3.31)

where γ is the gyromagnetic constant, δ is the duration of the diffusion-encoding gradients,
and g is a vector representing the magnitude and orientation of the encoding gradients. The
value S(q) of each voxel in an image recovered from K space can be written as a function
of q, which is to say that the recovered image depends on the choice of diffusion-encoding
gradient. A function E(q) independent of T1 and T2 relaxation effects and quantifying
signal attenuation due solely to diffusion can be defined

E(q) = S(q)/S0, (3.32)

where S0 is the MR signal obtained in the absence of diffusion encoding.

One of the most significant results of the theory of diffusion imaging is the fact that
E(q) is related to the EAP, denoted P (r), via Fourier transformation [25] (derivation
provided in Appendix A)

P (r) =

∫
R3

E(q) e−ı2π (q·r)dq. (3.33)

Hence, by measuring E(q) at a sufficiently large set of points on a Cartesian grid in q-
space, it is possible to recover the EAP at each voxel by means of the fast Fourier transform.
Initially, phase corruptions caused by biological motion limited this method to the imaging
of inanimate objects. Later modifications using the modulus Fourier transform in lieu of
the complex Fourier transform solved these problems and lead to the technique of diffusion
spectral imaging (DSI) [90, 95]. It goes without saying that the major limitation of DSI
is its acquisition requirements, requiring roughly 500 DW-images corresponding to points
distributed throughout q-space. Unfortunately, such acquisition requirements put DSI far
beyond the scope of practical applications of DW-MRI.

3.2.4 High angular resolution diffusion imaging

As a compromise between the relatively short acquisition times of DTI and the multimodal
diffusion profiles available to DSI, the method of high angular resolution diffusion imaging
(HARDI) has been proposed [6, 31, 40, 92, 93]. In terms of acquisition, HARDI is similar
to DTI except that it requires measuring a considerably higher number of DW-images,
typically between 80 and 100. The associated encoding gradients are required to satisfy
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a constant b-value, changing only the orientation u between acquisitions. This allows the
HARDI signal recovered from K space to be expressed as a function of spatial location r
and diffusion-encoding gradient orientation u

S(r,u) = S0(r) e−bD(r,u). (3.34)

The value at a specific spatial location is commonly rewritten as a spherical function in
the notation

S(u) = S0 e
−bD(u), (3.35)

where D(u) is the orientation-dependent ADC. Note that the HARDI ADC is a general
spherical function in contrast to the DTI ADC, which was restricted to the shape of an
ellipse. Mathematically, the HARDI signal in (3.34) is viewed as a scalar function on the
R3 × S2 manifold, formally written S(r,u) : R3 × S2 → R. This function is measured at
sample locations by acquiring DW-images. A DW-image can be acquired using an encoding
gradient at any spatial orientation u ∈ S2, but every DW-image is recovered from K space
using the fast Fourier transform and is therefore discrete in the spatial domain R3. This
discretization of the R3×S2 manifold in the spatial domain can be visualized as a discrete
lattice in R3 where at each lattice point is a sphere representing the possible u ∈ S2 sample
locations (the blue spheres in Figure 3.6). Acquiring a DW-image with a specific encoding
gradient orientation uj is equivalent to simultaneously sampling every sphere in the lattice
at orientation uj (the black points in Figure 3.6(a)). Therefore, a collection of DW-images
acquired with different gradient orientations has corresponding sample locations which can
be visualized as a discrete lattice of discrete locations on the unit sphere (the black points
in Figure 3.6(b)).
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(a) A single DW-image (b) A collection of DW-images

Figure 3.6: Sample locations in HARDI signal domain

The increased number of samples available in HARDI allows the use of diffusion models
which are more accurate and realistic than the DTI tensor model. Both parametric and
non-parametric approaches have been proposed to facilitate the computation of a number
of HARDI processing techniques, including the analysis of the ADC [4,31,40], orientation
distribution function (ODF) [32,65,91,93], fibre orientation distribution function (FODF)
[6,88], and persistent angular structure (PAS) [50] to name just a few. All of these methods
will benefit from the denoising technique proposed in this thesis. However, analysis of the
filter will mainly be performed using the ODF.

Q-Ball imaging and orientational distribution function

The constraint of imposing a constant b-value during HARDI acquisition has the related
effect of restricting the values of q to belong to a spherical shell in q-space. HARDI,
therefore, reduces the DSI burden of sampling an entire three-dimensional Cartesian grid
while, at the same time, maximizes the amount of orientational information being measured
in q-space for a given number of samples. Q-Ball Imaging (QBI), developed by Tuch, is a
technique which uses the q-space measurements to extract orientational information from
the EAP. More precisely, QBI approximates the orientational distribution function (ODF)
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which is defined as the radial projection of the EAP along a given orientation u

ψ(u) =
1

Z

∞∫
0

P (Ru)dR, (3.36)

where Z is a normalization constant and P is the EAP. Thus, while P quantifies the
likelihood with which a spin is displaced by r, ψ(u) quantifies the likelihood with which
the spin is expected to move in direction u. For this reason, QBI works on the assumption
that the orientational structure of the tissue is of primary interest.

The backbone of the QBI ODF approximation lies in the Funk-Radon Transform (FRT).
The FRT evaluated at u is defined as the integral of a spherical function along the great
circle with pole u (note that the great circle is defined to be the intersection of the unit
sphere with a plane which has normal u and goes through the origin). Tuch has shown that
the ODF can be approximated by applying the FRT to the attenuation signal E(q) [91,93]

ψ(u) ≈ R{E}(u) =
1

Z

∫∫∫
|v|=1

δ(u · v)E(v)dv. (3.37)

Succinctly, integrating the attenuation signal along a great circle obtains an approximation
of the probability of diffusion in the direction of the great circle’s pole. To discuss the
accuracy of this approximation, consider evaluating the FRT in the unit ẑ direction. In
this case, the exact relationship in cylindrical coordinates between P and R{E}(ez) was
shown to be equal to:

R{E}(ez) = 2πq0

∞∫
−∞

2π∫
0

∞∫
0

P (ρ, φ, z)J0(2πq0ρ)dρdφdz, (3.38)

where q0 is the radius of the shell in q-space and J0 is a Bessel function of the first kind and
order 0. The degree of error in this ODF approximation depends on how well the Bessel
kernel J0 is localized in ρ (i.e.. if J0 was the Dirac delta function, then we would obtain the
exact radial projection along ez). The main lobe of the Bessel kernel has a width which
depends on the value of q0. A larger encoding gradient amplitude results in a greater q0 and
a narrower Bessel kernel. A narrow Bessel kernel produces less blurring and greater angular
resolution in the ODF approximation. Unfortunately, the large gradient amplitude (and
associated b-value) required for accurate Q-ball imaging significantly attenuates signal
levels. Fortunately, the resulting trade-off between angular resolution and SNR can be
improved through the filtering of HARDI signal noise - the topic of this thesis.
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A number of authors have pointed out that the radial projection computed in (3.36) is
not a true probability distribution [1, 89]. Since the expression for the Ensemble Average
Propagator in spherical coordinates can be written∫∫∫

R3

P (r)dr =

π∫
0

2π∫
0

 ∞∫
0

P (Ru)R2dR

 sin(θ)dφdθ, (3.39)

the ODF expression would have to contain an extraR2 term in order to be a true probability
density obtained by marginalizing out the radial variable. Therefore, a modified diffusion
descriptor known as the orientational probability distribution function (OPDF) has been
proposed

Φ(u) =

∞∫
0

P (Ru)R2dR, (3.40)

along with a number of methods to approximate its value. For example, [89] proposes to
use an FRT approximation similar to that of (3.37), except that E (the inverse Fourier
transform of P ) is replaced by the Laplacian of E (the inverse Fourier transform of PR2)

Φ(u) ≈ R{∆E}(u). (3.41)

A difficulty in computing this approximation is that the Laplacian is composed of deriva-
tives in all coordinate directions while E is only measured in the inclination and azimuth
directions. Therefore, it is necessary to make an assumption about the behaviour of E in
the radial direction in order to approximate the derivative of E with respect to a radial
variable. [89] overcomes this difficulty using the model of (3.34) with the additional as-
sumption of a constant ADC. It was shown that OPDF approximations lead to an increased
ability to characterize complex microstructures.

3.3 HARDI noise model

The MR image is acquired in the Fourier domain (i.e., the k-space), followed by the pro-
cedures of frequency demodulation and inverse transformation. The result is a complex-
valued image, whose magnitude is typically the displayed output image. In the case that
the frequency-domain data is contaminated by zero-mean AWG noise, the complex ampli-
tude M of the noisy observation Aeıθ +N , with N = Nr + ıNi , is given by (see (3.23))

M =
√

(A cos θ +Nr)2 + (A sin θ +Ni)2, (3.42)
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where A stands for the true image amplitude, while Nr and Ni are mutually independent
AWG noises of standard deviation σ, and θ ∈ [0, 2π) is an arbitrary phase shift. In this
case, M can be shown to follow the Rician conditional distribution model that is given
by [45,58]

pM |A(m|a) =

{
m
σ2 exp

{
−a2+m2

2σ2

}
I0

(
am
σ2

)
, m ≥ 0

0, otherwise
(3.43)

where I0 denotes the 0th-order modified Bessel function of the first kind. Figure 3.7(a)
depicts several typical graphs of pM |A(m|a) corresponding to a range of the values of A
and σ = 1. As can be seen from the figure, for A > 3σ, the Rician probability density is
closely approximated by a Gaussian distribution [45]. However, for the lower values of A,
the density becomes more asymmetric and noticeably heavy-tailed. Specifically, for A = 0,
M follows a Rayleigh distribution model.

(a) Rician pdf’s corresponding to different values
of A and σ = 1 in (3.43)

(b) Non-central chi square distribution corre-
sponding to different values of F in (3.46)

Figure 3.7: MRI-related statistical distributions

Rician noise renders impractical a straightforward application of many filtering strate-
gies which attempt to infer the true value A from an estimation of E{M}, the expected
value of M . The difficulties lie in the complex relation between E{M} and A

E{M} = σ
√
π/2L1/2(−A2/2σ2), (3.44)

where Lv(x) denotes a Laguerre polynomial which, for v = 1/2, is given by

L1/2(x) = ex/2
[
(1− x)I0

(
−x
2

)
− xI1

(
−x
2

)]
. (3.45)
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At the same time, a normalized version G = (M/σ)2 of the squared magnitude M2 can
be shown to be distributed according to the non-central chi square (NCCS) distribution
with parameter F = (A/σ)2 whose conditional density is given by

pG|F (g|f) =

{
1
2

exp
{
−g+f

2

}
I0(
√
fg), g ≥ 0

0, otherwise,
(3.46)

where f ∈ R+. Figure 3.7(b) shows a number of typical graphs of pG|F corresponding to
a set of different values of F . A better understanding of this figure can be obtained from
the fact that (3.42) suggests

G = F + 2
√
Fξ + η, (3.47)

where ξ = (Nr cos θ + Ni sin θ)/σ and η = (N2
r + N2

i )/σ2. Thus G can be viewed as
a noisy version of F , where the noise has both additive and multiplicative components.
Specifically, it should be noted that ξ obeys a normal distribution with zero mean and unit
variance, while η follows an exponential distribution with its mean and variance equal to
2 and 4, respectively. Moreover, the expectation of G now has a very simple relation to F ,
which is given by

E{G} = F + 2. (3.48)

It is the simplicity of (3.48) which has been a principal impetus for the development of
various MRI denoising methods, which have been applied to the squared magnitude G,
rather than to its original value M . In some manner, all these methods aim at recovering
a close approximation of the average value E{G}, followed by the estimation of F through
the subtraction of the bias of 2. Note that, once an estimate of F has been obtained,
its associated amplitude A in (3.42) can be recovered through simple square root and
re-normalization.

3.4 Spherical harmonics

Spherical harmonics (SH) are the natural way to decompose functions on the unit sphere
S2, similar to the Fourier transformation for functions in Euclidean space. Recalling that
it is common to view the HARDI signal as a collection of spherical functions, it is not
surprising that SHs have become a backbone tool for analyzing HARDI signals [4, 32, 40].
This thesis will make use of the SH coefficients as a method to compare spherical function
similarity. Therefore, in this section, we introduce some of the basic SH properties. As a
general reference on the subject, the reader is referred to [44].
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Defined by the SH differential equation, SHs are the eigenfunctions of the Laplace-
Beltrami operator ∆bY

l
n = −l(l + 1)Y l

n, where n is called the order and l is the phase
factor. The solution is given explicitly by

Y l
n(θ, φ) =

√
(2n+ 1)(n− l)!

4π(n+ l)!
P l
n(cos θ)eilφ, (3.49)

where P l
n are associated Legendre polynomials. A subset of these functions are shown in

Figure 3.8. As is evident from both the notation Y l
n and the figure, SHs are divided into

bands. All functions in the same band have the same order and each band contains 2n+ 1
functions distinguished by their phase factor.

Figure 3.8: Real spherical harmonic basis functions (even orders up to and including n=4)

There are a number of important SH properties relevant to the development of the
proposed method. First, SHs form an orthonormal basis for functions on the unit sphere.
Consequently, the energy of a spherical signal is related to its spectral coefficients by
Parseval’s theorem. It is therefore possible to divide a spherical function’s total signal
energy into band energies based on band coefficients. Moreover, a rotated SH can be written
as a linear combination of all non-rotated SHs of the same order. As a consequence, if a
signal is in span{Y l

n}|l|≤n for a given order n, then it’s rotated version is also in span{Y l
n}|l|≤n

(since the rotated signal can be written as a linear combination of rotated SHs, and each
rotated SH can itself be written as a linear combination of non-rotated SHs). Noting that
rotation does not change signal energy, we conclude that the band energies are invariant to
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signal rotations. The second property we point out will only be mentioned in Chapter 6’s
discussion concerning future work. It can be seen that the zero phase (l = 0) SHs are zonal
functions (middle column of Fig 3.8). Therefore, zero phase coefficients also provide a signal
description which is invariant to azimuth rotations. Finally, we note that SHs of even order
are antipodal symmetric whereas SHs of odd order are antipodal asymmetric. Therefore,
antipodal symmetric functions are represented using only even order basis functions. This
is particularly useful for HARDI signal representation, since diffusion measurement is a
symmetric process.
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Chapter 4

Proposed Methodology

This chapter introduces the proposed non-local means (NLM) approach to filtering the
HARDI signal. The NLM method estimates a sample intensity’s true value by computing
a weighted average of other similar samples contained in the image. In contrast to linear
filtering where averaging weights are fixed, NLM defines the weights adaptively based on
a neighbourhood similarity measure. Adaptive weights are particularly useful in DW-MRI
since the spatial dependency of diffusivity in brain tissue makes it impossible to find a
single set of linear filter parameters which is optimal for all types of diffusion signals. As
opposed to similar methods in the field, the proposed NLM filtering includes samples from
the entire R3 × S2 manifold in the weighted average, defines neighbourhoods based solely
on a sample’s local orientational diffusion characteristics, and uses weights designed to be
invariant to both spatial rotations as well as to the particular sampling scheme in use.

The chapter is organized as follows. In Section 4.1 we review the original NLM filter,
the essence of which is neighbourhood comparison. Since a neighbourhood is nothing more
than a group of neighbouring samples, it is appropriate to investigate sample similarity
measures as a precursor to neighbourhood similarity measures. Section 4.2 investigates
possible sample similarity measures specific to MRI statistics and introduces the proposed
correlation similarity measures. It should be noted that the proposed sample similarity
measures are not only useful in developing a novel NLM method to filter HARDI data, but
can also improve traditional NLM filtering techniques applied to Euclidean MR images. As
discussed in Section 4.3, the natural neighbourhood for HARDI diffusion signals is a subset
of S2 and the proposed NLM method, despite averaging samples from the entire R3 × S2

manifold, conducts neighbourhood comparisons in the S2 domain. Section 4.3 proposes two
novel neighbourhood similarity measures for S2. Finally, Section 4.4 discusses the removal
of a bias connected to MRI noise statistics.
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4.1 Non-local means filter

The concept of NLM filtering was first proposed in [20] for the case of zero-mean additive
white Gaussian (AWG) noise contamination of images in R2. Let X and Y denote the orig-
inal and observed images, respectively, and Xs and Ys denote the intensities corresponding
to image pixel s ∈ I ≡ {0, 1, . . . , N − 1}. Then, for zero-mean AWG noise, Xs is equal to
the expected value E{Ys}. Many filtering techniques assume Y to be an ergodic process, in
which case E{Ys} can be estimated by a spatial average of {Yt}t∈Js , where Js ⊆ I denotes
the set of pixel indices with associated intensities distributed identically to Ys. In most
practical situations, it is impossible to deduce from noisy data the sets of samples which
realize an identical underlying distribution. It is therefore sensible to compute X̂s = Ê{Ys},
the estimate of Xs = E{Ys}, by including every image pixel in a weighted average:

X̂s = Ê{Ys} =
1

Cs

∑
t∈I

ws,t Yt, with Cs =
∑
t∈I

ws,t, (4.1)

where ws,t ≥ 0 quantifies the “contribution” of a target pixel t ∈ I to the estimate of
the source pixel s. Ideally, the weights ws,t should reflect the degree of similarity between
the source Xs and target Xt. The Gaussian range filter, for example, defines the weights

as ws,t = sim(Ys, Yt) = exp(−1
2
|Ys−Yt|2

h
). However, the approximation of expected value is

degraded by the random nature of Ys and Yt which frequently allows the range filter to
have a low-valued ws,t even when underlying Xs and Xt are similar (and vice versa). NLM,
on the other hand, defines the weights in a more robust manner, based on the comparison
of neighbourhood similarity

ws,t = sim(YNs , YNt) with YNs = {Yk}k∈Ns , YNt = {Yk}k∈Nt and Ns, Nt ⊆ I, (4.2)

where Ns and Nt denote the set of pixel indices with associated pixels in the neighbourhood
of s and t, respectively (see Figure 4.1). The effectiveness of this non-local processing
method is due to the self-similarity apparent in natural images [19,23]. Thus, for example,
the original choice of neighbourhood comparison in [20] was defined to be

ws,t = exp

{
−1

h

∑
k∈Ω

βk |Ys−k − Yt−k|2
}
, (4.3)

where Ω is the index set representing a symmetric neighbourhood of the centre-of-image co-
ordinates. For example, in an image with two spatial coordinates (x, y), Ω could be defined
as Ω = {|x| ≤ Lx, |y| ≤ Ly} for some positive integers Lx and Ly. Then YNs = {Ys−k}k∈Ω
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Figure 4.1: The NLM approach. The picture and notation are from the original NLM
paper [20]. Source pixel p is estimated by an average of all possible target pixels. Only
three of the possible target pixels are highlighted and labelled q1, q2, and q3. Similar pixel
neighbourhoods give large weights - w(p,q1),w(p,q2) - while dissimilar neighbourhoods give
small weights - w(p,q3).

and YNt = {Yt−k}k∈Ω. The “fine-tuning” parameters {βk}k∈Ω in (4.3) are intended to
weight the domain of summation and they should be chosen to satisfy

∑
k∈Ω βk = 1, while

h > 0 controls the overall amount of smoothing imposed by the filter. Specifically, higher
values of h tend to result in overly smoothed output images, whereas lower values produce
rather mild filtering effect. As a general rule, an optimal value of h should be chosen
adaptively according to the level of noise in Y .

To facilitate our considerations, we note that the NLM weights in (4.3) admit an alter-
native definition as given by [30,85]

ws,t =
∏
k∈Ω

(SNLs,t,k)
βk
h , (4.4)

with SNLs,t,k being a sample similarity measure defined as

SNLs,t,k = exp
{
−|Ys−k − Yt−k|2

}
. (4.5)

Thus, NLM compares each pixel in the source neighbourhood to a corresponding pixel
in the target neighbourhood, and computes the neighbourhood similarity by taking the
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product of the resulting sample similarity values. It is important to note that the value
of SNLs,t,k is always bounded between 0 and 1, and it can be shown (see [30, 55] for more
details) that its choice in (4.4) and (4.5)is optimal in the case of AWG noise contamination.

4.2 Sample similarity measures for MRI

The neighbourhood comparison provided in (4.4) conducts a sample-to-sample compari-
son between corresponding source and target neighbourhood pixels. While the similarity
measure in (4.5) is optimal for AWG contamination, there exist a number of alternative
statistical approaches to compare samples in the presence of non-Gaussian noise. These
statistical methods are described next for the MRI-specific cases of Rician and non-central
chi squared (NCCS) statistics followed by the introduction of two novel correlation similar-
ity measures. The proposed sample similarity measures have applications to NLM filtering
in R2 (classic MR images) using (4.4) in (4.1) and to NLM filtering on R3 × S2 (HARDI
images) using (4.29) and (4.30) in (4.24).

4.2.1 Statistical approaches

In [30], it was suggested to set the similarity measure SNLs,t,k to be equal to the posterior
probability of Xs−k = Xt−k conditioned on observations of Ys−k and Yt−k. Formally,

SNLs,t,k = P (Xs−k = Xt−k|Ys−k, Yt−k), (4.6)

which, for the case βk/h = 1,∀k ∈ Ω, leads to following definition of the NLM weights

ws,t =
∏
k∈Ω

P (Xs−k = Xt−k|Ys−k, Yt−k). (4.7)

It is worthwhile noting that, under the assumption of statistical independence of the in-
tensities of the original image X, the weights in (4.7) can be viewed as the posterior prob-
ability of the neighbourhoods {Xs−k}k∈Ω and {Xt−k}k∈Ω to consist of the same intensities,
conditioned on observation of their corresponding noisy values {Ys−k}k∈Ω and {Yt−k}k∈Ω,
respectively [30]. Although the assumption of statistical independence is an obvious over-
simplification, it is often employed in NLM filtering to render the final estimation scheme
computationally feasible.

The similarity measure in (4.6) seems to have a serious theoretical flaw in the case of
continuous random variables Xs−k and Xt−k, in which case it is always equal to zero [43,
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p. 111]. To overcome this difficulty, it was suggested in [85] to introduce an auxiliary
random variable Uk ≡ Xs−k−Xt−k and set SNLs,t,k to the value of the conditional density
pUk|Ys−k,Yt−k(uk|ys−k, yt−k) at uk = 0. Alternatively, one can use a different auxiliary variable
Vk = Xs−k/Xt−k, and set SNLs,t,k to be equal to the value of pVk|Ys,k,Yt,k(vk|ys−k, yt−k) at
vk = 1 [85]. For the convenience of referencing, the above similarity measures will be
referred to below as the subtractive and the rational similarity measures, respectively.
Note that although these measures are alike in their underlying philosophy, they lead to
substantially different denoising schemes, as detailed below.

In the present work, we explore both the subtractive and rational similarity measures
for two different types of input data, namely for the measured magnitude image M which
follows a Rician distribution (see 3.43) and its squared normalized version G which follows
a non-central chi square distribution (NCCS) (see 3.46). The main contribution of the
next propositions is to provide closed-form expressions for the similarity measures which
result from using a subtractive Uk on G images, and a rational Vk on M images. Un-
fortunately, we have been unable to derive closed-form expressions for the remaining two
combinations (viz., “rational” G and “subtractive” M). In these cases, the measures need
to be computed numerically – an approach which should be avoided in practice due to its
high computational cost.

Proposition 4.2.1. Let G = (M/σ)2 be a squared and normalized version of the MR
magnitude image M . Moreover, let F = (A/σ)2, where A denotes the true signal ampli-
tude. Then, the subtractive similarity measure for the associated non-central chi square
distribution SNL

(1)
s,t,k is given by1

SNL
(1)
s,t,k = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k)

=
1

4
exp

{
−gs−k + gt−k

4

}
I0

(√
gs−k gt−k

2

)
. (4.8)

The proof of Proposition 4.2.1 is provided in Appendix B.1, while Fig. 4.2(a) shows

four different SNL
(1)
s,t,k output curves when the source input variable gs−k is fixed and the

target input variable gt−k is allowed to vary.

Proposition 4.2.2. Let M be the MR magnitude image. Moreover, let A be the original
signal amplitude. Then, the rational similarity measure for the associated Rician distribu-

1Here and hereafter, we use the standard statistical formalism for denoting random variables and their
associated realizations by capital letters and their lower-case counterparts, respectively.
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(a) Subtractive similarity measure SNL
(1)
s,t,k (b) Rational similarity measure SNL

(2)
s,t,k

Figure 4.2: Subtractive and rational similarity measures

tion SNL
(2)
s,t,k is given by

SNL
(2)
s,t,k = pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k)

=
ms−kmt−k

σ2
exp

{
−
m2
s−k +m2

t−k

4σ2

}
I0

(ms−kmt−k

σ2

)
. (4.9)

The proof of Proposition 4.2.2 can be found in Appendix B.2. Four SNL
(2)
s,t,k output

curves are shown in Fig. 4.2(b), where σ is set to be equal to 1, source input variable ms−k
is fixed, and target input variable mt−k is allowed to vary.

It can be seen from Figure 4.2 that SNL
(1)
s,t,k and SNL

(2)
s,t,k attractively appear to reflect

the main properties of their corresponding noise distributions, nevertheless, both similarity
measures share a number of critical drawbacks. An intuitive way to understand these
drawbacks is through the definition of a distance measure ds,t,k between two intensities
Ys−k and Yt−k as given by

ds,t,k = − log(SNLs,t,k). (4.10)

For example, in the case of AWG noise, ds,t,k = (Ys−k − Yt−k)2. Naturally, SNLs,t,k can be
recovered back from its associated ds,t,k using

SNLs,t,k = e−ds,t,k . (4.11)

Unfortunately, in the case of SNL
(1)
s,t,k and SNL

(2)
s,t,k, the distance measure ds,t,k has a

number of undesirable properties, which are highlighted in the points below.
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1. Neither SNL
(1)
s,t,k nor SNL

(2)
s,t,k attain their maximum value when the source and target

input arguments are equal. Particularly, for a fixed value of gs−k (resp. ms−k), the

SNL
(1)
s,t,k measure (resp. the SNL

(2)
s,t,k measure) is maximal at some gt−k < gs−k (resp.

mt−k < ms−k). In terms of ds,t,k, for a fixed value of gs−k (resp. ms−k), the minimum
distance is achieved at some gt−k < gs−k (resp. mt−k < ms−k).

2. The maximal values that SNL
(1)
s,t,k and SNL

(2)
s,t,k can attain depend on the values of

the source input gs−k and ms−k, respectively (both plots in Figure 4.2 have four
curves which attain different maximum values). From a purely applicational point
of view, this fact suggests that the measures are not scale invariant, and as a result,
the weights ws,t in (4.1) are defined not only by how similar compared intensities are,
but also by their absolute values.

3. As can be seen from Figure 4.2(b), the distance ds,t,k can be negative for high values
of ms−k, which is an unacceptable property of ds,t,k as a metric.

In light of these deficiencies, it is evident that neither SNL
(1)
s,t,k nor SNL

(2)
s,t,k is adequate

for measuring sample similarity in the cases of Rician or NCCS noise. In the next section,
we propose a new similarity measure which is free of the aforementioned limitations.

4.2.2 Proposed correlation sample similarity measures

In this section, we modify the subtractive similarity measure for non-central chi squared
noise and the rational similarity measure for Rician noise to produce two novel “correlation”
similarity measures.

Correlation subtractive similarity measure for NCCS noise

To derive the proposed similarity measure in a consistent and intuitive manner, we start
with the definition of the subtractive similarity measure (SSM) for an arbitrary noise
distribution [85]

SSM = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k)

=

∫ ∞
0

pFs−k|Gs−k,Gt−k(f | gs−k, gt−k) pFt−k|Gs−k,Gt−k(f |gs−k, gt−k) df. (4.12)
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Alternatively, using Bayes’ theorem one can show that the SSM is proportional to, viz.
[30, 85]

SSM ∝
∫ ∞

0

pGs−k|Fs−k(gs−k | f) pGt−k|Ft−k(gt−k | f) df. (4.13)

In moving from (4.12) to (4.13), it has been assumed that the prior probability pFz−k (where
z ∈ {s, t} and k ∈ Ω) is uniform. Moreover, it has also been assumed that the original
intensity at a particular position is conditionally independent of the noisy intensity at a
different position, given the noisy intensity at the particular position. Formally,

pFz1−k|Gz1−k,Gz2−k = pFz1−k|Gz1−k . (4.14)

To overcome the limitations of SNL
(1)
s,t,k and SNL

(2)
s,t,k as discussed in the previous sec-

tion, we interpret the right-hand side of (4.13) as an inner product between the likelihood
functions Lgs−k(·) and Lgt−k(·), with Lg(f) given by

Lg(f) = pG|F (g | f). (4.15)

Note that, in general, the likelihood functions Lgs−k(·) and Lgt−k(·) have unequal norms,
and as a result their inner product is not maximized when gs−k = gt−k (which would be
a natural and desirable property for a sample similarity measure to have). To overcome
this shortcoming, we suggest to normalize the inner product, thereby converting it into a
correlation subtractive similarity measure (CSSM) according to

CSSMs,t,k =
〈Lgs−k , Lgt−k〉
‖Lgs−k‖2 ‖Lgt−k‖2

, (4.16)

where 〈x, y〉 =
∫∞

0
x(f)y(f) df and ‖x‖2 =

√
〈x, x〉. CSSMs,t,k is free of all the major

limitations of SNL
(1)
s,t,k and SNL

(2)
s,t,k. In particular, CSSMs,t,k is always smaller or equal to

1, and it achieves a consistent maximum value of 1 whenever gs−k = gt−k.

For the case of NCCS noise, the CSSM measure can be shown to have a neat closed-form
expression which is given by

SNL
(3)
s,t,k =

I0

(√
ĝs−k ĝt−k

)
√
I0(ĝs−k) I0(ĝt−k)

, where ĝ = g/2. (4.17)

Multiple curves of SNL
(3)
s,t,k are shown in Figure 4.3(a), where each curve is drawn with

a fixed source input gs−k and varying target input gt−k. It can be seen from the graphs
that the shape of each curve is similar to those in Figure 4.2(a). However, unlike the
plots in Figure 4.2(a), each curve in Figure 4.3(a) is maximized when gt−k = gs−k and the
maximum value is always equal to 1.
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(a) Proposed CSSM SNL
(3)
s,t,k for the case of NCCS

noise distribution
(b) Proposed CRSM SNL

(4)
s,t,k for the case of Ri-

cian noise distribution

Figure 4.3: Proposed correlation similarity measures

Correlation rational similarity measure for Rician noise

To derive an expression for a correlation rational similarity measure (CRSM) in the case
of Rician noise, we first state that the rational similarity measure (RSM) is given by [30]

RSM = pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k)

=

∫ ∞
0

a pAs−k|Ms−k,Mt−k(a | ms−k,mt−k) pAt−k|Ms−k,Mt−k(a | ms−k,mt−k) da. (4.18)

Similar to the SSM case, one can show that the RSM is proportional to, viz. [30, 85]

RSM ∝
∫ ∞

0

pMs−k|As−k(ms−k | a) pMt−k|At−k(mt−k | a) ada. (4.19)

and this integral can be interpreted as a weighted inner product 〈x, y〉a =
∫∞

0
x(a)y(a) a da ,

where a da can be viewed as a “modified” integration measure. Using this notation, we
define the correlation rational similarity measure (CRSM) according to

CRSMs,t,k =

〈
Lms−k , Lmt−k

〉
a

‖Lms−k‖2 ‖Lmt−k‖2

. (4.20)
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The CRSM for Rician noise is given by

SNL
(4)
s,t,k =

I0

(ms−kmt−k
2σ2

)√
I0

(
m2
s−k

2σ2

)
I0

(
m2
t−k

2σ2

) . (4.21)

A number of SNL
(4)
s,t,k curves are shown in Fig. 4.3(b), , where each curve is drawn with

a fixed source input ms−k and varying target input mt−k. Once again, one can observe that
the curves are similar in shape to those in Fig. 4.2(b). However, unlike Fig. 4.2(b), each

SNL
(4)
s,t,k curve is maximized when mt−k = ms−k and the maximum value is always equal

to 1.

There are two important facts about SNL
(3)
s,t,k and SNL

(4)
s,t,k that deserve to be paid

special attention. In particular:

1. The values of SNL
(3)
s,t,k and SNL

(4)
s,t,k (as given by (4.17) and (4.21), respectively) are

equal under the substitution gz−k = (mz−k/σ)2, which is precisely the relation be-
tween the magnitude image M and its squared normalized version G. This fact
suggests that, when using SNL

(3)
s,t,k on G and SNL

(4)
s,t,k on M , two neighbourhoods of

an original MR image and their corresponding squared and normalized versions are
equally similar.

2. Using the fact that, for sufficiently large x, it holds that

I0(x) ≈ ex√
2πx

, (4.22)

and substituting (4.22) into (4.21) instead of the original Bessel functions, we obtain

SNL
(4)
s,t,k ≈ exp

{
−|ms−k −mt−k|2

4σ2

}
. (4.23)

The above approximation holds with a high precision for relatively large values of
SNR (i.e., for mk

σ
, ml
σ
� 1). This is an exceptional property of SNL

(4)
s,t,k, since it is

known that Rician noise in MRI converges to Gaussian noise when SNR increases.
Likewise, the proposed SNL

(4)
s,t,k measure converges to the form of (4.5), whose opti-

mality for Gaussian noises was proven in [30].
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4.3 Extending NLM to the R3 × S2 manifold

With suitable sample similarity measures in hand, we are now in a position to extend
NLM to the R3 × S2 manifold. Mathematically, one can view the HARDI signal Sn cor-
responding to voxel n ∈ In ≡ {0, 1, . . . , N − 1} as a scalar function defined on the unit
sphere S2, i.e. Sn(u) : S2 → R. The set of all spherical functions in the imaging volume,
{Sn}n∈In , is evaluated along a predefined number of spatial orientations {uk}k∈Ik where
Ik ≡ {0, 1, . . . , K − 1} (recall Fig. 3.6). Let Yn(uk) denote the noise-contaminated obser-
vation of intensity Xn(uk) corresponding sample k from spherical function n. Then, using
samples from the entire R3 × S2 manifold, an estimate Ê{Ysn(usk)} of E{Ysn(usk)} can be
computed

Ê{Ysn(usk)} =
1

Csn,sk

∑
tn∈In

∑
tk∈Ik

ωsn,sk,tn,tkYtn(utk), with Csn,sk =
∑
tn∈In

∑
tk∈Ik

ωsn,sk,tn,tk .

(4.24)
The NLM weights ωsn,sk,tn,tk reflect the similarity in structure between source and tar-
get neighbourhoods and in order for an NLM approach to be successful in HARDI, the
HARDI signal must be self-similar with respect to the neighbourhood chosen. HARDI
signals imaging neural fibres composing white matter (Figure 4.4) admit a number of pos-
sible definitions of the neighbourhood, and the choice has an impact on what surrounding
characteristics must be similar in order to credit two samples as similar. In the present dis-
cussion we will consider a spatial neighbourhood in R2 (only two dimensions are considered
for simplicity) and a spherical neighbourhood in S2.

Self-similarity of the HARDI signal with respect to spatial neighbourhoods in R2 re-
quires the subject’s neural fibres to have similarly shaped paths. In order for NLM to
be successful, neural fibres should have repetitive spatial structure. Consider two straight
fibres travelling parallel in the x̂ direction (HARDI signal shown in Figure 4.5(a)), then
the similarity in shape between these two fibres will be replicated in each DW-image (for
example, Figure 4.5(b) shows the replicated spatial structure in the DW-MR image at
orientation u = [1 0 0]T ). Consider estimating a particular sample in the u = [1 0 0]T DW-
MR image at spatial location (x, y) = (4, 2) (see the magenta marker in Figure 4.5(b)).
Every sample in Figure 4.5(b) corresponding to one of the two fibres has a similar spatial
neighbourhood (for example, note the similarity between the neighbourhoods of sample
(x, y) = (4, 2), shown in magenta, and sample (x, y) = (2, 4), shown in blue). This is the
motivation behind applying classical NLM filtering to each DW-image independently. How-
ever, the search for similar target samples need not be restricted to one DW-image alone.
For instance, in the absence of noise, the u = [−1 0 0]T DW-image should be identical to
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Figure 4.4: Neural fibres in the human brain [77]

the u = [1 0 0]T image (Figure 4.5(c)) due to the symmetry in diffusion measurements.
Therefore, allowing the search for similar target neighbourhoods to be performed over all
DW images may increase the number of similar samples included in the NLM weighted
average.

Unfortunately, spatial neighbourhood comparison is unable to detect numerous similar
samples when fibres follow more complicated paths. Consider the HARDI signal of a U-
shaped fibre shown in Figure 4.6(a) and suppose we wish to estimate the sample located
at orientation u = [1 0 0]T and spatial location (x, y) = (4, 2) (see the magenta marker in
Figure 4.6(c)). Beyond the similar target samples that can be found in the u = [−1 0 0]T

DW-image, we note that since the fibre curves into the ŷ direction, there is also a similar
target sample in the u = [0 1 0]T image at (x, y) = (2, 3) (Figure 4.6(d)). However, this
sample has a spatial neighbourhood which differs significantly from the source neighbour-
hood due to the shape of the underlying fibre. Consequently, although similar, this sample
will be given a low weight in the NLM average. For similar reasons, the vector NLM
method of [99] described in Section 2.6 is also unable to properly weight similar vectors in
images containing curving fibres due to spatial dissimilarity. The problem is that curving
neural fibres have limited repetitions in spatial structure. However, the similar samples
excluded by spatial neighbourhoods can be given appropriate weights in the NLM average
by comparing neighbourhoods in S2.
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(a) HARDI signal for two parallel fibres (b) DW-image in the
u = [1 0 0]T direction

(c) DW-image in the
u = [−1 0 0]T direction

Figure 4.5: Similar spatial neighbourhoods in multiple DW images

Self-similarity of the HARDI signal with respect to neighbourhoods in S2 requires repet-
itive structure of localized orientational diffusion characteristics. Thus, antipodal sample
locations on the same spherical function will always have similar local S2 neighbourhoods
(due to diffusion measurement symmetry). Furthermore, spherical functions located at
the spatial position of a fibre crossing can have four or more orientations with similar S2

neighbourhoods. The search for target samples with similar S2 neighbourhoods need not
be restricted to the source spherical function; the search can be extended to include target
spherical functions at all spatial locations. Since neural fibres possess consistent diffusion
properties (consistent microstructure) throughout the spatial dimensions, the S2 neigh-
bourhood comparison is able to detect similar samples even as the fibre curves through
space. Returning to the U-shaped fibre example with source sample at u = [1 0 0]T and
(x, y) = (4, 2), Figure 4.6(b) illustrates the source neighbourhood location in magenta.
Comparing Figure 4.6(a) and Figure 4.6(b), it can be seen that the blue neighbourhoods
in Figure 4.6(b) represent the locations of similar target neighbourhoods. Thus, it is pro-
posed that HARDI signals will have a greater degree of self-similarity using neighbourhoods
which exclude spatial dimensions and are defined completely in S2.

Exploring NLM filtering of HARDI signals using neighbourhoods defined on S2 is the
main contribution of this thesis. For notational simplicity, and without loss of generality,
in defining the neighbourhood similarity measure we will restrict target samples to belong
to the source sphere Ysn . Essentially, we will solve the problem of extending NLM to S2.
Suppressing the sn and tn subscripts, we rewrite Equation 4.24 as

Ê{Y (us)} =
1

Cs

∑
t∈Ik

ωs,tY (ut), with Cs =
∑
t∈Ik

ωs,t. (4.25)
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(a) HARDI signal of a U-shaped
fibre

(b) Locations of similar target S2
neighbourhoods

(c) Spatial source
neighbourhood from
u = [1 0 0]T DW-image

(d) Dissimilar spatial target
neighbourhood from
u = [0 1 0]T DW-image

Figure 4.6: Neighbourhoods of complex fibres

Note that (4.25) is trivially extended to NLM filtering of HARDI data on R3 × S2 by
permitting additional target spherical functions to contribute samples into the average.

4.3.1 S2 neighbourhood similarity measure

Defining neighbourhood comparison on S2 is not trivial. To describe the challenges and
proposed methods, we first define an appropriate neighbourhood for the spherical HARDI
signal. Let Ns and Nt be two spherical neighbourhoods corresponding to spatial orienta-
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tions us and ut, respectively, which are defined as

Ns =
{
u ∈ S2

∣∣ cos−1(|u · us|) ≤ η
}

(4.26)

Nt =
{
u ∈ S2

∣∣ cos−1(|u · ut|) ≤ η
}

(4.27)

where η ≤ π/2 controls the size of the neighbourhood. An important characteristic of the
neighbourhoods defined in Equation 4.26 is antipodal symmetry, a result of the absolute
value taken inside of the arc cosine. This definition of the neighbourhood has been chosen
in connection with the antipodal symmetry of the diffusion signal. However, other appli-
cations requiring the filtering of non-symmetric spherical functions can safely discard the
absolute value.

A necessary step of neighbourhood comparison is the alignment of their centres (for in-
stance, in R2 two square neighbourhoods are simply translated to overlap and subsequently
compared pixelwise). In S2, we propose to align neighbourhoods by rotating both centres
to ẑ. However, a number of difficulties arise. The first obstacle is that, due to azimuth
rotations, there are infinitely many ways to align the two neighbourhoods (in fact, this is
the reason why the sphere S2 is equivalent to the quotient space SO(3)/SO(2)), making
it difficult to justify one method of alignment over another. A second obstacle occurs in
attempting to align sampled neighbourhoods for sample-to-sample comparison. Only a
limited number of restrictive sampling schemes are uniform and rotation invariant [104].
Therefore, in general, it is not possible to perfectly overlap two sampled neighbourhoods
(see Figure 4.7). In fact, two neighbourhoods with the same characteristic η often do not
even contain the same number of samples. We propose two neighbourhood comparison
methods to overcome the above difficulties.

Sample-to-neighbourhood similarity measure

The inability to overlap neighbourhood samples prevents the direct comparison of a sam-
ple from the source neighbourhood with a single corresponding sample from the target
neighbourhood. However, one can instead compare the source sample to every sample in
the target neighbourhood (Figure 4.8), weighting each comparison according to proximity.
Let the S2 metric be the standard metric of arclength, then the distance between ul ∈ Ns

and uj ∈ Nt is computed

d(ul,uj) = cos−1(|Rsul(Rtuj)
T |), (4.28)

where Rs,Rt ∈ SO(3) are appropriate rotation matrices aligning source and target neigh-
bourhoods together in the ẑ direction.
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(a) Two sampled neighbourhoods with
η = π/6 (antipodal points excluded for
simplicity)
Patch 1 (magenta, ©)
Patch 2 (blue,

⊕
)

(b) Non-overlapping samples after
neighbourhood alignment

Figure 4.7: S2 neighbourhood alignment

Figure 4.8: SNLul,Nt is computed by comparing a source sample ul to every target sample
in Nt (antipodal points are excluded from the figure for simplicity)
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We define the sample-to-neighbourhood similarity measure between a source sample
ul ∈ Ns and the entire target neighbourhood Nt

SNLul,Nt =
1

Cl

∑
uj∈Nt

exp

{
−d(ul,uj)

α2

}
(SNLul,uj)

βk
h , with Cl =

∑
uj∈Nt

exp

{
−d(ul,uj)

α2

}
.

(4.29)
For HARDI denoising, SNLul,uj is one of the MRI sample similarity measures proposed
in Section 4.2.2. Note that target samples near ul have a greater impact on the sum.
Sensitivity to target sample proximity is controlled by the tuning parameter α.

To complete the neighbourhood comparison, each source pixel is compared to the entire
target neighbourhood and the NLM weights are defined as

ws,t =
∏
ul∈Ns

SNLul,Nt . (4.30)

Furthermore, this approach can be made independent to the method of neighbourhood
alignment (i.e.. the choice of Rs and Rt) by simply changing the distance metric to
depend only on the sample’s elevation angle

d(ul,uj) = | cos−1(|Rsule
T
z |)− cos−1(|Rtuje

T
z |)|, (4.31)

where ez is the unit vector in the ẑ direction.

Needless to say, the sample-to-neighbourhood similarity measure is extremely compu-
tationally intensive. For example, if neighbourhood comparison in R2 requires N sample
comparisons, then the current proposed scheme requires N2 sample comparisons. Unfor-
tunately, the complexity of HARDI data further amplifies this algorithm’s computational
requirements. Therefore, in the following section we will propose a suboptimal neighbour-
hood similarity measure which is more computationally efficient.

RILES neighbourhood similarity measure

In the previous section, the use of direct sample comparisons lead to a neighbourhood sim-
ilarity measure which is currently computationally infeasible. In this section, we propose
a different method of comparing neighbourhoods using the transform domain of spheri-
cal harmonics. Toward this end, we define Wv(u) to be a smooth and symmetric window
function supported around the antipodal directions v and −v, with v ∈ S2. Then, multipli-
cation of a HARDI signal S(u) by Wv(u) localizes the former around v and −v, effectively
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extracting a symmetric neighbourhood {S(u)}u∈Nv . The symmetric Gauss-Weierstrass
window defines such a function (see Figure 4.9):

Wv(u) =
∑

n=0,2,4,...

2n+ 1

4π
e−ρn(n+1)Pn(u · v), (4.32)

where Pn(u·v) are Legendre Polynomials. The Gauss-Weierstrass kernel, constructed using
spherical harmonics (SH), is designed to have similar properties to the Gaussian kernel in
Euclidean space [24,26]. In the above formula, the summation over even SH orders ensures
that the window is symmetric. The parameter ρ is used to control the effective support of
the kernel around the antipodal centres v and −v. Note that, being the product of two
symmetric functions, the windowed function S(u)Wv(u) is also symmetric.

(a) Kernel Wv(u) (b) HARDI signal Sn(u) (c) Windowed signalWv(u)Sn(u)

Figure 4.9: Gauss-Weierstrass windowing

Decomposing the windowed signal into a composition of the SH basis functions provides
coefficients indicative to the behaviour of Sn(u) in the neighbourhood of v. We write the
SH coefficients as

{Cn,l}n=0,2,4,...,Nmax
|l|≤n

, (4.33)

where Nmax is the maximum SH order inclusive. Due to symmetry, odd order coefficients
of Sn(u)Wv(u) are zero.

In general, SH coefficients are not rotation invariant (a rotated windowed function
S(Ru)Wv(Ru), R ∈ SO(3) will, in general, have coefficients different from those of
S(u)Wv(u)). However, the `2 energy of SH coefficients belonging to a single band is invari-
ant under arbitrary rotations. Therefore, a rotation invariant description of the windowed
signal is given by the vector

fv =

 f(0)
f(2)

...
f(Nmax)

 , (4.34)
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where each element in the vector is the `2 energy of the even nth order coefficients

f(n) =

n∑
`=−n
|cn,`|2

2n+ 1
. (4.35)

We refer to fv as the rotation invariant localized energy signature (RILES) vector.
The distance between two neighbourhoods Ns and Nt is then defined to be the Euclidean

distance
∥∥fus − fut

∥∥2

2
. Finally, the RILES neighbourhood similarity measure and corre-

sponding weights are defined

ws,t = exp

{
−
∥∥fus − fut

∥∥2

2

h2

}
, (4.36)

where h > 0 is a tuning parameter controlling the overall amount of smoothing imposed by
the filter. Specifically, higher values of h tend to result in overly smoothed output images,
whereas smaller values produce rather mild filtering effects.

4.3.2 Adding spatial dimensions to S2 neighbourhood similarity
measures

In some diffusion MRI applications, such as DTI and HARDI compressed sensing, a min-
imal number of samples are taken in the S2 domain. In these cases, there may not be
enough information in the S2 domain to make an accurate comparison between spheri-
cal neighbourhoods. Adding a spatial dimension to the neighbourhood will increase the
amount of information being compared making the weight computation more robust. Al-
though the detection of similar samples in complex fibre shapes will be forfeited, it is a
necessary sacrifice for an accurate NLM average. Therefore, in these situations, we propose
a spatial neighbourhood of spherical neighbourhoods (see Figure 4.10). Source and target
neighbourhoods are overlapped and corresponding spherical neighbourhoods are compared.
Thus, instead of determining if the source and target samples admit similar local diffu-
sion processes, this comparison determines if all local diffusion processes happening in the
spatial vicinity of source and target samples are similar. This method is similar to the
one proposed in [99], however, it differs in two significant ways. Unlike [99], the proposed
neighbourhood is localized in S2. Furthermore, the proposed method allows target samples
with an orientation different from the source sample to contribute to the approximation of
the source sample. An alternative method would be to continue using neighbourhoods in
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S2 and instead multiply each neighbourhood comparison by a term based on the geometric
distance between source and target samples in the R3×S2 manifold. This approach would
be similar to the bilateral filter commonly used in image processing.

Figure 4.10: Two neighbourhoods containing both R3 and S2components

4.4 Bias removal

The HARDI NLM weighted average of (4.24) provides an estimate of a sample’s expected
value Ê{Ysn(usk)}. In the case of Rician noise, the relation between the original signal
amplitude A and the noisy measurement Y is not trivial. However, if NLM averaging is
applied to the squared normalized HARDI image G, then one can take advantage of the
relation in (3.48) and use Ê{Gsn(usk)} to estimate the related original amplitude A =
σ
√
E{G} − 2 as

Asn(usk) ≈ σ

[
max

{
Ê{Gsn(usk)} − 2, 0

}]1/2

, (4.37)

where the max(·) operator is used to avoid complex estimates. Note that, even though
applying the max(·) operator may seem like a purely ad-hoc procedure, it has been shown
to be optimal in the ML sense in [80]. This estimate has also been used previously in [100]
in the context of non-local means.
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Chapter 5

Results

5.1 Reference methods

The performance of the proposed NLMS2 and RILES methods has been compared with
several standard algorithms on both simulated and real HARDI data. As the first reference
method, Gaussian kernel smoothing (referred to hereafter as GKS) of Section 2.3 was per-
formed on the squared normalized signal followed by the bias removal procedure specified
in Section 4.4. GKS was applied to spherical functions with differing smoothness in order
to compare with and demonstrate the adaptivity of the proposed NLM weights. As the
second reference method, the total variation (TV) method of Section 2.5 has been used1.
In what follows, this method is referred to as vector TV (vTV). The final reference method
used for numerical comparison was the NLM filter of Section 2.6, referred to below as
NLMv. In the case of all reference methods under comparison, their respective parameters
have been set based on the guidelines specified in their associated papers.

Two new approaches to NLM filtering of HARDI images are proposed in this thesis.
Specifically, the first approach compares S2 neighbourhoods using a sample-to-neighbourhood
similarity measure. For the convenience of referencing, this filtering approach is referred
below to as NLMS2 (with “S2” referring to the S2 neighbourhood). The second approach
compares S2 neighbourhoods in the transform domain of spherical harmonics and is re-
ferred to below as RILES. All the acronyms of the proposed and reference algorithms are
summarized in Table 5.1.

1The method was implemented using code kindly provided by the author
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Table 5.1: Acronyms of the proposed and reference algorithms
Algorithm name Reference Input image type

GKS [26] G
vTV [56] M

NLMv [99] G
NLMS2 Proposed G
RILES Proposed G

5.2 Simulated data

5.2.1 Data generation

The HARDI signal (3.35) was simulated at each spatial location using a generalization of
DTI known as the multi-tensor model. The multi-tensor model considers the EAP to be
a mixture of n Gaussians corresponding to n crossing fibres. Consequently, the HARDI
signal at a specific spatial location is modelled

S(u) = S0

n∑
j=1

aje
−buTDju, (5.1)

where Dj is the diffusion tensor associated with the jth fibre and aj are proportionality
constants satisfying

∑n
j=1 ak = 1. A given noise-free intensity from the HARDI signal

A ∈ S was corrupted by Rician noise to give a magnitude intensity of

M =
√

(A+ nr)2 + n2
i , (5.2)

where nr, ni ∼ N (0, σ2) are independent Gaussian random variables, which are also as-
sumed to be independent across the image domain. The standard deviation σ was set to
attain a desired SNR using the relation SNR = Ā/σ, where Ā is the sample mean of A.

5.2.2 Performance metrics

Evaluating the quality of denoising in medical imaging is of subjective nature, as it is often
based on the particular requirements of a medical expert. Nevertheless, there are a number
of standard evaluation metrics used in the literature, some of which we adopt in the present
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study. Specifically, one such metric is the root mean square error (RMSE), which can be
expressed in dB as

RMSE = 20 log10

[
1

N

N∑
k=1

|ek|2
]1/2

, (5.3)

where ek = Ak − Âk denotes the difference between the original intensity Ak and its
estimated value Âk at sample k, and N stands for the total number of image samples.

When estimate Âk is biased, the mean value of ek may not be equal to zero, in general.
In this case, it makes sense to replace ek in (5.3) by its centred version ek− ē, with ē being
the sample mean of ek given by

ē =
1

N

N∑
k=1

ek. (5.4)

The resulting metric is called the centred RMSE (cRMSE), and it is formally defined as

cRMSE = 20 log10

[
1

N

N∑
k=1

|ek − ē|2
]1/2

. (5.5)

It should be noted that, while structurally similar, the RMSE and cRMSE metrics pro-
vide different quantitative assessment in the case of biased estimation. Consequently, the
analysis and comparison of both these metrics can be helpful in evaluating the performance
of the de-biasing procedures detailed in Section 4.4.

5.2.3 Comparative analysis of algorithm performance

Weight adaptivity and fibre direction estimation of proposed methods

The adaptive property of NLM weights has been a prime motivation for developing NLM
methods for HARDI. In this section we briefly compare the performance of the two proposed
NLM filters with that of the linear GKS filtering approach using synthetic HARDI data.
Spherical functions, corresponding to the HARDI signal at a fixed location, were generated
with differing relative smoothness. In particular, two sets of signals were fabricated, both
with a S0 = 60, b-value of 3000 s/mm2 and K = 64 samples. The signals in the first set
consisted of a single “fibre” with FA = 0.9, while the signals in the second set consisted
of three crossing fibres having fractional anisotropy (FA) of 0.7. Examples of the above
signals are shown in Subplots 5.1(a) and 5.2(a), respectively (note that displayed signals
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have been interpolated using spherical harmonics to provide an image resolution greater
than 64 samples per function). All the test signals were contaminated by Rician noise to
give rise to an SNR (Ā/σ) of 10. The noisy versions of the test signals are shown in the
Subplots 5.1(b) and 5.2(b).

(a) Original (b) Noisy

(c) GKS (d) RILES

(e) NLMS2

Figure 5.1: HARDI signal from set 1 (FA =
0.9)

(a) Original (b) Noisy

(c) GKS (d) RILES

(e) NLMS2

Figure 5.2: HARDI signal from set 2 (FA =
0.7)

Subplots (c)-(e) in Figures 5.1 and 5.2 show the denoised estimates of the GKS, RILES,
and NLMS2 methods, respectively. Results have been compared in terms of RMSE, com-
puted based on averaging the results of 100 independent trials, and are summarized in
Table 5.2 with the best results recorded in bold. Side experiments have shown that when
GKS parameters were tuned to filter one type of dataset, the method performed com-
petitively. However, as both the figures and Table 5.2 show, when the parameters were
set to produce results beneficial to both types of HARDI signals, the performance was
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Table 5.2: Results of adaptivity experiment
Set 1 RMSE (dB) Set 2 RMSE (dB)

Noisy 4.57 -1.29
GKS 4.17 -1.50

RILES 2.16 −3.85
NLMS2 4.51 -2.12

suboptimal.

Unlike GKS, the NLMS2 and RILES weights are not fixed, but are instead adaptively
chosen based on neighbourhood similarity. As a result, there is no guarantee as to the
number of samples which will be given a significant weight in the average. We can, how-
ever, predict that because a) RILES is based on spherical harmonic band energies and b)
numerous neighbourhood structures can have the same band energy, that c) RILES will
be more liberal than NLMS2 in distributing large weights. This characteristic is beneficial
in the current experiment where there are only 64 samples, and even fewer samples with
the same original intensity. As can be seen from the figures, the small number of similar
samples has resulted in NLMS2 performing a minimal amount of averaging. RILES, on
the other hand, still performed a significant amount of denoising. Although the strict sim-
ilarity measure of NLMS2 is better able to filter out dissimilar (erroneous) samples from
the average, the image must contain a greater number of similar samples for this method
to be effective.

The first set of signals (Figure 5.1) was also used to evaluate the proposed methods’
performance in improving the accuracy of fibre direction estimation. The true direction of
each synthetic fibre was compared to the main eigenvector of the DTI diffusion tensor for
noisy and denoised signals. The results are compared in terms of angular error in degrees,
computed based on averaging the results from 100 independent trials, and are summarized
in Table 5.3 with the best results recorded in bold. It is noted that both proposed methods
are able to increase the accuracy of fibre direction estimation.

61



Table 5.3: Results of fibre direction estimation
Set 1 error of direction

estimation (degrees)
Noisy 1.90
GKS 1.83

RILES 0.76
NLMS2 1.26

Algorithm performance on 16x16 phantom

The experiments reported in this section use 16x16 phantom whose noise-free reconstruc-
tion is shown in Subplot (a) of Figures 5.3, 5.5, and 5.7. The phantom is a 2D grid of
spherical HARDI functions emulating two crossing fibres superimposed on one circular fi-
bre. All spherical functions were constructed using the multi-tensor model with S0 = 60, a
b-value of 3000 s/mm2, and K = 64 samples. The phantom was subjected to three levels
of Rician noise giving rise to SNRs of 5, 10, and 20 shown in Subplot (b) of Figures 5.3,
5.5, and 5.7, respectively. For the sake of visual comparison, Subplots (c)-(f) of the same
figures show the denoised estimates of the vTV, NLMv, RILES, and NLMS2 algorithms
respectively, whereas Figures 5.4,5.4, and 5.4 show the corresponding OPDFs implemented
using the method of [89].

Table 5.4 summarizes the values of the performance metrics obtained by evaluating each
algorithm’s estimate of raw HARDI data and reconstructed OPDFs for differing SNRs (best
results are reported in bold). It can be seen that, among all the compared methods, NLMS2
provides better performance in terms of all the performance measures. An additional
important observation can be made through comparing the values of the RMSE and cRMSE
metrics obtained using different reconstruction algorithms. In particular, we first note that
the values of RMSE and cRMSE corresponding to the noisy data are not identical – a fact
which indicates the presence of a non-zero bias in the measurement noise. Whereas the
NLMv, RILES, and NLMS2 denoising techniques have approximately equal RMSE and
cRMSE values, the measures are noticeably different in the case of vTV. This fact suggests
that the latter method is inefficient in removing the constant bias in the reconstruction
error.
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(a) Original (b) Noisy

(c) vTV (d) NLMv

(e) RILES (f) NLMS2

Figure 5.3: HARDI signal reconstruction for SNR 5

63



(a) Original (b) Noisy

(c) vTV (d) NLMv

(e) RILES (f) NLMS2

Figure 5.4: OPDF reconstruction for SNR 5
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(a) Original (b) Noisy

(c) vTV (d) NLMv

(e) RILES (f) NLMS2

Figure 5.5: HARDI signal reconstruction for SNR 10
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(a) Original (b) Noisy

(c) vTV (d) NLMv

(e) RILES (f) NLMS2

Figure 5.6: OPDF reconstruction for SNR 10
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(a) Original (b) Noisy

(c) vTV (d) NLMv

(e) RILES (f) NLMS2

Figure 5.7: HARDI signal reconstruction for SNR 20
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(a) Original (b) Noisy

(c) vTV (d) NLMv

(e) RILES (f) NLMS2

Figure 5.8: OPDF reconstruction for SNR 20
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Table 5.4: Results of denoising 16x16 synthetic phantom
Raw HARDI Data OPDF Reconstruction

SNR (Ā/σ) RMSE (dB) cRMSE (dB) RMSE (dB)
Noisy 14.3503 14.2036 -4.7855
vTV 11.9712 11.9679 -5.2005

NLMv 5 10.7916 10.7817 -5.2770
RILES 10.2617 10.2616 -5.5861
NLMS2 9.6967 9.6965 −5.6020
Noisy 8.2780 8.2067 -5.1660
vTV 8.0923 8.0755 -5.1966

NLMv 10 6.9742 6.8934 -5.3158
RILES 5.7489 5.7475 -5.2875
NLMS2 4.3851 4.3748 −5.4060
Noisy 2.2678 2.2551 -5.3203
vTV 1.9174 1.9167 -4.4515

NLMv 20 1.6363 1.6332 -5.3330
RILES 0.9354 0.9310 -5.3285
NLMS2 −1.3443 −1.3443 −5.3713

5.3 Fibre cup phantom

The Fibre Cup contest was held by the Medical Image Computing and Computer-Assisted
Intervention (MICCAI) Society in 2009 to evaluate reconstruction models and tractography
algorithms in diffusion MRI. An MR phantom was constructed containing a plethora of
realistic crossing, kissing, splitting and bending fibre configurations to be used as a ground
truth dataset for method comparison (the fibre locations can be seen in Figure 5.9(a)). The
data set was later made available to the public for the purpose of assessing new processing
methods. We will use the phantom to visually assess the proposed RILES and NLMS2
filtering methods.

Diffusion-weighted data of the phantom was acquired on the 3T Tim Trio MRI systems
of the NeuroSpin centre. A single-shot diffusion-weighted twice refocused spin echo echo-
planar pulse sequence was used to perform the acquisitions. The voxel size was 3x3x3 mm3

and the b-value was 2000 s/mm2. Diffusion sensitization was applied along a set of 64
orientations, uniformly distributed over the sphere.

The denoising results are displayed in two magnified regions of the phantom, the lo-
cations of which are shown in Figure 5.9(b). Figure 5.10 shows the results for the first
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region, which contains a U fibre, whereas the results for the crossing fibres in the second
region are shown in Figure 5.11. A visual assessment verifies that both methods preserve
anatomical structure, while allowing for a clearer view of diffusion directions.

(a) Fibre cup ground truth (b) Locations of displayed results

Figure 5.9: Fibre cup phantom
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(a) Noisy Data (b) Noisy OPDF

(c) RILES Data (d) RILES OPDF

(e) NLMS2 Data (f) NLMS2 OPDF

Figure 5.10: Fibre cup denoised region 1
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(a) Noisy Data (b) Noisy OPDF

(c) RILES Data (d) RILES OPDF

(e) NLMS2 Data (f) NLMS2 OPDF

Figure 5.11: Fibre cup denoised region 2
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5.4 Experiments with real-life data

In this section, we visually assess the ability of the proposed RILES and NLMS2 filtering
techniques to denoise diffusion-weighted measurements of a human brain. The data was
kindly provided by Robarts Research Institute, acquired from a Siemens 3T scanner using
a single-shot diffusion-weighted once refocused spin echo echoplanar pulse sequence. The
voxel size was 2x2x2 mm3 and the b-value was 1000 s/mm2. Diffusion sensitization was
applied along a set of 64 orientations.

Figure 5.12 displays the ability of diffusion-weighted MRI techniques to capture the
morphology of the white matter invisible to traditional contrasts. Additionally, it is clear
from this figure the impact that the proposed denoising methods (in this case RILES) have
on the OPDF reconstruction. Magnified denoising results are displayed in three regions of
the brain, the locations of which are shown in Figure 5.12(a). Figures 5.13, 5.14, and 5.15
show the denoising results of the three regions, respectively. A visual assessment verifies
that both methods preserve anatomical structure, while increasing the ability to delineate
neural fibres.

(a) B0 image
(locations of displayed results)

(b) Diffusion-weighted MRI
(noisy OPDF)

(c) Diffusion-weighted MRI
(denoised OPDF)

Figure 5.12: Diffusion-weighted MRI of the human brain
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(a) Noisy Data (b) Noisy OPDF

(c) RILES Data (d) RILES OPDF

(e) NLMS2 Data (f) NLMS2 OPDF

Figure 5.13: Brain denoised region 1
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(a) Noisy Data (b) Noisy OPDF

(c) RILES Data (d) RILES OPDF

(e) NLMS2 Data (f) NLMS2 OPDF

Figure 5.14: Brain denoised region 2
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(a) Noisy Data (b) Noisy OPDF

(c) RILES Data (d) RILES OPDF

(e) NLMS2 Data (f) NLMS2 OPDF

Figure 5.15: Brain denoised region 3
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Chapter 6

Conclusions and Future Work

The aim of this work is to develop an effective framework for the filtering of HARDI
measurement noise in order to correct the distortion of diagnostically relevant imaging
details. The framework should take into account both the manifold to which the HARDI
signal belongs and the statistical nature of MRI measurement noise. These goals were
accomplished using an approach rooted in non-local means (NLM) weighted averaging.
The average included samples, and therefore dependencies, from the entire manifold and
the result of the average, being an approximation of the noisy measurement’s expected
value, was used to deduce an estimate of the original signal value in accordance with MRI
statistics.

Unlike linear filters, the NLM averaging weights are determined adaptively based on
a neighbourhood similarity measure. This approach allows a more accurate estimate of
the noisy data’s expected value. The particular method of neighbourhood comparison
proposed in this thesis is one of spherical neighbourhoods, which assigns large weights to
samples with similar local orientational diffusion characteristics. Given the complicated
nature of spherical neighbourhood comparison, two methods have been proposed. The
NLMS2 algorithm introduces a sample-to-neighbourhood similarity measure as a precursor
of neighbourhood-to-neighbourhood comparison. This method, while having a rigorous
theoretical background, is computationally intensive. The RILES algorithm, on the other
hand, compares neighbourhoods using spherical harmonic band energies. Although less
rigorous, RILES is more computationally efficient than NLMS2.

Both of the proposed algorithms have been evaluated on simulated and real data.
Results from simulated experiments have shown that the proposed methods have better
performance in comparison to other reference methods developed for HARDI denoising.
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The NLMS2 algorithm consistently outperformed all other methods in denoising HARDI
images with various signal-to-noise ratios, while RILES provided a computationally efficient
alternative with competitive results. Visual results obtained from experiments in which the
proposed methods were applied to real data have shown an increased ability to delineate
the anatomical structure of fibres from the corresponding ODFs.

Despite the success of the proposed methods, there may still be the opportunity for
improvement. In particular, the chosen weighting kernel βk in NLMS2 and, analogously,
the Gauss-Weierstrass windowing kernel chosen in RILES may not be optimal. Further
experiments should be conducted comparing other weighting techniques. Moreover, alter-
native methods of S2 neighbourhood comparison should be explored. For instance, another
method for neighbourhood comparison can be derived from the zero phase spherical har-
monic coefficients. Since the zero phase coefficients correspond to zonal basis functions,
they provide a neighbourhood description that is invariant to azimuth rotations. Alter-
natively, one could compare neighbourhoods using all the spherical harmonic coefficients.
Although this method is no longer invariant to azimuth rotations, it provides a neighbour-
hood comparison that is more strict than RILES and may be able to improve performance
by more accurately determining which samples are truly similar. Finally, further research
should be conducted concerning methods which add spatial dimensions into the neighbour-
hood, as was outlined in Section 4.3.2.

In conclusion, the proposed NLM methodology has been shown to efficiently filter
HARDI noise. Although further improvements may be possible, the methods presented
in this thesis can currently be used as a preprocessing step to improve the results of the
numerous processing techniques available to HARDI.
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Appendix A

Derivation of Fourier relationship
between E(q) and P (r)

This appendix provides the derivation (following reference [25]) of the Fourier relationship
between Ensemble Average Propagator and PGSE diffusion signal. For simplicity, k-space
considerations are initially ignored and only included in a later section.

A.1 PGSE

In the PGSE experiment, the diffusion-encoding gradients are pulses (Figure A.1). The
pulses are assumed to be sufficiently narrow to neglect any spin displacement over their
duration, allowing a clear distinction between the encoding time δ and the diffusion time
∆.

Consider a collection of spins in volume V undergoing a PGSE experiment. Under
the narrow pulse approximation, a spin at location r subjected to the first gradient pulse
accumulates a phase

φr = γδg · r. (A.1)

If the spin then moves to location r′ during ∆, application of the second gradient pulse
reverses the phase according to

φr′ = −γδg · r′. (A.2)
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Figure A.1: PGSE sequence [25]

The net phase change that a spin undergoes is

φr′ + φr = −γδg · (r′ − r). (A.3)

For stationary spins, the net phase change is zero and the signal is unaffected. If the
spin moves, then the second gradient does not correctly compensate for φr. The result is
spin dephasing causing signal attenuation.

The demodulated signal can be written as (see Equation 3.13) and Equation 3.15)

s(t) ∝
∫
|M⊥(r, t)|e−iφ′(r,t)dr, where φ′(r, t) = −γδg · (r′(t)− r), (A.4)

where g is a diffusion-encoding gradient causing the dephasing captured in φ′(r, t). In this
context, it is convenient to denote the signal s(t) as S(g) to make explicit the dependence
on the encoding gradient.

In the present case, only the diffusion attenuation effect is of interest. Therefore, it
is convenient to consider the signal independent of the spin density, T1 relaxation, and
T2 relaxation effects contained in |M⊥(r, t)|. To eliminate these effects, the diffusion
attenuated signal S(g) is normalized by a signal S(0) obtained in the absence of encoding
gradients and diffusion attenuation

E(g) = S(g)/S(0). (A.5)
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A.2 Q-space and the Average Propagator

The signal amplitude of E(g) is governed solely by the net phase change φ′(r, t). Yet, the
net phase change is a function of random spin movements. Consequently, E(g) should be
rewritten in probabilistic terms.

To this end, let Ps(r|r′, t) represent the chance that a single spin placed at location r
diffuses to location r′ after a time t. The average dephasing at a given location r′ is∫

Ps(r|r′, t)eiγδg·(r
′−r)dr. (A.6)

Equation A.6 assumes that all starting locations are equally likely; there is no consider-
ation that the likelihood of a spin arriving from a starting location r depends on the initial
spin density at r. Taking this into account, let ρ(r) be the initial spin density normalized
by an appropriate factor such that∫ ∫

ρ(r)Ps(r|r′, t)drdr′ = 1. (A.7)

Ps(r|r′, t) accounts for the likelihood that a “diffusion force” takes a single spin from r to
r′ whereas ρ(r) accounts for the likelihood that a spin starts at r. The received signal can
be written as an ensemble average in which each phase term eiγδg·(r

′−r) is weighted by the
probability for any spin in the volume to begin at r and diffuse to r′

E∆(g) =

∫ ∫
ρ(r)Ps(r|r′,∆)eiγδg·(r

′−r)drdr′. (A.8)

Introducing the variable q = (2π)−1γδg, E∆(g) can be rewritten in Q-space as

E∆(q) =

∫ ∫
ρ(r)Ps(r|r′,∆)ei2πq·(r

′−r)drdr′. (A.9)

At this point it is convenient to introduce the Ensemble Average Propagator (EAP).
The Ensemble Average Propagator gives the average probability for a spin in volume V to
diffuse with a net displacement R = r′ − r over a time t. This probability is given by

Ps(R, t) =

∫
ρ(r)Ps(r|r + R, t)dr. (A.10)

81



Using the EAP, it is not difficult to see that through a change of variables Equation A.9
can be rewritten as

E∆(q) =

∫
Ps(R,∆)ei2πq·RdR. (A.11)

It is evident that recovery of the EAP is performed via the Fourier Transform. Q-space
can be traversed by varying the pulse duration δ or encoding gradient strength. Thus, by
taking enough samples in Q-space we can recover a diffusion profile for the spins in volume
V. Rather than obtain the diffusion profile of the entire volume V, it is desirable to obtain
the diffusion profile at each voxel. This is accomplished by combining the Q-space with K
space developments.

A.3 Q-space and K space

Recovering the EAP at each voxel requires the spatial resolution obtained from phase en-
coding. A k-space imaging gradient is applied in addition to the PGSE gradients resulting
in the signal

S(k,q) =

∫
ρ(r)ei2πk·r

∫
Ps(r|r′,∆)ei2πq·(r

′−r)dr′dr. (A.12)

Which can be written

S(k,q) =

∫
ρ(r)E∆(q, r)ei2πk·rdr, (A.13)

where

E∆(q, r) =

∫
Ps(r|r′,∆)ei2πq·(r

′−r)dr′. (A.14)

It is clear that reconstruction in k-space recovers an image with voxel intensity ρ(r)E∆(q, r).
Each image reconstructed from k-space provides all voxels with another measurement in q-
space. If we acquire enough images with different q values, every voxel to use the q-Fourier
Transform to recover ρ(r)Ps(r|r′,∆) - the EAP for an infinitesimal volume surrounding r.
However, in practice the volume surrounding r is not infinitesimal, it is a voxel of finite
size. Therefore, it is more accurate to consider the q-Fourier Transform of ρ(r)E∆(q, r) as
the local EAP averaged over the volume of a voxel. In summary, by acquiring enough DW
images to properly cover q-space, it is possible to recover the EAP at each voxel.
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Appendix B

Derivation of statistical sample
similarity measures for MRI

B.1 Subtractive sample similarity measure for non-

central chi square statistics

We are interested in evaluating pFs−k−Ft−k|Gs−k,Gt−k at 0, which can be rewritten as [85]

pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) =

∫ ∞
0

pFs−k|Gs−k,Gt−k(f | gs−k, gt−k)pFt−k|Gs−k,Gt−k(f | gs−k, gt−k) df

(B.1)
where it has been assumed that Fs−k and Ft−k are conditionally independent, given the
noisy data Gs−k and Gt−k. Moreover, further simplification using (4.14) and an application
of Bayes theorem leads to,

pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) =

∫∞
0
pFs−k(f)pFt−k(f)pGs−k|Fs−k(gs−k | f)pGt−k|Ft−k(gt−k | f) df

pGs−k(gs−k)pGt−k(gt−k)
(B.2)

If no prior information about the original intensity is provided, one can assume a uniform
density on the original intensities [30, 85]. Therefore, one can move pFs−k(f) and pFt−k(f)
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out of the integral. Also, pGs−k(gs−k) can be written as

pGs−k(gs−k) =

∫ ∞
0

pGs−k|Fs−k(gs−k | fs−k)pFs−k(f) df

= pFs−k(f)

∫ ∞
0

1

2
e−(gs−k+f)/2I0(

√
fgs−k) df

= pFs−k(f) (B.3)

Moving from the first line to the second uses the uniform density assumption of Fs−k. Mov-
ing from the second line to the third uses the fact that integrating conditional probability
pGs−k|Fs−k(gs−k | fs−k) with respect to f is equivalent to integrating with respect to gs−k,
which evaluates to one. In the same manner, it can be shown that

pGt−k(gt−k) = pFt−k(f) (B.4)

Using (B.3) and (B.4), (B.2) simplifies to

pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) =

∫ ∞
0

pGs−k|Fs−k(gs−k | f)pGt−k|Ft−k(gt−k | f) df

=
1

4
e−(gs−k+gt−k)/2

∫ ∞
0

e−fI0(
√
gs−kf)I0(

√
gt−kf) df

(B.5)

Performing a change of variables to y =
√
f , one obtains

pFs−k−Ft−k|Gs−k,Gt−k(0|gs−k, gt−k) =
1

2
e−(gs−k+gt−k)/2

∫ ∞
y=0

ye−y
2

I0(
√
gs−ky)I0(

√
gt−ky) dy

=
1

2
e−(gs−k+gt−k)/2

∫ ∞
y=0

ye−y
2

J0(i
√
gs−ky)J0(i

√
gt−ky) dy

(B.6)

where J0 is the Bessel function of the first kind and order 0, and i =
√
−1. Subsequently,

using equation (2.32) of [42],

pFs−k−Ft−k|Gs−k,Gt−k(0|gs−k, gt−k) =
1

4
e−(gs−k+gt−k)/4I0

(
−
√
gs−kgt−k

2

)
=

1

4
e−(gs−k+gt−k)/4I0

(√
gs−kgt−k

2

)
(B.7)

where the last line makes use of I0(−x) = I0(x).
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B.2 Rational sample similarity measure for Rician statis-

tics

In this case, we are interested in evaluating pAs−k/At−k|Ms−k,Mt−k at 1, which can be rewritten
as [85]

pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k) =

∫ ∞
0

apAs−k|Ms−k(a | ms−k)pAt−k|Mt−k(a | mt−k) da

(B.8)

Proceeding similar to the derivation in Appendix B.1, we obtain,

pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k) =

∫ ∞
0

apMs−k|As−k(ms−k | a)pMt−k|At−k(mt−k | a) da =

=
ms−kmt−k

σ4
e−(m2

s−k+m2
t−k)/2σ2

∫ ∞
a=0

ae−a
2/σ2

I0

(ms−ka

σ2

)
I0

(mt−ka

σ2

)
da (B.9)

Performing a change of variables to y = a/σ, one obtains

pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k) = (B.10)

ms−kmt−k

σ2
e−(m2

s−k+m2
t−k)/2σ2

∫ ∞
0

ye−y
2

I0

(ms−k

σ
y
)
I0

(mt−k

σ
y
)
dy

and using formula (2.32) of [42], this evaluates to

pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k) =
ms−kmt−k

σ2
e−(m2

s−k+m2
t−k)/4σ2

I0

(ms−kmt−k

σ2

)
(B.11)
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