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Abstract

Variable Selection has always been a very important problem in statistics. We often

meet situations where a huge data set is given and we want to find out the relationship

between the response and the corresponding variables. With a huge number of variables,

we often end up with a big model even if we delete those that are insignificant. There are

two reasons why we are unsatisfied with a final model with too many variables[4]. The

first reason is the prediction accuracy. Though the prediction bias might be small under

a big model, the variance is usually very high. The second reason is interpretation. With

a large number of variables in the model, it’s hard to determine a clear relationship and

explain the effects of variables we are interested in.

A lot of variable selection methods have been proposed, such as Forward- and Backward-

Stepwise Selection, Forward-Stagewise Regression, shrinkage methods like Ridge Regres-

sion, Lasso and Least Angle Regression. However, one disadvantage of variable selection

is that different sizes of model require different tuning parameters in the analysis, which

is hard to choose for non-statisticians. Xin and Zhu [8] advocate variable ranking instead

of variable selection. Once variables are ranked properly, we can make the selection by

adopting a threshold rule. One possible variable ranking can be constructed using Ran-

dom Forest, which gives two different variable importance measures. We can use either

one to get a ranking and usually they lead to similar results.

In this thesis, we try to rank the variables using Least Angle Regression (LARS). Some

shrinkage methods like Lasso and LARS can shrink the coefficients to zero. The advantage

of this kind of methods is that they can give a solution path which describes the order

that variables enter the model. This provides an intuitive way to rank variables based on

the path. However, Lasso can sometimes be difficult to apply to variable ranking directly.

This is because that in a Lasso solution path, variables might enter the model and then

get dropped. This dropping issue makes it hard to rank based on the order of entrance.

However, LARS, which is a modified version of Lasso, doesn’t have this problem. We’ll

make use of this property and rank variables using LARS solution path.
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Chapter 1

Introduction

Ranking and selection have a lot in common. They both intend to end up with a smaller

model which sacrifices a little bias to get better prediction variance and interpretation.

Ranking can be regarded as an advanced form of selection. Once variables are ranked

properly, selection can be performed by thresholding[8]. On the other hand, selection

provides the basis for ranking. We often get insights from model selection on assigning

a proper rank to each of the variables. Various model selection algorithms have been

proposed in history.

1.1 Forward- and Backward-Stepwise Selection

In Forward-Stepwise Selection, we start from the null model. All variables that are not

currently in the model are added one at a time. The one that improves the objective

function (e.g. AIC or BIC) most is kept and added into the model. In Backward-Stepwise

Selection, we start from the full model. All variables that are currently in the model are

deleted one at a time. The one that improves the objective function (e.g. AIC or BIC)

most is deleted from the model.

The advantages of Forward- and Backward-Stepwise Selection are: First, the computa-

tion cost is relatively low compared to best subset selection. When the number of variables
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is large, best subset selection is not applicable. However, we can always compute Step-

wise Selection. Second, Stepwise Selection is a more constrained method compared to best

subset selection[4]. Some prediction accuracy is sacrificed for lower variance.

The disadvantages of Forward- and Backward-Stepwise Selection are: First, they are

greedy algorithms and the resulted sequence is nested. They are actually selecting sub-

optimal subsets. Second, Backward selection can only be used when N > p.

1.2 Stochastic Stepwise Selection

Xin and Zhu [8] proposed a stochastic version of the stepwise selection: the Stochastic

Stepwise(ST2) selection. Instead of adding or deleting one variable at a time, the ST2

algorithm adds or deletes a group of variables at a time. The size of the group is randomly

decided. In order to avoid the huge number of possible groups when group size is greater

than one, ST2 algorithm randomly assesses some groups and adds or deletes the optimal

one. The algorithm is described as follows:

Repeat

1. (Forward Step) Start with variables that are not in the current model.

(i) Determine the size of group that are to be added into the model, denoted by df .

(ii) Determine the number of groups that are to be assessed, denoted by kf .

(iii) Randomly select kf groups of variables of size df .

(iv) Assess each group by adding it into the current model. The group that improves

the objective function (e.g. AIC or BIC) most is added into the model.

2. (Backward Step) Start with variables that are in the current model.

(i) Determine the size of group that are to be deleted from the model, denoted by db.

(ii) Determine the number of groups that are to be assessed, denoted by kb.

(iii) Randomly select kb groups of variables of size db.
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(iv) Assess each group by deleting it from the current model. The group that improves

the objective function (e.g. AIC or BIC) most is deleted from the model.

Until neither forward nor backward step can provide any additional improve-

ment.

The stochastic stepwise algorithm can be used to construct a variable selection ensemble

(VSE). Variable ranking can be obtained based on VSE.

1.3 Forward-Stagewise Regression

Forward-Stagewise Regression is a cautious version of Forward-Selection. The algorithm

assigns small updates to the coefficient of one variable at a time which results in much more

steps to get the full least square estimate compared to Stepwise Selection which only takes

p steps. The algorithm can be described as follows (assume predictors are standardized):

(i) Start with r = y, β1, β2, . . . βp = 0. Here r denotes the residual, β1, β2, ...βp are the

coefficients.

(ii) Find the predictor xj most correlated with r.

(iii) Update βj ← βj + δj.

(iv) Set r ← r − δj · xj.

Forward-Stagewise Regression seems to be inefficient. But the slow fitting feature is usually

quite competitive in high-dimensional problems[4]. Forward-Stagewise Regression is closely

related to the Least Angle Regression (LARS). A modified version of LARS will lead to

Forward-Stagewise Regression and allows it to be implemented using relatively larger steps.
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1.4 Shrinkage methods Ridge Regression and Lasso

Ridge Regression and Lasso have similar form. They both impose a penalty on the size to

the regression formula. They can be written in the following expression:

Minimize
N∑
i=1

(yi − β0 −
p∑
i=1

xijβj)
2 (1.1)

Subject to (penalty).

In Ridge Regression, the penalty is
∑p

j=1 β
2
j < t. In Lasso, the penalty is

∑p
j=1 |βj| < t.

Different penalty forms result in completely different properties of Ridge Regression and

Lasso.

In Ridge Regression, the L2 penalty shrinks the coefficients proportionally. So no

variable coefficient will be shrunk to zero. The penalty form of Ridge Regression can be

equivalently written in the following way

Minimize (y −Xβ)T (y −Xβ) + λβTβ (1.2)

The λ here is the penalty parameter and can be determined by t. In this way we can

easily get the solution: β̂ = (XTX + λI)−1XTy. The advantage of Ridge is that adding

λI to XTX makes the regression problem non-singular, even if XTX is not of full rank.

However, as no coefficient is shrunk to zero, we cannot get a smaller model in this way.

In Lasso, there’s no closed form of expression for the solution. However, Tibshirani [6]

pointed out that if the design matrix X is orthonormal, then the solution can be written

as

β̂j = sign(β̂0
j )(|β̂0

j | − r)+ (1.3)

where β̂0
j is the full least square estimate and r is determined by the condition

∑p
j=1 |βj| < t.

When t is sufficiently small, r is large so that some of the coefficients are shrunk to zero.

In this way we get a smaller model. Lasso also gives a solution path when the penalty t

varies from 0 to t̂ =
∑p

j=1 β̂
0
j . This is the basis how we rank the variables based on Lasso.

Tibshirani [6] also pointed out that the different properties of Lasso and Ridge can be

4



explained from a geometric perspective. The residual sum of square (y −Xβ)T (y −Xβ)

equals (β− β̂0)TXTX(β− β̂0) plus a constant. The solution of Lasso and Ridge Regression

is actually the first place where the elliptical contours touch the bound of the penalty area.

The L2 penalty of Ridge Regression forms a penalty area which is a sphere while the L1

penalty of Lasso forms a penalty area which is a square. When the touch is occurred at a

corn, then some coefficients will be zero. However, in the penalty area of Ridge Regression,

there’s no corner so zero coefficients rarely happen. This geometric view is shown below

in a two-dimensional case in Figure 1.1 and 1.2.

Figure 1.1: Ridge Regression
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Figure 1.2: Lasso

1.5 Least Angle Regression

Least Angle Regression (LARS) is proposed by Efron et al. in 2004. LARS is an algorithm

between Stagewise Regression and Stepwise-Selection. Like Forward-Stagewise Regression,

none of the other variables are adjusted when a variable is added. However, LARS has

relatively larger steps in updating the coefficients compared to Stagewise Regression. The

LARS algorithm is described as follows (assume the predictors have been standardized):

(i) Start with the residual r = y − ȳ, β1, β2, . . . , βp = 0.

(ii) Find the variable xj most correlated with the residual r.

(iii) Increase the coefficient of variable xj, from 0 towards its least square coefficient until

some other variable xk has as much correlation as xj with the current residual.
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(iv) Move βj and βk in the direction which has the same angle with xj and xk, until some

other competitor xl has as much correlation with the current residual.

(v) Move the coefficients in the direction which has the same angle with xj, xk and xl,

until some other competitor has as much correlation with the current residual.

(vi) Continue until all variables are added.

Figure 1.3: Least Angle Regression

Figure 1.3 [3] is an example of LARS when there exist two predictors. Suppose ȳ2 is

the projection of the response y on the space spanned by x1 and x2. In this example

the angle between ȳ2 and x1 is smaller than the angle between ȳ2 and x2, which means

that the correlation between ȳ2 and x1 is larger than that between ȳ2 and x2. Then

LARS algorithm proceeds as follows. First we start with µ̂0 = 0. Next we update µ̂ in

the direction of x1. The updated amount is chosen such that the residual has the same

correlation with x1 and x2, which is µ̂1 in Figure 1.3. At last we update µ̂ in the direction

of the equiangular vector u2 until µ̂ = ȳ2. In contrast, for ordinary linear regression, the

updated value for the first step is ȳ1, which is the projection of ȳ2 on x1.
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LARS is a very important algorithm because some modifications will lead to effective

implementation of Lasso and Forward-Stagewise Regression. We’ll discuss this more in

Chapter 3.

1.6 Random Forest

Different from the methods mentioned above, Random Forest[2] is a highly non-linear

method. The idea is to build many correlated trees and take the average. The algorithm

is:

(i) Take a bootstrap sample from the training data.

(ii) Grow a tree on the bootstrapped data. However, in splitting each node, only a ran-

domly selected subset of variables is considered instead of the full variable set.

(iii) Repeat (i) and (ii) many times.

A very important aspect of random forest is that it gives two different variable im-

portance measures which are very useful for variable ranking. One importance measure

is defined as the sum of the improvement in the split criterion of the variable over all

trees. The other one is constructed based on out-of-bag (OOB) samples. It’s calculated

as the average decrease in accuracy over all trees by randomly permuting the value of a

certain variable of the OOB samples. We can rank variables based on these two importance

measures which usually lead to similar results.

1.7 Outline

We proceed as follows. In Chapter 2 we’ll first point out that Zhu et al.[10] doesn’t consider

the variable dropping issue when they use Lasso in variable ranking. Some empirical study

is provided to show that it’s very hard to explain variable dropping from the perspective

of data structure. So we advocate ranking based on LARS instead of Lasso. In Chapter 3,
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we give mathematical details of the subtle difference between Lasso and LARS and an

explanation of variable dropping from the perspective of LARS. In Chapter 4 we test the

performance of LARS ranking by several simulation examples. A real-data application for

the Info-Rehab program is also given. In Chapter 5 we make a brief summary and discuss

some potential methods to overcome the limitation of LARS ranking.
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Chapter 2

Variable Dropping in Lasso

First we start with an application example. In Zhu et al.[10], machine learning algorithms

are applied to clinical practice. The objective is to identify the most important variables

for predicting whether to receive rehabilitation or not. Instead of ranking the variables

using just one Lasso solution path, they use the ensemble approach of Lasso. 100 random

samples, S1, S2, ..., S100, of size n = 10, 000 are taken from the original data set. Denote

r(b, j) as the rank of variable j in the bth sample Sb. The final rank of variable j is calculated

as

r̄(j) =
1

100

100∑
b=1

r(b, j) (2.1)

The standard deviation σ(j) of the rank of variable j can also be calculated and ranking

can be obtained based on r̄(j) and σ(j).

By adopting the ensemble approach of Lasso, they get a more stable variable ranking.

However, they ignore a very important problem of Lasso. The sequence of models generated

in the Lasso solution path is not necessarily nested. In some situations, a variable might

first enter the model and then get dropped. With the existence of such dropping issue, it’s

hard to apply Lasso directly to rank the variables. In this chapter, we’ll first discuss this

dropping issue and then advocate ranking based on LARS instead of Lasso.
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2.1 A Dropping Example

First we look at an example where variable dropping happens in Lasso solution path. The

diabetes example is first used by Efron et al.[3]. In the diabetes data set, the response is

a measure of disease progression one year after baseline, and the covariates are age, sex,

body mass index, average blood pressure and six blood serum measurements named “tc”,

“ldl”, “hdl”, “tch”, “ltg”, “glu”. The entire Lasso solution path is given below.

LARS Step 1 : Variable 3 added

LARS Step 2 : Variable 9 added

LARS Step 3 : Variable 4 added

LARS Step 4 : Variable 7 added

LARS Step 5 : Variable 2 added

LARS Step 6 : Variable 10 added

LARS Step 7 : Variable 5 added

LARS Step 8 : Variable 8 added

LARS Step 9 : Variable 6 added

LARS Step 10 : Variable 1 added

Lasso Step 11 : Variable 7 dropped

LARS Step 12 : Variable 7 added

We see that variable dropping does exist in Lasso. So we cannot directly apply Lasso to

variable ranking.

2.2 Empirical Study of Dropping Mechanism

Because Lasso provides a solution path which is an intuitive way to rank variables, we

still hope that we can make use of this solution path. Then the most important thing is

to solve the dropping issue. Once the data set is given, Lasso solution path is completely

determined. So if we can figure out a condition on the data set under which variables will

be dropped, we might be able to come up with certain methods to solve the dropping issue.
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2.2.1 A Possible Explanation: Multicollinearity

When running simulations, we do find that dropping is usually related to multicollinearity.

As shown in (1.3), in the special case where X is orthogonal, the solution can be written

as β̂j = sign(β̂0
j )(|β̂0

j | − r)+. No dropping will occur under such assumption. This proves

that dropping might be related to multicollinearity.

We still use the diabetes data as an example. From the solution path we can see that

variable 7 (“hdl”) is dropped at step 11 and at the same time variable 1 is added. Before

this dropping step, every variable except variable 1 (“age”) is in the model. If the penalty

parameter increases by a small amount, we might not be able to add an “entire” variable to

our model. However, if under the new penalty condition, the candidate variable increases

the performance of the model more than an existing one, the candidate variable might be

added into the model and one existing variable might be dropped. In the diabetes example,

before the dropping step, variable 2 to 10 are in the model. So when variable 1 is added,

all the other variables might be dropped.

We think that dropping is possibly related to the correlation structure of the data set

in two aspects. We use i to denote the variable index. So variable indices at risk are

i = 2, 3, ..., 10. We use C to denote the set of indices of variable that are current in the

model and XC to denote the corresponding part of the data matrix. The first possible

relevant aspect is the multiple correlation between variable i and all the other variables

currently in the model. We denote this value by multi cori,that is,

multi cori = cor(Xi, XC−{i}) (2.2)

where variable i is at risk of being dropped. If this value (consider absolute value) is large,

then we can say that the effect of variable i can be explained by the other variables in the

model. So variable i is more likely to be dropped.

The second possible relevant aspect is the correlation between variable i and the resid-

uals of the regression between the response y and all the variables currently in the model

12



Table 2.1: Dropping in Lasso

Variable Index multi cori res cori

2 0.2098 -0.1663
3 0.3374 0.2867
4 0.2891 0.1981
5 0.9831 -0.0118
6 0.9744 0.0108
7 0.9349 0.0058
8 0.8875 0.0177
9 0.9004 0.0650
10 0.3145 0.0403

except variable i. We denote this value by res cori, that is,

res cori = cor(Xi, residual(y ∼ XC−{i})) (2.3)

If this value (consider absolute value) is small, it means that there’s little information we

can get from adding the variable i. Then variable i might be dropped.

We calculate these two values for variables i = 2, 3, ..., 10 which are at risk and hope to

find out the reason why variable 7 is the one that is actually dropped. The result is shown

in table 2.1.

From the perspective of multi cori, variable 5,6,7 have the highest multiple correla-

tion with the other variables. From the perspective of res cori, variable 7 has the least

correlation with the regression residuals. This might explain why variable 7 is dropped.

We think that there might be some tradeoff between multi cori, res cori and some other

potential factors which determine which variable will be dropped. In general, variables with

high multi cori and low res cori are likely to be dropped.

One possible additional factor which might have an impact on dropping is the coefficien-

t. Since the penalty is on the L1 norm of the coefficients, variables with smaller coefficients

(absolute value) might be added and those with larger coefficient might be dropped. In

the diabetes example, from the Lasso result we can see that the coefficient of variable 7 is

13



-134.5994 before being dropped, while the coefficient of variable 1 is only -5.718948 after

being added. This might also be a reason why variable 1 is added and variable 7 is dropped.

However, these effects need to be considered as a whole. We cannot get a reasonable ex-

planation by considering just one of them. For example, for the coefficient effect mentioned

above, the coefficient (absolute value) of variable 7 is actually not the largest among the

current variables. But combined with other effects like the residual correlation, we might

explain why variable 7 is dropped.

2.2.2 Sensitivity to the design matrix and response

In the previous section we try to explain dropping from the data structure and hope to find

a sufficient condition on the data set under which variable dropping will happen. However,

in our simulation study, we also find that dropping is very sensitive to the data structure.

Even a very small perturbation might change the dropping situation in the path. Two

examples are given below to illustrate this.

First we look at a very famous example which is first used by Tibshirani[6]. The model

is

y = βTX + σε (2.4)

ε is standard normal. X follows a multi-normal distribution and the correlation between

xi and xj is ρ|i−j|. In the original example by Tibshirani, the parameters are set as:

β = (3, 1.5, 0, 0, 2, 0, 0, 0), ρ = 0.5 and σ = 3. So there are three true variables in the model

and the other five are noise.

We make some minor changes to the original parameters. We set β = (3, 1.5, 0.01, 0.01, 2,

0.01, 0.01, 0.01) which makes the noise to be very weak signals. The correlation is changed

to cor(xi, xj) = 0.9|i−j|.

First we generate the design matrix X and response variable y according to the model.

Then we get the Lasso solution path. Next we add i.i.d normal perturbation N(0, 10−4) to

the response y and recalculate the Lasso solution path to see if there’s any change. The

details of the simulation can be found in Appendix A.1. In order to show the structure

change more clearly, we also calculate the correlation between response variable y and the

14



Table 2.2: Correlation between y,y1 andX, where y1 is the response after the perturbation
is added.

Correlation X[, 1] X[, 2] X[, 3] X[, 4] X[, 5] X[, 6] X[, 7] X[, 8]

y 0.8932 0.8786 0.8415 0.8087 0.7887 0.7007 0.5778 0.5161
y1 0.8931 0.8785 0.8414 0.8086 0.7887 0.7006 0.5778 0.5160

design matrix X for the original data and after the perturbation is added. The result is

shown in Table 2.2.

As we can see from the results (A.1), the Lasso solution path changes when a small

normal perturbation N(0, 10−4) is applied to the response. Variable 6 is dropped in the

original Lasso path while there’s no dropping after the perturbation is applied. We should

mention that y andX are fixed. However, a small perturbation added to the response could

completely change the solution path. From Table 2.2 we see that the correlation structure

between the response and design matrix hardly change. This illustrates that dropping is

very sensitive to the change in response variable. Another point worth mentioning is that

more simulations show that such sensitivity exists only in those weak signals.

Similarly, we use simulation to investigate the sensitivity to the design matrix. We use

the design matrix X and response y generated above. Then i.i.d normal noise N(0, 10−4)

is added to the design matrix and Lasso solution path is recalculated. Details about the

simulation can be found in Appendix A.2. We also compare the correlation between y and

the original design matrix X and the correlation between y and the new design matrix

X1. The result is shown in Table 2.3 and Table 2.4. Correlation matrices of X and X1

are also calculated and shown in Table 2.5 and Table 2.6.

Similar result is obtained. When a small change is applied to the design matrix, drop-

ping situation changes in the solution path. From Table 2.3 2.4 2.5 2.6 we can see that the

correlation structure hardly changes. This illustrates that dropping is very sensitive to the

change in design matrix. The change in variable dropping also only applies to the weak

signals.

From the above simulation results we see that Lasso solution path is very sensitive to the
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Table 2.3: Correlation between y and X

Correlation X[, 1] X[, 2] X[, 3] X[, 4] X[, 5] X[, 6] X[, 7] X[, 8]

y 0.8932 0.8786 0.8415 0.8087 0.7887 0.7007 0.5778 0.5161

Table 2.4: Correlation between y and X1, where X1 is the design matrix after the pertur-
bation is added.

Correlation X1[, 1] X1[, 2] X1[, 3] X1[, 4] X1[, 5] X1[, 6] X1[, 7] X1[, 8]

y 0.8931 0.8787 0.8416 0.8085 0.7894 0.7000 0.5776 0.5153

Table 2.5: Correlation matrix of X
1.000 0.919 0.837 0.754 0.694 0.601 0.455 0.434
0.919 1.000 0.903 0.827 0.732 0.639 0.523 0.469
0.837 0.903 1.000 0.904 0.822 0.751 0.669 0.602
0.754 0.827 0.904 1.000 0.933 0.850 0.785 0.719
0.694 0.732 0.822 0.933 1.000 0.923 0.832 0.762
0.601 0.639 0.751 0.850 0.923 1.000 0.913 0.848
0.455 0.523 0.669 0.785 0.832 0.913 1.000 0.918
0.434 0.469 0.602 0.719 0.762 0.848 0.918 1.000

Table 2.6: Correlation matrix of X1

1.000 0.919 0.837 0.754 0.695 0.601 0.454 0.432
0.919 1.000 0.904 0.827 0.734 0.639 0.524 0.468
0.837 0.904 1.000 0.904 0.822 0.749 0.669 0.600
0.754 0.827 0.904 1.000 0.934 0.849 0.785 0.719
0.695 0.734 0.822 0.934 1.000 0.923 0.832 0.761
0.601 0.639 0.749 0.849 0.923 1.000 0.913 0.848
0.454 0.524 0.669 0.785 0.832 0.913 1.000 0.918
0.432 0.468 0.600 0.719 0.761 0.848 0.918 1.000
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change of response variable and design matrix, especially when weak signal or noise exists.

This indicates that it’s very hard to find a dropping condition on the data set. However,

Efron et al.[3] proposes a modified version of Lasso which doesn’t have this dropping issue

while maintaining the solution path. So we think it might be more appropriate to rank

based on LARS solution path. Moreover, LARS algorithm gives a clear condition under

which variable dropping will happen in Lasso.
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Chapter 3

Least Angle Regression

It is mentioned by Efron et al.[3] that a simple modification of LARS will lead to entire

solution path of Lasso. This important feature of LARS reveals the dropping mechanism

in Lasso from a mathematical point of view.

3.1 LARS Algorithm

Below is a description of the full LARS algorithm in Efron et al. [3]. The LARS algorithm

is like Stagewise Regression. However, the step of LARS is bigger than that of Stagewise.

We begin with µ̂0 = 0 and build µ̂ by LARS steps. Suppose A is a subset of the

indices {1, 2, . . . ,m} which represents the variables currently in the model and define µ̂A
to be the current estimate. The current correlation is defined as ĉ = X

′
(y − µ̂A). Let

the set A be the variables which corresponds to the largest absolute correlation, that is,

A = {j : |ĉj| = Ĉ}, where Ĉ = max{|ĉj|}. Let sj = sign{ĉj} for j ∈ A and define the

matrix

XA = (. . . sjxj . . .)j∈A (3.1)

Now we need to find the vector which has equal angles with the existing variables and we’ll
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update the estimate in this direction. Define

GA = XA
′
XA and AA = (1A

′GA−11A)−1/2 (3.2)

1A is a vector of 1
′
s of length equaling |A|, the size of A. The equiangular vector is defined

as:

uA = XAωA where ωA = AAGA−11A (3.3)

This is true because

XA
′
uA = AA1A (3.4)

And uA defined here is a unit vector since ||uA||2 = 1. The inner product between uA

and the full set of variables is a = X
′
uA. Now the next LAR step is determined as

µ̂A+
= µ̂A + γ̂uA, where

γ̂ = min
j∈Ac

+{ Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

} (3.5)

The “min+” here means that only positive values are considered for a minimum. aj is the

jth element of the vector a. The meaning of formulas (3.4) and (3.5) is as follows: We

are updating the estimate along the direction defined by uA. So

µ(γ) = µA + γuA (3.6)

the γ > 0 here is the “amount” that we should update. The updated correlation is

cj(γ) = x
′
j(y − µ(γ)) = x

′
j(y − µA − γuA) = ĉj − γaj (3.7)

For j ∈ A, using (3.2), (3.3)and (3.4) we get

|cj(γ)| = Ĉ − γAA (3.8)

We can see that the correlation between the residual and the variables in the active set

is decreasing at the same speed. We choose γ so that some other variable has the same

absolute correlation with the active set. So we have either ĉj−γaj = Ĉ−γAA or ĉj−γaj =
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−Ĉ + γAA, which lead to values of γ to be

γ =
Ĉ − ĉj
AA − aj

and γ =
Ĉ + ĉj
AA + aj

(3.9)

respectively. As γ is the smallest positive number which makes the correlation of some

other variables equal that of the active set, we have (3.5).

3.2 LARS and Lasso

Efron et al.[3] proved in the LARS paper that Lasso is actually a modified version of LARS.

This important property reveals why variables are dropped in Lasso.

Lasso has an important property: Suppose β̂ is a Lasso solution in (1.1), and µ̂ = Xβ̂.

The current correlation is defined as ĉj = x
′
j(y − µ̂). Then we have

sign(β̂j) = sign(ĉj) = sj (3.10)

The proof is given in [3]. However, LARS doesn’t have this requirement and can be modified

to get Lasso solution path.

In the LARS algorithm, suppose in one LARS step, we get the active set A and the

LARS estimate µ̂A = Xβ. Define ωA as in (3.3). Let dj = sjωAj
for j ∈ A and zero

otherwise. When we update µ along the direction of the equiangular vector, we have

µ(γ) = µA + γuA as in (3.6). Because µ(γ) = Xβ(γ), we have

βj(γ) = β̂j + γd̂j (3.11)

for j ∈ A. We see that βj(γ) will change sign at γj = − β̂j

d̂j
. Notice that γ > 0, so the first

place that βj(γ) changes sign is at γ̃ = minγj>0{γj}.

Another constrain on γ̃ is that γ̃ < γ̂, where γ̂ is defined in (3.5). So if γ̃ < γ̂, then

βj(γ) can’t be a Lasso path for γ > γ̃ because (3.10) is not satisfied. This is because under

such situation, βj̃(γ) has changed sign. However the sign of the continuous function cj̃(γ)

has not changed since |cj̃(γ)| = Ĉ − γAA > 0.
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Efron et al. [3] proposed a LARS Modification which is: If γ̃ < γ̂, stop the ongoing

LARS step an γ = γ̃ and remove j̃ from the calculation of the next equiangular direction,

that is

µ̂A+
= µ̂A + γ̃uA and A+ = A− {j̃} (3.12)

Efron et al. [3] proved the following theorem which states that the modified LARS

yields Lasso under certain conditions.

Theorem 3.2.1. Under the Lasso modification, and assuming the “one at a time1” con-

dition, the LARS algorithm yields all Lasso solutions.

So it’s quite clear that when γ̃ < γ̂, variables will be dropped from Lasso solution path.

1One at a time means that the increase and decrease of the active set A never involve more than one
variable
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Chapter 4

Ranking based on LARS

Ranking based on LARS means that we’ll assign an importance measure to each of the

variables according to the order they enter the model. Variables that enter earlier are

assigned a higher rank. Taking the diabetes data as an example, the LARS solution path

is shown in Figure 4.1. The order that variables enter the model is {3, 9, 4, 7, 2, 10, 5, 8, 6, 1}.
This is also the rank that we get based on LARS.

In this chapter, we use simulated data to test the ranking based on LARS. Like in the

diabetes data, as we don’t know what are the true signals and noise, it’s hard to decide

whether LARS ranking actually works. So we use simulated data where all information is

available. First we’ll introduce the rule we use in assessing the ranking quality: AUC.

4.1 Area under ROC curve

Area under ROC curve (AUC) [5] is a common measure of ranking quality. The receiver

operating characteristic (ROC) curve is defined as a plot of the true positive rate versus

the false positive rate. In a binary classification problem, we have two classes which we

denote as positive (P) and negative (N). Then four probabilities are defined as below:

• True positive (TP) rate: the probability that a object from class P is classified as

class P
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Figure 4.1: LARS solution path of diabetes data

• False positive (FP) rate: the probability that a object from class N is classified as

class P

• True negative (TN) rate: the probability that a object from class N is classified as

class N, P (TN) = 1− P (FP )
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Table 4.1: Average AUC with β = (3, 1.5, 0, 0, 2, 0, 0, 0)
Parameter Average AUC

n = 50, ρ = 0.5 0.9880
n = 100, ρ = 0.5 0.9987
n = 1000, ρ = 0.5 1.0000
n = 10000, ρ = 0.5 1.0000
n = 50, ρ = 0.9 0.8280
n = 100, ρ = 0.9 0.9160
n = 1000, ρ = 0.9 0.9793
n = 10000, ρ = 0.9 1.0000

• False negative (FN) rate: the probability that a object from class P is classified as

class N, P (FN) = 1− P (TP )

The AUC function is defined as the area under the ROC curve. AUC can be regarded as

the probability that a random chosen positive item will be ranked higher than a randomly

chosen negative item. In the our variable ranking case, the positive items represents the

signals and the negative items represents the noise. The value of AUC lies between 0 and

1. A random classifier yields AUC value of 0.5. From the perspective of AUC, higher value

means higher quality of the classifier.

4.2 Example 1: A widely used benchmark

First we use the example by Tibshirani[6] (2.4). Denote n as the number of points simulated

in one simulation. The simulation is replicated 100 times. Simulation results with different

ρ and n are given in Table 4.1.

We can see that the result of LARS ranking is good, especially when n is relatively

large. We also notice that when ρ increases from 0.5 to 0.9, the performance of LARS

ranking decreases a little. This suggests that the performance of LARS ranking might be

related to the correlation structure. We’ll test LARS ranking in a highly-correlated case

in Section 4.3.
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Table 4.2: Average AUC with β = (3, 1.5, 0.1, 0.1, 2, 0, 0, 0)
Parameter Average AUC

n = 50, ρ = 0.5 0.8246
n = 100, ρ = 0.5 0.8300
n = 1000, ρ = 0.5 0.9020
n = 10000, ρ = 0.5 0.9947
n = 50, ρ = 0.9 0.8033
n = 100, ρ = 0.9 0.8453
n = 1000, ρ = 0.9 0.8493
n = 10000, ρ = 0.9 0.9473

Next we change the parameter to test the ranking performance in situations where

weak signals exist. We change β in (2.4) to β = (3, 1.5, 0.1, 0.1, 2, 0, 0, 0) which converts

two noise to weak signals. The corresponding result is shown in Table 4.2.

We can see that when n is small, the existence of weak signals decreases the average

AUC of LARS ranking. However, when n is large enough, say 10000, the result is almost

at the same level with the case without weak signals. When n is small, because of the

bias of simulation, the correlation matrix of the simulated data is not exactly the same

with the designed correlation matrix. When n is large enough, the bias is negligible. So

the decrease of AUC might be due to the bias of simulation instead of the LARS method.

When n is large enough, LARS ranking performs well in catching weak signals.

4.3 Example 2: A highly-correlated example

We use the example in Wang et al.[7] to test the performance of LARS ranking in a high

correlation structure. The predictors in this example are highly-correlated and the sign

of the signals are opposite. First we general 40 random variables x1, x2, ..., x40
id∼ N(0, 1).

The response y is generated by

y = 3x1 + 3x2 − 2x3 + 3x4 + 3x5 − 2x6 + σε
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Table 4.3: Highly-correlated predictors
Number of points generated Average AUC

n = 50 0.6418
n = 100 0.7130
n = 1000 0.8544
n = 10000 0.9952

The covariance matrix between the predictors is give by

cov =

 C3×3 − −
− C3×3 −
− − −


where

C =

 1 0.9 0.9

0.9 1 0.9

0.9 0.9 1


So there are 6 signals and 34 noise. The signals are divided into two groups {1, 2, 3} and

{4, 5, 6}. The correlation within the group is very high and the two groups are independent.

Signals and noise are also independent. The simulation is replicated 100 times and results

are given in Table 4.3.

We get similar result here. When n is relatively small, the performance of LARS ranking

is not very good in the high-correlation example. However, when n is large enough, LARS

ranking still have very high accuracy. As long as we have enough data, ranking result

based on LARS is guaranteed.

Though this is a case where there exists high correlation in the data set, we should

notice that the high correlation only exists in the signals. In the next section we’ll use an

example where signal and noise are highly correlated to see if LARS can separate them.
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Table 4.4: Inconsistent example
Number of points generated Average AUC

n = 50 0.005
n = 100 0
n = 500 0
n = 1000 0
n = 10000 0

4.4 Limitation of LARS: An inconsistent example

Next we discuss an example mentioned in Zhao and Yu[9]. In this example, LARS doesn’t

give a consistent model selection and we want to investigate the performance of LARS

ranking in an incorrect model.

First we generate xi1, xi2, ei, εi
iid∼ N(0, 1), i = 1, 2, ..., n. xi3 is correlated with xi1 and

xi2:

xi3 =
2

3
xi1 +

2

3
xi2 +

1

3
ei

The response is given by

Yi = 2xi1 + 3xi2 + εi

Under such design, xi3 is noise but highly correlated with signals xi1 and xi2. The simulation

is replicated 100 times and result is given in Table 4.4.

We can see from the results that the LARS ranking is completely wrong for this example.

Different from the previous two examples, when n increases, the performance of LARS

ranking doesn’t change at all. In Zhao and Yu[9], they point out Lasso doesn’t give a

consistent model selection in this case. As a result, the solution path of LARS is also

misleading and LARS ranking is completely wrong.

In Zhao and Yu[9], they also give a necessary and sufficient condition for model selection

consistency of Lasso. However, the condition is based on that we know exactly what are

the signals and noise. In real cases where such information is not available, it’s hard to

determine whether LARS is consistent in advance. This is a limitation of LARS ranking.
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We’ll discuss some possible improvements in Chapter 5.

4.5 A real-data application: Info-Rehab Program

At last we apply what we discuss above to an applied task: the Info-Rehab Program.

In Zhu et al.[10], they apply Lasso to identify the most important variables for the binary

outcome of receiving rehabilitation services[10]. Here we investigate a slightly different

task.

The data set we have is called RAI-HC which contains 1,043,700 observations of reha-

bilitation clients. Each observation is a record of assessment for a client. The outcome

variable is called Cognitive Performance Scale (CPS). CPS is an assessment of the cogni-

tive status and takes value in {0, 1, 2, 3, 4, 5, 6}. 0 means not impaired, or normal cognitive

status. 6 means severely impaired cognition. 217 variables are included in the analysis.

We are interested in the change of CPS for a client after receiving rehabilitation for ap-

proximately one year and try to find out the most important variables associated with

CPS change. With these variables we can predict whether rehabilitation will be effective

for a client with certain health indices and thus identify those who are most appropriate

to receive rehabilitation.

In addition to LARS ranking, we compare the result with ranking given by importance

measure in random forest. The result is shown in Table 4.5 and Table 4.6. Common

variables selected by LARS and random forest are listed in Table 4.7.

There are 11 variables ranked in top 20 by both LARS and random forest. The top

variables, for example “B1a” which represents that short memory is OK, make sense intu-

itively.
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Table 4.5: Top 20 Variables ranked by LARS
Rank Variable name Variable Explanation

1 B1a Short memory OK
2 H1db Difficulty of manage medications on own
3 J1g Alzheimer’s
4 approx age Approximate Age
5 H1cb Difficulty of manage finances on own
6 K4b Intensity of pain
7 H1da Performance of managing medications
8 H1eb Difficulty for phone use
9 K4d Character of pain
10 H1ca Performance of managing finances
11 J1h Dementia other than Alzheimer’s
12 B2a Decisions about organizing the day
13 CC2 Reason for referral
14 Q1 number of medications
15 K4a Frequency client shows pain
16 F3a Length of time client is alone during the day
17 H1aa Performance of meal preparation
18 B1b Procedural memory OK
19 J1m Arthritis
20 P4a Number of times in hospital with overnight stay
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Table 4.6: Top 20 Variables ranked by Random Forest: Rank given by Random Forest is
based on 30 runs each with random sample of size 10000.

Rank Variable name Average rank SD Variable Explanation
1 B1a 1.0000 0 Short memory OK
2 B2a 2.0000 0 Decisions about organizing the day
3 H1db 3.2667 0.5208 Difficulty of manage medications on own
4 H1da 4.1667 0.9499 Performance of managing medications
5 FADIndex 5.4000 1.3544 Frailty index
6 C2 6.8333 2.0186 Making self understood
7 H1cb 8.0667 1.4126 Difficulty of manage finances on own
8 H1ca 8.7000 2.5072 Performance of managing finances
9 H1ea 10.033 2.7604 Performance of phone use
10 B1b 10.100 3.4874 Procedural memory OK
11 H1eb 10.633 2.4280 Difficulty for phone use
12 H1aa 11.500 1.9253 Performance of meal preparation
13 C3 13.367 2.4980 Ability to understand others
14 approx age 13.833 1.8019 Approximate age
15 J1h 15.933 5.1390 Dementia other than Alzheimer’s
16 H1ab 16.033 2.9767 Difficulty for meal preparation
17 B2b 16.267 6.0111 Worsening of decision making
18 H2f 19.200 2.0410 Performance of dressing lower body
19 H2e 19.967 3.1237 Performance of dressing upper body
20 H2d 23.100 3.3046 Locomotion outside home

30



Table 4.7: Common variables selected by LARS and random forest

Variable name Rank in LARS Rank in random forest

B1a 1 1
H1db 2 3

approx age 4 14
H1cb 5 7
H1da 7 4
H1eb 8 11
H1ca 10 8
J1h 11 15
B2a 12 2
H1aa 17 12
B1b 18 10
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Chapter 5

Summary and Future Work

Our motivation comes from the Lasso solution path which is a natural way to rank variables.

However, variable dropping issue of Lasso makes it difficult to use the solution path directly.

In this thesis, we first point out that dropping is actually very common in Lasso. Least

Angel Regression gives a mathematical explanation about when variable dropping happens.

In order to get a more straightforward and understandable idea about the dropping issue,

we try to explain variable dropping from data structure. However, we find that dropping is

very sensitive to the change in response variable and design matrix, which makes it hard to

find a dropping condition on data structure. Least Angle Regression, which is a modified

version of Lasso, maintains the solution path but doesn’t have this dropping issue. So we

advocate ranking by LARS instead of Lasso. Several simulation examples are used to test

the performance of LARS ranking. We find that LARS ranking perform well in the first

two examples. Even if there exist high correlation structure and weak signals, LARS can

still give a satisfactory ranking result. However, we also find that there exist inconsistent

examples where Lasso or LARS fails to give a consistent model selection. In such cases,

LARS ranking is completely misleading.

One possible way to overcome this limitation of LARS ranking is to combine LARS

solution path with some other importance measure in ranking. A potential method is to

rank based on LARS solution path and the ordinary least square estimates. The idea

here is very simple. In linear regression, the larger the variable coefficient is, the bigger
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influence it has on the response. So the coefficient is also a kind of importance measure.

We can combine the OLS estimate with the order in LARS solution path to get a “mixed”

importance measure. In simulations, we test the following form of mixed importance

measure:

imk = −order + log|βk| (5.1)

where “order” is the order of variable k in the solution path and βk is the OLS estimate.

Simulation result shows that the “mixed” importance measure performs quite well in all

the examples mentioned in Chapter 4, including the inconsistent case. It seems that the

OLS estimates can sometimes make up for the inconsistency of LARS. However, we haven’t

found enough theoretical support for such kind of importance measure. We get 5.1 from

intuition and as an imitation of the AIC rule[1]. We hope that some reasonable support,

like the explanation of AIC, can be found for such a measure. Then we can improve LARS

ranking to avoid the misleading inconsistent case.
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Appendix A

Simulation Results in Section 2.2.2

A.1 Simulation about the sensitivity to response

First we generate the design matrix X from a multivariate normal distribution. Then we

calculate response y from the model and add a normal N(0, 10−4) noise to the response.

Details are given below.

mu<-rep(0,8)

cov<-matrix(rep(1,64),8,8)

for(i in 1:8){

for(j in 1:8){

cov[i,j]<-0.9^(abs(i-j))

}

}

x<-mvrnorm(100,mu,cov)

pa=c(3,1.5,0.01,0.01,2,0.01,0.01,0.01)

sigma=3

After setting the parameters, we generate the first response y.
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eps<-rnorm(100,0,1)

y<-x%*%pa+sigma*eps

lars(x,y,trace=T)

The Lasso solution path is:

LASSO sequence

Computing X’X .....

LARS Step 1 : Variable 1 added

LARS Step 2 : Variable 2 added

LARS Step 3 : Variable 5 added

LARS Step 4 : Variable 8 added

LARS Step 5 : Variable 7 added

LARS Step 6 : Variable 6 added

LARS Step 7 : Variable 4 added

Lasso Step 8 : Variable 6 dropped

LARS Step 9 : Variable 3 added

LARS Step 10 : Variable 6 added

Computing residuals, RSS etc .....

Call:

lars(x = x, y = y, trace = T)

R-squared: 0.802

Sequence of LASSO moves:

Var 1 2 5 3 7 -3 6 3 8 4

Step 1 2 3 4 5 6 7 8 9 10

Then we add a normal N(0, 10−4) noise to the response and recalculate the Lasso

sequence.

noise=0.01*rnorm(100,0,1)
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y1=y+noise

object1=lars(x,y1,trace=T)

The Lasso solution path is:

LASSO sequence

Computing X’X .....

LARS Step 1 : Variable 1 added

LARS Step 2 : Variable 2 added

LARS Step 3 : Variable 5 added

LARS Step 4 : Variable 8 added

LARS Step 5 : Variable 7 added

LARS Step 6 : Variable 4 added

LARS Step 7 : Variable 3 added

LARS Step 8 : Variable 6 added

Computing residuals, RSS etc .....

Call:

lars(x = x, y = y1, trace = T)

R-squared: 0.802

Sequence of LASSO moves:

Var 1 2 5 3 7 6 8 4

Step 1 2 3 4 5 6 7 8

A.2 Simulation about the sensitivity to design matrix

We use the design matrix and response generated in A.1. Then i.i.d normal noiseN(0, 10−4)

is added to the design matrix and Lasso solution path is recalculated.

x1=x+0.01* mvrnorm(100,rep(0,8),diag(8))

lars(x1,y,trace=T)
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LASSO sequence

Computing X’X .....

LARS Step 1 : Variable 1 added

LARS Step 2 : Variable 3 added

LARS Step 3 : Variable 2 added

LARS Step 4 : Variable 4 added

LARS Step 5 : Variable 5 added

LARS Step 6 : Variable 7 added

LARS Step 7 : Variable 6 added

LARS Step 8 : Variable 8 added

Computing residuals, RSS etc .....

Call:

lars(x = x1, y = y, trace = T)

R-squared: 0.7

Sequence of LASSO moves:

Var 1 3 2 4 5 7 6 8

Step 1 2 3 4 5 6 7 8
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