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Abstract

Convolution integral equations arise frequently in many areas of science and
engineering. If the kernel of such an equation is well behaved, say integrable. then
the task of solving a convolution equation is ill-posed. Indeed. if the kernel is
integrable. then the Riemann-Lebesgue Lemma implies that the recovery of high
frequency information pertaining to the unknown function will be difficult, if not

impossible.

Orthonormal wavelet bases are bases generated by translating and dilating a
single function, known as the mother wavelet. One key advantage of these bases is
that the mother wavelet can be selected to have fast decay in both the time and
frequency domains. This property suggests that wavelet bases may be useful when

attempting to solve a convolution equation.

In this thesis, we investigate the applicability of orthonormal wavelet bases
with regard to solving convolution equations. In particular, we concentrate on
the construction of approximations to the unknown function belonging to scaling
function subspaces. We also briefly consider regularization algorithms which are
based on the multiresolution analysis, a structure defined by the scaling function

associated with the mother wavelet.

v
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Chapter 1

Introduction

Consider the convolution integral equation

(Gu) (8) = / " gt —r)u(r) dr = y(). tER, (11)

where the functions ¢ and y are known. In what follows, we shall address the
problem of solving equation 1.1 for the unknown function . in the case where the
kernel g is integrable. This problem is known as the problem of deconvolution and
when g € L' (R), it is ill-posed in the sense of Hadamard (see Section 2.2).

One possible approach to the problem of deconvolution is to assume that the
unknown function » admits an expansion in terms of some complete system. say

{&}. That is, if we assume that

©= E a;&;,

then the problem of solving 1.1 for u is equivalent to the problem of solving the

semi-discrete equation

> a /_ " gt — 1)&(r) dr = y(t)

1
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for the unknown scalars {a;}.

In this thesis. we will consider a particular type of complete system. Specifi-
cally, we will suppose that the unknown function can be expanded in terms of an
orthonormal wavelet basis. A wavelet basis is generated by translating and dilating
a single function ¥ € L?(R), known as the mother wavelet. That is, a wavelet basis
is a doubly indexed set of functions which are of the form

Tllj'k(t) — 2f/2¢(2jt — k). (1.2)

for j. £ € Z. The expansion of u with respect to the basis generated by 1.2 will
take the form
u=) uklp?* (1.3)
ik

and hence. the problem of solving 1.1 for u is equivalent to the problem of solving

the equation
Z w k] / g(t — )Y (r) dr = y(t)
ik -

for the sequence {u’[k] : j. k € Z}.

If we use the so-called scaling function ¢ associated with v, then 1.3 can be

written in the form
w=Y u[k]g™ + DD wk]piE,
k i>n k
where
o™ (t) = 272 p(2"t — k)

and n € Z is assumed to be fixed. It follows that we can also choose to solve the

equation

St [ gt =) dr+ Sl [ ot~ i) dr = yto),
& —_— -—0

i2n k
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for the scalars u,[k] and u’[k], where k € Z and j > n.

Wavelet analysis has been an active area of research for well over a decade
and can be thought of as an alternative to traditional Fourier analysis. Although
relatively new, research concerning the application of wavelet analysis to inverse
problemns seems promising. It is hoped that the special properties of wavelets can
be exploited to yield methods which effectively deal with the ill-posedness of said

problems.

With regard to the problem of deconvolution. the article [42] explores the possi-
bility of using the continuous wavelet transform to solve 1.1. while in [18]. it shown
that wavelet bases can often be used to define a mathematical construct which
mimics the singular value decomposition.

In work similar to our own (see [43]), the author uses a wavelet expansion to solve
a convolution equation arising from a mixture problem for random variables. The
proposed method begins with the assumption that the unknown function belongs
to the scaling function subspace V. given by the closed linear span

Vo=V {¢*: kcz} (1.4)

In this case the wavelet coefficients u’[k] vanish whenever j > n.
Convolution equations, for which the Fourier transform of the kernel g satisfies
[g(w)] >0

are considered and a method for the recovery of the scaling function coefficients
unlk]. k € Z, is developed in the case where ¢ is a scaling function of Meyer type.
Of course, in most cases, the assumption u € V, is not in fact satisfied and the

recovery of the scalars u,[k] provides only an approximation

YR U, = Z wn [E]g™E.
k
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In Chapter 5. we make some progress towards the generalization of the results
presented in [43]. In particular. the assumption u € V. leads us to consider the
linear operator Gly, . the restriction of G to the subspace V,. We present necessary
and sufficient conditions for the strong invertibility of the operator G|v,. Sufficient
conditions for the weak invertibility of G|y, are also presented. These results are
valid for a large class of scaling functions (including those of Meyer type) and are
based upon the less restrictive assumption that g be integrable. Farthermore. the
presentation of the conditions concerning strong and weak invertibility makes use of
a continuous 2r-periodic function G,, which can be considered to be the spectrum
of a particular Toeplitz matrix. The behavior of G, as [n] — oo is examined
and this investigation leads to a convergence result. Particularly, it is shown that
under certain conditions, the approximations u,, converge to the solution » of 1.1
as # — oo. The material presented in Appendix A is then used to formulate a

convergence rate estimate in the case where u belongs to the Sobolev space H*(R).

Chapter 6 begins with the consideration of the problem of computing the pro-
Jection Pru. onto V,,, under the assumption that u € V., n > m. Our investigation

leads us to the examination of the operator
P (4) () = 3 {IB(/2)* Alw/2) + |H(w/2 + ) Alw/2 +7)}
where H and A are continuous 2x-periodic functions and
[H(O)[* + |H(8 + )" =2

for all 8. The operator P arises in the study of orthonormal bases of wavelets and
we consider the behavior of the functions P¥(A) as ¥ — oco. In particular. we
present two results regarding the convergence of the sequence {P*(A) : k € N} and
are thus able to comment upon the sensitivity of P,,u to perturbations in y in the

case where m is small.



(441

CHAPTER 1. INTRODUCTION

In related work, found in [30]. a multiresolution based regularization algorithm is
proposed. This algorithm is based upon the multiresolution analysis. the sequence
of nested subspaces {V, : n € Z}, defined by 1.4. Specifically. the anthor of {30]
uses a multiresolution analysis, defined by the Haar scaling function

1. 0<tcl
sy={ 7 " ="F

0. otherwise
to construct approximate solutions for a distributed parameter estimation problem.

In the last two sections of Chapter 6. we briefly consider certain aspects of
the method introduced in [30], where we show that the proposed regularization
algorithm is a special case of the method of C-generalized regularization. Let C
be a linear operator. When using the method of C-generalized regularization. one
computes an approximate solution to equation 1.1 by finding the minimizer ., of

the functional
F(u) = |IGu — ylf’ + a||Cul?. (1.5)

In the case of multiresolution regularization, the operator C can be expressed as

the weighted sum of projections
C=2 A
i

where Q; is the projection onto the wavelet subspace

w; =\ {¢#*: ke Z}

It can be shown that, under appropriate conditions on y, there exists a unique
function u!, called the C-generalized solution of 1.1, such that u., — u! as o —
0. The special case C = I, I the identity operator, corresponds to Tikhonov.

or minimum norm regularization. Furthermore, the corresponding minimizer u;,
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tends to uf as @ — 0, where u! is the generalized solution of 1.1. In general. the
two functions u! and u! are distinct. However there are cases for which the two

generalized solutions are close.

We conclude Chapter 6 with a comparison of the minimizers u.. and u;, as
well as the corresponding generalized solutions u! and u'. It is shown that if the
operator C 1s, in some sense, close to the identity I, then the minimizers and the

generalized solutions are close.

The discrete equivalent of equation 1.1 is
Egj—kuk = y;. JE€Z. (1.6)
k

The articles [33] and [8] are concerned with the application of wavelet methods
to the problem of solving 1.6 for the sequence {ui: k € Z}. In [8], a redundant
version of the discrete wavelet transform is used to change 1.6 into a system of
discrete convolution equations. The technique of Wiener filtering is the used to
solve the individual equations, whereupon the inverse discrete wavelet transform
is used to comstruct an estimate of {u; : £k € Z}. In Chapter 3, we demonstrate
that the method discussed in [8] can be regarded as a multiscale regularization
algorithm, similar to the algorithm proposed in [30].

In [33], the discrete filters used are defined through the use of the blurring
sequence {g;. : k € Z}. In Chapter 3, we provide examples to show that, in general.
such filters are not discrete wavelet filters. However, the method introduced does
define a new kind of regularization. We investigate this method in some detail and

provide a proof of the important property of regularity.



Chapter 2

Convolution equations

2.1 Introduction

Convolution integral equations appear frequently in applications and hence, inverse
problems. which are based upon these types of equations, are often encountered.

To see how such equations can arise, we consider a simple example. The initial

value problem

y'(t) +ay'(t) + by(t)=u(t)
y'(0) = y(0)=0 (2.1)

models a forced, damped harmonic oscillator. If the Laplace transform is applied
to 2.1. then we obtain the equation

Y(s) = U(s)

T ¥ Fastb 22

where Y and U denote the Laplace transforms of y and u respectively. The inverse

Laplace transform can now be applied to 2.2 and the result is the convolution

7
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equation
t
o(t) = [ ot~ ryutr)dr, (23)
44
where g is the inverse Laplace transform of (s> + as + b)~%.

Given a forcing function %, we can use 2.3 to compute the displacement y. This
is the forward problem. Since it is often easier to observe the evolution of a system
rather than the external forces causing this evolution, a more natural problem
might be: Given the function y find the function u. This is one possible inverse
problem that is based upon equation 2.3. The other involves the determination of
the constants a and b from the functions y and u. The latter inverse problem is
known as a system identification problem. In this thesis. we will be concerned with
the first problem, that is. the determination of the function u from the functions g

and y.

2.2 Deconvolution

Suppose that the functions g and y are known. The problem of deconvolution
involves solving the convolution type integral equation

/cc g(t —r)u(r)dr =y(t), teR, (2.4}

for the unknown function «. The equation 2.4 can be regarded as a model of a
linear system, the properties of which are determined by the kernel g. With this
interpretation in mind, we can regard the function v as the input to this linear
system, while y can be thought of as the resulting output.

If g € L' (R), then the linear operator G, defined by

a0

(Gu) (¢) = / g(t — T)u(r) dr, (2.5)

-0
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is a continuous mapping of L?(R) into L?(R). Furthermore, for any u € L?(R).
there is a unique y € L? (R) such that y = Gu. In other words, given g € L! (R)
and any u € L?(R). the problem of determining y is well-posed in the sense of
Hadamard. On the other hand. given g € L! (R) and y € L?(R), the problew of

determining u is ill-posed. In particular. at least one of the following conditions:

1. A solution u exists for any y € L*(R).
2. The solution u is unique. (2.6)

3. The solution u depends continuously on the data y.

will be violated. To see how this happeuns. it is convenient to have a formal expres-
sion for the solution of 2.4. The Fourier convolution theorem allows us to write 2.4

in the alternative form

j(wli(w) =y(w), weR.

which implies that

L [T i)
W) = o /_m o) (2-7)

Now. it is easy to see that if y € R(G), the range of the operator G, then 7 = gu
and a solution u € L?(R) will exist. Unfortunately, when g € L* (R). it follows
from the Open Mapping Theorem that R(G) is never a closed set. This means that
R(G) # L*(R) and a solution may not exist for an arbitrary y € L? (R).

The uniqueness of the solution, when it exists, is equivalent to the condition that
the operator G be injective. This is not always the case. For example, suppose that

g vanishes identically on some interval [ and let u be a solution of 2.4 corresponding
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toy € R(G). If f € L*(R) is any function such that supp(f) C I. then u + f is
also a solution of 2.4 corresponding to y € R(G). In general. G will be an injection
as long as g vanishes only on a set of measure zero (for example, a countable set of
points).

We can rectify some of the problems encountered when considering the questions
of existence and uniqueness by generalizing our notion of a solution. Specifically.
we say that u is a least-squares solution (see [21]) of 2.4 if it is a minimizer of the
functional

F(u) = ||Gu —yl*. (2.8)

whenever a minimizer exists. Let G~ be the adjoint of G. It can be shown that the

least-squares solutions must satisfy the normal equation
GGu=GTy (2.9)

and such solutions will exist as long as the output y belongs to the dense subset
R(G) ® R(G)* of L*(R). The set S, of all least-squares solutions. corresponding to
y € R(G) ® R(G)"* is a closed and convex set. Hence, we can assign as a solution
to 2.4 the unique function u! € S, of minimal norm. The function u! is called the

generalized solution of 2.4 and the linear operator
G': R(G) ® R(G)" — L*(R)
defined by
u' =gly,

is referred to as the generalized inverse. The generalization that we have just
considered allows us to assign meaning to the notion of solution for a larger class of

functions y. Moreover, this generalization does, in part, deal with the question of
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uniqueness. However. the third and perhaps most important condition listed in 2.6

has not been addressed.

The importance of continuity stems from the fact that, in most practical situa-
tions. knowledge of y is gained via measurement. Hence, y is not known precisely.
Consequently, we must try to extract an approximation of u' through the use of
the corrupted data y + dy, where §y € L? (R) represents a small but unknown per-
tarbation. Since in general, dy € R(G) ® R(G)'. a generalized solution need not
exist for every observed output. Even if 6y € R(G) & R(G)*, the discontinuity of
the generalized inverse can lead to an approximation G!(y + dy) which is arbitrarily
far from u!. To see this we consider 2.4 in the special case where |§(w)| > 0 for all
w € R. In this case. G : L*(R) — R(G) is a bijection and for each y in the dense
subset R(G), u! is simply the unique solution » of 2.4. Let

dy(t) = \/;2(—_8"‘6‘ __sint(t) .

then for every 8 € R, dy € R(G) and ||dy|| = 1. If we use the corrupted data y + dy

to form the approximation
us = Gy + dy),

then. from 2.7, we obtain

which implies that

us(t) — u(t) = (G 10y) (t) = —= * ot Xa(@)
xs(w) |’

1
2r ) (W)
s = = 1355

where xp denotes the characteristic function of the interval [-1 + .1 + 3]. Since

-

g € L} (R), § is continuous and

llus — ull® = /_HB |§(w)|™? dw > ( max {l(w)) -

148 w€[-1+8.1+8]
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The Riemann-Lebesgue Lemma ensures that

lim g(w) =0

fwl—ac

and therefore,
. _ 2 — 1 -1 2 _
lim Jus —u)|” = Iﬂlllinm 167 6y||” = oo.

1Bl-rec

Consequently, small high frequency perturbations in the observed output can lead
to approximate solutions which are arbitrarily far from the solution obtained from
the unperturbed output.

One popular way of dealing with the anboundedness of G! is known as the
method of inverse filtering (3. 40]. When using this method, we seek to remove
the ill effects of high frequency perturbations, while preserving the accuracy of the
approximation produced. Let {W,(w) : a > 0} be a family of continuous functions

that satisfies:

. |Walw)/g(w)] < A(a) < oo, for all & > 0 and w € R.

p=a

(V]

. |1 = Wy(w)| < B, uniformly for a > 0. w € R and (2.10)

3. lim,_,o+ |1 — Wa(w)| = 0 pointwise almost everywhere,

where A(a) and B are constants. If we form the approximation
1 [~ . Waw).
_ t —_ twt ' al®/ )
Ug(t) = (gau) () o /-w e @) ¥(w) dw, (2.11)
then from the first condition of 2.10, we have that u, € L?(R) for any y € L? (R)

and any a > 0. In particular, it can be shown that

lluall < [|GE[[Ivll = A() llyll,
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which means that %, depends continuously on the data y. Furthermore. if y €

D(G') = R(G) ® R(G)*. then

=l = o [ e - L)
- 5 /_ j u—Wa(w)lzluf(w)l du

and in view of the second and third conditions of 2.10, the Lebesgue Dominated

Convergence Theorem ensures that

lim “uf - “°” = 0.

a—0t
In other words. the operator G! converges strongly to Gt on D(G1).
In many situations, the function W, is selected so that {W, : a > 0} is a set
of low pass filters. That is, for every a > 0

1, |w]| <Qa
Wel(w) = {

0. otherwise.

For example, if g(t) = exp(— |t|), then

1
1+ w?

glw) =

and a suitable family {W, : a > 0} is defined by

1

Walw) = (1 + aw?)?’
Suppose the y € R(G), then since G is a bijection, the function

1 o iwt 1+w2 "
ar ] ¢ Qrawt)i @

- 51; /_ L+ o) i) d

Uq(t)

fl

can be regarded as a low frequency approximation of the unique solution .
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In the next chapter. we present a brief introduction to wavelet analysis. We
are particularly interested in wavelet bases and their applications to solving con-
volution integral equations. Wavelet bases have the ability to localize both time
and frequency in the sense that the functions which comprise these bases can be
selected to have good decay in both domains. In particular, the scaling function ¢
can be regarded as a low pass filter and one intuitively expects that the stability
of the deconvolution problem can be improved by seeking approximate solution in

scaling function subspaces.



Chapter 3

Wavelet analysis

3.1 Introduction

One of the most significant shortcomings of the Fourier transform is its inability to
deal effectively with non-stationary signals. Let xjo ;) be the characteristic fanction
of the interval [0, 1] and consider the function

f(t)= X[o.1)(2) sin(67t)

The Fourier transform of f is the function

2 e ~1
flw) =6n Ty
which has absolute value

[sin(w/2)|
w? — 3672

,f(w)l =127

We see that I f I reflects the overall frequency content of f and does not give

us any information about the significant changes in frequency which occur at the

15
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times ¢ = 0 and ¢ = 1. In fact. this information is contained in the phase of f. but

in some cases can be difficult to extract.

In an effort to overcome such difficulties, D. Gabor (See [9. page 50]) introduced

the integral transform

(Suf) (row) = / T emivtg,(t — 1) F(E) dt. (3.1)

-—00

where

—t3/4a

1

9a(t) = W
the idea being that the rapid decay of the Gaussian function. g,, would allow for
the study of the local frequency content of the function f. In fact, for a fixed r.
the function S,(7.w) is simply the Fourier transform of the function g.(t — ) f(t).
which is approximately 1/(2/ar)f(t) for t near r. Furthermore, since the Fourier
transform of g, is

Jou(w) = Sl

the Gabor transform allows one to study a function locally in both time and fre-
quency simultaneously. Different choices of the function g, lead to a family of

transformations known as short time Fourier transforms.

3.2 Integral wavelet transform

In a similar way, the integral wavelet transform (IWT) ( [9, page 60]) also provides a
means of studying functions in a local way. However, in this instance, the function
f is decomposed into its components with respect to the dilations and translations

of a single function 9, called the mother wavelet.
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Definition 3.1 If¢¥ € LY(R)N L*(R) satisfies the admissibility condition

C,ﬁ:/m'l"lé(w_)lzdld(w, (3.2)
e W]
then we define the integral wavelet transform on L*(R) by
o Tt —b\
W) a.0) = 1al™ [~ sy (57) (3.3

where a. b € R and a # 0.

The variable b in (3.2) can be identified with time . while a can be thought of as
a multiple of the reciprocal of frequency. If we choose v so that is has rapid decay
in both time and frequency. then we can regard W, f as giving information about
the content of the function f near b in time and near c/a (c a constant depending
on ¥) in frequency.

It is this ability to localize in time and, most importantly in frequency, which
makes the IWT and wavelet analysis in general a plausible tool for deconvolution
problems. Indeed one might view the IWT as a type of filter, the characteristics of
which are determined by the value of the variable a. As an example, suppose we
let

Y(t) = (1~ 1)/, (3.4)
then the Fourier transform of ¥ is

1/;(01) = V2rw?e™v /2,

The function v satisfies the admissibility condition with Cy = 2. If (-.-) denotes
the usual inner product on L? (R), then by 3.3, the IWT of an f

e o (1) (42

a|'/?sgn(a) _ ; ;
-————-——' | “sgn(a) < _f(m),e:‘“‘"’(acu)ze'("“’)z/2 >,

- V2r
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where the last equality is obtained by an application of Parseval’s identity. The
function (aw)?e~(*)*/? is concentrated around two peaks centered at w = +v2/a
and as a is increased, the peaks become narrower and move towards w = 0. As a

result, when a is large, the product

f(w)e(aw)Pe~(er 2,
depends primarily on f(w) for small w. For other choices of 9. different localization
properties can be achieved, this being one of the major advantages of the IWT.

If we are given the IWT of a function. f, then we can reconstruct f through
the use of the formula
1 = [= t—b d.
=g [ [ ovnaoaree () el @
Y J—xxc S~ a a-

In fact. 3.5 is really a consequence of the Parseval’s identity

1 = [= P -
E;[x _/_.c’c (Wi f) (a,b)(Wyg) (a, b) dba_g =< f.g>. (3.6)

which holds for any f, g € L?(R).

Many variations of 3.3 and 3.5 exist, allowing one to customize the IWT to
suit specific needs. Of particular interest is a variation which uses one wavelet for
decomposition and a second for reconstruction. Specifically, if the wavelets 3, and

¥, satisfy the admissibility condition
/°° hr(@)lba@)] /°° W(—w)ilga(=e)l
4] w 1) W

Cory. =

then the IWT transform pair, based on @ > 0, is

a

WA (@b = Lo [ sty (* - ”) d (3.7)
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and

-1/2 pos poc —-—'——_—__’- a
fey=5— " [~ wn o (122) al. (3.

C‘lll Y2 —ac a
The localization and regularity properties of ¥; and ¥, can be quite different. In

fact. in [25] Holschneider examines a two-dimensional extension of 3.7 and 3.8 in
which v, i1s a distribution. This extension allows Holschneider to use the IWT to

invert the Radon transform.

In practical situations, there is a desire to be able to reconstruct the function f

from the restriction of its IWT to a discrete grid. For instance, if we let ¢ = a,’

and b = ag 3 kby. then we seek a function J: such that

F&) =Y (Wyf) (a5”. az?kbo)ad *P(ait — kbo).

ikez
The above leads to the theory of frames' and the study of the discrete wavelrt
transform. The reader is referred to [13] and [24] for more details. If we consider
the special case where ag = 2 and by = 1, then it is possible to find a function ¥ so

that an orthonormal basis 1s obtained.

3.3 Wavelet bases

An orthonormal wavelet basis of L? (R) is a basis of the form
{p? () = 2292t k) : j,k € Z},
which satisfies the orthonormality conditions

ik 1l
< 1!}1 vllj ™ >= Jj.lsk.m-

'a linearly dependent set which spans the space of interest
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If we define the subspaces W;, j € Z, by

Wy =\ (w5 ke z}
then we obtain an orthogonal decomposition of L? (R). That is, we can write
L*(R) = D W;. (3.9)
jez
Now suppose we define the subspaces V;. 7 € Z by

i-1

Vi= D w; (3.10)

p=-oc
then the V; are nested
ecVacVhcice-

and

LRr)y=Jv-
JEZ
Notice that W; is the orthogonal complement of V; in V;;. That is.
Vin=V,;e W, (3-11)
It turns out that there is a function ¢, called the scaling function. which satisfies

(7, &) = 8ra (3.12)

and

V;=\{¢*:kez} (3.13)

In view of the above, any function f € L? (R) has an expansion of the form

fe) = Y ) &g,

j=-—oc k=—oc
= Y g+ Y ddke), (3.14)

o= —00 J=n k=—cc
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in which the expansion coefficients cf and &, are computed via the inner products
k=< f.¢™F >, & =< f,97* >,

and » € Z is assumed to be fixed.

We point out that the scaling function ¢ is usually the starting point in the
construction of an orthonormal wavelet basis. In fact, one demands that ¢ satisfy

the dilation equation

$(t) = V2 Y hid(2t — k), (3.15)

keZ
where the two-scale sequence {h;. : k € Z} is assumed to be given. The properties
of the two-scale sequence determine the properties of the resulting scaling function.
For example. to ensure orthonormality 3.12, or equivalently
R 2
v '¢(w + 21rz)| =1 (3.16)
leZ

the two-scale sequence must satisfy
> hpaihi = 8.
p

After a suitable scaling function has been found. the wavelet ¥ is defined by an
equation of the form
¥(8) = V2 Y _(-1) " ho1g(2t — F). (3.17)
keZ
which can be derived by requiring that the integer translates of ¥ span W;. the

orthogonal complement of V; in V4.

The set of nested subspaces {Vj: j € Z} and the orthogonal deéomposition
that it defines is known as a multiresolution analysis (MRA) of L? (R) and it is the
dilation equation 3.17 that makes this structure possible. If we let P, denote the
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orthogonal projection onto the subspace V, and Q; denote the orthogonal projection
onto the subspace W;, then, in view of 3.14. any f € L?(R) can be decomposed

into the orthogonal sum

f=Pnf®an®Qn+1f®-—-.

In practice. the full wavelet expansion of a function is not available and one works
with the projection P,.f,? or equivalently, with the scaling function coefficients
{ct : k € Z}. When the coeflicients {c} : £ € Z} are known. an algorithm. defined
by the equations 3.15 and 3.17 can be used to derive the wavelet coefficients at all
scales j < n — 1. This algorithm. called the discrete wavelet transformn (DWT). is
defined by the equations

Gt =) hpnc] (3.18)

P

and

& =" goucl, (3.19)
P

where g;. = (—l)k"lh_k_l. We can regard each of 3.18 and 3.19 as the operation
of convolution with the respective discrete filters {h_i : k € Z} and {9+ : k € Z}.
followed by the operation of down-sampling®.

Suppose that the discrete Fourier transform (DFT) of {ar: k€ Z} € £*(Z) is

given by
Alw) = Z ape ",

k
then an application of the DFT to 3.18 and 3.19 results in

C™ i (w) = % (H(w/2)C(@/2) + Hw/2 + 1)C™(w/2 + 7)) (3.20)

2P, f is often referred to as an approximation of f at resolution n. while @, f is called the
detail of f at resolution j.

3also known as decimation.
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and

D™ (w) = % (G(w/2)C™(w/2) + G(w/2 + ) D™(w/2 + ) . (3.21)

where C". D", H and G are the discrete Fourier transforms of the sequences
{R:keZ}Y{dt: k€ Z} {h: k€Z}and {gi : k € Z} respectively.

The DWT is invertible and, in particular, if we are given {c;:‘l ke Z} and
{d77' : k€ Z}. then {c} : k € Z} can be computed via the equation

= Z hk-—ch;‘l + Z gk—zyd;:‘-l? (3.22)
3 P

which has the DFT

C™(w) = H(w)C™ ' (2w) + G(w) D™ (2w). (3.23)

3.4 Daubechies wavelets

Let us now restrict our attention to a notable class of wavelets which were intro-
duced by I. Daubechies (See [12], [14, page 167]). These wavelets* are compactly

supported and are called the Daubechies wavelets. Some of their most important

properties are:
1. The first N moments of the wavelet vanish. That is,
N,,=/Rt"1[1(t)dt==0, p=01,...,N -1,
where N is a positive integer.

2. The scaling function is unimodular,

/qu(t) dt = 1.

4as well as the scaling functions
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3. The wavelet series 3.14 converges exponentially fast with respect to the dila-
tion index. In particular, if the function f is at least N times continuously
differentiable, then

f(&) =Y Fere)|| < a2,

k

for some constant A.

4. The support length of both the wavelet and scaling function is K = 2N — 1.

Furthermore, the differentiability of both functions increases as N increases.

3.5 Meyer wavelets

A second class of wavelets, which is of theoretical importance. is due to Yves Meyer
(see [14. page 137]). G. Walter enlarged this class of wavelets in [44] and pro-
duced a family of orthomormal wavelet bases with compactly supported Fourier
transforms. To define the Meyer wavelets, we begin with a continuous probability
density function p satisfying,

supp(p) = [—¢, ],

for 0 < € < 7/3. The Fourier transform of the scaling function is subsequently

defined by
Pew) = \[/ plw—v)dy (3-24)

and is supported in the interval [—-r — £,7 + €}. The Fourier transform of the

corresponding wavelet is given by

Belw) = e/ §2(w/2) — $2(w). (3.25)
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One could think of the Meyer class as being a generalization of the Shannon
MRA, which has the scaling function

sinc(t) = bmﬂ(’tﬁ) .

The Fourier transform of the sinc(t) is the characteristic function

(@) = { 1, we[-nn]

0, otherwise

and it is not too difficult to show that
lim @.(w) = xx(w)
e=30F

for almost all w.



Chapter 4

Literature review

4.1 Introduction

In its present form, wavelet analysis is a relatively new field, the first articles ap-
pearing in the early part of the last decade. The application of wavelet analysis
to inverse problems is newer. Many interesting articles have begun to appear and
tend to indicate that in some situations wavelet analysis is capable of outperforming
established inverse problem methods. However, the evidence is far from conclusive
and in some cases, is based solely on numerical stmulation. There is a definite need
for more research before the possible benefits of applying wavelet analysis to inverse

problems are well understood.

4.2 Related work

One of the first articles in which the author considers the utility of wavelet analysis

for the solution of an inverse problem is [25]. In this article, the author shows

26



[}
-~1

CHAPTER 4. LITERATURE REVIEW

how the continuous wavelet transformn can be used to invert the Radon transform

(see [15]). which can be defined by
(Rf) (pra) = / 5(p - x — a) f(x) dx, (4.1)
g':

where 4§ is the Dirac distribution and p is a unit vector. In the subsequent ar-
ticles [43. 16]. this problem is further investigated and it is pointed out in [16]
that orthonormal wavelet bases could be used to recover local information about
the function f from local information about the Radon transform Rf. This fact
may have important consequences for the field of computer aided tomography and
permit the investigation of tumors on a local basis. reducing a subject’s exposure

to radiation.

In [4] the authors comment on the possible application of wavelet bases to a

wide class of inverse problems based upon the integral equation
b
9(2) = (Kf) o) = [ K(e.0)fw)dy. a<z<b (42)

In this and the earlier paper [5] the aunthors show that many integral operators of
the form 4.2 admit a sparse matrix representation in a orthonormal wavelet basis

{##*: j.k € Z}. That is. most of the entries of the matrix
K = [(Kyp* 4] (43)

will satisfy the inequality

I(Kd)j,k’ ¢I.m)| <,
where ¢ is some small positive number. This sparse representation of the operator
K permits the multiplication of the matrix K with a vector of length N in O(N)
or O(N log N) operations. With this efficient method, certain iterative algorithimns

for the computation of the generalized inverse K become feasible. What is not
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clear from the discussions in [4] is whether or not wavelet bases offer any particular
advantages, aside from sparse representations, in dealing with the ill-poseduness (or

ill-conditioning) of the inverse problem at hand.

In the papers {30. 31], the distributed parameter system identification problem
$(a) =u (4.4)

is considered. In this case, ® : L?[0,1] — L?[0.1] is a non-linear operator defined
by the boundary value problem
~&=(a(x)u(z) = f(z), 0<z<1 45)
u(0) =v'(0) =0

The author restricts his attention to the Haar wavelet basis and assumes that the

unknown function a € V,,, where

V;‘=V{¢n.k: keZ}
and ¢ is the Haar scaling function. which can be defined by
é(t) = xjo(t)-

Numerical evidence is presented which suggests that a multiresolution approach to
this particular inverse problem can lead to regularization methods comparable to
Tikhonov regularization {22, 23]. For example, in the presence of noisy data u¢.

one seeks to approximate a by minimizing the functional
J(a) = [|&(a) - «f)? (4.6)

over the function space L?[0,1]. However, this problem is ill-posed and the small

fluctuations present in 1’ can lead to large fluctuations in the approximate solution.
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To keep these fluctuations under control, one could instead choose to minimize the

functional .

da

dz
This is a particular case of Tikhonov regularization and the effect of the term

Fi(a) = [|®(a) — " + A (4.7)

Alla’(z)||® in Fy is to prevent the norm of a’(z), the estimator of the solution a.
from growing too large.

Now. it is known that the regularity of a function f can be characterized by its

wavelet coefficients. For instance, if H*(R) is the Sobolev space

H*(R) = {f: /m(1+w2)‘ f(w),z dw < oo},

then it can be shown that (see for instance [12, pages 298-304]) f € H*(R) if and
only if

S [(F ) (1 +49) < .

T

It follows that the functional

Fy(a) = [|®(a) —«’[| + > A; [(a. 94", (4.8)
Fik

with A; ~ 4%7 as j — 0o, can be used to define a type of regularization which gen-
eralizes that defined by 4.7. Functional 4.8 suggests the possibility of a multiscale
regularization method based upon wavelet bases. A similar method is suggested by

the work of Chen and Lin, which is examined in section 4.4.

In [46)]. the authors consider the linear moment problem
(f.9t) =, k€Z, (4.9)

in which the scalars {u;. : k € Z} and the functions {gi. : k € Z} are known. while
the function f € L2 (R) is to be estimated.
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A classical approach to the problem 4.9 is the Backus-Gilbert method. In this

method. the function f is approximated by the sum
f(t) =3 maun(t).
k
where the functions {ay. : k € Z} are selected so that the averaging kernel
A(s.t) = ) gi(s)a(t)
k
is a reasonable approximation of the delta distribution. For example, if
d.(s.t), n=0.1.2....

defines a delta-sequence converging to d(s — t). then according to the so-called
D-criterion. the functions {ay : k € Z} are chosen so that the functional

D(a) = /_ (A(s.t) — 8,(s.t))? ds

is minimized.
The authors demonstrate that when the D-criterion is used, the assumption

feW,

V.=\/{s*: keZ} (4.10)

can lead to a definite improvement in performance. In particular, in the case of
sampled signals, it is shown that the ¢ prior: condition f € V,, yields a modification
of the Backus-Gilbert method which allows for the complete recovery of f. On the
other hand, a straightforward application of the Backus-Gilbert method does not in
general allow for the recovery of f from its sampled values. It is also shown that. in
all cases. the generalized method performs at least as well as the ordinary method.
However, in cases other than that of sampled signals, it is not known whether the

generalization provides substantial improvement or not.
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The modification of the Backus-Gilbert method, proposed in [46]. makes use
of the reproducing property of scaling function subspaces 4.10. Suppose that the

continuous scaling function ¢ satisfies

B
l(t)] < TP

for some 8 > 1/2. then the series
Qs,t) =) ¢(s — k)t ~ k)
L

defines a continuous, symmetric kernel. In this case, each subspace V; has the
property that if f € V;. then

f6) = [~ Qsts.)f(s)ds,
where
Q;(s.t) = 27Q(2%s, 2°t).
The subspace V; is said to be a reproducing kernel Hilbert space (see. for exam-

ple. {2]) and this property can be used to convert 4.9 to the new moment problem
(fo9)=pe, j=nn+l,..., keZ (4.11)

The function f is now approximated by the sum,
fe) =33 maift)

k >n

If we define the generalized averaging kernel
A(s,t) =D gils)ai(t),

k >n
then. when the D-criterion is employed, the functions {a{ : > n,k € Z} are
selected so that the functional

D,(a) = ij/ (A(s,t) — Q;(s.t)) ds,
izn e

with w; non-negative weights, is minimized.
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4.3 Continuous deconvolution

The convolution equation

/ h(t —r)z(r)dr =y(t) teR (4.12)
is considered in the paper [42]. It is observed that, in many cases. the convolution
kernel k is similar to a scaling function ¢, and based upon this observation the

kernel is used to define a mother wavelet 1. The continuous wavelet transform

(Wz) (t.a) = —1\/-_‘; ~ (3 . t) z(s)ds

—_c
15 then used to transform 4.12 into a equivalent system of continuous convolution
equations indexed by the scale variable a. Each equation in this system is solved

separately, yielding the wavelet transform (Wz)(¢t,a). The inverse wavelet trans-

form
1 [= [= t—s\ da
z(t) = —67[_@/0 (Wz) (s,a)1ﬁ( - ) st’
with

- 2
c¢=/°°|f£"2|~dw

w

is then used to recover the function z.

This approach is much like that proposed by Liu et al. (see section 4.4) for the
analysis of discrete convolution equations and suffers from one basic disadvantage.
An appealing aspects of wavelet analysis is the freedom to choose a wavelet 3 suited
to the problem at hand. By using the convolution kernel to define 3, we lose this

freedom.

One of the most powerful techniques for dealing with inverse problems involving

compact operators (as defined by 4.2) is known as the singular value decomposition
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(SVD) (see [29. 22]). Let H be a Hilbert space and suppose that X : H - H
is a compact linear operator. The singular system for the operator K is the set
{vj, uj; p;}, where {v;} is an orthonormal basis for the orthogonal complement
of the null-space N(K). while {u;} is an orthonormal basis for the orthogonal
complement of the null-space of the adjoint of K, N(K*). The scalars {u;} are

known as the singular values of K, and satisfy
lim p; = 0.
The singular system of K can be defined by the equations
K u; = pjv; (4.13)

and
Kv; = pju;. (4.14)

It follows that the generalized solution. of minimum norm. of the equation
Kf=g,

can be expressed as

(Ktg) =" (g:_‘" ) v;. (4.15)
j 2

Since {v;} is an orthonormal basis, the generalized solution Kt!g will exist as a
function in H if and only if

<gv uj)
2]

2
< oo, (4.16)

2

J

which holds whenever g € R(K). If we are faced with noisy data g’ = g + 4. then
a solution will exist if and only if

2

j

2

S .
(g vuJ) < 00

—

(]
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and since the inner-products {(4.%;)} may decay slower than the singnlar values.

K'tg® need not exist as a function in H.

In such cases, one usually employs some type of regularization procedure in
combination with the SVD. For example. if we use as an approximate solution of

K f = ¢g* the minimizer of the functional
F(f) = |Kf =" + AAI*. (4.17)

then. through the use of the SVD. we can write the minimizer of F' as
F=Y Wiu)d’ us)v;. (4.18)
J

where the window W is given by

8

Since
1 2
D Wss)g ui)l* < 3 3 He' )] < oo,
2 7
we see that 4.18 is a well-defined element of H for all A >0 and § € H.

One major drawback of the SVD is that the basis {v;} may not be well-suited
to the function f under investigation. For example, suppose that f is piecewise
smooth. The local discontinuities present in f can cause the coefficients

(g’ uj)
221

(frv.i) =

to decay very slowly, and accordingly a significant proportion of the norm of

H¢F v Mz = 30K usdl?
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may be contained in coefficients for which p; is small. The windowed SVD deals

with the presence of errors in the data g by suppressing the inner-products
(¢°.uj) = (9. %5) + (8, ;)

when p; is small and. in doing so, may discard significant information about f
leading to a poor approximation 4.18. Typically, the basis vectors {v;} are non-
local. and this loss of information causes errors that are distributed throughout f

and not just near the discontinuities of f.

Wavelet bases hold the promise of being able to circumvent these difficulties.
Due to the local nature of the basis ¥, discontinuities of a function f affect only
the coefficients ( f, ) which correspond to basis functions near the discontinuities.
Furthermore, the suppression or removal of these particular coefficients will produce
an approximation which is erroneous only in a neighborhood of said discontinuities.
In view of these desirable properties, it makes sense to see if the SVD can be

generalized as to allow for the incorporation of wavelet bases.
One possible generalization is explored by Donoho in the paper [18]. Here the
author proposes a method for solving the operator equation

Kf=g. (4.19)

where K : D(K) ¢ L*(R) - R(K) C L*(R) is a linear operator. This method
makes use of the wavelet-vaguelette decomposition (WVD) which emulates some of
the more important properties of the SVD, while leaving the user greater flexibility

i the selection of a suitable basis for f in 4.19.

The WVD of an operator K is a collection of three sets of functions:

1. an orthonormal wavelet basis {47*: j.k € Z} and
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2. two nearly normalized Riesz bases {w* : j.k € Z} and {v7*: j k€ zZ}.
along with a sequence of scalars:
3. quasi-singular values {0;: j € Z}.
The WVD of K can be defined by the quasi-singular value relations which are
Kyt = gj09* (4.20)

and

Ku® = g qp*. (4.21)
We notice that, when the WVD of the operator K exists. 4.20 implies that D(K)
must be a dense subset of L? (R). Similarly. from 4.21 we see that R(K") must be

dense in L? (R) and since
N(K) = R(K™)* = {0},

with N(K) the null space of K, K must be injective. It follows that the inverse
operator K~! is defined on R(K) although, it need not be continuous. Also. the
quasi-singular value relations imply that the sets of functions {u?* : j.k € Z} and
{vi*: j,k € Z} are biorthogonal. Indeed, since {v7*: j.k € Z} is orthonormal.

we have
.y 1 -
8itbem = (PPF g™ = ;(K'u"‘.zﬁ”"‘)
J
D Y tmy _ 9, ik Im
= ﬂj(u LKy >—rr,-<u ;e (4.22)
as required.

With regard to the solution of 4.19, the relation 4.20 implies

9= ailf. ¥
3.k
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and through the use of the property 4.22. we obtain

(f. o) = lg.u) (4.23)

7
In light of 4.23. the Riesz representation theorem implies that the coefficient func-
tional c; : L* (R) — R, given by

(g, w?*)
chk(g) - a'j y
is continuous with

="l

leixll = :
? |5l

Since the functions uw”* are nearly normalized, we find that

D

Cirll ==~ ——
" Jy"” ,Ujl y

for some constant D. It follows that the number |o;|™" gives an indication of the
difficulty in recovering that wavelet coefficients at level j from the data g. For many
operators. we expect that

J&g o; =0,
which indicates that higher level wavelet coefficients are increasingly difficult to
recover.

Even though the c;; are continuous, the function f, as defined via 4.23. need

not be an element of L? (R). From 4.23, we have
R
,f = Z (g w],k
N ag;
Ik
and f € L?(R) if and only if

gy |2
E—————l(g’u | < oo, (4.24)
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which is a condition analogous to Picard’s existence criterion. If g € R(K). then
since

(9.074) = (£.K"ui%) = 75(£. 974,
condition 4.24 is satisfied and f € L? (R). However, since f must be estimated from
the noisy data g’ = g + 4. with § € L?(R), it is advantageous to require that 4.24
holds for any g € L?(R). Unfortunately, this requirement cannot be met in all
cases. This point is not clear in [18]. and to make it so, we investigate some of the

consequences of the condition 4.24.

Let us use the notation 7*¥ = u#*/q;. Now by definition, if 4.24 holds for every
g € L*(R), then {n** : j.k € Z} is said to be a Bessel sequence of L? (R). It can
be shown that the 7* define a Bessel sequence if and only if

Z ™
3.k

for some constant B (the reader is referred to {47, page 155]). By contrast 4.21

2
<BY lagl (4.25)
gk

implies that {n?*: j k € Z} is a Riesz-Fischer sequence or equivalently that

"
E , a; i’
ik

with A = ||K]|™. Together, the inequalities 4.25 and 4.26 indicate that the ok

2
> AN lajul. (4.26)
Tk

comprise a Riesz basis of L* (R) . A sequence {h:} in a Hilbert space H is said
to be a Riesz basis if it is equivalent to an orthonormal basis {er} of H. That is.

there exists a bounded linear operator 7, with a bounded inverse, such that
TeL. = hk.

Accordingly, there is an orthonormal basis {e/* : j,k € Z} of

V {w*: 5.k e Z} (4.27)
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and a bounded invertible operator T such that
TeH* = gik,
for all j,k € Z. If we let £* = o;u7*, then since
8itbem = (€. 0"™) = (T~ Pg?*. &™)

we have
T P,&*" = &, (4.28)

where P, is the orthogonal projection onto 4.27. Now. from 4.28 we obtain
2

Yo laal® = Y T P,e*
Fk ik
< NITI YD ajuc?™
1.k

and since 4.20 implies that the £ define a Bessel sequence, we conclude that
{€7% : j.k € Z} must be a Riesz basis for the subspace R(K). Consequently. the

inequalities

2
A Z lazel® < Z a; || <B Z |l ic|?
ik Jk qk

must hold and hence R(K) must be a closed subspace of L2 (R). In the case of

bounded operators K, since K is a densely defined bijection with a closed range.
the Open Mapping Theorem [27. page 286] implies that K ~! must be continuous.
As this need not be the case in general, we conclude that {1)5*" L ke Z} is not
necessarily a Riesz basis and that in general, 4.24 does not hold for all g € L? (R).

Even though the sets {&7*: j.k € Z} and {n"* : j,k € Z} are not necessarily
Riesz bases, one of the main ideas behind the WVD is that the quasi-singular values
o; can be selected so that the sets {uj"‘ : ke Z} and {'vj'k 1. k€ Z} are Riesz

bases. This idea leads us to the notion of veguelettes.
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Definition 4.1 Let w?¥(t) = 29/2w(27t — k) and suppose that the function w sat-
isfies:

1. Jw(t)] < (—lTlc’;t“—,, for some a > 0.

2. f:o w(t)dt =0 and

3. |lw(s) —w(t)| < |s —t[® for some B > 0.

then {w?* : j.k € Z} is said to be a collection of vaguelettes.

The importance of the definition above is elucidated in the following theorem. which

is a consequence of Schur’s lemma [36, page 270].

Theorem 4.1 If {wj"‘ 7.k € Z} s a collection of vaguelettes, then there exists a

constant B such that \
Z a,;kwj’k S B Z Iaj,klz -
ke Gk

That is. a collection of vaguelettes must be a Bessel sequence.

Suppose that the o; can be selected so that the functions u?* and v/* define
collections of vaguelettes. A sequence {h;} in the Hilbert space H is a Bessel
sequence if and only if for any orthonormal basis {e;} of H there exists a a bounded
linear operator 7 such that ’

Tck = hk.
With this fact and property 4.22, we can show that the sets {u?* : j.k € Z} and
{vi*: j ke Z} are Riesz bases.

Donoho has shown that for certain homogeneous operators. the functions u#*

and v?* do indeed lead to collections of vaguelettes for appropriately defined «; and

wavelets 1 that satisfy:
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1. ¥ is M times continnously differentiable and

2. [T t"Pp(t)dt =0forn=0,1.....N.

with M and N sufficiently large. In particular, many of the homogeneous operators
studied in [18], such as integration and fractional integration. can be expressed in
the form

(€r) ) =5 [~ T fn o (429)

|w]®
where @ > 0 and  is homogeneous of degree zero (2(aw) = (w) for any a > 0).
In such cases, the choices o; = 2727 and M, N > a + 2 are sufficient to ensure that
the functions u/* and v#* define collections of vaguelettes. Moreover, since these
collections are also Riesz bases and hence well-behaved, the rate of decay of the
7; can be regarded as a measure of the ill-posedness of the inverse problem based
upon the operator equation 4.19. For example, the case of ordinary integration
corresponds to a = 1, while the Abel transform corresponds to a = 1/2. Therefore.

ordinary integration is about twice as ill-posed as is the Abel transform.

We consider the estimation of f from the noisy data g° = g+e€4. in the case where
d is white noise with variance €2. To combat the ill-posedness of the inverse problem.
Donoho proposes a new type of nonlinear windowing known as thresholding. Let

(8)+ positive part of s. That is, let

s. s>0
(s) =
0, s<0

and define the function 7, by
me(s) = sgn(s)(|s| — t)+.

A sequence of non-negative thresholds {t; : 7 € Z} is selected and f is approximated
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by the series

- uik
ft) =%, (527—)) (). (4.30)

ik
Donoho has shown that in certain Besov spaces, the thresholds can be selected

to obtain faster rates of convergence than is possible with standard windowing
methods 4.18.
The Besov spaces B, can be regarded as generalizations of the Sobolev spaces
= B;, and the Holder spaces C* = B} . It has been shown in [36. page 199]

that for rapidly decreasing wavelets i of sufficient regularity, B o can be completely
characterized in terms of wavelet coefficients. In particular. it is shown that f€ B

if and only if:
L S [(£.6*9)[} < 00 and
2. {S |(f. p#*)[F}? = 2-(/2-11mligsig; for some {e;} € £(N).

Suppose that f is supported in the interval [—a,a] and B be a ball in B} . then

the author defines the minimaz-wavelet risk by

R%(e.B) = mfsupE ” (4-31)

{ti} reB

Lﬂ[—a.al ’

with f given by 4.30 and E the expectation operator. The rate of convergence is
defined to be the rate at which 4.31 teunds to zero as e — 0%, and the author proves

that. in the case p < 2, this rate is optimal.

G. Walter uses a method inspired by the WVD to obtain expansions for wide-
sense stationary stochastic processes that emulate the Karhunen-Loevé transfor-
mation [48]. In [44], similar ideas are employed to solve the mixture problem for

random variables. Let X, Y and Z be random variables with respective probability
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density functions f. g and k. If the random variables Y and Z are independent and
X=Y+2.

then the probability density functions are related by the equation
o0
f(t) = / g(T)h(t — ) dr.
—-ac
The mixture problem entails estimating the random variable Y from the noisy
measurements X . That is. we want to solve for the probability density g. given the

densities f and k. This is a problem of deconvolving g from h.

Walter begins by assuming that the unknown function belongs to the subspace
V.. In particular. it is assumed that V, is generated by an orthonormal scaling
function of Meyer type. Walter has shown that the Fourier transform of such a
scaling function can be expressed in the form

#@) = [ s —v)ds.
where p is a non-negative unimodular function with supp(p) C [—=/3,7/3]. The
Fourier transform of the resulting scaling function will be supported in the interval
(~47 /3,47 /3] and will be m times continuously differentiable whenever pis m — 1

times continuously differentiable.

Next. one assumes that Iiz(w)l > 0 and defines the functions u™* by

<  Znk
u™k(t) = L / e*“'"i,—(-‘f’—)du (4.32)
S L ) |
and the functions v™* by
() = [ e“tgE(w)h(w) dw. (4.33)

2r J_
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Since h has no zeroes and ¢ is compactly supported with supp(¢) C [—47/3.4x /3]-
the functions »™* and. in particular. the functions u™*, are well-defined L?(R)
objects for all n. k € Z.

It is easy to show that the sets of functions {u™*: k€ Z} and {v™*: k € Z}

form Riesz bases for their closed linear spans. Furthermore, since
(™. 6™F) = &
it follows from 4.32 and 4.33 that
(™, 0™F) = §jp. (4.34)

Recall that g € V;,. This means that we can expand g in terms of {¢™*: k€ Z}

to obtain

g(t) =) apd™(t)
k

whereupon we obtain, from 4.33 and the convolution equation. the expansion
F(8) =" apv™k(e).
k
If we now use the biorthogonality property 4.34, then we find that
ap = (f(t),u™*(t)).

However, since \
nk 2___i/°° IqS(w)l
bl =5 _li‘(?"“)lz dow

if for some a, A >0
A
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then
. 1 e . 2
e 2 g [ el )] do

1 4ne 4x/3 » . 2
> = — @ .
> A(H% Ll [$w)| dw | .

which implies that as n — oo, the problem of recovering f from g and h becomes
increasingly ill-conditioned.

We mention several points not examined by the author. First, even though the
two sets {u““' :keZ}and {v*F: ke Z} are biorthogonal. they are not in general
dual Riesz bases. This is due to the fact that their closed linear spans do not in
general coincide. To see that this is the case, suppose that ™ can be expressed in
terms of the basis {v™*: k € Z}. We find that

u™0(t) = ) bro™E(e).
k
which implies that
wd{w) = 22 3 bpe 2 hw) (w/2") -
k

However. by definition

e n/2 7 n
unvo(w) = 2—?__(%?_).’
h(w)
which implies that
.2 ——
|h(w)| Y bpe e =1 (4.35)
k

and since h is not periodic, equation 4.35 cannot hold for all w € R.

Secondly, we note that the orthogonal projection of {v™* : k € Z} onto

U=\ {z*: kez}
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is in fact the dual basis of {u™*: k € Z}. Suppose we let {@"*: k € Z} denote
the dual basis. Then, for any f € L? (R) the orthogonal projection of f onto U, is

given by
(Puf) () = D_(f. @™ )umk(t).
&

In particular. if we let f = v™7 and use 4.34. then we find that
(Pyv™) (t) = a™i(t).
A consequence of the above is that if f € U, then

fle) = Y _(farsurie)
k
= Z(f,v""‘)u"’k(t). (4.36)
k

However. if the function f has components in the orthogonal compliment U2 . then
the expansions 4.36 will not be equal. Since the orthogonal projection of f yields
the best mean-square approximation of f in the subspace U,,, there may be circum-
stances in which the orthogonal projection offers some advantages. However. if n

is sufficiently large, the differences may in fact be small.

In the next chapter, we shall consider a similar approach for the solution of
convolution integral equations. However, our approach will differ from that of
Walter's in the sense that we will make use of dual Riesz bases. Furthermore. the
results that we will present are valid for general orthonormal scaling functions.
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4.4 Discrete deconvolution

We now turn our attention to two papers in which methods for solving the discrete

deconvolution problem

Z hjzi =y;, JEZ (4.37)
keZ

are presented. Specifically, we will consider the approaches of Lu et al. (see [33])
and that of Chen and Lin [8].

In the article [33], the authors assume that equation 4.37 arises via a discretiza-

tion of the continuous convolution equation

/00 h(t ~ 1)z(1)dr = y(t).

Furthermore. it is supposed that the so-called blurring sequence {hi. : k € Z} is in
fact a two-scale sequence associated with the orthonormal scaling function ¢. That
is.

B(t) = V2 ) hud(2t — ),

k

with

(Bt — 1), Bl ~ k) = G

Ifin fact {h:. : k € Z}is a bona-fide two-scale sequence. then its discrete Fourier
transform (DFT)
H(w) =) hue™™
k

must satisfy the equation
|H@)I* +|H(w + )" =2, (4.38)

or equivalently
Z hgk_.jhj = Sk,()-
J
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Two particular convolution kernels % are treated numerically in this paper. The
first. a Gaussian kernel, arises in many practical situations. Suppose we assune that
the sequence {k; : k € Z} is defined by sampling the function h on some regular
grid. That is.

—k2 /az‘

hy = —e
a

for some a > 0. In this case we have
1 . 2, 2
D hashs = = 3 exp(—(2k ~ j)*/a?) exp(—5%/a?).
F i
It is obvious that the quantity above is positive for any & € Z and we conclude that
no regular sampling of a Gaussian kernel will give rise to a two-scale sequence.
The second kernel to be considered is the so-called Fejér kernel. We assume

_ 1 (sinmt/2 2
=555

where the scaling has been selected to ensure that H(0) = /2. which is implied by

that & is of the form

the normalization condition #(0) = 1. Since k is band-limited. it is not unreasonable
to assume that sampling should be at or above the Nyquist rate. With this in mind.

we suppose that a > 1 and set
1
h;, = —h(k/a).
a
The Fourier transform of h is
h(w) = V2xx(w)(1 — |w/7])

and by Poisson’s summation formula,

oc

H(w) = Y h(afw + 27l)).

l=—oc



CHAPTER 4. LITERATURE REVIEW 49

If we restrict our attention to the point w = x/2. then equation 4.38 becomes
H(x/2)* + |HGBx/2)" = 2(1 - @/2)® (xelam/2) + xx(—aw/2))  (4.39)

and it follows from 4.39 that 4.38 cannot be satisfied for any equally spaced sampling
of the Fejér kernel with a > 1 (sampling above the Nyquist rate).

In general. one cannot expect that a sampled convolution kernel will produce
a two-scale sequence corresponding to an orthonormal scaling function. In this
sense. the method developed Liu et al does not really make use of wavelet analysis.
However. as we shall see. the proposed method does make use of an algorithm which
is similar to a discrete wavelet transform so that the method is wavelet-like. Even
so, one of the advantages of wavelet analysis is the freedom to choose discrete filters
which are appropriate for a particular application. Since the filters employed by
the current method are defined by the convolution kernel. such freedom is absent
in this case.

As we have just mentioned, even if {h; : k € Z} is not a two-scale sequence, the
proposed method can still be implemented and leads to a new kind of regularization.
However, it is not entirely clear from the numerical evidence presented that this
method offers any particular advantages over more traditional methods. Moreover.
important properties such as convergence and regularity have not been considered.
We outline the proposed method and make some comparisons with a standard form

of regularization.

Let us suppose that the sequence {h; : k& € Z} is summable and has been scaled

so that
Y i <1
ke

In this case, we can always find another sequence {g;. : k € Z}, with DFT G such
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that
|H(w)]* + |G(w)|* = 1. (4.40)

In fact, the choice
Glw) = V1 - |H@)P

will do. At this point we should note that in the case of wavelet analysis, the filter
G is taken as the mirror of the filter H. In particular,

G(w) = e “H(w + ). (4.41)
However. unless H satisfies a rescaled version of 4.38, the choice 4.41 will not lead
to a perfect reconstruction filter bank.

Now. since H(0) # 0 in many applications, one can view {h: : k € Z} as a low-
pass filter, while {g;. : £ € Z} can be thought of as a high-pass filter. The authors
use these filters to implement a filter bank scheme for digital signals. This scheme
can be defined, in the frequency domain. by the formulae:

1. Decomposition.

X(w), 7=0
Xi(w) = X (4.42)
H(zj—lw)Xj-l(w)r 1=12,...
and
D(w) =G 'w)X;1(w). j=1.2...... (4.43)
2. Reconstruction.
X;1(w) = H2 'w)Xj(w) + G2 'w) D (w) j=1.2,..., . (4.44)

This filtering scheme is analogous to a redundant (un-decimated) discrete wavelet

transform (see [41]).
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If we take the DFT of equation 4.37. then we obtain
H(w)Xy(w) = Y(w) (4.45)
and in light of 4.42. we see that
Xi(w) = Y(w).

The deconvolution problem can now be thought of as one of recovering the missing

information

DY (w) = G(w)Xo(w).

Once D! has been obtained, the formula 4.44 can be used to recover an estimate
of Xo. For the purposes of illustration, let us restrict our attention to a single level

of decomposition and reconstruction.

We obtain from 4.42. 4.43 and 4.44. the special cases

Xi(w) = H(w)Xo(w). (4.46)
DY w) = G(w)Xo(w)
and
Xo(w) = H(w)X;(w) + G(w)D*(w) (4.47)

and combining 4.46 and 4.47, we obtain the reproducing equation

2 -
Xi(w) } _ JH(w)I H(w)G(f:) Xi(w) } (4.48)
D'(w) Hw)Gw) [G(w)] DY(w)

This system is singular and accordingly we will restrict our attention to the second
equation. The equation relating the missing information D! and the data X; =Y
1s

(1 - [Gw)|*) D'(w) = H(w)G(w)Y (). (4.49)
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[y
(3%

The function H may have zerces on [—w. x| and since noisy data Y* = Y + 4

need not vanish at these points. equation 4.49 may not be well-posed. The anthors

suggest that one take as an approximation to D!. the solution of the equation

(1 —2|GW)*) Di(w) = H(w)G(w)Y*(w).
where a < 1. Upon letting & = 1 — . the use of 4.38 yields
(Hw)I’ + A |G(w)|*) Di(w) = H(w)G(w)Y*(w).
which is the minimizer of the fanctional
Fy(D) = ||[HD - GY?||> + A\||GD)>.
If we apply 4.47. then from 4.50 we find that

X(w) =~ Xj(w) = H(w)Y*(w)+ G(w)Dj(w)

|G ()’ o
L G H(w)Y?
(IH(w)I2 + ,\[G(w)lz) H(w)Y"(w).

which could be thought of as the minimizer of the functional

F(X) = |HX - 1+ AGP)Y|" + AIGX]P.

(4.52)

In view of the unusual form of 4.52, there is no reason to suspect that the regu-

larization method this functional defines possesses any of the important properties

usually required of more familiar methods. To demonstrate that 4.52 does in fact

give rise to a viable regularization method, we first show that in the absence of

noise &

Jim, [1X ~ X, =0,
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where X 1Is a solution of HX =Y.

Let Zg be the set
Zp ={wé€[-m.7] : Hw) =0}

and assume for simplicity that the measure of Zy is zero. This assumption implies
N(H) = {0}. making the solution X unique (a proof for the more general case
N(H) # {0} is analogous). Now. since
1+ A[Gw)f*
[H(w)® + A [G(w)|
AG(w)[*
|H(w)* + A |G(w)/?

X(w) — Xalw) = (1~ 2|H(w)l2) X(w)

X(w),

we find that

2
ez L AG(w)[* ol

where

Zg = [~m.7]\ Zg.

Observe that for every w € 2%,

AG)*
s+ [H@)[? + A|G@)P

and

A G(w)[*
[H(w)[* + A[G(w)]
The desired result now follows from the Lebesgue dominated convergence theorem.

s <IGW)P < 1.

We now turn our attention to the property of regularity. Specifically, since the
choice of the regularization parameter A will depend on 4, we need to show that it

1s possible to choose A = A(4) so that

lim || X ~ X3,/ =0, (4.53)

lisl—+0*
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where we have used notation

o LEAGW)
) = oA G@E T Y @)

to denote the approximate solution obtained from the noisy data Y?*.

We proceed by considering the behavior of X} — X, where X, is the approximate
solution in the absence of noise. If we use 4.40, then we find that

5y 1+ A= A|HWw)f —
Xi(w) - Xa(w) = TEY [H(w)lz " /\H(w)&(w)

and if we define the function f, by

for z € [0.1]. then

2 1 f7
1= Xl =5 | A (H@)P) () do.
It can be shown that for z € [0, 1], the function f, takes on its maximum value at
the point
o) < 2L VERT
- 20(A —1) ’
with

A3 - VBAZH1)3(VBAZ+1-2X% —1)
e = e

In light of 4.54 we find that

(4.54)

1X5 - X |° < Al=() 16]2
and since
X - X < 11X - Xl + || X5 - Xa|
< IX = Xall + VAEO) 114, (4.55)

the desired result 4.53 will follow as long as we choose A = A(4) so that:



<
4]
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1. A — 0% as ||6]] — 0* and
2. fal=(A) [|6)1* — 0% as 1] — 0+ .

Now, since

VRGO ~ s+ WA, 0w,

we find that the choice
A(8) = O([|81*~).

with 0 < a < 2. provides the estimate
1 af2 -—Cr
1 X35 ~ Xa@ll ~ 5 18172 + O(81*~"). (4.56)

We point out that the leading term of the estimate 4.56 is consistent with results
obtained when minimum norm regularization is applied to compact operators (see

for example [29]).

In the special case
|H(w)]? > A > 0.

we find that
A
IX ~ Xall < 3 IX1.

whereupon the use of 4.55 yields the error bound
1 ~ Xoll < 5 11 + VG0 61 w57)
If we consider the leading order behavior of 4.57, then we obtain
X - X3l ~ OUIEI*~) + O}18]1*2). (4.58)

which. once again. is consistent with the results found in [29]. In fact, in the case of

C-generalized regularization as applied to discrete deconvolution, analysis, similar
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to that above. yields an estimate, of the type 4.57 with the same leading order
behavior as 4.58
In view of this similarity, we suspect that there is little difference between the

method of Liu et al. and that of C-generalized regularization. The method of C-
generalized regularization can be defined by through the use of the functional

Fy(X) = |[HX = Y*|[> + AIGX|2. (4.59)

which is minimized by
H(w)
XMw) =
" Hr A G

We define the inverse filters %* and #, by

Yé(w).

A _ F(W)
) = P A A lGW)P
and ,
() = LFACEIE

H@) + A G)
and observe that they are related by the equation

Ha(w) = (1 + A |G(w)>)H  (w). (4.60)

Plots of the filters H* and H, in the case of a Gaussian convolution kernel
appear in figures 4.1, 4.2 and 4.3. We observe that for small A, there is almost
no difference between the plots of #* and #,, while for larger values of A, the
main difference is near the mid-band frequencies w = +n /2. These observations
are confirmed by the equation 4.60, from which we conclude that if ||§]| is small,
then there will be negligible differences between the two regularization methods.

Finally, we should mention that, as in [33], we have restricted our consideration

to a single application of 4.42 and 4.43 to 4.45. Asis demonstrated by the anthors,
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Figure 4.1: H*, H,, A = .01

Figure 4.2: H* H), A = .05
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Figure 4.3: H*. Hy. A = .1

it 1s possible to derive more general reproducing equations in analogy with 4.48.
This leads to the possibility of a regularization method. with more than one reg-
ularization parameter, which may improve the flexibility of the proposed method.

However. we shall leave consideration of this generalization for future research.

We now consider the second article in which a discrete deconvolution problem

is addressed. The main focus of the paper (8] is the equation

oc

Y b —klolk] =yli]. i€z, (4.61)
k=—oc

where the sequence {z[k]: k € Z} is assumed to be obtained by sampling a 1/f
fractal process z(t). In general, a stochastic process z is said to be a 1/f process if

its empirical power spectral density R satisfies

2

R(w) ~ T:_l’ (4.62)
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for some - such that 0 < 94 < 2. The authors consider the problem of estimating

the sequence {z[k]: k € Z} from the noisy data
v [k] = y[k] + 8[k]. k€ Z.

with {§[k] : k € Z} a sampling of a white noise process d(t).

Due to the non-stationary nature of z (i.e. self-similarity and slow decay of cor-
relation) standard statistical filtering technique, such as Wiener filtering, prove to
be inadequate. The authors propose a multiscale filtering technique which com-
bines Wiener filtering and an un-decimated wavelet transform. This method relies
on the ability of the wavelet transform to remove, or at least reduce, non-stationary

effects making the subsequent Wiener filtering more effective.

The ability of wavelet transforms to reduce non-stationary behavior in 1/ f pro-
cesses is not completely unjustified. In the special case of fractional Brownian

motion. Flandrin (see [19]) has shown that the continuous wavelet transform of z.

given by
1 [~ s—t
Wrz)(t.a) = — ds,
wa) () = 7= [~ atop (152 .
is a wide-sense stationary process in ¢ with power spectral density
R 2
: [Blaw)
Sa(w) = ao lwIzHﬂ

In the related work [35], Masry shows that for each fixed j, the wavelet coeffi-
cients
2’ [k] = (z, ")
of a stochastic process z, with wide-sense stationary increments, forms a wide-sense

stationary sequence {z’[k]: k € Z}.
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Admittedly. these results are far from being complete and the utility of wavelet
transforms for the analysis of general 1/f processes is still under investigation.
However, it is noted in [45] that there is strong empirical evidence to suggest that
wavelet transforms serve as whitening filters for all 1/ f processes. That is to say. if =
is a zero mean 1/ f process with power spectral density 4.62. the wavelet coefficients

z7[k] are weakly correlated along and across scales and satisfy
E {lzj[k]lz} ~ a7,
It is the properties above that make the proposed method plausible.

Let {h; : k € Z} and {gi. : k € Z} be the two-scale sequences corresponding to
the orthonormal wavelet basis {¢**: j.k € Z}. In particular, we suppose that

these sequences satisfy the dilation equations
$(t) = V2D hg(2t — k)
k
and
¥(t) = V2 gud(2t ~ k)
&

with {g. : k£ € Z} the mirror of {h; : k € Z}, given by g; = (—1)**'hr_;. One can
define the un-decimated discrete wavelet transform (analogous to 4.42 and 4.43) of

the sequence {z[k] : k € Z} via the equations

Xi(w) = H2'w)X;a(w), j=1.2,... (4.63)
and

Xi(w) = G2 W) X1 (w), =1,2,..., (4.64)

where Xy, = X is the the DFT of {z[k]: k € Z}. If we take the DFT of equa-
tion 4.61, the we obtain

B(w)X(w) =Y (w) (4.65)
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and by repeatedly applying equations 4.63 and 4.64. we can derive a hierarchy of
equations equivalent to 4.65. For example. a single iteration of this process produces

the system of equations

B(w)X'w) = YYw), (4.66)
B(w)Xi(w) = Yi(w),

where Y! = GY and Y; = HY;. Since X! and X; must be estimated from the

noisy data

Y (w) = G(w)Y¥(w)

and

Yi(w) = Hw)Y' ().
the authors propose the method of Wiener filtering for the approximation of X!

and X;. Once suitable estimates of X! and X; have been obtained, X, can be

estimated by applying a down sampled inverse wavelet transform.

Wiener filtering is a least-squares technique for the estimation of a stochas-
tic process from noisy or imprecise measurements (see [39]). For instance, if this
technique is applied to 4.61, then {z[k] : k € Z} is approximated by the sequence

k) =Y ok —ily’li]. keZ.

7

The filter {c[k]: k € Z} is to be selected so that the expected mean-square error
E {lelk]'} = E {|=[k] - 2k}

is minimized. If one assumes that {z[k] : k € Z} and {6[k] : k € Z} are wide-sense

stationary sequences with zero cross-correlation, then

w

E{IefHP} = 5 [ 11~ CIBEI helw)dot o= [ 1C()P Ralw) s, (467

2r J_



CHAPTER 4. LITERATURE REVIEW 62

where R. and Rg are the DFTs of the autocorrelation sequences
R.[k] = E {z[j]=[j + k]}

and
Rs[k] = E {3[5]0[5 + K1}
Ifit is now assumed that {z[k] : k € Z}and {6[k] : k € Z} are white noise sequences

with the respective variances o2 and o?, then 4.67 can be written as

2 2 ”
E{lefk]]’} = %[ 11— C(w)B(w)[? dw + gfr i IC(w)]? dw. (4.68)

Equation 4.68 defines a functional J(C) = E {[e[k]lz} and if we minimize this
functional on the Hilbert space L?[—x, x|, then we obtain the result

2B
= Ber

We emphasize that the derivation of 4.69 depends heavily on the assumption that

(4.69)

{z[k] : k € Z} and {d[k] : k € Z} are wide-sense stationary white noise sequences.
With regard to the solution of system 4.66. it is the role of the wavelet transform as
a whitening filter for 1/ f processes that makes this assumption reasonable. Before
further consideration of the system 4.66, we list several points regarding the filter
{c[k]: k€ Z}:

1. Stability. The filter {c[k]: k € Z} can be computed from its DFT 4.69
through the use of the equation
_ 1 " thw
c[k] = . /;*e C(w) dw

and if we assume that {b(k]: & € Z} is a sequence in €' (Z), then it is easy to
show that

D lefk]f? < oo
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However it is not entirely clear that {c[k]: k € Z} is a stable filter in the

sense that
) " lelk]| < oo.
k

In this case however, a theorem. due to Wiener (see for example [26]), ensures

that {c[k}: k € Z} € £* (Z) whenever {b[k] : k € Z} € £* (Z).

2. Causality. If {b[k]: k € Z} is causal. that is b = 0 forall k = —1.-2.....
then {c[k]: k € Z} will not be causal. The Wiener filtering technique can
be adapted to produce a causal filter, which may be desirable for certain
applications. This complication in considered in some detail in [8] and will

not be pursued further here.

3. Regularization. The DFT of the filter {c[k]: k € Z} is identical in form to
that obtained by a minimum norm regularization scheme in which the reg-
ularization parameter A is predetermined by the variances o2 and o2. This
observation suggests the possibility of a redundant multiscale regularization

method for deterministic convolution equations.

Let us now return to 4.66 and suppose that the assumptions needed for Wiener
filtering hold. That is. let us suppose that {z'[k] : k € Z}, {z\[k] : k € Z}, {d*[K]: k € Z}
and {8:[k] : k € Z} are white noise sequences with respective variances 02,, 72, 07,
and 5f,. We should point out that in view of 4.62 and the fact that ¢(0) = 1, the
sequence {z,(k] : k € Z} may not be well-defined. In such cases, 4.64 should be
used to replace 4.66 with a system of equation for the detail sequences {z7[k] : 7 >
1,k € Z} only.

If we apply Wiener filtering to each equation in 4.66, in the presence of noisy
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data, we obtain the approximations

B(w)

____________J 1 w X
A+ |B(w)? Y (4.70)

Xi(w) =

and

B(w)

4
frB@P @

Xi(w) =

where

and

We recall that, in the frequency domain. the operation of down-sampling is given

by the mapping
X(@) — (DX) (w) = % (X(0/2) + X(w/2 + 7)) . (4.72)

If 4.70 and 4.71 are down-sampled and the inverse discrete wavelet transform

(DWT) applied to the resulting functions. then the approximation
1
Xw) = X{w) = 5 (Hw)Byw)+IG@) Bi(w)) Y'(w)

= (H(@)H(w + 7)B,(w + )

G(w)G(w + m)Ba(w + 7)) Y(w + 1), (4.73)
with _
B(w)
B,(w) = —————.
= B@r

is obtained. Alternatively, if the undecimated inverse DWT is applied directly
to 4.70 and 4.71, then the approximation

X(w) = Xf(w) = 3 (H@)?Buw) + [Gw) Brw) V@) (474)
2

is produced. Now, since the filters H and G possess the properties:
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L. |[Hw)® + [G(w)]* = 2 and

2. Hw)H(w + 7) + G(w)G(w + 7) = 0,

we see that, when A = g,
X(w) = X}(w) = X}(w) = Ba(w)Y¥(w).

which is the approximation one expects when ordinary Wiener filtering is applied
directly to 4.65.

We emphasize that the method of Wiener filtering is dependent upon the knowl-
edge of the power spectral densities of the sequences {z[k] : k € Z}and {J[k]: k € Z}
and. in many cases. such specific knowledge may not be available. However. as we
have mentioned. 4.73 and 4.74 suggest the possibility of a multiscale regularization
method. which is a natural generalization of Tikhonov's regularization 4.17.



Chapter 5

Methods based on scaling

functions

5.1 Introduction

In this chapter, we will examine some of the consequences of the assumption z € V,,
with regard to equation 2.4. In particular, we are interested in cases for which this
assumption leads to a modified problem which is well-posed. We show that there
are conditions, involving the spectrum of a real, symmetric Toeplitz matrix. which
ensure that the operator Gly, is either weakly or strongly invertible. Subsequently,
some of the properties of this matrix are investigated and then used to establish a

convergence result as well as comment upon the condition of the modified problem.

The restriction of G to V.

66
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5.2 Deconvolution of functions in scaling func-

tion subspaces

Let us assume that the unknown function u belongs to the scaling function subspace

v;:V{(pmk: k ez},

where ¢ is an orthomormal scaling function. If we let u.[k] = (u.¢$™F). then u

admits an expansion of the form

u(t) = Y unlkj™(8), (5.1)
k
which allows us to rewrite 2.4 as
S unlb] [ ot = rgn4r) dr = y(o). (5.2)
k ~—Q0
Now, since
(g¢"-") (t) = /w gt — T)2"/2¢(2"r - k)dr

= / T gt — k(2 — 124 dr

oc

= (G™) (¢ — k/2").
if we use the notation £.(t) = (G¢™°) (), then 5.2 becomes
D unlklalt — k/2%) = y(2). (5.3)
k

We see that under the assumption u € V,, the problem of solving 2.4 for the
unknown function u is equivalent to the problem of solving 5.3 for the unknown
sequence {u,[k] : k € Z}. In terms of operators, we have simply replaced the equa-
tion

Gu=1y (5.4)
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Figure 5.1: The functions £_; and &

with the new equation

[44]
[ 341
e

gIVnu =Y, (
where G|y, denotes the restriction of G to the subspace V.

The expansion 5.3 is similar to the scaling function expansion 5.1 in the sense
that the relevant functions are obtained by translating a single function by the
amount k/2". However, unlike 5.1, the basic function ¢, depends on n. and as the
resolution is changed we obtain expansions with respect to different functions. This
is due to the fact that the operations of translation and dilation do not commute.

Figure 5.1 shows typical examples of the function &, in the case where g(t) = =/,

In section 2.2, it was shown that the problem defined by 2.4 is ill-posed. In the
coming sections, we shall consider circumstances under which the new problem.

defined by 5.3, is well-posed. This consideration will entail an investigation of the
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sequence of functions {£,.(t — k/2™) : k € Z}. In particular. we are interested in the
properties of {{.(t — k/2") : k € Z} which will enable us to recover {u,[k|: k € Z}
in a unique and continuous way from the specified data. In the next section. we
begin this investigation by considering the simpler problem of recovering a single

scaling fanction coefficient u,[k].

5.3 Coefficient functionals and weak invertibility

Consider the equation 5.4 and let z be some element of L?(R). Suppose that.
instead of solving 5.4 for u, we seek to recover the moment (u,z) from y. If we

define the linear functional ¢ : L2 (R) — R by
c(y) = (u.z)

then is can be shown that ¢ is continuous if and only if z € R(G"), where G~ is the

adjoint of G (see {1, 18]).

We are particularly interested in the functionals ¢, : G(V,,) — R, which are
defined by
Cnie(y) = (u, ¢™). (5.6)
Specifically. we want to know when the functionals 5.6 are continuous. Since we
have assumed that u € V,, we are working with the operator equation 5.5 and
accordingly, the functionals 5.6 will be continuous as long as ¢™* belongs to the
range of the adjoint of the operator G|y, for all k € Z.

Definition 5.1 If the coefficient functionals ¢, ;. are continuous for allk € Z. then

we will say that the operator Glv, is weakly invertible.
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We begin by considering the adjoint of G[v,. Let H; and H, be Hilbert spaces
with respective inner-products (-.-), and (-,-),. Suppose that X : H; —+ H, is a
bounded linear operator. The adjoint K= : H; — H; is the bounded linear operator
defined by the equation

(Kz.y), = (2.K7y),.
The existence of the operator K~ is gnaranteed by the Riesz Representation Theo-

rem.

We can regard G|y, as a linear operator mapping the Hilbert space V,, into the
Hilbert space G(V,) = R(G|v,)- The adjoint of G|y, is defined by

(Glvif. k) = (f.(GIv.)" h),
where f € V, and h € G(V,). We notice that for f € V,
(Glv.f.h) = (Gf.h) = (f.G"h)
and since P, f = f. we find that
(Glv.f. k) = (f. P.G™h).
It now follows that
(GIv.)" = PG gy (5.7)

and hence the linear functionals ¢, are continuous if and only if

™ € R((GIv.)") = Pg" (G1V2)) -

We immediately notice that if {¢™* : k € Z} C R((Gl|v,)"), we must have

e e

R((Glv.)) =Va
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and since, for any bounded linear operator K, R(K*) = N(K)*, the above implies

That is. if the ¢, r are continuous, G|y, must be a bijection onto its range. Further-

more, we observe that
(u(t), g™5(t)) = (u(t +k/27). ™(2))-

Let u*(t) = u(t + k/2"), then if y = Gu, we find that

y(t +k/2") = (Gu*) ()
and hence

cni(y) = (u(t+Kk/27).4™°(t))
= cnoly(t+E/2V).

In other words, since V, is closed under translations which are integer multiples of

27", the ¢, 1 are continuous if and only if ¢, is continuous. If we want to recover all

of the u,[k] from the function y = Gu, it is enough to ensure that ¢™° € R((G|v,.)")-

Before considering conditions which ensure the weak invertibility of G|v,. we

examine some of the immediate consequences of

¢™° € R((Glv.)"). (5.8)

which will be of use in the work to come. Condition 5.8 implies that there exists
some En € G(V,) such that
¢™° = PG . (5.9)

and since, for any u € V,,

un[0] = (u,6™%) = (Gu.£,),
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we conclude that

cak(y) = (y(t). &a(t — k/2™)). (5.10)
Also. if 5.8 holds, then the c, . are continnous and the Riesz representation theorem
ensures the existence of a unique function v, € G(V,,) such that

cno(y) = (y. vn)-

Accordingly, the function &, = v,, defined by 5.9 is unique.

The sequences

Xn={(t-Fk/2"): keZ}

and
X, = {E,.(t —k/2) ke z}
are biorthogonal. This follows easily from the orthonormality of {qS""" ke Z}.

which implies that

Six = (¢™(t).4™*(t))
= ($™(t), (PGl — k/2)) (8)) (5.11)
= (&alt — j/27),&alt — k/2™)).

The set, X, is a Riesz-Fischer sequence with

> G017 ) ol (5.12)
k

Z akgn(t - k/zn)
&

which follows from 5.9 and the Parseval’s relation

Dl = (| arg™*
k k

.
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Indeed. since
2 2
’ Z akqﬁ"'k, = ’ Eakpng'én(t —k/27)
k k
2
< ligTP ’Z énlt — k/2")
ke
and ||G|| = ||G*||, we see that 5.12 holds. Furthermore, the sequence X, is complete

in G(V,.). To see this, we suppose that v € G(V.) is such that
(v(2), &alt ~ k/2™) = 0, (5.13)

for all k£ € Z. We want to show that 5.13 implies v = 0. We know that there exists
v € G(V,). j € N such that

lim [lv = o] = 0

J—c

and since strong convergence 2 implies weak convergence 3. 5.13 yields
JILI{.]“:(VJ(t)~En(t — k/zﬁ)) = (l/(t),fn(t —_ k/zn)) = 0,

for all k € Z. We can always find o7 € V, such that Go7 = »7 and through the use

of 5.9. we obtain

(V2 (2)-bnlt ~ k/2%)) = (o7(t), 4™4(2).
The set {¢™* : k € Z} is complete in V,, and accordingly, the sequence {s7 : j € N}
converges weakly to zero. The operator G is continuous and hence {v7 : j € N} also
converges weakly to zero. However, we already know that {17 : j € N} converges
strongly to v and since the strong and weak limits must agree, we conclude that

v =0 and therefore X, is complete.

2Convergence in the norm.

Convergence with respect to all continuous linear functionals.



CHAPTER 5. METHODS BASED ON SCALING FUNCTIONS 74

We mention that X, is a Bessel sequence with
2

<617 Y fowf? (5.14)

k

> (e —k/2")
15

and a proof similar to that above shows that X, is also complete in G(V},).

We return our attention to the weak invertibility of the operator G|y,. We
provide a characterization of this property which makes use of the Gram matriz of

the sequence X,.. The Gram matrix of X,,, given by
G, = [(&alt = k/27), &a(t ~ 5/2))], (5.15)

is a symmetric Joeplitz matrix and, in light of 5.14, is a bounded linear opera-
tor mapping ¢ (Z) into £2(Z). An explicit expression for the entries of 5.15 can
be obtained by considering the Fourier coefficients of an appropriate 27-periodic

function. Moreover. this function can be defined in terms of the functions ¢ and §.

To find this function. we note that

—k/2" = 1 gikw/2" w
(Ga(t). &alt —k/27)) = = (¢ ( )l
= 2_];r. etkw lg(znw)é‘(w)] dew
= tl..w nw w
B 27: Lo / %:L |9(2 + 2 1])4( +2nt)|
Also note that
Jim 312w + 2mt) ] + 20)|
k<L

R 2
< supl() 3 [#w +2e)| =G
v t
Hence, if we use the notation

Ga(w) = ¥ |32l + 2x M)l + 21rl)|2 , (5.16)
l
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then the Lebesgue Dominated Convergence Theorem (see, for example [38]) allows
- us to write
n 1 = sk A
galk] = (€a(2). &alt — k/27)) = o e’ Gn(w) dw. (5.17)
That is, the entries of 5.15 are in fact the Fourier coefficients of the function 5.16

and in particular,
Gn = [ga[7 — K]].-

We are now in a position to prove the following theorem. which provides a

characterization of the weak invertibility of G|y, in terms of G,.

Theorem 5.1 Let G, be defined as in 5.16. If there ezists a sequence {A7 : jeN}C

L*[—n.x] and a constent M such that

x

. 2 1 .. 2
lim “A’G,, — 1” = lim — [ |A(w)Gaw)-1] dw=0  (5.18)

j—oc j—oc 21 —_

and ||A’|| < M. then ¢™° € R((Glv.)7)-
Proof. Let
Aw) =) ofe ™
ke
and define the functions v’ € G(V,) by

Vi(E) =) afbalt — k/27).
ke

If we now let

Bl = (F(t).&alt —k/2") = ) algalp — K],
A

then, by 5.18
lim 3716 - ol = 0. (5.19)
P
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It now follows that. since {&.(t ~k/2"): k€ Z} is complete in G(V,) and
|A%|| < M. the sequence {¢” : j € N} converges weakly to some v € G(V,.).

Since P.G" is continnous, P,G*1’ converges weakly to P,G*v. Now
(PGV) (1) = ) _ Big™ (t)
19
and. in view of 5.19. we have
lim || P.Gv —¢™°|| = 0.
j—+oo
Since the strong and weak limits must coincide, we conclude that
P.G v = ¢™°

and therefore 5.8 holds. 8
Observe that if 1/G,. € L*—=. x|, then G|y, will be weakly invertible. We also

observe that if G is weakly invertible, then so is G|y, for any n. However. the
converse does not hold. For example, suppose that the Fourier transform of the
convolution kernel is

X ww? —m2)M. —r<w<n

g(w) = ]

otherwise

b

and let ¢ be the Shannon scaling function. That is
. l, - t<w<m
$(w) = -
0, otherwise

The operator G is not injective and hence, is not weakly invertible. On the other
hand. for w € (—w,n),
Go(w) = §(w)

and since 1/G, € L?[—m. ], the operator G|y, is weakly invertible.
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Finally. we note that even if the functionals c,; are continuous, the inverse of
the operator G|y, need not be continuous. Since V,, and €2 (Z) are isometric, the

last statement is equivalent to saying that

Y lenie(w)P < oo. (5.20)
&

need not hold for all y € G(V,.). We recall that {v. : £ € Z} is said to be a Bessel
sequence as long as

2
<BY ol (5.21)
k

E aV.
k

According to [47, page 154], 5.21 is equivalent to

> (o m)? < Blo|? (5.22)
18

for any o. In view of 5.22 and 5.10, we see that 5.20 will hold if and only if X, is

a Bessel sequence.

5.4 Strong invertibility

Suppose that G|y, is weakly invertible. As we have seen in the previous section.
this means that Gy, is a bijection onto its range. However, (G|v,)”" need not be
continuous. QOur present objective is to derive verifiable conditions which ensure
that (Glv,) ™" is continuous. In particular, we are interested in finding the properties
of the functions g and ¢ which will ensure that the inverse problem defined by 5.5
is well-posed.

Definition 5.2 If (Glv.)™" is a continuous linear operator mapping G(V,) onto V,.

then we say that Gly, s strongly invertible.
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Recall that under the assumption « € V,,, equation 2.4 can be written as
Glvau =1y,

or equivalently, as
3 walklén(t — k/2%) = yit).
k

Since

-
-

Z akqﬁ"’k — Z laklz .
k ke

the subspace V,, and ¢? (Z) are isometric and therefore G|y, will have a continuous

inverse if and only if the linear operator defined by
y(t) > {unlk] : k € Z} (5.23)

is continuous. In turn, the linear operator defined by 5.23 will be continuous if and

only if there exists a constant C such that
3wkl = Y leni(w)? < Cliyll®
e ke

and since
Cn.k(y) = (y(t)'.én(t - k/2n))?

we see that (G|v,)”"! will be continuous if and only if

- 2 v
> [wt), &t - k/2)|” < Cllyl?® (5.24)
k
for any y € G(V,,). Since 5.24 is equivalent to
2
D abalt — /)| <CY el (5.25)
k k

the operator G|y, will be strongly invertible if and only if the sequence of functions

X, = {fn(t ~k/2"): ke z}
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forms a Bessel sequence of G(V,). We have already pointed out that whenever the
sequence X, exists. it must be a Riesz-Fischer sequence. Hence, if X, is a Bessel
sequence, then it must be a Riesz basis of G(V},).

Inequality 5.24, or equivalently 5.25, can be difficult to establish when one works
with the sequence Xn. However, it can be shown that f(n is a Bessel sequence if

and only if the set
Xo={&E—-Ek/2"): ke Z)}

is a Riesz-Fischer sequence so that we may work with the sequence X instead. Since
the sequence X, is defined explicitly by

€a(t) = (G4™°) (1),

this approach turns out to be easier.

A proof of the aforementioned equivalence makes use of the relevant definitions
and the biorthogonality of the sequences X, and X,.. Assume that X, forms a
Bessel sequence of G(V,) and let

y(t) =) bbalt — k/27).
k

The sequence X,, is a Bessel sequence and hence the function y is a well defined
element of G(V,,) for any {b. : k € Z} € £2(Z). The biorthogonality of X, and X,
yields

be = (y(t), &n(t — k/2"))

and through the use of 5.24 we obtain

Y P<c
.

which implies that X, is a Riesz-Fischer sequence.

2

A

> bubalt — k/27)
k
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Let us now suppose that X, is a Riesz-Fischer sequence with

2

>C Jaf.
k

We use Parseval's relation for the orthonormal basis {¢™* : k € Z} to obtain the

D aibalt ~ k/27)

k

inequality -

2

>C

2

(5.26)

> anbalt ~ k/2")
I

Z ak¢n.k(t)
k

Recall that X, is complete in G(V;,) and therefore 5.26 implies that there exists a

continuous linear operator 7 : G(V,,) = V, such that
$"E(t) = (Téa(- — k/27)) (£).
The orthonormality of {q&""‘ ke Z} 1s used once again to obtain

Gk = (T T&a(t — 7/27). &n(t — k/27))

and, since )Z'n is the unique sequence in G(V,) biorthogonal to X, we conclude that

balt ~k/2%) = (T"Té(-—k/2%))(t)
= (TTG4™) (¢).

Finally, the operator 77 : G(V,) — G(V.) is continuous and therefore X, is a

Bessel sequence with

<SITINGIP ) fbef?.
k

> bda(t — k/2")
&

We now focus on establishing conditions which ensure that X, is a Riesz-Fischer
sequence of G(V,,). In view of the fact that X, is a Bessel sequence, such conditions

will also guarantee that X, is a Riesz basis.
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The sequence X, is said to be a Riesz basis of G(V,.) if it is complete and if

there exist positive constants A and B such that

AY ldf <
-

Inequality 5.14 ensures that a suitable choice for a upper Riesz bound B satisfies

2
<BY_ldf. (5.27)
k

) ditalt — k/27)
k

B <|g)*.

It is the existence of a lower Riesz bound A that is, in general, difficult to verify.
However. since the sequence X, is generated by translating a single function &,, we
can use Parseval’s relation for the Fourier transform to simplify the estimation of

A

We have
2 1 oc 2
LAtk = | 3 de ™ ME ) du
k - |
2
= 1 / SIS de lg(znu)$(w)|2dw
27 J_oo -

(20+1)»

1
= — lim /

whereupon the use of the notation

2 2
|2 w)dw)| do.

z dy. e—i&w
&

D(w) =) die™™
[3

and the change of variable w = v + 2nl yields the equation

2

1 .. [T , . . 2
= 5}-&[,, |D(w)] m%; lg(2 [w + 27l])d(w + 27l)| dw.

D dibnlt ~k/27)
ke
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We have already seen that

> |32 + 2all)dw + 20| < G,

HI<L
for almost all w and hence the Lebesgue Dominated Convergence Theorem implies

that
2

1

2r

" D) Gnlw) deo, (5.28)

D dikalt — k/2")
&
where G,(w) is as in 5.16. namely,
~ - 2
Gulw) =Y | §(2"w + 27l])$w + 20)| .
4

In view of 5.28. we see that 5.27 and

A< / ) D(w)Gr(w)dw < B. (5.29)
with ,
= |D(w)]|

D(w) = om DI IDIE’ (5.30)

are equivalent.

Suppose that G, satisfies the inequalities
A< G.(w) < B. (5.31)

for almost all w, then since the function 5.30 is unimodular, if 5.31 holds, then 5.29
(and hence 5.27) must hold. In other words, if we can show that there exist positive
constants A and B such that the inequalities 5.31 hold for almost all w, then X,

must be a Riesz basis for its closed linear span.

For our present purposes, what we have just shown is enough. However, it is

interesting to note that in most practical cases 5.31 and 5.29 are, in fact, equivalent.



CHAPTER 5. METHODS BASED ON SCALING FUNCTIONS 83

For instance if G, is continuous and we select D from some appropriate §-sequence.

then it can be shown that 5.29 implies 5.31.

The assumption that G, is continuous is not overly restrictive. For example, we
know that g, ¢ € L* (R) and therefore, the functions § and ¢ will be continuous.

Furthermore, since
- - 2
Gulw) S IGIP Y b + 270)| =G (5.32)
{

we see that if the series
> [dtw +2mp)|
I
converges uniformly, then the series 5.16 converges uniformly and G,. will be con-
tinuous.
It is not difficult to find conditions sufficient to ensure the uniform convergence

of ¥, $(w + 27l) ". Henceforth we will assume that the scaling functions we use
satisfy

be)| < 7 (5.33)

for some a > 1/2. It follows that

: 2 1
}l: |$lw +271)| < szl: o

and since we can restrict our attention to w € [—m, 7|, we find that

. 2 = 1 . 1
Zl: | B+ 21rl)| < c? (1 + g T+ (2~ 1n)e= > T3 ([21 + 1]77)2")

I=—1

2 S 1
=¢ (1+2§1+([21-1]7r)2")'

In light of the inequality,

- 1 1 — 1
< —_— .
Z 1+ (2] — Lm)2= = 2= E pa < %

=1
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we conclude that Y, j¢(w + 27)|* converges uniformly on compact subsets of R.

Many orthonormal scaling functions will satisfy the inequality 5.33 for some
a > 1/2. For example, if ¢ is a Meyer scaling fanction, then ¢ has compact
support and 5.33 is satisfied for any choice of a.

If ¢ is a Daubechies scaling function. then ¢ is compactly supported in some
interval I C R. We can choose ¢ from the Daubechies family so that it is N-
times continuously differentiable. It follows that integration by parts leads to the

/I et h(t) dtl

inequality

/ e~ “tgN)(t) dtl +

I
< C.

1+ [of") |d(@)]

When ¢ belongs to the Battle-Lemarié family, we have

Hw) = M(w) (-‘%—‘;’—é—zl)N

where M is a continuous 2w-periodic function and N is a positive integer. The
mequality 5.33 is satisfied with a = N.
When G, is continuous, we can define the so-called optimal Riesz bounds for

the sequence X,. In particular, we let

A= min }é,,(w) (5.34)

and
n = Qn . .35
B, wg[lﬁ,‘,r]c (w) (5.35)

We reiterate that the upper bound B, will always exist and is bounded above by
IG]|?. Furthermore, it is the existence of the lower bound A, which can be difficult
to establish. With regard to the inverse problem at hand, it is the lower bound
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which is most important. In fact. we have shown that (G|, )" will be continuous
if and only if A, > 0. By borrowing ideas used by Cohen (see [14, page 182]) in the
study of orthonormal wavelet bases, we can find necessary and sufficient conditions

for the existence of a positive A,,. We will need the following definition:

Definition 5.3 A compact set K is said to be congruent to [—m, x| modulo 27 (we

will use the notation K = [—x,n] mod 27 ) if:

1. |K| =2r and

2. for every w € [~m,w], there is an integer | € Z such that w + 27l € K.

We now state and prove the following theorem, which gives necessary and sufficient

conditions for the existence of 4, in terms of the functions § and 43

Theorem 5.2 Suppose that ¢ satisfies 5.93. then there ezists an A > 0 such that
Gafw) > A (5.36)

for all w if and only if there ezists some constant C > 0 and a compact set K =
[-7.7] mod 27 such that
laro1éw)| = (5.37)

foralwe K.

Proof. Suppose that 5.37 holds for all w € K = [—n, 7] mod 2r. We want
to show that this assumption implies 5.36 holds for some A > 0. To do this, we
assume the contrary. That is, there exists at least one w” € [—m, 7] such that the

continuous function G, satisfies

én(w') =0,
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which implies
§(2Mw" + 2nl)(w” + 2x1)| =0
foralll € Z.

By definition, for any w € [—n,x] there exists m € Z such that w+27m € K. It
follows that we can choose m so that w™ +27m € K, which contradicts the original
assumption.

We now assume that 5.36 holds and show that 5.37 must hold. Suppose that

0 <e< A/2. Since
3" |2t + 20t + 200
{

converges uniformly for w € [—x, 7], there exists a positive integer L such that

Galw) ~ 3 |32 + 27l dw + 2«1)[2 <e
fI<L

and hence
- 2 -
Y |§(2"[w + 27l])$w + 27rl)l > Galw) —e> A2 (5.38)
<L
for all w € [—n. 7).

Now, in view of inequality 5.38. for each w € [~ x|, there exists [, such that

[l,] < L and
A

2
)' Z3@L+I) (5.39)

| 32w + 2mL))$(w + 27l

Since § and ¢ are continuous, there exists a neighborhood M, of w such that

R 2 A
[ §(2"[w + 27 L)) d(w + 21rl,,,)l > LT

for all w € M,,. If we define the sets R; by

R = {w € [-m.7] : lg(2"[w + 2nl])d(w + 21:'l)|2 > Z(EA_;T)-} \
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for l=—~L.~L+1....L, then. each R; is a subset of [—x. 7] such that
M, C R(U.

Since {M,, : w € [—=, 7]} is a cover of [~m, x|, {R;: I = —L,...,L} is a sequence

of subsets of [—, x| such that

L
[—1r ,W] = U R(-
{=-L
If we now define the sets S; by.
S.t=R_.
and
-1
S=r\J S
p=-L

then the S;, { = —L.—~L + 1....L form a sequence of disjoint subsets of [—m.x]
satisfying
L
[-r.7] = U S

==L

Let us use the notation S; + 2n! to signify the sets
S¢+21r1={w : w—21rlES¢}
and subsequently define the compact set K by

L
K= |J S+2nl
I=—L
Since the sets S; are disjoint,

L L
USs +'21rz" =Y S| =2n

I=-L I =-L

|K| =
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hence K = [—=. x| mod 27 and

A

If’(z “)¢(”)l C =L+
foralwe K. B

Suppose that the hypothesis of 5.2 is satisfied. then X, is a Riesz basis of
the subspace G(V,) satisfying the inequalities 5.27 with A = A, and B = B,.
According to Young (47, page 32|, there exists a Riesz basis {v. : k € Z} of G(V,,).
biorthogonal to X, and satisfying the inequalities

Zlad < Zakvk(t)

The Riesz basis {vi. : k € Z} is known as the dual basis and. since X, is the unique

< — Z E (5.40)

sequence in G(V,) biorthogonal to X,,. we must have
vi(t) = &a(t — k/2).

It is not too difficult to show that the Fourier transform of £, is given explicitly by

z _ én(w) .
£qlw) = Gz @/’ (5.41)
which implies that )
1 [% e (@)
£a(t) = = / e XD duw. (5.42)

To justify the representation 5.42, we simply need to show that the sequence X..

generated by 5.42, is biorthogonal to X, and is contained in the subspace G(V,).

If £, is given by 5.42, then

bnlw )
Gn(w/27)

(Balt — K/27) Enlt — k/2%)) = “/ -3y
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where p = k& — 5. We use the equation
bnlw) = 27 (w)d(w/2")

to obtain

- 2
g °°e,-,,,.,,=u|5("’)¢(”/2")l
Ealt = b2) eale — /7)) = 2 f_ i Y

L= fieese)

2n ~-ag Gu((d)
- 2
| Y L 2iner |9(2 M w + 2] (w + 27l)
- —2_1;L-§cc [_re 7 én(w)

whereupon the Lebesgue Dominated Convergence theorem implies that
- 1 LA
(Gt~ B/2), Enlt = k/27)) = - / e duy = 6,0,

as required.
We now show that the function fn, defined by 5.42, belongs to the subspace

G(Vo). If we define the sequence {g.[k]: k € Z} by
1 " eikw

— - 43
2“ ~-r G"(w) (5 )

.‘.—lﬂ[k] =
then. since G, is continuous with
Ga(w) > An >0,

we have

D 13a (k] < oo.
&

Equation 5.41 can be used to obtain

E n(w) = Z gn[k]e—ikwlznén (w)
k
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and hence, the inverse Fourier transform yields
£alt) =) GalklEn(t — k/27). (5.44)
ke

Since X, is a Bessel sequence, we see that 5.44 is a well defined function in G(V},).
The subspace G(V,) is closed under translations by integer multiples of 2~™ and
therefore the result follows.

Every function f € G(V,,) can be expanded in terms of either X, or X,,. The
biorthogonality of X, and X, implies that these expansions are of the form

f8) = Y (f(t).&alt — K/2"))en(t — k/27)
k

I

D (F(#). Ealt — K/27))en(t — B/27). (5.45)
I3

We note that. for a general f € L? (R). the series in 5.45 represent the orthogonal

projection of f onto G(V,). Now, when y € G(V,), the solution of 5.5
Glvau=1y
has the expansion

ut) = Y _(y(t).bult — k/2"))6™(2). (5.46)
L.

If we let un[k] = (u,¢™*) and y,[k] = (y(t),E(t — k/27)). then equations 5.44

and 5.46 can be combine to yield
unlk] = Y Galk - plyalp]-
I3

It follows that the coefficients u,[k] can be computed by convolving the sequence
{yn[k] : k € Z} with the inverse filter {gn[k]: k € Z}. Since Gq(w) > A, > 0.
{gn[K] : kK € Z} € £ (Z) whenever {g,[k]: k € Z}. That is, the inverse filter will

be stable whenever the forward filter is stable.
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In light of 5.46. the operator (G|v,)™" : G(V,.) = V, is such that
. 2
Gl wll* = 3 [tw(e). dute ~ k/2)| - (5.47)

k

If we use the equivalence defined by 5.24 and 5.25, then. definition 5.41, can be
used to show that X, is a Bessel sequence with optimal bound A7l Therefore.

equation 5.47 implies

2
Gt ol < 12 (5.48)

and since A;! is as small as is possible, we find that

ap o1
1(GIv..) “—\/AT,' (5.49)

Suppose that we have the corrupted observation y + dy, dy € L?(R), of the true
data y. We use a series of the form 5.46 to form the approximation u; of the exact

solution u. The error in this approximation is
us(t) —ult) = 3 _(dy(t). &ult ~ k/2"))6™*(t).
k

and hence

lhas = wl = 3 [¢6u(e). &ute — k/27)| oyl
s—ul = Y [(6ue). butt — k72| < 1L,
&

from which we see that the number 4;'? gives an upper bound on the relative
error in the approximation u;.

Theorem 5.2 can be used to provide an interesting contrast between the op-
erators G and G|y, when the Fourier transform of the kernel g is positive. Many

convolution kernels, such as the Gaussian
g(t) = e—ﬁ’
have Fourier transforms satisfying

[9(w)] >0, (5.50)
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for all w € R. When 5.50 holds. G is a bijection onto its range and G~! exists.

However. since g € L' (R), G™! cannot be continuous.
On the other hand.
D lq“s(w + 2zz)’“ =1>0
[

and Theorem 5.2 imply the existence of some compact set K = [—=.7] mod 27
upon which
[4‘5(u)| >D>0.

Since K is compact. inequality 5.50 ensures that there is a constant C such that
|sw)di@)| > ¢ >0,

for all w € K and all n € Z. Therefore, if § satisfies 5.50. the operator G|y, is

strongly invertible for all n € Z. However, as we shall see,

lim A, =0

n—oc
and, as a conmsequence, the condition number

£(Glv.) = 1Sl [|(Glv.) ™"
B,

= 4/=2 (5.51)

A,
can be large for large n. Accordingly, the inverse problem defined by 5.5

Glvu=1y

can be very ill-conditioned even when, technically, it is well-posed.

Finally, one might argue that 5.2 is of more theoretical than practical value.
In fact. condition 5.37 could be difficult to verify for arbitrary functions ¢ and §.

However, for many examples, ¢ is a low pass filter with a Fourier transform that
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is concentrated on the interval [—x, x]. This fact can be used to derive a simple
sufficient condition for the existence of a positive A,,. For instance, suppose that ¢
is a Meyer scaling function. then ¢(w) is positive for all w € (=7 —e,m+€) and
supp(¢) = [~ — e.7 + €] for some 0 < € < n/3. It follows that G|y, is strongly
invertible if and only if |§(2"w)| > D for some compact set K = [—m, 7] mod 27 C
(—m — €. + €). Hence, a sufficient condition for the strong invertibility of G|v, is
that |§(2"w)| be bounded below on [—=, =]

The same condition is valid when ¢ is a Daubechies scaling function. In par-
ticular, it is shown in Appendix A, that if ¢ is a Daubechies scaling function, then
‘q@(w)l must be bounded below for w € [~x,7]. This means that lg(2"w)q3(w)l will
be bounded below on [—=.x] if and only if [§(2"w)| is bounded below on [—=. x].

5.5 The function én(w)

In this section, we begin with an investigation of the behavior of the function G,
for large |n|. In doing so. we will be in a position to prove that the function

un(t) = D _(y(t), &alt — k/27))¢™5(t) (5.52)

k
converges to the solution u of 5.4 in the special case where y € R(G), |§(w)| > 0.
for w € R and
|g(w2)| < [g(wr)l

for all wy > w; > @ > 0. This examination of G, will also facilitate comments
concerning the Riesz bounds A, and B,. In particular, we will be able to provide

a justification of
lim w(Glv,) = oo (553)
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and
im s(G|y,) =1, (5.54)

n~—2a0

where £(G|v,) is the condition number. defined by 5.51.

Let us consider G,, for large positive n. In particular, we will show that
Jim Gu(w/2%) = [3()]’ (5.55)
uniformly on compact subsets of R. whenever

) ’&(w +21rl)l2 =1 (5.56)
{

converges uniformly on compact subsets of R.

First of all. we use 5.56 to write

2

Gulw/2") ~la)]| =

> (lﬁ(w +2"xl)|* ~ Is‘r(w)lz) l«i(w/z“ + 2rl)
i

2
(5.57)

< Y [latw + 2w — lato) | [ bler2n + 27)
{
and note that, since
llgtw + 2727) [ — [3() | < 211617

the last series in 5.57 converges uniformly.

Without loss of generality, we assume that w € [ = [-Q.Q] and n € N.
Since 5.56 converges uniformly, for any € > 0, we can choose L € N, indepen-

dent of n, such that
€

26117

Z ,q§(w + 21:'1)!2 <

H>L
for all w € I. It is easy to see that

> l&(u/zﬂ + 21rl)|2 <

>L

€

216>
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for all w € [-2"Q2,2"Q] D I and we can now use 5.57 to obtain the estimate

Gu(w/2) ~ )] < 3 [lotw + 22 m)* ~ )| [blw/2* + 2m0)| + e
M<L
(5.58)
which holds for all w € 1

If we let
n -~ n+1 2 - R n 2
Dp(w) = ||i(e + 2 ) - ()| |d(w/2” + 200 .

then D7 = 0. Suppose that 0 < || < L. Since ¢ satisfies 5.56 and $(0) = 1. we

have
$(2nl) =0,
for all [ # 0 and hence
nli-lg—: Di'(w) =0, (5.59)

for all w € T and 0 < [I[] < L. The functions § and ¢ are continuous so the
convergence of the limit 5.59 is uniform for w € I. If 5.59 and 5.58 are combined.
then we find that

lim max |G (w/2") — |§(w)I’| =0.

n—oo we€l

for any > 0.

We now turn our attention to the behavior of G,, as n — —oo. In this case, we

assert that
lim G.(w) = |§(0)]? (5.60)

N~p—00

uniformly. For any € > 0, there exists an L € N such that

Gal) = 5O < 3 113027 + 27 ~ 3(0)*| [Blw + 200)| + <.
<L
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for all w € [ and since
Jim[13(2Mw + 2#0)* — 15(0)]%] = 0.

a nearly identical argument yields the desired result 5.60.

Consider 5.60 and recall the definitions 5.34 and 5.35 of A,. and B,. It follows

that.
lim A, = lim B, =|3(0)

and. as long as §(0) # 0, we deduce that 5.54 holds. This means that. for small
enough n. the inverse problem. defined by equation 5.5, will be well-posed whenever
g(0) # 0. On the other hand, 5.59 implies

lim A, =0
n-3oc
and
lim B, = G]I*.

Accordingly. even when £(G|y, ) is finite for all n € Z, the problem posed by 5.5

becomes increasingly ill-conditioned as n — oo.

The behavior described above is not unexpected. Since g € L (R), we know that
g(w) tends to zero as |w| — oo. This means that the high frequency components
of u become increasingly difficult to recover. In light of the fact that ¢™* is a low
pass filter with a Fourier transform that is essentially supported in [—2"n7,2"7], one

expects that (G|y,) will increase as the support width of 5:‘7 increases.

In some instances, the rate at which A, tends to zero as n — oo can be esti-
mated. Suppose that
N C
w)| € ——,
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then
. 1
< O?
Calw) < € 2 1+ 4w + 271)2
2 sinh(27")
- 2n+l(cosh(2-") ~ cos(w))”
Since

sinh(z) <1
1+ cosh(z) —
for all z > 0. it follows that

A, <C*mt (5.61)
and hence, the lower Riesz bounds A,, decay exponentially fast as n — oo.

We now turn our attention to convergence of $.52 in the aforementioned special

case.

Theorem 5.3 Lety € R(G). with |§g(w)| > 0 for all w € R and suppose that there
ezists a § > 0 such that
|9(w2)| < [g(wr)]. (5.62)
whenever w, > wy 2> Q. If ¢ is an orthonormal scaling function which satisfies:
L I«;‘s(w)[ > D >0, for all w € [—7. 7] and

2. lq-i(w)l < 1—4_%'3-, for some a > 1/2.

then, for any n. the function
un(t) = ;(y(t),én(t ~ k/27)¢™(t)
is a well defined element of V,, such that
lim [lu - .|| =0, (5.63)

where u is the unigque solution of Gu = y.
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Proof. Let P, denote the orthogonal projection onto the subspace V,, and Q; denote

the orthogonal projection onto W, then

lle = all® = [ Pave — wall® + Y 11Qyu]®.

i2n
For any f € L?(R) we have
Tim Y 1Q;f1° =0
izn
and hence we need only show that
nli_{n [[Pre — u,]| = 0. (5.64)

Since the function y € R(G) and |g(w)| > 0, it follows that there is a unique
u € L*(R) such that
g(w)i(w) = y(w)
and we can now use 5.41 to obtain
1 [~ _§@)
2T oo Gu(w/2")

_ 1 = |§(“’)|2 . ikw/2"9-n/2 ] n
el én(w/?‘)u(w)e 27 P(w/2™) dw. (5.65)

(y(t).&ult — k/27) = H(w)e™ /22 g(w/2") dw

If we define the linear operator M, by

(Mnf) (t) = 5{1; [ : e"“aj(T";)z-qdu, (5.66)

then., M,, is continuous with
- 1
[ #t.]| = 4, <>
and, in view of 5.65, we can write u,, in the form

U, = P.G"GM,u, (5.67)
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from which we see that, for each n, u, is a well-defined element of V.

In view of 5.67. we can write

|Paw —un]| = ”P,,(I - g'gMn)u”
< |@-gorta)u]

and consequently, if we can show that the sequence of operators {Q'Q.A;tﬂ} con-

verges strongly to the identity. then we will have established the desired result.

Towards this end, we use 5.66 to obtain

Tli(ﬂf_ -1 2 [a(w)f? dw (5.68)
Grn(w/2™)

Je-eosinf = £/

o J_,
1| g@pP L
= 5;/;' __—é,,(w/?‘) —-1, [#(w)|* dw

+ o
2 R\I'

where I’ = [, ] and @' > 0 arbitrary. Since G.(w/2") converges to |j(w)|>

- 2 2
g@i®__,

(:;'n(w/z") [a(w)|” dw.

uniformly on compact subsets of R and v € L? (R), it is enough to show that

ho(w) = M— <C’ (5.69)
Gu(wf2r) =

with C’ independent of n.
Let
I7 =[2"n(2q ~ 1), 2"m(2¢ + 1)]
and
M} = xwxg? hy(w).

Since h,, is an even function, we can restrict our attention to values of w such that

w > 0 and accordingly, we can assume that ¢ € N. In addition, we suppose that
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n > N;, where N; € N is such that

N > log, (g)

and consequently I} C [Q, 00). for all ¢ > 1. It follows from 5.62 and the fact that
G, is periodic that. if w > Q. then

ha(w + 2" 7q) < ho(w).

for all ¢ > 1. and hence
M > MP> M-

from which we obtain
hn(w) < max(Mg . M'). (5.70)

Suppose that w € [], then
Cn(w/2") 2 |§(@)p(w/2")]* 2 D? [§(w)[*.
which implies
1
My < DE (5.71)
On the other hand. if w € I}, then

Gu(w/2") 2 D? |§(w — 2**'x)[?

and therefore ,
9(w)

5.72
D§(w — 2°*17r) (5-72)

1

ha(w) < l

for w € [-2"x,2"r]. We know that

lim g(w) =0

lw|—oc
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and, in view of 5.62. there exists N, > N such that for all » > N, for all n > N,
mip [i(w - 27'm)| = |§(2"n)|

and by similar reasoning,

max lg(w)| = |g(2"n)|.

Inequality 5.72 now implies

1
M < 5
and. from 5.70 we conclude that 5.69 holds with C’ = 1/D>?.

It now follows from 5.69. that for any ¢ > 0, we can choose Q' > 0 so that

[z~ goma) ol < 5 [ | L

2
. 2
u(w)|® dw + €
A
and therefore .

Jim (766440 u =

as required. [
In certain instances, rate estimates for 5.64 are simple to derive. Suppose that

|g(w)] > 0 for w € R and that
|g(w2)] < {g(wr)]

for all w, > w; > 0. We begin by considering the quantity

lg(w)l - ]
Gulw/2") | Galw/2")

for w € I, = [-2"r,2"x]. The monotonicity of § yields the inequality

Gulw/2") - lg(w)[*| . (5.73)

Gutart?) =13 < [1= [bto/z[[| o) + X[/ + 200 0P
1£0

lg(w)[?, (5.74)

- 2
= 2l1 - |¢(w/2")|
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where we have used 5.56. which is
n 2
> |bw + 2nf)| =1
1

We combine inequalities 5.73 and 5.74 to obtain

| s 10 P E PN,
Gulw/2%) I,S Golw/2) || [ter)

and, through the use of
Gn(w/2%) > D* |§(w)I,

we find that .
I R

TPUNL
Gu(w/2n) l*‘ D2 1-— I¢(w/2 )'

b

(5.75)

valid for all w € I,. It is interesting to note that the bound 5.75 does not depend

on the decay of § as |w| — oo. Rather. it is the behavior of 43 near w = 0 which

governs 5.75.

Suppose that 1 < 8 < 2 and let J,, = [-8"x,B"r], then J,, C I, for all = and.

from 5.75, we have

L e Al )

- 2 2
L L / g™
21 JR\J | Gr(w/2")
4 1 |2 ? 2
< prmax|1-[d(w/2")| | Jlul
D% +1 e 2
+W/I;\J,. [e(w)]|” dew,

2
li(w)[* du

li(w)|* dw

(5.76)

and hence. the rate at which 5.64 converges is essentially determined by the behavior

of ¢ for w near 0 and the decay of i as lw| = oo.
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Let us assume that ¢ is a Daubechies scaling function and that u belongs to the
Sobolev space H*(R). then
2 __ 1 /00 2\s | ~ 2
[l = o _x(l + ) Ji(w)|® dw < o0,

which implies that

1 .12 1 / (1+w?)*
— w dw = — ——— dw
2 R\Jnl | 2r R\J (1 wz)’ I )l
S el € g W (577)
- (1 + “26271)- s — 7r2ﬁ2m s
Furthermore. it is shown in Appendix A that
R 2
1~ |6()| = mnw®™ + 0™+
and hence, there exists a constant My > 0 such that
1 2 2N
| 1—|dlw/2)| | < Mu(B/2. (5.78)
for all w € J,. As a result of 5.77 and 5.78, we have the inequality
. 4 M3 . D*+1,__,,.
I(Z =G GMa)ull® < —E B/ ul* + 5B~ ulll. (5.79)

To obtain a rate estimate for 5.63. we must examine the rate at which
t 2
>_llQntl* —o
j2n
as n ~ oo. Under the assumption that « € H*(R), it can be shown that (see [14,
page 299])
S (1 +49)[1Qsulf < oo

2n
and hence, there exists a constant Cs > 0 such that

2 (1 +4%)
Qs = 3y 1@’

i2n in

< Ca™™,
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which. in combination with 5.79, yields the result
Il — wal|® < C1(B/2YN™ + C2B~2™ + Cs4™™. (5.80)

for all B € (1,2). Finally, we point out that. if N > s/2. then the optimal choice

of § leads us to the estimate

”'ll. _un”2 S 02-4nNa/(2N+a)?

for some constant C.



Chapter 6

Multiresolution based methods

6.1 Introduction

Up to this point, our work has not made use of the multiresolution analysis (MRA)
generated by the scaling function ¢. In this chapter, we begin an investigation of
two methods which utilize the MRA in an effort to solve the operator equation

gﬂu =Y, (6‘1)

where we have used the notation G, = Glv,.

The first of these methods is based upon the wavelet expansion.

u = Pmu+Qmu+'°'Qn—lu

n-1

Z(u, ¢m,k)¢m.k + Z Z(u,,'/}j,k)l/)j,k (6.2)
&

Jj=m k

of u € V,. With this method, we seek to improve the condition of the inverse
problem 6.1 by selectively recovering the orthogonal projections Pnu and Qju,

j =m,...,n —1, onto the subspaces V,, and W; respectively.

105
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The second method is a multiresolution regularization algorithm which is dune
to J. Liu. In the paper [30]. the anthor presents empirical evidence which suggests
that MRA based regularization may be a useful tool for the solution of certain
inverse problems. In particular, the author employs a multiresolution regulariza-
tion method. based on the Haar MRA, to solve a distributed parameter estimation
problem. We will present a preliminary investigation of certain theoretical aspects
of MRA based regularization, and demonstrate that this method can be regarded
as a special case of C-generalized regularization. Moreover, we shall examine cir-
cumstances under which the generalized and C-generalized solutions are. in some

sense, close.

6.2 MRA decomposition techniques

Consider the inverse problem posed by 6.1. and suppose that G, is invertible. As

we have seen. we can write the solution of 6.1 in the form

u = Gly
= Y (w(t). &ult — k/27)g™(2). (63)

k
Since G, is invertible, we know that the set of functions {E:.( t—k/2%): k€ Z} is
a Riesz basis with Riesz bounds 0 < B! < A7! < oo. It follows that the condition
number
B,

kn = K (Ga) = 1Gall |G| = i (6.4)

is finite. However, even though &, < co. if n is large, then A, can be close to zero
and hence. &, can be quite large for large n. This means that the inverse problem 6.1

can be extremely ill-conditioned even when it is well-posed. Consequently, the
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presence of small errors in the data can give rise to approximate solutions which

deviate substantially (in the norm on L? (R)) from the exact solution.!

We now turn our attention to the problem of recovering the functions P,u and

is an orthonormal basis for V,. this is equivalent to the recovery of the sequences
{tumfk] : k€ Z} and {v’[k]: j=m,...,n -1, k€ Z}, (6.5)

where we have used the notation u.,[k] = (u, $™*) and u/[k] = (u,$**). We know
that u,[k] = (y(t),fn(t ~ k/2™)) and therefore we can apply the discrete wavelet
transform to the sequence {u,[k] : k € Z} to obtain the sequences 6.5. In particular.

we have the decomposition formulae

u;1[k] = Z hiaiu;[k] (6.6)
l
and
w k] = Zgl—zkuj[k]y (6.7)
t
where j=m+1.m=2.....n

If we define the functions v; and 7 by

llj._l(t) = Z h(ll,-(t - 1/2‘7) (6.8)
4

!Consider the inverse problem defined by the operator equation Af = g. Suppose that the
data g is contaminated with error dg and let the error induced in the solution be éf. It can be
shown that the relative errors in the solution and the data are related via the inequality

] dé
I-:T;—I:l- < k(A) L:%I:[
Consequently, when the condition number « (.A) is large, the relative error in the solution can be
large even when the relative error in the data is small. When the condition number is large. the

inverse problem is said to be ill-conditioned.
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and
vHE) = ) aws(t —1/2). (6.9)
{

with j=m+1,..., n and v, = fn, then, through the use of formulae 6.6 and 6.7.

we can show that
u;{k] = (y(t). vi(t — k/2%)) (6.10)

and
w[k] = (y(t). v/ (t ~ k/2)). (6.11)

We now use the functionals 6.10 and 6.11 to write expansion 6.2 in the form

n—1

u = Z(y(t)e Vn(t — k/2™))d™F + z Z(y(t)’"j(t ~ k /27 )\p* .
k >

j=m &k

We mention that, since {hi}.{gr} € €*(Z), if £, € L? (R), then the functions
v; and 17 are well-defined elements of L? (R) for all j < n.

Recall that, if n is large, then the condition number 6.4 can be large. Since
IGalI* = B. < |IGII°.
the magnitude of x, depends primarily on the quantity
641" = 4 (612)
Now, the decomposition
IG= " = PGyl + - + [ @n-aG ],
leads us to the inequality

I 1" < 126 I + -+ + |Qu-aG7 I
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which muplies that
1/2
rn < IIG]] (lleg,:‘H2 + e IIQHG;‘IIZ) : (6.13)

Accordingly, the size of the condition number «,, is dependent upon the magnitudes
of the quantities

| PnGH|| and [|QiG77- (6.14)
for j = m....,n. Moreover, the magnitude of the norms 6.14 can be used as an
indication of which functions Pnu and Q;u are the most difficult to construct in
the presence of noisy data. For instance, suppose that the observed data is of the
form y + dy. where dy represents small but unknown error. The magnitude of the

error of the approximate solution
us = G (y + dy)
is given by
66l = (1 PnGz 6] + -+ + [|Qu-sG00]) "
If. in particular, ||@;G}|| is large, then the magnitude of the error in Q;us. given

by
Q6 6y|| < |[Q:6:*|| lIdwll .

can be large even when ||dy|| is small.

To obtain estimates for the norms 6.14. we appeal to Parseval’s relation which

yields
| PGt yll* = 3 ). vm(t — k/2™)))?
3

and

1Qig:w|* = X [(w(t). v7(t — k/27)|.
&
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We can now use the equivalent definitions of a Bessel sequence 5.21 and 5.22 to
infer that
1PnGty]l* < D llyll®

if and only if .
D avm(t ~k/2")| < DY el (6.15)
13 k
while
1Q:61 v < D7 Iyl
if and only if

2
<D Yl (6.16)
ke

D e (t — k/2)
k

In other words, we can obtain estimates for the norms 6.14 by finding the bounds

of the appropriate Bessel sequences.

Let us restrict our attention to the problem of estimating D,,. The left hand
side of inequality 6.15 can be written as

2

I

1 [~ -
5 | 1A/ do

Y awvm(t — k/2™)
.

= = [ AW Na(w) du.
2n J_.
wﬁae
No(w) =27 ) [5m (2™ w + 2l]) . (6.17)
{

If we assume that N,, is continuous, then we have the estimate

NPaGY|* = Dm = max  N(w). (6.18)

we[—m,n]

Now, through the use of 6.8. we can derive an expression relating the functions N,,

and G,. In particular, we can combine the Fourier transform of equation 6.8 with
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equation 6.17 to obtain
Nen(w) = P (N1} (w).

where P : C°[—x. 7] — C°[—nx,x] is the map

P(4) (@) = 5 {IH(w/D Aw/2) + [Hw/2 + 0 Aw/2+)}.

If we repeat this process n —m — 1 more times, then we find that
Nip(w) =P (Np) (w),

where
2 1

én(w) i

Na(w) = 2* Y |€u(2"w + 21|
[
which meaans that. for all m < =,

|PGTH* = max P~ (1/én) (w).

wE[~-m.n]

If we define the operator @ by

Q(4) (@) = 5 {IG(w/2)I* A(w/2) +IG(w/2 + 7 Alw/2 + m)} .

then a similar derivation yields the result

1Q:6:H|° = max Q (’P"‘"‘“ (1/(‘:,1)) (w).

w€[-mx]

111

(6.19)

(6.20)

(6.21)

(6.22)

It should be noted that the Fourier coefficients of P"~™(1/G,) are the entries

of the Toeplitz matrix

{vm(t — k/2™). vt — [/2™))],

k.l € Z, which is the Gram matrix of {v,.(t — k/2™) : k € Z}. In particular. the

entries of this Gram matrix are related to the Fourier coeficients of P*~™(1/G,)

via
1

(Vm(t = £/27), vm(t = 1/27)) = T it pnem (16 ) () do

-
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We contrast this to the case examined in the previous chapter. Specifically. the
entries of the Gram matrix of the set {E(t - k/2™): ke Z} are generated. in a
similar fashion. by the function 1/ Gn.

In general. .
1/Gm(w) # P (1/(‘;n) (). (6.23)

Expression 6.23 highlights one difference between two possible approaches to the
construction of an approximation to u in the subspace V,,. In the first. we assume

u € V,.. The functions & (t ~ k/2™) are then used to produce

u(t) =ui(t) = ) (y(t).&nlt — k/2™))g™*(2)
I
= (Gz'v) (2). (6.24)

The second approach begins with the assumption v € V,, for some n > m.

whereupon the functions v, (¢t — k/2™) give rise to the approximation

u(t) = uz(t) = 3 _(y(t)-vmlt — k/27))™5(t)
k

= (PuGi'y) (). (625)

Approximations 6.24 and 6.25 are usually distinct and, as we have just shown

|PaGZt* = max R (1/G )(w),

wE[—n.x]

while
I67H" = _max 1/Gm(w).

we[~n,n]

In view of 6.23, we will generally have

(Gl # [PmG || (6.26)
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which means that the sensitivity of 6.24 and 6.25 to any noise in the data y will
differ according to the magnitudes of the norms in expression 6.26. However. in the

previous chapter we proved that

lim_Ga(w) = |5(0)

and, as we shall show in the next section.
Jlim P* (A) (w) = A(0).

It follows that
im [|G2M| = lim [|PnG7Y| = 13(0)]

m—>—0oc
and therefore, when we consider sensitivity to noisy data and restrict our attention

to the construction of low resolution approximation, then we expect little difference
in the two approaches.

In some cases, the norms 6.20 and 6.22 can be difficult to estimate. In the
next section, an examination of the operator P enables us to make some general

statements concerning the limiting behavior of 6.20 and 6.22.

6.3 The operator P

The operator P arises in the study of orthonormal wavelet bases (see [14, page
190}). Here, an examination of the fixed points of P provides necessary and suffi-
cient conditions for the characterization of two-scale symbols H, which give rise to

orthonormal wavelet bases.

Many of the properties of P arise directly from the conditions

|H(8)|* + |H(6 + =) =2 (6.27)
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and

|H(0)}* = 2. (6.28)

In fact. with conditions 6.27 and 6.28 in mind. it is easy to show that:

1. PY (A)(0) = A(0),
2. PV (A) (n) = A(x/2"), and (6.29)

3. if C is a constant, then P (C) = C.

where A is a 2r-periodic function and N € N. A comment concerning condition 3
above is in order; it can be shown that if H is a two-scale symbol, satisfying 6.27
and 6.28. then H will give rise to an orthonormal wavelet basis if and only if the
only fixed points of P are constants.

We have restricted our attention to two-scale sequences {h;.} € €' (Z). The
function H is therefore continuous. and we can regard P as an operator mapping
continuous 27w-periodic functions to continuous 2w-periodic functions. In view of

the conditions 6.29, it is not unreasonable to suspect that
Jim IPY (4) (w) — A(0)]| , = 0. (6.30)

where ||-[| . is the usual norm on C°[—7,n]. We will prove that 6.30 does indeed

hold under the appropriate conditions. However, we first establish the weaker result
. N _ =0.
Jim_[|PY (4) - A(0)[|, =0.

where ||-||, is the norm on L*[—=,=]. To do this, it is convenient to have an explicit

representation of PV (A), which is given in the following:
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Lemma 6.1 If the operator P is as in 6.19, then for all N ¢ N
2N-1 (N
PY(A)(w) =27V ) {H |[H(2?[w + 21rk])|2} A2 N[w +2xk]).  (6.31)
k=0 p=1

Proof. Suppose that N = 1, then 6.31 becomes

P(A)(w) = -;-ZII|H(2"’[w+21rk])|zA(1/2[w+21rk])

k=0 p=1

1 2
= 3 {lHw/2)|* A(w/2) + |H(w/2 + )|* A(w/2 + m)}.
as required. Assume that 6.31 holds for N = M and consider PM+! (4). We have

PMH(A) (w) = -;- {IHw/2)>PM (A) (w/2) + |[H(w/2 + ©)? PM(w/2 + 7)} .-
(6.32)

which. after some algebra, can be written as

2M_ M41
PMH (A (w) = 27M71 Y [ |H(2 Plw + 4xl))|* A@2~M [w + 4xk])

k=0 p=1
2M_1 M+1

+ 2740 3 [T |B@w + 2n(2k + 1)])[* A@™ [ + 2x(2k + 1))
k=0 p=1
M+ M+1

= 27 N ] |H@P(w + 20k])|* A2~ w + 2xk])

k=0 p=1
and therefore the desired result follows by induction. |
Since P¥(1) =1 for all N, Lemma 6.1 immediately implies that
2N-1 (N
27V ) {1’[ |H (2 Plw +21rk])|2} =1 (6.33)
k=0 \p=1

for all N € N. We can now prove the following theorem.
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Theorem 6.1 Let ¢ be an orthonormal scaling function such that |¢| > C for all
w € [-n.x]. If A € L'[—=n.7| is a 2w-perindic function. continuous near w = 0.

then

Jim [P (A) — A(0)||, = 0.

Proof. In view of 6.31 and 6.33, we can write

N1 N
N — —_— Pl _NU .
[P (A) - A(0)| < ggﬁH@ [w + 27K]) [A(2 [w + 2nk]) — A(0)]
which implies
1 e 2Vl N
||'P(A)—A(0)||1527/0 z-%,,I_Il,H -vw+21rl.)( |42V [w + 27k]) — A(0)] dw.

If we make the change of variable § = w+ 2xk in the integral above, then we obtain

the inequality

2Nty N

izH(z-Pe) |A(27V8) — A(0)] 8.
1

1
N — ——
[P~ (4) - a0, < 5= |

whereupon the change of variable § = 2Vw yields the result

1
IP(4) - AQ)l, < 5 [ 2" L gavr)| |4@) - 40) do.  (6:34)
3 H 73
Now, from the identity
dw) = 7H(u/2)¢(w/2)
one can derive the equation
T A | 2 2
)| =TT | HE )| |#or2)| (6.35)
p=1
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and hence. 6.34 1s equivalent to

Lo |se@ve)|
IP(4) - 4O, < 5 [ 2V 1AW) - A(O)] dw
- |d)
Cc [7 - 2
< o _*2” $(2¥w)| |A(w) — A(0)] duw.

2
1s continuous and satisfies

The non-negative function '&(w)
< . 2
/ ()| dw = 21

. 2
Hence, the set of functions {2V /2r |¢(2N w)l : N € N} forms a d-sequence. We

conclude that PY(A4) — A(0), as N — oo in the norm on L}[~=,x]. |

Under certain circumstances, the results of the previous theorem can be ex-
tended to include the spaces LP[—m.7]. 1 < p < co. Suppose that A € L®[—mx. 7],
then A € LP{—=.x], for 1 < p < co. Furthermore, since

P(A)(w) < sup IIA(W)I,

wE[-m.x

it is easy to show that
PV (A)(w) < sup |A(w)]
1

wE[—m,n]

for all N € N. It now follows that

|PY (4) — A(O)[° < ( sup IIA(«J)I + IA(O)I) [PY(4) — A(0)],

we[—mx
which implies that

[P (4) — A(0)]|, < D[PV (4) — A0}, ,

for some constant D.
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Although of some theoretical interest, in view of 6.20 and 6.22, the results
of Theorem 6.1 are of little practical value. Fortunately., with some additional hy-
potheses. it can be shown that the sequence {P¥(A4) : N € N} converges uniforly.
We have the following:

Theorem 6.2 Let A € C°[0.2n] and suppose that ¢ is an orthonormal scaling
function such that 'é(w)l > C for all w € [—m.x]. If the series

> |dtw + 2mt)[ (6.36)
4

converges uniformly, then

Jim Jmax |PY (4) (w) - A(0)] = 0.

Proof. If we use identity 6.33 to write

2Nl N

PY(A)(w) —A(0) = D[]

k=0 p=1

27w + 2nk]) ~ A(0)) .

—H(T” [w + 2#k])

then we can use the fact that PN (A4) — A(0) is 2r-periodic to obtain

2N~-1_1 N
YA w-a0= Y II ———-H(Z"’[w+21rk 27N{w + 2xk]) — A(0)) .
k=—2N-1 p=1
which 1mmplies that
2N='1 N
PP AW -4 < D I1 ——~H(2"’[ [w + 27k]) — A(0)]
k=—2N=t p=1 v2

2Nty l¢(w + 2«k)|

- 7 |A(27V[w + 2rk]) — A(0)] (6.37)
kg1 |¢(2*N [w + 2mk] )l

where we have used 6.35 to obtain the last line above.
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Consider the functions |$(2~V[w + 21rk])l. If w € [0.2n], then

2w + 2nk] € [k /2V . (K + 1)yr/2V 1]

and
N—1g

U  [kr2 "k + 1)r/2V] = [~m, 7).

k=—2N8-1

is bounded below on [—x, 7] to obtain, from 6.37.

We can now use the fact the |¢3

the inequality
[P¥(A)(w) - A(0)] < C Z‘EI | B + 2vrk)|2 | A2 [w + 2rk]) ~ A(0)]
k=—2N =1
< Y |bw+ 27rk)|2 |A(2 ¥ [w + 2nk]) — A(0)]
ki<q
+cY l&(w + 27rk)|2 |42~V [w + 2k]) — A(0)] .(6.38)
Ik[>q

for some g € N.

Consider the third series in 6.38. Since
|42 [w + 27k]) — A(0)] < 2]/ 4]l -

the uniform convergence of the series 6.36 implies that we can choose ¢ € N.
independently of N, such that for any € > 0,
. 2
cYy |¢(w + 21rk)| |A(2Y [w + 27k]) — A(0)]
lkl>q

<204l Y |dtw+ Zwk)lz < e/2. (6.39)

ki>q
With regard to the second series, the continuity of the function A ensures that for

any € > 0, there exists a § > 0 such that

ClA(f) — A(0)] < €/2
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whenever |6| < 4. Now. for [k| < g and w € [0. 27|, we have
|27 [w + 27k} < 2-& tlr(g+1)
and hence. we can choose M € N, independent of k, such that
[27¥[w + 2mk]| < &

for all N > M. Since
v [q“s(w+21rk)|2 <1,

kl<q

it follow that

cy |¢S(w + 27rk)|2 | A2 [w + 27k]) — A(0)|

k|<q

< Z lqg(w + 2'r|'k),2 <e€/2, (6.40)

[ki<q
whenever N > M.
If we now return our attention to 6.38, we see that inequalities 6.39 and 6.40

imply that
[PV (A4) — A(0)|| < e

for all N > M. Hence, the desired result follows. |

In Light of the results of Theorem 6.2, equation 6.20 immediately yields

1
lim (PG = = 6.41
and since &(2#1:) = d1.0, we have
im_ 1263 = gy
m——occ " 1g(0)]

Let us investigate some of the implications of 6.41. Suppose that:
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1. ue V,.
2. The operator G ! is continuous.

3. The observed data is of the form y + dy, where y = G,z and dy represents a
small. but unknown error.

If the function
uf, = PG (y + by), (6.42)

in the subspace V. , m < n, is used as an approximation to u, then the squared
error in this approximation is given by

lw = wbI* = lju~ Paul® + || PaG 25y’

n—1

= Y ll0sg: sl + [[Pagisull"

J=m

Since [ly|| < ||Gal| ||u||, the relative error must satisfy

v —wnl”  ZEA QiGN sl
lal = g1yl " lyl®
IBL6 ) llyll®
mIn ",'2 ELiniC A L (6’43)

WPAGTWI® + |1 PG yIP ™™ Myl
where

Fnm = 1Gall || PG|

and Pp is the orthogonal projection onto V>. Inequality 6.43 demonstrates that
the relative error in the approximation 6.42 depends on two distinct sources. The
first source is resolution error which results from projecting onto the subspace V..
The second source is the data error. Furthermore, the sensitivity of the approxi-

mation 6.42 to the error dy is governed by the magnitude of the scalar «,, ,,.
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In many instances, the convolution kernel is such that
61 = max|3()| = 15(0)I.
then. since [|G.|| < ||G|| and G(0) = [§(0)[*, we have
IGnll = 13(0)] -
It follows that

im k=1 (6.44)

M= —2C

and hence the sensitivity to error in the data decreases as m — —oo. However.

P61y

= (6.45)
mo—x | PGyl + || PuGtyl?

and hence the error due to resolution increases to its maximum value as m — —oo.

This is a common feature of many inverse problems.

6.4 Multiresolution regularization

In this section, we turn out attention to the MRA based regularization algorithm
proposed by Liu in [30]. This algorithm is based upon the functional

Fuu) = [IGu —yl* + 3 _ X |1Qsul’. (6.46)

where Q; is the orthogonal projection onto the wavelet subspace W; and A; > 0.
The minimizing function u, of 6.46 can be regarded as an approximate solution of

the equation
Gu =y, (6.47)
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the properties of which are determined by the scalars A;. Moreover. this algorithm
can be thought of as a generalization of the method of Tikhonov regularization.
which is based upon the functional

Fy(u) = [|Gu —ylf® + AJfu)i®.
In fact, since
i = 3 1Qul,
J
it is easy to see that if.
A== Ay =Ag= A =---,

then the functionals F; and F, are identical.

The presence of the term ); [|Q;u||® in the functional 6.46 serves to prevent the
norm of Qjuy from being too large. As the scalar A; is made larger. the norm

”qu.\ll2 is made smaller.

We now introduce a related functional which allows us to view multiresolution
regularization as a special case of C-generalized regularization (3, pages 52-99|.
Suppose that the scaling function subspace V; represents the coarsest scale of in-
terest, and consider the modified functional

F(u) = |IGu —yII* +a (nPoun’ +3a ucmn*) , (6.48)
>0
where a > 0. In light of the equation
' 2
Poull® + D A21Qsull® = |[Pou+ Y A;Qsul| .
20 j20

we see that if we define the linear operator C, : L? (R) — L? (R), by

Cf = Pof + ) \Qif, (6.49)

>0
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then the functional 6.48 can be rewritten in the form
F(u) = ||IGr — y|I> + a|ICxu|® . (6.50)

Hence. we can consider the multiresolution regularization scheme, defined by 6.48
(or equivalently. by 6.50). to be a special case of C-generalized regularization. where

the smoothing operator C, is the weighted sum of projection 6.49.

The standard theory of C-generalized regularization can now be applied. First

of all, we must ensure that the operator C, has the following properties:

1. The null spaces of G and C) must satisfy
N(G) N N(Cy) = {0}
2. The operator C) must be a closed linear operator with a dense domain. That
is
D(Cy) = L*(R).

Furthermore, the range of Cx must be all of L2 (R), or equivalently

R(C)) = L* (R).

3. The set
G(N(C))={feL’(R): f=Gh, he N(C)}

must be closed.

We will say that an operator. Cy, satisfying the conditions above, is an admissible

smoothing operator.
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Since Cx must be onto L?(R). none of the scalars A; can vanish. Indeed. if
A; =0, then R(C,) will be orthogonal to the wavelet subspace W;. in violation of
condition 3 above. Consequently,
ICAAI* = IPufI* + D X N1Q; £ =0
720
if and only if f = 0. Accordingly, N(C,) = {0} and condition 1 above is satisfied.

The domain of C, is the set
D(Cy) = {f € L*(R) : ||ICsfl| < =} (6.51)

and since, for any f € V,

n—1

ICAFIP = 1P fI® + D A2 1IQfII < oo,

7=0
we have V,, C D(C,) for any n. We conclude that D(C,} is a dense subset as long
as AJ' > 0.

Now, we must ensure that C, is a closed operator. Since C, is a bijection onto
L?(R), the Closed Graph Theorem (27, page 292] implies that the inverse operator
Cy! is continnous. The operator in question is given by

CI f=PRf+)_A7'Qif. (6.52)
20
which implies that
~12 - 2
e £11° = NP + D2 A7 Qs
320
from which we conclude that the sequence of scalars /\J'-'l must be bounded. or

equivalently
Aj>27>0 (6.53)
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for some constant ~y.

If. in fact, the scalars A; are bounded above as well, then the operator C, is also
continnous. However. in most situations. we will be more interested in the case

where
lim A; = oo. (6.54)

jroc
As we shall see, the minimizer u) of functional 6.50 belongs to the subspace D(C3) C
D(C,). If the asymptotic behavior of the J\; is selected appropriately, then a prior:
assumptions about the smoothness of the minimizer u} can be addressed. For
example. if the A; satisfy
Aj~ 27,

as j — oo. then it can be shown that u} belongs to the Sobolev space

_f.(cu)l2 dw < oo} X

H'(R) = {f: [Ca+wry

We point out that, in certain instances, asymptotic conditions for the A;, suffi-

cient to ensure that

~ W(w) [id(w)]” dw < oo (6.55)

-0

are readily established. For instance. suppose that W is a continuous. even. real
valued and non-decreasing weight function, and let ¥ be an orthonormal wavelet
of Meyer type. The expansion of any f € L? (R) with respect to this wavelet basis
can be written in the form
F(&) =Y folkle™ () + 3 Y Flklp (),
k i20 k
so that the Fourier transform of f has the expansion

f(w) = Fo(w)d() + Y _ 277 F(w/2Y(w/2).

j20
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Now. recall that supp(¢) = [-7 —e. 7 + £] and supp(¥(w)) = [-2(x +¢). - —€]uU
[* + €.2(x + €)]. and accordingly,

f@| < R + 3 [y
j20

+ 2| Rw)dw)| |Fw)w)]
+ 2 |27 Fi (w2 Y (w/P

320

2—1’—1/2Fi+1(w/2j+1 )'¢.r(w/2j+1 X

whereupon an application of the Cauchy-Schwartz inequality for sums yields

232 P2 )(w/2)|

) < [P + 3

320

¥ 2 \/ |Fa(@dten]| + 3 |22 Po(ar2iyiosi)|]

2312 Fi(w )2 ) (w/2)|

>
7>0
2792 Fi(w[27 ) (w/2)

< 3(|Fo(w)«$(w)|2+5‘_, 2P (w/2) '2) (6.56)
20

We can now use inequality 6.56 to obtain

w2 f : W () | Fo(w)d(e)| deo

3 < .
— J
+ 2“§:/¢ W (%w)
j20

< IW(r+e) [|RFI* +3) W2 (x +)) 1Q;FI.

Fiuyio)| d

which implies
b - W (29+1
— / W) |fw)] do < 3W(r+e)|PofI? +3sup ( ( A(”"" ) z,\ 121
< 3max (W(1r+s ), sup (W(21+1(1r+e )) G I
3>0

Since |[Caud|| < 0. it follows that, if W is such that

W (r+e)
sup 5
>0 A%
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then 6.55 holds.

The scalars A; are real and bounded below. so that the operator C, is self-adjoint
and positive definite. The Euler equation of functional 6.50 is

(GG +aC)u) =Gy (6.57)
and. in light of inequality 6.53. we find that
(GG +aCd) £.£) 2 (aCif.) 2 S IFIP
It follows that a solution to 6.57 exists for any y € L?(R) and can be written as

uhr=(GG +aC}) ™ Gy. (6.58)

Since

(AA+al) A" = A" (AA” +al) !

and

GG" +aCi =Cx {(6C51)™ (GCY) + al}Co.

equation 6.58 can be rewritten as
ud = C2G {(66Y) (661 +al} Ty (6.59)

and hence. u} € D (C3).

6.5 Comparison of C-generalized and generalized

solutions

We now turn our attention to questions which concern the relationship between

the C-generalized and generalized solution of 6.1. We shall demonstrate that. in
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appropriate circumstances. there is little difference between the C-generalized and

generalized solutions.
Let P be the projection onto the closure of the subspace R(G)- It is well known
that if Py € G(D (C,)), then there exists a unique function u! such that

lim [ju} —«f]| =0.

a0+

The function ! is called the C-generalized solution of equation 6.1.

Suppose that S, is the set of all least-squares solutions of 6.1 corresponding to

y. that is
Sy = {u:Gu = Py}, (6.60)

then u! € S, N D(C,) is the unique least-squares solution which minimizes the
functional
v(f) = lICAfIl* - (6.61)

In contrast, the generalized solution u! € S, is the unique minimizer of the func-
tional
p(f) = I£II? (6.62)

and since G (D (Cy)) C R(G), u! will exist whenever u! exists. However, D (C)) #

L? (R) and accordingly. there will be cases where u! exists, but «! does not.

In general. the C-generalized and generalized solutions will be distinct. However.
there are conditions under which u!{ and u! will be the same, or nearly so. Obviously.
if G is injective and y € R(G), then there exists a unique solution of 6.1 and therefore
ul = ul. More generally,' if the operators G and C) commute, then u! = uf.
A justification of this simple, but seemingly unknown fact follows immediately
from 6.59, which now implies that v} € R(G") C N(G)* and, since N(G)* is
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closed, uf € N(G)*. It is well known that the set S, is the affine subspace
S, =u'® N(G),

where u! is the unique least-squares solution in N(G)*. We conclude that uf = u!

whenever G and C) commute.

The projection operators P, and @Q; do not usually commute with the con-
volution operator G. Consequently. the operators C;' and G do not. in general.
commute. There is. however, one notable exception. The projections. P, and @Q;.
corresponding to the Shannon scaling function and wavelet can be expressed in the

form
oC

(Pof) () = / sinc(t — 7)f(r) dr

and
x - - - -
(Q;f) (t) = {27 sinc(27* (¢ — 1)) — 2sinc(27(¢ — 7)) } f(7)dr.
both of which commute with the convolution operator G. Therefore, in the Shannon

case. the approximation u} converges to u! = u! as a — 0%.

Before we consider further comparisons of the function u! and »!. we consider
a case where minimizers u} and u, are close in the sense of the norm. In practice.
we seek to approximate the generalized solutions u' and u! through the use of the
corrupted data y + dy. In some cases, u! and u! will not be well-defined. as it may

happen that
Péy ¢ G(D(C)))-

Even if Pdy € G (D(C,)), the approximations formed from y + 8y can differ sub-
stantially from the generalized solutions u' and u!. In such cases, the minimizers

%, and u) can be used as approximations of u! and u! respectively. Intuitively, one
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expects that if the smoothing operator C, is close to the identity /. then u) will be

close to .. The next theorem illustrates one case in which this happens.

Theorem 6.3 Suppose that the self-adjoint operators Cy are admissible smoothing

operators and that

lim {|Cy' —I]| = 0.

N—=oo

Let u be the solution of the Euler equation
(G°G + oCR) ul =Gy,
while u, denotes the unique solution of
(GG +al)u. =Gy,
then

fm [t~ wa] =0

N—=oo

for any a >0

Proof. Equations 6.63 and 6.64 yield the equation

u —uo = {(GG +aCk) " ~ (GG +aD T} Gy,

Let us use the notation

Ge=GG+al

and

Gn = GCH,
then we can write

G°G+aCh = Cn(GNGN +al)Cx

= Cn ((GNON —GG) Gt + 1) GaCh-

(6.63)

(6.64)

(6.65)
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If we let
1w = ||GnGNn — GG,

then. since Cy' converges uniformly to I. y5 — 0 as N — oo. Furthermore, for
any fixed a > 0. we can choose N; € N so that
I(GxGN — G G) Gall < YN/ < 1. (6.66)
for all N > N,. It follows that. for all N > N, the operator
Ay =(GyGn — G G)GT + T
is invertible and accordingly. 6.65 can be written in the form

ull —u, = (CFGTIARCY - GTY) Gy (6.67)

In view of equation 6.67 and the fact that
lim “BNDN - BD” =0
N-oo

whenever

Jim [|By ~ Bl = lim || Dy ~D|| =0,

we need only show that
lim |47 -] =0. (6.68)

N-ooc

Recall that N > N; and hence inequality 6.66 holds. It follows that A" admits

the Neumann series

A =) (-1P ((Gv9n — G°6)GTY)",

p=0
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which implies that

|45 = 1] < Yo (=17 |[(GxGn — G6) G|

p=’.

< w/a) (w/af = - ZNW

p=0

and since vy — 0 as N — oo, we see that Ay' converges uniformly to I as N — oo.

Finally, from 6.67, we obtain
Jim [l el < 167yl Jim JlCi*62* AR CR - 62| = 0.

as required. [

The condition Cy' — I uniformly is quite restrictive. Unfortunately, it is not
clear that the hypothesis of the previous theorem can be weakened. Furthermore.
if Cy is a weighted sum of projections of the type defined below, then we can
not exhibit examples that satisfy the required conditions of the theorem for all
f e L*(R).

However, there are sets of functions for which a weighted sum of projections
Cx' will in fact converge uniformly to the identity. Suppose that

Cv=F +ZA_§VQj7
320
where

lim AY =1

N-aoo

and that f € V,,. It follows that

e -0 flIF = :Vj‘l(l;;‘y ) 1Q;£11?

=0

2
1-AY )
o Joax (——»\ﬁ’ ) LAl

IA
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and therefore the Cy' converges to I uniformly for all f in the scaling function

subspace V.

Let us return our attention to a comparison of the functions u! and u!. In the
next theorem, we examine a particular situation for which the generalized solutions

are close in a weak sense.

Theorem 6.4 Suppose that the operator Cy is given by

Cv =Pn + Z AiQj;,
i>N
N € N, where {\; : 7 € N} is a non-decreasing sequence of real numbers, such that

A; > 1. Assume that Py € G (D(Cn)) and let ul;, € S = ut @ N(G)* be the unique

least-squares solution which minimizes the functional

vn(f) = ICnfII*.

then. for any h € L?(R). there ezists a subsequence

{oh, - ke N}
such that
- t —
L!g&(um —uf k) = 0. (6.69)

Proof. First. we note that the domain of Cxy does not depend on N. Indeed.

since
N+M-1

Y- QI < oo,

j=N
we see that, for any M,N € N

D = D(Cn) = D(Cyn4m)- (6.70)
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Now. for any f € D. we have

lexFIP = IBnFIE + D A IQifI?

>N

< 1P fIP+1Qn AP+ Y RNQAI® = HCwar FIP

J>N+1

and since u}; € $N D is the unique function minimizing the functional vy, we have

lewute]| 2 ensrn]| > lewsrtdraa| = -+ (6.71)

which implies that the numbers CNu;'v” form a decreasing sequence. Consequently

lewule|| < [|Coud (6.72)

and therefore, there exists a subsequence {Cy, u},ﬁ : k € N} which converges weakly
to some v € L? (R).

We now show that the subsequence {u}vk : k € N} also converges weakly and
has the same limit %. The sequence {u}, : N € N} is bounded. Indeed, since ); > 1.
for any fe D

ICNFIl 2 1L FIl

from which we obtain the inequality

Coulll . (6.73)

o] < flewese] <

Assume. without loss of generality, that M < N, then PMCNuL = PMu;,. Since
Py is continuous, we find that. for all & € L? (R)

lim (PM("jvk —u),h) =0.

k—>

Furthermore,. since

l(u;& - u, h)l

IA

I(PM(uL& — ), h)] + I(u;,i — u, Pagh — h)[
< |(Partuly, = w), )| + (flCout | + l1ull) 11 Park ~ &
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and
Jim |[Pach — kl| = Y 1Qsh]* = 0.
>M
we see that

lim l(u;,k —u, by =o0. (6.74)

k—oc

The sequence {ul, : N € N} is contained in the set § of all least-squares
solutions. As we have already seen, S is a closed affine subspace and is therefore
weakly closed. It now follows that the weak limit u, of the subsequence {u;,k : N e
N}. is a least-squares solution.

To complete the proof. we need to show that the function u is in fact the
generalized solution u!. We begin by showing that f}, = Cyul, is the generalized
solution of the equation

GCN'f =y (6.75)
Denote by Sy the set of all least-squares solutions of 6.75. If f € Sy. then f must
satisfy the Euler equation

(6Cx*)™ (6cx") £ = (6CRY) v,

or equivalently
Cit (G°GCR f — Gy) =0

and since N(Cy') = {0}. every f € Sy must satisfy
GGCR'f =Gy. (6.76)

In view of 6.76, for any f € Sy . the function C5 f is a least-squares solution in SN D
and, since Cy is well-defined on S N D. for any v € SN D, Cyu is a least-squares

solution of 6.75. Furthermore, since for any v € SN D,

Al = lIChull
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we conclude that f;{, is the generalized solution of 6.75.

The function fi; is the unique element of Sy that belongs to the subspace
N(GCx')*. Furthermore. the subspace R(Ci'G~) is demse in N(GCx')*. which
implies that for any sequence {exy : N € N} of positive numbers. there exists a

function vy € R(G") such that
[ st <o

We choose the sequence {ex : N € N} so that

v =0
and show that {Cylhw, : k € N} converges weakly to u, the weak limit of {f}, :
k € N}. Since

[{Cxthn, —u,v)| < l(Cﬁtf;;k - u,v)l + ’(f;,k —u,v)[
< Al ew, + |[(Fl, —w.v)|.

we see immediately that
Lim [(C;-:hm,v)]

k—oc
for any v € L?(R).
Notice that

PMCE»I hy = Pyhy

and once again, it can be shown that {hy, : k£ € N} converges weakly to ». Finally,
since hy € N(G)*t, we conclude that u must be the generalized solution u!. |

We mention that is not immediately obvious whether or not the previous theo-

rem can be extended to address strong convergence.



Chapter 7

Conclusions

In this thesis. we have considered certain aspects of the applications of wavelet
analysis to the problem of deconvolution. In particular, we have addressed some
of the basic theoretical considerations of the problem deconvolution with wavelet
bases. This is merely a beginning. Although the properties of wavelet bases are
attractive and the empirical results found in the literature are encouraging, a fair

evaluation of wavelet analysis, with regard to inverse problems, is ongoing.

The results we have presented raise many questions and, if some of these ques-
tions are answered, the perhaps the aforementioned evaluation will be more com-
plete. In Chapter 5, the properties of the function G, were examined in some detail.
This examination permitted us to present results concerning the strong and weak
invertibility of the operator G, = Glv,,. An examination of the behavior of G, lead

to a convergence result in the case where the convolution kernel satisfies
§(w)| >0

and
[9(w1)] < |9(w2)]

138
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for all w; and w; satisfying |wi| > |w2| > @ > 0. This result is somewhat restrictive
and further investigation of the function G, may lead to results that are valid for

a larger class of kernels g.

A typical characteristic of many inverse problems is the trade off between accu-
racy of approximation and sensitivity to noise in the data. This property leads us

to a question regarding the choice of resolution n. That is. given the approximation
up =Y (). &alt — k/27))$™.
k
where y* = y + 4. we need to be able to choose n so that the error of approximation
en = ||u — |

and the error due to noise
en = ||G274]|

are both as small as is possible. Further examination of the dependence of G,
on n could lead to a method to choose the resolution which parallels Morozov's
Discrepancy Principle (see [29, page 228]).

Of course there is interest in the extension of the results of Chapter 5 to include
other common integral operators. However, such work will depend on the kernels

of these operators and complications. not found in the current work, may arise.

The work done in the first few sections of Chapter 6 is closely related to the
some of the work done in Chapter 5 and hence, similar questions arise. Once again,
a method for the choice of resolution level has not been discussed. In this case.
a more in depth examination of the operator P is needed. We point out that the
approach considered in Chapter 6 may have some advantages with regard to the

choice of resolution level. Recall that the scaling functions ¢™* can be thought of
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as low pass filters. Roughly speaking, the width of these filters is proportional to
2" and hence the pass band of ¢™* doubles as the resolution is increased from =
to n + 1. Depending on the g and the noise level |{§]|, is may turn out that the
optimal width for the inverse problem at hand will lie in between C2" and C2"+!.

C a constant depending on ¢.

In such a case. the work found in [10] may be of use. In this paper. a splitting
technique, which allows for a finer partition of the frequency axis. than the partition
induced by the functions ¢™*, is introduced. An incorporation of the ideas presented
in [10] with our own work in Chapter 6 may lead to a method for the choice of
resolution which can be fine-tuned to the noise and the kernel of the problem under

consideration.

With regard to the latter part of Chapter 6. we have presented results which
concern a comparison of the methods of C-generalized and ordinary regulariza-
tion. Moreover, results about the corresponding generalized solutions are also given.
These results are of a very general nature and any future research should attempt
to exploit the properties of wavelet bases as well as the properties of any particular

kernel g under consideration.

Another possibility for future research into multiresolution based regularization
is to make use of the idea of a time frequency localization operator (see [14]). Recall
that the operator C, is given by

C\= Po + z: 4\ij.
20
If we choose to allow for some type of spatial discrimination, then one possible
generalization of the operator above is

Caf = D Mlf, 8% + 3 D N(f. 97 ),
ke

20 &
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which bears some similarity to the time frequency localization operators introduced

by Daubechies.

If the sequence {\ : k€ Z} and {A} : j > 0. k € Z} satisfy
ZA,:2 < oo
&

and

DY () <o,

20 &
then it can be shown that C;! is a Hilbert-Schmidt operator and is therefore com-

pact. The minimizer u), of the functional
F(u) = [|Gu — yl* + a||Cxu|®
must satisfy the Euler equation
(GG +aCf)uz =Gy
or equivalently

Cx ((9CTH)7(GCTY) + al) Crul =Gy (7.1)

Since G is bounded, we have that gc;l is compact and this leads to the possibility

of using a singular value decomposition to solve equation 7.1

Finally, we point out that in {14], time frequency localization operators are
defined through the use of the continuous wavelet transform. It is possible that
we could define the operator C) so that its inverse is a time frequency localization
operator of the type discussed in [14]. This approach may have the advantage that

difficulties, such as the lack of translation invariance of wavelet bases, are avoided.



Appendix A

Daubechies scaling functions

In this appendix, we will show that if ¢ is a Daubechies scaling function. then
|#w)|2 € >0

for all w € [—w.w]. This proof makes use of the fact that if H(w) is the DFT of

the two scale sequence {ht : & =0,...2N — 1}, corresponding to ¢, then H(w) is

bounded below on the interval w € [—x /2.7 /2]. We will also examine the behavior

the function

¢l for w near 0 and show that
1—- lgﬁ(u)'- = Dyw®™ + O(w?N+?),
for some positive constant Dy, where N € N is the number of vanishing moments

of the corresponding wavelet.

In [14. page 171], it is shown that the modulus of H(w) can be written as
|H(w)l’ = 2cos™ (w/2) P (sin’(w/2)), (A.1)

where Py is a polynomial of degree N —~ 1, N > 2, given by

N-1 _ .
Pu(z) =Y ( N :*’" ) . (A.2)

k=0

142
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There are more general choices for the polynomial A.2. However. these choices
lead to longer discrete filters' and hence. the choice A.2 is generally preferred.
The following lemma allows us to conclude that if |[H(w)| is of the form A.l. then

|H(w)| > D >0 when w € [-n/2,7/2].
Lemma A.1 If [H(w)|? is as in A.1, then

d 2

L @) <0
forw € [0.7].

Proof. If we let z = sin®(w/2). then since

dz 1
—_— = -1 >
5 sin(w) > 0.

for all w € [0, ], it is enough to show that the polynomial

Q(z) = (1 — )" Py(z)

is such that
Q(z) <0
for z € [0, 1].
We have
Q(z) = —N(1—2z)""'Py(z) + (1 — z)" Py(=z)

= (1=2)"7 (1~ z)Py(z) — NPn(z))

LThat is. longer two scale sequences.
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and. from A.2. we obtain

N-1 .
Qz) = 1—g)V [Zk ( M-tk ) z+!
k=1

k
N-1 N-1
N-1+k N-1+E
- Yk * - Ny M P
. =0 k k=0 k
= (1-z)V |- 2(N —1) ZN-1
N-1

N-2 A _ L.
+ Z{(k+1)(N+'")-(N+k)(N 1+’")}zk].
k=0 k+1 k
Since

. N +k L N-1+k) (N + k)
(L+1)( )-(N+’~)( L )‘(L+1)(k+l)!(N—1)!

k+1
(N+k—1)!

- W TR T =

we find that

Q(z) = — ( AN~ 1) ) VU1 — 21 < 0,
N-1

for z € [0,1] as required. |

In light of Lemma A.1, we see that [H(w)| is a non-increasing function in the
interval [0,7]. Since the hi, k = 0,1,...2N — 1, are real, the function |H(w)| is

even and

|H(w)| 2 |H(x/2)| = 1.2 (A.3)

We can now prove the following:

*The equality follows from the identities |[H(7/2)| = |H(37/2)| and |H(w)|® +|H(w + m)|* =2.
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Lemma A.2 If ¢ is a Daubechies scaling function then
[&(w)l >C >0, (A.4)
for all w € [—-7.x|.

Proof. A proof follows easily from a contradiction. Suppose that ¢ has at least one

zero w" € [—n.n]. We use the two scale equation to obtain

o) = \%H(w'/z)&(w'/z)

and, since H(w) has no zeros in [—7/2,7/2]. we conclude that P(w"/2) = 0. We

continue this process and find that
$w/2) =0
for any p € N. Since ¢ is continuous.
$(0) =0. (A.5)

However. ¢ is unimodular with q§(0) = 1 and A.5 is a contradiction. We conclude
that ¢ must satisfy the inequality A .4. |

We now turn our attention to the behavior of the function & for w near zero.

Lemma A.3 If ¢ is a Daubechies scaling function, then

2 _ Cn
T N4V (4N 1)

o e (2(N—-1)).
N-—1

sz + 0(w2N+2)’ (Aﬁ)

1~ |w)

where
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Proof. Recall that
Q'(z) = —CN:J:N"I(I —z)Vt= _Cpz¥ 1+ O(zN)
and. since Q(0) = 1. it follows that
Qz)=1-— Cn x + 0=V,
N
Let H(w) = 1/2|H(w)[*. Since H(w) = Q(sin*(w/2)), we have
Cn

] - 2N N+2
H(w)—l—ww +O(w2 + ).

- 2
If we let $(w) = |¢(w)| . then
P(w) = H(w/2)B(w/2)
and the Leibniz rule for the differentiation of products yields

B0 (w) = (H(w/2) 87 (w/2) + pH' (/287 (w/2) +
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(A-8)

+ HP(w/2)8(w/2).)

which implies

3P(0) = 2-1; (@‘P’(O) +pH'(0)8”1(0) +--- + f?‘P’(O)) :

If we solve the above for #®)(0), then we obtain

®P(0) = 2_1'-1:_i (pff'(ﬂ)‘l'(p-l)(()) 4ot f{(P)(O)) )

In view of A.8. we can use A.9 to conclude that

3(0) =0

(A.9)



APPENDIX A. DAUBECHIES SCALING FUNCTIONS

forall p=1.2..... 2N —1 and that
ey = HZ0O) _ __(2N)iCy
AN ] N4V (4N _7)
and therefore.
P(w) =1~ N4N(ilb$ — 1)w2N + O(w™*?),

from which we obtain A.6. B
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