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Abstract

The relay channel plays an integral role in network communication systems. An in-
termediate node acts as a relay to facilitate the communication between the source and
the destination. If the rate of codewords is less than the capacity of the source-relay link,
the relay can decode the source’s messages and forward them to the destination. On the
contrary, if the rate of codewords is greater than the capacity of the source-relay link, the
relay cannot decode the messages. Nevertheless, the relay can still compress its observa-
tions and then send them to the destination. Obviously, if the relay-destination link is
of a capacity high enough such that the relay’s observations can be losslessly sent to the
destination, then the maximum message rate can be achieved as if the relay and the desti-
nation can jointly decode. However, when the relay-destination link is of a limited capacity
such that the relay’s observation cannot be losslessly forwarded to the destination, then
what is the maximum achievable rate from the source to the destination? This problem
was formulated by Cover in another perspective [7], i.e., what is the minimum rate of the
relay-destination link such that the maximum message rate can be achieved?

We try to answer this Cover’s problem in this thesis. First, a sufficient rate to achieve
the maximum message rate can be obtained by Slepian-Wolf coding, which gives us an
upper bound on the optimal relay-destination link rate. In this thesis, we show that
under some channel conditions, this sufficient condition is also necessary, which implies
that Slepian-Wolf coding is already optimal. Hence, the upper bound meets exactly the
minimum value of the required rate. In our approach, we start with the standard converse
proof. First, we present a necessary condition for achieving the maximum message rate
in the single-letter form. Following the condition, we derive a theorem, which is named
as “single-letter criterion”. The “single-letter criterion” can be easily utilized to verify
different channels. Then we show that for two special cases: when the source-relay link
and the source-destination link of the relay channel are both binary symmetric channels
(BSCs), and when they are both binary erasure channels (BECs), Slepian-Wolf coding is
optimal in achieving the maximum message rate. Moreover, the maximum message rates
of these two special channels are also calculated in this thesis.
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Chapter 1

Introduction

1.1 Problem and Motivation

A relay channel [20] models communication between one sender and one receiver helped
by one or more intermediate nodes. It can also be regarded as a combination of broadcast
channel [4] and multiple access channel [2]. Because of its special behaviour, the general
relay capacity is difficult to characterize. Lots of work have been done to study the prop-
erties of the relay channel in both the discrete case [18, 28] and the Gaussian case [14, 23].
Some results are given under certain assumptions [6, 1, 15, 10, 12, 17, 26, 27]. In this
thesis, we will investigate the relay channel directly following Cover’s open problem [7] on
the capacity of the relay channel.

1.1.1 Cover’s Open Problem on the Capacity of the Relay Chan-
nel

First, we introduce Cover’s open problem [7]. Consider a simple discrete memoryless relay
channel as shown in Figure 1.1, where X is a codeword, Y1 is the relay’s observation, Y2 is
the destination’s observation, and R0 is the error free communication rate from the relay to
the destination, by which, the relay can forward its observation to the destination. In this
thesis, we callR0 the relay rate. Here Y1, Y2 are conditionally independent and conditionally
identically distributed given X, and hence p(y1, y2|x) = p(y1|x)p(y2|x). Furthermore,

• W1 ∈ {1, ..., 2nR} is the message we wish to reliably send over this relay channel;
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Figure 1.1: The relay channel with a digital link

• a (2nR, n) code for this channel is obtained from an encoding function f1 : {1, ..., 2nR} →
X n, and Xn = f1(W1);

• W2 ∈ {1, ..., 2nR0} is the input of the relay-destination link with W2 = f2(Y n
1 ), where

f2 : Yn1 → {1, ..., 2nR0} is a relay encoding function;

• Ŵ1 = g(Y n
2 ,W2) is the estimation of the message W1, where g : {1, ..., 2nR0} × Yn2 →

{1, ..., 2nR} is a decoding function.

The probability of error is given by

P
(n)
e = P{Ŵ1 6= W1}

where W1 is uniformly distributed over {1, ..., 2nR} and

p(w1, y1, y2) = 2−nR
∏n

i=1 p(y1i|xi(w1))
∏n

i=1 p(y2i|xi(w1)).

Let C(R0) be the supremum of the achievable rate R for a given R0 , that is, the supremum

of the rates R for which P
(n)
e can be made to tend to zero as n→∞.

We note the following facts:

1. C(0) = supp(x) I(X;Y2).

2. C(∞) = supp(x) I(X;Y1, Y2).

3. C(R0) is a nondecreasing function of R0.
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In light of this, Cover proposed the following question: “What is the critical value of R0

such that C(R0) first equals C(∞)?”. This is equivalent to finding a suitable R∗0 which
satisfies:

R∗0 := inf{R0 : C(R0) = C(∞) = sup
p(x)

I(X;Y1, Y2)}. (1.1)

It is the smallest relay rate required for the relay-destination communication while the
maximum rate C(∞) = supp(x) I(X;Y1, Y2) can be achieved.

In this thesis, we are interested in the compress-and-forward scheme. If the compression
at the relay is lossless, we can recover Y1 at the destination from the knowledge of W2 and
Y2. Moreover, using Slepian-Wolf coding we can get a compression rate R0 = H(Y1|Y2)
at the relay by treating Y2 as the side information. Thus, we have a sufficient relay rate
R0 = H(Y1|Y2) which can maximize the rate C(R0) to be C(∞) = supp(x) I(X;Y1, Y2).
Then, R∗0 in Equation (1.1) satisfies:

R∗0 ≤ minp(x) H(Y1|Y2) and p(x) ∈ [0, 1].

Our target is to maximize the rate instead of recovering the relay observation at the
destination. Hence two questions arise:

1. Slepian-Wolf coding already provides an optimal compression rate for lossless coding
[25, 5, 16, 19]. If lossy compression is applied at the relay, can we still find a R0 to
fulfil the requirement of C(R0) = C(∞) = supp(x) I(X;Y1, Y2)?

2. Is it possible that a smaller relay rate R0 < H(Y1|Y2) exists, such that C(R0) =
C(∞) = supp(x) I(X;Y1, Y2)?

To answer these two questions, we will analyze two special relay channels in this thesis.

1.2 Organization of the Thesis and Contribution

The content of this thesis is organized as follows:

In Chapter 2, we will introduce some fundamental blocks in information theory and
some key theorems used throughout this thesis. First, some basic definitions and theorems
in information theory are given, such as the concepts of entropy, jointly typical sequences
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and channel capacity theorem. Also Fano’s inequality, log sum inequality and data process-
ing inequality are presented. These theorems will play vital roles in my later proofs. Then
a quick review of the relay channel, the two different schemes: decode-and-forward and
compress-and-forward will be discussed separately. The achievable rate of Slepian-Wolf
coding is also given in this chapter.

In Chapter 3, first, we present a sufficient relay rate R0 = H(Y1|Y2) to achieve the max-
imum message rate obtained by Slepian-Wolf coding. Using Fano’s inequality, a necessary
condition for achieving the maximum rate is given in the single-letter form. Following the
condition, a theorem called “single-letter criterion” is derived, which can be used to verify
in certain condition Slepian-Wolf coding is optimal. In the end, we prove R0 = H(Y1|Y2)
is the smallest relay rate required for maximizing the rate in two special cases: when the
source-relay link and the source-destination link are both BSC channels, and when they
are both BEC channels. From now on, we will refer to them as the BSC relay channel and
the BEC relay channel respectively.

Chapter 4 will draw some conclusions and give some potential directions for future
work.

4



Chapter 2

Preliminaries

2.1 Basic Knowledge in Information Theory

In this section, we introduce some fundamental building blocks and important theorems
in information theory which will be used throughout this thesis. For detailed references,
please refer to [8] and [11] .

2.1.1 Basics in Information Theory

Suppose X is a random variable (r.v.) with probability mass function (pmf) p(x) =
Pr{X = x}, x ∈ X , X is the alphabet. In information theory, entropy is used to measure
the uncertainty of a r.v.. Mathematically, it is the expectation of the information contained
in a message.

Definition 1 The entropy H(X) of a discrete r.v. X is defined by

H(X) = −
∑

x∈X p(x) log p(x).

The value of entropy is nonnegative, since 0 ≤ p(x) ≤ 1.

Joint entropy H(X, Y ) is a measure of the uncertainty of a set of r.v.s, i.e. {X, Y }.

Definition 2 The joint entropy H(X, Y ) of a pair of discrete r.v.s (X, Y ) with a joint
distribution p(x, y) is defined as
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H(X, Y ) = −
∑

x∈X
∑

y∈Y p(x, y) log p(x, y).

Conditional entropy H(Y |X) is understood as the amount of uncertainty of r.v. Y
given the information of r.v. X.

Definition 3 If (X, Y ) ∼ p(x, y), then the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑

x∈X p(x)H(Y |X = x) = −
∑

x∈X p(x)
∑

y∈Y p(y|x) log p(y|x).

H(Y |X) refers to the average entropy of Y condition onX, andH(X|Y ) ≤ H(X), H(X|X) =
0.

Next we introduce the chain rule for joint entropy and it will be used in our proofs.

Theorem 1 (Chain rule):

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

Extending the chain rule to n vector,

H(X1, X2, ..., Xn) =
∑n

i=1H(Xi|Xi−1, ..., X1).

Thus, we have H(X1, X2, ..., Xn) ≤
∑n

i=1 H(Xi), and equality holds if X1, X2, ..., Xn are
independent.

Mutual information I(X;Y ) is the measure of mutual dependence of r.v.s X and Y as
follows.

Definition 4 Consider two r.v.s X and Y with a joint pmf p(x, y) and marginal pmfs p(x)
and p(y). The mutual information I(X;Y ) is defined as

I(X;Y ) =
∑

x∈X
∑

y∈Y p(x, y) log p(x,y)
p(x)p(y)

.

Some properties of mutual information are given:

1. I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y )

2. I(X;X) = H(X)−H(X|X) = H(X)

3. I(X;Y ) ≥ 0.

4. By the chain rule, mutual information can be expanded:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) = I(X;Y ) + I(X;Z|Y ).

The relations of H(X), H(X, Y ), H(X|Y ), H(Y |X) and I(X;Y ) are shown in Figure 2.1.
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I(X;Y )

H(X) H(Y )

H(Y |X)H(X|Y )

H(X;Y )

Figure 2.1: Entropy, joint entropy, conditional entropy and mutual information

2.1.2 Markov Chain, Fano’s Inequality, Log Sum Inequality and
Data Processing Inequality

Definition 5 R.v.s X, Y, Z are said to form a Markov chain in this order (denoted by
X → Y → Z ) if the conditional distribution of Z depends only on Y and is conditionally
independent of X. Specifically, X, Y and Z form a Markov chain X → Y → Z if the joint
probability mass function can be written as

p(x, y, z) = p(x)p(y|x)p(z|y).

Some properties of Markov chain are given:

1. X → Y → Z if and only if (iff) X and Z are conditionally independent given Y ,
then

p(x, z|y) = p(x|y)p(z|y).

2. X → Y → Z implies that Z → Y → X.

3. If Z = f(Y ), then X → Y → Z.

We give an example of Markov chain.

Example 1 Let X be a r.v. with a distribution p(x). We observe a r.v. Y which is related
to X by the conditional distribution p(y|x). From Y , we calculate a function g(Y ) = X̂,
which is an estimate of X. Then X → Y → X̂ forms a Markov chain.

7



Let X, Y and X̂ be r.v.s defined in Example 1. Then we define the probability of error
Pe to be

Pe = P{X̂ 6= X}.

Theorem 2 (Fano’s inequality):

H(X|Y ) ≤ H(Pe) + Pe log(|X | − 1),

and H(Pe) = −Pe logPe − (1− Pe) log (1− Pe). This inequality can be weakened to

H(X|Y ) ≤ 1 + Pe log |X |, furthermore,

Pe ≥ H(X|Y )−1
log |X |

Fano’s inequality relates the conditional entropy H(X|Y ) to the error probability of es-
timating X from Y . It is very important for the converse proof of channel coding theo-
rems and also in our work. Another two useful inequalities log sum inequality and data
processing inequality are given in the following:

Theorem 3 (Log sum inequality): For non-negative numbers, a1, a2, ..., an and b1, b2, ..., bn,

∑n
i=1 ai log ai

bi
≥ (

∑n
i=1 ai) log

∑n
i=1 ai∑n
i=1 bi

with equality iff ai
bi

= const.

Theorem 4 (Data processing inequality): If X → Y → Z, then I(X;Y ) ≥ I(X;Z).

2.1.3 Typical Set and Jointly Typical Sequences

Asymptotic Equipartition Property (AEP) and joint AEP are the keys in the proofs of
shannon coding theorems. AEP is the result of the weak law of large numbers.

Theorem 5 (AEP): If X1, X2, ..., Xn are independent and identically distributed (i.i.d.)
∼ p(x), then

8



− 1
n

log p(X1, X2, ..., Xn)→ H(X) in probability.

Definition 6 The typical set A
(n)
ε with respect to p(x) is the set of sequences (x1, x2, ..., xn) ∈

X n with the following properties:

2−n(H(X)+ε) ≤ p(x1, x2, ..., xn) ≤ 2−n(H(X)−ε).

And the set A
(n)
ε has some properties:

Theorem 6
1. If (x1, x2, ..., xn) ∈ A(n)

ε , then H(X)− ε ≤ − 1
n

log p(x1, x2, ..., xn) ≤ H(X) + ε.

2. P{A(n)
ε } > 1− ε, for n sufficiently large.

3. |A(n)
ε | ≤ 2−n(H(X)+ε), where |A(n)

ε | denotes the number of elements in the set A
(n)
ε .

4. |A(n)
ε | ≥ (1− ε)2−n(H(X)−ε), for n sufficiently large.

Definition 7 The set A
(n)
ε of jointly typical sequences {(xn, yn)} with respect to the distri-

bution p(x, y) is the set of n-sequences with empirical entropies ε -close to the true entropies,
i.e.,

A
(n)
ε = {(xn, yn) ∈ X n × Yn :

| − 1
n

log p(xn)−H(X)| < ε,

| − 1
n

log p(yn)−H(Y )| < ε,

| − 1
n

log p(xn, yn)−H(X, Y )| < ε},

where

p(xn, yn) =
∏n

i=1 p(xi, yi).

Theorem 7 (Joint AEP): Let (Xn, Y n) be sequences of length n drawn i.i.d. according to
p(xn, yn) =

∏n
i=1 p(xi, yi). Then

1. P ((Xn, Y n) ∈ A(n)
ε )→ 1 as n→∞.

2. |A(n)
ε | ≤ 2n(H(X,Y )+ε).

9



Encoder
Channel
p(y|x) Decoder

Xn Y nW Ŵ

Message Estimation of message

Figure 2.2: A communication channel

2.1.4 Channel Capacity and Channel Coding Theorem

Figure 2.2 illustrates the basic model of a communication system. A message W , drawn
from the index set {1, 2, ...,M}, generates the codeword Xn(W ), which is received as a
random sequence Y n ∼ p(yn|xn) by the receiver. The receiver then estmates the index W
by an appropriate decoding rule Ŵ = g(Y n). An error occurs if Ŵ is not the same index
W that was transmitted. Channel capacity is the tightest upper bound on the amount
of information that can be reliably transmitted over a communications channel. Reliable
transmission means the message transmitted through the channel can be recovered with
arbitrarily small error probability [11]. Some basic definitions are given before we give the
mathematical definition of channel capacity.

Definition 8 A discrete channel, denoted by (X , p(y|x),Y), consists of two finite sets X
and Y and a collection of pmfs p(y|x), one for each x ∈ X , such that for every x and y,
p(y|x) ≥ 0, and for every x,

∑
y p(y|x) = 1, with the interpretation that X is the input

and Y is the output of the channel.

Definition 9 The n-th extension of the discrete memoryless channel (DMC) is the channel
(X n, p(yn|xn),Yn), where

p(yk|xk, yk−1) = p(yk|xk), k = 1, 2, · · · , n,

where xk = x1 · · · xk−1xk, and yk−1 = y1 · · · yk−2yk−1. If there is no feedback in the channel
model, i.e., if the past output symbols do not effect the input symbols, namely, p(xk|xk−1, yk−1) =
p(xk|xk−1), then we have the following reduced form for DMC

p(yn|xn) =
∏n

i=1 p(yi|xi).

Definition 10 We define the “information” channel capacity of a DMC as

10
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Figure 2.3: BSC channel

C = maxp(x)I(X;Y )

where the maximum is taken over all possible input distributions p(x).

Example 2 (Capacity of BSC channel (Figure 2.3) ): BSC is a channel with binary
input and binary output and error probability p. If X ∈ {0, 1} is the input r.v. and
Y ∈ {0, 1} is the output r.v., then the channel is characterized by the condition probabilities:
P (Y = 0|X = 0) = P (Y = 1|X = 1) = 1−p and P (Y = 1|X = 0) = P (Y = 0|X = 1) = p,
assuming 0 ≤ p < 1/2. Calculate the mutual information:

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑
x

p(x)H(Y |X = x)

= H(Y )−
∑
x

p(x)H(p)

= H(Y )−H(p)

≤ 1−H(p),

equality is achieved when Y ’s distribution is uniform, equivalently, the input distribution
is uniform. Hence the information capacity of a BSC channel with parameter p is

C = 1- H(p) bits.

11
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Figure 2.4: BEC channel

Example 3 (Capacity of BEC (Figure 2.4)): BEC is a channel with binary input and
binary output and erasure probability p. Let X ∈ {0, 1} be the input r.v. and Y ∈ {0, 1, e}
be the output r.v., where e is the erasure symbol. Then the channel is characterized by
the condition probabilities: P (Y = 0|X = 0) = P (Y = 1|X = 1) = 1 − p, P (Y = 1|X =
0) = P (Y = 0|X = 1) = 0 and P (Y = e|X = 0) = P (Y = e|X = 1) = p, assuming
0 ≤ p < 1/2. Suppose P (X = 0) = π, then P (Y = 0) = π(1 − p), P (Y = e) = p and
P (Y = 1) = (1− π)(1− p). Calculate the mutual information:

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H(p)

= H(π(1− p), p, (1− π)(1− p))−H(p)

= (1− p)H(π) +H(p)−H(p)

= (1− p)H(π)

≤ 1− p,

where H(π(1−p), p, (1−π)(1−p)) = −π(1−p) log π(1−p)−p log p−(1−π)(1−p) log(1−
π)(1−p), and equality is achieved when π = 1/2, i.e., input distribution is uniform. Hence
the information capacity of a BEC channel with parameter p is

C = 1- p bits.

Definition 11 An (M, n) code for a channel (X , p(y|x),Y) consists of the following:

• An index set 1, 2, ...,M .

12



• An encoding function f : {1, 2, ...,M} → X n, yielding codewords Xn(1), Xn(2), .., Xn(M).
The set of codewords is called the codebook.

• A decoding function

g : yn → {1, 2, ...,M},

is a deterministic rule which assigns a guess to each possible received vector.

Let λi = P (g(Y n) 6= i|Xn = Xn(i)) =
∑

yn p(y
n|xn(i))I(g(yn) 6= i) be the conditional

probability of error given that index i was sent, where I(.) is the indicator function.

λn = max{i∈1,2,...,M}λi is the maximal probability of error and P
(n)
e = 1

M

∑M
i=1 λi is av-

erage probability of error.

Theorem 8 (The channel coding theorem): All rates below capacity C are achievable.
Specifically, for every rate R < C, there exists a sequence of (2nR, n) codes with maximum
probability of error λ(n) → 0.

Conversely, any sequence of (2nR, n) codes with λn → 0 must have R ≤ C.

The channel coding theorem is perhaps the basic and most important theorem in in-
formation theory: channel capacity is achievable. Claude Shannon used a number of new
ideas in his original 1948 paper[24] to prove this. These ideas can be summarized as follows.

• Allowing an arbitrarily small but non-zero probability of error,

• using the channel many times in succession, so that the law of large numbers comes
into effect, and

• calculating the average of the probability of error over a random choice of codebooks,
which symmetrizes the probability, and which can then be used to show the existence
of at least one good code.

2.2 The Relay Channel

Fig 2.5 shows the general model of the relay channel with only one relay node. The channel
consists of four finite sets {X ,X1,Y1,Y2} and a collection of pmfs p(y1, y2|x, x1). x is the

13



Encoder p(y1, y2|x, x1)

the Relay

Decoder
W1 X Y2 Ŵ1

Y1 X1

Figure 2.5: The general relay channel

input to the channel, y2 is the observation of the destination, y1 is the relay’s observation
and x1 is the input symbol for the relay-destination link chosen by the relay. The general
relay channel capacity is difficult to determine. Results are only known for a few special
cases, e.g., the physical degraded relay channel [8, 6] and the Gaussian relay channel
[14, 23, 1](asymptotic capacity). In order to investigate the relay capacity, two important
coding schemes have been developed in [6]. One is the decode-and-forward scheme, the
other is the compress-and-forward scheme.

2.2.1 Decode-and-Forward

In the decode-and-forward scheme, block Markov encoding is used. The relay decodes the
source’s message in the current block, and then forwards it to the destination in the next
block.

Theorem 9 (Decode-and-Forward): The achievable rate for the relay channel by decode-
and-forward is

R < maxp(x,x1)min{I(X;Y1|X1), I(X,X1;Y2)}

for some p(x, x1).

2.2.2 Compress-and-Forward

In our work, we focus on the compress-and-forward scheme. The relay helps the destina-
tion to decode the original message by compressing and forwarding its observation to the
destination. Some important work have been done on investigating the optimal compress-
and-forward scheme [26, 27, 13].

14



Theorem 10 (Compress-and-Forward): The achievable rate R of the relay channel by
compress-and-forward is:

R < I(X; Ŷ1, Y2|X1)

with the constraint:

I(X1;Y2) > I(Y1; Ŷ1|X1, Y2)

for some p(x)p(x1)p(ŷ1|x1, y1).

2.3 Slepian-Wolf Coding

2.3.1 Coding Procedure Using Random Binning

The coding procedure [8] using random binning is very popular. Here we present the
scheme of encoding of single source Xn as shown in Figure 2.6.

Binning

2nR bins (W)

Xn

W

Figure 2.6: Random binning

Suppose there are 2nR bins, all the sequences Xn are randomly thrown into the bins.
The set of sequences are assigned to the same index W ∈ {1, 2, ..., 2nR}, if they are laying

15



in the same bin. For decoding the source from the bin index W , we look for a typical Xn

sequence in the bin. If there is one and only one typical sequence in the bin, we declare the
sequence X̂n to be the estimation of the source sequence. Error will occur if there is none
or more than one typical sequence in this bin. However if the bin number is large enough
(much larger than the total number of typical sequences), then the probability that there
is more than one typical sequence in each bin is very small. Thus the error probability is
arbitrarily small.

Let f(Xn) = W be the bin index corresponding to Xn and g(.) is the decoding function
that X̂n = g(f(Xn)) is the estimation of Xn. Next we introduce the conventional method
to analyze the probability of error [8] (averaged over the random choice of codes f ):

P (g(f(X)) 6= X) ≤ P (X) 6∈ A(n)
ε ) +

∑
x

P (∃x′ 6= x : x′ ∈ A(n)
ε , f(x′) = f(x))p(x)

≤ ε+
∑
x

∑
x′∈A(n)

ε ,x′ 6=x

P (f(x′) = f(x))p(x)

≤ ε+
∑
x

∑
x′∈A(n)

ε

2−nRp(x)

= ε+
∑

x′∈A(n)
ε

2−nR
∑
x

p(x)

≤ ε+
∑

x′∈A(n)
ε

2−nR

≤ ε+ 2n(H(X)+ε)2−nR

≤ 2ε

if R > H(X) + ε and n is sufficiently large.

2.3.2 Achievable Rate of Slepian-Wolf Coding

Slepian-Wolf coding [25, 5, 19, 16] is a lossless source coding scheme used to encode two
correlated sources. In this thesis we consider the basic form of Slepian-Wolf coding, en-
coding source {Y1i}∞i=1 with side information {Y2i}∞i=1 available at the decoder as shown in
Fig 2.7.

Assume {(Y1i, Y2i)}∞i=1 is a jointly memoryless source with joint probability distribution
PY1Y2 over Yn1 × Yn2 . Random binning scheme is used in the coding procedure.
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Encoder Decoder
Y1

Y2

Ŷ1Rate R0

Figure 2.7: Source coding with side information at decoder

Random code generation: Independently assign every yn1 ∈ Yn1 to one of 2nR0 bins
according to a uniform distribution on {1, 2, ..., 2nR0}. Thus we have a mapping:

f : Yn1 → {1, 2, ..., 2nR0}

and f(yn1 ) = w2 ∈ {1, 2, ..., 2nR0} for yn1 ∈ Yn1

Binning

2nR0 bins (W2)

Y n
1 (W2, Y

n
2 )

Figure 2.8: Binning scheme

Encoding: The sender sends the index w2 of the bin in which yn1 ∈ Yn1 belongs to (Fig
2.8).
Decoding: Upon receiving w2 and side information yn2 , the decoder decodes the message

by looking for yn1 in bin w2, such that (yn1 , y
n
2 ) ∈ A(n)

ε (Y1, Y2). If there is none or more than

17



one yn1 in one bin, it declares an error.
Similarly analyzing the error probability as shown in Section 2.3.1, we have: the probability
of error Pe → 0, if R0 > H(Y1|Y2).

18



Chapter 3

Optimal Relay Rate for the BSC
Relay Channel and the BEC Relay
Channel

3.1 A Sufficient Relay Rate

In this section, we present a sufficient relay rate R0 to maximize C(R0) by applying Slepian-
Wolf coding.

The simple model (Figure 1.1) of discrete memoryless relay channel with a digital link
from the relay to the destination is studied in this thesis.

For any (2nR, n) code of the relay channel, there are:

1. W1 is the message drawn from the index set {1, 2, ..., 2nR};

2. f1: {1, 2, ..., 2nR} → X n is the encoding function at the sender, yielding codewords
Xn(1), Xn(2), ..., Xn(2nR);

3. Y n
1 is the relay’s observation;

4. f2 : Yn1 → {1, 2, ..., 2nR0} is the encoding function at the relay, and W2 = f2(Y n
1 )

is the input of the relay-destination link, W2 ∈ {1, 2, ..., 2nR0}, Y n
1 ∈ Yn1 . w2 is the

realization of it and we also refer it as bin number in random binning scheme;

5. Y n
2 is the destination’s observation;
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6. Ŵ1 = g(W2, Y
n

2 ) is the estimation of message W1, where g is the decoding function.

Y1, Y2 are conditionally independent given X, i.e., p(y1, y2|x) = p(y1|x)p(y2|x). Since W2 is
compressed of Y1, so R0 is also referred to as the compression rate of the relay. Our work is
presented by looking for the minimum R0 such that C(R0) = C(∞) = maxp(x) I(X;Y1, Y2).

Applying Slepian-Wolf coding in the classical compress-and-forward scheme, the com-
pression rate

R0 = minp(x) H(Y1|Y2) and p(x) ∈ [0, 1],

is sufficient such that C(R0) = C(∞) = maxp(x) I(X;Y1, Y2). Thus, the minimum relay
rate R∗0 in Equation (1.1) satisfies:

R∗0 ≤ minp(x)H(Y1|Y2) and p(x) ∈ [0, 1].

In the following sections, we will give a necessary condition to achieve the maximum rate
maxp(x) I(X;Y1, Y2) in the single-letter form. Following this condition, we will derive a the-
orem named as “single-letter criterion”, which states, in certain condition minp(x) H(Y1|Y2)
is the minimum relay rate as shown in Equation (1.1). Finally, we will prove that for the
BSC relay channel and the BEC relay channel, the minimum relay rate R∗0 is equal to
minp(x) H(Y1|Y2).

3.2 Single-letter Criterion

Before the detailed discussion in this section, first we specify an assumption and all the
later proofs and results are based on this assumption.

Assumption: Let Xn = {X1, X2, · · · , Xn} denote the random codeword that is uni-
formly chosen from the codebook used by the source. We assume X1, X2, ..., Xn are i.i.d..

In this section, we will use Fano’s inequality, data processing inequality and log sum in-
equality to derive a necessary condition for achieving the maximum rate maxp(x) I(X;Y1, Y2)
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in the single-letter form. For a (2nR, n) code defined in Section 3.1, we have

nR = H(W1) = H(W1|Y n
2 ,W2) + I(W1;Y n

2 ,W2)

(a)

≤ nεn + I(W1;Y n
2 ,W2)

(b)

≤ nεn + I(Xn;Y n
2 ,W2)

= nεn + I(Xn;Y n
1 ,W2, Y

n
2 )− I(Xn;Y n

1 |W2, Y
n

2 )

= nεn + I(Xn;Y n
1 , Y

n
2 )− I(Xn;Y n

1 |W2, Y
n

2 ),

where (a) follows from Fano’s inequality, (b) follows from data processing inequality.

I(Xn;Y n
1 , Y

n
2 ) = H(Y n

1 , Y
n

2 )−H(Y n
1 , Y

n
2 |Xn)

= H(Y n
1 , Y

n
2 )−H(Y n

1 |Xn)−H(Y n
2 |Xn)

≤
n∑
i=1

H(Y1i, Y2i)−
n∑
i=1

H(Y1i|Xi)−
n∑
i=1

H(Y2i|Xi)

=
n∑
i=1

H(Y1i, Y2i)−
n∑
i=1

H(Y1i, Y2i|Xi)

=
n∑
i=1

I(Xi;Y1i, Y2i)

≤ n sup
p(x)

I(X;Y1, Y2)

⇒ R ≤ εn +
I(Xn;Y n

1 , Y
n

2 )− I(Xn;Y n
1 |W2, Y

n
2 )

n

⇒ R ≤ εn + sup
p(x)

I(X;Y1, Y2)− I(Xn;Y n
1 |W2, Y

n
2 )

n

→ sup
p(x)

I(X;Y1, Y2)− I(Xn;Y n
1 |W2, Y

n
2 )

n
, n→∞. (3.1)
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From Equation (3.1), we obtain the following proposition:

Proposition 1 In order to achieve the maximum rate C(∞) = supp(x) I(X;Y1, Y2), it is

necessary to ensure
I(Xn;Y n1 |W2,Y n2 )

n
→ 0, as n→∞.

Before we derive a “single-letter criterion”, we first define the following notations:

Y −1i = (Y11, Y12, ..., Y1(i−1)), Y
+

1i = (Y1(i+1), Y1(i+2), ..., Y1n), Y −2i = (Y21, Y22, ..., Y2(i−1)), Y
+

2i =
(Y2(i+1), Y2(i+2), ..., Y2n).

Let us first show the following three lemmas.

Lemma 1 I(Xn;Y n
1 |W2, Y

n
2 ) ≥

n∑
i=1

I(Xi;Y1i|Ui, Y2i), for Ui = (W2, Y
−

1i , Y
−

2i , Y
+

2i ).

P roof :

I(Xn;Y n
1 |W2, Y

n
2 )

= H(Y n
1 |W2, Y

n
2 )−H(Y n

1 |Xn,W2, Y
n

2 )

=
n∑
i=1

[H(Y1i|Y −1i ,W2, Y
n

2 )−H(Y1i|Y −1i , Xn,W2, Y
n

2 )]

=
n∑
i=1

[H(Y1i|Y −1i ,W2, Y
−

2i , Y
+

2i , Y2i)−H(Y1i|Y −1i , Xn,W2, Y
−

2i , Y
+

2i , Y2i)]

=
n∑
i=1

[H(Y1i|Ui, Y2i)−H(Y1i|Xn, Ui, Y2i)]

=
n∑
i=1

[H(Y1i|Ui, Y2i)−H(Y1i|X−i , Xi, X
+
i , Ui, Y2i)]

≥
n∑
i=1

[H(Y1i|Ui, Y2i)−H(Y1i|Xi, Ui, Y2i)]

=
n∑
i=1

I(Xi;Y1i|Ui, Y2i), (3.2)

in which Ui = (W2, Y
−

1i , Y
−

2i , Y
+

2i ).
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Lemma 2 Ui → Y1i → Xi is a Markov chain, for Ui = (W2, Y
−

1i , Y
−

2i , Y
+

2i ).

To prove Lemma 2, we need to show p(ui, xi|y1i) = p(ui|y1i)p(xi|y1i). Since p(ui, xi|y1i) =
p(ui|y1i)p(xi|y1i, ui), then we only need p(xi|y1i, ui) = p(xi|y1i).

P roof :

p(xi|y1i, ui) = p(xi|y1i, w2, y
−
1i, y

−
2i, y

+
2i)

=
p(xi, y1i, w2, y

−
1i, y

−
2i, y

+
2i)

p(y1i, w2, y
−
1i, y

−
2i, y

+
2i)

=

∑
y+1i,f2(yn1 )=w2

p(xi, y1i, y
−
1i, y

+
1i, y

−
2i, y

+
2i)∑

y+1i,f2(yn1 )=w2

p(y1i, y
−
1i, y

+
1i, y

−
2i, y

+
2i)

=

∑
y+1i,f2(yn1 )=w2

p(xi, y
n
1 , y

−
2i, y

+
2i)∑

y+1i,f2(yn1 )=w2

p(yn1 , y
−
2i, y

+
2i)

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y
n
1 , y

−
2i, y

+
2i|xi)∑

y+1i,f2(yn1 )=w2

p(yn1 )p(y−2i, y
+
2i|yn1 )

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y
n
1 |xi)p(y−2i, y+

2i|xi, yn1 )∑
y+1i,f2(yn1 )=w2

p(yn1 )p(y−2i, y
+
2i|yn1 )

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y
n
1 |xi)p(y−2i, y+

2i|xi, yn1 )∑
y+1i,f2(yn1 )=w2

p(yn1 )p(y−2i, y
+
2i|yn1 )

. (3.3)
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Next we will show p(yn1 |xi) =
∏n

j=1,j 6=i p(y1j)p(y1i|xi),

p(yn1 |xi) =
∑
x−i ,x

+
i

p(yn1 |xi, x−i , x+
i )P (x−i , x

+
i |xi)

=
∑
x−i ,x

+
i

p(yn1 |xn)P (x−i , x
+
i )

=
∑
x−i ,x

+
i

n∏
j=1

p(y1j|xj)
n∏

j=1,j 6=i

p(xj)

=
∑
x−i ,x

+
i

n∏
j=1,j 6=i

p(y1j, xj)p(y1i|xi)

=
n∏

j=1,j 6=i

p(y1j)p(y1i|xi). (3.4)
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The following equations show that p(y−2i, y
+
2i|xi, yn1 ) = p(y−2i, y

+
2i|y−1i, y+

1i),

p(y−2i, y
+
2i|xi, yn1 ) =

∑
x−i ,x

+
i

p(y−2i, y
+
2i|xi, x−i , x+

i , y
n
1 )p(x−i , x

+
i |xi, yn1 )

=
∑
x−i ,x

+
i

∑
y2i

p(y−2i, y2i, y
+
2i|xi, x−i , x+

i , y
n
1 )
p(x−i , x

+
i , xi|yn1 )

p(xi|yn1 )

=
∑
x−i ,x

+
i

∑
y2i

p(yn2 |xn, yn1 )

∏n
i=1 p(xi|y1i)

p(xi|y1i)

=
∑
x−i ,x

+
i

∑
y2i

p(yn2 |xn)
n∏

j=1,j 6=i

p(xj|y1j)

=
∑
x−i ,x

+
i

∑
y2i

n∏
i=1

p(y2i|xi)
n∏

j=1,j 6=i

p(xj|y1j)

=
∑
x−i ,x

+
i

n∏
j=1,j 6=i

p(y2j|xj)
n∏

j=1,j 6=i

p(xj|y1j)

=
∑
x−i ,x

+
i

p(y−2i, y
+
2i|x−i , x+

i )p(x−i , x
+
i |y−1i, y+

1i)

=
∑
x−i ,x

+
i

p(y−2i, y
+
2i|x−i , x+

i , y
−
1i, y

+
1i)p(x

−
i , x

+
i |y−1i, y+

1i)

= p(y−2i, y
+
2i|y−1i, y+

1i). (3.5)
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Here, we will present p(y−2i, y
+
2i|yn1 ) =

∏n
j=1,j 6=i p(y2i|y1i),

p(y−2i, y
+
2i|yn1 ) =

∑
xn,y2i

p(yn2 , x
n|yn1 )

=
∑
xn,y2i

p(xn|yn1 )p(yn2 |xn, yn1 )

=
∑
xn,y2i

p(xn|yn1 )p(yn2 |xn)

=
∑
xn,y2i

n∏
i=1

p(xi|y1i)p(y2i|xi)

=
∑
xn,y2i

n∏
i=1

p(xi|y1i)p(y2i|xi, y1i)

=
∑
xn,y2i

n∏
i=1

p(y2i, xi|y1i)

=
∑
y2i

n∏
i=1

p(y2i|y1i)

=
n∏

j=1,j 6=i

p(y2i|y1i)

= p(y−2i, y
+
2i|y−1i, y+

1i). (3.6)

Combine Equations (3.3), (3.4), (3.5) and (3.6) together, we will have,
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p(xi|y1i, ui) =

∑
y+1i,f2(yn1 )=w2

p(xi)p(y1i|xi)p(y−1i, y+
1i)p(y

−
2i, y

+
2i|y−1i, y+

1i)∑
y+1i,f2(yn1 )=w2

p(y1i)p(y
−
1i, y

+
1i)p(y

−
2i, y

+
2i|y−1i, y+

1i))

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y1i|xi)p(y−2i, y+
2i, y

−
1i, y

+
1i)∑

y+1i,f2(yn1 )=w2

p(y1i)p(y
−
2i, y

+
2i, y

−
1i, y

+
1i))

=
p(xi)p(y1i|xi)p(y−2i, y+

2i, y
−
1i)

p(y1i)p(y
−
2i, y

+
2i, y

−
1i))

=
p(y1i, xi)

p(y1i)

= p(xi|y1i).

⇒ p(ui, xi|y1i) = p(ui|y1i)p(xi|y1i),

thus we finish the proof of Lemma 2.

Lemma 3 Ui → (Y1i, Y2i)→ Xi is a Markov chain, for Ui = (W2, Y
−

1i , Y
−

2i , Y
+

2i ).

To prove Lemma 3, we need to show p(ui, xi|y1i, y2i) = p(ui|y1i, y2i)p(xi|y1i, y2i). Since
p(ui, xi|y1i, y2i) = p(ui|y1i, y2i)p(xi|y1i, y2i, ui), then we only need p(xi|y1i, y2i, ui) = p(xi|y1i, y2i).
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Proof :

p(xi|y1i, y2i, ui) = p(xi|y1i, y2i, w2, y
−
1i, y

−
2i, y

+
2i)

=
p(xi, y1i, w2, y

−
1i, y

n
2 )

p(y1i, w2, y
−
1i, y

n
2 )

=

∑
y+1i,f2(yn1 )=w2

p(xi, y1i, y
−
1i, y

+
1i, y

n
2 )∑

y+1i,f2(yn1 )=w2

p(y1i, y
−
1i, y

+
1i, y

n
2 )

=

∑
y+1i,f2(yn1 )=w2

p(xi, y
n
1 , y

n
2 )∑

y+1i,f2(yn1 )=w2

p(yn1 , y
n
2 )

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y
n
1 , y

n
2 |xi)∑

y+1i,f2(yn1 )=w2

p(yn1 )p(yn2 |yn1 )

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y
n
1 |xi)p(yn2 |xi, yn1 )∑

y+1i,f2(yn1 )=w2

p(yn1 )p(yn2 |yn1 )
. (3.7)
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In the following, p(yn2 |xi, yn1 ) = p(y2i|xi)
∏n

j=1,j 6=i p(y2j|y1j) is given,

p(yn2 |xi, yn1 ) =
∑
x−i ,x

+
i

p(yn2 |xi, x−i , x+
i , y

n
1 )p(x−i , x

+
i |xi, yn1 )

=
∑
x−i ,x

+
i

p(yn2 |xn, yn1 )
p(xn|yn1 )

p(xi|yn1 )

=
∑
x−i ,x

+
i

p(yn2 |xn, yn1 )

∏n
i=1 p(xi|y1i)

p(xi|y1i)

=
∑
x−i ,x

+
i

p(yn2 |xn)
n∏

j=1,j 6=i

p(xj|y1j)

=
∑
x−i ,x

+
i

n∏
i=1

p(y2i|xi)
n∏

j=1,j 6=i

p(xj|y1j)

= p(y2i|xi)
∑
x−i ,x

+
i

n∏
j=1,j 6=i

p(y2j|xj)
n∏

j=1,j 6=i

p(xj|y1j)

= p(y2i|xi)
∑
x−i ,x

+
i

n∏
j=1,j 6=i

p(y2j|xj, y1j)
n∏

j=1,j 6=i

p(xj|y1j)

= p(y2i|xi)
∑
x−i ,x

+
i

n∏
j=1,j 6=i

p(y2j, xj|y1j)

= p(y2i|xi)
n∏

j=1,j 6=i

p(y2j|y1j). (3.8)
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Also, we will show p(yn2 |yn1 ) =
∏n

i=1 p(y2i|y1i),

p(yn2 |yn1 ) =
∑
xn

p(yn2 , x
n|yn1 )

=
∑
xn

p(xn|yn1 )p(yn2 |xn, yn1 )

=
∑
xn

p(xn|yn1 )p(yn2 |xn)

=
∑
xn

n∏
i=1

p(xi|y1i)p(y2i|xi)

=
∑
xn

n∏
i=1

p(xi|y1i)p(y2i|xi, y1i)

=
∑
xn

n∏
i=1

p(y2i, xi|y1i).

=
n∏
i=1

p(y2i|y1i). (3.9)

Combine Equations (3.4), (3.7), (3.8) and (3.9) together , we will have
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p(xi|y1i, y2i, ui) =

∑
y+1i,f2(yn1 )=w2

p(xi)p(y
n
1 |xi)p(yn2 |xi, yn1 )∑

y+1i,f2(yn1 )=w2

p(yn1 )p(yn2 |yn1 )

=

∑
y+1i,f2(yn1 )=w2

p(xi)p(y1i|xi)p(y2i|xi)
∏n

j=1,j 6=i p(y1j)p(y2j|y1j)∑
y+1i,f2(yn1 )=w2

∏n
j=1 p(y1i)

∏n
i=1 p(y2i|y1i)

=

∑
y+1i,f2(yn1 )=w2

p(y1i, y2i, xi)
∏n

j=1,j 6=i p(y2j, y1j)∑
y+1i,f2(yn1 )=w2

∏n
j=1 p(y2j, y1j)

=
p(y1i, y2i, xi)

∏i−1
j=1 p(y2j, y1j)∏i

j=1 p(y2j, y1j)

=
p(y1i, y2i, xi)

p(y2i, y1i)

= p(xi|y1i, y2i),

⇒ p(ui, xi|y1i, y2i) = p(ui|y1i, y2i)p(xi|y1i, y2i),

thus finish the proof of Lemma 3.

From Lemma 1, we have, for Ui = (W2, Y
−

1i , Y
−

2i , Y
+

2i ),

I(Xn;Y n
1 |W2, Y

n
2 ) ≥

n∑
i=1

I(Xi;Y1i|Ui, Y2i)⇒ I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ 1

n

n∑
i=1

I(Xi;Y1i|Ui, Y2i).

Introducing an timesharing r.v. Q, we rewrite the inequality as

I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ 1

n

n∑
i=1

I(Xi;Y1i|Ui, Y2i, Q = i) = I(XQ;Y1Q|UQ, Y2Q, Q). (3.10)

Q is independent of XQ, Y1Q, Y2Q. Defining U (n) = (UQ, Q), X = XQ, Y1 = Y1Q, Y2 = Y2Q,
we have shown the existence of a r.v. U (n) such that

I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ I(X;Y1|U (n), Y2). (3.11)
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From the definition of U (n), it is clear that U (n) → Y1 → X and U (n) → (Y1, Y2) → X
again form Markov chains. Finally, we show the cardinality range of U (n) can be bounded
by ||X||. ||X|| is the cardinality of X.

We use the method discussed in [3] and [22] to show the cardinality bound of U (n). The
key point in [3] and [22] is the use of two theorems and three lemmas as stated below.

Theorem 11 Caratheodory’s Theorem: Let X be a subset of Rn, let C(X ) denote the
convex hull of X , and let ȳ be a point of C(X ); then there exists a set of s points X̄1, · · · , X̄s,
all belonging to X , with s ≤ n+ 1, such that ȳ is a point of the simplex whose vertices are
X̄1, · · · , X̄s.

Proof : See [9], page 35.

Theorem 12 (Fenchel-Eggleston): If in the conditions of Caratheodory’s theorem it is
also assumed that the set X is the union of at most n connected sets then s ≤ n.

Proof : See [9], page 35.

Lemma 4 (Ahlswede and Körner): Let P be any subset ofRn, and let fj(P̄ ), j = 1, 2, · · · , k
be real valued functions on P. Then to any probability measure µ (on the Borel subset of)
P there exists k + 1 elements P̄i of P and constants αi, i = 1, 2, · · · , k + 1,

∑k+1
i=1 αi = 1,

such that ∫
fj(P̄ )µ(dP̄ ) =

k+1∑
i=1

αifj(P̄i), j = 1, 2, · · · , k.

Proof : See [3], Lemma 3.

Lemma 5 (Masoud Salehi): Let P be an subset of Rn consisting of at most k connected
subsets. Let fj(P̄ ), j = 1, 2, · · · , k be real valued continuous functions on P. Then to
any probability measure µ (on the Brel subsets of) P there exists k elements P̄i of P and
constants αi ≥ 0, i = a, 2, ..., k,

∑k
i=1 αi = 1, such that

∫
fj(P̄ )µ(dP̄ ) =

k∑
i=1

αifj(P̄i), j = 1, 2, ..., k.
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Proof : See [22], Lemma 2.

Lemma 6 (Masoud Salehi): Let for i = 1, 2, ..., n, gi : Rm → R be a set of n positive
valued functions, let T ⊆ Rm be a closed set, and define

E = {X̄ ∈ Rn : X̄ ≥ 0̄,∃t̄ ∈ T ;xi ≤ gi(t̄), i = 1, 2, ..., n}.

Let E ′ = C(E) denotes the convex hull of E, and let

E ′′ = {X̄ ∈ Rn : X̄ ≥ 0̄,∀λ̄ ∈ Rn, λ̄ ≥ 0, λ̄tX̄ ≤ G(λ̄)},

where

G(λ̄) = supt̄∈T λ̄
t[g1(t̄), g2(t̄), ..., gn(t̄)]t.

Then E ′ = E ′′.

P roof : See [22], Lemma 3.

Next, we will show the cardinality bound of U (n). For more detailed analysis, please
refer to [22]. By lemma 6, we can write

V = {I(X;Y1|U (n), Y2) ∈ R : ∀λ ∈ R, λ ≥ 0, λtI(X;Y1|U (n), Y2) ≥ G(λ)}

where

G(λ) = inf λtI(X;Y1|U (n), Y2)t,

and infimum is over all r.v. U (n) where U (n) → Y1 → X and U (n) → (Y1, Y2) → X form
Markov chains. We will prove for all λ that G(λ) can be achieved by considering those
U (n)’s with cardinality less than or equal to ||X||.

Fix λ ≥ 0, and let P in Lemma 5 be the ||X||-dimensional probability simplex. Let
X = 1, 2, ..., ||X|| be the range of X and interpret

P̄ = (P (X = 1|U (n) = u), P (X = 2|U (n) = u), ..., P (X = ||X|||U (n) = u))

as a point in P . Then each probability on U (n) defines a measure µ(dP̄ ) on P . Let P ∗X(.)
achieve G(λ) and let µ∗(dP̄ ) achieve PX(.) (and thus G(λ)). Define
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fj(P̄ ) = PX(j), j = 1, 2, · · · , ||X|| − 1

f||X||(P̄ ) = λHP̄ (X|Y2)− λHP̄ (X|Y1Y2)

where HP̄ (X|Y2) and HP̄ (X|Y1Y2) are the entropies of X given Y2 and X given Y1, Y2

respectively when the distribution of X is P̄ . Noting that∫
fj(P̄ )µ∗(dP̄ ) = P ∗X(j), j = 1, 2, · · · , ||X|| − 1

and ∫
f||X||(P̄ )µ∗(dP̄ ) = λH∗(X|Y2, U

(n))− λH∗(X|Y1Y2, U
(n)) = λI∗(X;Y1|U (n), Y2).

Applying Lemma 5, it is seen that there exists ||X|| elements P̄i ∈ P , i = 1, 2, · · · , ||X||,
and constants αi ≥ 0, i = 1, 2, · · · , ||X||,

∑||X||
i=1 αi = 1, such that

P ∗X(j) =
∑||X||

i=1 αifj(P̄i), j = 1, 2, · · · , ||X|| − 1

G(λ) = λI∗(X;Y1|U (n), Y2) =
∑||X||

i=1 αif||X||(P̄i).

This means that in order to achieve G(λ), it is enough to put positive probability on at most
||X|| elements of P . This in turn shows it is enough to consinder U (n)’s with ||U (n)|| ≤ ||X||.

Thus, there exists a subsequence {U (nk)} ⊆ {U (n)} and a r.v. U∗, such that U (nk) → U∗,
as k →∞ and

limk→∞ I(X;Y1|U (nk), Y2) = I(X;Y1|U∗, Y2)

and

U∗ → Y1 → X and U∗ → (Y1, Y2)→ X form Markov chains.

From Equation (3.11), we have

I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ I(X;Y1|U (n), Y2).
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Thus,

I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ I(X;Y1|U (nk), Y2)

limn→∞ I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ limk→∞ I(X;Y1|U (nk), Y2) = I(X;Y1|U∗, Y2).

This implies that I(X;Y1|U∗, Y2) = 0 is a necessary condition for limn→∞ I(Xn;Y n
1 |W2, Y

n
2 )/n =

0 to be held. We then obtain a result from Proposition 1.

Proposition 2 A necessary condition for approaching the maximum rate C(∞) = supp(x) I(X;Y1, Y2)
is I(X;Y1|U∗, Y2) = 0.

We will show the condition for I(X;Y1|U∗, Y2) = 0 as follows.

I(X;Y1|U∗, Y2) =
∑

x,y1,y2,u∗

p(x, y1, y2, u
∗) log

p(y1, x|u∗, y2)

p(y1|u∗, y2)p(x|u∗, y2)

=
∑
x,y2,u∗

p(y2, u
∗)
∑
y1

p(x, y1|y2, u
∗) log

p(y1, x|u∗, y2)

p(y1|u∗, y2)p(x|u∗, y2)

≥
∑
x,y2,u∗

p(y2, u
∗)
∑
y1

p(x, y1|y2, u
∗) log

∑
y1

p(y1, x|u∗, y2)∑
y1

p(y1|u∗, y2)p(x|u∗, y2)

=
∑
x,y2,u∗

p(y2, u
∗)
∑
y1

p(x, y1|y2, u
∗) log

p(x|u∗, y2)

p(x|u∗, y2)

= 0,

where “=” holds, iff given x, y2, u
∗, for all y1, p(y1,x|u∗,y2)

p(y1|u∗,y2)p(x|u∗,y2)
is a constant.

Equivalently, this implies:

Case 1: given x, y2, u
∗ for any y1 6= y′1, p(y1|u∗, y2) 6= 0 and p(y′1|u∗, y2) 6= 0, we have
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p(y1,x|u∗,y2)
p(y1|u∗,y2)p(x|u∗,y2)

=
p(y′1,x|u∗,y2)

p(y′1|u∗,y2)p(x|u∗,y2)
. This equation can be further reduced as follows.

p(y1, x|u∗, y2)

p(y1|u∗, y2)
=

p(y′1, x|u∗, y2)

p(y′1|u∗, y2)

⇔ p(x|u∗, y1, y2) = p(x|u∗, y′1, y2)

⇔ p(x|y1, y2) = p(x|y′1, y2) (3.12)

⇔ p(x, y1, y2)

p(y1, y2)
=

p(x, y′1, y2)

p(y′1, y2)

⇔ p(y1, y2|x)p(x)

p(y2)p(y1|y2)
=

p(y′1, y2|x)p(x)

p(y2)p(y′1|y2)

⇔ p(y1, y2|x)

p(y1|y2)
=

p(y′1, y2|x)

p(y′1|y2)

⇔ p(y1|x)p(y2|x)

p(y1|y2)
=

p(y′1|x)p(y2|x)

p(y′1|y2)

⇔ p(y1|x)

p(y1|y2)
=

p(y′1|x)

p(y′1|y2)
.

Equation (3.12) comes from the fact that U∗ − (Y1, Y2)−X is Markov chain.

Case 2: given x, y2, u
∗, there exists one y1 such that p(y1|u∗, y2) = 1 and for other

y′1 6= y1, p(y′1|u∗, y2) = 0.

Let us consider the channels which satisfy: given any x, y2, for any y1 6= y′1, p(y1|x)
p(y1|y2)

6=
p(y′1|x)

p(y′1|y2)
. Following the discussions in Case 1 and Case 2 for Proposition 2, it is easy to

observe that, for such channels, in order to achieve the maximum rate, Case 2 has to be
satisfied. Thus, under the given channel condition, we have

I(X;Y1|U∗, Y2) = 0⇒ H(Y1|U∗, Y2) = 0. (3.13)

Next, we will show Slepian-Wolf coding is optimal to achieve the maximum rate for
this channel model, by verifying the following statement:

1
n
H(Y n

1 |W2, Y
n

2 )→ 0, as n→∞.
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Proof :

1

n
H(Y n

1 |W2, Y
n

2 ) =
1

n

n∑
i=1

H(Y1i|W2, Y
−

1i , Y
−

2i , Y
+

2i , Y2i)

=
1

n

n∑
i=1

H(Y1i|Ui, Y2i)

=
1

n

n∑
i=1

H(Y1i|Ui, Y2i, Q = i)

= H(Y1Q|UQ, Y2Q, Q)

= H(Y1|U (n), Y2),

where Ui = (W2, Y
−

1i , Y
−

2i , Y
+

2i ), Q is timesharing r.v. and U (n) = (UQ, Q), Y1 = Y1Q, Y2 =
Y2Q. All the definitions are the same as those in Equations (3.2), (3.10) and (3.11). Equiv-
alently, we need to prove

H(Y1|U (n), Y2)→ 0, as n→∞.

It is clear that for sequence {H(Y1|U (n), Y2)}, limn→∞ inf H(Y1|U (n), Y2) = 0. We assume
limn→∞ supH(Y1|U (n), Y2) = a > 0. Thus, there exists a subsequence {Unk} ⊆ {U (n)},
such that limk→∞H(Y1|U (nk), Y2) = a > 0. Furthermore, there exists another subsequence
{Unkl} ⊆ {U (nk)} and a r.v. U∗∗, such that liml→∞ U

(nkl ) = U∗∗. Then we have

lim
l→∞

H(Y1|U (nkl ), Y2) = H(Y1|U∗∗, Y2) = a > 0. (3.14)

However, in order to achieve the maximum rate, it is necessary to ensure:

limn→∞ I(Xn;Y n
1 |W2, Y

n
2 )/n ≥ limn→∞ I(X;Y1|U (n), Y2) = 0

⇒

liml→∞ I(X;Y1|U (nkl ), Y2) = I(X;Y1|U∗∗, Y2) = 0.

Same reason as for Equation (3.13), we have

I(X;Y1|U∗∗, Y2) = 0⇒ H(Y1|U∗∗, Y2) = 0. (3.15)
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Thus, we obtain a contradiction from Equation (3.14) and Equation (3.15), which im-
plies the assumption “limn→∞ supH(Y1|U (n), Y2) = a > 0” is invalid. Then we have
limn→∞ supH(Y1|U (n), Y2) = 0. This induces that limn→∞H(Y1|U (n), Y2) = 0.

From previous discussion, we derive the “single-letter criterion” into Theorem 13.

Theorem 13 (Single-letter Criterion) For the channels satisfying: “given any x, y2, for

any y1 6= y′1, p(y1|x)
p(y1|y2)

6= p(y′1|x)

p(y′1|y2)
”, Slepian-Wolf coding is essentially the optimal relay strategy

to achieve the maximum rate C(∞) = supp(x) I(X;Y1, Y2) and R0 = minp(x)H(Y1|Y2) is
the minimum relay rate.

3.3 Optimal Relay Rate for the BSC Relay Channel

In this section we will present the optimal relay rate for the BSC relay channel by applying
Theorem 13. Two cases will be discussed here: both the source-relay link and the source-
destination link are BSC channels with the same error probability; and the source-relay
link and the source-destination link are BSC channels with different error probabilities.

Case 1: suppose both the source-relay link and the source-destination link are BSC
channels with the same error probability p and the input distribution is P (x = 0) =
π, P (x = 1) = 1− π, 0 < p < 1

2
, 0 < π < 1. Other related probabilities for the BSC relay

channel (X , p(y1, y2|x), Y1 × Y2) are given in the following tables:

Table 3.1: Distributions of X and Y2 for the BSC relay channel (case 1)

X
Y2 0 1

P (X) π 1− π
P (Y2) p+ π − 2πp 1− p− π + 2πp

Case 2: suppose the source-relay link is BSC channel with error probability p1, and the
source-destination link is BSC channel with error probability p2 and p1 6= p2. The input
distribution is P (x = 0) = π, P (x = 1) = 1 − π, 0 < p1, p2 <

1
2
, 0 < π < 1. Other related
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Table 3.2: Joint distribution of Y1 and Y2, P (Y1, Y2) for the BSC relay channel (case 1)

Y1

Y2 0 1

0 π(1− p)2 + (1− π)p2 p(1− p)
1 p(1− p) πp2 + (1− π)(1− p)2

Table 3.3: Conditional probabilities of Y1 given Y2, P (Y1|Y2) for the BSC relay channel
(case 1)

Y1

Y2 0 1

0 π(1−p)2+(1−π)p2

p+π−2πp
p(1−p)

1−p−π(1−2p)

1 p(1−p)
p+π−2πp

πp2+(1−π)(1−p)2
1−p−π(1−2p)

Table 3.4: Values of P (Y1|X)
P (Y1|Y2)

for the BSC relay channel (case 1)

Y1

(X, Y2)
(0, 0) (0, 1) (1, 0) (1, 1)

0 (1−p)(p+π−2πp)
π(1−p)2+(1−π)p2

1−p−π(1−2p)
p

p(p+π−2πp)
π(1−p)2+(1−π)p2

1−p−π(1−2p)
1−p

1 p+π−2πp
1−p

p[1−p−π(1−2p)]
πp2+(1−π)(1−p)2

p+π−2πp
p

(1−p)[1−p−π(1−2p)]
πp2+(1−π)(1−p)2

probabilities for the BSC relay channel (X , p(y1, y2|x), Y1 × Y2) are given in the following
tables:
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Table 3.5: Distributions of X and Y2 for the BSC relay channel (case 2)

X
Y2 0 1

P (X) π 1− π
P (Y2) p2 + π − 2πp2 1− p2 − π + 2πp2

Table 3.6: Joint distribution of Y1 and Y2, P (Y1, Y2) for the BSC relay channel (case 2)

Y1

Y2 0 1

0 π(1− p1)(1− p2) + (1− π)p1p2 π(1− p1)p2 + (1− π)p1(1− p2)

1 πp1(1− p2) + (1− π)(1− p1)p2 πp1p2 + (1− π)(1− p1)(1− p2)

Table 3.7: Conditional probabilities of Y1 given Y2, P (Y1|Y2) for the BSC relay channel
(case 2)

Y1

Y2 0 1

0 π(1−p1)(1−p2)+(1−π)p1p2
p2+π−2πp2

π(1−p1)p2+(1−π)p1(1−p2)
1−p2−π+2πp2

1 πp1(1−p2)+(1−π)(1−p1)p2
p2+π−2πp2

πp1p2+(1−π)(1−p)1(1−p)2
1−p2−π+2πp2

Table 3.8: Values of P (Y1|X)
P (Y1|Y2)

for the BSC relay channel (case 2)

Y1

(X, Y2)
(0, 0) (0, 1) (1, 0) (1, 1)

0 (1−p1)(p2+π−2πp2)
π−π(p1+p2)+p1p2

(1−p1)(1−p2−π+2πp2)
p1−p1p2−π(p1−p2)

p1(p2+π−2πp2)
π−π(p1+p2)+p1p2

p1(1−p2−π+2πp2)
p1−p1p2−π(p1−p2)

1 p1(p2+π−2πp2)
π(p1−p2)+p2−p1p2

p1(1−p2−π+2πp2)
1−π−(1−π)(p1+p2)+p1p2

(1−p1)(p2+π−2πp2)
π(p1−p2)+p2−p1p2

(1−p1)(1−p2−π+2πp2)
1−π−(1−π)(p1+p2)+p1p2
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From the results in Table 3.4 and Table 3.8, we observe: for the BSC relay channel (X ,

p(y1, y2|x), Y1 × Y2), given any x, y2 and for any y1 6= y
′
1, p(y1|x)

p(y1|y2)
6= p(y

′
1|x)

p(y
′
1|y2)

holds. Apply

Theorem 13, we obtain the following proposition for the BSC relay channel.

Proposition 3 For the BSC relay channel, Slepian-Wolf coding is essentially the optimal
relay strategy to achieve the maximum rate C(∞) = maxp(x) I(X;Y1, Y2) and the minimum
relay rate R0 is minp(x) H(Y1|Y2).

Furthermore, we calculate the value of the maximum rate by referring to the values in
Table 3.7:

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1, Y2)−H(Y1|X)−H(Y2|X)

= H(Y1, Y2)−H(p1)−H(p2)

≤ max
p(x)

H(Y1, Y2)−H(p1)−H(p2)

We define

H(p1, p2, · · · , pn) = −p1 log p1 − p2 log p2 − · · · − pn log pn,
∑n

i=1 pi = 1.

From Table 3.6, we have,

H(Y1, Y2) = H(π(1− p1)(1− p2) + (1− π)p1p2, π(1− p1)p2 + (1− π)p1(1− p2),

πp1(1− p2) + (1− π)(1− p1)p2, πp1p2 + (1− π)(1− p1)(1− p2)).

H(Y1, Y2) can be regarded as a function of π, 0 < π < 1. Let f(π) = H(Y1, Y2), then
take the derivative of π, we have:
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When 0 < π ≤ 1
2
, f ′(π) ≥ 0 and when 1

2
≤ π < 1, f ′(π) ≤ 0. This implies

maxp(x) H(Y1, Y2) = maxπ f(π) is achieved by π = 1
2
. Thus,

I(X;Y1, Y2) ≤ H(
1

2
(1− p1 − p2) + p1p2, p1 − p1p2 +

1

2
(p2 − p1),

1

2
(p1 − p2) + p2 − p1p2, p1p2 +

1

2
(1− p1 − p2))−H(p1)−H(p2),

where equality is held when the input distribution is uniform. Hence the maximum rate
supp(x) I(X;Y1, Y2) of a the BSC relay channel is

C(∞) = sup
p(x)

I(X;Y1, Y2)

= H(
1

2
(1− p1 − p2) + p1p2, p1 − p1p2 +

1

2
(p2 − p1),

1

2
(p1 − p2) + p2 − p1p2, p1p2 +

1

2
(1− p1 − p2))−H(p1)−H(p2),

and,
C(∞) = H(1

2
(1− p)2 + 1

2
p2, 1

2
p2 + 1

2
(1− p)2, p(1− p), p(1− p))− 2H(p), if p1 = p2 = p.

3.4 Optimal Relay Rate for the BEC Relay Channel

In this section we will provide the optimal relay rate for the BEC relay channel by applying
Theorem 13. Two cases will be discussed here: both the source-relay link and the source-
destination link are BEC channels with the same erasure probability; and the source-relay
link and the source-destination link are BEC channels with different erasure probabilities.

Case 1: suppose both the source-relay link and the source-destination link are BEC
channels with the same erasure probability p, and e is the erasure symbol. The input
distribution is P (x = 0) = π, P (x = 1) = 1 − π, 0 < p < 1

2
, 0 < π < 1. Other related

probabilities for the BEC relay channel (X , p(y1, y2|x), Y1 × Y2) are given in the following
tables:
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Table 3.9: Distributions of X and Y2 for the BEC relay channel (case 1)

X
Y2 0 e 1

P (X) π − 1− π
P (Y2) π(1− p) p (1− π)(1− p)

Table 3.10: Joint distribution of Y1 and Y2, P (Y1, Y2) for the BEC relay channel (case 1)

Y1

Y2 0 e 1

0 π(1− p)2 πp(1− p) 0

e πp(1− p) p2 (1− π)p(1− p)
1 0 (1− π)p(1− p) (1− π)(1− p)2

Table 3.11: Conditional probabilities of Y1 given Y2, P (Y1|Y2) for the BEC relay channel
(case 1)

Y1

Y2 0 e 1

0 1− p π(1− p) 0

e p p p

1 0 (1− π)(1− p) 1− p

Case 2: suppose the source-relay link is BEC channel with erasure probability p1 and
the source-destination link is BEC channel with erasure probability p2 and p1 6= p2. e
is the erasure symbol and the input distribution is P (x = 0) = π, P (x = 1) = 1 − π,
0 < p1, p2 <

1
2
, 0 < π < 1. Other related probabilities for the BEC relay channel (X ,

p(y1, y2|x), Y1 × Y2) are given in the following tables:

From column 2 and column 7 in Table 3.12 and Table 3.16, we observe: given y2 =

0, x = 0 or y2 = 1, x = 1, both y1 = 0 and y1 = 1 satisfy p(y1|x)
p(y1|y2)

=
p(y′1|x)

p(y1|y2)
. It seems that the

condition in Theorem 13 is not held. However, for BEC channel, when y2 = 0 or y2 = 1,
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Table 3.12: Values of P (Y1|X)
P (Y1|Y2)

for the BEC relay channel (case 1)

Y1

(X, Y2)
(0, 0) (0, e) (0, 1) (1, 0) (1, e) (1, 1)

0 1 1
π

− − 0 −

e 1 1 − − 1 1

1 − 0 − − 1
1−π 1

Table 3.13: Distributions of X and Y2 for the BEC relay channel (case 2)

X
Y2 0 e 1

P (X) π − 1− π
P (Y2) π(1− p2) p2 (1− π)(1− p2)

Table 3.14: Joint distribution of Y1 and Y2, P (Y1, Y2) for the BEC relay channel (case 2)

Y1

Y2 0 e 1

0 π(1− p1)(1− p2) π(1− p1)p2 0

e πp1(1− p2) p1p2 (1− π)p1(1− p2)

1 0 (1− π)(1− p1)p2 (1− π)(1− p1)(1− p2)

we know exactly what x is. In this case y1 has no contribution to the entire communication
system. Thus, we only consider the case that y2 cannot decode the message, i.e. y2 = e.
Then the relay can aid the transmission. From the results in column 3 and column 6 in

Table 3.12, given y2 = e and for any y1 6= y
′
1, p(y1|x)

p(y1|y2)
6= p(y

′
1|x)

p(y
′
1|y2)

holds. Applying Theorem

13, we have the following proposition:

Proposition 4 For the BEC relay channel, Slepian-Wolf coding is essentially the optimal
relay strategy to achieve the maximum rate C(∞) = maxp(x) I(X;Y1, Y2) and the minimum
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Table 3.15: Conditional probabilities of Y1 given Y2, P (Y1|Y2) for the BEC relay channel
(case 2)

Y1

Y2 0 e 1

0 1− p1 π(1− p1) 0

e p1 p1 p1

1 0 (1− π)(1− p1) 1− p1

Table 3.16: Values of P (Y1|X)
P (Y1|Y2)

for the BEC relay channel (case 2)

Y1

(X, Y2)
(0, 0) (0, e) (0, 1) (1, 0) (1, e) (1, 1)

0 1 1
π

− − 0 −

e 1 1 − − 1 1

1 − 0 − − 1
1−π 1

relay rate R0 is minp(x) H(Y1|Y2).

Furthermore, we calculate the value of the maximum rate by referring to the values in
Table 3.15:

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1, Y2)−H(Y1|X)−H(Y2|X)

= H(Y1, Y2)−H(p1)−H(p2).
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From Table 3.14, we have,

H(Y1, Y2)

= H(π(1− p1)(1− p2), π(1− p1)p2, πp1(1− p2), p1p2,

(1− π)p1(1− p2), (1− π)(1− p1)p2, (1− π)(1− p1)(1− p2))

= (1− p1p2)H(π) +H(p1) +H(p2),

thus,

I(X;Y1, Y2) ≤ max
p(x)

H(Y1, Y2)− (H(p1) +H(p2)) (3.16)

= max
π

(1− p1p2)H(π) +H(p1) +H(p2)− (H(p1) +H(p2))

= max
π

(1− p1p2)H(π)

= 1− p1p2,

where the equality at (3.16) is held when the input of channel is uniform, i.e., π = 1
2
.

Hence, the maximum rate supp(x) I(X;Y1, Y2) of a the BEC relay channel is

C(∞) = supp(x) I(X;Y1, Y2) = (1− p1p2)
and,

C(∞) = (1− p2) if p1 = p2 = p.

Remark: All the proofs and results are obtained basing on this assumption that
X1, X2, ..., Xn are i.i.d.. This assumption can be replaced by reducing the original open
problem into a smaller problem that the coding scheme at the source is random coding
according to any distribution p(x), and we consider the best relay coding strategy to achieve
the maximum rate supp(x) I(X;Y1, Y2).
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, we investigated Cover’s open problem on the capacity of the relay channel.
Our goal was to find the smallest relay rate such that the maximum message rate can be
achieved. Under the assumption: X1, X2, ..., Xn are i.i.d., our work gave partial solutions
to our original problem in two special cases: the BSC relay channel and the BEC relay
channel.

Our main results are:

1. A “single-letter criterion” is given as shown below.

Single-letter Criterion:

For the channels satisfying: “given any x, y2, for any y1 6= y′1, p(y1|x)
p(y1|y2)

6= p(y′1|x)

p(y′1|y2)
”,

Slepian-Wolf coding is essentially the optimal relay strategy to achieve the maximum
rate C(∞) = supp(x) I(X;Y1, Y2) and R0 = minp(x) H(Y1|Y2) is the minimum relay
rate.

2. For both the BSC relay channel and the BEC relay channel, we proved that Slepian-
Wolf coding is essentially the optimal relay strategy to achieve the maximum rate
and R0 = H(Y1|Y2) is the minimum relay rate to achieve the maximum rate.

3. The maximum rates supp(x) I(X;Y1, Y2) for the BSC relay channel and the BEC relay
channel were given respectively.
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BSC relay channel:

C(∞) = sup
p(x)

I(X;Y1, Y2)

= H(
1

2
(1− p1 − p2) + p1p2, p1 − p1p2 +

1

2
(p2 − p1),

1

2
(p1 − p2) + p2 − p1p2, p1p2 +

1

2
(1− p1 − p2))−H(p1)−H(p2),

and,

C(∞) = H(
1

2
(1− p)2 +

1

2
p2,

1

2
p2 +

1

2
(1− p)2, p(1− p), p(1− p))− 2H(p), if p1 = p2 = p.

BEC relay channel:

C(∞) = (1− p1p2), and, C(∞) = (1− p2), if p1 = p2 = p.

4.2 Future Work

There are much to be done in this area of research. The followings are a few possible
extensions.

1. If lossy compression is applied at the relay, we can potentially find a relay rate smaller
than H(Y1|Y2). For future work, we can try to figure out the specific condition under
which a smaller relay rate can be obtained, and what the exact value of the smaller
relay rate is.

2. We conjecture that if the “sing-letter criterion” is not satisfied, then Slepian-Wolf
coding is not optimal. For future work, we can try to verify this conjecture.
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