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Abstract 

 The present work reports a study of the effects of the formation of a nanostructure induced 

by high-energy ball milling, compositions, and various catalytic additives on the hydrogen 

storage properties of LiNH2-LiH and LiNH2-MgH2 systems. The mixtures are systematically 

investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), 

scanning electron microscopy (SEM), differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA), and a Sieverts-type apparatus. 

 The results indicate that microstructural refinement (particle and grain size) induced by ball 

milling affects the hydrogen storage properties of LiNH2-LiH and LiNH2-MgH2 systems. 

Moreover, the molar ratios of the starting constituents can also affect the dehydrogenation/ 

hydrogenation properties. 

 In the LiNH2-LiH system, high-energy ball milling is applied to the mixtures of LiNH2 and 

LiH with molar ratios of 1:1, 1:1.2 and 1:1.4 LiH. The lowest apparent activation energy is 

observed for the mixture of LiNH2-LiH (1:1.2) milled for 25 h. The major impediment in the 

LiNH2-LiH system is the hydrolysis and oxidation of LiH, which causes a fraction of LiH to 

be inactive in the intermediate reaction of NH3+LiH→LiNH2+H2. Therefore, the LiNH2-LiH 

system always releases NH3, as long as a part of LiH becomes inactive, due to 

hydrolysis/oxidation, and does not take part in the intermediate reaction.  

 To prevent LiH from undergoing hydrolysis/oxidation during desorption/absorption, 5 

wt. % graphite is incorporated in the (LiNH2+1.2LiH) system. The DSC curve of the mixture 

does not show a melting peak of retained LiNH2, indicating that graphite can prevent or at 

least substantially reduce the oxidation/hydrolysis of LiH. Moreover, compared to the 

mixture without graphite, the mixture with graphite shows more hydrogen capacity, thus this 
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mixture desorbs ~5 wt.% H2, which is close to the theoretical capacity. This system is fully 

reversible in the following reaction: LiNH2+LiH↔Li2NH+H2. However, the equilibrium 

temperature at the atmospheric pressure of hydrogen (0.1 MPa H2) is 256.8°C for 

(LiNH2+1.2LiH) mixture, which is too high for use in onboard applications. 

 To overcome the thermodynamic barrier associated with the LiNH2/LiH system, LiH is 

substituted by MgH2; therefore, the (LiNH2+nMgH2) (n=0.55, 0.6 and 0.7) system is 

investigated first. These mixtures are partially converted to Mg(NH2)2 and LiH by the 

metathesis reaction upon ball milling. In this system, hydrogen is desorbed in a two-step 

reaction: [0.5xMg(NH2)2+xLiH]+[(1-x)LiNH2+(0.5-0.5x)MgH2]→0.5Li2Mg(NH)2+1.0H2 

and 0.5Li2Mg(NH)2+MgH2→0.5Mg3N2+LiH+H2. Moreover, this system is fully reversible 

in the following reaction: Li2Mg(NH)2+2H2↔Mg(NH2)2+2LiH. Step-wise desorption tests 

show that the enthalpy and entropy change of the first reaction is -46.7 kJ/molH2 and 136.1 

J/(molK), respectively. The equilibrium temperature at 0.1 bar H2 is 70.1°C, which indicates 

that this system has excellent potential for onboard applications. The lowest apparent 

activation energy of 71.7 kJ/mol is observed for the molar ratio of 1:0.7MgH2 milled for 25 h. 

This energy further decreases to 65.0 kJ/mol when 5 wt.% of n-Ni is incorporated in the 

system. 

 Furthermore, the molar ratio of MgH2/LiNH2 is increased to 1.0 and 1.5 to increase the 

limited hydrogen storage capacity of the (LiNH2+0.7MgH2) mixture. It has been reported 

that the composition changes can enhance the hydrogen storage capacity by changing the 

dehydrogenation/hydrogenation reaction pathways. However, theoretically predicted LiMgN 

is not observed, even after dehydrogenation at 400°C. Instead of this phase, Li2Mg(NH)2 and 

Mg3N2 are obtained by dehydrogenation at low and high temperatures, respectively, 
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regardless of the milling mode and the molar ratio of MgH2/LiNH2. The only finding is that 

the molar ratio of MgH2/LiNH2 can significantly affect mechano-chemical reactions during 

ball milling, which results in different reaction pathways of hydrogen desorption in 

subsequent heating processes; however, the reaction’s product is the same regardless of the 

milling mode, the milling duration and their composition. Therefore, the (LiNH2+0.7MgH2) 

mixture has the greatest potential for onboard applications among Li-Mg-N-H systems due 

to its high reversible capacity and good kinetic properties. 
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1. Introduction 

 The industrialized countries rely heavily on fossil fuels. In fact 87% of the world energy 

consumption in year 2003 was from fossil fuels and the rest mainly comes from nuclear 

power, hydro power, and burning of waste and wood. Although energy consumption from 

sustainable energy sources such as wind electricity are rapidly increasing (increased by a 

factor of 5 from 1989-2003) the overall contribution is only 0.11% [1-3]. 

 We consume fossil fuels for a wide variety of purposes from heating our houses, cooking of 

our food to transportation and manufacturing of consumer goods - the list could be continued 

and it is long and exhaustive. In fact almost every aspect of human life in the modern world 

is associated with the use of fossil fuels - the result is an ever increasing energy consumption 

caused by population growth and a general increase in living standard. The world population 

has been projected to increase from approx. 6.4 billion today to approx. 9 billion by year 

2050 [1-3] and especially the explosive development in Asia, in particular in China, requires 

massive amounts of energy. 

 In order to support the growing demand for fossil fuels new reserves needs to be discovered. 

However, oil discovery already peaked in the 1962 with 40 billion barrels being found and 

have declined ever since. In 1997 only 6 billion barrels of oil was found in comparison with 

the production of 26 billion barrels [4-8]. Someday, we will inevitably run out of fossil fuels, 

although it may not happen in our lifetime due to relatively large reserves of natural gas and 

coal.  

 Another issue which might become critical even before we run out of fossil fuels is the 

global warning issue potentially threatening the life of many people due to rising sea levels 

and increasingly harsh weather conditions. Increasing levels of atmospheric CO2 originating 
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from the burning of fossil fuels correlate with the increasing global temperature [9-10]. 

Therefore, the emission of carbon dioxide (CO2), the main greenhouse gas from human 

activities, is the most sensitive subject of a world-wide debate about energy sustainability 

and the stability of global climate in the recent years.  

 A possible way of addressing both the global warming issue and to keep a sustainable 

energy supply after the fossil fuels have been depleted is a gradual transformation of our 

present fossil fuel based society to a hydrogen based society viz. a society in which 

hydrogen is the primary energy carrier [11-14]. 

 According to many studies in the scientific community we are now at the verge of a new 

hydrogen age [15,16]. Energy is first produced from renewable sources and stored in the 

form of hydrogen. Hydrogen is transported and distributed to final applications such as 

transportation, and electric power generation for industrial and residential use. The process is 

shown schematically in Fig. 1-1. 

 Extensive research efforts are laying down the foundation of the next industrial revolution 

in the application of hydrogen as the fuel of the future. Some focus on contributions that 

hydrogen can make to sustainable development [17-19]. Others focus on hydrogen’s 

potential to resolving environmental issues [20-22].  

 Recently, investigations of hydrogen storage systems have become important. As the studies 

point out, there are still problems in the realization of renewed hydrogen, but the market 

supply and the cost of hydrogen do not impede the utilization of hydrogen in practical 

applications. The biggest and the only roadblock for using hydrogen commercially, 

especially in vehicular applications, is the storage of hydrogen [15, 16, 22-25]. 
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1-1. Hydrogen storage methods for mobile application 

 For on-board energy storage, vehicles need compact, light, safe and affordable containment. 

Modern cars are burning about ~24 kg of gasoline for a range of 400 km in a combustion 

engine. To cover similar range, 4 kg of hydrogen are needed for an electric car with a fuel 

cell [1, 15, 22, 26]. Since 4 kg of hydrogen has a volume of 45 m
3
 at room temperature and 

atmospheric pressure, a tank with considerable storage space would be needed. This volume 

corresponds to a balloon of 5 m in diameter, which is hardly a practical solution for the 

mobile applications.  

 Fig. 1-2 shows a comparison of the volume of 4 kg of hydrogen, which is required for ~400 

km travel range for a modern electric car powered by a fuel cell, compacted in different 

ways with the size relative to the size of a car [26]. As shown in Fig. 1-2, storage of 

hydrogen is a critical challenge in mobile application. 

 The most common hydrogen storage systems are high pressure gas cylinders, liquid 

hydrogen in cryogenic tanks and solid state hydrides as shown in Table 1-1 [1, 22, 26]. With 

the newly developed light weight composite cylinders which support pressure up to 80 MPa, 

the hydrogen volumetric density can reach ~40 kg m
-3

 [26]. However, the concern in respect 

to use of the pressurized cylinders is a problem especially in the regions with high 

population. Liquid hydrogen is stored in cryogenic tanks at -252
o
C and ambient pressure. 

The volumetric density of liquid hydrogen is ~71 kg m
-3

 [22]. Due to the low critical 

temperature of hydrogen (-241
 o

C [22], above this temperature hydrogen is gaseous), liquid 

hydrogen can only be stored in open systems to prevent strong overpressure, thus it results in 

the thermal loss. 
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Fig. 1-1 Production and utilization of hydrogen 

 

 

 

 

 

 

 

 

 

 

Fig. 1-2 Volume of 4kg of hydrogen compacted in different ways, with size relative to 

the size of a car [26] 

 

 

Mg2NiH4 LaNi5H6 H2 (liquid) H2 (200 bar) 



 5 

Solid state hydrides which include metal/intermetallic and complex (chemical) hydrides are 

characterized by the highest volumetric capacities and they do not suffer drawbacks as those 

experienced by compressed and liquid hydrogen. Because of the low pressures involved in 

metal hydride technologies and the fact that the release of hydrogen takes place via an 

endothermic process, this method of hydrogen storage is the safest of all. Moreover, the 

hydrogen released from a metal hydride is of very high purity and therefore, can be used 

directly to feed a PEM fuel cell [1]. It is clear that hydrogen storage requires a major 

technological breakthrough, and this is most likely to occur in the most viable alternative to 

compressed and liquid hydrogen, namely the storage of hydrogen in solids. The development 

of new sold-state hydrogen storage materials could herald a step change in the technology of 

hydrogen storage and would have a major impact on the transition to a hydrogen economy. 

 

Table 1-1. Comparison of the major hydrogen storage methods [1, 22, 26] 

 

Storage system 
Volumetric density 

(kg H2 m
-3) 

Drawbacks 

Compressed 

hydrogen gas 

under 80 MPa pressure 

~40 

1) Safety problem since enormous 

  pressures are required 

2) Cost of pressurization 

3) Large pressure drop during use 

4) Hydrogen embrittlement of storage 

  Tanks 

Liquid hydrogen 

at cryogenic tank 

at −252°C (21 K) 

~71 

1) Large thermal losses (open system) 

2) Safety 

3) Cost of liquefaction 

Solid state hydrides ~80-160 None of above two 
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2. Solid state hydrogen storage 

2-1. Basic concepts of solid state hydrogen storage 

2-1-1. The metal-hydrogen reaction 

 Hydrogen-metal system can be generalized to some degree, although numerous deviations 

and exceptions to those generalizations can be found. Metal hydrides as candidates for 

storage applications can be formed reversibly by direct interaction of metals or intermetallics 

with hydrogen at proper temperature and pressure according to the general reaction [23]: 

M (s) + xH2 (g) ↔ MHx(s)+Q   (2-1) 

where Q is the released heat during reaction. 

 

2-1-2. The Lennard-Jones picture 

 The reaction between gas phase H2 and a metal surface is schematically illustrated in Fig. 2-

1 [26-28] where the one-dimensional Lennard-Jones potential of atomic H and molecular H2 

is shown. Far from the surface, two potentials are separated by the hydrogen dissociation 

energy which is 218 kJ/mol H. A H2 molecule moving towards the surface will at some point 

feel a weak attractive force in the range of approx. 0-20 kJ/mol H (van der Waals forces) 

corresponding to molecular physisorption (point 1 in Fig. 2-1). If the molecule is moved 

closer to the surface, the potential energy will increase due to repulsion. At some point, the 

potential energy of the H2 molecule will intersect with the potential energy of the H atom. 

After this point, it is energetically more favourable for the two H atoms to be separated and 

bonded to the metal surface rather than bonded to each other. Hence dissociation will occur. 

If this intersection is at a potential energy larger than zero relative to gas phase H2 (point 2), 

dissociation is said to be activated and the height of point 2 determines the activation barrier. 
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If the intersection is located at approximately zero potential energy, dissociation is said to be 

non-activated (point 3). In the former case only the fraction of H2 molecules with an energy 

larger than the activation barrier will be able to dissociate. After dissociation the H atoms 

find a potential energy minimum shown as point 4 (chemisorption) which corresponds to the 

H atoms being bonded to the metal surface. If the H-M bond is stronger than the H-H bond, 

chemisorption is said to be exothermic. Likewise if the H-H bond is the strongest, 

chemisorption is said to be endothermic.  

 

2-1-3. Reaction mechanism 

 A schematic visualization of the interaction of hydrogen with a metal is depicted in Fig. 2-2. 

In contrast to Fig. 2-1 which was an energy representation, Fig. 2-2 shows all the individual 

reaction steps including bulk processes. The formation of the metal hydride can be divided 

into the following elementary reactions [28-31]. 

  

 Dissociation/adsorption: The first step is the dissociative adsorption of hydrogen on the 

metal/hydride surface. This is shown as point 1 in Fig. 2-2. 

 Surface penetration: From the surface the hydrogen atoms can penetrate into the sub-

surface (point 3). 

 Bulk diffusion: From the sub-surface, the hydrogen atoms can diffuse into the bulk or from 

the bulk and further in (point 4). 

 Hydride formation: Hydrogen atoms in the bulk (corresponding to a solid solution) can 

create a hydride nuclei which can grow to larger hydride grains by trapping of additional 
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hydrogen atoms (point 6). The formation of a hydride phase complicates the picture 

somewhat since hydrogen diffusion can also take place through the hydride (point 5). 

 For dehydrogenation the process is the reverse. A reaction mechanism can be proposed on 

the basis of the above reversible elementary reactions. When reviewing the hydrogenation/ 

dehydrogenation kinetic properties, the rate determining step can roughly be divided into 

two major classes; one is either a surface process such as dissociation or bulk diffusion 

mechanism limiting the overall kinetics and the other is a nucleation and growth mechanism 

limiting the overall kinetics. However, the mechanism which determines the overall kinetics 

has not been still understood well. Recently a lot of efforts have been devoted to improving 

the slow kinetics of solid state hydrides. Among new strategies, the most promising results 

are shown in the studies of catalysts and nano-structure.  

 

2-1-4. The Van’t Hoff equation 

 The thermodynamic aspects of the hydride formation from gaseous hydrogen can be 

described by pressure-composition temperature (PCT) curves, which is also called pressure-

composition isotherm (PCI) [1, 26]. An idealized PCT curve is shown in Fig. 2-3 a). As 

discussed previously, H2 molecule will dissociate on the surface of the metal according to 

the dissociative chemisorption reaction H2→2H and then H atoms will diffuse into the metal 

lattice to form a solid solution (α-phase). As the concentration of dissolved H is increased, at 

some pressure or composition, nucleation and growth of the ordered hydride phase β start. 

While the two phases, α and β coexist, the isotherms show a plateau, the length of which 

determines the amount of hydrogen that can be stored reversibly with small pressure 

variations. As the plateau is traversed by adding more and more hydrogen, the β phase grows 
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as the expense of the α phase. In the pure β phase, hydrogen pressure rises steeply with the 

concentration. The two phase region ends in a critical point Tc. The dotted line in Fig. 2-3 a) 

defines the limit of the two-phase coexistence region on a PCT phase diagram. As 

temperature increases plateau width decreases and the plateau pressure increases. The 

plateau pressure (Peq) strongly depends on temperature. The equilibrium pressure (Peq) as a 

function of temperature is related to the changes ∆H and ∆S of enthalpy and entropy, 

respectively, by the Van’t Hoff equation [1, 26]:  

 

  (2-2) 

 

 As shown in Fig. 2-3 b), a plot of ln Peq vs. 1/T tends to be a straight line with the slope 

equal to ∆H and intercept (1/T=0) equal to ∆S. The knowledge of enthalpy change is 

important to the heat management required for hydride storage devices and is also a measure 

of the strength of the M-H chemical bond [11,31]. The entropy term corresponds mostly to 

the change from molecular hydrogen gas to dissolved solid hydrogen. It is approximately 

equal to the standard entropy of hydrogen (-130 JK
-1

mol
-1

) for all of the metal hydrogen 

systems [11]. The Van’t Hoff plot is a convenient way to graphically represent hydride 

thermal stability, especially to compare different solid state hydrogen storage systems. 
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Fig. 2-1 Simple schematic Lennard-Jones potential energy diagram of chemi-sorption 

of hydrogen on metals [26-28] 

 

 

 

 

 

 

 

 

 

Fig. 2-2 Schematic illustration of the different mechanisms involved in the formation of 

a metal hydride [28-31] 
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Fig. 2-3 (a) Idealized pressure-composition temperature (PCT) curve and (b) Van’t 

Hoff plot [26] 

 

2-1-5. Requirements for solid state hydrogen storage for fuel cells on 

vehicles 

 For stationary systems, the weight and volume of the system used for hydrogen storage is 

not a key factor. However, for mobile applications, such as fuel cell electric vehicles (FCEV) 

or hydrogen-fuelled (internal combustion) cars, hydrogen storage system has to be compact, 

lightweight, safe and affordable. In 1996, the International Energy Agency (IEA) established 

the “hydrogen storage task force” to search for innovative hydrogen storage methods and 

materials. The U.S. Department of Energy (D.O.E.) Hydrogen Plan has set a standard for 

this discussion by providing a commercially significant benchmark for the amount of 

reversible hydrogen absorption. Specially, the U.S. Department of Energy (D.O.E.) 

 
 

a) b) 
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introduced a number of targets for on-board hydrogen storage systems within the frame work 

of its FreedomCar program [1]. Recently, the on-board hydrogen storage system targets have 

been revised to reflect knowledge gained in hydrogen-fueled vehicles since the original 

release of the targets as shown in Table 2-1. Among these targets, the two criteria that are 

most often considered are gravimetric and volumetric storage capacities. These two criteria 

have been developed using guidelines from the auto industry that reflect consumers' 

expectations about the performance of cars without causing exceptionally large changes in 

automobile design. Fig. 2-4 shows the gravimetric and volumetric energy densities of 

hydrogen stored using various storage methods. It can be seen that neither cryogenic nor 

high-pressure hydrogen storage options can meet the mid-term D.O.E. targets for 

transportation application. It is becoming increasingly accepted that solid state hydrogen 

storage using ionic-covalent hydrides of light elements, such as lithium, boron, sodium, 

magnesium and aluminum (or some combination of these elements), represents the only 

method enabling one to achieve the necessary gravimetric and volumetric target densities.  
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Table 2-1. D.O.E. Targets for Onboard Hydrogen Storage Systems for Light-Duty 

Vehicles [33] 

 

2015 2015 Ultimate 
Targeted factor 

Old new new 

System Gravimetric Density [wt.%] 

(kWh/kg) 

[9] 

(3.0) 

[5.5] 

(1.8) 

[7.5] 

(2.5) 

System Volumetric Density [g/L] 

(kWh/L) 

[81] 

(2.7) 

[40] 

(1.3) 

[70] 

(2.3) 

System fill time for 5-kg fill [min] 

(kgH2/min) 

[2.5] 

(2.0) 

[3.3] 

(1.5) 

[2.5] 

(2.0) 

System cost [$/kgH2] 

($/kWhnet) 

[67] 

(2) 
TBD TBD 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2-4 Volumetric and gravimetric hydrogen storage densities of different hydrogen 

storage methods [1] 

 

Old 
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3. Complex hydrides 

Group I and II salts of [AlH4]
-
, [NH2]

 -
, and [BH4]

 -
 (alanates, amides and borohydrides) 

have recently received considerable attention as potential hydrogen storage materials [34-40]. 

These materials have high hydrogen gravimetric densities [15, 27, 42] as seen in Fig. 2-4 and 

Table 3-1. Thus, they would seem to be viable candidates for application as practical on-

board hydrogen storage materials. However, all of these materials are plagued by high 

kinetic barriers to dehydrogenation and/or hydrogenation in the solid state. Traditionally, it 

was thought that it would be impossible to reduce the barrier heights to an extent that would 

give reaction rates that even approached those that would be required for vehicular 

applications. Thus, until recently, complex hydrides were not considered as candidates for 

application as rechargeable hydrogen carriers. This situation has been changed by 

Bogdanovic and Schwickardi [44], who show that the addition of Ti catalyst to the complex 

hydride NaAlH4 made it reversibly release and take up 3.7 wt.% of hydrogen under moderate 

temperature-pressure conditions with an enhanced hydriding kinetics. This breakthrough has 

led to a worldwide effort to develop doped alanates as practical hydrogen storage materials, 

which has been quickly expanded to include amides and borohydrides.  

 

3-1. Li-N-H system 

 Lithium nitrides are considered to be one of the most promising hydrogen storage materials 

that could achieve practical hydrogen storage due to their light weight, high theoretical 

capacity (10.4 wt.% H2) and relatively low decomposition temperature (e.g. as compared to 

MgH2 [45-45]) [56-69].  
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LiHNHLiHNLi +↔+ 223

Table 3-1. Hydrogen storage properties of selected high-capacity hydrides [1, 15, 26, 27, 

35, 38, 41-43] 

 

Hydride 

Theoretical 

maximum 

H2 capacity 

(wt.%) 

Theoretical 

reversible 

H2 capacity 

(wt.%) 

Desorption 

temperature range 

(°C) 

LiBH4 18.4 ∼13.8 ∼ 470 

Mg(BH4)2 14.9 ∼11.2 ∼ 300 

NaBH4 10.6 10.6 400-600 

LiAlH4 10.6 ∼7.9 110-260 

Mg(AlH4)2 9.3 ∼7.0 110-160 

Li3N 

(LiNH2+LiH) 
10.4 ∼6.5 150–280 

MgH2 7.6 7.6 300-400 

NaAlH4 7.5 5.6 229-247 

 

 

 Recently, Chen et al. reported that Li3N can absorb and desorb hydrogen by the following 2 

step reversible reactions [56, 70]:  

        (3-1) 

                                                                 (3-2) 

These two reaction steps correspond to a total hydrogen storage potential of 10.4 wt.% H2. 

While this maximum storage capacity has been demonstrated by several groups, its practical 

application is limited since full desorption to Li3N from Li2NH (reaction (3-1)) requires 

temperatures greater than 320°C in dynamic vacuum. Only reaction (3-2) is considered to be 

LiHLiNHHNHLi +↔+ 222
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suitable for a hydrogen storage system because the latter reaction has a smaller enthalpy 

change and still possesses a large amount of 6.5 wt.% H2 [71-92]. The desorption enthalpy 

change of reaction (3-2) has been calculated to be -44.5 kJ/mol H2 [56, 70], but a recent 

measurement [65] suggests that it might be -65.6 kJ/mol H2, which is higher than the 

previous theoretical value.  

In spite of its potential for reversible storage of 6.5 wt.% H2 for automobile applications, 

there exists two critical barriers to the practical utilization of these materials [57]. The first is 

its high operational temperature for the hydrogen absorption/desorption. This barrier may 

come from both thermodynamic and kinetic issues. The second is the release of NH3 during 

the desorption, which can be poisonous for the polyelectrolyte membrane of a conventional 

PEM fuel cell, even at trace levels, so at present even the smallest release of ammonia in the 

hydrogen gas cannot be tolerated in the system [1]. 

 To address these problems, a lot of efforts have been devoted to developing new strategies 

such as i) partial substitution of Li by elements with larger electro-negativity such as Mg [74, 

75, 77, 81-88], ii) search for effective catalysts [59, 75, 79, 80] and iii) high energy ball 

milling [1]. The first approach has been shown to be effective in reducing the hydriding and 

dehydriding temperature to around 200°C with a hydrogen pressure of 30 bars [83-86]. 

However, the second approach has not borne much fruit yet even though a wide range of 

potential catalysts, such as Ni, Fe, Co, VCl3, TiCl3, TiO2, Ti, Mn, MnO2, V, and V2O5, have 

been investigated [58, 59, 75, 79]. The best result appears to show less than 50°C reduction 

in the peak temperature for hydrogen desorption when the LiNH2 and LiH mixture with and 

without catalysts are compared [58, 59, 75, 79]. The third approach exhibits some promising 

results, showing a decrease in the peak temperature for the desorption reaction from 350 to 
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270
o
C without and with ball milling, respectively [58, 59]. However, the dependence of the 

hydrogen absorption/desorption properties of the LiNH2 and LiH mixture on the degree of 

mechanical activation has not been systematically investigated and reported in the literature. 

To date, few works have been dedicated to the NH3 escaping issue. Nevertheless, recently, 

it has been shown that the release of NH3 can be prevented by high energy ball milling as 

shown by Yao et al [59]. In spite of this, several other groups [58, 70, 80] have reported the 

presence of NH3 in the effluent gas from the LiNH2/LiH mixture. The discrepancy among 

different groups has not been explained yet. Another issue is the mechanism of reaction (3-2). 

It has not been clearly understood. Some reports suggest that LiNH2 may directly react with 

LiH to produce H2 according to reaction (3-2). Others propose that NH3 is evolved as a 

transient gas by followed by reactions (3-3) and (4-4) [57-62]: 

    (3-3) 

 (3-4) 

with the enthalpy change of +84 kJ/molNH3 and −42 kJ/molH2, respectively.  

In these reactions LiNH2 decomposes into Li2NH and NH3, and then the emitted NH3 

quickly reacts with LiH to form LiNH2 and H2. The newly formed LiNH2 decomposes again 

and repeats the cycle of reactions (3-3) and (3-4). Such successive reactions continue until 

all LiNH2 and LiH completely transform to Li2NH and H2. It has been shown that reaction 

(3-4) takes place very fast in the order of the microseconds. However, even with such high 

reaction rates, escaping of NH3 from the hydrogen storage system has been reported and 

used as the evidence to support the mechanism defined by reaction (3-3) and (3-4). Several 

recent studies have also provided evidence supporting a two-step elementary reaction 

3222 NHNHLiLiNH +↔

223 HLiNHLiHNH +↔+
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mechanism. However, so far there is no direct evidence to support a two-step elementary 

reaction mechanism. 

 Recently, another approach has been reported by Xie et al. to improve the kinetic properties 

and remove NH3 release [64]. They synthesized Li2NH hollow nano-spheres to decrease the 

diffusion distance to nanometers and increase the specific surface area. These hollow 

nanospheres have diameters ranging from 100 to 400 nm and 20 nm shell thickness. In 

addition, the specific surface area is 79.4 m
2
/g and the crystallite sizes are about 15 nm. They 

have shown that the desorption onset and peak temperature of the reaction (3-2) as measured 

by Differential Scanning Calorimetry (DSC) is reduced to 179 and 230°C, respectively. 

Furthermore, they have reported that the activation energy for the hydrogen absorption in the 

reaction (3-2) is reduced to 106 kJ/mol due to the large specific surface area and shorter 

diffusion distance of the nanometric hollow structure. In spite of the short diffusion distance, 

this newly designed Li2NH hollow nano-spheres doesn’t show significantly improved 

hydrogen storage kinetics compared to the nano-structured (LiNH2+LiH) mixture processed 

by the high energy ball milling. Therefore, the investigation of the main kinetic control 

parameters will be critical to further improve hydrogen storage properties of (LiNH2+LiH) 

system.  

 

3-2. Li-Mg-N-H system 

 The kinetic and thermodynamic properties of Li-N-H system require further improvement 

for practical applications [56, 58, 59, 65, 70-80]. The strongly endothermic nature of the 

reactions mentioned above requires high operation temperatures. To lower the temperature, 

the thermodynamic properties of the reaction must be improved. Nakamori et al. [83-87, 93-
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96] noted that the dehydrogenation reaction of LiNH2 can be promoted by substituting Li 

with Mg, which is the element with larger electronegativity. Recent studies [69, 81, 82, 88, 

89, 97-102] revealed that the Li-Mg-N-H ternary system has improved thermodynamic 

properties compared to the LiNH2-LiH system. It was found that 2LiNH2/MgH2 and 

Mg(NH2)2/2LiH systems could reversibly store 5.5 wt.% H2 at 180°C by the following 

reaction [83, 86, 87, 94, 96]: 

                           (3-5) 

                                                                                                                                

   (3-6) 

 

After an initial dehydrogenation, the 2:1 LiNH2/MgH2 mixture was transformed into a novel 

phase with a suggested composition of Li2Mg(NH)2. In the subsequent rehydrogenation 

process, this phase was hydrogenated to Mg(NH2)2 and LiH, rather than the initial 

LiNH2/MgH2 mixture. Therefore, the reversible reaction is actually processed between 

[Li2Mg(NH)2+2H2] and [Mg(NH2)2+2LiH] as described in equation (3-6). The heat of the 

endothermic hydrogen desorption reaction measured by differential scanning calorimetry has 

been reported to be 44.1 kJ/mol H2, which is favorable for PEM Fuel Cell application. 

However, the relatively high activation energy (Ea= 102 kJ/mol) sets a kinetic barrier [84, 

87].  

 Further efforts have been devoted to the composition adjustments for obtaining higher 

hydrogen capacities. Leng et al. reported that the 3Mg(NH2)2/8LiH mixture 

absorbed/desorbed reversibly 6.9 wt.% of hydrogen through the following reaction [Eq. (3-

7)]:[95] 

                                            

                                                                                                               (3-7) 

22222 )(5.05.0 HNHMgLiMgHLiNH +→+

223222
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8
)( HNMgNHLiLiHNHMg ++↔+

LiHNHMgHNHMgLi +↔+ 22222 )(5.0)(5.0
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When the molar ratio of Mg(NH2)2 to LiH was adjusted to 1:4, the hydrogen storage 

capacity of the mixture was increased to 9.1 wt.% H2 as shown below [Eq. (3-8)]:[97] 

 

                                                                                                               (3-8) 

 

 It indicates that the composition changes can enhance the hydrogen-storage capacity of the 

Li-Mg-N-H system due to the change of dehydrogenation/hydrogenation reaction pathways.  

 Recently, a novel LiNH2/MgH2 system with a molar ratio of 1:1 attracted our attention due 

to its higher hydrogen capacity and improved thermodynamics. Alapati et al [103]. first 

predicted the thermodynamic feasibility of the following reaction by first-principles 

calculations based on density function theory (DFT) [Eq. (3-9)]:  

 

                                                                                 (3-9)   

                                                                                                                                        

The desorption enthalpy change calculated is 29.7 kJ/mol of H2 at 0 K, which is an 

acceptable value for on-board hydrogen-storage applications. Further first-principles 

calculations showed that the reaction between LiNH2 and MgH2 at a molar ratio of 1:1 might 

be a multistep reaction as follows [Eq. (3-10)]:[104] 

  

 

                                                                                                        (3-10) 

 

 

However, Osborn et al. found experimentally that the LiNH2/MgH2 (1:1) mixture milled for 

3 h followed a new reaction pathways at 210°C instead of the originally predicted reactions  
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in Equations (3-9) and (3-10), as described below [Eq. (3-11)]:[105] 

 

   (3-11) 

 

Although Lu et al [106]. reported that approximately 8.1 wt.% H2, a theoretical value of 

hydrogen desorption for the reaction in Equation (3-9), was observed by means of thermo-

gravimetric analysis (TGA) from the sample milled for 24 h, the effects of the co-product of 

NH3 have not been eliminated, and hence the details of structural information of the solid 

products need to be further ascertained. Unlike the previous investigations, Liang et al. 

reported that four sequential reactions proceeded during 36 h of ball milling and the 

subsequent heating process for the LiNH2/MgH2 (1:1) mixture [Eq. (3-12)]:[107, 108] 

 

 

 

  (3-12) 

 

 

 

However, the ternary nitride product, LiMgN, which was predicted by Akbarzael et al. [104], 

has not been obtained even though the sample was heated up to 390°C. Therefore, the above 

theoretical and experimental findings have not reached an agreement on the dehydrogenation 

reaction pathways of LiNH2/MgH2 (1:1) system due to its complexity and sensitivity to 

experimental conditions, specifically ball milling conditions. Understanding the effects of 

experimental conditions will be critical for determining the reaction pathways. 
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4. Nanostructuring of solid state hydrides by mechanical milling 

4-1. Thermodynamic and kinetic issues in solid state hydrides   

Hydrogen storage in solid-state metal hydrides has been investigated extensively because, 

compared with other technologies such as gas compression or liquefaction, solid state 

materials can store hydrogen at relatively low pressures and ambient temperatures as 

mentioned earlier. Particular attention has focused on light element binary hydrides such as 

LiH and MgH2 and complex metal hydrides such as NaAlH4, LiAlH4, LiBH4 and LiNH2 

because high capacity storage can be achieved in these materials [1, 109]. However, there 

are problems with high thermodynamic stability and slow kinetics that must be addressed 

before light element hydrides can be used for on-board transportation applications as listed 

in Table 3-1. Specifically, in contrast to the delocalized metallic hydrides, the chemical 

bonds in light-element based hydrides are predominately covalent or ionic [109]. These 

bonds are often strong, resulting in unacceptably high thermodynamic stability and, 

consequently, low equilibrium hydrogen pressures. In addition, the high directionality of the 

covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, 

resulting in slow hydrogen absorption/desorption kinetics and limited reversibility [109-110]. 

 Two primary approaches are being used to address the thermodynamic constraints imposed 

by the high bond strengths in light-element based hydrides. The first focuses on the 

discovery of new single phase materials in which atomic substitution or alloying is used to 

decrease the thermodynamic stability. That work encompasses a wide range of ternary and 

quaternary compounds whose thermodynamic properties make them potentially acceptable 

as practical hydrogen storage media [93, 111]. The second approach utilizes existing binary 

and complex hydrides in combinations to form new compounds or alloys upon 
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dehydrogenation [112-121]. This approach can lower the overall enthalpy for 

dehydrogenation, increase equilibrium hydrogen pressures and effectively destabilize the 

component hydrides. Although alloy formation in the dehydrogenated state can be used to 

reduce the overall reaction enthalpy, this approach does not remedy the problems of slow 

hydrogen exchange kinetics in light-element based hydrides.  

 To improve kinetic properties, a lot of efforts have been devoted to developing new 

strategies. Generally two approaches have been shown to be effective in improving kinetic 

properties on dehydrogenation/rehydrogenation reaction. The first approach involves 

addition of catalysts, which has dramatically improved the rates of hydrogen exchange in 

systems such as MgH2 [45] and has enabled reversibility in NaAlH4 [44]. The second 

approach is related to nanotechnology. Nano-structured materials have a lot of potentials in 

hydrogen storage because of their unique features such as adsorption on the surface, inter- 

and intragrain boundaries, and bulk absorption [1, 122, 123]. Nanostructured and nanoscale 

materials strongly influence the thermodynamics and kinetics of hydrogen absorption and 

desorption by increasing the diffusion rate as well as by decreasing the required diffusion 

length. Specially, in contrast to bulk materials, the nano-scale materials [124, 125] can offer 

several advantages for the physicochemical reactions, such as surface interactions, 

adsorption in addition to bulk absorption, rapid kinetics, low temperature desorption, 

hydrogen atom dissociation, and molecular diffusion via the surface. The intrinsically large 

surface areas and unique adsorbing properties of nano materials can assist the dissociation of 

gaseous hydrogen. 
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4-2. Nanostructuring of solid state hydrides 

 The nanostructuring process is one promising candidate of nano-technologies in the 

hydrogen storage. Nanostructured materials (also referred to as “nanocrystalline” or 

“nanophase” materials) are single-phase or multi-phase polycrystals with the grain sizes 

from a few nanometers to 100 nm in at least one dimension [1, 126]. Recently, researches 

have concentrated on nanocrystalline materials, which are expected to find applications 

based on their improved mechanical, magnetic, and other properties. In a powder form, 

nanostructured/nanocomposite means that each phase present in the individual powder 

particle is in the form of grains with nanometer size. One particle is one nano-polycrystal. 

 A schematic representation of a hard sphere model of an equiaxed nanostructured material 

formed by only one kind of atoms is showed in Fig. 4-1. Two types of atomic structures can 

be distinguished: the crystallites (atoms represented by open circles) and the boundary 

regions/intercrystalline regions (dark circles). The atomic structure of all crystallites is 

identical. The only difference between them is their crystallographic orientation. In the 

boundary regions, the average atomic density, interatomic spacing and the coordination 

between nearest neighbour atoms deviates from the ones in the crystallites and differs from 

region to region. The presence of these two structural constituents (crystallites and 

boundaries) of comparable volume fractions and with typical crystal sizes of a few 

nanometers is crucial for the properties of nanocrystalline materials. Generally 

nanostructuring by ball milling introduces a variety of defects, vacancies, dislocations, 

stacking faults besides the grains and grain boundaries. 
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Fig. 4-1 Schematic representation of an equiaxed nanocrystalline material 

distinguishing between crystallite (open circles) and inter-crystalline regions (dark 

circles) [126] 

 

 

Fig. 4-2 Effect of nanostructuring of (a) hydrogen absorption and (b) desorption 

temperature of hydrogen [51] 
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These defects can raise the free energy of the system making it accessible to formation of 

thermodynamically metastable phases. Also, defects can lower the activation energy of 

reactions limited by poor kinetics [1]. Therefore, the nano-structured materials are the best 

and easiest solution to address both thermodynamic and kinetic problem in hydrogen storage. 

Numerous experiments indicate that in practically all solid state hydrides, the kinetics of 

both absorption and desorption can be improved by reducing the grain size of the compound 

[55]. An example for the improvement of absorption is shown in Fig. 4-2 (a) for Mg2Ni. It 

can be seen that the bulk sample does not exhibit any significant hydrogen absorption at 

200
o
C, whereas the nanocrystalline sample absorbs hydrogen relatively quickly. Fig. 4-2 (b) 

shows an example of the enhancement in hydrogen desorption for Mg2NiH4. A reduction in 

desorption temperature is found as the grain size of the hydride is brought to nanoscale. 

Zaluska et al. [127] reported the improvement of the reaction kinetics by mechanical milling 

in decomposition of NaAlH4. Therefore, nanocrystalline materials have properties markedly 

different from their conventional crystalline counterparts and can be promising candidates 

for hydrogen storage in solid state hydrides. 

 

4-3. Nanostructuring process 

High-energy ball milling is the only nanotechnology top-down approach for the synthesis 

of nanoparticles. There are many different designs of ball mills, which can be used for 

processing of advanced materials. In conventional ball mills (planetary or shakers), the 

trajectories of grinding balls are rather chaotic (Fig. 4-3). This creates a continuous and 

erratic change of various mechanical modes of milling from shearing to impact during the 

same milling cycle. However, in the magneto-mill, Uni-Ball-Mill Model 5, the trajectories of 
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the balls are controlled by the magnetic field created by strong FeNdB permanent magnet 

(Fig. 4-4). The milling mode can be then adjusted from shearing to impact by changing the 

angular position of the external magnets, as shown in Fig. 4-4. 

 Ball milling is a complex process which involves optimization of milling parameters to 

achieve the desired product microstructure and properties. The important parameters are [1]: 

(1) Milling mode 

(2) Number of balls used for milling 

(3) Milling speed 

(4) Milling time 

(5) Milling atmosphere 

(6) Ball-to-powder-ratio 

(7) Working distance (WD) 

The above process variables are not completely independent. For example, in Uni-Ball-Mill, 

the milling mode depends on milling speed and working distance. Also, milling time 

depends on milling mode and ball-to-powder-ratio. 

 

 

 

 

 

 

 

 



 28 

 

 

 

 

 

 

 

Fig. 4-3 Motion of balls in (a) a planetary and (b) a vibrational mill [1, 128] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-4 Various controlled modes of milling available in the Uni-Ball-Mill 5 [1,129] 
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5. Objectives 

 In this thesis, nanostructured lithium complex hydrides are investigated to develop a 

breakthrough material in the field of solid-state hydrogen storage. The primary motivation 

for studying Li complex hydrides is their potential ability to store large amounts of hydrogen. 

However, there are still thermodynamic and kinetic barriers to the practical utilization of 

these materials. To address two critical barriers, the present study investigates the 

dependence of the thermodynamic and kinetic properties of Li complex hydrides on their 

chemical composition and degree of mechanical activation.  

 To accomplish these objectives, the goal of each topic is outlined as follows. 

 

5-1. Nanostructured lithium amide and lithium hydride system 

5-1-1. Nanostructured (LiNH2+LiH) mixture 

 In this study, the effect of ball milling and different molar ratios of constituents LiHN2 and 

LiH in the mixture are investigated systematically to explore the role of nanostructure and 

the influence of chemical composition on hydrogen desorption properties. In particular, the 

role of LiH is studied in detail to understand the desorption behavior of the mixture. The 

relationship between the release of NH3 and the partial contamination of LiH is also 

demonstrated and discussed.  

 

5-1-2. Nanostructured Li-N-C-H system 

 In the (LiNH2+LiH) mixture, LiH does not fully react with LiNH2 because part of the LiH 

becomes inactive, due to hydrolysis/oxidation. Thus, a large amount of NH3 is emitted, and 
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hydrogen capacity is lost. This study focuses on two approaches employed to solve the 

problems mentioned above: 

1) The substitution of LiH by graphite in the reaction 2LiNH2+C→Li2CN2+2H2, proposed by 

the theoretical model, is clarified and discussed.  

 2) The (LiNH2+LiH) mixture with 5 wt. % graphite and the mechanism by which it prevents 

LiH from oxidation/hydrolysis and thus mitigates the escape of NH3 are investigated.  

 3) The equilibrium plateau pressure is investigated; moreover, the enthalpy change of the 

dehydrogenation reaction is estimated from the Van’t Hoff equation to understand the 

hydrogen storage properties of the (LiNH2+LiH) mixture with and without graphite.  

 

5-2. Nanostructured lithium amide and magnesium hydride system 

5-2-1. Nanostructured (LiNH2+nMgH2) (n=0.55, 0.60, and 0.70) mixtures 

 Research in this phase focuses on investigating the thermodynamic and kinetic properties of 

(LiNH2+nMgH2) (n=0.55, 0.60, and 0.70) mixtures: 

1) The equilibrium plateau pressure as a function of temperature is investigated; moreover, 

the enthalpy change of the dehydrogenation reaction is also estimated from the Van’t Hoff 

equation and compared with the (LiNH2+LiH) system.  

2) The role of nanostructure and the influence of chemical composition on hydrogen 

desorption properties are systematically investigated by comparing the apparent activation 

energies as functions of the molar ratio of MgH2/LiNH2 and the degree of mechanical 

activation. 

3) Reversibility and reaction pathways at various temperatures are explored. 
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4) Catalytic effects are studied by comparing the kinetic properties of the desorption 

reactions. 

 

5-2-2. Nanostructured (LiNH2+nMgH2) (n=1.0 and 1.5) mixtures 

 The molar ratios of MgH2/LiNH2 are increased further to 1.0 and 1.5 to increase the 

hydrogen storage capacity because it has been reported that composition changes can 

enhance the hydrogen storage capacity by changing the dehydrogenation/hydrogenation 

reaction pathways. Furthermore, investigations of the ball-milled LiNH2-MgH2 (1:1) mixture 

by several research groups have shown different dehydrogenation processes. Therefore, the 

main motivation is to understand the underlying mechanisms of the chemical reaction 

between LiNH2 and MgH2 with the two different molar ratios of 1:1 and 1:1.5: 

1) Hydrogen loss and phase changes during ball milling are investigated as a function of 

milling time and milling mode.  

2) The correlation between mechanical ball milling and the dehydrogenation reactions of the 

LiNH2/MgH2 (1:1 and 1:1.5) mixtures is studied. 

3) Reversibility and reaction pathways are explored at various temperatures. 

4) The effect of chemical composition on the kinetic properties is understood by comparing 

the apparent activation energies of the two compounds. 
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6. Experimental 

6-1. Materials 

6-1-1. Starting hydrides 

95% pure lithium amide(LiNH2) and 95% pure lithium hydride (LiH) and 98% pure 

magnesium hydride (MgH2) from ABCR GmbH & Co.KG from were used in this thesis. 

 

6-1-2. Catalysts 

A synthetic graphite (G) powder (particle size <20 µm) from Sigma-Aldrich and carbon 

black produced as experimental batches from Columbian Chemical company were added in 

Li-N-H systems. Nanometric Ni (n-Ni, 60.46m
2
/g) produced as experimental batches by 

Vale Inco Ltd., 99.99% pure and ultra dry manganese(II) chloride (MnCl2) from Alfa Aesar 

were used for catalysts for Li-N-Mg-H systems.   

 

6-2. Synthesis of nanostructure hydrides 

6-2-1. Chemical compositions 

 In the Li-N-H system, the mixtures of LiNH2:LiH having the molar ratio 1:1, 1:1.2 and 

1:1.4 were investigated. In the Li-N-C-H system, the following combinations of starting 

materials were used: 

(1) The mixtures of LiNH2:C (graphite or carbon black) having the molar ratio 2:1 

(2) The mixture of {(LiNH2+1.2LiH)+5wt.% Graphite} 

 In the Li-N-Mg-H system, the following combinations of starting materials were used: 

(1) The mixtures of (LiNH2+nMgH2) (n=0.55, 0.60, 0.70, 1.00 and 1.50) 
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(2) The mixtures of (LiNH2+nMgH2)(n=0.55 and 0.70) with 5wt.% n-Ni 

(3) The mixture of {(LiNH2+0.70MgH2) with 5wt.% MnCl2} 

 

6-2-2. Milling procedure 

 Syntheses of nanostructured hydrides were implemented by controlled mechanical milling 

(CMM) in the magneto-mill, Uni-Ball-Mill 5 manufactured by A.O.C. Scientific 

Engineering Pty Ltd, Australia [1, 129]. In this particular ball mill the milling modes with 

varying milling energy can be achieved by using one or two strong NdFeB magnets, 

changing their angular positions and changing the number of hard steel balls (25mm in 

diameter each) in a milling vial. Fig. A-1 shows a set up for a strong impact mode with two 

magnets positioned at 6 and 7 o’clock, at the distance of ~10 and ~2 mm, respectively, from 

the milling vial (working distance – WD) and 4 hard steel balls in the vial (referred to 

hereafter as an IMP67), while a set up for a low energy impact mode with one magnet 

positioned at 6 o’clock at the distance of ~10mm from the milling vial and 2, 3 or 4 hard 

steel balls in the vial referred to LES6-2B, LES6-3B or LES6-4B, respectively. 

 The ball-to-powder weight ratio (R) was ~40 and the rotational speed of milling vial was 

~200 rpm. After loading with powder, an air-tight milling vial with an O-ring, equipped with 

a pressure valve mounted in the lid, was always first evacuated and then purged several 

times with ultra-high purity argon (Ar) gas (99.999% purity) before final pressurization with 

H2. The pressure of high purity hydrogen (purity 99.999%: O2< 2 ppm; H2O< 3 ppm; CO2< 

1 ppm; N2< 6 ppm; CO< 1 ppm; THC< 1 ppm) in the vial was always kept constant at ~ 600 

kPa during the entire milling process. Through the entire milling process the milling vial was 

continuously cooled with an air fan. All the powder handlings before and after milling were 
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performed in a purged glove box under overpressure of high purity argon (purity 99.999%) 

in order to minimize any possible contamination by moisture or oxygen from air. 

Additionally, pressure drops during milling were recorded to estimate the amount of 

hydrogen loss. A volumetric method was used to calculate the amount of hydrogen absorbed 

during milling. The details of calculation are given in Appendix A-2. The composition of 

powders and the processing parameters applied during controlled milling are summarized in 

Table 6-1. 
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Table 6-1 Composition of powders and Milling parameters 

 

System Composition Milling 
mode 

Ball to 
Powder ratio 

# of 
Balls 

Milling 
Time (h) 

LiNH2+1.0LiH IMP67 40 4 
1, 5, 10, 25,  

50,100 

LiNH2+1.2LiH IMP67 40 4 25 Li-N-H 

LiNH2+1.4LiH IMP67 40 4 25 

2LiNH2+C 

(C: graphite or 

carbon black) 

IMP67 40 4 25 

Li-N-C-H 
{(LiNH2+1.2LiH) 

+5wt.% G} 

(G: graphite) 

IMP67 40 4 25 

(LiNH2+nMgH2) 

(n=0.55, 0.60 and 0.70) 
IMP67 40 4 

0.5, 1, 5, 10, 

25 

{(LiNH2+nMgH2) 

+5wt.% n-Ni or MnCl2} 

(n=0.55 and 0.70) 

IMP67 40 4 
0.5, 1, 5, 10, 

25 

IMP67 40 4 
0.5, 1, 5, 10, 

25 

Li-N-Mg-H 

(LiNH2+nMgH2) 

(n=1.0 and 1.5) 

LES6 40 2,3,4 
0.5, 1, 5, 10, 

25 
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6-3. Analysis of powder morphology 

6-3-1. X-Ray diffraction 

 The crystal structure of powders was characterized with a Bruker D8 powder diffractometer 

using monochromated CuKα1 radiation at an accelerating voltage of 40 kV and a current of 

30 mA. One powder sample was simply placed on an aluminum substrate and sealed with a 

Mylar tape to prevent contact with air during XRD scans. However, since Mylar tape gives a 

diffuse peak around 2θ=27° which superimposes a graphite peak, we decided to use a home-

made environmental brass holder with a Cu plate for powder support which was loaded in a 

glove box filled with Ar. One powder sample was simply placed on an aluminum substrate 

and sealed with a Mylar tape to prevent contact with air during XRD scans. However, since 

Mylar tape gives a diffuse peak around 2θ=27° which superimposes a graphite peak, we 

decided to use a home-made environmental brass holder with a Cu plate for powder support 

which was loaded in a glove box filled with Ar. Upper and lower part of the environmental 

holder is sealed through a soft-rubber O-ring and tightened using threaded steel bolts with 

nuts. The scan range was from 2θ = 10° to 90° 
and the rate was 1.2° min

-1
 with a step size of 

0.02°. The nanograin size of phases was calculated from the broadening of their respective 

X-ray diffraction peaks. Since the Bragg peak broadening in an XRD patterns is due to a 

combination of grain size and lattice strains, it is customary to use computing techniques by 

means of which one can separate these two factors. The separation of crystallite size and 

strain was obtained from a Cauchy/Gaussian approximation by a linear regression plot 

according to the following equation [130]: 
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where the term K λ/L is the slope, the parameter L is the mean dimension of the crystallite, K 

is a constant (≈1) and e is the so-called ‘maximum’ micro-strain (calculated from the 

intercept), λ is the wavelength and θ is the position of the analyzed peak maximum. The 

term ( ) 







−=

2

2

12
B

b
Bθδ  (rad) is the instrumental broadening-corrected “pure” XRD peak 

profile breadth, where B and b are the breaths in radians of the same Bragg peak from the 

XRD scans of the experimental and reference powder, respectively. They were automatically 

calculated by the diffractometer software from the full width at half maximum, FWHM. The 

powder of the LaB6 compound, the National Institute of Standards and Technology (NIST) 

standard reference materials (SRM) 660, was used as a reference for subtracting the 

instrumental broadening.  

 

6-3-2. FT-IR 

 The Fourier transform infrared spectroscopy (FT-IR) measurements were performed with a 

Bruker Tensor 27 at room temperature in the range of 4000-400cm
-1 

to characterize the 

LiNH2, Li2NH, Mg(NH2)2, MgNH, and Li2Mg(NH)2 phases. The powder samples were 

ground with KBr and pressed into pellets.     

 

6-3-3. Scanning Electron Microscopy 

The analysis of powder morphology was performed with FESEM (LEO 1530) equipped with 

integrated EDAX (Pegasus 1200 EDS/OIM) and the back-scattered electron mode was used. 

 

 



 38 

6-3-4. BET 

 The specific surface area (SSA) of powder before and after ball milling was determined 

through nitrogen adsorption at 77K based on the Brunauer-Emmett-Teller (BET) method 

using the surface area and pore size analyzer from Quantachrome Corporation (AUTOSORB-

1). The measurements were performed after a degassing treatment at room temperature. The 

reported SSA data were calculated based on 5 points BET method.  

 

6-4. Thermal analysis and hydrogen storage properties 

6-4-1. Differential Scanning Calorimeter 

 The thermal behavior of powders was studied by differential scanning calorimetry (DSC) 

(Netzsch 404) of ~5 mg samples in an alumina crucible. Samples were heated to 500°C at a 

heating rate of 5, 10 and 15°C/min in Ar atmosphere to estimate the activation energy by 

using the Kissinger equation [1]:     

 

                              (6-2) 

 

 

where β is the heating rate, Tp is the peak temperature, EA is the apparent activation energy, 

and R is the gas constant.  
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6-4-2. Thermogravimetric analysis 

 The thermal weight loss (TGA) was analyzed with a TA INSTRUMENT Q600, which also 

contains a DSC option, using a 5 mg sample heated at 10°C/min under 100 ml/min Ar gas 

flow. 

 

6-4-3. Gas analysis 

 Temperature programmed desorption (TPD) studies were carried out with a HTP1-S Hiden 

Isochema volumetric analyzer equipped with a mass spectrometer.  

 

6-4-4. Hydrogen storage properties 

 The hydrogen desorption/absorption was evaluated using a second generation volumetric 

Sieverts-type apparatus custom-built by A.O.C. Scientific Engineering Pty Ltd., Australia as 

shown in Fig. 6-1. This apparatus built entirely of austenitic stainless steel allows loading of 

a powder sample in a glove box under argon and its subsequent transfer to the main unit in a 

sealed austenitic stainless steel sample reactor without any exposure to the environment. The 

weight of the powder sample in the desorption experiments was in the range of 20-30 mg. 

The calibrated accuracy of desorbed hydrogen capacity is about ±0.1 wt.% H2 and that of 

temperature reading ±0.1°C. Before starting the desorption test, the inner tubing of the 

apparatus and reactor were evacuated and purged 4 times with argon and then two times with 

hydrogen. The furnace of the apparatus was heated separately to the desired test temperature 

and subsequently inserted onto a tightly sealed powder sample reactor inside which a 

pressure of 1 bar H2 was kept. Hence, the beginning of the desorption test was in reality 

pseudo-isothermal before the powder sample temperature reached the desired value. 
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However, the calibrated time interval within which the powder sample in the reactor reaches 

the furnace temperature is ∼400-600 s in the 100-350°C range, which is negligible compared 

to the desorption completion time especially at temperatures below 200°C. Therefore, one 

can consider the test as being “isothermal” for any practical purposes at this range of 

temperatures. After desorption the powder without removal from the reactor was subjected 

to absorption at pre-selected temperature and pressure. The amount of desorbed/absorbed 

hydrogen was calculated from the ideal gas law as described in detail in Appendix A-3 [1]. 

Hydrogen desorption curves were also corrected for the hydrogen gas expansion due to the 

increase in temperature. The amount of desorbed/absorbed H2 expressed in wt.% is 

calculated with respect to a total weight of powder including the additives. 

 Equilibrium plateau pressures at various temperatures were obtained in our Sieverts-type 

apparatus by a step-wise method by increasing pressure at a constant temperature until 

equilibrium was established. The enthalpy change of the dehydrogenation reaction was 

estimated from the Van’t Hoff equation [1] as mentioned in Chapter 3-1-4.  

 The apparent activation energy for desorption process was estimated from the obtained 

volumetric desorption curves at corresponding temperatures using the Arrhenius plot of k 

values with temperature [1]: 

RTE

o
Aekk

/−=                        (6-3)                                  

where EA is the apparent activation energy, R is the gas constant and T is the temperature. 

The rate constant k was determined using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

equation [1]: 

η

α )(1 tk
e

⋅−−=                         (6-4)                                            
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where η is the reaction exponent (the Avrami exponent) related to the transformation 

mechanism, taken as a free value characteristic for each individual temperature [1] rather 

than a fixed value for all temperatures, and α is the desorption fraction at time t.  

 

 

 

 

 

 

 

 

 

 

Fig. 6-1 A Sieverts-type apparatus custom-built by A.O.C. Scientific Engineering Pty 

Ltd., Australia, for evaluating hydrogen storage properties  
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7. Nano-structured (LiNH2+LiH) systems 

7-1. Effect of milling on the microstructure of hydride mixtures 

 Fig. 7-1 shows the evolution of the morphology of the LiNH2-LiH mixture with a molar ratio 

of 1:1 with milling time. After 1 h of ball milling, the particles have a non-uniform particle 

size distribution with small and large particle populations. However, after 5 h of milling, the 

population of large particles is substantially reduced. After milling for 50 and 100 h, an 

agglomeration of smaller particles into larger aggregates becomes more pronounced (Fig. 7-1 

e) and f)).  

 Fig. 7-2 a) shows the XRD profiles of the as-received LiNH2 and LiH and their 1:1 molar 

ratio mixture before and after ball milling for 1 and 5 h. XRD testing was performed shortly 

after the milling processing was terminated. According to JCPDS file No. 09-0189 and No. 

85-1327 for LiH and Al, respectively, the diffraction peaks of LiH and Al overlap except for 

two peaks at 2Θ=64.2 and 77.5° for LiH. Therefore, these peaks are assumed to be indicators 

of the presence of the LiH phase in the mixture. As-received LiH powder contains LiOH, 

whereas LiNH2 contains both Li2O and LiOH. Because the powders were packed into the 

environmental holder, Li2O and LiOH are probably inherent impurities of the as-received 

materials. No other phases are present. Therefore, both constituents remain separated in the 

(LiNH2+LiH) mixture and do not react with each other during ball milling.  

 The grain sizes and lattice strains of LiNH2 and LiH after milling were estimated from XRD 

patterns in Fig. 7-2 a), and the results are summarized in Table 7-1 and Fig. 7-2 b). It can be 

seen that the crystallite size of LiNH2 and LiH decreases to 10 nm after ball milling for 100 h, 

and the lattice strains are negligible.  

 



 43 

 

 

 

Fig. 7-1 The evolution of the morphology of the (LiH+LiNH2) mixture milled for a) 1 h, 

b) 5 h, c) 10 h, d) 25 h, e) 50 h and f) 100 h 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 
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Fig. 7-2 X-ray diffraction patterns of a) as-received LiH, LiNH2 and their 1:1 molar 

ratio mixture before and after milling for 1 and 5 h. b) The crystallite sizes of LiNH2 

and LiH in the 1:1 molar ratio mixture as a function of milling time 
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 Fig. 7-3 shows the specific surface area (SSA) measured from the BET method. It is 

noticeable that there is a sharp increase in the specific surface area after 5 h of the ball 

milling. The maximum specific surface area is almost 60 m
2
/g after 25 h milling but 

afterwards the SSA slightly decreases most likely due to the agglomeration occurring for 

longer milling times (Fig. 7-1 e) and f)). 

 
 

 

 

 

 

 

 

Fig. 7-3 Specific surface area (SSA) of the (LiNH2+LiH) powder mixture vs. milling 

time 

 
Table 7-1. Powder characteristics of the 1:1 molar ratio mixture of (LiNH2+LiH) as a 

function of ball milling time 

 

Note: *)Measured with a Bruker D8-Advantage powder diffractometer; other grain sizes and 
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7-2. Thermal behavior of LiNH2 

 All thermal tests were carried out almost immediately after the termination of ball milling; 

therefore, the samples were not stored under a protective gas for an excessive period of time. 

The XRD patterns of samples, which were stored for 3 months under high-purity argon 

(purity 99.999%), revealed that a fraction of LiH transformed into LiOH, even under such 

“clean” storage conditions. TGA and DSC profiles are shown in Fig. 7-4 a) and b), 

respectively, for single-phase LiNH2 before and after 25 h of ball milling. The DSC profile 

shows a single endothermic peak that corresponds to the melting of LiNH2 at approximately 

380°C independently of the degree of mechanical activation by ball milling. Ball milling does 

not seem to change the character of thermal behavior of LiNH2. It is well-known that a 

single-phase LiNH2 decomposes through the release of only the ammonia gas (NH3) [1, 59]. 

The TGA curve in Fig. 7-4 a) shows that NH3 is released more slowly when LiNH2 is in the 

solid state and more rapidly from liquid LiNH2. Assuming that the release of NH3 begins 

when the TGA curve starts deviating from linearity, one can estimate that the TGA onset 

temperature for the release of NH3 is 150 and 80°C for LiNH2 before and after milling, 

respectively. From the change in the slope of the TGA curves in Fig. 7-4 a), one can estimate 

the weight loss that corresponds to the amount of NH3 when LiNH2 is either solid or liquid as 

shown in Table 7-2. It can be seen that the as-received LiNH2 releases 8.4 wt.% and 25.7 

wt.% NH3 from the solid and liquid phases, respectively. In turn, the milled powder releases 

10.7 wt.% and 22.9 wt.% NH3 from the solid and liquid phases, respectively. Thus, ball 

milling slightly enhances the NH3 release from solid LiNH2. Within the experimental error, 

the total amount of NH3 released in Fig. 7-4 a) is in a good agreement with the theoretical 

value of 37 wt.% NH3 released through the reaction (3-3).  
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Fig. 7-4 The desorption behavior of single-phase LiNH2 before and after ball milling 

for 25 h: a) TGA and b) DSC profiles (TA Q600 apparatus) 
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Table 7-2. The amount of NH3 released from single-phase LiNH2 before and after 

milling and approximate onset temperatures of the NH3 release as estimated from TGA 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 7-5 TPD spectra for the 1:1 molar ratio mixture 

The amount of NH3 released from a single phase LiNH2 
 

Solid state 
(wt.% NH3) 

Liquid state 
(wt.% NH3) 

Onset temp. 
(oC) 

Peak temp. 
(oC) 

Before 
milling 

∼8.4 ∼25.7 150 379 

After milling 
for 25 h 

∼10.7 ∼22.9 80 369 

80 130 179 228 277 326 375 425 475

Temperature (℃)

H
2
 p

a
rt

ia
l 
p
re

s
s
u
re

N
H

3  p
a
rtia

l p
re

s
s
u
re

H2

NH3

H2 NH3

H2 

NH3 



 49 

7-3. Thermal behavior of the (LiNH2+LiH) system 

 To determine the temperature range for the release of hydrogen and ammonia, a TPD test 

was performed for the 1:1 molar ratio mixture LiNH2:LiH milled for 25 h, and the result is 

presented in Fig. 7-5. The majority of hydrogen is released up to ∼320°C while there is no 

measurable release of ammonia at this temperature range from the unreacted LiNH2 in the 

mixture. Ammonia from the latter is predominantly released when the temperature exceeds 

375°C.  

 Since the hydrogen desorption peak is separated from the ammonia peak, its behavior can be 

easily analyzed in a DSC. Fig. 7-6 a) and b) show the dependence of DSC curves on the 

milling time for the 1:1 molar ratio of the LiNH2:LiH mixture and the molar ratio for a 

milling time of 25 h, respectively. Table 7-3 summarizes the onset and peak temperatures of 

the hydrogen desorption peak for each DSC curve.  

 As can be seen in Fig. 7-6 a), the as-received 1:1 molar ratio LiNH2:LiH mixture has two 

endothermic peaks at temperatures below 400°C. The first broad peak at about 325°C is 

related to reaction (3-2) in which hydrogen is released, and the second sharp peak at around 

370°C results from the melting of the unreacted LiNH2 in the mixture and the release of 

ammonia. However, all powders processed by ball milling exhibit only a single endothermic 

reaction peak in this temperature range. The melting peak of unreacted LiNH2 disappears for 

the mixtures ball milled for even 1 h, which indicates that most of the LiNH2 has reacted with 

LiH in a DSC test below the melting temperature of LiNH2. Furthermore, the endothermic 

peak of reaction (3-2) is reduced from 325 for the unmilled 1LiNH2:1LiH mixture to 235°C 

after milling for 25 h. The onset temperature also decreases from 268 for the unmilled 

1LiNH2:1LiH mixture to 180-186°C after ball milling for 25 to 100 h. 
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Fig. 7-6 DSC profiles for a) various milling times for the 1:1 molar ratio mixture 

LiNH2:LiH and b) the molar ratio of LiH to LiNH2 in the mixture milled for 25 h 

(heating rate of 10°°°°C/min) (Netzsch 404 apparatus). c) the onset and peak temperature 

of reaction (3-2) vs. the SSA of powder mixture and d) the grain size of LiNH2 in the 

1:1 molar ratio mixture 
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Table 7-3. Summary of the DSC results for the (LiNH2+LiH) mixture with various 

molar ratios of constituents  

 

 

 

 

 

 

 

In Fig. 7-6 a), it is also evident that the DSC peak broadening is reduced as the milling time 

increases up to 25 h, but, after 100 h of milling, this peak becomes broader than that observed 

after 25 h. It is likely that this effect is related to the pronounced powder particle 

agglomeration process that occurs for a milling time of 100 h as already shown in Fig. 7-1 e) 

and f).  

 As can be seen in Fig. 7-6 b) and especially Table 7-3, for the mixtures milled for a constant 

time of 25 h, the increasing molar ratio of LiNH2/LiH does not measurably affect the peak 

position of reaction (3-2) but slightly reduces its onset temperature. As shown in Fig. 7-6 c), 

the onset and peak temperature of reaction (3-2) for the 1:1 molar ratio mixture decreases as 

the SSA of the powder mixture increases up to about 45 m
2
/g (100 h milling), then reaches 

saturation and again slightly decreases at larger values of SSA. As shown in Fig. 7-6 d), both 

the onset and peak temperature of reaction (3-2) decrease monotonically with decreasing 

LiNH2 grain size to about 23 nm (Table 7-1; 25 h milling), and, subsequently, both slightly 

increase as the grain size of LiNH2 further decreases to 14 nm. Table 7-1 shows that the grain 

DSC peaks (℃℃℃℃) Milling time 
(h) 

Molar ratio 
(LiNH2:LiH) TON Tpeak 

0 268.0 
324.7 

(LiNH2 melting peak 371.6) 

1 212.0 272.5 

5 

1:1 

196.2 250.2 

1:1 186.0 235.2 

1:1.2 183.4 239.2 25 

1:1.4 180.3 234.1 

100 1:1 187.2 245.0 
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size of LiH in the mixture decreases proportionally to the grain size of LiNH2; therefore, a 

similar dependence to that in Fig. 7-6 d) is also found for the grain size of LiH. The 

simultaneous decrease of the grain size of LiNH2 with increasing SSA (Table 7-1 and 7-3) 

makes it difficult to unambiguously establish which of these two factors is responsible for the 

observed reduction of the peak temperature of reaction (3-2) in Fig. 7-6 b) and c). 

Nevertheless, the onset/peak temperature’s decrease with increasing SSA observed in Fig. 7-

6 c) and increase for the smallest grain size of LiNH2/LiH observed in Fig. 7-6 d) indicate 

that the controlling factor in the reduction of the reaction (3-2) peak temperature is probably 

SSA rather than the grain size of the constituents in the (LiNH2+LiH) mixture. Otherwise, it 

would be difficult to justify the behavior observed in Fig. 7-6 d). 

 The results of this study can be compared with those obtained for hollow nanospheres [64]. 

The hollow nanospheres have an SSA of 79.4 m
2
/g and had lowered desorption onset and 

peak temperatures of 179 and 230°C, respectively. From Tables 7-1 and 7-3, a similar 

reduction of the desorption temperature of the (LiNH2+LiH) expressed by reaction (3-2) can 

be achieved by ball milling for 5-25 h, which brings about a profound reduction of SSA to 60 

m
2
/g. Although the hollow nanospheres have 33% greater surface area than the 

nanostructured (LiNH2+LiH) mixture (59.6 m
2
/g), the desorption temperatures of both 

materials are notably similar. Therefore, the hollowness of the particles of 

LiNH2/(LiNH2+LiH) is not an important factor in reducing their desorption temperature. 

Instead, the principle factor is the reduction of SSA, which can be achieved with ball milling. 

 To study the progress of reaction (3-2) during a DSC test in terms of microstructural 

evolution, the 1:1 molar ratio mixture milled for 5 h was heated to 150, 200, and 300°C with 

the same heating rate of 10°C/min as used in the DSC tests shown in Fig. 7-6 a) and b). The 
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samples obtained after heating were tested by XRD in an environmental holder. The obtained 

XRD patterns are presented in Fig. 7-7. Unfortunately, the Bragg peaks of LiNH2 and Li2NH 

overlap (the reader is referred to JCPDS file # 06-0418 and 06-0417 for LiNH2 and Li2NH, 

respectively) in addition to the aforementioned overlap of those of LiH and Al. This overlap 

renders the XRD test inconclusive because the presence of Li2NH cannot be confirmed 

unambiguously as required by reaction (3-2).   

 Because of the ambiguity of the XRD tests, the FT-IR technique was used to obtain 

microstructural information for the mixtures heated to various temperatures as shown above. 

 

 

Fig. 7-7 XRD patterns of the 1:1 molar ratio mixture milled for 5 h and DSC directly 

after milling and after heating at various temperatures 
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Fig. 7-8 FT-IR absorption spectra of a) 1:1, b) 1:1.2 and c) 1:1.4 molar ratio mixtures 

milled for 25 h and heated to various temperatures 1) 200 oC, 2) 225 oC, 3) 250 oC, 4) 

275 oC, and 5) 300oC 
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Fig. 7-8 a), b) and c) show the FT-IR absorption spectra for the 1:1, 1:1.2, and 1:1.4 molar 

ratio mixtures, respectively, which were milled for 25 h and subsequently heated to various 

temperatures at a heating rate of 10°C/min. LiNH2 has two peaks at 3312 and 3259 cm
-1

, 

corresponding to the asymmetric and symmetric stretching of the N-H bonds in LiNH2, 

respectively. Li2NH also has two peaks at wavelengths of 3180 and 3250 cm
-1

 [65-67]. Fig. 

7-8 shows that the increase of the molar ratio of LiH results in faster transformation of LiNH2 

to Li2NH through more efficient capturing of NH3 by a larger amount of LiH as required by 

reactions (3-3) and (3-4). For the 1:1 molar ratio, reaction (3-2) starts at 250°C, and a portion 

of the LiNH2 phase still remains at 300
o
C, which agrees with the presence of its melting peak 

in Fig. 7-6 a). For the 1:1.2 molar ratio, reaction (3-2) starts at 225°C and ends at 

approximately 300
o
C. For the 1:1.4 molar ratio, the reaction starts at 225°C and ends between 

275 and 300
o
C.  

 The measurements of the apparent activation energy of hydrogen desorption according to 

reaction (3-2) (reaction goes to the right) were conducted using the Kissinger method (Eq. 

(6-2)). Fig. 7-9 a) shows the effect of various heating rates on DSC profiles, which is an 

underlying principle of the Kissinger method. The corresponding Kissinger plots are shown 

in Fig. 7-9 b) for various milling times and in Fig. 7-9 c) for various molar ratios. One 

should note the excellent correlation coefficients, R
2
, obtained for the Kissinger plots in Fig. 

7-9 b) and c), which attest to the accuracy of the method. Table 7-4 lists the activation 

energy data obtained from the Kissinger plots. The apparent activation energy is rapidly 

reduced after 1 h of ball milling, and further milling only slightly changes the apparent 

activation energy. In Fig. 7-10, the apparent activation energy is plotted vs. SSA for the 1:1 

molar ratio mixture. The lowest energy is obtained after 25 h of milling when the SSA 
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reaches approximately 60 m
2
/g. In general, within the range of 45-60 m

2
/g, the apparent 

activation energy changes only moderately. For comparison, the results reported by Xie et al. 

[64], who investigated hollow nanospheres, are shown in Fig. 7-10. Their apparent activation 

energy is slightly higher than the values obtained in the present work, even though the 

nanospheres have higher surface area and possibly lower diffusion depth. However, the 

results of Xie et al. [64] are for the hydrogen absorption reaction (3-2) (reaction goes to the 

left); therefore, it is not clear whether their results can be compared directly with those for 

desorption in the present work. This problem requires further study, especially because the 

apparent activation energy for the hydrogen absorption in amides/imides is usually lower 

than that for desorption [57, 68]. Therefore, there are other factors related to ball milling that 

further reduce the supposedly elevated apparent activation energy for desorption. In Fig. 7-

11, the calculated apparent activation energy for hydrogen desorption is plotted vs. the molar 

ratio of LiH to LiNH2 in the mixtures milled for 25 h. The data reported by Shaw et al. [57, 

68] for the 1:1.1 molar ratio and 24-h milling time are also plotted in Fig. 7-11, and the data 

fit the observed trend well. It is clear that increasing the LiH molar ratio to 1.2 results in a 

more profound reduction of the apparent activation energy. It is possible that increasing the 

number of interfaces between LiH and LiNH2 provides many diffusion paths and also 

increases the reactant energy to a sufficiently high state to reduce the apparent activation 

energy. However, a further increase of the LiH molar ratio to 1.4 does not lead to any further 

decrease in the apparent activation energy, suggesting that excessive LiH may be present at 

the 1LiNH2: 1.4LiH molar ratio.  
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Fig. 7-9 a) Examples of the DSC profiles at various heating rates (5, 10 and 15°°°°C/min) 

for the 1:1 molar ratio mixture of LiNH2:LiH. The Kissinger plots of the apparent 

activation energy for hydrogen desorption (reaction (3-2) goes to the right) for the 

milled LiH and LiNH2 mixtures vs. b) milling time and c) the molar ratio of LiH to 
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Fig. 7-10 The apparent activation energy of reaction (3-2) as a function of the specific 

surface area (SSA) for the 1:1 molar ratio mixture LiNH2:LiH 

 

Fig. 7-11 The apparent activation energy of reaction (3-2) as a function of the molar 

ratio of LiH to LiNH2 for the mixtures milled for 25 h 
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Table 7-4. Summary of the calculations of the apparent activation energy of reaction 

(3-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Milling time 
(h) 

Molar ratio 
(LiNH2:LiH) 

BET 
specific surface area 

(m2/g) 

Apparent 
activation energy 

(kJ/mol) 

0 16.5 237.5 

1 26.4 94.9 

5 

1:1 

56.0 89.5 

1:1 59.6 84.5 

1:1.2 NA 57.5 25 

1:1.4 NA 70.6 

100 1:1 45.6 88.0 
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7-4. Discussion 

7-4-1. Origin of the ammonia (NH3) release from the (LiNH2+LiH) mixture 

 Fig. 7-12 a) and b) show the TGA and corresponding DSC curve, respectively, for the 1:1 

molar ratio LiNH2:LiH mixture after milling for 25 h obtained with a TA Q600 combined 

TGA and a DSC apparatus. The TGA curve shows two distinct weight loss regions with 

distinctly different slopes, which are delineated by tangent lines 1 and 2 in Fig. 7-12 a). In 

accordance with the TPD curve in Fig. 7-5, the corresponding DSC curve in Fig. 7-12 b) 

shows that the first TGA region results from hydrogen desorption, while the second results 

from the release of ammonia. From the intersection of these two tangent lines in Fig. 7-12 a), 

the 1:1 molar ratio mixture desorbs approximately 4.4 wt.% H2 at up to 330°C below the 

melting temperature of LiNH2, while ammonia is released in a much higher temperature 

range when the retained LiNH2 melts (also compare with Fig. 7-4).  

 Based on the estimated amounts of ammonia released from the LiNH2 milled for 25 h in Fig. 

7-4 in the solid (10.7 wt.%) and liquid (22.9 wt.%) states as listed in Table 7-5, the 

theoretical amount of hydrogen released in the solid and liquid states from the 1:1 molar 

mixture can be estimated as (6.5 wt.% H2 × [10.7 wt.%/(10.7+22.9 wt.%)] ≈ 2.1 wt.% H2 in 

the solid state of LiNH2 in the mixture and (6.5 wt.% H2 × [22.9 wt.%/(10.7+22.9 wt.%)] ≈ 

4.4 wt.% H2 in the liquid, respectively. However, the value of 4.4 wt.% H2 released in a solid 

state as shown in Fig. 7-12 a) is twice as high as the theoretical amount expected for the 1:1 

molar ratio LiNH2:LiH mixture as summarized in Table 7-5.  
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Fig. 7-12 a) TGA curve for the 1:1 molar mixture LiNH2:LiH milled for 25 h. Tangent 

lines 1 and 2 show two distinct weight-loss regimes for H2 and NH3, respectively. b) 

Corresponding DSC curve showing endothermic desorption peaks of H2 and NH3. Data 

obtained with TA Q600 apparatus 
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Table 7-5. The calculated and experimental amount of H2 desorbed from the 1:1 molar 

mixture (LiNH2+LiH) ball milled for 25 h 

 

 

 

 

 

 

 

 

 Therefore, in addition to capturing NH3, it appears that LiH can accelerate LiNH2 

decomposition to Li2NH and NH3 at lower temperatures if LiH has intimate contact with 

LiNH2 due to ball milling. As shown in Fig. 7-6 a), ball milling is absolutely necessary to 

enhance LiNH2 decomposition in the (LiNH2+LiH) mixture because the unmilled 1:1 molar 

ratio mixture in Fig. 7-6 a) shows only minimal H2 desorption before the LiNH2 component 

melts. Thus, LiH may act as a catalyst for the decomposition of LiNH2.  

An important question that arises from these results is why ammonia is persistently released 

from the (LiNH2+LiH) mixture as seen in Fig. 7-12 a) and b). TGA/DSC experiments were 

performed after flushing the TA Q600 apparatus with Ar for 1.5 h and subsequently allowing 

a flow of high-purity Ar. However, the chamber of the TA Q600 apparatus is essentially 

open, and air contamination of the flowing Ar is quite possible.  

 Based on this experimental fact, we formulate the hypothesis that contact with moisture in 

the remnant air in the chamber (or anywhere else, for that matter) hydrolyzes a fraction of 

The amount of H2 desorbed from 

1 mol LiNH2: 1 mol LiH mixture milled for 25 h 

Theoretical 

(wt.% H2) 

Experimental 

(wt.% H2) 

Solid state 

of LiNH2 

Liquid state 

of LiNH2 

Solid state 

of LiNH2 

Liquid state 

of LiNH2 

2.1 4.4 4.4 0 
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the LiH in the mixture into LiOH, which makes this fraction inactive and unable to react 

with NH3 according to reaction (3-4). To test this hypothesis, we performed an experiment in 

which the 1:1 molar ratio LiNH2:LiH mixture ball was milled for 100 h and thermally tested 

with the TA Q600 apparatus with and without flushing with Ar for 1.5 h. Fig. 7-13 a) and b) 

show TGA and DSC desorption profiles of the 1:1 molar ratio mixture, respectively. In Fig. 

7-13 b), the mixture without Ar flushing shows only one DSC endothermic peak 

corresponding to the melting of LiNH2. Fig. 7-13 b) also shows a rapid weight loss starting 

around 350
o
C. These TGA and DSC curves look similar to the curves registered for single-

phase LiNH2 as shown in Fig. 7-4 a) and b). Such behavior provides strong evidence in favor 

of the hypothesis of the partial hydrolysis/oxidation of LiH accelerated by heating in the 

presence of an impure Ar atmosphere contaminated by air, which makes a portion of LiH 

inactive in reaction (3-4). In contrast, after flushing with Ar, the mixture shows two distinct 

regimes of weight loss with two distinct slopes in a TGA test in Fig. 7-13 b). The regime at 

low temperatures is related to H2 desorption, and the regime at high temperatures is related 

to NH3 desorption, which is similar to the results presented in Fig. 7-12 a) and b). In a DSC 

test in Fig. 7-13 b), the argon-flushed mixture shows two endothermic peaks: one related to 

H2 desorption (reaction (3-2)) and the other related to the melting of retained LiNH2 and 

simultaneous NH3 desorption. The latter is formed from the retained LiNH2 that did not fully 

react with LiH, due to its partial inactivity. As shown by Ren et al. [69], LiH is sensitive to 

storage and testing conditions. Therefore, we conclude that the unreacted/retained LiNH2 

always releases NH3 as long as a part of the LiH becomes inactive, due to hydrolysis/ 

oxidation, and does not take part in the intermediate reaction (3-4).  
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Fig. 7-13 Thermal desorption profiles from a) TGA and b) DSC of the 1:1 molar ratio 

LiNH2:LiH mixture ball milled for 100 h with and without flushing with Ar for 1.5 h 

before heating. Data obtained with a TA Q600 apparatus 
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Assuming that all LiOH comes from LiH, this reaction can be expressed as follows. For the 

first endothermic peak (H2),     

LiNH2 + (1-x)LiH + x(LiH)inactive→(1-x)Li2NH + (1-x)H2 + xLiNH2 + x(LiH)inactive          (7-1) 

For the second peak (NH3),  

xLiNH2→(x/2Li2NH3+x/2NH3) + x(LiH)inactive                                                           (7-2)                           

where x(LiH)inactive is the fraction of inactive LiH.  

  

In the first step, it is assumed that xLiNH2 is rendered inactive such that (1-x)LiNH2 reacts 

with (1-x)LiH, which transforms into (1-x)Li2NH and (1-x)H2. In the second step, this 

unreacted xLiNH2 decomposes into (x/2Li2NH+x/2NH3). Through this modified reaction, we 

can calculate the amount of NH3 using the following equations:  

 

                                                                                                                     (7-3)     

          

                                                                                                                      (7-4)  

 

where A is the molar ratio of LiH to LiNH2. 

 Table 7-6 shows the amounts of inactive LiH calculated above for various molar ratios of 

LiNH2:LiH together with experimentally estimated amounts of released H2 and NH3. Fig. 7-

14 a), plotted from data in Table 7-6, shows good agreement between the calculated and 

experimentally observed amounts of desorbed NH3, which strongly supports our hypothesis.  

 Fig. 7-14 b) shows that the amount of hydrogen desorbed slightly decreases as the milling 

time increases from 5 to 25 and 100 h. Table 7-6 shows that this effect is due to the gradual 

increase in inactive LiH with increasing milling time for the 1:1 molar ratio LiNH2:LiH.   
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Table 7-1 and Fig. 7-2 show that the grain (crystallite) size of LiH decreases monotonically 

with increasing milling time. This observation suggests that with the reduction in grain 

(crystallite) size, LiH is rendered more sensitive to hydrolysis and the formation of LiOH.  

 Fig. 7-14 c) shows that the optimal molar ratio of LiNH2:LiH in the mixture is 1:1.2 because 

the amount of desorbed hydrogen is 5 wt.% at that ratio and, conversely, the amount of NH3 

that is desorbed is the smallest. This result agrees well with the data in Table 7-6, which 

show that at the molar ratio 1:1.2, the mass of active LiH in the mixture is the largest of all 

of the compounds. 

 

Table 7-6. Comparison of the calculated and experimental amounts of H2 and NH3 as a 

function of milling time and the molar ratio of LiH:LiNH2 assuming a fraction of 

inactive LiH 

 

 

 

 

Hydrogen 
capacity 
(wt.%) 

Calculated 
weight of LiH in 

the mixture 
(g) 

Released NH3 
(wt.%) 

 
Molar ratio LiH 
- milling time (h) 

Theor. Exp. 

Calculated 
fraction of 

inactive 
LiH 
(%) Active Inactive Cal. Exp. 

1.0 mol LiH 

-5 h 
4.6 29.2 5.6 2.3 8.0 7.5 

1.0 mol LiH 

-25 h 
4.4 33.1 5.3 2.6 9.1 9.7 

1.0 mol LiH 

-100 h 

6.5 

4.1 37.3 5.0 3.0 10.3 9.6 

1.2 mol LiH 

-25 h 
6.2 5.0 33.0 6.4 3.2 5.1 5.8 

1.4 mol LiH 

-25 h 
5.9 4.5 53.0 5.2 5.9 5.9 6.2 
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Fig. 7-14 a) Comparison of the calculated (Eq. (7-3) and (7-4)) and experimental values 

of NH3 vs. milling time for 5, 25 and 100 h. The experimental amount of H2 and NH3 in 

the 1:1 molar ratio LiNH2:LiH mixture vs. b) milling time for 5, 25 and 100 h, and c) 

the molar ratio of LiH to LiNH2 for the mixtures milled for 25 h 
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8. Li-N-C-H system 

8-1. Reactions of carbon with LiNH2  

 Recently, Alapati et al. [132] performed the first principle calculations to identify new 

destabilized metal hydride reactions. These researchers also suggested attractive reactions 

containing carbon as a destabilizing agent. One of the suggested reactions shows the 

destabilization of LiNH2: 

2LiNH2 + C → Li2CN2 + 2H2                                    (8-1) 

The theoretical model indicates that the standard enthalpy change is -31 kJ/mol H2 (the 

negative sign indicates an endothermic reaction) and that the theoretical hydrogen capacity is 

7 wt.% H2. However, no experimental studies of this system have been attempted yet. 

 

8-1-1. (2LiNH2+C) system 

 Fig. 8-1 compares the DSC curves of single-phase LiNH2 and the (2LiNH2+C) mixtures 

with two different carbon forms, all of which were milled for 25 h. Carbons in the form of 

graphite (crystalline) and carbon black (amorphous) were used as destabilizing agents of 

LiNH2. The DSC curve of single-phase LiNH2 shows a single endothermic peak that 

corresponds to reaction (3-3) at approximately 370°C, while both mixtures with two 

different carbon forms show one endothermic peak below 370°C and two exothermic peaks 

above 450°C. Fig. 8-2 shows the corresponding TGA curves for single-phase LiNH2 and a 

(2LiNH2+Graphite) mixture, both of which were milled for 25 h. Single-phase LiNH2 

releases 33.6 wt.% NH3 according to reaction (3-3), while the weight loss of the 

(2LiNH2+Grapite) mixture is approximately 25.2 wt.%. Two findings are particularly 

interesting. First, the weight loss of the (2LiNH2+Grapite) mixture starts at lower 
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temperatures than that of the LiNH2 and ends below 400°C. Therefore, the weight loss of the 

mixture of LiNH2-C (graphite) (2:1) is due to the only endothermic peak that appears below 

400°C as shown in Fig. 8-1. The two exothermic peaks that appear at approximately 450°C 

do not contribute to any weight loss.  

 The second finding is that the amount of weight loss in the 2:1 molar ratio mixture LiNH2:C 

(graphite) is much larger than our expectation based on reaction (8-1) proposed by Alapati 

[132], which suggests 7 wt.% H2 release through a single endothermic reaction. Assuming 

that graphite is inactive with LiNH2 and that 2 mol of LiNH2 is melted and decomposed into 

Li2NH, the mixture can release 29.4 wt.% NH3, which corresponds to 1 mol of NH3 per unit 

formula of the (2LiNH2+C) mixture.  

Considering the purity of each material, the result is in good agreement with the 

experimental value of 25.2 wt.%. Therefore, the reaction pathway of the mixture as it is 

heated up to 500°C is not processed by reaction (8-1) but follows reaction (3-3), which 

releases NH3. 

 

 

 

 

 

 

 

Fig. 8-1 DSC profiles of 1) single-phase LiNH2 milled for 25 h and 2:1 molar ratio 

mixtures of LiNH2 with 2) carbon black and 3) graphite milled for 25 h  

368.8°°°°C 

359.4°°°°C 

340.8°°°°C 

1 
2 3 

1. LiNH2 milled for 25 h 
2. (2LiNH2+1C(carbon black)) milled for 25 h 
3. (2LiNH2+1C(graphite)) milled for 25 h 

 

10°°°°C/min 



 70 

 

 

 

 

 

 

 

 

 

 

Fig. 8-2 TGA profiles of 1) single-phase LiNH2 milled for 25 h and 2) 2:1 molar ratio 

mixtures of LiNH2 with graphite milled for 25 h 

 

To clarify the reaction pathways corresponding to one endothermic and two exothermic 

peaks, as shown in the DSC curves of the (2LiNH2+Grapite) mixture, samples at different 

DSC stages were collected and analyzed using XRD. XRD analysis was performed with 

Mylar film to prevent oxidation/hydrolysis during the XRD test. As can be seen in Fig. 8-3, 

the XRD pattern of the (2LiNH2+graphite) heated to 400°C shows the diffraction peaks of 

the Li2NH and Li2O phases, which indicates that the endothermic peak in the DSC curve of 

the mixture shown in Fig. 8-1 is related to the melting and decomposition of LiNH2 
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oxidation and hydrolysis of the Li2NH phase or to the formation of lithiated graphite because 

the diffraction peak of graphite at 2Θ=26.4° is split after heating at 500°C.  

 However, it is worth mentioning that the ternary nitride product predicted by Alapati et al. 

[132], the Li2CN2 phase, is not obtained, even though the samples are heated up to 500°C. 

Therefore, the (2LiNH2+Grapite) mixture is decomposed by reaction (3-3), which forms 

Li2NH2 and releases NH3 regardless of the presence of graphite. It is likely that the proposed 

reaction (8-1) is difficult to realize, due to the high kinetic energy barrier of C-C bonds.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8-3 X-ray diffraction patterns of 2:1 molar ratio mixtures of LiNH2 with graphite 

milled for 25 h heated to various temperatures at a heating rate of 10°°°°C/min in Ar 

atmosphere (a- 400°C and b- 500°C) 
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8-2. (LiNH2+1.2LiH) system incorporated with graphite 

8-2-1. Morphology and microstructure of powder mixtures  

 Fig. 8-4 a) shows the backscattered electron (BSE) micrograph of the ((LiNH2+1.2LiH)+5 

wt.% G (graphite)) mixture after ball milling for 25 h. Fig. 8-4 b) shows the XRD patterns 

for (LiNH2+1.2LiH) (pattern 1) and ((LiNH2+1.2LiH)+5 wt.% G) (pattern 2). The principal 

diffraction peaks in both patterns belong to both LiNH2 and LiH. Interestingly, there is no 

graphite peak present in pattern 2, which strongly suggests that graphite transforms into an 

amorphous form because of high-energy ball milling. It is also interesting to note that both 

the LiOH and Li2O diffraction peaks are observed in the mixture without graphite (pattern 1), 

whereas only the Li2O peaks are observed in the mixture with 5 wt.% graphite (pattern 2). 

Possible direct reaction routes that can result in the formation of LiOH when LiH is exposed 

to air at room temperature are as follows [133]: 

LiH+H2O = LiOH+H2             ∆G = -133.01 kJ/mol            (8-2) 

LiH+1/2O2 = LiOH             ∆G = -370.24 kJ/mol          (8-3) 

The absence of the LiOH peaks in diffraction pattern 2 in Fig. 8-4 b) for the mixture with 5 

wt.% graphite as opposed to pattern 1 without graphite is clear evidence that the graphite 

additive indeed formed a hydrophobic coating around the LiH particles that prevented the 

occurrence of reactions (8-2) and (8-3) in the mixture with graphite.   

 Li2O has two possible origins. First, it can be present as a pre-existing impurity in 

commercial LiNH2 and can lead to the formation of LiOH in the mixture without graphite 

according to the following reaction [133]: 

Li2O+H2O = 2LiOH             ∆G = -78.06 kJ/mol                        (8-4) 
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Fig. 8-4 a) Backscattered electron (BSE) micrograph of ((LiNH2+1.2LiH)+5 wt.% G) 

and b) XRD patterns for 1-(LiNH2+1.2LiH) and 2-((LiNH2+1.2LiH)+5 wt.% G), both 

of which were milled for 25 h  
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Second, Li2O can be formed at room temperature if there is a small amount of moisture 

present in the atmosphere according to the following reaction [133]: 

 LiH+1/2H2O = 1/2Li2O+H2            ∆G = -93.98 kJ/mol          (8-5) 

LiH+1/4O2 = 1/2Li2O+1/2H2            ∆G = -212.59 kJ/mol         (8-6) 

 As reported in Chapter 7, the grain size of the principal phases were found from the 

corresponding XRD peak profile breadths in the (LiNH2+LiH) (1:1) mixture after 25 h of 

ball milling (IMP67 mode); the grain (crystallite) sizes of LiNH2 and LiH were 23 and 14 

nm, respectively, with corresponding lattice strains of 4.62×10
-3 

and 0, respectively. One can 

reasonably assume that the grain size would be similar after 25 h of milling in the 

(LiNH2+1.2LiH) mixture with and without 5 wt.% G additive.  

 

8-2-2. Thermal (DSC) behavior  

 Fig. 8-5 compares the DSC profiles of (LiNH2+1.2LiH) and ((LiNH2+1.2LiH)+5 wt.% G) 

milled for 25 h. Interestingly, the mixture without graphite shows two endothermic peaks, a 

large peak and a small one, whereas the mixture with graphite shows one large endothermic 

peak and one small exothermic peak. In the case of (LiNH2+1.2LiH), the first endothermic 

peak at 234.6°C is related to reaction (3-2), in which hydrogen is released, and the second 

endothermic peak at 396.2°C is due to the melting of retained LiNH2 in the mixture and the 

desorption of NH3 (reaction (3-3)). This retained LiNH2 occurs due to the partial 

oxidation/hydrolysis of LiH, which renders reaction (3-2) incomplete. For the 

((LiNH2+1.2LiH)+5 wt.% graphite) mixture, the second endothermic peak disappears, which 

indicates that graphite can prevent or at least substantially reduce the oxidation/hydrolysis of 

LiH. Hydrophobic synthetic graphite covers the surface of LiH and LiNH2 and repels water 
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from the surface. Therefore, the hydrolysis/oxidation of LiH can be prevented. The small 

exothermic peak at 470.9°C for the ((LiNH2+1.2LiH)+5 wt.% G) mixture is related to the 

oxidation and hydrolysis of the Li2NH phase or the formation of lithiated graphite as 

discussed above. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8-5 DSC curves at a heating rate of 10°°°°C/min for the (LiNH2+1.2LiH) mixture with 

and without 5 wt.% graphite, both of which were ball milled for 25 h 

 

 The measurements of the apparent activation energy of hydrogen desorption according to 

reaction (3-2) were collected using two complimentary methods: the Kissinger (Eq. (6-2)) 

and the JMAK-Arrhenius (Eq. (6-3) and (6-4)) equations.  
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Fig. 8-6 a) DSC curves at various heating rates and b) the Kissinger plot for the 

apparent activation energy of dehydrogenation (reaction (3-2)) for the milled 

((LiNH2+1.2 LiH)+5 wt.% G) system 
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 Fig. 8-6 a) shows the effect of varying the heating rate on DSC profiles, which is an 

underlying principle of the Kissinger method for the milled ((LiNH2+1.2LiH) +5wt.% G) 

system. The corresponding Kissinger plot is shown in Fig. 8-6 b). Excellent correlation 

coefficients, R
2
, are obtained for the Kissinger plots in Fig. 8-6 b), which indicates the 

accuracy of the method. The apparent activation energy of the mixture with 5 wt.% graphite 

is 84.9 kJ/mol. Considering the apparent activation energy of (LiNH2+1.2LiH), which is 57.5 

kJ/mol, as shown in Chapter 7, the apparent activation energy of the mixture with 5 wt.% 

graphite becomes relatively high. This behavior can be explained by the fact that the surfaces 

of LiNH2 and LiH are covered with graphite. Generally, surfaces of the particles after ball 

milling become notably reactive and are in intimate contact with other reactants. However, if 

these surfaces are coated with an inactive material, such as graphite, they can become less 

reactive and the diffusion path and distance can be changed. Therefore, these results suggest 

that graphite hinders the surface reaction between LiNH2 and LiH. 

 

8-2-3. Isothermal hydrogen storage behavior  

 Fig. 8-7 a) shows the desorption curves of (LiNH2+1.2LiH) without and with 5 wt.% G 

milled for 25 h at various temperatures under 1 bar H2 pressure. At 275°C, 300°C and 325°C, 

desorption curves for the mixtures with graphite always show higher hydrogen capacity than 

the same mixtures without graphite. The only exception is the curve at 250°C, which shows a 

low capacity for H2 desorbed at this temperature (1 wt.%). This striking capacity difference is 

probably related to the fact that LiH in the mixture without graphite is partially hydrolyzed/ 

oxidized.  
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Fig. 8-7 a) Desorption curves of (LiNH2+1.2 LiH) and ((LiNH2+1.2 LiH)+5 wt.% G) (1-

250°°°°C, 2-275°°°°C, 3-300°°°°C, 4-325°°°°C) under 1 bar H2 (atmospheric) and milled for 25 h 

and b) Arrhenius plots for the estimate of the apparent activation energy for mixtures 

without and with 5 wt.% G 
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Table 8-1. The calculated and experimental amount of H2 desorbed from the 1:1.2 

molar mixture (LiNH2+LiH) without and with 5 wt.% graphite (G) milled for 25 h 

 

Theoretical capacity 
(wt.% H2) 

Purity of 
starting materials 

(%) 

 

100 95 

Experimental capacity 
(wt.% H2) 

measured at 325°°°°C 

LiNH2+1.2LiH 6.2 5.9 4.7 

(LiNH2+1.2LiH)+5 wt.% G 5.9 5.6 5.2 

 

 

Therefore, LiNH2 does not completely react with LiH, and consequently hydrogen capacity is 

lost. As shown in Table 8-1, the mixture with graphite shows nearly the same theoretical 

hydrogen capacity considering the purity of the starting materials. This result provides one 

more piece of evidence of the benefits of the graphite additive. Fig. 8-7 b) shows the 

Arrhenius plots for the estimate of the apparent activation energy. The different slopes of the 

Arrhenius lines indicate a substantial difference in the apparent activation energies for the 

materials with and without graphite. It is striking that the addition of graphite actually 

increases the apparent activation energy from 57 to 90 kJ/mol.  

Fig. 8-8 compares the apparent activation energies obtained by the JMAK/Arrhenius and 

Kissinger methods. It is obvious that both the Kissinger and volumetric methods give nearly 

identical values of the apparent activation energy of desorption according to reaction (3-2).  
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Fig. 8-8 Comparison of apparent activation energies obtained from the Kissinger and 

Arrhenius methods for the mixtures without and with 5 wt.% G 

Fig. 8-9 a) Desorption curve at 325°°°°C under 1 bar H2 pressure and b) corresponding 

absorption curves at 325°°°°C under 11 and 35 bar H2 pressure for the (LiNH2+1.2LiH) 

mixture ball milled for 25 h. c) Desorption curve at 325°°°°C under 1 bar H2 pressure and 

d) corresponding absorption curves at 325°°°°C under 11 and 35 bar H2 pressure for the 

((LiNH2+1.2LiH)+5 wt.% G) mixture ball milled for 25 h 
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Fig. 8-9 a) and c) show desorption curves for the mixtures without and with 5 wt.% G, 

respectively. Fig. 8-9 b) and d) show absorption curves at 325°C under two different 

hydrogen pressures of 11 and 35 bar for the mixtures without and with graphite, respectively. 

Absorption behavior is similarly independent of the presence of graphite. Interestingly, the 

lower absorption hydrogen pressure of 11 bars improves the kinetics of hydrogen absorption 

compared to the higher hydrogen pressure of 35 bars. It is possible that the high-pressure 

hydrogen reacts at a high rate with the Li2NH particle, and, subsequently, a layer of LiNH2 is 

immediately created on the particle surface as shown in Appendix C. This layer blocks the 

hydrogen from diffusing into the particle core, which makes the absorption kinetics slower 

than those used at the lower hydrogen pressure (11 bars). 

 Fig. 8-10 compares XRD patterns of the mixtures without and with graphite after the 

desorption test at 325°C. According to JCPDS file No. 06-0418 and 06-0417 for LiNH2 and 

Li2NH, respectively, most of the principal diffraction peaks of LiNH2 and Li2NH overlap 

except for a couple of peaks at 2Θ=17.7 and 19.7° for LiNH2; thus, these peaks can be used 

as indicators of the presence of the LiNH2 phase in the mixture. It is evident that 

(LiNH2+1.2LiH) without graphite still exhibits the LiNH2 peak at 2Θ=19.7° (Fig. 8-10a), 

whereas ((LiNH2+1.2LiH)+5 wt.% G) exhibits no retained LiNH2 peaks. The existence of 

LiNH2 after the desorption process is an indicator of incomplete desorption reactions (3-2) 

and (3-3). As proposed in Chapter 7, LiNH2 is unable to completely react with LiH, due to 

the partial hydrolysis and oxidation of LiH according to reactions (8-2), (8-3), (8-5) and (8-

6), and, consequently, the unreacted LiNH2 is retained after the desorption process as 

evidenced by its diffraction peaks in Fig. 8-10 a). This result is additional strong evidence 

that graphite can improve the stability of LiH because the XRD profile of (LiNH2+1.2LiH) 
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with graphite in Fig. 8-10 b) does not show retained LiNH2 peaks after desorption. However, 

both mixtures still have LiH peaks after the desorption test. The LiH diffraction peaks in Fig. 

8-10 a) for the graphite-free (LiNH2+1.2LiH) mixture arise from the inactive LiH portion 

due to its hydrolysis/oxidation. In contrast, the LiH diffraction peaks after the desorption test 

of the ((LiNH2+1.2LiH)+5 wt.% G) mixture in Fig. 8-10 b) arise from the unreacted 

excessive 20% mole LiH added to the mixture with graphite.  

 In addition, at higher temperatures of desorption, the conversion of LiOH into Li2O may 

occur according to reactions (8-7) and (8-8) [66]: 

LiOH + LiH = Li2O + H2                                   ∆G = -49 kJ/mol                   (8-7) 

2LiOH = Li2O + H2O                                         ∆G = 97 kJ/mol          (8-8) 

Li2O formed at high temperatures may react with water, and LiOH may reform at room 

temperature (after cooling) according to reaction (8-4). This mechanism is plausible for the 

(LiNH2+1.2LiH) mixture (Fig. 8-10 a)), but it is not feasible for the (LiNH2+1.2LiH)+5 

wt.% G) mixture (Fig. 8-10 b)) because Li2O cannot react with water in the latter because 

water can be repelled from the hydrophobic graphite surface coating around the LiH 

particles. Additionally, the diffraction peaks of Li2O observed in Fig. 8-10 b) probably arise 

from an impurity in commercial LiNH2.  To confirm the reversibility of reaction (3-2), XRD 

analysis for the mixture with graphite ((LiNH2+1.2LiH)+5 wt.% G) after desorption and 

absorption at 325°C under 11 bars was performed as shown in Fig. 8-11 b) and c) and 

compared to the XRD pattern of a ball milled sample in Fig. 8-11 a). After dehydrogenation, 

the LiNH2 peaks disappear (Fig. 8-11 b)). The XRD pattern in Fig. 8-11 c) confirms that 

reaction (3-2) is completely reversible because the Li2NH phase forms after the hydriding 

reaction and the LiNH2 and LiH phases re-appear after the dehydriding reaction.  
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Fig. 8-10 Comparison of XRD profiles for a) (LiNH2+1.2LiH) and b) ((LiNH2+1.2LiH)+5 wt.% 

G), both of which were milled for 25 h and subsequently desorbed at 325°°°°C under 1 bar H2 
pressure   

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 8-11 Comparison of XRD profiles for a) ball milled ((LiNH2+1.2LiH)+5 wt.% G), b) 

desorbed at 325°°°°C under 1 bar H2 pressure after ball milling, and c) absorbed at 325°°°°C under 
11 bar H2 pressure after desorption  
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8-3. Discussion 

8-3-1. Enthalpy and entropy change for the hydrogen desorption reaction  

 Some controversy in the literature related to the magnitude of the enthalpy change (∆H) of 

the dehydrogenation reaction (-44.5 kJ/molH2 [56] and -65.6 kJ/molH2 [67]) prompted us to 

perform experiments using a step-wise desorption method. In this method, every following 

desorption is carried out on a partially desorbed sample that contains progressively 

decreasing quantities of hydrogen. In addition, the increase in pressure occurs within a fixed 

time period during which some desorption may also occur. This method is much faster than 

the conventional PCT but may not be as accurate as the conventional PCT method, due to 

the factors mentioned above.  

 Fig. 8-12 a) and c) show step-wise desorption curves at 275, 285 and 295°C with 

corresponding equilibrium plateau pressures for the mixtures without and with 5 wt.% G, 

respectively. The results of the enthalpy and entropy change values obtained from the Van’t 

Hoff relationship (Eq. (2-2)) are shown in Fig. 8-12 b) and d) for the mixtures without and 

with 5 wt.% G, respectively. As can be seen, the enthalpy and entropy changes of reaction 

(3-2) are -62.4 kJ/mol and -61.0 kJ/molH2 and 117.8 and 115.8 J/molK for the 

(LiNH2+1.2LiH) mixtures without and with 5 wt.% G, respectively. Within the experimental 

error, there is no measurable effect of graphite additive on the thermodynamic properties.  

 The enthalpy change values obtained in the present work are slightly lower than those 

reported elsewhere [67] (-65.6 kJ/molH2). Excellent coefficients of fit to the Van’t Hoff lines 

in Fig. 8-12 b) and d) give strong evidence that the step-wise method is notably accurate at 

least for the hydride systems investigated in the present work. 
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 Fig. 8-13 a) and b) show the plateau pressure vs. temperature plots computed from the Van’t 

Hoff relationship (Eq. (2-2)), and the thermodynamic data is shown in Fig. 8-12 b) and d). It 

is evident that the equilibrium temperature at the atmospheric pressure of hydrogen (0.1 MPa 

H2) is 256.8°C and 253.9°C for the (LiNH2+1.2 LiH) mixtures without and with 5 wt.% G 

milled for 25 h, respectively. Such high equilibrium temperatures also explain the sluggish 

desorption rate at 250°C observed in Fig. 8-12 a). It is also rather obvious that both of these 

hydride systems definitely cannot be employed for hydrogen desorption/absorption below 

100°C. However, the easily reversible ((LiNH2+1.2 LiH)+5 wt.% G) hydride system is a 

potential candidate for hydrogen storage at higher temperatures, which is relevant for high-

temperature fuel cells.   
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Fig. 8-12 a) Step-wise desorption curves at varying temperatures and b) the 

corresponding Van’t Hoff plot for the (LiNH2+1.2LiH) mixture without graphite. c) 

Step-wise desorption curve at varying temperatures and d) the corresponding Van’t 

Hoff plot for the (LiNH2+1.2LiH) mixture with 5 wt.% graphite 
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Fig. 8-13 Plateau pressure vs. temperature for a) (LiNH2+1.2LiH) and b) 

{(LiNH2+1.2LiH)+5 wt.% G} mixtures milled for 25 h 
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9. (LiNH2+nMgH2) (n=0.55, 0.6, and 0.7) 

9-1. (LiNH2+nMgH2) (n=0.55, 0.6, and 0.7) without catalysts 

9-1-1. Effect of milling on the microstructure of hydride mixtures 

 

Fig. 9-1 XRD patterns of the (LiNH2+0.7MgH2) mixtures milled for various milling 

times (IMP67 mode) 
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(JCPDS file No. 09-0189). However, XRD peaks of the LiNH2 and MgH2 phases are still 

observed in the XRD pattern. The presence of the LiH phase suggests that a certain quantity 

of the starting mixture is converted to Mg(NH2)2 and LiH by the metathesis reaction [102, 

107, 108]. However, it is difficult to establish the presence of the Mg(NH2)2 phase using 

XRD because this compound is easily deformed into an amorphous state under the energetic 

ball milling process [107].  Shahi et al. [138] reported the formation of Mg(NH2)2 and LiH 

during the ball milling for the (LiNH2+0.55MgH2) mixture. Therefore, in the 

(LiNH2+nMgH2) (n=0.55, 0.6, and 0.7) system, the LiNH2 and MgH2 phases tend to be 

converted to Mg(NH2)2 and LiH by the metathesis reaction depending on the milling duration 

and energy. In addition, there are no pressure changes during the ball milling. The existence 

of the Mg(NH2)2 phase during the ball milling will be shown in Chapter 10 and 11. 

 

9-1-2. Thermal behavior of (LiNH2+nMgH2) (n=0.55, 0.6, and 0.7) 

 Fig. 9-2 compares DSC curves of the mixtures with various molar ratios of MgH2 and 

LiNH2 milled for a) 1 h and b) 25 h, respectively. As can be seen in Fig. 9-2, the mixtures 

exhibit three endothermic peaks irrespective of the molar ratios and the milling time, which 

indicates that the mixtures decompose in a three-step reaction. It is also remarkable that each 

reaction corresponding to the three endothermic peaks begins at a lower temperature and 

ends sooner as the molar ratio of MgH2/LiNH2 and the milling time increase. In particular, 

peak temperatures for the first and second endothermic reaction for the 1:0.55 LiNH2/MgH2 

mixture are remarkably reduced from 300.9 to 218.8°C and from 401.8 to 344.9°C by 

increasing the milling time from 1 h to 25 h, respectively. Additionally, the increase of the 

molar ratio of MgH2 and LiNH2 can slightly reduce peak temperatures as shown in Fig. 9-2.  
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Fig. 9-2 DSC curves of the (LiNH2+nMgH2) mixtures milled for a) 1 h and b) 25 h: 

n=0.55, 0.60 and 0.70 (IMP67 mode) 
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In contrast to n=0.5 and 0.6, the system with n=0.7 milled for 25 h represents the overlap of 

the first and second endothermic peak. It is also worth highlighting that the intensity of the 

third endothermic peak decreases as the molar ratio of MgH2/LiNH2 increases.  

 Fig. 9-3 shows the dependence of DSC curves on the milling time for the 

(LiNH2+0.7MgH2) mixture. The mixture milled for 1 h has three endothermic peaks, and the 

second and third peaks overlap, whereas the mixture milled for 10 h reveals only two 

endothermic peaks. However, the third endothermic peak reappears after 25 h of ball milling. 

It is likely that the third endothermic peak is a result of the incompletion of both reactions 

corresponding to the first and second endothermic peaks because the second reaction starts 

before the first reaction is complete in the case of the 25 h milled mixture. Therefore, the 

retained phases can be decomposed through the endothermic reaction. The reaction pathways 

corresponding to the three endothermic peaks will be discussed later. 

 

 

 

 

 

 

 

 

 

 

Fig. 9-3 DSC curves of the (LiNH2+0.7MgH2) mixtures milled for various milling times 

(IMP67 mode) 
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9-1-3. Reaction pathways occurring during dehydrogenation 

 To identify the reaction pathways corresponding to three endothermic peaks for the 25 h 

milled (LiNH2+0.7MgH2) mixture as shown in Fig. 9-3, samples at different DSC stages 

marked in DSC curves as shown in Fig. 9-4 a) were collected and analyzed using both XRD 

and FT-IR. When the 25 h milled (LiNH2+0.7MgH2) mixture is heated to 225°C, the 

diffraction peaks of Li2Mg(NH)2 phase are shown in Fig. 9-4 b), while XRD peaks of the LiH 

phase disappear. Further heating of the sample to 350 and 500°C leads to the formation of 

Mg3N2 and LiH phases, while XRD peaks of MgH2 are no longer detectable. Unfortunately, 

the strongest Bragg peak (2Θ=30.64°) of LiNH2 and Li2Mg(NH)2 overlaps (the reader is 

referred to JCPDS file # 06-0418 and ICSD file # 157493 for LiNH2 and Li2Mg(NH)2, 

respectively). This overlap renders the XRD test inconclusive because the presence of LiNH2 

cannot be confirmed unambiguously. Therefore, FT-IR analysis was performed to establish 

clearly the formation of Li2Mg(NH)2 and the presence of LiNH2 in each heating stage. As 

shown in Fig. 9-4 c), the FT-IR spectrum of the mixture heated to 350°C reveals 

characteristic absorption lines at 3180 and 3163 cm
-1

 [131] for Li2Mg(NH)2 and at 3312 and 

3258 cm
-1

 [131] for retained LiNH2. After heating to 500°C, Li2NH becomes visible at 3180 

and 3258 cm
-1

 [67]. The presence of Li2NH suggests that the decomposition of retained 

LiNH2 occurs as discussed in Chapter 7. However, there is no Mg(NH2)2 phase in any heating 

stages, which indicates that this phase is consumed at the initial heating stage. The results of 

XRD and FT-IR analyses are summarized in Table 9-1.  

 To confirm the gaseous species released during heating, a temperature programmed 

desorption (TPD) test was performed on the mixture of LiNH2-MgH2 (1:0.7) milled for 25 h, 

and the result is presented in Fig. 9-5. 
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Fig. 9-4 a) DSC curves of the (LiNH2+0.7MgH2) mixture milled for 25 h (IMP67 mode), b) XRD 

patterns at three temperatures and c) FT-IR absorption spectra at two temperatures 
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Table 9-1. Reaction pathways for the (LiNH2+0.7MgH2) mixtures milled for 25 h 

(IMP67 mode) (Based on DSC analysis in Fig. 9-4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9-5 TPD spectra for the (LiNH2+0.7MgH2) milled for 25 h (IMP67 mode) 
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When the mixture is heated to 500°C at a rate of 5°C/min, two hydrogen desorption peaks 

exhibiting a doublet with peak temperatures at 190°C and 240°C are clearly observed up to 

340°C, which correspond to the first and second endothermic peaks as shown in Fig. 9-4 a). 

It clearly indicates that the mixture decomposes in a two-step reaction to release H2. 

Moreover, hardly any NH3 emission (ppm level) is detected in the TPD measurements up to 

500°C within our experimental accuracy. However, the result of TPD analysis is beyond our 

expectation because we expected the release of NH3 in the temperature range of 420-460°C 

based on the DSC analysis and the corresponding XRD and FT-IR analysis as shown in Fig. 

9-4; the third endothermic peak is clearly shown in the DSC curve (Fig. 9-4 a)), which 

corresponds to the melting and decomposition reaction of LiNH2 and consequently forms 

Li2NH and releases NH3 according to reaction (3-3). One clue is the heating rate; DSC 

analysis was performed at a heating rate of 10°C/min, while TPD analysis was processed at a 

heating rate of 5°C/min. Therefore, it can be understood that if the mixture is heated at a 

slow rate (5°C/min), then the decomposition reaction of the retained LiNH2 can be avoided, 

which means that the first and second reaction can be completed.  

 Markmaitree et al. [131] reported that high-energy ball milling can increase the reaction rates 

and alleviate the NH3 emission problem, but their ball milling conditions were not sufficient 

to solve the NH3 emission problem of the (LiNH2+ 0.55MgH2) mixture. However, it is likely 

that the problem is not solely due to ball milling conditions. As can be seen in DSC curves of 

mixtures with n=0.55 and 0.6 (Fig. 9-2 b)), these systems show the third endothermic peak, 

which has been used as the indicator to show the degree of the completion of the reaction, 

although they don’t have any overlap of the first and second endothermic peaks. It indicates 

that the above-mentioned reactions are incomplete, due to the kinetic problem between each 
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constituent. Thus, NH3 can be released during the dehydrogenation, even after high-energy 

ball milling (IMP67) for 25 h. However, in the case of the (LiNH2+0.7MgH2) mixture milled 

for 25 h, it can be surmised that the third endothermic peak does not come from the kinetic 

problem but rather the overlap of both endothermic peaks because the third endothermic peak 

is not shown in DSC curve of the 10 h milled (LiNH2+0.7MgH2) mixture (Fig.9-3), which 

means that the reaction can be complete even after the shorter milling time. Therefore there 

are no kinetic issues on this composition. Consequently, to improve the reaction rate and 

eliminate NH3 emission, a molar ratio greater than n=0.5, which has been proposed in other 

studies [83, 86], is needed. Thus, the optimum molar ratio of MgH2/LiNH2 in our study 

should be 0.7 in the (LiNH2+nMgH2) (n=0.55, 0.6, and 0.7) system. 

 Based on the above analyses, the reaction pathways of hydrogen desorption for the 25 h 

milled (LiNH2+0.7MgH2) mixture can be proposed. As mentioned above, LiNH2 is partially 

converted to Mg(NH2)2 and LiH by the metathesis reaction with a specific quantity of MgH2 

during ball milling. Thus, at the low temperature range corresponding to the first 

endothermic peak shown in Fig. 9-4 a), the LiNH2 reacts with MgH2 as reported by Luo et 

al.[86] and Xiang et al. [83] (LiNH2+0.5MgH2→0.5Li2Mg(NH)2+H2), and, simultaneously 

newly formed Mg(NH2)2 reacts with LiH as reported by Barison et al. [135] 

(0.5Mg(NH2)2+LiH→0.5Li2Mg(NH)2+H2). Both reactions form Li2Mg(NH)2 and H2. 

Therefore, in the first step (at low temperature), the reaction can be described as follows: 

[0.5xMg(NH2)2+xLiH]+[(1-x)LiNH2 +(0.5-0.5x)MgH2]    

→ 0.5Li2Mg(NH)2+1.0H2                                                                                                                                                   (9-1) 

where, x is the number of moles of newly formed LiH during the ball milling. 
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 In the second step (performed at high temperatures), Li2Mg(NH)2 formed through reaction 

(9-1) reacts with retained MgH2 to form Mg3N2, LiH and H2 as proposed by Liang et al. 

[108] and Dolotko et al. [134]: 

0.5Li2Mg(NH)2 + MgH2 → 0.5Mg3N2 + LiH + H2                                                             (9-2) 

Assuming reaction (9-1) and (9-2) are completed, they can be described by a series of 

sequential reactions as follows: 

 LiNH2+0.7MgH2 

→ [0.5xMg(NH2)2+xLiH]+[(1-x)LiNH2 +(0.7-0.5x)MgH2] (after milling for 25h)      

 → 0.5Li2Mg(NH)2+0.2MgH2+H2 (after dehydrogenation at low temp.)                           (9-3) 

 → 0.4Li2Mg(NH)2+0.1Mg3N2+0.2LiH+1.2H2 (after dehydrogenation at high temp.) 

In total, 2.4 moles of hydrogen atoms can be obtained from the above reaction, which is 

approximately 5.8 wt.% of hydrogen. Considering 95% purity of the starting materials, the 

total maximum hydrogen storage capacity is 5.6 wt.% H2. However, if the above-mentioned 

reactions cannot be completed, for example, due to the overlap between reaction (9-1) and 

reaction (9-2) as shown in Fig. 9-4 a), the retained LiNH2 is decomposed as follows: 

LiNH2 → 0.5Li2NH + 0.5NH3                                                                                             (3-3) 

Therefore, the above-mentioned reaction (9-3) can be modified as follows: 

LiNH2+0.7MgH2 

→ [0.5xMg(NH2)2+xLiH] + [(1-x)LiNH2 +(0.7-0.5x)MgH2] (after milling for 25h) 

→(0.5-0.5y)Li2Mg(NH)2+(0.2+0.5y)MgH2+xLiNH2+(1-y)H2  (reaction (9-1))            

→ (0.4-0.75y)Li2Mg(NH)2 + (0.1+0.25y)Mg3N2  + (0.2+0.5y)LiH + yLiNH2                            (9-4) 

       + (1.2-0.5y)H2  (reaction (9-2)) 

→ (0.4-0.75y)Li2Mg(NH)2 + (0.1+0.25y)Mg3N2 + (0.2+0.5y)LiH + (1.2-0.5y)H2 
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       + 0.5yLi2NH + 0.5yNH3  (reaction (3-3)) 

where y is the number of moles of retained LiNH2. Therefore, the total amount of desorbed 

hydrogen reduces to (2.4-y) mol of hydrogen atoms per unit formula of (LiNH2+0.7MgH2). 

Moreover, it is worth highlighting that the relative contribution of reaction (9-2) to the total 

dehydrogenation capacity in reaction (9-4) increases as the amount of the retained LiNH2 

increases compared to reaction (9-3). It is clearly shown in reaction (9-4) that the amount of 

hydrogen released through reaction (9-1) is relatively reduced by 2y mole of hydrogen atoms, 

whereas it is increased by y mole of hydrogen atoms in reaction (9-2) compared to reaction 

(9-3). However, it should also be mentioned that the amount of retained LiNH2 can be 

negligible if the mixture is heated at the low rate as mentioned above; therefore the 

dehydrogenation reaction pathways are getting closer to reaction (9-3) than to reaction (9-4). 

 

9-1-4. Isothermal hydrogen storage behavior 

 To verify the proposed reaction pathways, the (LiNH2+0.7MgH2) mixtures milled for 25 h 

are dehydrogenated at various temperatures under 1 bar H2 pressure as shown in Fig. 9-6. As 

mentioned above, the hydrogen release in this system takes place in a two-step reaction. 

Based on the TPD analysis and reaction (9-3), the maximum hydrogen-desorption amount is 

4.6 wt.% (corrected for 95% purity) for the first step of the reaction in the temperature range 

of 50-225°C and 0.9 wt.% (corrected for 95% purity) for the second step in the temperature 

range of 225-340°C, which correspond to 2.0 and 0.4 mol of hydrogen atoms per unit 

formula of LiNH2/0.7MgH2, respectively. In total, 5.6 wt.% H2 (corrected for 95% purity), 

which is equivalent to 2.4 mol of hydrogen atoms, is released as shown in reaction (9-3). As 

can be seen in Fig. 9-6, the mixtures desorb 0.3-4.4 wt.% H2 in the temperature range of 
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125-225°C under 1 bar of H2, which corresponds to reaction (9-1). With an increase in 

temperature, the hydrogen-desorption amount gradually increases. When the temperature is 

elevated to 400°C, another 0.8 wt.% of hydrogen is desorbed. In total, 5.3 wt.% of hydrogen 

is released from the sample upon heating. Although this value is still less than the calculated 

value of 5.6 wt.% H2 (corrected for 95% purity) from reaction (9-3), it can be in good 

agreement with the experimental value of 5.3 wt.% H2 on condition that LiNH2 phase 

remains after the dehydrogenation up to 400°C, thus the reaction pathways process through 

reaction (9-4).  

 Dehydrogenation kinetics has also been studied at 250°C under 1 bar H2 pressure for all 

samples to investigate the effect of milling duration. As can be seen in Fig. 9-7, it is clearly 

observed that the hydrogen desorption kinetics of the 1:0.7 LiNH2/MgH2 mixture is 

improved by increasing the milling time. The LiNH2/MgH2 (1:0.7) mixture milled for 25 h 

desorbs 4.4 wt.% H2 at 250°C as shown in Fig. 9-6, which can be considered as the 

maximum hydrogen capacity at 250°C under 1 bar H2.  

 To desorb 4.0 wt.% of H2 (about 91% of the maximum hydrogen capacity), a mixture milled 

for 25 h only needs 9.5 min, whereas 84 and 20 min are required for the mixtures milled for 

5 and 10 h, respectively. Moreover, the 1:0.7 LiNH2/MgH2 mixtures milled for 0.5 and 1 h 

require more than 100 min to desorb 4.0 wt.% of H2.  

 Therefore, in our study, the (LiNH2+0.7MgH2) mixture milled for 25 h under IMP67 mode 

shows the best kinetic properties. 
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Fig. 9-6 Dehydrogenation curves at various temperatures under 1 bar H2 for the 

(LiNH2+0.7MgH2) mixtures milled for 25 h (IMP67 mode)  

 

 

 

 

 

 

 

 

 

Fig. 9-7 Isothermal dehydrogenation curves at 250°°°°C under 1 bar H2 for the 

(LiNH2+0.7MgH2) mixture milled for various durations (IMP67 mode)  
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9-2. (LiNH2+0.7MgH2) mixtures with catalysts 

9-2-1. Morphology and microstructure of powder mixtures 

 Fig. 9-8 shows EDS mappings of the Mg, N, and Ni elements of the 25 h milled 

(LiNH2+0.7MgH2) mixture with 5 wt.% n-Ni. Fig. 9-8 b) shows the distribution of Mg 

element which indicates the MgH2 and Mg(NH2)2 phases and Fig. 9-8 c) represents the 

distribution of the LiNH2 and Mg(NH2)2 phases. The figure reveals a homogeneous 

distribution of each constituent. The homogeneous distribution and intimate contact of each 

phase is the most important parameters in improving the reaction kinetics and show full 

reversibility; Chen et al. [96] and Barison et al. [135] reported that the reversibility of this 

system is dominated by a local interaction between reactants.   

 The grain sizes of LiNH2 and MgH2 after milling were estimated from XRD patterns for the 

mixtures without and with 5 wt.% n-Ni in Fig. 9-9 a) and b), respectively. It is evident that 

the grain sizes of both phases decrease as the milling duration increases, and its behaviors 

are quite similar independent of the addition of 5 wt.% n-Ni. The crystallite sizes of both 

LiNH2 and MgH2 decrease to 10 nm after ball milling for 25 h. It is worth noting that the 

longer ball-milling process causes grain size reduction; therefore, the reduced grain size 

results in an increased reaction rate, which is in reasonable agreement with the hydrogen 

desorption curves of the 1:0.7 LiNH2/MgH2 mixture shown in Fig. 9-7. 
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Fig. 9-8 a) Secondary electron (SE) micrograph and energy-dispersive X-ray 

spectroscopy (EDS) mapping for b) Mg, c) N and d) Ni elements of the 

(LiNH2+0.7MgH2) mixture with 5 wt.% n-Ni milled for 25 h (IMP67 mode) 

 

Fig. 9-9 Grain sizes as function of milling times for (LiNH2+0.7MgH2) a) without and b) 

with 5 wt.% n-Ni (IMP67 mode) 
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9-2-2. Thermal behavior 

 Fig. 9-10 represents DSC curves of {(LiNH2+0.7MgH2)+5 wt.% n-Ni} mixtures milled for 

different amounts of time. It shows that the mixtures have similar thermal behavior to that of 

the same mixture without n-Ni as shown in Fig. 9-3. However, the reaction of the mixture 

with 5 wt.% n-Ni starts at lower temperatures and ends faster than that without a catalyst, 

and the peak temperature is also reduced from 212.3 to 206°C. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9-10 DSC curves for the (LiNH2+0.7MgH2) mixtures with 5 wt.% n-Ni milled for 

various durations (IMP67 mode) 
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 The measurements of the apparent activation energy of hydrogen desorption were collected 

using the Kissinger method (Eq.(6-2)). Fig. 9-11 a) shows the effect of various heating rates 

on DSC profiles, which is an underlying principle of the Kissinger method. It is interesting 

to note that in the DSC curve of the mixture heated at 5°C/min, the third endothermic peak is 

barely noticeable, which is in good agreement with the result of TPD analysis as shown in 

Fig. 9-5. The corresponding Kissinger plots for reaction (9-1) and reaction (9-2) are shown 

in Fig. 9-11 b) and c), respectively, for the (LiNH2+0.7MgH2) mixtures without and with 

catalysts milled for 25 h. The excellent correlation coefficients, R
2
, obtained for the 

Kissinger plots in Fig. 9-11 b) and c), attest to the accuracy of the method. The apparent 

activation energies are shown in Fig. 9-12 and 9-13. Three interesting effects on the kinetics 

in this system are noted from the two figures. First, under the same processing conditions, 

the apparent activation energies for reaction (3-5), reaction (9-1) and reaction (9-2) decrease 

dramatically as the molar ratio of MgH2/LiNH2 increases from 0.55 to 0.7 in Fig. 9-12. 

Second, the kinetic barrier can be reduced by increasing the milling time as shown in Fig. 9-

13. Several studies [92, 136, 137] have already reported that high-energy ball milling 

reduces the particle and crystallite sizes of powder and increases the powder’s specific 

surface area and defect concentration. Normally, the reduced particle size and increased 

surface area result in an increased reaction rate, which decreases the apparent activation 

energy. A change in the apparent activation energy is typically related to changes in the 

reaction mechanism or in the energy state of the reactant(s). In our study, it is proposed that 

the reduction in the apparent activation energy results from both the change in the reaction 

pathway and an increase in the energy states of each constituent induced by high-energy ball 

milling.   
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Fig. 9-11 a) DSC curves at various heating rates for the (LiNH2+0.7MgH2) mixture milled for 25 h 

(IMP67 mode) and b) and c) the Kissinger plots of the apparent activation energies of reaction (9-1) and 

reaction (9-2), respectively, after the 25 h milled (LiNH2+0.7MgH2) mixtures without and with catalysts  
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Fig. 9-12 The apparent activation energies for the (LiNH2+nMgH2) (n= 0.55, 0.60 and 

0.70) mixtures milled for various durations (IMP67 mode): 

- Reaction (3-5): LiNH2+0.5MgH2 →→→→ 0.5Li2Mg(NH)2+H2   

- Reaction (9-1): [0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(0.5-0.5x)MgH2] →→→→ 0.5Li2Mg(NH)2+1.0H2 

- Reaction (9-2): 0.5Li2Mg(NH)2+MgH2 →→→→ 0.5Mg3N2+LiH+H2    
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Fig. 9-13 Comparison of the apparent activation energies for the (LiNH2+0.7MgH2) 

mixture without and with two types of catalysts (n-Ni and MnCl2) as a function of 

milling time (IMP67 mode) 
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The third important feature in Fig. 9-13 is the catalytic effect of n-Ni and MnCl2 on the 

apparent activation energy of 1:0.7 molar mixtures in different milling stages. This effect 

clearly indicates that the incorporation of catalysts can reduce the kinetic barrier for the 

dehydrogenation of the system. In particular, n-Ni is a better catalyst for this mixture than 

MnCl2 because the apparent activation energy of the (LiNH2+0.7MgH2) mixture with n-Ni 

milled for 25 h decreases from 71.7 to 65.0 kJ/mol for reaction (9-1), whereas it is less 

reduced when MnCl2 is added.  

 

9-2-3. Isothermal hydrogen storage behavior 

 To verify the catalytic effect on the dehydriding kinetics, (LiNH2+0.7MgH2) with 5 wt.% n-

Ni milled for 25 h was dehydrogenated at various temperatures under 1 bar H2 pressure as 

shown in Fig. 9-14. Similarly to the mixture without a catalyst, the hydrogen release in this 

system takes place in a two-step reaction. Based on reaction (9-3), the hydrogen-desorption 

amount is approximately 4.4 wt.% (corrected for 95% purity) for the first step of the reaction 

and 0.9 wt.% (corrected for 95% purity) for the second step, which corresponds to 2.0 and 

0.4 mol of hydrogen atoms per unit of the {(LiNH2+0.7MgH2)+5 wt.% n-Ni} mixture, 

respectively. In total, 5.3 wt.% H2 (corrected for 95% purity), which is equivalent to 2.4 mol 

of hydrogen atoms, is released as shown in reaction (9-3). As can be seen in Fig. 9-14, the 

mixtures dehydrogenated in the temperature range of 125-225°C under 1 bar of H2 release 

0.5-4.5 wt.% H2, which corresponds to reaction (9-1). With an increase in temperature, the 

hydrogen-desorption amount gradually increases. When the temperature is elevated to 400°C, 

another 0.7 wt.% of hydrogen is desorbed. In total, 5.2 wt.% of hydrogen is output from the 

sample upon heating. 
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Fig. 9-14 Dehydrogenation curves at various temperatures under 1 bar H2 for the 

(LiNH2+0.7MgH2) mixtures with 5 wt.% n-Ni milled for 25 h (IMP67 mode) 

 

This result is in a good agreement with the amount of hydrogen calculated from equation (9-

1) (5.3 wt.% H2). Therefore, the dehydriding reaction pathways more closely approach those 

of reaction (9-3) if n-Ni is added. Another finding is that dehydrogenation curves for the 
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n-Ni as shown in Fig. 9-6. The only exception is the curve at 400°C, which may be a 

sufficiently high temperature to overcome kinetic barriers for reaction (9-1) and reaction (9-

2). This striking capacity difference is most likely related to the catalytic effect of n-Ni on 

the dehydriding kinetics. Additionally, Fig. 9-15 represents the comparison of dehydriding 

curves at various temperatures under 1 bar H2 for the (LiNH2+ 0.7MgH2) mixtures without 

and with 5 wt.% n-Ni and MnCl2 milled for 25 h. As shown in Fig. 9-15 a), the catalytic 

effect of n-Ni becomes more pronounced at lower temperatures, while, in contrast to n-Ni, 

the addition of MnCl2 results in no noticeable improvement, as shown in Fig. 9-15 b).
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Fig. 9-15 Comparison of dehydrogenation curves at various temperatures under 1 bar 

H2 for the (LiNH2+0.7MgH2) mixtures milled for 25 h (IMP67 mode): a) without and 

with 5 wt.% n-Ni and b) with 5 wt.% n-Ni/MnCl2 
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 To better understand the reversibility of reaction (9-1) and reaction (9-2), the 

(LiNH2+0.7MgH2) mixtures with 5 wt.% n-Ni milled for 25 h were first dehydrogenated at 

175 and 400°C under 1 bar of hydrogen, respectively. Next, the differently dehydrogenated 

samples were hydrogenated under the same conditions of 175°C under 50 bar of hydrogen. 

Based on the above analyses, the dehydriding reaction at 175°C corresponds to reaction (9-

1), whereas both reaction (9-1) and reaction (9-2) occur sequentially at 400°C. Fig. 9-16 a) 

and b) show the dehydriding/hydriding cycles of the (LiNH2+ 0.7MgH2) mixture with 5 

wt.% n-Ni milled for 25 h at two different dehydrogenation temperatures of 175 and 400°C 

under 1 bar of hydrogen, respectively. It is seen that the hydrogen desorption/absorption 

behavior is quite different with different dehydriding temperatures. The mixture 

dehydrogenated at 175°C and subsequently hydrogenated at 175°C under 50 bar of H2 shows 

full reversibility with 3.6 wt.% H2. However, the mixture dehydrogenated at 400°C releases 

5.2 wt.% H2, but the dehydrogenated sample absorbs only 3.2 wt.% H2 at 175°C under 50 

bar of H2, which indicates that the dehydrogenated samples cannot be completely converted 

to their starting states under the present testing conditions. To clarify the reaction pathways 

of dehydrogenation/hydrogenation, samples at each cycling stage of dehydriding and 

hydriding were collected and analyzed using XRD as shown in Fig. 9-17 a) and b). Fig. 9-17 

a) clearly shows that Li2Mg(NH)2 is formed by the dehydrogenation of LiNH2-MgH2 (1:0.7) 

mixture at 175°C, which corresponds to reaction (9-1). In the subsequent hydrogenation 

process, Mg(NH2)2 and LiH appear instead of the Li2Mg(NH)2 phase. Finally, the 

Li2Mg(NH)2 phase reappears during the dehydrogenation of the hydrogenated mixture. The 

appearance of this phase indicates that the reversible reaction is processed between 

Li2Mg(NH)2 and {Mg(NH2)2 and LiH} rather than {LiNH2 and MgH2} [83, 86]. Thus, the 
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Mg(NH2)2/LiH system is thermodynamically more favorable than the LiNH2/MgH2 system, 

which has already been experimentally proven by Luo et al. [94].  

 The only difference between Fig. 9-17 a) and b) is the formation of Mg3N2 phase after 

dehydrogenation at 400°C. However, this phase still exists even after the hydrogenation 

process. Therefore, this phase cannot be hydrogenated under our experimental conditions, 

which results in the loss of reversibility, as shown in Fig. 9-16 b). XRD results shown in Fig. 

9-17 a) and b) are summarized in Table 9-2. With the information obtained from the 

dehydriding/hydriding cycles and the corresponding XRD analysis, the reversible 

hydrogenation/dehydrogenation processes can be described by the following reaction:  

0.5Li2Mg(NH)2+H2 ↔ 0.5Mg(NH2)2+LiH                                                                         (3-6) 

Assuming that all reactions are completed and that the dehydrogenation is processed at the 

low temperature range corresponding to the first endothermic peak in the DSC curve shown 

in Fig. 9-10, it can be described by a series of dehydriding/hydriding reactions as follows: 

[0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(0.7-0.5x)MgH2]    (after ball milling) 

 → 0.5Li2Mg(NH)2 + 0.2MgH2 + H2  (after dehydrogenation)                                            (9-5) 

 ↔↔↔↔ 0.5Mg(NH2)2 + LiH + 0.2MgH2 (after rehydrogenation) 

Based on reaction (9-5), the maximum reversible hydrogen amount is approximately 4.4 

wt.% (corrected for 95% purity), which corresponds to 2.0 mol of hydrogen atoms per unit 

of the {(LiNH2+0.7MgH2)+5 wt.% n-Ni} mixture.          

 However, for dehydrogenation in the high temperature range that corresponds to the second 

endothermic peak in DSC curve shown in Fig. 9-10, the series of dehydriding/hydriding 

reactions is as follows: 

[0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(0.7-0.5x)MgH2]   (after ball milling) 
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→ 0.4Li2Mg(NH)2+0.1Mg3N2+0.2LiH+1.2H2    (after dehydrogenation) 

0.4Li2Mg(NH)2+0.1Mg3N2+0.2LiH+0.8H2                                                                                                            (9-6) 

 ↔ 0.4Mg(NH2)2+LiH+0.1Mg3N2    (after rehydrogenation) 

 It is worth highlighting that 2.4 moles of hydrogen atoms can be desorbed the first time, but 

only 1.6 moles of hydrogen atoms can be absorbed and be reversible. Considering 95% 

purity of the starting materials, the (LiNH2+0.7MgH2) mixture without and with 5 wt.% n-Ni 

can initially desorb 5.5 and 5.3 wt.% H2, respectively. However, in the subsequent 

hydrogenation/dehydrogenation process, only 3.7 and 3.5 wt.% H2 can be absorbed and 

desorbed for the mixture without and with 5 wt.% n-Ni, respectively. This result is in good 

agreement with our experimental value of 3.2 wt.% of hydrogen for the (LiNH2+0.7MgH2) 

mixture with 5 wt.% n-Ni shown in Fig. 9-16 b).  

 Therefore, the (LiNH2+0.7MgH2) mixture is a completely reversible system in the 

temperature range corresponding to the first endothermic peak in the DSC curve as shown in 

Fig. 9-2 and 9-10. 
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Fig. 9-16 Reversibility for the (LiNH2+0.7MgH2) mixtures with 5 wt.% n-Ni milled for 

25 h (IMP67 mode) 

 

 

 

 

 

 

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000

Time (s)

H
y

d
ro

g
e

n
 (

w
t.

%
)

- Dehydrogenated at 400°°°°C under 1 bar H2 

- Rehydrogenated at 175°°°°C under 50 bar 
H  

1.1
st

 dehydrogenation: 5.2 wt.% 
2.1

st
 rehydrogenation: 3.2 wt.% 

3.2
nd

 dehydrogenation: 3.2 wt.% 
wt. % 

1 

2 3 

b) 

0

1

2

3

4

5

6

0 4000 8000 12000 16000 20000

Time (s)

H
y
d

ro
g

e
n

 (
w

t.
%

)

- Dehydrogenated at 175°°°°C under 1 bar H2 

- Rehydrogenated at 175°°°°C under 50 bar H2 

1.1
st

 dehydrogenation: 3.6 wt.% 
2.1

st
 rehydrogenation: 3.6 wt.% 

3.2
nd

 dehydrogenation: 3.6 wt.% 

1 

2 

3 

a) 



 115 

 

Fig. 9-17 XRD patterns for the ((LiNH2+0.7MgH2)+5 wt.% n-Ni) mixtures milled for 25 

h under IMP67 mode and subsequently dehydrogenated at a) 175°°°°C and b) 400°°°°C, 

respectively, under 1 bar H2 and then rehydrogenated at 175°°°°C under 50 bar H2 
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Table 9-2. Reversible reaction pathways for the ((LiNH2+0.7MgH2)+5 wt.% n-Ni) 

mixtures milled for 25 h (IMP67 mode) (Based on Sieverts analysis in Fig. 9-16 and 9-

17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

T(°°°°C) LiNH2 MgH2 Li2Mg(NH)2 Mg3N2 LiH Mg(NH2)2 

Dehydrogenated 

at 175°°°°C under 1 bar H2 
O O O - - - 

Rehydrogenated 

at 175°°°°C under 50 bar H2 
O O - - O O 

Re-dehydrogenated 

at 175°°°°C under 1 bar H2 
O O O - - - 

Dehydrogenated 

at 400°°°°C under 1 bar H2 
O - O O O - 

Rehydrogenated 

At 175°°°°C under 50 bar H2 
O - - O O O 

Re-dehydrogenated 

at 400°°°°C under 1 bar H2 
O - O O O - 
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9-3. Discussion of thermodynamic properties 

 At the beginning of the present study, it was mentioned that MgH2 is substituted for LiH to 

overcome the thermodynamic barriers of the LiNH2-LiH system; therefore, the 

(LiNH2+nMgH2) (n=0.55, 0.60, and 0.70) system is investigated. In this section, the 

thermodynamic properties of the LiNH2- MgH2 system are investigated and discussed. 

 To experimentally confirm the magnitude of the enthalpy change (∆H) of the 

dehydrogenation reaction, we performed PCT experiments using a step-wise method (see 

Chapter 6). Fig. 9-18 a) and c) show step-wise desorption curves at 160, 170 and 180°C with 

corresponding equilibrium plateau pressures for a 1:0.7 molar ratio LiNH2:MgH2 mixture 

without and with 5 wt.% n-Ni milled for 25 h, respectively. The results of the enthalpy and 

entropy change values obtained from the Van’t Hoff relationship (Eq.(2-2)) are shown in 

Fig. 9-18 b) and d) for the same mixture without and with n-Ni, respectively. It is evident 

that the enthalpy and entropy changes of reaction (9-1) are -46.7 kJ/mol and -45.9 kJ/molH2 

and 136.1 and 134.5 J/molK for the (LiNH2+0.7MgH2) mixture without and with 5 wt.% n-

Ni, respectively. Within the experimental error, there is no measurable effect of n-Ni on the 

thermodynamic properties. Moreover, excellent coefficients of fit to the Van’t Hoff lines in 

Fig. 9-18 b) and d) provide strong evidence that the step-wise method is notably accurate, at 

least for the hydride systems investigated in the present work. However, the values of the 

enthalpy change obtained in the present work are slightly higher than those reported by 

Xiong et al. [84] (-38.9 kJ/molH2) and Barison et al. [135] (-40.4 kJ/molH2). 

 Fig. 9-19 a) and b) shows the plateau pressure vs. temperature plots calculated from the 

Van’t Hoff relationship (Eq.(2-2)) and the thermodynamic data in Fig. 9-18 b) and d). It is 

evident that the equilibrium temperature at atmospheric pressure of hydrogen (1 bar of H2) is 
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70.1°C and 68.3°C for the (LiNH2+0.7MgH2) system without and with 5 wt.% n-Ni milled 

for 25 h, respectively. It is obvious that both of these hydride systems can be employed for 

hydrogen desorption/absorption below 100°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9-18 a) & c) Step-wise desorption curves at varying temperatures and b) & d) 

corresponding Van’t Hoff plots for the (LiNH2+0.7MgH2) mixtures; a) & b) without n-

Ni and c) & d) with 5 wt.% n-Ni milled for 25 h (IMP67 mode) 

- Reaction (9-1): [0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(0.5-0.5x)MgH2] →→→→ 0.5Li2Mg(NH)2+1.0H2 
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 Considering the enthalpy change (-62.4 kJ/mol) and the equilibrium temperature at 

atmospheric pressure of hydrogen (256.8°C) of the LiNH2-LiH system as discussed in 

Chapter 8, the LiNH2/MgH2 (1:0.7) mixture has a greater potential for hydrogen storage 

material when applied to automobiles. However, there are still two main challenges: 1) the 

low reversible hydrogen capacity (below 5.0 wt.% H2) and 2) the kinetic issues. Even the 

catalyzed system desorbs only 0.5 wt.% H2 at 125°C as shown in Fig. 9-12 b) despite high 

plateau pressure at that temperature. Therefore, more researches to improve kinetic 

properties and the reversibility are needed. 
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Fig. 9-19 Plateau pressure vs. temperature for the (LiNH2+0.7MgH2) mixture a) 

without and b) with 5 wt.% n-Ni milled for 25 h (IMP67 mode) 
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10. (LiNH2+1.0MgH2) system 

10-1. Hydrogen desorption during ball milling 

   

 

 

 

 

 

 

 

 

 

Fig. 10-1 Hydrogen loss of the (LiNH2+1.0MgH2) during ball milling process in four 

different milling modes  

 

 Fig. 10-1 shows the amount of desorbed hydrogen in the (LiNH2+1.0MgH2) mixtures during 
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with the measured gas pressure variations within the ball milling jar as shown in Appendix 

A-2. It is worth noting that the amount of hydrogen desorbed during the ball milling of 

LiNH2-MgH2 system strongly depends on the milling energy and the molar ratio of 
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shown in Chapter 9. It can be seen from Fig. 10-1 that hydrogen release in the mixture 

milled under IMP67 mode suddenly begins after milling for 6 h and gradually increases as 

the ball milling proceeds. After 25 h of milling, 1.9 wt.% H2 is released from the mixture of 

LiNH2-MgH2 (1:1). In contrast to the IMP67 mode, the low-energy shearing (LES6-4B (4 

balls)) mode results in the release of 1.1 wt.% H2 after 25 h milling. This result indicates that 

hydrogen comes from the chemical reaction between LiNH2 and MgH2. However, no 

pressure changes during ball milling are shown under the low-energy shearing (LES6) 

modes with 2 and 3 balls. Therefore, solid-solid reactions between LiNH2 and MgH2 occur 

during ball milling depending on the milling energy as reported by Liu et al. [107] and Liang 

et al. [108]. To ascertain the chemical process that occurs during the ball milling process, 

solid residues at different ball milling stages were collected for XRD and FT-IR 

characterizations. Fig. 10-2 a) and b) show the XRD patterns and FT-IR spectra, respectively, 

of the (LiNH2+1.0MgH2) mixtures milled under a high-energy impact (IMP67) mode for 

various milling times. The mixture milled under the IMP67 mode for 1 h still consists of the 

original LiNH2 and MgH2 phases. After 4 h of ball milling under the same milling mode, a 

small new peak is observed at 44.3° (2θ), which can be assigned to the LiH phase (JCPDS 

file No. 09-0189), while the diffraction peaks of the LiNH2 phase disappear; however, XRD 

peaks of the MgH2 phase still dominates the XRD pattern. Thus, the LiNH2 is completely 

converted to Mg(NH2)2 and LiH by the metathesis reaction with MgH2 [102, 107, 108]. 

However, it is difficult to establish the presence of the Mg(NH2)2 phase using XRD because 

this compound is easily deformed into an amorphous state under the energetic ball milling 

process [107].  
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Fig. 10-2 a) XRD patterns and b) FT-IR absorption spectra for the (LiNH2+1.0MgH2) mixtures 

milled for various times (IMP67 mode) (*Ref. # 108: Liang et al Chem. Eur. J. 16 (2010) 693-

702) 
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To confirm the presence of the Mg(NH2)2 phase undetected by XRD in Fig. 10-2 a), FT-IR 

analysis was performed as shown in Fig. 10-2 b). The figure clearly shows the formation of 

Mg(NH2)2 with characteristic absorption lines at 3271 and 3326 cm
-1

 [100] after 4 h milling 

under the IMP67 mode. When the ball milling is prolonged to 6 and 25 h under IMP67, the 

formation of new MgNH phase is detected by XRD patterns [99, 100, 108] and the FT-IR 

spectrum [100], while the intensity of MgH2 diffraction peaks in XRD pattern becomes 

lowered, which can be interpreted by the gradual consumption of this phase to form MgNH 

and H2.  

 Fig. 10-3 a) and b) represent the XRD patterns of (LiNH2+1.0MgH2) mixtures milled under 

both low-energy shearing (LES6) modes with 2 and 3 balls for 25 h, respectively. The 

mixture milled under the LES6-2B mode for 25 h consists of the original LiNH2 and MgH2 

phases. Meanwhile, after 25 h ball milling under the LES6-3B mode, two small peaks at 

38.1° and 44.3° (2θ) are observed, which can be assigned to the LiH phase and matched with 

JCPDS file No. 09-0189. However, the diffraction peaks of LiNH2 and MgH2 phases still 

dominate the XRD pattern. As mentioned above, the presence of the LiH phase suggests that 

a certain quantity of the starting mixture is converted to Mg(NH2)2 and LiH by the 

metathesis reaction. The results shown in Fig. 10-2 and 10-3 are summarized in Table 10-1.  

 Based on the above analyses, the following reaction pathways during the ball milling under 

the high energy impact (IMP67) mode can be proposed. In the first step, LiNH2 is converted 

to Mg(NH2)2 and LiH by the metathesis reaction with MgH2 [102, 107, 108]: 

LiNH2 + 0.5MgH2 → 0.5Mg(NH2)2+LiH                                                                         (10-1) 

In the second step, Mg(NH2)2 reacts with MgH2 to form MgNH and H2, as proposed by Liu 

et al. [107] and Liang et al. [108]:    0.5Mg(NH2)2 +0.5MgH2 → MgNH+H2                          (10-2) 
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Fig. 10-3 XRD patterns for the (LiNH2 + 1.0MgH2) milled for 25 h under two different 

milling modes 
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 The details to determine reaction pathways occurring during ball milling are shown in 

Appendix A-4. A series of sequential reactions follows: 

LiNH2+1.0MgH2 → LiNH2+MgH2 (after 1 h milling) 

 → 0.5Mg(NH2)2+LiH+0.5MgH2 (after 4 h milling)                                                        (10-3) 

                   → 0.352MgNH+0.324Mg(NH2)2+LiH+0.324MgH2+0.352H2 (after 6 h milling)    

                            → 0.5MgNH+0.25Mg(NH2)2+LiH+0.25MgH2+0.5H2 (after 25 h milling)     

It is interesting to note that further hydrogen desorption is possible from a continuous 

reaction between the remaining Mg(NH2)2 and MgH2. Assuming reaction (10-2) can be 

completed, reaction (10-3) can be modified as follows: 

LiNH2+1.0MgH2→MgNH+LiH+H2                                                                                                                        (10-4) 

Therefore, 4.1 wt.% H2 can be released upon the ball milling process, which corresponds to 

2.0 mol of hydrogen atoms per unit of the (LiNH2+1.0MgH2) mixture. Considering 95% 

purity of the starting materials, the maximum of 3.9 wt.% H2 can be released. 

 On the other hand, the following reaction can be proposed for the (LiNH2+1.0MgH2) 

mixture milled under low-energy shearing (LES6-3B) mode for 25 h based on the above 

analyses: 

LiNH2+1.0MgH2 → 0.5xMg(NH2)2+xLiH+(1-0.5x)MgH2+(1-x)LiNH2                         (10-5) 

where x indicates that only fractions of LiNH2 and MgH2 are involved in reaction (10-1) 

because their diffraction peaks are still observed after ball milling as shown in Fig. 10-3 b).  

 Differences in milling times, milling modes and number of balls can affect the milling 

energy; therefore, different solid products may result during ball milling depending on the 

milling energy. Therefore, ball milling conditions significantly affect the reaction pathways 

of hydrogen desorption in subsequent heating processes. 
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10-2. Morphology and microstructure of powder mixtures 

 Fig. 10-4 a) and b) show the backscattered electron (BSE) micrograph of the (LiNH2 

+1.0MgH2) mixtures milled for 25 h under low-energy shearing (LES6) modes with 2 and 3 

balls, respectively. Even after ball milling under the LES6-2B mode for 25 h, the particles 

still have a non-uniform particle size distribution with small and large particle populations, 

whereas the LES6-3B mode results in a more homogeneous particle size distribution with 

smaller particles. However, its distribution still shows large particle populations in Fig. 10-4 

b). This result provides a clue to how the milling mode affects the morphology of the 

mixture. Furthermore, the specific surface area (SSA) measured from the BET method as 

shown in Fig. 10-5 shows the dependence of the SSA on the milling mode. SSA dramatically 

increases, while changing the milling mode from the low-energy shearing (LES6) mode to 

the high-energy impact (IMP67) mode, which indicates that the IMP67 mode is the most 

energetic milling mode. The SSA of the mixture milled under the IMP67 mode for 25 h 

increases by almost 75% compared to that of the LES6-2B mode. 

 

10-3 Thermal behavior  

 Fig. 10-6 compares the DSC curves of the (LiNH2+1.0MgH2) mixtures milled under LES6-

2B and LES6-3B for 25 h, respectively. Two endothermic peaks appear in the DSC curves, 

which indicate that the mixtures decompose in a two-step reaction. Both reactions start at 

lower temperatures and end sooner for the mixture milled under the LES6-3B mode for 25 h 

than the LES6-2B mode. In particular, the peak temperatures for the first and second reaction 

are remarkably reduced from 250.1 to 210.1°C and from 357.5 to 298.1°C by increasing the 

number of balls from 2 to 3, respectively. 
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Fig. 10-4 Backscattered electron (BSE) micrographs of the (LiNH2+1.0MgH2) mixtures 

milled for 25 h under two different milling modes: a) LES6-2B and b) LES6-3B  

 

 

 

 

 

 

 

 

 

 

 

Fig. 10-5 Specific surface areas of the (LiNH2+1.0MgH2) without and with the milling 

under various milling modes for 25 h 
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Fig. 10-6 DSC curves at a heating rate of 10°°°°C/min for the (LiNH2+1.0MgH2) mixtures 

milled for 25 h under two different milling modes  

 

 

 

 

 

 

 

 

 

 

 

Fig. 10-7 Comparison of DSC curves for the (LiNH2+1.0MgH2) mixtures milled for 1 h 

and 25 h (IMP67 mode) 
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 Fig. 10-7 compares the DSC curves of the (LiNH2+1.0MgH2) mixtures milled under the 

high-energy impact (IMP67) mode for 1 and 25 h, respectively. As shown in Fig. 10-6 and 

Fig. 10-7, the mixtures exhibit two endothermic peaks independent of the milling mode and 

time, which indicates that the mixtures decompose in a two-step reaction. It is also 

noticeable that the peak temperatures corresponding to two endothermic peaks are reduced 

from 287.0 to 192.2°C and from 377.0 to 296.1°C by increasing the milling time from 1 to 

25 h, respectively.  

 To confirm the gaseous species released during heating, a TPD test was carried out for the 

(LiNH2+1.0MgH2) mixture milled under the LES6-3B mode for 25 h, which is presented in 

Fig. 10-8. It is evident that the two hydrogen desorption peaks occur below 400°C, while 

barely any NH3 emission (ppm level) is detected in the TPD measurements up to 500°C 

within our experimental accuracy. Thus, the two endothermic peaks shown in Fig. 10-6 

correspond to two dehydriding reactions. 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 10-8 TPD spectra for (LiNH2+1.0MgH2) milled for 25 h (LES6-3B mode) 
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10-4. Dehydrogenation behaviors and reaction pathways 

 Because investigations of the ball-milled LiNH2-MgH2 (1:1) mixture by several research 

groups [105-107] resulted in different dehydrogenation processes, the correlation between 

mechanical ball milling and hydrogen-desorption reactions are elucidated here to understand 

the underlying mechanisms of the chemical reaction between LiNH2 and MgH2 with a molar 

ratio of 1:1. 

 

10-4-1. (LiNH2+1.0MgH2) mixture milled under the LES6-3B mode for 25 h  

 Fig. 10-9 a) shows the dehydrogenation curves of the (LiNH2+1.0MgH2) mixture milled 

under the LES6-3B mode for 25 h at various temperatures under 1 bar H2. It is evident that 

the same mixtures dehydrogenated at 200, 250, 300 and 400°C under 1 bar of H2 release 3.9, 

4.8, 5.6 and 5.8 wt.% H2, respectively. In particular, the mixture can also desorb 0.5 and 1.3 

wt.% H2 at 125 and 150°C, respectively. 

 To ascertain the chemical reactions that occur upon dehydrogenation, the residues after 

dehydrogenating at different temperatures were collected and analyzed using XRD and are 

summarized in Table 10-2. As can be seen in Fig. 10-9 b), the XRD pattern of the mixture 

dehydrogenated at 200°C shows the diffraction peaks of the newly formed Li2Mg(NH)2 

phase, whereas XRD peaks of the LiH phase, which was formed after 25 h of ball milling, 

disappears. As the heating temperature increases, the intensity of MgH2 diffraction peaks in 

XRD pattern decreases and finally disappears after dehydrogenation at 400°C. In contrast, 

the Mg3N2 and LiH phases start to form at 250°C, and consequently the diffraction peaks of 

the Mg3N2, LiH and Li2Mg(NH)2 phases dominate the XRD pattern after dehydrogenation at 
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400°C. These results clearly indicate that the dehydrogenation of this mixture takes place in 

two reactions that form Li2Mg(NH)2 and {Mg3N2 and LiH}, respectively.  

 Based on the above analyses, the following reaction pathways of hydrogen desorption for 

the (LiNH2+1.0MgH2) mixture milled under LES6-3B for 25 h can be proposed. As 

mentioned above, LiNH2 is partially converted to Mg(NH2)2 and LiH by the metathesis 

reaction with a specific quantity of MgH2. Thus, at the low temperature range corresponding 

to the first endothermic peak shown in Fig. 10-6, newly formed Mg(NH2)2 reacts with LiH 

as reported by Barison et al. [135], and, simultaneously, the LiNH2 also reacts with MgH2 as 

reported by Luo et al.[86] and Xiang et al. [83]. Both reactions form Li2Mg(NH)2 and H2. 

Therefore, in the first step (at low temperature), the reaction can be described as follows: 

[0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(0.5-0.5x)MgH2] 

→ 0.5Li2Mg(NH)2+1.0H2                                                                                                                                                    (9-1) 

In the second step (in the high temperature range, which corresponds to the second 

endothermic peak shown in Fig. 10-6), the Li2Mg(NH)2 formed through reaction (9-1) reacts 

with retained MgH2 to form Mg3N2, LiH and H2 as proposed by Liang et al. [108] and 

Dolotko et al. [134]: 

0.5Li2Mg(NH)2 + MgH2 → 0.5Mg3N2 + LiH + H2                                                             (9-2) 

Assuming reaction (9-1) and (9-2) are complete, a series of sequential reactions occur as 

follows: 

   [0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(1-0.5x)MgH2]  (after ball milling) 

→ 0.5Li2Mg(NH)2+0.5MgH2+1.0H2   (after dehydrogenation at low temp.)                   (10-6) 

→ 0.25Li2Mg(NH)2+0.25Mg3N2+0.5LiH+1.5H2    (after dehydrogenation at high temp.) 
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In total, 3.0 moles of hydrogen atoms can be obtained from the above reaction, which is 

approximately 6.1 wt.% of hydrogen. Considering 95% purity of the starting materials, total 

hydrogen storage capacity is reduced to 5.8 wt.% of H2. This result is in excellent agreement 

with our experimental value of 5.8 wt.% of H2 desorbed at 400°C as shown in Fig. 10-9 a).  

 

Table 10-2. Summary of XRD results of the (LiNH2+1.0MgH2) mixture milled for 25 h 

(LES6-3B) and subsequently dehydrogenated under 1 bar H2 at various temperatures  
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Fig. 10-9 a) Dehydrogenation curves under 1 bar H2 pressure (atmospheric) at various 

temperatures and b) the corresponding XRD patterns for the (LiNH2+1.0MgH2) mixtures 

milled for 25 h under the LES6-3B mode 
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10-4-2. (LiNH2+1.0MgH2) mixture milled under the IMP67 mode for 1 h  

 Fig. 10-10 a) shows the dehydrogenation curves of (LiNH2+1.0MgH2) milled under the 

IMP67 mode for 1 h at various temperatures under 1 bar H2. It is evident that the same 

mixtures dehydrogenated at 200, 300 and 425°C under 1 bar of H2 release 1.3, 5.0 and 5.8 

wt.% H2, respectively. To clarify the chemical reactions that occur during dehydrogenation, 

samples were collected after dehydrogenation at different temperatures and analyzed using 

XRD. The results are summarized in Table 10-3. It is evident in Fig. 10-10 b) that the XRD 

pattern of the mixture dehydrogenated at 200°C shows the diffraction peaks of the newly 

formed Li2Mg(NH)2 phase. As the heating temperature increases, the intensity of the MgH2 

diffraction peaks in XRD pattern decreases and this phase completely disappears after 

dehydrogenation at 425°C. In contrast, the Mg3N2 and LiH phase starts to form at 300°C, 

and consequently the diffraction peaks of the Mg3N2, LiH and Li2Mg(NH)2 phases dominate  

the XRD pattern after dehydrogenation at 425°C.  

 The figure also shows that the dehydrogenation of this mixture is processed by a two-step 

reaction that forms Li2Mg(NH)2 and {Mg3N2 and LiH}, respectively. Therefore, the 

following reaction pathways of hydrogen desorption for the (LiNH2+1.0MgH2) mixture 

milled under IMP67 for 1 h can be proposed. In the first step (in the low temperature range 

corresponding to the first endothermic peak in Fig. 10-7), LiNH2 reacts with MgH2 to form 

Li2Mg(NH)2 and H2 as reported by Luo et al. [86] and Xiang et al. [83]: 

LiNH2 + 0.5MgH2 → 0.5Li2Mg(NH)2 + H2                                                                        (3-5) 

In the second step (in the high temperature range corresponding to the second endothermic 

peak in Fig. 10-7), the Li2Mg(NH)2 formed through reaction (3-5) reacts with retained MgH2 

to form Mg3N2, LiH and H2 as proposed by Liang et al.[108] and Dolotko et al. [134]: 
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0.5Li2Mg(NH)2 + MgH2 → 0.5Mg3N2 + LiH + H2                                                             (9-2) 

Assuming that reactions (3-5) and (9-2) are complete, a series of sequential reactions 

follows: 

LiNH2+1.0MgH2   (after ball milling) 

→ 0.5Li2Mg(NH)2+0.5MgH2+1.0H2   (after dehydrogenation at low temp)                     (10-7) 

→ 0.25Li2Mg(NH)2+0.25Mg3N2+0.5LiH+1.5H2   (after dehydrogenation at high temp) 

Finally, approximately 6.1 wt.% of hydrogen is liberated from the mixture, which is 

equivalent to 3.0 moles of hydrogen atoms per unit formula of the (LiNH2+1.0MgH2) 

mixture. Considering the average purity of the starting materials (95%), the total hydrogen 

storage capacity is 5.8 wt.% of H2. As shown in Fig. 10-10 a), we obtained the same amount 

of hydrogen after dehydrogenation at 425°C.  

 

Table 10-3. Summary of XRD results of the (LiNH2+1.0MgH2) mixture milled for 1 h 

(IMP67) and subsequently dehydrogenated under 1 bar H2 at various temperatures  

 

 

 

 

 

 

 

 

 

T(°°°°C) LiNH2 MgH2 Li2Mg(NH)2 Mg3N2 LiH 

R.T. 
(after ball milling) 

O O - - - 

200 O O O - - 

250 - O O - - 

300 - O O O O 

350 - - O O O 

400 - - O O O 

425 - - O O O 
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Fig. 10-10 a) Dehydrogenation curves and b) XRD profiles for the (LiNH2+1.0MgH2) 

mixtures milled for 1 h (IMP67 mode) and subsequently dehydrogenated under 1 bar 

H2 at varying temperatures  
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 10-4-3. (LiNH2+1.0MgH2) mixture milled under the IMP67 mode for 25 h  

 Fig. 10-11 a) represents the dehydrogenation curves of (LiNH2+1.0MgH2) milled under the 

IMP67 mode for 25 h at various temperatures under 1 bar H2. The same mixtures 

dehydrogenated at 175, 200, 300 and 400°C under 1 bar of H2 release 1.4, 1.9, 3.6 and 4.0 

wt.% H2, respectively. It is remarkable that the maximum hydrogen capacity of this mixture 

milled under IMP67 mode for 25 h is lower than the mixture milled for 1 h under the same 

milling mode, due to the hydrogen loss after the ball milling process as shown in Fig. 10-1. 

To confirm the chemical reactions occurring during dehydrogenation, the residues remaining 

after dehydrogenation at different temperatures were collected for XRD analysis. The results 

are summarized in Table 10-4. As shown in Fig. 10-11 b), the XRD pattern of the mixture 

dehydrogenated at 200°C shows the diffraction peaks of the newly formed Li2Mg(NH)2 

phase. As the heating temperature increases, the intensity of both the MgNH and MgH2 

diffraction peaks decreases, and the two phases completely disappear after dehydrogenation 

at 400°C. Instead of both MgNH and MgH2, a Mg3N2 phase begins to form at 300°C, and, 

finally, the diffraction peaks of Mg3N2, LiH and Li2Mg(NH)2 phases are detectable in the 

XRD pattern after dehydrogenation at 400°C. These results clearly show that the 

dehydrogenation of this mixture is also processed by a two-step reaction that forms 

Li2Mg(NH)2 and Mg3N2, respectively. 

 Based on the XRD analysis, the following reaction pathways of hydrogen desorption for the 

(LiNH2+1.0MgH2) mixture milled under IMP67 for 25 h can be proposed. In the first step 

(in the low temperature range, indicating the first endothermic peak in Fig. 10-7), Mg(NH2)2 

reacts with LiH to form Li2Mg(NH)2 and H2 as reported by Barison et al. [135]: 

0.5Mg(NH2)2+LiH → 0.5Li2Mg(NH)2+H2                                                                                                              (3-6) 
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In the second step (in the high temperature range corresponding to the second endothermic 

peak in Fig. 10-7), the MgNH which was formed during the milling process reacts with 

retained MgH2 to form Mg3N2 and H2 as proposed by Liang et al.[108]: 

MgNH+0.5MgH2 → 0.5Mg3N2+H2                                                                                                                            (10-8) 

Assuming reaction (3-6) and reaction (10-8) are complete, a series of sequential reactions 

follows: 

0.5MgNH+0.25Mg(NH2)2+1.0LiH+0.25MgH2  (after ball milling) 

→ 0.25Li2Mg(NH)2+0.5MgNH+0.5LiH+0.25MgH2+0.5H2                                                                  (10-9) 

     (after dehydrogenation at low temp.) 

→ 0.25Li2Mg(NH)2+ 0.25Mg3N2+0.5LiH+1.0H2  (after dehydrogenation at high temp.) 

 As a result, 2.0 moles of hydrogen atoms can be obtained from the above reaction, which is 

approximately 4.2 wt.% of hydrogen. Assuming 95% purity of the starting materials, the 

maximum hydrogen storage capacity is approximately 4.0 wt.% of H2, which is in good 

agreement with the amount of hydrogen after dehydrogenation at 400°C as shown in Fig. 10-

11 a). 

 However, it is worth mentioning that the ternary nitride product, LiMgN, which was 

predicted by Alapati et al. [103] and Akbarzadeh et al. [104] is not obtained, even though the 

samples milled under various milling mode and duration are heated up to 400°C in our 

experiment. Therefore, the dehydrogenation of the (LiNH2+1.0MgH2) mixture is processed 

by a two-step reaction that forms Li2Mg(NH)2 and Mg3N2, respectively, independent of the 

reaction pathways that are affected by the milling energy and duration. 
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Fig. 10-11 a) Dehydrogenation curves and b) XRD profiles for the (LiNH2 +1.0MgH2) mixtures 

milled for 25 h (IMP67 mode) and subsequently dehydrogenated under 1 bar H2 at varying 

temperatures (*Ref. # 108: Liang et al Chem. Eur. J. 16 (2010) 693-702) 
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Table 10-4. Summary of XRD results of the (LiNH2+1.0MgH2) mixture milled for 25 h 

(IMP67) and subsequently dehydrogenated under 1 bar H2 at various temperatures  

 

 

10-5. Reversibility 

 To understand the reversibility of reaction (9-1) and reaction (9-2), the (LiNH2+1.0MgH2) 

mixtures under LES6-3B for 25 h were first dehydrogenated at 175 and 400°C under 1 bar of 

hydrogen, respectively. Next, the differently dehydrogenated samples were hydrogenated 

under the same conditions of 175°C at 50 bar of hydrogen. Based on the above analyses, the 

dehydriding reaction at 175°C corresponds to reaction (9-1), whereas both reaction (9-1) and 

(9-2) occur sequentially at 400°C. Fig. 10-12 a) and b) show the dehydriding/hydriding 

cycles of the (LiNH2+1.0MgH2) mixture milled under LES6-3B for 25 h at two different 

dehydrogenation temperatures of 175 and 400°C under 1 bar of hydrogen, respectively. The 

mixture dehydrogenated at 175°C and subsequently hydrogenated at 175°C under 50 bar of 

H2 has full reversibility of 2.9 wt.% H2. However, the mixture dehydrogenated at 400°C 

releases 5.8 wt.% H2, but the dehydrogenated sample absorbs only 2.0 wt.% H2 at 175°C 

under 50 bar of H2, which indicates that the dehydrogenated samples cannot be completely 

T(°°°°C) LiNH2 MgH2 MgNH Mg(NH2)2 Li2Mg(NH)2 Mg3N2 LiH 

R.T. 
(after ball 
milling) 

- O O O - - O 

200 - O O - O - O 

300 - O O - O O O 

400 - - - - O O O 
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converted to their starting states under the present testing conditions. To clarify the reaction 

pathways of dehydrogenation/hydrogenation, the mixtures at each cycling stage of the 

dehydriding and hydriding process were collected and analyzed using XRD as shown in Fig. 

10-13 a) and b). The results are summarized in Table 10-5. It is very clear that XRD pattern 

of the mixture dehydrogenated at 175°C shows the diffraction peaks of the Li2Mg(NH)2 

phase, while after hydrogenation, the diffraction peaks of the Mg(NH2)2 and LiH phases 

appear instead of that of the Li2Mg(NH)2 phase as shown in Fig. 10-13 a). Finally, the 

Li2Mg(NH)2 phase reappears after dehydrogenation of the hydrogenated mixture. The only 

difference between Fig. 10-13 a) and b) is the formation of the Mg3N2 phase after 

dehydrogenation at 400°C. However, this phase still exists even after the hydrogenation 

process. Therefore, this phase cannot be hydrogenated under our experimental conditions 

and results in a huge loss of reversible hydrogen capacity as shown in Fig. 10-12 b).  

 With the information obtained from the dehydriding/hydriding cycles and the corresponding 

XRD analysis, the reversible hydrogenation/dehydrogenation processes can be described by 

the following reaction:  

0.5Li2Mg(NH)2+H2 ↔ 0.5Mg(NH2)2+LiH                                                                         (3-6) 

Assuming that all reactions are complete and that the dehydrogenation is processed in the 

low temperature range that corresponds to the first endothermic peak in the DSC curve, as 

shown in Fig. 10-6, a series of dehydriding/hydriding reactions follows: 

0.5xMg(NH2)2+xLiH+(1-0.5x)MgH2+(1-x)LiNH2 (after ball milling) 

→ 0.5Li2Mg(NH)2+0.5MgH2+1.0H2   (after dehydrogenation)                                      (10-10) 

 ↔ 0.5Mg(NH2)2+1.0LiH+0.5MgH2    (after rehydrogenation)
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Fig. 10-12 (a) 1st and 2nd dehydrogenation curves at 175°°°°C under 1 bar H2 pressure and 

corresponding rehydrogenation curve at 175°°°°C under 50 bar H2 pressure and (b) 1st 

and 2nd dehydrogenation curves at 400°°°°C under 1 bar H2 pressure and corresponding 

rehydrogenation curve at 175°°°°C under 50 bar H2 pressure for the (LiNH2+1.0MgH2) 

mixtures milled for 25 h under LES6-3B mode 
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Fig. 10-13 XRD patterns for the (LiNH2+1.0MgH2) mixtures milled for 25 h under the 

LES6-3B mode and subsequently dehydrogenated at a) 175°°°°C and b) 400°°°°C, 

respectively, under 1 bar H2 and then rehydrogenated at 175°°°°C under 50 bar H2 
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Table 10-5. Summary of XRD results of the (LiNH2+1.0MgH2) mixture milled for 25 h 

(LES6-3B) and subsequently dehydrogenated under 1 bar H2 at 175°°°°C and 400°°°°C, 

respectively, and rehydrogenated under 50 bar H2 at 175°°°°C 

 

 

  Based on reaction (10-10), the maximum reversible hydrogen amount is about 4.1 wt.%, 

which corresponds to 2.0 mol of hydrogen atoms per unit of the (LiNH2+1.0MgH2) mixture.         

 However, in case of dehydrogenation in the high temperature range, which corresponds to 

the second endothermic peak in the DSC curve, as shown in Fig. 10-6, the reaction pathways 

can be described by a series of dehydriding/hydriding reactions as follows: 

0.5xMg(NH2)2+xLiH+(1-0.5x)MgH2+(1-x)LiNH2  (after ball milling) 

→0.25Li2Mg(NH)2+0.25Mg3N2+0.5LiH+1.5H2   (after dehydrogenation) 

 0.25Li2Mg(NH)2+0.25Mg3N2+0.5LiH +0.5H2                                                              (10-11) 

↔ 0.25Mg(NH2)2+1.0LiH+0.25Mg3N2   (after rehydrogenation) 

As a result, 3.0 moles of hydrogen atoms can be desorbed the first time, but only 1.0 mole of 

hydrogen atoms can be absorbed and is reversible. Assuming 95% purity of the starting 

T(°°°°C) MgH2 Li2Mg(NH)2 Mg3N2 LiH Mg(NH2)2 

Dehydrogenated 

At 175°°°°C under 1 bar H2 
O O - - - 

Rehydrogenated 

At 175°°°°C under 50 bar H2 
O - - O O 

Re-dehydrogenated 

At 175°°°°C under 1 bar H2 
O O - - - 

Dehydrogenated 

At 400°°°°C under 1 bar H2 
- O O O - 

Rehydrogenated 

At 175°°°°C under 50 bar H2 
- - O O O 

Re-dehydrogenated 

At 400°°°°C under 1 bar H2 
- O O O - 



 146 

materials, the (LiNH2+1.0MgH2) mixture can initially desorb 5.8 wt.% H2. However, in the 

subsequent hydrogenation/dehydrogenation process, only 2.0 wt.% H2 can be absorbed and 

be reversible for the mixture. This result is in a good agreement with our experimental value 

of 2.0 wt.% of hydrogen for the (LiNH2+0.7MgH2) mixture as shown in Fig. 10-12 b).  

 Therefore, the (LiNH2+1.0MgH2) mixture milled under LES6-3B for 25 h is a completely 

reversible system only in the temperature range that corresponds to the first endothermic 

peak in the DSC curve as shown in Fig. 10-6. 

  

10-6. Apparent activation energies 

 The measurements of the apparent activation energy of hydrogen desorption according to 

various reaction pathways were collected using the Kissinger method (Eq. (6-2)). Fig. 10-14 

a) and c) show the effect of various heating rates on DSC profiles, which is an underlying 

principle of the Kissinger method. The corresponding Kissinger plots for each reaction are 

shown in Fig. 10-14 b) and d) for the (LiNH2+1.0MgH2) mixtures milled under the IMP67 

mode for 1 and 25 h and under the LES6-3B mode for 25 h, respectively. The excellent 

correlation coefficients, R
2
, obtained for the Kissinger plots in Fig. 10-14 b) and d) attest to 

the accuracy of the method. 

 The apparent activation energies of each mixture milled under different milling conditions 

are not comparable because they have different phases after the ball milling, which results in 

different dehydrogenation reaction pathways. Compared to the (LiNH2+nMgH2) (n=0.55, 0.6 

and 0.7) mixtures discussed in Chapter 9, the effect of the milling duration on the apparent 

activation energy is not pronounced. However, it is remarkable that the apparent activation 

energies of the (LiNH2+1.0MgH2) mixtures milled under the IMP67 mode for 1 h are lower 
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than those of the (LiNH2+nMgH2) (n=0.55, 0.6 and 0.7) mixtures milled under the same 

conditions. As discussed in Chapter 9, the apparent activation energy decreases from 188.4 

to 112.0 kJ/mol as the molar ratio increases from 0.55 to 0.7 for the reaction (3-5). In this 

study, further increasing the molar ratio to 1.0 results in an apparent activation energy of 

99.4 kJ/mol, which is shown in Fig. 10-15. It remains interesting that the high molar ratio of 

MgH2/LiNH2 can improve the kinetic properties of this system. 

 In this study, there are two interesting findings: 1) hydrogen can be desorbed during the ball 

milling process given appropriate milling energy and duration, and 2) milling energy and 

duration can affect the reaction pathways for the dehydrogenation of this mixture. It is also 

worth highlighting that Li2Mg(NH)2 and Mg3N2 are formed by dehydrogenation at low and 

high temperatures, respectively, regardless of the reaction pathways. However, the ternary 

nitride product, LiMgN, which was predicted by Alapati et al. [103] and Akbarzadeh et al. 

[104], is not obtained in our study. Therefore, the research on a higher molar ratio of 

MgH2/LiNH2 system can be motivated for obtaining further understanding of the reaction 

pathways of the LiNH2-MgH2 system. 
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Fig. 10-14 a) DSC curves at various heating rates for the (LiNH2+1.0MgH2) mixtures milled for 

25 h and b) the corresponding Kissinger plots of the apparent activation energies for the 

mixtures milled for 1 h (closed) and 25 h (open), respectively (IMP67 mode). c) DSC curves at 

various heating rates and d) the Kissinger plots of the apparent activation energies for the 

(LiNH2+1.0MgH2) mixtures milled for 25 h in the LES6-3B mode 
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Fig. 10-15 Comparison of the apparent activation energies for (LiNH2+1.0MgH2) milled for 1 h 

and 25 h under IMP67 mode and for 25 h under the LES6-3B mode, respectively 
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11. (LiNH2+1.5MgH2) system 

11-1. Hydrogen desorption during ball milling 

 Fig. 11-1 shows the amount of hydrogen desorption exhibited by the (LiNH2+1.5MgH2) 

mixtures during the ball milling process under different milling modes as a function of 

milling time.  

 

 

 

 

 

 

 

 

 

 

Fig. 11-1 Hydrogen loss of the (LiNH2+1.5MgH2) during ball milling process under 

four different milling modes 
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ratio mixture. In contrast to the IMP67 mode, the low-energy shearing (LES6) modes with 4 

and 3 balls result in the release of 1.6 and 0.9 wt.% H2 after 25 h milling, respectively. 

However, any pressure changes during ball milling are not shown under the low-energy 

shearing mode with 2 balls (LES6-2B). This result clearly indicates that the amount of 

hydrogen desorbed during the ball milling of LiNH2-MgH2 system strongly depends on the 

milling energy and the molar ratio of MgH2/LiNH2 because more hydrogen in the mixture of 

LiNH2-MgH2 (1:1.5) is desorbed during the ball milling under the same conditions compared 

to the mixture of LiNH2-MgH2 (1:1) as discussed in Chapter 10. Therefore, hydrogen comes 

from the chemical reaction between LiNH2 and MgH2 [107, 108], and its chemical reaction 

between both starting materials during ball milling can be accelerated as the molar ratio of 

MgH2/LiNH2 increases. 

 To determine the reaction pathways that occur during the ball milling process, solid residues 

at different ball milling stages were collected for both XRD and FT-IR characterizations. Fig. 

11-2 a) and b) show the XRD patterns and FT-IR spectra of the (LiNH2+1.5MgH2) mixtures 

milled under the IMP67 mode for various milling times, respectively. The mixture milled 

under the high-energy impact (IMP67) mode for 1 h still consists of the original LiNH2 and 

MgH2 phases. After 4 h of ball milling under the same milling mode, the XRD peaks of the 

newly formed MgNH [99, 100] and LiH phases are shown in XRD pattern, while the 

diffraction peaks of LiNH2 phase disappear, and the diffraction peaks of MgH2 phase still 

dominate the XRD pattern. As mentioned in Chapter 10, this result indicates that LiNH2 is 

completely converted to Mg(NH2)2 and LiH by the metathesis reaction with MgH2 [102, 107, 

108], and the newly formed Mg(NH2)2 partially reacts with MgH2 to form MgNH and H2. 
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Fig. 11-2 a) XRD patterns and b) FT-IR absorption spectra for the (LiNH2+1.5MgH2) milled 

for various milling times (IMP67 mode) (*Ref. # 108: Liang et al Chem. Eur. J. 16 (2010) 693-

702) 
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Because it is difficult to establish the presence of the Mg(NH2)2 phase by XRD, due to its 

amorphous state under the energetic ball milling process [107], FT-IR analysis was 

performed as shown in Fig. 11-2 b). The analysis clearly shows the formation of Mg(NH2)2 

with the characteristic absorption lines at 3271 and 3326 cm
-1

 [100] after 4 h of ball milling 

under the IMP67 mode. When the ball milling is prolonged to 6 h under IMP67 mode, the 

diffraction peaks and the absorption spectrums of MgNH phase dominates the XRD pattern 

and FT-IR spectrum [100], whereas the intensity of the MgH2 diffraction peaks and the 

characteristic absorption lines of Mg(NH2)2 in the FT-IR spectrum decrease. Finally, after 25 

h of ball milling, the characteristic absorption lines of Mg(NH2)2 phase finally disappear; 

only MgNH, MgH2 and LiH phases are detectable in Fig. 11-2 a) and b). One interesting 

finding is that the MgNH phase forms earlier in the mixture of LiNH2-MgH2 (1:1.5) than the 

the mixture of LiNH2-MgH2 (1:1.0), all of which were milled under the same milling mode. 

This phase begin to form after 4 h of ball milling under the IMP67 mode in the (LiNH2+ 

1.5MgH2) mixture; in the (LiNH2+1.0MgH2) mixture, the MgNH phase began to form after 

6 h of ball milling in the same milling mode as shown in Chapter 10. This result is clear 

evidence that increasing the molar ratio of MgH2/LiNH2 can accelerate the solid-solid 

reactions during ball milling; consequently, a 1:1.5 mixture milled under the IMP67 mode 

releases more hydrogen than a 1:1 mixture milled in the same milling conditions.  

 Fig. 11-3 a) and b) represent the XRD patterns of the (LiNH2+1.5MgH2) mixtures milled 

under both low-energy shearing (LES6) modes with 2 and 3 balls for 25 h, respectively. It is 

evident that the mixture milled under the LES6-2B mode for 25 h consists of the original 

LiNH2/MgH2 phases and LiH, which indicates that a specific quantity of the starting mixture 

is converted to Mg(NH2)2 and LiH by the metathesis reaction mentioned above.  
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Fig. 11-3 XRD patterns for the (LiNH2 + 1.5MgH2) mixture milled for 25 h under two 

different milling modes (*Ref. # 108: Liang et al Chem. Eur. J. 16 (2010) 693-702) 
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 In contrast to LES6-2B, the diffraction peaks of newly formed MgNH phase are detected in 

XRD pattern of the mixture milled under the LES6-3B mode for 25 h, while LiNH2 peaks 

disappear in the XRD pattern. This result clearly indicates that LiNH2 is completely 

consumed to form the Mg(NH2)2 and LiH phases and that a certain quantity of newly formed 

Mg(NH2)2 phase reacts with the original MgH2 phase to form MgNH and H2. These results 

are summarized in Table 11-1. 

 Based on the above analyses, the following reaction pathways during ball milling under the 

high-energy impact (IMP67) mode can be proposed. In the first step, LiNH2 is converted to 

Mg(NH2)2 and LiH by the metathesis reaction with MgH2 [107, 108]: 

LiNH2 + 0.5MgH2 → 0.5Mg(NH2)2+LiH                                                                         (10-1) 

In the second step, Mg(NH2)2 reacts with MgH2 to form MgNH and H2 as proposed by Liu 

et al. [107] and Liang et al. [108]: 

0.5Mg(NH2)2 +0.5MgH2 → MgNH+H2                                                                                                                 (10-2) 

Based on reaction (10-1) and reaction (10-2) and the quantity of hydrogen desorption during 

ball milling, as shown in Fig. 11-1, a series of sequential reactions follows: 

LiNH2+1.5MgH2 → LiNH2+1.5MgH2 (after 1 h milling) 

→ 0.09MgNH+0.455Mg(NH2)2+LiH+0.955MgH2+0.09H2 (after 4 h milling)  

                   → 0.884MgNH+0.058Mg(NH2)2+LiH+0.558MgH2+0.884H2 (after 6 h milling)                (11-1) 

→ MgNH + LiH+0.5MgH2+1.0H2 (after 25 h milling)  

The details to determine reaction pathways occurring during ball milling are shown in 

Appendix A-4. It is interesting to note that reaction (10-2) is completed after 25 h of ball 

milling. Therefore, 3.2 wt.% H2 can be released during the ball milling process, which 
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corresponds to 2.0 mol of hydrogen atoms per unit of the (LiNH2+1.5MgH2) mixture. 

Considering 95% purity of the starting materials, the maximum 3.0 wt.% H2 can be released. 

 On the other hand, the following reaction is proposed for the (LiNH2+1.5MgH2) mixture 

milled under the low energy shearing (LES6-2B) mode for 25 h based on the above analyses: 

LiNH2+1.5MgH2 → 0.5xMg(NH2)2+xLiH+(1.5-0.5x)MgH2+(1-x)LiNH2                      (11-2) 

where x indicates that only fractions of LiNH2 and MgH2 are involved in reaction (10-1) 

because their diffraction peaks are still observed after ball milling as shown in Fig. 11-3.  

 Different milling times, milling modes and number of balls can affect the milling energy; 

therefore, different solid products may result during ball milling depending on the milling 

energy. Therefore, these parameters significantly affect the reaction pathways of hydrogen 

desorption in subsequent heating processes. 

 

11-2. Thermal behavior  

 Fig. 11-4 compares the DSC curves of the (LiNH2+1.5MgH2) mixtures milled under the 

LES6-2B mode for 25 h and the IMP67 mode for 1 and 25 h, respectively. Two endothermic 

peaks are shown in the DSC curves of the 1:1.5 mixture milled under the LES6-2B mode for 

25 h and IMP67 mode for 1 h, respectively, while the same mixture milled under IMP67 

mode for 25 h has only one endothermic peak, which starts at 230°C and ends at 380°C. It is 

worth noting that the milling mode (energy) can change the reaction pathways from a two-

step reaction to a one-step reaction.  

 To clarify the gaseous species released during heating, a TPD test was carried out for the 

(LiNH2+1.5MgH2) mixture milled under the LES6-2B mode for 25 h, and the result is 

presented in Fig. 11-5. Three hydrogen desorption peaks are observed below 400°C, while 
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nearly no NH3 emission (ppm level) is detected in the TPD measurements up to 500°C 

within our experimental accuracy. It is likely that the first and second hydrogen desorption 

peaks correspond to the first endothermic peak in its DSC curve (Fig. 11-4) and that the third 

peak is related to the second endothermic peak as shown in Fig. 11-4. Moreover, it should be 

noted that the intensity of the third desorption peak of H2 is higher than that of the other 

peaks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11-4 Comparison of DSC curves for the (LiNH2+1.5MgH2) mixtures milled for 1 h 

and 25 h under IMP67 mode and for 25 h under the LES6-2B mode 
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Fig. 11-5 TPD spectra for the (LiNH2+1.5MgH2) milled for 25 h (LES6-2B mode) 

 

11-3. Reaction pathways occurring during dehydrogenation 

 To further understand the reaction pathways of the LiNH2-MgH2 system, the correlation 

between mechanical ball milling and hydrogen-desorption reactions is investigated for the 

mixture of LiNH2-MgH2 (1:1.5).  
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Fig. 11-6 b), the desorption at low temperatures below 250°C results in the formation of the 

Li2Mg(NH)2 phase, while the diffraction peaks of the Mg3N2 and LiH phases dominate the 

XRD pattern after dehydrogenation at high temperatures. The Li2Mg(NH)2 and MgH2 peaks 

in the XRD patterns finally disappear after dehydrogenation at 400°C. This result clearly 

indicates that the Li2Mg(NH)2 and MgH2 phases are completely consumed to form the 

Mg3N2 and LiH phases. This result is summarized in Table 11-2. 

 Based on the above analyses, the following reaction pathways of hydrogen desorption for 

the (LiNH2+1.5MgH2) mixture milled under LES6-2B for 25 h are proposed. As mentioned 

above, hydrogen desorption follows a two-step reaction. In the first step, which corresponds 

to the first endothermic peak shown in Fig. 11-4, Li2Mg(NH)2 and H2 are formed through 

reaction (9-1) [83, 86, 135]. In the second step, which is related to the second endothermic 

peak shown in the DSC curve, Mg3N2, LiH and H2 are formed through reaction (9-2) [134].  

 Assuming reaction (9-1) and (9-2) are complete, a series of sequential reactions follows: 

   [0.5xMg(NH2)2+xLiH] +[(1-x)LiNH2 +(1.5-0.5x)MgH2]    (after ball milling) 

   → 0.5Li2Mg(NH)2+MgH2+1.0H2  (after dehydrogenation at low temp.)                      (11-3) 

   → 0.5Mg3N2+LiH+2.0H2  (after dehydrogenation at low temp.) 

 In total, 4.0 moles of hydrogen atoms can be obtained from the above reaction, which is 

approximately 6.5 wt.% of hydrogen. Assuming 95% purity of the starting materials, the 

maximum hydrogen storage capacity decreases to 6.1 wt.% of H2. This result is in excellent 

agreement with our experimental value of 6.1 wt.% of H2 obtained after dehydrogenation at 

400°C as shown in Fig. 11-6 a). 
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Fig. 11-6 Dehydrogenation curves under 1 bar H2 pressure (atmospheric) at various 

temperatures and b) the corresponding XRD patterns for the (LiNH2+1.5MgH2) 

mixtures milled for 25 h under the LES6-2B mode 
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 Table 11-2. Summary of the XRD results of the (LiNH2+1.5MgH2) mixture milled for 

25 h (LES6-2B) and subsequently dehydrogenated under 1 bar H2 at various 

temperatures  

 

11-3-2. The (LiNH2+1.5MgH2) milled under the IMP67 mode for 1 h 

 Fig. 11-7 a) shows dehydrogenation curves of (LiNH2+1.5MgH2) milled under the high-

energy impact (IMP67) mode for 1 h at various temperatures under 1 bar H2. It is evident 

that the same mixtures dehydrogenated at 250, 300 and 425°C under 1 bar of H2 release 3.1, 

5.0 and 6.1 wt.% H2, respectively. To clarify the chemical reactions that occur during 

dehydrogenation, the reactants and products after dehydrogenation at different temperatures 

were collected and analyzed using XRD. As shown in Fig. 11-7 b), the XRD pattern of the 

mixture dehydrogenated at 250°C shows the diffraction peaks of the Li2Mg(NH)2 phase. As 

the heating temperature increases, the intensity of both the MgH2 and Li2Mg(NH)2 

diffraction peaks decreases, and the two phases completely disappear after dehydrogenation 

at 400°C. The Mg3N2 and LiH phases start forming at 300°C and the diffraction peaks of the 

Mg3N2 and LiH phases dominate the XRD patterns after dehydrogenation above 400°C. It is 

clear that the dehydrogenation of this mixture is processed by both reactions, which form 

Li2Mg(NH)2 and {Mg3N2 and LiH}, respectively. This result is summarized in Table 11-3.  

T (°°°°C) LiNH2 MgH2 Mg(NH2)2 Li2Mg(NH)2 Mg3N2 LiH 

R.T. 
(after ball milling) 

O O O - - O 

200 - O - O - - 

250 - O - O O O 

300 - O - O O O 

400 - - - - O O 
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Fig. 11-7 a) Dehydrogenation curves and b) XRD patterns for 1 h milled (LiNH2+1.5MgH2) 

mixtures (IMP67 mode) and subsequently dehydrogenated under 1 bar H2 at varying 

temperatures 
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Table 11-3. Summary of XRD results of the (LiNH2+1.5MgH2) mixture milled for 1 h 

(IMP67) and subsequently dehydrogenated under 1 bar H2 at various temperatures  

 

 

 

 

 

 

 

Therefore, reaction (3-5) and reaction (9-2), as discussed in Chapter 10, occur sequentially 

and can be described by a series of sequential reactions as follows: 

LiNH2+1.5MgH2  (after ball milling) 

→ 0.5Li2Mg(NH)2+MgH2+1.0H2 (after dehydrogenation at low temp.)                         (11-4) 

→ 0.5Mg3N2+LiH+2.0H2 (after dehydrogenation at high temp.) 

Finally, approximately 6.5 wt.% of hydrogen is liberated from the mixture, which is 

equivalent to 4.0 moles of hydrogen atoms per unit of the (LiNH2+1.5MgH2) mixture. 

Considering the average purity of the starting materials (95%), the total hydrogen storage 

capacity is 6.1 wt.% of H2. As shown in Fig. 11-7 a), we obtained the exact same amount of 

hydrogen after dehydrogenation at 425°C.  

 

11-3-3. The (LiNH2+1.5MgH2) milled under the IMP67 mode for 25 h  

 Fig. 11-8 a) represents dehydrogenation curves of (LiNH2+1.5MgH2) milled under the 

IMP67 mode for 25 h at various temperatures under 1 bar H2. It is evident that the same 

T(°°°°C) LiNH2 MgH2 Li2Mg(NH)2 Mg3N2 LiH 

R.T. 
(after ball milling) 

O O - - - 

250 - O O - - 

300 - O O O O 

350 - O O O O 

400 - - - O O 

425 - - - O O 
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mixtures dehydrogenated at 250, 300 and 400°C under 1 bar of H2 release 2.7, 3.0 and 3.2 

wt.% H2, respectively. It should be noted that the hydrogen capacity of this mixture under 

the IMP67 mode for 25 h is lower than the mixture milled for 1 h in the same milling mode, 

due to the hydrogen loss after the ball milling process shown in Fig. 11-1. To confirm the 

chemical reactions that occur during dehydrogenation, the solid residues were collected after 

dehydrogenation at different temperatures and analyzed using XRD. As shown in Fig. 11-8 

b), the XRD pattern of the mixture dehydrogenated at 250°C shows the diffraction peaks of 

the newly formed Mg3N2 phase. As the heating temperature increases, the intensities of both 

MgNH and MgH2 diffraction peaks decrease, and the two phases completely disappear after 

dehydrogenation at 400°C. The XRD peaks of the Mg3N2 and LiH phases dominate the XRD 

pattern after dehydrogenation at 400°C. This result clearly shows that the dehydrogenation 

of this mixture is processed by a one-step reaction that forms Mg3N2. This result is 

summarized in Table 11-4.  

Therefore, this reaction will be followed by reaction (10-8) as discussed in Chapter 10 and 

can be described as follow: 

MgNH+LiH+0.5MgH2    (after ball milling)                                                                      (11-5) 

→ 0.5Mg3N2+LiH+1.0H2   (after dehydrogenation) 

 As a result, 2.0 moles of hydrogen atoms can be obtained from the above reaction, which is 

approximately 3.3 wt.% of hydrogen. Considering 95% purity of the starting materials, the 

maximum hydrogen storage capacity is around 3.2 wt.% of H2, which is in a good agreement 

with the amount of hydrogen after dehydrogenation at 400°C as shown in Fig. 11-8 a). 
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Fig. 11-8 a) Dehydrogenation curves and b) XRD patterns for 25 h milled (LiNH2+1.5MgH2) 

mixtures (IMP67 mode) that are subsequently dehydrogenated under 1 bar H2 at various 

temperatures (*Ref. # 108: Liang et al Chem. Eur. J. 16 (2010) 693-702) 
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Table 11-4. Summary of XRD results of the (LiNH2+1.5MgH2) mixture milled for 25 h 

(IMP67) and subsequently dehydrogenated under 1 bar H2 at various temperatures  

 

 

11-4. Reversibility 

 To understand the reversibility of reaction (9-1) and reaction (9-2), the (LiNH2+1.5MgH2) 

mixtures under LES6-2B for 25 h were first dehydrogenated at 175 and 400°C under 1 bar of 

hydrogen, respectively. The differently dehydrogenated samples were hydrogenated under 

the same conditions of 175°C under 50 bar of hydrogen. Based on the above analyses, the 

dehydriding reaction at 175°C corresponds to reaction (9-1), whereas both reaction (9-1) and 

reaction (9-2) occur sequentially at 400°C. Fig. 11-9 a) and b) show the reversibility of the 

(LiNH2+1.5MgH2) mixture milled under LES6-2B for 25 h at two different dehydrogenation 

temperatures of 175 and 400°C under 1 bar of hydrogen, respectively. The mixture 

dehydrogenated at 175°C and sequently hydrogenated at 175°C under 50 bar of H2 

reversibly desorbs and absorbs 2.0 wt.% H2. However, after dehydrogenation at 400°C for 

the same mixture, there is no hydrogenation/dehydrogenation, due to the irreversibility of the 

Mg3N2 phase as discussed in Chapters 9 and 10. 

T(°°°°C) LiNH2 MgH2 MgNH Mg(NH2)2 Li2Mg(NH)2 Mg3N2 LiH 

R.T. 
(after ball 
milling) 

- O O - - - O 

250 - O O - - O O 

300 - O O - - O O 

350 - O O - - O O 

400 - - - - - O O 
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Fig. 11-9 (a) 1st and 2nd dehydrogenation curves at 175°°°°C under 1 bar H2 pressure and 

corresponding rehydrogenation curve at 175°°°°C under 50 bar H2 pressure and (b) 1st 

and 2nd dehydrogenation curves at 400°°°°C under 1 bar H2 pressure and corresponding 

rehydrogenation curve at 175°°°°C under 50 bar H2 pressure for the (LiNH2+1.5MgH2) 

mixtures milled for 25 h under the LES6-2B mode 
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Fig. 11-10 XRD patterns for the (LiNH2+1.5MgH2) mixtures milled for 25 h under the LES6-2B 

mode and subsequently dehydrogenated at 175°°°°C under 1 bar H2 and rehydrogenated at 175°°°°C 

under 50 bar H2 

 

Table 11-5. Summary of XRD results of the (LiNH2+1.5MgH2) mixture milled for 25 h (LES6-

2B) and subsequently dehydrogenated under 1 bar H2 at 175°°°°C and rehydrogenated under 50 

bar H2 at 175°°°°C 
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 To clarify the reaction pathways of dehydrogenation/hydrogenation, the reactants and 

products after Sieverts analysis were collected and analyzed using XRD as shown in Fig. 11-

10. The results are summarized in Table 11-5 and clearly indicate that the reversible reaction 

is processed between Li2Mg(NH)2 and {Mg(NH2)2 and LiH} as discussed in Chapters 9 and 

10.  

 Assuming that all reactions are complete and the dehydrogenation is processed in the low 

temperature range that corresponds to the first endothermic peak in DSC curve as shown in 

Fig. 11-4, a series of dehydriding/hydriding reactions is proposed as follows: 

0.5xMg(NH2)2+xLiH+(1.5-0.5x)MgH2+(1-x)LiNH2   (after ball milling) 

→ 0.5Li2Mg(NH)2+1.0MgH2+1.0H2   (after dehydrogenation)                     (11-6) 

↔ 0.5Mg(NH2)2+1.0LiH+1.0MgH2  (after rehydrogenation) 

Based on reaction (11-6), the maximum reversible hydrogen amount is approximately 3.2 

wt.%, which corresponds to 2.0 mol of hydrogen atoms per unit formula of the 

(LiNH2+1.5MgH2) mixture.  Considering 95% purity of the starting materials, the maximum 

reversible hydrogen amount reduced to 3.0 wt.% H2. 

 However, for the dehydrogenation in the high temperature range that corresponds to the 

second endothermic peak in the DSC curve as shown in Fig. 11-4, the reaction pathways can 

be described by a series of dehydriding/hydriding reactions as follows: 

0.5xMg(NH2)2+xLiH+(1-0.5x)MgH2+(1-x)LiNH2  (after ball milling) 

→ 0.5Mg3N2+1.0LiH+2.0H2  (after dehydrogenation)                                                                              (11-7)                  

 → No absorption  (after rehydrogenation) 
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As a result, it is worth highlighting that 4.0 moles of hydrogen atoms can be desorbed the 

first time but no hydrogen atoms can be absorbed subsequently, which indicates that the 

Mg3N2 phase cannot be hydrogenated under our experimental conditions.  

 

11-5. Apparent activation energies  

 Measurements of the apparent activation energy of hydrogen desorption according to 

various reaction pathways were conducted using the Kissinger method (Eq. (6-2)). Fig. 11-

11 a) and c) show the effect of various heating rates on DSC profiles, which is an underlying 

principle of the Kissinger method. The corresponding Kissinger plots for each reaction are 

shown in Fig. 11-11 b) and d) for the (LiNH2+1.5MgH2) mixtures milled under the IMP67 

mode for 1 and 25 h and the LES6-2B mode for 25 h, respectively. The excellent correlation 

coefficients, R
2
, obtained for the Kissinger plots in Fig. 11-11 b) and d) attest to the accuracy 

of the method. 

 As can be seen in Fig. 11-12, the apparent activation energies of each mixture milled in 

different milling conditions are not comparable, due to the different reaction pathways. 

However, it is remarkable that the apparent activation energies of (LiNH2+1.5MgH2) 

mixtures milled for 1 h under the IMP67 mode are approximately the same as those of 

(LiNH2+1.0MgH2) mixtures milled in the same conditions as shown in Chapter 10. Thus, a 

further increase of the MgH2 molar ratio to 1.5 does not lead to any further decrease in the 

apparent activation energy.  
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Fig. 11-11 a) DSC curves at various heating rates and b) the corresponding Kissinger plots of 

the apparent activation energies for the (LiNH2+1.5MgH2) mixtures milled for 1 h (closed) and 

25 h (open) (IMP67 mode). c) DSC curves at various heating rates and d) the Kissinger plots of 

the apparent activation energies for the (LiNH2+1.5MgH2) mixtures milled for 25 h under 

LES6-2B mode 
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Fig. 11-12 Comparison of the apparent activation energies for the (LiNH2+1.5MgH2) 

milled for 1 h and 25 h under IMP67 and for 25 h under the LES6-2B mode:  

- Reaction (3-5): LiNH2+0.5MgH2 →→→→ 0.5Li2Mg(NH)2+H2  

- Reaction (9-1): 0.5xMg(NH2)2+xLiH+(0.5-0.5x)MgH2+(1-x)LiNH2 →→→→ 0.5Li2Mg(NH)2+H2                         

- Reaction (9-2): 0.5Li2Mg(NH)2+MgH2 →→→→ 0.5Mg3N2+LiH+H2   

- Reaction (10-8): MgNH+0.5MgH2 →→→→ 0.5Mg3N2+H2  
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12. Discussion of (LiNH2+nMgH2) (n=0.55, 0.6, 0.7, 1.0 and 1.5) 

 Because several research groups [81, 83, 87, 97] have shown that composition changes can 

enhance the hydrogen-storage capacity of the Li-Mg-N-H system, due to changes in the 

dehydrogenation/hydrogenation reaction pathways, we were motivated to understand the 

underlying mechanisms of the chemical reaction between LiNH2 and MgH2 with various 

molar ratios. In this study, we discuss the effect of the molar ratio of MgH2/LiNH2 on the 

reaction pathways and the kinetic properties. 

 

12-1. Effect of the molar ratio of MgH2 and LiNH2 on the reaction 

pathways 

 The reaction pathways of the (LiNH2+nMgH2) mixtures (0.55, 0.6, 0.7, 1.0 and 1.5) during 

the ball milling and dehydrogenation/hydrogenation are summarized in Table 12-1. There 

are two interesting findings. First, increasing the molar ratio of MgH2/LiNH2 can accelerate 

the solid-solid reactions during ball milling depending on the milling mode (energy); 

therefore, a 1:1.5 mixture milled under IMP67 mode for 25 h releases more hydrogen than a 

1:1 mixture milled in the same milling conditions. As discussed above, the following 

reaction pathways during the ball milling can be proposed. In the first step, LiNH2 is 

converted to Mg(NH2)2 and LiH by the metathesis reaction with MgH2 without H2 release 

[107, 108]: 

LiNH2 + 0.5MgH2 → 0.5Mg(NH2)2+LiH                                                                         (10-1) 

In the second step, Mg(NH2)2 reacts with MgH2 to form MgNH with H2 release, as proposed 

by Liu et al. [107] and Liang et al.[108]: 

0.5Mg(NH2)2 +0.5MgH2 → MgNH+H2                                                                                                                 (10-2) 
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Table 12-1. Summary of the reaction pathways 

 

 

*Comments: Only Li2Mg(NH)2 can be reversible under 5.0 MPa at 175°°°°C, while Mg3N2 cannot be reversible in the same conditions 

Ball milling Dehydrogenation Rehydrogenation* 

Milling 
Reaction pathway 
(Reaction product) 

Reaction pathway 
(Reaction product)  

Mode 
Time 
(h) 

H2 released Reaction 

Low temp. High temp. 
Desorption 
low temp. 

Desorption 
high temp. 

LiNH2+0.55MgH2 N/A Reaction (10-1) 
LiNH2+0.6MgH2 N/A Reaction (10-1) 
LiNH2+0.7MgH2 

IMP67 25 

N/A Reaction (10-1) 

Reaction (9-1) 

(Li2Mg(NH)2 & 
H2) 

IMP67 1 N/A N/A 

Reaction (3-5) 

(Li2Mg(NH)2 & 
H2) 

LES6-3B 25 N/A Reaction (10-1) 

Reaction (9-1) 

(Li2Mg(NH)2 & 
H2) 

Reaction (9-2) 

(Mg3N2 & LiH 
& H2) 

LiNH2+1.0MgH2 

IMP67 25 
1.9 wt.% H2 

released 
Reaction (10-2) 

Reaction (3-6) 

(Li2Mg(NH)2 & 
H2) 

Reaction (10-8) 

(Mg3N2 & H2) 

Reaction (3-6) 

(Mg(NH2)2 & LiH) 

IMP67 1 N/A N/A 

Reaction (3-5) 

(Li2Mg(NH)2 & 
H2) 

N/A 

LES6-2B 25 N/A Reaction (10-1) 

Reaction (9-1) 

(Li2Mg(NH)2 & 
H2) 

Reaction (9-2) 

(Mg3N2 & LiH 
& H2) 

Reaction (3-6) 

(Mg(NH2)2 & 
LiH) 

N/A 
LiNH2+1.5MgH2 

IMP67 25 
3.0 wt.% H2 

released 
Reaction (10-2) N/A 

Reaction (10-8) 

(Mg3N2 & H2) 
N/A N/A 
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It must be noted that hydrogen can be released through reaction (10-2) during ball milling at 

nearly ambient temperature without subsequent heating processes depending on the milling 

modes and the molar ratio of MgH2/LiNH2.  

 Second, the dehydrogenation of the LiNH2-MgH2 system is processed by a two-step 

reaction that forms Li2Mg(NH)2 and Mg3N2, respectively, independent of the molar ratio of 

MgH2/LiNH2 and reaction pathways that are affected by the milling energy and duration. 

The only exception is the (LiNH2+1.5MgH2) mixture milled under IMP67 for 25 h, which 

shows a one-step reaction that forms Mg3N2 at the high temperature range. Although Alapati 

et al. [103] and Akbarzadeh et al. [104] predicted LiMgN as a product during the 

dehydrogenation of the (LiNH2+1.0MgH2) mixture, this ternary nitride product was not 

observed, even though the samples milled under various milling modes and durations were 

heated up to 400°C in our study.  

 Therefore, the molar ratio of MgH2/LiNH2 can significantly affect mechano-chemical 

reactions during ball milling, which results in different reaction pathways of hydrogen 

desorption in subsequent heating processes. However, its product is the same, independent of 

different molar ratios of MgH2/LiNH2.  

 Assuming that no hydrogen is released during ball milling, the available hydrogen capacity 

depending on the molar ratio of MgH2/LiNH2 can be calculated based on the previously 

mentioned reaction pathways. As mentioned above, the LiNH2-MgH2 system is 

dehydrogenated by a two-step reaction. The first step occurs at low temperatures, while the 

second is processed at high temperatures.  
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Fig. 12-1 Available hydrogen storage capacity as a function of the molar ratio of 

MgH2/LiNH2 

 

Fig. 12-2 The peak temperatures corresponding to the first endothermic peak in each 

DSC curve as a function of various molar ratios of MgH2/LiNH2 mixtures milled for a) 

1 h and b) 25 h (IMP67 mode) 
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As can be seen in Fig. 12-1, the hydrogen capacity desorbed by the first reaction decreases as 

the molar ratio of MgH2/LiNH2 increases, while increasing the MgH2 molar ratio in the 

system causes the amount of hydrogen released through the second to increase; therefore, the 

total hydrogen capacity gradually increases from 5.7 to 6.4 wt.% H2. However, it must be 

noted that the reversible hydrogen storage capacity decreases from 5.4 to 3.2 wt.% H2 as its 

molar ratio increases from 0.55 to 1.5 because only the first reaction is reversible as 

discussed above.  

 Therefore, there is no reason to increase the molar ratio of MgH2/LiNH2 to enhance the 

hydrogen storage capacity of the LiNH2-MgH2 system. However, it must be noted that the 

1:0.55 and 1:0.6 molar ratio mixtures have the kinetic problems as discussed in Chapter 9. 

Therefore, the first and the second reactions cannot be completed and consequently, the 

hydrogen storage capacities for the 1:0.55 and 1:0.6 molar ratio mixtures must be less than 

the calculated values shown in Fig. 12-1. To determine the optimum composition of the 

LiNH2-MgH2 system, the kinetic properties must be considered. 

 

12-2. Effect of the molar ratio of MgH2 and LiNH2 on kinetics 

 To investigate further the role of MgH2 in this system, the peak temperatures and the 

apparent activation energies vs. the molar ratio of MgH2/LiNH2 are shown in Fig. 12-2 and 

12-3, respectively. 

 Fig. 12-2 a) and b) present the peak temperatures that correspond to the first endothermic 

peak in DSC curves of LiNH2-MgH2 system milled under the IMP67 mode for 1 h and 25 h, 

respectively. The peak temperatures dramatically decrease as the molar ratio of MgH2/LiNH2 

increases; for example, the peak temperature of the mixture milled under IMP67 mode for 1 
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h is reduced from 300.9 to 272.1°C as its molar ratio increases from 0.55 to 1.5. In Fig. 12-3 

a) and b), the corresponding apparent activation energies are plotted vs. the molar ratio of 

MgH2 to LiNH2 in the mixtures milled under the IMP67 mode for 1 h and 25 h, respectively. 

For the mixture milled for 1 h, it is clear that increasing the MgH2 molar ratio to 1.0 results 

in a more significant reduction of the apparent activation energy. However, a further increase 

of the MgH2 molar ratio to 1.5 does not lead to further decreases of the apparent activation 

energy, suggesting that excessive MgH2 may be present at the 1LiNH2:1.5 MgH2 molar ratio.  

The lowest apparent activation energy is observed for the (LiNH2+0.7MgH2) mixture milled 

under IMP67 for 25 h, but in the (LiNH2+1.0MgH2) mixture milled at the same conditions, it 

increases, due to the different reaction pathway. Therefore, in our study, considering the 

reversible hydrogen storage capacity and the kinetic properties, the optimum molar ratio of 

MgH2/LiNH2 is 0.7 in the LiNH2–MgH2 system.  
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Fig. 12-3 The apparent activation energies as functions of the molar ratio of the 

MgH2/LiNH2 (IMP67 mode) 
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13. Summary and Conclusions 

13-1. Li-N-H system 

(1) High-energy ball milling was applied to mixtures of LiNH2 and LiH with molar ratios of 

1:1, 1:1.2 and 1:1.4 LiH.  

(2) During high-energy ball milling of the 1:1 molar ratio mixture, the grain (crystallite) size 

of LiNH2 and LiH decreases monotonically with increasing milling time. Conversely, the 

specific surface area (SSA) of the powder increases as the milling time increases to 25 h and 

subsequently decreases as the milling time continues to increase to 100 h, due to the 

excessive agglomeration of powder.  

(3) Single-phase LiNH2 decomposes through melting and the release of ammonia (NH3). A 

just mixed (LiNH2+LiH) mixture still mostly decomposes through the melting of LiNH2 and 

the release of NH3. For the hydrogen to be effectively released from the mixture of 

(LiNH2+LiH), high-energy ball milling is necessary, which creates intimate contact between 

both components.  

(4) The apparent activation energy for hydrogen desorption from the ball milled mixture of 

(LiNH2+LiH) decreases as the SSA of powders increases up to 26 m
2
/g and subsequently 

levels off as the SSA continues to increase. For the ball milled mixture of LiNH2 and LiH, the 

lowest apparent activation energy is observed for the 1:1.2 LiH molar ratio.  

(5) The major impediment to hydrogen desorption from the ball milled mixture (LiNH2+LiH) 

system is the hydrolysis and oxidation of a fraction of the LiH because it is inactive in the 

intermediate reaction, NH3+LiH→LiNH2+H2. Therefore, a LiNH2-LiH system will always 

release NH3 as long as part of the LiH becomes inactive, due to the hydrolysis/oxidation, and 

does not take part in the intermediate reaction.  
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13-2. Li-N-C-H system with graphite 

(1) To prevent LiH from undergoing hydrolysis/oxidation during desorption/absorption, 5 

wt.% graphite was incorporated in the (LiNH2+1.2LiH) hydride system.  

(2) After ball milling for 25 h, graphite is transformed into an amorphous form.  

(3) DSC analysis shows that graphite can prevent or at least substantially reduce the 

oxidation/hydrolysis of LiH because the melting peak of the retained LiNH2 is not observed.  

(4) Both the DSC and Sieverts tests show that adding graphite increases the apparent 

activation energy of desorption from 57-58 to 85-90 kJ/mol. However, the graphite additive 

significantly increases the desorbed/absorbed capacity of hydrogen at 275°C, 300°C and 

325°C.  

(5) The ((LiNH2+1.2LiH)+5 wt.% graphite) system is fully reversible and desorbs/absorbs ~5 

wt.% H2 at 325°C in the following reaction: (LiNH2+LiH↔Li2NH+H2).  

(6) Step-wise desorption tests show that the enthalpy and entropy changes of this reversible 

reaction are -62.4 kJ/mol and -61.0 kJ/molH2 and 117.8 and 115.8 J/molK for the 

(LiNH2+1.2LiH) mixtures without and with 5 wt.% graphite, respectively. Within the 

experimental error, there is no measurable effect of graphite additive on the thermodynamic 

properties of the reaction.  

(7) The Van’t Hoff analysis of the obtained thermodynamic data shows that the equilibrium 

temperature at atmospheric pressure of hydrogen (0.1 MPa H2) is 256.8°C and 253.9°C for 

(LiNH2+1.2LiH) mixtures without and with 5 wt.% graphite milled for 25 h, respectively. 

Given such high equilibrium temperatures, it is obvious that both of these hydride systems 

cannot be employed for hydrogen desorption/absorption below 100°C. 
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13-3. (LiNH2+nMgH2) (n=0.55, 0.6 and 0.7) 

(1) To overcome the thermodynamic and kinetic barriers associated with the LiNH2/LiH 

system, LiH was substituted with MgH2.  

(2) The (LiNH2+nMgH2) (n=0.55, 0.6 and 0.7) system is partially converted to Mg(NH2)2 

and LiH by the metathesis reaction upon ball milling.  

(3) In DSC, the systems show three endothermic peaks that correspond to the following 

reactions:  

 - 1
st
 end. peak: [0.5xMg(NH2)2+xLiH]+[(1-x)LiNH2+(0.5-0.5x)MgH2]→0.5Li2Mg(NH)2+1.0H2 

 - 2
nd

 end. peak: 0.5Li2Mg(NH)2+ MgH2→0.5Mg3N2+LiH+H2  

 - 3
rd

 end. peak: LiNH2 → 0.5Li2NH+0.5NH3 

(4) H2 is released through reaction (9-1) and reaction (9-2), while the NH3 in reaction (3-3) 

results from the incompletion of reaction (9-1) and reaction (9-2). In case of n=0.7, reaction 

(3-3) results from two overlapping endothermic peaks, while it comes from the lack of 

reactivity between LiNH2 and LiH in case of n=0.55 and 0.6 because the two peaks are 

totally separated.  

(5) The lowest apparent activation energy of 71.7 kJ/mol is also observed for the molar ratio 

of 1:0.7MgH2 milled for 25 h.  

(6) The incorporation of n-Ni can reduce the kinetic barrier for reaction (9-1) and (9-2); 

therefore, the apparent activation energy of the (LiNH2+0.7MgH2) mixture with n-Ni milled 

for 25 h is reduced from 71.7 to 65.0 kJ/mol for reaction (9-1). 

(7) Step-wise desorption tests show that the enthalpy and entropy change of reaction (9-1) is 

46.7 kJ/molH2 and 136.1 J/(molK), respectively. The Van’t Hoff analysis of the obtained 
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thermodynamic data shows that the equilibrium temperature at atmospheric pressure of 

hydrogen (0.1 bar H2) is 70.1°C.  

(8) (LiNH2+0.7MgH2) mixture is fully reversible and desorb/absorb 3.6 wt.% H2 at 175°C in 

the reaction (Li2Mg(NH)2+2H2↔Mg(NH2)2+2LiH). However, at a high temperature, the 

mixture first desorbs 5.2 wt.% H2 at 400°C under 1 bar H2 but only absorbs 3.2 wt.% H2 at 

175°C under 50 bar H2 and desorbs 3.2 wt.% H2 at 400°C under 1 bar H2. This difference is 

a result of the formation of Mg3N2 during dehydrogenation at a high temperature, and this 

phase cannot be hydrogenated under our experimental conditions. Therefore, the maximum 

reversible H2 capacity for the (LiNH2+0.7MgH2) mixture is 4.6 wt.% H2, considering the 

average purity of the materials (95%). 

 

13-4. (LiNH2+nMgH2) (n=1.0 and 1.5) 

(1) The molar ratio of MgH2/LiNH2 was increased to 1.0 and 1.5 to increase the limit of 

stored hydrogen in (LiNH2+nMgH2) (n=0.55, 0.6 and 0.7) system. It has been reported that 

composition changes are able to enhance the hydrogen storage capacity, due to changes in the 

dehydrogenation/hydrogenation reaction pathways. 

(2) However, the theoretically predicted LiMgN is not observed, even after dehydrogenation 

at 400°C. Instead of this phase, Li2Mg(NH)2 and Mg3N2 are obtained after dehydrogenation 

at low and high temperatures, respectively, regardless of the milling mode. 

(3) (LiNH2+1.0MgH2) desorbs only 5.8 wt.% H2 at 400°C under 1 bar H2 in contrast to the 

theoretically predicted 8.2 wt.% H2. 

(4) The reaction pathways for the dehydrogenation/hydrogenation of (LiNH2+nMgH2) (n=1.0 

and 1.5) systems depend strongly on the milling modes and times because the initial ball 
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milling induces a metathesis reaction between LiNH2 and MgH2 to yield Mg(NH2)2 and LiH 

without H2 evolution, and Mg(NH2)2 reacts with MgH2 to release hydrogen and form MgNH 

as the ball milling proceeds. 

(5) In the high-energy milling mode (IMP67), systems with n=1.0 and 1.5 release 1.9 and 3.0 

wt.% H2 after 25 h, respectively, while in the relatively low-energy milling mode (LES6-2B 

or 3B), both systems produce Mg(NH2)2 and LiH without H2 after 25 h. 

(6) The n=1.0 system milled in the low-energy milling mode (LES6-3B) desorbs 

approximately 0.5 and 1.3-3.9 wt.% H2 at 124 and 150-200°C, respectively, and the n=1.5 

system milled under LES6-2B mode is capable of desorbing 0.4 and 1.0-3.1 wt.% H2 at 125 

and 150-200°C, respectively. 

(7) The low-energy ball milled systems with n=1.0 and 1.5 fully reversibly desorb and 

absorb 2.9 and 2.0 wt.% H2 at 175°C, respectively, according to the reversible reaction 

Li2Mg(NH)2+2H2↔Mg(NH2)2+2LiH. However, the reversible capacity decreases as the 

dehydrogenation temperature increases due to the formation of Mg3N2, which cannot be 

hydrogenated under our experimental conditions. The maximum reversible H2 capacity for 

systems with n=1.0 and 1.5 are only 3.9 and 3.1 wt.% H2 (purity corrected), respectively. 

Therefore, there is no reason to increase the molar ratio of MgH2/LiNH2 to achieve greater 

hydrogen capacity. 
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Appendix A 

A-1. Controlled milling modes by changing position of magnets in Uni-Ball 

Mill 5 

 

 

 

 

 

 

 

 

 

Fig. A-1 Milling modes with two magnets in Uni-Ball Mill 5: (a) high energy impact 

mode with magnets at 6 and 7 o’clock positions (IMP67 mode) and (b) low energy 

shearing mode with magnets at 6 o’clock position (LES6 mode) 

 

 

A-2. Hydrogen storage capacity estimated by pressure variations during 

milling using a volumetric method 

 

Assuming hydrogen behave as ideal gas, one can estimate the mass of absorbed hydrogen 

from: 

b) 

  

Nd-Fe-B 
magnet 

IMP68 

Austenitic steel milling vial 

4 milling  
balls 

Lid 

WD 
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∆PVeff = (m/MH)RT                                                                                                   (A-1) 

where ∆P is the total pressure changes of H2 in a milling period 

           Veff is the effective volume of the vial (m
3
) 

           (Veff = absolute volume – volume of balls – volume of the material)  

            m is weight of absorbed H2 (g) 

            MH is molar mass of H2 (g/mol) 

            T is the temperature (K) 

            R is the gas constant (8.314J (mol)
-1

K
-1

 

and hydrogen capacity (wt.% H2) = m/Mp × 100%                                           (A-2) 

where Mp is the initial powder mass (g) 

 

A-3. Kinetic curves determination by volumetric method in a Sieverts-type 

apparatus  

 The Sieverts-type apparatus consist of: a calibrated volume determined physically, a reactor 

whose temperature is controlled by the temperature control system and the cooling system, a 

vacuum system, a pressure monitoring system, valves and source of hydrogen and argon 

delivery. The quantity of desorbed hydrogen (number of molls) is calculated using ideal gas 

low: 

nRTPV =                         (A-3) 

where P–gas pressure, V–gas volume, n–number of moles of gas, T–absolute temperature of 

gas, R–the universal gas constant. The value and units of R depend on the units used in 

determining P, V, n and T  
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o The quantity of gas, n, is normally expressed in moles   

o The units chosen for pressure and volume are typically atmospheres (atm) and 

liters (L), however, other units may be chosen  

 

 

 

 

 

 

 

 

 

 

 

Fig. A-2 Scheme of Sieverts-type apparatus where: T- transducer, VH – hydrogen cut 

off valve, VAr–argon cut off valve, VP–vacuum system cut off valve, VR–reactor cut off 

valve, VC–calibrated volume and its  cut off valve, Vv-vent valve, R–reactor 

 Therefore, R can be expressed for example in L⋅atm/mol⋅K where R=0.08206. Let us 

assume that we can treat hydrogen as an ideal gas. Before beginning of absorption or 

desorption the relation between pressure of hydrogen in a system and number of moles of 

hydrogen at temperature T of the analyzed process can by described by:  

RTnVP 11 =     (A-4) 
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After desorption or absorption we have: 

RTnVP 22 =    (A-5) 

where P1 > P2 for absorption and P1 < P2 for desorption 

Rearranging Eq. A-4 and A-5, we obtain: 

RT

VP
n 1

1 =          
RT

VP
n 2

2 =         (A-6) 

Therefore, the difference between number of moles of hydrogen in the system resulting from 

absorption or desorption is: 

RT

V
Pnnn ∆=−=∆ 21           (A-7) 

where ∆P = P1 – P2. 

The mass of absorbed or desorbed hydrogen can be calculated using number of moles of gas 

and molecular mass of hydrogen: mH = 2.016⋅∆n which finally gives us: 

RT

V
PmH ∆= 016.2          (A-8) 

When change in hydrogen mass is known using Eq. A-8, we can easily calculate hydrogen 

capacity using Eq. A-2. 
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A-4. Determination of reaction pathways occurring on ball milling process 

LiNH2+1.0MgH2 

→→→→0.5Mg(NH2)2+LiH+0.5MgH2 (after 4 h milling) 

→→→→0.352MgNH+0.324Mg(NH2)2+LiH+0.324MgH2+0.352H2 (after 6 h milling)                              

 

 The reaction pathways of (LiNH2+MgH2) occurring after 6 h of ball milling under IMP67 

mode can be determined as follows: 

� The experimental amount of hydrogen:1.37 wt.% H2 (after 6 h milling) 

� Considering the purity of the starting materials,  

The theoretical amount of hydrogen: 1.37 wt.% ×××× 0.95 (the average purity)=1.44 wt.% H2 

� Hydrogen is released during the ball milling by the following reaction: 

0.5Mg(NH2)2+0.5MgH2 →→→→ MgNH+H2                              (10-2) 

� Based on the above reaction, the number of moles of hydrogen can be determined 

Hydrogen capacity (wt.% H2) = m/Mp × 100%                (A-2) 

                       where Mp is the initial powder mass (g) 

1.44 wt.% = (total weight of hydrogen)/(total molar weight of reactants) ×××× 100% 

∴∴∴∴    The number of moles of hydrogen is 0.352H2 

� Based on the number of moles of hydrogen, the stoichiometry of each phase 

(Mg(NH2)2, MgH2, and MgNH) can be also determined as follows: 

0.5Mg(NH2)2+0.5MgH2 →→→→ MgNH+H2 

                                                      0.5      :     0.5        =        1    :    1         

                                       ∴             a      :    b             =       c    :    0.352         
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∴ a= 0.5*0.352=0.176, b=0.5*0.352=0.176, and c=1*-.352=0.352 

∴ 0.176Mg(NH2)2+0.176MgH2 →→→→ 0.352MgNH+ 0.352H2 

∴∴∴∴ Newly formed phases: 0.352MgNH+ 0.352H2 

     The retained phases: 0.324Mg(NH2)2+LiH+0.324MgH2 

� Therefore, the reaction pathways of (LiNH2+MgH2) occurring after 6 h of ball 

milling under IMP67 mode can be described as follows: 

LiNH2+1.0MgH2 →→→→ 0.352MgNH+0.324Mg(NH2)2+LiH+0.324MgH2+0.352H2 
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Appendix B. Characteristic absorption lines in FT-IR spectra 

� FT-IR spectroscopy is an absorption technique 

�  It is a kind of vibrational spectroscopy 

� This instrument covered the wavelength range from 2.5 µm to 15 µm (wavenumber 

range 4000 cm
−1

 to 660 cm
−1

) 

� The wavenumber is a property of a wave, its spatial frequency, that is proportional 

to the reciprocal of the wavelength 

       

      where ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular 

      frequency of the wave, and vp is the phase velocity of the wave 

�  When IR light interacts with the molecule, it absorb the energy and vibrates faster  

�  The infrared spectrum of a sample is collected by passing a beam of infrared light 

through the sample. Examination of the transmitted light reveals how much energy 

was absorbed at each wavelength. This can be done with a monochromatic beam, 

which changes in wavelength over time, or by using a Fourier transform instrument 

to measure all wavelengths at once. From this, a transmittance or absorbance 

spectrum can be produced, showing at which IR wavelengths the sample absorbs. 

Analysis of these  absorption characteristics reveals details about the molecular     

structure of the sample 

�  Infrared spectroscopy exploits the fact that molecules have specific frequencies 

(wavenumber) at which they rotate or vibrate corresponding to discrete energy levels 

(vibrational modes). These resonant frequencies are determined by the shape of the 
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molecular potential energy surfaces, the masses of the atoms and, by the associated 

vibronic coupling. In order for a vibrational mode in a molecule to be IR active, it 

must be associated with changes in the permanent dipole. The frequency of the 

vibrations can be associated with a particular bond type. 

�  There are six different ways for vibration: symmetrical and antisymmetrical 

stretching, scissoring, rocking, wagging and twisting 

 

 

Table B-1. Summary of the characteristic absorption lines 

 

 
Characteristic absorption lines 

(cm-1) 

References 

# 

LiNH2 3258 / 3312 131 

Li2NH 3180 / 3250 67 

Li2Mg(NH)2 3163 / 3180 131 

Mg(NH2)2 3272 / 3326 100 

MgNH 3196 131 
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Appendix C. Rehydrogenation behaviour of (LiNH2+LiH) system 

depending on applied hydrogen pressure 

 

 

 

Fig. C-1 Scheme of rehydrogenation behaviours of (LiNH2+LiH) mixture depending on 

applied hydrogen pressure 

 

 Possibly, the high pressure hydrogen reacts at a high rate with the Li2NH particle and 

subsequently a layer of (LiNH2+LiH) mixture is immediately created on the particle surface. 

This layer blocks the hydrogen from diffusing into the particle core which makes the 

absorption kinetics slower than those when using lower hydrogen pressure (11 bars).  
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