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Abstract

Binary measurement systems (BMS) are widely used in both manufacturing industry and

medicine. In industry, a BMS is often used to measure various characteristics of parts and

then classify them as pass or fail, according to some quality standards. Good measurement

systems are essential both for problem solving (i.e., reducing the rate of defectives) and to protect

customers from receiving defective products. As a result, it is desirable to assess the performance

of the BMS as well as to separate the effects of the measurement system and the production

process on the observed classifications. In medicine, BMSs are known as diagnostic or screening

tests, and are used to detect a target condition in subjects, thus classifying them as positive or

negative. Assessing the performance of a medical test is essential in quantifying the costs due to

misclassification of patients, and in the future prevention of these errors.

In both industry and medicine, the most commonly used characteristics to quantify the

performance a BMS are the two misclassification rates, defined as the chance of passing a non-

conforming (non-diseased) unit, called the consumer’s risk (false positive), and the chance of

failing a conforming (diseased) unit, called the producer’s risk (false negative). In most assess-

ment studies, it is also of interest to estimate the conforming (prevalence) rate, i.e. probability

that a randomly selected unit is conforming (diseased).

There are two main approaches for assessing the performance of a BMS. Both approaches

involve measuring a number of units one or more times with the BMS. The first one, called the

“gold standard” approach, requires the use of a gold-standard measurement system that can
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determine the state of units with no classification errors. When a gold standard does not exist, is

too expensive or time-consuming, another option is to repeatedly measure units with the BMS,

and then use a latent class approach to estimate the parameters of interest. In industry, for both

approaches, the standard sampling plan involves randomly selecting parts from the population

of manufactured parts.

In this thesis, we focus on a specific context commonly found in the manufacturing industry.

First, the BMS under study is nondestructive. Second, the BMS is used for 100% inspection or

any kind of systematic inspection of the production yield. In this context, we are likely to have

available a large number of previously passed and failed parts. Furthermore, the inspection

system typically tracks the number of parts passed and failed; that is, we often have baseline

data about the current pass rate, separate from the assessment study. Finally, we assume that

during the time of the evaluation, the process is under statistical control and the BMS is stable.

Our main goal is to investigate the effect of using sampling plans that involve random

selection of parts from the available populations of previously passed and failed parts, i.e.

conditional selection, on the estimation procedure and the main characteristics of the estimators.

Also, we demonstrate the value of combining the additional information provided by the baseline

data with those collected in the assessment study, in improving the overall estimation procedure.

We also examine how the availability of baseline data and using a conditional selection sampling

plan affect recommendations on the design of the assessment study.

In Chapter 2, we give a summary of the existing estimation methods and sampling plans for

a BMS assessment study in both industrial and medical settings, that are relevant in our context.

In Chapters 3 and 4, we investigate the assessment of a BMS in the case where we assume that the

misclassification rates are common for all conforming/nonconforming parts and that repeated

measurements on the same part are independent, conditional on the true state of the part, i.e.

conditional independence. We call models using these assumptions fixed-effects models. In

Chapter 3, we look at the case where a gold standard is available, whereas in Chapter 4, we

investigate the “no gold standard” case. In both cases, we show that using a conditional selection

plan, along with the baseline information, substantially improves the accuracy and precision of
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the estimators, compared to the standard sampling plan.

In Chapters 5 and 6, we investigate the case where we allow for possible variation in the

misclassification rates within conforming and nonconforming parts, by proposing some new

random-effects models. These models relax the fixed-effects model assumptions regarding

constant misclassification rates and conditional independence. As in the previous chapters, we

focus on investigating the effect of using conditional selection and baseline information on the

properties of the estimators, and give study design recommendations based on our findings.

In Chapter 7, we discuss other potential applications of the conditional selection plan,

where the study data are augmented with the baseline information on the pass rate, especially in

the context where there are multiple BMSs under investigation.
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Chapter 1

Background: Problems, Definitions and
Notation

Binary measurement systems (BMS) are widely used in both industry and medicine, where

they are known as diagnostic or screening tests. In industry, a BMS is used to measure various

characteristics of parts and then classify them as conforming or nonconforming according to

some quality standards. In the medical context, a BMS is used to detect a target condition in

subjects, thus classifying them as positive or negative.

In practice, there are two kinds of BMSs. There are systems whose classification output is

based on measuring a dichotomous variable, that is, the BMS is actually measuring the presence

or absence of some characteristic, and there are systems that measure one or more continuous or

ordinal characteristics and then classify a part or subject based on established threshold values.

In industry, BMSs can be either destructive, when the measurement system changes the

characteristics of the parts during the inspection, or nondestructive. This thesis focuses on

nondestructive BMSs, which in industry are part of the larger category of nondestructive tests.

Nondestructive evaluation methods are widely applied in industry for process monitoring and
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sampling or exhaustive inspection of the production yield. For example, liquid-penetrant inspec-

tion is used to detect surface cracks or other surface flaws in a part (Olin and Meeker, 1996). The

test consists of applying a special fluorescent liquid on the surface of an object that is then dried

and cleaned. Next, the object is examined by a human inspector under ultraviolet light, and is

accepted or rejected based on whether a flaw is visible or not. In this case, the output variable

is binary, as the size of the crack or flaw is not considered when making the decision (Olin and

Meeker, 1996).

Another example is the inspection of blank credit cards that are passed or rejected by an

automated visual inspection system. The cards are checked for many defects, such as missing

parts, surface scratches, bleeding of colors, fuzzy letters and numbers, etc. The system takes a

digital picture of the front of each card and calculates hundreds of summary measures based

on comparing the picture to a template of the ideal card. If any of the summary measures

falls outside a pre-specified range, the card fails the inspection. In this case, although each

measurement is continuous and there is a threshold for each of them, the fact that the decision

to pass or fail the part is based on all these measurements makes the final output binary and the

measurement system is considered a BMS.

In medical field, diagnostic and screening tests are used to identify the presence or absence

of a certain condition and they include, for example, bacterial cultures, radiographic images

and biochemical tests. As mentioned before, some tests are dichotomous by their nature, for

example a test for myocardial infarct diagnosis that identifies the presence of new Q-waves in

the ECG or the presence of elevated Creatine Kinase - MB Fraction, over a certain period of time

(Rindskopf and Rindskopf, 1986).

Diagnostic tests are used in medical practice for identifying the presence or absence of a

target disease in subjects that have signs or symptoms and are suspected of having the condition.

Screening tests, on the other hand, are usually conducted within a population of healthy people

that are at risk of developing the target condition. For example, yearly breast cancer screening

with mammography of women over 50 years of age and cervical cancer screening with Pap smear

are common medical practice. Diagnostic and screening tests differ in a few important ways.
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First, as mentioned earlier, diagnostic tests are usually applied only to subjects suspected of

having the condition, while screening tests are used on healthy subjects; second, a positive

screening test is usually followed by a definitive or more accurate test and not directly by the

treatment. Usually, screening tests are non-invasive and inexpensive, so that they can be applied

on a large scale to the population at risk.

From the point of view of the statistical methodology used to evaluate the performance of

these tests, diagnostic and screening tests are not different. This is why in the medical literature

pertaining to this topic they are generically called “medical” tests (Pepe, 2003).

In industry, there are two main aspects of the performance of a measurement system:

accuracy and precision. For continuous measurements, accuracy (bias) is defined as the expected

measurement error while precision is the variation in repeated measurements on the same unit

by the same operator (repeatability) and by different operators (reproducibility). In the case of a

BMS, the classic definitions of accuracy and precision are not applicable, since the mean and

variance are functionally related. Instead, the terms “performance” or “effectiveness” measures

are usually used for quantifying the quality of the measurement system.

In the medical literature, the term accuracy is widely used for characterizing the perfor-

mance of a medical test. In this thesis, we use a consistent terminology for both industrial and

medical fields. Thus, we use the term “performance measures” when we refer to the quality of a

BMS.

There are two main approaches for assessing the performance of a BMS. The first one, called

the “gold standard” approach (Pepe, 2003; Farnum, 1994), requires the use of a definitive or

gold-standard measurement system that can determine the state of parts or subjects with no

classification errors. The approach then compares the outcomes of the gold standard with the

ones from the BMS under study. Performance measures express how the results of the BMS agree

with the outcomes of the gold-standard test. For example, in a coronary artery surgery study,

subjects who were suspected to have coronary heart disease underwent an exercise stress test

and also had their chest pain history taken (Weiner et al., 1979). These were the two BMSs under
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investigation and the true disease status was determined by arteriography, the gold-standard

test in this case. In the industrial context, for the credit card example, a human inspector can

compare each blank credit card with its pre-specified layout and then fail or pass the card.

Although the gold-standard approach is considered the “standard” method in both industrial

and medical contexts (AIAG, 2002; Pepe, 2003), there are cases where the gold standard is too

expensive, time consuming or invasive to be used on a routine basis (Boyles, 2001; Walter and

Irwig, 1988).

In other situations, a gold standard does not exist. For example, in the medical context,

some conditions such as migraines cannot be determined based on histological or biochemical

changes. In that case, the condition is defined by a combination of symptoms and signs and the

determination is not error-free. Assessment methods have also been developed for such “no gold

standard” situations (Rutjes et al., 2007; Pepe, 2003; Boyles, 2001; Van Wieringen and Van der

Heuvel, 2005). These methods involve using an imperfect reference measurement system with

known characteristics, or using a latent class approach, where no reference test is used. A more

detailed review of these methods can be found in Chapter 2.

In the first two chapters of this thesis, we use a unified terminology and notation for both

industrial and medical fields. Therefore, we use the term “units” for both parts and subjects.

When a part passes the BMS inspection or a subject tests positive, we say the unit passes the

inspection. Similarly, when a part fails the inspection or a subject tests negative, we say the unit

fails the inspection. Also, if a part is conforming to the quality standards or a subject is diseased

we say the unit is conforming, and similarly for the nonconforming and non-diseased case.

With BMSs considered here, each unit has a “true” quality or disease state, conforming

(diseased) or nonconforming (non-diseased), also called the measurand. For unit i , we denote:

Xi =
 1, if unit i is conforming

0, if unit i is nonconforming

Each unit can be classified by the BMS as pass (positive) or fail (negative) and the outcome of the
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test is denoted by:

Yi =
 1, if unit i passes the inspection

0, if unit i fails the inspection

There are two parameters related to these variables: the conforming rate or the prevalence of the

disease, πC , i.e. the chance that a randomly selected unit is conforming (diseased), and the pass

rate, πP , i.e. the chance that a randomly selected unit passes the inspection (positive). There are

many ways to quantify the performance of a BMS. Here we introduce the most common ones in

both industrial and medical contexts.

Misclassification rates, defined as the chance of passing a nonconforming unit, called the

false positive (consumer’s risk), and the chance of failing a conforming unit, called the false

negative (producer’s risk), are commonly used in quantifying the performance of a BMS in

industry (AIAG, 2002; Johnson et al., 1991; Boyles, 2001) and medicine (Hui and Walter, 1980;

Walter and Irwig, 1988; Pepe, 2003).

We denote the two misclassification probabilities by:

α= Pr(Yi = 1 | Xi = 0), the false positive (1.1)

and

β= Pr(Yi = 0 | Xi = 1), the false negative (1.2)

A gold standard system has α=β= 0.

The four parameters, α, β, πC and πP , must lie between 0 and 1 and are constrained by the

identity:

πP = Pr(Yi = 1) = Pr(Yi = 1, Xi = 1)+Pr(Yi = 1, Xi = 0) = (1−β)πC +α(1−πC ) (1.3)

Solving for πC , we have

πC = πP −α
1−β−α
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For a reliable BMS we expect low misclassification probabilities, α andβ. Also, it is usually

the case that the chance of passing a conforming unit is higher than the chance of passing a

non-conforming unit, i.e. 1−β>α. This assumption is also valid in the medical context, where

“a process is to be called a test if and only if it selects diseased persons with higher probability

than it does non-diseased persons” (Rogan and Gladen, 1978). This is equivalent to saying that a

group of people with positive tests will be expected to have higher disease prevalence than the

population.

In the above definitions, we have implicitly assumed that the misclassification probability

is the same for each conforming/nonconforming unit. This may not be true, as in the liquid-

penetrant inspection system (Olin and Meeker, 1996), where parts with large cracks are more

easily classified. Later we will relax the assumption of constant misclassification probabilities.

In both industry and medicine, there are two main goals for conducting a BMS assessment

study. First, the performance and the costs associated with misclassification by a BMS should be

known before using the system for routine testing. The second is related to statistical inference,

including estimation and hypotheses testing, on different parameters characterizing the pro-

duction process or the population of interest, when the BMS is used to measure the variables of

interest. Next, we explain in more detail the importance of these goals for both the industrial

and medical contexts.

In industry, parts passed by the BMS are sent to the customer while failed parts are scrapped

or re-worked. As a result, it is important to assess the rates associated with a wrong decision.

The implications of the false positive classification are usually more serious than those of the

false negative. Making a false positive error can lead to an increase in quality complaints and a

decrease in customer satisfaction. On the other hand, false negative errors lead to unnecessary

rework or scrapping of parts with additional costs for the producer. As there are different costs

associated with each incorrect decision, we estimate both α and β so that the overall cost can

be quantified. Also, knowing the misclassifications rates has an impact on how to improve a

manufacturing process, when a study is conducted to identify whether the cause of output

variation is related to the measurement system or to the rest of the process. For continuous
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outcomes, the overall variation can be partitioned into components due to the measurement

system and the manufacturing process. In the binary outcome case, we can equivalently partition

the pass rate into components due to the BMS, i.e. the misclassification rates α and β, and to the

process, i.e. πC . If the misclassification rates are high, the measurement system is not adequate

and it must be improved before conducting further investigations.

Also, in a production process there are situations when the process is in statistical control

and is being monitored with a fraction non-conforming p-chart (Burke et al., 1995). In this

context, it is often mistakenly thought that the centre line of the control chart provides an

estimate of the fraction nonconforming for the process. However, this estimate is based on

measurements by a BMS. Thus, if the false positive and false negative rates are not accounted

for, using the pass rate as an estimate of the conforming rate can lead to serious bias. Therefore,

there is a need to estimate the misclassification probabilities and incorporating them in the

estimation of the nonconforming rate.

In medical research, it is common to assess the performance of diagnostic test using the

misclassification rates, α and β, or their complements, 1−α, called specificity and 1−β, called

sensitivity (Fleiss, 1981; Walter and Irwig, 1988; Pepe, 2003). The first goal of assessing the

misclassification rates is similar to the one in the industrial setting: quantifying the costs due to

misclassification of patients. Classifying a subject as non-diseased, when the subject is actually

diseased, can prevent or delay the appropriate treatment that can cause aggravation of the

disease or even death. When a non-diseased subject tests positive, unnecessary treatments

that can be both invasive and costly are applied to the subject, causing discomfort, trauma and

increased health care costs.

Aside from knowing the performance characteristics of a medical test for decision-making

purposes, it is also important to use this information in studies where the prevalence or different

measures of association are estimated. Medical tests are used to measure not only a target

condition, but also exposure variables or risk factors, confounders, etc., and when the tests

are not error-free, information about their performance should be included in the estimation

of prevalence and incidence rates or indices of association, such as relative risk. Quade et al.
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(1980), Rogan and Gladen (1978) and Yanagawa and Gladen (1984) show that inferences based on

medical tests can lead to seriously biased estimators of prevalence, incidence and remission rates

when information about the classification errors is not included. They also prove that the power

of the test for comparing rates is also affected by errors due to the BMS. They propose methods

to account for these misclassification errors, assuming that the sensitivity and specificity of the

medical test are known or estimable. Barron (1977) shows the implications of not accounting for

the misclassification errors on the statistical inference of the relative risk and suggests a way to

account for these errors.

There are other measures of performance that are sometimes estimated in a BMS assess-

ment study. For example, in the medical field, the predictive values, i.e. the probability that a

subject that tests positive is actually diseased, called the positive predictive value (PPV), and

the probability that a subject that test negative is actually non-diseased, called the negative

predictive value (NPV), are sometimes used. These predictive values are expressed as follows:

PPV = Pr(Xi = 1 | Yi = 1) = (1−β)πC

(1−β)πC +απC
,

N PV = Pr(Xi = 0 | Yi = 0) = (1−α)πC

(1−α)πC +βπC
.

We note that these two measures depend on both the misclassification rates, α and β, and the

prevalence, πC . They are not used to quantify the inherent performance of the BMS, but how

well the test reflects the true state of a subject; therefore they quantify the clinical value of the

test (Pepe, 2003).

Other measures of performance, used mostly for medical tests, are the positive and negative

likelihood ratios, which quantify the change in the odds of the disease when given the result of
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the diagnostic test (Pepe, 2003). The likelihood ratios are expressed as follows:

PLR = Pr(Yi = 1 | Xi = 1)

Pr(Yi = 1 | Xi = 0)
= 1−β

α
,

N LR = Pr(Yi = 0 | Xi = 1)

Pr(Yi = 0 | Xi = 0)
= β

1−α .

We note that the likelihood ratios are simple functions of the misclassification probabilities, α

and β, and therefore summarize the performance of the BMS.

This thesis focuses on a particular industrial setting that can also be found in the medical

field. First, the BMS under study is nondestructive and the quality variable X is a dichotomy

that represents the presence or absence of a characteristic. Second, the study is conducted as a

routine evaluation of the performance of the BMS, after it has been implemented and in use for a

period of time. Third, the BMS is used for 100% inspection or any kind of systematic inspection of

the production yield. Fourth, at the time of the evaluation, the process is under statistical control

and the BMS is stable. In this context, we can obtain a good estimate of the pass rate, πP , using

a large number of measured units, called baseline measurements. For example, in the credit

card case when the automated visual system is used, thousands of cards are measured every day

and we can record the number of passes and fails and obtain an estimate of the proportion of

passes. Therefore, we could assume that the pass rate is known or well estimated before the BMS

assessment study is conducted. It would be statistically inefficient to ignore this information.

In this thesis, we quantify how the assumed knowledge of πP improves the estimation of α, β

and πC . As we will see in Chapters 3, 4, 5, and 6, having baseline data about πP also allows us

to choose sampling plans that otherwise we would not be able to use. In the medical context,

screening tests that are already in use represent a similar setting, where we may have a good

estimate of the rate of testing positive.

Our discussion will mainly focus on the case where only one BMS is assessed, but we will

also discuss possible generalizations. Also, as we focus on an industrial context, most of the

terminology we use here is from the manufacturing industry.
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In Chapter 2, we give a summary of the existing sampling plans and estimation methods

for a BMS assessment study that are relevant in our setting. In Chapters 3 and 4, we propose

new procedures that improve and adapt the current ones to our case, when we assume that the

misclassification rates α and β are constant within the nonconforming/conforming units. In

Chapters 5 and 6, we propose new models for relaxing the assumption of constant misclassi-

fication rates. In all these new methods, we use the baseline information about the pass rate

πP , along with a proposed sampling scheme made possible by the availability of these baseline

measurements. We evaluate the gain in the accuracy and precision of the estimators correspond-

ing to these new procedures in comparison to the ones given by the standard (current) ones. In

Chapter 7, we discuss possible extensions and future work, such as assessing multiple (possibly

parallel) binary measurement systems, and assessing a BMS in the context where a reference or

“anchored” system is present and we have baseline measurements available.
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Chapter 2

Current Methods for Assessing a Binary
Measurement System

While there is an extensive literature on the assessment of continuous measurement systems in

industry (AIAG, 2002; Wheeler and Lyday, 1989), much less research has addressed assessing a

BMS. AIAG (2002) provides a method that assumes there is a known underlying continuous mea-

sure that has been discretized and a threshold is used for classification. However, as mentioned

before, our goal is to focus on cases where the measurand X is dichotomous.

In medical research, the performance of medical tests with positive/negative outcomes has

been extensively studied (Walter and Irwig, 1988; Zhou et al., 2002; Rutjes et al., 2007). In this

chapter, we give a summary of the methods developed in both industrial and medical fields, and

provide a unified view on the inference methods and sampling schemes used in such assessment

studies. All these proposed methods consider only the case where there is no prior information

about the pass rate, πP , of the studied BMS.

As mentioned before, there are two major approaches for assessing a BMS. The first one

is used when a gold standard is available and we can compare the results of the BMS to the

classification provided by the gold standard. The second approach is used when there is no gold
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standard or using a gold standard is not feasible.

2.1 The “Gold Standard Approach”

Methods using this approach require the existence and use of a gold standard, a test or mea-

surement system that classifies units with no classification errors. When it is possible to use the

gold standard on all units selected for the assessment study, we have “complete verification”’

with the gold standard. When the gold standard is too expensive or invasive to be used on the

whole sample and only a sub-sample of units are tested with the gold standard, we have “partial

verification”.

2.1.1 Complete Verification with the Gold-standard System

This method requires the use of the gold standard on all selected units, and it is considered the

standard method for assessing a BMS in both the industrial and medical fields.

The method assumes that a total of n units are selected and then classified by both the BMS

and the gold standard. We can summarize the results of classifying n units by each measurement

system using Table 2.1. To make the notation easier to follow, we use the terms “pass (P )” for

both “passed parts” and “positive subjects” and “fail (P̄ )” for both “failed parts” and “negative

subjects”, as determined by the BMS. Also, the terms “conforming (C )” is used for “conforming

parts” and “diseased subjects”, and “nonconforming (C̄ )” is used for both “nonconforming parts”

and “non-diseased subjects”, as determined by the gold standard. The usual assumptions for the

Table 2.1 Data from a BMS Performance Study with Complete Verification by the Gold Standard

Conform (C ) Not conform (C̄ ) Total units

Pass (P ) nPC nPC̄ nP

Fail (P̄ ) nP̄C nP̄C̄ nP̄
Total units nC nC̄ n
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standard assessment study are:

• All units have the same probability of conforming, πC ;

• Nonconforming units have a common probability of passing the inspection, α;

• Conforming units have a common probability of failing the inspection, β;

• Measurements of different units are independent.

In practice, there are two sampling schemes used in selecting the units for an assessment study:

Farnum’s or the case-control study sampling plan, and the random selection or the cohort study

sampling plan.

Farnum’s or Case-control Sampling Plan

In the industrial context, Farnum (1994) suggested an assessment method for a BMS where two

equal-size independent samples of conforming and nonconforming items are selected (nC = nC̄ )

and then evaluated by the BMS. In Table 2.1, nC , nC̄ and n are fixed and all the other quantities

are random.

This sampling scheme is equivalent to the sampling protocol of a case-control study for

assessing the performance of a medical test, where pre-specified numbers of diseased and

non-diseased subjects, as determined by the gold standard, are selected (Pepe, 2003).

With this sampling scheme, both misclassification errors, α and β, can be directly estimated

as:

α̂= nPC̄

nC̄
(2.1)

β̂= nP̄C

nC
(2.2)

These estimators are the Maximum Likelihood (ML) estimators, are unbiased and their variances
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are:

Var(α̂) = α(1−α)

nC̄
Var(β̂) = β(1−β)

nC
.

We notice that the conforming rate, πC , cannot be estimated when this sampling scheme is used.

This is one of the major drawbacks of this method. We also notice that the predictive probabilities,

PPV and N PV , cannot be estimated, unless prior information about the conforming rate is

known. The predictive values are important, especially in the medical field, and, because for

many conditions an estimate of the prevalence is known a priori, they can still be estimated in a

case-control study.

The main advantage of Farnum’s sampling scheme is the direct estimation of α and β. In an

industrial setting, when we are dealing with a high-performance process, the main disadvantage

of this method is related to the extensive use of the gold standard. Usually, the gold standard is

expensive or time consuming and finding a large number of nonconforming parts through the

use of the gold standard can be unreasonably costly or impractical. In the medical field, even in

the case of low-prevalence diseases, this is not necessarily a problem, as usually there are enough

people with the disease status already identified that can be enrolled in the BMS assessment

study.

Random Selection or Cohort Study Sampling Plan

Another sampling scheme involves randomly selecting a sample of n units from a target popula-

tion, and then measuring each unit using both the BMS and the gold standard. In this sampling

scheme, in Table 2.1, only the total, n, is fixed and all the other quantities are random. This is the

sampling scheme used in cohort studies in the medical field (Pepe, 2003).

We notice that with this sampling scheme all parameters of interest can be directly estimated.

The ML estimates for the misclassification probabilities are the same as in the case-control

sampling, Eq. (2.1) and (2.2). Also, we can estimate the conforming rate:

π̂C = nC

n
(2.3)
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The predictive values can also be obtained directly from Table 2.1. We note that, although the

formulas for the estimates are the same as in a case-control study, the properties of the estimators,

including precision, are different. In a cohort study, the quantities in the denominator of the

estimators of α and β are now random, whereas in the case-control situation they are fixed.

Confidence intervals for α and β can be derived using exact methods or asymptotic methods

and the logistic transformation (Pepe, 2003).

Burke et al. (1995) propose a different testing protocol for use in industry. The method

involves randomly selecting n units, and then classifying each unit by the gold standard, which

in their example is a panel of knowledgeable experts that classify parts by consensus. The studied

BMS is a single inspector involved in the routine classification of the manufactured parts. After

the true state of a unit is determined, the inspector measures the unit r times. The estimates for

the two misclassification probabilities are expressed as “the average values of α̂ and β̂” for the n

parts. The authors do not explain what “the average values of α̂ and β̂” actually mean, and also

do not specify any assumption about the independence of measurements. Therefore, we were

not able to fully understand their estimation procedure. In Chapter 3, we will explore this testing

protocol in greater detail and propose a new sampling plan. We will also make some appropriate

assumptions about the measurements on the same part and on different parts, and derive the

MLEs of α, β and πC .

2.1.2 Partial Verification by the Gold Standard

Here we consider the case when there is an available gold standard, but for a variety of reasons

it cannot be applied on a large sample of units. In the medical context, some gold-standard

tests involve invasive procedures, such as surgery, biopsy, etc., and it is considered unethical to

apply it on subjects that do not show signs of the target condition, that is, they test negative on

the BMS. One example of such a gold standard is angiography which is used for the detection

of pulmonary embolism. Angiography can cause serious complications in the tested subjects;

therefore, it is considered unethical to perform this test on people with negative D-dimer results,
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the studied BMS in this case (Rutjes et al., 2007).

In industry, some gold-standard systems can be time-consuming, expensive or even de-

structive. In the credit card example, the gold standard was a human inspector that checks

the cards for various defects. Although we assume the inspector classifies parts with no error,

the inspection process is slow and costly when a large number of parts have to be tested. In

both contexts, a compromise is to classify a small sample of units using both the gold standard

and the BMS. The usual testing protocol involves selecting a large sample of t units and then

measuring them all with the BMS. Next, a smaller sample of size n is selected from the initial one

and then measured with the gold standard. The data can be summarized as in Table 2.2. This

Table 2.2 Data from a BMS Performance Study with Partial Verification by the Gold Standard

Pass (P ) Fail (P̄ ) Total units

Conform (C ) nPC nP̄C nC

Not conform (C̄ ) nPC̄ nP̄C̄ nC̄
Units verified by the BMS and the Gold Standard nP nP̄ n
Units not verified by the Gold Standard tP −nP tP̄ −nP̄ t −n
Total units tP tP̄ t

methodology is known as a two-phase or double sampling in the sample survey and industrial

literature (Särndal and Swensson, 1987; Johnson et al., 1986). In the medical literature, it is called

partial or incomplete verification (Rutjes et al., 2007).

The assumptions for a partial verification study are the same as in a standard one, i.e. units

have the same conforming probability, πC , nonconforming units have common probability

of passing, α, conforming units have common probability of failing, β, and the classification

outcomes are independent for different units.

This methodology was designed and proposed for two practical applications. For the first

one, the goal is to estimate the conforming rate or prevalence. Boss (1954) shows that using the

pass rate, πP , as an estimate for the true conforming rate, πC , can lead to serious bias, unless

the BMS is perfect. The standard method for estimating the conforming rate is to use a gold

standard on a large sample of parts, as discussed in Section 2.1.1. When this is not possible, a
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compromise is to conduct a two-phase study and estimate the conforming rate using the data

at hand, accounting for the misclassification probabilities. The two-phase methodology was

proposed in this context by Tenenbein (1970), (1971), and (1972).

The second purpose, which has been discussed in the medical context, is related to the

estimation of the misclassification probabilities, α and β. Here, many assessment studies involve

testing the subjects with the BMS, and then, due to the invasive character of the gold standard,

only a proportion of the positive-tested persons are subjected to the gold standard. As Zhou

(1998) mentions, in many such studies the estimates of the misclassification probabilities are

based on the “complete-cases” data, i.e. the data related to subjects tested by both the BMS and

the gold standard. Therefore, although the design is not standard, the data analysis is conducted

as if it were. These naïve estimators are biased and usually lead to an overestimation of the

performance of the BMS, in terms of sensitivity and specificity (Zhou, 1998).

There are various methods for selecting the second sample in a two-phase study. The two

most relevant ones are random selection, when the second sample is randomly selected from the

initial one, and conditional re-sampling, when pre-determined numbers of units are randomly

selected from two strata: one made up of units that passed the BMS, and the other by those

that failed. For random selection in phase two, except for n and t , in Table 2.2, all quantities are

random. In the conditional re-sampling case, n, t , nP and nP̄ are fixed, and all other quantities

are random.
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In the two-phase sampling with random selection, Tenenbein (1970) shows the ML estima-

tors for the conforming rate and misclassification probabilities are:

π̂C = tP

t

nPC

nP
+ tP̄

t

nP̄C

nP̄
= π̂P

nPC

nP
+ (1− π̂P )

nP̄C

nP̄
(2.4)

α̂=
tP

t

nPC̄

nP

1− π̂C
=

π̂P
nPC̄

nP

π̂P
nPC̄

nP
+ (1− π̂P )

nP̄C̄

nP̄

(2.5)

β̂=

tP̄

t

nP̄C

nP̄

π̂C
=

(1− π̂P )
nP̄C

nP̄

π̂P
nPC

nP
+ (1− π̂P )

nP̄C

nP̄

(2.6)

We note that these estimates are undefined if either nP or nP̄ is zero.

Tenenbein (1970) also derives the asymptotic variance of π̂C :

Var(π̂C ) ' πC (1−πC )

n

[
1− πC (1−πC )(1−α−β)2

πP (1−πP )

]
+ π2

C (1−πC )2(1−α−β)2

mπP (1−πP )
,

and provides sample size determinations for both stages when there is a fixed budget and we

want to minimize the variance of π̂C , or when we desire a certain precision of π̂C and we want to

minimize the measurement cost.

For the case of conditional re-sampling, parallel work has been conducted on the estimation

procedure for πC , α and β (Haitovsky and Rapp, 1992; Begg and Greenes, 1983; Zhou, 1998). In

the medical field, there was a need for estimation methods for studies with partial verification.

We mentioned before that the common practice is to analyze the data from this kind of study

as if they were multinomial data, and that this results in seriously biased estimators. A way to

approach this problem is to look at it as a “missing-data” case, where data is missing on the

gold-standard measurements for some units. When the probability of selection in the second

phase does not depend on the result of the BMS test, i.e. in the random selection case mentioned

above, the situation is called “Missing Completely At Random” (MCAR). When the probability of

18



selecting a unit in the second phase depends on the result of the BMS test but not on its true

state, we have a “Missing at Random” (MAR) case. In the MAR context, one estimation method

proposed by Begg and Greenes (1983) uses quantities that can be directly derived from the data,

i.e. the estimates of the predictive values PPV and N PV and the pass rate πP , and then uses

Bayes’ theorem to derive estimators for πC , α and β. Begg and Greenes’s procedure is also known

as a “correction” method (Rutjes et al., 2007). Another proposed analysis procedure involves

imputation and is usually conducted in two phases. In the imputation phase, each missing value

is replaced, and in the analysis phase, the estimates of the parameters are computed based on

the complete data, using the standard method (Pepe, 2003; Rutjes et al., 2007). In the simplest

imputation method (Pepe, 2003), nPC and nPC̄ in Table 2.2 are multiplied by the inverse of the

probability that a BMS-positive subject is selected in the second-phase sample, while nP̄C and

nP̄C̄ are multiplied by the probability that a BMS-negative subject is selected. Then the data are

analyzed as in a standard random BMS assessment study.

In the industrial context, Haitovsky and Rapp (1992) extended and improved Tenenbein’s

double-sampling method by proposing a conditional re-sampling protocol. They derived the

MLEs of πC , α and β. It turns out that the estimates are the same as in the random selection

case, but the properties of the estimators, such as their precision, are different, as now nP , nP̄ are

fixed. Zhou (1998) proved that when the MAR assumption holds, the MLE, the Begg and Greenes’

method and the simple imputation method provide the exact same estimators for πC , α and β as

given by Eq. (2.4), (2.5), (2.6).

The advantage of the conditional re-sampling method is that it controls the number of

passed and failed parts in the sample, therefore avoiding the undefined estimates problem

mentioned earlier. It also provides more precise estimators for some of the parameters.
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2.2 The “No Gold Standard” Approach

As mentioned before, in the “no gold standard” situation, the gold standard is too expensive, inva-

sive or time consuming to be used in an assessment study, or there is no available measurement

system or test that can classify units without error.

2.2.1 Using a Reference System with Known Performance Characteristics –
Anchored Method

In both industrial and medical contexts, there are cases where the gold-standard system is not

available for the BMS assessment study. Instead, the best available testing method is used,

usually called the reference test or the alloyed gold standard. This test is not error-free, but its

performance characteristics, i.e. misclassification probabilities or their complements, sensitivity

and specificity, are assumed known. Treating this test as a gold standard and then conducting a

standard data analysis results in seriously biased estimators of α, β and πC (Hadgu et al., 2005).

To overcome this issue, a new methodology was developed, where the known characteristics

of the reference test are incorporated in the estimation procedure. With this method we classify

a sample of units with both the reference test and the BMS, and then obtain the MLEs of α, β

and πC . This method was also recommended as an alternative to another assessment method,

called discrepant analysis. Discrepant analysis was initially proposed as an attempt to solve

the problem of biased estimators in the case where only an imperfect reference test is available

(Hadgu et al., 2005). It involves the use of the BMS and the reference test and the cases with

discordant results between the two tests are re-tested using an ancillary test or resolver, which

is also imperfect. This method was severely criticized by many researchers as “biased and

unscientific” (Hadgu et al., 2005), and is not considered a solution to the biasness problem.

Another alternative is the latent class analysis which we will discuss later in this chapter.

Boyles (2001) also discusses using a reference system and calls the statistical model used to

accommodate the data the “anchored model”. From now on, we will use the term “anchored”
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method whenever a reference-standard system with known performance characteristics is used.

It is common in the medical field for a new BMS to be assessed by comparing its classifi-

cation outcomes to those from a reference test. For example, new Nucleic Acid Amplification

tests for detecting infectious conditions such as Chlamydia trachomatis infection are assessed

by comparing their classification results with the results of a cell culturing test. The selected

subjects are usually tested only once with each procedure.

In industry and some medical contexts, the selected units can be repeatedly measured by

both the BMS and the reference test. We give the notation, assumptions and estimation proce-

dure for the repeated-measurements case, as it is a generalization of the single-measurement

case discussed above.

For unit i , we denote the outcome of the kth inspection with the reference test by:

Zi k =
 1, if unit i passes the kth inspection with reference test

0, otherwise

 , i = 1, . . . ,n,k = 1, . . . , p

Also, the outcome of the j th inspection by the BMS for unit i is denoted by:

Yi j =
 1, if unit i passes the j th inspection with BMS

0, otherwise

 , i = 1, . . . ,n, j = 1, . . . ,r

The total number of passes for unit i with the reference test is denoted by Ui =∑p
k=1 Zi k , whereas

the total number of passes with the BMS is denoted by Si =∑r
j=1 Yi j .

The true state of a unit is denoted by Xi , consistent with the notation from Chapter 1. As

before, the misclassification rates of the BMS are denoted by α and β.

The known performance characteristics of the reference test are:

αR = Pr(Zi k = 1 | Xi = 0) and βR = Pr(Zi k = 0 | Xi = 1).

There are four main assumptions for the anchored model:
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• The probability of passing the BMS inspection is common for all nonconforming units.

The same is true for the probability of failing any conforming unit. The same assumption

is made for the reference test.

• The BMS and the reference test do not change the units in any way, so the misclassification

probabilities do not change from one measurement to the next, on the same unit;

• Given the true state of a unit, the repeated measurement, whether done by the BMS or the

reference test, are independent. That is:

Pr(Yi 1,Yi 2, . . . ,Yi r , Zi 1, Zi 2, . . . , Zi p | Xi ) =
r∏

j=1
Pr(Yi j | Xi )

p∏
k=1

Pr(Zi k | Xi ) (2.7)

This is also known as “conditional independence”;

• Measurements on different units are independent.

Using these assumptions and notation, the conditional distribution of the total num-

ber of times unit i passes the BMS inspection given the part is conforming is Si | (Xi = 1) ∼
Binomial(r,1−β), and given it is nonconforming is Si | (Xi = 0) ∼ Binomial(r,α). For the refer-

ence test, Ui | (Xi = 1) ∼ Binomial(p,1−βR ), and Ui | (Xi = 0) ∼ Binomial(p,αR ).

When the units are randomly selected from a study population, the likelihood function can

be expressed as:

L(α,β,πC | si ,ri ) ∝
n∏

i=1
[(1−β)siβr−si (1−βR )uiβ

p−ui
R πC +αsi (1−α)r−siα

ui
R (1−αR )p−ui (1−πC )]

(2.8)

We notice that the score equations of the likelihood function do not have a closed form. Boyles

(2001) and other authors use the EM algorithm to estimate the parameters. More details about

this optimization procedure are given in Chapter 4.

In the case of a single measurement per unit by the BMS and the reference test, the result-

ing data can be summarized in a 2x2 table. After some re-parameterization of the likelihood

function, the MLEs of α and β can be expressed in terms of the data, zi k and yi j , and the known

misclassification rates of the reference test, αR and βR (Staquet et al., 1981).
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The validity of the estimators given by the anchored model depends on the model assump-

tions. The conditional independence assumption is considered the most difficult to justify in

many practical situations, especially in the medical field. If two medical tests are based on the

same physiologic phenomenon, then, given the true state of a subject, there is likely a positive

correlation between the outcomes of the two tests, and the conditional independence assump-

tion is thus violated. For example, if both tests are based on a particular antibody reaction,

something that inhibits the reaction for one test may have a similar effect on the other. Another

example is the detection of lumbar herniation if both tests are imaging tests, such as MRI and

radiography, as both of them focus on the detection of abnormalities of the discus (Rutjes et al.,

2007).

If the anchored model is used when the outcomes of the two tests are correlated, the

estimators of α and β can be seriously biased. In the next section, we introduce latent class

analysis, and discuss some of the methods developed to account for the possible conditional

dependence that can also be applied in the anchored model case.

2.2.2 Latent Class Analysis

Latent class (LC) analysis methods have been known for decades (Lazarsfeld and Henry, 1968)

and they have been applied in many areas of research, such as psychology and sociology, and

more recently in assessment studies for medical tests (Hui and Walter, 1980; Walter and Ir-

wig, 1988) and BMSs used in industry (Boyles, 2001; Van Wieringen and Van der Heuvel, 2005;

Van Wieringen and De Mast, 2008).

LC analysis methods acknowledge that there is no available gold standard and therefore,

that the true state of a unit—conforming or nonconforming—cannot be observed. The true state

is considered a “latent” variable and we only observe the outcomes of the BMSs measurements.

The main assumption of the LC analysis is that, conditioning on the true state, the measurements

from different BMSs or repeated measurements by the same BMS are independent. As noted

above, this is called the conditional independence assumption (Eq. (2.7)).
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In a manufacturing context, it is of interest to assess the performance of a measurement

system used for routine inspection, for example an automated visual system, when no gold

or reference standard is available. This case was considered by Boyles (2001), who proposes a

testing procedure that consists of repeatedly measuring randomly selected parts with the studied

BMS. Then, he uses the LC model for one BMS. The model assumptions are similar to the ones

for the anchored model:

• The probability of passing the BMS inspection is common for all nonconforming units, i.e.

α is constant. The same is true for the probability of failing any conforming unit, i.e. β is

constant;

• The BMS does not change the units in any way, so the misclassification probabilities do

not change from one measurement to the other;

• Conditioning on the true state of a unit, measurements by the BMS are independent, i.e.

Pr(Yi 1,Yi 2, . . . ,Yi r | Xi ) =
r∏

j=1
Pr(Yi j | Xi ), for each i = 1, . . . ,n;

• Measurements on different units are independent.

Assuming the above conditions hold, the likelihood function is:

L(α,β,πC | si ) ∝
n∏

i=1
[(1−β)siβr−siπC +αsi (1−α)r−si (1−πC )] (2.9)

which is a mixture of two Binomial distributions. As this likelihood function is based on the

observed measurement outputs of the BMS, it is also called the observed-data likelihood. To

make the parameters identifiable, we have to assume that α+β < 1, which is a reasonable

condition as we mentioned in Chapter 1, and that there are at least three measurements per unit,

i.e. r ≥ 3 (Boyles, 2001; Van Wieringen and Van der Heuvel, 2005).

To find the maximum likelihood estimates for α, β and πC , Boyles (2001) uses the EM

algorithm. The algorithm uses the likelihood function for the complete-data which include the
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number of passes, si , and the (unobserved) true state of the part, xi , as follows:

LC (α,β,πC | (si , xi )) ∝
n∏

i=1
[(1−β)siβr−siπC ]xi [αsi (1−α)r−si (1−πC )]1−xi (2.10)

Boyles derives likelihood-based confidence regions and confidence intervals based on the asymp-

totic properties of the likelihood. For constructing the confidence intervals, the observed-data

information matrix is obtained using the missing information principle (Meng and Rubin, 1991;

McLachlan and Krishnan, 1997). The inverse of this matrix is the asymptotic variance-covariance

matrix of the ML estimators. More details about this method, including estimator precision,

sample size determination and sampling plan assessment are discussed in Chapter 4.

Boyles (2001) and Van Wieringen and Van der Heuvel (2005) also apply the LC analysis to

the case where selected parts are repeatedly measured by several human inspectors. In this case,

inspectors are considered different BMSs, and their performance parameters are estimated using

a more general LC model. Suppose there are t BMSs under study and each randomly selected

unit is measured r j times by the j th BMS, j = 1, . . . , t . The model assumptions are the same as in

the case of a single BMS, with the addition that given the true state of a unit, the measurements

by different BMSs are independent.

In this case, the likelihood function is:

L(α j ,β j ,πC | si j ) ∝
n∏

i=1
[πC

t∏
j=1

(1−β j )si jβ
r j−si j

j + (1−πC )
t∏

j=1
α

si j

j (1−α j )r j−si j ],

where si j represents the observed number of times unit i passes the inspections of the j th BMS,

and α j and β j are the misclassification probabilities specific to the j th BMS.

For the general LC model, the parameters are identifiable when:

• 0 <πC < 1;

• 0 ≤ α j < 1−β j ≤ 1. As mentioned earlier, this is a very reasonable assumption and it is

actual the definition of a “test” in the medical context;
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• As derived by Van Wieringen (2005)

t∏
j=1

(r j +1)−1 ≥ 2t +1 (2.11)

In the medical field, the LC analysis is used in a variety of situations when no gold standard is

available and subjects are tested simultaneously or in sequence with different BMSs or repeat-

edly tested with the same BMS. Some examples include the case where several diagnosticians

independently assess subjects for the same condition; for example, several anaesthetists in-

dependently conduct a pre-operative assessment on subjects and decide whether or not the

subject is fit to undergo a general anaesthetic (Dawid and Skene, 1979). Another example is

when subjects are tested with different diagnostic methods for detecting the same condition,

such as Mantoux, tine, imotest and “monovacc” tests for tuberculin sensitivity (Gutjahr et al.,

1982). The last category is when subjects are repeatedly tested with the same diagnostic test,

such as the sequence of six stool guaiac tests for colon cancer (Walter and Irwig, 1988) and the

repeated biopsies following cardiac transplantation (Spiegelhalter and Stovin, 1983).

In some situations, repeatedly testing a subject with the same BMS is not acceptable for

ethical or economic reasons, such as the case where the BMS is invasive or poses some health

risks to the subject, e.g. surgery or biopsy. One possibility is to include other less invasive BMSs

in the assessment study and then use the LC model to estimate all performance parameters. The

problem is that in some situations, there is only one alternate diagnostic test and in that case,

the identifiability condition (2.11) is not met. This condition requires that in the case of a single

population of subjects (one prevalence, πC ) and no repeated measurements by the BMSs on the

same unit, at least three tests have to be included in the study to make all parameters estimable.

To see this, we can also use a more informal argument for the identifiability condition (2.11)

that can be found in the medical literature, based on comparing the number of parameters to

be estimated with the number of degrees of freedom in the data (Walter and Irwig, 1988; Pepe,

2003). For instance, in the case of three tests and no repeated measurements, there are seven

parameters and seven degrees of freedom, as there is a total of eight possible combinations of
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test results.

Much attention has been given to estimating the performance of a diagnostic test when

there is only one alternate test, and one proposed solution is to impose restrictions on the

parameters. For example, Hui and Walter (1980) prove that in the case where only two tests are

available for identifying a certain condition, the parameters are still estimable if subjects are

selected from two populations with different prevalence rates, and it is assumed that the two

tests have the same performance within the two populations. Another option is to use a Bayesian

approach to estimate the performance parameters, α and β, (Joseph et al., 1995).

For the LC model, ML estimation is usually carried out using either the EM algorithm

(Dawid and Skene, 1979; Boyles, 2001) or using direct optimization techniques (Torrance-Rynard

and Walter, 1997; Fujisawa and Izumi, 2000), as in general, the estimates have to be derived

numerically. However, in the case where subjects are selected from two populations and two

BMSs are studied, there is a closed-form solution for the ML estimates as shown by Hui and

Walter (1980).

Based on the large-sample properties of the ML estimators, the asymptotic variance-

covariance matrix of the estimators is derived using either the observed or Fisher information

matrix (Hui and Walter, 1980; Pepe, 2003). When the EM algorithm is used, the observed infor-

mation matrix for the incomplete-data likelihood is obtained using the missing information

principle (Meng and Rubin, 1991; McLachlan and Krishnan, 1997).

As in the “anchored” model case, the validity of the LC analysis depends on whether the

model assumptions hold. While the identifiability conditions and the assumption of indepen-

dent measurements for different units can be guaranteed by the study design, the conditional

independence and constant error rates assumptions depend on the nature of the true qual-

ity/disease status. Many authors (Pepe, 2003; Qu et al., 1996; Vacek, 1983; Torrance-Rynard

and Walter, 1997; Van Wieringen and De Mast, 2008) consider the conditional independence

assumption unrealistic in many medical and industrial situations. In the medical field, we can

imagine that if the tests included in the study are based on the same biological phenomenon, e.g.
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blood sample or imaging methods, then multiple test results on a person with a certain disease

status are likely to be correlated. Also, if the condition has different degrees of severity then

subjects at a more advanced stage of the disease are more likely to test positive. In the industrial

context, in the case where parts are inspected for different surface flaws such as scratches or

cracks, it is easier for the visual BMS to detect flaws of a larger size, although the BMS does not

measure the actual size. In all these cases, as we will see later in Chapters 5 and 6, we could

assume the presence of an underlying latent variable whose value is specific for each unit and

affects the probability that the unit passes or fails the inspection. In other words, α and β are

not constant within the nonconforming/conforming units. In the presence of this intermediate

latent variable, such as the severity of an parasitic infection or the size of a surface flaw, the

detectability of the measurand by the BMS varies from unit to unit. Also, the measurements on

the same unit given that the unit is conforming/nonconforming are not independent anymore.

That is, in these cases, the conditional independence does not hold.

Vacek (1983) investigates the effects of the conditional dependence on the estimators given

by the LC model, when two BMSs are used on two different populations of subjects. She proves

that when conditional dependence exists and it is not accounted for in the model, the resulting

estimators are biased and she provides expressions of the corresponding biases. Diagnostic tests

have been proposed for checking the independence assumption, including χ2 goodness-of-fit

test when there are sufficient degrees of freedom in the data (Rindskopf and Rindskopf, 1986).

There are several proposed methods for accounting for the conditional dependence of the

repeated measurements. One approach is to include in the LC model some parameters that

quantify the conditional correlation between measurements (Vacek, 1983; Torrance-Rynard and

Walter, 1997). Vacek considers the case where there are two diagnostic tests and two populations

and proposes a model that includes the covariance between the measurements of the two BMSs,

conditioning on the true state of a unit, i.e. conditional covariance. This method does not model

the variability of the misclassification rates, but rather the conditional dependence of repeated

measurements that is induced by a possible intermediate latent variable.
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Other authors (Qu et al., 1996; Fujisawa and Izumi, 2000) propose the use of a random-

effects model, where it is assumed that subject-specific random effects account for the varying

α and β, and, therefore, for the conditional dependence between repeated measurements on

a unit. Another approach is to use a Bayesian random effects model (Dendukuri and Joseph,

2001), where the misclassification probabilities, α and β, are considered random variables and

Beta prior distributions are assumed. Then, point estimates and credibility intervals for α and β

are derived. Rutjes et al. (2007) note that the Bayesian approach is sensitive to the chosen prior

distribution and different priors can lead to differences in estimates. They also note that the

Bayesian approach is helpful in situations where the number of parameters is large relative to

the available degrees of freedom.

In Chapters 5 and 6, we address the issue of varying misclassification rates (and conditional

dependence) by proposing a new random-effects model where we assume a certain distribution

forα andβ. We explore the properties of the estimators given by this random-effects model when

a new sampling scheme is used and baseline information about the pass rate πP is included in

the estimation.
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Chapter 3

New Methods for Assessing a Binary
Measurement System with Constant
Misclassification Rates – Gold Standard
Available

3.0.3 Introduction

In this chapter, we focus on the situation where a gold-standard system is available for the

assessment study, the BMS has been in use for a while, and we plan to conduct a routine

assessment of its performance characteristics. In such cases, parts previously measured with the

BMS are available for re-measuring, especially the rejected ones, as they are not immediately

shipped to the customers. Therefore, in this case, we can sample parts conditionally on the

previous (baseline) measurement, i.e. we can use a conditional selection (CS) plan. With the

CS, we select two independent samples of parts from the collections of previously passed and

rejected parts. The proportion of previously passed parts in the selected sample can be set prior

to the assessment study, and here we investigate the effect of changing this proportion on the

estimation procedure. Additionally, a BMS used for any systematic inspection in high volume
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processes typically tracks the number of parts previously passed and rejected over a certain

period of time. Therefore, we often have baseline data that can be used to assess the current

pass rate πP , separate from the assessment study. We propose to improve the overall estimation

procedure by using conditional sampling and augmenting the measurement assessment data

with the available baseline data. We compare the characteristics of the estimators given by

different CS plans with the ones given by the standard sampling plan (SP) commonly used in

industrial practice. That involves a random selection of parts from the collection of manufactured

parts. This design does not incorporate any additional information regarding the collection of

parts we sample from, except that it is a representative sample of parts produced over a certain

period of time. The standard plan is appropriate when, for example, we conduct an assessment

study before the BMS is used for regular inspection. However, in current industrial practice

(Boyles, 2001; Burke et al., 1995), the SP is also used in cases where the BMS has been used for

routine inspection and we have additional free information that can be used in the assessment

study.

In this context, we consider two scenarios for assessing a BMS that also uses results from a

gold standard. First, we discuss the case where we select n parts for the assessment study, and

then measure them once with the gold standard and r times with the BMS. We investigate the

properties of the estimators for the misclassification rates α and β, and the conforming rate πC ,

when we use the standard plan and the conditional selection augmented with baseline data. In

the context of repeated measurements by the BMS, the SP, which involves random selection of

parts from the population of manufactured parts, was proposed by Burke et al. (1995). In Section

3.1, we compare the accuracy and precision of the estimators obtained with SP and CS sampling

schemes. In Section 3.2, we investigate the testing protocol where parts are measured once with

the gold standard and once with the BMS. This is a special case of the previous scenario with

r = 1. We again look at the two sampling schemes, the standard and the conditional selection

plans, and compare the accuracy and precision of the corresponding estimators.
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3.1 Using the Gold Standard and Repeated Measurements by
the BMS

In this section, we investigate an assessment procedure that involves the use of the gold standard

and repeated measurements by the BMS. This idea is similar to the one proposed by Burke et al.

(1995), which we described in Chapter 2. Here, we suppose there is one BMS under study and

consider two sampling schemes. The standard plan (SP), where parts are randomly selected

from the population of manufactured parts and no additional information about the pass rate

is available, and the conditional selection (CS), where parts are randomly selected from the

populations of previously passed and failed and we have m baseline measurements. In the CS

case, the proportion of passed parts in the sample, f , is pre-determined during the design stage

of the study.

For all these plans, we assume the following:

• The probability of passing the BMS inspection is common for all nonconforming parts, i.e.

α is constant. The same is true for the probability of failing any conforming parts, i.e. β is

constant;

• The BMS does not change the parts in any way, so the misclassification probabilities do

not change from one measurement to the another;

• Conditioning on the true state of a part, X , measurements by the BMS are independent;

• Measurements on different parts are independent;

• The BMS performance does not change during the assessment study; similarly, the manu-

facturing process is under statistical control.

Additionally, for the CS plan, we assume that the baseline measurements come from a time

period where the BMS and process parameters are not different from the time of the assessment

study.
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3.1.1 Standard Plan

In the standard sampling plan, n units are randomly selected and their true state, xi , i = 1, . . . ,n,

is determined by the gold standard. Then, each unit is measured r times and the number of

passes, si , i = 1, . . . ,n, is recorded.

With this plan the likelihood function is:

LSP (α,β,πC | (si , xi ), i = 1. . .n) ∝
n∏

i=1
[(1−β)siβr−siπC ]xi [αsi (1−α)r−si (1−πC )]1−xi (3.1)

We notice that this function is what we called the “complete-data” likelihood (Eq. (2.10)) in the

latent class analysis in Chapter 2, when the EM algorithm was used. In the case discussed here,

we observe the xi ’s, the true state of parts.

From (3.1), the ML estimates have a closed form as follows:

α̂(SP ) =
∑n

i=1(1−xi )si

r
∑n

i=1(1−xi )
(3.2)

β̂(SP ) =
∑n

i=1 xi (r − si )

r
∑n

i=1 xi
(3.3)

π̂C (SP ) =
∑n

i=1 xi

n
(3.4)

We note that the estimate of α is not defined when there are no nonconforming parts in the

sample, and the same is true for the estimate of β when there are no conforming parts. In the

case of a high-performance process, i.e. πC close to 1, and when the parts are randomly sampled,

there is a substantial risk of selecting a sample with no nonconforming units, in which case

α is not estimable. This suggests that a sampling plan that increases the chance of selecting

nonconforming units is desirable.

The variance-covariance matrix of the estimators can be approximated using the Fisher
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(Expected) information matrix, as given by (3.5):

J = E(I ) = diag

(
nr (1−πC )

α(1−α)
,

nrπC

β(1−β)
,

n

πC (1−πC )

)
(3.5)

We note that the estimators are asymptotically uncorrelated.

In this case, we can also think of the observed data as the realization of two binomial

random variables. When all the assumptions hold and the true state of a part is first determined

by the gold standard, two strata of conforming and nonconforming parts are generated. Within

each stratum, parts have common probabilities of passing the BMS inspections; therefore, we

can think of the total number of passes within the conforming/nonconforming stratum as

realizations from (3.6) or (3.7), respectively.

NC∑
i=1

Si ∼ Binomial(r NC ,1−β) (3.6)

NC̄∑
i=1

Si ∼ Binomial(r NC̄ ,α) (3.7)

where NC and NC̄ are the random variables corresponding to the number of conforming/conforming

parts in the sample. The MLEs of the parameters can also be expressed in terms of NC and NC̄ ,

and by conditioning on the values of these variables, we can see that α̂ and β̂ are unbiased. It is

also easy to see that the estimator of πC is unbiased.

We will refer to model (3.6)–(3.7) again in Chapter 4, when we discuss the latent class

analysis. When using model (3.6), the variance of α̂ is:

Var(α̂) = Var

∑NC̄
i=1 Si

r NC̄

= Var

[
E

(∑nC̄
i=1 Si

r nC̄
| NC̄ = nC̄

)]
+E

[
Var

(∑nC̄
i=1 Si

r nC̄
| NC̄ = nC̄

)]
,

Now,

E

(∑nC̄
i=1 Si

r nC̄
| NC̄ = nC̄

)
=α, if nC̄ 6= 0. Therefore, Var

[
E

(∑nC̄
i=1 Si

r nC̄
| NC̄ = nC̄

)]
= 0.
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Also,

Var

(∑nC̄
i−1 Si

r nC̄
| NC̄ = nC̄

)
= α(1−α)

r nC̄
, if nC̄ 6= 0, and E

[
Var

(∑nC̄
i−1 Si

r nC̄
| NC̄ = nC̄

)]
' α(1−α)

r E(NC̄ )
.

Therefore,

Var(α̂) ' α(1−α)

r E(NC̄ )
(3.8)

The approximated variance for the estimator of β is derived in a similar way from (3.7):

Var(β̂) ' β(1−β)

r E(NC )
(3.9)

These approximations show that when we first use the gold standard and then repeatedly

measure the units with the BMS, the precision of the estimators of α and β depends on the true

values of the parameters, the number of repeated measurements and the expected numbers of

nonconforming and conforming units in the sample, respectively. In the case of the standard

plan, E(NC ) = nπC and E(NC̄ ) = n(1−πC ), and the approximations are the ones given by the

Fisher information matrix, Eq. (3.5). For the SP, since πC is usually large, E(NC ) is much larger

than E(NC̄ ), and β is better estimated than α.

The expressions for the variance approximations suggest that we can achieve a certain pre-

cision of the estimators by controlling the expected number of conforming and nonconforming

parts in the sample. One approach is to allocate equal resources for estimating α and β, and then

the goal would be to get a more balanced sample, i.e. to make E(NC ) and E(NC̄ ) approximately

equal. Also, for the SP, we note that the variances of α̂ and β̂ depend on the values of α and β,

respectively, of πC and on the total number of measurements n × r . Therefore, in the case where

a gold standard is available and we use a SP, the allocation of n and r does not have an effect on

the precision of α̂ and β̂, for the same total number of measurements. However, as the estimate

of πC is based on the total number of parts n in the study, increasing r and therefore decreasing

n leads to a loss in precision for π̂C .

Next, we look at the precision of the parameter estimators α̂, β̂, and π̂C , i.e. the size of the
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Figure 3.1 Contours of πC for a Grid of Values for α, β, when πP = 0.85.

standard deviations as derived from Equations (3.8) and (3.9). We focus on the case where the

BMS has good performance characteristics and we have a high-quality manufacturing process.

Therefore, we consider cases where the actual misclassification probabilities are small (e.g.

α,β≤ 0.1), and the conforming rate is large (e.g. 0.85 ≤πC ). These cases are commonly found

in the manufacturing industry. In our investigations, we construct a grid of parameter values

by keeping πP constant, and then varying α and β within the above limits. As πP is related

to the other three parameters by Eq. (1.3), πC takes on different values across the grid. For

example, when πP = 0.85 and 0.02 ≤α,β≤ 0.1, πC varies from 0.85 to 0.94, as shown in Figure

3.1. Note that πC is insensitive to changes in α. We first look at small sample sizes n = 100

and r = 2 number of repeated measurements and conclude that, although the estimators are

unbiased, their precision is very poor (results not shown here). Next, we increase the sample

size to n = 200 and r = 5. Figure 3.2 shows the asymptotic standard errors of the estimates for a

total number of measurements n × r = 1,000. We note that the precision of α̂ varies mostly with

α and it is small enough to be useful. For a few cases where α is small and πC large, the size of

the standard error is almost as large as the true parameter value α. The other two parameters are

well estimated across the whole grid of values. Note that the precision of β̂ varies mostly with

β, and the precision of π̂C with πC . We expect similar results for larger values of n × r and other
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Figure 3.2 Asymptotic Standard Errors – Standard Plan with n = 200 and r = 5, when πP = 0.85

values of πP .

3.1.2 Conditional Selection (CS) without Baseline Data

In this section, we consider the sampling plan where predetermined numbers of previously

passed and failed parts are sampled for the assessment study. We mentioned before that, in our

context, large populations of passed and failed parts are readily available and we can sample

conditionally on the result of a previous (baseline) BMS measurement. Here, we investigate

the case where we use a conditional selection (CS) plan, but we do not include the baseline

information about the pass rate πP in the estimation. Although, in practice, this information is

available and it should be used, here we are interested in looking at the behavior of the estimators

when we have no prior information about πP .

With the CS plan, we control the number of passed and failed parts in the sample, and

therefore we can increase the chance of having some nonconforming parts in the sample, since

we expect Pr(C̄ | P̄ ) > Pr(C̄ ). As noted before, if there are no nonconforming parts in the sample,

the estimate of α is not defined.
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Also, we notice that in Equations (3.6)–(3.7), the precision of the estimator of α depends on

E(NC̄ ), the expected number of nonconforming units, whereas the precision of the estimator

of β depends on E(NC ). If we focus on estimating α with high precision, we have to choose

a sampling plan that gives a large expected number of nonconforming units. If we focus on

allocating equal resources for estimating α and β, the sampling plan should give approximately

equal E(NC̄ ) and E(NC ). When sampling conditionally on the result of a previous measurement

by the BMS, we can control both E(NC̄ ) and E(NC ) by choosing the appropriate proportion of

passed units, f . The following expression shows how the expected number of nonconforming

units varies with f :

E(NC̄ ) = n

[
α(1−πC )

(1−β)πC +α(1−πC )
f + (1−α)(1−πC )

βπC + (1−α)(1−πC )
(1− f )

]
(3.10)

Therefore, the CS offers more flexibility with regard to the goal of the assessment study, as we

can choose f according to this goal.

The likelihood function for the CS sampling plan is:

LC S(α,β,πC | (si , xi ), i = 1. . .n) =
nP∏
i=1

[(1−β)si+1βr−siπC ]xi [αsi+1(1−α)r−si (1−πC )]1−xi

(1−β)πC +α(1−πC )

×
nP̄∏
i=1

[(1−β)siβr−si+1πC ]xi [αsi (1−α)r−si+1(1−πC )]1−xi

βπC + (1−α)(1−πC )

(3.11)

Now, we are interested in comparing the precision of the estimators given by the SP with the

ones given by the CS plan without baseline. We derive the asymptotic standard deviations for

the CS plan using the Fisher information matrix. We do not include here the expression for the

information matrix, as it has a complicated form, but we provide R-code (R Development Core

Team, 2010) for obtaining the asymptotic standard errors. Next, we compare the asymptotic

standard errors for the CS with f = 0.5 with the ones from the SP plan. Figure 3.3 shows the ratios

of the asymptotic standard deviations for the estimators of α, β and πC , for the SP and CS plans,
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Figure 3.3 Ratios of Asymptotic Standard Errors, se(SP )/se(C S, f = 0.5), when n = 200, r = 5,
and πP = 0.85

when f = 0.5 and r = 5.

We notice that the CS plan gives a more precise estimator of α and the SP a more precise

estimator of β, a result that is consistent with (3.6)–(3.7), and the fact that in the CS plan the ex-

pected number of nonconforming parts is larger than in the SP case. For example, when α= 0.02,

β= 0.02, πC = 0.9 and n = 200, for the standard plan, the expected number of nonconforming

parts in the sample E(NC̄ ) = 20, whereas for the conditional selection plan, E(NC̄ ) = 85. Another

option is to select only from the population of previously failed units, i.e. f = 0, in which case

E(NC̄ ) = 169. Table 3.1 shows the expected proportion of nonconforming parts in the sample for

the grid of values considered in Figure 3.1.
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Table 3.1 Expected Proportion of Nonconforming Parts in the Sample, when πP = 0.85

α β πC ESP (NC̄ /n) EC S f =0.5 (NC̄ /n) EC S f =0 (NC̄ /n)
0.02 0.02 0.865 0.1354 0.4440 0.8847
0.04 0.02 0.862 0.1377 0.4454 0.8850
0.05 0.02 0.860 0.1401 0.4470 0.8853
0.07 0.02 0.857 0.1425 0.4485 0.8857
0.08 0.02 0.855 0.1451 0.4502 0.8860
0.10 0.02 0.852 0.1477 0.4519 0.8864
0.02 0.04 0.879 0.1208 0.3959 0.7890
0.04 0.04 0.877 0.1228 0.3973 0.7895
0.05 0.04 0.875 0.1250 0.3988 0.7900
0.07 0.04 0.873 0.1272 0.4004 0.7905
0.08 0.04 0.870 0.1295 0.4019 0.7911
0.10 0.04 0.868 0.1319 0.4036 0.7917
0.02 0.05 0.894 0.1056 0.3462 0.6899
0.04 0.05 0.893 0.1075 0.3476 0.6906
0.05 0.05 0.891 0.1094 0.3490 0.6912
0.07 0.05 0.889 0.1114 0.3504 0.6919
0.08 0.05 0.887 0.1134 0.3519 0.6927
0.10 0.05 0.884 0.1156 0.3535 0.6934
0.02 0.07 0.910 0.0899 0.2948 0.5874
0.04 0.07 0.908 0.0915 0.2960 0.5882
0.05 0.07 0.907 0.0932 0.2973 0.5889
0.07 0.07 0.905 0.0949 0.2986 0.5897
0.08 0.07 0.903 0.0967 0.3000 0.5905
0.10 0.07 0.901 0.0986 0.3015 0.5913
0.02 0.08 0.926 0.0737 0.2415 0.4813
0.04 0.08 0.925 0.0750 0.2426 0.4820
0.05 0.08 0.924 0.0764 0.2437 0.4828
0.07 0.08 0.922 0.0778 0.2449 0.4836
0.08 0.08 0.921 0.0793 0.2461 0.4844
0.10 0.08 0.919 0.0809 0.2474 0.4853
0.02 0.10 0.943 0.0568 0.1863 0.3712
0.04 0.10 0.942 0.0579 0.1872 0.3719
0.05 0.10 0.941 0.0590 0.1881 0.3726
0.07 0.10 0.940 0.0601 0.1891 0.3734
0.08 0.10 0.939 0.0613 0.1901 0.3742
0.10 0.10 0.938 0.0625 0.1912 0.3750
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3.1.3 Conditional Selection (CS) with Baseline Data

Model Formulation

Suppose we have a baseline population of m parts, each measured once for inspection purposes.

That is, we record the output of the routine inspection, i.e. passed or failed, over a certain period

of time prior to the assessment study. Therefore, we know that out of m parts, mP passed the BMS

inspection. Here, we assume that the performance of the BMS and the process characteristics do

not change between the time we collect the baseline data and the time of the BMS assessment.

The n parts sampled from the previously passed and failed for the assessment study do not

necessarily have to be selected from the baseline once-measured parts m. That is, the baseline

measurements can be independent of the study measurements. For high volume processes, m is

typically large. For the m parts measured once only, the likelihood is:

Lb(πP ) ∝π
mP
P (1−πP )m−mP (3.12)

where mP is the number of passed parts in this group. We call m the size of the baseline

sample. Note that Lb(πP ) can be rewritten in terms of α, β, and πC , using the constraint πP =
(1−β)πC +α(1−πC ), though it is not possible to separately estimate α, β, and πC using Lb(πP )

alone.

The overall likelihood for a CS plan with baseline data is proportional to:

Lb(πP )×LC S(α,β,πC |(si , xi ), i = 1. . .n)

where LC S is the likelihood in Equation (3.11) and si is the number of times part i passed in the r

repeated measurements.
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Bias and Precision of the Estimators

We investigate the properties of the maximum likelihood estimators for different CS plans with a

baseline of size m, by conducting several simulation studies, where we focus on the same range

of parameters values as illustrated by Figure 3.1. In our simulations, we run 500 repeats for each

combination of parameters values from the grid. For each repeat, we first generate nP random

samples from Binomial(1,Pr(X = 1 | Y0 = 1)) and nP̄ from Binomial(1,Pr(X = 1 | Y0 = 0)), where

Y0 denotes the random variable representing the previous (baseline) measurement. Y0 is 1 for

a previously passed part and 0 for a previously failed. Then, for each conforming part in the

whole sample, i.e. x = 1, we generate the number of passes, s, a realization of S | (X = 1), which

is distributed Binomial(r,1−β). Similarly, for each nonconforming part, we generate the total

number of passes s from Binomial(r,α). The estimation of the parameters is based on the number

of passes for each part, s, the information regarding the initial measurement y0, and the true

state x. As in the CS case the MLEs do not have a closed form, we use constrained optimization

routines in the R environment (R Development Core Team, 2010) for the parameters estimation,

such as Nelder-Mead algorithm (Nelder and Mead, 1965). We optimize the likelihood function

in Eq. (3.11) under the constraints 0 <α,β,πC < 1. For each combination of parameters values,

we get the sample errors and standard deviations as approximations of the biases and standard

deviations of the estimators. We fit separate local polynomial regression (loess) smoothing

models (Cleveland et al., 1992) to biases and standard errors, and then get predictions over the

grid.

Also, for each combination of parameters values, we derive the asymptotic standard errors

based on the Fisher (expected) information matrix. We note that for the CS plan, the estimators

are not asymptotically uncorrelated anymore, as they are in the SP case. We start our investigation

with small sample sizes, numbers of repeated measurements, and baseline size (e.g. n = 200,

r = 5, and m = 1,000).

First, we consider the case of an equal number of passed and failed items, i.e. f = 0.5. Figure

3.4 shows the smoothed biases of the estimators and we notice that all estimators are virtually
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Figure 3.4 Smoothed Biases – Conditional Selection with n = 200, r = 5, m = 1,000, and f = 0.5.

unbiased. Next, we compare the simulation-based and asymptotic standard errors and conclude

that they are very close (results not shown here). Figure 3.5 shows the asymptotic standard

deviations for the CS plan with f = 0.5 and m = 1,000. We note that all parameters are estimated

with good precision, including α. For larger values of n and r , we expect the same conclusions.

Now, we are interested in comparing the precision of the estimators given by the SP plan

with the ones given by the CS with f = 0.5 and baseline m = 1,000. The ratios of asymptotic

standard deviations are shown in Figure 3.6, and we notice that the CS plan gives uniformly

better estimators, especially for α and πC . The gains in precision are substantial when we use the

CS plan compared to the SP. As in Section 3.1.2, where we do not use the baseline information,

we expect to get more nonconforming parts in the sample when using the CS plan with f = 0.5

than with the SP, for the same sample size n (see Table 3.1). Therefore, we expect more efficient

estimators for α. However, adding the baseline information about the pass rate πP leads to

surprising results regarding the precision of β̂. That is, β is better estimated with the CS plan,

although there are fewer conforming parts in the sample than in the SP case. The baseline

provides an estimate of πP = (1−β)πC +α(1−πC ), a function of α, β, and πC . Since we are

considering situations where πC is large, i.e. high-quality manufacturing processes, and α is
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Figure 3.5 Asymptotic Standard Errors – Conditional Selection Plan with n = 200, r = 5, m = 1,000,
and f = 0.5.

small, πP is strongly influenced by β and πC . In this case, the additional information about β

and πC from the baseline outweighs the lost information due to fewer conforming parts in the

sample.

Next, we look at a CS plan with parts sampled only from the population of failed parts,

i.e. f = 0, and then compare the standard deviations given by the CS when f = 0.5 with the

ones given by the CS with f = 0, as in Figure 3.7. We would expect the CS plan with f = 0 to

give smaller precision for β̂, when compared to the CS with f = 0.5, for the same baseline size

m = 1,000. CS with f = 0 yields a smaller expected number of conforming than CS with f = 0.5,

and the estimator of β is mostly influenced by the number of conforming parts in the sample.

However, we note that the CS with f = 0 gives better precision for the estimators of α̂ and π̂C ,

and similar precision for β̂. As we cannot explain this unusual result, we look at other values of n

and r , and conclude that for n = 200 and r = 10 the standard errors of β̂ are smaller for the CS

plan with f = 0.5 than for f = 0.

Therefore, using a conditional selection plan, aside from decreasing the chance of not

having nonconforming units in the sample, also gives more efficient estimators. We note that
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Figure 3.6 Ratios of Asymptotic Standard Errors – se(SP )/se(C S, f = 0.5,m = 1,000), when n =
200, r = 5, and πP = 0.85.

when we use the CS plan with baseline, the results do not follow the logic in model (3.6)–(3.7),

where the approximate precision of the estimator of β is a function of the expected number

of conforming parts in the sample. The CS plan with f = 0 and baseline gives a more precise

estimator of β than the SP, even though the expected number of conforming is higher with the

latter plan.
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Figure 3.7 Ratios of Asymptotic Standard Errors – se(C S, f = 0.5)/se(C S, f = 0), when m = 1,000,
n = 200, r = 5, and πP = 0.85.

3.2 Using the Gold Standard and a Single Measurement by the
BMS

In this section, we focus on an assessment procedure that involves one measurement with

the studied BMS and one with the gold-standard system. We first look at a sampling plan

commonly used in both manufacturing (Boyles, 2001) and medical (Pepe, 2003) contexts, the

random selection or cohort study design described in Chapter 2, Section 2.1.1. With this plan, we

randomly select parts from the population of manufactured parts and then each part is measured

once with the BMS and once with the gold standard. This assessment procedure is a special

case of the standard plan (SP) discussed in Section 3.1.1, with r = 1. Next, we investigate a study

design where parts are selected from the collections of previous passed and failed, that is, we use

a conditional selection (CS) plan, and then measured once with the gold standard. This design

corresponds to a special case of the CS plan discussed in 3.1.3, with r = 0. That is, during the

assessment study we only measure the sampled parts with the gold standard, knowing for each

part the outcome of the previous (baseline) measurement by the BMS. Additionally, we assume

we have baseline information about the pass rate πP . Although the industrial context considered
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here is different, this special case of a CS plan is similar to the partial verification with conditional

re-sampling design described in Chapter 2 and proposed by Tenenbein (1971), and Haitovsky

and Rapp (1992). Contrary to the partial verification with conditional re-sampling case, in our

context, we do not assume that the sampled parts come from the collection of parts that make

up the baseline measurements. However, here we look at a special case that is not investigated in

the literature related to the partial verification design, that is, we look at the limiting case where

the baseline size m →∞, or equivalently πP is known.

3.2.1 Standard Plan

When parts are measured once with the gold standard and once with the BMS, we can organize

the study data in a 2×2 table as in Table 3.2.

When parts are randomly selected from the population of manufactured parts and then

measured once with the BMS and once with the gold standard (we use a standard plan) all quan-

tities except n are random in Table 3.2. The maximum likelihood estimates for the parameters of

interest are:

α̂(SP ) = nPC̄

nC̄

β̂(SP ) = nP̄C

nC

π̂C (SP ) = nC

n
(3.13)

The estimators are unbiased and their asymptotic variances are obtained using standard theory

related to the multinomial distribution (Casella and Berger, 2002).

We look at the precision of the estimators for the whole grid of parameters values as in

Figure 3.1. As noted in Section 3.1.1, we need a relatively large total number of measurements to

get the estimators with good precision. Therefore, we start our investigation with a sample size
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Table 3.2 Data from a BMS Performance Study with Complete Verification by the Gold Standard

Conform (C ) Not conform (C̄ ) Total parts

Pass (P ) nPC nPC̄ nP

Fail (P̄ ) nP̄C nP̄C̄ nP̄
Total parts nC nC̄ n
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Figure 3.8 Asymptotic Standard Errors – Standard Plan with n = 1000, when πP = 0.85

of n = 1,000.

Figure 3.8 shows the asymptotic standard deviations of the estimators and we note that,

except for the case where α= 0.02 and πC is large, the estimators have good precision. Actually,

the precision of α̂ and β̂ in Figure 3.8 are identical with the ones given in Figure 3.2, as the total

number of measurements is the same for the two designs and the allocation of n × r does not

have an effect on these standard errors.
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3.2.2 Conditional Selection (CS) Plan with πP Known

When large collections of passed and failed units are readily available, we propose a sampling

plan that involves selecting two independent samples from these populations, where the num-

bers of selected passed and failed units, nP and nP̄ , are pre-determined. Then, all the selected

parts are inspected using the gold-standard system, and their true state is determined. With the

CS plan, in Table 3.2, nP , nP̄ , and n are fixed, and all the other quantities are random. We also

assume that the pass rate πP is known prior to the assessment study.

With the CS plan, the two misclassification probabilities, α and β, cannot be directly esti-

mated. Instead, we start with the ML estimates:

P̂r(C̄ | P ) = nPC̄

nP
and P̂r(C̄ | P̄ ) = nP̄C̄

nP̄
.

Then, by Bayes’ Rule:

α= Pr(P ∩ C̄ )

Pr(C̄ )
= Pr(C̄ | P )Pr(P )

Pr(C̄ | P )Pr(P )+Pr(C̄ | P̄ )Pr(P̄ )
(3.14)

and

β= Pr(P̄ ∩C )

Pr(C )
= Pr(C | P̄ )Pr(P̄ )

Pr(C | P̄ )Pr(P̄ )+Pr(C | P )Pr(P )
(3.15)

We also have:

πC = Pr(C ∩P )+Pr(C ∩ P̄ ) = Pr(C | P )Pr(P )+Pr(C | P̄ )Pr(P̄ ) (3.16)

We note that all parameters are estimable only if the pass rate, Pr(P ) =πP , is known.

We know that NPC̄ ∼ Binomial(nP ,Pr(C̄ | P )) and NP̄C̄ ∼ Binomial(nP̄ ,Pr(C̄ | P̄ )), where NPC̄

and NP̄C̄ are the random variables whose realisations are nPC̄ and nP̄C̄ .

Using the invariance property of the ML estimators and the known πP , we obtain the
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Figure 3.9 Smoothed Biases – Conditional Plan with f = 0.5 and n = 1,000, when πP = 0.85.

following ML estimates:

α̂(C S) =
πP

nPC̄

nP

πP
nPC̄

nP
+ (1−πP )

nP̄C̄

nP̄

(3.17)

β̂(C S) =
(1−πP )

nP̄C

nP̄

πP
nPC

nP
+ (1−πP )

nP̄C

nP̄

(3.18)

π̂C (C S) =πP
nPC

nP
+ (1−πP )

nP̄C

nP̄
(3.19)

We also obtain approximations for the variances of the estimators in terms of α, β and πP
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Figure 3.10 Asymptotic Standard Errors – Conditional Plan with f = 0.5 and n = 1,000, when
πP = 0.85.

(known) using the δ-method (Casella and Berger, 2002):

Var(α̂(C S)) ' α(1−α)(πP −α)

1−β−πP

(
1−α−β+αβ

nP
+ αβ

nP̄

)

Var(β̂(C S)) ' β(1−β)(1−β−πP )

πP −α
(
αβ

nP
+ 1−β−α+αβ

nP̄

)

The variance of π̂C (C S) can be directly derived as:

Var(π̂C (C S)) = (1−β−πP )(πP −α)

(1−α−β)2

(
α(1−β)

nP
+ β(1−α)

nP̄

)

First, we look at the properties of the estimators by simulating study data using the R environment

(R Development Core Team, 2010), over a grid of values as in Figure 3.1, for a CS plan with f = 0.5

and n = 1,000. For each simulation run, we obtain the ML estimates using Equations (3.17)–

(3.19). Then, for each combination of parameters values, we get the sample errors and standard

deviations as approximations for the biases and standard deviations of the estimators. In Figure

3.9, we note small biases for the estimator ofα, for large values ofα andβ. All the other estimators

are virtually unbiased. The simulation-based standard errors are close to the asymptotic ones
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Figure 3.11 sd(α̂(C S))
p

n, sd(β̂(C S))
p

n, and sd(π̂C (C S))
p

n as functions of the proportion of
passed items in the sample, α= 0.05, β= 0.05, πC = 0.9

(results not shown here). Figure 3.10 shows the asymptotic standard errors and we note that β̂

and π̂C have very good precision. However, the estimator of α is less efficient, with the standard

errors close to the size of the parameter when α is small and πC large.

Next, we look at how the precision of the estimators varies with the proportion of passed

parts in the sample. Figure 3.11 illustrates how the asymptotic standard deviations of the

estimators multiplied by the square root of the sample size n vary with the proportion of passed

items in the sample, f = nP /n, for some specific values of α, β and πC . Note that with the CS

plan, we control this proportion.

We notice that sd(α̂(C S))
p

n decreases with the proportion of passed, with a big drop from

0.1 to 0.4, and then slowly over the interval [0.6,1). Therefore, to estimateα, selecting f anywhere

between 0.6 and 0.9 gives roughly the same results.

We also note that sd(β̂(C S))
p

n increases very slowly over the entire interval for f . If the

main goal of the study is to estimate both α and β with good precision, we can select as many

as 80% passed parts and 20% failed parts. Also, sd(π̂C (C S))
p

n varies very little over the interval

f ∈ [0.2,0.8]. Therefore, for this combination of parameters values, a CS plan with f = 0.8 seems
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Figure 3.12 Ratios of Asymptotic Standard Errors – se(SP )/se(C S, f = 0.5,πP known) – when
n = 1,000 and πP = 0.85.

an efficient design.

We find the above results unusual, as we expect that sampling heavily from the population

of previously failed (i.e. f close to 0) and, therefore, getting more nonconforming parts in the

sample, would improve the precision of α̂ and decrease the precision of β̂. This is the case

in Section 3.1, where parts are repeatedly measured with the BMS. However, as we can see in

Equations (3.14) – (3.16), in the case where only the baseline measurement is included, the

estimation of α, β, and πC is based on two functions of the data, P̂r(C̄ | P ) and P̂r(C̄ | P̄ ), and the

known values of πP . Therefore, it is difficult to intuitively see how the precision of the estimators

changes with the proportion of passed f .

Next, we compared the efficiencies of the standard plan and the conditional selection plan

with f = 0.5, by looking at the ratios of asymptotic standard errors for α̂, β̂, and π̂C . In Figure

3.12, we notice that SP gives a consistently better estimator for α over all values of α and β, and

πC . The parameter β has a smaller influence than α on the ratio. However, the CS plan gives a

more precise estimator of β than the SP, as the ratio of the standard deviations is uniformly larger

than 1 over the whole range of α, β, and πC . Also, the ratio increases with the value of β, and is
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insensitive to changes in α.

It is interesting to note that these results are counter-intuitive and differ from the ones we

found in the case where the parts are repeatedly measured with the BMS (Section 3.1). As with

that case, we would expect a higher precision for the estimator of α given by the CS plan, as α is

estimated based on the number of nonconforming units in the sample and we expect a larger

number of nonconforming units with the CS plan.

We also notice that the CS plan gives a more precise estimator for πC , for the whole grid of

parameters values.

3.2.3 Sample Size Calculation

So far we have concentrated on the analysis and properties of the estimators. Now, suppose we

are in the planning stage and are interested in designing a plan to get a prescribed precision for

an estimator. Then, the objective is to find the minimum sample size that achieves this precision.

The functions that give the sample size for the CS plan, when we want a certain precision as

specified by the standard deviation and assume certain values for α, β and known πP are given

below:

n0(α̂(C S)) = (πP −α)(1−α)α(1− f −β+β f −α+α f +αβ)

[sd0(α̂)]2 f (1− f )(1−β−πP )
(3.20)

n0(β̂(C S)) = (αβ+ f −β f −α f )β(1−β)(1−β−πP )

[sd0(β̂)]2 f (1− f )(πP −α)
(3.21)

n0(π̂C (C S)) = (α+β f −αβ−α f )(1−β−πP )

[sd0(π̂C )]2 f (1− f )(1−β−α)2
(3.22)

where f = nP
n , the proportion of the passed items in the total sample size.

If we are interested to find the sample sizes for a standard plan, we can use an indirect

method by looking at the contour plots in Fig. 3.12 and find the ratio of the standard deviations

for the assumed α and β values and the known πP . Once we have the ratio, we can derive the
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corresponding standard error given by the CS plan, and finally get the total sample size, n0.

For example, suppose that our goal is to estimate α with a precision of 0.0145 (i.e. sd0(α̂) =
0.0145), and we assume α = 0.03, β = 0.04, and πP = 0.85. The standard plan gives the best

estimator for α and now we are interested in finding the minimum total sample size, n0, for this

method. We look at Figure 3.12 and find that, for the given values of α, β and πP , the ratio of

the standard deviations is 0.78. From this ratio we can compute sd0(α̂(C S)) = 0.0186 and the

minimum sample size to achieve that, using Eq. (3.20), is n0(0.0186) = 1171.

More details about the assessment of a BMS when there is only one measurement by the

BMS and one measurement by the gold standard can be found in the paper “Assessing a Binary

Measurement System” by Danila, Steiner, and MacKay (2008), published in the “Journal of Quality

Technology”.

3.3 Summary

In this chapter, we investigate two assessment procedures in the case where a gold-standard

system is available, and we use two different sampling schemes, the standard and the conditional

selection plans. We focus on a context in the manufacturing industry where parts coming from

a high-volume process are routinely measured with the studied BMS, and large collections of

previously passed and failed parts are readily available for the BMS assessment study. Also, we

have baseline information about the pass rate, πP , over a period of time in which the process

and the properties of the BMS are stable.

The first assessment method involves measuring parts once with the gold standard and

repeatedly with the BMS. The standard plan currently used in industrial practice involves random

selection of parts from the population of manufactured parts. We look at the properties of the

estimators of α, β, and πC , under this sampling plan and we conclude that, for the range of

parameters values commonly found in industry, i.e. small α and β, and large πC , we need at

least n × r = 1,000 total number of measurements in order to get efficient estimators. We also
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note that the way the total number of measurements is allocated does not have an effect on the

precision of α̂ and β̂, whereas choosing a larger sample size n at the expense of the number of

repeated measurements r gives better precision for the estimator of πC .

Next, we investigate a sampling design that uses information available from the routine

inspection of parts. With this plan, called the conditional selection plan, parts are randomly

selected from collections of previously passed and failed parts. In many cases, a BMS can keep

track of the number of passed parts during routine inspection of parts, and we propose using

the baseline information about the pass rate in the BMS assessment study. We demonstrate that

in the case where parts are repeatedly measured with the BMS, the CS plan augmented with

baseline data gives uniformly better estimators than the SP. Also, we find that sampling heavily

from the collection of previously failed parts gives estimators with better precision than other CS

plans and the SP.

The second assessment method requires one measurement with the BMS and one with

the gold standard. We look at both the standard plan and the conditional selection plan with

m →∞ (i.e. πP known). Contrary to the case where we repeatedly measure the sampled parts

with the BMS, we conclude that the SP gives better precision that the CS plan with πP known for

the estimator of α, whereas β̂ and π̂C are better estimated with the CS plan. Also, we conclude

that a CS plan with parts heavily sampled from the population of previously passed parts, e.g.

f = 0.8, gives uniformly better estimators than other CS plans.
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Chapter 4

New Methods for Assessing a Binary
Measurement System with Constant
Misclassification Rates – No Gold Standard
Available

In Chapter 2, we mention that in both industrial and medical contexts, there are cases where the

gold standard is too expensive, time consuming or invasive to be used on a routine basis. In other

situations, a gold standard does not exist. There are two major approaches used for assessing the

performance of a BMS when no gold standard is available. The first one involves the use of an

imperfect measurement system with known performance characteristics, where an “anchored”

model is used for parameter estimation (Boyles, 2001). In the second approach, sampled parts

are either repeatedly measured by the BMS of interest or measured by several BMSs and a latent

class (LC) analysis is used for estimation (Boyles, 2001; Van Wieringen and De Mast, 2008). In

Chapter 4, we investigate the effect of different sampling plans on the estimation procedure for

α, β and πC , when there is no gold standard. In Section 4.1, we give a brief review of current

methods used in industrial practice, in the case where the gold standard is not available and we

repeatedly measure parts with the BMS. In Section 4.2, we investigate the standard plan (SP)
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where parts are randomly selected from the collection of manufactured parts. In Section 4.3, we

look at the properties of the estimators given by a conditional selection (CS) plan, where parts

are randomly selected from the collections of previously passed and failed parts, augmented

with baseline data. Next, we compare the two sampling schemes with respect to their precision

and make study design recommendations.

4.1 Current Selection Methods and Models

In Chapter 2, we introduce the latent class (LC) model for the specific case where the units are

repeatedly measured by the studied BMS, a testing procedure that is commonly used in the

industrial setting (Boyles, 2001; Van Wieringen and Van der Heuvel, 2005; Van Wieringen and

De Mast, 2008).

Boyles (2001) proposes selecting a random sample of n parts from the population of parts,

and measuring each part r times with the BMS, i.e. the standard plan (SP). Note that the SP can

be used in cases where the BMS has not yet been used for regular inspection and we assume no

prior information.

The results of the repeated measurements are summarized by the total number of passes

for each part, si = ∑r
j=1 yi j , i = 1, . . . ,n, which is a sufficient statistic for the distribution of

Yi 1...Yi r , i = 1, . . . ,n. Assuming conditional independence and common misclassification proba-

bilities for all parts, the conditional distribution of Si , given the part is conforming or noncon-

forming, is:

Si | (Xi = 1) ∼ Binomial(r,1−β) or Si | (Xi = 0) ∼ Binomial(r,α)

Under the assumption of independent measurements on different units, the likelihood function
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for the SP is a mixture of two binomial distributions as follows:

LSP (α,β,πC | si , i = 1. . .n) ∝
n∏

i=1

[(
1−β)si βr−siπC +αsi (1−α)r−si (1−πC )

]
(4.1)

To make the parameters identifiable, there should be at least three repeated measurements,

i.e. r ≥ 3, and 1−β>α (Van Wieringen and Van der Heuvel, 2005; Van Wieringen and De Mast,

2008). The assumption 1−β>α is reasonable, since for a useful BMS, the probability of passing

a conforming part should be (much) larger than the probability of passing a nonconforming part.

In fact, for most measurement systems, we expect both α and β to be relatively small.

To find the maximum likelihood estimates for α, β and πC , Boyles (2001) uses the EM

algorithm (Dempster et al., 1977). He recommends using the profile likelihood ratio, treating πC

as a nuisance parameter, to derive approximate confidence regions for α and β. For sample size

calculations during the planning stage, Boyles (2001) uses the asymptotic variance-covariance

matrix for the maximum likelihood estimates assuming the complete data likelihood, i.e. the

likelihood when the true state of the parts can be determined.

Although the proposed model “treats the units in the study as a random sample from some

population” (Boyles, 2001, pp. 223), the author also notes that if the sample is selected from

previously inspected parts, then “the results of these inspections should be included in the study

data”. He does not take this point further, but the idea of a conditional selection is later pursued

by Van Wieringen and De Mast (2008).

Van Wieringen and De Mast (2008) use the latent class model in a similar context, where

they do not assume parts are randomly selected from the population of manufactured parts.

Therefore, they define the likelihood function in terms of the two misclassification probabilities,

α and β, and another parameter corresponding to the proportion of conforming parts in the

sample, πS , that does not represent the conforming rate of the production process (unless the

sample is selected at random from the population of all parts). The likelihood function has the

same form as in Eq.(4.1), with the population-based conforming rate πC replaced by πS . πS

depends on the chosen sampling plan and when, for example, SP is used, πS =πC . The authors
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also suggest and compare two estimation methods, maximum likelihood using the EM algorithm

and an application of the method of moments.

Based on simulation results and comparison of the two estimation methods, Van Wieringen

and De Mast (2008) give planning recommendations, including selection method and sample

size. In particular, they suggest trying to obtain a sample that has an equal number of conforming

and nonconforming parts. To achieve such a balanced sample, in their example, they suggest

selecting two random samples of parts from the population of previously passed and rejected

parts. We call this plan the conditional selection (CS) plan, as it involves sampling parts condi-

tionally on a previous (baseline) measurement. The authors propose selecting equal numbers of

previously passed and rejected parts.

There are several issues related to the model proposed by Van Wieringen and De Mast

(2008). First, the conforming rate representing the production process is not estimable, unless

we understand the sampling mechanism used to select the sample. The model is useful in the

case where there is no information related to the selection method of the sample (for example,

parts are just "grabbed" and then included in the assessment study). In that case, we can

estimate the parameters characterizing the BMS, i.e. α and β, whereas πS is considered a

nuisance parameter that does not characterize the manufacturing process. Therefore, πS is not a

population-based parameter, as it does not characterize the population from which the parts

are randomly sampled. In the case where the parts are selected conditionally on the baseline

measurement, the probability of having a conforming part is not the same for previously passed

and rejected parts. Therefore, we suggest a different LC model based on a conditional likelihood

which includes α, β, and πC , and also incorporates the baseline measurement of parts.

Also, Van Wieringen and De Mast (2008) recommend obtaining a balanced sample in terms

of conforming and nonconforming parts. However, sampling equal numbers of previously

passed and rejected parts does not necessarily yield a sample with an equal (expected) number

of conforming and nonconforming parts, as seen in Table 3.1. We investigate this issue later in

this chapter, by looking at CS plans with different proportions, f , of previously passed parts in the

sample. We look at how the precision of the estimators change with the proportion of expected

60



number of conforming parts, which is a function of f . We compare these plans to the SP and

then with each other. We mentioned before that the SP is recommended when we need to assess

the BMS before the system is used for regular inspection. However, in many practical situations,

SP is used in cases where there is previous (baseline) information about the population of parts

from which the sample is selected. That is, we usually know the proportion of passed parts from

a large number of previously measured parts, as the BMS can keep track of that information. Our

main goal is to show the value of using a CS plan with baseline information, and to find the value

of f that gives the best plan in terms of the precision of the estimators.

4.2 Standard Plan – Accuracy and Precision of the Parameter
Estimators

In this section, we further investigate the LC model in the SP case, with focus on accuracy

and precision of the estimators, and the effect of the sample size and the number of repeated

measurements on these characteristics.

As in the gold-standard case, we focus on assessing a BMS with reasonable performance

characteristics, where we also assume the sampled parts come from a high-quality production

process. In our investigations, we consider parameters values as in Chapter 3, where 0.02 ≤
α,β≤ 0.1, and 0.85 ≤πC ≤ 0.94.

To assess the bias and efficiency of the parameter estimators, we first simulate data for

different n and r , and then obtain the ML estimates by maximizing the likelihood function (4.1),

using the Nelder-Mead optimization algorithm (Nelder and Mead, 1965) in R (R Development

Core Team, 2010). Other authors (Torrance-Rynard and Walter, 1997; Fujisawa and Izumi, 2000)

also used direct optimization techniques rather than the EM algorithm. In general, the EM

algorithm is preferred when the number of parameters in the model is large, which is not the

case here, as there are only three parameters to estimate.

In our simulations, we run 500 repeats for each combination of parameter values from
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the grid in Figure 3.1. For each repeat, we first generate n realizations for the random variable

X , the true state, which is distributed Binomial(1,πC ). Then, for each conforming part, i.e.

x = 1, we generate the number of passes, s, a realization of S | (X = 1), which is distributed

Binomial(r,1−β). Similarly, for each nonconforming part, we generate the total number of

passes s from Binomial(r,α). The estimation of the parameters is based on the number of passes

for each part, s, as here we consider the case where the gold standard is not available.

When the sample size is small and the conforming rate πC is close to 1, there might be

no nonconforming parts in the sample and the optimization algorithm might have difficulty

finding the global maximum. We add an additional step to the estimation procedure. That is,

for each run, after the ML estimates are found using the Nelder-Mead algorithm, we compare

the maximum log-likelihood value found by the algorithm with the maximum log-likelihood

value at πC = 1. The log-likelihood function with πC = 1 contains only the parameter β and if

the maximum value is larger than the one with πC < 1, we skip to the next run. Another way to

deal with such a case would be to consider π̂C = 1, β̂= (nr −∑n
i=1 si )/(nr ), and to admit there

is not enough data to estimate α. Anyway, for our simulations, we decided to use the former

solution. We first consider cases where the sample size is small (n = 200) and the number of

repeated measurements is close to the identifiability condition (r = 5). We recall that these are

the minimum values for n and r for which the SP gives useful standard errors for all estimates

in the gold-standard case in Chapter 3. We run 500-repeat simulations at each combination of

parameter values in the 36-value grid with πP = 0.85, and then obtain the sample errors and

standard deviations, as approximations for the biases and standard deviations of α̂, β̂, and π̂C .

We note that for these parameters values and sample size, there were no instances where the

maximum log-likelihood as given by the optimization algorithm was smaller than the one with

πC = 1, which was checked with the additional step in the algorithm. However, as we will see in

Section 4.3.3, this step is very useful in cases where πC is close to 1, e.g. πC = 0.98, and we look at

small sample sizes.

We also derive asymptotic standard errors based on the Fisher (expected) information

matrix based on the likelihood function (4.1). The second derivatives of the log-likelihood
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Figure 4.1 Contour Plots of Smoothed Biases – Standard Plan with n = 200 and r = 5, when
πP = 0.85

function are obtained using Maple software (Maplesoft, 2009) and they are too long to include

here. The actual functions representing the elements of the information matrix are written in R (R

Development Core Team, 2010). For any given parameter values, we obtain each element of the

expected information matrix by summing the product of minus the value of the corresponding

second derivative of the log-likelihood and the corresponding probability that a part passes the

BMS inspection, over all possible values of si , i.e. 0, ..,r .

Next, we fit separate local polynomial regression (loess) smoothing models, (Cleveland et al.,

1992) to biases and standard errors, and then get predictions over a 100-value grid. Figure 4.1

shows the biases of the estimators, and we note that all of them are virtually unbiased. We also

look at the simulation-based and asymptotic standard errors and conclude they are close for all

estimators, for most of the grid values (results not shown here). When α is small and πC large,

the simulation-based standard errors of α̂ are larger than the asymptotic ones (the ratio of the

two standard errors is not larger than 1.3). Figure 4.2 shows the simulation-based standard errors

and we note that the estimators of β and πC have good precision for all values considered here,

whereas α̂ has good precision for most of these values, except for small α and large πC . In these
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Figure 4.2 Contour Plots of Simulation-based Standard Errors – Standard Plan with n = 200 and
r = 5, when πP = 0.85

cases, the standard errors have the same size as the parameter α. We increase the number of

repeated measurements to r = 10 and look again at the precision of the estimators. Our goal is

to find the minimum sample size and number of repeated measurements so that all estimators

have reasonable precision. In Figure 4.3, we see that the precision of the estimators, including

the one for α̂, are reasonably good, with standard errors small enough to be useful, for the whole

grid of parameters values.

Another option for finding the optimal combination of n and r , so that we achieve good

precision for all estimators, is to increase the sample size from n = 200 to, for example, n = 400,

and use the same number of repeated measurements r = 5. This way, we get an idea about

how n × r = 2,000 total measurements can be allocated so that we get a better efficiency for

the parameter estimators. When we compare the standard errors in Figure 4.3 to the ones in

Figure 4.4 we note that, for 2,000 total number of measurements, the plan with r = 10 gives

slightly better estimators for α and β, whereas for πC , the plan with n = 400 gives a more precise

estimator. When we increase the sample size, we expect to get a more precise estimator for πC ,

as π̂C is mostly based on the (expected) number of conforming parts in the sample.
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Figure 4.3 Contour Plots of Smoothed Simulation-based Standard Errors – Standard Plan with
n = 200 and r = 10, when πP = 0.85

We recall that in the gold-standard case in Chapter 3, the variances of α̂ and β̂ depend on

the values of the corresponding parameter, α or β, the value of πC , and the total number of

measurements n × r , as given by Eq. (3.5). Therefore, for α̂ and β̂, we get the same precision for

the different allocations of n × r , as shown in Figures 3.2 and 3.8, in Chapter 3, where n = 200,

r = 5, and n = 1,000 and r = 1, respectively. Now, we want to see if these results also apply to the

no gold-standard case. We plot the asymptotic standard errors for α̂ and β̂, for eight combination

of parameters values and n × r = 2,000 total number of measurements. Here, we considered

the minimum and maximum values for α, β, and πC , from the grid in Figure 3.1, and three

allocations of n and r . Figure 4.5 shows the curves of the standard errors for α̂ and β̂, for all eight

combinations of parameters values. For the standard error of α̂ (left panel), we note that the

curves group by the values of α and πC . This result is consistent with the variance expression in

the gold-standard case. For small values of α and πC , the curves of the standard errors are almost

horizontal, which suggests that, in this case, the allocation of n × r does not effect the precision

of α̂. However, for large values of α, we note a big drop in the value of the standard error when r

increases from 5 to 10 (31% when α= 0.1, β= 0.1, and πC = 0.95), and a slight drop from r = 10 to

r = 20. In the right panel of Figure 4.5, we note that the precision of β̂ does not change with the
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Figure 4.4 Contour Plots of Smoothed Simulation-based Standard Errors – Standard Plan with
n = 400 and r = 5, when πP = 0.85

allocation of n and r , for small values of β. For β= 0.1, α= 0.1, and πC = 0.85, the standard error

of β̂ decreases by 6%, when r goes from 5 to 10. In practice, the cost of sampling and measuring a

new part is usually different than the cost of re-measuring an already selected part. Therefore, in

some cases we might prefer increasing the number of measurements per part, whereas in other

cases it might be less expensive to select a larger number of parts and re-measure them fewer

times. However, as seen in Figure 4.5, if we increase the number of repeated measurements r

at the expense of the sample size n, we get similar or better precision of the estimators of the

consumer’s and producer’s risks. Therefore, if we focus on large values of r , for the range of

parameters values 0.02 ≤α,β≤ 0.1 and 0.86 ≤πC ≤ 0.94, we suggest a minimum sample size of

n = 200 for r = 10 repeated measurements by the BMS.

Next, we look at the pattern of variation for the standard errors of the estimates in Figure 4.3.

We note that for α̂, the standard error mostly increases with the values of α, for β̂ with the values

of β, whereas for πC it mostly decreases with the values of β. This pattern can be explained by

the idea of a “binomial model” approximation – Eq. (3.6) and (3.7) – for the variances of the

estimators, proposed in Chapter 3. In the case where a gold-standard system is available, the
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Figure 4.5 Plots of Asymptotic Standard Errors – Standard Plan with n × r = 2,000 total measure-
ments

assessment study involves selecting a sample of parts, measuring each part once with the gold

standard, and then repeatedly measuring it with the BMS. Therefore, we can separate parts into

conforming and nonconforming based on the gold-standard classification. The approximate

variances of the estimators are given by Equations (3.8) – (3.9), and we note that for the estimator

of α, the variance depends on the number of repeated measurements, the expected number of

nonconforming parts in the sample, E(NC̄ ), and the true value of α; the variance of β̂ depends

on r , expected number of conforming parts in the sample, E (NC ), and β. Finally, the variance of

π̂C varies with the sample size, n, and the value of πC . Now, in the “no gold standard” case, the

parts cannot actually be separated into conforming and nonconforming, as the true state is not

known. Nevertheless, these approximations are still useful in explaining the pattern of variation

for the precision of the estimators within a grid of values.

The “binomial” models (3.6)–(3.7) for α̂ and β̂ can be extended to other sampling plans, as

they only require that the parts are initially measured by the gold standard, and then separated

into conforming and nonconforming. For a CS plan with the same number of repeated mea-

surements and sample size as in an SP, the only quantity that changes is the expected number of
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(non)conforming parts in a sample. In the next section, we investigate how the change in the

expected number of conforming parts affects the precision of the estimators for different CS

plans, compared to the ones given by the SP.

4.3 Conditional Selection Plan

The conditional selection (CS) plan involves independently selecting two random samples of

parts from the populations of the previously passed and rejected parts. With a CS plan, we can

choose the proportion of previously passed parts in the sample, denoted by f .

The likelihood function for the CS plan is given by two mixtures of Binomial distributions,

one for the previously passed and one for the previously rejected parts, as follows:

LC S(α,β,πC |si , i = 1. . . ,n) ∝
nP̄∏
i=1

(
1−β)si βr+1−siπC +αsi (1−α)r+1−si (1−πC )

1−πP
×

nP∏
i=1

(
1−β)si+1

βr−siπC +αsi+1 (1−α)r−si (1−πC )

πP
(4.2)

In Equation (4.2), nP = f n and nP̄ = (1− f )n represent the pre-determined number of previously

passed and rejected parts in the sample. In practice, when a CS plan is possible, there is also

available information about the pass rate, i.e. baseline data. Therefore, for practical reasons, we

should consider CS plans where the assessment study data is augmented with the baseline data.

As in Chapter 3, to separate the contributions of the CS and baseline data, we first consider the

CS plan without baseline data, and compare the precision and bias of the estimators given by a

CS plan with the ones given by the SP.
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Figure 4.6 Contour Plots of Smoothed Biases – Conditional Selection Plan with f = 0.5, m = 0,
n = 200 and r = 5, when πP = 0.85

4.3.1 CS without Baseline Data

We start by looking at the biases of the simulation-based ML estimates, for r = 10, when parts

are sampled in equal numbers from the population of previously passed and rejected parts.

That is, in the design stage we choose f = 0.5. As in the SP case, we look at the biases of the

estimators approximated by the sample errors from a simulation study. Figure 4.6 shows the

smoothed (loess) biases for a 100-value grid with πP = 0.85, and we note that all estimators

are virtually unbiased. Next, we look at the comparison of the asymptotic standard deviations

given by the SP to the ones given by CS with f = 0.5. Figure 4.7 shows the ratios of asymptotic

standard deviations of the estimators given by the two plans, for a 100-value grid with πP = 0.85.

Note that these ratios do not depend on n. We note that the estimator of α given by the CS is

more precise than the one from the SP, for the whole grid of values. For β̂, we see the reversed

situation, whereas the estimator of πC is more precise for the CS, for most of the grid values. If

we go back to the idea of a “binomial model” for the approximation of standard deviations of α̂

and β̂, the results related to the precision of these estimators are not surprising. As we note in

Table 3.1 in Chapter 3, the CS plans with f = 0.5 and f = 0 increase the expected proportion of
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Figure 4.7 Contour Plots of Ratios of Asymptotic Standard Errors, se(SP )/se(C S, f = 0,m = 0),
when πP = 0.85 and r = 10.

nonconforming parts in the sample, but decrease the expected proportion of conforming, over

the whole grid of parameter values. Equations (3.8)–(3.9) show that the precision of α̂ increases

with the expected number of nonconforming parts, whereas the precision of β̂ decreases.

We conclude that there is a trade-off in terms of the precision of α̂ and β̂, when we choose

one selection method over the other. Now, this is the case when the CS plan is used without

including the baseline information in the analysis. In the next section, we investigate the

precision of the estimators given by the CS plan augmented by baseline data of various sizes,

that is, we know the number of passed parts out of a certain (usually large) number of once

measured parts, where this collection of previously inspected parts is a representative sample of

the manufactured parts.

4.3.2 CS with Baseline Data

Suppose we have a baseline population of m parts, each measured once for inspection purposes.

Also, we randomly select nP parts from a large collection of previously passed, and nP̄ from the
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previously failed. Here we assume that the collections of passed and failed we sample from do

not make up the m baseline measurements, so that the study and baseline measurements are

independent. At the end of the assessment study, we have m parts measured once and n parts

measured r +1 times. For high volume processes, m is typically large. For the m parts measured

once only, the likelihood is:

Lb(πP ) ∝π
mP
P (1−πP )m−mP (4.3)

where mP is the number of passed parts in this group, and m is the size of the baseline data.

As in Chapter 3, we note that Lb(πP ) can be rewritten in terms of α, β, and πC , using the

constraint πP = (1−β)πC +α(1−πC ), though it is not possible to separately estimate α, β, and

πC using Lb(πP ) alone. The overall likelihood for a CS plan with baseline data is proportional

to: Lb(πP )×LC S(α,β,πC |s1, . . . , sn), where LC S is the likelihood in Equation (4.2), and si is the

number of times part i passed in the r repeated measurements.

We expect the results regarding biases for the CS without baseline to also hold for the CS with

baseline, as adding more information can only improve the estimation procedure. We check this

assumption and conclude that, for CS with f = 0.5 and f = 0, sample size n = 200 and number

of repeated measurements r = 10, all estimators are virtually unbiased and have reasonable

precision (results not shown here). We also look at the case where r = 5 and n = 200, and find

that the CS plans with f = 0.5 and f = 0, and m = 1,000 give estimators with good accuracy

and precision for all parameters. Also, for these (and larger) values of n and r , the asymptotic

standard deviations agree with the standard errors based on simulated data. Therefore, we can

proceed with comparing the asymptotic standard deviations of the estimators given by the SP

to the ones given by CS with baseline data and f = 0.5 and f = 0, respectively. We start with

a small baseline sample m = 1,000, and compare the asymptotic standard deviations given by

the SP with the ones given by a CS plan with f = 0.5 (Figure 4.8). When comparing Figure 4.7

with Figure 4.8, we note that adding the baseline data improves the precision given by the CS,

for all estimators. The ratios of standard deviations for the estimator of β are now larger than

1, for the whole grid of parameter values. Note that the estimators of α and πC given by the CS

plan with f = 0.5 are almost twice as efficient as the ones given by the SP. Therefore, when we
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Figure 4.8 Contour Plots of Ratios of Asymptotic Standard Errors, se(SP )/se(C S, f = 0.5), when
πP = 0.85, n = 200, r = 10 and m = 1,000.

incorporate the baseline information, the intuition that suggests α (β) will be better estimated by

a plan with more nonconforming (conforming) parts no longer holds. To address the question of

which conditional sampling plan is the best, in Figures 4.9 and 4.10, we compare the precision

of each estimator for CS plans with f = 0.5 and f = 0, for baseline sample sizes m = 1,000 and

m = 10,000. These figures suggest that, as the size of the baseline data increases, a CS plan with

f = 0 becomes uniformly more efficient than a CS plan with f = 0.5, especially when β is large.

Also, for larger values of the pass rate (πP ≥ 0.85), the ratios of the standard deviations are larger

for all parameters so that a CS plan with f = 0 is even more efficient in that case (results not

shown here). We expect to get more information about α with conditional sampling and f = 0,

since with this scheme we will likely select more nonconforming parts. The increased precision

for the estimator of β is perhaps surprising. Here it is the baseline measurements that help. The

baseline data provide an estimate of πP = (1−β)πC +α(1−πC ), a function of α, β, and πC . Since

we are considering situations where πC is large and α is relatively small, πP is strongly influenced

by β and πC . In this case, the additional information about β and πC from the baseline data

outweighs the lost information due to fewer conforming parts in the sample.
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Figure 4.9 Contour Plots of Ratios of Asymptotic Standard Errors, se(C S, f = 0.5)/se(C S, f = 0),
when πP = 0.85, n = 200, r = 10 and m = 1,000.

In conclusion, in cases when there is baseline information, α and β are small, and πC (and

thus πP ) is close to one, we recommend a conditional selection plan with f = 0, i.e. all parts

are sampled from the population of previously rejected parts. The plan is substantially more

efficient in estimating the parameters α, β, and πC compared with the other plans we have

investigated. In Figure 4.11, we demonstrate the substantial gain provided by the recommended

CS plan compared with the SP that uses random selection and ignores any available baseline

information. The estimators of α given by the CS with f = 0 are twice times more efficient than

the ones given by the SP. The estimator of β is slightly more precise for the CS plan, for smaller

values of β (and πC ), and is one and a half times more precise, for larger values of β. We see the

biggest gain in precision for the estimator of πC , as the ratio of standard derivation varies from

3.5 to 7 over the grid of values with πP = 0.85. We see similar large gains for larger values of πP

(results not shown here).
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Figure 4.10 Contour Plots of Ratios of Asymptotic Standard Errors, se(C S, f = 0.5)/se(C S, f = 0),
when πP = 0.85, n = 200, r = 10 and m = 10,000.

4.3.3 Special Cases – large conforming rate and small n and r

We also look at cases where the conforming rate πC is very close to 1, e.g. πC = 0.98, and we

investigate the properties of the estimators when we design a study with a small total number

of repeated measurements n × r , using the standard and conditional selection plans. For these

cases, we run several simulation studies, as in Sections 4.2 and 4.3, and obtain the biases and

standard errors of the estimates. We first look at the case where α= 0.1, β= 0.09, and πC = 0.988,

and we randomly select n = 100 parts, i.e. we use the SP, and measure them r = 4 times with the

BMS. We find the estimators of α and πC highly biased, with many cases where the estimates

of α are very large (close to 1). This can be explained by the fact that, when πC is close to 1,

the expected proportion of nonconforming parts in the sample is small, and when, in addition,

the sample size is small, some samples may contain very few or no nonconforming parts. For

example, for the case considered above, ESP (NC̄ /n) = 0.0123, and when n = 100, we expect to

have one nonconforming part in the sample. We further investigate samples that in our example

give unreasonably large values for α̂, i.e. α̂> 0.5, and small values for π̂C , i.e. π̂C < 0.5. One such

sample in the simulation contains no nonconforming parts and there are 5 parts out of 100 that
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Figure 4.11 Contour Plots of Ratios of Asymptotic Standard Errors, se(SP )/se(C S, f = 0), when
πP = 0.85, n = 200, r = 10, and m =∞ (πp known).

pass the inspection twice, 25 parts pass it three times, and 70 pass it four times. For this sample,

α̂ = 0.89, β̂ = 0.99, and π̂c = 0.14. After visually checking the profile likelihood functions, we

conclude that the optimization algorithm does find the global maximum. When compared to

the log-likelihood value at πc = 1, the additional step described in Section 4.2, the maximum

value found by the algorithm is larger. We encounter similar situations in 17% of the simulated

samples, and some of these samples do include one nonconforming part. It seems that, when

the number of nonconforming parts in the sample is smaller than 2 and the number of repeated

measurements r is small, it is difficult for the LC model to distinguish between conforming and

nonconforming parts. For these cases, we admit that there is not enough data to reliably estimate

α and πC .

Next, we increase the value of r to 10 and we note that increasing the number of repeated

measurements substantially reduces the bias of the estimators, for the same number of selected

parts. We compare the case discussed earlier, where πc = 0.988, α= 0.1, β= 0.09, n = 100, and

r = 4, to the case where we have the same parameter values and sample size, but r = 10. The

number of times when the log-likelihood value at πc = 1 is larger than the maximum value found
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by the algorithm is similar for the two cases (around 25%). The difference lies in the number

of times the estimates for α are unreasonably large (i.e. larger than 0.5). When r = 10, 3% of

the simulated samples yield these results, compared to 17% in the r = 4 case. That is, when the

number of repeated measurements is large, in most cases, the LC model is able to distinguish

between conforming and nonconforming parts, even when the sample size is small, and thus,

the number of nonconforming parts in the sample is small.

Now, as we can see in Table 3.1, for the same parameter values, the expected proportion

of nonconforming parts in the sample is larger for the CS plans compared to the SP. Also, the

CS plan with f = 0 gives a larger expected proportion of nonconforming parts than the CS

plan with f = 0.5, over the range of parameter values considered here. Therefore, when we

select parts conditionally on their baseline measurement and f > 0.5, the expected number of

nonconforming parts is larger than in the SP, for the same sample size. Thus, with such a CS plan,

we need a smaller number of parts than in the SP in order to get unbiased estimators. We check

this using simulated data and, for the case considered above, we conclude that the biases for all

CS estimators are negligible.

4.4 Conditional Selection with Baseline Data - Study Design

Next, we address the design of the recommended CS plan. Because we are assuming that the

baseline data are freely available, we suggest that the number of parts in the baseline be as large

as possible. One caveat is that we have assumed that α, β, and πC are constant over the sampling

period, i.e., the BMS performance does not change and the process is stable. To make sure that

this is true, we recommend examining the stability of the baseline data using statistical process

control techniques (Montgomery, 1996). Note that we only need to know the total number of

parts inspected and the proportion passing. As well, because the recommended plan has f = 0,

we need to save a sample of the parts that failed the initial inspection. Rejected parts are typically

set aside in any case to be repaired or scrapped.

76



We choose n and r using an algorithm coded in the R environment (R Development Core

Team, 2010) that provides feasible combinations that achieve prespecified precision for the

estimators ofα andβ. See www.bisrg.uwaterloo.ca/ for the code. We focus on the precision of the

estimates ofα andβ, rather thanπC , because the misclassification rates are the main parameters

of interest. We determine sample-size requirements based on the asymptotic standard deviations

for α̂ and β̂ derived from the expected information matrix using the likelihood of Equations (4.2)

and (4.3). Note that, for reasonable precision requirements, the suggested number of parts and

repeated measurements should be large enough for the asymptotic results to be reasonable.

As in most sample-size calculations, we must provide some conjectured values for the

unknown parameters α, β, and πC , as well as the required precision (asymptotic standard

deviations) for the estimators of α and β. We also specify the available number of baseline

measurements and the proportion of previously passed parts f ( f = 0 is recommended) in the

sample. The output of the algorithm provides a table of combinations of the total number of

parts n and the number of repeated measurements r . The output also includes the asymptotic

standard deviations for the estimators of α, β and πC , along with the expected number of

nonconforming parts in the sample.

To find feasible values for n and r , the algorithm uses a simple search strategy. It starts

with a minimum number of repeated measurements r = 5 and a minimum of parts n = 10 and

then increments n until the required precision for the estimators of α and β is achieved. Next,

r is increased in one-unit increments and for each r value the corresponding minimum n is

determined. The following example illustrates the use of the algorithm. Suppose we select f = 0

and we have an additional m = 10,000 previously measured parts. We also assume that the true

(unknown) parameter values are α = 0.02, β = 0.02, and πC = 0.86 (πP = 0.85). Suppose also

that the desired precision for the estimators of α and β are se(α̂) = 0.005 and se(β̂) = 0.005. The

corresponding sample size n, the number of repeated measurements r , the total number of

measurements r ×n, the resulting asymptotic standard deviations as provided by the algorithm,

and the expected number of nonconforming parts E(NC̄ ) in the sample are given in Table 4.1.

To choose the best combination of n and r , we can select the combination that results in
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the fewest total number of measurements n × r , in this case n = 111 and r = 8, or some other

combination that takes into account the relative costs of measuring and sampling a part. Note

that, in Table 4.1, the plans with r between 6 and 8 all have roughly the same total number of

measurements.

Table 4.1 Recommended Sample Sizes,α= 0.02, β= 0.02, πP = 0.85, sd(α̂) = 0.005, sd(β̂) = 0.005,
m = 10,000

n r n × r sd(α̂) sd(β̂) sd(π̂C ) E(NC̄ )
179 5 895 0.0050 0.0039 0.0048 158
148 6 888 0.0050 0.0043 0.0051 131
127 7 889 0.0050 0.0046 0.0053 112
111 8 888 0.0050 0.0049 0.0055 98
103 9 927 0.0049 0.0050 0.0056 91
102 10 1020 0.0047 0.0050 0.0056 90
100 11 1100 0.0045 0.0050 0.0056 88
99 12 1188 0.0043 0.0050 0.0056 88
97 13 1261 0.0042 0.0050 0.0056 86
96 14 1344 0.0041 0.0050 0.0056 85
95 15 1425 0.0039 0.0050 0.0056 84

4.5 Summary

In this chapter, we investigate methods for assessing a BMS in the case where a gold-standard

system is not available. First, we give a brief review of methods currently used in industrial

practice. Next, we discuss the standard plan, where parts are randomly selected from the

population of manufactured parts, and then each part is repeatedly measured with the BMS.

A latent class model (LC) is used for parameter estimation. We look at the properties of the

estimators from the LC model with the SP, by simulating data for a whole grid of parameter

values, and different values of the sample size n and the number of repeated measurements

r . We conclude that, when the BMS has good performance and the manufacturing process
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is high-quality, we need fairly large total number of measurements (e.g. n × r = 2,000, for the

range of parameters values considered here) in order to estimate the parameters with reasonable

accuracy and precision. We demonstrate that the way we allocate n and r for the total number

of measurements has an effect on the precision of α̂ and β̂; that is, when using an SP design

with a larger number of repeated measurements increases the efficiency of the estimators of α

and β than in the case where the sample size is larger. This is different than in the case where

a gold-standard system is available, where we get constant precision for α̂ and β̂, for the same

n × r .

Next, we explore the conditional selection plan, where parts are randomly selected from the

populations of previously passed and failed parts. We propose a new LC model for parameter

estimation, which is based on the conditional probability of passing the inspection, given the

initial (baseline) measurement of a part. More importantly, we also propose augmenting the

study data obtained from repeatedly measuring the sample parts, with baseline data that are

readily available when the BMS has been in used for routine inspection. We demonstrate that the

CS with f = 0, i.e. we sample only from the previously failed parts, supplemented with baseline

measurements provides more precise estimators for all model parameters, when compared to

other CS plans and the SP. For one choice of n and r , using CS with f = 0 gives the largest possible

expected proportion of nonconforming parts in the sample. That is, we expect to have the most

information about α. Also, by including the baseline measurements in the estimation we get an

estimate of the pass rate πP , and therefore additional information about β and πC .

We also give planning recommendations, where we suggest using a CS plan with f = 0 and

as much baseline data as possible. We provide an algorithm for sample size determination,

where the input is the desired precision for the estimators of α and β, and the output represents

different combinations of n and r so that we achieve the desired precision. We include one

example in this chapter and provide the R-code for the algorithm at www.bisrg.uwaterloo.ca.

The main results presented in this chapter are also included in the paper “Assessing a Binary

Measurement System in Current Use” by Danila, Steiner, and MacKay (2010), published in the

Journal of Quality Technology.
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Chapter 5

Random-Effects Model – Gold-Standard
System Available

5.1 Introduction

In Chapters 3 and 4, we discuss statistical models that assume conditional independence of

repeated measurements given the true state of the part, and constant misclassification probabili-

ties within conforming/nonconforming parts. These assumptions have been widely criticized

in both medical (Hui and Walter, 1980; Walter and Irwig, 1988; Pepe, 2003; Torrance-Rynard

and Walter, 1997; Qu et al., 1996; Fujisawa and Izumi, 2000) and industrial (Van Wieringen and

De Mast, 2008; De Mast et al., 2011) contexts.

As mentioned before, our main goal is to estimate the misclassification errors of a measure-

ment system in the context where the “true state” of a part denoted X is binary, and the output

of the system classification is binary, that is, we use a “pass/fail” inspection. In most cases, the

binary variable X , also called the measurand (De Mast et al., 2011), represents the presence or

absence of a certain characteristic, such as the presence of a certain infection in a patient’s organ-

ism or the fact that a person suffered a myocardial infarction (Rindskopf and Rindskopf, 1986), in
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the medical context, or the presence of a scratch on the surface of a part from an injection mold-

ing process (Van Wieringen and De Mast, 2008), in the industrial field. The measurement system

(medical test) is supposed to detect the presence/absence of this characteristic and classify the

unit as pass/fail (positive/negative). In this context, there are two distinct cases that can often

occur in both diagnostic testing and manufacturing industry. In the first case, the measurement

system detects the presence or absence of the characteristic of interest X in units with the same

probability, within the sub-populations of conforming/nonconforming (positive/negative). That

is, there is no characteristic other than the true state X that influences the chance the BMS

correctly classifies a unit. This is a strong assumption that, while a reasonable approximation in

some cases, will not hold generally. In the second case, which is more prevalent in both industrial

and medical contexts, there exists another variable (possibly more than one) that influences the

chance that, for example, a nonconforming part is rejected or a diseased subject tests positive.

One example is the inspection of parts for surface cracks using the liquid-penetrant method

(Olin and Meeker, 1996). If the crack does exists, its detectability will depend on the size of the

crack. Similarly, in the medical context, in the case of breast cancer screening tests, it is likely

that some breast cancer lesions are more easily detected by the testing procedure than others

(Shen et al., 2001). Also, in the case where subjects are tested for a certain parasitic disease, in

a severely diseased case, there is a larger concentration of parasites, making it easier to detect

(Dendukuri and Joseph, 2001). In all these cases, the measurand X is still a binary variable, but

the probability of detecting the true state depends now on another characteristic that varies

within the nonconforming parts (diseased subjects).

Therefore, in many cases, it may be unreasonable to assume that the misclassification rates

α and β are the same for all conforming/nonconforming parts. Some parts may be harder to

correctly classify than others. Suppose that there is another undetermined characteristic of the

part denoted Z that affects the misclassification rates so that Pr(Y = 0|X = x, Z = z) is not equal

to Pr(Y = 0|X = x). That is, the probability of failing the inspection depends on the value of z, as

well as the true conforming/nonconforming state, x. If we assume that repeated measurements

on a single part are independent, given X = x and Z = z, then it is easy to prove that the repeated
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measurements on a part, given X = x, are now dependent, contrary to the basic assumptions

in Chapters 3 and 4. For independence to hold, we require that Pr(Y = 0|X = x, Z = z) does not

depend on z for any latent variable. That is, given X = x, no other characteristic of the parts

affects the properties of the BMS.

There are different approaches to address the issue of varying values ofα andβ over different

units. Fujisawa and Izumi (2000) use a random-effects model where they specify a value for

both α and β for each unit, and assume that their joint distribution is Dirichlet. In our opinion,

assuming that each unit has a value associated with both α and β is not reasonable, as a unit is

either conforming or nonconforming. Also, with the Dirichlet model, they assume a common

variability parameter for the two misclassification rates. This assumption is difficult to check

and it is likely not reasonable in many applications.

Qu et al. (1996) construct a random-effects model to specify the joint distribution of

Yi 1, . . . ,Yi r , for part i = 1, . . . ,n. At the first level, given X = x and a latent variable Z ∼ N (0,1),

they assume Yi 1, . . . ,Yi r are (conditionally) independent with Pr(Yi j |X = x, Z = z) =Φ(ai x+bi x z),

whereΦ is the cumulative distribution function of a standard normal variable. Dendukuri and

Joseph (2001) use a fully Bayesian extension of the random-effects model of Qu et al. (1996). All

these models are proposed in the context where a gold-standard system is not available.

In this thesis, we adopt a random-effects model to relax the assumption that α and β are

constant for nonconforming and conforming parts, respectively. That is, we suppose for any

randomly selected nonconforming part, the consumer’s risk α has probability density function

f (α;θα) , 0 <α< 1, and, given X = 0 and α, repeated measurements on a part are independent

so that:

Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | X = 0,α) =αsi (1−α)r−si

Similarly, for any conforming part, we assume producer’s risk β has density f (β;θβ), 0 <β< 1,

and, given X = 1 and β, repeated measurements on part i are independent so that:

Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | X = 1,β) = (1−β)siβr−si
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The random-effects model explicitly allows for variation in the producer’s and consumer’s

risks within the set of conforming and nonconforming parts. In a sense, the random variables

for α and β model the effects of all latent variables on the properties of the BMS, given the value

of X .

As with the model with constant misclassification rates in Chapters 3 and 4, which from

now on we call the “fixed-effects” model, we can question the conditional independence as-

sumption for the repeated measurements in the random-effects model. Here, the conditioning

has moved one level deeper in the hierarchy. It is certainly possible to increase the number of

levels but eventually we see no option but to assume conditional independence of the repeated

measurements. Each additional level adds more unknown parameters to the model and we see

little value in further increasing the complexity.

In Chapters 5 and 6, we explore the use of a Beta-binomial random-effects model. In

Chapter 5, we consider the case of an available gold-standard system, while in Chapter 6, we look

at the situation where a gold standard is not available. As we discuss later, the model formulation

we propose, where α and β follow Beta distributions, allows more flexibility than the Dirichlet

model proposed by Fujisawa and Izumi (2000).

In this chapter, we first investigate the properties of the estimators from the random-effects

model in the case where parts are randomly selected from the population of manufactured parts

(i.e. we use the standard sampling plan). Next, we look at the properties of the fixed-effects

model estimators (3.2-3.4) when fitted to data generated from a random-effects model. We

also investigate the case where data are generated from a fixed-effects model as in Chapter 3,

and we fit a random-effects model. Next, we look at the properties of the estimators from the

random-effects model, when parts are selected from the population of previously rejected parts,

i.e. we use a conditional selection (CS) with f = 0, augmented by m baseline measurements.

We demonstrate the advantage of using the CS plan with f = 0 and baseline data, in terms of

accuracy and precision of the estimators. Also, we show that this design requires a smaller total

number of measurements n × r in order to get useful estimates for the random-effects model

parameters. In the last section, we investigate the effect of the design parameters n, r , and m on

83



the precision of the estimators from a random-effects model when we use CS with baseline data.

5.2 Random-Effects Model – Standard Plan

5.2.1 Model Formulation

We first look at the case where n parts are randomly selected from the population of manufac-

tured parts, and each of them is measured r times with the BMS and once with the gold standard.

As in the fixed-effects model case, we call this sampling plan the standard plan (SP). The results

of the repeated measurements are summarized by the total number of passes for each part,

si =∑r
j=1 yi j , i = 1, . . . ,n. We also know the true state for each part xi , i = 1, . . . ,n.

In this chapter, we adopt a random-effects model based on the Beta distribution to relax the

assumption that α and β are constant for nonconforming and conforming parts, respectively.

Therefore, for any randomly selected nonconforming part i , we assume that the probability of

passing the inspection has distribution Ai |Xi = 0, with density:

f (a) = ag A−1(1−a)hA−1

Bet a(g A,hA)
, 0 < a < 1, (5.1)

where Bet a(g A,hA) = ∫ 1
0 t g A−1(1− t )hA−1d t is the Beta function. We also assume that given

Xi = 0 and Ai =α, repeated measurements on the part are independent, so that:

Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | Xi = 0, Ai =α) =αsi (1−α)r−si (5.2)

Similarly, for any conforming part i , we assume the probability of failing the inspection has

distribution Bi |Xi = 1, with density:

f (b) = bgB−1(1−b)hB−1

Bet a(gB ,hB )
, 0 < b < 1, (5.3)
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and given Xi = 1 and Bi =β, repeated measurements on the part are independent, so that:

Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | Xi = 1,Bi =β) = (1−β)siβr−si (5.4)

Models (5.1), (5.2), and (5.3), (5.4) are beta-binomial models as described by Griffiths (1973).

The mean and variance of A are:

E(A) =µA = g A

g A +hA
, and V ar (A) = µA(1−µA)

g A +hA +1
=φAµA(1−µA),

where φA = 1/(g A +hA +1). Also, the mean and variance of B are:

E(B) =µB = gB

gB +hB
, and V ar (B) = µB (1−µB )

gB +hB +1
=φBµB (1−µB ),

where φB = 1/(gB +hB +1). Parameters µA and µB are interpreted as the average consumer’s and

producer’s risks and are the primary parameters of interest. As the measures of variability of

the risks φA and φB approach zero, we recover the corresponding fixed-effects model (3.1) from

Chapter 3.

Note that 0 < µA,µB ,φA,φB < 1. The parameters g A, hA, gB , and hB can be expressed in

terms of µA, µB , φA and φB as follows:

g A =µA
1−φA

φA
, hA = (1−µA)

1−φA

φA
, gB =µB

1−φB

φB
hB = (1−µB )

1−φB

φB
(5.5)
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Now, with these assumptions, for any nonconforming part i , with si passes in r repeated mea-

surements (si =∑r
i yi j ), we have:

Pr(Si = si , Xi = 0) = Pr(Si = si |Xi = 0)(1−πC )

= (1−πC )
∫ 1

0
Pr(

r∑
j=1

Yi j = si |Xi = 0, A =α) f (α; g A,hA)dα

= (1−πC )
∫ 1

0

(
r

si

)
αsi (1−α)r−si

αg A−1(1−α)g A−1

Bet a(g A,hA)
dα

= (1−πC )

(
r

si

)
Bet a(si + g A,r − si +hA)

Bet a(g A,hA)
(5.6)

Also, for any conforming part i that passes the inspection si times, we have:

Pr(Si = si , Xi = 1) = Pr(Si = si |Xi = 1)πC

= πC

(
r

si

)
Bet a(r − si + gB , si +hB )

Bet a(gB ,hB )
(5.7)

Note that in this model, the repeated measurements Yi 1...Yi r given Xi are not independent. The

covariance between two repeated measurements Yi j and Yi k given part i is conforming is:

Cov(Yi j ,Yi k |Xi = 1) = E(Yi j Yi k |Xi = 1)−E(Yi j |Xi = 1)E(Yi k |Xi = 1)

= Pr(Yi j = 1,Yi k = 1|Xi = 1)−Pr(Yi j = 1|Xi = 1)Pr(Yi k = 1|Xi = 1)

= (1−µB )(1−µB +µBφB )− (1−µB )2

= φBµB (1−µB ) =V ar (B) (5.8)

Similarly, the covariance between two repeated measurements given the part is nonconforming
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part is:

Cov(Yi j ,Yi k |Xi = 0) = E(Yi j Yi k |Xi = 0)−E(Yi j |Xi = 0)E(Yi k |Xi = 0)

= Pr(Yi j = 1,Yi k = 1|Xi = 0)−Pr(Yi j = 1|Xi = 0)Pr(Yi k = 1|Xi = 0)

= φAµA(1−µA) =V ar (A) (5.9)

Therefore, the dependence between two repeated measurements on the same part is driven by

the variability of the corresponding misclassification probability. The higher the variability, the

stronger the dependence between repeated measurements.

The above random-effects models (5.1), (5.2), and (5.3) (5.4) explicitly allow for variation in

the consumer’s and producer’s risks, within the set of nonconforming and conforming parts. In a

sense, the random variables A and B model the effects of all latent variables on the properties of

the BMS, given the value of X . That is, we are assuming for any latent variable Zi , that Pr(Yi 1 =
yi 1, . . . ,Yi r = yi r |Xi = 0, Ai =α, Zi = z) and Pr(Yi 1 = yi 1, . . . ,Yi r = yi r |Xi = 1,Bi =β, Zi = z) do not

depend on z.

Now, combining expressions (5.5), (5.6), and (5.7) gives the likelihood function:

L(µA,φA,µB ,φB ,πC |(xi , si )) ∝
n∏

i=1

Bet a(r − si +µB
1−φB
φB

, si + (1−µB ) 1−φB
φB

)

Bet a(µB
1−φB
φB

, (1−µB ) 1−φB
φB

)
πC

xi

×

×
Bet a(si +µA

1−φA
φA

,r − si + (1−µA) 1−φA
φA

)

Bet a(µA
1−φA
φA

, (1−µA) 1−φA
φA

)
(1−πC )

1−xi

(5.10)

Suppose that in a sample of n units, we use the gold standard to determine that there are nC

conforming parts with xi = 1. Using (5.10), we can write the log-likelihood as a sum:

l (µA,φA,µB ,φB ,πC ) = l A(µA,φA)+ lB (µB ,φB )+nC l og (πC )+ (n −nC )log (1−πC ) (5.11)
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where l A(µA,φA) and lB (µB ,φB ) are beta-binomial log-likelihood functions corresponding to

the n −nC nonconforming and nC conforming parts in the sample, respectively. For example,

l A(µA,φA) is given by:

n−nC∑
i=1

[
lbet a(si +µA

1−φA

φA
,r − si + (1−µA)

1−φA

φA
)− lbet a(µA

1−φA

φA
, (1−µA)

1−φA

φA
)

]

where lbet a() = log [Bet a()] is the log of the Beta function, and the expression for lB (µB ,φB ) is

similar.

All parameters are estimable for r > 1. In the case where r = 1, that is, the selected parts

are measured once with the gold standard and once with the BMS, the model collapses to the

fixed-effects model (3.1) with r = 1 from Chapter 3, with α replaced by µA, and β by µB . To see

this, as mentioned in Chapter 3, in the r = 1 case, the data can be summarized as in the 2×2

Table 2.1, where we count the number of conforming and nonconforming parts that pass and

fail the BMS inspection. We denote these quantities by nC P , nC̄ P , nC P̄ , and nC̄ P̄ , respectively. We

can then write the probability that a conforming part passes as:

Pr(Yi = 1|Xi = 1) =
∫ 1

0
Pr(Yi = 1|Xi = 1,Bi =β) f (β; gB ,hB )dβ

=
∫ 1

0
(1−β) f (β; gB ,hB )dβ

= 1−µB (5.12)

The other conditional probabilities can be derived similarly as in (5.12), and the likelihood for

the random effects in the r = 1 case is:

L(µA,µB ,φA,φB ,πC |nC P ,nC̄ P ,nC P̄ ,nC̄ P̄ ) = [(1−µB )πC ]nC P × [µA(1−πC )]nC̄ P ×

× [µBπC ]nC P̄ × [(1−µA)(1−πC )]nC̄ P̄

(5.13)
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Figure 5.1 Densities Functions for the Beta Distributions - Consumer’s Risk

Note that Eq. (5.13) does not include the variability parameters φA and φB . Therefore, we are not

able to estimate φA and φB when r = 1. For the rest of the chapter, we focus on the assessment

of a BMS when r ≥ 2. For the case r = 1, all the results found in Chapter 3 apply.

As with the constant α and β case, we are generally interested in binary measurement

systems with reasonable performance characteristics. In the varying misclassification rates case,

a good BMS will have small average consumer’s and producer’s risks (e.g. µA and µB smaller

than 0.1), and the variation of these rates will not be too extreme. Therefore, in this thesis, we

consider only Beta distributions with densities that decrease to zero as α and β get larger. We

therefore exclude the u-shaped Beta distribution. This leads to the constraints hA ≥ 1 and hB ≥ 1,

or equivalently, µA +2φA −µAφA ≤ 1 and µB +2φB −µBφB ≤ 1. Additionally, we are interested

in parameter values where the chance of a nonconforming part with a value of A larger than

0.5 is small. In Figure 5.1, we look at different Beta distributions as in (5.1) where the expected

values are 0.1, for different values of the variability parameter φA. We note that for φA = 0.75,

which is equivalent to hA = 0.3, the variation of A is large and that in 9.5% of the cases, the

consumer’s risk is larger than 0.5 (p = Pr(A > 0.5) = 0.095). In our subsequent investigations of

the random-effects models with assumed Beta distributions for the consumer’s and producer’s
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Figure 5.2 Contours of πC for a Grid of Values for µA, µB , when πP = 0.85.

risks, we will look at average values in the range 0.02 ≤µA,µB ≤ 0.1 and variability parameters in

the range 0.01 ≤φA,φB ≤ 0.1.

5.2.2 Bias and Precision of the Estimators

As mentioned above, here we focus on assessing a BMS with reasonable performance charac-

teristics, and we assume that the manufacturing process has a high conforming rate, i.e. πC is

large. Therefore, we focus on the ranges πC ≥ 0.85 and µA,µB ≤ 0.1, and we construct a grid of

parameter values with πP constant and µA, µB , and πC varying . For most of the examples given

in this chapter, we use a grid of values with πP = 0.85, where µA and µB vary from 0.02 to 0.1, and

πC varies from 0.85 to 0.94, as shown in Figure 5.2.

We expect that when we use the SP and the conforming rate is large, we will need large

samples of parts (n large) to get a sufficient number of nonconforming parts in the sample. Also,

since µA and µB are assumed small, we need a large total number of measurements (n× r ) to get

standard errors that are small enough to be useful.

In order to investigate the properties of the maximum likelihood (ML) estimators, we
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simulate data from the beta-binomial random-effects model (5.10), for different n and r . We

conduct a simulation study with a 25 structure, where we select two levels for each of the model

parameters, µA = 0.02,0.1, µB = 0.02,0.1, φA = 0.01,0.1, φB = 0.01,0.1, and πC = 0.85,0.95. The

ranges of values considered here for µA, µB , and πC are the same as the ones in Figure 5.2. For

each of the 32 combinations of the model parameters values, we simulate 500 random samples

from the random-effects model. We expect that when the conforming rate is close to 1 and the

sample size is small, there might be no nonconforming parts in the sample. Therefore, for each

simulation run, we count the number of nonconforming parts in the sample and whenever this

number is zero, we skip to the next run. For each accepted sample, we obtain the ML estimates

corresponding to the fixed- and random-effects models, using the Nelder-Mead optimization

algorithm (Nelder and Mead, 1965) in the R environment (R Development Core Team, 2010). For

estimating the parameters, we only use the constraints 0 <µA,φA,µB ,φB ,πC < 1. We look at the

sample error and the sample standard deviation of the estimates from both models.

In this section, we focus on the properties of the estimators from a random-effects model

fitted to data simulated from the beta-binomial model (5.10). In the next subsection, we look at

the properties of the estimators corresponding to a fixed-effects model fitted to the same sets of

data.

We first consider cases where the sample size is small (n = 200) and there are r = 5 repeated

measurements on each part. Figure 5.3 shows the simulation-based biases for the estimators of

all the random-effects model parameters, for all 32 combinations of parameter values considered

in the simulation study. We note negligible biases for µ̂A, µ̂B , and π̂C , small biases for φ̂B , and

unreasonably large biases, in some cases, for φ̂A. The bias of φ̂A is larger than 0.1 when µA = 0.02,

φA = 0.1, and πC = 0.95. Recall that with the standard plan parts are randomly selected from

the population of manufactured parts, and thus, for small sample sizes and large conforming

rates, the expected number of nonconforming parts is small. Therefore, we expect difficulties

estimating µ̂A and φ̂A, as the estimation of these quantities is based on the number of times

nonconforming parts pass the BMS inspection. Furthermore, for small numbers of repeated

measurements, we expect to encounter additional problems estimating φ̂A and φ̂B . It seems
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Figure 5.3 Plots of Biases – Random-Effects Model with Standard Plan, n = 200, r = 5.

that for r = 5 repeated measurements and a sample size of n = 200 we are able to estimate with

reasonable accuracy all parameters except φA and φB . For n = 500 and r = 5 (results not shown

here), all parameters except for φA are estimated with good accuracy.

Next, we increase the number of repeated measurements to r = 10, for a sample size n = 200.

Although for r = 10 the bias of φ̂A, for cases where µA is small, and φA and πC are large, decreases

by half compared to the r = 5 case, we still do not gain enough accuracy to make the estimator

of φA useful. However, for r = 10 and n = 200, the estimators of µA, µB , φB , and πC are virtually

unbiased (results not shown here). After running more simulation studies for larger sample sizes,

we found that for a sample of size n = 2,000 and r = 10 repeated measurements we can estimate

with good accuracy all parameters including φA (results not shown here).

For all simulation studies, we also look at the standard errors of the estimates. Figure 5.4

shows the simulation-based standard errors for all estimates except for φ̂A, for n = 500 and

r = 10. For smaller sample sizes (e.g. n = 200) and r = 10 repeated measurements, the standard

errors of the estimates of µA and φB are too large to be useful. For example, for one of the cases

where µA = 0.02, the standard error of µ̂A is 0.02. We also looked at the case where n = 500 and
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Figure 5.4 Plots of Simulation-based Standard Errors – Random-Effects Model with Standard
Plan, n = 500, r = 10.

r = 5 and found that the standard errors are reasonably small for the estimates of µA, µB , φB ,

and πC , except when φB = 0.01. There, the standard errors of φ̂B are as large as the true value of

parameter. From now on, we focus on the case where all four parameters µA, µB , φB , and πC are

well estimated in terms of accuracy and precision (i.e. n = 500, r = 10). In Figure 5.4, we don’t

include the standard errors for φ̂A, as for these values of n and r , and some values of the model

parameters, this estimator is highly biased. All four estimators have reasonable precision, with

µ̂B having the smallest standard errors for the parameter values considered here.

Next, we compare the standard errors of the estimates obtained in the simulation studies

with the asymptotic ones. We are interested in finding the minimum combination of design

parameters so that the simulation-based standard errors match the asymptotic ones. We obtain

the asymptotic standard errors from the Fisher information matrix corresponding to the random-

effects likelihood function (5.10). The second derivatives of the log-likelihood function are

obtained using Maple software (Maplesoft, 2009) and they are too long to include here. The actual

functions representing the elements of the information matrix are written in the R environment

(R Development Core Team, 2010). For any given parameter values, we obtain each element of the
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Figure 5.5 Plots of Ratios Standard Errors – Simulation-based over Asymptotic - Random-Effects
Model with Standard Plan, n = 500, r = 10.

expected information matrix by summing the product of minus the value of the corresponding

second derivative of the log-likelihood and the corresponding probability that a part passes the

BMS inspection, over all possible values of si , i.e. 0, ..,r . For sample sizes as small as 500 and

ten repeated measurements (r = 10), the ratios of the simulation-based standard error over the

asymptotic one are close to 1 for all four parameter estimators, for most combinations of model

parameter values (Figure 5.5). The two cases where the asymptotic standard errors of φ̂B are not

close to the simulation-based ones (i.e. ratio is less than 0.9) happen when both φA and φB are

small (i.e. 0.01).

5.2.3 Fixed-Effects Model Estimators – Bias and Precision

For each sample simulated from the beta-binomial model (5.10), we also obtain the ML estimates

for α, β, and πC from the fixed-effects model (3.1), and we look at their biases and standard

errors. For each simulation run, the estimate for α is almost the same as the one for µA from

the random-effects model. We see similar results for β and µB , and for the two estimators of
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Figure 5.6 Plots of Ratios of Standard Errors – Simulation-based over Asymptotic – Fixed-Effects
Model Estimates with Standard Plan, n = 500, r = 10.

πC (results not shown here). Therefore, the fixed-effects estimators are almost unbiased for

reasonable sample sizes and number of repeated measurements (e.g. n = 500 and r = 10),

and their simulation-based standard errors are very close to the ones from the random-effects

model. There is one problem related to the precision of the fixed-effects model estimators.

The asymptotic-based standard errors for α and β derived from the fixed-effects model (3.1)

seriously underestimate the simulation-based standard errors. Figure 5.6 shows the ratio of

simulation-based over asymptotic standard errors based on the fixed-effects likelihood for α and

β to demonstrate the inadequacy of the fixed-effects model asymptotics in this situation.

5.2.4 Fixed-Effects Model Data

Our next step focuses on the case where the data come from a model with constant misclassifi-

cation probabilities α and β, i.e. a fixed-effects model as in Eq. (3.1) or random-effects model

with φA = φB = 0, and we fit both the fixed- and random-effects models. We are interested in

comparing the properties of the estimators from the two models, with emphasis on the precision.
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Figure 5.7 Contour Plots of Smoothed Biases – Random-Effects Estimators, when n = 200, r = 5,
φA = 0, φB = 0, and πP = 0.85.

We simulated 500 samples for each combination of α(µA) and β(µB ) shown in Figure 5.2, where

n = 200 and r = 5. As we expected, the fixed-effects estimators are unbiased (results not shown

here). Furthermore, the corresponding estimators from the random-effects model are also unbi-

ased (Figure 5.7) and they are as precise as the ones from the fixed-effects model (Figure 5.8). We

see the same results for larger values of the design parameters and πP (results not shown here).

Therefore, we conclude that, when we have repeated measurements by the BMS (r ≥ 2),

and we have reasons to suspect that there is variation in the misclassification rates, the random-

effects model should be used to get the appropriate measures of precision for the estimates of µA

and µB and to provide an idea of how variable the misclassification rates are. On the other hand,

if it happens that α and β do not vary from part to part, we can still safely use the random-effects

model, as its estimators are unbiased and there is no loss of precision when we are fitting this

more complicated model.

We can also examine the issue of varying misclassification probabilities by separately testing

the hypotheses H0 : φA = 0; HA : φA 6= 0 and H0 : φB = 0; HA : φB 6= 0. The likelihood ratio test
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Figure 5.8 Contour Plots of Ratios of Smoothed Standard Errors – Fixed-Effects over Random-
Effects Estimates, when n = 200, r = 5, φA = 0, φB = 0, and πP = 0.85.

statistic for the hypothesis H0 :φA = 0 is given by −2[l A(µ̂A,0)− l A(µ̂A, φ̂A)], with l A(µ̂A, φ̂A) de-

fined as in (5.11). Because φA is on the boundary of the parameter space, using the results of Self

and Liang (1987), the distribution of the test statistic under the null hypothesis is approximately

an equal mixture of a discrete random variable with probability 1 at the origin and a χ2
1 random

variable. Note that the numerator in the likelihood ratio statistic is the maximum value of the

log-likelihood for the fixed effects model (3.1), with µA replaced by α. Similar results apply for

testing the hypothesis H0 :φB = 0.

In conclusion, when we randomly sample parts from the population of manufactured

parts and the conforming rate is large, we need large sample sizes and number of repeated

measurements to estimate all random-effects model parameters with reasonable accuracy and

precision. φA is the hardest to estimate, as in the case of SP and πC close to 1, the expected

number of nonconforming parts in the sample can be unreasonably small. Also, we conclude

that the fixed-effects estimators have similar proprieties as the random-effects ones, except for

the fact that the asymptotic standard errors based on the fixed-effects model can substantially

underestimate the asymptotic standard deviations. When data come from a model with constant
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misclassification rates, i.e. φA = φB = 0, the random-effects model estimators have similar

properties as the fixed-effects ones, with virtually no loss of precision.

5.3 Random-Effects Model – Conditional Selection Plan with
Baseline Data

As discussed in Chapters 3 and 4, in industrial practice, there are many examples of high-volume

production processes where parts are systematically inspected by a BMS, especially in the cases

where parts are visually inspected by an automated BMS. In these situations, passed and failed

parts are segregated after measurement by the BMS. As well, the pass rate is recorded by hour,

shift or other fixed-time period. Therefore, we can independently select two random samples

from the available populations of previously passed and failed parts, i.e. use the conditional

selection plan, and then measure each part with the gold standard and then repeatedly with the

BMS. Additionally, we can augment the study data with the baseline information regarding the

number of passed parts out of a (large) number of parts routinely measured with the BMS.

In Chapter 3, we investigated the advantages of using a CS plan augmented by baseline

data, when we measure parts once with a gold-standard system and once or repeatedly with

the BMS. We demonstrated the gain in the precision of the estimators given by the CS plan with

baseline, in the context where we assumed constant misclassification probabilities α and β for

all nonconforming/conforming parts. Now, we are interested in investigating the effect of using

the CS plan with baseline on the characteristics of the estimators, when we assume α and β

vary within nonconforming/conforming parts. That is, we look at the bias and precision of a

random-effects model estimators when the CS plan with baseline data is used. Additionally,

since with a CS plan we have control over the proportion of previously passed parts in the sample,

f , using a CS can help increase the expected number of nonconforming parts in the sample,

and this way we might be able to produce useful estimates with smaller sample sizes than those

required by the SP.
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In the next subsection, we give the formulation of a beta-binomial random-effects model

when a CS plan with baseline is used. Then, we investigate the properties of the corresponding

estimators, with focus on accuracy and precision, and assess the effect of changing the design

parameters n, r , and the baseline size m, on the precision of the estimators. Finally, we compare

the precision of the random-effects model estimators given by a CS plan with baseline with the

ones given by the SP, for the same sample size and number of repeated measurements.

5.3.1 Model Formulation

Let Yi 0 = yi 0 denote the initial routine measurement for part i . We randomly sample nP parts

from the population of previously passed and nP̄ from the population of previously failed. Then

we measure each part once with the GS and r times with the BMS.

The contribution to the likelihood of any part i that passes si times in the assessment study

is:

Pr(Si = si , Xi = xi | Yi 0 = yi 0) = Pr(Si = si ,Yi 0 = yi 0 | Xi = xi )Pr(Xi = xi )

Pr(Yi 0 = yi 0)
(5.14)

Now, for a previously passed part, i.e. Yi 0 = 1, we can write the contribution to the likelihood

(5.14) as:

[
Pr(Si = si ,Yi 0 = 1 | Xi = 1)Pr(Xi = 1)

Pr(Yi 0 = 1)

]xi
[

Pr(Si = si ,Yi 0 = 1 | Xi = 0)Pr(Xi = 0)

Pr(Yi 0 = 1)

]1−xi

Using the distributions (5.1) and (5.3) for A and B , respectively, we can further write (5.14) as:

1

πp

Bet a(r − si +µB
1−φB
φB

, si +1+ (1−µB ) 1−φB
φB

)

Bet a(µB
1−φB
φB

, (1−µB ) 1−φB
φB

)
πC

xi

×

Bet a(si +1+µA
1−φA
φA

,r − si + (1−µA) 1−φA
φA

)

Bet a(µA
1−φA
φA

, (1−µA) 1−φA
φA

)
(1−πC )

1−xi

(5.15)
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Similarly, for a previously failed part the contribution to the likelihood is:

1

1−πp

Bet a(r − si +1+µB
1−φB
φB

, si + (1−µB ) 1−φB
φB

)

Bet a(µB
1−φB
φB

, (1−µB ) 1−φB
φB

)
πC

xi

×

Bet a(si +µA
1−φA
φA

,r − si +1+ (1−µA) 1−φA
φA

)

Bet a(µA
1−φA
φA

, (1−µA) 1−φA
φA

)
(1−πC )

1−xi

(5.16)

where πP = (1−µB )πC +µA(1−πC ). There are nP contributions as in (5.15) and nP̄ as in (5.16),

in the likelihood function. In addition to these contributions, for the CS plans considered here,

we also have the contribution from the baseline measurements:

Lb(πP ) ∝π
mP
P (1−πP )m−mP

where mP is the number of parts passing the initial inspection out of m parts.

As in the standard plan case, we maximize the overall likelihood function using Nelder-Mead

with the constraints as defined in the previous section.

5.3.2 Bias and Precision of the Estimators

To investigate the properties of the CS sampling plan, we simulate data from the beta-binomial

random-effects model, where parts are selected using a CS plan augmented with baseline data

of size m. We focus on the case where we only sample from the previously failed parts, i.e. f = 0

and thus nP = 0, nP̄ = n. If πC is large, as expected, then sampling from failed parts increases

the expected number of nonconforming parts in the sample. For a given sample size and model

parameter values, sampling parts from the population of previously failed gives the highest

expected proportion of nonconforming parts in the sample. In practice, it is convenient to use

failed parts in the assessment study as these parts are typically retained as scrap or for re-work.

However, depending on the parameter values, we may end up with more than half the parts

being nonconforming which suggests that µB and φB would become now the more difficult
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Figure 5.9 Plots of Biases – Random-Effects Model with Conditional Selection Plan, n = 200,
r = 5, m = 1,000.

parameters to estimate. However, the baseline data provide significantly more information about

µB than µA. Therefore, similar to the fixed-effects model case in Chapters 3 and 4, when using a

CS plan with baseline we are better off with f = 0 in terms of precision for all estimators, even

when this results in more nonconforming than conforming parts in the sample.

We start with small sample sizes (n = 200), numbers of repeated measurements (r = 5), and

baseline size (m = 1,000). We expect that increasing any of the design parameters n, r or m will

improve the performance of the estimates. For assessing the bias and precision of the estimators,

we look at pairs of small and large values of the model parameters, i.e. µA,µB = 0.02,0.1, φA,φB =
0.01,0.1, and πC = 0.85,0.95, and conduct a 25 factorial simulation study. For each combination

of the parameters, we determine the bias and standard error for each estimate, as well as the

ratio of the simulated over the asymptotic approximation of the standard errors. The results are

summarized in Figures 5.9, 5.10, and 5.11.

In Figure 5.9 we see there is negligible bias in any of the estimates except for φ̂A. However,

we note that the biases for the estimator of φA are generally much smaller than in the SP case,

for the same values of the design parameters (see Figure 5.3).
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Figure 5.10 Plots of Simulation Standard Errors – Random-Effects Model with Conditional
Selection Plan, n = 200, r = 5, m = 1,000.

The standard errors of the estimators of µA, µB , φB , and πC are reasonably small, as shown

in Figure 5.10, and are close to the asymptotic ones (Figure 5.11), for most cases except for a

few cases where the ratios for µ̂A are larger than 1.1, and some cases where the ratio for φ̂B are

smaller than 0.8. Therefore, for design parameters as large or larger than the ones used in the

experiment, we can safely use the asymptotic approximation as a measure of the precision of the

estimators, when the true values are close to those tested.
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Figure 5.11 Plots of Ratios of Standard Errors – Simulation over Asymptotic – Random-Effects
Model with Conditional Selection, n = 200, r = 5, m = 1,000.
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Figure 5.12 Effect of Changing the Baseline Size m on Standard Error of the Estimators – Random-
Effects Model with Conditional Selection, µA = 0.05, φA = 0.1, µB = 0.05, φB = 0.1, and πC = 0.9.

5.3.3 Effect of Changing the Design Parameters

With a conditional selection plan augmented with baseline data, the design parameters that can

be determined prior to the assessment study are the number of parts used for the study n, the

number of repeated measurements r , and the total number of parts routinely measured with the

BMS, i.e. the baseline size m. We are interesting in assessing the effect of changing these design

parameters on the precision of the estimators from the random-effects model. We focus on the

case where we choose only previously failed parts, i.e. f = 0.

Based on the results from the previous section, in our investigation, we look at parameter

values for which the asymptotic standard errors represent good approximations. Also, we look

at sample sizes and numbers of repeated measurements as large or larger than the ones in the
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experiment, i.e. n ≥ 200 and r ≥ 5.

Figure 5.12 shows the change in the asymptotic standard errors of µ̂A, µ̂B , φ̂B , and π̂C , as the

baseline size increases from 100 to 10,000, for different sample sizes and numbers of repeated

measurements. The precision of φ̂A is not included, as we already know that we need larger

sample sizes to make the asymptotic approximation work for this estimator. In the plots, the

baseline size m is represented on the horizontal axis on a logarithm scale. First, we note that

increasing the baseline size does not affect the precision of µ̂A, for any sample size or number of

repeated measurements considered here. For the estimate of µB , there is a dramatic increase

in precision as the baseline size increases, with a large drop (75%) in standard errors when

m increases from 100 to 2,000. We see a similar result for the precision of π̂C . Increasing the

baseline size has a small impact on the precision of φ̂B , with the largest gain when m increases

from 100 to 2,000. We also note that for all estimates, the standard errors approach a limit as m

gets larger, i.e. m ≥ 10,000. Letting m go to infinity corresponds to the situation where the pass

rate πP is known.

In Figure 5.13, we look at the effect of changing the sample size n on the standard errors

of the estimates, when r and m are held constant. For the estimate of µA, we note that the

standard errors are identical for different values of m (solid, dashed and dotted lines of the same

color in the first panel of Figure 5.13 overlap), and they are changing at a 1/
p

n rate. For the

estimates of µB and πC , when m = 100, the effect of changing n depends on the number of

repeated measurements r (see top black and green solid lines in the second and fourth panels of

Figure 5.13). When m is larger, the curves of the standard errors are identical for r = 5 and r = 10.

That is, the effect of changing n does not depend on r anymore. In the case of φ̂B , the relative

decrease in standard errors is similar for different values of r and m, with a slightly steeper slope

for r = 5 and large values of m (see black dotted and dashed lines in the third panel of Figure

5.13).

Regarding the effect of changing the number of repeated measurements r , we note in Figure

5.14 that the curves for the standard errors of µ̂A for different sample sizes n have similar slopes,

with a slightly larger relative decrease for smaller sample sizes (n = 200). Again, we see no
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Figure 5.13 Effect of Changing the Sample Size n on Standard Error of the Estimators – Random-
Effects Model with Conditional Selection, µA = 0.05, φA = 0.1, µB = 0.05, φB = 0.1, and πC = 0.9.

difference in the curves for different baseline sizes (solid, dotted and dashed lines of the same

color in the first panel of Figure 5.14 overlap). For the estimates of µB and πC , when the baseline

size is small, i.e. m = 100, there is a small effect of changing r on the standard errors, especially

for large sample sizes, i.e. n = 1,000 (see top solid lines in the second and fourth panels of Figure

5.14). When the baseline size is large, increasing the number of repeated measurements does

not affect the precision of µ̂B and π̂C . For the estimator of φB , the curves have similar slopes,

with a slightly steeper slope for smaller sample sizes, i.e. n = 200 (see black solid, dashed and

dotted lines in the third panel of Figure 5.14).
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Figure 5.14 Effect of Changing the Number of Repeated Measurements r on Standard Error of the
Estimators – Random-Effects Model with Conditional Selection, µA = 0.05, φA = 0.1, µB = 0.05,
φB = 0.1, and πC = 0.9.

5.4 Comparison of Standard Plan and Conditional Selection Plan
with Baseline

In this section, we compare the precision of the estimators from a beta-binomial model with

conditional selection plan with baseline data to the ones given by the same random-effects

model with a standard plan. For the conditional selection plan, we sample parts only from the

population of previously failed parts, i.e. f = 0, and augment the study data with m = 1,000

baseline data observations. Since we assume the baseline measurements are available from

routine inspection, the conditional and standard sampling plans have the same total number of

measurements n × r . The following comparisons are made for the case where both sampling

schemes yield virtually unbiased estimators. That is, we look at relatively large sample sizes
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Figure 5.15 Plots of Ratios of Asymptotic Standard Deviations – Standard Plan over Conditional
Selection with m = 1,000 and f = 0, for the estimators of µA and µB .
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Figure 5.16 Plots of Ratios of Asymptotic Standard Deviations – Standard Plan over Conditional
Selection with m = 1,000 and f = 0, for the estimators of φB and πB .

(e.g. n = 500), so that the SP estimators are unbiased. For the same combination of model

parameter values, we need smaller n to obtain unbiased estimators with the CS plan. However,

for “scientific” reasons, we compare the precision of the estimators from the two sampling plans,

for sample sizes large enough to make both sets of estimators unbiased.

For these comparisons, we again use a factorial structure, where we look at all possible

108



1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Ratios of se(µ̂B)

R
at

io
s

r = 5 r = 10 r = 5 r = 10

●
●●
●
●
●●
●

●
●
●
●
●
●
●
●

●
●

●●

●
●

●●

●
●

●●

●
●

●●

●●
●●
●●
●●

●
●●
●
●
●●
●

●●
●●
●●
●●

●
●

●●

●
●

●●

●●●●●
●
●●

●
●

●●
●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●
●
●●●
●

●●●●●
●
●●
●●

●●
●●

●●

●●

●●

●●

●●

n = 500 n = 1,000

Figure 5.17 Plots of Ratios of Asymptotic Standard Deviations – Standard Plan over Conditional
Selection with m = 10,000 and f = 0, for the estimators of µB .

combinations of n = 500,1,000, r = 5,10, and µA = 0.02,0.1, µB = 0.02,0.1, φA = 0.01,0.1, φB =
0.01,0.1, and πC = 0.85,0.95. Also, we use the asymptotic standard errors of the estimates of

µA, µB , φB , and πC , as we have seen in the previous sections, for these design parameters and

parameter values, the asymptotic approximations are reasonable.

Figures 5.15 and 5.16 show the ratios of asymptotic standard errors of µ̂A, µ̂B , φ̂B , and π̂C ,

respectively, for the standard plan compared to the conditional selection plan with f = 0 and

m = 1,000. Ratios are larger than 1 for the cases where the CS plan estimators are more precise

than the SP ones. We note that the CS gives better estimators for µA and πC , for all combinations

of model parameter values and choices of r and n. Furthermore, for r = 5 and n = 500, the ratios

for the standard errors of π̂C are larger than 1.5, whereas for µ̂A, the ratios are larger than 1.5

for all values of r and n. For φ̂B , the CS plan gives more efficient estimators for all cases where

the number of repeated measurements is small (r = 5), and in most cases for r = 10. However,

as shown in Figure 5.15, for µ̂B , the ratios of asymptotic standard errors are larger than 1 only

for some cases where the sample size and the number of repeated measurements are small , i.e.

n = 500 and r = 5. For the estimator of µB , all the cases where the CS estimators are more precise
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than the SP ones happen when the value of µB is small (i.e. 0.02).

We expect to get more information about µA with conditional sampling since with this

scheme we will likely select more nonconforming parts. The increased precision for the esti-

mators of µB and φB , for some model and design parameters, is perhaps surprising. Here it

is the baseline measurements that help, as shown in Figures 5.13 and 5.12. The baseline data

provide an estimate of πP = (1−µB )πC +µA(1−πC ), a function of µA, µB , and πC . Since we are

considering situations where πC is large and µA is relatively small, πP is strongly influenced by

µB and πC . In this case, the additional information about µB and πC from the baseline data

outweighs the lost information due to having fewer conforming parts in the sample. To further

illustrate this argument, we obtained the ratios of asymptotic standard errors for the estimator

of µB , for the case where we augment the CS plan with m = 10,000 baseline measurements. In

Figure 5.17, we note that the CS plan with f = 0 and m = 10,000 gives estimators for µB with

similar or better precision than the SP.

5.5 Summary

In this chapter, we introduce the idea of varying misclassification rates of the binary measure-

ment system that leads to inadequacy of conditional independence assumption. We give a brief

overview of proposed methods that allow for variation in consumer’s and producer’s risks within

nonconforming/conforming parts. Next, we propose a new random-effects model that assumes

Beta distributions for the misclassification rates α and β. We first investigate the properties

of the model parameters in the case where parts are randomly selected from the population

of manufactured parts, i.e. we use the standard plan. We obtain biases and standard errors

from simulation studies and conclude that, for the parameter values considered here, we need

large sample sizes (e.g. n = 2,000) and numbers of repeated measurements (e.g. r = 10) to get

unbiased estimators for all model parameters, including the variation parameters φA and φB .

However, we only need n = 500 and r = 5 to estimate with good accuracy and precision all the
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main parameters µA, µB , and πC .

For the same simulated data, we also obtain the MLEs for the fixed-effects model parameters

and conclude that the fixed-effects estimates for α and β are almost identical to the ones for µA,

µB . We find that, although the estimates from the two models are very similar, the asymptotic

standard errors given by the fixed-effects model are not good approximations. Therefore, we

recommend fitting the random-effects model as it also provides information about the variation

parameters φA and φB . In the case where data are generated from a fixed-effects model, fitting

the random-effects model leads to unbiased estimators and virtually no loss of precision when

compared to the fixed-effects estimators.

Next, we investigate the random-effects model for the case where parts are randomly

selected from the population of previously failed parts (i.e. the conditional selection plan with

f = 0) and we supplement the study data with m = 1,000 baseline measurements. We find that,

for relatively small sample sizes (n = 200) and numbers of repeated measurements (r = 5), the CS

gives estimators with reasonable accuracy and precision for all model parameters except for φA.

When we compare the precision of the estimators from a random-effects model with CS with

the ones given by the SP, we conclude that the CS plan yields more precise estimators for µA, φB ,

and πC . When we increase the baseline size to m = 10,000, the CS plan estimators are uniformly

better than the SP ones. Therefore, we recommend using a conditional selection plan with parts

sampled from the population of previously failed parts augmented with at least m = 1,000 parts.

Using a larger number of baseline measurements increases the precision of the estimator of µB ,

although, even for smaller baseline sizes, the large gain in the precision of µ̂A may outweigh the

small loss in the precision of µ̂B .

We also look at the effect of the design parameters n, r , and m on the precision of the

estimators from a random-effects model with CS and baseline measurements.

The main results presented in this chapter are also included in the paper “Assessing a Binary

Measurement System with Varying Misclassification Rates when a Gold Standard is Available” by

Danila, Steiner, and MacKay (2011), submitted to “Technometrics” in August 2011.
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Chapter 6

Random-Effects Model – No Gold-Standard
System Available

In the case where a gold-standard system is not available, the true state of a part, i.e. conforming

or nonconforming, is unknowable. When parts are randomly selected from the population of

manufactured parts, we can write the probability that the outcomes of measuring part i r times

with the BMS are yi 1, . . . , yi r as:

Pr(Yi 1 = yi 1, . . . ,Yi r = yi r ) = Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | Xi = 1)Pr(Xi = 1)+

Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | Xi = 0)Pr(Xi = 0)

If we further assume that the misclassification rates α and β are constant for all nonconform-

ing/conforming parts, we use can a latent class model to estimate the parameters of interest (see

Eq. (4.1)).

In the case where the misclassification rates vary from part to part, we can adopt a random-

effects model using the assumptions (5.3), (5.4), and (5.1), (5.2) from Chapter 5, and then get

the two probabilities Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | Xi = 1) and Pr(Yi 1 = yi 1, . . . ,Yi r = yi r | Xi = 0)
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by integrating over the possible values of β and α, respectively. In this chapter, we investigate

the properties of the estimators from a random-effects model when there is no available gold

standard and parts are repeatedly measured only with the BMS. We first look at the case where

parts are randomly selected, i.e. we use the standard plan (SP). We compare the properties of the

estimators from both the fixed-effects model (4.1) and the random-effects model, in the case

where misclassification rates are not constant. Then, we investigate the case where α and β are

constant and we fit the random-effects model. Next, we use the conditional selection (CS) plan

augmented with baseline data and look at the properties of the estimators of the random-effects

model and compare them to the ones given by a standard plan. We look at the effect of changing

the design parameters n, r , and m on the precision of the estimators from a CS plan and then

give planning recommendations.

6.1 Random-Effects Model – Standard Plan

6.1.1 Model Formulation

When n parts are randomly selected from the population of manufactured parts, each part is

measured r times with the BMS and we record the total number of times each part passes the
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inspection as si = ∑r
j=1 yi j , i = 1, . . . ,n, we can write the likelihood function for the random-

effects model as:

L(µA,µB ,φA,φB ,πC |s1, . . . , sn) ∝
n∏

i=1
Pr(Si = si )

=
n∏

i=1

Bet a(r − si +µB
1−φB
φB

, si + (1−µB ) 1−φB
φB

)

Bet a(µB
1−φB
φB

, (1−µB ) 1−φB
φB

)
πC +

+
Bet a(si +µA

1−φA
φA

,r − si + (1−µA) 1−φA
φA

)

Bet a(µA
1−φA
φA

, (1−µA) 1−φA
φA

)
(1−πC )


(6.1)

The random-effects model (6.1) depends only on the number of passes s1, . . . , sn in the r repeated

measurements. There are r +1 possible values for each si , and the probabilities associated with

each possible value must add to 1. The model has five parameters (µA, µB , φA, φB , πC ) and to be

identifiable we require r ≥ 5. If r = 4, there is an infinite number of parameter values that give the

same distribution for (Yi 1,Yi 2,Yi 3,Yi 4). Also, from the likelihood, it is clear that for identifiably

we need the sensible constraint µA < 1−µB , similar to that required for the fixed effect model, i.e.

α< 1−β. That is, we assume that the average pass rate for nonconforming parts is less than the

average pass rate for conforming parts. Van Wieringen and Van den Heuvel (2005) investigate the

parameters identifiability issue for the fixed-effects model and obtain the constraint α< 1−β
and the minimum number of measurements r for different cases, e.g. single or multiple BMSs

under study, etc. Similar rigorous derivations can be attempted for the random-effects model

and further research on this topic is needed.

Also, similarly to the case where a gold-standard system is available, we note that if we

hold µA and µB fixed and let φA and φB approach zero, Pr(Si = si ) in (6.1) approaches
(n

r

)
[(1−

β)siβr−siπC +αsi (1−α)r−si (1−πC )], the fixed-effects (latent class) model (4.1), with α=µA and

β=µB . That is, the fixed-effects is a limiting case of the random-effects model.

We can estimate the five parameters by maximizing the log-likelihood using a standard
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approach such as Nelder-Mead (Nelder and Mead, 1965).

6.1.2 Bias and Precision

We investigate the properties of the estimators from a random-effects model through a simulation

study with a 25 factorial structure. We use two values for each model parameter, with µA,µB =
0.02,0.1, φA,φB = 0.01,0.1, and πC = 0.85,0.95. For µA, µB , and πC , the values considered in the

simulation study are the minimum and maximum values from the grid in Figure 5.2.

As with the fixed-effects model in Chapter 4, we expect that when we use the SP and the

conforming rateπC is large, we need a large sample size n and number of repeated measurements

r to get unbiased estimators with useful precision. In the case of the random-effects model,

we expect to need even larger total number of measurements n × r , as this model has a higher

degree of complexity than the fixed-effects model. Therefore, in the simulation study, we focus

on cases where the number of repeated measurements is large (e.g. r = 10) and we have different

sample sizes (e.g. n = 250,500,1,000).

For a given sample size and for each combination of parameter values, we run 500-repeat

simulations. For each run, we get the ML estimates for both the fixed- and random-effects

models parameters, using the Nelder-Mead optimization algorithm in the R Environment (R

Development Core Team, 2010). For the random-effects model, we maximize the likelihood

function subject to the constraints µA+2φA−µAφA ≤ 1 andµB +2φB −µBφB ≤ 1, needed to avoid

the u-shaped Beta distribution, and µA +µB < 1, for identifiability. For the fixed-effects model,

we maximize the likelihood under the constraint α+β< 1. As in Chapter 4, we use an additional

step in the optimization algorithm that checks whether the maximum log-likelihood value found

by the Nelder-Mead algorithm when πC < 1 is larger than the one when πC = 1, both values being

found by the Nelder-Mead algorithm. For the random-effects model, the log-likelihood with

πC = 1 contains only two parameters, µB and φB , and if the maximum value is larger than the

one with πC < 1, we skip to the next run. This additional step avoids cases where the global

optimum is not found by the algorithm as a result of not having sufficient nonconforming parts
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in the sample. This occasionally happened when the sample size is small, πC is close to the upper

boundary 1, and we sample parts randomly from the population of manufactured parts, i.e. we

use the standard plan (SP).

Also, we derive the asymptotic standard deviations of the estimators using the expected

Fisher information matrix. The second derivatives of the log-likelihood functions are obtained

using Maple (Maplesoft, 2009) and they are too long to be included here. The actual functions

representing the elements of the information matrix are written in the R Environment (R Develop-

ment Core Team, 2010). For given parameter values, we obtain each element of the information

matrix by summing up the product of minus the value of the corresponding second derivative of

the log-likelihood and the corresponding probability that a part passes the BMS inspection, over

all possible values of si , i.e. 0, ..,r .

In this section, we focus on estimating the accuracy and precision of the random-effects

model estimators, and also on comparing the standard errors as given by the simulation study

to the asymptotic ones. We are interested in finding the minimum sample size for which the

biases are negligible, the standard errors are small enough to be useful, and the simulation-based

standard errors match the asymptotic ones.

We start by looking at the results of the simulation study for n = 250. We summarize the

results by plotting the biases (Figure 6.1), simulation-based standard errors (Figure 6.2) and ratios

of simulation versus asymptotic standard errors (Figure 6.3), for all combinations of parameter

values considered in the study.

We note relatively large biases for µ̂A and unreasonably large biases for φ̂A. Most cases when

µ̂A is biased (e.g bias larger than 0.01) arise when φB and πC are large. Also, the simulation-based

standard errors for µ̂A are as large as 0.1, whereas for φ̂A standard errors are as large as 0.2. These

standard errors as too large to be useful, considering the small parameter values used in the

study (µA = 0.02,0.1 and φA = 0.01,0.1). More positively, µ̂B and π̂C are virtually unbiased, with

small simulation-based standard errors. φ̂B has small biases and relatively small standard errors.

In Figure 6.3, we note that the simulation-based standard errors match the asymptotic ones for
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Figure 6.1 Plots of Biases – Random-Effects Model with Standard Plan, n = 250, r = 10.

µ̂B , φ̂B and π̂C , whereas for µ̂A and φ̂A the two values are quite different, especially for φ̂A.

Next, we increase the sample size and run simulation studies for the same combinations

of parameter values. We still find large biases and standard errors for µ̂A and φ̂A, for sample

sizes n = 500,1,000 (results not included here). Figure 6.4 shows the biases of the estimators for

n = 2,000 and r = 10. Although the biases of µ̂A and φ̂A reduce drastically compared to the case

where n = 250, we note there are still some large values, especially for the estimator of φA (bias

up to 0.085). For µ̂A, the large biases arise when the values of µB , φA, φB , and πC are large, i.e.

0.1, 0.1, 0.1, and 0.95, respectively.

Regarding the simulation-based standard errors for the case where n = 2,000, when we

compare Figure 6.5 with Figure 6.2, we note that there is a substantial gain in precision for all

estimators, except for φ̂A. When we increase the sample size from 250 to 2,000, the largest stan-

dard error for φ̂A only decreases from 0.2 to 0.17. The ratios of simulation-based to asymptotic

standard errors for µ̂A are close to 1 for most combinations of parameter values, although there

are still few cases where the ratio is as high as 1.7 (results not shown here).
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Figure 6.2 Plots of Simulation-based Standard Errors – Random-Effects Model with Standard
Plan, n = 250, r = 10.
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Figure 6.3 Plots of Ratios of Standard Errors – Simulation over Asymptotic – Random-Effects
Model with Standard Plan, n = 250, r = 10.
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Figure 6.4 Plots of Biases – Random-Effects Model with Standard Plan, n = 2,000, r = 10.
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Figure 6.5 Plots of Simulation-based Standard Errors – Random-Effects Model with Standard
Plan, n = 2,000, r = 10.
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Figure 6.6 Plots of Biases – Fixed-Effects Model with Standard Plan, n = 250, r = 10.

6.1.3 Fitting the Fixed-Effects Model to Random Effects Data

For each run in the simulation studies discussed above, aside from the random-effects model

parameters, we also estimate the parameters from the fixed-effects model (4.1). The results

are quite different than the ones in Chapter 5, where a gold-standard system is used in the

assessment study, and the corresponding fixed-effects estimators are unbiased. In the case

where a gold standard is not available, the fixed-effects estimators are highly biased, as shown in

Figure 6.6. Unlike the case of random-effects model estimators, the biases of the fixed-effects

estimators do not substantially reduce when we increase the sample size to 2,000, especially for

α̂ (results not shown here).

6.1.4 Fitting the Random-Effects Model to Fixed Effects Data

Next, we investigate the properties of the random-effects model estimators, when we fit the

random-effects model to data from an assessment study where the misclassification rates are

constant for conforming/nonconforming parts. As in Chapter 5, we are interested to see whether
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Figure 6.7 Plots of Biases – Fixed-Effects Model with Standard Plan, n = 250, r = 10, φA = 0,
φB = 0.

fitting a random-effects model produces estimates with the same accuracy and precision as

the fixed-effects model. We first look at a case with a relatively small sample size (n = 250)

and a large number of repeated measurements (r = 10). We simulate data from a fixed-effects

model over a grid of values µA =α= 0.02,0.1, µB =β= 0.02,0.1, and πC = 0.84,0.94, as in Figure

5.2. We fit both fixed- and random-effects models and find the ML estimates using the Nelder-

Mead algorithm in the R environment, with the additional step where we check the value of

the likelihood function at π̂C = 1. From Figure 6.7 that shows the bias results, we note that the

random-effects model gives unbiased estimators for µB , and there is at most a small bias for µA

andπC . Also, as shown in Figure 6.8, the simulation-based standard errors for the random-effects

estimators are generally close to the ones given by the fixed-effects model. The only exception

is for µ̂A and π̂C , when µB and πC are large (upper part of the grid). For these cases, fitting the

random-effects model leads to some loss of precision in estimating µA = α and surprisingly

some gain in estimating πC . We ran similar simulation studies for larger sample sizes and found

out that the bias and loss in precision for the estimators given by the random-effects model

disappear for sample sizes larger than 1,000. These results are different than those in Chapter 5,

where a gold-standard system is available. There, fitting the random-effects model generated
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Figure 6.8 Plots of Ratios of Standard Errors - Fixed- vs. Random-Effects Model with Standard
Plan, n = 250, r = 10, φA = 0, φB = 0.

estimators with the same accuracy and precision as the ones from a fixed-effects model, even

for small sample sizes (i.e. n = 200). We mentioned before that the fixed-effects model is a

limiting case of the random-effects model, with φA and φB approaching 0. In order to test

whether the misclassification rates are constant, we need to develop a statistical test for the

hypothesis H0 :φA =φB = 0. Self and Liang (1987) discuss several likelihood-ratio tests when the

true parameter is on the boundary of the parameter space. However, unlike in the case where a

gold standard is available and we have two separate beta-binomial distributions, their results are

not suitable for the “no gold standard” case. More work has to be done on designing a formal

statistical test for the hypothesis H0 :φA =φB = 0, in the case where a gold-standard system is

not available.

After investigating the properties of the random- and fixed-effects estimators from a stan-

dard plan in the context where the misclassification rates are not constant, we conclude that, for

high quality processes, i.e. πC close to one, the standard assessment plan is not practical. It re-

quires very large sample sizes to produce useful and reliable estimates of the primary parameter

µA. The problem occurs because we need n very large in order to get sufficient nonconforming
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parts in the sample. Also, we conclude that using the fixed-effects model with the standard plan

can produce badly biased estimators of the consumer’s and producer’s risks if the misclassifica-

tion rates vary from part to part. In the case where the misclassification rates are constant and

the sample sizes are small, when we fit the random-effects model there are some small biases for

the estimators of µA (or α in this case) and πC , for large values of conforming rate πC and β.

6.2 Random-Effects Model – Conditional Selection with Base-
line Data

To address the requirement of extreme sample sizes with the standard plan when πC is close to

one, we explore conditional sampling where we randomly select parts from the populations of

previously passed and failed parts. In particular, to obtain more nonconforming parts in the

sample, we over-sample from the population of previously failed parts. We also augment the

assessment study with baseline data, which are available from routine inspection of parts by the

studied BMS.

6.2.1 Model Formulation

With a conditional selection plan, we randomly sample nP parts from the population of previ-

ously passed and nP̄ from the population of previously failed. Then, we measure each part r

times with the BMS.

For a previously passed part, i.e. Yi 0 = 1, we can write the contribution to the likelihood as:

Pr(Si = si ,Yi 0 = 1 | Xi = 1)Pr(Xi = 1)+Pr(Si = si ,Yi 0 = 1 | Xi = 0)Pr(Xi = 0)

Pr(Yi 0 = 1)
(6.2)

Using the two Beta distributions (5.1) and (5.3) for A and B , respectively, we can further write 6.2
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as:

(n
k

)
πP

Bet a(r − si +µB
1−φB
φB

, si +1+ (1−µB ) 1−φB
φB

)

Bet a(µB
1−φB
φB

, (1−µB ) 1−φB
φB

)
πC+

Bet a(si +1+µA
1−φA
φA

,r − si + (1−µA) 1−φA
φA

)

Bet a(µA
1−φA
φA

, (1−µA) 1−φA
φA

)
(1−πC )

 (6.3)

Similarly, for a previously failed part the contribution to the likelihood is:

(n
k

)
1−πP

Bet a(r − si +1+µB
1−φB
φB

, si + (1−µB ) 1−φB
φB

)

Bet a(µB
1−φB
φB

, (1−µB ) 1−φB
φB

)
πC+

Bet a(si +µA
1−φA
φA

,r − si +1+ (1−µA) 1−φA
φA

)

Bet a(µA
1−φA
φA

, (1−µA) 1−φA
φA

)
(1−πC )

 (6.4)

For the CS plans augmented with baseline data, we also have the contribution:

Lb(πP ) ∝π
mP
P (1−πP )m−mP

where mP is the number of parts passing the initial inspection out of m, and πP = (1−µB )πC +
µA(1−πC ). The overall likelihood function is a product of nP terms as in (6.3), nP̄ terms as in

(6.4), and the baseline likelihood function.

6.2.2 Bias and Precision of the Estimators

We conduct simulation studies for different CS plans with baseline data, similar to the ones for

the SP. Each study has a 25 factorial structure, where we vary the model parameters µA = 0.02,0.1,

µB = 0.02,0.1, φA = 0.01,0.1, φB = 0.01,0.1, and πC = 0.85,0.95. We look at cases where we

randomly select parts only from the population of previously failed parts, i.e. f = 0, and we

measure each part r = 10 times with the BMS. We add baseline data of size m = 1,000 and look
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Figure 6.9 Plots of Biases – Random-Effects Model with Conditional Selection Plan, n = 250,
r = 10, m = 1,000.

at sample sizes of n = 250,500,1,000. We maximize the overall likelihood function numerically,

using a Nelder-Mead algorithm under the constraints µA +µB < 1, µA +2φA −µAφA < 1, and

µB +2φB −µBφB < 1. We use 500 simulation runs for each combination of parameter values, for

a given sample size, r = 10 and m = 1,000. Then, we obtain the ML estimates for both fixed- and

random-effects models parameters. For each combination of parameter values, we estimate the

biases and get the standard errors of the estimates.

Figure 6.9 shows the estimated biases for all random-effects estimators, for n = 250. We note

that there is some bias for µ̂A (up to 0.018) and large bias for φ̂A (up to 0.067) that arise when all

parameters are at their highest value. The estimators of µB and πC are unbiased, whereas φ̂B has

some small bias. We also look at the fixed-effects estimators (results not shown here), and find

very large biases for the estimator of µB (up to 0.05) and some bias for the estimators of µA and

πC .

However, the random-effects estimators for µA and φA when we use a CS plan with f = 0

and m = 1,000 are overall much more accurate than the ones from a SP, for the same sample size

n = 250. Recall that for the SP with n = 250, biases for µ̂A were as high as 0.036, and for φ̂A as
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Figure 6.10 Plots of Simulation-based Standard Errors – Random-Effects Model with Conditional
Selection Plan, n = 250, r = 10, m = 1,000.

high as 0.136 (see Figures 6.1 and 6.9). Using the CS plan leads to a decrease in bias of almost

50%.

Using a CS plan with f = 0 and baseline of size m = 1,000 gives estimators with reasonable

precision, including µ̂A. Except for the cases where all parameters are at their highest values, the

simulation-based standard errors for µ̂A are less than 0.025, which is a substantial improvement

compared to the SP, where standard errors go as high as 0.1 (Figure 6.2).

However, the estimators for µA given by the SP with n = 250 were highly biased for some

combinations of the parameter values, and comparing their precision with the one given by the

CS plan is not relevant. Therefore, we compared the precision of the estimators from SP and CS

with f = 0 and m = 1,000 for larger sample sizes, i.e. n = 1,000, so that we have approximately

unbiased estimators of µA, µB , φB , and πC , for both plans. We made this comparison more for

“scientific” reasons, as in practice we would always recommend using a selection plan that needs a

smaller sample size in order to yield unbiased estimators, that is a CS plan with f = 0 and baseline.

Figure 6.11 shows the ratios of the simulation-based standard errors for the SP estimates to the

CS ones. We note that the CS plan substantially improves the precision of the estimator of µA for
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Figure 6.11 Plots of Ratios of Standard Errors – SP over CS with f = 0 and m = 1,000 – Random-
Effects Model with n = 1,000, r = 10.

all combinations of parameter values . The CS plan also gives better precision than the SP for π̂C ,

except for few cases where the two plans have similar performance. The situation is different for

the estimator of µB , which has a better precision when we use the SP, for almost all combinations

of parameter values. When parts are selected only from the population of previously failed parts

(CS plan with f = 0) the expected number of conforming parts in the sample is (much) smaller

than in the case where parts are randomly sampled from the population of manufactured parts

(SP). Therefore, we expect that µ̂B would have better precision with a SP plan. However, in the

previous chapters, we noted that adding the information about the pass rate provided by the

baseline measurements substantially improves the precision of µ̂B (or β̂ in the fixed-effects

model case). The baseline data provide an estimate of πP = (1−µB )πC +µA(1−πC ). As in the

cases considered here πC is large and µA is small, thus having an estimate of πP provides a

constraint for the estimates of µB and πC , and hence better precision for those parameters.

Therefore, we increase the baseline size to m = 5,000 and compare the precision of µ̂B given by

the SP versus the CS plan. There are fewer cases where the SP gives more precise estimators than

the CS plan (results not shown here), and all of them happen when φB = 0.1. Next, we increase
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Figure 6.12 Plots of Ratios of Standard Errors – SP over CS with f = 0 and m = 10,000 – Random-
Effects Model with n = 1,000, r = 10.

the baseline size to m = 10,000 and we note in Figure 6.12 that the CS plan gives more precise

estimators for µB , for almost all combinations of parameter values. The same results apply to the

estimator of φB . However, no matter the sample size, µB is generally better estimated than µA;

therefore, for some combinations of parameter values, with the CS plan with f = 0 and baseline

we might lose some precision for µ̂B , but we gain a lot of precision for µ̂A.

We also compare the simulation-based standard errors with the asymptotic ones. For small

sample sizes (n = 250), the asymptotic results do not provide good approximations (results

not shown here). We look at larger sample sizes, and although the asymptotic approximations

work better, there are still some cases where they underestimate the standard errors of µ̂A

and φ̂A (see Figure 6.13). In the case where we have to analyze data from a BMS assessment

study and are interested in getting the ML estimates of the random-effects model parameters

and their corresponding standard errors, especially for small sample and baseline sizes, we

recommend using nonparametric or parametric bootstrapping techniques as proposed by Efron

and Tibshirani (1994), and De Menezes (1999). In the nonparametric bootstrapping case, we

generate new data by randomly drawing with replacement n parts from the initial sample and
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Figure 6.13 Plots of Ratios of Standard Errors – Simulation over Asymptotic – Random-Effects
Model with Conditional Selection Plan, n = 1,000, r = 10, m = 1,000.

then get the ML estimates based on the new sample. Note that, for each re-sampled part i , we

use the initial number of passes out of r measurements si . The procedure is repeated B times

(B ≥ 500). The standard errors of the estimates are given by the sample standard deviations based

on the new B samples. In the parametric bootstrapping case, we estimate the random-effects

model parameters from the original sample and then we generate a random sample of the same

size as the original one, where both the true quality status x and the number of passes s are

generated for each of the n parts. However, in the ML estimation we only use the total number of

passes si , i = 1, . . . ,n.

We conclude that, for most combinations of parameter values, the CS plan with f = 0 and

m = 1,000 works reasonably well even for small sample sizes (n = 250). This, along with the fact

that the CS plan with f = 0 augmented with baseline data is easy to implement, gives a clear

advantage to the CS plan compared to the standard plan, where we need (much) larger sample

sizes to get unbiased estimators. This design also yields useful standard errors for the main

parameters µA, µB , and πC .
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Figure 6.14 Plots of Biases – Random-Effects Model with Standard Plan Using the Ad Hoc Proce-
dure, n = 250, r = 10.

6.2.3 Possible Solution to Large Biases of the Random-Effects Model Estima-
tors – Constrained Random-Effects Model

In the previous sections, we concluded that the estimators of µA and φA given by a random-

effects model with a standard plan and small sample sizes were highly biased, especially for large

values of φB and πC . Also, we found that the estimators given by a CS plan with baseline data

were biased for small sample sizes, although the biases were smaller than in the SP case. For both

selection plans, we looked at the cases where the estimates of both µA and φA were unreasonably

large and found out that these estimates were actually on the boundary µA +2φA −µAφA = 1.

We propose to handle these cases where the estimates are on the boundary, by re-fitting the

random-effects model with the further constraint that φA =φB =φ. The result of this proposal

is that, when needed, we borrow strength from the better preforming estimate of φ̂B . Using a

model with a common φ is similar to the so-called 2LC R1 model described by Qu et al. (1996),

and equivalent to the Dirichlet model of Fujisawa and Izumi (2000). We demonstrate the effect

of this ad hoc procedure in Figure 6.14, for the SP, and in Figure 6.15, for the CS plan with f = 0,

m = 1,000, both plans with a sample size of n = 250 and a number of repeated measurements
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Figure 6.15 Plots of Biases – Random-Effects Model with Conditional Selection Plan Using the
Ad Hoc Procedure, n = 250, r = 10, m = 1,000.

r = 10. For both SP and CS, we note that the biases of µ̂A are generally smaller than in the case

where we only use the unconstrained model (see Figures 6.1 and 6.9). However, the CS with

baseline gives better estimates than the SP, even when we use the additional ad hoc procedure.

For n = 250 and r = 10, the CS with m = 1,000 provides fairly good estimates for all primary

parameters µA, µB , and πC . However, the biases and standard errors of φ̂A and φ̂B are too

large for the estimates to be reliable and we still need large sample sizes to estimate these two

parameters with good accuracy and precision.

There are other solutions to the problem of highly biased estimators of µA and φA. One

possible approach is applicable only in cases where a gold-standard system is available, but

otherwise too expensive to be used on a whole sample of parts. In that case, we can use the gold

standard to measure the “problem” parts, that is, parts that pass the BMS inspection around

r /2 times out of r . We believe that most estimation problems arise from the fact that, in these

cases, the random-effects model with latent class is not able to distinguish between conforming

and nonconforming parts. By using the gold standard, we can now determine the true quality

state of these parts, i.e. conforming or nonconforming. Adding this piece of information to the
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Figure 6.16 Effect of Changing the Baseline Size m on Standard Error of the Estimators – Random-
Effects Model with Conditional Selection, µA = 0.05, φA = 0.1, µB = 0.05, φB = 0.1, and πC = 0.9

likelihood function will eliminate the confusion that the random effects model with latent class

usually faces. Another option for dealing with large biases would be to collect more data by

increasing the total number of measurements r ×n or the baseline size m.

6.2.4 Effect of Changing the Design Parameters on the Precision of Estima-
tors

In this section, we investigate the effect of changing the design parameters m, n, and r , on

the precision of the estimators from a random-effects model with conditional selection and

baseline data. Since we are assuming that the conforming rate πC is large, we look at the case

f = 0, where we sample only from previously failed parts. We also assume the baseline size m is
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Figure 6.17 Effect of Changing the Sample Size n on Standard Error of the Estimators – Random-
Effects Model with Conditional Selection, µA = 0.05, φA = 0.1, µB = 0.05, φB = 0.1, and πC = 0.9

determined separately from the other plan parameters n and r . We start by comparing different

choices for n, r , and m using the asymptotic standard errors from the Fisher information. As

with the gold-standard case in Chapter 5, we look at design and model parameter values for

which the asymptotic standard errors are good approximations. Therefore, we consider cases

where m = 100,1,000,10,000, r = 10,15, and n = 500,1,000,2,000, and moderate values for the

model parameters, i.e. µA = 0.05, φA = 0.1, µB = 0.05, φB = 0.1, and πC = 0.9. Note that for some

combinations of n, r , and m, the total number of measurements (n × r +m) is unreasonably

large. We actually look at these values only to get an idea about the effect of changing the design

parameters on the precision of the estimators and these values are not necessarily recommended

for study planning.

In Figure 6.16, we note that increasing the baseline size m has no effect on the precision of
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Figure 6.18 Effect of Changing the Number of Repeated Measurements r on Standard Error of the
Estimators – Random-Effects Model with Conditional Selection, µA = 0.05, φA = 0.1, µB = 0.05,
φB = 0.1, and πC = 0.9

the estimator of µA. The curves for the asymptotic standard errors are all parallel with slope zero.

The curves corresponding to µ̂B and π̂C are very similar, with a dramatic increase in precision

as m gets larger. For n = 500 and r = 10 (see black solid lines on the second and fourth panels

of Figure 6.16), the standard errors of µ̂B and π̂C decrease by 73% and 82%, respectively, as m

goes from 100 to 10,000. When m is close to 500, the curves for r = 10 (solid lines) and r = 15

(dashed lines) overlap, for all sample sizes n considered in the study. Also, for both µ̂B and π̂C ,

the standard errors approach a limit as m gets larger. For φ̂B , increasing m reduces the standard

error, but with a smaller rate than for µ̂B . For n = 500 and r = 10 (black solid line in third panel of

Figure 6.16), there is a 22% decrease in the standard error of φ̂B when m goes from 100 to 2,000.

For m > 2,000, the precision of φ̂B is not much affected by the baseline size.
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Next, we investigate the effect of increasing the sample size n on the precision of the estima-

tors. Figure 6.17 shows the curves of the asymptotic standard errors, for m = 100,1,000,10,000

and r = 10,15, with the sample size varying from n = 500 to 2,000. We note that the curves for

the standard error of µ̂A are identical for different values of m, which agrees with the results

seen in Figure 6.16. For each value of r , the standard errors of µ̂A change at a 1/
p

n rate. For

µ̂B and π̂C , we note some moderate effect of the sample size on the standard errors when the

size of the baseline is small, i.e. m = 100 (see solid black and green solid lines in the second and

fourth panels of Figure 6.16). For m = 100 and r = 10, the standard errors of µ̂B and π̂C decrease

by 17% and 16%, respectively, whereas for r = 15 by 24% and 23%. For larger values of m, the

curves overlap for different values of r , with very small slopes. The effect of changing n on the

precision of φ̂B is more dramatic and is similar for different values of r . For m = 100 and r = 10,

the standard error of φ̂B decreases by 34% when n varies from 500 to 2,000.

Increasing the number of repeated measurements r , when n and m are held constant, has

a moderate effect on the standard error of µ̂A (see Figure 6.18). For n = 500, the asymptotic

standard error of µ̂A decreases by 21% when r varies from 10 to 15. The effect of increasing r

is quite similar for n = 1,000 and n = 2,000. Also, increasing r leads to a moderate decrease in

the standard errors of µ̂B and π̂C , for small baseline sizes (i.e. m = 100). For larger baseline sizes,

the effect of increasing r is minimal, for all sample sizes considered here. For the estimator of

φB , increasing r results in a decrease of the asymptotic standard error by 15%, for n = 500 and

m = 100. Also, the standard error curves are similar for different baseline sizes, for the same

sample size n.

We also looked at other values for the model parameters (results not shown here). We found

out that, for larger values of the parameters, i.e. µA = 0.1, µB = 0.1, and πC = 0.95, the effect of

changing the design parameters on the asymptotic standard errors of the estimates is similar to

that in the case discussed above. There were some differences in the effect of the baseline size m

on the asymptotic standard errors of µ̂A. That is, for r = 10, increasing m decreased the standard

error of µ̂A by a small amount, whereas in the previous case it did not have any effect. Also, the

standard errors of π̂C did not converged to the same limit for all values of r and n. Regarding the
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effect of changing the sample size n, we noted the same patters as in the previous case, with the

only difference that the effect of increasing the sample size on the standard errors of µ̂B and π̂C

is now larger. Also, the effect of increasing the number of repeated number of measurements r

on the standard errors is stronger for all estimators.

For planning an assessment plan, we recommend using a CS plan with parts randomly

sampled only from the population of previously failed parts, augmented with baseline data. This

plan provides the largest expected number of nonconforming parts for a given sample size and

combination of parameter values. We also recommend using as many baseline measurements

as possible, with a minimum of m = 1,000. For high-quality manufacturing processes, i.e.

the conforming rate πC is large, we need relatively large sample sizes to get useful estimates,

especially for µA and φA. We provide an algorithm coded in the R Environment (2005) that

provides feasible combinations of n and r that achieve prespecified precision for the estimators

of µA and µB , similar to the one for the fixed-effects model in Chapter 4.

6.3 Summary

In this chapter, we focus on the case where no gold-standard system is available and, therefore,

the quality state of each part is unknown. Also, we consider the case where the misclassification

rates are not constant within the conforming/nonconforming parts. We first investigate the

properties of the random-effects model in the case where parts are randomly selected from

the population of manufactured parts, i.e. we use the standard plan. We find out that, for

realistic values of the model parameters and large number of repeated measurements (r = 10),

the standard plan needs unreasonably large sample sizes (n ≥ 2,000) in order to get unbiased

estimators with useful standard errors. We also conclude that fitting the fixed-effects model

when the misclassification rates are not constant yields biased estimators. Fitting the random-

effects model to data with constant misclassification rates leads to almost no loss of precision for

n ≥ 1,000.
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Next, we look at the properties of the random-effect estimators in the case where parts

are randomly selected only from the population of previously failed parts, i.e use conditional

selection with f = 0, and we use the information about the pass rate from the baseline data

of size m. We recommend f = 0, since it increases the expected number of nonconforming

parts in the sample and failed parts are usually readily available. We find out that the CS plan

supplemented with baseline data gives estimators with reasonable accuracy and precision for

the main parameters, µA, µB , and πC , even for small sample sizes (i.e. n = 250). Using a standard

plan with the same sample sizes and number of repeated measurements yields estimators with

large biases, especially for µA. For samples where the estimates of µA and φA seem unreasonable,

which occasionally occur when the values of µB , φB , and πC are large, we propose a random-

effects model that introduces the “common φ” constraint, that is, φA = φB = φ. This method

reduces the biases for µ̂A, but not for φ̂A and φ̂B , when we hold n and r constant. We also suggest

other solutions, such as collecting more data or using the gold standard for parts that passed the

BMS inspection close to half of the time.

We also look at the effect of changing the design parameters m, n, and r , on the asymptotic

standard errors of the estimates from a random-effects model when we use a CS with f = 0

and baseline measurements. We also give some general planning recommendations for a BMS

assessment study.

Regarding testing whether we need a random-effects model or not, that is checking whether

the misclassification rates are constant within conforming/nonconforming parts, we need to

develop a formal statistical test to check the hypothesis φA = φB = 0, similarly to the gold-

standard case in Chapter 5. This is part of future research on the topic of random-effects models.

The main results presented in this chapter are also included in the paper “Assessing a Binary

Measurement with Varying Misclassification Rates” by Danila, Steiner, and MacKay (2012),

accepted for publication in the Journal of Quality Technology in December 2011.
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Chapter 7

Conclusions and Future Work

7.1 Summary

In this thesis, we investigate the assessment of binary measurement systems (BMS) that are

commonly found in both manufacturing industry and medical diagnostic testing. Here we adopt

the manufacturing language and notation. We suppose the BMS has been in use for routine

systematic inspection of parts. We consider assessment plans in two contexts. In one, we have

available a gold-standard system that classifies parts without error. In the second, we do not have

such a gold-standard system or it is too expensive or time consuming to use in the assessment

study.

We suppose each part has a binary true status, i.e. it is conforming or nonconforming. The

performance of the BMS is characterized by two misclassification rates, the false positive or the

consumer’s risk, α, and the false negative or the producer’s risk, β, or by their complements, the

specificity and sensitivity. The manufacturing process is characterized by the conforming rate,

πC . We concentrate on high-quality processes, i.e. we assume that πC is close to 1 and α and β

are small. The goal of a BMS assessment study is to estimate both misclassification rates and the
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conforming rate.

In some processes, the true status of each part is binary but the misclassification rates vary

from part to part. For example, in the case where a visual BMS inspects parts for surface cracks,

the actual size of the crack has an effect on the BMS being able to detect the flaw and classify

the part accordingly. There may exist one or more latent variables, not measured during the

assessment study or the routine use of the BMS, whose value influences the probability that the

BMS misclassifies the part. In these situations, we adopt a model that allows the misclassification

rates α and β to vary within the populations of nonconforming/conforming parts.

The main goal of this thesis is to investigate the assessment of a BMS in a situation com-

monly found in manufacturing processes. Large collections of measured parts are available prior

to the BMS assessment study. Also, the BMS tracks the number of parts passed over a certain

period of time, therefore providing baseline information about the pass rate, πP . If we assume

that, during the time the baseline measurements are recorded, the process is stable and the

properties of the BMS do not change, then we can use the baseline information in the assess-

ment study. We note here that the baseline measurements are not part of the BMS assessment

study and come as free measurements. With these features in mind, we investigate a sampling

scheme that involves random selection of parts from the previously passed and failed parts (i.e.

conditional selection). Throughout this thesis, we look at the properties of the estimators given

by the conditional selection plan augmented with baseline data and compare them with the

corresponding estimators given by the current (standard) assessment plans.

In Chapter 1, we give an introduction to the general context of binary measurement systems

in both manufacturing industry and medical diagnostic testing. In Chapter 2, we review various

assessing methods proposed in the literature that are relevant to our context of interest.

In Chapters 3 and 4, we look at the cases where we assume that the misclassification rates α

and β are constant within the nonconforming/conforming parts. Chapter 3 focuses on the case

where a gold standard is available for the assessment study, whereas in Chapter 4, we look at the

case where a gold standard is too expensive, time consuming or does not exist. In Chapters 5 and
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6, we consider the same two cases but allow the misclassification rates to vary from part to part.

In the situation where πC is close to 1 and α and β are small, we show that we require very

large sample sizes with the standard plans to get useful estimates, i.e. estimates with standard

errors materially smaller than the estimates themselves. In general, for the same sampling effort

and cost, the use of freely available baseline data combined with conditional sampling produces

substantially better estimates of the parameters of interest. Or, put another way, by using the

recommended plans, we can get useful estimates with much smaller sample sizes.

To our knowledge, the ideas of a conditional selection plan augmented with baseline data

have not been investigated in the literature nor implemented in practice. Since there is little

added cost or complexity, we strongly recommend their application in routine BMS assessment

studies.

7.2 Future Research and Extensions

7.2.1 Testing Various Hypotheses in the Case where the Misclassification Rates
Vary

In Chapters 5 and 6, we investigate the properties of the random-effects model estimators and

we conclude that we need very large sample sizes to get reasonable estimates for the variability

parameters φA and φB . It would be useful to develop testing procedures for checking several

hypotheses such as:

• H0 :φA =φB = 0, i.e. both misclassification rates are constant

• H0 :φA = 0, i.e. the false positive rate is constant

• H0 :φB = 0, i.e. the false negative rate is constant

• H0 :φA =φB =φ, i.e. both the false positive and false negative rates are varying, but share

the same variation parameter φ
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Self and Liang (1987) give guidelines for developing likelihood-ratio testing procedures

for the case where the parameters are at the boundary, which is the case with the first three

hypotheses listed above. However, none of the cases discussed in this paper directly apply

to our context where we use a conditional selection of parts. Therefore, more work has to be

done on how to develop hypotheses tests in the case where we use the recommended plan, i.e.

conditional selection, in the contexts where a gold standard is available or not.

7.2.2 Extension to Multiple Binary Measurement Systems

In industrial practice, there are cases where multiple BMSs work in parallel and routinely test

manufactured parts. Therefore, we might be interested in assessing the performance of these

systems at the same time. In medical diagnostic testing, there is an extensive literature on

testing procedures of two or more tests, when a gold standard is not available (Pepe, 2003; Hui

and Walter, 1980). However, for various reasons, including ethical considerations, subjects are

not repeatedly measured by the same testing procedure. Therefore, it would be interesting to

develop new methods for assessing the performance of several BMSs, where parts are repeatedly

measured by these systems during the assessment study, especially if we allow for part-to-part

varying misclassification rates.

Also, we can investigate how using a conditional selection plan augmented with baseline

data can improve the estimation of the parameters. We can assume that the conforming rate is

common, that is, the BMSs measure parts coming from the same manufacturing process. Also,

we can think of two scenarios. First, during the routine measurement, parts are marked by the

BMS that inspects them, so that we can get separate baseline information for the studied BMSs.

The second scenario, parts are not marked by the BMSs and the baseline measurements give

information about a common (mixed) pass rate.
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7.2.3 Using Conditional Selection with Baseline in an “Anchored” Model

In Chapter 2, we discuss an approach for assessing a BMS when no gold standard is available that

involves the use of a system with known performance characteristics. The statistical model used

in this context is called the “anchored” model by Boyles (2001). This testing procedure has been

investigated only in the context where parts are randomly sampled from the population , i.e.

we use a standard plan. It would be interesting to investigate how using a conditional selection

augmented with baseline measurements affects the properties of the parameter estimators. An

added complication is that parts can be measured more than once with the anchored system.
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