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Abstract 

 

In this dissertation, I examine the role that intentional descriptions play in our scientific study of the mind. 

Behavioural scientists often use intentional language in their characterization of cognitive systems, 

making reference to ―beliefs‖, ―representations‖, or ―states of information‖. What is the scientific value 

gained from employing such intentional terminology? 

 I begin the dissertation by contrasting intentional descriptions with mechanistic descriptions, as 

these are the descriptions most commonly used to provide explanations in the behavioural sciences. I then 

examine the way that intentional descriptions are employed in various scientific contexts. I conclude that 

while mechanistic descriptions characterize the underlying structure of systems, intentional descriptions 

allow us to generate predictions of systems while remaining agnostic as to their mechanistic 

underpinnings. 

Having established this, I then argue that intentional descriptions share much in common with 

statistical models in the way they characterize systems. Given these similarities, I theorize that intentional 

descriptions are employed within scientific practice as a particular type of phenomenological model. 

Phenomenological models are used to study, characterize, and predict the phenomena produced by 

mechanistic systems without describing their underlying structure. I demonstrate why such models are 

integral to our scientific discovery, and understanding, of the mechanisms that make up the brain. 

With my account on the table, I then look back at previous accounts of intentional language that 

philosophers have offered in the past. I highlight insights that each brought to our understanding of 

intentional language, and point out where each ultimately goes astray. 

I conclude the dissertation by examining the ontological implications of my theory. I demonstrate 

that my account is compatible with versions of both realism, and anti-realism, regarding the existence of 

intentional states. 
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Chapter 1 

Introduction 

The pioneering neuroscientist Santiago Ramón y Cajal famously claimed that ―to know the brain […] is 

equivalent to ascertaining the material course of thought and will, to discovering the intimate history of 

life in its perpetual duel with external forces‖ (1937). In other words, with the age of substance dualism 

largely behind us, the quest for understanding the human mind has become a quest for understanding the 

human brain. We know that the brain is a massively complex system composed of neurological and 

physiological mechanisms, and so the question becomes: what is our best scientific method for learning 

about such a system? 

 Given the mechanistic nature of the brain, it seems reasonable to conclude that the best method 

for learning about the brain, and thus the mind, is to make sense of the physical mechanisms that 

constitute it. This mechanistic project of analyzing neurological phenomena, however, seems to be in 

sharp contrast with our more traditional means of making sense of the human mind: in terms of contentful 

mental states such as beliefs, desires, wants, fears, hopes, dreams and intentions. Unlike these contentful 

mental states, physical mechanisms appear to be devoid of content or purpose. They are merely physical 

objects obeying physical laws. As a result, this new mechanistic interpretation of the mind appears, at 

least prima facie, to be in conflict with the more traditional accounts. This conflict between the old and 

new way of understanding mental phenomena has led a number of philosophers to suggest that the 

traditional mental states account of the mind is simply rooted in a pre-theoretic folk understanding of the 

mind. This folk account is to be contrasted with the more scientific understanding of it in terms of 

physical mechanisms. 

This distinction has given birth to a long running debate in the philosophy of mind regarding what 

role (if any) folk psychology currently has in our new scientific understanding of the mind. How does our 

previous account of contentful mental states fit into the more recent mechanistic story of the mind that has 
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emerged in the past century? Implicit in much of contemporary philosophy of mind is the assumption 

that, in order for the traditional mental state account to remain important to science (as opposed to being 

merely a heuristic for day-to-day purposes), we must either find a way to reduce contentful mental states 

to physical mechanisms, or provide a story about how such mental states emerge from physical 

mechanisms. In an important sense, I propose that neither of these options are correct. 

The distinction between contentful mental states, and physiological mechanisms, is not 

necessarily a metaphysical one that requires an emergent or reductive story to connect mental states to 

physical mechanisms, but is instead an interpretative one. In other words, we can choose to interpret 

people in terms of physical mechanisms, or in terms of contentful mental states. This gets us to the crux of 

the issue: if we are systems made up of physical mechanisms, then what scientific value is there in 

adopting a mental state interpretation, as opposed to a mechanistic one? 

If interpretations of systems in terms of contentful mental states are truly rooted in folk 

psychology, then this implies that whatever value this interpretation has is primarily limited to colloquial 

contexts. I will demonstrate that this is incorrect. I propose that our interpretation of systems in terms of 

contentful mental states acts as a particular sort of scientific tool that is commonly employed in the study 

of complex systems, and is essential if we want to learn about the physical mechanisms that make up the 

human brain. 

In order to show this, it is first important to provide a better understanding of what differentiates 

the two kinds of interpretations (mental state/mechanistic). As I will show, it is not that one is part of 

―folk‖ psychology, while the other is part ―scientific‖ psychology. Instead, it is that one describes systems 

in terms of states with intentionality, while the other describes systems in terms of causally interacting 

physical mechanisms. While mechanistic descriptions characterize systems in terms of the structured 

organization and interaction of their constitutive parts, intentional descriptions characterize systems in 

terms of having contentful states that are about other things (more on this below). 
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In this dissertation, I will argue that both types of descriptions (intentional and mechanistic) have 

essential pragmatic benefits in our scientific study of the mind. I propose that intentional descriptions 

ultimately behave within scientific practice as a kind of scientific model. Specifically, they function as a 

type of phenomenological model.
1
 Phenomenological models primarily characterize or describe some 

phenomenon without attempting to decompose it into parts and operations for better understanding. 

Intentional models, in virtue of being phenomenological models, have profound methodological benefits 

to our scientific study of the mind. They allow us to generate predictions of systems when we do not 

understand their underlying mechanisms; they can be used to see patterns in behaviour that other sorts of 

scientific models (including mechanistic models) miss; and they allow us to see similarities in behaviour 

that exist across various mechanistic systems. All of these play an essential role in the discovery and 

understanding of the physical mechanisms that make up the brain. As a result, I propose that intentionality 

is best thought of as a feature of certain scientific models that are crucial in our discovery, and 

understanding, of unknown neurological mechanisms. 

It is worth clarifying a few points regarding my use of the term ―model‖ here. The term ―model‖ 

is used in many different ways in science, but the sort that I will focus on in this dissertation is the sort 

that Carl Craver calls a ―representational model‖. These are models that 

 

 …scientists construct as more or less abstract descriptions of a real system. […] The skeletal 

 account [of a representational model] is as follows. Take some feature (T) of a target system. T 

 might be a static property of the system or it might be characterized as a mapping from inputs (or 

 sets of inputs) onto outputs (or sets of outputs) implemented by a system. […] Modeling T 

 involves constructing an algorithm or function (S) that generates a mapping from inputs onto 

 outputs that is reasonably similar to T. The algorithms or procedures might be implemented in 

 physical systems, written in computer programs, captured in mathematical equations, or sketched 

                                                   
1 It should be noted that ―phenomenological model‖ in this context has no direct connection to the philosophical 

domain of Phenomenology. Instead, I use the term as it is commonly employed in scientific domains like 

neuroscience and physics. 
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 in block and arrow diagrams. All that matters is that (i) for each input (or set of inputs) in T there 

 is a corresponding input (or set of inputs) in S, (ii) for each output (or set of outputs) in T, there is 

 a corresponding output (or set of outputs) in S, and (iii) for each input–output relation in T there 

 is a corresponding input–output relation in S. (Craver 2006, pp. 356-357) 

 

 Given this definition, a mechanistic model is one that characterizes the input-output relation of T 

in terms of the physical interacting mechanisms that transform the input into the output (for more details, 

see Section 2.2). Meanwhile, a phenomenological model is one that attempts to characterize and/or 

predict the input-output relation in ways that remain completely agnostic as to the structural features of 

the system that bring about the output given the input (for more details, see Section 6.1.3.). 

 It should also be noted that many current philosophical debates regarding the metaphysical nature 

of scientific models will be largely ignored in this dissertation. For instance, the question of whether 

scientific models are direct descriptions of the world, or are abstract objects that mediate between our 

scientific theories and the world, is a question I will not address. While a great deal of philosophical 

debate currently surrounds these issues, they are tangential to my overall project. As a result, I will not 

delve into them. 

To fully flesh out my project, it is best to begin in this chapter with an explanation of why the 

folk/scientific distinction as it is understood above does not appropriately capture the distinction between 

mental state descriptions, and mechanistic descriptions.
2
 Instead, the relevant distinction is between 

descriptions of systems in terms of states with intentionality, and descriptions of systems in terms of 

physical mechanisms. Expanding on this idea, I then provide a clear set of criteria for distinguishing 

intentional descriptions of systems from other sorts of descriptions.  

With this criteria for intentional language set, and with my proposed goal in mind, I will then 

briefly situate my position amongst others on the philosophical playing field. Once this general 

                                                   
2 This is not to say that there is no useful distinction between folk and scientific psychology however (see below). 
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foundation is in place, I will lay out a road map for the rest of the dissertation, which will demonstrate the 

value and importance of intentional language to science. 

1.1 Where the Folk and the Psychology Mix 

As philosophers, we are cautioned early on about the dangers of trusting our uninformed intuitions. The 

way things seem to be can often be misleading, and without some rigorous means of keeping our 

intuitions in line, they will often lead us astray. Consider our pre-theoretical intuitions about physics. Our 

everyday intuitive understanding of physics tells us that heavier objects fall faster than lighter ones, and 

that a dropped object always falls straight down. Yet these accounts, despite seeming so intuitive, have 

proven false. This has led many to draw a distinction between folk notions of physics, and scientific 

notions of physics. The counter-intuitive scientific findings of quantum mechanics can be sharply contrast 

with our incorrect, yet highly intuitive, folk notions that, for example, everything that goes up must come 

down. 

 In a similar vein, there are many philosophers that draw a sharp distinction between folk and 

scientific accounts of psychology. Before there existed anything like a rigorous neuroscience or cognitive 

science, we colloquially explained and predicted each other‘s behaviour in terms of things like beliefs, 

desires, intentions, hopes, and fears. We understood that one runs from an assaulter because one fears for 

one‘s life, has a desire to escape, and a belief that one can escape by running. Yet, as scientific fields 

dedicated to the study of mind emerged, a different type of vocabulary came with it. Scientific disciplines 

like neuroscience were far more likely to predict and explain human behaviour by appealing to things like 

chemical interactions, patterns of activation, and physiological mechanisms, than they were in terms 

beliefs, desires, or fears. The discrepancy between these explanations was accounted for by many in terms 

of their belonging to different realms. Things like ―beliefs‖, ―desires‖, ―intentions‖, ―hopes‖ and ―fears‖ 

were all considered to belong to the realm of the folk, and not the scientific, psychology. As a result, these 
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mentalistic terms became synonymous with ―folk psychology‖. This is why philosophers like Stephen 

Stich claim that, 

  

 In our everyday dealings with one another we invoke a variety of commonsense psychological 

 terms including ‗believe‘, ‗remember‘, ‗feel‘, ‗think‘, ‗desire‘, ‗prefer‘, ‗imagine‘, ‗fear‘, and 

 many others. The use of these terms is governed by a loose knit network of largely tacit 

 principles, platitudes, and paradigms which constitute a sort of folk theory. Following recent 

 practice, I will call this network folk psychology. (1983, p. 1) 

 

 This distinction between ―folk‖ and ―scientific‖ explanations in psychology may seem 

straightforward, but we must be cautious how we use these classifications. To demonstrate, let us return 

for a moment to folk physics. Consider that in folk physics, we often use concepts like time and motion in 

our explanations and predictions of things. From this, ought we to infer that such terms are only folk 

physical terms? That they ought to be relegated to the realm of the folk, and have no role whatsoever in 

scientific physics? That cannot be correct, since rigorous scientific physics does make reference to both 

time and motion. 

 What then makes one account a folk account, and the other a scientific one? It cannot be that one 

only employs folk terminology while the other employs scientific terminology, since the same terms can 

be found in both accounts. If we carry this over to the realm of psychology, the same lesson seems to 

apply. We cannot claim that terms like ―beliefs‖ and ―desires‖ are not part of scientific psychology unless 

we can show that no scientific study of the mind ever employs them. Yet, even if neuroscientists and some 

cognitive scientists do not, some cognitive scientists clearly do, as do behavioural psychologists, clinical 

psychologists, and developmental psychologists. To merely stipulate that they are not really doing 

scientific psychology because of the terms they employ is akin to telling physicists that they are not really 

doing scientific physics because they make reference to ―time‖ and ―motion‖. 
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As a result, we can conclude that it is not the terms themselves that make an account ―folk‖ as 

opposed to ―scientific‖.
3
 What then is the contrast between folk and scientific theories of psychology? 

Perhaps the contrast is best understood in terms of conflicting explanations of the same phenomenon? If 

mechanistic neuroscientific explanations (which do not appear to make reference to classic mentalistic 

terms) and ―folk psychological‖ explanations (which do) cannot be reduced from one to another, then we 

seem to have conflicting explanations of human behaviour. Given that neuroscience has proven to be a 

more successful project, we can relegate mentalistic terms to the realm of the folk.  

But this story is not plausible either. We cannot use ―folk‖ synonymously with ―incorrect‖, since 

many rigorous scientific theories have proven to be false as well. Consider that Newtonian mechanics has 

been supplanted by quantum mechanics as the more successful project of physics. Do we imply from this 

that Newtonian physics is folk physics? Or more problematic still: if we suppose that quantum mechanics 

is supplanted by a better physical theory in the future, do we conclude from this that quantum mechanics 

was folk physics all along?  

Ultimately, the distinction between folk accounts and scientific accounts is not one of 

terminology and incorrect theories, but of the role that terms play in scientific practice. Concepts are 

―folk‖ when they are not embedded in scientific theories and practices, and they are scientific when they 

are. As Bas Van Fraassen points out, ―to ask that [explanations] be scientific is only to demand that they 

rely on scientific theories and experimentation, not old wives‘ tales‖ (Van Fraassen 1980, pp. 129-130). If 

we apply this lesson to psychology, then we must acknowledge that the conclusions reached by 

behavioural and developmental psychologists are based on scientific theories and experimentations (they 

certainly do not base their findings on old wives tales), despite their common employment of so-called 

folk psychological concepts like ―beliefs‖, ―desires‖, and ―intentions‖. What is important to note from this 

                                                   
3 One might point out that ―time‖ and ―motion‖ mean different things when invoked in folk contexts as opposed to 

scientific ones. This may be so, but the lesson should equally apply to psychology. If psychologists do make 
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is that classic mentalistic terms are not folk psychological in and of themselves, but only when embedded 

in folk (i.e., non-scientific) explanations or contexts.  

1.2 From Folk Accounts to Intentional Accounts 

Given the reasons above, I propose not to use the folk/scientific distinction when contrasting mentalistic 

vocabulary (like ―beliefs‖) with mechanistic vocabulary (like ―the spiking of neurons‖), since the 

divisions of one do not necessarily reflect the divisions of the other. That being said, there is a distinction 

between mentalistic and mechanistic vocabulary. Philosophers are correct in calling to our attention the 

fact that descriptions in terms of ―beliefs‖, ―desires‖, ―hopes‖, and ―fears‖ are importantly different from 

descriptions in terms of physical objects and their causal interactions. Specifically: beliefs, desires, hopes 

and fears are all about or directed towards other things. Put another way, mentalistic descriptions 

interpret systems as having states with intentionality. 

 The term ―intentionality‖, re-introduced to modern psychology and philosophy by Franz 

Brentano, is used to refer to this ―aboutness‖ of our mental phenomena. According to Brentano: 

 

 Every mental phenomenon is characterized by what the scholastics of the Middle Ages called the 

 intentional (also mental) inexistence of an object, and what we could call, although not in entirely 

 unambiguous terms, the reference to a content, a direction upon an object (by which we are not to 

 understand a reality in this case), or an immanent objectivity. Each one includes something as 

 object within itself, although not always in the same way. In presentation, something is presented, 

 in judgment something is affirmed or denied, in love loved, in hate hated, in desire desired, etc. 

 (Brentano 1970/1874, p. 119-120) 

 

                                                                                                                                                                    
reference to ―beliefs‖ and ―desires‖ (among other mental states), then we might conclude that they mean different 

things than their folk counterparts, but not that belief-desire talk is itself only folk psychological. 
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  With this in mind, I propose that to describe someone using mentalistic vocabulary like 

―believes‖, ―desires‖, ―hopes‖, or ―fears‖ is to describe them using an intentional language.
4
 But what 

exactly distinguishes intentional language from other sorts of language? I propose the following list to 

help clarify this distinction: 

 

1) Intentional language characterizes systems in terms of states with aboutness. 

 

The most obvious and straightforward criterion is that they describe systems in terms of having internal 

states that are about other things. Keep in mind that for our present purposes, this condition does not 

presuppose that a system ―really‖ has content or not. It merely claims that describing a system using 

intentional language involves talking about the system as though it has internal states that are directed 

towards other things. 

 

 2) Intentional language can often be structured as propositional attitudes. 

 

One of the defining features of intentional language, as originally noted by Bertrand Russell, is that 

intentional descriptions can often be structured as though they pick out a relation between a person and a 

proposition. For example, my belief that it is raining outside can be understood as a relation between 

myself and the proposition ―it is raining outside‖. For this reasons, intentional descriptions are considered 

by many to be propositional attitudes (i.e., attitudes we have about propositions) 

 There are a few points worth noting here. First, this feature of intentional language does not 

commit one to any metaphysical story about the nature of propositions. One need not be a realist about 

                                                   
4 By ―intentional language‖, I do not mean an alternative to natural language. Following Sellars (1956), I propose 

that science is often conducted within a given natural language. By intentional language, I mean only a particular 

sort of linguistic device (one which employs sentences with a particular structure, or terminology of a certain sort). 
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propositions to accept this point. In other words, I am not claiming that intentional states really are 

relations between individuals and propositions (whatever they may be). I am claiming only that 

attributing an intentional state to a person can often be conveyed in the form of a sentence that structurally 

resembles a relation between a person and a proposition. 

 Second, this feature of intentional language similarly does not commit one to the idea that 

intentional content must always be sentential. The fact that we can use a proposition to characterize the 

content of one‘s mental state does not mean one is ipso facto committed to some variation of the 

Language of Thought Hypothesis. We may have plenty of reasons to think that mental content is not 

sententially structured. The present point is simply that we can often use a proposition to characterize this 

content for our purposes. 

 

3) Intentional content can misrepresent, or represent things that do not exist. 

 

A third defining feature of intentional language is that any account of a system in terms of intentional 

states must allow for the possibility of error. It is always possible for an attributed intentional state to 

misrepresent the world. For instance, I might believe it is raining outside even when it is not. In this sense, 

intentional states can be false. A related point is that it is also possible for an attributed intentional state to 

be about something that does not genuinely exist. I might, for instance, have a mental representation of 

Santa Claus even though no such person exists in the world. 

 

4) Intentional language is often considered to be normative. 

 

Philosophers such as Willard van Orman Quine (1960) and Daniel Dennett (1987) note that another 

defining characteristic of intentional language is that it is rooted in assumptions of rationality. In other 
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words, describing a system in terms of intentional states can only be informative if we assume that the 

system is rational. Making sense of a system‘s behaviour in terms of its intentional states implicitly 

involves making a claim regarding how the system ought to behave given the rational interconnections of 

its intentional states. If a person acts irrationally, on the other hand, it becomes virtually impossible to 

make sense of their behaviour in terms of attributed intentional content. 

As a simple example, imagine someone who is irrational in virtue of explicitly believing two 

blatantly contradictory propositions (‗p‘ and ‗-p‘). If we attribute a belief in both propositions to the 

person, then we are no better off than attributing a belief in neither. In either case we are left wondering 

what it is that the person really believes regarding p. As Stich notes, ―when a person is that different from 

us, we are inclined to think that there is just no saying what he really believes‖ (1983, p. 101, emphasis in 

text). And given this, there is no way to make sense of the system‘s behaviour in terms of this intentional 

content. As a result, intentional descriptions are deeply intertwined with assumptions of the rationality of 

the system. 

 

 5) Intentional language can display referential opacity 

 

Many consider a relevant feature of intentional language to be that such descriptions are referentially 

opaque. With many sentences of natural language, you can exchange a proper name with a co-referring 

name without changing the truth-value of that sentence. For example: if it is true that ―The Morning Star 

is the second closest planet to the sun‖, then it is also true that ―The Evening Star is the second closest 

planet to the sun.‖ Given that ―Morning Star‖ and ―Evening Star‖ both refer to the planet Venus, we can 

exchange one for the other salva veritate. One exception to this rule is when the proper name is part of a 

proposition embedded in a propositional attitude. For example, the sentence ―Benjamin believes that the 
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Evening Star is the second closest planet to the sun‖ may be false even though the sentence ―Benjamin 

believes that the Morning Star is the second closest planet to the sun‖ may be true. 

There are a couple of things to note about this criterion. First, intentional descriptions are not the 

only types of descriptions in which referential opacity occurs. And second, many instances of intentional 

attribution do not necessarily lead to a change in truth-value when replacing co-referring names. There are 

many instances of intentional descriptions where this does occur, however, and this is a feature not found 

with many other types of descriptions (like mechanistic descriptions). 

 It is my intention to show that intentional language, understood in this way, behaves within 

scientific practice as a kind of phenomenological model. One that is an essential component in our study 

of the mind. 

1.3 A Very Broad Look At The Philosophical Playing Field 

Before delving into my own account, it is helpful to get a sense of the different philosophical views 

regarding intentional language that have been offered over the past few decades. While I propose that 

intentional language plays an integral role in our study of the mind, others have argued that it provides no 

real scientific value (Churchland 1981; Stitch 1983). According to this type of view, intentional language 

is rooted in an outdated, and soon to be displaced, theory of the mind. 

On the other side of the philosophical spectrum are those who propose that intentional language 

characterizes a genuine metaphysical property of minds (their genuine aboutness), and as a result, they 

insist that a proper scientific account of the mind must explain how physical mechanisms can bring about 

the intentionality of the mental. John Searle (1980, 1992), for instance, proposes that intentionality is an 

emergent property of certain types of biological systems. Meanwhile, Jerry Fodor (1998) proposes that 

there are nomological laws which connect certain kinds of physical states to the things that they are about, 

whenever the appropriate functional conditions are met. 
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As I progress through this dissertation, I will demonstrate why assuming positions on either side 

of this spectrum, before investigating how intentional language is used within scientific practice, is ill-

advised (see Section 2.4). Moreover, when we examine the way intentional language is genuinely used by 

scientists, we find that none of these accounts are vindicated by actual scientific practice (See Section 4.1, 

4.2, and 4.3). 

In contrast to the positions above, the philosopher Daniel Dennett proposes that we should 

evaluate intentional language based on the pragmatic benefits of its usage, as opposed to whether it 

correctly identifies some metaphysical phenomenon of aboutness. He suggests that intentional language 

acts as a kind of predictive framework that we employ for interpreting the behaviour of systems (Dennett 

1971; 1987; 1991a; 2007). This framework, which he calls the ―intentional stance‖, employs intentional 

descriptions as a means of predicting how different kinds of systems will behave. By assuming a system 

is rational, we can predict the sorts of things it will do based on the rational interconnection of the 

intentional states that we attribute to it. 

Dennett proposes that we adopt one of three different stances whenever we predict the behaviour 

of systems. The intentional stance is one such stance. The second is what he calls the physical stance, 

which predicts systems by applying known physical laws to the component parts of the system. The third 

is the design stance, which predicts systems by appealing to their designed function. 

 Recall that the account I will argue for in this dissertation is that intentional language functions as 

a sort of phenomenological model. In this regard, the picture I paint will appear, at first glance, to be 

remarkably similar to the account offered by Dennett. Phenomenological models are commonly used to 

predictively model systems when we are unable to identify their underlying causal mechanisms. In a 

similar vein, Dennett proposes that we adopt the intentional stance in order to generate predictions of 

systems, often when we cannot identify their underlying mechanisms. And so it seems that the general 

point I wish to make has already been made. 
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 Despite appearances, however, my aim in this dissertation is not to re-affirm Dennett‘s account. 

While the broad strokes of Dennett‘s theory (that intentional descriptions are used as a predictive tool) are 

on the right track, many of the details are not. Much of what Dennett assumes about the intentional 

stance, and its role in scientific practice, are deeply problematic. Dennett, for instance, proposes that the 

intentional stance is primarily used as a heuristic device in everyday contexts, but that its value to 

scientific practice is rather limited (1987, p. 350). Given their normative component, intentional 

descriptions presuppose (but provide no scientific explanation for) the rationality and intelligence of the 

systems being predicted. In this respect, he proposes that intentional descriptions are ―vacuous as 

psychology‖ (Dennett 1971, p. 99). 

 I propose that intentional language is far more important to the sciences of the mind than Dennett 

realizes, and that his framework of ―stances‖ does not reflect actual scientific methodology. The first 

thing to note is that Dennett`s distinction between predictive ―stances‖ (intentional/design/physical) does 

not cut along the same lines as the distinction between different scientific models 

(phenomenological/mechanistic). Our use of mechanistic models, for instance, can fall under more than 

one of Dennett's predictive stances (it can act as the physical stance, and the design stance, depending on 

how abstractly we describe the mechanism); and there are many kinds of commonly used scientific 

models that do not seem to fall under any of Dennett‘s stances (like our use of statistical models). A shift 

from stances to models betters fits with actual scientific methodology, and allows us to better understand 

the way in which we employ different types of linguistic tools in scientific contexts.  

 Even more problematic is the fact that many of Dennett‘s claims regarding the benefits and 

drawbacks of his three stances are not borne out by actual scientific practice. He insists that the physical 

stance will, at least in principle, always work to predict the behaviour of systems. Yet there is no type of 

description in science that has such a virtue. Similarly, his reasons for denying intentional descriptions an 

important place in scientific practice would force him to likewise discard many commonly used scientific 
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models that are invaluable to scientific practice, and which would fall under his conception of the 

physical stance (see Section 9.5 for a more exhaustive review of Dennett‘s theory). 

 My goal in this dissertation is therefore not to re-affirm Dennett‘s position, but instead to develop 

a novel account of intentional language that will ultimately vindicate certain parts of Dennett‘s view, 

while rejecting others. In a similar fashion, I will demonstrate how the account I propose also vindicates 

aspects of other major philosophical accounts of intentional language (such as functionalism, eliminative 

materialism, anomalous monism, and the co-evolutionary research ideology), while highlighting the 

aspects of those theories that ought to be discarded. Once my own account is on the table, I will provide 

an in-depth analysis of these philosophical positions in order to demonstrate how my account stacks up 

against those that have come before (see Chapter 9). First, however, it is important to understand the road 

I plan to take in order to flesh out my account, and the motivation for it. 

1.4 The Shape of Things to Come 

What benefits, if any, does intentional language bring to our scientific understanding of the mind? The 

remainder of this dissertation is dedicated to providing a clear answer to this question. The following 

breakdown of chapters highlights the path I plan to take to get us to that answer: 

 If we are interested in the role that intentional language plays in our scientific explanations, it is 

important to begin with an analysis of scientific explanation more broadly. And so in Chapter 2, I discuss 

the nature of scientific explanation, and an important pragmatic component to it. I propose that different 

sorts of descriptions can count as scientific explanations depending on the context one is working in, and 

the particular sort of question one is interested in answering. With this in mind, I examine what it means 

to provide a scientific explanation in the sciences of the mind specifically (as opposed to scientific 

domains such as physics). I suggest that the type of description (or model) typically considered 

explanatory within the sciences of the mind are mechanistic descriptions. From there, I look at the 

question of whether an intentional account of mental states is in conflict with a mechanistic understanding 
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of the brain. Ultimately, I conclude that the answer depends on the ontological story that one adopts 

regarding the nature of intentionality. If, on the other hand, we are concerned with the value of intentional 

language to scientific practice, then we must try to leave our ontological commitments at the door, and 

look instead at the way in which such language is actually being used in scientific contexts. While many 

philosophers have traditionally proposed that intentional language is used to characterize some unique 

ontological phenomenon of the mind (its genuine aboutness), I propose that actual scientific practice may 

not reflect this. 

 Building on this idea, I demonstrate in Chapter 3 that we find intentional language being used by 

scientists in domains not dedicated to the study of the mind, lending credence to the idea that its use in 

science is not necessarily to identify some unique ontological property of minds. As a particular example, 

I look at the way in which biologists attribute information to genes. I demonstrate that this use of the term 

―information‖ cannot be understood in the more technical senses associated with communication theory, 

and instead is best understood as an intentional term. 

 With this established in Chapter 3, I will have examples of intentional language being used both 

within the sciences of the mind (such as in psychology) and without (such as in biology). In Chapter 4, I 

look at what, if any, scientific benefits connect these different uses of the language together. I look at 

various possibilities and conclude that intentional language does have a scientific benefit, and that this 

benefit is one of prediction. Moreover, that this predictive value is not contingent on whether intentional 

descriptions denote (or abstractly describe) sub-personal physical mechanisms working within systems. In 

other words, intentional descriptions do not predict in virtue of abstractly describing the functioning of 

certain mechanisms working within the system that generate its behaviour. While we do, on occasion, 

find that attributed intentional states correspond to particular mechanisms working within the system, it is 

not in virtue of this correspondence that intentional models are predictive. 
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 In Chapter 5, I provide evidence for this claim with an example from psychology. I argue that 

many intentional concepts used in traditional psychology, such as ―beliefs‖ and ―intentions‖, do not 

correspond to, or describe the functioning of, any particular type of physical mechanism working in the 

brain. However, there is empirical evidence that psychological models which employ such concepts are 

genuinely predictive. As an example, I look at the Theory of Planned Behaviour, and its documented 

predictive successes in psychology. This, I propose, demonstrates that the predictive value of intentional 

language is not based on its characterization of the structure, or mechanisms, of the system being 

predicted. 

 The fact that intentional language predicts systems while remaining agnostic as to their 

mechanistic underpinnings is a feature that other sorts of scientific models share as well. Specifically, this 

is a defining characteristic of phenomenological models. Such models are defined by their ability to 

usefully characterize or predict systems while ignoring the system‘s underlying structure or mechanisms. 

A prime example of this type of model in science is a statistical model. In Chapter 6, I argue that 

intentional models are best thought of as being a type of phenomenological model, and I demonstrate this 

by highlighting the numerous similarities that exist between our use of intentional models and our use of 

statistical models in science. While the two models have different ideal contexts for their application, they 

are a similar sort of scientific tool; one that is an essential part of our study of the mind. 

 In Chapter 7, I look at possible differences between intentional models and statistical models that 

might threaten the inclusion of intentional models into the class of phenomenological models. I argue that 

the differences that exist between the two types of models are not sufficient to deny that intentional 

models work fruitfully within science as a type of phenomenological model. 

 Having established what sort of scientific tool intentional descriptions are, I then turn in Chapter 

8 to broader issues regarding the role that intentional models (understood as phenomenological models) 

have in our study of the mind more generally. I argue that intentional models have a profound 
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methodological role in our study of the mind. They allow us to generate essential predictions in contexts 

where other sorts of predictive tools are not available, or are uninformative. They similarly allow us to see 

similarities that exist across different mechanistic systems. This information puts crucial constraints on 

what the mechanisms of the brain must be like, and in what contexts they function. In this respect, 

intentional models play a huge pragmatic role in our ability to learn about the mechanisms of the brain, 

and thus in generating a mechanistic explanation of the mind.  

Similarly, this pragmatic benefit is in no way contingent on the reducibility of the objects in an 

intentional model (like ―beliefs‖ or ―mental representations‖) to the objects in a mechanistic one. The 

question of reduction is irrelevant to the question of whether these models have methodological value to 

science. What matters are the pragmatic benefits that employing these models bring to our scientific 

practices, and the way they inform our understanding of the brain (and thus the mind). As a result, very 

little about the importance of such models in science hangs on the truth or falsity of reductionism. In a 

similar vein, I propose that the often debated question of whether the objects and categories postulated by 

psychology can reduce the objects and categories of neuroscience is irrelevant to the question of whether 

psychology characterizes important features of human interaction and behaviour which informs and 

constrains our study of neurological mechanisms. 

In addition, it may also be the case that the complexity of the phenomena under investigation (the 

vastly complex system that is the human brain) may be such that no one particular type of scientific 

model may be sufficient in isolation to represent all features of it required for all our scientific purposes. 

In which case, intentional models may be more than just a methodological tool for generating mechanistic 

explanations; they may also be essential for representing certain aspects of mechanistic systems (e.g., 

behavioural regularities) that other sorts of models are unable to capture or identify. Different scientific 

models distort, emphasize, or abstract out, different features of systems being represented, and so the way 
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intentional models represent systems may be informative in a way that other sorts of models (like 

mechanistic models) are not. 

 With my story of the role that intentional language plays in science finally on the table, I take a 

historical look back in Chapter 9 at the different views regarding intentional language that have been 

offered by philosophers in the past. I demonstrate that many of these accounts helped to identify 

important features of intentional language, even if the accounts themselves ultimately went astray. 

 Lastly, in Chapter 10, I conclude by briefly examining what the ontological implications of my 

account are. I demonstrate that my account does not necessarily commit me to any particular ontological 

or metaphysical story regarding intentional states. To emphasize this, I highlight a number of different 

realist and anti-realist positions that are compatible with the account I provide. Regardless of whether 

one chooses to include intentional states in one‘s ontology, the methodological value of intentional 

language is in no way threatened. The value of such language to science is substantial, regardless of 

whether we choose to deem the objects they postulate ―real‖ or not. 
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Chapter 2 

Explanations, Intentionality, and Ontology 

In order to understand the place of intentional language in our scientific study of the mind, it is prudent to 

begin with some general claims regarding scientific explanation, and the sciences of the mind, more 

broadly. Assuming that we reject substance dualism, how is it that the sciences of the mind scientifically 

explain mental phenomenon? And how does intentional language relate to such explanations?  

In this chapter, I will attempt to address these questions in order to set the stage for the project 

ahead. Addressing these questions will first require saying something briefly about the nature of scientific 

explanation, and its important pragmatic features. Once this is done, I will be able to turn to the sciences 

of the mind in particular, and determine what counts as an appropriate explanation in those domains 

specifically. Lastly, I will turn to the question of intentionality. Do intentional descriptions fit into a 

mechanistic framework? Why has intentionality been considered a problem for such mechanistic accounts 

in the past? 

2.1 The Nature of Explanation 

What exactly constitutes a scientific explanation? In the mid-20
th
 century, Carl Hempel and Paul 

Oppenheim (1948) proposed that we can provide scientific explanations through the use of deductive 

arguments involving claims about known universal laws. This interpretation of explanation, called the 

deductive-nomological (DN) model (also sometimes called ―covering-law‖ explanations), held a great 

deal of sway during the mid and late 20
th
-century. 

While initially intuitive, the DN model has come increasingly under fire in recent years. Due to 

asymmetries in explanation, there are many cases which satisfy the DN model yet are nevertheless 

considered unexplanatory. To borrow an example from Bas Van Fraassen (1980, p. 104), suppose that a 

barometer falls exactly when there is a storm coming (and suppose we can identify a law-like relation that 
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guarantees this). Suppose we then construct a deductive argument at time t which concludes, based on the 

barometer, that a storm is coming. Even though this satisfies the DN requirement for an explanation, we 

do not think that the oncoming storm is explained by the barometer falling. On the contrary, the 

barometer‘s falling is explained by the oncoming storm. Such examples are numerous in science (Van 

Fraassen 1980; Salmon 1989, p. 47). 

To make matters worse, there are also clear cases in which we provide scientific explanations 

even though we cannot identify universal physical laws (Woodward 2000, Bechtel 2008). In the life 

sciences, for example, we often provide explanations despite being unable to identify laws: 

 

One of the most jarring results of joining a naturalistic perspective to a focus on the life sciences 

is that in many parts of biology one seems to look in vain for what philosophy has commonly 

taken to be the principle explanatory tool of science, that is, laws. The few statements that have 

been called laws in biology, such as Mendel‘s laws, have often turned out to be incorrect or at 

best only approximately correct. [...] But that does not mean that biologists and psychologists are 

not developing explanations. If one investigates what biologists and psychologists seek and treat 

as sufficient for explanation, it often turns out to be mechanisms, not laws. (Bechtel 2008, p. 10) 

 

In the life sciences, we simply do not find anything that resembles universal laws, and so we 

cannot appeal to such laws to generate explanations. Instead, we explain by appealing to physical 

mechanisms. To better understand why, consider Craver‘s claim that an explanation of a system‘s 

behaviour does not simply tell us (among other things) how a system in fact behaves, but also how it 

would behave in various counter-factual situations (2006, p. 358). When working with phenomena in 

physics, if we assume that laws of physics remain invariant, then we can predict how a system would 

behave in counter-factual situations by applying the known universal laws to the new conditions. When 

we switch to the life sciences, however, we do not find universal laws that we can appeal to in the same 
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way.
5
 Thus to explain the counter-factual behaviour of systems in these domains requires understanding 

how the physical parts that make up the system interact with one another so as to produce its behaviour. 

This mechanistic understanding of the system allows us to intervene in its workings so as to determine 

how the system would behave if conditions were different (Craver 2006; Eliasmith 2010). In this respect, 

covering-law explanations allow us to identify the counter-factual behaviour of systems in scientific 

domains like physics, but it is mechanistic explanations that allow us to identify counter-factual behaviour 

of systems in scientific domains like chemistry or neuroscience. What this means is that the sorts of 

descriptions that can count as an explanation often depend on the domain of inquiry in which one is 

working. 

The complications with scientific explanation do not end there however. While appeals to 

covering-laws can often be explanatory in physics, and appeals to mechanisms can often be explanatory 

in neuroscience, we should not conclude that an entire domain of inquiry uses only a single type of 

description for all explanatory purposes either. Consider the use of mechanistic explanations in 

neuroscience. Machamer et al. argue that mechanistic models are most commonly used as explanations in 

neuroscience, yet they are also careful to insist: ―we do not claim that all scientists look for mechanisms 

or that all explanations are descriptions of mechanisms‖ (2000, p. 2). As Anthony Chemero and Michael 

Silberstein (2008) note, mechanistic descriptions and dynamical descriptions (i.e., descriptions of systems 

by way of Dynamic Systems Theory) can both provide explanations of mental phenomena depending on 

the particular question we are interested in answering about the system. As they put it: 

 

                                                   
5 We similarly cannot (at least at present) use the universal laws of physics to explain phenomena in the life 

sciences. The sciences of the mind, for instance, are interested in explaining phenomena that exists in humans, but 

not rocks. The universal laws of physics, meanwhile, do not distinguish between humans and rocks. And so such 

descriptions are at the wrong level of abstraction to identify the differences we care about. Meanwhile, when we 

switch to neuroscience or psychology, we are better able to characterize the differences we care about, but we find 

no universal laws that we can use to typify them. 
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 On our view, dynamical and mechanistic explanation of the same complex system get at different 

 but related features of said system described at different levels of abstraction and with different 

 questions in mind. (Chemero & Silberstein 2008, p. 17) 

 

And so what counts as an explanation can often depend on what sorts of questions one is interested in 

answering. This is why Van Fraassen suggests that an explanation is best thought of not simply as a 

particular type of description (be it a description in terms of covering-laws or mechanisms), but as an 

answer to a question about why something is the case: 

 

An explanation is not the same as a proposition, or an argument, or a list of propositions; it is an 

answer (Analogously, a son is not the same as a man, even if all sons are men, and every man is a 

son). An explanation is an answer to a why-question. So, a theory of explanation must a theory of 

why-questions. (1980, p. 134) 

 

 This being the case, the sort of descriptions that will count as an explanation will depend on the 

sorts of why-questions we are asking, and the sorts of things we are looking for in an answer. And we 

have little reason to think that all why-questions will be answered satisfactorily by appeals to laws, or to 

mechanisms. Put another way, a suitable answer to a why-question will depend on the class of alternatives 

(or the contrast class) one could provide as an answer in the appropriate context. To demonstrate, 

consider the following question: 

 

Why did Ben walk to the amusement park? 

 

 A satisfying answer to this question (and thus a satisfying explanation for why Ben walked to the 

amusement park) will depend on the context in which we ask the question. For example, we can construe 

the above question in the following ways: 
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(1) Why did Ben walk to the amusement park? 

(2) Why did Ben walk to the amusement park? 

(3) Why did Ben walk to the amusement park? 

 

The class of possible answers that will be appropriate for (1) will not be the same as the ones that 

will be appropriate for (2) or (3). Question (1) is concerned with why Ben, as opposed to someone else, 

walked to the amusement park (thus the contrast class is the set of possible people that could have walked 

to the park in that situation). Question (2), on the other hand, is concerned with why Ben walked to the 

park, as opposed to taking some other means of transportation (thus the contrast class becomes the set of 

possible transportation options available to Ben). Finally, question (3) is concerned with why Ben walked 

to the amusement park, as opposed to some other location (making the contrast class the set of possible 

locations available to Ben). ―The difference between these various requests is that they point to different 

contrasting alternatives. [...] In general, the contrast-class is not explicitly described because, in context, it 

is clear to all discussants what the intended alternatives are‖ (Van Fraassen 1980, pp. 127-128).  

It should be noted that this pragmatic component to explanation is not merely a feature of 

colloquial explanations, but of explanations in science as well: 

 

It might be thought that when we request a scientific explanation, the relevance of possible 

hypotheses, and also the contrast class, are automatically determined. But this is not so, for both 

the physician and the motor mechanic are asked for a scientific explanation. The physician 

explains the fatality qua death of a human organism, and the mechanic explains it qua automobile 

crash fatality. To ask that their explanations be scientific is only to demand that they rely on 

scientific theories and experimentation, not old wives‘ tales. Since any explanation of an 

individual event must be an explanation of that event qua instance of a certain kind of event, 

nothing more can be asked. (Van Fraassen 1980, pp. 129-130) 
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Given this, appeals to physical laws will be explanatory if we are working in the appropriate 

context and responding to the appropriate questions. Meanwhile, appeals to mechanisms will be 

explanatory in different contexts and/or in response to different sorts of questions. Similarly, some 

contexts will involve scientific explanations that appeal neither to laws nor mechanisms. We might, for 

example, explain why a particular group of people have a particular contagious disease due to their 

geographic proximity to one another. Such a response would easily count as a scientific explanation 

despite making appeals neither to laws, nor to mechanisms.
6
 

Of course, it is not surprising that appeals to laws are more often than not considered explanatory 

in physics, and similarly with mechanisms in biology or neuroscience. Given that a particular domain of 

scientific inquiry is often interested in finding answers to very specific types of why-questions, they will 

often be looking for answers of a particular sort (laws in physics, mechanisms in biology, etc). This is not 

universally true, but it is common (not every why-question in neuroscience is necessarily going to be a 

question that appeals to mechanisms, but many are given the focus of inquiry). 

A detailed philosophical investigation of the nature of explanation is not the goal of this 

dissertation, and so I will not dwell on this topic. The point is merely to emphasize the complexities and 

pragmatic nature of explanations. Considering a particular type of description to be explanatory or 

                                                   
6 One might argue that such a response indirectly makes appeals to laws and mechanisms, since it is by way of laws 

and/or mechanisms that geographical proximity allows the disease to spread from person to person. But this sort of 

response must be resisted, otherwise we risk trivializing mechanistic explanations as a whole. Consider Bechtel's 

claim that ―if one investigates what biologists and psychologists seek and treat as sufficient for explanation, it often 

turns out to be mechanisms, not laws‖ (2008, p.10). However, given that it is by way of universal subatomic 

physical laws that the parts of a mechanism are able to interact the way they do, then we should equally be able to 

claim that all descriptions of mechanisms indirectly make appeals to laws for their explanations (in exactly the same 
way our geographic proximity account above indirectly appeals to laws and/or mechanisms for its explanations). 

Yet, how then are we to make sense of Bechtel's claim that biologists and psychologists explain by way of 

mechanisms as opposed to laws? It seems that mechanisms are explanatory because they answer the sort of 

questions we are interested in, irrespective of their relation to subatomic physical laws. Similarly, I propose that the 

geographic answer may answer the sort question we are interested in, irrespective of their relation to physical laws 

or mechanisms. 
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unexplanatory simpliciter is inappropriate. Instead, the question is whether a given description can be 

explanatory given the appropriate question and context.  

2.2 Mechanistic Explanations and the Sciences of the Mind 

As mentioned above, the type of model typically (if perhaps not universally) considered ideal for 

explanations in the life sciences are mechanistic models. These sorts of explanations allow us to intervene 

in systems so as to determine counter-factual behaviour, and they similarly provide us with explanations 

that are compatible with physicalism (i.e., they do not require positing any additional spooky substances 

to explain phenomena). With this in mind, the sciences of the mind similarly appeal to mechanistic 

models for explanations (Dennett 1994; Machamer et al., 2000; Bechtel 2005, 2008; Glennan 2005; 

Craver 2006; Craver & Bechtel 2006; Bechtel & Abrahamsen 2007; Thagard 2009; Eliasmith 2010; 

Zednik 2011). But what exactly is a mechanistic model?
7
 

A mechanistic model explains some phenomenon by ―identifying component parts and operations 

within a system and showing how they are organized to realize the phenomenon of interest‖ (Bechtel & 

Abrahamsen 2007). Typically, a mechanistic account of this sort has four major components: The 

phenomenon, the parts, the activities, and the organization. 

The phenomenon of a mechanism can be thought of as the thing (regularity, process, capacity, 

state) that needs explaining. After all, ―mechanisms are always mechanisms of a given phenomenon. They 

are the mechanisms of the things that they do‖ (Craver 2006, p. 368). A proper account of the 

phenomenon must include relevant information about when and how it appears. Thus, it must include 

                                                   
7 A note of clarification: Talk of mechanisms is ubiquitous in science, however its use is not always consistent. We 
must therefore be clear on what we mean by a ―mechanism‖. For example, in political science we might talk of the 

mechanism responsible for social change. Similarly, an economist might talk of the mechanism responsible for the 

rise in monetary inflation. In such cases, a description of a mechanism need not explicitly describe particular 

physical entities, and the specific ways they spatiotemporally interact. While this is a legitimate scientific use of the 

term ―mechanism‖, it is going to be too vague for our purposes. We are interested in how particular physical objects 

(such as neurons) are interacting with one another to produce some phenomenon (like planning for one‘s future).  
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things like the precipitating conditions, inhibiting conditions, modulating conditions, non-standard 

conditions, and by-products of the phenomenon (Craver 2006, p. 368). 

The parts of a mechanism are the relevant components within the system that interact with one 

another in order to produce the phenomenon. A complete mechanistic account must accurately determine 

what the appropriate parts of the system are. These parts must be real, and not merely fictional posits. 

This distinction between real objects and fictional posits can often be murky and difficult to define 

however. As Craver tells us, ―there is no clear evidential threshold for saying when one is describing real 

components as opposed to fictional posits‖ (2006, p. 370). Craver proposes that, as a rough guideline, we 

can consider a part real when it exhibits a stable cluster of properties, can be detected using multiple 

independent devices, can intervene into other components and activities, and is plausible in the relevant 

circumstances (Craver 2006, pp. 370-371). It is worth noting here that Craver‘s conditions on being ―real‖ 

need not be interpreted as a general set of criteria for one‘s ontology. While some philosophers may wish 

to go this route, it is certainly not something we must be committed to (see Section 10.2). Craver‘s criteria 

should be interpreted primarily as a guideline for what sorts of objects can function as the causally 

interacting physical parts of biological mechanisms. It need not be committed to anything else beyond 

that. 

The activities of a mechanism (also known as the causal aspect of a mechanism) are the 

interactions and processes that go on between the component parts in order to produce the phenomenon. 

Consider the simple functioning of a mousetrap: 

 

Pressing the trigger [of the trap] releases the catch, allowing the spring to launch the impact bar. 

The verbs in this description of the mousetrap refer to the relevant causal relations among the 

component parts. (Craver & Bechtel 2006, p. 470) 
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Lastly, the organizational aspect of a mechanism is the relevant way in which the parts are 

situated spatially and temporally within the mechanism. This includes the ―relative locations, shapes, 

sizes, orientations, connections, and boundaries of the mechanism‘s components‖ (Craver & Bechtel 

2006, p. 470). The way in which the parts are structured and placed within the mechanism determines 

how the parts can interact with one another in order to produce the relevant phenomenon. 

Given the above aspects of a mechanism, it is not uncommon for mechanisms to be made up of 

sub-mechanisms. In such cases, the parts making up the system satisfy the criteria for being mechanisms 

themselves, creating a hierarchy of levels: 

 

Many of the components of a mechanism are themselves mechanisms –they perform operations 

in virtue of their parts (now subparts of the original mechanism) performing operations of their 

own. This mereological relation gives rise to a clear sense of levels –parts are at a lower level 

than the mechanism they comprise. (Bechtel 2005, p. 315) 

 

This type of multi-leveled mechanistic description is the sort of thing we are looking for if we 

want to explain how systems can realize mental activity within a physicalist framework. The proper 

understanding of these physical mechanisms will also explain why some things are endowed with 

mentality (they have the appropriate physical mechanisms), while others are not.  

As the sciences of the mind progress, they get better at discovering the physical mechanisms 

responsible for different mental phenomena. By studying subjects with brain damage, for example, we 

can learn which physical parts and organizations of the brain are the ones responsible for which mental 

phenomena by seeing which mental capacities the person lacks due to the damage. Consider vision: 

 

The first clues as to which brain parts perform visual operations came from analyzing patients 

with visual deficits stemming from brain damage. Bartolomeo Panizza, who studied patients 
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experiencing blindness after stroke-induced occipital lobe damage, proposed that the occipital 

lobe was the cortical center for vision. (Bechtel 2008, p. 91) 

 

Similar such experiments have helped us better understand which physical mechanisms are at 

work in producing other mental phenomena like memory and language use. In this way, instead of 

building up to explaining mental phenomena by first understanding everything there is to know about 

physics, and then ―working our way up‖ to neuroscience, we work by reverse engineering. We look at the 

sorts of things that have the mental phenomenon or ability in question, and what physical mechanisms are 

at work when such a phenomenon is present. We then work backwards to understand what these 

mechanisms are and how they work. 

2.3 The Problem of Intentionality 

Given that the sciences of the mind are mechanistic, it seems reasonable to conclude that a correct 

description of the brain in terms of physical mechanisms will provide us with a complete understanding 

of the mind. However, descriptions of mechanisms seem to leave no room for the phenomenon of 

intentionality. Physical parts causally interacting in space are not about anything; they merely are. John 

Searle has something similar in mind when he tells us that ―Darwinian mechanisms and even biological 

functions themselves are entirely devoid of purpose or teleology‖ (Searle 1992, p. 52). In this regard, 

mechanistic descriptions seem, at least prima facie, insufficient to provide us with a physicalist 

explanation for how the phenomenon of intentionality is produced by the brain. 

 However, whether intentionality is a genuine problem for mechanistic explanations or not 

depends on our ontological story about intentionality. Is intentionality an ontological property inherent in 

certain physical states of the brain? Or is intentionality just something we linguistically ascribe to 

systems? Or is it something else entirely? Different ontological stories will be compatible with, or in 

conflict with, our mechanistic explanations. If intentionality is a robust ontological property of the mind 
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that mechanistic explanations are unable to ever account for (as Brentano himself thought), then 

mechanistic explanations seem insufficient to explain the mind. On the other hand, if intentionality is 

merely part of an outdated or unscientific way of interpreting the behaviour of people, then there is no 

tension between intentional accounts and mechanistic ones because there is no intentionality. And so our 

account of the value of intentional language to science seems to vary greatly depending on our ontological 

story of what intentionality actually is. 

But which ontological story do we accept? We must be cautious in how we proceed here. Any 

ontological account of intentionality that we adopt from the outset has the potential to taint our perception 

of what the benefits of intentional language are to science. Thus the questions we should start with are not 

ontological in nature. Instead, they are:  

 

 Do we use intentional language in science? 

 If so, then in what contexts? 

 What are the scientific benefits (if any) gained from talking this way about systems? 

 

Once we determine if there are benefits in employing this linguistic tool, and what they are, then 

can we begin drawing ontological conclusions. To do otherwise is to invite confusion and generate 

problems. In the section that follows, I will demonstrate just how adopting an ontological stand on 

intentionality prior to understanding the role of intentional language in scientific discourse can be a 

roadblock to our scientific understanding of the mind. 

2.4 The Problems with a Premature Ontology 

Let us consider two ontological stories that have been adopted by various philosophers in the past. One is 

a specific type of ontological realism regarding intentionality, while the other is a type of anti-realism. I 



 

 31 

will demonstrate how adopting either can negatively influence our assumptions about the way in which 

we use intentional language in science. Let us begin with the realist position. 

2.4.1 Intentional realism 

Suppose we try to explain the use of intentional language in science by appealing to a robust ontology of 

intentionality. Intentionality, we might claim, is some unique and mysterious (at least for the moment) 

metaphysical property that is attached to certain physical states, like brain states, but not others, like 

disorganized piles of rocks on a beach. Given such an ontological picture, intentional descriptions would 

identify very real intentional properties that certain physical states have. While intentional descriptions 

characterize certain physical states in terms of their genuine ontological property of intentionality (by 

identifying mental states such as beliefs, desires, and mental representations), mechanistic descriptions 

can only describe physical states in terms of the spatiotemporal interactions of their constitutive parts and 

not in terms of their intentionality. While we can know facts about neurological mechanisms through 

scientific investigations, we know we have intentional states like beliefs and desires because we directly 

experience them. Or as John Searle puts it, ―it seems crazy to say that I never felt thirst or desire, that I 

never had a pain, or that I never actually had a belief, or that my beliefs and desires don't play any role in 

my behavior‖ (Searle 1992, p. 48).  

If we adopt this seemingly intuitive ontological picture, then the proper scientific uses of 

intentional language would appear to be that they pick out all, and only, those physical states that possess 

this genuine ontological property of intentionality. Even if it were useful to talk of piles of rocks as 

though they had mental states with ―aboutness‖, this would not be an appropriate literal use of the 

language. The language is used to capture important features of our mental states; features we have direct 

experience of. 

The problem with this story is that it assumes we have direct experiential access to the 

appropriate classifications of our mental phenomena. The assumption is that the appropriate use of 
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intentional language is to capture the genuine intentional states that we experience. But why think that 

intentional language would capture the boundaries of these mental states appropriately? Why assume that 

intentional language carves our mental life at its joints? This sort of story relies on commonly-used 

linguistic categories (―beliefs‖, ―desires‖, ―mental representations‖, etc) to draw conclusions about the 

existence of objective ontological states/properties. However, it is far from obvious to claim that we know 

we have intentional states like beliefs because we experience them. On the contrary, we never experience 

beliefs qua beliefs. At best we experience something, but how we linguistically classify it is up to us. The 

above position assumes that we have direct experiential access to the proper linguistic classifications of 

our mental phenomena. But how do we know that a particular mental event should be characterized in 

terms of a mental state like a belief or a desire (a state with intentionality), as opposed to using some 

radically different type of classification system altogether? Mental events by themselves do not tell us 

what classification we ought to give them. We do the classifying. And classifications in terms of 

intentional terminology may turn out to be ill-fitting to the mental phenomena we are trying to capture. 

So we are now inevitably left with the question: Do we use intentional language because there is 

a robust ontology of intentionality (because there really are intentional states, and our language is trying 

to capture that), or do we adopt a robust ontology of intentionality because we use intentional language 

(given that intentional language is pervasive and beneficial in our lives, we cannot help but interpret 

ourselves and others in terms of intentional states)? We describe systems using intentional language in 

scientific contexts all the time regardless of whether we think those systems ―really‖ have the mental 

phenomena of intentionality, ―really‖ do not have it, or whether we simply cannot tell one way or another. 

The assumption that the proper use of intentional language is ultimately determined by our robust 

ontology of intentionality may simply not be the reason that intentional language is beneficial to scientific 

practice. 
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Those who embrace a robust ontological view of intentionality are happy to grant that intentional 

language can be beneficial to science even if the system described does not genuinely have intentional 

states. However, they point out that we must be cautious not to take such uses of the language literally. 

The pervasiveness of intentional language in all different contexts and domains just means we must take 

care to distinguish the genuine cases of intentionality (the systems that can be literally described as having 

mental representations, beliefs, and intentions) from the as-if cases (the systems that are merely usefully 

described in terms of ―mental representations‖, ―beliefs‖, and ―intentions‖). And, ontologically speaking, 

it is the literal cases that are philosophically important. Or as Searle puts it: 

 

[There is a] distinction between the sort of facts corresponding to ascriptions of intrinsic 

intentionality and those corresponding to as-if metaphorical ascriptions of intentionality. There is 

nothing harmful, misleading, or philosophically mistaken about as-if metaphorical ascriptions. 

The only mistake is to take them literally. (1992, p. 82) 

 

But even if we suppose that such a story is true, it assumes that the literal cases are 

distinguishable from the metaphorical ones. But this downplays the fact that intentional language may be 

a powerful linguistic tool with pragmatic benefits, and so its usage will be pervasive in scientific practice 

regardless of whether we can keep track of the appropriate ontological distinctions. In which case, given 

its widespread and important usage as a pragmatic tool, it may be nigh impossible for us to tell apart the 

ontological cases from the mere pragmatic ones in our linguistic usage. We may be unsure whether we are 

using the terms literally or not in a given context just so long as the language provides the pragmatic 

benefits we need. In this sense, keeping straight the literal from the metaphorical becomes exceedingly 

difficult since we may simply have no way to tell which cases meet our ontological standards and which 

do not. So even if Searle‘s story were correct, it would be a mistake to assume that we must know the 

correct ontological underpinnings of intentional language in order for us to use it in productive ways. As 
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Mark Wilson points out, there are ―situations where speakers employ terminology according to properly 

productive strategies yet entertain incorrect pictures of their underpinnings‖ (Wilson 2006, p. 308). 

 Of course, our intentional realist could point to the fact that just because there are some cases that 

are difficult to discern as genuine or metaphorical, this does not mean that there are no clear-cut cases we 

can rely on to validate the literal/metaphorical distinction as cutting along ontological lines. Human 

beings are a clear-cut example of genuine intentionality, while cars and cell-phones are not. Even though 

we can describe objects like cell phones or cars as-if they had intentional states, we never fool ourselves 

into thinking that they literally do. There is a clear difference between our real intentionality (often 

referred to as ―non-derived‖ intentionality) and the ascribed intentionality that we use to talk about things 

like cars (―derived‖ intentionality). This literal/metaphorical distinction of clear-cut cases seems to cut 

nicely across the ontological divide that the intentional realist wants. To deny that there is a difference 

between our genuine mental content and the ―content‖ we ascribe to cars or cell phones seems almost a 

reductio ad absurdum of the position that wants to tear down this construal of the literal/metaphorical 

distinction. 

 But this sort of response is deeply confused as to the issue at hand. To deny that the appropriate 

literal use of intentional language must conform to our robust ontology of intentionality is in no way to 

deny that there are important differences between us and cars or cell phones. On the contrary, it is the fact 

that we are so different from such objects, and so much more complex, that we cannot help but think that 

one of the many ways in which we differ from them must be in terms of this thing called intentionality. It 

is this vast gulf in abilities, experiences, and capacities that leads us to draw a distinction between the 

―real‖ intentionality in us, and the mere ―metaphorical‖ intentionality in other things. But the mistake is 

assuming that of the many countless differences between us and things like cell phones or cars, one of 

them must be some unique and genuine ontological property of intentionality, and that we have it and 

they do not. But we can deny this without denying that there are important and powerful differences 
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between our interactions with the world, and a car's (or its lack thereof). Just as we can say we are alive 

and cars are not, even if we deny that we have an élan vital when the car does not.  

This robust ontological story of intentionality slants our assumption of how intentional language 

works by implicitly suggesting that that language first developed as means of describing genuine cases of 

intentionality, and was then adapted to be used in metaphorical ways (to describe objects that do not have 

intentionality). Under this interpretation, we first learned to talk about people as having intentional states 

like beliefs and desires because they really do. Then, we learned to apply these concepts metaphorically 

to describe things that we know do not have it (cars, toasters, cell phones, etc). But why assume that this 

gets the order correct? Instead, we may simply learn to talk about all kinds of systems as having 

intentional states of some sort or another. We make no distinction between people and objects in terms of 

our intentional ascriptions. However, we are acutely aware of the fact that we are very different from 

other sorts of things. We are more complex, and have far more impressive capacities, behavior, and 

experiences than cars, toasters and cell phones. Thus, we conclude that when we talk about ourselves in 

terms of intentional states, then we must mean something different than when we talk about other things. 

This leads us to conclude that we must mean the terms literally when applied to us, and not when applied 

to other things. Yet, it might not be the ontology of intentional states that drives our use of intentional 

language. And assuming that it is blinds us to the scientific benefits of using such terminology. 

Adopting this sort of robust ontological realism regarding intentionality from the outset can 

generate confusion in our scientific study of the mind by insisting on an explanation of a phenomenon 

that may be a mistaken interpretation of a linguistic tool. And if intentionality does, in fact, exist as a 

unique type of ontological phenomenon, it may be disconnected from the intentional language we use 

when we describe systems. In which case, intentional descriptions might mischaracterize the genuine 

mental occurrences of intentionality. As a result, we must get clear on how we use intentional language, 

and what its benefits are, before we start to adopt realist ontological interpretations of intentionality. 
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2.4.2 Intentional anti-realism 

Using the ontology of intentionality as a guide for the usage of intentional language is equally as 

misleading and problematic if we start with an anti-realist stand on intentionality. If we conclude that 

intentionality does not exist as a robust ontological property or phenomenon, then the temptation is to 

assume that intentional terms do not refer to anything real, and so such language has no role in science. 

 Paul Churchland, for example, proposes that intentionality is not some metaphysical feature of 

mentality, but is instead a feature of folk psychological concepts (1981, p. 70). Moreover, he suggests that 

if these folk concepts cannot find a place within our best neurological theories, then such concepts have 

no scientific value and ought to be eliminated. The underlying assumption being that neuroscience (in 

virtue of being our best science of the mind) tells us about the genuine properties and states of the brain. 

Thus, if intentional states/properties cannot be reduced to neurological states/properties, then they do not 

pick out anything real about the system, and so they ought to be replaced by the superior account. But the 

relevant question is whether intentional language is actually used in fruitful and productive ways in 

science, and not whether such language fits into the account we feel is more ontologically justified. 

  We do not, for example, insist on having a clear ontological story about numbers before we allow 

scientists to use them in their investigations of the world. If we decide that numbers are not real, do we 

then banish them from science? Do we insist that mathematical models only be used in science until they 

can be replaced by the ―real‖ descriptions of systems in terms of natural language (quantum mechanics 

would be in bad shape if that were the case)? Does it really matter whether they are real or not just so long 

as we use them in the way that undeniably aids scientific practice? Ontological questions about numbers 

can be left aside in our pursuit of science since their ontological status does not impact the beneficial and 

possibly ineliminable role that numbers play in scientific inquiry. So the case may be with intentional 

language as well. 
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There is also something deeply anti-naturalist about taking this eliminativist view of intentional 

language (while this may not be a concern for those who care little about naturalism, many who take 

eliminativist positions do so for naturalistic reasons). Specifically, if one believes that we ought to let 

science be our guide for ontology, then we must see what role intentional language does have in science. 

Otherwise, we are taking an ontological position (intentional states are not real) and then dictating to 

science what it ought to do based on our ontological convictions. But this seems to get things backwards 

if one has naturalist tendencies. Let us first see how intentional language is used in science, and if it is 

useful. Then, and only then, can we start talking about elimination. 

2.5 Bringing It All Together 

So where does all this leave us? Is intentionality a problem for mechanistic explanations of the mind? If 

we start with our ontology of intentionality, then the answer will be ―yes‖ or ―no‖ depending on the story 

we tell. If we take an ontological view that identifies intentionality as a unique ontological property that 

can never be studied from a ―third-person point of view‖ (Searle 1992), then not only is the answer ―yes‖, 

but in some sense, intentionality becomes non-naturalizable a priori. On the other hand, if you think that 

intentionality does not really exist and that intentional language should be abandoned in scientific practice 

as a result (Churchland 1981), then the answer is ―no‖. However, I propose that we should not start with 

our ontology, and then stipulate the ―appropriate‖ use of intentional terminology as a result, since this will 

bias our interpretation of intentional terms from the get go. Instead, we should see if and how intentional 

language is useful. And then determine what ontological story we want to tell about it as a result. 
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Chapter 3 

Intentional Language Outside the Sciences of the Mind 

In the previous chapter, I argued that we ought to leave our ontological commitments about intentionality 

at the door when studying the mind. Instead, we should focus on our use of intentional language. And 

while such language is most commonly associated with the study of the mind, it is not limited to this 

domain. It is not just psychologists that talk about systems in terms of their ―aboutness.‖ Such language 

permeates science at all different levels. The real question is whether other scientific domains only use 

intentional language in unnecessary and metaphorical ways, or whether such language plays any 

fundamental role in their practices and theories. 

 Some propose that intentional language cannot be anything more than unnecessary metaphor 

below the level of psychology (or possibly neuroscience depending on one‘s ontological story) since the 

phenomenon of intentionality only exists at that level (e.g. as properties of minds). It simply does not go 

deeper than that. As Jerry Fodor puts it: 

 

I propose that sooner or later the physicists will complete the catalogue they‘ve been compiling of 

the ultimate and irreducible properties of things. When they do, the likes of spin, charm, and 

charge will perhaps appear upon their list. But aboutness surely won‘t; intentionality simply 

doesn‘t go that deep. (Fodor 1987, p. 97) 

 

However, such an argument is primarily motivated by the ontological assumption that the genuine 

phenomenon, or property, of intentionality only exists at the level of minds. Since minds do not exist 

below the level of psychology or neuroscience, scientific domains dedicated to the study of lower-level 

phenomena can only use intentional language in metaphorical and non-essential ways. But as we saw last 

chapter, assuming an ontological story of what intentionality is before we look at how we use the 

language is a recipe for disaster. Therefore, if we leave these ontological issues aside, we are left with the 
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real question: do other scientific domains use intentional terminology in their scientific explanations and 

theories? In this chapter, I argue that the answer is yes. And moreover, that there are reasons not to 

consider these uses to be merely unnecessary metaphor. This will provide us with clues as to value that 

intentional language may have as a pragmatic scientific tool. 

In order to demonstrate this, it is first important to examine our scientific use of the term 

―information‖. While the term is used in different ways both in, and out of, scientific contexts, one of the 

most common uses of the term is as an intentional term. This use of ―information‖ ascribes intentional 

content to a system in much the same way one ascribes beliefs or knowledge to a system. I will 

demonstrate that scientific domains like genetics and molecular biology explicitly invoke this intentional 

notion of information in their study of systems, and that doing so has substantial scientific benefits. To 

begin, however, let us turn our attention to the concept of information more generally. 

3.1 The Different Meanings of “Information” 

What exactly do we mean when we talk of ―information‖? Depending on context, the term is often used 

in one of two ways: The first is the colloquial everyday sense of the term, while the second is a more 

technical sense defined by mathematical communication theory.
8
 Our first step is therefore to determine 

exactly what differentiates these two senses, and which of the two is relevant to our question regarding 

the presence of intentional language in scientific domains. 

3.1.1 Semantic information 

The most common interpretation of information, often found in everyday usage, is in terms of intentional 

content. In other words, one can have a piece of information about one thing or another. I can, for 

instance, have information that it is raining outside. Similarly, a physics textbook contains pieces of 

                                                   
8 It should be noted that there are multiple technical notions of ―information‖ associated with communication theory. 

While I will concentrate on Shannon Information here, the claims made in this chapter will apply equally to all other 

technical notions as well. 
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information about physics. This conception of information is in-line with the sort of information one gets 

at an information booth. When we approach an information booth and ask for the location of the 

bathroom, we get information about the location of the bathroom. 

 Information of this sort is commonly referred to as semantic information, given its connection 

with the semantic properties of language. As Christopher Timpson explains: 

 

 The everyday notion [of information] is a semantic and an epistemic concept linking centrally to 

 the notions of knowledge, language and meaning; to that of a person (language user) who might 

 inform or be informed. (forthcoming, p. 43) 

 

Semantics, virtually by definition, is an intentional concept. When we use language, we take an 

arbitrary set of symbols, and use them to represent features of the world. This explains the way in which 

books, and written statements in general, can contain information. Recall that one of the defining 

characteristics of intentionality is that our intentional content can be false (See Section 1.2). In other 

words, beliefs can be correct or incorrect, representations can represent or misrepresent, etc. To quote an 

often-used philosophical motto: ―no representation without misrepresentation‖ (Dennett 1987, p. 307). 

When it comes to semantic information, we similarly have cases of correct and incorrect information. One 

can be informed or misinformed based on whether the information correctly or incorrectly represents the 

world. I may be given incorrect information about the location of the bathroom from the person at the 

information booth for example. For this reason, the ―possession of information or misinformation is just 

as Intentional a notion as that of belief‖ (Dennett 1971, p. 90). Given this, I will use the term 

―information
i
‖ when referring to this kind of information (to emphasize its status as an intentional term). 

3.1.2 Shannon information 

While information
i
 is by far the most common interpretation of the term ―information‖, it is not the only 

one. The concept of ―information‖ as characterized by Claude Shannon (1948), for example, is different 
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enough from the intentional (or semantic) concept that a different term would not have been altogether 

inappropriate in order to avoid confusion. Unlike information
i
, Shannon Information (hereafter 

information
s
) is a part of communication theory, and is used to mathematically characterize correlations 

between objects or events. As a result, issues of intentionality and semantics are unrelated to 

information
s
.
9
 Edward Collin Cherry succinctly summarizes this point when he says that ―we are not 

concerned with the meaning or truth of messages [when dealing with information
s
]; semantics lies outside 

the scope of mathematical information theory.‖ (1951, p. 383)
 
 

While information
i
 is concerned with content or reference (for example: information about the 

location of the bathroom), information
s
 is (roughly speaking) a measure of the quantity of information

i
 

that can be passed between two sources (a transmitter and a receiver). Or, more precisely, with the ability 

of a receiver to reproduce a message that originated with the transmitter. 

In this regard, information
s
 says nothing about the content or ―aboutness‖ of any given message 

being transmitted from a transmitter to a receiver, and is concerned only with the act of transmission 

itself. As Shannon (1948) himself put it, the intentional concerns ―are irrelevant to the engineering 

problems‖ of effectively transmitting messages between two locations. Thus, to say that an object 

contains information
s
 is not to attribute a representation —or intentional content of any sort— to the 

system in the way that attributing information
i
 to it would be. Instead, all that matters for information

s
 is 

that there exists a reliable correlation between two events: 

 

 In this sense, any process at all in which there is a reliable correlation between two states can be 

 described in terms of information. This is the sense in which dark clouds carry information about 

 bad weather, and tree rings carry information about the age of the tree. (Godfrey-Smith 2004, p. 

 276) 

 

                                                   
9 Some philosophers have attempted to construct an ontological account of informationi out of informations (most 
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 Another important difference between the two types of information is that information
s
 does not 

allow for error. As discussed above, information
i
 allows for the possibility of being misinformed. One can 

receive information from an information booth that is inaccurate. Not so with information
s
. Information

s
 

mathematically characterizes statistical correlations between events, and so cannot be wrong or incorrect. 

As a result, information
s
 fails a necessary condition for being an intentional term: 

 

People who are trying to distinguish genuine semantic properties from information in the 

Shannon sense often point to the capacity for error, and the ability to represent nonfactual 

situations, as marks of semantic phenomena. In the simple clouds-and-rain case, there is no sense 

in which the clouds could misrepresent the weather. The correlation between clouds and rain 

might fail to hold in some particular case, but that does not imply that the clouds said something 

false. If I tell you a lie in this chapter, however, my words have indeed been used to say 

something false. I can also use these words in describe situation that I know does not obtain, such 

as my having won the lottery. These are not features of information in the mere Shannon sense. 

(Godfrey-Smith 2004, p. 279) 

 

 With this broad sketch of the differences between information
i
 and information

s
, we can now turn 

to the question of whether intentional terminology has a role in scientific domains concerned with 

studying phenomena below the level of the mind. While information
s
 is uncontroversially used in these 

domains (right down to the level of quantum physics), what about information
i
? If so, then perhaps it can 

provide us with a clue to as to why it is used in these contexts. 

3.2 Information and Biology 

Talk of ―information‖ in molecular biology and genetics is pervasive (Sterelny et al. 1996; Sterelny & 

Griffiths 1999; Smith 2000; Godfrey-Smith 2000, 2004; Sarkar 2004). But how exactly do biologists use 

the term? Do biologists only employ technical, and non-intentional, senses of information, or do they ever 

                                                                                                                                                                    
notably Dretske 1981), but this project this still grants the non-intentional status of informations.  



 

 43 

refer to information
i
? In what follows, I will demonstrate that there is compelling evidence that biologists 

explicitly invoke an intentional notion of information in their theories of genetics. Before demonstrating 

this, however, I will demonstrate why the information used in these biological contexts cannot be 

information
s
 (or other technical notions). Following that, I will argue that information

i
 is the best 

candidate for the way in which the term is used. Lastly, I will look at some objections to this idea, and 

show how they can be overcome. 

3.2.1 Shannon information in biology 

The first thing to note is that information
s
 does have an important role in biological theory. As Peter 

Godfrey-Smith points out, ―a lot of discussion in contemporary biology is facilitated by this conceptual 

framework‖ (2004, p. 278). But while information
s
 may have a role to play in biology, this cannot be the 

sense in which biologists use the term when they speak of information encoded in genes. A far more 

robust concept of information is needed to capture such usage. As Sahotra Sarkar points out: 

  

 When, for instance, it is said that the haemoglobin-S gene contains information for the sickle cell 

 trait, communication-theoretic information cannot capture such usage. To take another example, 

 the fact that the information contained in a certain gene may result in polydactyly (having an 

 extra finger) in humans also cannot be accommodated by communication-theoretic information. 

 (Sarkar 2004, p. 260)  

 

Consider the way in which biologists speak of genes encoding information about phenotypic 

traits. If this referred to information
s
, then the claim would only be that there exists a correlation between 

genotypic and phenotypic traits. This is true. However, it is not particularly controversial or informative. 

The application of communication theory to the relationship between genes and phenotypic traits would 

thus be superfluous, and would do little work for us theoretically. As Sarkar puts it: ―The trappings of 
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Shannon‘s model of a communication system are extraneously added to a relatively straightforward point 

about genetic and environmental correlations, and do no cognitive work‖ (2004, p. 265). 

A more serious problem is that if genes only encode information
s
, then there would be no reason 

to give special attention to the information in genes regarding phenotypic traits. Put another way, if genes 

only had information about phenotypic traits because of a correlation between the two, then 

environmental conditions would equally encode such information. As such, there is no privileged sense in 

which genes carry phenotypic information: 

  

 The standard apparatus [of communication theory] defines information as the covariation 

 between a signal and its source. Holding environmental factors constant, genotypes covary with 

 phenotypes. But other factors causally relevant to development also carry predictive information. 

 The plant on which the butterfly eggs are laid covaries with developmental outcomes. So genes 

 predict phenotypes, but they are not alone in doing so. (Sterelny 2000, p. 196) 

 

 Yet, biologists often propose something much stronger than just covariation between genotypic 

and phenotypic traits when they speak of encoding information. Instead, they propose that the ―gene is not 

merely correlated with a trait: that trait explains why that gene has its form‖ (Sterelny 2000, p. 197). The 

information in genes regarding phenotypic traits is more robust than mere information
s
. This provides a 

reason to think that biology requires a richer concept of information than is provided by communication 

theory. 

Another reason to view biological information as more robust is that biological information 

allows for error. As we discussed earlier, it is incoherent to talk of information
s
 being in error. 

Communication theory only characterizes the existing correlations between events. In this sense, the 

information from the transmitter cannot be misread or misinterpreted by the receiver. This is not the case 

with biological information: ―Strikingly, genetic information is often described [in terms of] 

misrepresentations‖ (Sterelny & Griffiths 1999, p. 104). Genes are thought to determine phenotypic traits, 
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yet organisms can develop different phenotypic traits when certain atypical conditions are present. In 

which case, it is common to speak of the information encoded in genes as being misinterpreted by the 

receiver due to interference from these conditions (Sterelny & Griffiths 1999, pp. 104-105; Smith 2000, p. 

193). Consider Sterelny‘s claim that ―when a human genotype results in a phenotype with dwarfed arms, 

the information in it has been misread‖ (Sterelny 2000, p. 197 —my emphasis). 

A third reason to differentiate biological information from information
s
 is that biological 

information allows for specificity, while communication theory does not. Information
s
 never specifies the 

content of a message being transmitted between a transmitter and a receiver. It merely mathematically 

characterizes the act of transmission. In this regard, information
s
 lacks specificity by not telling us what 

the specific content of a message is. Meanwhile, specificity is one of the defining features of biological 

information: 

 

The main problem is that, at best, communication-theoretic information provides a measure of the 

amount of information in a message but does not provide an account of the content of a message, 

its specificity, what makes it that message. [...] Capturing specificity is critical to genetic 

information. Specificity was one of the major themes of twentieth-century biology. During the 

first three decades of that century, it became clear that the molecular interactions that occurred 

within living organisms were highly ―specific‖ in the sense that particular molecules interacted 

with exactly one, at most a very few, reagents. Enzymes acted specifically on their substrates. 

Mammals produced antibodies that were highly specific to antigens. In genetics, the ultimate 

exemplar of specificity was the ―one gene-one enzyme‖ hypothesis of the 1940s, which served as 

one of the most important theoretical principles of early molecular biology. (Sarkar 2004, p. 260) 

 

Here again we see that the concept of information at work is far richer than the one employed by 

communication theory. The specificity of messages is not accounted for by communication theory, and so 

not relevant to information
s
. Meanwhile, it plays an essential role in biological information. In fact, 

accounting for specificity is what led to the idea that genetic information was contained within DNA in 
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the form of a genetic code: ―The code explained the specificity one gene-one enzyme relationship 

elegantly: different DNA sequences encoded different proteins as can be determined by looking up the 

genetic table.‖ (Sarkar 2004, p. 261). This comparison between biological states and symbolic code 

provides the first clue that biological information may have more in common with linguistic information 

than communication theoretic information. In fact, the analogy between genetic structures (as code-like) 

and linguistic structures is more than merely a passing similarity: 

 

Routinely, talk of information is intertwined with linguistic metaphor, from both natural and 

 artificial languages: there is a genetic code, because a triplet of DNA (or RNA) nucleotides codes 

 for each amino acid residue in proteins (polypeptide chains); there are alternative reading frames 

 —DNA is transcribed into RNA, RNA is translated into protein, RNA is edited, and so on. 

 (Sarkar 2004, p. 260) 

 

But are the similarities between linguistic information and biological information merely 

superficial? How deep does this analogy between genetic code and language go? 

3.2.2 Intentional information in biology 

If the information stored in the genetic code is sufficiently like the information stored in linguistic 

structures, then we seem to be left with a semantic interpretation of biological information. But how 

seriously are we to take the analogy between genetic code and language? Is it merely a useful heuristic 

analogy, or is it something more substantial? There is reason to think that it is indeed something more 

substantial: 

 

 Since the discovery of the DNA double helix in 1953, many biologists have employed 

 language as a useful metaphor to describe certain aspects of molecular biological  phenomena. 

 But recently it was postulated that language is more than just a metaphor and that linguistics 

 provides a fundamental principle to account for the structure and function of the cell. (Ji 1999, p. 

 411) 
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 This idea that the similarities between human language and the genetic code are much deeper 

than mere unnecessary metaphor, and play a substantial role in our understanding of biology (and 

biological information), has been argued for by a number of biologists and philosophers (Garcia-Bellido 

1984; Sereno 1991; Ji 1997, 1998, 1999; Sterelny & Griffiths 1999; Smith 2000). To see why, consider 

some of the defining features of language. First, language is symbolic. Second, language is combinatorial. 

Third, the symbols we use in language are arbitrary (there is no causal relationship between the form of 

the words we use and the things they represent). When we look to the genetic code, we find these features 

as well: 

 

The main reason why the informational framework became central to the new molecular biology 

of the 1950s and 1960s was the characterization of the relationship between DNA and proteins as 

a universal genetic code. [...] Three factors make the informational interpretational of this 

relationship illuminating: (a) the relationship can be viewed as a symbolic one, with each DNA 

triplet being a symbol for an amino acid residue; (b) the relationship is combinatorial, with 

different combinations of nucleotides potentially specifying different residues; and most 

importantly, (c) the relationship is arbitrary in an important sense. Functional considerations may 

explain some features of the code –why, for instance, an arbitrary mutation tends to take a 

hydrophilic amino-acid residue to another such residue– but it does not explain why the code is 

specifically what it is. The physical mechanisms of translation do not help either. The genetic 

code is arbitrary. Along with specificity, this arbitrariness is what makes an information account 

of genetics useful. (Sarkar 2004, p. 266) 

  

Just as there is no causal connection between the form of the words that we use and their 

meanings, so too is it the case that ―in molecular biology, inducers and repressors are ‗symbolic‘: [...] 

there is no necessary connection between their form (chemical composition) and meaning (genes 

switched on or off)‖ (Smith 2000, p. 185). Similarly, consider John Maynard Smith‘s claim that ―linguists 
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would argue that only a symbolic language can convey an indefinitely large number of meanings. I think 

that it is the symbolic nature of molecular biology that makes possible an indefinitely large number of 

biological forms‖ (2000, p. 185). These are not the only similarities between genetic code and language 

either. As Sungchul Ji points out: 

 

Both human and cell languages can be treated as a 6-tupe {L, W, S, G, P, M}, where L is the 

alphabet (i.e., a set of basic symbols called protosemata), W is the vocabulary or lexicon (i.e. a set 

of words), S is an arbitrary set of sentences, G is a set of the rules governing the formation of 

sentences from words (the first articulation) as well as the formation of words from letters (the 

second articulation), P is a set of physical mechanisms realizing and implementing a language, 

and finally M is a set of objects (both symbolic and material) or processes referred to by the 

words and sentences. (1999, pp. 411-412) 

 

Given this close relationship between genetic code and language, it has been argued that the only 

way to make sense of biological information is as semantic or intentional information: ―The idea that 

genes have meaning in something like the way that human thought and language have meaning is lurking 

in the background of many discussions of genetic information‖ (Sterelny & Griffiths 1999, p. 104). This 

suggests that biological information may, in fact, be information
i
. 

Consider that one of the defining features of information
i
 is that it allows for misrepresentations 

(while technical notions of information do not). In the case of biological information, we do find cases of 

misrepresentation: ―In biology, mis-representation is possible because there is both an evolved structure 

carrying the information, and an evolved structure that receives it‖ (Smith 2000, p. 193). Allowing for 

misrepresentations in biological information pushes the concept into the realm of the intentional: 

  

 Any talk of genes being misinterpreted, or of the information in the genes being ignored or 

 unused, is a shift from the purely causal notion of information toward something like the 

 intentional notion. So one way to make sense of the idea that some developmental pathways are 



 

 49 

 programmed while others are misreading of the program is to suppose that genes contain 

 intentional information rather than causal information: information that remains the same when 

 the channel conditions change. (Sterelny & Griffiths 1999, pp. 104-105)  

 

 Smith echoes this point when he argues that biological information satisfies the criteria for being 

intentional, and that non-intentional notions of information (like information
s
) simply cannot account for 

the way the term is used in biological contexts:  

 

 In colloquial speak, the word ‗information‘ is used in two different contexts. It may be used 

 without semantic implications; for example, we may say that the form of a cloud  provides 

 information about whether it will rain. In such cases, no one would think that the cloud had the 

 shape it did because it provided information. In contrast, a weather forecast contains information 

 about whether it will rain, and it has the form it does because it conveys that information. The 

 difference can be expressed by saying that forecast has intentionality, whereas the cloud does not. 

 The notion of information as it is used in biology is of the former kind; it implies intentionality. It 

 is for this reason that we speak of genes carrying information during development, and of 

 environmental fluctuations not doing so. (Smith 2000, p. 193)  

 

 The way in which we use ―information‖ in genetics displays the signs of being an intentional 

term. This is why Sterelny & Griffiths propose that ―intentional information seems like a better candidate 

[than non-intentional information] for the sense in which genes carry developmental information and 

nothing else does‖ (1999, p. 104). 

 Whether or not information
i
 really has a critical role to play in biological theory is not without its 

controversy however. While the analogy between genetic code and language is undoubtedly strong, some 

suggest that we must be cautious how we approach it (Sarkar 1996, 2004: Griffiths 2001; Godfrey-Smith 

2004). I will now examine some of these worries in detail and determine whether they provide a 

substantial threat to this picture. 
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3.2.3 Is intentional information important to biology? 

I present here two common arguments raised against the value of information
i
 to biology. First, that the 

information-framework may have a legitimate role in biology, but that this account cannot be making use 

of information
i
. Second, that information-talk itself may in fact have no real substantial role to play in 

biology. I will demonstrate that neither of these arguments are conclusive, and that we still have 

substantial reasons for viewing information
i
 as a key part of biology. 

 Let us begin with argument that ―information‖ cannot be meant intentionally in the context of 

genetics. It has been argued that even if information-talk is an important part of biological theory, we 

have good reason to think that it is not the semantic kind. One reason being that we simply do not have a 

handle on what the ontological properties of semantic information actually are, and so no good way to 

know when something has them: 

 

When we leave the precise Shannon sense of information, we encounter an unruly collection of 

different concepts. We encounter the larger and controversial domain of semantic properties –

properties that involve, representation, reference, truth, coding, and so on. Despite a massive 

effort by philosophers and others over many years (especially the past 100 years), I think we do 

not have a very good handle on this set of phenomena. (Godfrey-Smith 2004, p. 278) 

 

 Given this, there are serious worries with the assumption that biological information is 

information
i
. Namely: that we have no way of knowing whether the information in biology has the 

properties associated with genuine intentional information or not. We need some way of determining 

whether biological information is genuinely intentional before we start treating the term as an intentional 

one. Yet, there is no empirical test for determining the presence of intentionality: 

  

 So do genes encode information for phenotypic traits in something more than the  Shannon sense? 

 Answering this question is made awkward by the absence of a good philosophical theory of 
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 semantic properties, the absence of a good test that we could apply to genes. Most philosophers 

 will agree that we do not have a clear diagnostic question to ask. (Godfrey-Smith 2004, p. 279) 

 

This inability to verify the existence or inexistence of information
i
 in a system casts doubt on 

whether such an intentional concept has any place in biological theories. With this in mind, Sarkar argues 

that we have no reason to think that biologists need to account for some ontological property of 

intentionality in their study of biological systems. As he puts it: 

 

 There is no reason to suppose that any concept of biological information must be ―semantic‖ in 

 the sense that philosophers use that term. Biological interactions, at this level, are about the rate 

 and accuracy of macromolecular interactions. They are not about meaning, intentionality, and the 

 like; any demand that such notions be explicated in an account of biological information is no 

 more than a signifier for a philosophical agenda inherited from manifestly nonbiological contexts, 

 in particular from philosophy of language and mind. It only raises spurious problems for the 

 philosophy of biology. (2004, p. 262) 

 

 The thing to note about these sorts of objections is that they fall prey to the exact problem that 

was discussed in Chapter 2. Specifically, that the only way to justify the use of an intentional concept in 

science is by first providing an ontological account of intentionality as a unique property or phenomenon. 

Only then we can determine what things genuinely have it, and whether we are permitted to describe them 

in that way. Yet, as we saw, this way of approaching intentional language is more of an obstacle to 

scientific progress than a part of it. Sarkar‘s assumption that semantic information has no role in biology 

because biologists should not have to develop an ontology of intentionality gets things backwards. If 

biologists can and do use intentional language, then this may be a reason why we ought to re-think our 

ontology of intentionality. Or at the very least, it provides us with good reason for thinking that the 

benefits of intentional attributions may be distinct from whatever ontological phenomenon intentionality 

turns out to be. 



 

 52 

 The relevant question is not whether we can generate a test to determine if the ontological 

property or phenomenon of intentionality is floating somewhere in our genes. The relevant question is 

whether or not biologists use ―information‖ in analogous ways to the way we use other intentional 

concepts. If they do, then this is a reason to view the term as an intentional term. And as we saw in 

Section 3.2.2, there are good reasons for thinking this. The question of what ontological inferences we 

ought to draw from this are still up for debate. It does not, however, commit us to the idea that 

intentionality necessarily exists as some ontological property of genes that we must test for. At the 

moment, we are concerned only with whether scientists make use of intentional language in their theories. 

And so these ontologically-based objections do not provide evidence that they do not, nor that it is not 

beneficial to do so.
10

 

 Let us now turn our attention to the argument that information-talk in any form has no real 

substantial role to play in biological theory. This objection is based on the idea that ―genetic information 

is no more than a metaphor masquerading as a theoretical concept‖ (Sarkar 2004, p. 266). Those who 

endorse this position suggest that the benefits provided by information-talk are at best extremely limited, 

and often greatly misleading: 

                                                   
10 One might argue that Godfrey-Smith‘s point is not an ontologically-based one, but instead a conceptual one. In 

other words, given that we do not have a good handle on the concept of semantic information, we have no rigorous 

way of determining whether we are applying the term properly in the case of biology and genetics. Thus until we do, 

we cannot know whether the term has a substantial role to play in biology. The problem with this sort of argument is 

if conceptual uncertainty is a reason to deny a concept a place in scientific discourse, then the uncertainty 

surrounding the status of biological information in general ought to likewise force us to deny it a place in biology. 

Yet Godfrey-Smith argues that the information-framework provides substantial benefits to biology (2004). Quite 

often the meaning of a concept in a scientific theory is determined by the role it plays in the completed theory. Thus 

to insist on a clear meaning of the term before the theory is permitted to use it seems to be in conflict with the way 

theoretical terms are introduced and used in science.  

But this interpretation of Godfrey-Smith‘s point (as highlighting a conceptual problem as opposed to an 
ontological one) is hard to support regardless. He argues, for example, that we have no diagnostic test we can apply 

to genes in order to determine if they have informationi. However, if the problem is with the uncertainty of the 

concept itself, then the lack of such a test would be irrelevant. To insist on a test that can be applied to genes 

presupposes that intentionality or semantics is a property of genes that we can test for. Yet, if the problem is a 

confusion with the concept of informationi, then no test of the genes will be illuminating to this problem. Instead, the 

problem is a lack of diagnostic test for the biologists regarding their use of the concept. This more ontological 
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 Even the most charitable attitude toward the use of ―information‖ in genetics can only provide a 

 defense of its use in the 1960s, in the context of prokaryotic genetics (i.e., the genetics of 

 organisms without compartmentalized nuclei in their cells). Once ―the unexpected complexity of 

 eukaryotic genetics‖ (Watson, Tooze, and Kurtz, 1983, ch. 7) –that is, the genetics of organisms 

 with compartmentalized nuclei in their cells– has to be accommodated, the loose use of 

 ―information‖ inherited from prokaryotic genetics is at least misleading. (Sarkar 2004, p. 261) 

 

Sarkar is suggesting that the more we observe complex biological phenomena, and develop 

increasingly intricate theories of genetics, the more our concept of ―information‖ seems to fail to capture, 

or account for, the relevant features of genes. Information-talk therefore appears to fail at being predictive 

or explanatory in any rigorous scientific sense. For example, consider that information-talk is often 

thought to be useful in predicting amino acid sequences. Sarkar (1996) points out that this way of talking 

fails to be predictive in a number of cases due to complications such as variations from the universal 

code. These sorts of problems suggest that ―there is good reason to believe that such talk of information in 

genetics may be unnecessary‖ (Sarkar 2004, p. 266). 

 The problem with this objection is that the failure of the information-framework is not nearly so 

apparent or obvious as it is made to seem. Smith, for example, strongly disagrees with Sarkar, and argues 

that ―the concept of [information] played a central role in the growth of molecular genetics‖ (Smith 2000, 

p. 192). He similarly argues that Sarkar ignores the substantial successes that information-talk has brought 

to a rigorous study of biology: 

 

 I think that Sarkar is over-eager to point to the failures of the information analogy and to play 

 down its successes. For example, he does not explain that the discovery of the relationship 

 between DNA and protein –as a triplet code in which the correct ‗reading frame‘ is maintained by 

                                                                                                                                                                    
interpretation is further supported by his claim that we have an ―absence of a good philosophical theory of semantic 

properties.‖ (my emphasis). 
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 accurately counting off in threes, and whose meaning can be destroyed by a ‗frame shift‘ 

 mutation also arose from the coding analogy. (2000, p. 184) 

 

 Take, as another example, the predictive value of the information-framework. While Sarkar 

suggests that the use of information-talk fails to effectively predict amino acid sequences, Smith points 

out that this is simply untrue: 

  

 As a second example, Sarkar‘s argument that the code does not enable one to predict amino acid 

 sequences (because of complications such as introns, variations from the universal code, etc) is 

 seriously misleading: biologists do it all the time. (Smith 2000, p. 184) 

 

 In response, Sarkar grants that the attribution of information has had substantial benefits to 

biology in past. And not only that, but that the success of this way of talking is indeed something that 

must be explained: ―I do not deny that the informational framework for molecular genetics has a certain 

perspicuity that its critics must explain and incorporate into their own putative alternatives‖ (Sarkar 2000, 

p. 208).
11

 He merely questions whether or not it will ―continue to be of explanatory value in contemporary 

biology‖ (2000, p. 208, emphasis in text). He suggests that current and future developments in genetics 

will make the informational-framework obsolete in biology. Of course, whether or not this will turn out to 

be the case is hardly obvious. And, interestingly, Sarkar eventually concedes in one of his later writings 

(2004) that information-talk might actually play an indispensible role in biology.
12

 He says:  

 

                                                   
11 For my purposes, this is all that really needs to be granted. Do biologists talk this way? Yes. Is it beneficial? Yes. 
In fact, if one is to argue against this way of talking in science, they must explain why this way of talking has proven 

beneficial in the past, and if other ways of talking can perform the same tasks. 
12 His argument in that paper actually shifts from one against information-talk tout court to one against interpreting 

biological information as informationi. His argument, however, is based entirely on the claim that we have no reason 

to think that genes contain the ontological property of intentionality. And this, as we‘ve seen, is an insufficient 

reason to deny ―information‖ the status of being an intentional term. 
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 Routinely, talk of information is intertwined with linguistic metaphors, from both natural and 

 artificial languages. [...] The use of such talk is so pervasive that it almost seems impossible that, 

 short of pathological convolution, the experimental results of genetics can even be communicated 

 without these resources. (2004, p. 266) 

 

What then can we conclude about information in biology? While the use of the information-

framework is not without controversy, there is a great deal of evidence that it has had substantial success 

as a part of our biological theories. There is also strong evidence that ―information‖ in these contexts is a 

distinctly intentional term, and is not employed merely as a kind of unnecessary metaphor. This provides 

us with good reason to think that intentional language plays an important scientific role in biology and 

genetics.  

The metaphysical and ontological assumptions concerning intentionality as a mental phenomenon 

often convince people that intentional language belongs primarily at the level of psychology (and possibly 

neuroscience). If intentional descriptions are instead interpreted first and foremost as a type of linguistic 

tool, then it becomes a legitimate question which scientific domains the tool is useful for. What I have 

demonstrated here is that intentional descriptions may have substantial uses in scientific domains like 

biology. This brings us to the key question: what exactly do intentional descriptions, as a linguistic tool, 

tell us about systems? How do intentional descriptions in biology relate to those in neuroscience or 

psychology? It is these question we will turn to in the next chapter. 
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Chapter 4 

What Does Intentional Language Tell Us? 

Last chapter, I argued that intentional language can be found in scientific domains other than the sciences 

of the mind (such as biology).
13

 So what is it that ties together the different uses of intentional language in 

the different scientific domains? In this chapter, I examine different possible answers to this question, and 

see if the example from last chapter can help illuminate the answer. 

4.1 Nothing 

The first option is that nothing ties them together. Intentional language may ultimately have no scientific 

value whatsoever. As such, attempting to find a common pragmatic value that connects the different 

scientific usages together may be for naught. There is no value to connect. 

 The problem with this sort of pessimistic view is that we seem to have empirical evidence to the 

contrary. Consider the example from the last chapter. The attribution of information
i
 to genes in biology 

is more than just a useless metaphor or unnecessary linguistic tendency; such attributions have been 

immensely valuable to genetics (see Section 3.2.3 for details). As another example, consider our use of 

intentional language in neuroscience. David Marr (1982) famously argues that understanding neurological 

mechanisms in terms of the information
i
 they contain has been an essential part of neuroscientific practice 

(p. 19). Or consider cognitive science. One of the founding principles of this discipline is that we can 

explain and predict the behaviour of systems by attributing to them representations and rules that operate 

over them. 

 To insist that intentional language has no value to science would seem to conflict with much of 

actual scientific practice. Of course, one might insist that the value of intentional language to science can 

                                                   
13 There is also evidence (albeit far more controversial) that intentional notions of ―information‖ even exists at level 

of physics (see, for instance: Wheeler 1990, and Zeilinger 2005) 
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be better achieved by other means (Churchland 1981; Stich 1983), however this is a different issue 

altogether. The question of whether intentional language is indispensible, or whether other accounts are 

superior, is an issues I will turn to later (See Sections 8.1 and 8.2). At present, the issue is merely whether 

intentional descriptions have scientific value, and the evidence certainly suggests that they do. So it is a 

legitimate question to ask what this value is.  

4.2 Nomological Laws 

One possible answer for what ties together the different uses of intentional language is that they are all 

used to characterize the same sort of law-like relation that connects certain physical states (like brain 

states) to the things that they are about. This is a position famously argued for by Fodor. As he puts it: 

 

…what bestows content on mental representations is something about their causal-cum-

nomological relations to the things that fall under them: for example, what bestows upon a mental 

representation the content dog is something about its tokenings being caused by dogs. (Fodor 

1998, p. 12) 

 

Similarly, according to this view, when I misrepresent the world (for instance, when a cat causes a dog-

representation in me), then there is also a nomic relation between the cat and my dog-representation. 

However, that nomic relation is parasitic on the relation that connects dogs to my dog-representation. In 

essence, a cat can only sometimes cause a dog-representation in me because dogs cause dog-

representations in me (and cats can be relevantly similar to dogs in certain contexts). This view would 

suggest that all intentional language (when used appropriately) is beneficial to science in virtue of 

characterizing a particular sort of causal nomic relation (constitutive of meaning) that connects certain 

types of physical states to the things they represent.  

 The problem with this idea is that it is extremely difficult to make sense of the notion of 

information
i 
discussed last chapter in this way. In other words, it is highly dubious that information

i 
is a 
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physical state within our genes that has a particular sort of causal nomic relation (constitutive of meaning) 

between it and the phenotypic traits it is ―about‖. The information within our genes is not best understood 

as a physical state whose tokenings are caused by the presence of phenotypic traits. And so the benefits of 

intentional language in such cases seem not to be connected to the presence of this sort of nomic law. 

 Of course, one might insist that the use of intentional language in the case of biology is 

inappropriate or metaphorical. However, this does not change the fact that the language is intentional, and 

that it is beneficial to scientific practice. Similarly, there are reasons to doubt whether the benefits of 

intentional language in other domains are tied to this idea of nomic laws either, even in domains like 

psychology and neuroscience. 

 The suggestion that there are particular sorts of metaphysical representational laws (or nomic 

relations) that connect certain physical states to objects in the world, can only be scientifically useful to us 

if we have some principled means of determining or identifying these relations. Otherwise, how can we 

tell whether our fruitful scientific use of intentional language in any way corresponds with the appropriate 

nomic laws or not? To demonstrate, consider the following example described by Daniel Dennett: 

 

Consider a standard soft-drink vending machine, designed and built in the United States, and 

equipped with a transducer device for accepting and rejecting US quarters. Let‘s call such a 

device a two-bitser. Normally, when a quarter is inserted into a two-bitser, the two-bitser goes 

into a state, call it Q, which ―means‖ (note the scare-quotes) ―I perceive/accept a genuine U.S. 

quarter now.‖ Such two-bitsers are quite clever and sophisticated, but hardly foolproof. They do 

―make mistakes‖ (more scare-quotes). That is, unmetaphorically, sometimes they go into state Q 

when a slug or other foreign object is inserted in them, and sometimes they reject perfectly legal 

quarters –they fail to go into state Q when they are supposed to. (Dennett 1987, p. 290) 

 

Now imagine I say of the two-bitser that it has a ―representation‖ of a quarter when, upon receiving my 

inserted quarter, it goes into state Q. Does this case involve the appropriate nomic relations connecting 
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state Q to the quarter in such a way as to be a legitimate scientific use of intentional language? Or is it 

merely a case of inappropriate, or derived (i.e., metaphorical) intentionality? According to Fodor, the 

vending machine lacks the appropriate nomic relations to be a literal case of intentional language: 

 

―That sort of case is irrelevant,‖ Fodor retorted instantly, ―because after all, John Searle is right 

about one thing; he‘s right about artifacts like that. They don‘t have any intrinsic or original 

intentionality –only derived intentionality.‖ (Dennett 1987, p. 288)  

 

But how can we tell? Could we not say that when the vending machine is in state Q, there is a nomic 

connection between it and the quarter it represents? Similarly, when we ―fool‖ the machine with a slug, it 

goes into state Q because there is an asymmetrical dependency relation between the machine‘s 

representation of (certain kinds of) slugs, and its representation of quarters. In which case, our description 

of the vending machine would be an appropriate use of literal intentional language. 

 Perhaps one might protest that we need not posit this sort of nomic relation between state Q and 

the quarter in order to explain the vending machine‘s behaviour. We can account for the correlation 

between state Q and the quarter entirely by way of physical mechanisms (without the need to appeal to 

any metaphysical representational laws). But this sort of argument assumes that nomic relations are brute 

metaphysical laws that are built into the fabric of the universe. However, Fodor explicitly denies this:  

 

I now add the considerably less tendentious assumption that if there are such meaning-making 

laws, they surely couldn‘t be basic. Or to put it another way, if there is a nomic connection 

between doghood and cause-of-DOG-tokeninghood, then there must be a causal process whose 

operation mediates and sustains this connection. Or, to put it another way, if informational 

semantics is right about the metaphysics of meaning, there must be mechanisms in virtue of which 

certain mental (-cum-neural) structures ‗resonate‘ to doghood and Tuesdayhood. […] 

Mechanisms of semantic access are what sustain our ability to think about things. (Fodor 1998, p. 

75) 
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But if this is the case, then why can we not claim that the two-bitser is the ―causal process whose 

operation mediates and sustains‖ the connection between state Q and the quarter? The appropriate nomic 

relation connecting state Q to the quarter is the direct product of that mechanism. And so again, we would 

have a clear-cut case of intentionality and not mere derived or metaphorical intentionality. Clearly more is 

needed to determine what sorts of nomic relations are off the table as sufficient for appropriate scientific 

intentional descriptions. But Fodor has no story about what such nomic laws are like. As Daniel Hutto 

points out, Fodor ―fails to give a scientifically respectable explanation of the dependency relationship‖ 

(Hutto 1999, p. 48). And so how can we tell if the scientifically fruitful uses of intentional language in 

psychology and neuroscience are truly those that characterize this nomic relation? 

 If we can, and do, use intentional language in scientifically fruitful ways that do not conform to 

the sorts of nomic laws Fodor suggests (as in the biology case), and we have no principled means of 

telling whether these nomic laws exist in any other contexts, then what reason do we have for thinking 

that this nomic relation is the foundation for our fruitful uses of intentional language in science? The 

evidence we have about the usage of intentional language in science seems to either contradict this 

position, or be such that we can never confirm it. Such an account, therefore, has little benefit for us 

scientifically.
14

 

                                                   
14 A similar problem applies to Fred Dretske‘s attempt to develop an account of information i in terms of informations 

(1981). Like Fodor, Dretske also claims that intentional language characterizes a kind of nomic relation. He 

proposes that this nomic relation can be built up out of the sort of relations characterized by communication theory. 

However, Dretske‘s account faces all the same troubles that Fodor‘s does. First, it seems unable to account for 

examples such as the application of informationi in biology discussed last chapter. Second, Dretske claims that not 

all nomic relations arising out of informations are sufficient to count as intentional, but he provides no story of how 
to tell which nomic relations are the relevant ones. Consider Dennett‘s two-bitser example. According to Dretske, 

such a simplistic machine would ―lack something that is essential‖ for intentionality (1985, p. 23). But why think 

so? We can easily characterize the relation between state Q of the two-bitser, and the quarter it represents, in terms 

of informations . So why assume that this case is not one that captures the appropriate nomic relations for 

intentionality? Without a more definitive set of criteria, Dretske‘s account has the same faults that plagued Fodor‘s 

account. 



 

 61 

4.3 Distinct Biological Property 

Another possible answer for what connects the different uses of intentional language in science is its 

ability to characterize some unique property of biological matter. This idea, suggested by Searle (1980, 

1992), proposes that intentionality is some distinctive property of biology, and that the appropriate use of 

intentional language in science is one that identifies this property. In this sense, the case of information
i
 in 

biology really might be an appropriate use of intentional language (given the biological nature of our 

genes). But using such language to characterize computers, as engineers often do, would be a mistaken 

(or at least metaphorical) use of the language. While Searle grants that talking about non-biological 

systems as having intentional states may still be extremely beneficial to science, he insists that the 

appropriate literal use of the language is to characterize this unique biological property. 

 The problem with this account of intentional language is that it faces the same sorts of problems 

that our account of nomic laws faced: we have no scientific means of determining what this unique 

property of biology is, or how it is generated. We can, and clearly do, use intentional language in science 

to fruitfully characterize non-biological systems all the time, as we commonly see in work on artificial 

intelligence. So what is the value of talking this way in those contexts? Clearly it is not its ability to 

characterize some particular biological property. Or consider Dennett‘s two-bitser example again. Does 

the vending machine lack the appropriate biological property necessary to literally have a representation? 

If so, how can we tell? Searle provides no guidance as to what this property is, how we can find it, or why 

only biological matter might have it. 

 In this respect, Searle‘s account bears a striking similarity to the vital force theory of life that was 

abandoned long ago. To demonstrate, imagine a vitalist; someone who believes that life —real honest to 

goodness life— is a metaphysical force that inhabits certain systems. Now imagine that our vitalist fully 

grants that many scientists can, and do, still talk of systems that lack the vital force as being ―alive‖ in 

ways that are productive and fruitful to scientific practice. He merely insists that the appropriate literal 
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use of the term ―life‖ (and the real scientific value of life-talk) is to characterize this metaphysical force. 

However, our vitalist has no idea what this vital force is, and grants that we have no current scientific 

means of ever telling which systems have it and which do not, nor any explanation for why. 

Under these circumstances, the vitalist‘s conception of ―life‖ is simply unhelpful to us 

scientifically. It provides no value at all. Moreover, if our fruitful and productive scientific use of the term 

―life‖ does not cut along the lines that the vitalist insists that it should, then its value to science is clearly 

not what the vitalist insists that it is. I propose that the same holds true for Searle‘s account of 

intentionality. He insists that it is a metaphysical property that certain systems have, but has no story 

about what it is, and grants that we have no current scientific means of ever telling which systems have it 

and which do not, nor any explanation for why. He also admits that intentional language is used in fruitful 

scientific ways that do not conform to his account (the so-called ―metaphorical‖ cases). As such, I 

propose that the value of intentional language to science is not what Searle insists it is. 

4.4 Prediction and/or Abstract Mechanistic Descriptions 

4.4.1 Intentional language and prediction 

So what then do we use intentional language for? Perhaps we can find a clue in our example from last 

chapter. What are the benefits of talking about genes in terms of information
i
? According to Smith, it 

allows biologists to predict amino acid sequences. Not only that, but biologists use it to make such 

predictions ―all the time‖ (Smith 2000, p. 184).  

 With this in mind, I propose that what ties together the different uses of intentional language in 

the various scientific domains is its ability to help us generate predictions of systems. But even if this is 

true in the case of biology, is it equally true in the sciences of the mind? Some philosophers have 

explicitly argued for this idea; the most well known example being Daniel Dennett (1971, 1987, 1991a, 

1991b). Dennett proposes that our use of intentional language involves our taking a stance towards a 
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given system in order to make predictions of it (for a more detailed account of Dennett‘s position, see 

Section 9.5). Jerry Fodor similarly champions the predictive successes of intentional attributions in our 

scientific study of the mind (1987). Even Paul Churchland, who argues that intentional language ought to 

be eliminated from science due to its explanatory deficiencies, still grants that intentional language allows 

us to predict ―the behavior of other persons with a facility and success that is remarkable‖ (1981, p. 68). 

We also know that it is common practice in neuroscience and cognitive science to make predictions by 

interpreting systems in terms of representations and information
i
. And so there certainly seems to be 

evidence for the predictive value of intentional language. But is the value of intentional language really its 

predictive power, or is its predictive power just a by-product of a more important feature of the language: 

namely, its ability to abstractly describe the functioning of mechanisms working within the system? 

4.4.2 Do we use intentional language as abstract mechanistic descriptions? 

According to some philosophers and cognitive scientists, the reason for the predictive successes of 

intentional models is because the ascribed intentional states correspond to sub-personal physical 

mechanisms operating inside the system that are causal in its behaviour, and so its predictive success 

comes from its mechanistic interpretation of the system. This intuition can be deceptively bolstered by the 

fact that many different scientific accounts of the mind argue that at least some intentional states do 

correspond to physical sub-personal mechanisms. For instance, connectionists propose that we can 

understand (at least some) intentional states as being nodes in a neural net, and it is this neural net that 

generates behaviour. Or consider the neural engineering framework (Eliasmith & Anderson 2003). 

According to this framework, at least some intentional states can be understood as patterns of activation 

in the brain that are best modeled as vectors in a multidimensional state-space. Or take a very different 

sort of story: Fodor proposes that intentional attributions correspond to mechanisms in the brain that are 

at a higher-level than those described by neuroscience (for more details on Fodor‘s account, see Section 

9.2). While these accounts do not claim that only intentional states which correspond to sub-personal 
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mechanisms will prove predictively fruitful, those who have his intuition may view these accounts as 

providing evidence for such a position. These accounts can give the impression that intentional 

attributions act as a kind of abstract mechanistic description of the system. 

 To further emphasize this point, consider once again Dennett‘s example of the soft-drink vending 

machine. When I say that the vending machine can represent a quarter, I am proposing that the vending 

machine has the ability to distinguish quarters from non-quarters, and can make inferences (to output a 

can of pop, to ask for more change, etc) based on its having this representation. Now, in this case, its 

ability to do this is in virtue of a particular ―sub-personal‖ mechanism working within the vending 

machine (the two-bitser). It is this sub-personal mechanism that explains the discriminatory behaviour of 

the system, and thus allows us to predict it by attributing to it the relevant representation. And so under 

this account, intentional descriptions are useful to science because they are really just roundabout ways of 

providing abstract mechanistic accounts of systems, and predicting based on those accounts. In other 

words, some propose that the real benefit of intentional language is its ability to tell us about the 

functioning of sub-personal mechanisms. We can then use this information to form predictions. 

4.4.3 Prediction does not require abstract mechanistic descriptions 

I propose that this idea is ultimately misguided, and does not fit with our actual use of intentional 

language to make scientific predictions. This is not to say that we do not sometimes find correlations 

between the attribution of a relevant intentional state, and a sub-personal mechanism. And indeed, our 

understanding of systems is greatly enhanced in cases where we do find such correlations. However, such 

instances are not what validates the use of intentional language in science. Our use of intentional language 

to make fruitful predictions in science often does not require this correlation. In other words, it is not in 

virtue of corresponding to sub-personal mechanisms that intentional attributions are scientifically 

relevant. 
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 This is reflected in our actual scientific practices in two important ways. First, the existence (or 

inexistence) of such a correlation can often not be relevant to our scientific purposes when employing 

intentional language. And second, there is empirical evidence that intentional attributions which do not 

conform to physical mechanisms are used to make successful predictions in science. 

 Let us examine the first issue. I propose that even if there is no underlying mechanism that 

corresponds to the intentional attribution, the predictive benefits of employing such terminology are often 

what we care about. Imagine that we are developmental psychologists interested in learning about the 

ability of infants to grasp items out of their reach. To conduct this experiment, we present the child with a 

desired object. Then, we interpret the child‘s future actions given her goal of trying to reach the object. 

Now, do we suppose that the scientific value of attributing a ―goal‖ to her in such a context is entirely 

determined be whether there is a particular goal-state explicitly encoded in the brain? Suppose there is 

only a direct connection between the visual stimulus and the motor behaviour? In such a circumstance, 

there may be no particular mechanism in the brain that corresponds to an explicitly represented goal that 

the infant has, and which is causal in her behaviour. Would this lack of a correlation between the 

intentional ascription, and a particular physical mechanism, imply that such an intentional attribution 

would cease to be useful in this context? I propose not. 

In such an experiment, we are not treating the intentional attribution as a kind of abstract 

mechanistic description. We are uninterested in the question of whether goal-states are neurological 

mechanisms, since it is not what we are trying to learn about the infant. All that matters is that the child 

behaves in accordance with such a goal so that we can study her grasping ability. Depending on the why-

question being asked by the psychology, it may simply not matter whether there is a particular mechanism 

correlated with the attribution of the goal or not. And so the value of the intentional term is not its ability, 

or inability, to correlate with some particular causal mechanism. Instead, its value is in its ability to help 

us predict the general behaviour of the child (her pursuit of the desired object) so that we can observe 
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other behaviours and capacities. In this respect, not all fruitful and important scientific uses of intentional 

language need to correspond to particular physical mechanisms, just so long as they are predictively 

valuable. 

But even if we happen to be uninterested in mechanistic correspondence when using intentional 

language in science, it may be a contingent fact about intentional language that the only time it ever is 

predictive is when there is such a correspondence. In other words, the predictive value of intentional 

language may be derived from its abstract mechanistic account of the system. And this brings us to our 

second issue: the matter of whether intentional attributions can be predictive in the sciences of the mind 

when they do not correlate with any particular sub-personal mechanisms is ultimately an empirical one. 

And there is empirical evidence that such accounts genuinely are predictive in these contexts. This means 

that the predictive value of intentional models is not contingent on them being abstract structural 

descriptions of systems. In the following chapter, I provide clear evidence of this by looking at the Theory 

of Planned Behaviour in psychology. This will provide us with clues as to the sort of predictive tool 

intentional models can be, and how they fit into our methodological study of the mind. 
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Chapter 5 

Prediction Without Mechanistic Correspondence 

Do intentional descriptions allow us to generate accurate predictions in the sciences of the mind when 

there is no known correspondence between posited intentional states and sub-personal mechanisms 

working in the brain? In this chapter, I demonstrate that they can, and I provide a clear empirical example 

to demonstrate this. However, before providing this example, it is important to stress that many of the 

neurological mechanisms responsible for behaviour are still largely unknown. And so it is difficult to say 

with absolute certainty which intentional attributions will or will not eventually end up corresponding to 

particular mechanisms. I therefore begin with some suggestions regarding what kinds of intentional states 

are likely (given what we currently know) not to correlate with specific neurological mechanisms. 

5.1 Traditional Psychological Concepts 

The sorts of intentional states that have been considered most controversial in terms of their 

correspondence to physical mechanisms have been those traditionally associated with ―folk‖ psychology. 

These include beliefs, intentions, desires, hopes, fears, and regrets (among others). In Section 1.1, I 

highlighted the problem with associating such concepts exclusively with folk psychology
15

, but for our 

current purposes what matters is not whether they are folk concepts. Instead, what matters is whether such 

concepts correspond to the functioning of particular physical mechanisms, since it is the predictive 

success of non-mechanistic intentional descriptions that we care about (regardless of whether they are 

folk or not). To avoid associating such concepts exclusively with ―folk‖ psychology, I will instead refer to 

such concepts as belonging to traditional psychology. In this sense, concepts like ―beliefs‖ and 

―intentions‖ are traditional psychological concepts. 

                                                   
15 Concepts are not folk or scientific by themselves. The context in which they are used makes them folk or 

scientific. And concepts like ―beliefs‖, ―intentions‖, and ―desires‖ are used in both folk, and scientific, contexts. 
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So do concepts like ―beliefs‖ and ―intentions‖ abstractly describe the functioning of particular 

neurological mechanisms? What would it mean for some physical mechanism to act as a belief or an 

intention, exactly? Answering these questions requires a better understanding of what terms like ―beliefs‖ 

and ―intentions‖ mean. And following Paul Churchland, I propose that the semantics of these terms are 

ultimately determined by the network of laws and generalizations in which they fit. As Churchland puts it, 

the ―semantics of the terms in our familiar mentalistic vocabulary is to be understood in the same manner 

as the semantics of theoretical terms generally: the meaning of any theoretical term is fixed or constituted 

by the network of laws in which it figures‖ (1981, p. 61). But what are the laws and generalities that 

determine the meanings of these mental state terms? Ultimately, these generalities can be understood as 

the expected interactions that go on between these mental states to produce behaviour. As Braddon-

Mitchell and Jackson put it: 

 

 The fact that people tend to move in such a way that what they desire is satisfied if what they 

 believe is true is more than an interesting truth. It is in part constitutive of our understanding of 

 belief and desire. (2007, p. 53) 

 

 The mechanistic legitimacy of beliefs, intentions, and desires is therefore dependent on whether 

we can find mechanisms within the human brain or body that behave and interact in a way that mimics 

these generalizations. 

There are multiple reasons for thinking that no such mechanisms exist. First, attempts to find 

physical mechanisms within the brain that behave appropriately to warrant being called ―beliefs‖ or 

―intentions‖ have not been successful to date (it is for this reason that Churchland purposes that we 

eliminate these terms from our scientific usage).
16

 Second, we use such psychological concepts to 

                                                   
16 Although it should be noted that this could be in the process of changing. Recent neurological research suggests 

that, in particular contexts, certain propositional attitudes from traditional psychology really might find some sort of 

mechanistic grounding (Harris, Sheth & Cohen 2008; Andersen & Cui 2009). Harris, Sheth & Cohen (2008), for 
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describe the behaviour of everything from fish, to birds, to reptiles, to insects and spiders, to clams, and to 

computers (Dennett 1987, p. 22). Given that these systems have radically different internal physical 

mechanisms generating their behaviour, the assumption that they all have explicit mechanisms that meet 

the generalities specified by traditional psychology is highly questionable. Third, we used such 

psychological concepts long before we knew anything about the internal mechanisms generating 

behaviour. And so the insistence that these attributions happened to, unbeknownst to us, always 

correspond to some physical mechanism is implausible. 

Of course, it should be noted that these reasons are not enough to rule out the possibility that 

there are mechanisms that correspond to such mental states. In fact, some have suggested that the 

explanatory and predictive successes of such psychological concepts provide us with evidence that they 

do correspond to physical mechanisms. Fodor, for instance, goes this route (Fodor 1987). For Fodor, 

these are not neurological mechanisms, however, but higher-level cognitive mechanisms that are merely 

being implemented by the lower-level neurological machinery. The human brain, under this 

interpretation, works as a sort of Turing Machine. And as is the case with Turing Machines, it can be 

implemented by different sorts of physical systems. This explains why radically different mechanistic 

systems can have beliefs and intentions (as well as other traditional psychological states). According to 

Fodor, this sort of account is not only plausible, but is the ―only game in town‖ when it comes to 

explaining behaviour (1975). This would suggest that such concepts really do correspond to the behavior 

of physical mechanisms.  

                                                                                                                                                                    
example, propose that in some situations, the having of a belief can be understood mechanistically. Despite 

appearing to contradict my claim above however, this research does not mechanistically vindicate the sorts of cases 
relevant for our purposes here. In other words, their research does not mechanistically ground the idea that we have 

belief-states interacting with intention-states (as well as other propositional attitudes) in order to generate behaviour 

in the way proposed by most traditional psychological models. Instead, their research only demonstrates that there 

may be a neurological mechanism by which people judge a given proposition to be true or false when it is presented 

to them. Therefore, their research (as it currently stands) does not provide a mechanistic grounding for the predictive 

power of the psychological models discussed in this chapter. 
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The problem with Fodor‘s account is that it runs into empirical problems (these are distinctly 

different from the ones discussed last chapter regarding the metaphysical nature of intentionality). First, 

ever since Fodor developed his account in the 1970s, many new games have come to town. Among them: 

connectionism, and the more recent neural engineering framework, which do not posit a correlation 

between traditional psychological states and mechanisms. And so even if Fodor could claim victory in the 

past by running unopposed, he cannot make such a claim anymore. Second, Fodor himself admits that we 

do not have any story about how the brain implements this higher-level cognitive mechanism. As he puts 

it, there is an ―utter lack of neuroscience of Mentalese‖ (2008, p. 79). Worse still, he admits that we have 

no principled means of finding out how this system is implemented: 

 

 I've heard it offered, as an argument against LOT, that no one so far has ever seen a neural token 

 of an expression in Mentalese. But given that we have no idea how Mentalese (or anything much 

 else) is implemented in the brain, how would one know if one did? (Fodor 2008, p. 79 —

 footnote) 

 

 And so we have no real way to confirm that this sort of account is true. Third, and most 

importantly, we have considerable evidence that the brain does not implement this sort of high-level 

cognitive mechanism that outputs traditionally defined psychological states in order to generate behaviour 

(see, for instance, Churchland 1980; Dennett 1987; Eliasmith & Anderson 2003; Craver 2007; and 

Bechtel 2008 to name only a few). As Dennett puts it: 

 

[Such cognitive models] seem to lead quite systematically down recognizable dead ends: 

hopelessly brittle, inefficient, and unversatile monstrosities of engineering that would scarcely 

guide an insect through life unscathed. (1987, p. 229) 
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 In fact, numerous philosophers have explicitly argued that the prospect of ever finding 

mechanistic counterparts for the classically defined psychological states (whether as part of a higher-level 

cognitive mechanism or not) is simply not likely to be vindicated by our best neurological research 

(Churchland 1981; Stich 1983; Bickle 2003). 

 Of course, given that it is impossible to say with absolute certainty which intentional states will 

ultimately be found to correspond to physical mechanisms once we have developed a completed 

neuroscience, the best we can do is make an educated guess based on our current evidence. And given our 

current state of information, many of the propositional attitudes used by traditional psychology are good 

candidates for intentional states that appear to have no mechanistic counterparts. And so the question is: 

can the application of these intentional concepts be predictive of human behaviour? If so, it would mean 

that an intentional description, which is not merely an abstract mechanistic description, can be genuinely 

predictive. And it is to this point that I will now turn. 

5.2 Reasons to Doubt the Predictive Value of Traditional Psychological Models 

Before examining the empirical question of whether a model employing traditional psychological 

concepts can be predictive, let us first consider some reasons to be sceptical that it would have predictive 

power. For brevity, I refer to such a model from here on as a ―traditional psychology model‖, or a ―TPM‖. 

I use this term not to refer to models that only work exclusively with traditional psychology concepts, but 

instead to refer to models that employ at least some concepts that are found in traditional psychology. 

Given that any predictive model which meets this minimal requirement would still be making predictions 

based on the application of intentional concepts which do not abstractly describe mechanisms, it is 

irrelevant for our purposes whether a TPM is substantially more complex than something like a folk 

psychological model. Let us now consider some potential worries facing the predictive success of TPMs. 

First, if the behaviour of a system is the direct result of the collection of mechanisms that 

constitute it, then a TPM, which ignores these mechanisms, does not appear to have a solid foundation on 
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which to base predictions. Such a model would not take into account the actual features of the system that 

generate its behaviour, and so has no basis from which to generate accurate predictions. 

 Second, we often seem to use traditional psychological descriptions merely as a means of re-

describing our past actions in order to justify them. In this respect, such concepts are used as a post hoc 

justification of behaviour instead of a predictive device. As Elliot Ludvig puts it: 

 

…an explanation in terms of ―wanting‖ and ―knowing‖ is entirely post-hoc and has no predictive 

power whatsoever. How do we know what someone ―wants‖ except by inferring it from what 

they do? We can ask the person for an introspective report, but […] first-person accounts of 

behavior are notoriously unreliable. (2003, p. 141) 

 

 Third, given that everyday talk in terms of mental states like beliefs and intentions is ubiquitous, 

it is easy to assume that we are using a TPM as a means of predicting systems. However, the neurological 

mechanism by which we make predictions of other people may in no way depend on the attribution of 

intentional states like beliefs and intentions to them. In other words, the application of a TPM may not be 

the means by which we make predictions of others; we simply assume it is given our tendency to make 

reference to such intentional states in everyday talk. Christopher Gauker (2009) highlights this problem 

explicitly: 

 

 My own opinion is that there is no reason to believe [that people can successfully predict one 

 another's behavior on the basis of attributions of belief and desire]. Yes, we can often successfully 

 predict what other people will do. Sometimes we do it by straight induction (People look both 

 ways before crossing a street). Sometimes we can predict what a person who has a certain skill 

 will do as a consequence of having that skill (She's a good chess player; so she will take my 

 rook). One of those skills is language. We can often predict what people will do on the basis of 

 what they have told us (He will meet me at my office at 10 tomorrow, because that's the time we 

 agreed on). 
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 What I don't see is any evidence that we can reliably predict what people will do in a way in 

 which attributions of belief and desire play an ineliminable role.   

 

In a similar argument, Adam Morton (1996) argues that a TPM is simply far too complex and unwieldy to 

successfully use to predict the behaviour of others. This is due to two reasons. The first reason is that 

predicting the behaviour of others requires more than just understanding them and their interactions in 

their environment. It requires understanding how their goals are intertwined with the goals of others, and 

this quickly makes predictions too difficult: 

 

 In quite simple situations one can need knowledge of knowledge of knowledge of preferences: 

 knowledge cubed. It is not hard to find quite simple 2-person n-act situations in which each 

 person needs knowledge to the nth. These situations are not artificial ones: their structure is that 

 of situations that people face every day of their lives. 

 

 It's very hard to think in the face of such complexity. In particular, it is hard to see what step by 

 step procedures will take you from the given data to a sensible decision about what to do in the 

 light of what the other(s) may do. (Morton 1996, p. 130) 

 

The second reason is that any set of intentional states we use to predict a system may yield 

different results depending on what other intentional states we attribute to the system. And it is extremely 

difficult to figure out which additional intentional states ought to be ruled out of our predictive account: 

 

The conclusion is that in order to predict actions you have to know more than a finite list of 

beliefs and desires. You have to know general features of the person's motivations that allow you 

to exclude whole classes of states that would be inconsistent with the beliefs and desires you 

attribute leading to the predicted action. (Morton 1996, pp. 128-129) 
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These together, according to Morton, give us good reason to deny that applying a TPM is a feasible 

means of predicting behaviour. 

 Lastly, TPMs attempt to predict people based on properties or states we ascribe to them (i.e., their 

having some set of intentional states). However, Ross & Nisbett (1991) argue that the environmental 

context in which a person is situated is a far better predictive indicator of behaviour than the individual 

traits that we ascribe to people. This gives us at least some reason to question the predictive success of 

TPMs. With all of these worries in mind, let us now examine an empirical case of a TPM. 

5.3 Theory of Planned Behaviour 

As an example of a TPM, let us consider the Theory of Planned Behaviour (Ajzen 1985, 1988, 1991). 

Before getting into the empirical details, let me stress a few preliminary points. First, I am not claiming 

that the Theory of Planned Behavior is the only successful TPM that exists in psychology. Second, I am 

not claiming that the theory of planned behaviour is a model of ―folk‖ psychology (i.e., it is not the way 

in which we attribute mental states to others in folk contexts, abstracted away from scientific 

methodology and theory). The question of whether folk psychology is predictive is, for our current 

purposes, irrelevant. My intention is only to demonstrate that a model, which posits intentional states that 

we have good reason to think do not conform to the behaviour of neurological mechanisms, can be 

predictive. I provide here only a brief sketch of the theory of planned behaviour, since many of the details 

are not relevant for the general point I wish to make. 

In order to predict behaviour, the theory of planned behaviour employs a psychological model 

that contains two major components: The agent‘s intention to behave, and their perceived behavioural 

control. According to Ajzen, ―perceived behavioral control, together with behavioral intention, can be 

used directly to predict behavioral achievements‖ (1991, p. 184). To understand how, let us consider in 

more detail the two components of the model. Let us begin with intention: 

 



 

 75 

...a central factor in the theory of planned behavior is the individual‘s intention to perform a given 

behavior. Intentions are assumed to capture the motivational factors that influence a behavior; 

they are indications of how hard people are willing to try, of how much of an effort they are 

planning to exert, in order to perform the behavior. As a general rule, the stronger the intention to 

engage in behavior, the more likely should be its performance. (Ajzen 1991, p. 181) 

 

 What is it that determines the strength of an intention? According to the theory, the strength of an 

intention is determined by two different types of beliefs.
 
The first are behavioural beliefs, which 

determine the agent‘s attitude towards the behaviour. The more favourably the agent views the behaviour, 

the stronger the intention. The second are normative beliefs, which determine the agent‘s subjective 

norms (Ajzen 1991, p. 189). These norms reflect the social pressures placed on the agent to perform, or 

not perform, the act. The greater the social pressure to perform the act, the stronger the intention. 

 Let us now turn our attention to the second component of the theory of planned behaviour: 

perceived behavioural control (PBC). PBC is an agent‘s perception of their own ability to perform a 

given action, and is determined by the agent‘s beliefs regarding their level of personal control over 

completing the task (Ajzen calls this third type of belief control beliefs). Put simply, perceived 

behavioural control can be understood as ―people‘s perception of the ease or difficulty of performing the 

behavior of interest‖ (1991, p. 183). While a complete lack of actual behavioural control (e.g., a lack of 

ability, resources, or opportunity to perform the task) will obviously bar the agent from completing a task, 

a partial decline in actual behavioural control can be overcome by the agent given the appropriate PBC. In 

other words, ―perceived behavioral control can often be used as a substitute for a measure of actual 

control‖ (Ajzen 1991, p. 184). For instance, a loss in behavioural control (a lack of opportunities) can be 

compensated for if the agent expends more effort to find and/or create new opportunities. But an agent 

will only make such efforts if they think that they have a chance at succeeding. In this regard, an agent 

who has a higher perception of behavioural control will be more likely to perform a task they only have 
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partial behavioural control over than one which has a lower perception of behavioural control. The 

agent‘s willingness to try, or to exert effort to overcome obstacles, is dependent on their perception of 

their own ability to succeed at such endeavours. 

This, of course, assumes that one‘s perceived behavioural control is not grossly out of alignment 

with one‘s actual behavioural control. It also means that certain kinds of behaviour (those whose 

performances are within the actual power of the agent) will be more predictable by the theory than 

behaviour which is outside their volitional control. 

5.4 Is the Theory of Planned Behaviour Predictive? 

According to Ajzen, the theory of planned behaviour ―permits prediction and understanding of particular 

behaviors in specified contexts‖ (1991, p. 206). This conclusion has been supported by numerous 

empirical studies that have examined the predictive merits of the model (see: Ajzen & Driver 1992; 

Sparks 1994; Blue 1995; Connor & Sparks 1996; Godin & Kok 1996; Hausenblas et al. 1997; Armitage 

& Conner 2001). Hausenblas et al., for instance, claim that the theory of planned behaviour has 

―considerable utility in predicting and explaining exercise behavior‖ (1999, p. 46). Similarly, Armitage & 

Conner, in their meta-analysis of the efficacy of the theory of planned behaviour, conclude that the studies 

they examined ―provide support for the efficacy of the TPB [theory of planned behaviour] as a predictor 

of intentions and behaviour‖ (2001, p. 489). 

 It is important to note that these claims of predictive success are dependent on certain conditions 

being met by the model regarding its proper application, and the contexts in which it is applied. 

According to Ajzen, there are three major conditions that must be met in order for the theory to predict 

behaviour: 

  

 First, the measures of intention and of perceived behavioral control must correspond to or be 

 compatible with the behavior that is to be predicted. That is, intentions and perceptions of control 
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 must be assessed in relation to the particular behavior of interest, and the specified context must 

 be the same as that in which the behavior is to occur. For example, if the behavior to be predicted 

 is ―donating money to the Red Cross,‖ then we must assess intentions ―to donate money to the 

 Red Cross‖ (not intentions ―to donate money‖ in general nor intentions ―to help the Red Cross‖), 

 as well as perceived control over ―donating money to the Red Cross.‖ The second condition for 

 accurate behavioral prediction is that intentions and perceived behavioral control must remain 

 stable in the interval between their assessment and observation of the behavior. Intervening 

 events may produce changes in the intentions or in the perceptions of behavioral control, with the 

 effect that the original measures of these variables no longer permit accurate prediction of 

 behavior. The third requirement for predictive validity has to do with the accuracy of perceived 

 behavioural control. As noted earlier, prediction of behavior from perceived behavioral control 

 should improve to the extent that perceptions of behavioural control realistically reflect accurate 

 control. (Ajzen 1991, p. 185) 

 

 The predictive success of the theory therefore depends on the sorts of behaviours one is modeling. 

Some behaviours are predicted with a high degree of success, such as choice in leisure activities (Aizen & 

Driver 1992) and voting choice (Watters 1989; Ajzen 1991, p. 187), with a documented success rate of 

.78 and .84 respectively. Meanwhile, other behaviours are not very well predicted by the theory, like 

losing weight (Ajzen 1991, p. 187), or getting an ―A‖ in a course (Aizen & Madden 1986).
17

 Then there 

are the behaviours that fall somewhere in between; where the predictive success of the theory is not very 

strong, but neither is it insignificant (Bozionelos & Bennett 1999). What does all this say about the 

model‘s predictiveness then? After all, it cannot predict huge swaths of human behaviour. So are these 

limited and contextual successes of the model sufficient to consider it genuinely predictive, or not? 

Ultimately, speaking of a model as though it is predictive tout court is misleading.  

                                                   
17 Ajzen suggests that these sorts of behaviours do not meet the above conditions for proper application of the model 

(Ajzen 1991, p. 187). Students, for instance, may not realize what is involved in getting an ―A‖ in a course they have 

never taken, and so may mis-represent the ease of getting an ―A‖ (leading to a disconnect between perceived 

behavioural control and actual behavioural control). Similarly, getting an ―A‖ may not be within their volitional 

control depending on the course. 
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To demonstrate why, consider the question: under what conditions is a model genuinely 

predictive? Is a genuinely predictive model only one that can predict all the behaviour produced by a 

given system? While the theory of planned behaviour is predictive of some kinds of behaviours, it fails to 

predict other kinds of behaviour, and is only moderately successful at predicting others. So is the limited 

success of the model a reason not to consider it genuinely predictive? This seems like an unrealistic 

standard to hold our models to. After all, we have no models in science that are predictive of all human 

behaviour. What, then, does this say about the models we use to make predictions when studying human 

behaviour in physiology and behavioural neuroscience? Does this imply that neuroscience and physiology 

have no predictive models at all given that neither domain can predict all of human behaviour? No. It 

simply means that each domain studies and predicts different aspects of human behaviour. 

 Similarly, the predictiveness of a model can often depend on how course-grained, or fine-grained, 

our description of the action being predicted is. I might create a model of cat behaviour that predicts 

(extremely well) that my cat will try to escape from the bathtub when given a bath, but which does not 

predict exactly how the cat will flail its limbs to escape, or in which direction it will flee. It may be 

extremely predictive of behaviour at one level of description, but not another. Does this mean that the 

model is predictive, or not? The only appropriate answer is: it depends. It depends on what behaviour one 

is interested in, and how detailed our description of the behaviour needs to be for our purposes. After all, 

a model can be extremely predictive of a small range of behaviours at a particular level of detail, and thus 

play an essential scientific role so long as we are working at that level and within that range. 

But even if we grant all this, shouldn‘t a genuinely predictive model at least be able to predict this 

small range of behaviour consistently? If, for instance, we claim that a model is successful at predicting 

voter choice, does this imply that the model is always (or almost always) successful at predicting voter 

choice under any circumstance? This too seems like an unrealistic standard for us to hold our model to. 

We have no model that can account for the particular behaviour of a system in every possible context. 
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As an analogy, consider our use of mechanistic models to provide explanations. While 

mechanistic models are considered the dominant method for providing explanations in the life sciences 

(see Section 2.2 for details), a particular mechanistic model is only ever useful within particular contexts. 

As Bechtel points out: 

  

 The behaviour an entity [e.g. a component part of a mechanism] exhibits is often dependent upon 

 context and there is no reason to think that the account of an entity offered by any inquiry 

 considers how it will behave under all conditions but only those which are the focus of inquiry. 

 As engineers are well aware, how a component will behave when inserted into a particular kind 

 of system often needs to be investigated empirically. (Bechtel, 2008, p. 22)  

 

A mechanistic model of a system is always an account of that system given a certain context. When we 

change the context, it can change how the parts of the system interact with one another. In this regard, a 

given mechanistic model cannot be used to predict or explain the behaviour of that system in every 

context. A similar point is made by Craver: 

  

 For example, one might provide a model of verb-tense generation that performs perfectly well 

 when the brain and vocal cords are working properly, but that provides no insight into how the 

 system will behave if something breaks or if the system is in extreme environmental conditions. 

 (Craver, 2006, p. 357) 

 

 Thus it seems that if our standard for a good scientific model is context-independent success, then 

this is a standard that even our best explanatory models in the life sciences cannot satisfy. And so again 

this seems to put the bar too high. Otherwise, we would have no explanations whatsoever in the life 

sciences.  

With this in mind, I propose that to be relevantly predictive for scientific purposes, a model must 

be able to predict (at a rate better than chance) the production of certain kinds of behaviour produced by 
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certain kinds of systems given certain kinds of contexts and constraints. And empirical studies of the 

theory of planned behaviour demonstrate that the model is indeed predictive of ―behaviors in specified 

contexts‖ (Ajzen 1991, p. 206). Crucially, the theory‘s use of ―intentions‖ and ―beliefs‖ to form 

predictions demonstrates that it does not predict by characterizing the abstract functioning of particular 

neurological and physiological mechanisms operating within the system.
18

 This provides direct empirical 

evidence for the fact that predictively successful intentional models do not make predictions in virtue of 

abstractly characterizing particular sub-personal mechanisms that generate behaviour. 

5.5 Responses to Sceptical Worries 

With this established, let us now re-visit the worries we had regarding the predictive success of TPMs. 

The first worry was that TPMs have no firm foundation on which to generate accurate predictions without 

characterizing the causal mechanisms within the system. But this assumes that the only sorts of scientific 

models that are predictive of mechanistic systems are ones that characterize causal mechanisms. And we 

know that this is untrue. There are many examples in science of models that are predictive, but which 

make predictions without any appeal to causal mechanisms. Statistical models and dynamical models are 

clear examples of this (Eliasmith 2010). And so we cannot assume that certain psychological models 

would fail to be predictive simply in virtue of not correctly characterizing the causal mechanisms of 

systems. 

                                                   
18 It should be noted that since the development of the theory of planned behaviour, a number of criticisms have 

been raised against some of the model‘s reported predictive successes. Armitage & Connor (2001) argue that 

evaluations of the theory‘s predictiveness may have been too limited in scope and sampling (p. 475). Similarly, that 

a ―tendency for authors to report only significant findings may have inflated the reported values‖ (p. 475). Despite 

this, they ultimately conclude that ―in spite of these weaknesses, evidence from narrative and meta-analytic reviews 

suggest that the TPB [Theory of Planned Behaviour] is a useful model for predicting a wide range of behaviours and 
behavioural intentions‖ (p. 475). 

 Similarly, others have argued that certain components of the model may be problematic. Sparks et al. 

(1995), for instance, argue that ―subjective norms‖ may not be genuinely helpful in predicting intentions. A similar 

criticism of subjective norms motivated Trafimow & Finlay (1996) to suggest that the model be modified to better 

account for social pressures. These types of criticisms tend to propose alterations to the model that make it more 

predictive. Interestingly, none of these alterations suggest the removal of ―beliefs‖ or ―intentions‖ as the foundation 
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The second worry was that intentional attributions like ―beliefs‖ and ―intentions‖ often seem to be 

ad hoc. We do not use them to predict future behaviour, but only to re-describe past behaviour. There is 

indeed some truth to this. We often do attribute intentional states to people based on what we observe of 

their past behaviour. The mistake is to then assume that we cannot, or do not, use these attributions to 

then predict future behaviour. 

 In order to generate a predictive model, we must first observe regularities or patterns in the past 

behaviour of the system. We then generate a model which attempts to capture, or characterize, these 

regularities. Once this model is constructed, we use it to try to predict how the system will behave in 

similar contexts in the future given the patterns observed. This is true of virtually all predictive models. 

Suppose, for instance, that I wanted to predict the behaviour of a system using a statistical model. In order 

to do so, I would not simply generate random statistical models and then see if any of them applied. I 

would construct the model based on my observations of the system‘s previous behaviours in similar 

contexts. According to Eliasmith, statistical models ―focus on describing the regularities in the data‖ 

(2010, p. 315) that we collect about systems, which are then used to help predict future behaviours. But, 

of course, we cannot find the regularities in the data without first gathering this data. And we can only 

gather this data from observing past behavior.  

 And so the fact that we often do not know what someone believes, or wants, or intends unless we 

infer it from their past behaviour does not mean that such attributions are not predictive. It simply means 

that this sort of after-the-fact attribution is the first necessary step in constructing a predictive model. And 

this is true of all predictive models. 

 The third worry regarding the predictive success of TPMs was offered by Chris Gauker. He 

argues that the way in which we predict the behaviour of others need not in any way make reference to 

classic psychological states. The fact that traditional psychological idioms are so commonplace means it 

                                                                                                                                                                    
of the model. And so such criticisms, if true, still leave us with a demonstrably predictive model that relies on 
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is easy to mistakenly think that they are relevant in predictions. The neurological mechanisms in our head 

that allow us to predict the behaviour of others likely do so without the attribution of psychological states 

like beliefs and intentions. So their place within our predictive accounts is, at least in principle, 

eliminable. 

Implicit in this sort of argument are two major criticisms. First, it assumes that TPMs are likely 

not predictive because they do not resemble the method by which we neurologically predict the behaviour 

of others in day-to-day life.
19

 Morton (1996) seems to argue for a similar position, claiming that TPMs are 

simply far too complex for us to use in daily life to make predictions. Second, it assumes that TPMs may 

not be useful predictive devices in science because they have not been shown to be indispensable.
20

 I 

propose that both of these implicit arguments are irrelevant. 

In regards to the first criticism, consider our use of scientific theories to make predictions. 

Imagine, for instance, that we are trying to predict the outcome of an experiment in quantum physics 

(more specifically, we are trying to predict what one of our instruments will read at the end of the 

experiment). The neurological mechanisms in our brain that are used to make predictions of physical 

objects in our environment (like scientific instruments) do not make these predictions by calculating 

quantum mechanical theories. Our brain does not, for instance, posit the interactions of subatomic 

particles to make predictions of anything in its environment. But from this we do not assume that the 

theories of quantum mechanics therefore cannot be used to predict the results of our scientific 

experiments. Similarly, the theories of quantum mechanics surely fall victim to the same criticisms that 

Morton levelled against TPMs: that such models are too difficult for our brain to apply in daily contexts 

                                                                                                                                                                    
intentional states that have no mechanistic counterparts. Thus they do not damage the essential point of this chapter. 
19 Which can be seen in Gauker‘s claim: ―The idea is that person A can observe person B's behavior, on that basis 

figure out that B has certain beliefs and desires, and on the basis of the attribution of those beliefs and desires, 

successfully predict what B will do. My own opinion is that there is no reason to believe this.‖ (2009) 
20 As evidence, consider Gauker‘s claim that: ―What I don‘t see is any evidence that we can reliably predict what 

people will do in a way in which attributions of belief and desire [and other classical psychological concepts] play 

an ineliminable role.‖ (2009) And similarly: ―Nor even have I ever heard of a single real-life example in which it 
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to predict systems. But that hardly means that such accounts cannot be used to make effective, and 

possibly essential, scientific predictions. The invention of natural language has provided us with a 

powerful resource for making predictions and solving problems in a way that we could not do with 

internal neurological resources alone: 

 

Indeed, it may be that the intellectual explosion in recent evolutionary time is due as much to this 

linguistically-enabled extension of cognition as to any independent development of in our inner 

cognitive resources. (Clark & Chalmers 1998, p. 18) 

 

 And so the fact that intentional attributions may not be the way by which we neurologically 

predict others in day-to-day life does not mean that such attributions cannot be predictive in scientific 

contexts. 

In regards to the second criticism (i.e., the dispensability charge), science does not use models or 

tools only on the condition that they all prove to be indispensible. Similarly, what counts as being 

indispensable is a murky issue. Consider once again our use of statistical models to make predictions in 

the life sciences. Are statistical models truly indispensible to the life sciences? According to Eliasmith, 

statistical models are ideal for making predictions when we do not know or understand the causal 

mechanisms underlying the behaviour of a system (2010, p. 315). But suppose that a full understanding of 

these mechanisms would allow us to make predictions of the system by other means? If that were the 

case, would statistical models be indispensible, or not? Since we could always, in principle, use another 

model to make the same predictions when we understand the mechanisms of the system, then in some 

sense they are not indispensible (we do not need them to make predictions). However, the very benefit of 

statistical models is that they allow us to predict when we do not know the mechanisms underlying the 

                                                                                                                                                                    
was at least quite plausible that one person successfully predicted the behavior of another [and] it was not evident 

that the same prediction could have been made in other ways.‖ (2009)  
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system. And so these models may be essential tools in situations where our knowledge of the system is 

limited. The same lesson ought to be applied to TPMs. We often need to make predictions of systems 

when we do not have the luxury of quantifying over relevant features of the system necessary to generate 

models like statistical models or mechanistic models. In this regard, TPMs will be ideal in helping to see 

patterns in behaviour that may be required in order to help generate statistical or mechanistic models (see 

Section 6.2.6 for more details). This, I propose, is more than enough to validate the use of such models in 

science. Ultimately, the indispensability of TPMs is irrelevant to the question of whether the model is 

predictive, or whether it is useful in scientific contexts. 

What about Morton‘s criticism that attributing a set of intentional states to a system is always 

compatible with an indeterminate number of future behaviours depending on what other intentional states 

the agent has? The problem with this criticism is that this is essentially just a charge of under-

determination. But under-determination is problem for all predictive models. For instance, the same 

statistical model can be used to predict conflicting behaviours of the same system depending on what 

additional information we incorporate into the model. And in any given situation, we can never be 

absolutely certain that such additional information is not relevant. But this does not ipso facto mean that 

statistical models are therefore never successfully used to make predictions in scientific contexts. 

This sort of criticism misconstrues the way in which predictive models are generated. As 

mentioned in section 5.3, predictive models are developed by observing regularities in the behaviour of 

the system, and then generating a model that allows us to characterize those regularities. Morton assumes 

that our reasons for attributing intentional states to systems is completely divorced from our observation 

of how that system has acted in similar contexts in the past. But this is often not the case when it comes to 

predictive TPMs. To demonstrate, recall the first condition on proper application for the theory of planned 

behaviour: 
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First, the measures of intention and of perceived behavioral control must correspond to or be 

compatible with the behavior that is to be predicted. That is, intentions and perceptions of control 

must be assessed in relation to the particular behavior of interest, and the specified context must 

be the same as that in which the behavior is to occur. For example, if the behavior to be 

predicted is ―donating money to the Red Cross,‖ then we must assess intentions ―to donate money 

to the Red Cross‖ (not intentions ―to donate money‖ in general nor intentions ―to help the Red 

Cross‖), as well as perceived control over ―donating money to the Red Cross.‖ (Ajzen 1991, p. 

185, my emphasis) 

 

 In order for the model to predict future behaviour, we must first have a sense of how the person 

will behave in a given situation or context. We then use this as a guideline for determining future 

behaviours. 

Imagine we have two different TPMs that we can use to predict the behaviour of a system. One 

reliably fits with the pattern of behaviour displayed by the system in similar contexts in the past. The 

other, despite positing many of the same intentional states, does not. In this situation, we have clear 

pragmatic grounds for choosing one model over another, even if it does not overcome the under-

determination problem (i.e., even though we can never rule out the possibility that the present situation 

will have unknown features that may interfere with our predictions). Put simply: Morton‘s objection 

highlights a problem for predictive models in general, and not for TPMs in particular. 

 Lastly, consider the objection that TPMs ignore relevant environmental conditions by making 

predictions based only on ascribed traits or properties of the system. The problem with this argument is 

that it assumes that a TPM will never, in principle, take environmental conditions into account. And this 

is simply false. Consider the theory of planned behaviour. Ajzen tells us that ―perceived behavioral 

control can, and usually does, vary across situations and actions‖ (1991, p. 183). In other words, the 

attributions of beliefs, intentions, and perceived behavioural control, are all context sensitive. Instead of 

ignoring environmental conditions and focusing only on traits of the system to make predictions, the 
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theory of planned behaviour bases its attributions of intentional states on the context in which the system 

is placed. Different contexts change the set of beliefs the agent has, which in turn changes the perceived 

behavioural control, and the intention. As Armitage & Connor put it,  

 

 ...in situations where (for example) attitudes are strong, or where normative influences are 

 powerful, PBC may be less predictive of intentions. Thus, Ajzen (1991) argues that the 

 magnitude of the PBC-intention relationship is dependent upon the type of behaviour and the 

 nature of the situation. (2001, p. 472) 

 

 Put simply, a TPM can be constructed to take into account relevant environmental conditions. In 

fact, Ross & Nisbett even acknowledge that we are not oblivious to relevant environmental causes even 

when we are in folk contexts: ―Such considerations are fairly obvious once they are mentioned, and the 

layperson, upon reflection, will generally concede their importance‖ (1991, p. 3). 

So the suggestion that intentional attributions are only predictive when they abstractly describe 

the functioning of particular physical mechanisms has now been shown to be false. This means that 

intentional attributions can be genuinely predictive in scientific contexts, and that this is true irrespective 

of whether they correlate with the functioning of particular physical mechanisms or not. 

 So far, this position, which I have taken some time to argue for, appears to share much in 

common with Dennett‘s theory of the ―Intentional Stance‖. And so it appears that I have taken a rather 

circuitous route to reach a conclusion that has already been vigorously defended. So what was the point? 

I‘ve taken a circuitous route to a similar conclusion for an important reason: the route I‘ve taken informs 

the sort of story I believe we ought to tell about intentional language. The analogy between statistical 

models and intentional models that I have hinted at in this chapter is not an accident. There are key 

similarities between the two types of models that will help to illuminate the role and benefits of 

intentional attributions in science. And the details of this story will help to demonstrate what Dennett gets 
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wrong (see Section 9.5 for details). First, however, a greater understanding of the similarities between 

intentional and statistical models is in order. 
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Chapter 6 

Similarities Between Statistical Models and Intentional Models 

We know that intentional models can predict mechanistic systems without appealing to the underlying 

mechanisms that generate their behaviour. This ability, however, is not unique to intentional models. As I 

mentioned briefly last chapter, statistical models have this ability as well. As a result, it is time to put the 

similarities between these two models front and centre in our analysis. In this chapter, I argue that the 

relevant similarities between intentional models and statistical models provide insights into the way 

intentional models are important to science, and how they fit into the mechanistic explanations of the life 

sciences. 

In order to show this, I begin by choosing an example of a statistical model, and an example of an 

intentional model, to compare and contrast. Following that, I highlight the relevant similarities that the 

two models share, and show how each contributes to our study of the mind in virtue of their shared 

benefits. This will ultimately show that intentional language is valuable to science in virtue of functioning 

as a type of phenomenological model. 

6.1 Examples 

6.1.1 Intentional model 

For our intentional model, consider the case of Stanley the Volkswagon discussed by Parisien & Thagard 

(2008). ―Stanley‖ was the name given to the Volkswagon Touareg that won the 2005 DARPA Grand 

Challenge by its creators at the Stanford University Artificial Intelligence Laboratory. The DARPA Grand 

Challenge is a contest in which contestants must construct an artificial-intelligence-guided car that can 

navigate a complex set of obstacles in an environment. 

According to Parisien & Thagard, we can interpret the behaviour of Stanley on the DARPA 

course by attributing to it a set of representations or intentional states. For example, by understanding 
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Stanley as identifying his own location, inferring what obstacles lie ahead of him, and then deciding (or 

instructing himself) to drive in the right direction and at a manageable speed (Parisien & Thagard 2008, p. 

170). Or, more specifically: 

 

Data from all [Stanley‘s] sensors were integrated into a drivability map, which is a single model 

of the environment that marks each cell in a two-dimensional map as either unknown, drivable, or 

undrivable. This information, along with other variables for the general condition of the 

environment such as terrain slope, are used to set the driving direction and velocity of the vehicle, 

which in turn control the steering, throttle, and brake. (2008, p. 171) 

 

Understanding Stanley‘s behavior in terms of his ability to represent terrain as ―drivable‖, 

―undrivable‖, and ―unknown‖, as well as represent objects in his path, allows us to understand the sorts of 

things he will do on the DARPA course.  

 This intentional model of Stanley offered by Parisien & Thagard also allows for 

misrepresentations, which is a key feature of intentional attributions. As they note, 

 

 One prominent example comes from the way Stanley uses its laser rangefinders to judge  the 

 terrain directly in front of the car. A rotating laser sweeps the ground in an arc several meters 

 ahead, and the rangefinder computes depth information along that arc. As the car moves forward, 

 it pushes the arc like a broom, combining the information from multiple sweeps to create a three-

 dimensional map. However, this process depends on the car‘s stability, because when the car 

 pitches forward over a bump, the laser rescans a previous area, and then skips far ahead. This puts 

 the scan lines out of sequence, making the rangefinder perceive a large, impassable obstacle 

 (Thrun et al. 2006). Consequently, Stanley would carry out often dangerous avoidance maneuvers 

 for an obstacle that never existed. (2008, pp. 173-174) 

 

 With this example of an intentional model in mind, let us now turn our attention to a statistical 

model. 
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6.1.2 Statistical model 

For our statistical model, consider what is often called ―The Thompson Effect‖. This is the phenomenon 

in which objects appear to us to move faster or slower based on how greatly the object contrasts with its 

surrounding environment. A few years ago, Alan Stocker and Eero Simoncelli (2006) developed a 

statistical model that can accurately predict how fast an object will appear to be moving to an observer 

given the level of contrast between the object and its surrounding environment. They did this by altering 

the modern framework of statistical estimation used to traditionally model perception. This modern 

framework viewed an optimal observer in terms of two probability distributions: 

 

First, the variability of a set of measurements, m, is specified as a conditional probability 

distribution, p(m|v), where v is the stimulus speed. The variability is due to a combination of 

external sources (e.g., photon noise) as well as internal sources (e.g., neural response variability). 

When considered as a function of v for a particular measurement, this conditional density is 

known as a likelihood function. The second component is a prior probability distribution, p(v), 

which specifies the probability of encountering stimuli moving at any particular retinal speed. 

According to Bayes‘ rule, the product of these two components (when appropriately normalized) 

gives the posterior distribution. Common choices are the mean, or the mode. Biases in the 

perceived speed of low-contrast moving patterns arise intrinsically with this model, assuming a 

prior that favors low speeds: Lower contrast stimuli lead to noisier measurements, producing a 

broader likelihood function, which leads to a lower speed estimate. (Stocker & Simoncelli 2006, 

p. 578) 

 

 The problem with this traditional model is that it is extremely difficult to experimentally 

determine what the prior distribution and the likelihood function actually are. Similarly, there are 

constraints on the model that cast doubt on its ability to accurately represent the phenomenon in question 

(Stocker & Simoncelli 2006, p. 578). To compensate for this, Stocker & Simoncelli embed a Bayesian 

estimator into the traditional model. This estimator is calibrated based on the trial-by-trial responses of 
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subjects observed in a forced choice speed discrimination experiment. According to Stocker & 

Simoncelli: 

 

We were able to validate the ability of a Bayesian observer model to account for the data, and 

also to determine the prior distribution and internal noise level associated with the best-fitting 

Bayesian estimation model. (2006, p. 579) 

 

 By embedding the Bayesian estimator into the traditional model of perception, Stocker & 

Simoncelli were able to generate a predictive model that overcomes the shortcomings of previous 

statistical accounts of the phenomenon. Most importantly for our purposes, however, is the fact that their 

model does not provide any mechanistic story for what generates the Thompson Effect, but still does ―a 

good job of predicting the subject‘s performance under a wide variety of motion estimation tasks‖ 

(Eliasmith 2010, p. 319). In this regard, statistical models like Stocker & Simoncelli‘s model primarily 

function within scientific practice as a type of phenomenological model. 

6.1.3 Statistical models are phenomenological models 

Phenomenological models are defined by their ability to characterize, and predict, the behaviour of 

systems without attempting to decompose them into parts and operations for better understanding. As 

Craver describes them: 

 

…all one requires of a [phenomenological] model is that it be phenomenally adequate. That is, 

the input–output mapping in S [e.g., a given algorithm, function, or account, that generates a 

mapping from inputs to outputs] should be sufficiently similar to the input–output mapping in T 

[e.g., the observed regularity in the actual input-output of the system] for one‘s needs. Few 

models are actually isomorphic with the phenomenon, given that models typically abstract away 

from the precise details of the system being modeled, that they typically are only approximate, 

and that they make simplifying assumptions in order to apply a particular formalism. The weaker 

standard that the input–output mapping in T should be homomorphic with the mapping in S can 
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be easier or harder to satisfy depending on how much detail one includes about the target 

phenomenon and on how similar one expects the model and the phenomenon to be. The richer 

and more fine-grained one‘s characterization of the target phenomenon, the more the space of 

possible models for the phenomenon is constrained, and so the more challenging it is to build a 

phenomenally adequate model. (Craver 2006, p. 357) 

 

Many consider such models to be largely unexplanatory in the sciences of the mind due to their 

focus on characterizing and predicting phenomena instead of developing a mechanistic explanation of 

their production (see Section 2.2). Stocker & Simoncelli‘s model, for example, may be very good at 

predicting the Thompson Effect, but it says nothing about the underlying mechanisms responsible for it. 

This is why Craver claims that: 

 

A model can be richly phenomenally adequate and non-explanatory. This is the take-home lesson 

of the several decades of attack on covering-law models of explanation at the hands of advocates 

of causal–mechanical models of explanation: merely subsuming a phenomenon under a set of 

generalizations or an abstract model does not suffice to explain it. (2006, p.357-359) 

 

As noted in Section 2.1, however, it is still possible for phenomenological models to be 

explanatory in the behavioural sciences depending on the context, and the particular question being asked. 

It is for this very reason that some propose we need a more pluralistic understanding of explanation in 

order to better account for actual scientific practice in the behavioural sciences (see Longino 2006; 

Chemero & Silberstein 2008). What is important to note for our current purposes, however, is the fact that 

we use phenomenological models to perform different tasks than those we use mechanistic models for, 

regardless of whether each can be explanatory in the appropriate circumstances. While mechanistic 

models are used primarily to characterize the structure of systems, phenomenological models are used to 
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describe the phenomena produced by mechanisms, measure or calculate crucial quantities, make essential 

predictions, summarize data, and function as heuristics for designing experiments (Bogen, 2005, p. 401; 

Craver, 2006, p. 355). 

It is also important to note that phenomenological models come in all different shapes and sizes, 

each useful for predicting or describing different sorts of phenomena. Consider, for instance, the 

application of dynamic systems theory versus the application of statistical models in the life sciences. 

First, a brief explanation of the role of dynamic systems theory in cognitive science: 

 

What came to be called dynamical systems theory (DST) enables investigators to  visualize the 

 change in the state of a system over time. The simplest case is a plot of the states traversed by a 

 system through time, that is, the system's trajectory through state space. Each dimension of state 

 space corresponds to one variable of the system, and each point in the space corresponds to one of 

 the possible states of the system. (Bechtel, 2008, p. 187) 

 

 By applying the appropriate set of differential equations, we can predict the trajectory of the 

system through this state space. Dynamical models have been used in cognitive science to describe and 

predict cognitive phenomena like the production of speech (Port, 2003), and the movement of animals 

(Kelso, 1995). What is important to note about such models, however, is that they often characterize and 

predict the behaviour of cognitive systems without appealing to underlying causal mechanisms. Instead, it 

is ―usually only observable behaviour [that] is mapped to the model‖ (Eliasmith, 2010, p. 319). In this 

respect, many dynamical models act as phenomenological models, providing no mechanistic explanation 

for the behaviour of the system. However, while such models are predictive of certain types of cognitive 

behaviour, they are far worse at predicting others (see Kirsh, 1991; Eliasmith, 1996; Bechtel, 2008, pp. 

192-200).  

 Statistical models, meanwhile, act as different sorts of phenomenological models, useful for 

making different sorts of predictions. Unlike dynamical models, statistical models predict by describing 
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―the probability of various measureable states of the system given other known states of the system‖ 

(Eliasmith, 2010, p. 315). This allows such models to identify regularities in the data we collect about 

systems needed to generate certain predictions that cannot be identified with other sorts of models. 

 Given that different sorts of phenomenological models predict in different ways, one type of 

model may be more useful than another for predictions given the particular dataset we have available to 

us at any given time. We might, for instance, lack the relevant information needed to construct a 

dynamical model of a system, but not a statistical one. Or vice versa. 

6.2 Similarities Between Statistical and Intentional Models 

With a clear example of an intentional model and a statistical model in hand (and a clear understanding of 

how statistical models function as phenomenological models), let us now compare and contrast the 

important features of these models. Their relevant similarities will provide us with insights into the 

scientific value of intentional models, and their role in scientific practice. 

6.2.1 Neither model directly describes the physical mechanisms of a system 

Statistical models, being a species of phenomenological model, characterize systems without telling us 

about their underlying causal mechanisms. In this respect, they are not descriptions of mechanisms, and 

can often be compatible with multiple physical implementations of the system (so long as those 

mechanisms produce the same statistical properties). As Eliasmith notes: 

 

Statistical descriptions are highly implementation independent. Statistical models focus on 

describing the regularities in the data and hence are silent with respect to the particular physical 

implementation. In essence, these descriptions would not change if the implementation changes 

and statistical properties do not. (2010, p. 315) 

 

Intentional models are similarly implementation independent. To talk of a system in terms of its 

representations or its beliefs does not tell us what the underlying mechanisms are that are working within 
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the system. Similarly, such accounts are often compatible with multiple physical implementations of the 

system (so long as those mechanisms produce the same behavioural regularities characterized by the 

intentional model).  

 Consider our intentional model of Stanley. We can attribute to him representations of his 

environment without having any idea how Stanley is implemented. We can use our intentional model of 

Stanley to understand that he will avoid rocks of a certain size in his path, and turn right when a 

dangerous slope is on his left even if we have no idea what the mechanisms inside Stanley are. Instead of 

mechanistically interpreting Stanley‘s behaviour, we make sense of his behaviour based on the intentional 

content that the sensors provide him with. Similarly, we can imagine Stanley displaying the same 

behaviour, yet being implemented in very different ways (with a different engine, set of computers, and 

sensors). 

We obviously understand that there is a mechanistic story to tell regarding what the car and its 

sensors are made of and how they are structured. But to adopt an intentional interpretation of Stanley is to 

make sense of the way he will navigate the obstacles on the course given the intentional information he 

has, and not in terms of the interaction of physical parts that generate his behaviour. 

6.2.2 Both models can generate predictions of systems despite a lack of mechanistic 

data 

We use both statistical and intentional models to form predictions of systems whose mechanisms we 

cannot identify. Stocker & Simoncelli‘s statistical model can predict the Thompson Effect despite a lack 

of information regarding the actual mechanisms generating it. In fact, one of the very benefits of 

statistical models is that they allow us to generate predictions of systems with unknown mechanisms. As 

Eliasmith puts it: 

 

The natural physical phenomena for statistical descriptions are complex phenomena with 

unknown mechanisms. Complex systems, in virtue of their complexity, often have many 
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unknown or undescribed interactions between system components. As a result, known initial 

conditions often map to a wide variety of subsequent states. Statistical models are ideal for 

describing systems of this kind when prediction is of the utmost importance (e.g. in data 

analysis). (2010, p. 315) 

 

 We often explicitly use statistical models for the purposes of modeling systems that we cannot 

explain or predict mechanistically. The same is true of intentional models. We often use intentional 

models to predict the behaviour of systems whose mechanisms we do not understand. As Dennett points 

out, we can use intentional models to predict the behaviour of other people despite ―knowing next to 

nothing about what actually happens inside people's skulls‖ (1987, p. 48).
21

 

Suppose that a group of engineers were to stumble across the 2005 DARPA Challenge by 

accident, and observed Stanley navigate the challenges of the course. They are determined to understand 

how Stanley works, but cannot get a hold of him in order to reverse-engineer him. And so instead, they 

begin by trying to characterize for his behavior and his interactions in his environment. To do this, they 

generate an intentional model of Stanley. By witnessing the sorts of discriminations Stanley can make, 

and the way he navigates his environment, they determine that Stanley can represent objects of a certain 

size, and can identify certain types of terrain as being drivable or not. Similarly, they attribute decisions to 

Stanley (―he decides not to drive left because that part of the terrain is impassable‖) to account for his 

behavior in light of these representations. In this manner, they can predict that Stanley will likely turn left 

when he approaches the rock ahead of him given that he can represent the rock, and represent the fact that 

the area to the right of the rock is impassable (having observed Stanley make a similar discrimination in 

similar environmental conditions earlier in the Challenge). 

Of course, this intentional account tells our engineers nothing about what mechanisms exactly are 

operating within Stanley. The intentional account by itself tells us nothing about what sorts of computers 

                                                   
21 As the theory of planned behaviour discussed last chapter demonstrates. 
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are hooked up to Stanley, what sort of engine Stanley has, or how the sensors on the car work. In this 

way, the intentional model is just like a statistical model.  

Similarly, just as with statistical models, the more fine-grained our account of the phenomena 

being modeled (in this case: Stanley‘s behaviour on the DARPA course), the more constraints it places on 

the predictive model we employ. So, for instance, on a first pass of predicting Stanley‘s behavior, we 

might attribute to him representations about ―large rocks‖ in his path. Yet, the more we watch Stanley 

behave in his environment, the more we see that Stanley treats rocks the same way he does any other 

large object in his path. Thus we refine our intentional model, and attribute to him representations of 

―large objects‖ to better account for his behaviour in a wider range of situations. Or imagine the reverse 

case. Imagine we begin by attributing only the representation ―large object‖ to Stanley, but then observe 

that he treats rocks in his path different from bales of hay. Given that bales of hay can be driven through 

without incident, Stanley does not try to avoid them. In that case, we might refine our intentional model to 

account for both representations of ―rocks‖ and representations of ―bales of hay‖. The lesson is that both 

statistical and intentional models can be used to predictively model systems when we cannot identify 

causal mechanisms, and that the more details we have of the system‘s behaviour in various contexts, the 

more predictive both models can become. 

6.2.3 Both models can be generated from a detailed enough mechanistic model 

If we know what the mechanisms are that underlie a system‘s behaviour, then we can use this information 

to help generate both a statistical model, and an intentional one.
22

 Consider that statistical models make 

predictions based on the measureable probabilities of the various states of the system. If we can 

                                                   
22 It should be noted that I am not claiming that an intentional model can always be generated from any mechanistic 

model. Not all mechanistic systems will be usefully modelled intentionally. However, if we have a system that can 

be modelled effectively with an intentional model, then knowing the mechanisms of that system will help us to 

generate an intentional model of it. 
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understand how the relevant mechanisms of the system operate in various contexts, then we can use this 

information to determine what the probabilities of the various states of the system are likely to be. 

Similarly, the more we understand the mechanistic underpinnings of a system, the better we can 

understand the sorts of discriminations the system can make, and under what conditions. This information 

makes it substantially easier to determine what sorts of content attributions will yield predictions. As a 

clear example of this, consider the way in which Parisien & Thagard intentionally model Stanley: 

 

After a brief review of the hardware that Stanley used to interact with its environment, we discuss 

the software that enabled it to identify relevant features of the world and to plan an effective 

course using dynamic Bayesian networks and machine learning algorithms. We then describe 

how these techniques enabled Stanley to represent the world. (2008, p. 170, my emphasis) 

 

 The more we understand the hardware and software underlying Stanley‘s behaviour, the more we 

can understand how Stanley is causally interacting in the world. This allows us to then generate an 

intentional model of Stanley which can highlight important regularities in his behaviour. 

6.2.4 Both models are used to help us learn about unknown causal mechanisms 

If we are trying to learn about the unknown mechanisms of a system, one good way to do this is by 

understanding the behavioural regularities produced by these mechanisms. Statistical and Intentional 

models are useful for exactly this purpose. The more predictively accurate our models become, the more 

it constrains the set of possible mechanisms that can explain the exact behavioural regularities we find. 

Take, for example, Stocker & Simoncelli‘s model. While their account does not tell us what the 

mechanisms underlying the system are, it does provide insights into possible mechanisms. They say: 

 

The form of the contrast-dependent measurement noise in our model suggests that the locus of 

representation for measurements m is likely to be cortical. Neurons in area MT are a natural 
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choice: They are highly motion selective, and their responses have been directly linked to 

perception. (2006, p. 583) 

 

  Even though Stocker & Simoncelli‘s model does not directly describe the neurological 

mechanisms responsible for the Thompson Effect, by describing and predicting the phenomenon in a 

detailed way, it provides insights into what the mechanisms must be like. The more detailed our account 

of the phenomenon, the more it tells us about what the unknown mechanisms must be capable of 

producing given known constraints. And this in turn helps us narrow the field of possible mechanisms. In 

this case, it means that whatever mechanisms are responsible for producing the Thompson Effect must 

meet the regularities observed by Stocker & Simoncelli‘s model. To demonstrate, consider their 

postulation that MT neurons may be part of the mechanism producing the effect: 

 

This implies that the MT population responses should reflect the influence of the prior, varying 

with contrast in a way that is consistent with the perceptual biases exhibited by the Bayesian 

observer model. (2006, p. 583) 

 

Now let us turn to our intentional model. By applying an intentional model to Stanley, we can 

predict the sorts of discriminations he will be able to make. He can discriminate between ―drivable‖ and 

―undrivable‖ terrain for instance. And perhaps between ―rocks‖ and ―bales of hay‖. The more predictive 

our intentional model becomes of a wide range of behaviours, the more fine-grained our account of 

Stanley‘s discriminations becomes possible. This, in turn, will put constraints on the possible mechanisms 

that can produce these discriminations given other known constraints. Not any implementation will do, 

and knowing how the system behaves in the appropriate circumstances tells us what the system must be 

like. As a clear example of this, consider the following passage from Eliasmith: 

 



 

 100 

…consider the example of deciding whether an object in the environment is a friend or foe. 

Suppose we have two different implementations of the function that needs to be computed to 

successfully achieve this recognition. One of these implementations, Athlon Alan, can compute 

this function in less than a second given its architecture, computational primitives, and so on. The 

other implementation, Intel Alan, takes nearly 10 minutes to perform the same computation 

because its architecture, computational primitives, and so on aren‘t optimized for this kind of 

computation. In other words, the computational complexity of the algorithm on the second 

implementation is significantly higher than on the first implementation. Of course, if the object is 

a foe, Intel Alan may not have the 10 minutes required to make this decision and thus may not 

ever exhibit this cognitive behavior. (2002, p. 5) 

 

 In the example above, there are different ways of implementing the same behaviour (e.g., 

identifying something as a predator), but situational constraints tell us which of these possible 

implementations of the system are more likely given the context in which the behaviour is observed. In 

the case of Stanley, for instance, we know that the mechanisms underlying his behaviour must be able to 

make the appropriate discriminations given the sort of environment he is in, and the time constraints we 

observe of his actual behaviour on the DARPA course. So, for example, we might rule out the idea that 

Stanley is implemented by a series of water-pipes since, given the observed speed of his actual behaviour, 

water might simply travel too slowly to effectively implement the sorts of behavioural discrepancies 

identified by our intentional model within the appropriate timeframe. And so the more detailed and 

predictive our intentional model becomes, the more constraints it places on the sorts of implementations 

that are possible for the system given other known constraints. 

6.2.5 Generating a mechanistic account of a system does not make either model obsolete 

While both statistical and intentional models are used to help generate mechanistic accounts of systems, 

this does not imply that such models become obsolete the moment we have a mechanistic account in 
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hand. We use different scientific models for different purposes. And while mechanistic models are ideal 

for characterizing the structure of systems, this does not mean they are ideal for other sorts of purposes. 

 For instance, a mechanistic model may not always be the best model to use for generating 

predictions. As Mark Wilson notes, ―the reasoning requirements natural to design tasks are often quite 

different than those pertinent to prediction et al. and greatly influence the descriptive vocabulary we find 

suitable‖ (Wilson, 2006, p. 326).   

As a clear example of this, consider two different ways of modeling the behaviour of water. One 

which models water based on its atomic constituents and how they causally interact to produce behaviour, 

and the other which says nothing about the mechanisms responsible for the behaviour and only describes 

behavioural regularities: 

 

If one is studying diffusion or Brownian motion, one adopts a molecular perspective in which 

water is regarded as a collection of particles. […] However, if one's concern is the behavior of 

water flowing through pipes, the best-fitting models are generated within a perspective that 

models water as a continuous fluid. Thus, one's theoretical perspective on the nature of water 

depends on the kind of problem one faces. Employing a plurality of perspectives has a solid 

pragmatic justification. There are different problems to be solved, and neither perspective by 

itself provides adequate resources for solving all the problems. (Giere, 2006, p. 34) 

 

In the case of water's movement through pipes, the use of a phenomenological model allows us to predict 

and describe the behaviour of water better than the mechanistic model. The model that is best for 

mechanistically explaining the behaviour of water (in terms of molecular motion) is not necessarily the 

best model to use for predicting the behaviour of water as it flows through pipes. 

Similarly, knowing the mechanisms that produce the Thompson Effect does not mean that we 

will not use a statistical model like Stocker & Simoncelli‘s in order to predict the effect. And the same 

lesson applies to intentional models. Consider the problems that faced the neuroscience of vision in the 



 

 102 

mid-20
th
 century. The neurological mechanisms responsible for vision were exceedingly difficult to 

predict based only on a mechanistic understanding of the system. This is because, as Bechtel points out, 

  

 Understanding how the visual system is organized, coordinated with other physiological systems, 

 and responsive to external stimuli, requires knowledge beyond the specification of the parts of the 

 visual system and their operation. (Betchel 2007, p. 184) 

 

It was not until neuroscientists began attributing intentional content to neurological systems that 

relevant predictions could be made. Certain neurons, for example, were found to contain visual 

information (in the intentional sense, not merely the technical sense) about the edges of objects in one‘s 

visual field. According to David Marr, this information needed to be ―analyzed and understood in a way 

that [was] independent of the particular mechanisms and structures that implement them in our head‖ 

(Marr, 1982, p. 19, my emphasis). Only by intentionally modeling the system could we generate relevant 

predictions. 

Put simply, intentional and statistical models are used to represent the behavioural regularities or 

patterns produced by systems, while mechanistic models are used to represent internal parts and 

operations. In this regard, the different types of models are used to represent different aspects of systems 

for different purposes, and so will have different pragmatic virtues. 

6.2.6 Given these similarities, both models function as phenomenological models 

The similarities listed above between statistical and intentional models provide evidence for the idea that 

intentional language functions within scientific practice as a type of phenomenological model. Consider 

that a benefit of both statistical and intentional models is that they allow us to generate predictions of 

systems whose mechanisms we cannot identify. In other words, both models are implementation 

independent. This is one of the defining features of phenomenological models: ―[They] are a means for 

extracting stable phenomenologies from unknown, and perhaps unknowable detailed theories‖ (Batterman 
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2002a, p. 35). This is a point echoed by Craver, who tells us that phenomenological models ―are complete 

black boxes: they reveal nothing about the underlying mechanisms and so merely ‗save the phenomenon‘ 

to be explained‖ (Craver, 2006, p. 360).  

 Recall that phenomenological models come in all shapes and sizes, each useful in different 

contexts and for different purposes. Intentional models are simply another breed of phenomenological 

model, one useful for predicting behaviour that other models are not well suited for. So for instance, 

intentional models allow us to generate predictions when we do not have the luxury or ability to quantify 

over relevant features of the system needed to generate statistical or dynamical models. Similarly, 

intentional models may be essential in helping to construct other phenomenological models that require 

such quantification. Consider that, despite a lack of quantification, our intentional model of Stanley will 

help us determine the sorts of discriminations that Stanley can make of his environment. This, in turn, 

will help us determine the relevant probabilities to ascribe to various states of Stanley needed to create a 

statistical model. 

 If we understand intentional models not as descriptions of the structure of systems, but instead as 

a species of phenomenological model, then their role in science becomes much clearer. However, up until 

this point, I have focused only on the similarities between intentional and statistical models to make this 

case. In order to defend my position, I must also rule out any relevant dissimilarities between the two 

models that might disqualify intentional models from being a type of phenomenological model. In the 

following chapter, I examine such dissimilarities and demonstrate that they are not a threat to the account 

I have provided above. 
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Chapter 7 

Differences Between Statistical Models and Intentional Models 

Just as there are similarities between intentional and statistical models, so too are there key differences. In 

this chapter, I examine these differences in detail and see if any of them pose a threat to the idea that 

intentional models function as phenomenological models. Ultimately, I demonstrate that the differences 

between statistical and intentional models are shallow, and insufficient to threaten the account I provide. 

7.1 We Use Intentional Models to Explain Behaviour, Not Just Predict It 

The first important difference to note is that while we commonly explain behaviour by appealing to 

intentional models, we typically do not explain behaviour by appealing to statistical models. Stocker & 

Simoncelli‘s model is not considered to be an explanation of the Thompson Effect, but only a means of 

predicting it. Intentional models, on the other hand, are commonly used for explanations. 

 Consider that we do not only predict Stanley‘s behaviour on the DARPA course with an 

intentional model, but explain it as well. We can say that Stanley avoids the rocks in his path because he 

has representations of them, and instructions for how to behave when confronted with such 

representations. This explains why Stanley swerves to avoid obstacles. Or consider our day-to-day 

application of intentional concepts. I can explain Julian‘s getting a sandwich from the fridge in virtue of 

him wanting a sandwich and believing that one is in the fridge. In this regard, intentional models do not 

seem to function the way statistical models do given that they are explanatory as well as predictive. 

 I propose that this distinction between statistical and intentional models is ultimately not a reason 

to deny that intentional models are phenomenological models. While it is true that we often do not use 

statistical models to generate explanations in the behavioural sciences, this does not mean that we do not 

use phenomenological models of any kind to provide explanations in these domains. Phenomenological 

models can often provide us with scientific explanations depending on the particular question being 
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asked. Batterman, for example, argues that some phenomena can only be seen and characterized by 

employing phenomenological models, and thus these models are an essential part of our scientific 

explanations (Batterman 2000, 2002).  

 But even if we were to suppose that phenomenological models were always insufficient to 

function as rigorous scientific explanations in the sciences of the mind, this would still not be enough to 

challenge the idea that intentional models are phenomenological models simply because they are used to 

provide explanations. Consider what it means to explain a mechanistic system: ―explanations afford the 

ability to say not merely how the system in fact behaves, but to say how it will behave under a variety of 

interventions‖ (Craver 2006, p. 358, emphasis in text). The use of phenomenological models would still 

allow us to determine a limited range of counter-factual behaviours in virtue of being predictively 

adequate: 

  

 Because phenomenal models summarize the phenomenon to be explained, they typically allow 

 one to answer some ["what-if-things-had-been-different"]-questions. (Craver, 2006, p. 358) 

 

In this respect, such models would still have a degree of explanatory power. This appears to be 

why Craver considers phenomenological models to be on a continuum with mechanistic models when it 

comes to providing explanations of phenomena in the life sciences (2006, p. 360). In this respect, 

intentional models would still provide us with limited explanations, in exactly the same way that all 

predictive phenomenological models do. To further emphasize this point, consider Dennett‘s story of how 

we can use evolution to explain the spots on a butterfly‘s wings: 

 

 No one ever has ever supposed that individual moths and butterflies with eye spots on their wings 

 figured out the bright idea of camouflage paint and acted on it. Yet the deceptive rationale is there 

 all the same, and to say it is there is to say that there is a domain within which it is predictive and, 

 hence, explanatory. (Dennett 1987, p. 259) 
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Explaining the spots on the wings of butterflies in terms of their ability to fool predators does not tell us 

the mechanism by which evolution works. However, in virtue of being predictive, it provides us with a 

degree of explanatory power. 

 Of course, if one is committed to the idea that mechanistic models are the only models that truly 

explain in the sciences of the mind, then these sorts of phenomenological explanations would be too 

limited to function as rigorous scientific explanations. Craver, for instance, tells us that a mechanistic 

explanation ―shows why the relations are as they are in the [phenomenological] model, and so reveals 

conditions under which those relations might change or fail to hold altogether.‖ (Craver, 2006, p. 358). In 

other words, talking about Stanley on the DARPA course in terms of his representations does not tell us 

why his representations are as they are, nor how or why they might change or cease to exist under different 

circumstances. And in this respect, intentional models would not be explanatory enough. However, even 

if one were committed to this, it does not imply that such models would have no explanatory power 

whatsoever. And so their ability to provide explanations would not make intentional models non-

phenomenological, it would simply mean their explanatory power is limited. 

 It is also important to note that even if mechanistic models are considered explanatory in the life 

sciences, they are not necessarily explanatory for everyday purposes, which is where we commonly find 

intentional explanations. To demonstrate, consider a variation on the following example offered by Van 

Fraassen: 

 

 Suppose a father asks his teenage son, ‗Why is the porch light on?‘ and the son replies ‗The porch 

 switch is closed and the electricity is reaching the bulb through that switch.‘ At this point you are 

 most likely to feel that the son is being impudent. This is because you are most likely to think that 

 the sort of answer the father needed was something like: ‗Because we are expecting company.‘ 

 But it is easy to imagine a less likely question context: the father and the son are re-wiring the 

 house and the father, unexpectedly seeing the porch light on, fears that he has caused a short 
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 circuit that bypasses the porch light switch. In the second case, he is not interested in the human 

 expectations or desires that led to the depressing of the switch. (1980, p. 131) 

 

 Now imagine a similar scenario where the son is being impudent in his response given that the 

father is looking for a more mundane reason for the light being on. Only instead of claiming that ―The 

porch switch is closed and the electricity is reaching the bulb through that switch‖, the son instead gives a 

detailed mechanistic explanation of how the neurons in his brain interacted, and how they resulted in his 

lifting his finger to flip the switch. The father, annoyed, tells his son to stop being childish and give him a 

real answer. The son capitulates and tells the father that the light is on because they are expecting 

company. Now in this sort of everyday context, the mechanistic explanation is the wrong sort of answer 

given the interests of the father. He simply does not care about neurological and physiological 

mechanisms. What this shows is that what counts as an explanation in everyday contexts is often not 

going to be the same as what counts as explanations in various scientific contexts. And so the fact that 

intentional attributions are commonly used to provide explanations in everyday life is not a threat to the 

idea that intentional models are phenomenological models. It just means that some phenomenological 

models can be explanatory for everyday purposes. 

7.2 Intentional Models Are Normative, Statistical Models Are Not 

Unlike statistical models, it has been argued that intentional models are inherently normative, and as a 

result, they are not descriptive. In other words, when we describe a system in terms of intentional states, 

―we project ourselves into what, from his remarks and other indications, we imagine the speaker's state of 

mind to have been‖ (Quine, 1960, p. 210). Put simply, when we describe a system using an intentional 

model, we attribute to it a set of intentional states that we feel it ought to have if it were a rational agent in 

that scenario. Thus to describe a system in terms of intentional states requires adopting an interpretation 

of the system as being rational. Consider Stanley and his navigation of the DARPA course. If Stanley‘s 
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behaviour were completely irrational (i.e., he behaved erratically and randomly), we would be unable to 

understand his behaviour in terms of what he can, or cannot, represent. Part of what it means for Stanley 

to have representations is for him to behave in such a way that uses these representations to guide his 

behaviour in a meaningful way. And so we assume that: if Stanley has goal x (to successfully navigate his 

environment), and has representations p, q, and r (―There is a rock 10 meters ahead‖, ―the terrain to the 

left of the rock is undrivable‖, ―the terrain to the right of the rock is drivable‖), he will do y (turn right). 

But this presupposes that Stanley is rational (e.g., that if Stanley wants to successfully navigate his 

environment, and believes that avoiding obstacles and driving on drivable terrain is the best way to 

achieve this goal, then he will try to avoid obstacles and drive on drivable terrain). 

 The problem is that most systems do not behave rationally (at least not completely). Rationality is 

an ideal that is often not attainable by the system being predicted. Instead, we merely choose to interpret 

the system as being rational, and as having rationally connected intentional states, in order to generate our 

predictions. However, given that our predictions of the system are based on what a rational system would 

do if it had the intentional states we attribute to it, and not on how the system genuinely works, it means 

that our predictions are not based on an empirical description of what the system is actually like, or how it 

is operating. This means that we can always attribute different sets of intentional states to the same system 

that will result in the same predictions (just so long as the rational connection between these intentional 

states leads to the same behaviours). As a result, the same physical system can always be interpreted as 

having vastly different sets of intentional states. This is why Dennett tells us that ―deciding on the basis of 

available evidence that something is (to be treated as) an Intentional system permits predictions having a 

normative or logical basis rather than an empirical one‖ (Dennett, 1971, p. 97). 

 Given this normative and interpretative feature of intentional descriptions (i.e., given the 

unavoidable indeterminacy of translation between intentional and mechanistic descriptions), intentional 

models appear ill-suited to play a role in the empirical sciences which trade explicitly in structural and 



 

 109 

causal descriptions. As Fodor puts it, every branch of science ―is in the business of causal explanations‖ 

(1987, p. 33). Yet intentional models do not provide us with causal explanations. This is precisely why 

Quine argues that ―the underlying methodology of the idioms of propositional attitudes contrasts 

strikingly with the spirit of objective science at its most representative‖ (1960, p. 218). As a result, there 

appears to be an important distinction in kind between intentional models (which are normative) and 

statistical models (which are not). 

 This sort of argument is problematic on multiple fronts. First, it mistakenly assumes that science 

is only in the business of describing the causal and/or structural properties of systems. But this is simply 

untrue. Characterizing the behavioural regularities produced by systems is an integral part of science as 

well. As Batterman points out, ―a broad goal of scientific theorizing is to recognize and explain observed 

patterns in the behavior of systems of a given type‖ (Batterman 2000, p. 120). Both intentional models 

and statistical models are important tools in our recognition of such patterns. In this regard, they both play 

an important role in scientific inquiry. 

 Second, the fact that intentional models do not describe causal or structural features of systems 

just means that such models are implementation independent. And this is one of the defining features of 

phenomenological models more broadly. Statistical models similarly tell us nothing about the causal and 

structural properties of systems. Yet, we do not consider them to be at odds with scientific methodology 

as a result. In fact, as I mentioned in section 6.2.5, the fact that phenomenological models do not predict 

based on an account of the system‘s underlying structure is one of the very benefits of phenomenological 

models. This makes them useful in contexts where the mechanisms of the system are unknown (and thus 

such models are essential in learning about mechanisms). Similarly, they are often useful for identifying 

behavioural regularities that structural descriptions miss. 

 Third, the suggestion that we can attribute a radically different set of intentional states to a system 

and always account for the same behaviour is not so obvious. Even if multiple sets of intentional 
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attributions can account for the given behaviour of a system in a particular context, this does not mean 

that they will all work just as well at predicting the system when it is placed in a variety of contexts. It is 

an empirical question which sets of intentional attributions will be predictive of the system as a whole in a 

wide range of situations and environments. To take a simple example, consider the following passage 

from Dennett: 

 

When [a frog] looks around for flies, can it be said to be looking for flies qua flies, or merely qua 

dark, darting, edible things or qua something still less specific? (Dennett 1987, p. 108) 

 

 When predicting the behaviour of a frog that is presented with a fly, we might predict its 

behaviour by attributing to it the representation ―fly‖, or we might make the same predictions by 

attributing to it the representation ―dark, darting, edible thing‖. Or by attributing some other 

representation altogether. Any of these attributions will make the predictions come out right in this case. 

This, however, does not mean that any of these attributions are just as good as any other. We can, for 

instance, run experiments and see which of these intentional attributions best predicts the frog‘s behaviour 

in a wider array of contexts. If, for instance, we present the frog with darting black objects and find that it 

always reacts to such objects the same way it does to flies, then we have reason to view one of these 

intentional attributions (―fly‖) as less useful than others (―dark, darting, edible things‖). Recall that the 

more detailed our account of the phenomena under investigation (in this case: the behaviour of the 

system), the more it constrains the set of possible phenomenological models that can account for it. This 

is a clear case of that. The more detailed our account of the discriminations and behaviour of frog, the 

more it constrains the set of possible intentional attributions that will account for the behaviour. 

This does not necessarily mean that only one intentional model will always win out over all 

others in terms of predictive power for a given system. We might still be left with multiple intentional 

interpretations of the system that can account for all the same behaviours in all the same contexts. To 
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borrow a classic philosophical example, there may be no empirical test we could run that would 

determine whether the system has a representation of ―rabbit‖, or ―undetached rabbit parts‖ (Quine 1960). 

In this situation, what are we to say? There are two possible ways to deal with this. First, we could claim 

that if nothing in principle could ever distinguish between these two representations in terms of the 

behaviour or inferences of the system, then the meaning of the two are isomorphic. Second, if we insist 

that the meaning of the two really are distinct even if no test could distinguish between them, then I 

propose there is simply no fact of the matter which the system really has. For our scientific purposes, such 

fine-grained distinctions would have no import by definition. And so this sort of case is not a substantial 

argument against the scientific worth of intentional models as a type of phenomenological model. 

 Fourth, the normative argument suggests that intentional models are ill-equipped to play a role in 

scientific practice because they make predictions by interpreting the system as being rational when we 

know it likely is not instead of predicting the system based on its underlying structure. Thus, our model is 

not a descriptive claim about the system, and is instead an account of how the system ought to behave if it 

were rational. In this respect, the model is not empirical, and thus at odds with scientific practice. But I 

propose that this sort of move is no different in kind from our use of idealized models more generally in 

science. So for instance, we often use Newtonian mechanics to model systems in scientific contexts even 

though we know that the system is not actually Newtonian. Just as with our intentional model, our 

Newtonian model describes how the system ought to behave if we assume that Newtonian physics is true. 

And this interpretation is not based on an empirical description of the actual system, since we already 

know that Newtonian physics is not a true description of the system. In this regard, such models are 

normative in the same respect. But this hardly makes such models unscientific.  

As an aside, it is also important to note that we cannot simply dismiss the presence of such 

idealized models in science as being temporary evils that we only tolerate until we can provide more 

correct empirical descriptions of the system (and thus confine intentional models to a class of scientific 
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models that are only temporarily useful, and which are to be discarded later). Such idealizations are 

unavoidable and integral to science: 

 

 Any mathematical theory of physics must idealize nature. That much of nature is left 

 unrepresented in any one theory, is obvious; less so, that theory may err in adding extra features 

 not dictated by experience. For example, the infinity of space is itself a purely mathematical 

 concept, and all theories within this space must share in the geometrical idealization already 

 implied. (Truesdell 1960, p. 31) 

 

Batterman makes a similar point, telling us that idealized models are often the only way to 

scientifically model certain phenomena, and solve certain problems, in physics. He tells us that it is 

―because of the extreme idealizations involved that [such models] are candidates for exact solutions.‖ 

(2002a, p. 22) Thus the fact that intentional models attribute an idealized notion of rationality to systems 

as a means of generating predictions is not something that disqualifies it from being a phenomenological 

model. In fact, this is a move that is actually quite common in our use of phenomenological models. 

 Ultimately, the normative feature of intentional models is simply not a relevant concern. The 

scientific value of intentional models is based on their ability to predict systems. Thus, it is qua predictive 

model that intentional models are relevant to scientific inquiry, not qua non-normative model. The 

normative feature of intentional models is irrelevant to their scientific worth. 

7.3 Statistical Models Are Based on Well-Defined Axioms, Intentional Models Are 

Not 

Another potential difference between intentional and statistical models is that while statistical models are 

based on the clearly-defined axioms of probability theory, the axioms of rationality (on which intentional 

attributions seem to be based) are not so apparent. It is questionable whether there even are any clearly 

definable axioms of rationality. When we predict the behaviour of others, we do so without any explicit 
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understanding of what such axioms might be. In this respect, intentional models may be too different in 

kind from statistical models to warrant inclusion into the class of phenomenological models. 

The problem with this sort of objection is two-fold. First, it is a mistake to think that all domains 

to which statistical models are applied are therefore axiomatized. That there are statistical axioms does 

not mean that any particular statistical model (e.g., of stock markets) is also axiomatized in the relevant 

respect. We do not, for instance, have the axioms of stock market behaviour just because we have a 

statistical model of the stock markets. You could, after all, have a statistical model of rationality. 

Second, and more importantly, this sort of objection is a red-herring. Even if we assume that there 

are no explicit axioms of rationality (which is still up for debate), it is hardly a necessary characteristic of 

phenomenological models that they be based on explicitly identified axioms. That was never the claim. 

Intentional models are, however, relevantly like statistical models in key respects: First, they are 

predictively valuable in scientific practice. Second, they make predictions without telling us structural or 

mechanistic details of the system. Third, they are often used to identify patterns and regularities in 

behaviour produced by mechanistic systems. Lastly, they are used in conjunction with mechanistic 

models to provide more complete understandings of systems. These similarities provide us with 

compelling reasons to consider intentional characterizations as a species of phenomenological model, just 

as statistical models are. 

7.4 Statistical Models Involve Quantification While Intentional Models Do Not 

Statistical models are mathematical in nature and involve precise measurements and calculations in order 

to make predictions. Intentional models, on the other hand, often do not involve this kind of 

mathematization of the system, and thus are substantially less rigorous and precise. This means that such 

models may be far too insubstantial to have merit as a type of phenomenological model. 

 The problem with this suggestion is that it assumes that only those scientific representations that 

involve explicit quantification are truly scientifically relevant. But this is simply untrue. Images and 
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pictorial representations are commonly used in science even when they do not explicitly mathematize the 

system (Larkin & Simon 1987; Nersessian 1988; Giere 1996; Meynell 2008).
23

 As Nancy Nersessian 

(1988) tells us, ―the history of science abounds with instances of the use of imagery and of analogy to 

articulate vague notions into socially shared, scientifically viable conceptualizations of a domain. Periods 

of ‗scientific revolutions‘ are most fertile with examples.‖ (p. 42) As an example, consider that when 

trying to learn about a mechanistic system, it is often common practice to provide an abstract sketch of a 

mechanism involving boxes and arrows (Machamer et al. 2000, p. 8; Cummins 2000, p. 125; Zednik 

2011, p. 249). Even in contexts where such images cannot yet be mathematized, they can still be 

scientifically informative by identifying or characterizing ―spatial relations and structural features of the 

entities in the mechanism‖ (Machamer et al. 2000, p. 8). 

To claim that such visual representations of systems are unscientific simply in virtue of not 

mathematically characterizing the system does not do justice to way such representations are used in 

science. Of course, it is true that images which lack explicit quantification are often imprecise. However, 

such accounts are often a necessary first step in generating more exact mathematized models. As Carlos 

Zednik points out, ―mechanistic explanation frequently starts as a relatively abstract mechanism sketch 

that leaves ample room for elaboration‖ (2011, p. 249). 

I propose that all this is similarly true of intentional models. Their value to science is not 

diminished by their lack of mathematization. In fact, they can often be a necessary step in developing 

such mathematical models, and in learning about mechanistic systems, by allowing us to predict when 

mathematization is not an option (see section 6.2.6). In this respect, the fact that such models do not 

mathematize the system is not sufficient to deny intentional models a place among our other scientific 

models. 

                                                   
23 It is extremely important to note that the question of whether we could mathematize such images is irrelevant. The 

question is whether such images, in their pictorial non-mathematized form, are informative to science. 
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7.5 Intentional Models Are a Species of Phenomenological Model 

These differences between statistical and intentional models are simply not enough to support the claim 

that intentional models behave in a fundamentally different manner from the way we use 

phenomenological models in science. In fact, some of the supposed differences between the two models 

are only illusory. In terms of the normative/descriptive difference, statistical models are just as normative 

as intentional models in the sense that neither model describes the structure and causal features of systems 

(e.g., they are both implementation independent). 

 Ironically, the differences between intentional and statistical models that are not illusory provide 

us with even more reasons to think that intentional models behave as a species of phenomenological 

model. While intentional models work with an idealized notion of rationality that statistical models do 

not, it is actually quite common for phenomenological models to employ similar kinds of idealizations. In 

fact, such idealizations are an integral and essential part of science. Meanwhile, the fact that statistical 

models make predictions by mathematizing the system in a way that intentional models do not only 

shows that intentional models and statistical models are ideal for predictions in different contexts 

(depending on what kind of information we have available about the system). 

 With this understanding of intentional models as phenomenological models, we can now develop 

a much clearer idea of what the methodological study of the mind looks like. In the next Chapter, I 

provide a general overview of how we use different types of models (including intentional models) to 

provide a more complete understanding of the mind. 



 

 116 

Chapter 8 

The Bigger Picture 

With a clear sense of how intentional models are used in science, we can now take a step back and 

examine the implications that this account has for the scientific study of the mind more generally. In the 

first part of this chapter, I focus on the methodological benefits of employing a wide variety of different 

kinds of scientific models when studying the mind. A diversity of models is, at the very least, 

pragmatically necessary in developing a mechanistic explanation of the mind. Intentional models are 

amongst those that we employ for such pragmatic purposes, helping us to generate mechanistic 

explanations (even if they are often not explanations themselves). 

In the second part of the chapter, I examine the possibility that intentional models may be far 

more than merely pragmatically useful for helping to generate mechanistic explanations. The idea that a 

single type of model (such as a mechanistic model) can account for everything that is scientific relevant 

about the mind is far from obvious. This claim should not be confused with the claim that everything that 

matters about the mind may be the result of physical mechanisms. One is a claim about physical 

mechanisms, while the other is a claim about our capacity to adequately represent all the relevant features 

of physical mechanisms using only one type of scientific model. Mechanistic models capture certain 

aspects of the physical mechanisms that make up the brain, but they may do so at the cost of identifying 

or representing other aspects. If this is the case, then different types of scientific models may be integral 

to our continued understanding of the mind even with a detailed mechanistic explanation of the brain in 

hand. Our scientific picture of the mind may not be one that can be captured by any single type of 

scientific model, and so attempts to develop one all-encompassing model of the mind may be based on a 

mischaracterization of the nature of scientific representation. At most, we may be left with a set of 

different types of scientific models that we must stitch together, each capturing different aspects of the 
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phenomenon. While I will not argue that this sort of fragmented pluralism of models definitely is the case, 

I will argue that we have compelling reasons to consider it a very real possibility for a final state of 

science. If it turns out to be true, then intentional models may be essential to science regardless of whether 

we have a complete mechanistic explanation of the mind or not. 

8.1 The Pragmatic Benefits of Using Different Types of Models 

If we are interested in a mechanistic explanation of the mind, then how can we go about identifying the 

mechanisms working within the brain? The assumption that we need only look at the brain to easily 

determine the parts and operations responsible for generating a given mental phenomenon is, of course, 

naïve. Understanding the mechanisms working inside the brain is fraught with complications and 

problems: 

 

 The challenge in constructing mechanistic explanations is that normally operating mechanisms do 

 not reveal either their parts or operations. Not just any way of carving up the mechanism reveals 

 the appropriate parts. The relevant parts are those that actually perform the operations in the 

 mechanism. To consider an example, although neuroanatomists over several centuries sought to 

 delineate parts of the brains of humans and other species in terms of the gyri and sulci produced 

 by the folding of the cortex, and these still serve as useful landmarks when identifying where 

 operations occur in the brain, they do not represent the working parts. […] As challenging as it is 

 to identify candidate working parts, it is even harder to identify the component operations. 

 (Bechtel 2005, p. 316) 

 

Part of the problem is that mechanisms are often hierarchical. In other words, a component part of a 

mechanism may itself be a mechanism, which can be decomposed into further parts and operations (see 

Section 2.2). This hierarchical feature of mechanisms gives the misleading impression that the parts of the 

embedded mechanism (often referred to as the mechanism at the ―lower level‖) must be smaller in size 



 

 118 

than the parts of the mechanism in which it is embedded (the mechanism at the ―higher level‖). But this is 

untrue: 

 

When we identify levels in terms of causal interactions within a mechanism, entities that are 

structurally alike may appear at different levels. Protons for example interact with membranes in 

the chemiosmotic mechanism responsible for converting energy liberated in oxidative reactions in 

cells into a proton gradient that drives ATP synthesis. Protons also occur in the molecules that 

comprise the membrane, but these are at a lower level than the protons that are transported across 

the membrane and thus interact with it. There is not a level of protons, but levels corresponding to 

the entities that causally interact in a given mechanism. The result is a hierarchy of levels, but one 

that is characterized relative to the phenomenon an investigator initially sets out to explain. 

(Bechtel 2005, p. 315) 

 

What this means is that merely looking inside the brain and identifying objects does not tell us which 

mechanisms those objects are parts of, what level they belong to, or how they interact with other objects. 

And so attempting to generate a mechanistic model of the brain simply by cracking open the skull and 

looking inside is inherently problematic. So how then do we proceed? 

 Keep in mind that we often learn about neurological mechanisms by way of reverse engineering. 

Recall the example from Section 2.2 of Bartolomeo Panizza, who was able to learn about the mechanisms 

responsible for vision by studying people that went blind after damage to the occipital lobe. In this 

instance, Panizza learned about the relevant mechanisms for vision by first identifying and understanding 

the phenomenon (vision), and then determining how the phenomenon changed when alterations were 

made to the neurological mechanisms. Thus, understanding and characterizing the phenomenon produced 

by the mechanism was the first step in learning about the parts and operations that brought it about. Of 

course, Panizza could not use a mechanistic model of vision to identify and characterize the relevant 

phenomenon, since none was available to him (the mechanisms responsible for vision were what he was 
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trying to discover after all). And so characterizing the relevant phenomenon had to be done by employing 

different sorts of scientific tools. And this is where phenomenological models become essential. 

 Our use of intentional models, for instance, can help us refine our understanding of the 

phenomenon of vision by identifying the sorts of discriminations that the system can make of objects 

appearing in its visual field. Similarly, statistical models like Stocker & Simoncelli‘s model allow us to 

identify and predict the way in which we visually discriminate the speed of objects. Both of these models 

allow us to better understand the phenomenon under investigation. These phenomenological models can 

provide us with invaluable information about the conditions under which the phenomenon is produced, 

which in turn places constraints on what the mechanisms that produce the phenomenon must be like. 

Consider the phenomenon of fermentation: 

 

…knowledge of how to set up conditions for fermentation was acquired by brewers long before 

the development of biochemistry in the early 20
th
 century, and the knowledge was not supplanted 

by the investigations of biochemists. On the contrary, biochemists employed such knowledge in 

setting up the experimental conditions in which they could study the operation of the enzymes. 

(Bechtel 2007, p. 183) 

 

Phenomenological models allow us to identify constraints on possible mechanisms, which helps us to 

narrow the list of potential mechanisms responsible for the phenomenon. In this way, phenomenological 

models can act as pointers, showing us where to look for possible mechanisms (just as Stocker & 

Simoncelli‘s model pointed them towards cortical neurons). 

 Of course, these sorts of insights are often, by themselves, insufficient to tell us exactly what the 

mechanisms are, or how they function. However, they can often give us a general sense of what the 

mechanism might be like, which allows us to construct a first pass at a mechanism sketch —even if this 

sketch is extremely vague. Recall Zednik‘s claim mentioned in Section 7.4 that ―mechanistic explanation 

frequently starts as a relatively abstract mechanism sketch that leaves ample room for elaboration‖ (2011, 
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p. 249). The next step is to take this abstract sketch, and to return once again to our various 

phenomenological models. Would the abstract mechanism we posit be able to produce the exact same 

regularities that both our statistical and intentional models were able to identify from the actual system‘s 

behaviour? If so, then we have some evidence that the mechanism sketch may be on the right track. If not, 

then what sorts of modifications to our sketch will better account for the regularities? It is not simply a 

linear methodological path from phenomenological models to mechanistic ones. Instead, there is a 

constant back and forth between the different models throughout the process of scientific inquiry that 

allows them to constantly benefit from the insights of each other. 

The relatively abstract mechanism sketch that we develop (with help from our phenomenological 

models) is often fed back into our phenomenological models. Just as knowing more about the 

phenomenon allows us to refine our account of the mechanisms, so too does knowing more about the 

mechanisms allow us to refine our phenomenological models: 

 

Sometimes knowledge about the components of a mechanism can guide inquiry into how  the 

 mechanism engages its environment and when such knowledge is available, ignoring it is 

 fooldhardy. The same, though, applies in the opposite direction —knowing how a mechanism 

 behaves under different conditions can guide the attempt to understand its internal operation. 

 (Bechtel 2007, p. 174) 

 

 Knowing more about how the mechanisms of a system allow it to make discriminations of its 

environment allows us to better refine the intentional content we attribute to the system (making for better 

intentional models). Similarly, knowing more about the underlying mechanisms allows us to better assign 

probabilities to the various states of the system required for making better statistical models. This, in turn, 

allows us to further refine our understanding of the intricacies of the phenomenon, and puts still further 

constraints on what the mechanisms must be. This back and forth process between our various models 

―enables the refinement of methodologies, the clarification of concepts, the design of experiments and 
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studies to control for causal factors demonstrated by others. All this makes for more knowledge, which, 

judged by means of the evaluative tools available [to] each [model], is also better knowledge‖ (Longino 

2006, p. 127). 

 Similarly, by employing a variety of different phenomenological models (intentional, statistical, 

dynamical, etc), we can provide a more comprehensive understanding of the phenomenon under 

investigation by predicting it in a wider array of contexts. Different models use different information 

about the system in order to form predictions. As a result, different models will be ideal for predictions in 

different contexts. Thus even if we could, in principle, use a single phenomenological model to predict all 

the behaviours of a given system, in practice we often lack the information needed to generate such an all-

encompassing model. We might lack the information required to generate a statistical model in one 

context (given a contextual inability to appropriately mathematize the system), but not an intentional 

model. Therefore, our use of an intentional model in such a context would provide additional information 

about the phenomenon that we would lack by only relying on statistical models to form our predictions. 

In this regard, the methodological value of employing multiple phenomenological models comes from 

their pragmatic benefits under varying circumstances. This allows us to gather a greater, and more varied, 

pool of information that we can use in our understanding of the mechanisms. 

 Given that different phenomenological models have different pragmatic constraints on (and ideal 

conditions for) their application, each model we use provides information that other models may need to 

take into account, but which we may be unable to gather using those models alone due to contextual 

limitations. The different models play off each other, providing information that helps to refine and 

augment the predictive and/or explanatory capabilities of one another. The different kinds of scientific 

models work in tandem, building off one another. 

As this process develops, we occasionally find an overlap between the theoretical objects in one 

model, and theoretical objects in another. For example, our intentional model, when refined enough, may 
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posit an intentional state that happens to fit the behaviour of a particular neurological mechanism. In this 

way, we can correlate certain intentional states with certain mechanisms when our mechanistic and 

intentional models are sufficiently refined. This sort of overlap is extremely informative and helpful to 

our understanding of the system when it occurs, but it should be stressed that such overlaps are usually 

serendipitous, and not the expected outcome of our application of such models. We do not use intentional 

models only when the intentional states they refer to functionally correspond to particular mechanisms 

(see, for instance, the theory of planned behaviour discussed in Section 5.2 and 5.3).
 
We use intentional 

models because we can generate predictions of systems that are informative, and this provides 

scientifically relevant data that other models can use to improve upon their own accounts of the 

phenomenon. The use of an intentional model may be essential in learning about the mechanisms of a 

system even if no overlap is found between the theoretical objects in the two models.
 24

 Put simply, while 

it is immensely beneficial when there is an overlap between the theoretical objects of two different types 

of models, this is not what makes either model worthwhile to our scientific methodology. 

 This account of the methodological interdependence of multiple scientific models within a given 

scientific domain may similarly carry over to the interdependence of scientific domains more generally. 

Consider the relationship between psychology and neuroscience. While some have argued that the 

theories of psychology can (or at least should) be reducible to the theories of neuroscience (Bickle 2003), 

this idea is often based on the assumption that a completed neuroscience could in principle do everything 

that a completed psychology does (predictively and explanatorily). But even if we suppose that this is true 

(which is contentious; see Section 8.2 for details), we do not have a completed neuroscience to use in 

place of psychology. And, the study of psychology is an essential part of our development of a complete 

                                                   
24 Just as, for instance, we do not insist that statistical models are only beneficial to science if and when we can find 

an overlap between the theoretical objects in statistical models (numbers, averages, variances) and the theoretical 

objects of other models (like the objects of mechanistic models). Averages are not made up of physical mechanisms 

any more than physical mechanisms are made up of averages. But that does not mean that statistical models are 

therefore not beneficial to science. 
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neuroscience (and vice versa). Just as we use a plurality of models to refine and improve upon our 

understanding of some phenomenon within a scientific domain, so too is it the case that we use a plurality 

of scientific disciplines to refine and improve upon our understanding of some aspect of the world. 

Recall that our understanding of the mechanisms responsible for vision began with a detailed 

account of the phenomenon produced by those mechanisms (which pragmatically involved modeling the 

phenomenon of vision in different ways). By a similar token, in order to develop an understanding of the 

neurological underpinnings of the brain as a whole, we must similarly begin with a detailed understanding 

of the phenomena produced by the brain as a whole. And psychology, as a scientific domain, exists for 

exactly this purpose. Consequently, psychology plays a necessary role in helping to develop a 

neuroscientific account of the brain by telling us essential information about the behaviour and function 

of the system that a complete neuroscience will have to account for, and be constrained by. Just as 

different scientific models within a given domain inform one another (with the results of each model 

feeding into the others), so too do psychology and neuroscience inform one another (with the results of 

each domain feeding into the other).
25

 

The fact that psychological theories make reference to theoretical objects that do not necessarily 

overlap with the theoretical objects of neuroscience (beliefs, desires, etc.) is irrelevant to the 

methodological necessity of psychology. What matters is that psychological theories represent and 

characterize the way in which people behave in a variety of contexts, the way they react to environmental 

                                                   
25 Patricia Churchland (1989) offers a similar account of the interaction between psychology and neuroscience. 

However, she insists that this process of co-evolution always leads to a convergence between the domains, resulting 

inexorably in a single mechanistic neurobiological account of the system. In this respect, she argues that the co-

evolution of psychology and neuroscience inevitably results in a reduction of psychology to neuroscience as the two 

domains grow together (1989, p. 374).  

 There are indeed cases where a reductive convergence between psychological and neurological models is 
ideal. However, this is not universally the case. There are cases where such reductions are neither inevitable, nor 

desirable, depending on what our pragmatic purposes are for modeling the system. The fine-grained neurobiological 

details of the system are not always what we care about, and psychological models may identify features of systems 

that neurobiological ones cannot. The inter-dependence and co-evolution of psychology and neuroscience is 

important even in cases where the two do not converge on a singular model (for more details, see Section 8.2 and 

9.4). 
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conditions, and the way they interact with others in complex social settings. This information plays an 

essential role in our attempt to develop a neurological account of the mind given that these behaviours are 

a direct result of neurological mechanisms. So any good neurological account of the brain must conform 

to the data gathered by psychological studies regarding the way in which the system behaves (just as 

psychological accounts must conform to the data gathered by neuroscience regarding the way 

neurological mechanisms produce behaviour). However, the two domains need not share the same 

vocabulary or theoretical objects in order for this to be the case. 

 Of course, we will occasionally find overlaps between the theoretical objects of psychology and 

the theoretical objects of neuroscience as the two domains inform, and feed into, one another. But just as 

is the case with our use of intentional and mechanistic models, the value of psychology and neuroscience 

is not contingent on this overlap of concepts. What matters is that psychology characterizes important 

aspects of neurological systems that allows us to generate and acquire essential data for, and determine 

possible constraints on, our neurological theories. And similarly, these neurological theories in turn 

generate and acquire essential data for, and determine possible constraints on, our psychological theories. 

A complete overlap of concepts is not a requirement for this methodological process. 

 Therefore, even if one wishes to argue that psychological concepts ought to be replaced entirely 

by neuroscientific concepts at the end of the day, one first needs to have a complete set of neuroscientific 

concepts and theories before this can be accomplished. And the practice of psychology (along with its 

conceptual tools) is needed to acquire this. Therefore, one must still climb the psychological ladder before 

it can be kicked away, and we are still very much in the process of climbing that ladder. 

 It is also important to note that all of this assumes that a completed neuroscience could, at least in 

principle, account for all the phenomena described by a completed psychology. In the following section, I 

will demonstrate why this may in fact be false. And if this is the case, then the role of intentional models 
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in science may be far more integral to scientific practice than merely existing as a pragmatic tool for 

generating mechanistic explanations. 

8.2 A Patchwork View of Scientific Practice 

If the mind is the brain, and the brain is a set of physical mechanisms, then it seems reasonable to assume 

that a complete account of these mechanisms will tell us everything there is to know about the mind. But 

even if this is true, we must be extremely careful not to make the further inference that a complete 

mechanistic model of the brain will necessarily provide us with a complete account of these mechanisms. 

This is not because scientific models do not provide us with an understanding of the system (they do), but 

because different types of scientific models might always, out of necessity, distort the system being 

modelled in different ways so as to only ever provide us with a partial understanding of it. Thus, adopting 

different types of scientific models may be required in order to represent all the relevant features of it. 

A growing number of philosophers and scientists suggest that the complexity of nature, and the 

essential idealizations and distortions that scientific representations must employ, may make it impossible 

for a single type of model to capture everything that is scientifically relevant about a complex 

phenomenon (see for instance: Truesdell 1980; Dupré 1993; Suppes 1993; Hacking 1996; Cartwright 

1999; Longino 2002, 2006; Batterman 2000, 2002a, 2002b; Fehr 2006; Chemero & Silberstein 2008). As 

Patrick Suppes notes: 

 

 The application of working scientific theories to particular areas of experience is almost always 

 schematic and highly approximate in character. Whether we are predicting the behavior of 

 elementary particles, the weather, or international trade —any phenomena, in fact, that has a 

 reasonable degree of complexity— we can hope only to encompass a restricted part of the 

 phenomenon. (1993, p. 53) 
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The assumption that there must be one type of description or model that can correctly and completely 

account for all aspects of some phenomenon is not something we can take for granted. No model can 

capture everything about a complex system, and so different models may be necessary in order to fully 

represent different aspects of a given system or phenomenon. As Truesdell tells us: 

 

One good theory extracts and exaggerates some facets of the truth. Another good theory may 

idealize other facets. A theory cannot duplicate nature, for if it did so in all respects, it would be 

isomorphic to nature itself and hence useless, a mere repetition of all complexity which nature 

presents to us, that very complexity we frame theories to penetrate and set aside. (1980, p. 72) 

 

What this means is that a particular type of model may be essential for characterizing certain aspects of a 

system while necessarily being unable to characterize or identify others. In this sense, developing a 

complete account of the neurological mechanisms that make up the brain (and thus the mind) may require 

that we employ different sorts of scientific models (including intentional models) to represent different 

aspects of those mechanisms.
26

 Consider Bechtel‘s claim that 

 

 ...researchers have produced knowledge [about neurological mechanisms] that could not have 

 been acquired by [strictly inquiring into the parts and operations of those mechanisms]. 

 Psychophysicists and ecological psychologists complement the reductive inquiries of 

 neurophysiolgists and have not been rendered unnecessary by the neurophysiologists‘ success. 

 (2007, pp. 184-185) 

 

                                                   
26 This point is stronger than the mere pragmatic position defended in Section 8.1. The claim is not that multiple 

models are instrumentally necessary for generating a single correct model, but instead that there may not be a single 

correct model. And thus a plurality of different kinds of models may themselves be part of our best account of the 

phenomena. We will always have to employ a variety of different models that characterize a target system in very 

different ways. 
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Mechanistic models, like all types of models, emphasize some features of a system at the cost of others, 

and so they may only be able to provide information regarding certain aspects of a phenomenon while 

necessarily ignoring others. 

To take another example, consider that the more detailed our mechanistic models become, the 

less informative they tend to be about features that span a range of radically different mechanistic 

systems.
27

 In other words, by increasing the structural details of the system in our model, we 

correspondingly decrease the model‘s ability to see certain types of similarities that exist across various 

types of mechanistic systems: 

 

Structural theories include more information about singular materials and, as a consequence, less 

information about a class of materials. For example, the dependence of a macroscopic variable 

such as viscosity on temperature could be predicted by a kinetic theory. But in this case, for each 

specific law of intermolecular force, the explanation offered by the structural theory would differ. 

Due to complexity, there are many cases where the solution to the force equations would be 

mathematically intractable. Under a phenomenological theory, on the other hand, such a 

dependence would be ignored, i.e., the theory would be less definite regarding the relation 

between a macroscopic variable and its molecular support. (Fillion 2008) 

 

This would make the implementation-independence of phenomenological models an invaluable asset to 

scientific practice. The fact that there is a many-to-one relationship between mechanistic models and 

phenomenological ones means that the same phenomenological model can be used to identify and 

characterize similarities that exist among systems that are implemented in very different sorts of ways. It 

is for this reason that Batterman argues that phenomenological models may be necessary to explain some 

phenomena that span a variety of mechanistic systems that mechanistic models may be unable to identify 

(2002a). In such cases, the fine details of the mechanism ―may, in fact, actually detract from an 
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understanding of the phenomenon‖ (Batterman 2002a, pp. 21-22). Truesdell makes a similar point 

regarding the value of phenomenological models: 

  

 [We do not consider] a traffic engineer stupid for neglecting to make use of physical and 

 chemical principles determining the motion of the automobile when he sets up his stochastic 

 theories for traffic control. […] For most of the physical phenomena of ordinary experience, 

 considerations of the structure of matter do not yield a finer or more accurate theory: They do not 

 yield any theory at all, any more than nuclear physics, however true, and however useful for 

 studying nuclei in small numbers, gives any information at all about the behavior of a rat, or than 

 classical mechanics, however true, and however useful for explaining motion of a single 

 automobile, gives any information at all about traffic flow. (Truesdell 1966, pp. 215-16) 

 

As a result, the different types of models (mechanistic and phenomenological) are often used to represent 

different aspects of systems. Each represents features that the other may miss. 

To further emphasize this point, consider the common analogy of scientific models as maps of the 

world. Different types of models act as different sorts of maps that we can use to represent and navigate 

the world. This analogy between models and maps is apt, given that any two-dimensional map of the 

earth will necessarily distort the terrain it represents. This is a point that Mark Wilson emphasizes quite 

strongly: 

 

As is well known, it is impossible to map terrestrial topography onto a sheet of paper without 

 introducing considerable distortion in the result. At best, we can select a few features that we 

 would like to register in our maps accurately and conveniently, while abandoning other critical 

 qualities to their representational fates. (Wilson 2006, p. 289) 

 

                                                                                                                                                                    
27 This is not universally true of all cross-system similarities, but it need not be to make the point. There need only 

be a scientifically relevant set of such similarities for the point to be made. 
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Take Mercator projections for instance. This way of mapping the earth is extremely beneficial to sailing 

vessels for use in navigation given that ―the compass and sextant routes that a sailing vessel might 

reasonably follow appear on such maps as straight lines‖ (ibid, p. 289). However, this comes at the cost 

―of great distortions in areal representation, especially within the higher latitudes (as manifest in 

Greenland‘s extremely deceptive size upon a Mercator map)‖ (ibid, p. 289). Meanwhile, Hammer 

projections compensate for the distortions in areal representations found in Mercator projections, but ―at 

the price of considerable distortions in shape (worse than on the Mercator, although its depictions of 

shape are not exactly terrific either)‖ (ibid, p. 290). When it comes to the different mapping techniques, 

―each embodies its own distinctive personality, which is never in complete harmony with the physical 

system it attempts to describe: the spherical earth. As we attempt to maximize selected representational 

virtues (accurate areal representation), we mislead in others (shape)‖ (ibid, p. 290). 

 How then do we create a truly accurate map of the earth? The mistake is to assume that there 

must be one type of map that ―gets the world right‖, with others being dismissed as merely pragmatically 

useful. Instead, Wilson proposes that the solution is simply to have an atlas of different maps that we 

constantly move between as the need arises: 

  

 How do we correct for these representational pitfalls in our maps? The effective scheme is to 

 supply a rich atlas of maps that cover the earth several times over, each of which is dedicated to 

 answering questions best suited to its own personality. [...] In other words, a competent employer 

 of an atlas will address the questions she seeks by thumbing to the right pages of the atlas, often 

 in a rather complex fashion: a seaman plots sailing routes combining the information supplied in 

 several maps, often without knowing the underlying theory that explains why this bustle of 

 procedures supplies suitable sailing instructions. (Wilson 2006, p. 291) 

 

The analogy between maps and models is importantly informative in this respect. No single type of 

scientific model may be able to completely account for a given phenomenon, leaving us with a plurality 
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of models that we must switch between as the need arises. If this sort of account turns out to be true, then 

intentional models may not simply be essential in our methodological development of mechanistic 

explanations, but may characterize aspects of systems (aspects that exist across mechanistic systems) that 

mechanistic models may miss altogether. In which case, intentional models may themselves be part of our 

best scientific account of the mind, as opposed to merely a means of helping us generate such an account. 

 Similarly, if this sort of pluralism turns out to be true, then different scientific domains are not 

likely to be reducible to others (at least not completely). Neuroscience, for instance, may represent certain 

aspects of the phenomena of human behaviour at the cost of others, and so may be unable to represent 

those features characterized by psychology. And indeed, there is some evidence that this is the case. 

According to Bechtel, our application of social psychology ―characterizes regularities in the way 

cognitive agents respond to situations arising in their environment. This is not information that 

neuroscientists themselves are interested in or have the tools to procure‖ (2007, p. 194, endnote 3). Or 

consider Longino‘s claim that different ―features of competing behavioral research programs […] are 

better accommodated in a framework that is open to pluralism than one constrained by a commitment to 

monism‖ (2006, pp. 126-127). Similar claims can also be found in Scarr 1995, and Chemero & 

Silberstein 2008. 

In this respect, different scientific domains complement each other, and bring different insights to 

our understanding of the world that other domains lack. Or as Suppes puts it, ―the rallying cry of unity 

followed by three cheers for reductionism should now be replaced by a patient examination of the many 

ways in which different sciences differ in language, subject matter, and method as well as by synoptic 

views of the ways in which they are alike‖ (Suppes 1993, p. 48). 

 Of course, we cannot rule out the possibility that a unifying model may one day be forthcoming. 

It would be poor science to merely dismiss the possibility of finding such models in the future (none of us 

can predict the scientific revolutions that await us in the future). However, by the same token, given what 
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we know about current scientific practice, it would be just as careless to simply dismiss the sort scientific 

pluralism discussed here. Put bluntly, those who insist that a unifying model of the mind must be 

forthcoming do not necessarily have the current state of scientific methodology, or the history of science, 

on their side.
28

 The necessity of a plurality of models is something we must take seriously as a live option. 

8.3 Summing Up the Big Picture 

Ultimately, my intention here is not to argue for the stronger version of scientific pluralism over the 

methodological one. Instead, it is simply to highlight the essential role that intentional models currently 

have, and may continue to have, within our scientific practices. Intentional models are methodological 

tools that co-evolve with, and help to refine, different scientific models that together contribute to our 

study of the mind. This methodological co-dependence of models is part of the process by which we learn 

about mechanistic systems like the brain. 

It is also a possibility worth considering that a plurality of different types of models is an 

ineliminable feature of scientific explanation and theory more generally. In which case, the 

representational benefits of intentional models may be unattainable using other types of models. This 

being the case, intentionality will remain an integral part of our understanding of the mind in future 

scientific practice. 

                                                   
28 That being said, it may be worth striving for such a unified model, since we have no principled reasons to think 

that such a model is a priori impossible, and such pursuits may provide us with important scientific results. The 

point here is merely to emphasize that such a unified model may not be forthcoming, and thus the value of 

intentional models to science may be far more profound than previously implied. 
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Chapter 9 

A Brief Philosophical Survey 

With my account of the benefits of intentional language on the table, we can now see and appreciate the 

many insights that different philosophers of mind have brought to our understanding of intentional 

language in the past. While many of the accounts offered by these philosophers involved commitments 

that I will demonstrate were unwarranted, they nonetheless emphasized important features of intentional 

models that are worth noting. In this chapter, I highlight some of these accounts, and demonstrate what 

their benefits and drawbacks are. 

9.1 Eliminative Materialism 

To begin, consider Paul Churchland‘s account of Eliminative Materialism (1981). According to 

Churchland, intentionality should not be understood as a metaphysical phenomenon unique to the mind, 

but instead as a structural property of particular kinds of sentences; specifically, the propositional 

attitudes commonly used in traditional psychology (which he considers to be a form of folk psychology). 

As he puts it: 

  

Another conundrum is the intentionality of mental states. The ‗propositional attitudes,‘ as Russell 

called them, form the systematic core of folk psychology; and their uniqueness and anomalous 

logical properties have inspired some to see here a fundamental contrast with anything that mere 

physical phenomena might conceivably display. The key to this matter lies again in the 

theoretical nature of folk psychology. The intentionality of mental states here emerges not as a 

mystery of nature, but as a structural feature of the concepts of folk psychology. (Churchland 

1981, p. 70) 
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 Like Churchland, I similarly propose that intentionality is best thought of as a means of 

describing certain kinds of systems, and not necessarily as a unique metaphysical phenomenon in dire 

need of scientific explanation (at least in its scientific usage). 

 Where Churchland and I disagree is on the value that these intentional sentences have to scientific 

discourse. Churchland proposes that intentional descriptions are ultimately rooted in a folk understanding 

of the mind, and thus will ultimately be displaced by neuroscientific descriptions which eschew 

intentionality. In other words, he believes that folk psychology has no place in our growing corpus of 

neuroscientific research, and as such, ―intentional categories stand magnificently alone, without visible 

prospect of reduction to that larger corpus‖ (1981, p. 71). As a result, he predicts that intentional concepts 

will ultimately be eliminated from scientific practice. I propose that this position is problematic on 

numerous fronts. 

 First, it attempts to contrast neuroscientific descriptions with intentional descriptions, as though 

the two are mutually exclusive. This is clearly a false dichotomy. Neuroscientists commonly make use of 

intentional concepts like representations and information
i
. Intentional descriptions are as much a part of 

neuroscientific theories as mechanistic descriptions are (see Section 6.2.5). 

 Second, Churchland argues that the scientific worth of traditional psychology‘s intentional 

concepts is contingent on their place within a neuroscientific framework (which Churchland is sceptical 

we will find). However, as I have argued in Section 8.1, the scientific value of the theoretical objects 

posited by one domain of science is in no way contingent on their overlap with the theoretical objects of 

other scientific domains. While such overlaps are certainly nice when they exist, it is hardly a condition 

on scientific merit. What matters is that the two domains tell us important features about the phenomenon 

under investigation, not that their concepts or their vocabulary be the same. 

 Third, Churchland assumes that intentional descriptions describe and characterize the same 

aspects of human behaviour that neuroscientific theories do, but with much less success (and thus will be 
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replaced). But this may be to misunderstand the way in which the different domains represent 

phenomena. While there is indeed a degree of overlap in terms of the phenomena studied by both 

psychology and neuroscience, the two scientific domains might describe different aspects of this 

phenomena (see Section 8.2). As such, each domain may provide important data and constraints that the 

other domain cannot identify but must still account for. This would mean that the two domains 

complement each other. The assumption that neuroscientific theories will trump the theories of traditional 

psychology once everything shakes out in the end assumes that neuroscience can do everything that 

psychology does. But this is hardly obvious. Psychology employs different tools than neuroscience, and is 

often used to characterize different features of human behaviour. 

 And so the important insights brought to us by Churchland‘s theory of eliminative materialism 

are: 1) that intentionality may be rooted in our descriptions of systems as opposed to being a mysterious 

metaphysical property of systems; and 2) that we should not expect that all our intentional categories will 

be reducible to neurological mechanisms. 

9.2 Functionalism and The Multiple-Realizability Thesis 

Next, consider the Multiple Realizability (MR) Thesis, as argued for by Hilary Putnam (1967) and Jerry 

Fodor (1974). The general idea of MR is that a heterogeneous set of physical processes can instantiate, or 

bring about, the same higher-level states within systems (in this case: intentional states). Putnam and 

Fodor propose that intentional states are functional states of a system, and thus can be realized by any 

physical state that plays the appropriate functional role in the behaviour of the system. To explain how a 

variety of mechanistic systems can bring about the same functional states, they propose that we conceive 

of the different physical systems as all implementing the same kind of higher-level behavioural 

mechanism (e.g., one which outputs the same sets of functional states). 

  So, for instance, even though people, animals, computers, and (potentially) aliens may be 

composed of different sorts of physical mechanisms, it is possible for all of them to have the same 
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intentional states in virtue of having the same functional states. By thinking of the different physical 

processes as alternate ways of implementing the same Turing-style computational system, they can all 

generate the same intentional states used to guide behaviour. 

I propose that one of the main insights of Fodor and Putnam‘s accounts is that they highlight the 

fact that we can, and do, successfully predict the behaviour of vastly different sorts of mechanistic 

systems by appealing to the same sets of intentional states. Previous attempts to find type-type identities 

between intentional states and physical states (such as brain states) meant that different sorts of systems 

would be incapable of having the same intentional states that humans could. Yet, it was (and still is) 

common practice to speak of very different sorts of systems in terms of the same types of intentional 

states. Thus the development of the MR thesis acknowledged the fact that intentional descriptions apply 

across a wide variety of mechanistic systems. 

Another insight that Putnam and Fodor offer is that a higher-level science (like psychology) need 

not reduce to a lower-level one (like neuroscience) in order for that domain to scientifically represent 

genuine features of systems. The idea behind MR is that while the higher-level functional state cannot be 

reduced to the lower-level mechanisms, it is still a genuine aspect of the system worth understanding. As 

Fodor puts it: 

 

It seems to me (to put the point quite generally) that the classical construal of the  unity of science 

has really misconstrued the goal of scientific reduction. The point of reduction is not primarily to 

find some natural kind predicate of physics co-extensive with each natural kind predicate of a 

reduced science. It is, rather, to explicate the physical mechanisms whereby events conform to the 

laws of the special sciences. (1974, p. 111) 

 

The problem with Putnam and Fodor‘s account is their insistence that the only way to explain the 

cross-system application of intentional models is if all these systems have the same higher-level 

mechanism generating their behavior (one that is instantiated by different lower-level mechanisms). But 
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this assumption is neither necessary to explain the successful use of intentional language across systems, 

nor supported by our best empirical evidence.  

Consider the empirical problems with this sort of position. The suggestion that different physical 

processes in a variety of different systems can instantiate the exact same functional state is far more 

problematic than it intuitively seems. As Bechtel points out, ―if one uses a fine-grained account of both 

mental and neural processes, there is no evidence of the same mental state being realized in different 

ways‖ (Bechtel 2007, p. 173).
29

 Moreover, we know that there is a tight connection between 

implementation and function, meaning that two systems that are implemented in very different ways will 

often be unable to have functional states that are identical in all the relevant respects. As Eliasmith notes: 

 

...two implementations of a given functional description can not be usefully considered equivalent 

unless they are almost identical. This is because an algorithm running on one implementation can 

only be run by another implementation with the addition of an emulator program of some sort. 

Running this emulator adds computational complexity making the second implementation 

significantly different from the first. It is only in the limiting case of infinite symbol-strings that 

this overhead can be ignored (a limiting case often adopted by Turing machine proofs). For finite 

strings, this overhead will significantly affect the performance of the computer –especially if we 

place time and resource restrictions on its behavior. (2002, pp. 4-5) 

 

 And so this position is, at the very least, empirically problematic. More importantly however, this 

sort of account need not be true in order to explain the successes of intentional models applied across 

multiple systems. 

As I have argued, the ability of intentional models to apply across a wide range of mechanistic 

systems is due to the fact that, as a type of phenomenological model, they are implementation 

                                                   
29 Bechtel does note that if we describe neurological processes abstractly enough, we do find course-grained 

categories that apply across systems. But he proposes that this is mostly just a useful heuristic we can employ to 

help us characterize similarities between mechanistic systems (Bechtel and McCauley 1999), and is not a means by 

which radically different systems instantiate the exact same intentional states through a higher-level mechanism. 
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independent. Putnam and Fodor assume that the predictive successes of intentional models imply that 

they must refer to actual causal states of systems that generate behaviour. And so different systems 

described by intentional models must all be instantiating these identical causal states in different ways. 

But there is no reason to assume that this must be the case. There is an implicit intuition that the scientific 

respectability of intentional descriptions are contingent on their denoting causal spatiotemporal regions of 

the brain. But this is hardly true (as our use of statistical models and dynamic models demonstrates). 

I suspect that there is an ontological motivation for this implicit intuition that is a reactionary 

response to substance dualism. The assumption is that if intentional states are not causal spatiotemporal 

chunks of physical matter, then they must be either mental objects adrift in some nebulous mental realm 

somewhere, or else they are mere fictions to be discarded once our science is complete. But, of course, 

neither of these options need be the case, as I argued in sections 8.1 and 8.2. Not all intentional 

attributions must coincide with sub-personal physical mechanisms in order for the descriptions to be 

integral to our scientific understanding of the mind. 

Even if one chooses to adopt an ontology in which the only things that are ―real‖ are causally 

interacting chunks of physical matter, this does not imply that only descriptions which denote such things 

have a respectable role in scientific practice. If it did, then large swathes of contemporary physics would 

be abandoned. This would be to make the mistake I highlight in Section 2.3: to insist that scientific 

methodology should conform to fit one‘s chosen ontology as opposed to using the fruitful and successful 

methodological tools it has at its disposal. Putnam and Fodor‘s assumption that intentional states must be 

brain states in order for intentional models to be successful is simply not well grounded. 

And so the important insights brought to us by Putnam and Fodor are: 1) The fact that 

neuroscientific mechanisms do not always coincide with intentional attributions does not make such 

attributions irrelevant to our scientific accounts of the mind; and 2) intentional language applies across 

mechanistic systems.  
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9.3 Anomalous Monism 

Donald Davidson, in his 1970 paper ―Mental Events‖, offers a theory of intentional language that 

manages to overcome some of the problematic assumptions made by Putnam and Fodor, while 

unfortunately falling prey to others. To understand Davidson‘s position, however, we must first change 

the way we think of the relationship between intentional and mechanistic models. Instead of talking in 

terms of physical mechanisms and intentional states, Davidson talks in terms of physical and mental 

events. An event is ―physical‖ when it falls under a physical description (one employing physical 

terminology), and ―mental‖ when it falls under a mental description (one employing intentional 

terminology). Under this interpretation, mechanistic interactions are understood as physical events, while 

the having of intentional states are understood as mental events. According to Davidson, there is no 

dualism regarding the sorts of events that exist, only the sorts of descriptions we use to characterize them. 

Thus any event that we describe as a mental event can also be described as a physical event. 

 Davidson‘s theory, dubbed Anomalous Monism (AM), proposes that when we speak of behaviour 

being caused by intentional states (beliefs, desires, etc.), we are attempting to characterize the causal 

interactions of an event described under a mental language (the having of a belief for instance) with the 

event described under a physical language (the resulting behaviour).  

 Davidson proposes that all causal interactions between events fall under strict nomological laws 

or regularities. However, the causal interactions between mental events and physical events do not fall 

under such regularities. The idea being that the law-like relations that link events by way of cause and 

effect are only identifiable under a strictly physical description. Intentional descriptions, in contrast to 

physical descriptions, do not describe physical events in a manner that allows us to subsume them under 

strict laws. Put simply, intentional descriptions are a different means of characterizing causal events, and 

they do so in a way that obscures the nomological relations that causally connect them to physically 

described events. 
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In this respect, Davidson proposes that AM can be unproblematically committed to three 

seemingly contradictory principles. The first is that mental events can causally interact with some physical 

events (given that all mental events are physical events, and physical events can causally interact). The 

second is that all events are causally related by way of strict nomological laws. The third is that there are 

no strict nomological laws relating mental events to physical events (given that the strict law-like relation 

connecting events can only be seen under a physical description). 

While Putnam and Fodor want to make intentional language autonomous from the mechanistic 

language of the lower-level sciences (like neuroscience), they are still committed to the idea that 

intentional language characterizes the behaviour of higher-level physical mechanisms. In this sense, 

intentional descriptions still act as abstract mechanistic descriptions of systems. This idea is one I‘ve 

challenged on the grounds that intentional models predict the behaviour of systems in a way quite distinct 

from the way in which mechanistic models do. In this respect, mechanistic models and intentional models 

should not be confused for one another. AM better captures this distinction between intentional language 

and mechanistic language. 

While Davidson talks exclusively in terms of the relation between mental and physical events, as 

opposed to the relation between mechanistic and intentional models, we can draw a parallel between the 

two cases. When mechanistic models are used to explain and predict the behaviour of systems, they do so 

by characterizing the system in terms of the causal relations between different physical objects that make 

up the system. Meanwhile, when we switch to an intentional description, we describe the system in a 

decidedly non-mechanistic way. The causal interactions that go on between the constitutive parts of a 

mechanism are what necessitate that mechanism‘s behaviour. However, the interactions of intentional 

states we attribute to a given system do not necessitate that it will act in any given way. Intentional 

models presuppose that a system is rational, which is almost always an idealization. Thus the strict cause 

and effect we find when we model a system mechanistically is not something we find when we model the 
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system intentionally. This captures Davidson‘s point that the necessity of a system‘s behaviour can be 

better understood given a particular kind of description of the system. 

Davidson also argues that we should not expect to be able to reduce mental language to physical 

language. As he puts it, ―no purely physical predicate, no matter how complex, has, as a matter of law, the 

same extension as a mental predicate‖ (2002/1970, p. 123). Since mental and physical languages 

characterize events in drastically different ways, there is no way to capture the meaning of a mental 

sentence by using a strictly physical sentence. I too propose that there exists an irreducibility between 

intentional and mechanistic models, given that intentional models are implementation independent, while 

mechanistic models are not. 

 Unfortunately, there are problematic assumptions with AM that ultimately lead Davidson astray. 

First, he suggests that there are two major sorts of descriptions to be contrasted: mental and physical (the 

latter being subsumed under strict nomological laws or regularities). But this idea does not do justice to 

the subtle and important differences that exist within our so-called physical descriptions. There are a great 

many different kinds of physical descriptions (those of physics, chemistry, biology, etc.), and not all of 

these different physical languages characterize events in a way that subsumes them under strict 

nomological regularities. Consider, for instance, our use of mechanistic descriptions in neuroscience. 

While we commonly use mechanistic descriptions to characterize causal neurological events, it does not 

follow that these neurological events are connected by strict nomological regularities. As Bogen points 

out, 

 

If the production of an effect by activities which constitute the operation of a mechanism is what 

makes the difference between a causal and a non-causal sequence of events, Mechanists need not 

include regularities and invariant generalizations in their account. (2005, p. 399) 
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 The assumption that causality between two events, when characterized by a physical language, 

can be characterized as falling under nomological regularities is simply not something we can take 

granted. To demonstrate, consider the following example offered by Bogen: 

 

The mechanisms which initiate electrical activity in post-synaptic neurons by releasing 

neurotransmitters are a case in point. They are numerous enough, and each of them has enough 

chances to release neurotransmitters to support the functions of the nervous system. But each one 

fails more often than it succeeds, and so far, no one has found differences among background 

conditions which account for this (Kandel, Schwartz, & Jessel, 2000, p. 261). No one takes the 

irregularity of their operation as a reason to deny that on the relatively rare occasions when they 

do operate successfully these mechanisms release neurotransmitters and exert a causal influence 

on post synaptic neuronal activity (2005, p. 399). 

 

 Thus we are left claiming either that, contra Davidson, physical descriptions (like neuroscientific 

descriptions) do not characterize nomological regularities between events, or else that neuroscientific 

language is not a physical language. Indeed, given that many different domains of the life sciences 

primarily explain by way of mechanisms, and the fact that mechanistic explanations do not depend on (or 

necessarily identify) nomic regularities between events, Davidson‘s definitional criteria of physical 

languages is much too crude. 

 Instead of a single physical language, we have a multitude of physical languages that emphasize 

different aspects of systems. Some of these descriptions may characterize nomological relations that hold 

between events, while others may not. Thus insisting that the lack of nomic regularities connecting a set 

of intentional states to the behaviour of the system is due to the fact that we are attempting to characterize 

the same event under two different linguistic frameworks is not obvious (since even within a physicalist 

linguistic framework we may not find such nomic regularities). Similarly, we have little reason to think 

that intentional states must always coincide with physical events. 
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 To emphasize this point, consider that throughout this dissertation, I have spoken of intentional 

language as a particular means of modeling systems; one to be contrasted with other sorts of models (such 

as mechanistic models). Davidson, meanwhile, does not speak in terms of different models, but instead in 

terms of different means of classifying events. The suggestion being that any event characterizeable under 

a mental description is always characterizeable under a physical description. Thus leaving us with a 

token-identity theory of the mind (every token mental event is co-extensive with some token physical 

event). But this sort of position can be understood in one of two ways: 

 

1. Given that we use mental language to characterize physical systems (such as people, or animals), 

we can always carve the system into some set of to-ings and fro-ings (e.g., some set of physical 

events) that we stipulatively make co-extensive with our mental events.  

 

2. There is an ideal non-arbitrary way of carving the system into physical events, and an ideal non-

arbitrary way of carving the system into mental events. It is then an empirical fact that every 

mental event picked out by a mental description will always happen to be co-extensive with a 

physical event. 

 

 I propose that (1) is trivial. The fact that we use intentional language to describe physical systems 

means that this will always be the case, and so in an important sense it is uninformative. Meanwhile, I 

have argued at length in this dissertation that something like (2) is not something we should expect to be 

the case. This sort of move falls into the same trap that Putnam and Fodor fall into: assuming that the only 

way to make mental descriptions respectable (either scientifically or metaphysically) is if intentional 

states always denote some causal region of space-time. But this hardly needs to be the case. The successes 

of intentional models do not require that intentional states denote physical events. And even if Davidson‘s 
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account turns out to be true, it is hardly an a priori truth. He has no grounds at present to stipulate that 

this must be the case. 

 And so the important insights brought to us by Davidson are: 1) Since intentional and mechanistic 

descriptions characterize systems in drastically different ways, we should not expect to reduce one type of 

description to another; and 2) the predictions we make via intentional language do not tell us what the 

behaviour of a system will necessarily be, given that this linguistic framework does not characterize the 

sorts of causal interactions that necessitate its behaviour. In order to identify such relations, we need to 

change the language we use to describe the system. This nicely captures the contrast between the 

idealized predictions of intentional models with the causal-based predictions of mechanistic models. 

9.4 The Co-Evolutionary Research Ideology 

While the different philosophical accounts mentioned above capture some important aspects of intentional 

language, none have emphasized the important interactions that go on between intentional descriptions 

and other sorts of descriptions in a scientific context. Patricia Churchland‘s co-evolutionary research 

ideology highlights the interplay between intentional models and mechanistic models in our study of the 

mind (1989). Churchland proposes that there is a co-evolution between intentional models in psychology 

and mechanistic models in neuroscience. The two inform one another, and so grow and change together: 

  

 In these instances discoveries at one level often provoke further experiments and further 

 corrections at the other level, which in turn provoke questions, corrections, and ideas for new 

 explorations. (Churchland 1989, pp. 363-364) 

 

 As intentional psychology and mechanistic neuroscience grow together, each will be revised, and 

their concepts will be reorganized and restructured, in order for them to converge on a singular account of 

the phenomenon. In this way, Churchland proposes that a reductive account of intentional psychology to 
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mechanistic neuroscience (after the appropriate modifications to our theories based on co-evolution are 

made) ―is more or less inevitable‖ (1989, p. 374). As she puts it: 

 

 As long as psychology is willing to test and revise its theory and hypotheses when they conflict 

 with confirmed neurofunctional and neurostructural hypotheses, and as long as the revisions 

 made with a view to achieve concord with the lower-level theory, then the capacities and 

 processes described by psychological theory will finally find explanations in terms of 

 neuroscientific theory. (The same is true, of course, for the revisions and reconstructions in 

 neuroscience.) (1989, p. 374) 

 

This convergence means that, at the end of inquiry, there will no longer be a one-to-many 

mapping between intentional models and mechanistic models. The only reason that the same intentional 

model can apply to different mechanistic systems, according to Churchland, is because we have not 

refined our intentional categories sufficiently enough yet for them to account for the mechanistic 

differences that exist between the different systems. As the intentional and mechanistic accounts co-

evolve together, the intentional concepts that apply across systems (―beliefs‖, ―desires‖, ―mental 

representations‖, etc) will fragment into concepts that are always mapped one-to-one onto the particular 

mechanisms of a given system. As she puts it: 

 

 Now from the reductionist viewpoint, this possibility [that we will be unable to find a one-to-one 

 mapping of intentional psychological categories to neurobiological categories] does not look like 

 an obstacle to reduction so much as it predicts a fragmentation and reconfiguration of the 

 psychological categories. Indeed, there are already signs of a fragmentation of the folk 

 psychological category of memory. (1989, p. 365) 

 

 According to Churchland, if we think that different mechanistic systems can have the same 

intentional state (e.g., a belief that x), then this is not an argument for the irreducibility of intentional 
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states to neurobiological ones, but instead suggests that we must simply revise our intentional categories 

to better fit with the more fine-grained mechanistic categories that we use to differentiate these systems. 

 The benefit of Churchland‘s co-evolution account is that it nicely captures the important 

methodological value of employing both intentional and mechanistic models in our study of the mind, and 

the important interdependence that exists between different types of models in scientific practice (see 

Section 8.1). The application of intentional models in psychology is an important step in our 

understanding of neurological mechanisms: 

 

 Crudely, neuroscience needs psychology because it needs to know what the system does; that is, 

 it needs high-level specifications of the input-output properties of the system. Psychology needs 

 neuroscience for the same reason: it needs to know what the system does. That is, it needs to 

 know whether lower-level specifications bear out the initial input-output theory, where and how 

 to revise the input-output theory, and how to characterize processes at levels below the top. 

 (Churchland 1989, p. 373) 

 

 If what we care about is representing or characterizing, in detail, the mechanisms that constitute a 

particular system, then an intentional model (as a phenomenological model) will provide us with a place 

to start by characterizing the system‘s general behaviour. This points us towards possible mechanisms. As 

our knowledge of the mechanisms improve, the intricacies and details of the system‘s behaviour become 

more recognizable, allowing our phenomenological models to become more fine-grained and accurate. As 

our models inform one another and evolve together, our broad intentional concepts (like ―beliefs‖) may be 

fragmented into multiple different intentional concepts in order to better account for the mechanistic 

distinctions we find within the system, and the mechanistic differences that exist between systems. 

Eventually, as we progress, this fragmentation of intentional concepts can result in a highly-detailed and 

fine-grained phenomenological model that will map one-to-one onto the mechanistic model of a target 

system. 
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 The problem with Churchland‘s account is her insistence that there will always be this reduction 

of intentional models to mechanistic ones after the appropriate tweaks to both models are made. Such a 

claim disregards some of the key scientific virtues of employing phenomenological models. Even if some 

intentional models converge with mechanistic ones when we are interesting in providing a detailed 

account of a particular system‘s mechanisms, science is not only in the business of describing such 

mechanisms. Recall Batterman‘s point that a broad goal of scientific theorizing is to recognize ―observed 

patterns in the behavior of systems of a given type‖ (Batterman 2000, p. 120). In such cases, a 

phenomenological model which ignores many of the fine details of the system may be a better candidate 

for charactering these regularities than one which is detailed enough to map one-to-one onto a 

mechanistic account of the system (see Batterman 2002a, 2002b; Fillion 2008).  

This means that Churchland is incorrect when she claims that a fragmentation of intentional 

concepts in order to better fit with the particular mechanisms of a given system is inevitable, or that a 

reduction of intentional concepts to mechanistic ones should be our desired outcome. Such a 

fragmentation of intentional concepts in order to facilitate reduction may be extremely useful in some 

contexts, but can actually be undesirable and problematic in others, depending on what our pragmatic 

purposes are for modeling the system. Very broad (unfragmented) intentional categories may be 

beneficial in some circumstances precisely because they apply across systems, allowing us to see 

commonalities that exist between them. Similarly, broad patterns in human behaviour may only be 

identifiable when we adopt a model which leaves out many of the details of the system. 

 This means that, despite Churchland‘s instance to the contrary, the one-to-many mapping of 

intentional models to mechanistic models is not always a vice that must be overcome through sufficient 

refinement and co-evolution with mechanistic neuroscience. It can often be a virtue given that it is used to 

model behavioural regularities that mechanistic models might miss altogether, and is used to identify 

regularities that exist across a range of mechanistic systems. One of the advantages of phenomenological 
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models is that they are not mechanistic models, and so are applicable to, and useful in, different scientific 

contexts. Adapting and altering all intentional models so that they become detailed mechanistic models, as 

Churchland suggests, ignores the very reason we employ phenomenological models in many scientific 

contexts. 

 Another way to characterize this problem is to realize that intentional models and mechanistic 

models are radically different means of characterizing the input/output relation of a system. Depending on 

our pragmatic reasons for characterizing this relation, some phenomenological models will be beneficial 

the more detailed and fine-grained they become (which may eventuate in a convergence with a 

mechanistic account of the system), while others will be more useful when their account of the relation is 

more abstract. As Betterman notes, ―often times this ‗details is better‘ approach is misguided‖ (2002a, p. 

21). 

  If what we care about is identifying and understanding the complex mechanisms that underlie a 

certain system‘s behaviour, then an extremely detailed account of the input/output relation will be ideal, 

and a convergence of mechanistic and phenomenological models will be extremely beneficial. On the 

other hand, if we are uninterested in the specific details of a given system, and instead want to identify 

very broad patterns of behaviour, then a much more abstract account of the input/output relation may be 

preferable. In such a context, a convergence between our intentional and mechanistic models would be 

unhelpful, since the more detailed account of the input/output relation would be less useful for seeing the 

patterns we care about. 

We adopt models for different pragmatic purposes, and there are distinct advantages to employing 

a more abstract characterization of the input/output relation over the more fine-grained accounts. 

Therefore, the broad intentional categories of traditional psychology may have important scientific value 

in virtue of being broad intentional categories that do not map onto the detailed mechanisms of a system. 
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 And so the important insights brought to us by Churchland are: 1) That we need to adopt multiple 

scientific models (intentional models from psychology and mechanistic models from neurosicence) in 

order to fully explain and understand the mechanisms of the brain; and 2) that in many important cases, 

these models inform one another, change, and co-evolve together. 

9.5 The Intentional Stance 

Lastly, let us consider Daniel Dennett‘s Intentional Systems Theory. Of the accounts discussed in this 

chapter, Dennett‘s is closest in spirit to the account of intentional language that I provide. According to 

Dennett, intentional language works as a predictive framework (see: Dennett 1971, 1987, 1991a, 1991b). 

This framework, which he calls the ―intentional stance‖, employs intentional descriptions to predict how 

different kinds of systems will behave. Dennett contrasts this predictive strategy with two others: the 

―physical stance‖, and the ―design stance‖. The former predicts systems based entirely on their physical 

construction and the laws acting on them, while the latter makes predictions based on the system's 

designed function. 

 According to Dennett, we switch between these three predictive strategies –or stances– in order to 

predict systems of various complexities. Predictions made via the physical stance ―are based on the actual 

physical state of the particular object, and are worked out by applying whatever knowledge we have of 

the laws of nature‖ (Dennett 1971, p. 88). Dennett suggests that the physical stance is always effective, 

but not always convenient. It may be useful for determining the behaviour of simple systems, but it does 

us little good when we need to make quick predictions of extremely complex systems. It is far too 

cumbersome and impractical for such purposes. 

Of course, we often need to make predictions of systems when we simply have no practical 

means of employing the physical stance. In some of these situations, Dennett proposes that we can use a 

different predictive strategy: the design stance. With this stance, we can make predictions of complex 

systems based on how the system is designed. For instance, we do not need to know the internal parts of a 
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computer, a television, or a car, to predict how such objects will behave, since we know how they are 

designed to behave. As Dennett tells us,  

  

 …almost anyone can predict when an alarm clock will sound on the basis of the most casual 

 inspection of its exterior. One does not know or care to know whether it is spring wound, battery 

 driven, sunlight powered, made of brass wheels and jewel bearings or silicon chips –one just 

 assumes that it is designed so that the alarm will sound when it is set to sound. (1987, pp. 16-17) 

 

Unlike the physical stance, not all systems are going to be predictable by taking the design stance; 

only systems which can be said to have a proper function. Similarly, there are constraints on when the 

design stance applies to a given system. If our alarm clock gets physically damaged for example, we will 

not be able to accurately predict it with the design stance anymore, and will instead have to revert to the 

physical stance (Dennett 1987, p. 17). These conditions aside, a great many systems are predictable using 

the design stance. 

There are times, however, when we simply do not have the luxury of knowing either a system‘s 

proper function, or what parts it contains. In such situations, we can still make accurate predictions about 

the system without trying to understand its underlying parts or its design. To do this, we can switch to the 

intentional stance. When we take this stance,  

 

…we must treat the [system] as an agent, indeed a rational agent, who harbors beliefs and desires 

and other mental states that exhibit intentionality or ‗aboutness,‘ and whose actions can be 

explained (or predicted) on the basis of the content of these states (Dennett 1991b, p. 76). 

 

 Certain systems (which he terms ―intentional systems‖) display a genuine pattern of behaviour 

that can be predicted by attributing to them an appropriate set of intentional states. While human beings 

are the most obvious example of intentional systems, Dennett tells us that there are many non-human 



 

 150 

examples to choose from as well. The intentional stance can effectively predict the behaviour of 

everything from fish, to birds, to reptiles, to insects and spiders, to clams, and to computers (Dennett 

1987, p. 22). 

 Dennett‘s idea that we can adopt different ―stances‖ for the purposes of prediction captures quite 

nicely the idea that we employ different types of models in scientific practice to predict and characterize 

systems. Similarly, his distinction between the physical stance (which predicts systems based on their 

structural properties and interactions) and the intentional stance (which makes predictions without 

appealing to structural features of systems, but by identifying patterns in behaviour that the physical 

stance cannot identify) nicely captures the distinction between mechanistic models and phenomenological 

models as I have discussed them here. Dennett similarly points out that intentional models can be used to 

predict a wide range of mechanistic systems while also noting, contra Putnam, Fodor, and Davidson, that 

the intentional states referred to in these models need not correspond with physical states (or events) in 

order to be predictive. 

 It is in many of the important details that Dennett and I part ways however. Before going into 

these details, it should be noted that given how prolific the corpus of Dennett‘s work is, he can often be 

found saying conflicting things at different points. As a result, I cannot say with certainty which parts of 

his previous work he is currently committed to. That being said, my intention is not to determine what 

Dennett currently believes, but simply to highlight some of the claims made by Dennett that do not cohere 

with the sort of account I have offered in this dissertation, and to demonstrate how those claims lead to 

problems. 

 The first thing to note about Dennett‘s account is his assumption that the physical stance is one 

monolithic predictive strategy. The assumption being that there is the intentional stance, the design 

stance, and then the stance that covers everything else (the physical stance). This makes the same mistake 

that Davidson makes in ignoring the huge amount of variation that exists within physical descriptions (or, 
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in Dennett‘s terminology, within the physical stance). While Dennett‘s distinction between stances 

highlights the fact that we do indeed adopt different perspectives in order to make different sorts of 

predictions of systems, his distinction between stances is simply much too simplistic. 

 To demonstrate, consider that there are some types of scientific models that fall under none of 

Dennett‘s stances. Take, for instance, our use of statistical models to generate predictions. What stance do 

they function as? According to Dennett, if you want to predict the behaviour of a system via the physical 

stance, you must ―determine its physical constitution (perhaps all the way down to the microphysical 

level) and the physical nature of the impingements upon it, and use your knowledge of the laws of physics 

to predict the outcome of any input‖ (Dennett, 1987, p. 16). Yet statistical models say nothing about the 

physical constitution of the system, nor how the fundamental laws of physics act upon it. As a result, they 

seem not to predict based on the tenets of the physical stance. However, they similarly do not make 

predictions based on the target system‘s design (excluding it from the design stance), nor by appeal to 

intentional states (excluding it from the intentional stance). And indeed, this is true of most 

phenomenological models. In this respect, Dennett‘s distinction between predictive stances is greatly 

problematic. 

 The second problem with Dennett‘s account is his commitment to the idea that characterizing a 

system in terms of the objects and causal laws that make it up will always yield correct predictions. He 

grants that predictions via the physical stance may be pragmatically unfeasible, but insists that they 

always work in principle. As Dennett puts it, ―[the physical stance] is not always practically available, but 

that it will always work in principle is a dogma of the physical sciences‖ (Dennett 1987, p. 16, emphasis 

in text). But this is untrue, and betrays Dennett‘s confusion between scientific representations, and the 

physical system being represented. 

 The dogma of the physical sciences is that the existence of physical objects and laws is sufficient 

to explain the existence of all the physical phenomena that supervenes upon them. It is not that 
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descriptions which only employ terminology that makes reference to physical objects and laws are 

sufficient for all our predictive scientific needs (with practical considerations being the only limitation). 

These are very different claims. In other words, Dennett‘s implicit assumption is that if we know 

everything there is to know about the physical objects that make up a system, and the laws acting on 

them, then we can predict what it will do next without fail. However, this is very different from claiming 

that adopting the physical stance will allow us to predict what a system will do next without fail. The 

obvious inference that Dennett makes is that the physical stance can, at least in principle, tell us 

everything there is to know about the objects that make up a system and the laws acting on them. But this 

may simply not be possible given the nature of scientific representations. Scientific representations, even 

in our most fundamental physics, might always involve distortions, idealizations, and abstractions (thus 

making it impossible for any single ―stance‖ to always be predictively successful of all phenomena). 

 To demonstrate, consider our use of the fundamental theories of statistical mechanics to predict 

phase transitions, like water turning from liquid to ice: 

 

The problem is that phase transitions —as understood by statistical mechanics— can only occur 

in infinite systems, yet the phenomena that we are trying to explain clearly occur in finite 

systems. (Callender 2001, p. 549) 

 

Batterman highlights this problem as well, claiming that: 

 

From the point of view of the underlying fundamental theory whose proper focus is on the 

interactions of a finite number of molecular components of the macrosystems, these qualitative 

changes are genuinely novel. The upshot is that the statistical mechanics of finite systems is 

explanatorily insufficient. While it gets the ontology of blobs of gases and fluids right (they are 

composed of a finite number of interacting molecules), there remain macroscopic phenomena —

universal patterns of behavior— that cannot be explained by this fundamental theory. (2011, pp. 

1033-1034) 
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Put simply, the only way for statistical mechanics to account for phase transitions is by interpreting the 

system as having an infinite number of molecules (which we know it does not have). According to 

Batterman, this demonstrates that even our fundamental theories in physics are importantly incomplete in 

the way they represent systems. If this is true, then it poses a serious problem for Dennett‘s insistence that 

the physical stance is universally successful. Recall that the physical stance predicts by characterizing the 

physical objects that make up a system, and the laws acting on them. However, we know that we cannot 

predict phase transitions by characterizing all the finite particles that make up a system, and the laws of 

statistical mechanics that act upon them. Such a prediction will always be unable to predict and account 

for phase transitions. Instead, we must idealize the system to get the predictions to come out right.
30

 

 To further emphasize this point, consider once again the analogy discussed in section 8.2 between 

scientific representations and maps. Dennett often implies that the physical stance is much like map of the 

world that leaves out no details at all. While the intentional stance predicts by characterizing patterns in 

behavior, the physical stance predicts by characterizing everything about the system.
31

 While he grants 

                                                   
30 Of course one might insist, as Callender (2001) does, that this may simply show that the laws of thermodynamics 

are false (or not something we should take too seriously). But where does this leave Dennett? Such laws clearly 

cannot be part of the physical stance if Dennett insists that the stance will always yield true predictions. And so does 

this imply that only some future description of the ultimate laws of physics can count as part of the physical stance? 
If so, then virtually nothing we have at present counts as an application of the physical stance. And, in fact, this 

means that all our current scientific models have more in common with the intentional stance than they do with the 

physical stance. 
31

 We can see strong shades of this idea in Dennett‘s 1991 paper ―Real Patterns‖. He tells us to imagine a virtual 

universe characterized by the ―Game of Life‖ computer program. This universe consists of a two-dimensional grid 

in which any square on that grid can be either empty or filled. There are also rules for whether a square should 

change from empty to filled, or filled to empty, depending on the state of the surrounding squares. Dennett tells us to 

imagine that, given the rules of this virtual universe, it can be used to simulate a Turing-machine; one that is running 

a program of chess in which two AI-controlled players face off against each other. He tells us that adopting the 

physical and intentional stances allow us to make predictions of what will happen in this universe in different ways. 

While the intentional stance predicts by interpreting the rational moves of the AI-controlled chess players 
instantiated by the simulated chess program (i.e. by identifying a genuine pattern of behaviour in the workings of the 

system), the physical stance predicts by characterizing the entire universe bit-by-bit and making predictions based 

on the rules applied to the system. In other words, 

 

...when we adopt the physical stance toward a configuration in the Life world, our powers of prediction are 

perfect: there is no noise, no uncertainty, no probability less than one. Moreover, it follows from the two-
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that taking the physical stance makes it impossible to see the patterns in behaviour used by the intentional 

stance to form predictions (which is a position that has much in common with what I advocated here), he 

is still committed to the idea that physical stance can always predict in virtue of characterizing everything 

about the system, and so it carries with it the patterns in behaviour that the intentional stance identifies 

(even if such patterns cannot be seen as patterns). He proposes that it may not always be feasible to use 

such a detailed ―map‖ of the world, but it will always get you to where you need to go. 

The problem with this idea is that a map which contains all the details of the world is not simply 

impractical, it literally cannot be used as a map. In other words, a map that contains all the details of the 

world is no map at all. In order to be of any use at all for navigating it must, by necessity, focus on the 

particular things we are interested in finding, and in presenting the information in a form that we can use. 

Otherwise, the map is no different from the world we are seeking to navigate through. This is precisely 

why Truesdell points out that ―a theory cannot duplicate nature, for if it did so in all respects, it would be 

isomorphic to nature itself and hence useless, a mere repetition of all complexity which nature presents to 

us, that very complexity we frame theories to penetrate and set aside.‖ (1980, p. 72) A similar point is 

made by Kellert et al. (2002), who point out that ―all representations are partial in that any representation 

must select a limited number of aspects of a phenomenon (else it would not represent, but duplicate)‖ (p. 

xv). 

The moment we adopt the physical stance for the purpose of prediction, we automatically have 

reasons to focus on describing some aspects of the world at the cost of others. This may necessitate 

distortion and abstraction in order to identify and analyze the features we care about. Dennett proposes 

that the intentional stance predicts by characterizing patterns in behaviour, while the physical stance 

predicts by characterizing everything about the system. But this may be impossible in principle. The 

                                                                                                                                                                    
dimensionality of the Life world that nothing is hidden from view. There is no back-stage; there are no 

hidden variables; the unfolding of the physics of objects in the Life world is directly and completely 

visible. (1991a, p. 38) 
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physical stance, like the intentional stance, might equally predict by characterizing patterns in the world. 

They just characterize different patterns. And even within the physical stance, we find different physical 

descriptions characterizing different patterns (those of neuroscience, those of chemistry, etc.). There 

might be no stance, or model, that captures everything about a system in the way Dennett supposes that 

the physical stance does. In which case, the differences between the intentional stance and the physical 

stance become much less pronounced and significant than Dennett insists they are. Moreover, the 

intentional stance becomes more like a part of the physical stance (a descriptive framework that 

characterizes real patterns in the world), as opposed to something else altogether.  

And this brings us to the final problem with Dennett‘s account that I wish to discuss: his 

paradoxical view regarding the scientific merits of the intentional stance. On the one hand, Dennett seems 

to grant that intentional descriptions are present in scientific practice when he claims that ―the decision to 

adopt ‗the intentional stance‘ is not an unusual sort of decision in science‖ (1987, p. 239). On the other 

hand, he also warns us that we should not take the intentional stance ―too seriously‖ given that it is merely 

a ―heuristic overlay‖(Dennett, 1987, p. 350, emphasis in text). He is also quick to point out that 

―Intentional theory is vacuous as psychology because it presupposes and does not explain rationality or 

intelligence‖ (Dennett 1971, p. 99). Because intentional descriptions cannot provide physical explanations 

for the theoretical objects they posit, Dennett proposes that their role in science is best thought of as a 

heuristic rule of thumb. 

The problem with this sort of view is that it hangs a lot on the assumption that respectable 

scientific accounts always provide explanations, and that such explanations are always compatible with 

the implicit reductionism of the physical stance. Consider our use of mechanistic models to explain 

phenomena in the life science. Attempts to provide explanations in terms of covering-laws have failed in 

the life sciences, since no such laws seem to exist. But if Dennett is right, and neuroscience is part of the 

physical stance, then neuroscience is really just a shorthand for physics. In which case, appeals to 
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mechanisms are not truly explanatory, since explanations in neuroscience must reduce to explanations in 

physics, which are primarily covering-law explanations (and mechanistic models in neuroscience do not 

identify or characterize the universal physical laws that govern physics). And so just as intentional theory 

is vacuous as psychology because it presupposes and does not explain rationality or intelligence, so too 

would mechanistic neuroscience be vacuous as physics because it presupposes, but does not explain, the 

fundamental laws of subatomic physics that constitute macro-level neurological phenomena. Does this 

mean that, like the intentional stance, neuroscience is thereby just a useful heuristic account of physics 

that we shouldn‘t take too seriously? If so, then the intentional stance is on the same scientific footing as 

our best explanatory accounts in all the life sciences. 

And what if neuroscience does not cleanly reduce to physics? Should we similarly conclude that 

neuroscience must just be a heuristic overlay not to be taken seriously given its irreducibility to physics? 

Is physics the only science that we are ever allowed to take seriously, and thus all descriptions must be 

unified under the banner of physics at the cost of being dismissed as merely a heuristic device? This sort 

of unificationism under physics may appeal to some, but there is no scientific reason to think it must be 

the case. As Ian Hacking points out, ―the unity of science is rooted in an overarching metaphysical 

thought that expresses not a thesis but a sentiment‖ (Hacking 1996, p. 44). I propose that even if there is 

no clean reduction from neuroscience to physics, this does not mean that we should no longer take 

neuroscience seriously. The value of neuroscience is in helping us learn about the world in a way that the 

formalism and models of physics are not ideal for. As Alan Richardson points out: 

  

 Suppose there is a clear sense in which the quantum formalism of physics does not quite match 

 the quantum formalism of chemistry –does this hinder cooperation and sharing of theoretical 

 knowledge? When? How? (2002, p. 19) 
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I similarly propose that the essential methodological value in employing different models in science is 

substantial, irrespective of whether they reduce to one type of model or not. And this is a good reason to 

take such models very seriously. In this sense, we have no reason to dismiss the intentional stance as 

something we ought not take too seriously without potentially dismissing a great many of the descriptions 

and models that are part of the physical stance as well. Dennett‘s desire to cleave intentional descriptions 

away from every other sort of scientific description requires that he show us what makes those accounts 

less well grounded than other models in science. And as I‘ve shown, the value of intentional models to 

science is substantial. 

 And so the important insights brought to us by Dennett are: 1) That we can, and do, use multiple 

interpretations of systems in order to make predictions in different ways; 2) Our use of intentional 

descriptions acts as one such predictive interpretation; and 3) we have no reason to expect that the objects 

in intentional descriptions will necessarily correspond to causal states within a system. 

9.6 Historical Insights 

We can see that the history of philosophy is rich with insights as to the role of intentional language in 

science. While different philosophers espouse very different sorts of stories regarding the nature of 

intentional language, each captures something important. The eliminativist highlights the fact that 

intentionality may be a product of the language we use to describe systems, while the functionalist points 

out that such language applies to a wide range of mechanistic systems. The anomalous monist emphasizes 

the important differences between intentional language and mechanistic language, while the co-

evolutionary research ideology describes the important ways they interact. Lastly, the intentional stance 

theorist calls attention to the predictive value of intentional language. Together, each gets a piece of the 

puzzle right, and points us towards a story that best fits with scientific practice. While these accounts each 

have weaknesses, the story I‘ve presented in this dissertation overcomes these weaknesses by keeping in 

mind important historical lessons while keeping a firm eye on actual scientific methodology. 
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Chapter 10 

Conclusion 

It is now finally time to take stock of things, and to make some concluding remarks. I will begin by 

highlighting some of the key lessons learned in our examination of the scientific merits of intentional 

language. Then, once this is done, I will at long last turn to questions of ontology and metaphysics. What 

does my account say about the realism of intentional states? Are beliefs and mental representations real, 

or just a pragmatic and instrumentally useful way of talking? I have resisted discussing metaphysics up to 

this point so as to avoid letting the metaphysical tail wag the methodological dog. But with my general 

story in place, I will finally be able to explore the ontological implications of my account.  

10.1 Lessons Learned 

So what are intentional states? Intentional states are theoretical objects that are part of a linguistic 

framework that we use to model the behaviour of systems. These intentional models are holistic (they 

always require multiple intentional states in order to account for a system‘s behaviour), and are used to 

generate predictions. Given that not all predictive devices in science are useful in the same contexts, or 

generate predictions based on the same set of data, intentional models have their own set of pragmatic 

benefits. 

 Intentional descriptions function as a type of phenomenological model. Such models are ideal for 

making predictions when we do not know the underlying mechanisms of the system that produce its 

behaviour. Similarly, intentional models allow us to predict even if we are unable to quantify over the 

system, making them ideal for predictions in contexts in which other sorts of phenomenological models 

(such as statistical and some dynamical models) cannot be easily generated. We also use intentional 

models to see similarities in behaviour that exist across a wide range of different mechanistic systems. 

This information is invaluable in helping us learn about the unknown mechanisms that underlie a 
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system‘s behaviour. In this way, intentional models play an essential methodological role in our scientific 

understanding of the neurological mechanisms that constitute the mind. Moreover, given that different 

types of models can often be required for representing different aspects of phenomena, intentional models 

may turn out to be the only sorts that can identify very particular kinds of regularities and patterns in the 

behaviour of systems. 

 There is often a great deal of discussion in philosophy of mind about the nature of reduction. Can 

we reduce intentional descriptions to descriptions of neurological mechanisms? Can the principles of 

psychology more generally be reduced to the principles of neuroscience? The account I have presented 

here suggests that such reductionist projects often miss the methodological value of having different 

means by which we can represent systems. The value of intentional models does not come from their 

reducibility to other sorts of models, but from the fact that they represent systems in different ways, 

allowing us to overcome the gaps in knowledge we might have with other sorts of models. Similarly, the 

value of psychology does not come from its reducibility, or lack thereof, to neuroscience, but from the 

fact that psychology allows us to identify properties of neurological systems that helps inform our 

neuroscientific study of the mind. The fact that the concepts in one domain may not reduce to the 

concepts of another is irrelevant to the pragmatic value we gain from employing different fruitful 

representations of systems. 

10.2 The Ontological Implications 

But what does this say about ontology? The sort of methodological descriptivism I have on offer here still 

leaves open the question: are intentional states real, or just pragmatically useful? Ultimately the account I 

provide tells us very little about the ontology of intentional states. It is, in fact, compatible with varieties 

of both realism and anti-realism. I will highlight here just some of the ontological stories one can offer 

that would mesh well with the methodological account I provide. Instead of giving a treatise on the nature 

of realism (which would be impossible in the limited space remaining), I will instead just briefly highlight 
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a few ontological possibilities. Which of these ontological accounts we ought to adopt I leave to the 

reader.  

 Let us begin with a common ontological view regarding the realism of intentional states that can 

be seen in the works of philosophers such as Jerry Fodor (1974) and Hilary Putnam (1967). This is the 

idea that intentional states are real when they correspond to physical sub-personal mechanisms operating 

within a system. In other words, an intentional state is real if our intentional concept denotes a causally 

efficacious physical part of a system. This sort of realism often has ties to nominalism (the metaphysical 

view that only concrete particulars exist, and not abstract objects or universals). If we accept this 

interpretation of realism, then some intentional states will turn out to be real, while others will not 

(depending on the particular system and the particular intentional states we attribute to it). It is extremely 

important to note, however, that this would not change the methodological necessity of employing the so-

called ―unreal‖ intentional attributions in our discovery of the real ones. Nor would it change the fact that 

our use of unreal intentional attributions may be an unavoidable means of characterizing very real 

behavioural aspects of systems that other models may be unable to characterize. 

 While nominalism, in some form or another, strongly appeals to many philosophers, others have 

suggested that it does not necessarily fit comfortably with our scientific practices. Many versions of 

nominalism, for instance, commit one to an anti-realism regarding mathematical objects (since such 

objects are often considered to be abstract objects), and this does not do justice to the essential role that 

mathematics plays in scientific practice. As John Burgess notes: 

 

…almost everything that has come forth […] from the nominalist camp has represented the light-

fingered larcenous variety, which helps itself to the utility of mathematics, while refusing to pay 

the price either of acknowledging that what mathematics appears to say is true, or of providing 

any reconstrual or reconstruction that would make it true. The usual label for this variety of 

nominalism is ‗[mathematical] fictionalism‘. (Burgess 2004, pp. 18-19) 
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A similar worry is raised by Penelope Maddy, who notes that philosophers that are quick to label 

mathematical objects as ―fictions‖ do so based on decidedly metaphysical considerations, not necessarily 

scientific ones. If one thinks that science ought to be our guide for determining what exists
32

, then we 

must not make the mistake of stepping outside of science in order to metaphysically pass judgement on 

the objects posited by successful scientific endeavours. This sort of move involves comparing the objects 

in fruitful scientific practices (mathematical objects) to the things that are really out there in the world 

(the supposed ―concrete particulars‖). According to Maddy, this is exactly the wrong sort of move for us 

to make. If science is to be our guide for what is real, then we must work entirely within the confines of 

scientific practice, and so these extra-scientific comparisons are ill-conceived. As she puts it: 

 

In this humdrum way, by entirely natural steps, our inquirer has come to ask questions typically 

classified as philosophical. She doesn‘t do so from some special vantage point outside of science, 

but as an active participant, entirely from within. (Maddy 2011, p. 39) 

 

The fact is that scientists do talk of abstract objects, such as mathematical objects, in their successful 

scientific practices. Because of this, Maddy proposes that these abstract objects are real. Of course, 

mathematical objects are not the same sorts of things as tables and chairs. Keeping in mind their abstract 

nature, Maddy proposes that we consider them to be ―thinly‖ real (Maddy, 2011, pp. 60-83).  

 If intentional attributions are as methodologically important to science as I suggest, then they too 

might be thinly real. I have demonstrated that scientists can and do talk about intentional states in 

successful scientific practice. And this is the case even when the postulated intentional states do not 

appear to denote any particular physical structures. In this sense, they might be thinly real, and thus still 

deserve some place within our ontology. 

                                                   
32 A version of Naturalism that Maddy subscribes to. 
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 Others have proposed ontological accounts that share much in common with Maddy‘s. Dennett, 

for instance, similarly grants that intentional states are abstract objects, and also notes that abstract objects 

often play extremely useful roles in science. As an example, he highlights our use of centres of gravity in 

physics. He proposes that their relevance to scientific practice warrants being realists (of a certain sort) 

about them: 

 

…we should be […] more interested in the scientific path to realism: centers of gravity are real 

because they are (somehow) good abstract objects. They deserve to be taken seriously, learned 

about, used. If we go so far as to distinguish them as real (contrasting them, perhaps, with those 

abstract objects which are bogus), that is because we think they serve in perspicuous 

representations of real forces, ―natural‖ properties, and the like. (Dennett 1991a, pp. 28-29) 

 

Dennett then goes on to draw an explicit analogy between centres of gravity and intentional states, 

claiming that intentional states ―are best considered to be abstract objects rather like centres of gravity‖ 

(1991a, p. 29). The analogy holds given that, like centres of gravity, intentional states are part of scientific 

representations (intentional models) that are used to characterize very real patterns that exist in the world 

(in the behaviour of certain systems). And so Dennett concludes that intentional states are real in the same 

way that centres of gravity are real. 

 Of course, Dennett‘s qualifications (he is a realist of a certain sort about centres of gravity; he 

thinks intentional states are as real as centres of gravity) have made him notorious amongst philosophers 

who feel that he is purposefully vague regarding his ontological commitment to the existence of such 

abstract objects. Dennett responds to these critics by pointing out that the realism/anti-realism distinction 

is itself greatly problematic, and that he does not wish to legitimize the unhelpful distinction by taking 

sides one way or another: 
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I wouldn‘t want to trot out my ontology […] and then find I had to spend the rest of my life 

defending and revising it, instead of getting on with what are to me the genuinely puzzling issues 

–like the nature of consciousness, or selves, or free will. […] When and if professional 

ontologists agree on the ontological status of all my puzzle examples, my bluff will be well and 

truly called; I will feel a genuine obligation to make things clear to them on their terms, for they 

will have figured out something fundamental. (1993, p. 212) 

 

That being said, Dennett has often made claims that seem to put him quite firmly on one side of the 

debate or the other. So, for instance, at some points he seems to advocate a position very similar to 

Maddy‘s, suggesting that scientifically fruitful abstract objects may not be the same sorts of objects as 

tables and chairs, but that they are still real in every way that matters to science. He tells us, for example, 

that intentional states are ―instrumentalistic in a way the most ardent realist would permit: people really 

do have beliefs and desires, on my version of [intentional language], just the way they really have centres 

of gravity and the earth has an equator‖ (1987, pp. 52-53). He similarly states that belief ―is a perfectively 

objective phenomenon‖ (1987, p. 15). 

Meanwhile, these claims can be contrasted with others that would appear to put him 

unapologetically on the anti-realist side of the debate. In his paper The Self as a Center of Narrative 

Gravity (1992), for example, Dennett says that a centre of gravity is ―a theorist‘s fiction. It is not one of 

the real things in the universe in addition to the atoms. But it is a fiction that has a nicely defined, well 

delineated and well behaved role within physics‖ (p. 103). In which case intentional states (in virtue of 

being as real as centres of gravity) are similarly fictional. We also find shades of this anti-realism in 

Dennett‘s suggestion that intentional descriptions are simply useful heuristics that we ought not take too 

seriously (see Section 9.5). 

However, the fact that Dennett might not be completely sold on the brand of realism that he 

advocates in some of his writings does not mean that the account itself (or some modified version of it) is 

not worth holding. In fact, numerous philosophers have provided more consistent and convincing 
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arguments for the brand of realism that Dennett proposes (see, for instance, Kenyon 2000, and Ross 

2000). 

It is, however, also important to note that using science as our guide to ontology does not 

necessarily lead us to a realism about intentional states. Quine (1960) has suggested that a scientific posit 

having instrumental value is simply much too weak a criterion for ontological inclusion. Instead, he 

proposes that ontological inclusion be based on the indispensability of the theoretical posit to scientific 

practice. Only those objects that science, in principle, cannot do without are real. Under this 

interpretation, intentional states are far less likely to make the cut. But this is not surprising, since the vast 

majority of objects posited by science won‘t either. 

 The history of science may also lead one to a bleak outlook regarding the realism of intentional 

states. Those who subscribe to the Pessimistic Meta-Induction (see Putnam 1978; Lauden 1981) argue 

that throughout history, scientific theories may have become more successful, but they have almost all 

been proven false and displaced by better theories. Given this, we have no reason to assume that our 

current theories are in any better shape. We should therefore expect them to be overturned by future 

scientific practice as well. In which case, we should expect that the scientific virtues of intentional models 

will be similarly over-turned by future scientific practice (thus giving us good reasons to be anti-realists 

about the objects they describe). It should be pointed out that I am not arguing for the pessimistic meta-

induction here, but merely pointing out that if one adopts it, then one would have good reasons to be 

sceptical of the existence of intentional states (for the same reason we should be sceptical of all current 

scientific objects). 

 Even if we do not use science as our explicit guide for ontology, there are many different 

ontological positions one can hold and still embrace the claims I have made in this dissertation. One 

might feel compelled by Carnap‘s view (1950) regarding linguistic frameworks, for instance. Very 

roughly, according to Carnap, the question of whether or not objects are real depends on the linguistic 
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framework we employ. And we employ different linguistic frameworks based on different pragmatic 

needs. Numbers, for example, are real so long as we are working within a mathematical language. On the 

other hand, if we are working within a language that makes no reference to numbers at all, then we have 

no reason to consider them real. Meanwhile, the question of whether numbers are real outside of any 

linguistic framework is ultimately an incoherent question for Carnap. This is because determining 

whether numbers are real or not requires understanding how we employ the concept ―number‖. And it is 

the linguistic framework we are working in that determines how the concept is used (in virtue of dictating 

the assertability conditions for the concept). Thus, the question of whether numbers are real independent 

of any linguistic framework, and thus independent of any assertability conditions for the concept 

―number‖, is meaningless. Under this view, the question of whether intentional states are real depends on 

what linguistic framework we are employing. Intentional states are real just so long as we are working 

within an intentional language. 

Or one might embrace something like pragmatism instead. In which case, the pragmatic benefits 

of intentional language will dictate the ontological inclusion of the objects it posits. Whether or not 

intentional models meet the required pragmatic threshold for being real is, of course, an issue for debate. 

But the pragmatist route is available for those who wish to take it. 

 I have even left the door open for the sort of intentional realism espoused by Searle. If there is 

some distinct ontological property of aboutness or meaning that we as biological entities possess but 

computers do not, then my account merely demonstrates that the scientific use of intentional language 

would not cut along the lines of this metaphysical distinction. The value of intentional language to science 

would therefore come apart from the ontology of intentionality in such a case, but it does not necessarily 

rule out such an ontology. Searle‘s metaphysics would not invalidate anything I‘ve said in this 

dissertation, nor threaten my account of the value of intentional language to science. Ultimately what this 
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means is that my account of intentional language does not commit me to any particular ontological story 

of intentional states. 

10.3 Final Thoughts 

So where do we go from here? What does all of this mean for the future study of the mind (both 

scientifically and philosophically)? It means that we should not be afraid to embrace the different 

methodological tools we have at our disposal. Different scientific tools have different virtues, and we 

should not let our desire for a unified ontology undermine this important methodological point. We 

should not let our ontology dictate our methodology. The value of intentional descriptions to science is 

determined by the benefits they provide, and not by their reducibility to other sorts of descriptions.  

 Another important message to carry forward in our study of the mind is that we should not 

confuse mechanistic models with the physical mechanisms we use them to represent. The fact that we are 

attempting to understand physical mechanisms does not mean that a mechanistic model will be sufficient 

for all our scientific needs. There are important methodological tools we must employ in our study of 

mechanisms that do not necessarily characterize the parts, operations, or organization, of the mechanisms 

under investigation. 

 And finally, we should remember that intentional language is used in fruitful scientific practice, 

and this is not something we should ignore or trivialize. To forget this fact is to disregard genuine and 

productive scientific practices, and to invite confusion.  
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