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Abstract 

Convolution integral equations arise frequently in many areas of science and 

engineering. If the kernel of such an equation is well behaved, Say integrable. then 

the task of solvirig a convolution equation is ill-posed. Indeed. if the kernel is 

integrable. then the Riemann-Lebesgue Lemma implies that the recovery of bigh 

frequency information pertaining to the unknown fnnetion will be dinicult. if not 

impossible. 

Orthonormal wavelet bases are bases generated by translating and dilating a 

single fùnction. known as the mother wavelet. One key advantage of these bases is 

that the mother wavelet can be selected to have fast decay in both the tirne and 

fkquency domains. This property snggests that wavelet bases may be usefil when 

at tempting to solve a convolution equation. 

Ln this thesis. we investigate the applicability of orthonormal wavelet bases 

witk regard to solving convolution equations. In particular, we concentrate on 

the constrnction of approximations to the anknown function belonging to scaluig 

function subspaces . We also briefiy consider regnlarization algorithms which are 

based on the multiresolution analysis, a structure defined by the scaling function 

associated with the mother wavelet. 
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Chapter 1 

Introduction 

Consider the convolution integral equation 

where the hctions g and y are known. In what follows. we s h d  address the 

problern of solving equation 1.1 for the nnknown fünction u' in the case where the 

kernel g is integrable- This problem W. h o w n  as the problem of deconvoiution and 

when g E L' (IR). it is dl-posed in the sense of Hadamard (see Section 2.2). 

One possible approach to the problem of deconvolution is to assume that the 

unknown huiction u admits an expansion in te rms of some complete system. say 

(Fi). That is, if we assume that 

then the problem of solving 1.1 for u is eqnivalent to the problem of solvîng the 

senii-discrete equation 
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for the unknown scalars (%)- 

In tkis thesis. we will consider a particular type of cornplete system. Specifi- 

cally, we will suppose that the unknown fnnction can be expanded in terrus of an 

orthonormal wavelet basis. A wavelet basis is generated by translating and dilatin:: 

a single function y5 E L2 (IR), known as the mother wavelet. That is, a wavelet basis 

is a doubly indexed set of fünctions wbich are of the form 

for j .  >E E Z. The expansion of u with respect to the bavis generated by 1.2 will 

take the form 

and hence. the problem of solving 1.1 for a is eqnivalent to the problem of solving 

the equation 

for the sequence {ui[k] : j. k E Z). 

If we use the so-called scaling hction # associated with & then 1-3 can be 

written in the form 

where 

and n E Z is assumed to be fixed. It follows that we can also cboose to solve the 

equation 
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for the scaiars IL,$] and uj[k] ]. where k E Z and j 2 n . 

Wavelet analysis has been an active area of research for w d  over a decade 

and can be thought of as an alternative to traditional Fourier analysis. Although 

relatively new. research conceming the application of wavelet analysis to inverse 

probleins seems promising. It is hoped that the special properties of wavelets can 

be exploited to yield methods whicli dectively deal with the iU-posedness of said 

problems- 

With regard to the problem of deconvolution, the article [42] explores the possi- 

bility of using the continuous waveiet t random to solve 1.1. while in [18]. it shown 

that wavelet bases can often be used to define a mathematical constrnct which 

mimics the singular value decomposition. 

In work similar to our own (see [43]), the author uses a wavelet expansion to solve 

a convolution equation arising fkom a mutute problem for random variables. The 

proposed method bee&s with the assumption that the unknown fùnction belongs 

to the scaling h c t i o n  subspace Vn. given by the closed linear span 

In this case the wavelet coefficients ui[k] vanish whenever j > n. 
Convolution equations. for which the Fourier tran~form of the kernel g satisfies 

are considered and a method for the recovery of the scaling fanction coefficients 

u,[k]. P E Z, is developed in the case where 4 is a scaling fanction of Meyer type. 

Of course: in most cases, the assumption u E Vn is not in fact satisfied and the 

recovery of the scalars un[I;] provides only an approximation 
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In Chapter 5. we make some progress towards the generalization of the results 

presented in [43]. In part idar .  the assumption u E V,. leads as to consider the 

linear operator Glv,. the restriction of Ç to the wbspace Vn. We present necessary 

and satticient conditions for the strong invertibility of the operator Ç Snfficient 

conditions for the weak invertibility of BIv, are also presented. These results are 

valid for a large class of scaiing functions (indnding those of Meyer type) and are 

based upon the less restrictive assumption that g be integrable. Furthemore. the 

presentation of the conditions concerning strong and weak invertibility makes use of 

a continuons In-perïodic fnnction G,, which can be considered to be the spect- 

of a particular Toeplitz matrix. The behavior of G, as In1 + oo is examined 

and thk investigation leads to a convergence result. Particuiarly. it is shown that 

under certain conditions. the approximations un converge to the solution r of 1.1 

as n -t oo. The material presented in Appendix A is then used to f o d a t e  a 

convergence rate estimate in the case where u belongs to the Sobolev space H S ( B ) .  

Chapter 6 begins witk the consideration of the problem of computing the pro- 

jection P,u. onto V,, under the assumption that u E V,, n > m. Our investigation 

leads us to the examination of the operator 

1 
P ( A )  ( w )  = 5 { I H ( w / ~ )  l2 4 4 2 )  + I H ( 4  + * ) l a  4 4 2  + 2)) 

where R and A are continuous 2n-periodic hinctions and 

for all 8. The operator P -es in the study of orthonormal bases of wavelets and 

we consider the behavior of the functions Pk(A)  as k + m. In particular. we 

present two results regarding the convergence of the sequence {Py A) : k E N} and 

are thus able to comment upon the üensitivity of P,u to perturbations in y in the 

case where rn is s m d .  
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In related work, fomd in [30]. a multiresolution based regularization algori th is 

proposed. This algorithm is based upon the mdtksolution analysis. the sequence 

of nested subspaces {V, : n E Z), defined by 1.4. Speufically. the anthor of (301 

uses a multiresolution analysis: defined by the Haar scaling funetion 

1, O < t < l  

0, otherwise 

to construct approxïmate solutions for a distributed parameter estimation probleu. 

In the last two sections of Chapter 6. we briefly consider certain aspects of 

the niethod introduced in [30], where we show that the proposed regularization 

algorithm is a special case of the method of C-generalized regularization. Let C 

be a linear operator. #en using the method of Ggeneralized regularization. one 

compates an approximate solution to equation 1.1 by finding the minimi.= u,, of 

In the case of multiresolution repuiarization. the operator C can be expresseci as 

the weighted sum of projections 

where Q j  is the projection onto the wavelet subspace 

It can be shown that, under appropriate conditions on y? there exists a unique 

function u!, called the C-generalized solution of 1.1. such that u,, 4 u! as a -t 

O. The special case C = 1, I the identity operator, corresponds to Taonov .  

or minimum norm regularization. Furt hermore. the corresponding rninimizer ui,, 



tends to uf as a -t O. where ut is the generalized solution of 1.1. In general. the 

two hinctions u! and ut are distinct. However there are cases for which the two 

genralised solutions are close. 

We conclude Chapter 6 with a cornparison of the mininiiaas u,, and u~.. as 

well as the corresponding generalized solutions u! and ut. It is shown that if the 

operator C is, in soue sense, close to the identity II then the mlùmizers and the 

generalized solutions are dose. 

The discrete equivalent of equation 1.1 is 

The articles [33] and (81 are concerned with the application of wavelet methods 

to the problem of solving 1.6 for the sequence {uk : k E Z). In [SI, a mdundant 

version of the discrete wavelet transfom is used to change 1.6 into a system of 

discrete convolution equations. The technique of Wiener filtering is the used to 

solve the individual equations. whereopon the inverse discrete wavelet tramforni 

is used to constrnct an estimate of Cur- : k E Z). In Chapter 3, we demonstrate 

that the method discussed in [8] can be regarded au a multiscale regularization 

algorithni. similar to the algorithm proposed in [30]. 

In (331, the disaete filters used are d e h e d  through the use of the blurring 

sequence {gk : k E Z). In Chapter 3, we provide examples to show that. in general. 

such füters are not discrete wavelet fdters. However? the method introduced does 

define a new kind of regularïzation. We investigate this method in some detail and 

provide a proof of the important property of regalatity. 



Chapter 2 

Convolut ion equat ions 

2.1 Introduction 

Convolution integral equations appear freqnently in applications and hence. inverse 

problems. which are based npon these types of eqnations. are often encountered. 

To see how such equations can do we consider a simple example. The initial 

value problem 

rnodels a forced. damped harmonic osdator. If the Laplace tramforni is applied 

to 2.1. then we obtain the equation 

where Y and U denote the Laplace transforms of y and u respectively. The inverse 

Laplace transfonu can now be applied to 2.2 and the result is the convolution 
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equation 

where g is the inverse Laplace tramforru of (sZ + as + 6) -'. 
Given a forcing function W .  we can ose 2.3 to cornpute the displaceaient y. This 

is the forward problem. Since it is often easier to observe the evolution of a system 

rather than the extanal forces causing this evolution, a more natural problem 

might be: Given the hinction y find the funetion u. This is one possible inverse 

problem that is based upon equation 2.3. The other involves the determination of 

the constants a and L fkom the fnnctions y and u. The latter inverse problem is 

known as a .systestem identification problem. In this thesis. we will be concernecl with 

the first problem, that is. the determination of the function u nom the hinctions g 

and y. 

2.2 Deconvolution 

Suppose that the functions g and y are known. The problem of  deconaoht.ion 

involves solving t b convolut ion type int egral equation 

for the unknown fnnetion o. The equation 2.4 can be regarded as a mode1 of a 

linear system, the properties of which are detennined by the kemel  g. With this 

interpretation in rnind, we can regard the fnnction u as the input to tkis h e a r  

system, while y can be thought of as the resdting output. 

Ifg E L1 (W), then the iinear operator Ç, defined by 



is a continuons mapping of L2 (R) into C2 (W). Furthennore. for any u E L2 (Et). 

there is a unique y E L2 (B) such that 9 = Gu. In other words. given g E L1 (IP) 

and any u E L2 (W). the problem of determining y is wd-posed in the sense of 

Hadamard. On the other hand. given g E L1(W) and y E L2(W), the probleu of 

determining a is ill-posed. In parti&. at l e s t  one of the following conditions: 

1. A solution u exists for any y E L2 (W). 

2. The solution u is unique. 

3. The solution u depends continuousiy on the data y. 

will be violated. To see how this happens, it is convenient to have a forma expres- 

sion for the solution of 2.4. The Fourier convolution theorem dows  us to write 2.4 

in the alternative form 

( w ) ( w )  = ( w ) ,  t> E W. 

wlùch iznplies that 

Now. it is easy to see that if y E R(G), the range of the operator Ç. then rj = jiî 

and a solution u E L2 (W) will a i s t .  Unfortunately, when g E L' (R), it follows 

from the Open Mapping Theorem that R(O) is never a dosed set. This means that 

R(Ç) # L2 (W)  and a solution may not exist for an arbitrary y E L2 (R). 

The uniqueness of the solution, when it exists, is equivalent to the condition that 

the operator Ç be injective. This is not always the case. For example, suppose that 

6 Mnishes identicdy on some interval I and let u be a solution of 2.4 comesponding 



to y E R(G). If f E LZ (89)  is any hinction snch that supp(f) c 1. then u + f is 

&O a solution of 2.4 corresponding to II E R(Ç). In general. Ç will be an injection 

as long as j Mnishes only on a set of mesure zero (for example, a countable set of 

poiuts). 

We can rectjfy some of the problems encountered when considering the questions 

of existence and nniqueness by generalizing ou. notion of a solution. S p e d c d y .  

we say that u is a least-squares solution (see (211) of 2.4 if it is a minimizer of the 

bct ional  

F(u) = IlGu - y112 - (2-8) 

whenever a minimizer exists. Let Ç* be the adjoint of Ç. It can be shown that the 

lenut-squares solations must sa t i s i  the n o m a l  equation 

and such solutions will exist as long as the output y belongs to the dense subset 

R(Q) @ R(E)l  of L2(B)- The set S, of all least-squares solutions. corresponcling to 

y E R(Ç) $ R ( Ç ) I  is a closed and convex set. Hence. we can assign as a solution 

to 2.4 the unique h c t i o n  ut E S, of minimal nom. The function ut is called the 

generalized solution of 2.4 and the linear operator 

is referred to as the generalized inverse. The generalization that we have just 

considered dows us to assign meaning to the notion of solution for a larger clavs of 

hinctions g. Moreover, this generalization does, in part, deal with the question of 



uniqueness. However. the third and perhaps niout important condition listed in 2.6 

has not been adkessed- 

The iraportauce of continnity stems fkom the fact tkat. in most practical situa- 

tions. knowiedge of y is gained via measmrement. Hence. g is not known precisely. 

Conseqnently. we must try to extract an approximation of ut through the use of 

the compted data y + Jy, where by E L2 (W)  reptesents a small but unknown per- 

turbation. Since in general, t5y 4 R(Ç) $ R ( Ç ) I ,  a genmalized solution need not 

M s t  for every observed output. Even if 6y E R(G) 8 R ( Ç ) l ,  the discontinuity of 

the generdized inverse can lead to aa approximation Ç t ( ~  + by ) which is arbitrarily 

fat fkom it. To see this we consida 2.4 in the speWal case where Iij(w)l > O for all 

w E R. In this case. Ç : L2 ( W )  + R(Ç) is a bijection and for each TJ in the dense 

stibset R(Ç), ut is simply the unique solution TL of 2.4. Let 

theu for every /3 E R, Jy E R(Ç) and11611 = 1. I f w e  use the compted data y +Sy 

to form the approximation 

us = !F(Y + JY), 

whicb implies t hat 

where XD denotes the characteristic function of the interval [- 1 + /?' 1 + Pl. Since 

g E L1 (IR), 6 is continuous and 



The Riemann-Lebesgue Lenima ensures that 

and thesefore, 

Consequently, s m d  high fiequency perturbations in the observed output can lead 

to approximate solutions which are arbitrarily far kom the solution obtained fkom 

the unperturbed output. 

One popdar way of dealing with the unbonndedness of Çt is known as the 

method of inverse filtering [3: 401. When using this method, we seek to remove 

the ill d e c t s  of high fiequency perturbations, while preserving the accuracy of the 

approximation produced. Let (Wa(w)  : a > O) be a family of continuous functions 

that satitidies: 

1- I'W,(w)/ i(w)[  5 A(a) < oo, for all a > O and w E R. 

2- 11 - W,(w)l 5 B,  uniformly for a > O, w E B and 

where A(a) and B are constants. If we form the approximation 

1 " 
%(t) = (GLU) ( t )  = - e i w t - ( W ) y ( w )  h, L d w )  

then fiom the fmst condition of 2.10, we have that u, E LZ (IR) for any y E L2 (B) 

and any cr > O. In particular, it can be shown that 



which nieans that s, depends continuously on the data y. Furthermore. if y E 

D(Çt )  = R(Ç) $ R ( Ç ) I .  then 

aiid in view of the second and third conditions of 2.10. the Lebesgne Dominated 

Convergence Theorem ensures that 

In other words. the operator ÇL converges strongly to Çf on D(Gt). 

In many situations, the fimction W, is selected so that {W, : a > O) is a set 

of low p a s  filters. That is, for every a > O 

For example, if g ( t )  = exp(- Itl)? then 

and a suitable family {W, : a > O) is defined by 

Suppose the y E R(9). then since is a bijection, the function 

can be regarded as a low fiequency approximation of the unique solution u. 



In the next chapter. we present a brief introduction to wavelet analysis. We 

are particdarly interesteci in wavelet bases and th& applications to solviri, con- 

vohtion integral equations. Wavelet bases have the ability to localize both tirne 

and fiequency in the sense that the fnnctions which comprise these bases can be 

selected to have good decay in both domains. In particdar. the scaling fnnction 4 

can be regarded as a low pass filter and one intnitively expects that the stability 

of the cleconvolntion problem can be improved by seeking approximate solution in 

scaling fnnction subipaces. 



Chapter 3 

Wavelet analysis 

3.1 Introduction 

One of the most significant shortcomings of the Fourier transform is its inability to 

deal dectiveiy with non-stationary signah. Let ~ [ ~ . ~ l  be the characteristic huiction 

of the interval [O, 11 and consider the hc t ion  

The Fourier transform of f is the h c t i o n  

which bas absolute value 

We see that f reflects the overd fiequency content of f and does not give I -1  
us any information about the significant changes in fiequency which occur at the 

15 
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tirues t  = O ruid t = 1. In faet. this idornation is containeci in the phase o f f .  but 

in some cases can be Rifficult to extract. 

In an d o r t  to overconie such dif£iculties, D. Gabor (See [9- page 501) introduced 

t lie integr al trans-form 

where 
-a 

the idea being that the rapid decay of the Ganssian function. g,, would allow for 

the study of the local fiequency content of the fimction f .  In fact? for a fuced r. 

the b c t i o n  Sa (r. w ) is simply the Fourier transform of the function g, (t - T ) f ( t ) . 
which is approximately 1/(2JaT) f ( t )  for t near T .  Furthemore. since the Fourier 

transform of ga i~ 

the Gabor transform d o w s  one to study a function locally in both t h e  and fie- 

quency siruultaneously. Different choices of the fùnction g, lead to a f a d y  of 

trandomations known as short t h e  Fourier transfo-- 

3.2 Integral wavelet transform 

ln a similar way, the integral wavelet t ~ a n s f o m  (WT) ( (9, page 601) also provides a 

means of studying fünctions in a local way. However, in this instance, the b c t i o n  

f is decomposed into its components with respect to the dilations and translations 

of a single funciion $. called the mother wavelet. 
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Definition 3.1 If $ E L1(W) fi L2(W) satisfis the admksibility condition 

then we define the integral -wavelet transform on L2(R) by 

(W* f) (a .  b)  = lai-'la 

where a. b E W and a # O. 

The variable b in (3.2) can be identified with time . while a can be thought of as 

a multiple of the reciprocal of fkequency. If we choose d, so that is has rapid clecay 

in both t h e  and frequency. then we can regard W* f as giving information about 

the content of the function f near b in time and near c / a  ( c  a constant depending 

on $) in fkequency. 

It is this ability to localize in time and, most importantly in fiequency, which 

makes the M T  and wavelet analysis in genaal a plausible tool for deconvolution 

problems. Indeed one might view the IWT as a type of mer, the characteristics of 

which are determuied by the d u e  of the variable a. As an example, suppose we 

let 

then the Fourier transform of JI is 

$ ( w )  = J 2 x ~ ~ e - ~ = ~ ~ .  

The fünction $ satidies the admissibility condition with C4 = 2n. If (-, 0 )  denotes 

the usud inner prodnct on L2 (W), then by 3.3, the TWT of an f 

1 t - b  
,,,)(a-b) = 1.1-1/2(f(t)~ (1-  [+12) 

(-i 
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where the last equality is obtained by an application of Parseval's identity. The 

function (aw)2e-(aw)z'2 is concentratecl around two peaks centered at w = *&/a 

and as a is increased, the peaks become narrower and move towards w = O. As a 

result? when a is large, the product 

depends prïmarily on j ( w )  for sm& W .  For other choiees of $' diErnent localization 

properties can be achieved. this being one of the major advantages of the IWT. 

If we are given the IWT of a fimction. f ,  then we can reconstmct f through 

the use of the formula 

t - b  da 
(W+f) (a.b)ial-L/2+ (_) db-. 

a2 

In fact. 3.5 is redy a consequence of the Parseval's identity 

which holla for any f ,  g f LZ (R). 

Many variations of 3.3 and 3.5 exist, allowing one to customize the MTT to 

suit specific needs. Of pa r t ida r  interest is a variation which uses one wavelet for 

decornposition and a second for reconatniction. Specifically, if the wavelets +t and 

$9 satiafy the admissibility condition 

then the IWT transform pair, based on a > O, is 



The localization and regularity properties of and & can be quite Werent. h 

fact. in [25] Holschneider examines a two-dixaueusional extension of 3.7 and 3.8 in 

which +1 is a clistribution. This extension allows Holschneider to use the ZWT to 

invert the Radon transfom. 

In practical situations? there is a deske to be able to reconstruct the fünction f 

k o m  the restriction of its IWT to a discrete grid. For instance, if we let a = a;' 

and b = aii&, then we seek a fnaetion 4 such that 

The above leads to the theory of fianes' and the study of the d i s c ~ e t e  wavekt 

transfom. The reader is referred to (131 and [24] for more details. If we consider 

the special case where a0 = 2 and 4 = 1. then it is possible to find a function $ so 

that an orthonormal basis is obtained. 

3.3 Wavelet bases 

An orthonormal wavelet basis of L2 ( W) is a basis of the form 

i k  t {$ -'( ) = 2ji2+(2't - k) : j, k E z), 

which sati~fies the orthonormality conditions 

< ,j,j,k. @n >= 6j,ibk:m- 

'a linearly dependent set which spans the space of interest 
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If we dehe  the subspaces Wjt j E Z. by 

then we obtain an orthogonal decomposition of L2 (IR). That is, we can write 

Now suppose we define the subspaces K. j E Z by 

then the 6 are nested 

Notice that Wj is the orthogonal complement of 6 in x-+,. That is. 

It tums out that there is a iùnction 4. cded the scaling function. which satides 

and 

Li view of the above, any fùnction f E L2 (IR) bas an expansion of the fom 

f ( t )  = C C 8 , p ( t ) ,  
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in which the expansion coefficients c l  and 4 are compated via the inner products 

and n Z is assumed to be fixed. 

We point out that the scaling fimction 4 is usudy the starting point in the 

construction of an orthonormal wavelet bais. In fact: one demands that c j  satisfy 

the ddation equation 

d ( t )  = AC hk4(2t - k). (3.15) 
k€S 

where the two-scale sepence {hl. : k E 2) is assnmed to be given. The properties 

of the two-scale sequence determine the properties of the resulting scaling hinction. 

For example. to ensure orthonormality 3.12, or equidently 

the two-scale sequence must satisfjr 

After a suitable scaling fnnction has been found- the wavelet q5 is defined by an 

equation of the form 

which c a  be derived by reqairing that the integer translates of 4 span Wo. the 

orthogonal complement of l& in V;. 

The set of nested subspaces (K : j E Z) and the orthogonal decomposition 

that it defines is known as a multiresolution analysis (MRA) of L2 (IR) and it is the 

dilation equation 3.17 that makes this structure possible. If we let P, denote the 
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orthogonal projection onto the subspace Vn and Q denote the orthogonal prqjectiou 

onto the subspace Wj. tken. in view of 3.14. any f E LZ (R) can be decomposecl 

into the orthogonal s a n i  

In practice. the fidl wavelet expansion of a function is not available and one works 

with the projection P, f ,2 or equivalently. with the scaling function coefficients 

{CE : h E Z}. When the coefficients {cg : X: E 2) are known. an algorithm. defined 

by the equations 3.15 and 3.17 can be used to derive the wavelet coefficients at dl 

scales j < n - 1. This algorithm. called the dismete wavelet t r a n s f i n  (DWT). is 

defined by the equations 

and 

where gr. = (- l)k-'h-k-i .  We can regard each of 3.18 and 3.19 as the operation 

of convolution with the respective discrete filtas {hm& : k E Z} and {g-k : k E Z). 

followed by the operation of dom-samphg3. 

Suppose that the discrete Frmn'er t iansfom (DFT) of {ai : k E Z) E t2 (Z) k 

then an application of the DFT to 3.18 and 3.19 results in 

'P, f ia often referred to as an approximation of f at resolution n. whilr Qj f is cded the 

detail o f f  at resolution j .  

3dso known as decimation. 



where Cn. Dnt R and G are the disaete Fourier transfoms of the sequemes 

{CE : k E Z). {c : k E Z). {4 : h E Z) and {fi : 6 E Z) respectively. 

The DWT is invertible and. in particular, if we are &en {ci-' : k E 2) and 

{$-' : k E z). then {CE : L E Z) can be computed via the equation 

which has the DFT 

3.4 Daubechies wavelets 

Let us now restrict our attention to a notable class of wavelets which were intro- 

duced by 1. Daubechies (See [12], [14. page 1671). These waveletc are compactly 

supported and are cded the Daubechies wavelets. Some of their most important 

properties are: 

1. The first N moments of the wavelet vanish. That is, 

where N is a positive integer. 

2. The scaling fuaction is unirnodular, 

%s well as the scaling fimctions 
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3. The wavdet series 3.14 converges exponentidy fast with respect to the &la- 

tion index. k, particnlar. if the fanetion f is at least N t h e s  continuously 

differentiable, then 

for some constant A. 

4. The support length of both the wavelet and scaling function is K = 2N - 1. 
Furt hermore. the differentiability of both fnnctions increases as N increases . 

3.5 Meyer wavelets 

A second class of wavelets, whidi is of theoretical importance. is due to Yves Meyer 

(see [14. page 1371). G. Walter enlarged this class of wavelets in [44j and pro- 

duced a fiimily of orthonormal wavelet bases with compactly supported Fourier 

transforms. To define the Meyer wavelets. we begin with a continuous probability 

density h c t i o n  p satisSing. 

for O < E < ~ / 3 .  The Fourier transform of the scaling h c t i o n  W: subsequently 

defined by 

and is supported in the interval [-n - ~ , n  + €1. The Fourier transform of the 

correspondhg wavelet is given by 



One could thinlr of the Meyer class as being a generalization of the Shannon 

MRA, wkich kas the scaling fnnction 

The Fourier transform of the sinc(t) is the characteristic funetion 

and it is not too clifficult to show that 

for a h o s t  all W .  



Chapter 4 

Literat ure review 

4.1 Introduction 

In its present form, wavelet analysis is a relatively new fieldo the first articles a p  

pearing in the early part of the 1 s t  decade. The application of wavelet analysis 

to inverse problems is newer. Many interesthg artides have begun to appear and 

tend to indicate that in some situations wavelet andysis is capable of outperforuiing 

established inverse problem methods. However, the evidence is far h m  conclusive 

and in some cases, is based soldy on numerical simulation. There is a defi..de need 

for more research before the possible benefits of applying wavelet analysis to inverse 

problems are well understood. 

4.2 Related work 

One of the first articles in which the author considers the utility of wavelet analysis 

for the solution of an inverse problem is [25]. In this article? the author shows 

26 
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how the continuous wavdet transfolm can be used to invert the Radon trandorui 

(see [15]). which can be defined by 

where 8 is the Dirac distribution and p is a unit vector. In the subsequent ar- - 
ticles [43. 161. this problem is huther investigated and it is pointed ont in [16] 

that orthonormal wavelet bases could be used to recover local information about 

the fimction f fiom local information about the Radon transforu Rf. This fact 

may have important consequences for the field of cornpater aided tomography and 

permit the investigation of tumors on a local basis. ieducing a subject's exposure 

to radiation. 

In [4] the authors comment on the possible application of wavelet bases to a 

wide dass of inverse problems based upon the integral equation 

In t u s  and the earlier p a p a  [5] the anthors show that many integral operators of 

the form 4.2 admit a sparse matrix representation in a orthonormal wavelet basis 

{@' : j. k E z). Tkat is. most of the entries of the mat- 

will satise the inequality 

where c is some s m d  positive number. This sparse representation of the operator 

EC permits the multiplication of the mat& K with a vector of Iength N in O ( N )  

or O(N log N) operationa. With this efficient method, certain iterative algorithms 

for the computation of the generalized inverse Kt become feasible. What is not 



dear fkom the discussions in [4] is whether or not wavelet bases offer any particdar 

advantages. aside from sparse representations. in dealulg with the ill-posedness (or 

ill-conditioning) of the inverse problem at hand. 

k, the papas [30. 311- the distributed parameter system identification probleru 

is considered. In this case, 8 : LZIO, 11 -t L'[O. l] is a non-linear operator defilied 

by the boundary value problem 

cf2 
-a;s (a(x)u(x) )  = f(x),  O < 2 < 1 

u(0) = u'(0) = O 

The author restricts his attention to the Haar wavelet basis and assumes that the 

unknown fûnction a V,, where 

and t$ is the Haar scahg function. which can be defined by 

Numencal evidence is presented which suggests that a multiresolution approadc to 

this particular inverse problem can lead to regularization methods comparable to 

Tikhonov regularization [22, 231. For example. in the presence of noisy data u'. 

one seeks to approximate a by minimizing the b c t i o n a l  

over the function space L2[0, 11. However, this problem is ill-posed and the s m d  

fluctuations present in u6 can lead to large fluctuations in the approximate solution. 
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To keep these fluctuations under control. one could instead choose to minirriize the 

This is a particula. case of Tikhonov regularization and the effect of the tenu 

A ~ ( a ' ( r )  11' in FI is to prevent the n o m  of ar(z)? the estimator of the solution a. 

fiom grotning too large. 

Now. it is hown that the reguiaxity of a fnriction f can be characterized by its 

wavelet coefficients. For instance. if Ha ( W) is the Sobolev sppace 

P ( R )  = 

then it c m  be sbown that 

only if 

(see for instance [12. pages 2983041) f E HS(R)  if and 

It foUows that the f'unctiond 

with Ai - 46 as j -+ oo. can be used to d e h e  a type of regularization which gen- 

eralizes that defined by 4.7. Functional 4.8 suggests the possibility of a mdtiscale 

regularization method based upon wavelet bases. A similar method is suggested by 

the work of Chen and Lin. which is exnmined in section 4.4. 

In [46]. the authors consider the linear moment problem 

in which the scalars {pi. : E E Z) and the functions {gk : k E Z) are known. while 

the hinction f E L2 (W) is to be estimated. 
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A classical approach to the probleni 4.9 is the BackurGilbert methocl. h this 

method. the h c t i o n  f is approxhated by the s u m  

where the huictions {ak : k E Z) are selected so that the averaguig kernel 

is a reasonable approximation of the delta distribution. For example. if 

( s t )  n = O. 1.2.. . . 

defines a delta-sequence converging to 6 ( s  - t), then according to the so-cded 

D-criteeon. the fnnctions {ak : k E Z} are chosen so that the huictional 

The authors demonstrate that when the D-criterion is used, the assumption 

can lead to a definite improvement in performance. In parti&, in the case of 

sampled signals. it is shown that the a priori condition f E V, yields a modification 

of the Backus-Gilbert method which allows for the complete recovery of f.  On the 

other hand, a straightforward application of the Backus-Gilbert method does not in 

general allow for the recovery off  from its sampled values. It is also shown that. Li 

d cases. the generalized method perfoms at leas t as well as the ordinary method. 

However, in cases other than that of sampled signals, it is not known whether the 

generalization provides substantial improvement or not. 



The modification of the Backus-Gilbert method, proposed in [46]. makes lise 

of t h  reproducing property of scalùig hinction subspaces 4.10. Suppose that the 

continuons scaling b c t i o n  q5 satisfies 

for soue p > 1/2. then the series 

k 

defines a continuouï. syrnmetric k e d  In this case. each subspace Cf has the 

property that if f E 6. then 

where 

The subspace 4 is said to be a repmducing kemel  Hilbert space (see. for exam- 

ple. [2]) and this property can be used to convert 4.9 to the new moment problem 

The function f is now approximated by the s u m .  

If we defme the generalized averaging kernel 

then. when the D-criterion is employed, the functions {ai : j 2 n , k  E Z) are 

selected so that the hctional 

with iuj non-negative weights. is minimiaed. 
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4.3 Cont inuous deconvolut ion 

The convolution equation 

1: h - ) ( )  d  = ( t )  t E B 

is considered in the paper [42]. It is observed thato in many cases, the convolution 

kemel h is similar to a scaling fùnction 4, and based upon this observation the 

kernel is used to define a mother wavelet $. The continuous wavelet trandorm 

( W X )  ( t .  a) = - l /= + (G) z(s) ds Ja -, 
is then used to transform 4.12 into a equivalent system of continuous convolution 

equations indexed by the scale Mnable a. Each equation in this system is solved 

separately, yielding the wavelet transform ( W x) (t . a). The inverse wavelet tranr 

form 

with 

is then used to recover the h c t i o n  z. 

This approadi is much liLe that proposed by Liu et al. (see section 4.4) for the 

analysis of disaete convolution equations and snffers fiom one basic disadvant age. 

An appealing aspects of wavelet analysis ia the freedom to chose a wavelet Jt suited 

to the problem at hand. By using the convolution kernel to define $, we lose this 

One of the most p o w d  techniques for dealùig with inverse problems involving 

compact operators (as defined by 4.2) is known as the singular value decornpositir~n 
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( S m )  (see [29. 221). Let H be  a Hilbert space and suppose that K : H i H 

is a compact Iinear operator. The singular systenr for the operator K: is the set 

{v j ,  ujl p j ) ,  where {vil is an orthonormal bavis for the orthogonal complement 

of the nd-space N(K). while {uj) is an orthonormal basis for the orthogonal 

complement of the nuil-qace of the adjoint of K, N(KU). The scalars I P j }  are 

known as the sMigular values of K. and satidjr 

The singnlar system of X- can be defined by the equations 

It follows that the generalized solution. of minimum nom. of the equation 

Xf = 9, 

can be expressed as 

V j .  

Since {vj) is an orthonormal basis? the generalized solution Ktg will exist as a 

function in H if and only if 

which holds whenever g E R(IC). If we are faced with noisy data 9' = g + 6. then 

a solution will exist if and only if 



and since the inner-prodiicts ((6. uj)) may decay slower than the singidar vahies. 

K f g s  need not exist as a faaction in H .  

In such cases, one usudy employs soue type of regularization procedure in 

combination with the SVD. For example. if we use as an approxhate solution of 

Kf = gb the mininJzer of the hinctional 

then. through the use of the S M .  we can mite the min;mizer of F as 

where the window W is given by 

see that 4.18 is a well-defined element of H for al1 X > O and 6 E H. 

One major drawback of the SVD iü that the basis Cuj) may not be well-suited 

to the function f under investigation. For example, suppose that f is piecewise 

smooth. The local discontinuities present in f can cause the coefficients 

to decay very slowly, and accordingly a significant proportion of the n o m  of 
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may be containec1 in coefficients for wkich pj is s m d .  The windowed SVD deah 

with the presence of mors in the data g by suppressing the inner-products 

when pi is srnaIl and. in doing so, may dù-card significant information about f 

leading to a poor approximation 4.18. Typicdy, the basis vectors {vil are non- 
local. and this loss of information causes errors that are clistributed thronghout f 
a d  not just uear the &contimities of f .  

Wavelet bases hold the promise of being able to circumvent these difnculties. 

Due to the local nature of the bais  +. discontinuities of a fnnction f atfect only 

the coefficients (f. t[>'") which correspond to bais  fandions near the discontinuities. 

Furthermore. the suppression or r e m o d  of these particular coefficients will  prodnce 

an approximation which is erroneous only in a neighborhood of said discontinuities. 

In view of these desirable properties, it makes sense to see if the SVD can be 

generalized as to d o w  for the incorporation of wavelet bases. 

One possible generalization is explored by Donoho in the papa [18]. Eere the 

author proposes a method for solvuig the operator equation 

where EC : D(K) C L2 (W) + R(R) c La ( W )  is a h e a r  operator. This method 

uiakes use of the wauelet-vaguelette decomposition (WVD) which emulates some of 

the more important properties of the SVD , while leaving the user greater flexibility 

in the selection of a suitable basis for f in 4.19. 

The WVD of an operator K: is a collection of three sets of functions: 

1. an orthonormal wavelet bais  {+5k : j, k E z ) and 



2. two nearly normalized Riesz b a s  {uj*" : j. k E E} aud {vj-' : j. k E z). 

dong with a sequence of scdars: 

3. quasi-sinplar values {ci : j E Z}. 

The WVD of K: can be defined by the quasi-singtslar value relations which are 

~ + j . c  - .,j& - 3 (4.20) 

and 

~ = & k  = gi$j.l. (4.21) 

We notice that. when the WVD of the operator K exists? 4.20 implies that D ( K )  

rnust be a dense subset of L2 (R). S d a r i y .  fiom 4.21 we see that R(Kœ)  must be 

dense in L2 (IR) and since 

with N(K) the n d  space of K. K must be injective. It follows that the inverse 

operator IC-l is defined on R(K) althongh. it need not be continuous. Also. the 

qu"singular value relations imply that the sets of functions {&' : jo k E Z) and 

{vik : j? k E z ) are biorthogonal. Indeed? since {+$' : j: k E z ) is orthonormal. 

we have 

With regard to the solution of 4.19. the relation 4.20 implies 
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and through the use of the property 4.22. we obtain 

In light of 4.23. the Riesz representatioa theorem implies that the coefficient fnnc- 

tional ~ j - k  : L f  ( W )  -+ IRI given by 

is continuous with 

Since the functions uik are nearly normalized, we h d  that 

for some constant D. It follows that the number laj(-' gives an indication of the 

difficulty in recovaing that wavelet coefficients at level j fiom the data g. For many 

operators. we expect that 

which indicates that higher level wavelet coefficients are increasingly cliffidt to 

recover. 

Even though the cjqh are continuous, the fnnction f .  aï defined via 4.23. need 

not be an element of La (B). From 4.23. we have 

and f E L2 (P) if and only if 
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condition 4.24 is satisfied and f E LZ (R). However. since f must be estimated from 

the noisy datag' = g + 6. with b E L2 (a). it is advantageous to reqnire that 4.24 

holds for any -g E L2 (Et). Unforttmately, this requimnent cannot be met in ail 

cases. This point is not dear in [18]. and to make it sot we investigake soue of the 

cousequences of the condition 4.24. 

Let us use the notation 9j.k = u ~ ~ / ~ T ~ .  Now by definition, if 4.24 holds for every 

g E L2 (B), then {i)i." k E 2 )  is said to be a Bessel sepuence of L2 (W). It ean 

be shown that the +k define a Bessel sequence if and only if 

for some constant B (the reader is referred to [47, page 1551). By contrast 4.21 

implies that {rj" : j. k E Z) is a Riesz-Fischer sequence or equivalently that 

with A = l l ~ l ( - ~ .  Together, the inequalities 4.25 and 4.26 indicate that the gj-" 

comprise a Riesz bask of L2 ( W )  . A sequence (hk) in a Hilbert space H is said 

to be a Riesz basia if it is equivaient to an orthonormal basis (el.) of H. That is. 

there exists a bounded linear operator 7. with a bounded inverse, such that 

Accordingly, there is an orthonormal basis {eZk : j, I; E Z ) of 



and a boimded invertible operator 'T s u d  that 

where P, is the orthogonal projection onto 4.27. Now. from 4.28 we obtain 

and since 4.20 implies that the ci.' define a Bessel sequence. we conclude that 

{[j-? jit E E Z) must be a Riesz bais  for the subspace R(K) .  Conseqnently. the 

ineauali ties 

must hold and hence R ( K )  must be a closed subspace of L2 (IR). In the case of 

bounded operators K, since K is a densely defined bijection with a closed range. 

the Open Mapping Theorem [27. page 2863 implies that K-' must be continuous. 

As this need not be the case in general, we conclude that {$-' : j, k E Z) is not 

necessdy a Riesz basis and that in general, 4.24 does not hold for all g E L2 ( W ). 

Even though the sets { t i y k  : j: k E Z) and {Sv? j, Ir E Z) are not necessarily 

Riesz bases, one of the main ideas behind the WVD is that the quasi-singular des 

nj c m  be selected so that the sets {TL'' : j, Ir E Z) and {vi? ji' k E Z) are Riesz 

bases. This idea leads us to the notion of vapelettes. 
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Definition 4.1 Let d k ( t )  = ~ ~ l ~ w ~ ( 2 j t  - k) and suppose that the jùr~ction TU s a t  

then {luj-" : j. k E Z) is sazd to be a collectim of vaguelettes. 

The importance of the definition above is ehidated  in the followkg theorem. which 

is a consequence of Schur's lemma [36, page 2701. 

Theorem 4.1 If (7uj9" : j. k E Z) is a collection of vaguelettes. then thete exists a 

That U.. a collection of vaguelettes must Le a Bessel sepence. 

Suppose that the gj can be selected so that the functions u5' and v5" define 

collections of vaguelettes. A sequence {hk) in the Hilbert space H is a Bessel 

sequence if and only iffor any orthonormal basis Cek) of Ei there exists a a bonnded 

linear operator 7 such that 

T e k  = hk- 

With this fact and property 4.22, we can show that the sets (3' : j. k E Z) and 

{v5' : j7 k E Z) are Riesz bases. 

Donoho has shown that for certain homogeneous operators. the functions uj.' 

and v5" do indeed lead to collections of vaguelettes for appropriately defined gj aud 

wavelets ?,b that satibs: 
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2. S-' tn$( t )d t  = O  for R = 0.1 ..... N. 

with M and N sufficiently large. In particdat, many of the homogeneous operators 

studied in [18] ,- such as integration and fiactional integration. can be expressed in 

the fom 

where a > O and SZ is homogeneous of degree zero (Q(w) = Q(w)  for any a > 0). 

In such cases. the choices nj = 2-=j and M .  N > a + 2 are sufficient to ensure tbat 

the fonctions u5" and v5' define collections of vaguelettes- Moreover. since these 

collections are &O Riesz bases and hence wd-behaved, the rate of decay of the 

gj c m  be regarded as a measure of the dl-posedness of the inverse problem based 

upon the operator equation 4.19. For example. the case of ordinary integratiori 

corresponds to a = 1, while the Abel transfoorni corresponds to a = 112. Therefore. 

ordinary integration is about twice as ill-posed as is the Abel transfom. 

We consider the estimation off fiom the noisy data gb = g+d. in the case where 

6 is white noise with variance 2. To combat the U-posedness of the inverse problem. 

Donoho proposes a new type of nonlinear winclowing known as thresholding. Let 

(y)+ positive part of S. That is, let 

and define the h c t i o n  qj by 

9 4 4  = ~gn(~)( 14 - t)+- 

A sequence of non-negative thresholds {tj : j E Z) is  selected and f is approxhated 
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by the saies 

Donoho has shown that in certain Besov spaces, the thresholds can be selected 

to obtain faster rates of convergence than is possible with standard windowing 

wethods 4.18. 

The Besov spaces Bi, can be regarded as generalizations of the Sobolev spaces 

Hs = B;., and the Hdder spaces C' = Bk-, . It has been shown in [36. page 1991 

that for rapidly decreasing wavelets tl, of svfficient regularity. B;, can be completely 

characterized in terms of wavelet coefncients. In particulm. it is shown th& f E BP, 

if and only if: 

Suppose that f is supported in the interval [-a.a] and B be a ball in Bi,? then 

the autkor defines the minimax-wavelet rkii by 

~ ~ ( e .  B) = inf sup E 
0, ) f EB 

with f given by 4.30 and E the expectation operator. The rate of convergence is 

defmed to be the rate at which 4.31 tends to zero as e -t O+, and the author proves 

that. in the case p < 2, this rate is optimal. 

G. Walter uses a method inspired by the WVD to obtain expansions for wide- 

sense stationary stochastic processes that emulate the Karhunen-Loevé transfor- 

mation [48]. In 1441, similar ideas are employed to solve the mixture problem for 

random variables. Let X, Y and Z be random variables with respective probability 



clensity fimctions f .  g and h. If the randoni variables Y and Z are independent w d  

then the probability density functions are related by the equation 

f ( t )  = /= g(r)h(t - r )  dr. 
-3C 

The mixture problem entails estimating the random variable Y £iom the noisy 

measurements X. That is. we want to solve for the probability density gl gïven the 

densities f and h. This is a problem of deconvolving g fiom h. 

Walter begins by assumilig that the unknown function belongs to the subspace 

V,. IR particular. it is assumed that V, is generated by an orthonormal scaling 

bct ion  of Meyer type. Walter has skown that the Fourier transform of such a 

sc&g hinetion can be expressed in t h  fonn 

where p is a non-negative Mimoddar function with supp(p) c [-n/3, a/3]. The 

Fourier transiorm of the resulting scaling fnnction will be supported in the interval 

[-4?r/3,4~/3] and will be rn times continuously differentiable whenever p is TB - 1 

times continuously differentiable. 

Next . one assumes that h(w ) > O and defines the functions by 1 -  I 

and the functioris v"vk by 
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Since ir has no zeroes and 4 is compactly supported with supp(g>) c [ - 4 n / 3 . 4 ~ / 3 ] .  

the fnnctions un." and. iu particular. the functions am". are wd-defined LZ ( W )  

objects for aiI n. k E Z. 

It is easy to show that the sets of functions {un*" : C E Z) and {VR' : k E Z) 

form Riesz bases for their dosed linear spans. Futhermore. since 

it follows fkom 4.32 and 4.33 that 

R e d  that g E V,. This means that we c m  expand g in t e r m s  of : X- E Z ) 
to obtain 

whereupori we obtain. fiom 4.33 and the convolution equation. the expansion 

If we now use the biorthogonality property 4.34, then we find that 

a; = (f ( t ) .  un.yt)). 

if for some a, A > O 
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then 

which implies that as n + ao, the problem of recovering f from g and h becomes 

increasingly iu-conditioned. 

We mention several points not examined by the author. First, even though the 

two sets { u n w k  : k E Z) and {vn" : k E Z) are biorthogonal. they are not in general 

dual Riesz bases. This is due to the fact that their closed Linear spans do not in 

general coincide. To see that this is the case, suppose that u n y O  can be expressed in 

t m s  of the bais {vn.% k X: E}. W e  ftid that 

which implies that 

However. by definition 

which implies that 

and since h is not periodic, eqaation 4.35 cannot hold for al l  w E B. 

Secondly, we note that the orthogonal projection of {vnL : k E Z ) onto 
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is in fact the dual basis of {un-l' : k E Z). Suppose we let {P' : k E z ) denote 

the dual basis. Then. for any f E L2 (W) the orthogonal projection o f f  onto Un is 

given by 

(Pu f) ( t )  = C( f, Ü ~ T ~ ) u " " ( ~ ) .  

Ln particulm. if we let f = vnj  and use 4.34. then we find that 

(puvn7i) ( t )  = ün-i(t). 

A consequence of the above is that if f E Un then 

f ( t )  = C( f, ~ " ~ ) u " - " ( t )  

However. if the function f has components in the orthogonal compliment V$. then 

the expansions 4.36 will not be equal. Since the orthogonal projection of f yields 

the best mean-square approximation of f in the subspace Un, there may be circum- 

stances in which the orthogonal projection offers some advantages. However. if IL 

is sufficiently large, the diffaences may in fact be small. 

ki the next chapter, we s h d  consider a similar approach for the solution of 

convolution integral equations. However. our approach d l  cliffer fiom that of 

Walter's in the sense that we wiU make use of dual Riesz bases. Furthermore. the 

results that we will present are valid for general orthonormal scaling fmctions. 
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4.4 Discrete deconvolution 

We now tnrn our attention to h r o  papers in wkidi methods for solving the discrete 

deconvolation problem 

and that of Chen and Lin (81. 

In the article [33], the authors assunie that equation 4.37 arises via a discretiza- 

tion of the continuons convolution equation 

Furthmore.  it is supposed that the so-cded blurring sequence {fik : k E Z) is  IL 

fact a two-scale sequence associated with the orthonormal scaling b c t i o n  #. That 

with 

Ifin fact {he : k E Z)is a bona-fide tw-scde sequence. then its d i s n e t e  Fourier 

t rans fom (DFT) 

must satisfy the equation 
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Two partidar coiivolution Lemeh h are treatecl nu~uericdy in this paper. The 

f i u t .  a Gaussian kemel, arises in many practical situations. Suppose we assume that 

the sequence {hr : k E Z) is d e W  by sampling the fùnction h on some repilar 

grid. That is. 
* 

for some ci: > O. In this case we have 

It is obvious that the quantity above is positive for any k E Z and we conclude that 

no regdar sampling of a Gaussian kemel aill g ive  rive to a two-scale sequence. 

The second kernel to be considered is the so-called Fejér kernel. We assunie 

that IL is of the form 

wliere the scaling has been selected to ensure that H(0)  = fi. which is implied by 

t h  nomalization condition $(O) = 1. Since h is band-limited. it is not unreasonable 

to assume that samplùig should be at or above the Nyquist rate. With tkis in muid. 

we suppose that a 2 1 and set 

The Fourier transform of h is 

and by Poisson's summation formula, 
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fi we restrict o i u  attention to the point w = a/2. then equation 4.38 becomes 

and it follows fiom 4.39 that 4.38 cannot be satidied for any equally spaced samplhg 

of the Fejér kernel with rr > 1 (sampling above the Nyqnist rate). 

ki general. one cannot expect that a sampled convolution kernel wiIl produce 

a two-scde sequence corresponding to an orthonormal scaling function. ln this 

sense. the method developed Liu et al does not really make use of wavelet analysis. 

However. as we s h d  see. the proposed method does rnake use of an algorithm which 

is similar to a dïscrete wavelet transform so that the method is wavdet-like. Even 

so, one of the advantages of wavelet analysis is the fieedom to choose discrete filters 

which are appropriate for a particular application. Since the filters employed by 

the m e n t  method are dehed  by the convolution kernel. such fkeedom is absent 

in this case. 

As we have just mentioned, even if {ht : k E Z) is not a two-scale sequence. the 

proposed method can still be implemented and leads to a new kind of rebdarization. 

EIowever. it is uot entirely dear from the numerical evidence presented that this 

met hod offers any par t ida r  advant ages over more traditionai methods. Moreover. 

important properties such as convergence and regularîty have not been considered. 

We o u t h e  the proposed method and make some cornparisons with a standard f o m  

of regnlarization. 

Let us suppose that the sequence {hi, : k E Z) is summable and has been scaled 

JO that 

In this case. we can always find another sequence {gr, : k E Z), with DFT G such 
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In fact . the choice 

will do. At this point we should note that in the case of wavelet analysis, the filter 

G is taken as the mirror of the filter H. In particdat. 

- - 
G(w) = e-"W(w + n). (4.41) 

However. d e s s  H satisdies a rescaled version of 4.38. the choice 4.41 will not lead 

to a perfect reconstruction fdter bank. 

Now. since H ( 0 )  # O in many applications, one can view Chk : k E Z) as a low- 

p a s  filter. while {gr- : k E Z) can be thought of as a high-pas filter. The authors 

use these filters to implement a filter bank scheme for digital signais. This scheme 

can be defined. in the fiequency domain. by the formulae: 

1. Decomposition. 

and 

2. Reconstruction. 

This filtering scheme is analogous to a redundant (un-decimated) dismete wavelet 

transform (see (411). 



CHAPTER 4- LITERATURE REVTEW 

If we take the DFT of equation 4.37. theu we obtain 

H(w)&(w) = Yb) 

and in light of 4.42. we see that 

The deconvolntion problem can now be thought of as one of recovering the missing 

informa tiou 

Once DL has been obtained, the f o r d a  4.44 can be used to recover an estimate 

of Xo. For the purposes of illustration, let us restrict our attention to a single level 

of decomposition and reconstruction. 

We obtain fkom 4.42. 4.43 and 4.44. the special cases 

and combining 4.46 and 4.47, we obtain the reproducing eqwtion 

This system is singular and accordingly we will restrict our attention to the second 

equation. The equation relating the missing information Dl and the data XI = Y 

is 
- 

(1 - ( G ( U ) ~ ~ )  D1(w) = H ( w ) G ( w ) Y ( w ) .  
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The function H may have zeroes on [-ir.ir] ancl since noisy data Y" Y + d 

need not vanisk at these points. equation 4.49 niay not be well-posed. The aiitkors 

suggest that one take as an approximation to Dl. the solntioii 

- 
(1 - lqw)12) D:(W) = H(W)G(~)Y~(W). 

- 
where a < 1. Upon lettkig a = 1 - A. the use of 4.38 yields 

of the equation 

which is the minimizer of the fimctional 

If we apply 4.47, then fiom 4.50 we find that 

which could be thought of as the minimizer of the fünctional 

In view of the musual form of 4.52. there is no reason to suspect that the rem- 

larization method this functional dehes  possesses any of the important properties 

usudy required of more familiar methods. To demonstrate that 4.52 does in fact 

give rise to a viable regularization method, we first show that in the absence of 

noise 6 



CHAPTER 4. LITERATURE REVIEW 

where X is a solution of HX = Y. 

Let ZH be the set 

and assume for simplicity that the roeasure of Zw is zero. This assumption hpiies 

N(H) = {O). making the solution X unique (a proof for the more general case 

N(H) # {O) is analogous). Now. since 

we find that 

where 

Observe that for every w E Z&, 

and 

The desired result now follows fiom the Lebesgue dominated convergence theorem. 

We now tum our attention to the property of regularity. Specifically, since the 

choice of the reguiarization parameter A will depend on 6, we need to show that it 

is possible to choose A = A(6) so that 
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whme we have used notation 

to denote the approximate solution obtained from the noisy data Y6. 

We proceed by considering the behavior of X: - XA. where XA is the approximate 

solution in the absence of noise. If we use 4.40, then we find that 

and if we define the h c t i o n  fA by 

for r E [ O .  11. then 

It can be shown that for x E [O: 11: the fùnction fA takes on its maximum value at 

the point 

with 

In light of 4.54 we find that 

and since 

the desired result 4.53 will follow as long as we choose A = X(6) so that: 



Now, &ce 

we find that the choice 

x(a) = o(((s~l~-~). 
with O < a < 2. provides the estimate 

We point out that the leading term of the estimate 4.56 is consistent with results 

obtained when minimum nom regularization is applied to compact operators (see 

for example [29] ) . 

In the speual case 

IH(w)~' 2 A >  O. 

we find that 
X llx - XA 11 5 ~~x~~ y 

whereupon the use of 4.55 yields the error bound 

If we consider the leading order behavior of 4.57, then we obtain 

which. once again. is consistent with the results f o n d  in [29]. In fact, in the case of 

C-generalired regularization as applied to disuete deconvolution, analysiso similar 
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to that above, yields an estimate, of the type 4.57 wïth the same Leading order 

behavior as 4.58 

In view of this similarity, we suspect that there is Kttle difference between the 

method of Liu et al. and that of C-generalized regularization. The method of C- 

generalized regularization can be dehed by though the use of t h  bc t iona l  

We define the inverse filters RA and RA by 

and 

and observe that they are related by the equation 

Plots of the filters R" and 'HA iu the case of a Gaussian convolution kernel 

appear in figures 4.1, 4.2 and 4.3. We observe that for rmall A. there is alriost 

no merence between the plots of 31" and ?&, while for larger values of A, the 

main diffaence is near the mid-band frequencies w = &7r/2. These observations 

are c o h e d  by the equation 4.60, fiom which n e  conclude that if 11611 is s m d .  

then thece will be negligible merences between the two regalarization methods. 

Finally. we should mention that, as in [33], we have restricted OUI consideration 

to a single application of 4.42 and 4.43 to 4.45. As is demonstrated by the authors. 
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Figure 4.1: RA. 'HA, A = .O1 

I 

u 

Figure 4.2: UA, NA, A = -05 



Figure 4.3: W .  UA. X = -1 

it is possible to derive more general reprodncing equations in analogy with 4.48. 

This leads to the possibility of a regularization method. with more than one reg- 

ularization parameter, which may improve the flexibility of the proposed method. 

However. we shall leave consideration of this generalization for future research. 

We now consider the second article in which a discrete deconvolution problem 

is addressed. The main focus of the paper [8] is the equation 

where the sequence {x[k] : 6 E Z) is assumed to be obtained by sampling a l/ f 

fractal process x ( t ) .  In general, a stochastic process z is said to be a I l  f process if 

its exnpirical power spectral densitg fi sativfies 



CHAPTER 4. LITER4TURB REVTEW 59 

for sorne 7 mch that O < y < 2. The authors consider the problem of estimatuig 

the sequence { x [ k ]  : X: E Z) fkom the noisy data 

with {b[k] : X. E Z) a saropling of a white noise process b( t ) .  

Due to the non-stationary nature of x (Le. seif-similarïty and slow decay of cor- 

relation) standard statistical filtering technique, such as Wiener filtering, prove to 

be inadequate. The authors propose a multiscale filtering technique which com- 

bines Wiener filtering and an un-decimated wavelet trandorm. This method relies 

on the ability of the wavelet trans.form to remove. or at least reduce, non-stationary 

dec t s  making the subsequent Wiener filtering more effective. 

The ability of wavelet transforms to reduce non-stationary behavior in I/ f pro- 

cesses is not completely unjustified. Ln the special case of fractional Brownian 

motion. Flandrin (see [19]) has shown that the continuous wavelet transfo= of z. 

is a wide-sense stationary process in t with power spectral density 

h the related work [35], Masry shows that for each fked j, the wavelet coeffi- 

cient s 

zi[k] = (r , $ik) 

of a stochastic process x, with wide-sense stationary increments, forms a wide-sense 

stationary sequence {zi[k] : k E Z). 



Admit tedly. these results are far fkom being complete and the utility of wavelet 

transfoms for the analysis of general l/f processes is still under investigation. 

However, it is noted iri [45] that there is strong empincd evidence to suggest that 

wavelet transforms serve as whitening filtas for all l/ f processes. That is to say. if z 

is a zero mean l/ f process wïth power spectral density 4.62. the wavelet coefficients 

x j [k ]  are weakly correlated dong and aaoss scales and satise 

Lt is the properties above that make the proposed method plausible. 

Let {hl. : k E Z) and {gr, : Ir E Z} be the two-scale sequences corresponding to 

the orthonormal wavelet basis {@" : j, k E z). In particular, we suppose that 

these sequences satisfjr the dilation equations 

and 

k 

with {gk : b E Z} the mirror of ( I rk  : k E Z)' given by gk = (-i)"f'h~+ One cari 

define the un-dechated discrete wavelet transform (analogous to 4.42 and 4.43) of 

the sequence {x[k] : k k E} via the equations 

and 
- 

X'(U)=G(~'-'U)X~-~(U), j = 1 , 2 : . - - *  (4.64) 

where Xu = X is the the DFT of {z[k] : k E Z}. If we take the DFT of equa- 

tion 4.61, the we obtain 
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and by repeatedly applying equations 4.63 and 4.64. we can derive a hierarchy of 

equations equivalent to 4-65. For example. a single iteration of this process produces 

the systern of eqnations 

- - 
where Y' = GY and K = HYI. Since X1 and Xl mnst be estimated ffom the 

uoisy data 

and 

the authors propose the method of Wiener filtering for the approximation of X1 

and Xi. Once snitable estimates of X' and Xi have been obtained, Xo can be 

estimated by applying a down sampled inverse wavelet transfom. 

Wiener filtering is a least-squares technique for the estimation of a stochas- 

tic process from noisy or impredse measurements (see [39]). For instance. if this 

technique is applied to 4.61, then {z[k] : h E Z) is approximated by the sequence 

The füter {c[k] : k E Z) is to be selected so that the expected niean-square error 

is nuninuzed. If one assumes that {x [k]  : k E Z) and {&[k] : k E Z) are wide-seuse 

st ationary sequences with zero cross-correlation, then 



where & and & are the DFTs of the autocorrelation sequences 

Ifit is now assnmed that {=[hl : h E Z) and {G[ l t j  : h E Z) are white noise sequences 

with the respective Mnances a f  and ni, then 4.67 can be written as 

Equation 4.68 defines a hct ional  J ( C )  = E {le[k]12) and if we niinimire this 

functional on the Hilbert space L2[-nt n]. then we obtain the resdt 

We emphasize that the denvation of 4.69 depends heavily on the assumption tkat 

(%[hl : k E Z) and {&[hl : k E Z) are wide-sense stationary white noise sequences. 

With regard to the solution of system 4.66. it is the role of the wavelet transfonu as 

a whitening füter for l/ f processes that makes this assumption reasonable. Before 

further consideration of the system 4.66, we list several points regarding the filter 

(c[k] : k k~ Z): 

1. Stability. The filter {c[k] : k E Z) can be computed fiom its DFT 4.69 

throagh the use of the equation 

and if we assume that (b[k] : k E Z) is a sequence in el (Z), then it is easy to 

show that 



However it is not entirely clear that {CM : k E Z) is a stable füter in the 

sense t hat 

In this case however. a theorem. due to Wiener (see for example [26])- ensures 

that {c[kf : k E Z) E tL (Z ) whenever {b[k] : k E Z) E P (Z ). 

2. Caus&@. If {b[k] : E E Z) is causal. that is 9 = 0 for ail It = -1. -2.. . .. 

theu {c[k] : k E Z) will not be causal. The Wiener filtering technique can 

be adapted to produce a causal filter. which may be desirable for certain 

applications. This complication in considered in some detail in [SI and will 

not be pursued farther here. 

3. Regularization. The DFT of the filter {c[k] : k E Z) is identical in form to 

that obtained by a minimum nom regularization scheme in which the reg- 

darization parameter X is predetermined by the variances n: and R:. This 

observation suggests the possibility of a rednndant multiscale regularization 

metkod for deterministic convolution equations. 

Let us now return to 4.66 and suppose that the assumptions needed for Wiener 

filtering hold. That is. let us suppose that (z'[k] : k E 21, {xl[k] : k E Z)? {t5'[I;] : k E Z) 

and {& [k] : k E Z) are white noise sequences with respective variances $, 4, , n,2, 

and gzl. W e  should point out that in view of 4.62 and the fact that &O) = 1, the 

sequence {xl [k] : k E Z) may not be wd-dehed. Li such cases. 4.64 should be 

used to replace 4.66 with a system of equation for the detail sequences {&[LI : j 2 

1, k E 2) only. 

If we apply Wiener fütering to each equation in 4.66. in the presence of noisy 



data. we obtain the approximations 

and 

and 

We r e c d  that, in the fiequency domain. the operation of down-sampling is given 

by the mapping 

1 X(w ) ct (DX) (w )  = 5 ( X ( w f 2 )  + X ( w / 2  + *)) - 

If 4.70 and 4.71 are down-sampled and the inverse discrete wavelet hansform 

(DWT) applied to the revulting fnnctions. then the approximation 

with 

is obtained. Alternatively, if the nndecimated inverse DWT is applied directly 

to 4.70 and 4.71, then the approximation 

is produced. Now, since the filters H and G possess the properties: 



we see that. when X = p. 

which is the approximation one expects when ordinary Wiener ïdtering is applied 

directly to 4.65. 

We emphasize that the method of Wiener filtering is dependent upon the knowl- 

edge of the power spectrd densities of the sequences {x[k] : k E Z) and {@] : E E Z) 

and. in many cases. soch specific knowledge may not be  available. However. as we 

have mentioned. 4.73 and 4.74 siiggest the possibility of a multiscaie regularization 

metkod. which is a naturd generalization of Tikhonovk regularization 4.17. 



Chapter 5 

Methods based on scaling 

funct ions 

5.1 Introduction 

In this chapter. we will examine some of the consequences of the assumption u E V, 

with regard to equation 2.4. In particular, we are interested in cases for which this 

assumption leads to a modified problem which is well-posed. We show that there 

are conditions, involving the spectnun of a real, symmetric Toeplitz matrix. which 

ensure that the operator' Plv, is either weakly or strongly invertible. Subsequently? 

some of the properties of this matrix are investigated and then used to establish a 

convergence result as well as comment upon the condition of the modified problem. 

lThe restriction of Ç to V,. 
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5.2 Deconvolution of functions in scaling func- 

tion subspaces 

Let us assume that the Mknown fnnetion u belongs to the scaling funetion subspace 

where 4 is an orthonorrual 

K = V (&-* : h E Z), 

scaling function. If we let [k] = ((u. 9."'). then u 

admits au expansion of the form 

which allows us to rewrite 2.4 as 

if we use the notation Sn(t) = (ÇV" )  ( t ) :  then 5.2 becomes 

We see that under the assumption u E V,, the problem of solving 2.4 for the 

iinknown function a is equivaent to the problem of solving 5.3 for the anknown 

sequence {u,[k] : k E Z). In terms of operators, we have simply replaced the equa- 

t ion 
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Figure 5.1: The huictions (-1 and 

with the new equation 

Q l v ~  = Y, 

where BIv. denotes the restriction of Ç to the subspace Vn. 

The expansion 5.3 is similat to the scaling fnnction expansion 5.1 in the sense 

that the relevant functions are obtained by translating a single function by the 

amount 12/2*. However, onlike 5.1, the basic h c t i o n  depends on n. and as the 

resolution is changed we obtain expansions with respect to different functions. Tkis 

is due to the fact that the operations of translation and dilation do not conimute. 

Figare 5.1 shows typical examples of the h c t i o n  Cn in the case where g ( t )  = dtl. 

In section 2.2, it was shown that the problem dehed by 2.4 i ü  ill-posed. In the 

corning sections, we s h d  consider circumstances under which the new problem. 

deiined by 5.3, is wd-posed. This consideration will entail an investigation of the 



sequerice of functions {&(t - k/2") : II  E Z ). In particular. we are interestecl in the 

properties of (&(t - k/2") : k E Z) which will enable us to recover { ~ [ k j  : k E Z ) 

in a unique and continuous way from the specüied data. In the next section. we 

begin this investigation by considering the simpler problem of recovering a single 

scaling fnnction coefficient %[k]. 

5.3 Coefficient fUnct ionals and weak invertibility 

Consider the equation 5.4 and let z be some element of L2 (W). Suppose that. 

instead of solving 5.4 for u, we seek to recover the moment (u, r )  fiom y. If' we 

define the bear fnnctional c : L2 (Et) + B by 

tken is can be shown that c is continuous if and only if z E R(Ç'), where Ç* is the 

adjoint of Ç (see [l? 181). 

- 
We are particularly interested in the functionalv ~ . k  : G(V,) -t B1 which are 

defined by 

%+(Y) = (u. +nyk)- (5.6) 

Specifically. we want to know when the functionds 5-6 are continuous. Since we 

have assumed that  u E V,, we are working with the operator eqnation 5.5 and 

accordingly, the functionals 5.6 will be continuons as long as +"." belongs to the 

range of the adjoint of the opaator ÇIvn for ail k E 1. 

Definition 5.1 If the coeficient finctionak ~ , k  are continuovs for all A- E 2. then 

we u~dl say that the operator GIvn is weakly invertible. 
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We beo@ by considering the adjoint of ÇIvn- Let Hl and Ha be Hilbert spaces 

with respective inner-prodncts ( 0 .  -)1 and (-,-),. Suppose that K: : Hl -t H2 is a 

bonnded linear operator. The adjoint K' : fl2 + Hl is the bounded linear operator 

defined by the equation 

(Zx. g) ,  = ( X ? K * ~ ) ~ -  

The existence of the operator K' is paranteecl by the Riesz Representation The* 

rem. 

We can regard Ç[vn as a linear operator mapping the Hilbert space V, into the 

Hilbert space Ç(V,) R(Blvn). The adjoint of Çlvm is defined by 

where f E In and h E Ç( V,) . We notice that for f E V, 

and since P, f = f, we find that 

It now follows that 

and hence the linear hctionals  ç,.k are continuons if and only if 

We immediately notice that if {pC : I; E Z) c R ((BIv,)'), we must have 



That is. if the ~ . k  are continuoas, Glvm must be a bijection onto its range. Further- 

more, we observe that 

( ~ ( t ) ,  qPk(t)) = (u(t + h/2"): &'-*(t)). 

Let uk(t)  = u(t + k/2")- then if y = pu, we find that 

and hence 

In other words. since V, is closed anda translations which are integer multiples of 

2-". the ~ , k  are continuous if and only if is continuous. If we want to recover all 

of the ~ J l r ]  fiom the function y = Gu, it ïs enough to ensure that Qw0 E R((G IV.)=). 

Before considering conditions which ensure the weak invertibility of ÇIv,. we 

examine some of the immediate consequences of 

which will be of use in the work to corne. Condition 5.8 implies that there exists 

some in E Ç(V,) sach that 

= P,G*&, 

and since, for any u E Vn , 

%[O] = (a, P O )  = (GU&), 
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we conclude that 

c n . i ( ~ )  = (At), Cn(t - kI2"))- (5.10) 

if 5.8 holds, then the ~ . k  are continuous and the Riesz representation theoreni 
- 

ensures the existence of a Mique fimction un E Ç(Vn) mch that 

Accordingly. the fnnction l n  = v,, defined by 5.9 is Mique. 

The sequences 

and 

are biorthogonal. This follows easily fkom the orthonormality of {p.' : k E z). 
which iniplies that 

The set, X~ is a Riesz-Fischer sepence with 

which follows fiom 5.9 and the Parseval's relation 
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We mention that X, is a Bessel sequence with 

- 
and a proof sinular to that above shows that X, is also complete in Ç(Vn). 

We retum our attention to the weak invertibility of the operator Elvm. We 

provide a characterization of this property which makes use of the Gram matriz of 

the sequence X,. The Gram matrix of X,, given by 

is a symmetric Toeplitz ma& and, in Iight of 5.14, is a bonnded hear opera- 

tor mapping tZ (Z) into t2 (2). An explicit expression for the entries of 5.15 can 

be obtained by considering the Fourier coefficients of an appropriate 2~-periodic 

fimction. Moreover. this fanetion can be defined in terms of the fnnctions 6 and 4. 

To find this function. we note that 

Also note that 

Hence. if we use the notation 



tken the Lebesgue Dominateci Convergence Theorem (see. for example [38]) allows 

us to write 

That is. the entries of 5.15 are in fact the Fourier coefficients of the fimction 5.16 

and in partidm. 

We are now in a position to prove the foliowing theorem. which provides a 

characterization of the weak invertibility of Elv, in terms of G,. 

Theorem 5.1 Let & be dejîned as in 5.16. If them ezLsts a sepence {Ai : j f W) c 

L2[-n. n] and a constant M such that 

Proof. Let 

and define the functions d E E(K) by 

If we now let 
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Since Pn4' is continnous, P,Ç'uj converges weakly to P,Ç'u. Now 

(pnç'v') ( t )  = C ~ ; 4 ~ - ~ ( t )  

and. ia view of 5.19. we Lave 

Since the strong and weak limits must coinude. we conclude that 

and therefore 5.8 holds, I 

Observe that if 1/& E L2[-a.*], then Elv, will be weakiy invertible. We dso 

observe that if Ç is weakly invertible. then so is Çlv, for any n. However. the 

converse does not hoid. For example. suppose that the Fourier transf'orm of the 

convolution kernel is 

and let 4 be the Shannon scaling hction.  That is 

1, - A < W < 9 t  

0: otherwise 

The operator G is not injective and hence. is not weakly invertible. On the other 

hand. for w E (-qz). 

and since I / G ~  E L2[-n. n]. the operator Ç lvo is weakly invertible. 
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I ( 

Finally. we note that even if the hctionals c,,k are continuous, the inverse of 

the operator Civ, need not 

last statement is equivdent 

be continuous. Since Vn and t2 (2) are isometnc' the 

to saying that 

need not hola for all y E Ç(V,). We r e c d  that {uk : k E Z) is raid to be a Bessel 

sequeuce as long as 

According to [47. page 1541, 5.21 is equivalent to 

for any a. In view of 5.22 and 5.10, we see that 5.20 wiU hold if and only if X, is 
a Bessel sequence. 

5.4 Strong invertibility 

Suppose that Ç) v, is weakly invertible. As we have seen in the previous section. 

this means that BIvn is a bijection onto its range. However, ( ~ 1 ~ J - l  need not be 

contuiuous. Our present objective is to derive v d a b l e  conditions which ensure 

that (Ç lv,)-' is continuous. In particular, we are interested in hding the properties 

of the hct ions  g and q5 which will ensure that the inverse problem defined by 5.5 

is weli-posed. 

Definition 5.2 If (BIVn)-' is a contirmous lineai operator mapping Ç(V,) onta V,. 

then we say that Çlvn is stmngly inuertible. 
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Recd that under the assumption u E K, equation 2.4 can be mtten as 

Çlv,u = y. 

the subspace V, and t2 (Z) are isometric and therefore BIvn will have a continuous 

inverse if and only if the hear operator defmed by 

is continuous. In tum. the linear operator defined by 5.23 will be continuous if and 

only if there exists a constant C such that 

and since 

for any y E ç(Vn). SLice 5.24 is equivalent to 

the operator Blv, will be strongly invertible if and only if the sequence of functions 
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foms a Bessel sequence of Ç(Vn)- We have akeady pointed out that whenever the 

sequence ~n insts. it must be a Riesz-Fischer sequence. Hence, if xn is a Bessel 
- 

sequence, then it must be a Riesz bais  of Ç(Vn)- 

Inequality 5.24, or equivalently 5.25, can be difncult to establish when one works 

with the sequence x. However, it =an be shown that X' is a Bessel sequence if 

and oniy if the set 

Xn = {Q(t - k/2") : b E Z) 

is a Riesz-Fischer sequence so that we may work Mth the sequence X instead. Since 

the sequence X' is defined explicitly by 

M t )  = ( G P O )  ( t ) ,  

this approach turns out to be easier. 

A proof of the aforementioned equivalence makev use of the relevant definitions 

and the biorthogonality of the sequences X, and 2'. Assume that X~ foms a 

Bessel sequence of S(V,) and let 

The sequence X,, is a Bessel sequence and hence the fànction y is a well defined 

element of Ç(Vn) for any {bk : k E Z) E l2 (Z). The biorthogonality of X. and x;, 
j5dds 

= ( ~ ( t ) ,  L(t  - h/2m)) 

and through the use of 5.24 we obtain 

which Mplies that X, is a Riesz-Fischer sequence. 
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Let us now suppose that Xn is a Riesz-Fischer sequence with 

We use Parseval's relation for the orthonormal baviv {p.' : H E Z ) to obtain the 

inequality - 

Recall that X, is complete in Ç(Vn) and therefore 5.26 implies that there exists a 
_I_ 

continuous hear operator 7 : Ç(V,) + Vn such that 

The orthonormality of {p." k k Z} is used once again to obtain 

- 
and. since X= is the unique seguence in Ç(Y) biorthogonal to X. we condude that 

- 
Finally. the operator 7'7 : Ç(V,) -t Ç(V,) is continuous and therefore is a 

Bessel seqaence wit h 

We now focus on establishing conditions which ensure that Xn is a Riesz-Fischer 

sequence of Ç(V,). In view of the fact that X, is a Bessel sequence. such conditions 

will also guarantee that X, is a Riesz basis. 
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- 
The sequence Xn is said to be  a Riesz bais of Ç(V,) if it is complete and if 

there exist positive constants A and B such that 

Inequality 5.14 ensures that a suitable choice for a upper Riesz bound B satidies 

It is the existence of a lower Riesz bound A that is, in general, difficult to v e -  

However. since the sequence X, is generated by translating a single function &,, we 

c m  use Parseval's relation for the Fourier handom to simplify the estimation of 

W e  have 

whereupon the use of the notation 

and the change of Mnable w = u + 2nf yields the equation 
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We have already seen tbat 

for h o s t  al l  w and 

that 

hence the Lebesgue Dominated Convergence Theorem hplies 

In view of 5-28, we see that 5.27 and 

with 

are equivaient. 

Suppose that & satisfies the inequalities 

for h o s t  all  w then since the fnnction 5.30 is unimoduiaro if 5.31 holds. then 5.29 

(and hence 5.27) must hold. In other words, if we can show that there exist positive 

constants A and B such that the inequalities 5.31 hold for almost all w' then Xn 

must be a Riesz basis for its closed linear span. 

For our present pnrposes, what we have just shown is enough. Howevero it is 

interesthg to note that in most practical cases 5.31 and 5.29 are, in fact. equivalent. 
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For instance if ên is continuous and we select D from some appropriate 6-seqtience. 

then it can be shown that 6.29 implies 5.31. 

The assumption that G, is continuons is not overly restrictive. For example. we 

know that g, 4 E L' (B) and therefore: the huictions 5 and & wiU be continuous. 

Fur thermore, since 

we see that if the series 

converges u n i f o d y T  then the series 5.16 converges uniformly and G, will be con- 

tinuous. 

It is not difficult to find conditions sufident to enstue the d o r m  convergence 

of /$(w + 2nl)/*. Henceforth are M11 assume that the scaliog functions we use 

satisfy 

for some a > 112. It follows that 

and since ne can restrict our attention to w E [-rr, ir], we find that 

In light of the inequality, 
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we condude that CI I#(w + 2 ~ 1 ) 1 ~  converges unifody on compact subsets of R. 

Many orthononoal scaiing hrnctions will satibe the inequdty 5.33 for some 

u > 1/2. For example, if t$ is a Meyer scaling fimetion, then 4 has compact 

support and 5.33 is satidied for any choice of a. 

If q5 ir a Daubechies scaluig fnnction. then # is compaetly supported in soue 

interval I c W. W e  can choose 4 fÏom the Daubechies f d y  so that it is N- 

tirues continuonsly differentiable. Lt follows that integration by parts leads to the 

ineqnality 

When 4 belongs to the Battle-Leniaxïé f d y ?  we have 

where M is a continuons 2ir-periodic function and N is a positive integer. The 

inequality 5.33 is satisfied with a = N. 

When G, is continuous. we can define the so-ealled optimal Riesz bounds for 

the sequence X,. In particular, we let 

& = min G,(w) 
WC[- l r ,~ ]  

and 

B, = max ~ ~ ( , ( w ) .  
WC[-.n,n] 

(5.35) 

We reiterate that the upper bomd B, will always exist and is bounded above by 

I I Ç ~ ~ ~ .  Furthermore, it is the existence of the lower bound A, whidi can be difncult 

to establish. With regard to the inverse problem at hand, it is the lower bound 
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which is most important. In fact. we have shoum that (41vn)-' wil l  be continuous 

if and only if& > O. By borrowing ideas used by Cohen (see [14, page 1821) in the 

study of orthoiiorrnal wavelet bases, we can find necessary and s d u e n t  conditions 

for the existence of a positive A. We d need the following definition: 

Definition 5.3 A compact set K L?; said to be congruent t« [ -n,x]  moddo 2s ( u e  

wiU use the notation K r [-x? K I  mod 2x1 ifi 

1. (KI =21~ and 

2 for every w E [ -R,  ?TI, the~e is an integer 1 E Z svch that w + 2ai E K. 

We now state and prove the following theorem, which gives necessary and sufficient 

conditions for the existence of A, in terms of the functions <î and #. 

Theorem 5.2 Suppose that 4 satisjies 5..33: then there ezists an A > O such that 

for al2 w if and only i f  there exit& some constant C > O and a compact set K n 

[ -x .  ir] mod 2n slch that 

I3(2"w)&)l 2 c (5.37) 

f i r  ail w E K. 

Proof. Suppose that 5.37 holds for all w E K z [-r, R] mod 2r. We want 

to show that this assnmption implies 5.36 holds for some A > O. To do this, we 

assume the contrary. That is, there exists at least one w* E [-R, n] such that the 

continuous hinction & satisfies 
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By definition, for any w E [-n, ir] there exists m E Z mch that w + 2am E K. It 

follows that we can choose rn so that W. + 27rm E KI which contradicts the onginal 

assump tion, 

We now assume that 5.36 holds and show that 5.37 must hold. Suppose that 

O < e < A/2. Since 

converges unifody for w E [-n, n17 there exists a positive integer L such that 

and hence 

for all w E [-?r.n]. 

Now. in view of inequality 5.38. for each w E [-ira ?ri there exists Lw mch that 

IL1 5 L and 

Since 6 and 4 are continuous, there exists a neighborhood MW of w such that 

for all w E Mu. If we define the sets Rl by 
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for 1 = -L. -L + 1.. . . L. then. eack RI is a mbset of [-n.~] such that 

Since {MW : w E [-n, rr]) is a cover of [-st r] , {RI  : I = 4, . . . , L) is a sequence 

of subsets of [-n.a] such that 

If we now defme the sets St by. 

and 
1-1 

then the Si: 1 = -LI -L + 1.. . . L form a sequence of disjoint subsets of [-n. T ]  

satis%g 
L 

[-r.n] = (J s;. 
l=-L 

Let us use the notation Sl + 2nl to sig* the sets 

and subsequently define the compact set K by 

Since the sets Si are disjoint, 
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hence K = [-K. nj mod 2?r and 

Suppose that the hypothesis of 5.2 is satiafied. then X, is a Riesz b a i s  of - 
the subspace Ç(V,) s a t i s i g  the inequalities 5.27 with A = A, and B = Bn. 

According to Young (47: page 321, there e x i s t s  a Riesz buis {vk : k E Z) of Ç(K) .  

biorthogonal to Xn and satisfying the inequalities 

The Riesz basis {uk : k E Z) is known as the duai bas& and. since X .  is the unique 

sequence in B(Vn) biorthogonal to X,. we must have 

It is not too dïfEcult to show that the Fourier tramfolpl of i, is given explicitly by 

which implies that 

To j u s t e  the representation 5.42, we simply need to show that the seqaence xnY,' 

generated by 5-42? is biorthogonal to X, and is contained in the subspace Ç(V,J. 

If ln is given by 5.42, then 
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where p = h - j .  We use the eqnation 

&(w)  = 2-"12 j ( w ) 4 ( ~ / 2 ~ )  

to obtain 

whereupon the Lebesgue Dominated Convergence theorem implies that 

as required. 

We now show that - 
G(K). If we define the 

the fnnction &, defined by 5.42, belongs to the subspace 

sequence {ij,[k] : k E Z) by 

then. since G, is continuous with 

we have 

Equation 5.41 can be used to obtain 
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and hence. the inverse Fourier transform yields 

Since Xn is a Bessel sequence, we see that 5.44 is a weU defined function in G(V,). - 
The subspace B(V,) is dosed under translations by integer multiples of 2-" and 

t herefore the resdt follows. 

I____ 

Every hinction f E Ç(K) can be expanded in t e r m s  of either Xn or x,. The 

biorthogonality of X, and xn implies that these expansions are of the fom 

We note that. for a general f E L2 (Ut). the series in 5.45 cepresent the orthogonal 

projection of f onto Ç(V,)- Now, when y E g(V,), the solution of 5.5 

kas the expansion 

If we let u,,[I;] = (o. qPk) and y,[k] = ((y(t) ,Q(t  - k/Zn)) .  then equations 5.44 

and 5.46 can be combine to yield 

It follows that the coefficients un[k] cari be computed by convolving the sequence 

{ ~ , [ h ]  : k E Z) with the ~ V ~ S C  flter {&[k] : k E Z). Since G,(w) 2 A, > O. 

{g,[k] : E Z) E e' (Z) whenever { ~ ~ [ k j  : k E Z). That is, the inverse filter will 

be stable whenever the forward filter is stable. 
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In light of 5.46. the operator (çlvn)-' : G(K) -t V, is su& that 

If we use the 

used to show 

equation 5 -47 

equivalence defbed by 5.24 and 5.25. then. definition 5.41, can be 

that X, is a Bessel sequence with optimal bound A;'. Therefore- 

Suppose that we have the corrnpted observation y + dy, by E L2 (B), of the tme 

data y. We use a series of the form 5.46 to form the approximation ?Ln of the exact 

solution u. The error in this approximation is 

and hence 

-1 /2  frorn which we see that the rider A, gives an npper bound 

error in the approximation us. 

on the relative 

Theorem 5.2 can be used to provide an interesthg contrast between the op- 

erators and GIvn when the Fourier tramforni of the kernel g is positive. Many 

convolution kernels, such as the Gaussïan 

have Fourier transfornis satis-fyuig 
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for all w E R. When 5.50 holds. Ç is a bijection onto its range and Ç-= ewists. 

However. since g E L' (W), 9-' cannot be continuons. 

On the otber hand. 

and Theorem 5.2 irnply 

upon which 

the existence of some compact set K ZE [-R. n] uiocl27r 

Since K is compact. inequality 5.50 ensures that there is a constant C sud that 

for all w E K and all n E Z. Thmefore. if g satisfies 5.50. the operator ÇIvn is 

strongly invertible for all n E Z. However, as we shall see? 

and. as a consequence, the condition number 

cari be large for large n. Accordingly, the inverse problem defmed by 5.5 

can be very ili-conditioned even when, technically, it is well-posed. 

Findy, one might argue that 5.2 is of more theoretical than practical value. 

In fact. condition 5.37 could be difncult to verify for arbitrary fùnctions 4 and j. 

However? for many examples, q5 is a low p a s  filter with a Fourier trandorm that 
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is concentrated on the intenml [-nt r]. This fact can be used to derive a simple 

suffiüent condition for the existence of a positive &. For instance- suppose that 4 

is a Meyer scaling fnnction. thea &w) is positive for all w E (-n - E. lr + E )  and 

supp(#) = [-n - c. rr + E] for some O < a < n/3. It follows that Qlv,, is strongly 

invertible if and ody  if Iij(2"w) ( 2 D for some compact set K [-n, R] mod 27r c 
(-n - É- a + c). Heuce, a sufEcient condition for the strong invertibility of 4Iv,, is 
that Iij(2"w)l be bounded below on [-n, x ]  

The same condition is valid when 4 is a Daubechies scaling function. III 

ticular. it is shown in Appendir A, that if t$ is a Daubechies scaling hinction. 

(&)l must be bounded beloa for w E [-rd. This means that ~ ( 2 ~ w ) # ( w )  I 
be bonnded below on [-n. n] if and only if 15(2"w)l is bounded bdow on [-n 

5.5 The function G,(w) 

In this section, we begin with an investigation of the behavior of the function & 
for large (nl. In doing so. we will be in a position to prove that the funetion 

converges to the solution u of 5.4 in the special case where y E R ( g ) ,  I j ( w ) l  > 0. 

for w E R a d  

for all u2 2 W I  2 Q > O. This examination of G, will also faditate comments 

concerning the Riesz bounds G, and B,. In particular, we will be able to provide 

a justification of 
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where ~(QIv,) is the condition number, defined by 5.51. 

Let us consider G, for large positive n. In particular? we wilI show that 

uniformly on compact subsets of IR' whenever 

converges UIUformly on compact subsets of B. 

First of d. we use 5.56 to m i t e  

and note that, since 

the last series in 5.57 converges uniformly. 

Since 5.56 converges d o r m l y ,  for any E > O, we can choose L E NT indepen- 

dent of n, such that 

for aIl w E 1. It is easy to see that 
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for aII w E [-2"R,2"Q] > I and we can now use 5.57 to obtain the estimate 

which holds for aU w E i 

If we let 

L. Since 4 satisfks 5.56 and & O )  = 1. we 

for all  I # O and hence 

for ail w E I aiid O 5 111 < L. The fnnctions ij and 4 are continnous so the 

convergence of the limit 5.59 is d o m  for w E 1. If 5.59 and 5.58 are combined. 

then we find that 

for any Q > 0. 

W e  now t- our attention to the behavior of G, as r + -00. In this case. we 

assert that 

iim G,(w) = ltj(0)12 
n-+-cm 

uniformly. For any a > O? there exjsts an L E N such that 



for al l  w E l and since 

a nearly identical ar,onmnt yields the desired resdt 5.60. 

Consider 5.60 and r e c d  the defiuitions 5.34 and 5.35 of A, and B,. It foNows 

that. 

and. as long as i j (0 )  # O, we deduce that 5.54 holds. This means that. for s m d  

enough n. the inverse problem. defined by equation 5.5, will be wd-posed whenever 

G(O) # O. On the other hand. 5.59 implies 

and 

Accorduigly. even when s(Çlvn) is f i t e  for d n E 2, the problem posed by 5.5 

becomes increasingly ill-conditioned as n + oo. 

The behavior described above is not unexpected. Since g E L' (W), we know that 

i j (w) tends to zero as Iwl -t m. This means that the hi& frequency components 

of u become inaeasingly difEcult to recover. Ln light of the fact that qY"" is a low 

pass filter with a Fourier transform that is essentially supported in [-2"x, 2"n], one 
C4 

expects that n(Çlvn) will increase as the support width of +n~k inmeases. 

In some instances, the rate at which A, tends to zero as n + oo can be esti- 

mated. Suppose that 
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then 

for aU x 2 0. it follows that 

An 5 C22-"-' 

and hence. the lower Riesz bouda A, decay exponentially fart as n -t m. 

We now tuni onr attention to convergence of 5.52 in the aforernentioned special 

case, 

Theorem 5.3 Let y E R(G), with (i j(w)l > O for al1 w E W and suppose that there 

exists a il > O such that 

whenever wt 2 wi 2 52. If q5 is an ortl&ononnal scaling fùnction which satisfies: 

1. 4(w)  2 D > O '  for all w E [-n.~] and 1 -  I 
for some a > 112. 2- p ( w ) l  5 w* 

then: for any n' the function 

is a well defined elernent of Vn such that 

II= - %Il = O, 
n+Qo 

where u is the unique solution of Qu = y. 
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Proof Let Pn denote the orthogonai projection ont0 the subspace V, and Q denote 

the orthogonal projection ont0 Wj, tken 

For any f E L2 (W) we have 

aiid hence we need only show that 

Since the fünction y E R(Ç) and 1i (w)  1 > O' it follows that there is a unique 

r E L2 (R) such that 

and we can now use 5.41 to obtain 

If we define the Iinear operator M- by 

then. M, is continuous with 

and. in view of 5.65. we can write un in the form 
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fiom which we see that, for each n. u, is a wd-dehed dement of V,. 

In view of 5-67. we can mite 

and consequexitly. if we can show that the sequence of operators { B = G M , )  con- 

verges strongly to the identity. then we will have established the desired result. 

Towards this end? we use 5-66 to obtain 

where Ir = [-W. Stf] and 51' > O arbitrary. Since &(w/2") converges to 15(w)12 

uniformly on compact subsets of W and u E L2 (B). it is enough to show that 

with C' independent of n. 

Let 

C = [2"~(2q  - l), 2"r(2q + l)] 
and 

Since h, is an even function, we can restrict our attention to values of w such that 

w > O and accordingly. we can assume that q E W. In addition? we suppose that 
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n 3 NI, where NI E N is such that 

wcl consequently 1: c [fi. m). for all q 2 1. It folloas from 5.62 and the fact that 

& is periodic that. if w > Q. then 

for all q 2 1. and hence 

M;1&'1M31---. 

Suppose that w E I t ,  then 

which iniplies 
1 

On the 0 t h  hand. if w E I r ,  then 

and therefore , 

for w E [-2"x, 2"7r]. We know that 



CHAPTER 5. METNODS BASED ON SCMING FUNCTIONS 101 

and, in view of 5.62. there exists N2 2 Ni such that for all n > N2 for d n > N9 - - - 

and by similar reasoning, 

max I i ( 4  l = lG(2"~) 1 -  
WEI? 

Inequality 5.72 now implies 
1 

TIF 
aiid. from 5.70 we condude that 5.69 holds with Cf = 1/D2. 

It now follows fkom 5.69. that for any É > 0, we can &ose R' > O so that 

and therefore . 
11 (1 - ç-GMJ ul l  = O, 

n+oc; 

as reqnired. 

In certain instances, rate estimates for 5.64 are simple to derive. Suppose that 

J i ( w ) l  > O for w E W and that 

for all WZ > w1 2 O. W e  begin by conaderiiig the quantity 

for w E In = [-2"r, Znn]. The monotonicïty of yields the inequality 
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where we have used 5.56. which is 

W e  combine inequalities 5.73 and 5.74 to obtain 

and, through the use of 

we h d  that 

d.id for w E 1,. It is interesthg to note that the bound 5.75 does not depend 

on the decay of c j  as Iwl -t oo. Rather. it is the behavior of 4 near w = O which 

governs 5.75. 

Suppose that 1 < ,û < 2 and let J, = [-flnn,Pn?r], then J, c 1, for d n and. 

fiom 5.75, we have 

and hence. the rate at whick 5.64 converges is essentidy cletermined by the behavior 

of 6 for w near O and the deeay of û as Iwl -t m. 
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Let as assume that 4 is a Daubechies scaling function and that u belongs to the 

Sobolev space H s ( R ) .  then 

which implies tliat 

Furthemore. it is shown in Appendix A that 

and hence, there exists a constant MN > O such that 

for all w E J,. As a result of 5.77 and 5.78. we have the inequality 

To obtain a rate estimate for 5.63, we must examine the rate at which 

as rr -t oo. Under the assumption that u E H'(W), it can be shown that (see [14. 

and hence. there exists a constant C3 > O such that 
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whieh. in combination wit h 5.79, yields the r e d t  

for aII p E (1,Z). Finally, we point out that. if N 2 s / 2 .  then the optimal choice 

of /3 leads us to the estiruate 

for some constant C. 



Chapter 6 

Multiresolut ion based met hods 

6.1 Introduction 

Up to this point, oar work has not made use of the muitiresolution analysis (MRA) 

generated by the scaling h c t i o n  4. In this chapter, we begin an investigation of 

two methods which utilize the MRA in an dort  to solve the operator eqnation 

where we have used the notation & m Glv, 

The h t  of these methods is based upon the wavelet expansion. 

of u E V,. With this method, we seek to improve the condition of the inverse 

problem 6.1 by selectively teeovering the orthogonal projections P,u and Qjut 

j = m.. . . , n - 1, onto the snbspaces V, and Wj respectively. 
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The second xnetliod is a multiresolutioii regularization algori th wkich is diie 

to J .  Lin. In the papa  [30]. the author presents empincal evidence which sugests  

that MRA b w d  regularization may be a us& tool for the solution of certain 

inverse problems. In particdar , the author employs a dtiresolution regalariza- 

tion methodo based on the Haar MRA, to solve a distributed parameter estimation 

problem. We d l  present a preluuinary investigation of certain theoretical aspects 

of MRA based regularization, and demonstrate that thu method can be regarded 

as a speual case of Ggeneralized regdarization. Moreover. we shall examine cir- 

cumstances under which the generalized and Cgeneralized solutions are. in some 

sense, close, 

6.2 MRA decomposition techniques 

Consider the inverse problem posed by 6.1. and suppose that Ç, is invertible. As 

we have seen. we can write the solution of 6.1 in the form 

Since is invertible, we knov that the set of fanctions &(t - k/2") : k E Z) is { 
a Riesz basis with Riesz bounds O < B;' 5 A;;1 < cm. It follows that the condition 

is finite. However. even though a, < oo, if n is large, then R, can be dose to zero 

and hence. Kn can be quite large for large n. This means that the inverse problem 6.1 

can be extremely dl-conditioned even when it is well-posed. Consequently, the 
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presence of s m d  errors in the data can give rise to approxhate solutions which 

deviate substantidy (in the n o m  on L2 (W))  fkom the exact solution.' 

We now tum our attention to the problem of recovering the hinctions Pmu and 

Qju_ j = m  ..... n-1.fkomthedatay. Sia~e{q5~-",@-': j = m  y - - - <  n-l'Ji E Z )  

is an orthonormal bais  for Vn. this is equivalent to the recovery of the sequences 

{u,[k] : b~ Z) and { u j [ k ] :  j = m ,  ..., n-1'  k EZ), (6-5 

where we have nsed the notation uJk] = (u, and J [ k ]  = (ut $i')- We know 

that ~ $ 1  = ( y ( t ) ?  &(t - k/Zn) )  and therefore we can apply the discrete wavelet 

transform to the sequence {un[lij : k E Z) to obtain the sequences 6.5. In particula. 

we have the decomposition formdae 

and 

where j = m +  

If we defme the fonctions vj and vj by 

'Consider the inverse problem dehed by the operator equation Af = g. Suppose that the 

data g is contaminated with error dg and let the etror induced in the solution be B f. It can be 

shown that the relative errors in the solution and the data are related via the inequality 

Consequently, when the condition number n: (A) is large, the relative error in the solution can be 

large even when the relative error in the data is small. When the condition numbet is large. the 

inverse problem is said to be dl-conditirneci. 
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and 

"th j = m + 1.. . . .n and un a In: then, thongh the use of formdae 6.6 and 6.7. 

we can show that 

and 

We now use the functionais 6.10 and 6.11 to write expansion 6.2 in the form 

R e d  that , if n is large, then the condition nomber 6.4 can be large. Since 

the magnitude of ii, depends primarily on the quantity 

New , the decomposition 

leads us to the inequality 
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which iiuplies tkat 

Accordingly, the size of the condition number is dependent upon the magnitudes 

of the quantities 

IIP~K' 11 a d  ~ [ Q ~ G L ~  11 (6.14) 

for j = m. . . . n. Moreover, the magnitude of the noms 6.14 can be used as an 

iudicatiori of whck functions P,u and Qju are the most difncult to C O ~ S ~ N C ~  in 

the presence of noisy data. For instance, suppose that the obsenred data is of the 

form y + by. where &y represents small but nnknown error. The magnitude of the 

error of the approximate solution 

If. in particdar, IIQjfflll is large, then the magnitude of the error in Qju6. given 

by 

can be large even when 116yll is smd.  

To obtain estimates for the noms 6.14. we apped to Parseval's relation whicli 

yields 

and 
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We can now use the equident definitions of a Bessel seqnence 5.21 and 5.22 to 

infer that 

if and only if 

if and oniy if 

In other words. we can obtain estimates for the noms 6.14 by finding the bounds 

of the appropriate Bessel seqnences. 

Let us restrict our attention to the problem of estimating Dm. The leR hand 

side of inequality 6.15 can be written as 

If we assume that Nm is continuous, then we have the estimate 

Now, through the use of 6.8. we can derive an expression rdating the fnnctions N, 

and G ~ .  In particular. we can  combine the Fourier transfonu of equation 6.8 with 
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equation 6-17 to obtain 

Nm(w) =P(Nm+,) (w ) -  

where P : Co[-x .  ir] ct CU[-n, n] is the map 

1 
P (A) (w) = - { I H ( w / ~ )  1' ~ ( ~ 1 2 )  + 1 H ( 4 2  + r) 1' 4 4  + n)) - 

2 (6.19) 

If we repeat this process n - m - 1 more times. then we h d  that 

N&) = Pn-m (N,) ( w ) .  

where 

which means that. for all m 5 n? 

If we define the operator Q by 

1 & ( A )  ( w )  = 5 {IG(W/~)I* A(w/2) + IG(w/2 + r) l2 A(w/2  + *)) 

then a similar derivation yields the result 

It shodd be noted that the Fourier coefficients of P"-~(I/&) are the entnes 

of the Toeplitz mat* 

k. 1 E Z which is the Gram matrk of {v,(t - k/2*) : k E Z). In particdar. the 

entries of this Gram matrix are related to the Fourier coefficients of P " - ~ ( ~ / G ~ )  

via 
1 

( ~ m  (t - h/2m), (t - 1/2m)) = - e - i ( ~ - ~ )  pn-m 

2r 
( l / G , ) ( w )  &. 



CHAPTER 6- MULTIRESOL UTION BASED METNODS 112 

We contrast this to the case examineci in the previous diapter. Specificdy. the 

entries of the Gram rnatrir of the set ( ( t  - k/2") : k E Z) are generated. in a 

similar farhion. by the hinction 1/&. 
{ 

h general. 

l/&(w) f Pn-" ( 1 / ~ , )  (w) .  

Expression 6.23 highlights one clifference between two possible approaches to the 

construction of an approximation to u in the subspace V,. In the first. we assume 

u E V,. The fùnctions &(t - Lf2") are then used to produce 

The second approach begins with the assnmption u E V,. for some n > m. 

whereupon the functions u,(t - k /2m)  give rise to the approximation 

Approximations 6.24 and 6.25 are usudy distinct and, as we have just shown 

I I P ~ G ; ' ~ ~ '  = man P ~ - ~  (vd,) ( w ) :  
w €[-+.TI 

In view of 6.23, we will generdy have 
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which means that the sensitivity of 6.24 and 6.26 to any noise in the data y will 

ciffer according to the mab..nitucla: of the noms in expression 6.26. However. in the 

previous chapter we proved that 

tini GJW)  = lj(o)12 
m+-rx: 

- 
and, as we shall show in the next section. 

iim pL ( A )  ( w )  = A(0). 
L-00 

It follows that 

and therefore, when we consider sensitivity to noisy data and restrict oar attention 

to the construction of low resolution approximation. then we expect little difference 

in the h o  approaches. 

In sorue cases. the noms 6-20 and 6.22 can be difficult to esthate-  In the 

next section: an examination of the operator P enables us to make some general 

statements concerning the limiting behavior of 6.20 and 6.22. 

6.3 The operator P 

The operator P aises in the study of orthonormal wavelet bases (see [14. page 

1901). Here. an examination of the fixed points of P provides necessary and s a -  

cient conditions for the characterization of two-scale synzbols H1 which give rise to 

orthonormal wavelet bases. 

Many of the properties of P arise directly fiom the conditions 
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and 

I H ( o ) ~ ~  = 2. 

Iu fact. witk conditions 6.27 and 6.28 iu ullnd. it is easy to show that: 

1- pN ( A )  (O)  = A(O)? 

2. PN ( A )  (T )  = A ( 4 T ) .  and 

3. if C is a constant. then P (C) = C. 

where A is a 2~-periodic h c t i o n  and N E W. A comment concerning condition 3 

above is in order: it can be shown that if H is a ho-scde symbol, satis-fying 6.27 

and 6.28. then EI will give rise to an orthonormal wavelet basis if and only if the 

only fixed points of P are constants. 

We have restricted onr attention to two-scale sequences { k r )  E t' (Z). The 

h c t i o n  H is therefore continuous. and we can regard P as an operator mapping 

continuous lx-periodic fimctions to continuons Pr-periodic fnnctions. In view of 

the conditions 6.29, it is not unreasonable to suspect that 

where I I  -IIa is the usual nom on Co[-?r, R I .  We wilI prove that 6.30 does indeed 

hold under the appropriate conditions. However, we first establish the wealcer result 

where I)-II, is the norm on 

representation of PN (A), 

L 1 [ - r , ~ ] .  To do 

which is given in 

this, it is convenient to have an explicit 

the following: 
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Lemma 6.1 If the operator P zs a s  in 6-19? then for al2 N E N 

Proof. Suppose that N = 1- then 6.31 becomes 

as required. Assume that 6.31 holds for N = M and consider pMf' (A) .  We have 

pMC1 ( A )  (w) = - 1 { 1 ~ ( " / 2 ) 1 ~  pM ( A )  (w/2)  + IH(w/2 + *)I' p"b/2 + *) ) 
2 

(6.32) 

which. after some dgebra. can be written as 

and therefore the desired result follows by induction. [ 

Since PN(l) = 1 for all NI Lemma 6.1 immediately implies that 

for all N E pal. We can now prove the following theorem. 
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- 
Proof. In view of 6.31 and 6-33? we can mite 

If we make the change of variable B = w +2ak  in the integral above, then we obtain 

the inequality 

whereupon the change of variable B = 2Nw yidds the result 

Now: from the identity 

one can derive the equation 
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and hence. 6.34 is eqiiivaïent to 

The non-negative function 4 (w)  is continnous and satiafies 1 -  l2 

2 
Hence. the set of fnnctions {2N/2n 1&2%) 1 : N E N) forais a kquence.  W e  

conclude that pN(A)  + A(O), as N + w in the n o m  on L1[-n, r]. ( 

Under certain circumstances, the resnlts of the previous theorem can be ex- 

tended to include the spaces y[-ir. n]. 1 < p < cm. Suppose that A € Lw[-n. n], 

then A E P [ - a . x ] .  for 1 p < m. Furthermore. since 

it is easy to show that 

for al1 N E N. It now foUows that 

wkich implies that 

for some constant D. 



Although of some theoretical interest. in view of 6.20 and 6.22. the res~dts 

of Theoren 6.1 are of lit tle practical value. Fortunately. with some additionai Ly- 

potheses. it c m  be shown that the sequence {PN(A) : N E N} converges unifoi-uilyy 

We have the following: 

Theorem 6.2 Let A E C0[0.2n] and suppose that q5 is an orthonorna1 scaling 

jünctirm such that +(w)  2 C fo+ al1 w E [-n. n]. If the series 1 -  I 

converges ~unifomly, then 

lim max IpN ( A )  ( w )  - A(o)( = 0. 
N+œ wf[0.2~] 

Proof. If we use identity 6.33 to n i t e  

then we can use the fact that P N ( ~ )  - A(0) is 21r-periodic to obtain 

which implies that 

where we have used 6.35 to obtain the 1st line above. 



Consider the fanctions + 2 7 4 )  1. If w E [O1 2 r ]  ' then I 

We can now use the fact the is bounded below on [ - r . ~ ]  to obtain. &ou 6.37. 

the inequality 

for some q E PI. 

Consider the t h d  series in 6.38. Since 

the uniform convergence of the series 6.36 implies that we can choose q E K 

independently of N, such that for any c > 0, 

With regard to the second series, the continuity of the fimetion A ensures that for 

any c > 0' there exists a 6 > O such that 



and hence. we can choose M E I?& independent of k. mdi that 

it foIlow that 

whenever N 2 M. 

lf we now return our attention to 6.38. we see that inequalities 6.39 and 6.40 

imply that 

pN (4 - 4 0 )  Il, 5 

for all N 2 M. Hence, the desired remit follows. 1 

In light of the resdts of Theorem 6.2, equation 6.20 immediatdy yields 

Let us investigate sorne of the implications of 6.41. Suppose that: 



2. The operator Çll is continuons. 

3. The observed data is of the f o u  r~ + &y7 where y = Ç,u and by  represents n 

s m d .  but nnknown error. 

If the function 

'5 
um = PmG;'(y + b y ) ,  

in the subspace V, , rn < n. is used as an approximation to u ,  then the squared 

error in this approximation is given by 

Sirice llyll 5 11 IIuII, the relative error must satidy 

and Pm is the orthogonal projection onto Vk. Inequality 6.43 demonstrates that 

the relative error in the approximation 6.42 depends on hvo distinct sources. The 

f is t  source is resolution error which revults from projecting onto the subspace Vm . 
The second source is the data error. Furthexmore. the sensitivity of the approxi- 

mation 6.42 to the error 6y  is govemed by the magnitude of the scalar Gn,. 
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In many instances, the convolution kernd is such that 

It follows that 

and hence the sensitivity to enor in the data decreases as m -t -00. However. 

and kence the MOT due to resolution increases to its maximum value as rn + -00. 

This is a common feature of many inverse problems. 

6.4 Multiresolut ion regularization 

In this section. we turn out attention to the MRA based regularization algorithm 

proposed by Liu in (301. This algorithm is based upon the hinctiond 

where Qj is the orthogonal projection onto the wavelet subspace Wj and Ai > O. 

The minimizing funetion U A  of 6.46 can be regarded as an approximate solution of 

the equation 
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the properties of which are detamined by the scdars Aj-  Moreover. this algorith 

c m  be tliought of as a genetalization of the rnethod of Tikhonov regularizatiou. 

which is based upon the fnnctional 

it is easy to see that if. 

then the functionals FI and & are identical. 

The presence of the term hj 11 Q j ~ 1 1 2  in the fnnctional 6.46 serves to prevent the 

n o m  of Qja~ h m  being too large. As the scalar Xj  is made larger. the n o m  

I J Q ~ U ~ I ( ~  is made srnaller. 

W e  now introduce a related hct ional  which dows us to view maitiresolution 

remdarization as a special case of CgeneraIized regularïzation [3, pages 52-99]. 

Suppose that the scaliog fnnction subspace Vo represents the coarsest scale of in- 

terest, and consider the modified functianal 

where a > O. In light of the equation 

we see that if we define the linear operator CA : L2 (R) + L2 (W), by 
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then the functional 6.48 can be rewritten in the fom 

Heuce. we can consider the rnultkesolution regtdarization scheme. clefined by 6.48 

(or eq"valent1y. by 6-50). to b e  a special case of Cgeneralized regularization. wkere 

the smoothing operator CA is the weighted s a m  of projection 6.49. 

The standard theory of Cgeneralized regularization can now be applied. First 

of d, we must ensure that the operator CA has the folIowing properties: 

1. The n d  spaces of E and CA must s a t i e  

2. The operator CA must be a closed linear operator with a dense doniain. That 

Filrthermore. the range of CA must be all of L2 (Et)' or equivalently 

3. The set 

We wiU say that an operator. CA, satisfying the conditions above. is an admissible 

smoothing operator. 
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Since CA must be onto L2(W). none of the scalars Aj  can Mnisk. Indeed. if 

Ai = O, then R(CA) will be orthogonal to the wavelet subspace Wj.  in violation of 

condition 3 above. Consequently, 

if and o d y  if f = O. Accordingly, N(CA) = {O) and condition 1 above is satidecl. 

The doniain of CA is the set 

and since. for any f E V, 

we have V, C D(CA) for any n. We conclude that D(CA) is a dense subset as long 

Aj > O. 

Now. we must ensure that CA is a closed operator. Since CA is a bijection onto 

LZ (Et)' the Closed Grapk Theorem [27. page 2921 implies that the inverse operator 

C;' is continuons. The operator in question is given by 

which iniplies that 

fkom which we condude that the sequence of scalars A;' mwt be bounded. or 
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for some constant y. 

If. Ui fact. the scalars Aj are bounded above as wd, then the operator CA is &O 

continuons. However. in most situations. we d l  be more interestecl in the case 

where 

@L,$=OO. (6.54) 
3+= 

As we shall see. the minimizer ui of fimctional6.50 belongs to the subspace D(C2) c 
D(CA). Jf the asymptotic behavior of the Aj is selected appropriatek then a prit~n 

assumptions about the smoothness of the minimizer ui can be addressed. For 

example. if the 4 satisfy 

Ai - 2.i. 

as j -+ oo. tken it can be shown that u: beiongs to the Sobolev space 

We point out that. in certain instanceso asymptotic conditions for the A j?i' suflî- 

cient to ensure that 

J -aj 

are readily estabbhed. For instance. suppose that W is a continuous. even. real 

valuecl and non-decreasing weight function, and let + be an orthonormal wavelet 

of Meyer type. The expansion of any f E L2 ( W )  with respect to this wavelet bais  

can be written in the form 

f ( t )  = C fo[ls]@."t) + C C fi[qéj*(t): 

the expansion 
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Now. r e c d  tkat supp($) = [-7r - e. a + E]  and snpp(&w)) = [-2(a + E ) .  -n - u 

[ir + E. 2(* + E ) ]  . and accorciingly, 

wkereopon an application of the Cauchy-Schwartz inequality for sums yidds 

We cari now use inequality 6.56 to obtain 

Since I I C A U ; ~ ~  < mt it follows that, if W is such that 



CHAPTER 6. MULTIRESOL UTrON BASED METHODS 125 

The scdars Xi are real and bounded below. so that the operator CA is self-acljoint 

and positive definite. The Euler equation of functional 6.50 is 

and. in light of inequality 6.53. we find that 

It follows that a solution to 6.57 &ts for any g E L2 (R)  and can be written as 

Since 

(d'A + al)-' A' = A' (dd' + al)-' 
and 

equation 6.58 can be rewritten as 

~2 = C;*Ç' {(GC;') (ÇC;')' + al)-' y 

and hence. ai E D (Ci). 

6.5 Cornparison of C-generalieed and generalized 

solut ions 

We now tnrn our attention to questions which conceni the relationship between 

the C-generaiized and generalized solution of 6.1. We s h d  demonstrate that. in 



appropriate circumstances. there is Little Merence between the Cgeneralized and 

generalized solut ions. 

Let P be the projection onto the clomre of the subapace R (8).  It is w d  known 

that if P y  E (LI (CA)), then there mats  a unique function u! snch that 

The function u! is cailed the C-generalized solution of equation 6.1. 

Suppose that S, is the set of all  least-squares solutions of 6.1 corresponding to 

y. that is 

S . =  { a : Ç u =  Py). (6.60) 

then u! E S, n D(C*) is the unique least-squares solution which minimizes the 

h c  tional 

In contrast, the generalized solution ut E S, is the unique minimizer of the h c -  

tional 

and since E (D (CA)) C R(E), ut wiU exist whenever u! exists. However. D (CA) f 

L2 ( W) and accordingly. there wil l  be cases where ut exists, but u: does not. 

In general. the C-generalized and generaiïzed solutions will be distinct. However. 

there are conditions under which u! and uf wil l  be the samel or nearly so. Obviously. 

if Ç is injective and y E R(E), then there exists a unique solution of 6.1 and therefore 

u! = uf- More generally, if the operators and CA commute, then u! = ut. 

A justification of this simple. but seemingly nnknown fact follows immediately 

fkom 6.59, which now implies that ut E R(Çn) C N ( Ç ) L  and, since N(G)I  is 



cloued. u! E N ( Ç ) I  It Ïs w d  known tkat the set S, is the affine subspace 

where ut is the unique least-squares soliition in N(Ç)+ We conclude that 7r! = r d  

whenever Ç and CA conuuute. 

The projection operators Po and Q j  do not usvally commute with the con- 

volution operator E. Consequently. the operators CL' and Ç do not. in general. 

commute. There is. however, one notable exception. The projections. Po and Q ;. 
corresponding to the Shannon scaling function and wavelet can be expressed in the 

form 

and 

dc 

( Q  f) ( t  ) = {2ii1sinc(2~f1 (t - 7)) - 2jsinc(2j(t - r))) f (r) d ~ .  

botk of which commute with the convolution operator Ç. Therefore. in the Shannon 

case. the approximation u: converges to u! = ut as a + O+. 

Before we consider further cornparisons of the fnnction u! and ut. we consider 

a case where minimizers ui and u, are close in the sense of the norm. In practice. 

we seek to approximate the generalized solutions ut and u! through the use of the 

compted data y + by. In some cases. ut and u! wiu not be wd-defined. as it may 

happen that 

P b  $! O (&CA)) 

Even if P6y E Q ( D(CA)) ,  the approximations formed h m  y + by can m e r  sub- 

stantidy kom the generalized solutions ut and u!. In such cases. the minimizers 

u, and up can be used as approximations of ut and u! respectively. Intuitively, one 



expects that if the smoothing operator CA is close to the identity 1. then un will be 

close to 11,. The next tkeorem i1lustrates one case in which this kappens- 

Theorem 6.3 S ~ ~ p p o s e  th-at the s e l f - a d j o i  operators CN are admissible ~mo»thzn~ 

operators and that 

Let uz be the solution of the Euler epvation 

while u, denotes the unique solution of 

(E'O + aI) u, = G'y, 

for any ai: > O 

Proof Equations 6.63 and 6.64 yieid the equation 

Let us use the notation 

ça = Ç'Ç + 
and 

then we can write 
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Lf we Iet 

then. since CG' converges tlIUfody to 1. 7~ t O as N -t oc. Furthemuore. for 

any fixed a > O. we can choose Ni E W so that 

for all N 2 NI. It foUows that. for ail N 1 NI. the operator 

is invertible and accordingly. 6.65 can be writ ten in the form 

In view of equation 6.67 and the fact that 

whenever 

we need only show that 

R e c d  N 2 NI and hence inequality 6.66 holds. It follows that A;' a & t ~  

the Neumann series 
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which h p l i e s  that 

and since 7~ + U as N + ao_ we see that A$ converges d o r m l y  to I as N -t m. 

as required. ( 

The condition CG' -t I nniformly is quite restrictive. Unfortunately. it is not 

clear that the hypothesis of the previous theorem can be weakened. Furthermore. 

if CN is a weighted s u m  of projections of the type defined below. tken ne can 

not &bit examples that satibe the recpired conditions of the theorem for all 

f E L2 (B). 

However. there are sets of Eunctions for which a weighted sum of projections 

CN' d in fact converge d o r m l y  to the identity. Suppose that 

where 

and that f E V,. It follows that 



aud therefore the C$ converges to I tlILifody for all f in the scaling h c t i o n  

subspace Vn. 

Let 11s tetnrn our attention to a cornparison of the hinctions ut and 7 4 .  In the 

next theorem, we examine a partidar situation for whi& the generalized solutioiis 

are dose in a weak sense, 

Theorem 6.4 Suppose that the operator CN is given 

N E NF where { A j  : j E NI El) a non-decreasing sepence of r e d  numbers. svch that 

X j  2 1. Assume that PIJ E Ç (D(CN)) and let ILL E S = ut $ N(Ç)L 6e the unique 

least-squares solution which ninimies the fvnetional 

Proof. First. we note that the domain of CN does not depend on N. Indeed. 

we see that, for any M. N E N 
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Now. for any f E D. we have 

and since ub E S n  D is the unique function rninimiaing the functional we have 

which hplies that the numbers C& form a decreasing sequenee. Consequently II II 

and therefore, t here exiYts a subsequence {cNk : h E N) whkh converges weakly 

to some u E L2 (IR). 

We now show that the subsequence {UN, : k E W )  also converges weakly and 

has the same limit u. The seqnence {ufy : N E N} is boanded. Indeed, since 5 2 1. 

for any f E D 

from which we obtain the inequality 

Assume. without loss of generality, that M 5 N: then PA& = P'& Since 

PM is continnous. we h d  that. for dl h E L2 (R) 



we see that 

The seqnence {?LN : N E Ri) is contained in the set S of alI least-squares 

solutions. As we have already seen. S is a closed afnne subspace and is therefore 

weakly dosed. It now foUows that the weak linJt u. of the subseqaence {u& : N E 

N). is a least-squares solution. 

To complete the proof. we need to show that the fiinction r is in fact the 

generalized solution ut- W e  begin by showing that fk = C ~ U N  is the generalized 

solution of the equation 

GCi;'f = y- (6.75) 

Denote by SN the set of dl least-squares solutions of 6.75. If f E Snr then f must 

satitii the Euler equation 

(ÇC,' ) * (çci;') f = (ÇCN') ' Y 7 

c$ (Ç'GC$ f - GRv) = O 

and since N(C;') = {O). every f E SN must satis* 

In view of 6.76, for any f E SN. the hinetion CE' f is a least-squares solution in Sn D 

and. since CN is well-dehed on S n D. for any u E S fi D: CNu is a Ieast-squares 

solution of 6.75. Furthermore, since for any u E S fi D1 
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we eoirciude that fk is the generalized solution of 6.75. 

The fonction fh is the Mique element of SN that belongs to the subspace 

N(GC;') Furthemore. the subspace R(CG'G*) is dense in N(ÇCN')~. which 

irriplies that for any seqiience {EJJ : N E N) of positive n~~llbers.  t h e  exists a 

h c t i o n  v~ E R(G') such that 

Il f$ - cslVNII < EN- 

We choose the sequence { E ~  : N E PI} so that 

and show that (C$ hNk : h E W )  converges neakly to u, the weak limit of {fh : 

we see h e d i a t e l y  that 

for any v E t2 (W). 

Notice t hat 

and once again. it can be shown that {hNk : k E N) converges weakly to u. Findy. 

since hn E N ( Ç ) l ,  we condude that u must be the generalized solution ut. ( 

We mention that is not immediately obvious whether or not the previous tkeo- 

rem can be extended to address strong convergence. 



Chapter 7 

Conclusions 

h this thesis. we have considered certain aspects of the applications of wavelet 

analysis to the problem of deconvoiution. In p a r t i d a ,  we have addressed some 

of the basic t heosetical considerations of the problem deconvolution Mth wavelet 

bases. This is merely a beginning. Although the properties of wavelet bases are 

attractive and the empirical results fonnd in the literatnre are encouraging. a fair 

evaluation of wavelet analysis. with regard ta inverse pro blems. is ongoing. 

The results we have presented raise many questions and. if some of these ques- 

tions are answered, the perhaps the aforementioned evahation will be more com- 

plete. In Chapter 5 ,  the properties of the funetion G, were examined in some detail. 

This examination penaitted us to present r e d t s  concerning the strong and weak 

kivertibility of the operator A s Ç 1 v,. An examination of the behavior of G~ lead 

to a convergence result in the case where the convolution Lemel satisfies 

and 
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for all wl and w;> satis-g Iwil 2 Iw21 2 0 > O. This resdt is somewhat restrictive 

d fnrther investigation of the fimction G, may lead to results that are valid for 

a larger class of kernels g. 

A typical characteristic of maay inverse problenis is the trade off between accn- 

racy of approximation and sensitivity to noise 

to a question regarding the choice of resolution 

in the data. This property leads us 

n. That is. given the approximation 

where t& y + 6. we need to be able to choose n so that the error of approximation 

e: = ]la - utIl 

and the error due to noise 

e: = llç;nql 

are both as srnall as is possible. Furthet examination of the dependence of G, 

on n could lead to a method to choose the resolution which parallels Morozov's 

Discrepancy Prinuple (see [29, page 228)). 

Of course there is interest in the extension of the resdts of Chapter 5 to inchde 

0 t h  common integral operators. However, such work will depend on the kernels 

of these operators and complications. not found in the current work, may arise. 

The work done in the first few sections of Chapter 6 is closely related to the 

some of the work done in Chapter 5 and hence, similar questions &se. Once again, 

a method for the choice of resolution level has not been discussed. Ln this case. 

a more in depth examination of the operator 'P is needed. We point ont that the 

approach considered in Chapter 6 may have some advantages with regard to the 

choice of resolution level. Recall that the scaling fundions 4n+k can be thought of 
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as low p a s  filtas. Rouglily speaking, t h  widtli of these fdters is proportional to 

2" and hence the pass band of cjns" doubles as the resolution is increased fi-om n 

to TL + 1. Depending on the g and the noise levd 11611, is may turn out that the 

optirrial mdth for the inverse problem at hancl will lie in between C2n and C2"+'. 

C a constant depending on 4. 

In such a case. the work found in [IO] may be of use. In ttiis papa. a splitting 

teclinique. wkich dows  for a finer partition of the fiequency axis. than the partition 

induced by the functions #"". is introduced. An incorporation of the ideas presented 

in [IO] with our own work in Chapter 6 may lead to a method for the choice of 

resolution which can be fine-tnned to the noise and the kernel of the problem under 

consideration. 

With regard to the l a t t a  part of Chapter 6. we have presented results which 

concem a comparison of the methods of Ggeneralized and ordinary regulariza- 

tion. Moreover . results about the correspondhg generalized solutions are also given. 

These results are of a very general natnre and any fnture research should atternpt 

to exploit the properties of wavelet bases as well as the properties of any particular 

kernel g under consideration. 

Ano ther possibility for fnture r e s e d  into multiresolution based regnlarization 

is to make use of the idea of a time fkequency Iocalization operator (see (141). Recall 

that the operator CA is given by 

If we choose to d o w  for some type of spatial discrimination, then one possible 

generalization of the operator above is 



which bears some sinrilari ty t O the tirne frequency localization operators introdiiced 

by Daubechies- 

If the sequetice {Ar. : xl E Z) and {~i : j 2 0. L f Z) sakib% 

and 

then it ean be shown that CL' is a Hilbert-Schmidt operator and is therefore corn- 

pact. The rninimizer u;, of the fanctiond 

must satis& the Euler equation 

or equivalen tly 

Since B is bounded, we have that ÇC;' is compact and this leads to the possibility 

of using a singular value decomposition to solve equation 7.1 

Findy, we point out that in [14], time frequency localization operators are 

defined through the use of the continuons wavelet transfom. It is possible that 

we could define the operator CA so that its inverse is a time frequency localization 

operator of the type discussed in [14]. This approach may have the advantage that 

difEicultieso such as the lack of translation invariance of wavelet bases, are avoided. 



Appendix A 

Daubechies scaling functions 

this appenduc, we will show that if q5 is a Danbechies scaIing fnnction. then 

for all w E [-R. ?TI. This proof rnakes use of the fact that if H(w)  is the DFT of 

the two scale sequence {hr : k = 0, . . .2N - 1): correspondhg to 4. then H(w ) is 

bounded below on the interval w E [-n/2. n/2]. W e  wiU also examine the behavior 

the fuuction 4 for o near O and show that 1 - 1  

for some positive constant DN1 where N E W is the namber of vanishing moments 

of the corresponding wavelet. 

In (14. page 1711, it W. shown that the modular of H(w)  can be written as 

where PN is a polynomîal of degree N - 1, N 2 2, given by 



There are more general choices for the polynomial A.2. However. these choices 

lead to longer discrete filters' and Lace. the choice A.2 is generally preferred. 

The following lemma dows us to conclude that if IH(w)l is of the fona A.1. then 

[H(w)l  2 D > O when w E [-n/2,a/2]. 

for w E [O. a]. 

Proof. If we let x = sinz(w/2). then since 

for all w E [O. a], it is enough to show that the polynomial 

is such that 

for x E [O? 11. 

W e  have 

IThat is. Longer two SC& sequttnceu. 



and. fiom A-2, we obtain 

= (k + 1) (N + k)! 
(k + l ) ! ( N  - l ) !  

- (N+k) 
(N + k - l)! 

= o. 
k!(N - l)! 

we find that 

for a E [O, 11 as reqaired. ( 

In light of Lemma A.1, we see that 1 H(w)  1 is a non-inaeasing function in the 

interval [O,n]. Since the hk, k = 0: 1,. . .2N - 1: are real, the h c t i o n  (H(w) l  is 

even and 

We can now prove the following: 

' ~ h e  equality foilows fiom the identities IH(rr/2) ( = (H(37r/Z) 1 and I H ( U )  l2 + 1 H(w + n) 1' = 2. 



Lemma A.2 If t#i is a Daubechies scalirag fvnction then 

Idw(  L c >O. 

for d l  w E [-a. 11. 

Proof. A proof follows easily fkom a contradiction. Suppose that 4 has at least one 

zero w' E [-n. n]. We use the two scde equation to obtain 

and, since H ( o )  has no zeros in [ - rr /2 .n/2] .  we conclnde that #(wm/2)  = O. We 

continue this process and find that 

for any p E W. Since 4 is continuons. 

&O) = O. ( A 4  

However. 4 is nnimodular with &O) = 1 and A.5 is a contradiction. W e  condude 

that 4 must satiJfy the ineqnality A.4. ) 

We now turn our attention to the behavior of the hinction t$ for w near zero. 

Lemma A.3 If 9 is a Daubechies scaling jknction, then 

where 



and. since Q(0)  = 1. it foIlows that 

Let a ( w )  = 1/2 1 ~ ( w )  1 2 -  Since B ( w )  = Q(sin2(w/2)) ,  we have 

and the Leibniz d e  for the differentiation of products yields 

In view of A.8. we can use A.9 to conclude that 
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fora l lp=1 .2  ..... 2 N - 1  a d  that 

and therefore. 

&oui which we obtain A.6, 8 
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