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Abstract 

Unified power flow controller (UPFC) has been the most versatile Flexible AC 

Transmission System (FACTS) device due to its ability to control real and reactive power 

80w on transmission lines while controlling the voltage of the bus to which it is 

connected. UPFC being a multi-variable power system controller it is necessary to 

analyze its effect on power system operation. 

To study the performance of the UPFC in damping power oscillations using 

PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt 

inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series 

inverter of a UPFC controls the real power flow in the transmission line. One problem 

associated with using a high gain PI controller (used to achieve fast control of 

transmission line real power flow) for the series inverter of a UPFC to control the real 

power flow in a transmission line is the presence of low damping. This problem is solved 

in this research by using a fuzzy controller. A method to model a f u u y  controller in 

PSCAD-EMTDC software has also been described. Further, in order to faditate proper 

operation between the senes and the shunt inverter control system, a new real power 

coordination controller has been developed and its performance was evaluated. 

The other problem conceming the operation of a UPFC is with respect to 

transmission line reactive power flow control. Step changes to transmission line reactive 

power references have significant impact on the UPFC bus voltage. To reduce the 

adverse effect of step changes in transmission line reactive power references on the 

WFC bus voltage, a new reactive power coordination controller has been designed. 



Transient response studies have been conducted using PSCAD-EMTDC software 

to show the improvement in power osciliation damping with UPFC. These simulations 

include the real and reactive power coordination controllers. 

Findly, a new control strategy has been proposed for UPFC. In this proposed 

control strategy, the shunt inverter controls the DC hnk capacitor voltage and the 

transmission line reactive power flow. The series inverter controls the transmission iine 

real power flow and the UPFC bus voltage. PSCAD-EMTDC simulations have been 

conducted to show the viability of the control strategy in damping power oscillations. 
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Chapter 1 

Power Flow Control 

1.0 Introduction 

f ower systems in general are interconnected for economic, security and reliability 

reasons. Exchange of contracted amounts of real power has been in vogue for a long time 

for econornic and security reasons. To control the power flow on tie lines connecting 

conuols areas, power flow control equipment such as phase shifters are instdled. They 

direct reai power between control areas. The interchange of real power is usually done on 

an hourly basis. On the other hand, reactive power flow control on tie lines is also very 

important. Reactive power flow control on transmission lines connecting different areas 

is necessary to regulate remote end voltages. Though local control actions within an area 

are the most effective during contingencies, occasions may arise when adjacent control 

areas may be called upon to provide reactive power to avoid low voltages and improve 

system security. Document B-3 of Northeast Power Coordinating Council (NPCC) on 



Guidelines for Inter-Area Voltage Control provides the generai principles and guidance 

for effective inter-area voltage controi. Section 3. L.2 of document B-3 states that 

"Providing that it is feasible to regulate reactive power flows in its tie lines, each area 

may establish a mutually agreed upon normal schedule of reactive power flow with 

adjacent areas and with neighborïng systems in other reliability councils. This schedule 

should conform to the provisions of the relevant interconnection agreements and may 

provide for: 

a) the minimum and maximum voltage at stations at or near terminais of inter- 

area tie lines 

b) the receipt of reactive power flow at one tie point in exchange for delivery at 

another 

c) the sharing of reactive requirements of tie lines and series regulating 

equipment (either equdly or in proportion to line lengths) 

d) the transfer of reactive power from one area to another" 

Section 3.2.2 of document B-3 states that 

" When an area anticipates or is experiencing an abnormal, but stable, or gradually 

changing bulk power system voltage condition, it shall implement steps to correct the 

situation. Recognizing that voltage control problems are most effectively corrected by 

control actions as close to the source as possible, the area shall use its own resources, but 

may request assistance from adjacent areas." 

The above statements clearIy calls upon the power fiow regulating equipment to 

not only be able to control red power but also simultaneously control reactive power 



flow rapidly. Further, the voltage at stations at or near terrninals of inter-area tie lines 

should be controlled within limits. 

Power flow in a network is not easily controlled because line parameters that 

determine the flow of power in the systern are difficult to control. Fortunately, the ability 

to control power flow at the transmission level has greatly been influenced by the 

advances made in the field of high power switching devices. Solid state devices provide 

transmission utilities the flexibility to control the system power flows. Today, with the 

availability of high power gate turc-off thyristors (GTO) it has become possible to look 

beyond the realm of conventional thyrsitors for power flow control. These devices are 

broadly referred to as Flexible AC Transmission Systems (FACTS) [ 11. 

Power fIow in a transmission line is a function of the sending (Vs ) and receiving 

(V') end voltages, the phase angle difference (6) between the voltages and the line 

impedance (X). Control of any of the above parameters c m  help to control the power 

flow and the process is known as compensation. FACTS devices could be placed either in 

series or in shunt with the transmission line with the intention of controlling the power 

flow in it. If the transmission line impedance is modified by the addition of FACTS, it is 

termed as series compensation. If the phase mgle difference is modified, it is temed as 

phase angle compensation. Shunt compensation, in which the FACTS device is placed in 

parallel, is mainly used to improve the system voltage characteristics. Static var 

compensator (SVC) belongs to this farnily of FACTS devices. 



1.1 General introduction to power flow controllers 

Fixed series capacitors help in increasing stability limits in an interconnected power 

system. Wiih transmission open access, each transmission system owning utility will 

increase their transmission capacity to attract more utilities to use its transrnission 

facilities. Many existing power systems have already made the use of series 

compensation to increase their transmission capacity [56]. By series compensation, the 

amount of reactive power consumed by the line is reduced thereby increasing the arnount 

of reactive power transferred to the receiving end and improving the voltage profile at the 

receiving end. This is one of the secondary benefits of using series compensation. Under 

system disturbance conditions like three phase faults or line tripping, controllable series 

compensation helps in damping power system oscillations. 

Control of power flow by series compensation means that by changing the amount of 

impedance in the circuit, the current in individual transmission lines are varied thereby 

v q i n g  the power flow in it. In essence, it controls only the magnitude of the current in a 

transmission line. Hence the reactive power demand at the end points of the line is 

determined by the transmitted real power in the same way as if the line was 

uncompensated but had a lower line impedance [Z]. The disadvantage associated with 

this is that with increasing series compensation the Iosses in the system increase which 

may be considerable. This is due to higher current flowing with reduced Iine impedance. 

Further, series compensation cannot control the reactive power flow in a transmission 

line. Econornics dictates the use of fixed and variable compensation for increasing power 

transfer. Increasing the amount of fixed compensation leads to possible occurrence of 

sub-synchronous resonance (SSR). Thyristor- controlled series compensation (TCSC) 



under certain modes of operation (constant reactance control) cannot damp d l  the sub- 

synchronous resonancc modes (SSR) [3]. From the irnpedance characteristics of a TCSC, 

the change from the capacitive to the inductive mode is discontinuous, and further, there 

is a region (resonant region) where the operation is restricted [4]. 

Phase angle compensation is a method of controlling power flow and has been used 

in many existing systems. Phase shifiers by themseives do not cause SSR. Phase shifters 

have the advantage of rnitigating SSR caused by series capacitors. A phase shifter c m  by 

no means increase the maximum amount of reai power transfer, but can improve transient 

stability. The operation of a phase shifier is such that, it represents a small inductance in 

senes with the line which leads to increased reactive power consumption in the line as 

compared with the uncompensated line [2 ] -  hcrease in reactive power consumption leads 

to increased system losses. A phase shifter could be more effective in helping to load 

circuits with poor loading (low angle across the line). Furthemore, phase shifters also 

cannot control the reactive power fIow in a transmission line. It is seen that series 

compensation is more effective in some places and phase shifters in some other. But their 

operation increases system losses. 

Power systems do operate with series, phase angle compensation and voltage control 

equipment. Co-ordination between them is an important aspect to be considered while 

operating a complex integrated power system. Utilities have encountered unwanted 

iriteractions between various FACTS devices which have lead them to reconsider their 

control strategies for satisfactory operation of the power system [S-71. 



Advances made in the field of solid state devices has made it possible to combine the 

functionality of series, shunt and phase angle compensation into one device. Such a 

device has been named the unified power fiow controller (UPFC). It has the ability to 

control real and reactive power fiow in a transmission line, while simultaneously 

regulating the voltage of the bus to which it is connected. UPFC does not cause SSR. By 

using a UPFC. many distrïbuted FACTS devices could be eliminated, thereby reducing 

capital costs. Also, the problem of unwanted interactions between the FACTS devices 

could be reduced to a little iesser extent, if not completely. As seen from the industry 

point of view, the unified approach of controlling power flow promises simplified design, 

reduction in equipment size and installation labor, and improvements in system 

performance [2 ] .  



1.2 Unified power flow controller concept 

The UPFC concept was proposed by Gyugyi et-al 121. To understand the unified 

power flow concept, consider a power system with two machines connected by a 

transmission line of reactance X, (purely inductive) along with two voltage sources V, 

and V, representing the UPFC as shown in Fig. 1.1. The voltage sources denoted by Vs,, 

and V, in the Fig. 1.1 are connected in shunt and series respectively at the rnid- point of 

the transmission line. 

Fig.1.1 A power system with two machines connected by a transmission line with voltage sources 

representing the UPFC. 

Voltage source V, is connected to the transmission line through a transformer 

represented as a reactance X,. It is assumed that the voltage sources denoted by V, and 

V, , have the capabilities of varying their magnitude and their phase angle. 



To understand the operation of the source V,, the source Vre is disconnected- 

Reactive power flows from the voltage source V, to bus M if the magnitude of the 

voltage source V,, is greater than the mid-point voltage V ,  and the phase of them are the 

same. If the phase mgle of the voltage source V, leads the phase angle of mid-point 

voltage Vh, and the magnitude of V, is greater than V,, then real and reactive power will 

flow from the voltage source V,, to the bus M . Conversely, if the magnitude of the shunt 

voltage V, is less than the mid point voltage V , ,  but the phase angle difference between 

them is zero, then only reactive power will flow from the bus M to the bus P. In this 

process, the voltage source V, is consuming reactive power. If the phase angle of V, 

leads the phase angle of V,, then both real and reactive power wiil flow from bus M to 

bus P and the voltage source is said to be consuming both reai and reactive power. In 

sumrnary, by controlling the magnitude and phase angle of the shunt voltage source V,, 

the direction of real and reactive power flow to the bus M can be controlled. 

Altematively, the voltage source V, can be made to function as a load or as a generator 

for the power system. In the above operation, if the phase angle difference between the 

voltage at bus M and that of Vc, is maintained at zero, then by varying the magnitude of 

V,, reactive power c m  either be consurned or generated by V,. This operation c m  be 

compared with that of a thyristor controller reactor with fixed capacitor (shunt 

compensator) that generates or absorbs reactive power by altering its shunt reactive 

impedance. It should be noticed that the function of a shunt compensator is being 

duplicated by the voltage source V, . 



Now consider only the operation of series voltage source V,  in Fig. 1.1 with the 

shunt voltage source V, inoperative. It is assumed that the rna,@ude and phase angle of 

the series voltage source V, can be varïed. The transmission line zurrent 1, interacts with 

the senes voltage source ye caussing real and reactive power to be exchanged between 

the series voltage source and the transmission line. If the voltage source V, and the 

transmission line current I,, have a phase angle difference of 90 degrees and that the 

voltage phasor of Vs, leads the line current, the voltage source V, then generates only 

reactive power. The phasor diagram has been shown in Fig. 1.2. 

Fig. 1.2 Phasor relationship between the voltage source V, and the line current I,, for series compensation. 

Conversely, if the voltage source V, phasor lags the transmission line current I, phasor 

by 90 degrees, then the voltage source V, will consume reactive power. The above 

operation should be compared with that of. a series capacitor/series inductor in the 



transmission line. When capacitors are placed in series with the transmission line. it 

generates reactive power. The amount of reactive power generated depends on the 

arnount of series compensation and the line current. When inductors are placed in series 

with the transmission line, it consumes reactive power- In surnmary, the function of series 

capacitor could be performed by the series voltage source V, by maintaining its phase to 

lead the transmission line current Ise phasor by 90 degrees. Conversely, the function of a 

series inductor could be performed by the series voltage source V, by adjusting its phase 

angle to be lagging the line current 1 phasor by 90 degrees. 

By properly adjusting the phase angle of the senes voltage source V,, the 

operation of a phase shifter could be obtained. In the case of a phase shifter, the phase 

angle of the series voltage source V,  leads or lags the voltage of the bus to which it is 

attached, by 90 degrees. This causes the voltage phasor to shift by an arnount depending 

on the magnitude of the injected voltage. In this case, if the series voltage source V, has 

a 90 degrees leading or lagging phase relationship with the bus voltage V,, then a phase 

( ] could be obtained. Fig. 1.3 shows the phasor relarionship of the shift a = tan-' 

series voltage source V, leading the bus voltage V ,  for phase shifter operation. In 

surnrnary, by adjusting the phase angle of the series voltage source yc to be either 

leading or lagging the bus voltage M by 90 degrees, a phase shifter operation could be 

obtained. In order to Vary the magnitude of phase shift, the magnitude of the senes 

voltage source V, could be varied- The above illustration has shown al1 the possible 

fünctions of shunt compensation, series compensation and phase angle compensation that 



could be obtained by manipulating the series and the shunt voltage sources magnitude 

and phase angle of a UPFC. 

Fig. 1.3 Phasor relationship between the rnid point voltage V,, and the senes voltage source y, 
for phase shifter operation. 

1.3 Unified power flow controller: Construction and Operation 

The voltage sources V, and Lmentioned in section 1.2 are obtained by 

converting DC voltage to AC voltage. The conversion from DC voltage to AC voltage is 

obtained by using standard bridge circuits. These bridge circuits use GTO as their 

building blocks. Since these circuits convert DC voltage to AC voltage, they are termed 

as voltage source converters (VSC). The control system associated with VSC allows it to 

adjust its magnitude and phase angle. The term "inverter" has also been used to denote 

the VSC. 



Consider now the connection of two VSC connected back to back with a cornmon DC 

Link capacitor 'C' as shown in Fig. 1.4. Such an arrangement allows for al1 the three 

functions nameiy series, shunt and phase angle compensation to be unified in one unit. 

Inverter 1 is connected to a shunt transformer and the inverter 2 is connected to a series 

transformer. 

UPFC 
I I Transmission line 

Shunt 
transformer 

Series I 

transformer 

Shunt Inverter Series Inverter 

Fig. 1 -4 UPFC construction. 

It is readily seen that the VSC connected to the shunt transformer can perforrn the 

function of a variable reactive power source similar to that of shunt compensator. In 

addition, the inveaer 1 can charge the DC link capacitor. Inverter 2 can provide series or 

phase angle compensation by injecting a senes voltage of proper phase relationship. In 

the case of series compensation, inverter 2 can function independent of the invener 1, as 

inverter 2 supplies/consumes only reactive power and does not have any real power 



exchange with invener 1. In such a case. the DC link capacitor voltage will ideally be 

constant. 

In the case of phase angle compensation, the series voltage source V, has an 

arbiuary phase relationship with the transmission line current 1, and does have real and 

reactive power exchange with the transmission line. Under this mode of operation, the 

real power generated or consurned by inverter 2 (P,) will lead to the dischqing or 

charging of the DC link capacitor respectively. In the case of red  power generation by 

inverter 2 (Px) ,  the DC link capacitor discharges, and the decrease in the voltage will 

reflect as a load on inverter 1. Under this circumstance, inverter 1 will provide the 

necessary real power (Psi,) and charge up the DC link capacitor. In the case when the 

inverter 2 consumes real power (P,) leading to charging of the DC link capaciror and 

subsequent increase in its voltage, inverter 1 will supply the excess real power (P,,,) back 

to the line thmugh the shunt transformer. In essence. the UPFC provides an altemate path 

for the real power i-e. from the bus to which the shunt transformer is connected. through 

inverter 1 to the capacitor, tbough inverter 2 and to the transmission line through the 

series transformer. Inverter 1 and inverter 2 c m  germate reactive power indepenaently. 

In summary, the above arrangement of two 'VSC connected back to back coupled by a 

DC link capacitor c m  perform the job of al1 the three types of compensation. 

1.4 Motivation for this thesis 

a) Complexity in the design of a control system for UPFC 

The control aspect of a UPFC is an important area of research. As seen from the 

operation of a UPFC, it is a multi-variable controller. The control systern design shouid 

be such that the UPFC is able to function in a stable manner, provide power flow control 



and power oscillation darnping. The series inverter of a UPFC controls the powrr flow in 

a transmission line. The interaction between the series injected voltage and the 

transmission line current causes the series inverter to exchange real and reactive power 

with the transmission line. The real power exchange by the series inverter with the 

transmission Iine is supplied/absorbed by the DC link capacitor. This causes a 

decrease/'mcrease in the DC capacitor voltage. For proper operation of the UPFC, the DC 

capacitor voltage should be regulated. The decreasehcrease in the DC link capacitor 

voltage is sensed by the shunt inverter control system. The shunt inverter control system 

operates to meet the demand In decreaselincrease in DC capacitor voltage by 

absorbing/supplying real power to the power system through the shunt inverter to 

maintain the DC capacitor voltage at a specified level. If the control system of the shunt 

and the series inverters is such that the shunt inverter is not able to meet the real power 

demand of the senes inverter, then the DC capacitor voltage might collapse resuiting in 

the removal of the UPFC from the power system. This is one problem that will be 

considered in this work during the design of the UPFC control system. This c d s  for 

coordination between the shunt and the senes control system operation with respect to the 

real power flow through the DC link of the UPFC. 

The next problem with the control system design for a UPFC is when the shunt 

inverter controls the voltage of the bus to which it is connected (UPFC bus), in addition 

to the DC link capacitor voltage. This is because the voltage of the bus to which the shunt 

inverter is comected (UPFC bus) does affect the real and reactive power flow through the 

transmission line. Since the shunt inverter controls the UPFC bus voltage and the DC 

capacitor voltage, it not ody affects the reaï and reactive power flow through the 



transmission line but d so  af5ects the red and reactive power fiow through the shunt 

inverter, The real power flow through the shunt inverter affects the DC link capacitor 

voltage- If the control system is not designed properly, it could lead tu growing 

oscillations in transmission line power flow and lead to system wide disturbances. This 

calls for proper design of the control system for UPFC. 

The problem gets ever. more complicated when the senes inverter of a UPFC 

controls the transmission line real and reactive power flow in the transmission line in 

addition to the control of the UPFC bus voltage and DC link capacitor voltage. This is 

because any change in the transmission line reactive power fiow affects the UPFC bus 

voltage and this in tuni affects al1 the other variables. 

b) Complexity in the operation of a UPFC in an integrated power system 

One of the problems that exist in an integrated power system environment is the 

presence of inter-area oscillations. These oscillations involve groups of generators in a 

control area swinging against another group of generators in a different control area. 

UPFC when placed on tie lines connecting two areas should be able to damp out these 

inter-area oscillations. Since UPFC is a multi-variable controller, it should be able to 

enhance power system stability under dynamic conditions. 

Thus it is seen that though the concept of UPFC is elegant, the control system 

design for a UPFC is a very complicated one as  it involves simultaneous control of multi- 

variables. Inappropriate design of the control system with respect to the four variables 

will definitely lead to instability. Thus extreme care has to be exercised during the design 

process of the control system for UPFC to provide fast control of power flow and 

effective power oscillation damping. 



1.5 Summary 

In this chapter, the importance of reactive power flow control on transmission 

Iines has been bnefiy discussed. A brkf review of various FACTS devices has also been 

made with respect to real and reactive power flow control. It has been conciuded that 

none of the existing FACTS devices narnely, static var compensator (SVC), TCSC or 

phase shifters c m  provide reactive power control on transmission lines. In this respect, 

UPFC has the advantage over SVC, TCSC and phase shifter that it can control not only 

real power but also reactive power flow on transmission lines simultaneousiy. The 

reactive power flow control capability of UPFC helps in regulating transmission line 

remote end voltages and improving system security. 

This chapter has described the construction and operation of a UPFC. UPFC is the 

most versatile FACTS device as it combines the functionality of al1 existing FACTS 

devices. By cornbining the functionality of several devices, many distributed FACTS 

devices could be eliminated thereby reducing capital costs. Further, the interaction 

between various FACTS devices could be reduced to a little extent, if not cornpletely. 

The complexity of the control system design for UPFC has been discussed briefly. 

It rnust be understood here that the UPFC is a multi-variable controller and al1 the control 

variables interact with each other. This makes the control system design for UPFC very 

difficult. The next chapter explains the merits and dements of different control strategies 

and their control systems used for power flow control and power oscillation darnping. 



Chapter 2 

Literature Review 

2.0 Introduction 

Although a considerable amount of research has been done in the field of FACTS, 

very little literature exists with specific reference to UPFC. This is because UPFC is a 

reiatively new FACTS device and power system problems ssociated with it have not 

been investigated thoroughly. The advantages of UPFC over other FACTS devices for 

real and reactive power flow control have been briefly discussed in chapter 1. Further, the 

need for reactive power flow control while simultaneously conixolling real power flow on 

tie Iines has also been described in chapter 1. 

UPFC has the flexibility to incorporate m y  operation functiondity. For exarnple, 

as explained in chapter 1, UPFC can be made to operate as an Static synchronous series 

compensator ( S S S C )  or a phase shifter based on the strategy used. Different control 

strategies for UPFC and their control systems for power flow control have been discussed 



in the literature. This chapter discusses the rnerits and demerits of various control 

strategieslcontrol systems of UPFC for power flow control published in the literature. 

2.1 Review 

Given the integated nature of the research, the relevant Iiterature review has been 

divided into two sections. Accordingly, a section on review of control strategy and 

control systems for UPFC and a section on Ioad flow and dynamic models for UPFC 

have been presented here. 

2.1.1 Review on control strategy and control systems for UPFC 

Very little work has been published in the area of UPFC control strategy for 

power flow control and control system design to achieve the control strategy. Three 

different types of strategies for real and reactive power flow control have been found in 

the literature and are descnbed below. 

2.1.1.1 Static Synchronous series compensator strategy (SSSC): This strategy is based 

on injecting the series voltage in quadrature with the transmission line current allowing it 

to function similar to that of a variable senes capacitor. This fixes the phase angle of the 

series injected voltage to be in quadrature with the transmission Iine current. By varying 

the magnitude of the senes injected voltage that is in quadrature with the transmission 

line current, the real power flow can be controlled [l3,I7,19,2l,23,24]. The reactive 

power flow/transmission line side voltage is controlled by adjusting the phase angle of 

the series injected voltage. This has been achieved by introducing a component of the 

series injected voltage to be in-phase with the transmission line current [19,13,23]. 



Combining the quadrature component and the in-phase component, the magninide and 

phase angle of the senes hjected voltage are obtained. 

Concentrating on simuitaneous control of real and reactive power £low/line side 

voltage using the above descnbed strategy, control systems based on linear control 

techniques have been used [19,23]. The control system design based on this strategy 

requires a supplemenîary controller to damp out the real power flow oscillations when 

controlling the transmission line side voltage shultaneously using a high gain PI 

controuer [23]. The design of coordination feedback between the series and the shunt 

inverter control systems has not been considered in the control system design [23]. The 

need for coordination controiler cornes from the fact that the real power dernand of the 

series inverter has to be supplied by the shunt inverter. If there is no coordination 

between the series and the shunt inverter operation, the DC Zink capacitor voltage could 

collapse leading to the removal of the UPFC from the power system. The strategy ais0 

has the problem that if the in-phase injected voltage is out of action, the line side voltage 

could be very high causing reactive power flow problems- Further the problem of 

detenoration of the control system performance at operating points other than the one at 

which it is designed is a point to be considered. 

2.1.1.2 Phase shifier strategy (PS): This strategy is based on injecting the series voltage 

in quadrature with the UPFC bus (the bus voltage to which the shunt inverter is 

comected) [15,18,20,25,26]. By doing so, the phase angle of the transmission Line side 

bus can be adjusted for a specsed real power flow. The reactive power flow is controiled 

by having a component of the senes injected voltage to be in-phase with the UPFC bus 

1261. This is simiiar to that of a tap-changer strategy. This allows the phase angle of the 



series injected voltage to Vary from its quadrature position, thereby changing the reactive 

power flow/line side voltage. Complete control system design for real and reactive power 

flownine side voltage control that uses the above strategy has not been well documented. 

Though the individual effect of quadrature series voltage injection, in-phase series 

voltage injection and shunt compensation on transient stability have been studied, the 

effect of combined operation has not been researched [15,18]. The effect of combined 

operation on transient stability has been later studied by Lirniycheron er.al 1201. Here, 

three control inputs, namely the senes quadrature injected voltage, in-phase series 

injected voltagc and shunt compensation has been coordinated to improve transient 

stability. To achieve this coordination, f u u y  logic has been used. nie model chosen for 

UPFC to show the eKect of coordination on transient stability is not an accurate one. The 

shunt inverter has been modeled as a variable shunt capacitor in parallel with a current 

source. The variable shunt capacitor represents the shunt inverter compensation 

capability and the parallel current source representing the real power capability to 

charge/discharge the DC link capacitor. By doing so, they have neglected the model of 

the shunt inverter transformer and assumed that the real and reactive power flow through 

the shunt transformer are separated. Further, their coordination strategy has only been 

carried out on single machine infinite bus power system. Further, no coordination exists 

between the shunt and series inverter control system in terms of real power exchange 

between the series and shunt inverters thus casting serious doubts about the validity of 

such a coordination scheme. 

2.1.1.3 D-Q axis control strategy: In this strategy, the D-Q a i s  current in the 

transmission line is icdividually controlled allowing for independent control of real and 



=e or reactive power flow [27-301. nie D-Q axis could be with respect to UPFC bus volta, 

the remote end bus voltage. In this strategy, the series injected voltage is split into two 

components. One is in-phase with the D-axis arid the other in-phase with the Q-mis. 

Similariy, the transmission line current is split into D and Q axis currents. The D-axis 

voltage controls the transmission Line real power by varying the D-axis current in the 

transmission line and the Q-axis voltage controls the transmission line reactive power by 

varying the Q-axis current in the transmission Iine. Thus the in-phase senes injected 

voltage component (D-axis) that controls the transmission line real power tlow varies the 

line side voltage and the Q-axis component of the senes injected voltage that controls the 

reactive power varies the phase angle of the UPFC bus. To achieve this type of strategy, 

the control system employs cascaded linear controllers. Proportional-Integral (PI) 

controHers have been used to irnplement the D-Q axis control strategy for the series 

inverter 1271. The coordination between the series and the shunt inverter control system 

has been considered [27]. The problem with this strategy for the series inverter is the 

compiexity of the control system, Two control loops are required to regulate the real and 

reactive power flow. The outer loop to set the reference for the inner loop. The inner loop 

uacks the reference thus providing the control inputs to the series inverter. Further the 

problem of detenoration of the control system performance at operating points other than 

the one at which it is designed is a point to be considered. The shunt inverter control 

system is also based on the D-Q axis strategy and controls the shunt reactive power and 

the shunt inverter real power. The control of DC link capacitor voltage which is very 

essential for the proper operation of the UPFC, is done by another control loop that 

adjusts the shunt inverter real power reference. This further complicates the control 



system. Further, they have neglected the dynamics of the DC link capacitor while 

designing their control system. By doing so, the control system design may not provide 

the best PI control gains. 

A control system based on D-Q axis theory has been published in the literature by 

Rourid eraL[30]. The strategy that has been used is that the D-axis voltage component 

controls the transmission line reactive power and the Q-axis voltage component of the 

series injected voltage controls the transmission line real power. This is in contrat with 

the strategy used by Papic er.a1[27] where the transmission line real power flow was 

controlled by the D-axis voltage and the transmission line reactive power flow was 

controlled by the Q-axis voltage. In this case, the WFC is assumed to be located at the 

receiving end. Based on the receiving end real, reactive powers and receiving end D-Q 

axis voltages, current references of the senes inverter are generated. Two PI controllers 

are used to generate the required D-Q axis control voltages for the series inverter to 

obtain desired reai and reactive power flow in the transmission line. For the shunt 

inverter, based on the sending end real power, reactive power references and sending end 

D-Q axis voltages, the sending end D-Q axis current references are then generated. 

Knowledge of the sending and receiving end current references are used to generate the 

current references for the shunt inverter. By doing so, the shunt reactive power and the 

DC link capacitor voltage are controlled. Remote end signal measurement is required for 

this type of control system to operate. This would necessitate remote sensing units to be 

installed at the sending end. Further, coordination between the series and the shunt 

inverter control system has not been considered by the authors [30]. 



Other types of control systems have been designed based on the above control 

strategies which have neglected the DC capacitor voltage control systems 133-351. 

ControI systems for the shunt inverter have been designed based on Linear-Quadratic (L- 

Q) control, but have not shown as to how it c m  be applied to the series inverter control 

system [32]. The problem with LQ control is that it requires the measurement of ail states 

used to design the controller [32]. 

In al1 the above strategies discussed for UPFC, the series inverter controls the real 

power flow in a transmission Iine by an output feedback control system. The problem in 

the design of an output feedback proportional-integral (PI) control system for UPFC is 

the presence of Iow margin of stability associated with the series inductance of the 

transmission line 1231. Intelligent controllers with specific reference to fuzzy controllers 

have been investigated in this thesis to overcome the problem. Further, the above control 

strategies suffer either in their complexity of the control system or non-inclusion of real 

power coordination controller between the series and the shunt inverter control systems 

or both. 

A very Eascinating capability of the UPFC has been reported in reference [42]. 

Any change in the transmission line reactive power flow is balanced by an equai and 

opposite change in the reactive power output of the shunt inverter of the UPFC when the 

shunt inverter is controlling the voltage of the bus to which it is connected. This means 

that any request for change in transmission line reactive power by the series inverter of a 

UPFC is actuaily supplied by the shunt inverter of the UPFC. Reference [42] states 

''In essence, it can "manufacture" inductive and capacitive MVARS using the 

shunt inverter and " export " this reactive power into a particular transmission line (Le., 



the one with the series insertion transformer) without changing the local bus voltage and 

without changing the reactive power on any of the other lines Ieaving the substation". 

In light of this fascinating capability of a UPFC, there is a need to investigate the 

mechanism by which changes in transmission Iine reactive power fiow is related to the 

shunt inverter reactive power flow. Further, the effect of step changes in transmission line 

reactive power flow on UPFC bus voltage needs to be studied. 

All the strategies published in literature have concentrated on the use of series 

inverter of a UPFC to control the transmission line reactive power flow. In view of the 

fascinating capability where the shunt inverter responds to a reactive power request from 

the series inverter control system, there is need to look into the possibility of a reactive 

power coordination controller in addition to a real power coordination control1er. 

The above fascinating capability leads to another point that is to be considered. As 

rnentioned earlier, al1 the strategies published in the literature focuses on the use of series 

inverter for reactive power control. Changes in transmission line reactive power are 

reflected as an equivalent change in the shunt inverter reactive power flow. Thus the 

cause and the effect are on two portions of the UPFC. The cause being the series inverter 

control system and the effect seen on the shunt inverter reactive power flow. Thus all 

strategies discussed in the literature would fa11 under the category of indirect control with 

respect to reactive power fiow. Thus there is a need to look into other strategies that 

provide direct control of transmission line reactive power flow f line side voltage and that 

which includes al1 the necessary coordination between the senes and the shunt inverter 

for the proper operation of the UPFC. Further, the control system should utilize only local 

measurements for its control system. A new control strategy needs to be proposed that 



utilizes the shunt inverter to directly control the transmission line reactive power flow. 

An advantage with such a strategy would be that it one can replace a part of the shunt 

inverter reactive power capability with switched shunt capacitors that are inexpensive. B y 

doing so, a lower MVA rating of the shunt invener and its transformer could be used 

thereby reducing the cost of the UPFC. 

2.1.2 Review on Load flow and Dynamic modeis for UPFC 

The purpose of reviewing the literature for load flow and dynamic models for 

UPFC are two fold. First, in d l  the above strategies discussed for UPFC in section 2.1.1, 

the red power flow in the transmission line is controlled by the series inverter of a UPFC 

by output feedback control system. The problem in the design of an output feedback 

control system for UPFC is the presence of low margin of stability associated with the 

series inductance of the transmission line [23] .  intelligent controllers with specific 

reference to hzzy  controllers have been investigated to overcome this problem. In order 

to obtain the necessary information to design the fuzzy controller, a suitable mode1 for 

UPFC needs to be used in cornputer simulations. This includes both load flow and 

dynamic models. Load flow models are required as they form the backbone for any 

power systern dynamic simulations. Dynarnic models are required to capture the 

interaction between the senes and the shunt inverter and provide information that would 

facilitate the design of the fuzzy controller. Literature survey has been conducted in the 

area of both load flow and dynamic modeling for UPFC. 

Secondly, UPFC being a nulti-variable controller, it is necessary to assess its 

impact on power systcm stability. Stability analysis of interconnected power systems with 

UPFC require proper load flow and dynamic models for UPFC. Frequency domain and 



tirne domain andysis require model for UPFC that accurately model the interaction 

between the series and the shunt inverter. With a proper load flow and dynarnic model for 

UPFC, one can thus analyze the impact of UPFC on power system stability. 

2.1.2.1 UPFC Modeling 

2.1.2.1.1 Load flow models: Different load flow models have been used to mode1 the 

UPFC in varying degree of complexity and have been discussed here briefly. As 

mentioned in chapter-l, a UPFC consists of two inverters connected back to back with a 

DC link capacitor. One inverter is connected in shunt and the other in senes with the 

transmission line as shown in Fig.2.1. The early modeling efforts for a UPFC were 

focussed on the series inverter modeling. The reason being that commercial software did 

not have series voltage source models. American Electric Power (AEP) and 

Westinghouse came up with a load flow model [8]. The requirement for the inclusion of 

the rnodel was that the Ioad flow should be a solved one. Basically, what was required 

was that the voltages and the angles of the power system buses had to be known in 

advance to inchde the UPFC model. The Ioad flow rnodel for UPFC consisted of two 

generators, one representing the shunt inverter and the other the series invener. Different 

configurations of these generators were needed to model different operating conditions. 

Fig.2.2 shows the model that was used to include the UPFC into Ioad flow studies [8]. 

Here the process of solving starts with the opening of the series line, and the generator 
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Fig.2.2 Coupled source mode1 for UPFC. 
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G l  is connected. The generator G1 generates the requked reactive power to maintain 

scheduled bus voltage. Generator G2 also supplies the reai power demand of the series 

inverter. The series injected voltage is the phasor difference between Vh, and VUPfi,. The 

product of series injected voltage and the current I,, gives the amount of volt-arnpere of 

the series inverter. The real part of the volt-arnpere (P,,,) of the senes inverter is added as 

a load at the shunt inverter bus. The algorithm to perform the addition of equivalent loads 

at the shunt inverter bus, to open the appropnate lines, have been included in their 

program. The problem is that it needs a solved load £low case. The idea of solving a ioad 

flow with an UPFC is to obtain the shunt and the series inverters' injected voltages for a 

given operating condition. This procedure is crude for solving a load flow with UPFC. 

Another rnodel for the UPFC where the shunt inverter is rnodeled as a current 

source and the series inverter is modeled as a voltage source in series with the 

transmission line has been used to solve power flow [9]. The model ensures the real 

power balance between the series and the shunt inverter. Though this rnodel is good 

enough for doing parametric studies, they are not good for solving load flow. This is 

because, modeling of the shunt inverter by a current source does not reveal the voltage 

and the phase angle of the shunt inverter, Also, the model neglects the shunt inverter 

transformer in load flow studies. 

A model where the shunt and the series inverters have been modeled as real and 

reactive power injections have been used to solve load flows [IO]. In this case, the series 

voltage has been converted into real and reactive power injections at both ends of the 

senes inverter. The shunt inverter has aiso been converted into equivalent real and 

reactive power injections. The basic assumption that has been utilized here is that the real 



power demand of the senes inverter is provided by the DC capacitor. However, the real 

power demand of the senes inverter should acmally be supplied by the shunt inverter in 

steady state. This model neglects the interaction between the senes and the shunt inverter. 

A model where the bus to which the shunt inverter is connected is modeled as a 

PQ bus and the series inverter is modeled as a PV bus has also been used for load flow 

studies [I  11. Fig.2.3 shows the model for power flow studies. 
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Here the bus to which the shunt inverter is connected is modeled as a PQ bus (E-bus) and 

the other end of the UPFC is converted into a PV bus. The generator connected to the B- 

bus generates the scheduled real power and maintains a required voltage on the line side 

of the UPFC i.e the B-bus voltage. The power flow is solved and the voltages at the E- 

bus and the B-bus are used to solve another set of equations to derive the voltage and the 

phase angle of the shunt inverter and series inverter. The model neglects the interaction 

between the series and the shunt inverter dunng the first phase of load flow studies. 

Further, how the real power demand of the senes inverter that is supplied by the shunt 

inverter is included during the load flow is unclear. The Ioad flow solution process is 

basicalIy a rkro step process and hence not an integrated method. This process could be 

used to perform load flow if al1 the variables are to be controlled, namely, the B-bus 

voltage, real power flow in the line and the reactive power by the shunt inverter- Further, 

if one wishes to control only the real power flow in the transmission line, it would be 

difficult to achieve using this model. 

Another load flow model that has been used for the UPFC is that of modeling the 

shunt inverter as a separate voltage source and the series inverter as a set of complex 

power injections[lS]. The shunt voltage source is modeled as PQ bus in the load flow. 

This model ensures that the real power demand of the series inverter is supplied by the 

shunt inverter. Also this load flow model is suitable for unified solution using the 

Newton-Raphson (N-R) method or a Gauss-Seidel (GS) method. The only problem using 

this model for the solution of a load flow using N-R method is that it needs a good initial 

estimate for the shunt and series voltage magnitude and angle. In this model, the shunt 



reactive power is available as an additional variable that can be set to provide a scheduled 

voltage at the bus to which the shunt inverter is connected. 

Of the load flow rnodels described above, the last model [12] where the shunt 

inverter is modeled as a PQ bus and the senes inverter is modeled as a set of complex 

power injections is the simplest and the most comprehensive of al1 the models available 

till now. The rnodel provides for detailed interaction between the series and the shunt 

inverter. Also its unified solution process using the above model makes it attractive. 

In this thesis, the above model [12] will be used to conduct power flow studies 

and obtain a steady state operating condition. The shunt inverter is modeled as a separate 

voltage source and the series inverter is rnodeled as a set of complex power injections. 

The program basically controis the real power flow in the line. It also takes into account 

the interaction between the shunt and the senes voltage sources. In al1 the load flow 

solution procedures discussed in this section, the controi strategy for real and reactive 

power control has not been included. This means that the load flow solution is obtained 

by defining the constraints on a UPFC bus or on the transmission Iine side bus voltage or 

on real power flow in a transmission Iine. It should be noted that, there is a possibility of 

multiple load flow solution with a UPFC [11,12]. It thus becomes imperative to include a 

strategy for the UPFC while sohing Ioad flows to obtain a reasonable operating 

condition. The program has been coded to include a phase shifter with a tap changer 

strategy. To achieve this, the senes injected voltage is split into two components. One of 

the components is forced to be in quadrature with the UPFC bus voltage and the other 

component is forced to be in phase with the UPFC bus voltage. In the load flow program, 

the quadrature component that controls the real power flow is autornatically adjusted 



within the program. The in-phase cornponent that controls the line sidekeactive power is 

also adjusted automatically within the program. The advantage in doing so is that the real 

power fiow control does not effect the reactive power flow and vice versa significantly. 

Thus the load flow solution procedure cm be de-coupled. In this thesis, gauss-seidel 

method has been used to solve the load flow. 

2.1.2.1.2 Dynamic model: The dynamic model for a UPFC is centered round the 

dynarnics of the DC link capacitor. It is well known that the DC link capacitor dynarnics 

is a function of the series and the shunt inverter control variables. The need for including 

the DC link capacitor dynamics while condücting dynamic studies arises from the fact 

that it provides the link between the senes and the shunt inverter operation in ternis of 

real power balance. Exchange of real power between the senes injected voltage by the 

series inverter and the transmission line current causes the DC link capacitor voltage to 

either increase or decrease depending on the direction of real power exchange between 

them. The decreaselincrease of the DC link capacitor voltage is sensed by the shunt 

inverter which absorbs/supplies the necessary real power through the shunt transformer to 

regulate the DC link capacitor voltage. The models present in the literature Vary on the 

basis of the mode1 used for the shunt and series inverter. The dynarnic models for UPFC 

available in the literature have been divided into shunt inverter and series inverter 

modeling. 

(i) Shunt invener modeling: The modeling for the shunt inverter of a UPFC c m  be 

broadly divided into 4 different rnodels. 



a) Current model [U,l8, N,îl,Z] :- In this model the shunt inverter is assurned to be 

made of two current sources. One for the D-axis current and the other for the Q-axis 

current connected to the UPFC bus. The D-mis current in interaction with the bus 

voltage models the real power injection. By varying the Q-axis current, the amount of 

reactive power injected to the bus can be varied. This model neglects the interaction 

between the D and Q-axis currents as the real power flow into the VSI is a function of 

both currents. Further, the model neglects the DC Iink capacitor dynamics of the 

UPFC. The model also neglects the shunt transformer modeling. The mode: does not 

take into consideration the voltage generated by the shunt inverter in order to produce 

the D-Q axis current- It simply assumes that the shunt inverter is capable of producing 

a variable D-Q axis current and models it as two separate current sources. 

b) Real and reactive power injections [lO,I7]:- In this model, the shunt inverter is 

modeled as two separate power sources connected to the UPFC bus. One power 

source models the reai power that is injected to the bus and the other power source 

models the reactive power injected to the UPFC bus. This model does not take into 

consideration the voltage generated by the shunt inverter. Further how the DC 

capacitor dynamics have been modeled is not dear. 

C) Current source in parallel with shunt susceptance [15,16,20]:- In this mode1 the shunt 

inverter is modeled as variable shunt susceptance in parallel with a current source. 

The shunt susceptance models the reactive power that can be varied by changing the 

magnitude of the shunt susceptance. The real power flow through the shunt inverter is 

modeled as a current source. This model neglects the shunt transformer rnodeling. 

This model assumes that tke reactive power is a function of the shunt susceptance and 



thus dependant on the UPFC bus voltage magnitude. In reality, the shunt inverter can 

produce reactive power irrespective of the UPFC bus voltage magnitude. The real 

power flow through the shunt invener should be a function of the D-Q axis currents. 

Again, the interaction between the real and reactive currents is neglected. Though the 

DC capacitor dynamics have been modeled, its dynarnics is a function of only the 

UPFC bus voltage and the current source. On the conuary it should be a function of 

the real and reactive currents fiowing through the shunt inverter. 

d) Voltage source mode1 [8,11,14,47,48]:- Here the shunt inverter is modeled as a 

separate voltage source in shunt with the UPFC bus. The transformer reactance has 

been incIuded in this model. By modeiing the shunt inverter as a separate voltage 

source in series with shunt transformer reactance, the interaction between the shunt 

real and reactive currents are modeled. This mode1 for shunt inverter is appropriate 

for conducting dynamic studies. 

(ii) Series inverter modeling [8,13-22,47,48]:- The series inverter is modeled as voltage 

source in series with the series inverter transformer impedance. This is the most 

appropriate model as the series inverter in reality injects a voltage in series with the 

transmission line and thus can be modeled as a voltage source in series with the line. 

Further, the series voltage source rnodel can been converted into equivalent current 

injection for conducting dynamic studies [83. 

Surnmarizing the review on modeling for UPFC, the model where the shunt inverter 

is modeled as a voltage source in series with its transformer reactance [$,Il, 14,47,38] 

and the series inverter modeled as a voltage source in series with its transformer 



reactance [8,13-22,47,48] is the most appropriate model for conducting dynamic studies. 

This model includes the interaction between the series and shunt inverter operation. 

Further, the mode1 includes the DC Iink capacitor dynarnics. 

2.2 Sumrnary 

A brief review on control strategy and control system design for UPFC has been 

conducted and sumrnarized here. 

1. The problem in the design of an output feedback control system for UPFC is the 

presence of low margin of stability associated with the series inductance of the 

transmission line. Intelligent controllers with specific reference to fuzzy 

controllers have been investigated to overcome this problem. To obtain 

information for the design of a fbzzy controller, review on various Ioad flow and 

dynamic models for UPFC have been conducted. 

2. Al1 control strategies/control systems for UPFC discussed in the literature suffer 

either in their complexity of the control system or non-inclusion of real power 

coordination controller between the series and the shunt inverter control systems 

or both. Non-inclusion of real power coordination controller could lead to loss of 

DC Iink capacitor voltage and subsequent removal of UPFC from operation. A 

new real power coordination controller will be designed for the UPFC for 

improved coordination between the series and the shunt inverter operation. 

3. Any change in the transmission line reactive power flow is balanced by an equal 

and opposite change in the reactive power output of the shunt inverter of the 

UPFC when the shunt inverter is controlling the voltage of the bus to which it is 



connected. This means that any request for change in tmnsrnission line reactive 

power by the series inverter of a UPFC is actuaily supplied by the shunt inverter 

of the UPFC. This could lead to coordination problems with respect to 

transmission line reactive power flow control. A new reactive power coordination 

controiler will be designed for this purpose. 

Al1 control strategies for UPFC discussed in the literature use the series inverter to 

control the transmission line real and reactive power flow. As mentioned earlier, 

it is the shunt inverter that actuaily supplies the reactive power that is requested 

by the series inverter. n iu s  the cause and the effect are on two portions of the 

UPFC. The cause being the series inverter and the effect seen on the shunt 

inverter. This type of strategy is temed as indirect with respect to transmission 

line reactive power flow control. A new control strategy for UPFC wiil be 

proposed where the shunt inverter directly controIs the transmission line reactive 

power fIow. 

PSCAD-EMTDC software has been utilized to show the vdidity of the control system 

design and the control strategy. 



Chapter 3 

Present Study 

This chapter provides an overall view of the thesis organization. The flow chart shown in 

Fig.3.1 describes the over al1 process in designing a control system for UPFC. The study 

has been bifurcated into two parts. One, using MATLAB simulations and the other using 

PSCAD-EMTDC simulations, 

UPFC being a multi-variable controller, it is necessary to Iook into its overail 

effect on power system stability. Frequency domain (small-signal stability) and time 

domain analysis (transient stability) has been conducted to Iook into the stability 

improvement with UPFC. Small-signal stability analysis for power systems with UPFC 

controlling the real power, reactive power flow in the transmission lineAine side bus 

voltage, DC Iink capacitor voltage and the UPFC bus voltage simultaneously has been 

conducted to look into its effect on interconnected power systems. In order to do so, an 

appropriate model for the UPFC has to be chosen. This includes both the load flow and 

the dynamic model. Chapter-2 has iooked into the various load flow and dynamic 

models. An initial steady state operating condition is the basic requirement for 
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conducting frequency or time domain studies. The icitial steady state operating condition 

is obtained by conducting load flow studies. Chapter 4 looks into the load flow analysis 

with WFC. Chapter-5 provides the small-sigd stability analysis with UPFC. As a 

corollary, by conducting small-signai stability anaiysis, the set of systern equations 

needed for conducting time domain cornputer siniulations are verified. Time domain 

analysis results with UPFC have also been presented in this chapter. Computer simulation 

has been carried out using the MATLAB software. 

Computer simulation on power systems with UPFC included provides the 

necessary foundation for the design of the knowiedge base for the series inverter of a 

UPFC. Information regarding the fûzzy knowledge base is obtained by conducting fault 

studies on power systems. The knowledge base designed in chapter-6 has been used in 

chapter-9 while conducting studies using the PSCAD-EMTDC power system simulation 

software. As a supplement, the improvement in power oscillation darnping using the 

fuzzy knowledge base designed for the fuzzy controller for the series inverter of a UPFC 

h a  been brought in chapter-6. 

The PSCAD-EMTDC software is a convenient tooI to conduct real time power 

system studies. This tool has been used to build the UPFC that includes information up to 

the switching level of the gate-mm off switch (GTO). The shunt and the series inverter 

transformers, their control systems have been designed and tested using this software. 

The hzzy knowledge base designed using the MATLAB software in chapter-6 has been 

used to build the fbzzy controller in PSCAD-EMTDC software and test it. Further, the 

coordination conuoller has been designed and included in the over al1 control system. 

The performance of the complete control system has been conducted and the advantage 



of using a fuvy controller for the series inverter has been brought out in this thesis. 

Chapter-7 deals with the construction of a shunt inverter of a UPFC, its control design 

and performance. The design of the DC link capacitor, series inverter transformer, fuzzy 

logic controller and coordination controller has been described in chapter-8 and chapter- 

9. The performance of the over al1 control system that includes the shunt, series and the 

coordination controller has been presented in chapter-9. The effect of senes inverter 

voltage injection on shunt inverter operation has been described in chapter-9. Based on 

the effect analyzed in chapter-9, a new reactive power coordination controller has been 

designed. Its performance has been analyzed in chapter-10. Further, the improvement in 

power system stability has been shown through PSC AD-EMTDC cornputer simulations. 

Based on the effect of series invener voltage injection on shunt inverter operation. 

described in chapter-9, leads to another aspect of operation of UPFC. A new control 

strategy for UPFC has been proposed in chapter-11. Step response studies with the new 

control strategy for UPFC have been conducted to show the validity of the control 

strategy. Further, power oscillation darnping studies have also been conducted to show 

the improvement in power system stability. Chapter-i 1 provides the details of the new 

control strategy and its performance. The conclusions and future work are presented in 

chapter- 12. 



Chapter 4 

UPFC Mode1 for Load Flow 

4.0 Introduction 

Steady state analysis of a power system in the presence of a unified Fower flow 

controller (UPFC) would necessitate a model for the UPFC to be included in load flow 

studies. It is well known that for solving load flows, real and reactive power at Ioad 

buses, real power and voltage at generator buses. voltage and angle at slack bus have to 

be specified. An appropriate model for UPFC in terms of real and reactive power needs to 

be developed to incorporate it in to the load flow. This chapter provides the details of the 

load flow model used for UPFC. A flow chart depicting the procedure for conducting 

load fiow studies with UPFC model has been presented. The results of load fiow studies 

are important as it provides the initial conditions for conducting srnall-signal and 

transient stability studies. Further, the design of the fuzzy logic knowledge base for the 

senes inverter of a UPFC is based on cornputer simulations which require accurate load 

flow solutions. 



4.1 Mode1 of UPFC 

The construction and operatian of a unified power controller have been discussed 

in chapter- 1 section 1.3. In bnef, a unified power flow controller consists of two voltage 

source inverters (VSI) connected back to back with a cornrnon DC coupling capacitor as 

shown in Fig.4.1. Such an arrangement allows for d l  the three functions namely series, 

shunt and phase angle compensation to be unified into one unit. Inverter-1 is connected to 

the power system through a transformer Ti in shunt and the inverter-2 is connected to the 

power system through another transformer TT such that the secondary of the transformer 

T2 is in series with the transmission line. The transformers Ti and T2 would be referred to 

as shunt and series transformers respectively for the purpose of clarity. 

UPFC bus 
I 

Line side bus of 
UPFC 

Transmission Iine 

Series 
transformer 

Shunt 
r-' 

=, 
transformer 

T 

Shunt Inverter Series Inverter 

Fig.4-1 Unified power flow controller configuration, 



Of the load flow models described in chapter-2. the model given in reference[l?] 

where the shunt inverter and senes inverter of a UPFC are modeled as a voltage source in 

senes with their transformer reactance is the simplest of al1 the models. The model 

provides for detailed interaction between the series and the shunt inverter. Fig.4.2 shows 

the UPFC model. Xrh and X,, represent the reactance of transfomers Ti and T2 

respectively. Vsh and V, represent the voltage generated by the shunt and the senes 

inverter respectively. Bus-E and bus-F represent the UPFC bus and the transmission line 

side bus of UPFC respectively. 

UPFC Line s ide  bus 
UPFC bus internai of UPFC Transmission 

Shunt 
Inverter 

Fig.4.2 UPFC modeI. 

For performing load flow studies with UPFC, the series and the shunt inverters 

are assumed to produce balanced 60 Hz voltages of variable magnitude and phase angle. 

The shunt and the senes voltage sources phasors can be mathernatically represented as 

- 
V = Vsh (cos eSh + j sin û, ) 
- 
V ,   cosy^^ + jsinysc) 



Where Vsh and V, are the root mean squared magnitudes of the shunt and the senes 

voltage sources. Brh and 'Y, are the shunt and the senes voltage source angles with 

respect to a reference frame. 

4.2 Norton's equivalent circuit for UPFC 

The series voltage source dong with its associated series transformer reactance 

Xsc c m  be converted into equivalent current injections at bus-E and bus-F. Fig.4.3 shows 

the Norton's equivalent of the circuit shown in Fig.4.2. 

WFC bus Line side bus 
of UPFC 

Shunt 
Inverter 

Fig.4.3 Norton equivalent circuit for UPFC. 



4.3 Real and reactive power equations for UPFC 

The current injections as shown in Fig.4.3 can be converted to appropriate real 

and reactive power injections at their respective buses. The real and reactive power 

injections at bus-E are 

Similarly at the bus-F, the real and reactive power injections are 

Where YEF is the admittance between the bus-E and bus-F and is its phase angle. In 

this case YEFis the reciprocal of X,. <PEF is equal to -90 degrees as the series transformer 

is modeled as a pure reactance. 

For constancy of DC link capacitor voltage, the following reIation should be satisfied. 

where Psh and P,, are the real powers exchanged with the power system by the shunt and 

the senes voltage sources respectively. Pfoss represents the losses in the UPFC. Equation 

4.4 means that the shunt voltage source compensates the real power demand of the series 



voltage source. The above relation provides an equation for the r e d  power demand by the 

shunt voltage source. The real power demanci of the shunt voltage source would then be 

the negative of the real power exchanged by the series voltage source with the power 

system. The total real power demand of the shunt voltage source should inchde the loss 

due to Rcap. The real power demand Psh by the shunt voltage source is given by 

The shunt voltage source dso provides variable reactive power whose magnitude c m  be 

independently adjusted to obtain a required voltage at bus-E, Equations 4.2, 4.3 and 4.5 

are used to perform load flow studies for obtaining a steady state power flow conditions. 

4.4 Load flow procedure 

It is well known that load flow analysis is an iterative type of solution. UPFC has the 

capability of controlling the real power and transmission Iine side bus voItage/reactive 

power flow in a transmission line. Reference [9] provides a very simplistic method to 

solve load flow that is only applicable to srnall power systems. The method requires 

information regarding the short circuit impedance at the bus where the UPFC is to be 

installed. The algorithm provided to perform load flow study is applicable only to assess 

the impact of UPFC on power systems in a localized way. Niaki et.al [ I l ]  has provided a 

simpler method of performing load fiow with UPFC. Here the bus to which the shunt 

inverter is connected is modeled as a PQ bus and the transmission line side bus is 



modeled as a PV bus. This method works only when the variables namely, the UPFC bus 

voltage, real power flow in the transmission line, transmission Iine side bus voltage are 

controlled simultaneously. This method will fail if one wishes to control a subset of thern. 

Further, the solution obtained is rnulti-valued, meaning that one could obtain a load flow 

solution that could not be feasible or the UPFC parameters could be out of acceptable 

Iimits. This requires that the variables be confined within acceptable limits to obtain 

feasible solutions. Arabi e r d  [IO] have modeled the shunt inverter and series inverter as 

a set of PQ injections at the appropriate buses. This model however neglects the 

interaction between the series and the shunt inverter. Esquivel et.al [12] have improved 

upon the limitations on the model by Niaki et-al [Il]  and provides a solution to the 

problem of UPFC parameters limitation by fixing the parameter that has violated the 

iimits and freeing the regulated variable. In this case, the need for good initial conditions 

are emphasized. 

To obtain a load flow solution with a specified real power flow in the transmission 

line and transmission line side voltage wirh UPFC, the series voltage source Vse is 

decomposed into two phasors. Fig.4.4 shows the phasor diagram with the two 

components of the series voltage source. The UPFC bus voltage phasor is denoted by VE. 

One phasor denoted by V,, is in quadrature with the UPFC bus voltage phasor (VE) and 

the other phasor denoted by Vsep is in-phase wirh the UPFC bus phasor (VE). The function 

of the quadrature component of the senes voltage source V,, is to Vary the phase angle of 

bus VE to achieve a specified real power flow in the transmission line. The fùnction of the 

in-phase component of the series voltage source Vsep is to achieve a specified transmission 

line side voltage. The net voltage phasor V, (the phasor sum of VSep and V') is denoted 



by phasor AD in Fig.4.4. The D and the Q axes refer to the network a i s .  Since the series 

voltage phasor V, is added to the UPFC bus voltage phasor V', the quadrature component 

of the series voltage that controls the real power has little effect on the reactive power. 

This is because the quadrature component of the series voltage changes the phase angle 

with little change in the magnitude of the bus voltage on the transmission Iine side (Vh,). 

The in-phase component controis the voltage of the bus on the transmission line side 

(Vk) has greater effect on the reactive power than on the real power in the transmission 

line. This is because the in-phase component has little effect on the phase angle. Thus the 

interaction between the control of real and reactive power flow in a transmission line is to 

a great extent reduced. This allows the load flow solution process of achieveing a 

specified real power flow in the transmission line and a line side voltage to be seperated. 
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Fig.4.4 Phasor diagram showing the two components o f  the series voltage source. 



4.5 Flowchart for load flow with UPFC 

A flow chart for the load flow study is shown in Fig.4.5. As given in equations 

4.2,4.3 and 4.5, the two variables associzted with the series voltage are V,  and y& The 

series voltage source magnitude and its phase angle are updated at the end of each 

iteration to meet the specified real power flow in the transmission line (Pi,,) and the 

transmission line side bus voltage (Vline). The updates for the quadrature and the in-phase 

component of the senes voltage source are done as follows. Let P,/and Vli.ertf(bus-F) be 

the references for the r ed  power flow in the transmission Iine and transmission line side 

bus voltage. From Fig.4.2 it is seen that the power flow through the series transformer 

reactance X,, is approximately given by the following equation. 

Let the difference between the Prefand Plin, be denoted APEF. Differentiating equation 4.6 

with respect V', and introducing the iteration 'kt'" as subscnpt, we get 

The update for V, is given by 
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The update of the in-phase cornponent in the 'P' ireration that controls the transmission 

line side bus voltage VF is given by 

In equation 4.9, 'af represents the acceleration factor. The value chosen for 'af is O. 1. A 

larger value for 'af would cause the load flow to diverge. The updated values of V' and 

V,, are used to find the magnitude and phase angle of the senes voltage source using the 

following equation. For the real power fiow control loop, the updates for the series 

voltage source are 

y,, = angle V,, (- 1 
For the transmission line side voltage control loop, the updates for the series voltage 

source are 



iy,, = angle V, (- 1 
4.6 Summary 

Load flow studies are very important as it provides the necessary initiai conditions 

for conducting small-signai and large-signal performance studies with UPFC. This 

chapter has discussed a load flow model for UPFC. The corresponding equations relating 

to integration of the UPFC model into load flow studies has been described. A flow chart 

for conducting Ioad flow with UPFC bas been provided that includes real power flow 

control in the transmission Iine and the transmission iine side voltage control. The load 

flow procedure based on gauss-seidel method takes into consideration the effect of 

quadarture and in-phase component of series injected voltage on real and reactive power 

flow in the transmission line. The real power flow is adjusted autornatically by the 

quadrature injected component of the series voltage and the transmission line side bus 

voltage is controlled by the in-phase component of the senes voltage- This allows for 

least interaction between the control of real and reactive power in a transmission line. 

The logic for updating the series injected voltage in a Ioad flow to meet the specified real 

power flow and Iine side voltage has been descnbed. 



Chapter 5 

Does UPFC improve power system stability? 

5.0 Introduction 

UPFC being a multi-variable controller, it becomes necessary to assess its impact 

on power system stability. The steady state analysis with UPFC described in Chapter-4 

provides the basic foundation for conducting dynamic stability studies with UPFC. 

Dynamic stability studies include frequency dornain (small-signal stability) and tirne 

domain analysis that includes three-phase fault studies (Transient stability). The 

fiequency domain anaiysis requires the formation of a state matrix that includes al1 the 

differentiaklgebraic equations associated with the power system. The 

differential/aIgebraic equations of the power system include that of generator, exciter, 

power system stabilizers (PSS) and power system network. In this context, it is important 

to include the DC link capacitor dynamics of the UPFC while analyzing power system 

stability. This is because the DC link capacitor forms a common link between the series 

and the shunt inverter. To accurately mode1 the interaction between the series and the 

shunt inverter operation, inclusion of the DC link capacitor dynamics is necessary. 



In order to conduct frequency and time domain analysis, an appropnate dynamic 

mode1 for UPFC should include the DC link capacitor dynamics. This chapter provides a 

procedure leading to the formation of the state matrix that includes the UPFC DC link 

capacitor dynamics for andyzing small-signal stability. 

The purpose of this chapter is to develop the necessary set of equations that 

includes the dynamics of the UPFC for conducting small-signal analysis and time domain 

computer simulations with UPFC to show the improvement in power system stability. 

Further, time domain simulations provide valuable information for the design of a fuzzy 

controller for the UPFC. 

5.1 Small-Signal Stability Analysis 

5.1.1 State matrix Formulation 

Small-signal stability analysis provides information regarding the 

darnping/frequency associated with the devices present in power system. For example, 

the range of frequencies over which electromechanicd oscillations occur for generators a 

single machine infinite bus power system is between 0.7 and 2 Hz. In the case of multi- 

machine power system involving many areas, the range over which the inter-area 

oscillations between groups of generators occur is between 0.2 and 0.7 Hz. 

Small-signal stability anaiysis with UPFC depends on the modeling of the UPFC. 

Small-signal stability analysis without modeling the DC link capacitor dynamics could 

lead to inaccurate result [13]. This is because any interaction between the series injected 

voltage and the transmission line curent leads to real power exchange between the series 

inverter of the UPFC and the transmission line. The real power exchange ieads to 

decreasehcrease in the DC Li& capacitor voltage. Thus by neglecting the DC link 



capacitor dynamics could lead to inaccurate results. DC Iink capacitor dynamics have 

been considered, but not aU the variables have been utilized while studying stabi1it.y [ I l ,  

141. Independent research work were carried out by Huang et.al [26] and Kannan et-al 

[41] to mode1 the interaction between the series and shunt inverter by including the DC 

Iink capacitor dynamics into small signal stability analysis. Though the DC link capacitor 

dynamics have been included into smdl-signal stability andysis, reference [26] has 

neglected the cornbined effect of power system stabilizers and UPFC on power system 

performance. The effect of combined operation of PSS and UPFC with the DC link 

capacitor dynamics included wiil be studied using srnall-signal stability analysis. Further, 

one needs to take note of the choice of input variables for conducting small-signal 

stability studies. In reference [26],  the modulation index and the phase angle of the shunt 

and series inverters have been considered for conducting small-signal stability studies. 

On the contrary, the output of the control systems for the shunt and series inverters are 

the reference voltages that are to be generated by the shunt and senes inverters. Based on 

these reference voltages the corresponding modulation index is cdculated. Thus it would 

be appropriate to use the voltages and their phase angle as the input variables to correctly 

assess the impact of UPFC on power system stability. 

Small-signal stability involves the formulation of a linear state equation that takes 

into consideration the dynamics of the power system components Iike generators, exciter, 

and power system stabilizers. In the presence of a UPFC, the equations poveming its 

operation should be included in the linear state equation and the whole system should 

then be analyzed. In this context it would be necessary to develop a dynamic mode1 for 

UPFC and include it with the models for generator. exciter and PSS in order to f o m  the 



state equation and analyze small-signal stability. 

5.1.1.1 UPFC Modeling: In this section, a step by step procedure leading to the 

formulation of the dynamic equations associated with the UPFC for conducting small- 

signal stability studies and time domain analysis will be presented. The dynarnics 

associated with the UPFC is that of the DC link capacitor. Fig.5.1 shows the UPFC with 

its associated DC and AC side current flows. 

Shunt 
Invener 

Vupt bus , ,  Transmission 

Series 
Inverter 

Series 
Transformer 1, 

+ 
S huri t 

Fig.S.1 UPFC with its associated DC and AC side currents. 
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Let the voltage generated by the shunt inverter be denoted by VdLOSh and the senes 

W Transformer 

'dc2 

inverter voltage denoted by Let Ish be the current flowing out of the shunt 

inverter through the shunt transformer and 1, be the  ansm mission line current. Let the 

UPFC bus voltage be denoted by VUPfCbus and the transmission line side bus voltage by 

Vhe- Let Id, be the dc current flowing out of the capacitor. Let Idcl and IdcZ be the dc 



currents flowing out of the shunt inverter and the series inverter respectively on the DC 

side. Let Idcl represent the current through the shunt resistance connected in paral1el 

across the DC link capacitor. 

By kirchoff current law, we have, 

'A' represents the actual value. These will be converted to per unit representation Iater. 

Consider now the real power flow on the AC side through the shunt transformer. The 

shunt transformer current 15h and the shunt inverter voltage Vsh.&sh are split into their 

network D-Q axis components. Let Islzo and Ide be the network D-Q axis currents flowing 

through the shunt transformer and let VJm and VSha be the network D-Q axis voltage of 

the shunt inverter. The three phase real power flowing out of the shunt inverter is @en 

Where '*' denotes the conjugate. Representing the D-Q axis variables with their peak 

values, we get 

On the DC side the real power flowing out of the shunt inverter is given by 

Assuming a loss-less operation for the shunt inverter we have 



Thus, equating the two t e m s  we get, 

In order to put equation 5.6 into per 

voltage as the base voltage and the 

power base is given by 

Putting equation 5.6 in per unit we get, 

unit representation, assume the peak of the AC phase 

peak of the AC current as the base current. The AC 

Assurning a loss-less operation for the series inverter, the power flow on the DC side 

through the series inverter is given by 

Let IseD and IseQ be the network D-Q axis currents flowing through the series transformer 

and V& and VSee be the network D-Q axis voltage of the series inverter. The three phase 

real power generated by the series inverter due to the interaction between the senes 

injected voltage V,, and the transmission line current I,, is given by 

Where '*' denotes the conjugate. Representing the D-Q axis variables by their peak 

values, we get 



Assuming a loss-less operation for the series inverter and equating 5.9 and 5.1 1, we p t ,  

Representing equation 5.12 in per unit we get, 

The current through the resistance in parallel with the DC link capacitor is given by 

Representing equation 5.14 in per unit, we get 

The dc link dynamics is given by the following equation 

where Vdc is the voltage on the DC link capacitor and 'C' is its capacitance in farads. The 

time 't' is in seconds. Putting equation 5.16 in per unit, we get 

Where C' is given by 

Expressing IdC in terms of Idcl, Idc2 and Id& using equation 5.8, 5-13 and 5.15 we get, 



Equation 5.18 represents the dynamic mode1 for the UPFC. 

5.2 Small-signal stability evaluation 

5.2.1 Case-1: Single machine infuiite bus power system ( S m )  

a) Improvement in rotor angle mode damping: Appendix-1 has detailed the 

formulation of the state matrix for snidying the small-signd stability of a power system. 

In this section the procedure for the formulation of the state matrix as explained in the 

Appendix-1 WU be applied to a single machine infinite bus power system. The 

irnprovernent in the darnping on the rotor angle mode in the case of SMIB will be shown 

based on eigen value analysis. Fig.5.2 shows a single machine infinite bus power systern. 

The generator is rated at 900MVA and is connected to an infinite bus through a double 

circuit 230 kV line and a step up transformer. The total line length is 220 km. The series 

inverter of the UPFC is connected between bus-3 and b u s 4  The shunt inverter is 

connected between bus-3 and bus-5 (not shown in Fig.5.2). The UPFC is used to control 

the transmission line real power flow (Pline) and provide power oscillation damping. Also 

the transmission line side bus voltage (Vlinc), i.e bus-4 voltage is controlled. The shunt 

inverter controls the DC link capacitor voltage (Vdc.) and the UPFC bus voltage (Vupfibus)- 

In this case bus-3 represents the UPFC bus. 



900 m'A 
20 kV 

Fig.5.2 Single machine infinite bus power systern. 

The transmission line real power flow (Ph,) is controlled by injecting a series voltage in 

quadrature (Vseq) and bus-4 voltage (Vlin,) is controlled by injecting a senes voltage in- 

phase (V,,). The phasor addition of the two voltages V,, and Vseq provides the series 

inverter with the appropriate magnitude and phase angle for controlling Pli,te and VI,. 

The generator is equipped with a power system stabilizer (PSS) and a static exciter. The 

parameters of the generator, PSS, exciter UPFC and the network are given in Appendix- 

1. The matrices A, 3, C and D of SiMIi3 power system is formed as detailed in Appendix- 

1. The initial conditions for the lJPFC are that the series inverter injects a voltage of 0.08 

pu (Vscq). The in-phase voltage phasor (V.,) is 0-Olpu. The capacitor is rated at IOOO~LF. 

The real power flow in the transmission line (Pli,re) having the UPFC is 269 MW. The 

load at bus-3 is 2ûû+j50 MVA. The shunt inverter is supplying 150 MVAR initially. The 

eigen values without the UPFC is given in Table 5.1. From Table 5.1 it is seen that al1 the 

eigen values are on the left half of the complex plane. Table 5.2 shows the eigen values 

of the SMIB power system with a UPFC. Cornparhg Table 5.1 and Table 5.2, the rotor 

angie mode damping has increased with the inclusion of UPFC. The damping factor of 



the rotor mode osci!lation has increased from 0.0736 (Table 5-1) to 0.140 (Table 5 2 )  

with the addition of UPFC. The frequency of osciIIations has increased from 0.97 Hz to 

1.0 Hz. This study has shown that the UPFC helps in irnproving the darnping of the 

generator rotor angldspeed oscillations. 

Table 5.1 Eigen values with PSS ( S m )  

Eigen Number 
1 
2 
3 
4 

5 
6 
7 
8 

Eigen Value 
-54.6872 
-50.0 
-3 1.733 
-14.85kj16.41 
-0.4505kj6.1 (c=-0.073 rotor angle mode) 
-35484 
-0.1 O 
-0,1832 

Table 5.2 Eigen values with PSS and UPFC (SMIB) 

Egen Number 
1 
2 
3 

Eigen Value 
-54.467 1 
-50.0 
-32.22 

-15.455 f j 14.156 
-0.8963 + j 6-33 (5=0- 14 rotor angle mode) 
-3.43 16 
-1.1316 
-0.10 1 1 

-0.1827 
-0.438 
-104.28 
-2.04 
-0.7007 



b) Effert of series inverter in-phase component (V,,) on rotor angle mode damping: 

In this section, the effect of in-phase component (V&) of senes voltage control on rotor 

angle mode damping will be analyzed. The geenerator rotor angle mode eigen values of 

the power system with UPFC were analyzed for different operating conditions of reactive 

power flow in the transmission line. Table 5.3 shows the eigen values for different values 

of in-phase component of series voltage (V,,). It is seen from Table 5.3 that the in-phase 

component of series voltage (V') has insignificant effect on the rotor angle mode 

damping. This is due to the fact that the in-phase component of series voltage (V,,) has 

more effect on the transmission line reactive power flow (Qline) than on the transmission 

line real power flow (Pline). More detailed analysis on the effect in-phase cornponent of 

series voltage (V') on the transmission line reactive power flow (eh,) and shunt 

inverter reactive power will be studied in chapter 9. 



Table 5.3 Eigen values with WFC for different values of in-phase component (V,,) 
of series voltage ( S m )  

Sono V, V, pu, a-= Eigen value associateci with rotor mode 
0 (MvAR) 

1 0.08 -0.050 260 O -0.8952 t j 6.3302 
2 0.08 -0.025 264 15 4.8958 C j 6.33 15 
3 0.08 -0.010 266 25 -0.8960 4 J 6.3322 
4 0.08 0.010 270 38 4.8963 I j 6.333 1 

5 0.08 0.025 272 38 -0.8964 f j 6.3337 
6 0.08 0.050 275 65 -0.8964 f j 6.3346 

c) Effect of shunt inverter controlling the transmission line slde bus voltage on rotor 

angle mode darnping: The stability of the power system with the shunt invener of a 

UPFC controlling the transmission line side bus voltage has been evaluated. In this 

analysis, the strategy used for UPFC is that the shunt inverter controk the DC link 

capacitor voltage and the transmission line side bus voltage. The series inverter controls 

the UPFC bus voltage and the transmission line reai power flow. Table 5.4 shows the 

effect of shunt inverter controlling the transmission line side bus voltage. 

Table 5.4 Eigen values with shunt inverter of UPFC controiling the transmission 
line side bus voltage (SMIB) 

Eigen vaine associated with rotor mode 



Table 5.4 shows that controlling the transmission line side bus voltage by the shunt 

inverter of a UPFC does not cause instability. In factt it has improved the system stability 

as compared to without UPFC. Thus the strategy of controlling the transmission line side 

bus voltage by the shunt inverter of a UPFC is feasible and provides stable operation. 

5.2.2 Case-2: Multi-machine power system (LMiMPS) 

a) Irnprovement in inter-area oscilIations: Low frequency oscillations are inherent to 

an interconnected power system. These oscillations c m  be spontaneous or caused due to 

sudden loss of transmission Iines or due to load disturbances. Power system stabilizers 

(PSS) have been used on generators to darnp these low frequency oscillations. UPFC 

placed in a network where power exchanges on tie lines take place, can be helpful in 

irnproving the darnping of these power oscillations. In this study a multi-machine power 

system representing two areas have been considered for analyzing the inter-area 

oscillations. Fig.5.3 shows a muiti-machine power system [36]. Generators 2 and 3 

provide power to Area-1 loads and generators 1 and 4 provide power to Area-2 loads. 

The generation in Area-1 is 1400 MW and the load in Area-1 is 967+j 100 MVA. Area-2 

has deficiency in generation of about 400 MW and hence imports real power from Area- 

1. Area-1 and Area-2 are connected by three transmission lines. The UPFC is located in 

Area-1. Area-1 is exporting around 400MW (Pi,,,,,,,,) of power to Area-2. Area-2 has a 

load of 1767+j100 MVA. A shunt capacitor of 350 MVAR is installed at bus-8. The 

UPFC is supplying 200 MVAR of shunt reactive power to support bus-5 voltage. The 

senes inverter is injecting a voltage of 0.03 p.u in quadrature (V,,) and 0.01 p.u in-phase 



(V,,). The real power flow in the UPFC line (Pline) is 229 MW. The generators. 

exciterPSS, network and the UPFC parameters are given in Appendix-2. 

Fig.5.3 Two area power system with UPFC. 

Each generator has been represented by 10 state variables. The UPFC is represented with 

one state variable. Generator-1 has been assumed as the reference generator. The rotor 

angle variables have been referenced to generator-1 rotor angle (&). The state rnatrix is a 

square 41x41 matrix and is formed using the method described in Appendix-1. Since 

generator-1 is assumed as reference generator, the matrix is reduced by deleting the row 

and column corresponding to A6, and expressing the other generator rotor angles with 

respect to generator-1. The rnatrix is modified by entering -cù, in the column for Ami in 

row corresponding to generators 2, 3 and 4 rotor angles. The loads have been modeIed as 

constant impedance. The state matnx is a square 40x40 matrix. For the above two-area 



power system, there are three swing modes. Two of them are locai modes and one inter- 

area mode. Table-5.5 shows the swing modes of the two- area power system with PSS 

only. The complete Iist of eigen values with and without UPFC is given in Appendix-3. It 

would be observed from Appendix-3 that eigen number 39 in Table A3-1 and eigen 

number 32 in Table A3-2 are zero eigen value. This is due to the assumption that the 

generator torques are independent of speed deviation meaning that the damping due to 

governor action is zero. 

Table 5.5 Eigen values with PSS (MMPS) 

Eigen Value Damping Frequeny 

factor (c) Hz 

-1.77 k j11.3 O. 154 1.79 

Description 

Area-1 Local 

Mode 

Area-2 Local 

Mode 

Inter-Area Mode 

Table 5.6 shows the swing modes of the two-area power system with UPFC. 

Cornparing Table 5.5 and Table 5.6, it is seen that wirh the addition of the UPFC, the 

local mode darnping has remained almost the same but the inter area modes darnping has 

increased. The frequency of oscillation of the local and inter-area has remained almost 

the same. This study has proved by srna11 sigr.a.1 stability analysis that UPFC helps in 

damping the inter-area mode. 



Table 5.6 Eigen values with PSS and UPFC (MMPS) 

S.no Eigen Value Damping Frequeny Description 

factor (6)  Hz 

1 -1.808 kj11.4 O. 1566 1.814 Area-1 Local 

Mode 

0.1516 1.706 Area-2 Local 

Mode 

O. 144 0-938 Inter-Area Mode 

b) Effect of series inverter in-phase component (Y,,) on inter-area mode damping: 

The swing mode eigen values of the rnulti-machine power systern with UPFC were 

analyzed for different operating conditions of in-phase component (V,,) of series voltage. 

Table 5.7 shows the inter-area eigen values for different values of in-phzse component 

(V,,) of series voltage. It is seen from Table 5.7 that the in-phase component (VWp) of 

series vdtage has insignificant effect on the inter-area mode darnping. This is due to the 

fact that the in-phase component (V,,) of senes voltage has more effect on the 

transmission Line reactive power flow (Qlj,,,) than on the transmission line real power 

flow (Plt,,). 



Table 5.7 Eigen values with UPFC for different values of in-phase component (V,,) 
of series voltage (MMPs) 

Eigen value associated with Inter-area 
mode 

-0.8505 Ç j 5.8 16 
-0.8540 t j 5.850 
-0.8560 & j 5.870 
-0.8586 I j 5.8963 
-0.8605 I j 5.9 158 
-0.8634 I j 5-9479 

C) Effect of shunt inverter controlling the transmission line side bus voltage on inter- 

area mode damping: The stability of the multi-machine power system with the shunt 

inverter of a UPFC controlling the transmission line side bus voltage has been evaluated. 

In this analysis, the strategy used for UPFC is that the shunt inverter controls the DC link 

capacitor voltage and the transmission line side bus voltage. The series inverter controls 

the UPFC bus voltage and the transmission Iine real power flow. Table 5.8 shows the 

effect of shunt inverter controlling the transmission line side bus voltage. 

Table 5.8 Eigen values with shunt inverter of UPFC controlling the transmission 
Iine side bus voltage (MMPS) 

Eigen value associated with inter-area 
mode 

-0.855 t j 5.8 1 
-0.858 I j 5.85 
-0.8606 + j 5.87 
-0.863 1 & j 5.89 
-0.865 C j 5.91 
-0.8677 f j 5.95 

Table 5.8 shows that controlling the transmission Iine side bus voltage via the shunt 

inverter of a WFC does not cause instability, Thus the strategy of controlling the 



transmission Iine side bus voltage by the shunt inverter of a UPFC is feasible and 

provides stable operation. 



5.3 Transient stability evaluation 

Section 5.2 has shown by frequency domain analysis that the UPFC helps in 

damping locai and inter-area mode oscillations. This section will confirm the 

improvement in local and inter-area mode damping with UPFC by time domain analysis. 

For the tirne domain analysis, the differentiaValgebraic equations associated with the 

generator, exciter, PSS and the UPFC are solved sirnultaneously using Runge-Kutta 4b 

order method. 

DC link capacitor dynamics plays an important role when considering the 

simultaneous operation of the shunt and series inverter of a UPFC. The DC fink capacitor 

dynarnics have been neglected by rnost researchers while conducting computer 

simulations [16- 191. 

Since UPFC is a rnulti-variable controller, it is necessary that al1 the variables be 

included while conducting computer simulations. In reference [14], not al1 the variables 

have been included while conducting computer simulations. 

In references [15,20], the rnodel for UPFC used is not an accurate one. They 

model shunt inverter reactive power capability as a variable shunt capacitor and the real 

power capability as a parailel current source. They have excluded the shunt inverter 

transfomer rnodeling whiIe conducting cornputer simulations. B y neglecting the shunt 

inverter transformer model, the interaction between the shunt real and reactive power is 

absent. 

In al1 the computer simulations carried out here, the DC link capacitor dynarnics 

have been included. Also variables namely Pii,,, ,V' and VuPfCbuS have been controlled 

simultaneously. As seen from Table 5.3 and Table 5.7, the effect of in-phase composent 



(V,,) of series voltage on rotor angle mode/ inter-area mode damping is insignificant and 

hence disabling the line side voltage controller for d l  time domain simulations is 

justified. Further, the shunt inverter of the UPFC is modeled as a variable voltage source 

dlowing for its magnitude and phase angle to be varied. The shunt inverter transformer 

has been included while conducting time dornain computer simulations. 

5.3.1 Singie machine infinite bus power system (SMIB) 

a) Improvement in generator rotor angle mode damping: The SMIB power system 

shown in Fig.5.2 is simulated using MATLAB software. The generators are represented 

by their differentiaValgebraic equations given in section 5.1.1.2. The exciter is modeled 

as a constant gain. The PSS consists of a washout circuit and two lead-lag blocks. The 

exciter/PSS block diagram is shown in Appendix-1. The UPFC dynarnics is represented 

by equation 5.18. 

Three-phase fault is applied at the generator terminais (bus-2) for 80 msec and 

rernoved without any change in the network configuration. Fig.5.4 shows the generator 

rotor speed (A&) osciJlations of the generator with and without UPFC. The addition of 

UPFC has improved the darnping of the generator rotor speed (Am) oscillations. 



Time in seconds 

Fig5.4 Generator rotor speed (da) oscillation drirnping with and without UPFC. 

The generator rotor speed (A&) oscillations of the generator without UPFC takes 

approximately 10 seconds to damp out, while with UPFC included, it takes around 5 

seconds. 

Fig.5.5 shows the generator electrical power (P,) oscillations with and without 

UPFC. 



Wlth UPFC 

Time in seconds 

FigS.5 Generator electricai power (P,) oscillritions with and without UPFC. 

The generator electrical power (P.) oscillations show improved damping wirh UPFC. The 

generator electrical power (P,) without UPFC takes about 10 seconds to damp out while 

with UPFC included, it takes about 5 seconds. The peak of the  generator electrical power 

(P,) is about lOOOMW soon after the faulr is rernoved. Further, subsequent generator 

electrical power oscillations (P.) with UPFC included in the power system damp out 

quickly. Computer simulations on a SMIB power system have confimed the results 

obtained from small-signal stability analysis. It has shown that with UPFC included in the 

power system, the damping of the generator rotor mode oscillation increases. 



Fig.5.6 shows the DC link capacitor voltage (Vk) oscillations due to three-phase 

fault at the terminais of the generator. The DC Link capacitor voltage (V'J shows very 

little oscillations. This is because the shunt inverter has very effectively controlled the 

DC link capacitor voltage ( V A  At the instant of fault occurrence, the DC Iink capacitor 

voltage (V*) drops as it supplies some of its stored energy to the fault. Subsequent to 

fault removal, the shunt inverter modulates its consumption of reai power and conrrols 

the DC link capacitor voltage (V&) to its reference value. 

Time in seconds 

Fig.5.6 DC Iink capaciior voltage (VdJ oscillations for three phase fault at the generator tcrminals. 



5.3.2 Multi-machine power system (MMPS) 

a) Improvement in inter-area damping : The power system shown in Fig.5.3 hm been 

simulated using the MATLAB software. The load flow as explained in chapter-4 has 

been performed with the UPFC. The resdts of the Ioad flow are used as initial conditions 

for performing transient simulations. The generators are equipped with PSS and static 

exciter. The generators are modeled in the d-q axis representation. Each of these 

generators is modeled with one d-axis damper and two q-axis damper windings. The 

differentialhlgebraic equations for the generator are in Appendix-1. For the multi- 

machine power systern, generator G1 is assumed as the reference generator. For the 

UPFC, the shunt inverter controls the bus-5 voltage (VUPfcbus) and the DC link capacitor 

voltage (V& Bus-5 voltage will also referred to as UPFC bus voltage. The series inverter 

controls the transmission line real power flow (Piin,) by injecting adjustable magnitude of 

voltage in quadrature (V,,,) with the UPFC bus voltage (VupJcbus)- The in-phase injection 

(V,,) has been disabled as it has very little effect on the swing modes (Table-5.7). Two 

different fault location cases have been simulated to show the irnprovement of damping 

oscilIations with UPFC. The conditions are 

1. When Area- 1 supplies Area-2 with 400MW of power and a three-phase fault 

occurs for 80msecs at the load bus in Area-1 (sending end) with no change in the network 

s tnicture. 

2. When Area-1 supplies Area-2 with 400MW of power and a three-phase fault 

occurs for 80msecs at the Ioad bus in Area-2 (receiving end) with no change in the 

ne twork s tmcture. 



i) Three-phase fault at bus -5 (Exporting area) 

In this simulation a three-phase fault is assumed to occur in Area-1 for 80 msecs 

at bus-5 with no change in the structure of the power system. The three-phase fault 

condition was simulated by connecting an admittance of value 420 in shunt with bus-5. 

In this simulation, it is assurned that the protection as a whole has failed to operste and 

hence no change in the power system structures. The real power flow in the double circuit 

Iine (Pline) (bus-6 to bus-14) without the UPFC is 228MW. The shunt inverter of the 

UPFC controls the bus-5 voltage (Veb,) and the DC link capacitor voltage ( V d c ) .  So to 

be able to compare the dynamic performance with the UPFC, the real power flow in the 

UPFC Iine (Ph,) is adjusted to 228MW. This is achieved by injecting a series voltage of 

0.03 p.u in quadrature (V&) with the UPFC bus voltage (bus-5). During and after the 

fault the shunt capacitors at the load buses are not disconnected. Also the UPFC is not 

disconnected during the fault peiiod. The initial voltage on the DC link capacitor (V& of 

the UPFC is 2.0 per unit. Fig.5.7 shows the rotor angle oscillations of generator G2 with 

respect to generator G1. As seen from Fig.5.7, the initial operating point for generator G2 

with respect to generator G1 (4,) is around 10 degrees. With the three-phase fault at bus- 

5, the generator electrical powers (G3 and G2) in Area-1 go to a very low value causing 

the generators G3 and G2 rotor angle to increase in the first swing. For the assumed fault 

condition, in the first swing of the rotor angle osciliations of generator (G2) rotor angle 

(&) with respect to generator (G1) without the UPFC is nearly 30degrees. The reason for 

the first swing to increase is that subsequent to fault occurrence and removal, the 

generator rotor angle of G3 (6) and G2 (&) increases much faster than that of Gi (4). 

Since G1 is assumed as the reference generator, the difference in rotor angle between G2 



and G1 (&) increases. The simulation with PSS (without UPFC) shows very low 

dampinp of generator rotor angle (&) oscillations. Further, the generacor rotor angle G2 

(&) oscillations damp out after nearly 9 seconds without UPFC. With UPFC in service. 

the generator rotor angle oscillation (hl) damp out rnuch fasier with the first swing of 

nearly 25 degrees. Subsequent rotor angle oscillations are well damped with UPFC. It 

takes approximately 5 s to damp out the generator G2 rotor angle (&) oscillations with 

UPFC. 

Wlth UPFC 
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Fig.5.7 Rotor angle oscillations of generator G2 with respect to generator GI (&!) (with and without 

UPFC). 



Fig.5.8 shows the rotor angle oscillations of generator G3 with respect to 

generator G1 (&). The initial angle difference between generator G3 and G1 is around 

20 degrees. The first swing of generator G3 with respect to generator G1 with UPFC 

included is around 40degrees. As seen from the Fig.5.8, the damping of generator G3 

rotor angle oscillations with respect to G1 (&) is poor. It takes around nearly 9 seconds 

to damp out the oscillations. With the UPFC in service, the first swing is reduced 
/ 

significantly and it takes lesser time to damp out the oscillations. 
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FigS.8 Rotor angle oscillations of generator G3 with respect to pnerator G 1 (wiih and wiihout CPFC). 



Fig.5.9 shows the total inter-area real power flow oscillations for a 

three-phase fault at bus-5. The initial inter-area power flow (P,n,,,,) is 400MW. This 

amount of real power is exported to Area-2 from Area-I through a double circuit line of 

300 km long and one single circuit line of 200 km long. The application of a three-phase 

fault causes the total generator electrical power of G3 and G2 (P,) to drop to near zero. 

This causes the inter-area reai power flow (PinMmrea) to drop to almost zero. After the 

fault removal with no change in the network structure, the inter-area real power flow 

(Pin,r-ar&I shoots up to around 625MW without UPFC, while the over shoot with UPFC 

installed is around 575MW. The damping of the inter-area red power (P,n,,,reu) 

oscillations are improved with UPFC. 
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Fig.5.9 Inter-area real power flow oscillations (with and without UPFC). 

Fig.5.10 shows the real power flow in the transmission line with UPFC (Plin.). 

The initial power flow in the UPFC line (Plin,) is around 228MW. The three phase fault 

causes the real power flow in the UPFC line (Pli,,,) to drop to around 50MW during the 

fault penod. Subsequent to fault rernoval the real power flow in the UPFC line (P l in3  

increases to about 350MW without UPFC. With UPFC the r d  power flow (Pline) in the 

first swing increases only up to 325 MW. Subsequent power swings of Pi;,l, are well 

darnped. 



Fig.S.10 Real power flow oscillations in the doubte circuit line (with and without UPFC). 
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ii) Three-phase fault at bus-10 (Importing area): 

In this simulation case, a three-phase fault is assumed to occur in Area-2. 

Subsequent to fault removal, no change is made in the structure of the power system. 

Also the shunt capacitors are assumed to be in service before and after the fault removal. 

The initial operating condition of the power system is such that Area-1 exports 400MW 

of red  power to Area-2. Under this condition, the real power flow in the transmission line 

with UPFC (Ph3 is 228MW. The series inverter of the UPFC injects 0.03pu (V&) in 
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quadrature with the UPFC bus voltage @us-5). The shunt inverter controls the bus-5 

voltage (VUPICbur) and the DC link capacitor voltage (Vdc). 

Fig.S.ll shows the rotor angle oscillations of generator G2 with respect to 

generator G1 (&). The operating conditions are the same as that in the previous case. 

The three-phase fault is simulated by connecting a large admittance of value -j20 p.u in 

shunt ai bus- 10. 

Fig.5.11 Rotor angle osciliations of generator G2 with respect to generator G1 (&) (with and withoui 

UPFC). 
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A fault at bus-10 which is in the importing area causes the rotors of generators G1 and 

G4 to accelerate quickly thereby increasing the rotor angle difference between generator 

G2 and generator G1 (&). It reaches a value of approximately -10 degrees in the first 

swing without UPFC. But the first swing with UPFC reaches a value of approximately - 

10 
Time in seconds 



15 degrees. The excursion of the rotor angle is nearly 25 degrees with UPFC. The reason 

that could be attributed to this is that since the fault is in Area-2 the excursion of the rotor 

angle of generator G2 is reduced due to the presence of UPFC (providing positive 

damping to Area-1 generators) and hence the difference between the rotor angles of 

generators G2 and G l  (&) has increased. Subsequent oscillations of &, are well 

damped. 

Fig.5.12 shows the generator rotor angle oscillations between G3 and GI (&,). 

Here too, the excursion in the first swing is more with UPFC due to the reason mentioned 

above. Subsequent swings are well damped with UPFC. 

40 I i h t 

. . . - .  
35 - With UPFC 

Time in seconds 

FigS.12 Rotor angle oscillations of genentor G3 with respect to generator GI (ql)  (with and without 

UPFC). 



Fig.5.13 shows the inter-area real power flow (Phfera,) oscillations for a fault in 

Area-2. It is evident from Fig.5.13 that the damping of the inter-area power (Pin,eMm) 

oscillations is improved with the UPFC. The first swing in the inter-area real power tlo\v 

(Pi,,,,,,,) with and without UPFC is around 575MW. Subsequent swings of the inter- 

area real power flow (Pi,,,,,) show increased darnping with UPFC. The UPFC thus 

provides increased damping to inter-area power flow as analyzed by small signal stability 

analysis. 

Fig.S.13 Inter-area real power flow oscillations (Pi,,,,.) (with and without UPFC). 
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Fig.5.14 shows the real power flow in  the transmission line with UPFC (Pii,,l. 

The initiai real power flow (Pline) in the UPFC line is around 228MW. Dunng the fauk 
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the real power flow (Plina in the UPFC line drops down to around 50;MW. The maximum 

excursion of the real power flow (Pli,,.) is around 335MW without UPFC. The peak of the 

first swing of real power fiow (Pline) with UPFC is dmost the same as without UPFC. 

The improvement in damping of real power flow with UPFC is evident in 

subsequent power swings. The real power flow (Plin,) osciIlations without UPFC shows 

low damping compared to power osciIlations with UPFC. 

-. - - . Without UPFC 1 - Wth UPFC 

Time in seconds 

Fig.5.14 Real power flow oscillations in the double circuit Iine (with and without UPFC). 



5.4 Summary 

This chapter has presented a detailed procedure leading to the formulation of the 

state matrix with UPFC where the red power flow in the transmission line (Pline) is 

controlled by injecting a voltage in quadrature (V,,) with the UPFC bus voltage and the 

line side bus voltage is controlled by injecting a voltage in-phase (V,,) with the UPFC 

bus voltage. The shunt inverter controls the UPFC bus voltage (VUPICbuS) and the DC link 

capacitor voltage (V&). The DC link capacitor dynarnics have been inclüded while 

performing small-signal and transient stability analysis. The inclusion of DC link 

capacitor dynamics while performing srnail and transient stability accurately rnodels the 

interaction between the series and the shunt inverter operation. 

Small-signal and transient stability analysis has been carried out on S M B  and 

multi-machine power systems. The improvement in local mode and inter area mode 

damping has been brought forth with UPFC. The effect of combined operation of PSS 

and UPFC has been studied in this chapter through small-signal and transient stability 

analysis. Small-signai and transient stability analysis has sbown that the UPFC 

contributes positively to locd mode and inter-area mode darnping. In the case of SMIB, 

the local mode damping increased from 0.073 to 0.14- In the case of multi-machine 

power system, the inter-area mode damping increased from 0.09 to O. 144. 

The stability of the power system with the shunt inverter of UPFC controlling the 

transmission line side bus voltage (equivalent to controlling the transmission line reactive 

power flow), DC link capacitor voltage and the series inverter controlling the 

transmission line real power flow, UPFC bus has been evaluated. It bas been found that 

this strategy is feasible and does not cause instability. 



Chapter 6 

Improvement in power system stability using a 

fuzzy logic controller for a UPFC - Single and 

Multi-machine power system 

6.0 Introduction 

The previous chapter has shown by smali-signal stability analysis and time 

domain analysis that UPFC improves the over al1 stability of the power system. In doing 

so, PI controllers were used to control the transmission line real power flow (Pline), the 

UPFC bus voltage (VwbuS) and the DC link capacitor voltage (Vdc). Time domain 

simulation with UPFC provides valuable information for the design of fuzzy controller 

for a UPFC. 

A vast amount of literature exists in the field of application of fuzzy logic to 

power system problems. Fuuy  logic based controllers have provided better solutions 



than conventional controllers- Recently, fuzzy logic has been used to coordinate the 

control variables of a UPFC to achieve improvement in transient stability [?O]. 

The purpose of this chapter is to two fold. 

1. The series inverter of a UPFC plays a major role in providing power flow control and 

power oscillation damping. One purpose of this chapter is to design a fuzzy controller 

for the series inverter to control the transmission line r e d  power and provide damping 

to them. The performance improvement by using a fuzzy controller over a PI 

controller will be brought out by cornputer simulations on a single machine infinite 

bus and multi-machine power systems. The complexity in the design of a fuzzy 

controller for the series inverter lies in the fact that the fuzzy controller should not 

oniy provide improvement in power oscillation damping but also see that it does no< 

create instability. InstabiIity could arise due to non-coordination of series and shunt 

inverter operation leading to possible collapse of the DC link capacitor voltage. 

2. The analysis carried out by Padiyar et-al [23] show that the use of high gain PI 

controtler for controlling the transmission line real power flow could lead to low 

darnping. They state that 

" The main concern in the design of an ortrpLit feedbnck coritroller is the stnbilify of 

the osciliatory mode (in the D-Q axis frame of reference: near abolit c ~ b  rad/.) 

associated with the series inductance". 

this thesis, a fuzzy logic controlIer h a  been proposed to overcome the problem of low 

damping experienced when using a high PI gain output feedback to control the 

transmission line real power flow. The fiizzy knowledge base developed in this chapter 

provides the necessary foundation for solving the problem of low damping experienced 



when using a high PI gain controller for controlling the transmission iine real power flow. 

The developed knowledge base will be used in chapter-9 to show the improvement in 

step response with a fuzzy contrûller over PI controllers. 

As a background, the basics of fuzzy Iogic and how it is implemented in a fuzzy 

logic controller has been reviewed briefly. 

- 6.1 Basics of fuzzy theory 

Fuzzy set: A fuzzy set 'F' having a universe of discourse 'UV is described by a 

membership value pF which c m  take values between O and 1. The fuzzy set 'F' is a set 

of pairs of eIements 'u' in the set 'F' and its associated membership value pF . 

Support of a fuzzy set: It is the fuzzy set of al1 elements 'u' in the universe of 

discourse 'U' for which p, (u) > O. 

Linguistic variables: This is defined by the quintuple {x, T(x), U, G, S ), where 

'x' is the name of the variable, T ( x )  is the term set of the variable i.e the set of narnes that 

characterize the variable 'x', 'U' the universe of discourse, 'G' the syntactic rule for 

generating the names of the values of 'x'. S is the semantic rule for associating with each 

value its meaning. 

Union of two fuzzy sets: The membership function p,,, of the union of two 

fuzzy sets A and B defined for al1 elements 'u' is 

PAUs = max I P A ( u ) ~ P B ( u )  I 



Intersection of two fuzzy sets: The membership function p,,, of the 

intersection of two fuzzy sets A and B defined for ail elements 'u' is 

p*r>* = Inin [ p,(u),p,(u) 1 

Complernent of a fuzzy set: The membership value p - of the complement of the 
A 

fuzzy set A for any element 'u' is @en by 

p - w  = 1-p w 
A A 

Cartesian product: If A,, 4, ,..A, are fuzzy sets in the universe of discourse 

U, , U,, ,..UN respectively, then the Cartesian product of A,, 4, ,..A, is a fuzzy set in the 

product space U, x U, x ....... xU, with a membership function 

pAlXA2X.- - -A. , ,  ( ~ ~ I ~ ~ ~ ~ r - - - - l l ~ )  = min ( PA, ( K I  ) * P A I  ( L S ) . - - - - - - - & .  (un)  ) 

6.2 Fuzzy Logic Controller 

A fuzzy Iogic controller has four main components. They are 

1. Fuzzfication interface. 

2. Knowledge base, 

3. Decision making Logic 

4. Defuzzification interface. 

Each of the above w i l  be explained with the help of an example. 

Consider a fuzzy logic controller with inputs as error ' Ae ' and the rate of change of error 

' ~ e -  ' to it. Let A be the variable to be controlled and A,, be its reference value as shown 



in Fig. 6.1. Let the output of the controller be Au. The fuzzy lo@c controller input simals 

are the error and the rate of change of error. 

Fig. 6.1 A sample fuzzy logic controller. 

Here the two input linguistic variables are the error and the rate of change of error. Each 

of the two linguistic variables is defined over a universe of discourse narnely LI, and 

y. respectively. KAe and KA,- are constants used to massage the input signals to fit in 

- 

within the universe of discourse. The output gain kp is used to fine-tune the output 

signal. Dey  have been chosen as unity for descriptive purpose. Let the universe of 

discourse for each of the input linguistic variable be divided into 5 fuzzy sets namely, 

Positive Big (PB), Positive Medium (PM), Zero (ZE), Negative Medium (NM), and 

Negative Big (NB). Each of the fuzzy set has a definite support. Each fuzzy set can be 
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trian,gdar, or trapezoidal or si,moidal. In this case, trïangular hizzy sets are used. Let the 

universe of discourse for the error be (-0.2 to + 0.2}. Let the universe of discourse for the 

rate of change of error be {-0.06 to +0.06}. Each of the universe of discourse is divided 

among the five hizzy sets with 50% overlap as shown in Fig.6.2. n i e  five fuzzy sets 

named NB, NM, ZE, PM, PB can have variable support within the universe of discourse. 

- Universe of discourse 

X m i n  X m a x  

Fig6.2 Five fuzzy sets. 

Fuzzification Interface maps the crisp data input to a fuzzy set with a 

membership value. For example, the universe of discourse for the error is (-0.2 to +0.2). 

For convenience,. they are equally divided between the five fuzzy sets as shown in Fig.6.3 

Assume now that the error input is +0.03. So the error now appears in the fuzzy set ZE 

and the fuzzy set PM as shown in Fig.6.3. 



Membership 

Fig.6.3 F u v y  sets with their respective support- 

The mernbership of the error in the fuzzy set ZE is 

~ ~ ( 0 . 0 3 )  = (O. 1 -O.O3)/O. 1 = 0.7 

and in fuzzy set PM is 

p, (0.03) = (0.0310.1) = 0.3 

Thus the function of the Fuzzification interface is to identify the fuzzy sets and their 

membership to which the input crisp value belongs. 

Knowledge base comprises of the knowledge of the application domain and its 

control objectives. The expert knowledge is generally given in the following format. 

"IF (a set of conditions) THEN (a set of consequent c m  be inferred)". 

These staternents contain a set of conditions and a set of decisions to be inferred. The set 

of decisions could be flizzy sets. For example: 

IF (error is PM) and (rate of change of error is NM) THEN (change in output is 



The above statement means that IF the error is in the fuuy set PM and the rate of change 

of error is in the fuzzy set NM, THEN the change in output value is PM. The knowledge 

base consists of many rules depending on the expert domain expenence. For example, if 

there are 5 hizzy sets, each for the error and the rate of change of error, then there are 25 

rules. But in most cases not al1 the d e s  are used. An expert domain knowledge base can 

be put in a tabular f o m  as shown in Table 6.1. 

Table 6.1 A Fuzzy knowledge base 

- 

Error 

PM,. _ .. - .. . - . . .  
. . 

NM 

NM 

NS 

The decision-making logic is the process of simulating hurnan like decision 

making based on fuzzy concepts. The idea behind this is to relate the input signals to the 

output signals. They are accomplished by the various operators available [38]. To 

explain the decision making process, consider the mles in Table 6.1. 



"{IF (error is PB) AND (the rate of change of error is PB) THEN (change in 

output du is N B ) )  OR {IF (error is PM) AND (the rate of change of error is P M )  THEN 

(change in otcrput & is NM))" 

Consider the following statements. 

Let the error be in the fuzzy sets PB and PM and have a membership value of 0.5 

and 0.5 in their respective fuzzy sets. Let the change of error be in fuzzy sets PB and PM 

and have the mernbership values of 0.666 and 0.33 in their respective fuzzy sets. To 

relate the input signals to the output signal, consider the 'min' operator. This 'min' 

operator mimics the 'AND' hnction in the above rule. Using the min operator, the extent 

to which the fuzzy set NB is fired is min (0.5,0.666) i.e O.S. SirniIarly, using the min 

operator, the extent to which the fuzzy set NM is fired is min (0.5,0.333) i.e 0.333. The 

above procedure has illustrated the process of decision making using the min operator. 

Other operators like product could also be used. 

After having obtained the membership vaIues of the consequent fuzzy sets, it is 

then required to defuzziQ the control actions. This is done by the Defuzzification 

interface. The crisp conüol value is obtained by defuzzifying the information obtained 

from the decision making interface. This is generally done by the center of gravity 

method. To continue the example, the information obtained from the decision making 

interface is that, the mernbership value of the consequent fuzzy set NB is 0.5 and the 

membership value of the consequent fuzzy set NM is 0.333. Fig.6.4 shows the output or 

consequent fuzzy sets. Using the above information the crisp value for the control action 

is obtained by taking the center of gravity of the two inferred consequent sets namely NB 

and NM. The crisp control value is given by 



Fig.6.4 Consequent f u u y  sets. 

(0.5 * centroidof serNB) + (0.33 * centroidof s e t N M )  
Au = 

(0.5 + 0.333) 

Therefore the change of control output is -0.064. 

6.3 Knowledge base design for the Series Inverter 

In this section, a fuzzy knowledge base for a fuzzy logic controller has been 

developed for the senes inverter of a UPFC that controis the real power flow in the 

transmission line. The most important part of a fuzzy controller is its knowledge base. 

These are basically linguistic d e s  that show the relation between the input qua~tities and 



the output quantities. The input quantities chosen are the error in the transmission line 

real power flow (Pline) and the rate of change of real power flow in the transmission line 

where the UPFC is installed. The output variabie of the knowledge base is the change in 

series injected voltage (AV&)- 

Seven î u u y  sets were used for error in real power flow. change of error in real 

power flow and the change in series injected voltage, namely Positive Big (PB), Positive 

Medium (PM), Positive Small (PS), Zero (ZE), Negative SmalI (NS), Negative Medium 

(NM) and Negative Big (NB). All rnembership f'unctions have been assumed uiangular in 

shape for the sake of simplicity. Tne product operator has been used for the decision 

making process. The center of gravity method has beeri used for Defuzzification. 

While conducting computer simulations on a single machine infinite bus power 

system, the error in transmission line real power, change of error in transmission line real 

power and the change in control input (quadrature injected voltage AV,,) were monitored 

and the range over which they varied were noted. Based on those findings the universe of 

discourse for the error, change in error and the change in control input are defined. Fig 

6.5 shows the error in real power flow obtained from the simulations conducted in 

chapter 5 on a SMIR. As seen from Fig.6.5, the range over which they oscillate is M. 15 

Thus for the error in transmission line real power flow, the universe of discourse was 

chosen to be M.2. The input gain for error KAe was chosen to be 1.0. The centroid of the 

îuzzy sets for error in real power flow are 0.2 (PB), O.l(PM), 0.03(PS), 0.0 (ZE), -0.03 

(NS), -O. 1 (NM), -0.2 (NB). 



Time in seconds 

Fig.6.5 Error in transmission line real power flow for a SMIB case. 

Fig.6.6 shows the change of error in transmission line real power flow for a SMIB 

case. It is seen that the change in error range from 1.0 to 4.6. The universe of discourse 

for change of error in real power fIow was chosen ro be smaller than +1.0 and -0.6. The 

universe of discourse was chosen to be M.02 with an input gain KA,* of 0.1. By doing so, 

the mies in the knowledge base on the outer periphery will be fired during the initial 

penods after the disturbance. This helps in providing more control effort (change in 

quadrature injected voltage AV,,) during the initial periods to damp the power 

oscillations. The centroid of the fuzzy sets for change of error in transmission line real 



power flow are 0.02 (PB), O.Ol(PM), 0.003(PS), 0.0 (2.) .  -0.003 (NS). -0.01 (NM), -0.02 

Time in seconds 

Fig.6.6 Change in error in transmission line real power ftow for SMIB case. 

Fig.6.7 shows the change in control input (AV,,). Th range over which they Vary 

is about M.00025. The centroid of the hzzy sets for change in series quadrature injected 

voltage are 0.00025 (PB), 0.0002(PM), 0.000 1 (PS), 0-0 (ZE), -0.000 1 (NS), -0.0002 

(NM), -0.00025 (NB). An output gain (K,) of 4.0 was used for the SMIB case. 



Time in seconds 

Fig.6.7. Change in control input V,, for SMIB case. 

Table.6.2 shows the knowiedge base developed for control of real power flow. 

The rules in Table 6.2 have been generated by looking at the instances of the error, 

change of error in transmission line real power flow (Pline) and the change of control 

input (AVseq) and relating them by fuzzy sets. For example, at approximately 1.0 sec, the 

error in transmission line real power flow is almost zero and the change of error in 

transmission line real power flow is very near to its negative maximum. At this instant 

the change in control input (AVseq) is near zero and going to its negative maximum. From 



this observation, the rule when error in transmission Iine red power flow is zero and 

change of error in transmission line real power flow is at its negative maximum. the 

change in output (AV,,) is negative maximum h a  been developed. Based on such an 

analysis, the rest of rules have been developed. In TabIe-6.2, CE represents the change in 

error in transmission line real power flow and E represents the error in transmission line 

real power flow. 

TabIe 6.2 Fuzzy knowledge base for series inverter of UPFC 

The knowledge base developed in Table 6.2 cornes from the fact that when the 

error in transmission line real power is positive, meaning that the transmission Iine real 

power flow is less than its reference value, the series quadrature injected voltage (Vs,) is 

increased to reduce the error. By doing so, the phase angle difference between the 

sending and receiving end increases causing the transmission line real power flow to 

increase and thereby reducing the error in it. Conversely and when the error in 

transmission line real power flow is negative, the series quadrature injected voltage 

(V,,)is decreased to reduce the error. 

Looking more carefuliy at the knowledge base, it is seen that the rules are 

separated into two regions dong one of the diagonals. On one side of the diagonal are 



positive changes to control input (V') and on the other side negative changes to control 

input (V'). The rules that are closer to the diagonal are o f  smaller changes in control 

input (Vseq) and as one moves away from the diagonal, larger changes in control input are 

encountered. Thus there are not abrupt changes in rules. For example, a change from PM 

to NM between adjacent cells is not present. This helps in allowing for smooth transition 

of the control input (Vseq) from one region to the other. One of the outcomes is that the 

real power absorbed/generated by the series inverter due to interaction between the senes 

injected voltage and the transmission line current rnakes a smooth transition from 

generating to absorbing and vice a versa and helps in allowing the shunt inverter to 

provide the necessary red  power demand of the series inverter. By doing so, the voltage 

across the DC link capacitor is prevented from changing abruptly. 

6.4 Simulation results 

6.4.1 SMlB case: The single machine infinite bus power system shown in Fig.6.8 

has been considered to show the improvement in damping of the generator rotor angle, 

generator rotor speed and transmission line real power flow oscillations using a fuzzy 

contrdler that uses the knowledge base developed in Table 6.2. The generator, exciter, 

PSS, UPFC and network data are given in Appendix-1. The generator is rnodeled in the 

d-q axis representation and is equipped with an exciter and a PSS. The generator 

differentiaValgebraic equations are given in section 5.1.1.2. The UPFC is represented 

with differential equation describing the DC link capacitor dynamics (equation 5.18). The  

exciter and PSS mode1 are given in Appendix-1. The disturbance is a 80msec fault at the 

terminal of the generator with no change in the structure of the power systern.Fig.6.9 



shows the generator rotor angle oscillations with UPFC (PI controller) and with UPFC 

(Fuzzy controller). 

Fig.6.8 Single machine infinite bus power systcm. 
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Fig.6.9 Generator rotor angle (6) Oscillntions. 



The initial generator rotor angle (6) is around 78 degrees. The three-phase fault is applied 

as a very high admittance at the generator terminds for 80msec and then rernoved. It is 

seen from Fig.6.6 that the first swing with the UPFC &ter the fault removal is the same 

with PI controller and with fuzzy controller. Subsequent oscillations with the fuzzy 

controller shows greater damping compared to the case when the UPFC is equipped with 

a PI controller. The simulation with UPFC equipped with a fuzzy controller for the series 

inverter has actually shown that the knowledge base used for the fuzzy controller is 

appropriate and does provide improved damping to generator rotor angle oscillations. 

Fig.6.10 shows the generator rotor speed (Am) oscillations for a three-phase fault 

at the terminais of the generator. The generator rotor speed (Am) oscillations with UPFC 

equipped with a fuzzy controiler shows increased damping as compared to when the 

UPFC is equipped with a PI controller. The difference in the darnping is only evident in 

the subsequent oscillations. 
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Fig.6.10 Gcncrritor rotor spced (A&) oscillaiion darnping. 

Fig. 6.1 1 shows the generator electrical power (P,) output for the three-phase fault 

at the generator terminals for 80 msec. The first swing of the generator electrical power 

reaches a peak of 1000 MW from the initial value of 700 MW. The damping of the 

generator electncal power is much more with the fuzzy controller than with PI controller. 

It takes approximately 4 seconds to darnp the generator electrical po\ver wirh the fuzzy 

controller for a UPFC compared to 5 seconds with PI controller. 
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Fig.6.l 1 Gcnemior elsctrical powcr (Pt )  ouipur. 

Fig.6.12 shows the real power flo~v in the transmission line containing the CPFC 

(Pfi,Z,). The initial power flow in the UPFC line (Plil,,) is about 250 SIIXr5'. The first swing 

in real power in the UPFC line (Pfil,,) reaches a value of 375 hlW when the CPFC 

controls the real power fiow with a PI controller. The first swing in irmsmissinn liae real 

power flow is reduced to 360 MW when the UPFC is equipped wirh a fuzzy conr:ollcr. 

Subsequent transmission line real power flow osciliations are better dnmped \\ ith f i z z ~ -  

controller. 
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Fig.6.12 ReaI powcr flow (Pli,,=) in the UPFC linc. 

6.4.2 Multi-machine power system (MMPS) case: Fig.6.13 shows a multi-machine 

power system. Generators 2 and 3 provide power to Area-1 loads and generators 1 and 4 

provide power to Area-2 loads. The generation in Area-1 is 1400 MW and the load in 

Area-1 is 967+jl00 MVA. Area-2 has deficiency in generation of about 400 MW and 

hence imports real power from Area- 1. Area- 1 is exporting around 400MW of power to 

Area-2. Area-2 has a load of 1767+j100 MVA. A shunt capacitor of 350 MVAR is 

installed at bus-8. The UPFC is supplying 200 MVAR of shunt reactive power to suppon 

bus-5 voltage. The series inverter is injecting a voltage of 0.03 p.u in quadrature with 



bus-5 voltage. The real power flow in the UPFC line is 229 MW. The generators, 

exciter/PSS, network and the UPFC parameters are given in Appendix-2. 

3 Two area power system with WFC. 

In this simulation a three-phase fault is assumed to occur in Area-1 for 80 msecs 

at bus-5 with no change in the structure of the power system. It is assunied that the 

protection as a whole has failed to operate and hence no change in the power system 

structures. The power flow in the double circuit transmission line (bus-6 to bus-14 in 

Fig.6.13) without the UPFC is 228MW. So to be able to compare the dynamic 

performance with the UPFC, the power flow in the UPFC line is adjusted to 228MW. 

This is achieved by injecting a voltage of 0.03 p.u in quadrature with the UPFC bus 

voltage (Bus-5). During and after the fault the shunt capacitors at the load buses are not 

disconnected. Also the UPFC is not disconnected during the fault period. The initial 

voltzge on the DC link capacitor of the UPFC is 2.0 p.u. 



For the MMPS case, seven fuzzy sets were used for the error in real power flow, 

change of error of real power flow and change in series quadrature injected voltage. 

Table 6.2 shows the hzzy knowledge base used for the MMPS case, A universe of 

discourse of M.2 was used for error in real power flow. The input gain that was used for 

the error was 2.0. For the change in red  power flow, a universe of discourse of M-2 was 

used. The input gain used for the change in red power flow was 0.01. The universe of 

discourse for the change in quadrature injected voltage was t 0.0005. 

Fig.6.14 shows the rotor angle oscillations of generator G2 with respect to 

generator GI  for a 80 msecs fault at bus-5. Generator G1 is assumed as the reference for 

al1 simulations. 



Time in seconds 

Fig.6.14 Rotor angle difference (&) between generators G1 and G 1. Fault at bus-5. 

The initial openting point for generator G2 with respect to generator G 1 (62,)  is around 

10 degrees as seen from Fig.6.14. With the three-phase fault at bus-5. the electrical power 

in Area-1 goes to a very low value causing the generators G3 and G2 rotor angle to 

increase in the first swing with respect to G1. The three-phase faulr condition w~ 

simulated by connecting an admittance of value -j20 in shunt at location A. Wirh the 

UPFC in service equipped with a PI controller, the generator G2 rotor angle oscillation 

(&) damp out with the first swing of nearly 25 degrees. But with the UPFC in service 



equipped with a fuzzy controller, the generator oscillations damp out very quickly within 

3 seconds. 

Fig.6.15 shows the rotor angle oscillations of generator G3 with respect to 

generator G1 (&). The initial rotor angle difference between generator G3and G1 is 

around 20 degrees. With the UPFC in service equipped with PI controller. the first swing 

reaches a value of 35 degrees and takes about 5 secs to damp out the oscillations. But 

with the UPFC equipped with a fuzzy controller, the generator G3 rotor angle (6j,) 

oscillations damp out much faster within 3 seconds. 

Fig.6.15 Rotor angle oscillations of generaton G3 with respect to G 1 (&). 



Fig.6.16 shows the total inter-area power flow oscillations for a three- 

phase fault at bus-5. The initial inter-area power flow (Pi,,mmJ is 4 0 0 m .  400 h4W of 

real power is exported to Area-2 from Area-l through the three transmission lines. The 

application of a three-phase fault causes the total inter-area real pan-er (Pi,,,e,,,) to drop 

to near zero. After the fault removal and with no change in the network srmcture. the over 

shoot in inter-area real power flow (Pi,,,,,,, wwith UPFC installed is around 575MW. 

UPFC when equipped with a fuzzy controller controlling the pan-sr flow in  the double 

circuit line @us-6 to bus-14 in Fig.6.13)provides increased damping to inter-arca red 

Dower flow (Pitiar-urc<i) oscillations as compnred to when equipped wirh PI controller. 

..... 
- With UPFC (PI) 

With UPFC (Fuzzy) 
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Fig.6.16 Inter-area real power flow (Pia:c,.,,fw) oscill~iions. 



Fig.6.17 shows the real power flow in the transmission line with UPFC (Po& 

The initial power 80w in the UPFC transmission line (Ph,) is aroiind 728MW. The three 

phase fault causes the real power flow in the UPFC transmission line (PI;,l,) to drop to 

around 50MW during the fault period. With UPFC equipped with a PI controller. the real 

power flow in the UPFC transmission line (Pfi,,3 is damped in about 5 secs. But with 

UPFC is operated with a fuzzy controller, the UPFC effectively damps out the 

transmission line real power (Pli,,) oscillations within 2.5 seconds. 

. . -. . With UPFC (PI) 1 - With UPFC (Fuzzy) 

Time in seconds 

Fip.6.17 Real power flow in  the UPFC transmission linc (Yl,-,). 



6.5 Summary 

A knowledge base for a fuzzy controUer has been developed for the series inverter 

of a UPFC to improve on the damping of local and inter-area mode damping. The 

knowledge base developed includes information about the universe of discourse for the 

error in real power flow, change of error in real power flow and the change in quadrature 

injected voltage that has been obtained from simulations conducted in chapter-5. 

Two important conclusions can be drawn from the simulations done on a S M I B  

and MMPS with WFC equipped with a fuzzy controller. 

1. UPFC equipped with a fuzzy controller for the series inverter can provide 

better performance compared to PI controlled UPFC. 

2. These simulations have shown that the knowledge base developed for the 

f u a y  controller to be applied to the series inverter of a UPFC is justified. 

The knowledge base developed together with the information regarding the 

universe of discoune for the error in real power flow and change of error in real power 

flow will be used in chapter 9 while designing the fuzzy controller for UPFC using the 

PSCAD-EMTDC software. Further, the sarne knowledge base will be used for the UPFC 

control system while operating it using the new control strategy. 



Chapter 7 

Shunt inverter construction, operation and 
control system design using PSCAD-EMTDC 

software 

7.0 Introduction 

UPFC as described in chapter 1 consists of two inverters connected back-to-back via 

a DC link capacitor with one inverter connected in shunt with the transmission line and 

the other inverter in senes with the transmission line. The shunt inverter of a UPFC 

plays an important role by providing reactive power to support the voltage of the bus to 

which it is connected and maintaining a credible DC link capacitor voltage that is 

required for the proper operation of both the shunt and series inverters. Also, it supplies 

the necessary real power demand of the series inverter of a UPFC. 

This chapter focuses on the construction, operation and control of a shunt inverter 

using PSCAD-EMTDC software. A control system design procedure for the shunt 



inverter has also been explained. The performance studies will be carrïed out to validate 

the control system design. 

7.1 Shunt inverter transformer rating 

Fig.7.1 shows a UPFC connected to a transmission line. The shunt inverter is 

connected to the UPFC bus through a transformer Ti. 

Senes 
transformer 

Shunt 
r 

transformer 

Line side bus of 
UPFC bus UPFC 

Transmission iine 

Iw 

Series Inverter 

Fig.7.1 WFC connected to a uansrnission Iine. 

The design of the shunt transformer Ti is a planning stage development. The 

rating of the shunt transformer would normally depend on the amount of reactive power 

needed to support the bus voltage. In the planning stage, the peak load conditions could 



be used to corne up with the ratings of the shunt transformer. In this thesis. a rating of 

160 MVA has been assumed for the shunt transformer. A voltage rating of 345/66 kV 

and a per unit leakage reactance of 0.1 has been assumed for the shunt transformer. 

7.2 Shunt inverter: Construction and Operation 

7.2.1 Basic three-phase voltage source inverter (VSC): A basic three-phase VSC 

module consists of 6 GTOs (g 1-g6) connected in a bridge fashion. To provide for the 

reverse current flow, diodes (dl-d6) are connected in anti-parallel to the GTO switch. 

Fig.7.2 shows a basic three-phase voltage source inverter module. The GTO block 

available in PSCAD-EMTDC software is modeled as a switch. In order to make it 

unidirectional, a diode is added in senes with each GTO. The snubber circuit connected 

across each GTO is a senes combination of a resistor and a capacitor. The values of the 

resistor is 5000 R and the capacitor is 0.05 pF. The on-state resistance of the GTO is 

0.01 R and the off-state resistance of the GTO is 1.OE+06 fi- The forward voltage drop 

is IV. The parameters for the diode are the same as that of the GTO. 



Fig.7.2 A basic three-phase voltage source converter module. 

7.2.2 Constmction of a Cmodule voltage source inverter: In order to build a high 

power VSC module, a number of these basic three-phase voltage source converter 

modules have to be combined together. In this thesis, a 4-module voltage source 

inverter has been constructed. A 4-module VSC consists of 4 basic VSC inverter 

configuration connected in parallel across a common DC capacitor. Each of the basic 

VSC derives its DC voltage from the capacitor. Considering a sinusoidal pulse-width 

modulation (SPWM) for the operation of a VSC, each of these basic VSC modules 

generates a balanced three-phase voltage. Transfomers are used to combine the voltage 

generated by each of these basic VSC. The pnmary of each of these transfomers is 

connected either in Y or A configuration. The secondary of each of the transformer is 

connected in series. The arrangement is shown in Fig.7.3. 





7.23 Operation of a 4-module voltage source converter: Each of the four VSC 

modules as shown in Fig.7.3 generate ihree-phase balanced voltages based on SPWM. 

In this type of modulation. a three-phase balaficed sinusoïdal signal is compared with a 

high frequency trïangular waveform to produce the switching instants for the GTOs of 

the VSC. There is an inherent limitation on the maximum allowable switching 

frequency for the GTO device available so far. The maximum GTO switching 

frequency that can be allowed is about 1000 Hz. In this thesis, the switching freqsency 

of the triangular waveform used is 9 times the fimdamentd so as to make the operation 

of the inverter as close as possible to reality. Further, the use of an odd multiple of the 

fundamental frequency allows for elimination of al1 even harmonics and the harrnonic at 

the switching frequency (540 Hz) in the line-to-line voltages. Since a low switching 

frequency is being used, to elirninate the even harmonics in the line-to-line voltages a 

synchronized SPWM is used. In synchronized SPWM, the zero crossing of the three 

phase balanced sinusoidal signal is locked on to the zero crossing of the triangular 

wavefonn, 

The three-phase voltage generated by each basic VSC module is added to obtain 

a high power, high voltage source inverter using the arrangement shown in Fig.7.3. In 

order to understand how the voltage generated by each of the 4 VSC modules are 

combined, consider the phasor diagram as shown in Fig.7.4. The letters A, B, and C 

represent the three phases and the numerais 1, 2,  3 and 4 represent the four basic VSC 

modules. The phasors of different phases with same numeral as their subscripts are 

phase shified by 120 degrees. For example, the phasor lA, 1B and 1C are phase shifted 

by 120 degrees. The phasors 2A, 2B and 2C are phase shifteci from 1 A, 1B and 1 C by - 



30 degrees. It should be observed that VSC-2 is connected to a delta connected 

transformer winding. Thus the secondary phase voltage is phase shifted by +30 degrees 

Reference 
Phasor 

3B(- 127.5 deg) 

1 B(- 1 12.5 deg) 

Fig.7.4 Phasor diagram for operation of a 4-module VSC. 

and hence is in phase with the phasor 1A. Similarly, the phasor 3A is at an angle of -7.5 

degrees. The phasor 4A is at an angle of -37.5 degrees. Since VSC-4 is connected to a 



delta winding, the secondary phase voltage of 4A is in phase with 3A. This results in 

two phasors that are at +7.5 degrees and -7.5 degrees. The addition of the phasor at +7.5 

degrees and -7.5 degrees results in a phasor that is in phase with the reference phasor. 

Further, in order for the voltage generated by each of the VSC to be the same on the 

secondary side, the transformer ratio of the delta winding is made 43 (primary : 

secondary) times that of the Y windings. Thus if the winding ratio of the transformer 

connected to VSC-1 is 9.5:9.5 kV for each phase, then the winding ratio for the VSC-2 

delta transformer would be 16.5:g.S kV for each phase. Thus when added by the senes 

connection of the 4 transfomers on the secondary side would result in each phase 

voltage to be approximately 38.1 kV (9.5*4 = 38.1 kV). So the line to line voltage at the 

output of the 4 module VSC would be approximately 66kV. 

The Cmodule VSC described in this section will be operated as shunt inverter 

when considering the complete operation of a UPFC. 

7.3 Shunt inverter: Control systern 

The objective of the shunt inverter is to provide fast control of reactive power (&,) 

and maintain a constant DC link capacitor çoltage (Vdc). The reactive power 

supplied/absorbed by the shunt inverter of a UPFC is controlled by adjusting the 

magnitude of its generated voltage. The DC link capacitor voltage (Vdc) is controlled by 

adjusting the phase angle of the generated voltage. By adjusting rhe phase angle of the 

shunt inverter generated voltage. real power is either consumed or generated thereby 

making it possible to control the DC link capacitor voltage (Vdc). The objective behind 



maintaining a constant DC link capacitor voltage (V&) is to provide the series inverter 

of a UPFC with the necessary DC voltage for its operation and to supply its real power 

demand. In order to control both variables, namely the DC link capacitor voltage (Vdc) 

and reactive power output (Qsh), the shunt inverter is operated using the de-coupled 

control system. 

7.3.1 Basics of de-coupled control system design: The objective of the de-coupled 

control system is to control the real (Psh) and the reactive power (Qsh) simultaneously 

with the least interaction between them. By controlling the real power flow (PSI,) 

to/from the shunt inverter, the DC link capacitor voltage (VdC) can be controlled. 

To understand the de-coupled control system basics, consider a Cmodule 160 

MVA VSC as shown in Fig.7.3, connected to a constant 345 kV voltage source through 

a 66/345 kV siep-up transformer. Fig.7.5 shows the equivalent circuit of the setup. 

7 V s h  L e s h  Rd, V L O  

4 
Module 

Fig.7.5 Equivalent circuit of a 4-module VSC connected to a constant voltage source. 



Let Vsh be the per unit voltage generated by the 4-module WC.  Let Brh be the phase 

angle of the inverter voltage. Let V denote the per unit voltage of the constant voltage 

source. Let Lrh , Rsh represent the combined per unit reactance and resistance of the Y-A 

and the step-up transfomers (Fig.7.3). Let C' represent the per unit capacitance of the 

DC link capacitor. The constant voltage source is assumed to be the reference. 

Fig.7.6 shows the phasor diagram associated with the Cmodule VSC. The D- 

axis coincides with the phase of the constant voltage source (V). The Q-axis leads the 

D-axis by 90 degrees. Let IshD, IrhP be the per unit D-Q axis currents with respect to the 

constant voltage source. VshD and VshQ represent the D-Q axis voltage of the 4-module 

VSC. 

Fig.7.6 Phasor diagram for 4-module VSC connected to a constant voltage source. 



Assuming the base voltage to be the peak of the phase voltage and the base current to be 

the peak of the phase current on the 345 kV side (Fig.7.3), the three-phase real and the 

reactive power in per unit is given by the equation 7. i. 

It is very evident from equation 7.1 that the real power (Psh) is a function of IrhD and 

reactive power (&) is a function of Zshp- Thus by replating IsitD and IshQ, real (&) and 

reactive power (Qsi,) to/from the shunt inverter c m  be controlled independently. This 

f o m s  the basis for designing the de-coupled control system [39]. 

The de-coupled control system allows for independent control of the D-Q axis 

currents. In order to achieve de-coupled controI of real (PSI,) and reactive power (Qsi,), 

consider the equivalent circuit of the 4-module VSC connected to a constant voltage 

source as shown in Fig.7.5. Writing the system equations for the equivalent circuit 

shown in Fig.7.5 in terms of D-Q axis, we obtain equation 7.2. 



çlb represents the system frequency of 377 raddsec. t~ represents the system frequency 

of 1.0 in per unit. To achieve de-coupling of the D-Q axis currents, the control variable 

V' and Vsha in equation 7.2 are modified as given in equation 7.3. 

where u l  and u2 are auxiliary control variables. Combining equation 7.7 and 7.3 

together we get equation 7.4. 

Thus it is seen from equation 7.4 that by controlling r < f  and u2 one can independently 

re,date & h ~  and Isfle thereby c~ntrolling the real ( P d )  and the reactive power flow ( Q s h )  

from the Cmodule VSC. By controlling ui the real power flow (Psh) and hence the DC 

Iink capacitor voltage (Vk) cm be regulated. By controlling u2 the reactive power flow 

(Qs,l) cari be regulated. To close the feedback loop, the auxiliary variables rr f  and 142 are 



controlled by proportional-integrai (PI) controllers as given below in equation 7.5. The 

D-axis current IshD is controlled by u, and the Q-axis current is controlled by u2. 

The variable 4' in equation 7.5 is the Laplace operator. Equation 7.5 forms the inner 

loop control system. The variable IfiDrefcan be controlled by an outer loop that controls 

the DC link capacitor voltage (V&)- Sirnilarly, if the 4-module VSC is used as a bus 

voltage controller, the variable ISl@@m be controlled by an outer loop that controis the 

voltage of the bus to which it is connected. PI controllers are used for the outer loop 

control. The outer loop control system is given by equation 7.6. 

Fig.7-7 shows the de-coupled controt. system for the 4-module VSC. The control system 

shown in Fig.7.7 will be used for the shunt inverter when considering the complete 

operation of a UPFC. 



Outer control system loop hner control system loop 

Outer controI system loop hner control sysrem Ioop 

Fig.7.7 De-coupled conuol system. 

7.3.2 De-coupled control system design for a 4-module VSC: The de-coupled control 

system design requires quantifying the PI controller gains. The de-coupied control 

system design is based on linear control techniques. For the 4-module VSC connected 



to a constant voltage source (Fig.7.5), thc differential equations associated with it are as 

given in equation 7.2 and have been reproduced here for convenience. 

One of the important elements that effect the design of the de-coupled controller is the 

DC link capacitor (c'). References [23,25,27] neglect the effect of DC link capacitor 

while designing the shunt inverter control systern. This could lead to inaccurate PI 

controller gains and thereby an ineffective control system. 

The DC link capacitor dynamics is given in chapter-5 equation 5.18 and has 

been reproduced as equation 7.13 for convenience. 

Since the focus of the control design here is on Cmodule VSC operated as a shunt 

inverter, the two other control variables V,D and VHQ associated with the senes inverter 

of a UPFC have been neglected. Equation 7.13 can now be wntten as equation 7.14. 



Thus the complete set of system equations corresponding to the Cmodule VSC control 

design are equations 7.12 and 7.14. 

To achieve de-coupling of the D-Q axis currents. the D-Q axis voltage of the 

shunt inverter VshD and Vsl,Q given in equation 7.12 are substituted by equation 7.3. 

Equation 7.15 shows the system equations in t e m s  of the auxiliary control variables 141 

and uz- 

Linearizing equation 7.15 around an operating point we get, 

w here a =Lsi, /@ . 



Putting equation 7.16 into state variable form we get, 

It is observed from equation 7- 17 that the D-Q axis currents are de-coupled and hence it 

is possible to design PI controllers separately for regulating the D-Q axis currents. The 

design procedure starts with the design of the de-coupled controllers that uses only the 

D-Q axis equations (the first two in equation 7.16). Once the inner PI controllers (K,,,, 

Kif,  Gz, Ki?) are designed, the DC capacitor equation is used to design the DC capacitor 

voltage PI controller (Kp3 ,Ki3 ) that foms the outer loop for the D-axis voltage control. 

For the Q-axis, since the 4-module VSC is connected to a constant voltage source 



during design process, the outer loop controller (K@ ,Kiq ) that is gnerally used to 

control the voltage of the bus to which the VSC is connected has not been considered 

here for design. Nevertheless, it will be used in chepter 9 when operating the 4-module 

VSC as a shunt inverter. 

To begin with the de-coupled control system design, consider the D-axis 

differential equation representation given in equation 7.16. Converting it into the 

Laplace domain and introducing the PI controller transfer function given in equation 

7.5 into the D-axis equation, we get 

Solving the above equation we get, 

Hence the characteristic equation for the D-axis is given by 

This is a second order equation. Placing the roots of the characteristic equation at 

specified locations, one can find the design values of the PI controller. Similar 



procedure has been applied to the Q-ais. The operating conditions for the desi, un are as 

given below. The operating conditions have been obtained from PSCAD-EMTDC 

simulations. 

R = 0.00 14 

Lsh = 0.2 

C' = 0.0324 

I,,,, = 4.042 

Isl,eo = 0.18 

= -0.004 

rr, = 0.05 

w, = 377 

VdC, = 2.22 

The poles for the D-axis PI controller (Kpi . KiJ) have been placed at -3.9 t j2.5. The 

corresponding PI controller gains are Kr/ = 5.0 and Kif = 2 1.4. The poles for the Q-axis 

PI controller (Kp2 ,  Ki?) have been placed at -1.5 t j 1.7. The corresponding PI controller 

gains are Kp2 = 0.2 and Ki? = 5.0. Having designed the inner loop controller for the D 

and Q axis current controllers, the DC link capacitor voltage PI controller (Kp3, Ki3) has 

to be designed. In order to design the DC link capacitor voltage PI controller (Kp3.  Kd), 

information regarding the inner loop PI controllers (K,/ . Ki,, Kr? . Kiz) have to be 

included into the complete system equations. Representing equation 7.17 in the state 

variable forrn, we get 



Where the matrices A and B are as given in equation 7.17. The matrices C and D are 

given below. 

Equation 7.18 forms the input-output representation of the 4-module VSC connected to 

a constant voltage source. Using the procedure described in chapter 5 section 5.1.1.7, 

the PI controllers ( K p f ,  Kif .  KpZi Ki2) can be included into the state matrix A to obtain a 

new set of input-output equation as given in equation 7.19. 

Where 



= [""p.) -M 

M = (1 + DK, )-' 

x,r and xc2 are the state variables associated with the D-Q axis current controllers. Since 

the inverter is connected to a constant voltage source, the Q-axis current reference is not 

regulated and hence dlAaref is O. Thus the CII mahx contains oniy dlIhDrel- We c m  now 

design the outer loop for DC link capacitor voltage (Vdc) con~oller by using the above 

approach. Including the PI controller (Kp3, Ki3) for the DC link capaciror voltage (V&) 

in the state matrix we get the closed loop equation, 



xc3 is the PI controller scate variable for the DC link capacitor voltage controller (Vdr.)- 

Using a PI controller with values for the outer DC link capacitor voltage (V&) controiler 

of Kp3 = -1.0 and Ki3 = -2.0, the eigen values of the system wirh al1 the controllers 

included are 

The PI controller design values obtained above have been arrived at by i terating 

between design procedure and PSCAD-EMTDC simulation until satisfactory step 

response performance have been obtained. The de-coupled control system designed for 

a 4-module VSC will be used when operating it as a shunt inverter for the UPFC. 

7.4 Implementation of 4-Module VSC and its control system 

using PSCAD-EMTDC software 

The circuit of a &Module VSC shown in Fig.7.3 is set up using the PSCAD- 

EMTDC software. The 345 kV side is connected to a constant 345 kV constant voltage 

source. The main step-up transformer is rated at 160 MVA 66 kW345 kV and is 

connected in Y-Y. The total inter-phase magnetics (the arrangement of the Y-A 

transformers) is also rated at 160 MVA. Each of the 4 transfomers corresponding to 

each basic VSC module is rated at 40 MVA. The de-coupled control system designed in 



section 7.3 is used to control the reactive power supplied by the 4-module VSC and its 

DC capacitor voltage. The DC link capacitor is rated at 3000p.F. PI control blocks are 

available in the PSCAD-EMTDC software, They have been used to build the controI 

systern as shown in Fig.7.7. The D-Q axis control voltage sipals narnely VslID and V& 

generated by the controi system shown in Fig.7.7 have to be converted into signais 

amenable to the operation of a 4-module VSC. The two variables associated with any 

VSC are its modulation index (mi) and phase angle (Osh). In the case of SPWM, a 

sinusoidal reference signal is compared with a tnangular waveform to generate the 

proper instant of f ~ n g  for the VSC. The ratio of the peak of the sinusoidal signal to the 

peak of the triangular waveform is called the modulation index mi. The phase angle es,, 

is the phase angle difference between the shunt inverter generated voltage and the 

reference voltage. With reference to Fig.7.5, the reference angle will be that of the 

constant voltage source. The value of the modulation index m i  and the phase angle &, 

depends on the number of modules of a VSC and the DC voltage magnitude. The line- 

to-line voltage generated by a SPWM based single VSC module as shown in Fig.7.2, is 

related to the DC capacitor voltage by the equation 7.21 [40]. 

The ' A ' represents the actual vaIue. The shunt inverter in this case has been built up of 

4 modules. Multiplying equation 7-2 1 by 4 gives the voltage generated by the 4-module 



VSC. Equation 7.21 is modified to include the 4-module operation to obtain equation 

Rearranging equation 7.22 to obtain the modulation index, we get 

The D-Q axis controi voltage signais narnely VshD and VSlta generated by the control 

system shown in Fig.7.7 are in per unit. The magnitude of the voltage to be generated 

by the 4-module VSC in per unit is given by equation 7.24. 

Since the Crnodule is connected on the 66kV side of the step up transformer as shown 

in Fig.7.3, the per unit value of the voltage generated by 4-module VSC (Vrh) is 

multiplied by 66 to obtain its actual vdue in kV. Multiplying equation 7.24 by 66, the 

A 

actual voltage that has to be generated by the 4-module VSC (V.rh(~-~ad.(~) ) is obtained. 

A 

Substituting for Vrh(~-rn&u~e) in equation 7.23 in terms of its per unit value we get, 



rni = 
66 V sr, 

A 

The phase angle of the generated voltage is obtained from the ratio of the control signals 

as given in equation 7.26. 

7.5 Performance studies on a CModule VSC 

A 4-module VSC with its associated control system was set up in PSCAD- 

EMTDC software to study the performance of the control system design to step input 

changes. The 4-moduie VSC was connected to a constant voltage source as shown in 

Fig.7.5. Fig.7.8 shows the response of the shunt inverter to step changes in reactive 

power reference. Since the Q-axis controller input is GhQrer, the change in reactive 

power reference is translated into an equivalent Q-axis current reference I,i,eref by 

dividing the reactive power reference (QSlrr4) by the constant voltage source magnitude 

(IVI). Thus 



7.5.1 Initialization: To start the simuIation, the DC Iink capacitor voltage (Vdc) is 

initially uncharged. At around 0.75 sec, the VSC is switched to the constant 345 kV 

source and the DC link capacitor voltage (Vdc) controller is switched into service. The 

sudden switching of the 4-module VSC to the constant AC voltage source at 0.75 sec 

causes the DC link capacitor voltage (V&) to rise to 60 kV quickly as shown in plot-7 of 

Fig.7.8. The activation of the DC link capacitor voltage (Vdc) controller at 0.75 sec 

dlows the 4-Module VSC to charge the DC capacitor to 60 kV by consuming real 

power (Psh) from the constat AC voltage source to which the 4-Module VSC is 

connected. This is shown in plot-:! of Fig.7.8. The sudden switching of the VSC to the 

constant AC voltage source causes the real power (Psil) consumed to dip to -80 MW 

allowing it to charge almost instmtaneously. At around 1.0 sec, the 4-Module VSC 

starts to consume around 5MW of power to supply its losses and maintains the DC link 

capacitor voltage at 60 kV. 

7.5.2 Step change of reactive power from O to -130 M U R :  At 3.0 sec, a step change 

in the reactive power reference (Q.TilM) is made from 0.0 to -130 MVAR (CModule 

VSC consurning reactive power). This step change in reactive power reference (Qsi,w) 

causes the variable - that controls hQ to change rapidly. This in turn causes the 

variable VshQ to become positive as shown in Plot-6 of Fig.7.8 making & to become 

positive with respect to the constant voltage source reference. The positive phase angle 

of Osh causes the CModule VSC to release some of its real power causing the DC link 

capacitor voltage (Vdc) to drop. This is shown in plot-7 of Fig.7.8 at around 3.0 sec. This 



drop is DC link capacitor voltage (Vdc) is sensed by the DC capacitor voltage controller 

and causes the variable VSflo to reduce as s h o w  in plot-5 of Fig.7.8, This allows the 

VSC to consume more real power (Psh) to maintain the DC link capacitor voltage at 60 

kV and supply its switching losses. The real power (Psh) consumed is about 25 MW. 

Plot-1 of Fig.7.8 shows the fast response in reactive power (QJh) to the change in 

reactive power reference (Qrhrer) from O to -130 MVAR. Plot-3 is the expanded version 

of plot-1 around 3.0 sec. It is seen from plot-3 that the VSC provides fast response times 

in the order of couple of cycles. 

7.5.3 Step change of reactive power €rom -130 to 4 3 0  MVAR: At 6.5 sec, a step 

change in reactive power reference (Qshref) is conducted from -130 MVAR to +130 

MVAR. This step change in reactive power reference (QAN) causes the auxiliary 

variable 1 i  that controls rs/tQ to change rapidly and become negative causing VshQ to 

become negative as shown in plot-6 at 6.5secs. The negative value of VSJrQ means that 

the angle OSf, between the constant voltage source and the VSC is negative causing the 

real power (Psh) to flow from the constant AC voltage source to the VSC. This leads to 

an increase in the DC link capacitor voltage (VdL). The increase in DC link capacitor 

voltage (Vdc) is sensed by the DC capacitor voltage controller making Vsl& to be greater 

in magnitude than the constant AC voltage source as shown in Plot-5 of Fig.7.8 at 

around 6.5 sec. This causes the VSC to generate real power (Prh) and bnngs back the 

DC link capacitor voltage (V&) to 60 kV. This is shown in plot-7 of Fig.7.8. Plot4 

shows the expanded version of plot4 at around 6.5 sec. The VSC responds to the 



sudden changes in reactive power reference (QShRJ) in a couple of cycles. It is observed 

from plot-2 that the real power flow (Psh) from the constant voltage source to the VSC 

is a constant of magnitude 25MW. This due to the fact that irrespective of the direction 

of the current flow, the mamanitude of the current remains the same when the VSC is 

either consuming -130MVAR of reactive power or generating +130 MVAR of reactive 

power. 
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7.6 Summary 

The shunt inverter plays an important role in the operation of a UPFC. It 

maintains a required level of DC link capacitor voltage for the operation of the series 

and shunt inverter. It also supplies the necessary real power demand of the series 



inverter. It can d s o  provide necessary reactive power to the bus to which it is 

connected. 

This chapter has described the construction and operation of a Cmodule VSC 

using the PSCAD-EMTDC software. Three-phase voltages generated by each module 

of a VSC using SPWM are combined by Y-A transfomers to obtain a high power VSC. 

The manner in which these transfomers are connected have dso been described. 

The basics of de-coupIed control system for regulating real and reactive power 

independently have been described in this chapter. The de-coupled control system has 

been designed based on linear control techniques that includes the DC capacitor 

dynamics. A step by step procedure has been presented to quantify the PI controller 

oains. The de-coupled control system consists of two loops- The inner loop tracks the 0 

D-Q axis currents and the outer Ioop sets the reference for the inner loop. The design 

procedure is loop based, in the sense that first the inner loop is designed and then the 

outer loop. The information regarding the inner loop PI gains are used while designing 

the outer loop PI controller. 

The performance of the de-coupled control system design has been tested using 

the PSCAD-EMTDC software. Step response tests have been conducted to not only 

show the validity of the control system design, but aiso to bring out the ability of this 

scheme for fast response of the 4-module to reactive power demands while 

sirnultaneously regulating the DC link capacitor voltage. 



Chapter 8 

Series inverter construction, operation and 
control design using PSCAD-EMTDC software 

8.0 Introduction 

UPFC as described in chapter 1 consists of two inverters connected back-to-back via a 

DC link capacitor with one inverter connected in shunt with the transmission line through 

a shunt transformer and the other inverter in senes with the transmission line through a 

senes transformer. The series inverter of a UPFC plays an important role of controlling 

the power fiow in the transmission line by injecting a voltage of adjustable magnitude 

and phase angle in series with the transmission line. 

This chapter focuses on the construction, operation and control of a series inverter 

using PSCAD-EMTDC software. The DC link capacitor forms an integral part in the 

construction, operation and control of both the shunt and the series inverter of a UPFC. 

Under steady state conditions, the DC link capacitor provides the shunt and senes 

inverter the necessary DC voltage for their operation. Under transient conditions, the DC 



Link capacitor supplies the r ed  power demand of the senes inverter. In this context, the 

rating of the DC link capacitor plays an important role in the proper operation of a UPFC. 

A design procedure for calcuiating the ratings of the DC link capacitor has also been 

described in tbis chapter. Further, a PI controller design for the series inverter for 

controlling the real power flow in a transmission line has been investigated. 

8.1 Series inverter transformer rating 

Fig-8-1 shows a UPFC connected to a transmission line. The senes inverter is 

connected to the transmission line through a transformer TI. The design of the senes 

transformer Tz is a planning stage developrnent. In this thesis, the series inverter is placed 

in series with a 345 kV transmission Iine. The rating for the series inverter and series 

transformer T2 would depend on the product of maximum series voltage that could be 

injected on to the transmission line and the transmission line curent. The maximum 

voltage that can be injected by the senes inverter has been limited to 0.3 p-u. Exceeding 

this value would cause the line side voltage to be very high. For a 345kV system, the 

maximum allowable injected voltage would then be about 60kV per phase. Assurning a 

surge impedance loading (SE) of 420 MW for a 345 kV system as reference, the ratings 

of the series inverter and series transformer T2 works out to be 126 MVA. Since a 345 kV 

line c m  transfer more than its SIL power depending on the length of the transmission 

line, the series inverter and series transformer T2 has been rated at 160 MVA to be on the 

conservative side. 
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Fig.8.1 UPFC connected to a transmission line. 



8.2 Series Inverter: Construction and Operation 

8.2-1 Series inverter construction: In order to build a high power VSC module, a 

number of basic three-phase voltage source module shown in chapter 7 Fig.7.2 have to be 

cornbined together. In this thesis, a 4-module voltage source inverter has been 

constructed for the series inverter using PSCAD-EMTDC software. A 4-module VSC 

consists of 4 basic VSC inverter configuration connected in parallel across a cornmon DC 

capacitor. Each of the basic VSC derives its DC voltage from the capacitor. Considering 

a sinusoïdal pulse-width modulation (SPWM) for the operation of a VSC, each of these 

basic VS C moduIes generates a balanced three-phase voltage. Transfomers are used to 

combine the voitage generated by each of these basic VSC. The primary of each of these 

transformers is connected either in Y or A configuration. The secondary of each of these 

transformers is connected in series. Fig.8.2 shows the 4-module voltage source series 

inverter. 
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Fig.8.2 4-Module voltage source senes inverter. 



8.23 Operation of a series inverter: Each of the four VSC modules as shown in Fig.8.2 

generate three-phase balanced voltages based on SPWM. In this thesis, the switching 

frequency of the uianplar waveform of a S P W M  is 9 times the fundamental. The use of 

an odd multiple of the fundamental frequency allows for elirnination of al1 even 

harmonics and the harmonic at the switching frequency (540 Hz) in the line-to-line 

voltages. Since a low switching frequency is being used. to elirninate the even harmonics 

in the line-to-line voltages a synchronized SPWM is used. 

The three-phase voltage generated by each basic VSC module is added to obtain a 

high power, high voltage source inverter using the arrangement shown in Fig.8.2. At this 

moment it shouId be emphasized that the series inverter has the ability to adjust the senes 

injected voltage and phase angle. In order to be able to control both the series injected 

voltage magnitude and its phase angle, the senes injected voltage is split into orthogonal 

components (IfflD, VXa) In order to understand how the voltage generated by each of the 

4 VSC modules are combined for the series inverter to be able to control the senes 

injected voltage magnitude and phase angle, consider the phasor diagram as shown in 

Fig.8.3 and Fig.8.4. Fig.8.3 shows the phasor diagram associated with the operation of 

VSC-1 and VSC-2 and Fig.8.4 shows the phasor diagarn associated with the operation of 

VSC-3 and VSC-4. The letters A, B, and C represent the three phases and the numerals 1, 

2, 3 and 4 reprcsent the four basic VSC modules. The phasors of different phases with 

same numeral as their subscripts are phase shifted by 120 degrees. Consider the phasor 

diagram associated with the operation of VSC-1 and VSC-2 as shown in Fig.8.3. The 

phasor 1 A, 1B and 1C are phase shifted by 120 degrees. The phasors 2A, 2B and 2C are 

phase shifted from lA,  1B and 1C by -30 degrees. It should be observed that VSC-2 is 



connected to a delta connected transformer winding. Thus the secondary phase voltage is 

phase shifted by +30 degrees and hence is in phase with phasor 1A. By doing so, the 

voltage generated by VSC-1 and VSC-2 are added together to obtain a component of the 

series injected voltage (V,Q) that is 90 degrees Ieading the reference phasor. 

I 

IA(+90 deg) 

2Cf-180 deg) 
1 - - -  

1 B(-30 deg) 
1 C(- 150 deg) 

Fig.8.3 Phasor diagram for operation VSC-1 and VSC-2 of series inverter 

Reference 
Phasor 

To understand the operation of VSC-3 and VSC-4, consider the phasor diagram 

associated with its operation as shown in Fig.8.4. The phasors 4A, 4B and 4C are phase 

155 



shifted from 3A, 3B and 3C by -30 degrees. It should be observed that VSC-4 is 

connected to a delta connected transformer winding. Thus the secondary phase voItage of 

VSC4 is in phase with VSC-3. Thus one obtains a component of the senes voItage that is 

in-phase (VXD) with the reference phasor. The reference phasor is the same for inverters 

VSC- 1 through VSCIC. 

By splitting the injection of the series voltage into two components, one in-phase 

(VseD) with and the other in quadrature (VscQ) with the reference phasor, one c m  

independently vary the magnitude of the orthogonal components and thereby control the 

magnitude and phase angle of the series injected voltage. 



Fip.8.4 Phasor diagram for operation VSC-3 and V S C l  of series inverter (IIxD). 



8.3 UPFC DC link capacitor rating 

The DC link capacitor plays an important role in providing the necessary DC voltage 

for the operation of the shunt and the series inverters. It also provides a path for the real 

power exchange between the series and the shunt inverters. Under steady state conditions, 

the real power demand of the series inverter is supplied by the shunt inverter. But during 

transient conditions, the shunt inverter does not respond very quickly and hence causes 

the DC capacitor to charge/discharge to meet the real power dernand of the series 

inverter, This leads to an increase/decrease of DC capacitor voltage. Based on the amount 

of increase/decrease in DC capacitor voltage that could De permitted, the DC capacitor 

has been designed. 

Under the assumption that the shunt inverter controls the voltage of the bus to which 

it is connected ( ~ U P f i b U r )  at 1.0 per unit and that the voltage on the h e  side (V[;,,,) is 

restricted to 1.05 p.u , the maximum value of the senes injected voltage that would be in 

phase with the line current is about 0.05 p.u . At SU (420 M W  for 345 kV) level the Iine 

current is always in phase with voltage. The value of the current at SIL at 345 kV is 702 

A. The three phase real power that the senes inverter will supply under this condition is 

20.97 MW ( P, = 3 ~ 0 . 0 5 ~  
345000 

& 
x 702 = 20.97MW ). Based on the assumption that a 

maximum of 20.97 MW will be exchanged between the series inverter and the 

transmission line within !4 cycle of the AC voltage, the DC capacitor has been designed. 

A !A cycle time period has been chosen to quantify the fast operation of the series 

inverter. The following equations have been used in designing the DC capacitor. The 

energy stored in a capacitor WC is given by equation 8. L. 



where 'C' is the capacitance of the DC capacitor and Vd, is the DC voltase across the 

capacitor. Assuming 20.97 MW of power is released by the senes inverter in % cycle of 

the AC voltage, the associated energy is given by equation 8.2. 

Where IVse is the energy released by the senes inverter, P, is the real power generated by 

the series inverter and t ,  is the time duration over which the Ps, is released, The energy 

released by the series inverter is given by equation 8.3 

W, = 20.97 x 0.004 166 x 106 = 87374.65 W sec 

The amount of energy released by the DC capacitor would cause the DC capacitor 

voltage to reduce. Assuming that the maximum vaiue of decrease that could be allowed is 

8 kV from its steady state value, the energy released by the capacitor is then given by 

equation 8.4. 

Equating 8.3 and 8.4, we get C = 2730 pF. A value of 3000p.F has been chosen to be on 

the conservative side. 



8.4 Controller design for series inverter 

The senes inverter of a UPFC has the ability to control real and reactive power flow 

in a transmission line, In this section, a f 1 controller will be designed for the control of 

real power flow in a transmission line (PI,,). 

The analysis carried out by Padiyar et al [23] and Papic et al 1271 neglect the 

operation of shunt inverter and DC link capacitor dynamics while designing controllers 

for the series inverter. In this section. the design process for the series inverter controller 

takes into consideration the shunt inverter controllers and the DC link capacitor 

dynarnics. The shunt inverter controls the shunt inverter reactive power (Qd) and the DC 

link capacitor voltage (V&). The senes inverter controls the transmission line real power 

flow (PI,,). The design of the PI controller for the series inverter is done by eigen value 

analysis. To design the PI controller for the series inverter, consider the power system as 

shown in Fig-8-5- 



Fig. 8.5 Power system for designing series inverter controller. 

The power systern consists of two voltage sources V' and VR and connected through a 

transmission line. The line resistance is represented by RL and line inductance by Lr. The 

shunt inverter modeled as a voltage source Vs,, is connected to the transmission line by a 

resistance R,I, and an 

inductance. The series 

Vse 

The power system 

inductance Lsh representing the shunt transformer resistance and 

inverter is modeled as a series voltage source and is represented as 

shown in Fig.8.5 can be represented by two sets of equations. One 

set for the shunt inverter and the other for the series inverter. The equations for the shunt 

inverter in D-Q axis representation are 



where o= 1.0 and a = 377.0 rads/s. 

To achieve de-coupling of the D-Q axis currents, the control variable Vm and VsIlQ in 

equation 8.5 are modified as given in chapter 7 equation 7.3 and reproduced here as 

equation 8.6. 

where u, and cl2 are auxiliary control variables. Combining equation 8.5 and 8.6 together 

we get equation 8.7. 

The equations for the series inverter are as given in equation 8.8. 



Linearizing equations 8.7 and 8.8 we get equation 8.9. 

- L J h  where a, - - . 
a0 

Equation 8.9 can be put in the standard input-output format as given in equation 8.10. 



Where 

The expression for the reai power flow in the transmission line is given by equation 8.1 1 

%c = ('51 +'se0 + v w Q r ~ ~  

Linearizing equation 8.1 1, we get equation 8.12 

The output matrix Y can be put in the following form 

Y = C X + D U  

The PI controller for the series inverter that controls the real power fiow in the 

transmission line is as showr; in Fig.8.6. 



Pline 

Fig.8.6 Series inverter reaI power flow conuoller. 

Including the shunt inner loop PI controllers (refer chapter-7 Fig.7.7) and the series real 

power flow PI controller, the state equation is modified as given in equation 8.14. 

Where 

1 = 1 ~ ~ h D  9 7 A 'dc 9 N.rcD 9 9 9 &c2 7 hc3 

x,, and xd are the state variables associated with the D-Q axis PI current controllers. xc-3 

is the state vaiable associated with the series inverter PI controller. The state matrix is as 

given below. 



- BK,  

- DK, 1 

The PI gains of the D and Q axis shunt inner loop current controllers are KpI =5.0, Ki, = 

21.367 and Kp2 =0.2 and Ki? = 5.0 respectively. The gains of the series real power flow PI 

controller have been selected as Kpp =0.2 and Kip = 40.0 to provide for fast tracking to step 

changes in transmission line real power reference. To check the stability of system with 

the above PI control gains, it is necessas. to evaluate the matrix A, which is a finction of 

the operating condition. PSCAD-EMTDC simulations have been conducted to find the 

operating conditions. A voltage base of 345 kV and a power base of 160 MVA has been 

chosen to obtain the operating conditions in per unit. They are as given below. 



Incorporating the values for the variables given above with the PI controller gains in 

matrix A,, the eigen values obtained are as given below 

Introducing the outer DC link voltage PI controller with gains of K'3 = -1 -0 and Ki3 = -2.0 

and forming the srate matrix, the eigen values are 



As evident from the List of eigen values, the PI controller values used for the shunt and 

series inverters provide for stable operation as ail the eigen values have negative real 

parts. But it is clear from the eigen value (-8.09 t j 583.97) that the response will be 

oscillatory to step changes in real power reference inputs as the damping factor 

associated with it is 0.0 13. This is one problem of using a high gain PI controller. A fuzzy 

controller has been designed to overcome the problem of low damping associated with 

high gain PI controller and is described in chapter 9. 

8.5 Summary 

This chapter has provided the background for the construction, operation and control 

of a senes inverter of a UPFC using PSCAD-EMTDC software. The series inverter has 

been split into two pairs of inverters. One for generating a voltage in quadrature (VseQ) 

and the other for generating a voltage in-phase (VseD) with the UPFC bus voltage 

(VUPfCbUs). This allows for independent control of the quadrature (V&) and in-phase ( V s e ~ )  

injected component of the series voltage. 

The ratings of the series inverter and series transformer have been calculated based on 

the SIL ratings of a 345 kV transmission line. 



The DC capacitor which forms a common link between the series and the shunt 

inverter has been designed based on the maximum allowable voltage drop across it 

during transient operation of the UPFC. 

Eigen value analysis have shown that use of high gain PI controller for the series 

inverter of a UPFC to control the real power fiow in a transmission line (Pr,,) provides 

Iow damping. The analysis takes into consideration the shunt inverter operation, DC link 

capacitor dynamics and the transmission Iine dynamics. A hzzy controller has been 

designed to overcome the problem of low damping associated with high gain PI 

controller and is descrïbed in chapter 9. 



Chapter 9 

Performance of UPFC control system 

9.0 Introduction 

Reliable operation of a UPFC involves coordinated operation of the shunt and series 

inverter control systems. This chapter focuses on the combined operation of the shunt 

and series inverter control system to control the real power flow in the transmission line 

(Pi), UPFC bus voltage (VUPfCbus) and the DC link capacitor voltage (V&) 

sirnultaneously. 

Since UPFC is a multi-variable controller, simultaneous operation of the shunt and 

series inverter control system requires that they do not interact with each other in a 

destructive manner Ieading to instability. In order to provide for proper operation 

between the shunt and series inverter control system, a coordination controller has been 

designed. The performance of combined operation of the shunt, series and coordination 

controller will be studied in this chapter using the PSCAD-EMTDC software. 



Combined operation of the UPFC control system requires that the controllers 

provide stabIe operation. Eigen value analysis conducted in chapter 8 has shown that the 

use of high gain PI controller for the series inverter for controlling the real power fIow 

in a transmission line (Ph,) by injecting a quadrature voltage (VWQ) leads to low 

darnping. A solution to the problem of low darnping experienced when hi@ gain PI 

controllers are used for series inverter of a UPFC to control the transmission line real 

power flow (Pli,,,) has been proposed. 

The in-phase component of the series inverter injected voltage has significant effect 

on transmission line reactive power flow and shunt inverter reactive power. The effect 

of in-phase component (VflD) injection by the series inverter of a UPFC on transmission 

line reactive power flow (elin,) and shunt inverter reactive power (Q.rl,) has also been 

discussed. Further, the mechanism by which the shunt inverter reacts to changes in in- 

phase component has also been discussed. 

9.1 Shunt inverter control system with coordination controller 

To understand the design of a coordination controller for a UPFC, consider a WFC 

connected to a transmission line as shown in Fig9.1. 
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Fig-9.1 UPFC connezted to a transmission Iine, 
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The series inverter of the UPFC injects a voltage in senes with the transmission line 

thereby changing the power flow in it. The interaction between the series injected 

voltage and the transmission line current leads to exchange of real power between the 

series inverter and the transmission line. The real power demand of the series inverter 

(Px) causes the DC link capacitor voltage (Vdc) to either increase or decrease depending 

on the direction of the real power flow from the series inverter. This decrease/increase 

in DC link capacitor voltage (V&) is sensed by the shunt inverter controller that controls 

the DC link capacitor voltage (V&) and acts to increase/decrease the shunt inverter real 

power flow to bnng the DC link capacitor voltage (Vdc) b x k  to its scheduled value. 

Stating it in another way, the real power demand of the senes inverter is recognized by 
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the shunt inverter controller only by the decreaselincrease of the DC iink capacitor 

voltage (Vdc)- Thus the shunt and the series inverter operation are in a way separated 

from each other. To provide for proper coordination between the shunt and the series 

inverter control system, a feedback from the series inverter is fed to the shunt inverter 

control system. This helps in faster response of the shunt inverter controi system to real 

power demand of the series inverter. The feedback signal used is the reai power demand 

of the senes inverter (P,,). 

References [IO, 1 1713,14, 16-18-23-26,30,42] have neglected the design of a 

coordination controller in the over al1 operation of a UPFC. In [19], Padiyar et. al have 

modeled the real power exchanged by the series inverter and the transmission line as an 

equivalent current flowing through the shunt inverter. Simulation results have neglected 

the effect of DC link capacitor dynamics under this method of modeling [19]. In [27], 

Papic et. al have modeled the feedback of the real power exchanged by the series 

inverter and transmission line as an additional real power that is to be 

absorbedgenerated by the shunt inverter. The real power demand by the series inverter 

(P,) is converted to an equivalent D - axis current reference for the shunt inverter. The 

D-axis current reference is fed through a predictive loop that inchdes additional PI 

controllers and thus reduces the effectiveness of the coordination controller. 

An effective coordination controller for UPFC has been designed to coordinate the 

operation of the series and the shunt inverter and provide fast supply of the series 

inverter real power demand (P,). In the coordination contrder designed, the real power 

demand of the series inverter (P,,) is converted into an equivalent D-axis current for the 

shunt inverter (iDse). By doing so, the shunt inverter would immediately respond to such 



a change in its D-axis current and pro-/ide the necessary real power to the series 

inverter. The equivalent D-axis current is an additional input to the D-axis shunt 

inverter control system as shown in Fig.9.2. Equation 9.1 shows the relationship 

between the senes inverter real power demand (Px=) and the shunt inverter D-axis 

current (iDse). 

In equation 9.1, Pse represents the real power demand of the series inverter. The real 

power demand of the series inverter Pse is the real part of product of the series inverter 

injected voltage V, and the transmission Line current Ise. VUPfCb,, i~~~ represent the 

voltage of the bus to which the shunt inverter is connected and the equivalent additional 

D-axis current that should flow through the shunt inverter to supply the r d  power 

demand of the senes inverter. Fig.9.2 shows the UPFC shunt inverter control system 

including the coordination feedback between the series and the shunt inverters. In this 

case, the series inverter real power demand (P,,) is fed ro the inner control system 

(Fig.9.2) thus increasing the effectiveness of the coordination controller. Further, the 

inner control system loop are fast acting PI controllers and ensures the fast suppfy of the 

senes inverter real power demand (P,,) by the shunt inverter. The effectiveness of the 

coordination controller will be discussed in section 9.4. 



Outer control system Ioop inner control system loop 

Outer controI system loop Inner control system loop 

Fig.9.2 UPFC shunt inverter conuol system with coordination controlIer. 



9.2 Performance of UPFC control system with series inverter 

controlling the real power flow in a transmission line with a 

9.2.1 Power system description: A two machine power system with a UPFC located at 

the center of a 200 km 345 kV transmission line, shown in Fig.9.3, has been considered 

to study the performance of the WFC to step input changes in real power reference- 

The power system dong with the UPFC was constnicted using the PSCAD-EMTDC 

software. The two machines have been modeled as constant voltage sources. The shunt 

inverter controls the UPFC bus voltage (Vmk) a< 1.0 p.u and the DC link capacitor 

voltage (V&) at 60 kV. The series inverter of the UPFC controls the real power flow in 

the transmission line (Ph,) by injecting a voltage of adjustable magnitude in quadrature 

(V&) with the UPFC bus voltage (VltPfCbus)- The coordination controller has been 

included while studying the performance of the UPFC control system to step input 

changes. The initial power flow in the transmission line is 450 LW. The sending end 

voltage (Vs) is fixed at 1.03 p.u and the receiving end voltage (VR) is fixed at 0.925 pu. 

The phase angle difference between the rwo machines is 20 degrees. 



Fig9.3 Two machine power system with UPFC. 

The shunt inverter of the UPFC is a 4-module VSC connected to the 345 kV 

transmission line through a 160 MVA 66/345 kV transformer. The details of the 4- 

module VSC are given in section 7.2.2. The operation of the 4-module VSC is 

explained in section 7.2.3. The shunt inverter is operated using the de-coupled control 

system. The design of the de-coupled control system is given in section 7.3.2. In the 

design of the de-coupled control system carried out in chapter 7, the Q-a is  outer 

control system Ioop denoted by the PI controller (Kp4 .  Ki4) had not been designed. This 

is because the de-coupled control system design was carried out on a Cmodule inverter 

connected to a constant voltage source. The Q-axis outer control system loop has been 

included here while conducting performance studies on a UPFC. The PI controller gains 



for the Q-axis outer control system loop has been chosen to be K+ = -1.0 and Ki4 = - 

133.0 to provide fast tracking of the UPFC bus voltage reference (V,lb,,/) 

The construction and operation of a series inverter in PSCAD-EMTDC has been 

explained in section 8.2. The series inverter of the UPFC controls the real power flow in 

the transmission line (PI,,) by injecting a voltage in quadrature (VsEq) with the UPFC 

bus voltage (VUPfCbUF). The in-phase component ( V . )  of the series injected voltage has 

been neglected to study the effect of PI controlled series inverter on real power flow 

control. The efiect of in-phase component (VseD) of the series injected voltage will be 

discussed in section 9.5- 

9.2.2 Step input response: The analysis carried out in section 8.4 has shown that high 

gain PI controller for series inverter provides low darnping to real power flow 

oscillations. The analysis neglects the effect of coordination controller on the damping 

of transmission line real power flow oscillations. In this section, the combined effect of 

al1 the controllers, namely, the shunt inverter controller, coordination controller and 

series inverter controller on the low damping in transmission line real power oscillations 

will be studied. The power system shown in Fig.9.3 has been considered for this study. 

The PI controller block for the series inverter shown in chapter 8 Fig.8.6 has been 

shown here as Fig.9.4 for convenience. The PI controller gains for the series inverter are 

Kw =0.2 and K, = 40.0. 



Fit-9.4 Series inverter real power flow controller (PI). 

Plot-1 through plot-5 of Fig.9.5 shows the respanse of the power system to step changes 

in real power reference (P,,) with high gain PI controllers for the series inverter. Step 

change in real power flow reference (PWf) has been conducted at 10 s and 12 S. At 10 s, 

the real power flow reference (PM) was changed from 450 MW to 290 MW. Plot-1 

shows the transmission line real power flow (PI, ,) .  It is observed from Plot-2 of Fig.9.5 

that the transmission line real power flow (Plin,) oscillates around 290 MW with low 

damping and finally reaches steady state after 11 S. At 12 s, the real power flow 

reference was changed from 290 MW to 450 MW. The enIarged version of Plot-1 of 

Fig.9.5 at around 12 s is shown in Plot-3. The real power flow in the transmission line 

(Pline) oscillates around 450 MW with low damping and reaches a steady state at around 

13 S. Plot4 of Fig.9.5 shows the UPFC bus voltage (Vupfcbd profile. The shunt inverter 

controls the UPFC bus voltage (Vupl,,b,,) at 1.0 p.u. At 10 s and 12 s, the step change in 

real power reference (PmI) has shown very little change in the UPFC bus voltage 

(VuPicbus) as shunt inverter of the UPFC has very effectively controlled it by varying its 

reactive power output. Plot-5 of Fig.9.5 shows the DC link capacitor voltage (V&) 



variations due to step change in red power reference. The spikes seen in the DC Iink 

capacitor voltage (VdJ plot at 10 s and 12 s is due to sudden change in the senes 

inverter real power demand (P,,) due to the interaction between the series inverter 

injected voltage (V') and the transmission Line current (r,,). The real power demand of 

the series inverter (P,,) is quickly conveyed to the shunt inverter control system through 

the coordination controller. The DC link capacitor voltage is rapidly regulated to 60 kV 

by the shunt inverter. 

This simulation has validated the eigen analysis conducted in chapter 8 section 8.4 

where it was shown that the use of high gain PI controller Ieads to low damping of the 

network mode- Linear supplementary controllers have been proposed to overcorne the 

problem of low damping of the network mode [23]. But the response of the system may 

deteriorate at other operating conditions even with linear supplementary controllers. 
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Fig.9.5 Response of the power system to step changes in real power reference of the UPFC (PI 

controller for series inverter). 

9.3 Fuzzy Logic Controller Design in PSCAD-EMTDC 

Software 

KnowIedge based controllers (fuzzy logic controllers) for UPFC have been 

investigated for the control of real power flow in a transmission line to overcome the 

problem of low darnping experienced by high gain PI controllers. The necessary 

background for the design of a fuzzy controller for the series inverter of a UPFC for 

controlling the real power flow in a transmission line (Plin,) are given in chapters 4. 5 

and 6.  The fuzzy logic knowledge base designed in chapter 6 has been used for the 

control of real power flow in a transmission line (Pline). 



The knowledge base for the fuuy logic controller presented in chapter 6 has been 

implemented in PSCAD-EMTDC software. The software block developed in PSCAD- 

EMTDC software has two inputs and one output. The two inputs to the fuzzy logic 

software block are the error and the change of error in real power flow in the 

transmission line (Pr,,) - The output of the fuuy  controller is the change in series 

quadrature injected voltage (AV&). Fig.9.6 shows the fuzzy logic controller 

implementation in PSCAD-EMTDC software. Triangular mernbership fûnctions have 

been used for both the error and the change of error inprits. The universe of discourse 

for the error was chosen to be a . 2 .  The centroid of the hzzy  sets for error in real 

power flow are 0.2 (PB), O.l(PM), 0.03(PS), 0.0 (ZE), -0.03 (NS), -0.1 (NM), -0.2 

(NB). The universe of discourse for the change in error in real power flow was chosen 

to be 10.02 The centroid of the fuzzy sets for change of error in real power flow are 

0.02 (PB), O.Ol(PM), 0.003(PS), 0.0 (ZE), -0.003 (NS), -0.0 1 (NM), -0.02 (NB). The 

universe of discourse for the error and change of error in real power are the same as that 

used in chapter 6. The universe of discourse for the change in series quadranire injected 

voltage is + 0.1. The centroid for the output fuzzy sets are PB (+O. l), PM (+0.066), PS 

(+0.033), ZE (O), NS (-0.033), NM (-0.066) and NB (-O. 1). 



Fig.9.6 Fuzzy logic controller impiementation in PSCAD-EMTDC software. 

The error between the reference and the actual value is fed to one of the inputs of the 

fuzzy logic controller biock through a gain block (K,).  The gain block (K,) represents 

the input gain that can be tuned and is a flexible parameter. To obtair? the change of 

error signal the following methodology has been implemented. The error is 

simultaneously fed to a delay block (Delay). The delay block shifts the error signal by a 

delay period as specified in the delay biock. The delay that has been used is 0.01 S. The 

change of error signal is the difference between the present value of the signal and the 

value of the signal 0.01s earlier. The value of 10 ms is reasonable for a digital cornputer 

tu acquire s i p d  and process it. Thus a very conservative value of 10 rns has been 

chosen for the delay time. The present vdue of the error and the delayed error signal are 

subtracted to obtain the change in error signal. The change of error signai is fed to the 

second input of the fizzy logic controller block through a gain block (K,.). The gain 

(KJ for the change of error c m  also be tuned. The output of the hzzy controller is a 

crisp value that represents the change in the quadrature injected voltage (AVs,ark,) at the 



kt' instant. In order to obtain the output at the kth instant, the signal AVeQck, has to be 

integrated with the output at the (k-1)" instant . To obtain the present value of the 

output. the simal AVseQfij is passed through a fint order lag with a small time constant 

to rernove the high frequency components. The output of the fast order lag represents 

the output VseQfk, at the instant kh instant. The output VSeP(& is fed back through a delay 

block of delay 0.01 secs to obtain VseQck-l,. The signd VeQrt.,, is added to VSeQfa,) to 

obtain VseQ(k)- 

9.3.1 Performance of UPFC control system with series inverter controlling the real 

power flow in a transmission line with a fuzzy controller 

9.3.1.1 Step input response with fuzzy controller: The power system with UPFC 

shown in Fig.9.3 has been considered to study the performance of the UPFC control 

system to step changes in transmission line red power reference (P&. The shunt 

inverter control system, coordination controller and the series inverter controller have 

been included in this simulation. The PI controller gains for the shunt inverter coritrol 

system shown in Fig.9.2 are Kp, =5.0, Ki, = 2 1.367, Kp2 =02, Ki2 = 5.0, Kp3 = -1 .O, Ki3 = - 

2.0, K+ = -1.0 and Ki4 = -133.0. The input gains for the error (K,) and the change of 

error (K,.) of the fuzzy controller are 0.25 and 0.025 respectively. The output gain (Ku) 

has been selected as 0.5. These gains have been seIected after obtaining a satisfactory 

response from a number of simulations. 



The initial real power flow in the transmission line (PI,,) is 450 MW.  Step changes to 

real power flow reference (P& have been conducted at 10 s and 12 S. Plot-1 of Fig.9.7 

shows the reai power flow in the transmission line (Pline) with a fuzzy controller. At 10 

s, the real power reference (Pmr) is changed from 450 MW to 290 MW. Plot-2 of Fig.9.7 

shows the transmission line r e d  power flow (Ph,) around 10 S. The real power flow in 

the transmission line (Plin,) tracks the reference change within 100 ms. At 12 s the real 

power reference is changed from 290 MW to 450 MW. Plot-3 of Fig.9.7 shows the 

transmission line real power flow (Pr,,) around 12 S. The real power flow in the 

transmission line (Pline) tracks the step change in real power flow reference (Pm/) within 

1 OOms. 

The shunt inverter controls the DC link capacitor voltage (Vk) and the UPFC bus 

voltage (VWebs) Plot-4 and plot-5 of Fig.9.7 shows the UPFC bus voltage ( V & C ~ - ~ )  

vaxiations and the DC link capacitor voltage (Vdc) variations due to step change in real 

power reference (Pmf) respectively. It is observed that the UPFC bus voltage (VUPfCb,) is 

controlled at 1.0 p u  by the shunt inverter. Also the DC link capacitor voItage (Vdc) has 

been controlled at 60 kV. 

It is readily seen from plots-1 through plot-5 that the problem of low darnping 

experienced by high gain PI controller has been overcome by using a fuzzy controller. 

This simulation has also validated the knowledge base designed for the fuzzy controller 

developed in chapter 6.  
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Fig.9.7 Response of the power system to step changes in real power reference of  the UPFC (Fuzzy 

controller for senes inverter) (contd.). 
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Fig.9.7 Response of the power system to step changes in real power reference of the UPFC (Fuzzy 

conuoIler for series inverter), 

9.3.1.2 Power osciHation damping 

system has been modeled to study the 

a UPFC. 

and G2) 

ELMTDC 

with fuzzy controller: A two-machine power 

improvement in power oscillation darnping using 

Fig.9.8 .shows a two-machine power system with UPFC. The two-machine (Gl 

power system with UPFC shown in Fig.9.8 has been modeled in PSCAD- 

software. The machines are equipped with static 

generator, exciter, PSS, synchronous motor load and 

Appendix4 [36]. 

UPFC 

exciters and PSS. The 

are given in 



Fig 9.8 Two-machine power system with UPFC. 

The total load in the power system is 700 MiN. The load has been modeled as a 

synchronous motor. Generator G2 supplies 500 MW of power and the rest of the power 

is generated by G1. Generator G1 also supplies the system losses. Generator G2 

transmits 500 MW of power thrûugh a 345 kV and 230 kV transmission line. The 

steady state power flow in the 345 kV transmission line is 400 MW. The 230 kV 

transmission line carries 100 MW of power. The UPFC is located at the center of the 

160 km 345 kV transmission line. The shunt inverter and the series inverter of the 

UPFC are rated at 160 MVA. The shunt inverter of the UPFC controls the DC fink 

capacitor voltage (V&) and the LPFC bus voltage (VUPfCbUs). The series inverter of the 

UPFC controls the real power flow in the transmission line (Pline) at 400 MW. A three- 

phase fault is applied at the high voltage bus of generator G1 at 10 s for 110 ms and 

removed without any change in the network configuration. The response of the system 

was studied with and without the WFC. Fig.9.9 shows the response of the systern to 

three-phase fault without UPFC. Plot-l of Fig.9.9 shows the electricai power (Pg2) 



osciIlations of the generator G2 for a three-phase fault for 110 rns applied at the high 

voltage bus of generator G1. Plot-2 of Fig.9.9 shows the transmission line real power 

flow (Pline) oscillations in the 345 kV line without the UPFC for the three-phase fault. 

Foliowing the three-phase fault on the high voltage bus of generator GI for 110 ms, the 

real power generated by generator G1 drops to zero. The irnbalance in generation and 

Ioad causes generator G2 to Vary its electrical power output. The peak of the electncai 

power of generator G2 (PpZ)  is about 700 MW. The electrical power oscillations of 

generator G2 damp out in about 3 S. The peak of the reai power flow in the 345 kV line 

(Ph,) is about 550 MW. The real power oscillations in the 345 kV line (Pline) also darnp 

out within 3 S. 

Fig.9.9 Response of the power system to three-phase fault without UPFC. 
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To snidy the improvement in the power oscillation darnping with UPFC and also to 

validate its control system design under dynamic conditions, a UPFC was located in the 

middle of the 345 kV transmission line as shown in Fig.9.8. The real power flow in the 

345 kV line (PI,,) is controlled at 400 MW. The UPFC bus voltage (Vupfcbus) is regulated 

at 1.0 p.u. The DC link capacitor voltage (V&) is controlled at 60 kV. A three-phase 

fault is conducted at the high voltage side of generator G1 for 110 ms. Fig9.10 shows 

the response of the power system to a three-phase fault on the high voltage side of 

generator bus Gl. Plot-1 of Fig.9.10 shows the electrical power output of generator G2 

(Pg) .  Plot-2 of Fig.9.10 shows the real power flow in the 345 kV transmission line 

(Pline) - 

Comparing plot-l of Fig.9.9 with plot-1 of Fig.9.10, it is seen that the UPFC has 

reduced the peak of the electrical power oscillation of generator G2 (Pg& Without the 

UPFC, the peak of the elecuical power (Py2) generated by G2 was about 700 MW. With 

UPFC, the peak of generator G2 electrical power (P,) is about 600 MW. This 

simulation has shown that the UPFC has contributed to the darnping of generator G2 

electrical power oscillations. 

Comparing plot-:! of Fig.9.9 with that of plot-2 of Fig.9.10, it is seen that the reai 

power flow in the 345 kV line (P,,,) has been controlled at 400 MW. The real power 

flow oscillations in the 345 kV line (Plin,) without UPFC is about 550 ,MW. The real 

power flow in the 345 kV line (Pline) does not show any oscillations with UPFC. UPFC 

has thus effectively controlled the power flow oscillations in the 345 kV transmission 

h e  and improved generator G2 electrical power oscillation damping. 



Plot-3 of Fig-9.10 shows the UPFC bus voltage (Vupf,-bas) oscillation due to three- 

phase fault disturbance. The application of three-phase fault causes the UPFC bus 

voltage (Vupfcbus) to dip to about 0.84 p.u. This Ieads to the shunt inverter to provide 

reactive power to the UPFC bus and boost its voltage to 1.0 p.u. The shunt inverter 

control system regulates the UPFC bus voltage to 1.0 p-u- 

Plot4 of Fig.9.10 shows the DC link capacitor voltage (V&) oscillations for the 

three-phase fault disturbance. The application of a three-phase fault causes the UPFC to 

release some of its stored energy leading to decrease in the DL link capacitor voltage 

(&). The decrease in DC link capacitor voltage (Vdc) is about 5 kV folIowing the three- 

phase fault. This is seen frorn plot4 of Fig.9.10 at around 10 S. The shunt inverter 

recognizes the drop in DC link capacitor voltage (V&) and regulates it to 60 kV. 

This simulation has vaIidated the fùzzy control system design and the UPFC control 

system as a whole. It has also shown that UPFC can provide effective power oscillation 

darnping. Further, the ability to provide sirnultaneous and coordinated control of the 

variables narnely (Pli,,,), (Veh) and (Vdc) under dynarnic conditions has been brought 

out through this simulation. 
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Fig.9.10 Response of the power system to three-phase fault with UPFC. 

9.4 Performance of coordination controller 

In order to study the performance of the coordination controller, the power system 

shown in Fig.9.8 was modeled in PSCAD-EMTDC software. A three-phase fault on the 

high voltage side bus of the generator G1 was considered to show the improvement in 

the damping of DC link capacitor voltage (Vdc) oscillations with coordination controller. 

Fig.9.11 shows the DC link capacitor voltage (Vdc) oscillations with and without the 

coordination controller for the UPFC. Plot-1 of Fig.9.11 shows the DC link capacitor 

voltage (Vdc) oscillations without the coordination controiler. Plot-2 of Fig.9.11 shows 

the DC link capacitor voltage (Irdc) oscillations with the coordination controller. 



Fig.9. I l  DC Iink capacitor voItage oscillations with and without coordination controIler. 
a)- Without coordination controiler. 
b). With coordination contro1Ier. 
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capacitor voltage (Vdc) oscilIations darnp out in 3 S. In contrast, with the coordination 

controller in service, the DC link capacitor voltage (Vdc) drops to only 55 kV. Further, 

the DC link capacitor voltage (V&) oscillations damp out in less than 2 S. It is thus 

concluded that the coordination controiler provides proper coordination between the 

series inverter and shunt inverter control systern. With the coordination controller 



included, the shunt inverter supplies the real power demand of the series inverter ( P x )  

very quickly allowing for smooth operation of the UPFC under transient conditions. 

9.5 Effect of in-phase series voltage injection on reactive 

power flow in the transmission line and shunt inverter 

reactive power 

PSCAD-EMTDC simulations carried out in section 9.2 and 9.3 have concentrated 

on the quadrature voltage component (VRQ) of the senes injected voltage for 

transmission line real power flow control (Plitle) and neglected the in-phase component 

(V&) of the series injected voltage. In this section the effect of the in-phase component 

(VXD) of the senes injected voltage on transmission line reactive power flow (Qrine) and 

shunt inverter reactive power injection (Q3/,) at the UPFC bus will be studied. 

Before snidying the effect of the in-phase component on transmission line reactive 

power flow and shunt inverter reactive power, a few variables needs to be defined. 

Consider the equivalent circuit of UPFC as shown in Fig.9.12. 
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Fig.9.12 Equivalent circuit for a UPFC. 

The transmision line side bus voltage is denoted by Vlitle,,. The UPFC bus voltage is 

denoted by Vupfi, Let IXD and IWe be the D and the Q axis components of the 

transmission line current. Writing the voltage equations for the series inverter we get, 



where VljneD, VIinoQ are the D and the Q axis components of the transmission line side 

voltage VI,,. Xse represents the senes transformer impedance. VseD , VseQ are the D and 

the Q axis components of the senes injected voItage. Seperating equation 9.2 into real 

and imagïnary parts we get 

- 
b n e D  - Vupfcbu Lo + ' s c Q  Xsc + ' S C D  

h m Q  = - I d  X s e  -k V& (9-3) 

k t   use^ and U,,Q be two auxiliary inputs. The auxiliary variables r c , , ~  and u , ~  are related 

to Vse. and VseQ respectively by equation 9.4. 

v .  = - 1 5 4  Xie + U,D 

y e Q  = ' M D  Xlc + %Q 

Subtituting for VseD and VfiQ in equation 9.3 from equation 9.4 we get 

- v,, - Y,,, +u, 

Y i n e ,  = u s e ,  (9.5) 

The power system with a UPFC shown in Fig.9.3 has been set up in PSCAD-EMTDC 

software to study the effect of in-phase component ( V s c ~ )  on the transmission line 

reactive power (QI,,) and shunt inverter reactive power (OsI,) flow. It is seen from 

equation 9.4 that u , ~  is directly related to VseD. Thus step changes to i i , , ~  have been 

conducted to study the effect of VXD on transmission line reactive power flow (Qlinc) 

and shunt inverter reactive power (a). The initial conditions are that the shunt inverter 

controls the UPFC bus voltage (Vebus) at 1.0 p.u and the DC link capacitor voltage 

(V&) at 60 kV. The quadrature component of the senes injected voltage (VWp) controls 



the real power flow in the transmission line (Ph,) at 290 MW. Fig.9.13 shows the effect 

of useo on transmission line reactive power (eh,) and shunt inverter reactive power 

(Qsh). Plots-1 through plot-6 of Fig.9.13 shows the series inverter auxiliary input ( ~ t . ~ , ~ )  

voltage profile, transmission line side bus voltage (Vh,) profile, UPFC bus voltage 

(VUPfCbus) profile, transmission line reactive power flow (QI,,), shunt inverter reactive 

power (a) and the senes inverter reactive power (es,) respectively. 
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At 10 s, a step increase in ilse* was conducted from 4.025 p.u to 0.025 p.u. At 12s. L < ~ ~ D  

was reduced from 0.025 p.u to -0.025 p.u, Plot-1 of Fig.9.13 shows the step changes to 

u , ~  at lC s and 12 S. The transmission line side bus voltage (VI;,~,) changes frorn 0.93 

p.u to 0.98 p.u for a change in from -0.025 to 0.025 p.u. It is observed from plot-3 

that when  use^ increases from 4 .025  to 0.025 pu.  the UPFC bus voltage ( k b u S )  dips 

to 0.975 p.u momentady. This decrease in UPFC bus voltage (Vwbus) causes the shunt 

inverter to increase its reactive power input to bring the UPFC bus voltage to 1.0 pu. 

The initial shunt inverter reactive power (Qsll) injection 2t the UPFC bus before the step 

change in c t , , ~  was about -80 MVAR. The increase in shunt inverter reactive power 

(Qsh) due to a step change in t!lSeo from -0.025 to 0.025 p.u is about 130 MVAR. 

Correspondingly, the increase in transmission line reactive power (Ql,,,) is also about 

130 MVAR (plot-4 Fig.9.13). Thus the change in l r , , ~  has increased the transmission 

line side voltage (VIine) from 0.93 to 0.98 p.u and has increaed the transmission line 

reactive power (Qiine), shunt inverter reactive power (Qs,J by 130 MVAR. Thus the 

increase in transmission line reactive power flow (elin,) is supplied by the shunt 

inverter. The series inverter reactive power (&) changes as shown in plot-6 of Fig.9.13 

are insignificant compared to that of the shunt inverter reactive power (QS,J changes. At 

12 s,  lise^ is reduced from 0.025 to 4.025. This leads to reduction in transmission line 

side bus voltage (Vh,) and a corresponding decrease in transmission line reactive power 

flow (Qrine). The transmission line side bus voltage (Kin,) drops from 0.98 to 0.93 p.u. 

The transmission line reactive power (el,,) reduces from +90 MVAR to -40 MVAR. 

The UPFC bus voltage (VupfcbbY.) momentarily changes from 1.0 p.u to 1.01 p u  due to 

the change in u , ~  from 0.025 to 4.025. Since the shunt inverter is controlhg the 



UPFC bus voltage, an equivalent mount of reactive power change takes place in the 

shunt inverter. The shunt inverter reactive power (Qsh) reduces from 950 MVAR to -80 

MVAR to bnng the UPFC bus voltage back to 1.0 p-u. 

This simulation has shown that Z l S e ~  has significant effect on the shunt inverter 

reactive power (Qsh), transmission line reactive power (Qline) and transmission line side 

bus voltage (VIïne). Step changes in use* has shown that r r , ~  has indirect effect on shunt 

inverter reactive power (Qsh) and hence on the transrnission fine reactive power flow 

(Qlim). This is because any change in u , ~  directiy effects the transmission line side bus 

voltage (Vline) and UPFC bus voltage (VuplcU) An increase in u , ~  from -0.025 p u  to 

0.025 p.u changes the transmission line side bus voltage (VIin,) from 0.93 p.u to 0.98 

p-u. The UPFC bus voltage (VupfChs) instantaneously dips from 1.0 p.u to 0.975 p.u for a 

step increase in use* from -0.025 p.u to 0.025 p.u. Since the shunt inverter is controlling 

the UPFC bus voltage (VWbus), the decrease in UPFC bus voltage (Vupfcbus) causes the 

shunt inverter to increase its reactive power output (Qsi,) from -80 MVAR to 50 MVAR 

to bnng the UPFC bus voltage to 1.0 p.u. This increase in shunt inverter reactive power 

(QS,,) by 130 MVAR is transferred to the transmission line and is seen as an increase in 

transmission line reactive power flow (Qline). It is seen that the cause and the effect are 

on two different parts of UPFC. The cause being the change in  use^ in the series inverter 

and the effect being the change in shunt inverter reactive power (Qsi)- One point more 

to be noted here is that the shunt inverter recognizes the need to increase/decrease its 

reactive power output only through the change observed due to decrease/increase in the 

UPFC bus voltage which ultimately gets transferred as an equal increase/decrease in 

transmission line reactive power flow. Thus controlling the transmission line reactive 



power flow (Qhe) using in-phase voltage injection of the senes inverter reduces the 

effectiveness of the control strategy. It suggests the need for reactive power 

coordination between the series and the shunt inverter control system for better overall 

performance. This also suggests that the transmission line reactive power (Qiin,) could 

directly be controlled through the shunt inverter instead of by the series inverter. 

9.6 Surnrnary 

The interaction between the senes injected voltage ( V . )  and the transmission 

line current (1,) leads to real power exchange between the series inverter and the 

transrnission line. The real power demand of the series inverter (Px)  is supplied by the 

shunt inverter. In order to coordinate between the operation of the shunt and the series 

inverter, a coordination controller has been desipned. The coordination controller 

provides a D-mis current (iD,) feedback to the shunt inverter control system equivalent 

to the real power demand of the senes inverter (P,). It provides the link between the 

series and the shunt inverter control system allowing for proper operation of the 

combined UPFC control system. The effectiveness of the coordination controller has 

been brought out through PSCAD-EMTDC simulations. The DC link capacitor voltage 

excursion was reduced from 20 kV to less than 5 kV with coordination controller. The 

implementation of coordination controller could also help in using reduced ratings of 

the DC link capacitor and hence reduction in the overall cost of UPFC. 

PSCAD-EMTDC simulations have shown that using a PI controller for the series 

inverter to control the real power fiow in the transmission line (PI,,) provides 



oscillatory response to step input changes in reai power flow references (Pm.). The 

problern of low damping has been overcome by using a fuzzy controller for the series 

inverter to control the red power flow in a transmission line (PliJle)- The improvement in 

the response to step input changes in real power references (Pm() with fuzzy controllers 

as compared to PI contdier for senes inverter has been brought out in this chapter. 

The improvement in power oscillation damping using UPFC with füzzy controller 

has been brought out through PSCAD-EMTDC simulations. These simulations ais0 

validate the design of the shunt and senes inverter control system. Further, power 

oscillation damping simulation has shown that the UPFC control systern designed 

operates in a unified and stable manner. Under transient conditions, the UPFC control 

system has been able to control the transmission line real power flow (Plim), UPFC bus 

voltage (VWbur) and DC link capacitor voltage (Vdc) simultaneously. 

The effect of in-phase series voltage injection on transmission line reactive power 

(Qlim), series inverter reactive power (a,) and shunt inverter reactive power (ah) has 

been discussed. Cornputer simulations using PSCAD-EMTDC software on a simple 

power system has shown that the in-phase series voltage injection which changes the 

transmission line side bus voltage(Vljn,) / reactive power flow (elin,) has a significant 

effect on the shunt inverter reactive power (QsfJ. Any increase in transmission line side 

bus voltage (Vfine) by injecting a positive in-phase component of series voltage causes 

the transmission line reactive power (Qline) to increase by an amount equivdent to the 

increase in shunt inverter reactive power (Qsh). Conversely, any decrease in 

transmission line side bus voltage (VI,,) by injecting a negative in-phase component of 

series voltage causes the transmission line reactive power (Qlin,) to decrease by an 



amount equal to the decrease in shunt inverter reactive power (&). Thus the cause and 

the effect are on two portions of the UPFC. The cause being the in-phase injection 

component of the series inverter and the effect seen as an increase/decrease in shunt 

inverter reactive power. Thus controUing the transmission line reactive power flow 

(eh,) using in-phase voltage injection of the series inverter reduces the effectiveness of 

the control strategy. Hence there is a need to provide for reactive power coordination 

betweea the series and the shunt inverter control systems for better overall performance. 

This also suggests the need to look at other control strategies whereby the transmission 

line reactive power could directly be controlled through the shunt inverter. 



Chapter 10 

Reactive power coordination 

10.0 Introduction 

The effect of in-phase component (V&) of the series injected voltage on shunt 

inverter reactive power (Qsh). UPFC bus voltage (Vufibus), transmission line real 

(Plhe)lreactive power flow (Qlifle) have been discussed in chapter 9. It has been shown that 

the in-phase component (VseD) of the series injected voltage has considerable effect on the 

transmission line reactive power (Qi,,) and the shunt inverter reactive power (Q,,,). In 

contrast, the in-phase component (VWD) has insignificant effect on the series inverter 

reactive power (Q,). Any increaseldecrease in the transmission line reactive power (Qlhe) 

due to in-phase component (VseD) of the senes injected voltage causes an equal 

increaseldecrease in the shunt inverter reactive power (ah) [42]. This suggests that the 

transmission line reactive power (eh,.) control system should be coordinated with the 

shunt inverter control system for better over al1 performance. Further the effect of 

controlling the transmission line reactive power (el,,) through the series inverter on 



UPFC bus voltage profile has been brought out in this chapter. A new reactive power 

coordination controller has been designed to overcome the problem arising from 

controlling the transmission line reactive power through the series inverter control 

system. Step response and power oscillation damping results with reactive power 

coordination controIIer have also been presented in this chapter. 

10.1 Need for reactive power coordination 

The first reason for requinng a reactive power coordination controller between the 

senes and the shunt inverter has been discussed in chapter-9. In brief, it has been shown 

in chapter-9 that any request for change in transmission line reactive power flow (eh,) 

which is achieved by increasingldecreasing the in-phase component (VXD) of the senes 

injected voltage is actuaily supplied by the shunt inverter. Thus the cause and the effect 

are on two portions of the UPFC. This calls for proper reactive power coordination 

between the series and the shunt inverter control system with respect to transmission line 

reactive power for better over dl performance of the control system. 

The seccnd reason for including a reactive power coordination controller will be 

described in this section. PSC14D-EMTDC simulations have been conducted to show the 

need for reactive power coordination between the series and the shunt inverter control 

system. To do so, consider a UPFC connected to a transmission Iine as shown in Fig. 10.1. 

In this case, the series inverter of a UPFC controls the real power (Ph,) and reactive 

power (Qlinc) flow in the transmission line. The shunt inverter controls the UPFC bus 

voltage (I.'IPIcbu5) and the DC link capacitor voltage (V'J. This mode of operation of a 

UPFC has been used widely in literature. 
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Fig. 10.1 UPFC connected to a transmission line. 

In this mode of control, the series inverter injected voltage is split into two components, 

one in-phase (V&) and the other in quadrature (V&) with the UPFC bus voltage. The 



quadrature component of the series injected voltage (V&) controls the real power flow in 

the transmission line (PI,,) and the in-phase component of the series injected voltage 

(vSeD) controis the transmission line reactive power flow (el,,,) 

10.2 Shunt and series inverter control system 

10.2.1 Shunt inverter control system: The shunt inverter is controlled using the de- 

coupled control system. Fig.lO.2 shows the shunt inverter control system with the real 

power coordination controller. The shunt inverter controls the UPFC bus voltage (Vupfcbl,.,) 

and the DC link capacitor voltage (Va,). 
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Fig. 10.2. Shunt inverter control system with real power coordination controller. 



It is seen from Fig.10.2 that the UPFC bus voltage (VuPfcbUs) is controlled by the Q-axis 

shunt inverter voltage (VshQ)- The DC link capacitor voltage (Va,) is controlled by the D- 

axis shunt inverter voltage (V&). The design of the shunt inverter control system hm 

been carried out in Chapter-7. The PI controller gains used for the shunt inverter 

controller are Kp, = 5.0. Ki, = 21.367, Kp2 = 0.2, K2 = 5.0, Kp3 = -1.0, Kf3 = -2.0, Kp4 = - 

1.0, Ki4= -133.0- 

10.2.2 Series inverter control system: The series inverter injected voltage is split into 

two components, one in-phase (V,D) and the other in quadrature (VWQ) with the UPFC 

bus voltage, The series inverter controls the reai power flow in the transmission Iine 

(PL,,) by injecting a voltage in quadr~ture (V'Q) with the UPFC bus voltage (V,f-us). 

The in-phase component (Vs,~) of the senes injected voltage controls the transmission 

line side bus voltage (Fine)- By regulating the transmission line side bus voltage reference 

(V[inewI), transmission line reactive power flow (Qline) can be controlled. The series 

inverter control system is as shown in Fig. 10.3. 



Fig. 10.3 Series inverter control system. 
a) Transmission line real power fiow conuoller. 
b) Transmission line reactive power conuoller. 



10.3 Performance of the control system 

10.3.1 Response to step change in transmission line reactive power reference 

A two machine power system with UPFC shown in Fig.10.4 has been considered to 

study the response of the power system to step input changes in reactive power reference. 

v,h 

UPFC 

Shunt 
Invener 

160 MVA 
UPFC 

Fig. 10.4 Two machine power system with UPFC. 

The shunt inverter of UPFC controls the UPFC bus voltage (Vupfh) and the DC Iink 

capacitor voltage (Vdc). The series inverter of the UPFC controls the real and reactive 

power flow in the transmission line (PI,, , eh,)- 
Plot-1 through plot-8 of Fig. 10.5 shows the response of the system to step change 

in transmission line reactive power reference from 125 MVAR to -35 MVAR and back 

to 125 MVAR. This is a step change of 160 MVAR in the transmission line reactive 

power flow. Plot-1 through plot-8 of Fig.lO.5 shows the real power flow in the 



transmission 

power flow 

transmission 

line (Pline), reactive power flow in the transmission line (QI,,), reactive 

in the transmission line (eli,,) around 10 s, reactive power flow in the 

Iine (Qlin,) around 12 s, UPFC bus voltage profile (VUpFCbuS), DC Iink 

capacitor voltage profile (Vdc). shunt inverter reactive power (Qsh) around 10 s and shunt 

inverter reactive power around 12 s respectively. 
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Fig. 10.5. Response to step change in reactive power reference. (contd.) 



Time in  seconds 

11.8 11.9 12 1 2 1  1 22 125 

Time in seconds 

11 12 

Time in seconds 

Fig. 10.5 Response to step change in reactive power reference. (contd.) 
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Fig, 10.5 Response to step change in reactive power reference. 
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At 10 s, a step change is conducted in the transrnission line reactive power 

reference from 125 MVAR to -35 MVAR. It is seen that the transmission iine real power 

flow (Ph,) (plot-1 of Fig.lO.5) is not affected ~i~pif icantly during the step change in 

transmission line reactive power reference. The transmission line reactive power (Qrin,) 

(plot-2 of Fig.lO.5) changes from 125 MVAR to -35 MVAR in about 100 to 150 ms- 

Simultaneously the shunt inverter reactive power (Qsh) reduces from about 80 MVAR to 

-80 MVAR (plot-7 of Fig.10.5). A step decrease in the transmission line reactive power 

reference from 125 MVAR to -35 MVAR causes a sudden increase in the UPFC bus 

voltage (v,/b3 (plot-5 of Fig.lO.5) by about 0.05 p.u from 1.0 p.u momentarily. Afier 

about 200 rns the UPFC bus voltage (VUPfCbuS) is brought back to 1.0 p.u by the shunt 
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inverter control system. At about 12 s, the transmission line reactive power (Qiine) is 

changed from -35 MVAR to 125 MVAR (plot4 of Fig.lO.5) by changing its reference 

value. Simultaneously, the shunt inverter reactive power changes (Qsfl)from about -80 

MVAR to +80 MVAR (plot-8 of Fig 10.5). This time the UPFC bus voltage (Vupfibus) 

changes from 1.0 p.u to 0.95 p u  momentarily. In this simulation the real power 

coordination controller has been included which helps in reducing the change in the DC 

link capacitor voltage (V&). This is seen from plot-6 of Fig.lO.5. It is ais0 obsewed that 

though the transmission line reactive (Qline) reaches 90 % of its steady state value in 

about 100 to 120 ms, the shunt inverter reactive power (Qrh) takes almost 300 to 400 ms 

to reach its steady state. 

This simulation has shown that step changes in transmission Line reactive power 

has a significant effect on the UPFC bus voltage (Vup/bur) and shunt inverter reactive 

power (QS& It is observed that the shunt inverter reactive power (Qsh) takes about 300 to 

400 ms to reach its steady state. This is because, the shunt inverter reacts only to the 

change in the UPFC bus voltage (VUPfcbd. A step decrease in transmission line reactive 

power reference at 10 s causes the UPFC bus voltage (Vu,,/cbus) to rise to 1.05 p.u. This 

increase is sensed by the shunt inverter control system which reduces its reactive power 

output bring the UPFC bus voltage (Irmu,,) to 1.0 p.u. One reason that cm be attributed 

to the sluggish response of the shunt inverter reactive power (Qsh) is that the UPFC bus 

voltage controller f oms  the outer loop control thereby reducing the speed of response of 

the shunt inverter to rapid changes in UPFC bus voltage (Vupfcbus). 

Another problem that is to be noted is that, if there are transmission lines 

emanating from the UPFC bus and connected to a load center, sudden changes in the 



UPFC bus voltage (VUPfCbus) due to step changes in transmission Iine reactive power flow 

reference wouid cause power qudity problems. The above two reasons amply 

demonstrate the need for a reactive power coordination controller to improve the over al1 

performance of the UPFC control system. 

10.4 Reactive power coordination control design 

To design a reactive power coordination controller, one needs to look at the 

response of the shunt inverter reactive power (Qsh) to step changes in transmission line 

reactive power reference. As seen from plot-7 and plot-8 of Fig.10.5, it is observed that 

for a change in trmsmission line reactive power of 160 MVAR (from 125 MVAR to -35 

MVAR), the shunt inverter reactive power (Qsf,) changes from 80 MVAR :O -80 MVAR. 

This change takes place in about 400 ms. The response seen in plot-7 and plot-8 of 

Fig.IO.5 are very sirnilar to that of the response of a first order system to step changes. 

The time constant of the response is in the range of 80 ms. This information is considered 

dunng the design of the reactive power coordination controller. Further, notice should 

also be taken that the change in shunt inverter reactive power (Qs/,) is equd to the change 

in transmission line reactive power (Qfi,,,). Based on these two observations. the reactive 

power coordination controIler is designed. Fig. 10.6 shows the shunt inverter control 

system with reactive power coordination controller. The input signal to the reactive 

power coordination controller is the transmission line reactive power reference. The 

output of the reactive power coordination controller modulates the shunt inverter reactive 

current reference (Irhpref). Thus any change in the transmission line reactive power 

reference is directly transferred to the shunt inverter inner control system. It should be 
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Outer control system loop Inner control systern loop 
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Fig.10.6. Shunt inverter control system with real and reactive power coordination controller. 

noted that the output signal is fed to the inner loop control system. By doing so, the speed 

of response of the shunt inverter to changes in transmission line reactive power reference 

is increased. The gain (G) of the reactive power coordination block is chosen to be 1.0 as 



the change in transmission Iine reactive power is to be transrnitted in its entirety to the 

shunt inverter control system. The time constant Tivhas been chosen to be greater than 80 

ms. The time constant Tw is chosen to be 0.5 S. By doing so, the change in shunt inverter 

reactive current reference (lshQref) wouid take a longer time to decay to zero allowing for 

sufficient time for the outer Ioop UPFC bus voltage controller to react- 

10.5 Step response with reactive power coordination controller 

The power system shown in Fig.lO.4 has been considered to show the effect of 

the including the reactive power coordination controller on the transmission line reactive 

power flow (Qrine) and the WFC bus voltage profile The shunt inverter control 

system shown in Fig. 10.6 includes the real and reactive power coordination controller. 

The senes inverter control system is as shown in Fig. 10.3. 

A step change in transmission line reactive power reference is conducted at 10 s 

and 12 S. Plot4 through plot-9 of Fig.lO.7 shows the response of the system to step 

change in transmission line reactive power reference. At 10 s, the transmission line 

reactive power reference (Q1inertf) is changed from 125 MVAR to -35 MVAR. At 12 s, 

the transmission line reactive power reference (Qlinewf) is changed from -35 MVAR to 
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Fip. 10.7 Step response with reactive power coordination controlIer. 

125 MVAR. It is seen from plot-1 of Fig.lO.7 that the real power flow is not affected 

much due to step changes in transmission Line reactive power flow reference. It is seen 

from plot3 and plot4 of Fig.lO.7 that the transmission line reactive power response has 

been slightly af3ected though not significantly due to the inclusion of the reactive power 

coordination controller. Comparing plot-3 and plot-4 of Fig- 10.5 and plot-3 and plot-4 of 

F i g  10.7 between the time 10 s, 10.1 s and 12 s, 12.1 s, it is seen that the transmission line 

reactive power rises much faster with reactive power coordination controller than without 

it. It should also be observed that the transmission line reactive power reaches 90% of its 

steady state value within 100 ms (-20 MVAR for step change from 125 MVAR to -35 

MVAR and 1 10 MVAR for step change from -35 MVAR to 125 MVAR) with reactive 

power coordination controller as compared to 150 ms without reactive power 

coordination controller. Plot-5 of Fig. 10.7 shows the UPFC bus voltage profile (Vupfcbu). 

It is seen that at 10 s, the UPFC bus voltage (Kuplcbbur) changes by only 0.01 p-u. from 1.0 

p.u. for a change in transmission line reactive power change of 160 MVAR as compared 

to 0.05 p.u. without reactive power coordination controller (see plot-5 of Fig. 10.5). Thus 

the reactive power coordination controller has reduced the peak of the UPFC bus voltage 



profile (VUpfCbm) and made it to gradually reach its steady state. It should be observed 

from plot-8 and plot-9 of Fig.10.7 that the shunt inverter reactive power (Qsh) responds 

much fater  as compared to without the coordination controller. The response of the shunt 

inverter reactive power (Qs,,) with coordination controller is about 100 ms (plot-8 and 

plot-9 of Fig.10.7) as compared to about 400 ms (plot-7 and plot-8 of Fig.lO.5) without 

reactive power coordination controller. 

At 12 s, the transmission line reactive power reference is changed from -35 

MVAR to t125 MVAR. The UPFC bus voltage profile (VuPfCbus) is shown in plot-5 of 

Fig.10.7. At 12 s UPFC bus voltage drops to about 0.98 p.u. for a change in transmission 

Line reactive power of 160 MVAR as compared to 0.95 p-u (plot-5 of Fig. 10.5) without 

the reactive power coordination controller. 

This simulation has shown that the inclusion of reactive power coordination 

controller helps in improving the UPFC bus voltzge profile and reduce power quality 

problems (voltage sag / voltage rise). Further it helps in improving the response time of 

the shunt inverter to changes in transmission line reactive power reference, thereby 

improving the over al1 performance of the UPFC control system. 

10.6 Power oscillation damping 

A two-machine power system with UPFC shown in Fig.10.4 has been considered 

to study the performance of the UPFC control strategy and its control system under 

dynamic conditions. This power system was chosen over that in fig.9.8 for the following 

reason. Inclusion of the reactive power controller for the UPFC for the power system in 

Fig.9.8 caused switching problems for the GTO's. 



The voltage sources shown in Fig.10.4 have been converted into a second order 

system to model them as generators. This power system model bas been chosen to depict 

a two-area power system. The sending and receiving end voltage source has been 

modeled as a second order transfer function as given below. 

(IO. 1) 

The sending end voltage source parameters are =1.5 Hz and 6 = 0.1. For the receiving 

end voltage source, the parameters are& =1.3 Hz and < = 0.05. The input and output are 

phase angle of the sending end voltage source. This is because the second order function 

only tracks the input signal. For example, a step change of 1.0 p.u causes the output to 

reach 1.0 p.u based on the pararneters a and 6.  As seen the second order function with 

the above parameters represents an under damped system. 

Fig.10.8 shows the response of the power system to a pulse change in the 

receiving end voltage source phase angle without UPFC. Plot-1 of Fig.lO.8 shows the 

real power flow oscillations (Pl;,,) in the transmission Iine without UPFC. The reactive 

power oscillations (Qlh3 without UPFC is shown in plot-;? of Fig.10.8. The reai power 

flow in the transmission line (Po,) before the disturbance is 400 MW. The peak of the 

real power flow in the transmission line (Pline) after the disturbance is about 550 MW. 

The initial reactive power flow in the transmission line (Qr,,) is 80 MVAR. The positive 

peak of the reactive power flow (QI,,) in the transmission line after the disturbance is 

about 95 MVAR. The transmission line reai and reactive power flows (Pthe,Q1,,) exhibit 

low darnping. 
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Fig.IO.8 Real and reactive power oscillations without UPFC. 

To study the performance of the UPFC control systern under dynamic conditions, 

a pulse change in the phase angle of the receiving end voltage source is conducted to 

simulate a power oscillation arising from a control area. The control strategy used for 

UPFC is such that the shunt inverter of the UPFC controls the UPFC bus voltage 

(VupfCbUS), DC link capacitor voltage (Vk)  and the series inverter of the UPFC controls the 

real power flow in the transmission fine (PIine), transmission line reactive power flow 

(Q/ine). It should be noticed that the reactive power coordination controller does not take 

part in the damping of real and reactive power oscillations. This is because the input to 

the reactive power coordination controller is the transmission line reactive power 

reference. As long as the transmission line reactive power reference is fixed, the output of 



the reactive power coordination controller is zero. The coordination controller is only 

active during transient changes in transmission line reactive power reference. Thus the 

reactive power coordination controller plays no role in damping reactive power 

oscillations in the transmission line- 

Plot-1 through plot-4 of Fig.10.9 shows the real power (Pli& reactive power flow 

in the transmission line (Qline), UPFC bus voltage (VuPfC& and the DC link capacitor 

voltage profile (Vk) for the simulated disturbance. The disturbance is a pulse change in 

the receiving end voltage phase angle conducted at 10 S. The initial power flow in the 345 

kV transmission line where the UPFC is installed is 450 MW. The shunt inverter of the 

UPFC controls the transmission line side bus voltage (V,lbu) at 1.0 p.u and the DC link 

capacitor voltage (Vdc) at 60 kV. The series inverter controls the real power flow in the 

transmission line (Pline) at 450 MW and the transmission line reactive power flow (QliJlc) 

at 125 MVAR. Comparing plot-1 and plot-2 of Fig.10.8, and plot-1 and pIot-2 of 

Fig.lO.9, it is readily seen that the real and reactive power oscillations are well damped 

with UPFC. The real power and reactive flow in the transmission line takes about 2 s to 

damp as compared to more than 4 s without UPFC. Further, the UPFC bus voltage 

(Vuplbbus) as shown in plot3 of Fig.109 is controlled to 1.0 p.u. The DC link capacitor 

voltage (Vdc) oscil1ations shown in plot4 of Fig.10.9 are also well darnped as the real 

power coordination controller has been included dunng this simulation. The DC link 

capacitor voltage oscil~ations also damp out in 2 S. 
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The improvement in power oscillation damping obtained in chapter-9 excluded the 

reactive power flow controller. This simulation has brought out the improvement in 

power oscillation damping when the UPFC is controlling the transmission line reai power 

flow, reactive power flow, UPFC bus voltage and the DC link capacitor voltage 

simultaneously. Further, it shouId be noted that the real power coordination controller has 

been included in thïs simulation. 

10.7 Summary 

The need for reactive power coordination controller has been discussed. The first 

reason being that any request for transmission line reactive power change in actudIy 

supplied by the shunt inverter. The mechanism by which it works is that any change in 

transmission line reactive power reference is seen by the shunt inverter as a change in the 

UPFC bus voltage profile. Since the shunt inverter controls the UPFC bus voltage, an 

equal amount of reactive power change in observed in the shunt inverter reactive power 

to bring the UPFC bus voltage back to reference value. Thus the cause and the effect are 

on two portions of the UPFC. Hence there is a need to coordinate between the series and 

the shunt inverter controller with respect to transmission reactive power flow for better 

overall performance of the UPFC control system. 

The second reason for requiring a reactive power coordination controller for a 

UPFC is related to power quality problems (voltage sadvoltage rise). Any change in 

transmission line reactive power reference causes the UPFC bus voltage to change 

significantly. If there are customers located close to or connected to the UPFC bus, they 

couid experience voltage related problems. 



A reactive power coordination controlIer has been proposed to reduce power 

quality probiem and improve the over al1 performance of the UPFC control system. The 

input to the reactive power coordination controller is the transmission line reactive power 

reference. Any change in transmission line reactive power reference is translated into an 

equivalent reactive power reference for the shunt inverter thereby improving the response 

of the shunt inverter to transmission line reactive power requests. The reactive power 

coordination controller has been designed and tested on a two-machine power system. 

For a change in transmission line reactive power flow from 125 MVAR to -35 MVAR, 

the UPFC bus voltage excursion has been reduced from 0.05 p.u without the reactive 

power coordination controller to 0.01 p.u with reactive power coordination controller. 

Sirnilarly, when the transmission line reactive power reactive is changed f o m  -35 

MVAR to 125 MVAR, the UPFC bus voltage excursion is reduced from 0.05 p.u to 0.02 

pu- 

Power oscillations damping simulation have been conducted to show the 

improvement in darnping while controiling the transmission Iine real power, transmission 

line reactive power, UPFC bus voltage and DC link capacitor voltage simultanrously. It 

should be noted that the reactive power coordination controller does not take part in 

power oscillation darnping. 



Chapter 11 

A new control strategy for UPFC 

11.0 Introduction 

Chapter 9 has shown that the control systern designed for the UPFC is able to 

control the transmission line real power flow (Pline), the UPFC bus voltage (Irupfcb,), and 

the DC capacitor voltage (Vd> simultaneously. Further, the effect of in-phase component 

(V,,) of the series injected voltage on shunt inverter reactive power (QJ and 

transmission line real (Prin,)lreactive power fiow (QI,,) have also been discussed in 

chapter 9. It has been shown that the in-phase component (VseD) of the series injected 

voltage has considerable effect on the transmission line reactive power (Qiine) and the 

shunt inverter reactive power (esIl). In conuast, the in-phase component (VwD) has 

insignificant effect on the series inverter reactive power (Q,). Any increaseldecrease in 

the transmission line reactive power (Qlin,) due to in-phase component (VEo) of the senes 

injected voltage causes an equivalent increase/decrease in the shunt inverter reactive 

power (Qsh). This suggests that the transmission line reactive power (Qiine) could directly 



be controlled by the shunt inverter and eliminating the need for reactive power 

coordination controller. 

A new control strategy has been proposed to achieve simultaneous control of four 

variables narnely, transmission line real power fiow (Piin,), transmission line reactive 

power (Q/in.), UPFC bus voltage (VupJcbus) and the DC link capacitor voltage (Vdc)- The 

associated control systems have been descnbed. The performance of the new control 

strategy for UPFC will be studied based on its ability to track step input changes and 

provide power oscill~tion damping. 

11.1 Proposed control strategy 

To understand the proposed control strategy, consider a UPFC connected to a 

transmission line as shown in Fig. 1 1.1. In the proposed strategy, the series inverter of a 

UPFC controls the real power flow in the transmission line (Pi,,,) and the W F C  bus 

voltage (l&,>/cbus)- The shunt inverter of the UPFC controls the transmission line reactive 

power (Qline) and the DC link capacitor voltage (Vdc). 
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Fig. 1 1.1 UPFC connected to a transmission Iine. 



To achieve this type of control strategy for UPFC, the senes inverter injected voltage is 

split into two components, one in-phase and the other in quadrature with the UPFC bus 

voltage. The quadrature component of the series injected voltage (V&) controls the real 

power flow in the transmission Iine (Pl,,) and the in-phase component of the series 

injected voltage (VED) controls the UPFC bus voltage ( ~ , P f C b U S ) -  

The advantage with this strategy is that by controlling the transmission line reactive 

power flow directly by the shunt inverter, the need for reactive power coordination 

controller as designed in chapter-10 is elirninated. Looking from a different perspective, 

the burden of controlling the r ed  and reactive power flow in a transmission line is split 

between the series and the shunt inverter respectively. By doing so, the shunt inverter can 

be used to manufacture and export required quantity of reactive power to the transmission 

line. The second advantage is that one could replace part of the shunt inverter reactive 

power capability by inexpensive shunt capacitors and help in reducing the cost of UPFC. 



11.2 Control system for the new control strategy 

11.2.1 Shunt inverter control systern: The shunt inverter is controIIed using the de- 

coupled control system. Fig.ll.2 shows the shunt inverter control system with the r d  

power coordination controlier. In the proposed strategy, the shunt inverter controls the 

transmission line reactive power flow (Qlin,) and the DC Iink voltage (Vdc-). 

Outer control system loop Inner control system loop 

Inner control system loop 

Fig.ll.2, Shunt inverter control system witb real power coordination controller. 



It is seen fkom Fig.ll.2 that the transmission line reactlve power (Qri,,) is controlled by 

the Q-axis shunt inverter voltage (VfiQ)- The DC link capacitor voltage (Vdr) is controlled 

b y  the D-axis shunt inverter voltage (VshD). The PI controuer gains used for the shunt 

inverter cont.roller are KPi = 5.0. Kir = 2 1.367, Kfl  = 0.2, Ki? = 5.0, KP3 = - 1.0. Ki3 = -2.0- 

11.2.2 Series inverter control systern: The series inverter injected voltage is split into 

two components, one in-phase (V&D) and the other in quadrature ( V S ~ Q )  with the UPFC 

bus voltage. The series inverter controls the real power flow in the transmission line 

(Plim) by injecting a voltage in quadrature (LQ) with the UPFC bus voltage (Vupfcbus). 

The in-phase component (Vh) of the series injected voltage controls the UPFC bus 

voltage (VuPftbus). TWO h z z y  controliers have been implemented to control the red power 

flow in the transmission fine (Pline) and the UPFC bus voltage ( V U ~ ~ C ~ U S ) .  The knowledge 

base used for controlling the UPFC bus voltage is the sarne as that used for the real power 

flow control. Thus two variables have been controlled using the same knowledge base. 

On the other hand, a conventional PI controller could be used for controlling the UPFC 

bus voltage. But, conventional PI controller performance could deteriorate at operating 

conditions other than that at which it is designed. Fig.ll.3 shows the two fuzzy 

controllers used for the series invener The gains for Kv., Kv,. and Kv, are 1.0, 0.1 and - 

0.5 respectively. The gains for the real power flow control are given in section 8.5. 



Fig. 1 1.3 Series inverter control system for new control strategy. 
a) Transmission Iine real power flow conuo1ler. 
b) UPFC bus voltage conuoller. 
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11.3 Performance of the new control strategy 

11.3.1 Step input response: To study the step input response of  the power system with 

the proposed contra1 strategy for UPFC, a power system shown in Fig. 1 1.4 is considered. 

With the new control stratesy, the UPFC controls the UPFC bus voltage (Vuplbus), DC 

link capacitor voltage (Vdc),  real power flow in the transmission line  pli,^) and the 

transmission Iine reactive power flow (Q~ine)  simultaneously. 
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Fig. 1 I .4 Two machine power system with UPFC. 
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a) Response to step change in transmission line mal power flow reference: 

The initiai operating conditions for this simulation is that the senes inverter 

controls the UPFC bus voltage (Vupfcbu.r) at 1.0 p.u and the transmission line real power 

flow (Pl ine)  at 450 h4W. The shunt inverter controls the transmission line reactive power 

flow (Q l ine )  at 125 MVAR and the DC link capacitar voltage ( V d c )  at 60 kV, Fig. 11 -5 

shows the response to step changes in the transmission line real power flow reference 

from 450 MW to 290 MW at IO s and back to 450 MW at 12 S. Plot- 1 through plot-6 of 

Fig. 11.5 shows the transmission line real power flow (Pl ine) ,  transmission Iine real power 

flow (Pl ine)  around 10 s, transmission line real power flow ( P l i n e )  around 12 s, 

transmission line reactive power flow (Qlinc), UPFC bus voltage ( V L P f i b ~ ~ )  and the DC link 

capacitor voltage (V&) respectively. 
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Fig.11.5 Response of the power system to step changes in transmission Iine real power flow 
reference.(contd) 
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Fig. 1 1.5 Response of the power system to step changes in transmission Iine real power flow reference. 



Step changes were conducted at 10 s and 12 s to the transmission line real power fIow 

reference. At 10 s, the real power flow reference was changed from 450 MW to 290 MW, 

a &op of 160 MW. Plot-2 of Fig.11.5 shows the transmission line real power flow around 

10 S. It is seen that the transmission line real power flow changes from 450 MW to 290 

MW in about 100 ms. At 10 S. the transmission line reactive power flow (plot4 of 

Fig.ll.5) does not deviate significantly from its reference value of 125 MVAR. The 

change in transmission line reactive power flow is less than 15 MVAR. Also the UPFC 

bus voltage (plot-5 of Fig. 1 1.5) which is controlled by the senes inverter does not deviate 

significantly from its reference value of 1.0 p.u. In addition, the DC link capacitor voltage 

(plot-6 of Fig. 11.5) is controlled at 60 kV by the shunt inverter. At 12 s, the transmission 

line real power flow reference is changed from 293 MW to 450 M W ,  a change in 160 

MW. Plot3 of Fig.ll.5 shows the real power flow around 12 S. It is seen thar the 

transmission line reai power flow changes from 290 MW to 450 MW in about 100 ms. 

The reactive power flow profile due to this step change are insignificant. The reactive 

power flow in the transmission line changes only by 20 MVAR for a step change in 160 

MW of real power. Further, the UPFC bus voltage and the DC link capacitor voltage 

(plot-5 and plot-6) do not Vary significantly from their reference values. 

This simulation has brought out the decoupled nature of the control strategy. 

Further, it has also shown that it is possible to control the transmission line reactive 

power flow through the shunt inverter. In addition, it has also shown that the UPFC bus 

voltage profile and the DC link capacitor voltage do not sipificantly deviate much from 

their reference value. 



b) Response to step change in receiving end voltage: 

Fig. 11-6 shows the response to a step change in receiving end voltage fiom 0.925 

p.u (18.5 kV) to 1-03 p.u (20.6 kV) without UPFC. Plots- l and plot-2 of Fig. 1 1.6 shows 

the transmission line reaI power fIow (Pl ine)  and the transmission line reactive power flow 

( Q ~ i n e )  without UPFC. The initial power flow in the transmission line is about 400 MW 

and 80 MVAR. The step change in receiving end voltage was conducted at 14 S. 
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Fig. 1 1.6 Response to step change in transmission line receiving end voltage from 0.925 p.u to 1.03 p.u. 

It is observed from plot4 of Fig. 1 1.6 that the real power changes from 400 MW to 440 

MW for a step change in receiving end voltage from 18.5 kV to 20.6 kV. The reactive 

power flow changes significantly from 80 MVAR to 4 5  MVAR (a change of 125 

MVAR) for a step change in receiving end voltage from 18.5 kV to 20.6 kV. Thus the 



above step change in receiving end voltage has significant effect on the transmission line 

reactive power. 

Plot-1 through plot-9 of Fig.ll.7 shows the transmission line real power flow (Plifie), 

transmission line reactive power flow (Qiinc), UPFC bus voltage profile (Vupfibus),  

transmission line side bus voltage DC link capacitor voltage (Vdc), shunt inverter 

reactive power (Qrh), series inverter reactive power ( Q s ~ ) ,  in-phase voltage cornponent of 

the series voltage ( V S ~ D )  and series inverter r e d  power (Psc) respectively with UPFC. The 

initiai operating conditions for this simulation is that the series inverter controls the 

UPFC bus voltage (VuPfcbus) at 1.0 p.u and the transmission Iine red power flow (Pl ine)  at 

400 M W .  The shunt inverter controls the transmission line reactive power flow (Q i ine )  at 

80 MVAR and the DC Iink capacitor voltage (Vdc) at 60 kV. 
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Fig.11.7 Response of the power system to step change in transmission line receiving end voltage from 

0.925 p.u to 1.03 p.u. (Contd.) 



12 125 13 13.5 14 14.5 15 15.5 16 

Time in seconds 

Tirne in seconds 

Plot-6 

-- 80 -,-- 1 
60 - - - L  ---- &- 

40 - ......... . ..-.. .. . .. -. . .. - ......-...-.. ....... .. ... . . .. .: ........ .. .-... . . . . . .-... ...- .. . .. ...-...... . 
*------- 20 - ----- ; - --. 

O ,  I 1 1 I n I 1 

12 12.5 13 13.5 14 14.5 15 15.5 16 

Time in seconds 

Plot4 

Figl1.7 Response of the power systern to step change in transmission line receiving end voltage from 

0.925 p.u to 1.03 p-u. (Contd.) 
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At 14 s, a step change in receiving end voltage was conducted from 10.8 kV to 20.6 kV 

(from 0.925 p.u to 1-03 p.u), It is observed from Plot-1 of Fig.11-7 that the transmission 

Iine real power flow does not change sipificantly. On the other hand, the transmission 

Iine reactive power flow (plot-2 of Fig.11.7) shows a instantaneous change in 

transmission line reactive power flow from 80 MVAR to 40 MVAR. With this sudden 

change in transmission line reactive power, the shunt inverter increases its reactive power 

(plot-6 of Fig.ll.7) instantaneously by about 60 MVAR. This is because the shunt 

inverter is contmiling the transmission Iine reactive power flow. Subsequently, the 

transmission line reactive power fiow is controued to 80 MVAR. Tt should be observed 

from plot4 of Fig.11.7 that the transmission line side bus voltage has increased form 

0.98 p.u to 1.08 pu. to keep the transmission line reactive power flow at 80 MVAR. 

Simultaneously, the in-phase component of the senes injected voltage (plot-8 of Fig. 1 1.7) 

has increased from about 0.06 p.u to 0.16 p.u., This increase in in-phase series injected 

voltage has increased the series inverter real power generation from - 6 MW to about 35 

MW (plot-9 of Fig.ll.7). This is because of the interaction between the in-phase 

component of the senes voltage and the transmission line curent- It should also be 

observed that the senes inverter reactive power (plot-7) does not show any significant 

change. With respect to the UPFC bus voltage ( plot-3 of Fig.li.7) it should be seen that 

a step increase in receiving end voltage of about 0.1 p.u causes the UPFC bus voltage to 

instantaneously increase to 1.025 p.u from its reference value of 1.0 p-u. Subsequently, 

the UPFC bus voltage is brought back to 1.0 p.u. With this kind of disturbance, the DC 

link voltage (plot-5 of Fig. 1 1.7) changes by only 2 kV which is controlled back to 60 kV 

by the shunt inverter. 



This simulation has shown that the red and reactive power flow controi has been 

decoupled. Further, it has also shown that the UPFC can be operated using this new 

control strategy. 

11.4 Power oscillation damping 

A two-machine power system with UPFC shown in Fig. 1 1.4 hâs been considered 

to study the performance of the UPFC control strategy and its control system under 

dynamic conditions. This power system was chosen over that in Fig.9.8 for the folIowing 

reason. Inclusion of the reactive power controller for the UPFC for the power system in 

Fig9.8 caused switching problems for the GTO's. The voltage sources shown in Fig. 1 1.4 

have been converted into a second order system to model them as generators. This power 

system model has been chosen to depict a two-area power system. The sending and 

receiving end voltage source has been modeled as a second order transfer function as 

given below 

The sending end voltage source parameters are al = 1.5 Hz and = 0.1. For the receiving 

end voltage source, the parameters are& =1.3 Hz and = 0.05. The input and output are 

phase angle of the sending end voltage source. This is because the second order function 

only tracks the input signal. For example, a step change of 1.0 p.u causes the output to 

reach 1.0 p.u based on the parameters W, and c. As seen the second order function with 

the above parameters represents an under damped system. 



Fig.ll.8 shows the response of the power system to a pulse change in the receiving end 

voltage source phase angle without UPFC. Plot-1 and plot-2 of Fig.11.8 shows the 

transmission Iine real and reactive power flow respectively without UPFC. PIot-1 of 

Fig.ll.8 shows the red power flow oscilfations (PI,,) in the transmission line without 

WPFC. The reactive power oscillations ( Q l i R e )  without UPFC is shown in plot-2 of 

Fig. 1 1.8. The real power flow in the transmission line (PI,,) before the disturbance is 400 

MW. The peak of the real power flow in the transmission line (Pl,) after the disturbance 

is about 550 MW. The initial reactive power flow in the transmission line (eh,) is 80 

MVAR. The positive peak of the reactive power flow (el,,) in the transmission line after 

the disturbance is about 95 MVAR. The transmission line real and reactive power flows 

(Prine,Qline) exhibit low damping. 
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Fig. 1 1.8 Response of the power systern to pulse change in receiving end phase angle without UPFC. 



Plot-1 through plot4 of Fig. 1 1.9 shows the response of the power systern with UPFC for 

the above disturbance (pulse change in receiving end phase angle). Plot-1 through plot-4 

shows the transmission line real power flow (PI,,), transmission line reactive power flow 

(Qrin3, UPFC bus voltage (VUPfCbUUr) and the DC link capacitor voltage (Vk) respectively. It 

is seen that the UPFC has completely damped the real power oscillations (plot-1 of 

Fig. L 1.9) as compared to plot- 1 of Fig. 1 1.8. Further, the transmission Iine reactive power 

fiow (plot-2 of Fig.ll.9) shows osciiIations which are about 20 MVAR. Eventually, the 

reactive power oscillations clamp out. Plot-3 of Fig. 1 1-9 shows no significant osciIlations 

in the UPFC bus voltage. The DC link capacitor voltage (plot4 of Fig. 11.9) does show 

oscillations. But these are of small magnitude of less than 2 kV. These are aiso damped 

subsequently. This simulation has shown that the new control strategy for UPFC has 

improved the damping of power oscillations. 
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Fig. 11.9 Response of the power system to pulse change in receiving end phase angle with UPFC. (Contd.) 
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Fig.ll.9 Response of the power system to pule change in receiving end phase angle with UPFC. 
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performance of the UPFC with the new control strategy has be studied based on its ability 

to track step input changes and provide power oscillation darnping. 

In the proposed control strategy, the shunt inverter controls the transmission line 

reactive power flow (Qm) and the DC Iink capacitor voltage (V&). The series inverter 

controls the transmission line real power flow (Plinc) and the UPFC bus voltage (VU~JC~US). 

Simulations conducted have validated the proposed control strategy for UPFC operating 

under step input disturbances and dynamic conditions by being able to control the UPFC 



bus voltage (VwFCbllS), real power flow in the transmission line (Pline), transmission line 

reactive power flow (Qljne) and DC link capâcitor voltage (IrdC) simultaneously. 

The advantage with this strategy is that by controlling the transmission Iine 

reactive power flow directly by the shunt inverter, the need for reactive power 

coordination controller as designed in chapter-10 is elirninated. Looking from a different 

perspective, the burden of controlling the real and reactive power flow in a transmission 

line is split between the series and the shunt inverter respectively. By doing so, the shunt 

inverter can be used to manufacture and export required quantity of reactive power to the 

transmission line. The second advantage is that one could repIace part of the shunt 

inverter reactive power capability by inexpensive shunt capacitors and help in reducing 

the cost of UPFC. 



Chapter 12 

Conclusions and Future Work 

12.0 Conclusions 

A control systemkontrol strategy for UPFC has been designed in this thesis. 

PSCAD-EMTDC cornputer sixndations have been conducted to show the improvement 

in power system damping with UPFC using the designed control systern/control strategy. 

A UPFC was constmcted using the PSCAD-EMTDC software. The three major 

components of the UPFC are the shunt inverter and its uansformers, senes inverter and 

its associated transformers, and the DC Link capacitor. A number of issues and problems 

have been encountered during the UPFC contr~l  system design process. The issues are 

c o n c e d g  the ratings of the shudseries inverters, their uansforrners and the DC link 

capacitor. These issues are discussed in this thesis. The operational problems involve the 

control system design for the integrated control of the real and the reactive power flow on 

transmission lines while sirnultaneously controlling the UPFC bus voltage and the DC 

link capacitor voltage. 



The shunt inverter of a UPFC consists of four modules. Each module is a bridge 

circuit consisting of 6 GTOs. The series inverter consists of a set of two modules. These 

two modules are for the quadrature series injected voltage and the in-phase series hjected 

voltage. Appropriate switching signals to the shunt invertex and series inverter modules 

have been implemented. The design process of the UPFC includes quantifying the rathgs 

of the shunt, series inverter/transformers and the DC capacitor. The ratings of the shunt 

and series transformers/inverters ratings have been based on the SIL rating of the 

transmission line, A rating of 160 MVA for both series and shunt inverter were used. The 

design of the DC link capacitor has been based on the amount of energy that can be 

expended due to the interaction between the senes inverter injected voltage and the 

transmission lioe current at S E  level. The DC link capacitor was rated at 60 kV,. 3000uF 

for the system studied in this thesis. 

To operate the UPFC, proper control strategy needs to be defimed to control the 

transmission line red and reactive power flow while controlling the UPFC bus voltage 

and the DC link voltage simultaneously. Subseqriently, to achieve the control strategy, 

proper control systems for the series and shunt inverters need to be designed. 

In the case of shunt inverter, to control the UPFC bus voltage and the DC Link 

capacitor voltage simultaneously, a de-coupled control system was designed. The de- 

coupled control system for the shunt inverter provides independent control loops to 

regdate the UPFC bus voltage and the DC link capacitor voltage. The design process for 

the de-coupled control system has been presented in this thesis. Proportiond-integral 

controllers were used to control the üPFC bus voltage and the DC link capacitor voltage. 

The control system design was performed on a system where an inverter was connected 



to a constant voltage source. This involved the linearintion of rhe shunt inverter constant 

voltage system. Subsequently, linear control techniques were used to quant* the control 

gains. Step response tests were conducted to show the validity of the control system 

design. 

With respect to the series inverter, the problem of low damping associated with 

the series inverter of a UPFC in controllhg the real power flow in a transmission line is 

solved using a fuzzy controlIer. The knowledge base for the fuzzy controller has been 

developed based on a logical process. The logicd process includes modeling the UPFC, 

conducting small-signal studies and subsequently performing tirne domain simulations. 

Tùne domain compter  simulations provide a great deal of informztion on which the 

rules for the fuzzy controller has been developed. A method has been developed to 

implement a fuzzy controller in PSCAD-EMTDC software. The complexity in the hzzy  

logic controller design for the senes inverter of a UPFC is two-fold. The complexity in 

the design of a fuzzy controller for the senes inverter of a UPFC lies in the fact that the 

fuzzy controller should not only improve the performance of the UPFC but also it should 

not cause instability. The instability codd anse fiom the non-coordination of the series 

inverter with the shunt inverter operation. This two-fold problem has been kept in mind 

while designing the fuzzy logic controller (FLC) for the senes inverter of the UPFC. 

Performance analysis that involves the step response and three-phase fault studies has 

been conducted to show the validity of the fuzzy control system designed. 

DC Link capacitor of a UPFC forrns a very crucial component of a UPFC. This is 

because it supplies the necessary DC voltage for the operation of both the shunt and the 

series inverter. Loss of DC voltage durhg disturbances could lead to instability and 



subsequent removal of UPFC from operation. Further, the real power demand of the 

series inverter is supplied by the shunt inverter. The real power demand of the series 

inverter arises due to the interaction between the senes inverter injected voltage and the 

transmission h e  current If the operation of the shunt inverter and that of the senes 

inverter are not coordinated with respect to real power demand of the senes inverter, it 

could lead to loss of DC voltage and subsequent removal of UPFC from operation. In 

order to facilitate proper operation between the senes and the shunt inverter control 

system, a new real power coordination controller has been developed. The coordination 

contmller provides a proper feedback between the series and shunt inverter control 

system. PSCAD-EMTDC cornputer simulations for the system under study in this thesis 

have shown that without the coordination controller, the DC link capacitor voltage drops 

to 40 kV as compared to 55 kV only with coordination controller for a three-phase fault 

disturbance. This proves the efficacy of the real power coordination controller designed. 

One other problem associated with the operation of a UPFC that h a  been 

analyzed in this thesis is associated with transmission line reactive power flow control. 

All the control strategies found in literature have used the series inverter to control the 

transmission line reactive power fiow. It has been found that the in-phase component of 

the series injected voltage used for controllhg the transmission Iine reactive power fiow 

in a transmission h e ,  has a simcant effect on the shunt inverter operation. Any change 

in reactive power flow in a transmission line, achieved by injecting an in-phase 

component of the series inverter voltage, is actudy supplied by the shunt inverter. For 

example, a request for kcrease in transmission line reactive power flow by 50 MVAR, 

which is achieved by increasing the in-phase component of the series inverter voltage, is 



acmally supplied by the shunt inverter. The in-phase component of the series inverîer 

injected voltage achially causes the UPFC bus voltage to decrease instantaneously. Shce 

the shunt inverter is generally used to control the UPFC bus voltage, any decrease in 

UPFC bus voltage is converted into an equivalent increase in shunt inverter reactive 

power. The change in shunt inverter reactive power is reflected as a change in 

transmission h e  reactive power flow. This means that the cause and the effect are on two 

different parts of the WFC. Further, any increase/decrease in transmission Line reactive 

power flow has signincant effect on the UPFC bus voltage. PSCAD-EMTDC simulations 

of the system under study in this research have shown that for an increase in transmission 

line reactive power of 160 MVAR, the UPFC bus voltage dips to about 0.95 p.u from 1 .O 

p.u. This codd cause power quality problems for custorners comected close to the 

location of UPFC. Based on the two reasons, one being that any increase/decrease in 

trmsrnission lùie reactive power flow is actually supplied by the shunt inverter and the 

other related to power quality problem, a new reactive power coordination controller has 

been proposed and designed. PSCAD-EMTDC computer simulations have shown that 

without the reactive power coordination controiier, the UPFC bus voltage varies between 

1.05 and 0.95 p.u for a step decreaselincrease of 160 MVAR in transmission line reactive 

power flow. With the reactive power coordination controller, the UPFC bus voltage 

variation has been reduced to 1.01 and 0.98 p u  respectively for a step change in 

transmission iuie reactive power of 160 MVAR. 

PSCAD-EMTDC computer simulations have been conducted with the shunt 

invener conmiling the UPFC bus voltage and the DC iink capacitor voltage and the 

series inverter controlling the transmission line reai and reactive power flow to show the 



improvement in power oscillation damping with and without the WFC. PSCAD- 

EMTDC simulations have included the real and the reactive power coordination 

controuer while c o n d u c ~ g  power oscillation damping studies. It has been found that 

UPFC enhances power oscillation damping. 

Improvement in power oscillation damping has involved the series inverter 

controlling the real and reactive power flow in the transmission LUie with the shunt 

inverter controllùig the UPFC bus voltage and the DC link capacitor voltage. With rhis 

strategy, it has been mentioned earlier that increase/decrease in the transmission line 

reactive power achieved by injecting an in-phase voltage by the series inverter is actually 

supplied by the shunt inverter. Thus the cause and the effect are on two portions of the 

UPFC. The cause being the injection of in-phase senes voltage by the senes inverter and 

the effect is seen as a change in shunt inverter reactive power. This represents an indirect 

conml with respect to transmission line reactive power flow. A new direct control of 

reactive power flow in a transmission line using the shunt inverter has been proposed in 

this thesis. In the proposed strategy, the series inverter controls the real power flow in the 

transmission line and the UPFC bus voltage. On the other hand, the shunt inverter 

controls the transmission line reactive power flow and the DC link capacitor voltage. By 

doing so, the burden of controlling the transmission line real power flow and transmission 

line reactive power flow is split between the series and the shunt inverter of the UPFC 

respectively. The advantage with this strategy is that one could replace the shunt inverter 

reactive power capability with inexpensive switched shunt capacitors and reduce the cost 

of UPFC. Further, with the proposed control strategy, the need for reactive power 

coordination controller is eliminated, PSCAD-EMTDC corn pu ter simulations have been 



perfonned to show the validity of the proposed control strategy and to show the 

improvernent in power oscillation damping. 

12.1 Future work 

The work completed in this thesis includes a complete control system design for 

UPFC and studying its performance. AU the work done till now assumed that the system 

is balanced- Power systems in generd are never baianced in the sense that the currents 

and the voltages do have negative and zero sequence components. Very little research has 

been done in the area of designing a control system and operating a UPFC under 

unbalanced condition- The future work will include the design of a control system that 

allows the UPFC to operate reliably under unbalanced power system conditions. 



Appendix- 1 

Table Al-1. Network Data for SMI33 

From Bus To Bus R X 

2 6 0.0 O,  I 

6 3 0.04675 Oi4566 

3 4 0.0 o. 1 

4 7 0.0935 0.9 132 

Table Al-2. Bus Data for SMIB 

Bus N m y p e  Bus Voltage Pgen+j Qgen Pload + j Qload 

1 (Infinite Bus) 1 .O 0.0 + j 0.0 0.0 +j 0.0 

2 ( P-V Bus ) 1.03 700 + j 0.0 0.0 +j 0.0 

3 (Load Bus) 1 .O 0.0 + j 0.0 0.0 + j 0.0 

4 (Laad Bus) 1 .O 0.0 + j 0.0 0.0 +j 0.0 

5 (Load Bus) 1 .O 0.0 +j 1% 0.0 + j 0.0 

6 (Load Bus) 1 .O 0.0 + j 0.0 2ûû+j50 

7 (Load Bus) 1 0.0 + j 0.0 0.0 + j 0.0 



A 1-3. Generator Parameters 

A 1-4. Power system stabilizer / Exciter model and parameters 

Power system stabilizer 



A 1-5. UPFC parameters 

DC link capacitor = 1000p.F 

Shunt inverter transformer is rated at 200 MVA, 230/66 kV, Xi = 0,0222 per unit, 

Series inverter transformer is rated at 44 MVA, 40169 kV, XI = 0.005 per unit. 

Sap = 48400 R. 

A 1-6. Small-signal stability analysis 

a) Generator modeling: The synchronous machine has been modeled in the d-q a i s  

frame on its rotor with two damper windings on the q axis and one darnpers on the d-ais. 

The state variables of the machine dong with its algebraic equations are as given in 

reference [36]. The mechanicd equations of the machine are 

The rotor voltage equations are given by 

= p v f d  + ' f i l i f ?  

0 = P y/,, + R l d i l i l  

0 = P y / l q  + q,, 

0 = p yzs + Rlqilq 

The stator terminal voltage equations are related to the stator fluxes by 

ed = -K#, - R,i, 

e, = y p ,  - Raiq 

The stator flux linkage equations are related to the currents by 



= -(Ld + ll)id + Lijd f Lodild 

y, = -(L, + ll)iq + L&, + LuqiZq 

The rotor flux linkages and the electromagnetic torque of the generator are 

yr = LBdi/d + Llldild - ' d i d  

Y fd = Lfliild + L f l A ~  - Lu<li~ 

VI, = 4 l,ilq + = J Z q  - L,iq 

y,, = LJ,, + L72qi2q - Laqiq 

Te = Wq -yq4 ( A  1.6.1) 

The above set of differential and aigebraic equations are linearized to obtain the machine 

state matrix in the f o m  

A X G = + BGAeMdq 

where 

and AG and BG are constant matrices. 

b) Power systern stabilizer model: The power system stabilizer is represented with two 

lead-lag blocks. The block diagram with the transfer function of the PSS is given in 

Appendix-1. The linearized equations for the PSS c m  be put in the forrn 

The corresponding state variables for the PSS are 



Linearizing equation 5.18 and combininp it with equation (A 1.6.3) and (A 1.6.3) we get 

Where 

AM and BM are constant matrices. 

c) Network modeling: The frequency range of interest in this study is between 0.1 Hz 

and 2.0 Hz. Further, to reduce the complexity of the problem formulation, the network 

dynamics have been neglected. The Ioads have been represented as constant shunt 

admittance and combined into the network admittance matrix. The network is then 

reduced to include only the machine nodes and the UPFC nodes. At this moment, a 

simplification regarding the notation of the UPFC bus voltage (VupfibUs) and the 

transmission line side Sus voltage (Vrin,) have been made for building the compIete state 

matnx. The UPFC bus voltage (Vup/cbus) has been represented as VE and the transmission 

line side bus voltage (V!,,) as VF. Linearizing the network equations we get 

U ~ Q  = KAVm, + LAVrn, + MAY,, 

Mme = OAVhmQ + PAVmQ + QAvAQ 

Md, = RAV,,, + SAVm, + UAV,D, 

Subscripts D and Q represent the network real and the imaginary axes. The network 

equations have been put in the following format where subscripts 'M', 'EF', and 'sh' 

refer to the machine nodes, the nodes between which the series inverter is placed, and the 



shunt inverter nodes respectively. Matrices K, L, M, O, P, Q, R, S and U are the 

comesponding elernents of the network admittance matrix. 

The connection matrices between the machine d, q axes and the network D. Q 

axes are given by the foIIowing equations. 

Where VD and VQ are the network voltages. The transformation matrix c m  be wntten as 

sin S 
T=[ cos 6 

sin 6 J 

Hence equation (A 1-6.6) c m  be written as 

Linearizing equation (A 1.6.8) we can write, 

The subscript O refers to the operating point at which it is Iinearised. Ts is a constant 

rnatrix, 

The machine currents in the d, q axes are related to the network frame of reference by the 

transformation T. 

i,,, = 1, sin 6 - I,, cos 6 

i,, = IMQ sin 6 t IMD cos 6 

Linearizing equation (A 1.6.10) we get 

The subscript O refers to the operating point at which it is linearized. Ti is a constant 

matrix. 



Combining equations (A 1.6.4) and (A 1.6.9) relating the machine nodes with the 

network nodes we can write 

œ 

A X M = AbrAXM + BmAVmQ (A 1.6-12) 

The shunt inverter voltage (V') of the UPFC is also split into two components. One in- 

phase (Vshp) and the other in quadrature (V51zq) with the UPFC bus voltage phasor (IfE). 

The shunt inverter voltage (Vsh)can then be expressed in the form 

= Vs, '0s + Vshq COS 6, 

VshQ = VShp sin 6, + V,, sin 6, (A 1.6.13) 

4, and 6, are the angles made by the 'p' and the 'q' axis with the network D axis. (Refer 

Chapter-4, Fig.4.4) 

Linearizing equation (A 1 -6.13) we get 

AVdDQ = SH,A6, ,  + SH2Au 

The series inverter voltage can be expressed in the form 

v,, = vsep cos 6, + vseq COS 6, 

V,, = Vsep sin 6, + Vscq sin 6, 

Linearizing equation (A 1 -6.15) we get 

AVscDp = SE1Aapq + SE,Ali 

where SH ,SH2 and SEI ,SE2 are constant matrices and 

AU = ('vShp 9 7 ~vsq  9 ~vsq 

The expression for the variable $ and 6, can be put in the form of 

sp = angle(vE) 



where VE is the voltage of the UPFC bus. 

Linearizing equation (A 1-6-17) we get 

As,, = KPCAV-Q 

where KPC is a cons tant matrix. 

It should be remembered that the variable IEme are the current injections at the 

buses between which the UPFC is connected. Refemng to the Norton equivalent of the 

UPFC mode1 as given in Chapter-4 Fig.4.3, the current injections at the bus E is given by 

jVSCmYEF and the current injection at the bus F is given by -jVsemYEF> where Y E ~ .  is the 

admittance between the bus E and F in the Norton equivalent circuit. YEF is basically the 

admittance of the series transformer. Thus the expression for the current injection at bus 

'E and F' are given by 

1.m + jIEQ = k e D  + jvseQ ) j  yEF 

SimiIarly, the current injection at the bus 'F' is given by 

I F D  + jrFQ = - ( V ~ < D  + jVscQ ) j y E F  

Linearizing equations (A. 1.6.19) and 9A. 1.6.20) we get 

MEmp = IEmp 1 AVLp 

Where IEFD~!  is a ccnstant matrix. 

Substituting for AVXDQ from equation ( A  1.6.16) into (A 1.6.2 1) we get 

MEFDQ = IEFDQ f I E ~ Q  3 b  ( A  1.6.22) 

Where Z E F D Q ~  and IEFDm are constant matrices. 



From equation (A. 1.6.5) we have 

N m Q  = OAVmQ + PAV', + QAV'm, 

Equation (A. 1.6.23) c m  be expressed as 

AVEFDQ = P - ~ ~ J , ,  - P-'oAv,,, - P-'QAV,,, 

Combining equations (A. 1 .6.14), (A. 1 -6.22) and (A. 1 -6.24) we get 

N E m Q  = VEFDQ,A& + V,,Q@ +v,,,,AvmQ 

where VEFDQl, VEFDM and LTEFDQ3 are constant matrices. 

From equations (A. 1.6.1) we can express the machine d-q axis currents as 

Ai,, = I N , U ,  + IN2Ae,,, 

where IN and are matrices. 

Equating equation (A. 1 -6. I 1) with (A. 1-6-16) and substituting for kd, from equation 

(A. 1.6.9) we can write 

NMDP = IN5AXM + IN6AVmQ 

where INS and are matrices- 

Equating equation dlnrDe of (A. 1.6.5) with (A. 1-6-27) and substituting for AVEmn and 

AVshDa from equation (A. 1.6.14) and (A. 1.6.25) we c m  write 

AVhlDQ = ' M D Q i M M  bDQ2A'pq  lxlvMDQ3Au 

where V M ~ Q l  . VMDQZ and vMDQ3 are matrices. 

Substituting for AVMDQ from equation (A. 1.6.28) in (A. 1-6-25) we can wnte 

AVEw = V E F D Q @ ~  + V'mgJu +VEmQ@Y 

where V E F D ~ J ,  VEFDQ~ and V&oQ6 are constant matrices. 

Substituting for AVEFDp in (A. 1.6.18) we can wnte 



A6, = DQ,AL~ + DQ2AXY 

where DQ, and DQZ are matrices. 

Substituting for A$, into equation (A. 1.6.14) we c m  write 

AVshDQ = S H l h  + SH4MM 

where SHjl and SH4 are matrices. 

Substituting for A& into equation (A. 1.6.16) we can write 

AV', = S E 3 h  + SE4AXM 

where SE3 and SE4 are matrices. 

Substituting for A& from equation (A.1.6.30) into equation (A. 1.6.29) we can wnte 

AVmQ = V E F D Q W ,  + VE~Q& (A 1-6-33] 

where VEFDer and VmQs are constant matrices. 

Substituting for A& from equation (A. 1.6.30) into equation (A. 1.6.28) we c m  write 

AbDP = V W Q 4 4 ,  +V,,&c (A 1.6.34) 

where VMDcZ4 and VMDQ5 are matrices. 

Linearizing equation 5.18 expressing the DC link dynamics we c m  write 

e 

AVdC = =W,hX, +W2N,,, + W,N,,, + W.AVreDQ 4- W,AV ,,,@ (A 1-6-35) 

where W, to Ws are constant matrices. IJeDQ is the network axis transmission line current. 

To find an expression for the transmission line current rsCDQ we have, 

L~~ = l ( v E D  + jVEP ) + kD + jVscQ ) - (vm + jVFP 11 (- jYEF ) (A 1 -6-36) 

Linearizing (A. 1-6-36) we get 

N ~ ~ D Q  = ~ S E D Q  IAVEFD~ + IsEDPZAVSeDQ (A 1.6.37) 



Combining equations (A. 1-6-32), (A. 1-6-33) and (A. 1 -6.37) we get 

M,~DQ = I s m ~ , m  M + ISEDQ~AL~ 

where zSEDe3 and ISEDPl are matrices. 

To find an expression for IrhDe we have from equation (A. 1.6.5) 

M,~DQ = RAVkmQ + SAVm + uAV,DQ 

Combining equations (A. 1.6.3 1 ), (A. 1-6-33), (A. 1-6-34) and (A. 1.6.39) we Cet 

M s h ~ ~  = ISHDQ I ~ M  + I S H D Q ~ ~  (A 'r -6.40) 

where IsmQI and IsHDQZ are matrices. 

Combining equations (A. 1.6.3 1 ), (A. 1-6-32), (A. 1.6.35), (A. 1-6-38), (A. 1-6-40} we get 

where w6 and W7 are matrices. 

Combining equations (A. 1.6.12), (A. 1 -6.34) and (A. 1-64 1) we c m  wnte 

A X*, = AM,\, + BAu 

where A and B are matrices. 

d) Output variables: The output variables of interest are the UPFC bus voltage (VE). the 

DC Iink capacitor voltage (Vdc), real power flow in the transmission line(Pfi,,,) and the 

transmission line side bus voltage (VF). 

AY =[AV,,~V,,@,,AV~] 

The expressions for the above variables are as given below. Since AVk is a state variable, 

there is no need for any expression for it. The expression for the UPFC bus voltage VE is 

given by 



Linearizing equation (A. 1-6-44) we c m  wnte 

The equation (A. 1.6.45) can be put in the form 

AVE = OP,AVmQ 

where OPI is a rnatrix. 

Combining equations (A. 1-6-33] and (A. 1.646) we can write 

AVE = OP2AXM +OP3Au 

where OP2 and OP3 are matrices- 

The expression for the real power flow in the Line is as given below. 

5. = V F J ,  + V F Q ~ ~ Q  

Linearizing equation (A. 1.6.48) we can write 

%r = V F D O N d  + A V F D 1 ~ O  + v F Q O N s c ~  + A V F Q r . q r ~ ~  

Equation (A. 1.6.49) cm be expressed as 

A 4 ; n .  = mbl,, + OP,AVm, 

where OP4 and OP5 are matrices. 

Combining equations (A. 1.6.33), (A. 1-6-38) and (A. 1.6.50) we can write 

M,jn, = OP,AX, t OP, Au 

where OP6 and OP7 are matrices. 

The expression for the line side voltage VF is given by 

Linearizing equation (A. 1.6.52) we can wnte 



The above equation can be put in the form 

AVF = 0P8AVmQ 

where OP8 is a matrix. 

Combining equations (A. 1-6-33] and (A. 1-6-54} we can write 

AVF = OP,AX, t OP,,& 

where OP9 and OPlo are matrices. 

The output equations can be put in the standard form 

AY = C m M  + D h  

where C and D are matrices. 

e) Controller structure and description: In this control structure, the series inverter 

controls the real power flow by injecting a controllable magnitude of series voltage (V,,) 

in quadrature with the UPFC bus voltage i.e VE. The line side bus vo!tage (VF) is 

controlled by injecting a component of the series voltage (V') in phase with the UPFC 

bus voltage. The shunt invener controls the DC link capacitor voltage by the variable 

Vshq. The UPFC bus voltage is controlled by adjusting Vh,. Four PI controllers have been 

used to control the UPFC bus voltage, DC link capacitor voltage, real power flow in the 

transmission Iine and the transmission line side voltage. The PI controllers have been 

included while forming the complete state matrix. The PI controller is given by the 

following equations [37]. 

Au = -K, (AY - Av) - KiAX, 



Where Av is the change in the reference which is zero in our case. K, and Ki are 

respectively the proportional and integral constants and are diagonal constant matrices. 

f) Closed loop state equation: Combining the following set of  equations (A.1.6.42) 

(A. 1.6.56) and (A. 1-6-57) we can wnte 

w here 

A X T  = ( ~ x ~ . M , )  

M = ( I +  DK,~' 

K, = ( I  + K,D)-' K, 

K, = (z + K,D)-' K, 

and 1 is the identity matrix. 

Closed loop stability requires that the eigen values of the matrix have negative real parts. 

A X r  = KKPtC - BK, 

- DK, 
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Appendix-2 

Table A2-1. Network Data for M b P S  



Bus NmVïype 

1 ( P-V Bus ) 

2 ( P-V Bus ) 

3 ( P-V BUS ) 

4 ( P-V Bus ) 

5 (Load Bus) 

6 (Load Bus) 

7 (Load Bus) 

8 (Load Bus) 

9 (Load Bus) 

10 (Load Bus) 

1 1 (Load Bus) 

12 (Load Bus) 

13 (Load Bus) 

14 [Load Bus) 

Table A2-2. Bus Data for MMPS 

Bus Voltage Pgen+j Qgen 

1 -03 0.0 + j 0.0 

1-01 700.0 + j 0.0 

1 .O3 700.0 + j 0.0 

1-01 700.0 + j 0.0 

1 .O 0.0 +j 0.0 

f -0 0.0 + j 0-0 

1 .O 0.0 + j 200.0 

1 .O 0.0 +j 350.0 

1 .O 0.0 + j 0.0 

1 -0 0.0 + j 0.0 

1 .O 0.0 +j 0.0 

1 -0 0.0 + j 0.0 

1 -0 0.0 + j 0.0 

1 -0 0.0 +j 0.0 

Pload + j Qload 

0.0 +j 0.0 

0.0 +j 0.0 

0.0 + j 0.0 

0.0 +j 0.0 

967.0 + j 100.0 

0.0 + j 0.0 

0.0 + j 0.0 

1767.0 + j 100.0 

0.0 + j 0.0 

0.0 + j 0.0 

0.0 + j 0.0 

0-0 + j 0.0 

0.0 + j 0.0 

0.0 + j 0.0 



A 2-3. Generator Parameters 

Each generator has the following parameters : 

&du = 1.6 

Lu, = 1.5 

Il = 0.2 

Lad = 0.835 Ladu 
Lu, = 0.835 L,,, 

Lfd = O.LO667 

r,, = 0.0005658 

L.,, =O.l 

r,, = 0.0 1768 

L,, = 0.45652 

r,, = 0.01297 

LZq = 0.05833 

r,, = 0.02 1662 



A 2-4. Power system stabilizer / Exciter mode1 and parameters 

Power s y stem stabilizer 

Each of the generators is equipped with an exciter and a PSS. 

A 2-5, UPFC parameters 

DC link capacitor = l5OOpF 

Shunt inverter transformer is rated at 200 MVA, 230166 kV, XI = 0.0333 per unit, 

Series inverter transformer is rated at 100 MVA, 40/69 kV, XI = 0.0 1666 per unit. 



Appendix-3 

Complete List of Eigen Values without WFC for MMPS 

Table A 3 4  

Real P a x t  
-55.001541 

-54.689795 
-53.951804 

-53.802533 
-13,200828 

-13,200828 

-14,582910 

-14-582910 
-3 6.409321 

-36.409321 

-32.010030 

-31 - 047178 
-16.501603 

-16.501603 
-16.677649 

-16.677649 

-1 - 766684 

-1.766684 
-1.706468 
-1.706468 
-0 - 566010 

-0 - 566010 
-3 - 778084 

-3,601547 
-3,077977 

-3 - 226662 
-1,048338 

-0,380414 
-0,000003 

-6,182976 

-0.101026 

- O ,  182533 

-0.101220 

-0 , l O l 3 l S  
-0.182309 

-s0,000000' 

-50.000000 

Imagiaary P a r t  

0.000000 

O .  000000 
O ~ 0 0 0 0 0 0  

O ,  000000 

20 . lOS l56  

-20 . lOSlS6 

16 - 710678 
-16,710678 

O .  004691 

-0.004691 

O .  000000 
0.000000 

6.261937 

-6,261937 
4,478219 

-4,478219 
11 ,308897 

-11,308897 

10 -873114 
-10.873114 

6 -011237 

-6,011237 
0.000000 

O ,000000 

O ,  000000 
o .  000000 

o .  000000 

o .  000000 
o .  000000 

O ,000000 

o .  000000 
0.000000 

o .  000000 

o.  000000 

o .  000000 

O .  000000 

O. 000000 

o .  000000 



Complete List of Eigen Values with WPFC for MiMPS 

Table A3-2 

K i g e n  NUmbsr Real P a r t  Imaginary  Part 

O - 000000 
0 * 000000 

O ~000000 
0 * 000000 

O ,000000 
O, 000000 

O, 000000 
O -000000 
18.831364 

-18,831364 

15.771713 

-15,771713 

5 -277632 

-5 -277632 

4,505802 

-4,505802 

11.401098 

-11.401098 

ll.095405 

-ll.O954OS 
10.724337 

-10.724337 
5.896302 

-5 .a96302 
0 *000000 

O, 000000 
O, 000000 
O, 000000 
0,000000 

O ,  033815 

-0,033815 

O, 000000 
O. 011402 

-0.011402 

0 , 000072 

-0,000072 

O, 000000 
O, OOOO6l 
-0.000061 

0,000000 

0,000000 

O ,000000 





Appendix-4 PSCAD-EMTDC parameters 

A 4-1. Generator parameters 



A4-2. Power system stabilizer 1 Exciter mode1 and paramekrs 

Each of the generators is equipped with an exciter and a PSS. 

Exciter 

Power system stabilizer 

K d = 9 . 5  T, =I.O+O T, =0.05 -=0.02 q z 3 . 0  T4=5-4 T'=O-O2 

A 4-3. UPFC parameters 

DC link capacitor = 3000pF 

Shunt inverter transformer is rated at 160 MVA, 345/66 kV, Xi = 0.2 per unit. 

Series inverter transformer is rated at 160 MVA, 38-1/66 kV, Xi = 0.04 per unit. 



A 4-4. Synchronous motor parameters 

900 MVA, 20 kV Synchronous motor 

X,, =0.14 

X,, = 1.445 

X,, = 0.0 

X,, = 0.0437 

X,, = 0.2004 

X, = 0.9 1 

X,, =0.106 

4, = 0.0025 

R1, = 0.00043 

4, = O . O M l  

R,, = 0.00842 

H = 1.0 
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