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Abstract 

Caldicellulosiruptor is a genus of thermophilic, anaerobic, Gram-positive, non-spore-

forming cellulolytic bacteria and is capable of fermenting a wide spectrum of carbohydrates. 

Both Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor kristjanssonii were found 

to be able to use the raw cellulosic material，switchgrass，for producing H2. Therefore, 

experiments were designed and conducted to select the optimal substrate and investigate the 

parameters involved in the fermentation process. C. saccharolyticus and C. kristjanssonii 

were cultivated on different sugars including glucose, xylose, cellobiose, xylan, avicel 

(PH105), and switchgrass. The highest H2 production was obtained on glucose by C. 

saccharolyticus with 2.9 mol (H2)/mol (glucose), whereas the yield by C. kristjanssonii was 

only 1.7 mol (H2)/mol (glucose). Moreover, the sample of C. saccharolyticus on xylose 

gained higher cell density, compared with glucose. During the cell growth, there was a small 

decrease of the H2/acetate ratio from 20 hour’s data to 40 hour’s along with the existence or 

significant increase of lactate. This suggested that a possible direction shift of metabolism 

happened in between the two time points, perhaps due to the H2 end product inhibition. A 

scanning electronic microscope (SEM) and confocal microscope were used to detect the 

adhesion between cells of these two microorganisms and cellulose and hemicellulose 

substrates in real time. A series of microscope pictures revealed non-specific and specific 

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Thermophilic
http://en.wikipedia.org/wiki/Anaerobic_organism
http://en.wikipedia.org/wiki/Gram-positive
http://en.wikipedia.org/wiki/Endospore
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attachments between the cells and cellulosic materials, such as avicel and switchgrass, as 

well as the attachment behavior corresponding to the amount of H2 production. Proteomic 

analysis of C. saccharolyticus showed the existence of proteins related to mobility of the 

microbes such as flagella and chemotaxis. Other proteins found， that contribute to the 

attachment between the cell and substrates, are the family 3 cellulose-binding module (CBM 

3), the fibronectin-binding-A domain-containing proteins, the s-layer proteins, and a lysine 

motif protein. Groups of proteins like glycoside hydrolases (GHs), alcohol dehydrogenase 

(ADH) and hydrogenase that are responsible for the breakdown of cellulose and 

hemicellulose substrates, and the production of ethanol and H2, were also found in the 

proteome.  
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Chapter 1 Introduction 

1.1 Biofuel production 

According to the 2010 International Energy Report (U.S. Energy Information 

Administration, 2010), the consumption of world-marketed energy will grow by 49 % from 

2007 to 2035. Total world energy use will rise from 495 quadrillion British thermal units 

(Btu) in 2007 to 590 quadrillion Btu by 2020, and to 739 quadrillion Btu in 2035, with a 

43 % increase of world energy-related carbon dioxide emissions from 29.7 billion tonne in 

2007 to 33.8 billion tonne in 2020 and 42.4 billion tonne in 2035. These increases are in 

progress, even though the recession that started December 2007 had a significant influence 

on energy consumption (U.S. Energy Information Administration, 2010). Among all the 

increased consumption of energy, with the assumption that world oil prices will remain 

relatively high through most of the projection period, liquid fuel consumption is expected 

to increase at an average annual rate of 0.9 % from 2007 to 2035, whereas total energy 

demand will increase by 1.4 % per year. Renewable resource are the fastest-growing source 

of world energy, with consumption increasing by 2.6 % per year; hydroelectricity and wind 

provide the largest shares in this market. The expected increase of nuclear energy use 

before this year’s Fukushima Nuclear Power Plant accident was 2.6 trillion kilowatthours in 

2035(U.S. Energy Information Administration, 2010). 

Meanwhile, biohydrogen fuel offers us a brand new and attractive energy future, it is 

environmentally problem-free (water as the only end-product; hydrogen means “water-
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former” in Greek), has the highest energy content of the known fuels (142 kJ/g or 61,000 

Btu/lb) (Boyles, 1984), and is renewable. The ways of producing hydrogen include water 

electrolysis, thermochemical, radiolytic, and biological processes (Kothari et al., 2008), 

among which biological processes have significant advantages in energy cost, 

environmentally friendliness, and sustainability. Among the biological processes—

biophotolysis, photo-fermentation, fermentative hydrogen production (FHP), and hybrid 

systems (Das and Veziroğlu, 2001)—fermentative H2 production is attracting much 

attention because it can produce a wide variety and easily gained renewable resources. The 

materials containing cellulose and hemicellulose are the most extensively studied and 

popular resource for fermentative H2 production.  

One excellent example of a cellulosic material that could be used is a summer perennial 

grass called switchgrass (Panicum virgatum). Switchgrass is one of the three dominant 

native grasses found on the North American tallgrass prairie prior to settlement. It has been 

under investigation in Canada as a bioenergy crop since 1991(Samson, 2007), and was 

selected as a model for biomass-to-biofuel conversion by the Bioenergy Science Center 

(funded by the U.S. Department of Energy; http://bioenergycenter.org/). It was most 

commonly used for livestock forage in the south-central United States before, but there are 

plans to encourage its growth in Ontario. It is estimated that once fully established in 

Ontario, switchgrass can typically produce 8-12 tonne/ha of harvestable dry matter each 

year. Typically switchgrass and grain corn have similar energy contents on a dry matter 

basis of approximately 18.5 GJ/tonne. Assuming a harvested grain corn yield of 6.5 

tonne/ha and switchgrass yield of 10 tonne/ha, switchgrass produces 185 GJ/ha of energy, 
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while grain corn produces only 120 GJ/ha. Thus, the net energy gain per ha is 73% higher 

for switchgrass than grain corn if the fossil energy inputs used for crop production are 

subtracted from energy output (Samson, 2007). Switchgrass is best grown as a one-cut per 

year crop, and can be harvested any time after fall, which is when grass is dried out and 

adequate nutrient and carbohydrate translocation to the root reserves has occurred for 

winter survival. Consequently, only the insoluble cellulose part is left in the grass when it is 

harvested. According to the owner of Nott Farm (Clinton, Ontario), switchgrass is capable 

of producing high yields with very low applications of fertilizer, and need no fertilizers or 

sewing after the first two years of growth. In addition, it is tolerant of poor soils, flooding 

and drought, which are widespread agricultural problems in the Southeast, making 

switchgrass an ideal crop for efficient use marginal and poor land that cannot be used for 

food-crop growth. Costs to grow and harvest switchgrass are approximately $40-$50/tonne 

in Ontario (Samson, 2007). Switchgrass’ perennial nature, stand longevity, adaptation to 

marginal and non-fertilized farmlands, low input requirements and high productivity make 

it stand out as the lowest cost means to capture and store solar radiation in a field crop in 

Ontario (Samson, 2007). 

The usual application scheme to transfer biomass into biofuel involves several steps: First 

the solar energy is collected by the plant and stored as forms of biomass (in cell walls); then 

the cell wall polymers are destructed into component sugars (pretreatment and 

saccharification), and then the sugars are converted to biofuels (fermentation) (Rubin, 

2008) as shown in Figure 1.1. 
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. 

Figure 1.1The application scheme of biomass biofuel. The application scheme of 

biomass including several steps: plant stored the energy from the sun through photo-

synthesis in the cellulose and hemicelluloses biomass; the sugar could be used by microbes 

was released from biomass raw materials through the pretreatment of the materials; then the 

biofuel such as H2 and ethanol were produced by the microorganisms with sugars gained 

from last step. 
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During the transfer of the cellulosic and lignocellulosic biomass into the hydrogen or 

ethanol as fuel, hydrolysis is the rate-limiting step whole process. Cellulose is a linear, 

insoluble biopolymer composed of repeating β–D-glucopyranose residues linked by β-1, 4 

glycosidic bonds (Desvaux, 2003). Enzymatic cellulose hydrolysis is generally a slow and 

incomplete process. In complex biological systems such as rotting trees and plant debris in 

soil, the decomposition of cellulose may last as long as months because plant cellulose 

always exists in a highly crystalline form (Schwarz, 2001). The significant factor of biofuel 

production from biomass is the efficient conversion of the biomass into sugar that can be 

used by microorganisms directly. This conversion remains a formidable challenge because 

of the high degree of polymerization of cellulose. The release of such long-chain 

polysaccharides as cellulose and hemicellulose, and the subsequent hydrolysis of these 

polysaccharides into their component 5- and 6-carbon chain sugars are involved in the 

breakdown of biomass (Rubin, 2008; Van Wyk, 2001). Usually, the conversion involves 

physical and chemical pretreatment before the biological hydrolysis step with certain 

special enzymes. As the approaches used in many biofuel production studies are costly and 

not very efficient, thermal and chemical pretreatments are applied to solubilize or release 

the sugars and thus increase the accessibility by microorganisms (Kostamo et al., 2004; 

Ranatunga et al., 1997). A typical chemical pretreatment of biomass materials involves 

diluted acid and heat, mainly as sulfuric acid at a temperature as high as 150-200˚C 

(Panagiotopoulos et al., 2011). On the other hand, certain microorganisms can be used in 

third-generation biofuel production method that involve direct use of high efficiency 

cellulase and hemicellulase without particular chemical or thermo pretreatments. The 
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biologic scheme for these methods is to search for novel microorganisms that can take 

biomass as a nutrition source and to study the special characteristics of the enzymes 

involved. The free-living organisms and symbiotic animal–microbe consortia invariably 

present in biomass–rich environments are always the targets of researchers (Rubin, 2008). 

Potential Research and Development-driven improvements should offer large cost savings, 

in particular through increasing cellulose hydrolysis yield, halving cellulase loading, 

eliminating pretreatment and incorporating consolidated bioprocessing (CBP), hydrolysis 

and fermentation into one-step (Lynd et al., 2005 and 2008). The contributions of such 

improvements in reduced production costs are listed in Figure 1.2(data adapted from Lynd 

et al., 2008). 

The hydrolysis of cellulose requires the co-operation of three classes of cellulolytic 

enzymes: cellobiohydrolases (CBH, EC 3.2.1.91), endo-β-1, 4-glucanases (EG, EC 

3.2.1.4), and β-glucosidases (BG, EC 3.2.1.21) (Viikari et al., 2007). Cellulase with high 

adsorption capabilities, high catalytic efficiencies, high thermal stability, and low end-

product inhibition is always the “ideal” enzyme people look for in both fungi and bacteria. 

However, almost all cellulolytic strains identified so far are low in one or more types of 

glycoside hydrolases (GH) (Maki, 2009). Much research has been done on various kinds of 

fungi and bacteria. A cost-effective system built to produce hydrogen and ethanol from 

cellulosic biomass requires highly efficient hydrolysis activity enzymes. Several 

microorganisms have been found to harbor cellulose-related enzymes, including 

mesophilic, thermophilic, and hyperthermophilic ones. These microbes have potential to 

serve in biomass biofuel production. 
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Figure 1.2 Reduction in processing costs for various technological advances. The 

percentage cost reduction of various techniques used to reduce the cost of biofuel 

production were shown in bars, the techniques includes: increasing cellulose hydrolysis 

yield, halving cellulase loading, eliminating pretreatment, incorporating consolidated 

bioprocessing, simultaneous C5 and C6 sugar use, increased fermentation yield, increased 

ethanol titer, and increased ethanol titer after Consolidated Bioprocessing (CBP) (data 

adapted from Lynd et al., 2008). 
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Thermostability is usually defined as the retention of activity after heating at a chosen 

temperature for a prolonged period, but it is so far still a relative term without a clear 

definition (Viikari et al., 2007). Cellulases from hyper/thermophile have special capability 

to keep their catalysis activities at high temperature, and has higher specific activity that 

helps decrease the amount of enzyme needed for the cellulose degrading, and it also has 

higher stability that allows elongated hydrolysis time. There was less risk of contamination 

from most of the microorganisms could not survive at high temperatures (Adams, 1990; 

Claassen and Vrije, 2006; Levin et al., 2009; Viikari et al., 2007; Wal Van et al., 2002; 

Werken et al., 2008). Industrial bioconversions of lignocelluloses usually involve 

application of high temperature, and there are other problems such as cooling from high 

temperature, pumping of oxygen or stirring, and, neutralization from acidic or basic pH 

during the industry process, that always act as the barriers to economic-scaled application 

of cellolase to produce biomass biofuel (Grishutin et al., 2004; Maki et al., 2009). The 

unique characteristics of hyper/thermophlic cellulase perfectly meet the requirements of 

high temperature and its capability of keeping active under high temperatures increases 

flexibility for process configurations and cut the cost of cooling (Viikari et al., 2007). 

The term “third generation of biofuel” was recently proposed by researchers. Unlike 

previous two generations’ methods, which involved multiple-step process including 

cellulase production, substrate hydrolysis, and fermentation, this third generation uses only 

one step with the aid of cellulolytic (and hemicellulolytic) microorganisms (Demain et al., 

2005; Lynd et al., 2002 and 2005 ). Which saves such steps as extensive pre-treatment of 

the cellulosic materials by steam-explosion and/or acid treatment and a following step to 
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add of exogenously produced cocktails of cellulolytic enzymes (Lynd et al., 2002 and 

2005). Moreover, it has many advantages financially and environmentally, since the seeds 

or grains such as wheat used in the production of first generation biofuel will be saved, 

preventing possible food shortages and food price rises (Anonymous, 2000, A Framework 

for Decision Maker. UN Biofuel Report). 

1.2 Cellulolytic microorganisms 

Cellulolytic species have been found within the phyla Proteobacteria, Actinobacteria,  

Spirochaetes, Firmicutes, Fibrobacteres, and Bacteroids, among which approximately 80 % 

of the isolations are from Firmicutes and Actinobacteria (Bergquist et al., 1999; Hamilton-

Brehm et al., 2010). The majority of the gram-positive cellulolytic bacteria has been found 

within Firmicutes and belongs to the class Clostridia and the genus Clostridium (Carere et 

al., 2008). 

Lignocellulolytic enzyme-producing fungi come in many kinds and are widespread, such as 

species from the ascomycetes (e.g., Trichoderma reesei), basidiomycetes including white-

rot fungi (e.g., Proteobacteria chrysosporium), brown-rot fungi (e.g., Fomitopsis palustris), 

and a few anaerobic species (e.g., Orpinomyces sp.) that degrade cellulose in the 

gastrointestinal tracts of ruminant animals as well (Dashtban et al., 2009; Wyman et al., 

2005; Yoon et al., 2007). 

Many studies on cellulase have focused on the mesophilic fungus T. reesei. Eight major 

cellulase genes have been identified from the T. reesei genome, among which there are two 
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cellobiohydrolases (CBH I and II, e.g., Cel7A and Cel6A), and six endoglucanases (EG I–

VI, e.g., Cel7B, Cel5a, Cel12A, Cel45A, Cel61A, Cel74A) (Foreman et al., 2003). And 

Cel7A (CBHI) is the major cellulose of T. reesei; Cel7A constitutes about 60 % of the 

cellulases expressed and has a capability to hydrolyze solid cellulose (Nidetzky and 

Claeyssens, 1994; Stalberg, 1991). In addition to cellulolytic/hemicellolytic activities, 

higher fungi such as basidiomycetes (e.g., Phanerochaete chrysosporium) have unique 

oxidative systems that, together with lignolytic enzymes, are responsible for lignocellulose 

degradation (Dashtban et al., 2009). P. chrysosporium has also been found to be one of the 

most efficient lignin-degrading microorganisms that have been studied (Moredo et al., 

2003). Fungi attract most of the attention for their capability to produce copious amount of 

extracellular cellulose, and this kind of cellulase is often less complex compared with 

cellulase from bacteria source. However, increasing attention is focused on the bacteria 

host cellulase because bacteria’s higher growth rate allows higher recombinant production 

of enzymes, and this cellulase has better adapter capabilities to extreme environments and 

stress (there are many extremophiles in bacteria). Moreover, the bacteria can express multi-

enzyme complex that has a co-operation effect of degrading cellulose. A number of 

bacteria strains from thermophilic or psychrophilic, alkaliphilic or acidiophilic, and 

halophilic bacteria can serve as novel and unique sources of cellulase and hemicellulase 

(Maki, 2009).  
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1.3 Caldicellulosiruptor genus 

Caldicellulosiruptor is a genus of thermophilic, anaerobic, gram-positive, non-spore-

forming cellulolytic bacteria and is capable of fermenting a wide spectrum of carbohydrates 

(Rainey et al., 1994). 

So far, there are nine Caldicellulosiruptor organisms have been identified: C. 

saccharolyticus (Rainey et al., 1994), C. lactoaceticus (Mladenovska et al., 1995 ), C. 

owensensis (Huang et al., 1998), C. acetigenus (Yang et al., 2010), C. bescii (DSM6725S) 

(Yang et al., 2009), C. kristjanssonii (Bredholt et al., 1999), C. kronotskyensis 

(Miroshnichenko et al., 2008), C. hydrothermalis (Miroshnichenko et al., 2008) and C. 

obsidiansis OB47 (Hamilton-Brehm et al., 2010). These bacteria have been isolated mostly 

from neutral or slightly alkaline geothermal springs in New Zealand, Iceland and 

California. Among them, C. bescii (DSM6725S) was renamed from Anaerocellum 

thermophilum, and was reclassified recently in 2010 (Yang et al., 2010), C. saccharolyticus 

was identified as a Clostridium species (Luthi et al., 1991; Onyenwoke et al., 2006; Rainey 

et al., 1994) and was reclassified in 1994; and C. acetigenus was reclassified from 

Thermoanaerobium acetigenum in 2006 as well (Onyenwoke et al., 2006). 

So far, eight Caldicellulosiruptor organisms’ genomes have been sequenced; they are C. 

saccharolyticus (Van de Werken et al., 2008), C. obsidiansis OB47 (Elkins et al., 2010), C. 

bescii (Kataeva et al., 2009), C. hydrothermalis (Blumer-Schuette et al., 2011), C. 

kristjanssonii (Blumer-Schuette et al., 2011), C. kronotskyensis (Blumer-Schuette et al., 

2011), C. owensensis (Blumer-Schuette et al., 2011), and C. lactoaceticus (Blumer-

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Thermophilic
http://en.wikipedia.org/wiki/Anaerobic_organism
http://en.wikipedia.org/wiki/Gram-positive
http://en.wikipedia.org/wiki/Endospore
http://en.wikipedia.org/wiki/Bacterium
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Schuette et al., 2011). According to the results of both cross-species DNA-DNA 

hybridization and 16S rRNA analysis between the seven species from Caldicellulosiruptor 

(C. saccharolyticus, C. bescii, C. hydrothermalis, C.owensensis, C. kronotskyensis, C. 

lactoaceticus, and C. kristjanssonii), C. saccharolyticus showed significant phylogenetic 

divergence from genus Caldicellulosiruptor (94.4 to 96.6% rRNA identity), which may due 

to its origin in New Zealand (Blumer-Schuette et al., 2010).  

All Caldicellulosiruptor species are able to grow on CMC, and there is at least one GH5 

enzyme (potentially endo-acting cellulase) present in their genomes (Cantarel et al., 2009). 

Blumer-Schuette and co-workers also showed that C. hydrothermalis and C. owensensis did 

not grow well on microcrystalline cellulose (avicel) and had less diverse avicel-induced 

secretome profiles compared with other Caldicellulosiruptors. In addition to the catalytic 

portion of cellulase enzymes, a particular crystalline cellulose-binding carbohydrate 

binding motif (CBM) family, CBM 3, is present in multi-domain enzymes from C. bescii, 

C. kristjanssonii, C. kronotskyensis, and C. saccharolyticus. However, CBM 3 was absent 

from the genomes of C. hydrothermalis and C. owensensis, and these two species also lack 

exo-acting cellulases, indicating that the CBM 3 family may be an additional determinant 

for a Caldicellulosiruptor species’ ability to hydrolyze crystalline cellulose (Blumer-

Schuette et al., 2010).  

 As to the capability of using hemi-cellulose (xylanases, mannanases and xyloglucanases), 

genes related to the GHs that hydrolyze the β-1,4-xyloside linkages of xylan, the β-1,4-

mannoside linkages of mannan, and the β-1,4-glucan linkages were found in most of the 
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seven Caldicellulosiruptor species in the same study, but no two Caldicellulosiruptor 

species have the same GH profile, and the genes related to CBM families capable of 

binding to xylan (CBM 6, 9, 22, and 36) were found in all the seven species. Another 

mannan binding CBM family (CBM 27) was found in C. hydrothermalis and C. 

lactoaceticus (Blumer-Schuette et al., 2010). 

C. bescii strain DSM 6725 is a thermophilic cellulose-degrading organism that can resist 

the highest temperature known in Caldicellulosiruptor, growing at up to 90 ˚C (pH 7.2) and 

degrades crystalline cellulose and xylan, as well as untreated plant biomass, including 

potential bioenergy plants such as poplar and switchgrass. However, it does not grow on 

xylose or pectin (Yang et al., 2009), and it has the most similar genome to C. 

saccharolyticus DSM 8903 (Kataeva et al., 2009).  

1.4 C. saccharolyticus and C. kristjanssonii 

C. saccharolyticus is the most extensively studied of all the Caldicellulosiruptor species 

known. It was originally isolated from a thermal spring in New Zealand. It is a strict, 

fermentative anaerobe, growing at temperature between 45 and 80˚C (Toptimum =70 ˚C) and 

pH 5.5 to 8.0 (Optimum 7.0), nonmotile, nonflagellated, oval-ended straight rod, 0.4–

0.6μm by 3.0–4.0μm, occurring singly and in pairs (Rainey et al., 1994). C. saccharolyticus 

is capable of fermenting all kinds of carbon sugars, including cellulose, hemicellulose, 

pectin, and starch (Van de Werken et al., 2008), and smaller sugars such as arabinose, 

fructose, galactose, glucose, mannose and xylose (Vanfossen et al., 2009). Moreover, it is 

one of the very few microorganisms that can utilize cellulose without pretreatment. 
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Hydrogen is one of the main fermentation end products of C. saccharolyticus. It is 

estimated that thermophilic bacteria and archaea can produce H2 up to the theoretical 

maximum 4 mol /mol (-hexose) as the Thauer limit (Kengen et al., 2009）while generally 

mesophilic (co-)cultures reach only H2 yields of less than two mol/mol(-hexose) 

(Kleerebezem and van Loosdrecht, 2007). C. saccharolyticus’ highest hydrogen yields 

could reach 82 to 90 % of theoretical maximum when it is at low growth rates (De Vrije et 

al., 2007). When C. saccharolyticus grows on glucose, a relatively larger part of the 

consumed glucose is used for maintenance and the hydrogen yields are dependent on the 

growth rate of the bacteria (De Vrije et al., 2007). Other fermentation end products of C. 

saccharolyticus include acetate, lactate, and trace amounts of ethanol, but hydrogen sulfide 

is not produced (Rainey et al., 1994; Van Niel et al., 2003). 

C. kristjanssonii, the other not so extensively studied Caldicellulosiruptor organism, first 

reported by Sylvia Bredholt (1999), was described as nonmotile rods cells with rounded 

ends and two sub-terminal flagella, 2.8-9.4 µm by 0.7-1.0 µm that occur singly, in pairs or 

in short chains, growing under temperature between 45 ˚C and 82 ˚C with an optimum 78 

˚C and in pH 5.8-8.0 with an optimum 7.0. C. kristjanssonii is able to grow on wide range 

of carbon substrates including avicel, cellobiose and a wide spectrum of monosaccharide. 

The whole genome of C. kristjanssonii has been sequenced but the detailed annotation 

information hasn’t been available yet (Blumer-Schuette et al., 2011). There are very limited 

studies on C. kristjanssonii so far after the isolation of the organism many years ago. It is 

the difference of the gene information from well-studied C. saccharolyticus and great 
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capability on cellulose and hemicelluloses utilization that attract our attention to work 

further on this microorganism. 

The outstanding hydrogen production capability of C. saccharolyticus is based on many 

factors. According to the available 2.97-Mb whole genome sequence 

(http://genome.ornl.gov/microbial/csac), within a 35.2 % GC content and initial annotated 

2695 ORFs, approximately 20 % of the ORFs are involved in carbohydrate degradation, 

transport, and metabolism, suggesting that C. saccharolyticus will yield a plethora of 

industrially relevant GHs (Van de Werken et al., 2008; Vanfossen et al., 2008). NMR 

analysis of (13)C-labeling patterns showed that the Embden-Meyerhof (EM) pathway is the 

main route for glycolysis in C. saccharolyticus (De Vrije et al., 2007), and the genomic 

sequences showed the present of the components of a complete EM pathway as well, 

identifying an ROK family glucokinase (Csac_0778), 6-phosphofructokinase, (Csac_2366 

and Csac_1830), a bifunctional phosphoglucose/phosphomannose isomerase (Csac_1187), 

fructose-1,6-bisphosphate aldolase (Csac_1189), and pyruvate kinase (Csac_1831), as well 

as pyruvate-phosphate dikinase (PPDK) (Csac_1955) (Van de Werkenet al., 2008). There 

is, however, no evidence of the present of an Entner-Doudoroff pathway or oxidative 

branch of the pentose phosphate pathway (PPP) (Van de Werken et al., 2008). It was even 

suggested at the very beginning, when C. saccharolyticus was still named as Clostridium 

thermocellum, that it produce cellulosome to degrade cellulose and hemicellulose (Sissons 

et al., 1987), but the genome sequences did not show the presence of genes encoding the 

typical molecular components of a cellulosome such as dockerin domains and scaffolding 

proteins. Gene clusters (Csac_1076 to Csac_1081, Csac_1089 to Csac_1091) containing 
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genes encoding cellulase precursors and an extracellular cellulase (Csac_0678) which may 

assist the cellulose hydrolyzing were found as well (Van de Werken et al., 2008). Recent 

proteomic analysis have also detected the present of extracellular cellulases of C. 

saccharolyticus (Muddiman et al., 2010), among which, CelB (CelB was annotated as a bi-

functional cellulase that has both cellobiohydrolase (GH10) and endoglucanase (GH5) 

activities (Saul et al., 1990)) was cloned and expressed in E.coli. A recombinant biocatalyst 

for hydrolyzing lignocellulosic biomass at as high a temperature as 80 ˚C was also obtained 

(Part et al., 2011). Multiple genes involved in xylan (hemicellulose) utilization were 

detected from the genome such as gene cluster Csac_2404 to Csac_2411 and Csac_0203 to 

Csac_0205, and the former one showed more significantly up-regulated level when the 

organism is grown on a xylan substrate (Van de Werken et al., 2008). 

Phosphoenolpyruvate-dependent phophotransferase systems (PTS), ATP-binding cassette 

(ABC) transporters, and proton-linked transport systems are all important components in 

microbial uptake mechanisms for sugar transport (Koning et al., 2002; Nataf et al., 2009). 

Various distributions and numbers of these transport mechanisms in different 

microorganisms were detected from genome sequence information: for example some 

anaerobic, extremely thermophilic bacteria, such as Thermotoga maritima (Conners et al., 

2005; Nelson et al., 1999) and Carboxydothermus hydrogenoformans (Wu et al., 2005), 

lack a PTS in lieu of ABC transporters for sugar uptake (Albers and Driessen, 2008; 

Conners et al., 2005; Wu et al., 2005), while other thermophiles, such as 

Thermoanaerobacter tengcongensis, contain one PTS in addition to multiple ABC 

transporters (Wang et al., 2004). C. saccharolyticus has most of the 24 putative 
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carbohydrates ABC transporters have been known and a single PTS for carbohydrate 

specificities for transport systems as well (Amy et al., 2009). Zsófia Herbel and co-

workers’ (2010) experiments showed that when C. saccharolyticus uses cellulose 

substrates, an induction of the cellulase enzyme complex(es) is needed, the cellulase 

enzyme complex(es) needed by C. saccharolyticus to degrade cellulose can only be 

triggered by various monomeric sugars or yeast extract, and it was found that the bacterium 

will use the monomeric sugar first within a few days when the culture is grown on both 

monosugar and cellulose, and it begins to use cellulose in the following period, and H2 

production resumed for an extended period of time. Thus the amount of H2 production, to a 

considerable degree, depends on the level of induced cellulase, which depends on the initial 

concentration of the monomeric sugar. The result of another experiment also supported this 

conclusion as there was no growth detected when the cellulose was supplied as the sole 

carbon source from the beginning (Herbel et al., 2010). Moreover, Amy and co-workers 

(2009) showed that genes Csac_0692-0694 were up-regulated only in a monosaccharide 

mixture. We will get a better idea about the induction of cellulase if we dig deeper and 

compare the transcriptome results of C. saccharolyticus on monosaccharide and 

polysaccharide or cellulose substrates. 

As mentioned, the H2 yield of most studies so far was lower than two mol/mol glucose. It is 

understood that from the evolutionary perspective, the low yield is a result of the fact that 

H2-producing microorganisms have developed their metabolic pathways preferentially for 

cell growth rather than H2 synthesis. Nevertheless, people are expecting to significantly 

improve the H2 yield by metabolic engineering with the help of a good understanding of 
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metabolic pathways (Cai et al., 2011). There are many factors that affect the production of 

H2, such as the water content of biomass materials, the increasing volume of carbon dioxide 

gas during the fermentation, and especially the partial pressure of H2. The mechanisms 

behind this are that the H2 formation pathways are sensitive to the concentration of H2 and 

other end-products. As a reaction to the increase of H2 concentration, the H2 synthesis will 

decrease, and the metabolic pathways will shift to the direction that will produce more 

reduced products. Examples are the synthesis of succinate and formate use CO2, pyruvate,           

and reduced nicotinamide adenine dinucleotide (NADH) via the hexose monophosphate 

pathway (Cai et al., 2011; Das and Veziroğlu, 2001; Willquist et al., 2009). C. 

saccharolyticus is also a better candidate for a hydrogen producer than other 

hyper/thermophilic hydrogen producing species because of its greater tolerance of 

hydrogen inhibition. It is detected on species such as Pyrococcus furiosus and T. maritima 

that H2 and acetate inhibit the growth of microorganisms (Van Niel et al., 2003; Verhaart et 

al., 2010). However, the same H2 levels that were observed will inhibit the total grown of 

P. furiosus on pyruvate and T. maritima grown on glucose only diminish C. 

saccharolyticus’ growth on sucrose by 7 % (Schafer and Schonheit, 1991; Schroder et al., 

1994; Van Niel et al., 2003). 

The adhesion between the cellulolytic organism cell and cellulose can be summed as non-

specific adhesion and specific adhesion. The former one is the results of the van der Waal’s 

forces that include hydrophobic, ionic, and electrostatic interaction with the solid substrate 

(Busscher and Weerkamp, 1987; Pell and Schofield, 1993). While the specific attachment 

is associated with the specific characteristics of the cell which could be summarized as 
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several structures such as fimbriae and pili adhesins, cellulosomes, carbohydrate epitopes 

of bacterial glycocalyx layer, and enzyme binding domains that as cellulose binding protein 

(CBP) or cellulose binding domain (CBD) ( Miron et al ., 2001). 

In a study of Morris and Cole (1987), bacterial adhesion to cellulose was measured for 13 

cellulolytic and 10 non-cellulolytic, xylan utilizing strains of the ruminal bacterium 

Rurninococcus albus. The results show that although both cellulolytic and non-cellulolytic 

strains have the carboxymethylcellulase (CMCase) activity, only one non-cellulolytic strain 

showed some adhesion to the cellulose material, which may due to a specific enzyme 

activity whose function, is not yet known. Most cellulolytic strains bind to the substrate. 

Other studies by Jensen et al. (2009) prove that instead of being related to the concentration 

of total or planktonic biomass, the first-order hydrolysis rates of cellulose correspond to the 

concentration of attached bacteria with either enriched leachate or rumen fluid after 

inoculation.  

It is interesting that the gene analysis mentioned above showed that the C. hydrothermalis 

and C. owensensis did not grow well on microcrystalline cellulose (avicel) and the 

cellulose-binding carbohydrate binding motifs (CBM) family, CBM3 happened to be 

absent from their genome sequences but was found in all other five Caldicellulosiruptor 

species (C. saccharolyticus, C. bescii, C. kronotskyensis, and C. lactoaceticus, and C. 

kristjanssonii) studied that grew better on avicel. The good avicel user C. saccharolyticus 

also contained a prominent S-layer protein that appears in the cellulolytic 

Caldicellulosiruptor species, suggesting the possible role of this protein in cell-substrate 
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interaction (Blumer-Schuette et al., 2010). Consequently, it is very possible that the 

Caldicellulosiruptor’s capability for cellulose utilization is related to its attachment 

capability with the substrates.  

Unfortunately, there are only limited methods for demonstrating the adhesion between the 

cell and the cellulose, including direct and in situ microscope detection such as with a 

scanning microscope (Miron et al., 2001) and a confocal laser scanning microscope (Larsen 

et al, 2008 ). Obtaining good-quality pictures showing the adhesion of a batch sample of 

cellulolytic microorganisms other than Rumen organisms is difficult. However, a recent 

work by Dumitrache (2010) provided very clear confocal laser scanning micrographs 

showed the attachment between the Clostridium thermocellum biofilms and the solid 

cellulosic substratum. 

Although many studies have worked on the Caldicellulosiruptor type strain C. 

saccharolyticus, many questions still need to be answered. For instance, how will the end 

products detection results on different substrates and the known genome sequences 

contribute to drawing an exact hydrogen production mechanism pathway? Will the 

proteomic identification and expression results of intercellular and extracellular proteins 

match the gene information gained from genome sequencing? Does an attachment exist 

between the cellulose substrates and C. saccharolyticus and C. kristjanssonii? Is the 

attachment a key factor in cellulose material use and their cellulose-degrading capability? 

Since C. kristjanssonii shows significant phylogenetical divergent from C. saccharolyticus, 

does C. kristjanssonii’s performance in hydrogen production on cellulose differs as well? 
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Further study of metabolism profiling of C. saccharolyticus will help us understand much 

better the hydrogen production mechanism and prepare us well for the manipulation of 

related genes and creation of an effective high-hydrogen-produced strain. Further study of 

one particular selected cellulosic material—a local and cheap species, switchgrass—will 

contribute to the large-scale biofuel production. Less is known about C. kristjanssonii, 

because of the limited studies and annotated genome information, but it is notable that C. 

kristjanssonii would not be inhibited at PH2 levels up to 50 kPa (Bredholt et al., 1999). Still, 

there are many blanks, such as about the metabolic pathway, that makes it worth our 

attention and further study. 

1.5 Objectives 

In order to develop an economical and environmentally favorable process for fermentative 

production of H2, C. saccharolyticus and C. kristjanssonii were utilized as the 

microorganism candidates to ferment switchgrass. The following experiments have been 

carried out to investigate the parameters involved and optimize the fermentation process. 

1> To optimize the growth of C. saccharolyticus and C. kristjanssonii on different 

substrates, including monosaccharide, disaccharide, hemicelluloses, microcrystalline 

cellulose, and untreated cellulosic material (switchgrass). 

2> To measure the metabolic end products such as hydrogen, ethanol, carbon dioxide, and 

other end products of the two organisms and to examine their potential as biofuel produced 

strains. 
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3> To use 2D LC-MS/MS proteomic analysis for determining the translation level of the 

cellulase genes in C. saccharolyticus grown on different substrates. 

4> To detect the attachment between the cellulolytic microorganism (C. saccharolyticus or 

C. kristjanssonii) and the cellulosic materials and to find the contribution of the attachment 

to the cellulose utilization capability. 
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Chapter 2 Methods and Materials 

2.1 Chemicals and organisms 

C. saccharolyticus DSM 8903 and C. kristjanssonii DSM 12137 were obtained from the 

Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Germany). 

Switchgrass was gained from Nott Farm (Clinton, Canada). All the chemicals were 

commercially available. Cellobiose (D-(+)-cellobiose) and xylan (from Beechwood, and 

from oat) were from Sigma-Aldrich (Canada), Glucose (Dextrose) is from EMD (USA), 

xylose (D-(+)-xylose) was from Alfa Aesar (USA), avicel (PH105) was from FMC (USA). 

The fluorescent dye Syto 9 and Wheat germ agglutinin (WGA) - tetramethylrhodamine 

conjugate was purchased from Invitrogen (USA). 

2.2 Growth conditions 

C. saccharolyticus  and C. kristjanssonii were grown on modified medium DSMZ 640 and 

DSMZ671 (http://www.dsmz.de/microorganisms/medium) without trypticase and yeast 

extract, and with addition of 2 ml/L vitamin solution (vitamin solution: biotin 2 mg/L, folic 

acid 2 mg/L, pyridoxine-HCl 10 mg/L, thiamine-HCl  2 H2O 5 mg /L, riboflavin 5 mg/L, 

nicotinic acid 5 mg/L, D-Ca-pantothenate 5 mg/L, vitamin B12 0.1 mg/L, p-aminobenzoic 

acid 5 mg/L, lipoic acid 5 mg/L). Glucose, xylose, cellobiose, switchgrass, xylan (from 

Beechwood), and avicel were used as the sole carbon and energy source. The chopped 

switchgrass and filter paper were ground into 0.25 mm diameter powder with UDY 

Cyclone sample mill machine (UDY 3010-080P, USA). All substrates were finalized to a 
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concentration of 4 g/L. The growth temperatures for C. saccharolyticus and C. 

kristjanssonii were maintained at 70 ˚C and 78 ˚C respectively, and the growth of the 

microorganisms were monitored by cell number counting with a counting chamber 

(Petroff-Hausser 3900, Hausser, USA) under a microscope. 

All the media were autoclaved at 121 ˚C for 30 min, and anaerobic environment inside the 

container was created by charging with pure nitrogen gas. All the media were reduced with 

0.75 g/L cysteine-HCl  H2O, and the reducing condition of medium was indicated by 0.50 

mg/L resazurin.  

Both C. saccharolyticus and C. kristjanssonii were grown on the medium with glucose and 

yeast extract first (followed the complete DSM 640 and DSM 671 recipe) overnight, the 

culture was then harvested and centrifuged at 3000 x g for 40 min at 4 ˚C to remove media, 

the pellet was resuspended in media without any carbon source (without any sugar, yeast 

extract, or trypticase), then the resuspension was centrifuged again at 3000 x g for 40 min 

at 4 ˚C, this step was repeated twice to remove as much residue carbon source as possible, 

and then the cell pellet was resuspended with medium without carbon source again, which 

resuspension was used for inoculation. For all the experiments involving different carbon 

sources, the treated seed inoculation prepared as described above was used, and be 

inoculated into the medium with only one particular substrate (glucose, xylose, cellobiose, 

xylan, avicel, and switchgrass) separately. 

javascript:GoToItemDisplay('3030708','0')
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2.3 Determination of end-products 

2.3.1 GC and HPLC detection method 

End-products measurement: Gas chromatography (GC, Shimadzu 2014, Japan) equipped 

with Grace Porapak Q 80/100 6’ * 1/8” * .085” SS and SEG 054427 columns was used for 

the detection of gas product, mainly are H2 and CO2. The detectors used were thermal-

conductivity (TCD) detector with helium and nitrogen gas (Flow rate as 25 ml/min) and 

flame-ionization (FID) detector with hydrogen and air (Flow rate as 25 ml/min); and 

GCsolution software from Shimadzu was equipped with the instrument and used as GC 

control and data process platform. High performance liquid chromatography (HPLC, 

Shimadzu, Japan) equipped with Grace IOA-1000, 7.8 x 300 mm Organic Acid Columns 

was used to detect the element in the liquid phase, including the end-products like ethanol, 

organic acid and the soluble sugar left (Mobile Phase as 0.0085M H2SO4; Flow rate as 0.3 

ml/min; Column temperature as 60 ˚C; Detector as Refractive Index Detector [RID]), 

LCsolution software from Shimadzu was equipped and used as HPLC control and data 

process. 

The samples were collected at different time points, and the pressure in the headspace of 

the sample container was detected directly with a pressure meter, a 100 µl volume gas 

sample from each sample was injected into GC instrument with gas tight syringe (VICI, 

USA) for gas composition detection, and 600 µl of liquid sample was collected for HPLC 

measurement. The pH of the liquid part was measured with pH paper (Baker pHIX, scaled 
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pH paper, Baker, USA); the samples were centrifuged at a high speed (14,500 x g, 10 min) 

twice and then were filtered through a 0.45 µm nylon syringe filter (National Scientific, 

USA) to remove the insoluble part. 

The components that were tested by HPLC including acetate, lactate, formate, succinate, 

ethanol, butanol, glucose, xylose, cellobiose, and arabiose. 

Experiment condition information such as room temperature, atmosphere pressure was 

recorded as well, and the standard curve was prepared for each compound with known 

concentration. The samples with unknown concentrations of the same compound would be 

detected using the HPLC or GC and automatically calculated and saved by the software 

LCSolution equipped with the HPLC and GCSolution with the GC respectively. For the 

concentration of H2 in the sample, only the gas part was calculated because the solubility of 

H2 is only 0.0016 g/kg (H2/water) at room temperature (Greenwood, 1969), which is very 

low. For the concentration of CO2 in the sample, both the CO2 in the gas phase and the part 

dissolved in the liquid part were considered: the concentrations of CO2 and H2 in the gas 

phase were calculated based on the equation for the Ideal Gas Law: PV = nRT, where P is 

the partial pressure (in unit mmHg), V is volume (in unit L), n is number of moles, and T is 

temperature (in unit k), R is the gas constant, and R = 62.3637 L·mmHg/mol·K; The 

concentration of CO2 in liquid part was calculated according to Henry’s law (p= kH c, 

where p is the partial pressure of the solute in the gas above the solution (in unit atm), c is 

the CO2 concentration in the liquid (in M unit, multiplied by 1000 to be converted to mM ), 

and kH is a constant with the dimensions of pressure divided by concentration. In this study, 



 

27 

 

c[CO2]liq = p/kH and the room temperature was 23 ˚C that equals to 296.15K, and kH(296.15K) = 

31.2386 L*atm/mol (Francis et al., 2007), and the concentration of HCO3 in the liquid was 

calculated using the equation c[HCO3] = 10
(pH-pKa)

 * c[CO2]liq (pH was the pH of the liquid part 

sample, Ka = 4.21E-07, pKa= 6.376) according to the Henderson-Hasselbalch equation 

(Levy et al., 1987). 

2.3.2 Standard curves for GC and HPLC detection 

For HPLC, calibrated curve for each component detected was drawn. A series solution of 

acetate, lactate, formate, succinate, ethanol, butanol, glucose, xylose, cellobiose, and 

arabiose were made with concentrations as 0.20, 0.50, 1.00, 2.00, and 5.00 mM separately, 

and the peak of each standard sample was detected by HPLC, using the same method as 

unknown sample used. And the standard curve and R
2
 value for each curve was calculated 

and saved by the software. 

For GC standard curves, the different concentrations of gas sample were prepared with 60 

ml volume serum bottles; the concentrations were 0, 0.01, 0.1, 1, 2, and 20% (v/v) 

separately. The bottles were filled with 100% nitrogen gas, which were considered as 0% 

gas bottles (for different concentration of H2 and CO2); With the same method, 100% H2 

and 100% CO2 bottles were prepared via manifold connected with different gas tanks; The 

positive pressure of all the bottles prepared was released by inserting a fine needle on the 

stop of the serum bottle, and the zero pressure was confirmed with a pressure meter; H2 or 

CO2 was injected into the N2 bottle to make certain concentration of standard H2 or CO2 

sample, same amount of N2 was extracted in advance to balance the pressure; A 5 ml of 
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sterilized deionized H2O was injected into each standard sample bottle to keep the positive 

pressure in the bottle. After all the standard sample bottles were prepared, 100 µL gas of 

each sample was tested by GC instrument with the same method used for unknown sample 

detection, and the standard curve was drawn according to the peak area and relative volume 

percentage(This part was carried out by my lab mate Cherry Chen). 

2.4  Determination of attachment of C. saccharolyticus and C. 

kristjanssonii to insoluble substrates 

A Confocal microscope and a Scanning Electronic Microscope (SEM) were applied to 

observe the attachment of bacteria to the surface of the cellulosic materials at different time 

points. 

C. saccharolyticus and C. kristjanssonii were grown on insoluble substrates (avicel, 

switchgrass, xylan from oat, and Whatman (USA) NO.1 filter paper (0.25 mm powder 

made with the milling machine), and the samples at different time points were treated for 

SEM or confcocal microscope observation for the attachment observation after inoculation 

(for confocal microscope detection, only samples with switchgrass and avicel substrates 

were used). 

2.4.1 SEM microscope detection 

The cell sample was harvested on log phase and was centrifuged at 5,000 x g for 2 min at 

room temperature to get rid of medium; The pellet was then washed with phosphate buffer 

(0.175 M monobasic NaH2PO4, 2.46 mM dibasic Na2HPO4, 0.175 mM NaH2PO42H2O, 
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0.025 mM Na2HPO412H2O, pH 6.0) three times; Then the fixation buffer (includes 2.5 % 

glutaraldehyde and 4 % paraformaldehyde in 0.1M phosphate buffer, pH 7.2) was added to 

the samples, and the sample was kept at room temperature for one hour for fixation; the 

sample was then washed with phosphate buffer three times again; Increasing grade 

concentrated ethanol solutions were added  for dehydration: 20%, 50%, 70%, and 95% 

ethanol was added in order with a 10 min inoculation in between, this step was repeated 

twice; then the sample was resuspended in 100% ethanol; after that, the sample was dried 

with CO2 flow for Critical Point Dry; after drying, the sample was mounted onto metal stub 

with double sided carbon tape; a thin layer of gold was applied over the sample using an 

automated sputter coater; the coated sample was observed under SEM.  

2.4.2 Confocal microscope detection 

C. saccharolyticus and C. kristjanssonii samples on avicel and switchgrass were collected 

at different growth times, start from 0 h, and the culture on glucose and medium with avicel 

and switchgrass without inoculums were used as control. 

Two kinds of fluorescent dyes—2*10
-7 

mM Syto9 and 2.4*10
-3 

mg/ml Wheat germ 

agglutinin (WGA)-tetramethylrhodamine conjugate were used for this purpose. A confocal 

microscope (Zeiss LSM 510, Germany) was used to acquire imagine: the objective used 

was a 63x1.4 oil immersion lens, for syto9, 488 nm laser (Argon, strength 50%) was used 

to excite the fluorescence and a detector for the 500-530 nm band was used to detect the 

fluorescence, for WGA- tetramethylrhodamine, the exciting laser used was 543 nm (HeNe) 

and the detector was the one for 530-600 nm, two tracks for two channels configuration 
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was used, one channel for each dye. The cells were only dyed with dye Syto9, while the 

celluloses (avicel and switchgrass) were dyed with both Syto9 and WGA- 

tetramethylrhodamine, but more WGA- tetramethylrhodamine bound with the cellulose 

than Syto9. Two artificial colors were assigned for the dyes used in this study to distinguish 

them: the red was for Syto9 and green for WGA- tetramethylrhodamine. The photos were 

processed by ZEN 2009 equipped with the microscope (Zeiss, Germany).  

The sample inoculation were collected at different time points, and kept in room 

temperature for around 20min to be cooled down to room temperature (the growth 

temperature above 70 °C), then the incubation serum bottle was gentle shaked by hand and 

0.5ml of sample was quickly extracted and put into a Petri dish (Mat Tek 35mm glass 

bottom dish, USA).  The stain directly was applied directly to final working concentration, 

and mixed gentle. All the staining steps were carried out in the safe cabinet without the 

lamp on and operated quickly. The sample with staining was kept in a box wrapped with 

aluminium foils, and inoculated at room temperature for 20 min and observed under 

confocal microscope. All the samples need to be observed under confocal microscope 

within an hour after the dye was applied. 

2.4.3 Measurement of water content of switchgrass  

The switchgrass samples were collected at different time of the year directly from the field 

of Nott Farm (Clinton, Ontario), the whole plant with seeds removed were kept in the 70 °C 

incubator to dry for 48 h to 72 h, depended on the amount of water contained (the grass was 

reweighted every 12 h, till the weight no longer changed). The weights of the grass before 
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and after drying were measured, based on which, the water contents of the grass samples 

were calculated. The grass samples were collected at three different times during the year 

such as late June (switchgrass was close to half to its highest height, not mature); late 

September (switchgrass was mature and reached to its highest height but not dry); and late 

December (switchgrass was mature, reached to its highest height, and dried naturally in the 

field and the insoluble sugar part were back to the field, the grass was collected by the 

farmer and stocked dried in garage).  

2.4.4 Detection of sugar content in buffered media 

Media with variety of sugar substrates were prepared separately and incubated without 

adding inoculums, the content of sugar in the medium at 0 h, 20 h and 40 h inoculation with 

HPLC with the procedure described in section 2.3.1. 

The inoculation conditions were the same as the ones used in section 2.2, medium 

DSM640 and medium DSM671 without any other carbon source added except the selected 

substrates as glucose, xylose, cellobiose, xylan, avicel, and switchgrass separately, the 

concentration of each carbon source was 4 g/L, and the media were inoculated in 70 and 78 

˚C separately. 
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2.5 Proteomic sample preparation and result analysis 

2.5.1 Protein extraction 

Protein samples are extracted from log-phase C. saccharolyticus cells which grown on 

different substrates (glucose, xylose, cellobiose, xylan, avicel, and switchgrass). The 

cultures were harvested and centrifuged at 7,000 x g for 7 min at 4 ˚C to remove the 

medium, then the cell pellet was washed with PBS buffer (8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l 

Na2HPO4, and 0.24 g/l KH2PO4, pH 7.4) by three times. For sample on insoluble substrates, 

before the first centrifuging, the substrates were filtered out with cheesecloth (VWR 

International, Canada, 5 by 10 cm size, and stuff the cheesecloth into the neck of the 

funnel). The washed cell samples were broken by five rounds of sonication (Fisher Sonic 

Dismembrator Model 100, Canada) at level 5 (15 seconds for each round, on ice) with  100 

µl lysis buffer(10 mM pH 7.4 Tris-HCl , 3mM CaCl2, 2mM MgCl2 , 0.0025 % bacterial 

protease inhibitor (Sigma, USA), 0.1 % Igepal CA-630 ( Fluka, Switzerland))  to release 

the protein. The protein concentrations of all samples were determined using the Bradford  

method, and bovine serum albumin served as the standard protein (Bradford, 1976). 

2.5.2 Proteomic test 

This process was carried by Dr. Krokhin’s lab at the University of Manitoba. The method 

used was 2D LC-MS/MS proteomic test (Muddiman et al. 2010 A and B).  



 

33 

 

2.5.3 Proteomic result analysis 

The proteins detected from proteomic analysis were cross-compared with the published 

genome sequence annotation information of C. saccharolyticus 

(http://www.ncbi.nlm.nih.gov/, genome NC_009437 ), as well as the information from 

DOE Joint Genome Institute website (JGI, http://www.jgi.doe.gov/), the function of 

identified enzyme proteins were estimated based on the enzyme information from 

Carbohydrate-Active Enzymes (CAZymes, http://www.cazy.org/). 

2.6 Isolation of C. kristjanssonii’s plasmid and genome DNA 

C. kristjanssonii was grown on DSM 671 medium with glucose substrate and harvested on 

mid-log phase (around 20 h) for the plasmid and genome DNA extraction. The plasmid was 

extracted with Bio Basic EZ-10 Spin Column Plasmid DNA kit (Bio Basic, Canada) and 

the result was confirmed with 1% agarose electrophoresis, and the concentration of the 

DNA was detected by Nano drop. 

The same cell pellet from the culture as used in plasmid extraction was used for the 

extraction of genome DNA, the pellet was gently resuspended in 0.4 ml of 10 mM Tris-25 

mM EDTA (TE buffer, pH 8.0); lysozyme solution was added to a final concentration 

as7.25 mg/ml in TE buffer; the solution was mixed by gently inverting the micro centrifuge 

tube roughly 25 times and was incubated at 37 ˚C for 30 min; then the sample was cooled 

to room temperature; a mixture was made by adding sodium dodecyl sulfate (SDS), 

Proteinase K, and NaCl  solutions with final concentrations as 1.25 mg/ml, 0.25 mg/ml, and 

http://www.ncbi.nlm.nih.gov/
http://www.jgi.doe.gov/
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0.4 M separately. The mixture was mixed by gently inverting the micro centrifuge tube 

roughly 25 times and was incubate at 55 ˚C for 15 min, followed by a 15 min’s incubation 

at 75 ˚C; RNase was added to a final concentration as 0.18 mg/ml for the bacterial cell lysis 

after the sample was cooled to room temperature; then the sample was mixed by inverting 

the micro centrifuge tube 25 times and was incubated at 37 ˚C for 30 min;  the ammonium 

acetate solution was added to the tube  to a final concentration as 1.95 mg/ml and the 

sample was mixed by inverting the tube 25 times and was incubate on ice for 20 min. The 

function of the ammonium acetate is to precipitate membranes, lipids, and proteins; the 

sample was centrifuged at 14,000 x g for 15 min at 4 ˚C to pellet the protein; the 

supernatant was used for phenol: chloroform: isoamyl alcohol (at 25:24:1 ratio) extraction 

to help purify the DNA by removing non-polar proteins, and lipid residues, and the DNA 

sample was extracted by placing the sample on ice with roughly 0.8 times the volume of 

aqueous solution of chilled isopropanol; then the DNA sample was washed twice by adding 

one ml of cold 70 % ethanol to remove any remaining salt. The DNA sample was 

confirmed with 1 % agarose gel electrophoresis and the concentration of the DNA was 

detected by Nano drop. 

C. kristjanssonii was grown on DSM 671 medium with glucose substrate and harvested on 

mid-log phase (around 20 h) for the plasmid and genome DNA extraction. The plasmid was 

extracted with EZ-10 Spin Column Plasmid DNA kit (Bio Basic, Canada) and the result 

was confirmed with 1% agarose electrophoresis, and the concentration of the DNA was 

detected by Nano drop. 
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The same cell pellet from the culture as used in plasmid extraction was used for the 

extraction of genome DNA, the pellet was gently resuspended in 0.4 ml of 10 mM Tris-25 

mM EDTA (TE buffer, pH 8.0); lysozyme solution was added to a final concentration 

as7.25 mg/ml in TE buffer; the solution was mixed by gently inverting the micro centrifuge 

tube roughly 25 times and was incubated at 37 ˚C for 30 min; then the sample was cooled 

to room temperature; a mixture was made by adding sodium dodecyl sulfate (SDS), 

Proteinase K, and NaCl  solutions with final concentrations as 1.25 mg/ml, 0.25 mg/ml, and 

0.4 M separately. The mixture was mixed by gently inverting the micro centrifuge tube 

roughly 25 times and was incubate at 55 ˚C for 15 min, followed by a 15 min’s incubation 

at 75 ˚C; RNase was added to a final concentration as 0.18 mg/ml for the bacterial cell lysis 

after the sample was cooled to room temperature; then the sample was mixed by inverting 

the micro centrifuge tube 25 times and was incubated at 37 ˚C for 30 min;  the ammonium 

acetate solution was added to the tube  to a final concentration as 1.95 mg/ml and the 

sample was mixed by inverting the tube 25 times and was incubate on ice for 20 min. The 

function of the ammonium acetate is to precipitate membranes, lipids, and proteins; the 

sample was centrifuged at 14,000 x g for 15 min at 4 ˚C to pellet the protein; the 

supernatant was used for phenol: chloroform: isoamyl alcohol (at 25:24:1 ratio) extraction 

to help purify the DNA by removing non-polar proteins, and lipid residues, and the DNA 

sample was extracted by placing the sample on ice with roughly 0.8 times the volume of 

aqueous solution of chilled isopropanol; then the DNA sample was washed twice by adding 

one ml of cold 70 % ethanol to remove any remaining salt. The DNA sample was 
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confirmed with 1 % agarose gel electrophoresis and the concentration of the DNA was 

detected by Nano drop. 
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Chapter 3 Results and Discussions 

3.1 End-product Detection 

Both C. saccharolyticus and C. kristjanssonii were able to grow on the medium with 

glucose, xylose, cellobiose, xylan (from beechwood), avicel(PH105), and switchgrass 

without chemical pretreatment as the sole carbon and energy source. No significant growth 

was detected on negative control (medium without any carbon source added).  The growth 

experiments were carried out for three times, the results were reproducible, and one of the 

set of the data was used. As shown in Figure 3.1 and Figure 3.2, there was a pH drop 

detected during the growth.   
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Figure 3.1 Growth curve and pH change of C. saccharolyticus on different substrates 

at 70 ˚C. All samples had growth compared with control, and a drop of pH was detected 

during the growth of the organisms. 
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Figure 3.2 Growth curve and pH change of C. kristjanssonii on different substrates at 

78 ˚C. All samples had growth compared with control, and a drop of pH was detected 

during the growth of the organisms. 
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The predominant end-products were hydrogen, carbon dioxide, acetate, lactate, and a small 

amount of ethanol. Both C. saccharolyticus and C. kristjanssonii showed a better hydrogen 

production capability on switchgrass than on pure microcrystalline cellulose (avicel), but 

showed even much better on hemicellulose (xylan). As shown in Figure 3.3 and Figure 

3.4, the orders of the hydrogen production capability of two organisms were similar. A 

small amount of ethanol was detected on all kinds of substrates except avicel and 

switchgrass (<0.02 mM), and the order of the quantity of ethanol matched the order of 

hydrogen production (data shown in Table 3.1 and Table 3.2). Comparisons of the end-

products production were shown in Figure 3.3 to Figure 3.6. 
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Figure 3.3 Hydrogen, carbon dioxide, and ethanol production of C. saccharolyticus on 

different substrates at 20 h. There’s no ethanol detected on samples on avicel and 

switchgrass sample, which may due to the amount of ethanol produced by these samples 

were less than the detection limit (0.02mM). 
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Figure 3.4 Hydrogen, carbon dioxide, and ethanol production of C. kristjanssonii on 

different substrates at 20 h. There’s no ethanol detected on samples on avicel and 

switchgrass sample, which may due to the amount of ethanol produced by these samples 

were less than the detection limit (0.02mM). 
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Table 3.1 Gaseous end products, ethanol, acetate, and lactate product of C. 

saccharolyticus on different substrates at 20 h and 40 h. 

End products 

(mM) 

Substrates （4g/L） 

(4 g/L) 
Glucose Xylose Cellobiose Xylan Avicel switchgrass Control 

 
After 20 h 

H2 
20.1 22.6 5.5 1.4 0.14 0.27 0 

CO2 
12.5 14.9 2.1 0.68 0.20 0.20 0.003 

ethanol 0.78 1.5 0.17 0.16 0 0 0 

acetate 6.3 7.7 1.8 1.4 0.04 0.34 0 

lactate 0 2.8 0 0 0 0 0 

 
After 40 h 

H2 
25.2 26.3 15.9 2.1 0.31 0.34 0 

CO2 
13.5 15.1 7.58 0.78 0.21 0.22 0.003 

ethanol 1.2 2.1 0.82 0.26 0 0 0 

acetate 8.3 9.5 2.0 1.5 0.09 0.76 0 

lactate 3.1 6.6 5.3 0 0 0 0 
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Table 3.2 Gaseous end products, ethanol, acetate, and lactate product of C. 

kristjanssonii on different substrates at 20 h and 40 h. 

End products 

(mM) 

Substrates（4g/L） 

(4 g/L) 
Glucose Xylose Cellobiose Xylan Avicel switchgrass Control 

 
After 20 h 

H2 
15.6 13.3 10.9 1.3 0.20 0.21 0 

CO2 
7.5 6.9 6.7 0.18 0.076 0.11 0.002 

ethanol 0.39 0.35 0.25 0.17 0 0 0 

acetate 4.7 4.3 3.4 1.2 0.08 1.3 0 

lactate 7.0 4.9 7.0 0 0 0 0 

 
After 40 h 

H2 
13.7 13.6 11.6 1.6 0.33 0.49 0 

CO2 
8.4 8.0 5.6 0.69 0.18 0.13 0.004 

ethanol 0.34 0.56 0.19 0 0 0 0 

acetate 4.6 4.6 3.7 1.3 0.10 2.0 0 

lactate 6.9 9.1 7.9 0 0 0 0 
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Figure 3.5 Acetate production of C. saccharolyticus on different substrates. The order 

of acetate production amount matches the order of hydrogen production and growth curve. 
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Figure 3.6 Acetate production of C. kristjanssonii on different substrates. The order of 

acetate production amount matches the order of hydrogen production and growth curve. 
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Figure 3.7  Hydrogen and acetate production of C. saccharolyticus on different 

substrates. The hydrogen/acetate ratio of avicel and xylan sample was decreased from 20h 

to 40h, while the one for switchgrass was increased. 
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Figure 3.8 Hydrogen and acetate production of C. kristjanssonii on different 

substrates. The hydrogen/acetate ratio of avicel and xylan sample was decreased from 20h 

to 40h, while the one for switchgrass was increased. 
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Table 3.3 Sugar content in medium of inoculation of C. saccharolyticus on different 

substrates at  0 h, 20 h, and 40 h. 

Sugar content 

(mM) 

Substrates (4g/L) 

(4 g/L) 
Glucose Xylose Cellobiose Xylan Avicel switchgrass Control 

 
0 h 

xylose 0 29.4 0 0 0 0 0 

arabinose 6.1 0 5.8 6.1 6.1 5.9 0 

glucose 21.9 0 0 0 0.08 0 0 

cellobiose 0 0 10.7 0 0 0 0 

 
After 20 h 

xylose 0 20.1 0 0 0 0 0 

arabinose 6.03 0 5.7 6.0 0.02 6.2 6.0 

glucose 15.0 0.05 0 0 0.02 0.09 0 

cellobiose 0 0 9.7 0.02 0 0 0 

 
After 40 h 

xylose 0 17.2 0 0 0 0 0 

arabinose 5.9 0 5.3 6.0 6.0 6.2 5.9 

glucose 13.1 0 0.78 0 0 0 0 

cellobiose 0 0 6.3 0.08 0 0 0 

 



 

50 

 

 Table 3.4 Sugar content in medium of inoculation of C. kristjanssonii on different 

substrates at 0 h, 20 h, and 40 h. 

Sugar content 

(mM) 

Substrates (4g/L) 

(4 g/L) 
Glucose Xylose Cellobiose Xylan Avicel switchgrass Control 

 
0 h 

xylose 0 24.5 0.39 0.36 0.35 0.43 0.36 

arabinose 0 0 0 0 0 0 0 

glucose 22.5 0 0 0 0.02 0.09 0 

cellobiose 0 0 11.2 0 0 0 0 

 
After 20 h 

xylose 1.2 16.0 0.34 0.37 0.37 0.33 0.28 

arabinose 0 0.10 0 0 0 0 0 

glucose 13.2 0 0.02 0.02 0.10 0 0 

cellobiose 0 0 7.7 0 0 0 0 

 
After 40 h 

xylose 1.2 1.4 0.62 0.35 0.40 0.42 0.40 

arabinose 0 0.14 0 0 0 0 0 

glucose 13.1 0 4.9 0 0 0.11 0.01 

cellobiose 0 0 3.3 0 0 0 0 
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The drop of pH was caused by the produce of organic acid (acetate and lactate) and CO2; 

the acetate production on different substrates was shown in Figure 3.5 and Figure 3.6, 

which proportional to the hydrogen produced. From most C. saccharolyticus’ data, the ratio 

of hydrogen and acetate was similar but showed a little decrease (by 0.3-0.1) from 20 h to 

40 h, and there was an increase of lactate produced amount, showing there may be a slight 

end-product inhibition, and the similar changes also happened on C. kristjanssonii. But the 

samples on switchgrass showed a different story: there were increases of acetate from 20 h 

to 40 h (Figure 3.5 and Figure 3.6). 

At 20 h, the cell number of C. saccharolyticus sample on glucose reached 2.3*10
8 

cell/ml, 

produced 20.1 mM hydrogen, 0.78mM ethanol, and C. kristjanssonii sample on glucose 

reached 1.32*10
7
 cell/ml, produced 15.6mM hydrogen and 0.39mM ethanol, but the cell 

numbers gained only considered the free cells in the medium, so, it is still hard to say that 

the growth curves drawn on Figure 3.1 and Figure 3.2 represent the exact cell growth of 

both organisms. C. saccharolyticus could produce maximum 2.9 mol hydrogen per mol 

simple sugar (glucose) in batch culture; and C. kristjanssonii was able to produce 1.7 mol 

hydrogen per mol simple sugar (glucose) at 20 h. This amount of H2 produced was very 

high because the maximum H2 producing amounts of most H2 producing microorganisms 

are less than two mol of H2 per mol sugar even in continuous fermentation (Kleerebezem 

and van Loosdrecht, 2007). Another end-product was ethanol. C. saccharolyticus could use 

xylose as growth substrate and had higher cell density at 20 h compared to glucose, but 

produced less H2 than the glucose sample. A paper sludge growth experiment of C. 

saccharolyticus done by Donnison et al (2003) also showed that when both glucose and 
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xylose were co-fermented, the xylose consumption was higher than the glucose; however, 

less H2 was produced from xylose than glucose (Donnison et al., 2003). Moreover, Zsófia 

Herbel found that C. saccharolyticus used the monomeric sugar first within a few days 

when the culture was grown on both monosugar and cellulose, and it began to use cellulose 

in the following period, and the H2 production resumed for an extended period of time. 

Thus, the optimum substrates scheme for producing H2 from C. saccharolyticus was to use 

xylose-cellulose co-fermentation. The limited amount of xylose in the medium will 

effectively help both the cell reproduction and the induction of cellulose and hemi-cellulase 

needed for the degrading of cellulose and hemi-cellulose materials.  

Because of the lack of annotation information of the genome sequence and other 

metabolism studies on C. kristjanssonii, it was not known about its metabolism pathway. 

However, the growth experiments showed the metabolism of C. saccharolyticus and C. 

kristjanssonii were similar: they used similar carbon sources, both grew on all the 

carbohydrates substrates selected in this study, including glucose, xylose, cellobiose, xylan, 

avicel, and switchgrass. Moreover, their sugar preference orders were close, but C. 

saccharolyticus had much higher H2 production capability than C. kristjanssonii. One 

reason might be that the much higher production of CO2 of C. kristjanssonii provided 

more osmotic pressure and more acidic pH for the production of H2 and cell reproduction 

(growth pH for C. kristjanssonii as 5.8-8.0, optimum 7.0). The sugar content of media are 

shown in Table 3.3 and Table 3.4. 



 

53 

 

C. kristjanssonii cells in a liquid medium could be more easily autolysed if kept at room 

temperature. It could usually only be kept viable for about one week, while C. 

saccharolyticus culture would still survive for as long as at least two months under the 

same conditions (the test did not carried on further after two months). 

3.2 Cell attachment on insoluble substrates 

3.2.1 Observation of the attachment with SEM 

The SEM was used to detect the attachment of the cellulose materials to the bacterial 

surface. Both C. saccharolyticus and C. kristjanssonii cells grown on substrates xylan, 

avicel, switchgrass, and filter paper were prepared for the SEM observation. In addition, 

one sample of C. saccharolyticus grown on xylan at 40 h was added. 

Two samples showed the attachment of the cellulosic material to the bacteria. Figure 3.9 

shows the cells of C. kristjanssonii grown at 20 h on filter paper fiber, the cells were rods 

with rounded ends, 2.8-9.4 μm by 0.7-1.0 μm. While Figure 3.10 shows that cells of C. 

saccharolyticus grown 40 h on xylan, C. saccharolyticus cells were straight rods 0.4-0.6 

μm by 3.0-4.0 μm. Both pictures provided the evidence of the existence of the attachment 

between the C. saccharolyticus and C. kristjanssonii cells and insoluble substrates. 
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Figure 3.9 Attachment of cells of C. kristjanssonii grown on filter paper at 20 h. C. 

kristjanssonii cells were rods with rounded ends, 2.8-9.4 μm by 0.7-1.0 μm. White arrows 

pointed the cells; yellow arrows pointed the filter paper fibers.  
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Figure 3.10  Attachment of cells of C. saccharolyticus grown on xylan at 40 h. C. 

saccharolyticus cells were straight rods 0.4-0.6 μm by 3.0-4.0 μm. White arrows pointed 

the cells, while the yellow arrows pointed the xylan fibers. 
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3.2.2  Observation of the attachment with confocal microscope 

Both C. saccharolyticus and C. kristjanssonii were grown on substrates avicel and 

switchgrass, and the attachment of cells on the substrates were detected by using confocal 

microscope with the methods described in the Materials and Methods section 3.2.2. The 

artificial color for dye Syto9 was red, and for dye WGA- tetramethylrhodamine conjugate, 

it was green. The pictures of the substrates and the microorganisms were obtained 

respectively, and the cells were shown in red color, the celluloses showed the overlay 

colors of both green and red (vessel part of the grass was shown in red). Figure 3.11 to 

Figure 3.14 showed the three dimensional (3D) pictures that were taken as controls: C. 

saccharolyticus cells, C. kristjanssonii cells, avicel particles, and switchgrass fibers 

respectively., The size and shapes of both organisms were relatively uniform, while, the 

size and shape of avicel showed a variety but were not as much various as switchgrass 

fibers, which were prepared by using the milling machine in our laboratory. All 3D movie 

videos of the attachment gave 360˚ view of the samples on different time points are 

available in the enclosed CD.  

Figure 3.15 to Figure 3.21 provided evidence of the existence of attachments behaviors of 

C. saccharolyticus and C. kristjanssonii to cellulosic substrates avicel and switchgrass.  
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Figure 3.11 3D picture of C. saccharolyticus under confocal microscope. The cells were 

dyed in red, which was the artificial color of Syto9 dye. The cells were rod shape, had a 

relatively uniform size. 
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Figure 3.12 3D picture of C. kristjanssonii under confocal microscope. The cells were 

dyed in red, which was the artificial color of Syto9 dye. The cells were rod shape, had a 

relatively uniform size. 
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Figure 3.13 3D picture of avicel under confocal microscope. The avicel were dyed in 

both red and green, which were the artificial colors of dye Syto9 and WGA- 

tetramethylrhodamine conjugate separately. The size of avicel was not very uniform, both 

small and big particles were detected. 
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Figure 3.14  3D picture of switchgrass under confocal microscope (a and b). The 

switchgrass were dyed in both red and green, which were the artificial colors of dye Syto9 

and WGA- tetramethylrhodamine conjugate separately. The size of switchgrass varied 

significantly; both small and big particles were detected. 

a 

b 
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Figure 3.15 3D pictures of C. saccharolyticus on avicel at different time points of 

growth under confocal microscope. a: 0 h inoculation, depth of sample as10.05µm; b: 5 h 

inoculation, depth of sample as 5.10µm; c: 10 h inoculation, depth of sample as 0.45µm; d: 

20 h inoculation, depth of sample as 5.10µm; e: 25 h inoculation, depth of sample as 5µm; 

f: 30 h inoculation, depth of sample as 3.90µm; g: 40 h inoculation, depth of sample as 

5.05µm; h: 50 h inoculation, depth of sample as 2.00 µm. The cells were in red, while the 

avicel were dyed by both red and green. The white arrows point the cells, while the yellow 

arrows pointed the avicel. 

 

 



 

63 

 

 

Figure 3.16 3D pictures of C. saccharolyticus on avicel when grew at 30 h.  Depth of 

sample as 3.90 µm zoomed in for details of attachment. The cells were in red, while the 

avicel were dyed by both red and green. The white arrows pointed the cells, while the 

yellow arrows pointed the avicel. The cells were attached with both big and small particles 

of avicel, and the free cells were gathering together instead of spread evenly in the medium. 
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Figure 3.17 3D pictures of C. saccharolyticus on avicel when grew at 30 h under 

confocal microscope. Depth of sample as2.05µm zoomed in for details of attachment. The 

cells were in red, while the avicel were dyed by both red and green. The white arrows 

pointed the cells, while the yellow arrows pointed the avicel.  The cells were attached with 

both big and small particles of avicel, and the free cells were gathering together instead of 

spreading evenly in the medium. 
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Figure 3.18 3D pictures of C. kristjanssonii on avicel at different time points of growth 

under confocal microscope. a: 0 h inoculation, depth of sample as12.00µm; b: 5 h 

inoculation, depth of sample as 1.05µm; c: 10 h inoculation, depth of sample as 0.25µm; d: 

25 h inoculation, depth of sample as 0.75µm; e: 30 h inoculation, depth of sample as 

0.20µm; f: 40 h inoculation, depth of sample as 0.80µm; g: 50 h inoculation, depth of 

sample as 0.85µm. The cells were in red, while the avicel were dyed by both red and green. 

The white arrows pointed the cells, while the yellow arrows pointed the avicel. 
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Figure 3.19 3D pictures of C. kristjanssonii on avicel at 50 h under confocal 

microscope. Depth of sample as 0.75µm zoomed in for details of attachment. The cells 

were in red, while the swichgrass were dyed by both red and green. Cells were detected to 

attach to the surface of switchgrass. The different sizes of particles of fibers with overlay 

color were avicel. The white arrows point the cells, while the yellow arrows pointed the 

avicel. 
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Figure 3.20 3D pictures of C. saccharolyticus on switchgrass on different time points of 

growth under confocal microscope. a: 0 h inoculation, depth of sample as 4.00µm; b: 5 h 

inoculation, depth of sample as 0.50µm; c: 10 h inoculation, depth of sample as 0.60µm; d: 

25 h inoculation, depth of sample as 1.05µm; e: 30 h inoculation, depth of sample as 

2.05µm; f: 40 h inoculation, depth of sample as 1.05µm; g: 50 h inoculation, depth of 

sample as 2.25µm. The cells were in red, while the switchgrass were dyed by both red and 

green. The white arrows pointed the cells, while the yellow arrows pointed the switchgrass. 
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Figure 3.21 3D pictures of C. kristjanssonii on switchgrass on different time points of 

growth under confocal microscope. a: 0 h inoculation, depth of sample as 6.10µm; b: 5 h 

inoculation, depth of sample as 2.05µm; c: 10 h inoculation, depth of sample as 1.00µm; d: 
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25 h inoculation, depth of sample as 1.05µm; e: 30 h inoculation, depth of sample as 

0.45µm; f: 50 h inoculation, depth of sample as 9.45 µm. The cells were in red, while the 

switchgrass were dyed by both red and green. The white arrows pointed the cells, while the 

yellow arrows pointed the switchgrass. 
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Figure 3.15a-h showed clear pictures of the cells of C. saccharolyticus on avicel at 

different time points of growth time under confocal microscope, in Figure 3.15a, 0 h 

sample showed that there was no obvious attachments between the cells and avicel, and the 

cells spread evenly around the avicel particles; by 5 h, as shown in Figure 3.15b, the cells 

started to attach to small avicel particles, but there was no obvious attachments detected 

between the big particles and cells; and more cells were detected that attached to the small 

particles from 10 h sample as shown in Figure 3.15c, and some cells started to gather 

together around the bigger particles; while in 20 h sample in Figure 3.15d, clear and nice 

pictures were obtained that showed the attachments between the cells and almost all kinds 

of sizes of particles; in Figure 3.15e, we can see that there were a large number of cells 

gathered around the avicel particles after 25 h’s inoculation; by 30 h, there were still a lot 

of cells attached to variety sizes of avicel particles as well as many free cells lost 

attachments, as shown in Figure 3.15f; When the inoculation time researched 40 h, most of 

the cells left the avicel particles, but the cells did not spread evenly in the medium either, 

many cells aggregated together as shown in Figure 3.15g; the last picture was taken at 50 

h, the cells did not re-attach with avicel, instead, more cells were binding with each other, 

and limited number of single cells could be found (Figure 3.15h). 

For a clear vision of the attachment between C. saccharolyticus cells and avicel particles, 

zoomed pictures as Figure 3.16 and Figure 3.17 were taken to show the attachments at 30 

h.   
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Figure 3.18a-g showed clear pictures of the C. kristjanssonii on avicel at different time 

points of inoculation under confocal microscope, the attachments behaviors were very 

similar to the sample of C. saccharolyticus on avicel. In Figure 3.18a, 0 h sample showed 

that there was no obvious attachments between the cells and avicel, and the cells spread 

relatively evenly around the avicel particles; by 5 h, as shown in Figure 3.18b, the cells 

started to attached to small the avicel particles and the end position of bigger avicel 

particles; significantly increased number of cells were attached to small particles as 

detected from 10 h sample from Figure 3.18c; while in 25 h and 30 h samples in Figure 

3.18d and Figure 3.18e, there were similar attachment performances of cells detected—

relatively more cells were attached to avicel, but there was not many attached cells found 

on bigger particle; in Figure 3.18f, the attached cell number did not increase, but the cells 

started to bind with each other; while in 50 h sample as shown in Figure 3.18g, the 

attachment performance of  C. kristjanssonii was not very different from 40 h samples 

except the cells number started to decrease. 

For a clear vision of the attachment between C. kristjanssonii cells and avicel particles, 

zoomed pictures as Figure 3.19were taken show the attachment at 50 h. 

Figure 3.20a-g showed clear pictures of the C. saccharolyticus on switchgrass at different 

time points of inoculation under confocal microscope. In Figure 3.20a, 0 h sample showed 

no obvious attachments between the cells and switchgrass, and the cells spread relatively 

evenly around the grass particles; by 5 h, as shown in Figure 3.20b, some attachments 

between the cells and the small fibers were detected, but there was no obvious attachments 
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detected between cells and the big particles; there was no increase number of attached cells 

found from samples collected from 10, 25, 30, and 40 h inoculation, as shown in Figure 

3.20c-f; however, a significantly increased number of cells attached to the relatively small 

switchgrass fibers were detected from 50 h sample as shown in Figure 3.20g. 

Figure 3.21a-e show pictures of the C. kristjanssonii on switchgrass at different time points 

of inoculation under confocal microscope, and the attachment behaviors between C. 

kristjanssonii cells and switchgrass was similar to the one between C. saccharolyticus and 

switchgrass as shown in Figure 3.20. In Figure 3.21a, 0 h sample shows that there was no 

obvious attachments between the cells and switchgrass; by 5 h, as shown in Figure 3.21b, 

some attachments between the cells and the small fibers were detected, but there was no 

obvious attachments detected between the big particles and cells; And there was no 

increase number of attached cells found from samples collected from 10, 25, and 30 h 

inoculation till 50 h, when there was a increase numbers of attached cells to the relatively 

small switchgrass fibers detected, as shown in Figure 3.21c-e. 

According to the confocal microscope observation results, C. saccharolyticus and C. 

kristjanssonii on two celluloses (avicel and switchgrass), the adhesion was more related to 

substrate type than microorganism strain. Both samples of the microbes on avicel showed 

similar adhesion performances, so did the samples of the two microbes on switchgrass. For 

the samples grown on avicel, the attachments started very soon after the inoculation of 

culture were transferred to the medium (5-10 h). And the process began on the microbes 

with the smaller particles of avicel and spread to the bigger ones. This phenomenon is 
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understandable: smaller particles have a bigger surface area, and the adhesion most 

probably was the result of simple van der Waal’s forces as non-specific adhesion. The 

attachments between the avicel and two microorganisms were closely related to the growth 

and end-product production of the organisms. Between 20 h and 40 h, most cells were 

attached to the substrates, and many of them attached to the surface of big particles, while 

the attachment degree started to decrease with the 50 h sample, which corresponded to the 

growth and H2 production peak time point of the microorganisms. These findings also 

proved that the adhesion between the cellulolytic cells and cellulosic substrates could have 

a significant meaning and a direct relation of the H2 production. Increasing the amount of 

the attached cells would help improve H2 production performance further, which could be 

achieved by increasing the cellulose substrate’s surface area via reducing the particle size 

of the cellulosic materials used for fermentation. 

The way to monitor the growth of the microorganism in this study was direct cell counting; 

however, this method only counts the cells that spread in the liquid part of the media, not 

attached to the substrates; The attachment detection experiments, including both SEM and 

confocal microscope observation, proved that a large number of cells attached to the 

insoluble substrates during inoculation. According to the rough estimate of the proportion 

of attached cells from the confocal microscope pictures, the exact cell numbers of the two 

microorganisms on avicel should be larger than the one described in the growth curve, 

based on free cell counting (Figure 3.1 and Figure 3.2) during the late exponential stage.  

As to the samples on switchgrass, the adhesions were not as numerous as those on avicel 

samples at 20-40 h, and there were only a very small number of cells attached to the grass 
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fibers, but the adhesion started to enhance in 50 h sample, at a level proportional to the 

increase of H2/acetate ratio of the switchgrass sample after 40 h. 

As a methodology consideration, the SEM method was applied for the observation of the 

attachments of the sample first; however, the method did not show good reproducibility: 

only a couple of attached pictures were gained, and results were not constant. The reason 

may be the many centrifuge steps involved in preparing the SEM sample before the fixation 

step. Many steps were needed, and there were many chances that the original attachment 

status would be changed before it was fixed. The conductive properties of the sample 

variety increase the difficulty for continuous real-time observation of the samples. The 

confocal microscope method applied later proved to be a good method for the experiments 

similar to those in this study, once the proper type and concentration of dye and 

configuration of microscope were confirmed, the preparation time of the sample was very 

short. No step as centrifuges or repeating resuspending steps were involved, which helped 

to keep the original status of sample for a real-time observation. The confocal microscope 

method also gave access to colorful 3D pictures, from which, we could see the object from 

different directions and a movie of the sample showing in 360˚ view. 

3.3 Proteomic test result 

The C. saccharolyticus protein sample on cellobiose substrate was analyzed by proteomic 

method and more than 1500 proteins were successfully indentified, among which, protein 

Fli I, F, M, S, G,W, and P were found, shown the possible existence of flagella structure in 

C. saccharolyticus. But it has been suggested that C. saccharolyticus has no flagella 
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structure (Rainey et al., 1994). Other mobility related proteins found in the test were the 

methyl-accepting chemotaxis proteins (Table 3.5). The behavior of aggregating together 

around the cellulose, a process that was observed that from evenly spread at the beginning 

of growth showed the possible that C. saccharolyticus is a mobile microorganism, a fact 

also contradicted by the original description of the organism as a nonmobile bacterium 

(Rainey et al., 1994). Furthermore, microbe C. kristjanssonii showed the similar 

aggregating behaviors, but there was report about the existence of sub-terminal flagella 

structure in C. kristjanssonii (Bredholt et al,. 1999). 

Besides, a CBM 3 protein which contributes to the attachment of the cell and fiber was 

found, as well as a fibronectin-binding-A domain-containing protein and a lysine motif 

protein (Table 3.5). A series of GHs protein were detected in the sample too as shown in 

Table 3.5, also the proteins as alcohol dehydrogenase (ADH) and hydrogenase that are 

responsible for the production of ethanol and H2, respectively. The CBM 3 protein found in 

proteomic detection of C. saccharolyticus sample was believed to play a significant role in 

the specific attachment that occurs during the degrading of cellulose and is a part of 

extracellular cellulase in the degrading of cellulose (Park et al,. 2011). The reason we 

detected in our intracellular protein sample may come from the residual of secreted proteins. 

But since the sample have already been washed three times before the cell breaking step, 

the reason is not clear, and another possibility is that the cellulose with CBM 3 won’t be 

secreted outside the cell without the induction of cellulose substrates(the sample was on 

cellobiose substrate) . 
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Table 3.5 Selected proteins identified in proteomic test of C. saccharolyticus. 

Accession Description 

 Flagella related proteins 

gi|146296283| flagellar protein export ATPase FliI 

gi|146296690| flagellin domain-containing protein 

gi|146296293| flagellar motor switch protein 

gi|146296280| flagellar M-ring protein FliF 

gi|146296281| flagellar motor switch protein G 

gi|146296707| flagellar protein FliS 

gi|146296292| flagellar motor switch protein FliM 

gi|146296680| flagellar assembly protein FliW 

gi|146296296| flagellar biosynthetic protein FliP 

 Chemotaxis related proteins 

gi|146295857|  methyl-accepting chemotaxis sensory transducer  

gi|146297449|  methyl-accepting chemotaxis sensory transducer  

gi|146295474|  methyl-accepting chemotaxis sensory transducer  

gi|146297486|  methyl-accepting chemotaxis sensory transducer  

gi|146295457|  methyl-accepting chemotaxis sensory transducer  

 Cellulose and fiber binding proteins 

gi|146297363| fibronectin-binding A domain-containing protein 
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gi|146296119|  type 3a cellulose-binding domain-containing protein  

gi|146295299|  lysine 2,3-aminomutase MOTIF (LysM) 

gi|146297448|  S-layer domain-containing protein  

gi|146297442|  S-layer domain-containing protein  

gi|146297710|  S-layer domain-containing protein  

gi|146295275|  S-layer domain-containing protein  

gi|146296043|  S-layer domain-containing protein 

 GHs related proteins 

gi|146297407|  cellulose 1,4-beta-cellobiosidase  

gi|146296112|  cellulose 1,4-beta-cellobiosidase  

gi|146297406|  xylan 1,4-beta-xylosidase  

gi|146295735|  endo-1,4-beta-xylanase  

gi|146297405|  endo-1,4-beta-xylanase  

gi|146297433|  Acetyl xylan esterase  

gi|146297733|  glycoside hydrolase family protein  

gi|146297719|  glycoside hydrolase family protein  

gi|146295272| glycoside hydrolase family protein. 

gi|146295632|  glycoside hydrolase family 3 protein  

gi|146295423|  glycoside hydrolase family protein  

gi|146295202|  glycoside hydrolase family protein  

gi|146296574|  glycoside hydrolase family protein  

gi|146295704|  glycoside hydrolase family protein  
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gi|146297675|  glycoside hydrolase family protein  

gi|146295203|  glycoside hydrolase 15-related  

gi|146295420|  glycoside hydrolase family protein  

 Hydrogenases related proteins 

gi|146296557|  hydrogenase formation HypD protein  

gi|146296556|  hydrogenase assembly chaperone hypC/hupF  

gi|146296553|  hydrogenase nickel insertion protein HypA  

gi|146296554|  hydrogenase accessory protein HypB  

gi|146296555|  (NiFe) hydrogenase maturation protein HypF  

gi|146296869|  hydrogenase, Fe-only  

 ADH related proteins 

gi|146296249|  alcohol dehydrogenase  

gi|146295750|  iron-containing alcohol dehydrogenase  

gi|146296513|  iron-containing alcohol dehydrogenase  

gi|146295802|  alcohol dehydrogenase  

gi|146295466|  alcohol dehydrogenase  

gi|146295905|  alcohol dehydrogenase  

gi|146295666|  iron-containing alcohol dehydrogenase  
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 The other two proteins found, fibronectin-binding -A domain-containing protein and a 

lysine motif protein, also contribute to the non-specific attachment between the cells and 

substrates. The former protein has binding sites for the cell surface 

(http://pfam.sanger.ac.uk), and the lysine motif protein is involved in bacterial cell 

degrading and has a general peptidoglycan-binding function (Joris et al,. 1992). 

2D LC-MS/MS is a proteomic method routinely used to sequence peptides and identify 

proteins directly from complex mixtures. It uses a process known as tandem mass 

spectrometry (MS/MS), which because some samples present a complexity beyond the 

separation capacity of a 1D LC technique (Delahunty and Yates, 2007). Muddima et al. 

(2010 A and B) probed the extracellular proteome of C. saccharolyticus on glucose 

(medium contained yeast extract and peptides ≤1 kDa) as well as the intracellular proteome 

of the two thermophiles C. saccharolyticus and T. maritima in different environmental 

conditions, supplementing the former secretome information (only approximately 10% of 

the C. saccharolyticus proteome were identified ). Only a handful of solid data is available 

for hyper/thermopile transcriptome so far (Muddiman et al., 2010 A).  

C. saccharolyticus’ genome sequence is 2.97Mb, and initial annotation revealed 2695 

ORFs and 2,679 predicted proteins. C. saccharolyticus’ genome contains more than 60 

GHs, the largest number of carbohydrate transport and metabolism genes in this group 

when compared with the genomes of T. maritima, P. furiosus, and T. tengcongensis (Van 

de Werken et al., 2008; Vanfossen et al., 2008). Over 1500 proteins were identified from 

the intracellular proteome experiment on C. saccharolyticus on a cellobiose substrate 

http://pfam.sanger.ac.uk/
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(strictly removed yeast extract and trypticase from the medium) in this study, while 71 

proteins were identified in the secretome of C. saccharolyticus in Muddiman’s study 

(2010A). Although there was only one set of data available so far in our study, it provided 

much information to compare with the published results. The genome sequences did not 

show the present of the genes encoding typical molecular components of  a cellulosome 

such as dockerin domains and scaffolding proteins (Van de Werken et al., 2008), nor did 

the proteomic data. The genome of C. saccharolyticus encodes a great number of GHs, as 

mentioned above, and only a very small part of them were found in the intracellular 

proteome in this study, as shown in Table 3.5, Most of them were found in the extracellular 

proteome data by Muddiman’s studies (2010A), as well as the CBM proteins that are 

responsible for the specific attachment between the substrates and cells, as discussed 

previously. A handful of non-specific attachment related proteins were detected in the 

extracellular proteome, such as the cell wall hydrolyses autolysin, etc. Very few 

hyper/thermopiles can grow on cellulose materials, even fewer can utilize cellulose raw 

materials such as switchgrass without chemical pretreatment. The reason that the many 

Caldicellulosiruptor strains have the capability of using raw grass substrates is the presence 

of GHs that can use complex β-linked glycans as well as α-linked ones (Van de Werken et 

al., 2008). 

C. saccharolyticus has attracted considerable attention for its extraordinary capability to 

produce H2. It is able to produce almost four mol of H2 from each mol of glucose in 

continuous fermentation, and 2.9 mol of H2 from each mol of glucose in batch culture, as 

shown in this study. A NiFe-hydrogenase and a Fe-only hydrogenase found in the 
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proteomic results as well as in the genome sequence information and the various proteins 

that required for maturation of hydrogenase such as HypC/HupF, HypA, and HypB were 

also found in its proteome (Table 3.5).  

Although the NAD: ferredoxin oxidoreductase (Nfo) redundant that related to directly H2 

production from NADH were found in the genomes of C. thermocellum, T. maritima, and T. 

ethanolicus, but it could not been found in the genome of C. saccharolyticus (Van de 

Werken et al., 2008), nor in the proteome information gained in this study. There was also 

a small amount of ethanol that found in the end products of both Caldicellulosiruptor 

microorganisms’ cultures. Even though it has been suggested that there was no obvious 

ADH genes can be detected in the genome of C. saccharolyticus(Van de Werken et al., 

2008), but proteins of ADH enzymes were found in the proteomic results as shown in 

Table 3.5, so was an iron-containing ADH, but the function of this ADH has not been 

extensively studied yet. 

3.4 Substrates analysis 

3.4.1 Water and sugar content of switchgrass 

As expected, there was an significant decrease of water content of switchgrass sample 

collected from the same field at different time from Jun to September, further to the dried 

sample collected on December, and the pictures (Figure 3.22) showed how the grass look 

like. The water contents detected were 78.3%, 45.2%, and 20.1% respectively (Table 3.6), 

indicating that when the dried grass was collected and stocked by the farmers, it was 
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relatively very dry after the nutrient transferring back to the fields, detailed data were in 

sugar conversion in buffered medium(Table 3.7 and Table 3.8). 

The HPLC results of sugar conversion in buffered medium test showed that there were 

simple sugar accumulation from insoluble substrates sample, cellobiose, arabinos, xylose, 

and glucose were detected, and the data of each sugar composition were shown in Table 

3.7 and Table 3.8. HPLC analysis of the sugar content of the switchgrass sample showed 

that little monosaccharide residues left in the dried sample, which confirmed the theory of 

the owner of Nott Farm, after maturing and drying, the switchgrass harvested by farmers 

has already given most of the nutrient and soluble mono- and disaccharides to the field, left 

the insoluble part such as cellulose. The very small amount of soluble sugar detected in 

switchgrass sample was possibly from the sugar left on the surface or vessel of the plants. 

The avicel and xylan samples also have the similar stories. On the other hand, both 

microorganisms produced more H2 on switchgrass than on avicel (Figure 3.3 and Figure 

3.4). This may be due to the higher concentration of soluble sugar content in the 

switchgrass sample. Zsófia Herbel et al (2010) have stated that cellulase enzyme complex 

(es) needed by C. saccharolyticus to degrade cellulose could only be triggered by yeast 

extract or various monomeric sugars. In this study, all the potential carbon and energy 

source (yeast extract and trypticase) other than our target carbon source were removed from 

the media to exclude the possible effects, thus, the only soluble sugars in the media were 

from the residues of the materials themselves. 
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Figure 3.22  The switchgrass field of Nott Farm at different times. The samples were 

collected on Jun30, 2010, Sep 27, 2010, December 23, 2010(from a to c). Late June’s 

switchgrass was close to half to its highest height, not mature; late September’s switchgrass 

was mature and reached to its highest height but not dry; and late December’s switchgrass 

was mature, reached to its highest height, and dried naturally in the field and the insoluble 

sugar part were back to the field, the grass was collected by the farmer and stocked dried in 

garage. 

  

a b c 



 

86 

 

Table 3.6  Water content of switchgrass sample 

Sample collected 

date 

grass weight before 

drying (kg) 

grass weight after 

drying(kg) 

Water content 

(%) 

Jun 30 2.81 0.61 78.3 

Sep 27 1.24 0.68 45.2 

Dec 23 2.49 1.99 20.1 
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Table 3.7 Sugar transfer in medium DSM 640 (for C. saccharolyticus) without 

inoculums. 

Sugar content 

(mM) 

Substrates (4g/L) 

(4 g/L) Glucose Xylose Cellobiose Xylan Avicel switchgrass Control 

 
0 h 

xylose 
0 31.4 0 0 0 0 0 

arabinose 
6.4 0 5.8 5.8 6.2 6.1 0 

glucose 
23.8 0 0 0.11 0 0.10 0 

cellobiose 
0 0 12.5 0.02 0.07 0 0 

 
After 20 h 

xylose 
0 31.3 0 0 0 0 0 

arabinose 
6.5 0 5.8 6.0 6.1 6.1 0 

glucose 
22.6 0 0.03 0.17 0.01 0.12 0 

cellobiose 
0 0 11.9 0 0 0 0 

 
After 40 h 

xylose 
0 31.2 0 0 0 0 0 

arabinose 
5.5 0 5.7 5.8 6.2 6.1 0 

glucose 
20.8 0 0.04 0.18 0 0.13 0 

cellobiose 
0 0 11.9 0 0 0 0 
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Table 3.8 Sugar transfer in medium DSM 671(for C. kristjanssonii) without inoculums. 

Sugar content 

(mM) 

Substrates (4g/L) 

(4 g/L) Glucose Xylose Cellobiose Xylan Avicel switchgrass Control 

 
0 h 

xylose 
0 26.6 0 0.30 0.30 0.28 0 

arabinose 
0 0 0.43 0 0 0 0 

glucose 
26.9 0 0 0.06 0 0.11 0 

cellobiose 
0 0 12.9 0 0 0 0 

 
After 20 h 

xylose 
2.1 24.0 0.21 0.28 0.42 0.40 0 

arabinose 
0 0 0 0 0 0 0 

glucose 
23.4 0 0 0.11 0 0 0 

cellobiose 
0 0 11.8 0 0 0 0 

 
After 40 h 

xylose 
4.0 20.7 0.31 0.26 0.31 0.44 0 

arabinose 
0 2.12 0 0.06 0 0 0 

glucose 
21.6 0 0.37 0 0.02 0.12 0 

cellobiose 
0 0 11.7 0 0 0 0 
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3.4.2 Sugar accumulation of the medium without inoculums 

As shown in Table 3.7 and Table 3.8, the sugar content of medium with all kinds of sugar 

substrates did not have obvious changes, thus there were no sugar conversions of insoluble 

sugar substrates in buffered medium. These results excluded the effect of sugar conversions 

of the whole study.  

3.5 C. kristjanssonii’s plasmid and genome DNA 

The existence of the plasmid in C. kristjanssonii was confirmed; the 1% agarose gel 

showed the existence and the approximate size of the plasmid DNA, the concentration and 

purity of the DNA sample were gained by a Nano drop test.  The approximate size of the 

plasmid was 15 Kb, the concentration of the isolated plasmid DNA was 33.5 ng/µl, the 

260/280 ratio was 1.83; the gel picture is shown in Figure 3.23. 

The genome DNA was extracted from C. kristjanssonii; the 1% agarose gel showed the 

existence and approximate size of the genome DNA, the concentration and purity of the 

DNA sample were measured by using a Nano drop test. The approximate size of the 

genome DNA band showed on the agarose gel (%1) at about 25 Kb, and the concentration 

of the isolated genome DNA was 934.5 ng/µl with a 260/280 ratio 1.86, the gel picture was 

shown in Figure 3.24. 
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Figure 3.23 Plasmid isolated from C. kristjanssonii. The target band was shown by arrow. 

Approximate size of the plasmid was 15 Kb. The DNA ladder marker used was 1kb plus 

(Fermentas, Canada). 
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Figure 3.24 Genome DNA isolation from C. kristjanssonii. The target band was shown 

by arrow. Approximate size of the genome DNA was 25 Kb. The DNA ladder marker used 

was 1kb plus (Fermentas, Canada). 
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Chapter 4 Conclusion 

In this project, contributions were made to develop a “one-step” fermentation process for 

biohydrogen production by using C. saccharolyticus and C. kristjanssonii as 

microorganisms and switchgrass as materials. The following conclusions could be drawn 

from the work conducted: 

1. The growth of C. saccharolyticus and C. kristjanssonii on different substrates showed 

that both microorganisms were capable of utilizing substrates glucose, xylose, 

cellobiose, hemicellose xylan, and microcrystalline cellulose avicel, as well as 

cellulosic materials such as switchgrass without chemical pre-treatment. 

2. Switchgrass was a good candidate of raw materials used for the production of 

hydrogen. The switchgrass sample harvested and dried by farmers contained a low 

concentration of water and a very small amount of soluble sugar, which was constant 

with the theory that switchgrass would give the nutrition back to field after mature and 

dried, which would help the field keep the fertility and encourage switchgrass’ winter 

survivor. 

3. Compared to other common-used H2 producing microorganisms, both C. 

saccharolyticu and C. kristjanssonii produced a very high amount of H2 when grown 

on glucose substrate (2.9 and 1.7 mol (H2)/mol (glucose) separately at 20 h growth). 

Moreover, C. saccharolyticus could use more xylose with a higher cell density at 20 h 

compared to glucose. A decrease of the H2/acetate ratio was detected from 20 to 40 h 
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along with the increase of lactate production, indicating a shift of metabolism during 

this growth phase, which might be resulted from H2 end product inhibition.  

4. Both SEM and confocal microscope observations showed the existence of attachment 

of C. saccharolyticus and C. kristjanssonii cells’ attachment to the insoluble cellulosic 

substrates—avicel and switchgrass during the growth. All samples showed the non-

specific adhesion at the beginning after the inoculation, followed by the specific 

attachment. And the change in the approximate proportion of the attached cells to the 

insoluble substrates correlated to the rate of the hydrogen production. These findings 

showed the importance of the substrates adhesion to the H2 production of cellulolytic 

microorganisms. 

5. The aggregating behaviors of C. saccharolyticus observed via confocal microscope and 

the flagellar and chemotaxis proteins found in proteomics analysis suggested that C. 

saccharolyticus may be a mobile microorganism with flagella structure, which disagree 

with the original description of this microorganism. Furthermore, a 2D LC-MS/MS 

proteomic test on C. saccharolyticus identified more than 1500 proteins, which 

includes a series of proteins that may contribute to the process of attachment between 

the cells and substrates such as CBM3, fibronectin-binding-A domain-containing 

protein, s-layer proteins, and a lysine motif. Groups of proteins like GHs, ADH, and 

hydrogenase that should be responsible for the catabolism of cellulose and 

hemicellulose substrates, the production of ethanol and H2 respectively were also 
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detected. Even though ADH was found in the proteomic sample of C. saccharolyticus, 

the ethanol producing capabilities of both microorganisms were not significantly high. 

This study showed the great potential of C. saccharolyticus and C. kristjanssonii to be great 

candidate of biohydrogen producers. 
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Appendix 

Confocal video of samples 

This appendix includes a list of video files of confocal videos of different samples at 

different time points: 

1. This file is the confocal video of the sample C. saccharolyticus on avicel at 0 h. 

The file name of this video file is “C. saccharolyticus on avicel 0 h.mov”. 

2. This file is the confocal video of the sample C. saccharolyticus on avicel at 10 h. 

The file name of this video file is “C. saccharolyticus on avicel 10 h.mov”. 

3. This file is the confocal video of the sample C. saccharolyticus on avicel at 25 h. 

The file name of this video file is “C. saccharolyticus on avicel 25 h.mov”. 

4. This file is the confocal video of the sample C. saccharolyticus on avicel at 30 h. 

The file name of this video file is “C. saccharolyticus on avicel 30 h.mov”. 

5. This file is the confocal video of the sample C. saccharolyticus on avicel at 30 h. 

The file name of this video file is “C. saccharolyticus on avicel 30 h-2.mov”. 

6. This file is the confocal video of the sample C. saccharolyticus on avicel at 30 h. 

The file name of this video file is “C. saccharolyticus on avicel 30 h-3.mov”. 

7. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

0 h. The file name of this video file is “C. saccharolyticus on switchgrrass 0 

h.mov”. 

8. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

10 h. The file name of this video file is “C. saccharolyticus on switchgrrass 10 

h.mov”. 
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9. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

25 h. The file name of this video file is “C. saccharolyticus on switchgrrass 25 

h.mov”. 

10. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

30 h. The file name of this video file is “C. saccharolyticus on switchgrrass 30 

h.mov”. 

11. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

50 h. The file name of this video file is “C. saccharolyticus on switchgrrass 50 

h.mov”. 

12. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

50 h. The file name of this video file is “C. saccharolyticus on switchgrrass 50 h-

2.mov”. 

13. This file is the confocal video of the sample C. saccharolyticus on switchgrass at 

50 h. The file name of this video file is “C. saccharolyticus on switchgrrass 50 h-

3.mov”. 

14. This file is the confocal video of the sample C. kristjanssonii on avicel at 0 h. The 

file name of this video file is “C. kristjanssonii on avicel 0 h.mov”. 

15.  This file is the confocal video of the sample C. kristjanssonii on avicel at 10 h. 

The file name of this video file is “C. kristjanssonii on avicel 10h.mov”. 

16.  This file is the confocal video of the sample C. kristjanssonii on avicel at 25 h. 

The file name of this video file is “C. kristjanssonii on avicel 25 h.mov”. 

17.  This file is the confocal video of the sample C. kristjanssonii on avicel at 30 h. 

The file name of this video file is “C. kristjanssonii on avicel 30h.mov”. 

18. This file is the confocal video of the sample C. kristjanssonii on avicel at 50 h. 

The file name of this video file is “C. kristjanssonii on avicel 50h.mov”. 
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19.  This file is the confocal video of the sample C. kristjanssonii on avicel at 50 h, 

the avicel was a relatively bigger fiber. The file name of this video file is “C. 

kristjanssonii on avicel 50 h bigger fiber.mov”. 

20. This file is the confocal video of the sample C. kristjanssonii on swichgrass at 0 h. 

The file name of this video file is “C. kristjanssonii on switchgrass 0 h.mov”. 

21. This file is the confocal video of the sample C. kristjanssonii on swichgrass at 25 

h. The file name of this video file is “C. kristjanssonii on switchgrass 25 h.mov”. 

22. This file is the confocal video of the sample C. kristjanssonii on swichgrass at 30 

h. The file name of this video file is “C. kristjanssonii on switchgrass 30 h.mov”. 

23. This file is the confocal video of the sample C. kristjanssonii on swichgrass at 50 

h. The file name of this video file is “C. kristjanssonii on switchgrass 50 h.mov”. 

24. This file is the confocal video of the sample C. kristjanssonii on swichgrass at 50 

h. The file name of this video file is “C. kristjanssonii on switchgrass 50 h-

2.mov”. 

If you accessed this thesis from a source other than the University of Waterloo, you may 

not have access to this file. You may access it by searching for this thesis at 

http://uwspace.uwaterloo.ca . 
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