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Abstract

Recently, erasure networks have received significant attention in the literature [1-7] as
they are used to model both wireless and wireline packet-switched networks. Many packet-
switched data networks like wireless mesh networks [8-10], the Internet [11-13], and Peer-
to-peer networks [14] can be modeled as erasure networks. The reason is that each packet
contains an internal error detection code, like the Cyclic Redundancy Check (CRC), which
allows the receiver to detect and discard erroneous packets [12,15-17].

In any erasure network (wireless mesh network, the Internet, or Peer-to-peer network),
path diversity works by setting up multiple parallel connections between the end points
using the topological path redundancy of the network. Our analysis of diversity over
erasure networks studies the problem of rate allocation (RA) across multiple independent
paths, coding over erasure channels, and the trade-off between rate and diversity gain in
three consecutive chapters.

In chapter 2, Forward Error Correction (FEC) is applied across multiple independent
paths to enhance the end-to-end reliability. We prove that the probability of irrecoverable
loss (Pg) decays exponentially with the number of paths. Furthermore, the RA problem
across independent paths is studied. Our objective is to find the optimal RA, i.e. the
allocation which minimizes Pgr. The RA problem is solved for a large number of paths.
Moreover, it is shown that in such asymptotically optimal RA, each path is assigned
a positive rate iff its quality is above a certain threshold. Finally, using memoization
technique, a heuristic suboptimal algorithm with polynomial runtime is proposed for RA
over a finite number of paths. This algorithm converges to the asymptotically optimal RA
when the number of paths is large. For practical number of paths, the simulation results
demonstrate the close-to-optimal performance of the proposed algorithm.

Chapter 3 addresses the problem of lower-bounding the probability of error (Pg) for any

block code over an input-independent channel. First, we define an input-independent chan-
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nel in a mathematically accurate way. For discrete memoryless channels, this definition
coincides with that of row-symmetric (or simply symmetric) channels which are well-known
in the literature. However, we propose a general definition which includes channels with
memory extended over a block of N symbols. Next, we derive a lower-bound on Pg for a
general input-independent channel and find the necessary and sufficient condition to meet
this bound with equality. The rest of this chapter applies this lower-bound to three spe-
cial input-independent channels: erasure channel, super-symmetric Discrete Memoryless
Channel (DMC), and g-ary symmetric DMC. It is proved that Mazimum Distance Sep-
arable (MDS) codes achieve the minimum probability of error over any erasure channel
(with or without memory). Moreover, we prove that perfect codes achieve the minimum
probability of error over super-symmetric channels. Furthermore, for the case of symmetric
DMC, we simplify our general lower-bound and propose an algorithm to compute it based
on the method of types [18] in information theory. We also prove that this lower-bound is
exponentially the tightest lower-bound we can achieve. Finally, for ternary and 4-ary sym-
metric channels, the proposed lower-bound is compared with the previous lower-bounds on
Pr in moderate block lengths.

Chapter 4 addresses a fundamental trade-off between rate and diversity gain of an
end-to-end connection in erasure networks. An erasure network is modeled by a directed
graph whose links are orthogonal erasure channels. Furthermore, the erasure status of
the links is assumed to be fixed during each block of transmission and known only by the

destination node. For each link e in the graph, a message transmitted on e is erased with

l(f(g;gZE where Pg is the probability
1

of error. Intuitively speaking, the diversity gain is the asymptotic slope of Pg versus 5

probability p(®). We define the diversity gain as lim,_

in logarithmic scale. This definition is similar to the standard definition of diversity gain
for the slow Rayleigh fading channel in the wireless communication literature [19] if % is
interpreted as Signal-to-Noise-Ratio (SNR).

First, we study the homogeneous erasure networks in which links have the same erasure
probability and capacity. We derive the optimum trade-off between diversity gain and end-
to-end rate. Then, we prove that a variant of the conventional routing strategy combined
with an appropriate forward error correction (FEC) at the end-nodes achieves the optimum
diversity-rate trade-off. Next, we consider general erasure networks in which different links
may have different values of erasure probability and capacity. We prove that there exist

general erasure networks for which any conventional routing strategy fails to achieve the
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optimum diversity-rate trade-off. However, for any general erasure graph, we show that
there exists a linear network coding strategy which achieves the optimum diversity-rate
trade-off.

Finally, we study the diversity-rate trade-off through simulations. The erasure graphs
are constructed according to the Barabasi-Albert and Waxman random models. The er-
ror probability is depicted for different network strategies and different rate values. The
depicted results confirm the trade-off between rate and diversity gain for each network
strategy. Moreover, diversity gain is plotted versus the rate for different conventional rout-
ing and the linear network coding strategies. It is observed that linear network coding

outperforms all conventional routing strategies in terms of the diversity gain !.

!The material of this thesis is also presented in [15,16,20,21]
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Chapter 1
Introduction

This work covers three topics related to erasure networks: i) rate allocation across multiple
paths, ii) coding over input-independent channels, iii) diversity-rate trade-off in erasure
networks. All of these terms will be accurately defined in the next three chapters. Moreover,
the next three sections of this chapter go through the motivation, background, and major
contributions on each topic. However, before getting into that, it is important to emphasize
on one point about the general theme of this thesis: all of the results of this work are
valid only when the assumptions corresponding to the results (the models) hold. The
model we use in chapter 2 captures the end-to-end channel, while the model in chapter 4
describes a network with one source, one destination, and many intermediate nodes and
links. Although we have tried to justify our assumptions and models based on observations
and facts from practical networks like wireless mesh networks and the Internet, we have
to emphasize that one should use extreme caution in applying and extending the results
of this thesis to real-world networks. The models we have considered in this work are,
at best, abstractions of practical networks which capture their main concepts but ignore
many details. The real-world networks, on the other hand, are extremely complex, and it
is naive to expect them to behave as simply as our models do.

Moreover, many of the schemes introduced in this thesis (multi-path routing, network
coding, etc) are not easy (although not impossible) to apply on legacy networks like the
Internet. However, our results on them may provide valuable insight about the design
of future networks for special purposes. These special purposes may include financial or

medical applications, for which very high reliability and low latency are required [22,23].
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1.1 Rate Allocation Across Multiple Paths

1.1.1 Motivation

In recent years, path diversity over packet switched networks has received significant
attention. This idea is applied over different types of networks like wireless mesh net-
works [8-10, 24|, the Internet [11-13], and Peer-to-peer networks [14]. Many studies have
shown that path diversity has the ability to simultaneously improve the end-to-end rate
and reliability [11,12,16,25-27]. In order to apply path diversity over any packet switched
network, two problems need to be addressed: i) setting up multiple independent paths
between the end-nodes (multipath routing) ii) utilizing the given independent paths to
improve the end-to-end throughput and/or reliability. In this work, we focus on the sec-
ond problem and try to develop a mathematical analysis of path diversity which is valid
for any type of underlying network. Due to the inherent flexibility of wireless mesh net-
works, many routing protocols can be modified to support multipath routing over such
networks [24, 28-34]. Thus, we consider a wireless network as the underlying network.
However, it should be noted that the results of this work stay valid for any other un-
derlying network (e.g. path diversity over the Internet) as long as multiple independent
paths are given. Assuming a set of independent paths, we utilize Forward Error Correction
(FEC) across the given paths and analyze the reliability gain achieved by path diversity
mathematically. Furthermore, the rate allocation (RA) problem across the given paths is

addressed, and a polynomial suboptimal algorithm is introduced for this purpose.

1.1.2 Relation to Previous Works

References [27], [12], and [35] study the RA problem over multiple independent paths.
Assuming each path follows the leaky bucket model, reference [27] shows that a water-
filling scheme provides the minimum end-to-end delay. On the other hand, reference [12]
considers a scenario of multiple senders and a single receiver, assuming all the senders share
the same source of data. The connection between each sender and the receiver is assumed
to be independent from others and follow the Gilbert model. In order to benefit from
path diversity, the authors apply FEC across independent paths. A Maximum Distance
Separable (MDS) block code, like Reed-Solomon code, is used for FEC. [12] proposes a

receiver-driven protocol for packet partitioning and rate allocation. The packet partitioning
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algorithm ensures no sender sends the same packet, while the RA algorithm minimizes
the probability of irrecoverable loss in the FEC scheme [12]. They only address the RA
problem for the case of two paths. A brute-force search algorithm is proposed in [12]
to solve the problem. Generalization of this algorithm over multiple paths results in an
exponential complexity in terms of the number of paths. Moreover, it should be noted
that the scenario of [12] is equivalent, without any loss of generality, to the case in which
multiple independent paths connect a pair of end-nodes as they assume the senders share
the same data.

Djukic and Valaee utilize path diversification to provide low probability of packet loss
(PPL) in wireless networks [10]. Similar to our work, they consider each path as an erasure
channel following the multi-state Markov model. Moreover, it is assumed that the feedback
is not fast enough to acknowledge the receipt of each packet. Thus, an MDS code is applied
across multiple independent paths as a FEC method. The authors of [10] compare two RA
schemes: blind allocation and optimal allocation. The blind RA is used when the source
has no information about the quality of the paths. Hence, it distributes the traffic across
the paths uniformly. It is shown that even blind RA outperforms single-path transmission.
When a feedback mechanism periodically provides the source with information about the
quality of each path, the transmitter has the chance to find the RA which minimizes PPL
(optimal allocation). The authors propose a greedy algorithm for this purpose.

Most recently, in an independent work, Li et al. have addressed the RA problem [35].
Same as [10,12] and our work, the authors of [35] apply an MDS code for FEC across
multiple independent paths. However, unlike [12], the authors study the problem for any
general number of paths, denoted by L. Using the discrete to continuous approximation,
the authors approximate the total number of lost packets over all paths with a continuous
random variable. Furthermore, assuming a large number of paths with a large number of
packets over each path, they apply the Central-Limit Theorem (CLT) [36] to approximate
the distribution of the number of lost packets with the Normal Distribution. Using this
distribution, the authors propose a pseudo-polynomial algorithm, based on Dynamic Pro-
gramming, to estimate the optimal RA for a large number of paths. However, CLT can not
be applied to solve this problem. The reason is that in this case, the variance of the fraction
of lost packets scales as O(%) to zero. Instead, as we show in this work, the distribution
of lost packets can be computed using Large Deviation Principle (LDP) which results in a

distribution totally different from the normal distribution. Hence, the pseudo-polynomial
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algorithm proposed in [35] can not necessarily approximate the optimal RA even for large

number of paths.

1.1.3 Contribution

In this work, we utilize path diversity to improve the performance of FEC between two
end-nodes over a general packet switched network. The details of path setup process is not
discussed here. Similar to [10,12,27,35], it is assumed that L independent paths are set up
by a smart multipath routing scheme or overlay network. Moreover, as in [10,35,37,38], each
path is assumed to be an erasure channel modeled as a continuous M-state extended Gilbert
model. It should be noted that the well-known 2-state Gilbert channel used in [12,17,39-41]
is a special case of the extended Gilbert model studied here. Probability of irrecoverable
loss (Pg) is defined as the measure of FEC performance. In another work, we have shown
that MDS block codes have the minimum probability of error over any erasure channel
with or without memory [21]. Hence, as in [10,12,35], MDS codes are applied for FEC

throughout this work. The contributions of this work can be listed as follows:

e Path diversity is shown to simultaneously achieve an exponential decay in Pgr and a
linear increase in the end-to-end rate with respect to L, while the delay stays fixed.

Furthermore, the decaying exponent is analyzed mathematically based on LDP.
e The RA problem is solved for the asymptotic case (large values of L).

e [t is proved in the asymptotically optimal RA, each path is assigned a positive rate iff
its quality is above a certain threshold. Quality of a path is defined as the percentage
of the time it spends in the bad state. This result is important since for the first
time in the literature, an analytical criterion is proposed to predict whether adding

an extra path improves reliability.

e A heuristic suboptimal polynomial algorithm, based on the memoization technique,
is introduced to solve the RA problem for any arbitrary number of paths. Unlike the

brute-force search in [12], this algorithm has a polynomial complexity, in terms of L.

e The proposed algorithm is proved to converge to the asymptotically optimal RA as

L grows.



Chapter 1. Introduction

e Through the simulation results, the proposed algorithm is shown to achieve a near-

optimal performance for practical number of paths.

1.2 Coding over Input-Independent Channels

1.2.1 Motivation

This work is inspired by our previous work [21] on the optimality of Mazimum Distance Sep-
arable (MDS) codes over erasure channels. In that work, we prove that MDS codes achieve
the minimum probability of error over any erasure channel (with or without memory). In
an attempt to extend that result, we define a new class of channels called input-independent
channels of which erasure channels are a special case. Input-independent channels can be
memoryless or have memory extended over the block length N. In the case of Discrete
Memoryless Channels (DMC), the defined input-independent channel turns into the well-
known symmetric DMC. Intuitively speaking, input-independent channels are the ones
which behave the same way no matter which codeword is transmitted over them. Accord-
ing to this definition, it becomes obvious that erasure channels and symmetric DMC’s are
both input-independent.

In this work, we introduce a lower-bound on the probability of error (Pg) for any block
code over an input-independent channel. This lower-bound is not entirely new and can be

derived from Theorem 28 in [42]. However, our contribution is that

e we introduce a much simpler proof of this lower-bound for the specific case of input-

independent channels.

e Using the properties of input-independent channels, we come up with the necessary

and sufficient condition to satisfy the lower-bound with equality.

In the case of erasure channels, this lower-bound confirms our previous result on the opti-
mality of MDS codes. For the symmetric MDC, the lower-bound turns into a much stronger
(tighter) lower-bound than the previous sphere-packing based bounds on Pg [43-45], es-
pecially for short to moderate block lengths.
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1.2.2 Related Work

Extending Shannon’s work [46], Feinstein [47] was the first who observed that the error
probability (Pg) for maximum likelihood decoding of a randomly-generated code can be
upper-bounded by an exponentially decaying function with respect to the code block length
N. This exponent is positive as long as the rate stays below the channel capacity, R < C.
Following this result, tighter upper-bounds were proposed in the literature [48-50]. For
rates below the critical rate, modifications of random coding are proposed to achieve tighter
bounds [51]. There are also a number of lower-bounds on the probability of error for any
codebook. The most famous of them is known as the sphere packing bound [43]. Lower-
bounds on Pg are very important as they give us an idea how much the performance of a
practical code with finite block length N can be improved.

Both the sphere packing lower-bound and the random coding upper-bound are expo-
nentially tight for rates above the critical rate [52]. In other words, in the asymptotic case
where N grows very large, they both converge to e V(%) where E,.(R) is the famous ran-
dom coding error exponent for the rate R [50]. However, the rate of convergence for sphere
packing bound is shown to be very slow (O(\/LN)) [44]. This makes the sphere packing
bound practically useless for N < 10000 in most channels. There has been a number of
works to improve this bound for moderate to short block lengths. Reference [44] tightens
the sphere packing bound for finite-length codes by re-examining the original derivation of
this bound and using better bounding techniques. More recently, [45] improves the sphere-
packing bound for symmetric channels even further, while keeping the general framework
of sphere packing bound in place.

Most recently, [42] introduces a series of upper and lower bounds on the size (equiva-
lently rate) of any block code with the length N and the probability of error Pr over DMC
and Additive White Gaussian Noise (AWGN) channels. Obviously, these bounds translate
to upper and lower bounds on the probability of error for any block code with limited
length and rate R over these channels. Indeed, Theorem 3.1 of our work can be derived
by selecting a uniform output distribution in Theorem 28 of [42]. Moreover, Theorem 35
in [42] introduces a lower-bound on Pg of Binary Symmetric Channel (BSC) which matches
our result in section 3.4 exactly. However, our lower-bound in section 3.4 is more general
in the sense that it is valid for non-binary symmetric DMC as well.

The following list summarizes the previous lower-bounds on Pg of block codes over

different channels and compares them with the lower-bound in section 3.4, denoted by
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L(N, K, ).

SP59: this lower-bound [53] is valid for soft decoding of equal-energy codewords with
Gaussian constellation over the AWGN channel. It can be used as a benchmark for
comparison when the input constellation is M-PSK over the AWGN channel with
hard or soft decoding.

SP67: the original sphere packing lower-bound on Pg in [43], valid for any DMC.

However, it can not be used for channels with infinite output alphabet size.

VF2004: Velambois and Fossorier’s [44] improvement on SP67, valid for any DMC.

Moreover, it can be used for channels with infinite output alphabet size.

ISP2008: the Improved Sphere-packing Bound (ISP) [45] for symmetric DMC. It is

also valid for channels with infinite output alphabet size.

BSC2010: introduced in Theorem 35 of [42] and is valid for BSC only. It ex-
actly matches our lower-bound, L(N, K, ), introduced in section 3.4. However,

L(N, K, ) can also be used for non-binary (g-ary) symmetric DMC.

BEC2010: introduced in Theorem 38 of [42] and is valid for memoryless Binary
Erasure Channel (BEC) only. In Theorem 3.3, we show that this lower-bound is

achieved by MDS codes in the general case, i.e. g-ary erasure channel with memory.

The lower-bound L(N, K, ) introduced in section 3.4 has its own limitations; it is

valid for g-ary symmetric DMC only. Moreover, it is valid for symmetric DMC’s with

limited output alphabet size only. However, we have shown that for short to moderate
block lengths, L(N, K, ) outperforms other known lower-bounds (SP59, SP67, VF2004,
ISP2008) significantly. For the case of BSC, it matches BSC2010 exactly. Moreover, similar
to all of the above bounds, it is exponentially tight for asymptotically large block lengths.

This asymptotic tightness is guaranteed by Theorem 3.5.

1.2.3 Contribution

The contributions of this work can be listed as follows:

The input-independent channel is defined in a mathematically accurate way. The def-

inition includes channels with memory extended over a block of N symbols. For the

7
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case of a DMC, this definition can be simplified into the well-known row-symmetric

(also sometimes called symmetric) channel.

A lower-bound on Pg for a general input-independent channel is reintroduced. This
result can be derived from Theorem 28 in [42]. However, we have offered a simpler
proof which is based on the properties of input-independent channels. Moreover, the
necessary and sufficient condition to meet this lower-bound with equality is given in

this work.

Applying the above lower-bound, we prove that MDS codes achieve the minimum
probability of error over any erasure channel (with or without memory). This is not
a new result. We have proved the same result in [21] using a deterministic binning
technique. However, we offer a new proof in this work considering the erasure channel

as a special case of the general input-independent channel.

Again applying the above lower-bound, we prove that a perfect code achieves the

minimum probability of error over a super-symmetric DMC (defined in this work).

We simplify the introduced general lower-bound for the special case of a symmetric
DMC and propose an algorithm to compute it using the method of types in informa-
tion theory [18]. This algorithm has the complexity of O(NY), i.e. it is polynomial
in terms of the block length N and exponential in terms of the alphabet size q. This
imposes a restriction on applicability of the algorithm. However, it should be noted
that the main application of this algorithm is on short to moderate block codes; for
large values of N, the sphere packing bound and its improvements are already good
enough. We have been able to run the algorithm for short to moderate block codes

with small alphabet size on an average home computer.

It is shown that the introduced lower-bound for symmetric DMC exponentially equals

~NE-(R).

the random coding upper-bound, e This implies that in the asymptotic case,

the introduced lower-bound is exponentially tight.

For finite-length codes over ternary and 4-ary symmetric channels, we compare our
lower-bound with the sphere packing bound [43] as well as the recent improvements
to it [44,45]. It is observed that our lower-bound is much tighter than the previous

bounds, especially for smaller block lengths.
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1.3 Diversity-Rate Trade-off in Erasure Networks

1.3.1 Motivation

Recently, erasure networks have received significant attention in the literature [1-7] as they
are used to model both wireless and wireline networks. This work addresses a fundamental
trade-off between rate and the diversity gain of an end-to-end connection over an erasure
network whose links are orthogonal erasure channels. We show that in a general erasure
network, conventional routing® fails to achieve the optimum diversity-rate trade-off, while
linear network coding always achieves the optimum trade-off between rate and diversity
gain. All the terms in the italic font are defined in a mathematically accurate way in
section 4.2. Here, we aim to intuitively explain the main idea of this work through an

example.

Example 1.1. 1t is easy to observe the diversity-rate trade-off in the erasure network of
Fig. 1.1. This simple network consists of only two nodes and n disjoint links between
them. Each link transfers one packet (or g-ary symbol) per time slot from source to the
destination and may be in the erasure (OFF) mode with the probability p. If the link is
OFF, it stays OFF for the entire transmission block. To achieve the maximum reliability,
the source should transmit the same data symbol on all n links. Hence, for the rate r =1,

'

the probability of error would be P = p™. To maximize the rate, the source has to
transmit n different data symbols on the n links to the destination. Thus, for r = n and
small values of p, we have Pg = np(1—p)"~! ~ np o p where o stands for the proportional

to relation. Now the arising questions are:
e What can we do between these two extreme points?

e Can we achieve some degree of reliability (diversity) without sacrificing too much

rate?

o What is the mazimum achievable reliability (diversity gain) given a certain end-to-end

rate?

'For the mathematically accurate definition of conventional routing refer to Definition 4.8 in subsec-
tion 4.2.4. Intuitively speaking, conventional routing includes any routing scheme in which the intermediate
nodes forward or copy and forward the received messages (packets) to the outgoing links without perform-
ing any algebraic operation on the contents of the packets. In contrast, linear network coding works by
forwarding a linear combination of the received packets at the outgoing links.
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In the special case of Fig. 1.1, these questions can be answered as follows. Consider the
case where the source intends to transmit 7 (1 < r < n) data symbols to the destination.
Applying a Mazimum Distance Separable (MDS) code [21,54] of size [n,r] (like the Reed-
Solomon code [55]), the source encodes the r data symbols to n symbols and transmits
them over the n links to the destination. For any MDS code of size [n, ], the receiver can
decode the original data symbols if it receives at least r symbols out of the n transmitted
symbols correctly [56]. Therefore, for small values of p, Pg can be approximated as Pp =
(n_:f +1) p" Tt o p "t In section 4.3, we prove that the described scheme achieves
the best result in terms of lim, .o

T. [ |

log Pr
logp

(later defined as the diversity gain) for any rate

The reason we focus on the asymptotic region (p — 0) can be explained as follows. We
expect Pg to be a continuous function of p. Using Taylor series [57], we can write Pg as
Pp =32, Kip', where K;’s do not depend on p. Of course, K; can be zero for certain
values of 7. Let us assume the smallest power of p (with nonzero coefficient) in the Taylor
series is 0 < d. For small enough values of p, Py can be approximated as Pp ~ Kgp?.
This lets us quantify Pg with the exponent d and ignore the coefficient K,. It is easy to
observe that in this example, i has the same role that Signal-to-Noise-Ratio (SNR) has in
slow Rayleigh fading wireless channels [19] (for which Pz oc SNR?). Thus, it is intuitively
useful to interpret % as the SNR in our work. Consequently, small values of p correspond
to the high SNR region. Following the wireless communication terminology, we refer to the
exponent of p as the diversity gain. In the wireless communication literature, the diversity
gain d is the (decaying) slope of Pg versus SNR at the high SNR region.

In the example of Fig. 1.1, for any 1 < r < n, the diversity gain d = n —r + 1 decreases
as r increases. In sections 4.3 and 4.4, we show that the trade-off between the rate and
diversity gain is present in any erasure graph. The objective of this work is to characterize
the optimum diversity-rate trade-off in general erasure graphs. Intuitively speaking, the
optimum diversity-rate trade-off achieves the maximum diversity gain among all end-to-end
connections for a given rate?.

The trade-off between diversity and multiplexing gain was first introduced in the con-
text of wireless Multiple-Input Multiple-Output (MIMO) channels. Zheng and Tse [19]
defined the multiplexing gain and diversity gain for the high-SNR block-Rayleigh fading

MIMO channel. Multiplexing gain is proportional to rate and can be interpreted as the

2For the mathematically accurate definition, refer to Definition 4.12 in subsection 4.2.3.
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€1

€n

Figure 1.1: A simple erasure network consisting of n disjoint paths.

normalized rate (normalized by log(SNR)). Next, they derived the optimal trade-off be-
tween the two gains. Although our model (erasure network) is totally different from the one
in [19], an analogy between the trade-offs in both works can be observed if % is interpreted

as the SNR. The motivation in this work is partly due to this observation.

1.3.2 Related Work

A wireline network is modeled by a directed graph G = (V,E) where V and £ represent
communication nodes and links, respectively. Moreover, the links are noiseless orthogonal
channels with a specific capacity and no interference on each other. According to the
well-known Ford-Fulkerson Theorem [58], conventional routing can achieve the wunicast
capacity of any wireline network which is equal to the minimum-cut of the corresponding
weighted graph [59]. Li et al. [59] have shown that this result is not valid for the multicast
case. Indeed, there exists simple wireline networks (such as the butterfly network [60])
such that an operation other than the simple routing and forwarding is needed in the
intermediate nodes in order to achieve the multicast capacity [61]. Hence, linear network
coding at the intermediate nodes is introduced to achieve the multicast capacity of wireline
networks [59-61].

The wireline network model has many limitations and can not be applied in many
practical networks. Recently, general networks in which links can be erroneous or interact
with each other have received significant attention in the literature, e.g. see [1-7,62].

Dana et. al consider the erasure network in which the broadcast nature of the wireless

11
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networks is incorporated while no interference is assumed at the received side of each node.
Assuming that the erasure locations on all links of the network are provided to the final
destination, the authors derive the ergodic capacity of the network and show that linear
network coding can achieve the capacity [1]. Most recently, Avestimehr et. al [4] show
that linear network coding can achieve the (unicast and multicast) capacity of any linear
deterministic network with the possible broadcast and interference nature. Yeung and Cai
in [5,6] study the general network whose links can be erroneous (not necessarily erasure).
Generalizing the well-known lower-bounds and upper-bounds of the classical coding theory
(Singleton bound, Hamming bound, and Gilbert-Varshamov bound), the authors obtain
bounds for the number of errors that the network codes can correct in a general network.
This subject is further investigated by Koetter and Kschischang in [7]. In contrast with the
previous work, the authors assume noncoherent transmission strategy in which the source
and destination nodes are unaware of the underlying network topology and the particular
linear network coding operations performed at the intermediate nodes.

Among the general networks, the class of erasure networks is of particular interest.
Many packet-switched data networks like wireless mesh networks, the Internet, or the
virtual overlay networks can be modeled as erasure networks. The reason is that each
packet contains an internal error detection code, like the Cyclic Redundancy Check (CRC),
which lets us interpret the packet as a g-ary symbol transmitted over erasure links [12,15—
17].

Linear network coding is applied in [62,63] in order to provide protection against net-
work failures. Reference [62] studies the topic of network recovery and distinguishes be-
tween path, node, or link protection against non-ergodic link failures in the network. It
is demonstrated that many traditional recovery methods (used in conventional routing)
can be written in terms of the general framework provided by linear network coding. The
authors of [62] consider two formulations for network management: centralized and node-
based. In the centralized formulation, the whole network switches between several (end-to-
end) linear network codes in order to combat non-ergodic link failures. In other words, the
network (the receiver and/or intermediate nodes) adopts the appropriate network code,
depending on the state of the network. The measure of performance (management re-
quirement metric) is defined as the logarithm of the number of codes the network switches
among. The rationale for this metric is that this equals the information bits one needs

to encode the suitable network code for each state of the network. The node-based for-
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mulation works similarly except that the metric is different. For this formulation, the
network management requirement is defined as the sum over all nodes of the logarithm of
the number of behaviors for each node. Again, the rationale for this metric is that this
is the number of information bits one needs to inform each and every node of its appro-
priate behavior according to the network state. For each formulation, [62] considers two
recovery schemes: receiver-based and network-wide. In the receiver-based scheme, the only
nodes which are allowed to alter their input-output relations are the receiver nodes. In
network-wide recovery schemes, on the other hand, the intermediate nodes are allowed to
switch between different codes depending on the state of the network. Considering these
formulations, [62] achieves lower and upper bounds on the network management metrics for
recovery from all single-link failures. The lower-bound is valid for arbitrary connections,
while the upper-bound holds for multi-transmitter multicast connections only.

The other reference [63] combines the problem of distributed source coding with linear
network coding. It applies random linear network coding for transmission and compression
of information in multi-source multicast scenarios with correlated sources. The beauty of
this scheme is that intermediate nodes freely pick their coefficients from a large field with no
coordination with each other. The only requirement is that the receivers should know the
end-to-end transfer matrix of the network. The authors show that this approach achieves
the multicast capacity as the network length increases. Moreover, they prove that this
scheme compresses the information in a distributed manner, generalizing the known error-
exponents for linear Slepian-Wolf coding [64] automatically. Finally, they demonstrate the
potential advantages of linear network coding over conventional routing in two practical
cases: 1) distributed network setting, ii) dynamically varying connections. In the former
case, the number of nodes is very large or the topology is changing. Thus, it is expensive
or infeasible to maintain the routing states and we need to apply distributed randomized
routing schemes. In the latter case, the source-destination pairs may vary or go through
ON-OFF periods. They show that in both cases, linear network coding provides higher

probability of successful decoding with much lower complexity.

1.3.3 Contribution

In this work, we study a network modeled by an acyclic directed graph G = (V,E) whose
links are orthogonal erasure channels. Such a network is regarded as an erasure graph

throughout the thesis. Each link e € £ has the maximum rate of o(e) and the erasure
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probability of p*(¢). Erasure status of the links are assumed to be fixed during one block

3. Moreover, erasure status of the links is assumed to be known only by

of transmission
the destination node. Hence, neither the source nor the intermediate nodes are aware of
the links’ status. This is the case in many realtime applications where the source can not
utilize any feedback or retransmission request due to the tight delay constraints.

Here, we study the behavior of network strategies for an end-to-end connection in an
erasure graph in the asymptotic scenario where p — 0. Network strategies are used to
increase the end-to-end rate or to improve the end-to-end reliability. However, we show
that there exists a fundamental trade-off between the end-to-end rate and reliability. The

contributions of this work can be listed as follows:

e For any fixed rate , as p — 0, the error probability is shown to decay as p? where
d denotes the diversity gain of the corresponding end-to-end connection. Moreover,

d(r) is shown to be a decreasing function of r.

e In a homogeneous erasure graph where o(e) = w(e) = 1 for all links e € &, it is proved
that the combination of MDS coding at the source and appropriate conventional

routing at the intermediate nodes achieves the optimum diversity-rate trade-off.

e For any general erasure graph, we show that there exists a linear network coding

strategy which achieves the optimum diversity-rate trade-off.

e In general erasure graphs, it is proved that conventional routing is not optimum in
terms of diversity-rate trade-off. More accurately, there exist general erasure graphs
for which any conventional routing strategy fails to achieve the optimum diversity-

rate trade-off.

Unlike the previous works which suggest the potential benefit of linear network coding
in the error-free multicast scenario (in terms of the achievable rate), the above results
introduce the benefit of linear network coding in the erasure unicast scenario (in terms of

the diversity gain).

3For the mathematically accurate definition of the model, refer to section 4.2.
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Rate Allocation Across Multiple
Paths

2.1 Introduction

2.1.1 Multipath Routing over Wireless Mesh Networks

In order to exploit path diversity, it is desirable to set multiple independent paths be-
tween the end nodes. This problem is addressed throughput the literature [28-34, 65, 66].
A set of paths are defined to be independent if their corresponding packet loss patterns
are independent. According to the definition, any set of disjoint paths are independent.
Even when the paths are not completely disjoint, their loss and delay patterns show a
high degree of independence as long as they do not share any congestion points or bottle-
necks [12,67-72]. Many techniques are proposed to detect the shared congestion points,
such as cross-correlation-based approach [73], entropy-based approach [74], and wavelet-
based approach [75]. Hence, the independence of a set of paths can be verified by the
mentioned bottleneck detection algorithms.

Many well-known mesh network routing protocols like AODV [76] and DSR [77] can
be modified to support multipath routing. Indeed, DSR can find multiple paths naturally
by its flooding behavior [77]. However, it does guarantee that the found paths are disjoint.
The Split Multipath Routing (SMR) [28] solves this problem as it avoids dropping duplicate
Route Request (RREQ) packets by the intermediate nodes. Of course, this is achieved at the
cost of more RREQs and higher routing overhead. Similarly, the Multipath Source Routing
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(MSR) [34] introduces a multiple path routing protocol extended from DSR. Based on the
measurement of Round-Trip Times (RTT), MSR also proposes a scheme to distribute the
load among multiple paths. Leung et al. [33] propose the MP-DSR protocol which focuses
on a newly defined metric for the QoS called the end-to-end reliability. MP-DSR is an
algorithm which selects multiple paths with low fail probability associated by stable radio
links. [32] addresses the problem of transmitting video with double description in the case
where non of the paths to the destination is significantly more reliable than the others. The
problem is turned into an optimization which is too complex to have a closed-form solution.
Thus, the authors apply the metaheuristic genetic algorithm to find a suboptimal solution.
Then, it is shown that this method can be incorporated into many existing on-demand
routing protocols like DSR [32]. Finally, the Robust Multipath Source Routing Protocol
(RMPSR) is another extension to DSR to support multipath video communication over
wireless networks.

AMODV [30] is an Ad-hoc On-demand Multipath Distance Vector routing protocol
based on the concept of link reversal extending from AODV. In contrast with the DSR-
based multipath routing protocols, AMODYV discovers multiple link-disjoint loopfree paths.
AODVM |[31] is another extension to AODV which finds multiple reliable routing paths.
Similarly, AODV-BR [29] introduces an algorithm to find back up routing paths over Ad
hoc networks. [9] proposes a novel multipath hybrid routing protocol, Multipath Mesh
(MMESH), which effectively discovers multiple paths over wireless mesh networks. Simu-
lation results show that MMESH is able to balance the traffic by avoiding hot paths, i.e.,
the paths with higher traffic load. AMTP [65], an ad hoc multipath streaming protocol for
multimedia delivery which selects multiple maximally disjointed paths with best QoS to
maximize the aggregate end-to-end throughput. AMTP is able to accurately differentiate
between packet losses due to different network conditions. In case of a path being broken,
it seamlessly switches to a proper path and therefore maintains high streaming quality.
When there are multiple channels between the wireless mesh nodes, it is easier to find
multiple independent paths across the network. Reference [8] applies the idea of multipath
routing in such a scenario to increase the end-to-end throughput. Wei et al. [26] address the
problem of path selection over a wireless network by taking into account the interference
between the wireless links. Their goal is to minimize the packet drop probability (PDP).
The problem of optimal multipath selection is shown to be NP-hard. Therefore, they

introduce a heuristic algorithm to find a close-to-optimal set of paths. A previous work
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by the same authors [78] studies video multicast over wireless ad hoc networks. To take
advantage of network path diversity in the multicast case, an algorithm to find multiple
disjoint and near-disjoint trees is proposed. Finally, reference [24] introduces CodeCast,
a network-coding-based ad hoc multicast protocol, for (mainly multimedia) applications
which require limited (low) packet rate as well as limited (low) latency. For such applica-
tions, the authors have shown that path diversity can be used to mitigate the non-local

packet loss problem with very small overhead.

2.1.2 Path Diversity over the Internet

In the Internet, the end-points have no control over the path selection process. Indeed,
letting the end nodes set the paths requires modification of the IP routing protocol and
extra signaling between the routers which are extremely costly. To avoid such an expense,
overlay networks are introduced [70,71,79]. The basic idea of the overlay network is to
equip very few nodes (smart nodes) with the desired new functionalities while the rest
remain unchanged. The smart nodes form a virtual network connected through virtual or
logical links on top of the physical network. Thus, overlay nodes can be used as relays to
set up independent paths between the end nodes [13,80-82].

Topology of the underlying physical network is an important factor in the design of
the overlay network. Indeed, improper design of the overlay network can result in shared
bottlenecks between different virtual links [83]. In such cases, even if two paths are disjoint
in the virtual level, a large degree of dependency may be observed between them. Hence, a
class of topology-aware overlay networks are proposed to maximize independence between
the virtual links [83-89]. For instance, the overlay nodes can utilize latency [84, 85] or
the underlying IP topological information [83,86-89] to select the neighbors and form
the overlay graph. It is shown that the topology-aware overlay networks can provide a
satisfactory degree of independence between disjoint paths (disjoint in the virtual level) [83].
Moreover, distributed algorithms can be utilized to construct and/or maintain overlay
networks. Reference [90] addresses the problem of distributed overlay network design
based on a game theoretical approach, while [91] studies overlay networks failure detection
and recovery through dynamic probing.

Another issue which may degrade path diversity in overlay networks is having bottle-
necks in the links connecting the end-nodes to the network. To address this problem, the

idea of multihoming is proposed [13,92]. In this technique, the end users are connected to
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more than one Internet Service Providers (ISP’s) simultaneously. It is shown that multi-
homing assists overlay networks to set up extra independent paths between the end-points,

i.e. improves the end-to-end reliability considerably [13].

2.1.3 Applications of Path Diversity

Recently, path diversity is utilized in many applications (see [17,93-97]). Reference [95]
combines multiple description coding and path diversity to improve the quality of service
(QoS) in video streaming. In [25], multiple descriptions of video are routed throughput
different paths across a wireless mesh network. It is assumed that coding is non-hierarchical
in the sense that none of the descriptions is the main description. Instead, the distortion
decreases gradually as the receiver receives more descriptions of the video. Moreover, non
of the paths has significantly better quality than the others, and each link is modeled by a
2-state Markov model called the Gilbert channel. [25] concludes that in this setup, utilizing
multiple paths improves both the rate and reliability.

Packet scheduling over multiple paths is addressed in [98] to optimize the rate-distortion
function of a video stream. Reference [97] utilizes path diversity to improve the quality of
Voice over IP streams. According to [97], sending some redundant voice packets through
an extra path helps the receiver buffer and the scheduler optimize the trade-off between
the maximum tolerable delay and the packet loss ratio [97].

In [11], multipath routing of TCP packets is applied to control the congestion with
minimum signaling overhead. When the underlying network is an ad hoc wireless network,
a similar result is reported [99]. In other words, transmitting video over multiple paths
is shown to decrease the average congestion and end-to-end distortion. [100] proposes a
multiflow reatime transport protocol for wireless networks. Through both mathematical
analysis and comprehensive simulation, it is shown that partitioning the video packets
across multiple paths improves queuing performance of the multimedia data, resulting is
less congestion, smaller delay, and higher utilization of the bottleneck link bandwidth [100].

Content Distribution Networks (CDN’s) can also take advantage of path diversity for
performance improvement. CDN'’s are a special type of overlay networks consisting of Edge
Servers (nodes) responsible for delivery of the contents from an original server to the end
users [79,101]. Current commercial CDN’s like Akamai use path diversity based techniques
like SureRoute to ensure that the edge servers maintain reliable connections to the original

server. Video server selection schemes are discussed in [80] to maximize path diversity in
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CDN’s.

Table 2.1: Important Parameters

Notation Refers to Section
L number of the paths 1.1.3
N length of an FEC block (in packets) 2.2.2
K number of information packets 2.2.2

in an FEC block
a=(N-K)/N FEC overhead 2.2.2
T transmission time of an FEC block 2.2.3
Sre required end-to-end rate (pkt/sec) 2.2.3
N; number of packets transmitted on 2.2.3
path 7 in each FEC block
Si, W; rate and max. rate of path ¢ (pkt/sec) 2.2.3
Pg probability of irrecoverable loss 1.1.3
x, = B;/T fraction of bad bursts on path ¢ during T' 2.3
0i fraction of end-to-end rate assigned to path 4 2.3.1
J number of path types 2.3.2
vj =L;/L fraction of paths of type j 2.3.2
1j fraction of the end-to-end rate 2.3.2
allocated to paths of type j, see (2.7)
* asymptotically optimal rate allocation vector 2.3.2
n°PI=N°PI/N optimal rate allocation vector 2.3.2
Nj number of packets transmitted on 2.4
paths of type j in each FEC block
probability of having more than k errors over 2.4
PN(k, 5) paths of types 1 to j for the allocation vector N
Qj(n, k) probability of having exactly k errors out 2.4
of the n packets sent over paths of type j

Nopt optimum allocation vector 2.4
P2PY(n, k, 5) PN"(k,§), i.e., min Pg 2.4
Pe(n,k,5) lowerbound of PP (n, k, j), see (2.16) 2.4
N=(Ni,...,Nyj) suboptimum allocation vector 2.4
K=(K1,....Kj) typical error event 2.4

2.1.4 Chapter Organization

The rest of this chapter is organized as follows. Section 2.2 describes the system model.
Performance of FEC in two cases of multiple identical paths, and non-identical paths are
analyzed in section 2.3. Section 2.4 studies the RA problem, and proposes a suboptimal

RA algorithm. Finally, section 2.5 concludes the chapter.
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2.2 System Modeling and Formulation

2.2.1 End-to-End Channel Model

From an end to end protocol’s perspective, performance of the lower layers in the protocol
stack can be modeled as a random channel called the end-to-end channel. Since each packet
usually includes an internal error detection coding (for instance a Cyclic Redundancy
Check), the end-to-end channel is modeled as an erasure channel.

Numerous measurements studies have suggested that bursty loss behavior is the most
dominant characteristic of the end-to-end channel over different underlying networks, in-
cluding wireless mesh networks and the Internet [10,38,102-104]. Hence, a variety of models
have been proposed to capture this bursty behavior, including the 2-state Gilbert model,
the M-state Extended Gilbert model, and the Hidden Markov model [37,38,102,105, 106].
This chapter assumes the continuous time M-state extended Gilbert model for the end-
to-end channel, see Fig. 2.1. This model achieves a good balance between model accuracy
and simplicity [35,37,38]; it is much more accurate than the 2-state Gilbert Model, while
only requires 2(M — 1) parameters to be estimated (as opposed to M? parameters in the
General Markov Model). It should be noted that the well-known 2-state Gilbert channel
used in [12,17,39-41] is a special case of the extended Gilbert model studied here.

It is worth mentioning that the main results of this chapter remain valid for any end-
to-end channel model. More precisely, Pg still decays exponentially versus L and the
asymptotically optimal RA follows the same formula. However, the decaying exponent of
Pg is a function of the bad burst probability distribution which should be recomputed
according to the new end-to-end channel model. Moreover, in the proposed suboptimal
RA algorithm, no assumption is made regarding the end-to-end channel model and/or the
bad burst probability distribution. In other words, the input parameters to the proposed
algorithm consist of the probability mass function (pmf) associated with the number of
erasures over different paths. These input parameters are computed in polynomial time
in appendix 2.6.8 for any general Markov model which obviously includes the extended
Gilbert model as a special case.

The behavior of the continuous time extended Gilbert model can be described as follows.
The channel spends an exponentially distributed random amount of time with the mean
ul in the Good state. Then, it alternates to the first Bad state, By, and stays in that

g
state for another random duration exponentially distributed with mean ” irm. Then, the
1
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Figure 2.1: Continuous-time M-state Extended Gilbert model of the end-to-end channel

channel either goes back to the good state or transits to a deeper bad state, denoted by
Bs. Similarly, the channel can move to deeper bad states consecutively before going back
to the good state. The steady state probability of being in the good or any of the bad

states are denoted by 7, and m,. It is easy to observe that m, = # and m,, = m
g= i 1 )=

where = £ #ig + Zf\ifl ub,.1+m-' The packets transmitted during the good state are received

correctly, while they are lost if transmitted during any of the bad states (B; to Bps_1).

Therefore, the average probability of error, m,, is equal to the steady state probability of

being in any of the bad states, m, = > 0|,

2.2.2 FEC Model

In real-time applications like video and audio over wireless mesh networks or IP, due to the
delay requirement, conventional retransmission based schemes such as automatic repeat
request (ARQ) are impractical. On the other hand, FEC is shown to be favorable for such
real-time scenarios with tight QoS requirement [10,39, 40, 107-109]. However, FEC could
be ineffective when bursty packet loss occurs and such loss exceeds the recovery capability
of the FEC codes. To mitigate this problem via path diversity, this work applies FEC
across multiple paths.

Each packet is provided with an internal coding such as the Cyclic Redundancy Check

(CRC) which enables the receiver to detect an error inside each packet. Hence, the receiver
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can consider the end-to-end channel as an erasure channel. Assuming the length of each
packet is r bits, the alphabet size of the end-to-end channel would be ¢ = 2". Other than
the coding inside each packet, a FEC scheme is applied between packets. Every K packets
are encoded to a Block of N packets where N > K to create some redundancy. The N
packets of each block are distributed across the L available independent paths, and are
received at the destination with some loss (erasure). The ratio of a = % defines the
FEC overhead. It is proved that among all block codes of the same size, any Mazimum
Distance Separable (MDS) code, such as the Reed-Solomon code, provides the minimum
probability of error over an erasure channel (either memoryless or with memory) [21].
Moreover, MDS codes can reconstruct the original K data packets at the receiver side if
K or more of the N packets are received correctly [55]. This property makes MDS codes
favorable FEC schemes over the erasure channels [35,110-112].

Since MDS codes are used for FEC, the probability of irrecoverable loss, Pg, is adopted
as the reliability metric. An irrecoverable loss occurs when more than N — K packets
are lost in a block of N packets. It is shown in [21] that Pg is almost equal to the error
probability of the maximum likelihood decoder for an MDS code, Ps. More precisely, Pg

can be bounded as

q—1
where ¢ denotes the alphabet size of the MDS code which is very large in our application.

1
P: < Pp < (1+—)P5

The reason Pg is used as the measure of system performance is that while many practical
low-complexity decoders for MDS codes work perfectly if the number of correctly received
symbols is at least K, their probability of correct decoding is much less than that of
maximum likelihood decoders when the number of correctly received symbols is less than
K [55]. Thus, in the rest of this chapter, Pg is used as a close approximation of decoding

error.

2.2.3 Rate Allocation Problem

The RA problem is formulated as follows. L independent paths, 1,2,..., L, connect the
source to the destination, as indicated in Fig. 2.2(a). Information bits are transmitted
as packets, each of a constant length r. Each path has a rate constraint of W; packets
per second. This constraint can be considered as an upperbound imposed by the physical

characteristics of the path. For a specific application and FEC scheme, we require the rate
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Source Internet Destination
Path 1
Ny
Traffic Allocator . . _Traffic Reassembler
N; Path 1

. S SN, =N
Ny i=1

- = Path L £ S, = Spe,
S = i=1
req T
(a)
T
A ——
1 _ T
S TN
N; Packets

(b)

Figure 2.2: RA problem: a block of IV packets is being sent from the source to the desti-
nation through L independent paths over the network during the time interval 7" with the
required rate Sy, = % The block is distributed over the paths according to the vector

N = (Ny,..., Np) which corresponds to the RA vector S = (Sy,...,5L)
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. R A P

Correctl Lost or
Receive Incorrect
Packet Packet

~—
1
S,

Figure 2.3: A bad burst of duration B; happens in a block of length T'. E; = 3 packets are
corrupted or lost during the interval B;. Packets are transmitted every s% seconds, where
S; is the rate of path ¢ in pkt/sec.

of Syeq packets per second from the source to the destination. Obviously, we should have

Sreq < 25:1 W; to have a feasible solution. As mentioned in the previous subsection, the

N
Sreq

information packets are coded in blocks of length N packets. Hence, it takes T" =
seconds to transmit one block.

The RA vector N = (Ny,..., Np) is defined as the number of packets in one block
sent through each path. The objective of the RA problem is to find the optimal RA
vector, i.e. the RA vector minimizing the probability of irrecoverable loss, Pg, defined
in the previous subsection. The RA vector should satisfy the constraints Zle N, = N
and % < W;,¥V1<1i< L. The latter constraint follows from the bandwidth constraint,
S = % < W,.

The above formulation of RA problem is valid for any finite number of paths and any
chosen values of N and T'. However, in section 2.3 where the performance of path diversity
is studied for a large number of paths, and also in Theorem 2.2 where the optimality of
the proposed suboptimal algorithm is proved for the asymptotic case, we assume that N
grows linearly in terms of the number of paths, i.e. N = ngL, for a fixed ng. The reason
behind this assumption is that when L grows asymptotically large, the number of paths
eventually exceeds the block length, if N stays fixed. Thus, L — N paths become useless
for the values of N larger than N. At the same time, it is assumed that the delay imposed
by FEC, T, stays fixed with respect to L. This model results in a linearly increasing rate

as the number of paths grows.
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2.2.4 Discrete to Continuous Approximation

To compute Pg, we have to find the probability of k; packets being lost out of the N;
packets transmitted through path i, for all 1 < i < L, 0 < k; < N;. Let us denote the
number of erroneous or lost packets over the path ¢ with the random variable F;. Any two
subsequent packets transmitted over the path ¢ are si seconds apart in time, where S; is
the transmission rate over the 2’th path. Now, we define the continuous random variable
B; as the duration of time that path ¢ spends in the bad state in a block duration, 7. It is
easily observed that the probability P{E; > k;} can be approximated with the continuous
counterpart P{B; > g—} when the inter-packet interval is much shorter than the average
bad burst duration. According to the extended Gilbert model, the average bad burst

1
L Therefore, as long as we have — <« ———,
Hoy TR S; My, + K1

duration can be lower-bounded by

the discrete to continuous approximation is valid (see Fig. 2.3).

The necessity of this condition can be justified as follows. In case this condition does not
hold, any two consecutive packets have to be transmitted on two independent states of the
channel. Thus, no gain would be achieved by applying diversity over multiple independent
paths. The continuous approximation is just used in section 2.3. On the other hand,

section 2.4 studies the RA problem in the original discrete format.

2.2.5 Notation and System Parameters

Table 2.2 summarizes the main assumptions made in our network model and problem
formulation. The important parameters which are used throughout the chapter are sum-
marized in Table 2.1. Moreover, the following mathematical notations are used in the rest
of the chapter. P{.} and E{.} are defined as the probability and expected value operators,
respectively. The notation Pgp = e % means limy_ —% =wu(a). f(L) = o(g(L))
is equivalent to limy % =0, and f(L) = O(g(L)) means that 3Ly, M > 0 : VL >
Lo, |F(L)] < M lg(L)]|.

2.3 Performance Analysis of FEC on Multiple Paths

According to the discrete to continuous approximation in subsection 2.2.4, when the N;

packets of the FEC block are sent over path 7, the loss count can be written as %Ni.
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Table 2.2: Main Assumptions
Assumption Comments
L independent paths justified in subsection 2.1.1 and 2.1.2
used in sections 2.3 and 2.4

discrete to continuous justified in subsection 2.2.4
approximation used in section 2.3
justified in subsection 2.2.1
Extended Gilbert Model used in section 2.3

results valid without this assumption
see subsections 2.2.1 and 2.3.1 for details

Hence, the total ratio of lost packets is equal to

B;N; - Bip;
Z TN T

=1 =1

Sfiq’ 0 < p; < 1, denotes the portion of the bandwidth assigned to path .

x; & % is defined as the portion of time that path i has been in the bad state (0 < z; < 1).

Hence, the probability of irrecoverable loss for an MDS code is equal to

PE:P{ZM%>0¢}- (2.1)

In order to find the optimum rate allocation, Pg has to be minimized with respect to the

A
where p; =

allocation vector (p;’s), subject to the following constraints:

}, gpi:l (2.2)

where W; is the bandwidth constraint on path ¢ defined in subsection 2.2.3.

Wi
0<p; <min< 1,
_p_mln{ Soee

2.3.1 Identical Paths

When the paths are identical and have equal bandwidth constraints’ (W; = W for V 1 <
i < L), due to the symmetry of the problem, the uniform RA (p; = %) is obviously the

IThe case where W;’s are different is discussed in Remark 2.4 of subsection 2.3.2
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w
< e Then,

optimum solution. Of course, the solution is feasible only when we have %

the probability of irrecoverable loss can be simplified as

1 L
PE:P{Z;xi>a}. (2.3)

B
T
clearly we have Q(z) = T fg(zT), where fp(t) is the probability density function (pdf)

of B. Defining E{} as the expected value operator throughout this chapter, E{x} can

Let us define Q(z) as the probability density function of x. Since x is defined as = =

be computed based on Q(z). We observe that in (2.3), the random variable z;’s are
bounded and independent. Hence, the following well-known upperbound in large deviation

theory [113] can be applied

PE < e—u(a)L

)0 for a < E{z}
wa) = { Ao — log(E{e**}) otherwise (24)

where the log function is computed in Neperian base, and ) is the solution of the following

non-linear equation, which is shown to be unique by Lemma 2.1.

_ E{zeM}

a= E{o) (2.5)

Since A is unique, we can define [(«) = A. Even though being an upperbound, inequal-

ity (2.4) is exponentially tight for large values of L [113]. More precisely

Pg = e @l (2.6)

log Pg

= u(a). Note that u(a)) depends on the pdf of

B, fg(t), which is computed in appendix 2.6.1. Of course, equation (2.6) is valid regardless
of the pdf of B.

Next, we state the following lemmas which are required for the analysis of the next

where the notation = means lim —
L—oo

subsection. The proofs can be found in the appendices 2.6.2 and 2.6.3, respectively.
Lemma 2.1. u(a) and l(«) have the following properties:

1. Zi(a) >0
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Figure 2.4: (a) Pg vs. L for different values of . (b) The exponent (slope) of plot (a) for
different values of «a: experimental versus theoretical values.

Lemma 2.2. Defining y = %Zle xi, where x;’s are i.i.d. random variables as already
defined, the probability density function of y satisfies f,(a) = e~ for all a > E{z}.

Remark 2.1. A special case is when the block code uses all the bandwidth of the paths.
In this case, we have N = LWT, where W is the maximum bandwidth of each path, and
T is the block duration. Assuming o > E{z} is a constant independent of L, we observe
that the information packet rate is equal to % = (1 — a) WL, and the error probability is
Pp = e~ This shows using MDS codes over multiple independent paths provides an
exponential decay in the irrecoverable loss probability and a linearly growing end-to-end

rate in terms of the number of paths, simultaneously.

FExample 2.1. Consider the scenario of transmitting a video stream with the DVD quality
(using either MPEG-2 or MPEG-4) over multiple identical paths. The bitrate per path is
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selected to be 1 Mbps. The number of paths varies from L = 1 to L = 6. Hence, the end-
to-end video bitrate varies in the range of 1 — 6 Mbps, in accordance with [114-118]. The
block transmission time is 7" = 200 ms which imposes an acceptable end-to-end delay for

the video stream. The payload of each video packet is assumed to be 4 kb. Accordingly,

1 Mb
the block length equals to N = ngL where ny can be written as nyg = 1 kbpST = 50.

The end-to-end channel follows a 2-state Gilbert model with ,U'Lg = 2500 ms and ﬁ = 52

ms, in accordance with [12,17]. Coding overhead is changed from o = 0.16 to o = 0.48.

Figure 2.4 compares the result of (2.6) with the simulation results. Pg is plotted versus
L in semilogarithmic scale in Fig. 2.4(a) for different values of o. We observe that as L
increases, log Pr decays linearly which is expected noting equation (2.6). Also, Fig. 2.4(b)
compares the slope of each plot in Fig. 2.4(a) with u(«). Figure 2.4 shows a good agreement
between the theory and the simulation results for practical number of paths. Moreover,
it verifies the fact that the stronger the FEC code is (larger «), the higher is the gain we

achieve through path diversity (larger exponent).

2.3.2 Non-Identical Paths

Now, let us assume there are J types of paths between the source and the destination,
consisting of L, identical paths of type j (ijl L; = L). Without loss of generality,
we assume that the paths are ordered according to their associated type, i.e. the paths
from 1 + Zi;ll Ly to Zi::l Ly, are of type j. We denote v; = % According to the i.i.d.
assumption, it is obvious that p; has to be the same for all paths of the same type. 7; and

y; are defined as

Ny = Z Pi

i1 o
Tho Le<i<3i_y Ln

_ o n

- - p
ch:l Lk<1§2i:1 Ly,

o
Following Lemma 2.2, we observe that f, (5;) = ¢ " We define the sets Sr, So and

St as
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j=1

J
SI = {(617&27"'75J)‘0§ﬁj§17 Zﬁj>a}

J
So = {(ﬁl,ﬁz,"',ﬂJHOgﬁjgl, Zﬁj:a
j=1

J
Sr = {(51,52,"' ﬁJ)‘TIjE{Ij}SﬁyHZﬁj:O‘}
j=1

respectively. Hence, Pg can be written as
J
P, = P {Zyj > Oé}
j=1
J
= [ s,

Ij=1

II-=

|

h

e

&5
I} <

<

I

.
7N
SHSS
~_

S
|
h
bt
=
o
M“ i
2 2
2
<.
VR
3 |
N——

(&
J
3
(d) LY (_]

(2.8)

where (a) follows from Lemma 2.3, (b) follows from the fact that u;(a) is a strictly in-
creasing function of «a, for > E{z,}, and (c¢) can be proved as follows. Let us denote

the vector which minimizes the exponent over the set Sp as B*. Since St is a subset of
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~

So, B* is either in Sy or in Sp — S7. In the former case, (¢) is obviously valid. When
B* € So — Sr, we can prove that 0 < Bj* < n;E{z;}, for all 1 < j < J, by contradiction.
Let us assume the opposite is true, i.e., there is at least one index 1 < j < J such that
0< @* < n;E{z;}, and at least one other index 1 < k < J such that nE{z;} < B/:
Then, knowing that the derivative of of u;(«a) is zero for @ = E{z;} and strictly positive

for « > E{xz;}, a small increase in B and an equal decrease in [3; reduces the objective

function, Z;.Izl VU <%>, which contradicts the assumption that B* is a minimum point.
J

Knowing that 0 < BJ* < njE{x;}, for all 1 < j < J, it is easy to show that the minimum
value of the objective function is zero over Sp, and Sy has to be an empty set. Defining
the minimum value of the positive objective function as zero over an empty set (Sr) makes
(c) valid for the latter case where B* € Sp — S7. Finally, applying Lemma 2.4 results in
(d) where B* is defined in the lemma.

Lemma 2.3. For any continuous positive function h(x) over a convex set S, and defining
H(L) as

H(L) = / e heILdx
S

we have

log(H (L
lim _log(H(L)) = inf A(x) = min h(x)
L—oo S c(S)

where cl(S) denotes the closure of S (refer to [119] for the definition of the closure opera-
tor).

Proof of Lemma 2.3 can be found in appendix 2.6.4.

Lemma 2.4. There exists a unique vector 3" with the elements 35 = njlj_l (%) which
J

minimizes the convex function }]:1 7juj(%) over the convex set Sy, where v satisfies the

J

following condition

XJ: il (ﬁ) = a. (2.9)

1 Vi
[71() denotes the inverse of the function I() defined in subsection 2.3.1.

Proof of Lemma 2.4 can be found in appendix 2.6.5.

Equation (2.8) is valid for any fixed value of 1. To achieve the most rapid decay of Pg,
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the exponent must be maximized over 7).

J
log P 4
lim — og P — max g Vi (ﬁ—) (2.10)

L—o0 0<n;<1

where 3* is defined for any value of the vector 1 in Lemma 2.4. Theorem 2.1 solves the
maximization problem in (2.10) and identifies the asymptotically optimum RA. The proof
can be found in appendix 2.6.6.

Theorem 2.1. Consider a point-to-point connection over the network with L independent
paths from the source to the destination, with a large enough bandwidth constraint®. The
paths are from J different types, L; paths from the type j. Assume a block FEC of size
[N, K| is sent during a time interval T. Let N; denote the number of packets in a block
of size N assigned to the paths of type j, such that ijl N; = N. The RA wvector n is
defined as n; = % For fized values of y; = %, nyg = %,
large number of paths L, the optimum rate allocation vector n* equals to

ko = %, T and asymptotically

(0 if o < E{z,}
. 1.
N = J% i (@) otherwise (2.11)
> vl
\ =1, a>E{z;}

if there is at least one 1 < j < J for which o > E{x;}. Furthermore, the probability of

irrecoverable loss corresponding to n* decays as
Pp = e LTi=mus(@), (2.12)

In the case where o < E{x;} for 1 < j < J, Pg =1 independent of the allocation vector
7.

Remark 2.2. Theorem 2.1 can be interpreted as follows. For large values of L, adding a new

2By the term ‘large enough’, we mean the bandwidth constraint on a path of type 7, W], satisfies the

condition "Jn“ < W;. The reason is that n; must satisfy both conditions of 0 < n; <1 and TL = ZizoLL <
J

W, snnultaneously When Wj is large enough such that "7n° < Wj, the latter condition is automatically

satisfied, and the optimization problem can be solved.
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Figure 2.5: (a) Pg versus L for the combination of two path types, half from type I and
half from type II. (b) The normalized aggregated weight of type I paths in the optimal

rate allocation (n{""), compared with the value of 7, which maximizes the exponent of

equation (2.10) (n7).

type of path contributes to the path diversity iff the path satisfies the quality constraint
a > E{x}, where x is the percentage of time that the path spends in the bad state during
the time interval [0,7]. Only in this case, adding the new type of path exponentially

improves the performance of the system in terms of the probability of irrecoverable loss.

Remark 2.3. Observing the exponent coefficient corresponding to the optimum allocation
vector n*, we can see that the typical error event occurs when the ratio of the lost packets
on all types of paths is the same as the total fraction of the lost packets, a. However, this

is not the case for any arbitrary RA vector n.

Remark 2.4. An interesting extension of Theorem 2.1 is the case where all types have iden-
tical erasure patterns (u;(z) = ux(z) for V1 < j,k < J and Vz), but different bandwidth
constraints. Adopting the notation of Theorem 2.1, the bandwidth constraint on 7; can
be written as % < W;, where W; is the maximum bandwidth for a path of type j. Let
us define * as the allocation vector which maximizes the objective function of equation
(2.10), and satisfies the bandwidth constraints too. m* is the maximizing vector for the
unconstrained problem, defined in Theorem 2.1. According to equation (2.11), we have
n; =, for V1 < 5 < J. Tt is obvious that n*=n*if n;y < % for all j. In case nj

does not satisfy the bandwidth constraint for some j, 7* can be found by the water-filling
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algorithm. More accurately, we have

W.T
L2 g < Y
;= 1o WT (2.13)
! uY it < B
o

where T can be found by imposing the condition ijl n; = 1. Figure 2.6 depicts water-
filling among identical paths with four different bandwidth constraints. Proof of equa-

tion (2.13) can be found in appendix 2.6.7.

FExample 2.2. Consider the scenario of transmitting a video stream with the DVD quality
(using either MPEG-2 or MPEG-4) over multiple paths of two types. The number of paths
for each type are equal, i.e. 73 = 79 = 0.5. The total number of paths Varies from L = 2 to
L = 8. Both type of paths are modeled as 2-state Gilbert channels Wlth = 2500 ms, in
accordance with [12,17]. Furthermore the average bad burst duration are equal to E =50
ms for the first type and — sz = 100 ms for the second type. The block transmission time
is T' = 200 ms which imposes an acceptable end-to-end delay for the video stream. The
payload of each video packet is assumed to be 5 kb. The end-to-end rate increases linearly
with L such that ”q = 1 Mbps. Hence, the block length equals to N = 40L. The coding
overhead is a = 0.3. Figure 2.5(a) shows Pg of the optimum RA versus L. The optimal
RA, n°P', is found by exhaustive search among all possible allocation vectors. The figure
depicts a linear behavior in semi-logarithmic scale with the exponent of 0.9137, which is
comparable to 0.9256 predicted by (2.11).

In this scenario, let us denote 77 as the value of the first element of n*, given in
equation (2.11). Obviously, 17 does not depend on L. Moreover, nJ* " is defined as the
normalized aggregated weight of type I paths in the optimal RA. Figure 2.5(b) compares
n?P" with it for different number of paths. It is observed that 7" converges rapidly to

as L grows.

2.4 Suboptimal Rate Allocation

In order to compute the complexity of the RA problem, we focus our attention on the
original discrete formulation in subsection 2.2.3. According to the model of subsection 2.3.2,

we assume the available paths are from J types, L; paths from type j, such that Z}']:1 L; =
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Figure 2.6: WaterFilling algorithm over identical paths with four different bandwidth
constraints.

L. Obviously, all the paths from the same type should have equal rate. Therefore, the RA
problem is turned into finding the vector N = (Ny,..., N;) such that Z}]:1 N; = N, and
0 < N; < L;W,T for all j. N; denotes the number of packets assigned to all the paths of

type j. Let us temporarily assume that all paths have enough bandwidth such that N; can

N+J-1
J—1

form (Ni,..., N;) which satisfy the equation Z}']=1 N; = N each representing a distinct

vary from 0 to N for all j. There are ( ) L-dimensional non-negative vectors of the
RA. Hence, the number of candidates is exponential in terms of J.

First, we prove the RA problem is NP [120] in the sense that Pg can be computed in
polynomial time for any candidate vector N = (Ny,..., N;). Let us define PN(k, j) as
the probability of having more than k errors over the paths of types 1 to j for a specific
allocation vector N. We also define Q;(n, k) as the probability of having exactly k errors
out of the n packets sent over the paths of type j. In appendices 2.6.8 and 2.6.9, Q;(n, k)’s
are computed for any general M-state Markov channel model with polynomial complexity.

Hence, we can assume that @);(n, k)’s are precomputed and stored for all n and k and path
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types. Then, the following recursive formula holds for PN (k, 5)

Nj
PGk j) = 2 Qj(N;, i)PN(k—i,j—1) ifk>0
1 if k<0
Ny
PN(k,1) = Qu(Ny,d). (2.14)
i=k+1

To compute PN(K, J) by the above recursive formula, we apply a well-known technique
in the theory of algorithms called memoization [121]. Memoization works by storing the
computed values of a recursive function in an array. By keeping this array in the memory;,
memoization avoids recomputing the function for the same arguments when it is called
later. To compute PN (K, J), an array of size O(K J) is required. This array should be filled
with the values of PN(k, j) for 0 < k < K, and 1 < j < J. Computing PN(k, j) requires
O(K) operations assuming the values of PN (i, j—1) and Q;(N;, ) and Z?ng Q;(N;,1) are
already computed for 0 < i < k. Thus, PN(K,J) can be computed with the complexity
of O(K?%J) if the values of Q;(N;, k) are given for all N; and 0 < k < K. Following
appendix 2.6.9, we note that for each j, Q;(N;, k) for 0 < k < K is computed offline with
the complexity of O(K*L;) + O (MQ%K> Hence, the total complexity of computing
PN(K,J) adds up to

J
NA
ch?Jy+EZC)(K?Lf+APEfAj
j=1 ’

= O(K2))+ Y O (K’L;j+ M*N,K)

j=1

= O (K?’L+ M?KN) (2.15)

—
=

—
=

where (a) follows from the fact that JLV—; < Nj, and the term O(K?2J) is omitted in (b) since
we know that J < L.

Now, we propose a suboptimal polynomial time algorithm to estimate the best path
allocation vector, N?*. Let us define P?*(n,k,j) as the probability of having more than

k errors for a block of length n over the paths of types 1 to j minimized over all possible
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RA’s (N = N°). First, we find a lowerbound P.(n, k, j) for P%!(n, k, j) from the following

recursive formula

0<n]<m11111~%711nL WTJ}ZQJ ;1)
P.(n,k,j) = P.n—njk—i,j—1) ifk>0
1 itk <0
(n,k, 1) Z Q1(n, 1) (2.16)
i=k+1

Using memoization technique, we need an array of size O(NKJ) to store the values of
pe(n,k,j) for0 <n < N,0< k< K,and 1 < j < J. According to the recursive
definition above, computing f’ (n k,7) requires O(N K) operations assuming the values of
Q,;(n;,1) and Pe(n —njk—i,j—1)and Y2 1 @j(nj,1) are already computed for all
and n;. Thus, it is easy to Verlfy that Pe(N , K, J) can be computed with the complexity
of O(N?K?2J) when the values of Q;(n;,4) are given for all 0 < n; < N and 0 < i < n;.
According to appendix 2.6.9, for each 1 < j < J, Q;(n;,7) can be computed for all
0 <n; < Nand 0 < i < n; with the complexity of O(N®L;) + O(MQJX—j). Thus,
computing @;(n;,7) for all 1 < j < J, and 0 < n; < N, and 0 < i < nj , has the
complexity of 37| O(N3L;) + O(M?4- -) = O(N’L + M*N*J). Finally, P.(N,K,J) can
be computed with the total complexity of O(N?K?*J + N3L + M*N?)J).

The following lemma guarantees that P,(n, k, j) is in fact a lowerbound for P (n, k, j).

The proof is given in appendix 2.6.10.
Lemma 2.5. P%'(n k. j) > P.(n, k, 7).

Algorithm 1 recursively finds a suboptimum allocation vector N based on the lower-
bound of Lemma 2.5.

Intuitively speaking, the proposed suboptimal algorithm recursively finds the typical
error event (K;’s) which has the maximum contribution to the error probability, and assigns
the RA (N,’s) such that the estimated typical error probability (P,) is minimized. Indeed,
Lemma 2.5 shows that the estimate used in the algorithm (Pe) is a lower-bound for the
minimum achievable error probability (P%"). Comparing (2.16) and the while loop in
Algorithm 1, we observe that the values of Nj and K can be found in O(1) during the
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Algorithm 1 Proposed Suboptimal RA Algorithm
Require: N, K, J, (L1,...,Ly), Q;(-,-), P.(-,-,")
Ensure: (Nl, o ,NJ)
Initialize j «— J; n « N; k « K;
while j > 1 and £ > 0 do
N; — argmin Z]f’e(n—nj,k—i,j—1)~Qj(nj,i);
0<n; <min {n,|L;W;T|} ;4
K; — argmaXQj(Nj, ) P.(n — Nj, k—i,j—1);
0<i<N;
Updaten<—n—Nj; ke—k—-Kj;;j—j—1,
end while
for m =1to j do
Ny [2]5
end for ’
for m =1 to (n mod j) do
Nm — Nm + 1;
end for

A A

return (Ny,...,Ny);

computation of pe(N , K, J). Hence, complexity of the proposed algorithm is the same as
that of computing P.(N, K, J) which is O(N2K2J + N3L 4+ M2N2J).

The following theorem guarantees that the output of the above algorithm converges to
the asymptotically optimal RA introduced in Theorem 2.1 of section 2.3.2, and accordingly,
it performs optimally for large number of paths. The proof can be found in appendix 2.6.11.

Theorem 2.2. Consider a point-to-point connection over the network with L independent
paths from the source to the destination, each with a large enough bandwidth constraint. The
paths are from J different types, L; paths from the type j. Assume a block FEC of the size
[N, K] is sent during an interval time T. For fived values of y; = %, ng = %, ko = %, T

and asymptotically large number of paths (L) we have

1. B(N,K,J) = PP (N, K, J) = e =51 5u(@)
N.

2. NJ = +o(1)
K _

3. X = +0(1) for a > E{z;}.
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where o = % and u;() are defined in subsections 2.3.1 and 2.3.2. P.(N, K, J) is the lower-
bound for PP (n, k,j) defined in equation (2.16). N is the total number of packets assigned
to the paths of type j by the suboptimal rate allocation algorithm. ny is the asymptotically
optimal RA given in equation (2.11). K; is also defined in Algorithm 1.

Example 2.3. The proposed algorithm is compared with four other allocation schemes
over L = 4 and L = 3 paths in Fig. 2.7. The optimal method uses exhaustive search
over all possible allocations. ‘Best Path Allocation’ assigns everything to the best path
only, ignoring the rest. ‘FEqual Distribution’ scheme distributes the packets among all
paths equally. Finally, the ‘Asymptotically Optimal’ allocation assigns the rates based on
equation (2.11). A DVD-quality video stream with the end-to-end rate of S,., = 3.2 Mbps
is studied in both scenarios of Fig. 2.7. The block transmission time is 7" = 250 ms which
imposes an acceptable end-to-end delay for the video stream. The payload of each packet
is adopted to be 4 kb. Accordingly, the block length would be equal to N = S,.,T" = 200
packets. The FEC coding overhead is fixed at @« = 0.2. The paths follow the 2-state
Gilbert model with t = 2500 ms. However, quality of the paths are different as they have
different average bad burst durations: (a) In the case of 3 paths, the average bad burst of
the paths (Hib’s) are listed as [75 ms, 75 ms £ AJ; (b) In the case of 4 paths, the average bad
burst of the paths (i’s) are listed as [75 ms + £, 75 ms + 22]; As observed, the median of
t of paths is fixed at 75 ms in both scenarios. A represents a measure of deviation from
this median. A = 0 describes the case where all the paths are identical. The larger is A,
the more variety we have among the paths and the more diversity gain might be achieved
using a judicious RA.

As seen, our suboptimal algorithm tracks the optimal algorithm so closely that the
corresponding curves are not easily distinguishable in most cases. However, the 'Asymp-
totically Optimal’ RA results in lower performance since L is relatively small which makes
the asymptotic analysis assumptions invalid. Comparing Fig. 2.7(a) and Fig. 2.7(b), it is
observed that increasing L from 3 to 4 paths reduces the gap between the *Asymptotically
Optimal’ RA and the optimal RA considerably.

When A = 0, the ‘Fqual Distribution’ scheme obviously coincides with the optimal
allocation. This scheme eventually diverges from the optimal algorithm as A grows. How-
ever, it still outperforms the best path allocation method as long as A is not too large.
For very large values of A, the best path dominates all the other ones, and we can ignore

the rest of the paths. Hence, the best path allocation eventually converges to the optimal
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Figure 2.7: Optimal and suboptimal RA’s are compared with equal distribution and best
path allocation schemes for different values of A: (a) L =3, (b) L = 4.

scheme when A increases.

2.5 Conclusion

In this chapter, we have studied the performance of Forward Error Correction over a
block of packets sent through multiple independent paths. Adopting MDS codes, the
probability of irrecoverable loss (Pg) is shown to decay exponentially with the number of
paths. Furthermore, the rate allocation (RA) problem across independent paths is studied.
It is shown that in the asymptotically optimal RA, each path is assigned a positive rate
iff its quality is above a certain threshold. Finally, the RA problem is studied for any
arbitrary number of paths. A heuristic suboptimal algorithm is proposed which computes
a near-optimal allocation in polynomial time. For large values of L, the result of this
algorithm is shown to converge to the optimal RA. Simulation results verify the validity
of the theoretical analysis in several practical scenarios and also show the near-optimal

performance of the proposed suboptimal algorithm.
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2.6 Appendices

2.6.1 Probability Distribution of B;

First, we compute the distribution of B; for the 2-state Gilbert model. We denote the
values of B; with the parameter ¢ to emphasize that they are expressed in the unit of time.
Here, we focus on one path, for example path 1. Therefore, the index ¢ can be temporarily
dropped in analyzing the probability density function (pdf) of B;.

We define the events g and b, respectively, as the channel being in the good or bad
states at the start of a block. Then, the pdf of B can be written as

fB(t) = fap(t)m + fBlem,- (2.17)

Let NI denote the number of consecutive states the channel experiences during the interval
T. For instance, NI = 3 means that the channel switches its state twice in a block

transmission time. Now, we define fj;,(t) as

. Pt <B<t+6& NI =mlb
fB|b(t):(l$1m { 5 } (2.18)

—0

[5,(t) can be defined similarly.

For m = 1, due to the memoryless nature of the exponential distribution, we have

fop(t) = o(t—T)e "
f,(t) = o(t)e T, (2.19)

For odd values of m > 1, let 7; to 7, denote the times the channel spends in different
m+1 m—1
states. If the channel starts from the bad state, we have >, % m;1 =t and >, 2 T =

T —t. Thus fj,(t) can be written as

m—2
m — —HbTL —HgT2 —HgTm—1 ,—HbT: :
fBb(t)—/ pe T e et e T
D .
=1

m—1 m—1

:lub 2 Mb 2 e_Hbte_Mg(T_t)AmTil (t)Amfiﬂ (T - t)

2

(2.20)
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where D and A(t) are defined as

m+1
2
D = (Tl,...,Tm) \V/ilTi>0,ZTQi_1:t,
=1
m—1
2
ZTQi =T -t y
=1
Ak(t) = / / dzldzk
z;>0 Zlezigt

It is easy to observe that Ag(t) is the volume of a k-dimensional simplex with the edge of

length ¢. By mathematical induction on k, it can be shown that A.(t) = Z—k, Therefore,
making similar arguments for the even values of m, we have
) g (T 0) %y
() (752)!
for m odd
TBip(t)= m_
Blb (potpg (T —t))2 ' e~ Mt g—ng(T—1)
(-1 - )
for m even
Based on similar arguments, fp g(t) can be written as
()% (g (T =)™
b pren oy e HvteTHa
() ()
for m odd
fBig(t)= m_
T et @ )E
(5 -0z -1)!
for m even
Having f7,(t) and fp (¢) for all m, we can write
Fan(®) = Y ()
m=1
Fo(t) = D fai,(): (2.21)
m=1

Combining the above equations with (2.17), fp(t) can be computed. Noting the factorial
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terms in the denominator of f,(t) and fzi (f) and the fact that max{¢t,T —t} = T
for 0 < ¢ < T, it can be verified that both fg},(¢) and fg) () decrease very rapidly for
mT—S > max{7T, u,I}. Therefore, in the practical cases, we do not need to compute an
infinite summation to get a close approximation of fg(t).

For the Extended Gilbert model, the pdf of B can be computed as follows. Here,

equation (2.17) should be replaced with fz(t) = fa1,(t)Tg+>m 1" fap: (t)7,. Moreover, for
any specific sequence of state transitions (7, ..., 7,) of length m, similar to the argument
of equation (2.20), it can be shown that fg,(71,...,7,) only depends on the summation

of 7,’s which belong to the same state. Accordingly, similar to (2.21), fap,(t) and fp4(t)
can be recomputed by summing over all lengths m and all state transition sequences of

length m.

2.6.2 Proof of Lemma 2.1

1) We define the function v(\) as

v(\) = %. (2.22)
Then, the first derivative of v(\) will be
9] _ E{z?eM}E{eM} — [E{ze*})?
() = B[] . (2.23)

According to Cauchy-Schwarz inequality, the following statement is always true for any

two functions of f() and g()

(/x f(x)g(:v)d:v)2 < /fo(m)dm/ng(x)dx (2.24)

unless f(r) = Kg(z) for a constant K and all values of z. If we choose f(z) = 1/22Q(z)e**
and g(z) = \/W, they can not be proportional to each other for all values of z.
Therefore, the numerator of equation (2.23) has to be strictly positive for all A. Since
the function v()) is strictly increasing, it has an inverse v~!(a) which is also strictly

increasing. Moreover, the non-linear equation v(\) = « has a unique solution of the form

A=0v"a)=I(a).
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2) To show that [(cv = 0) = —o0, we prove an equivalent statement of the form hm v(A) =

0. Since z is a random variable in the range [0, 1] with the probability den81ty function

Q(z), for any 0 < € < 1, we can write

N x)‘d 1 x)\d
lim v(\)= lim Jo 2Q(z)e : z+ [0 2Q(z)e™ dx
Ao Amoo Jy Q(x)exrdx
.y 2Q(x)e™ N dx fel 2Q(x)dx
< lim -
Ao—oo [CQ(x)etrdr  [5 Q(x)elr=Ndx
@ im Jo 37@ Je A dx
A——00 f() ew)\dx

® i $1Q($1) Ao
A——oo  Q(x9)er?2

(2.25)

for some x1, 29 € [0,€]. (a) follows from the fact that for z € [0, €], (x — €)X — +o00 when
A — —oo, and (b) is a result of the mean value theorem for integration [57]. This theorem

states that for every continuous function f(z) in the interval [a, b], we have

d o € [a,b] st /f Ydx = f(x0)[b— a]. (2.26)

Equation (2.25) is valid for any arbitrary 0 < ¢ < 1. If we choose € — 0, z1 and x5 are

both squeezed in the interval [0, €]. Thus, we have

. 21Q(xy)eM
Jim o)< il R =l =0 227)

Based on the distribution of x, v()) is obviously non-negative for any A. Hence, the

inequality in (2.27) can be replaced by equality.
3) By observing that v(A = 0) = E{x}, it is obvious that I(a = E{z}) = 0.

4) To show that I(a = 1) = 400, we prove the equivalent statement of the form lim v(\)

A——+00

=1 Forany0<e<landz €[l —¢1], (xt—1+ €A — +oo when A — +oo. Then,
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defining ( = 1 — ¢, we have

fo 1Q(z)e" Nz < lim fo rQ(x

- (2.28)
’\*JFOO f Q(z e“dx A—”roof Q(z)el= CAdx

Since the fraction in (2.28) is obviously non-negative for all A, this inequality can be

replaced by an equality. Similarly, we have

x)\d
e Y < lim fo ~0. (2.29)
/\HJFOOf x@ et dx AH%O[ 1Q(x)e=Ordx

which can also be replaced by equality. Now, the limit of v(\) is written as

lim v(\) = lim Jy 1Q@)eNdz + [ 2Q(x)eda
A—+oo A—-+oo fol Q(r)e" dx

(a) lim fc ZL’Q x)\dl'
A—400 f Q ex/\daj

1
of fo (z)e™ dx + fcl Q(z)e™dx
=2 lim

A—too fl 1Q(z)e* dx

-1
A—’+°°f xQ em’\dx

@( lim Q@l—)em) B (2.30)

A—+o00 ToQ)(1g)e¥2?

for some z1, 25 € [1 —¢,1]. (a) follows from equation (2.28), and (b) is valid since the final
result shows that limy_, o v(\) is finite and non-zero [57]. (c¢) follows from equation (2.29),
and (d) is a result of the mean value theorem for integration. If we choose ¢ — 0, x; and

x9 are both squeezed in the interval [1 — ¢, 1]. Then, equation (2.30) turns into

x1 -1 -1
lim v(\) = ( lim lim Q(xl—)e’\> = (lim i) =1

A—+00 A—+00 €0 LoQ)(19)e2A e—0 Ty
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5) According to equations (2.4) and (2.5), the first derivative of u(«) is

B (o)  E{we*}ol(a)
Ja =le)+a da E{e*} da = Ua).

2.6.3 Proof of Lemma 2.2

Based on the definition of probability density function, we have

o
Jim g (7,(0)
lim —%log <lim Ply>a} —Ply>a+ 5}>

L—oo 60— 0 )

a 1 P —P

@ Jim Jim ——log( v >af {y>a+5})
§— 0L—oo L 5

vV

|
(shm Lhm i (—log (P{y > a}) +logd)

— 0 L—oo

—~
=

= u(a) (2.31)

where (a) is valid since log is a continuous function, and both limitations do exist and are
interchangeable. (b) follows from equation (2.6). The exponent of f,(«) can be upper-
bounded as

) 1
Jim — log (£,(0)
(@)

@ i i —log (P{y > a} —P{y > a+4}) + logd
6— 0 L—oo L
®  —log (e lul@td _ =
< lim lim
6— 0 L—00 L
. ) log (1 —e”
BT

9 ula) + ¢ (2.32)

L(u(a+5)—e)) + log 5

Lx)

where x = u(a + §) — u(a) — 2¢. Since u(w) is a strictly increasing function (Lemma 2.1),
we can make y positive by choosing € small enough. (a) is valid since log is a continuous
function, and both limits do exist and are interchangeable. (b) follows from the definition

of limit if L is sufficiently large, and (c) is a result of x being positive. Selecting e arbitrarily
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small, results (2.31) and (2.32) prove the lemma.

2.6.4 Proof of Lemma 2.3

According to the definition of infimum, we have

L loa(H(L)
L—oo L
1 —rinf h(x)
>  lim ——log <e S /dx)
L—oco L S
@ igf h(x). (2.33)

where (a) follows from the fact that S is a bounded region. Since h(x) is a continuous
function, it has a minimum in the bounded closed set cl(S) which is denoted by x*. Due
to the continuity of h(x) at x*, for any € > 0, there is a neighborhood B(¢) centered at
x* such that any x € B(¢) has the property of |h(x) — h(x*)| < e. Moreover, since S is a

convex set, we have vol (B(e) NS) > 0 . Now, we can write

L loa(H(L)
L—oo L

1
lim ——log (/ e‘Lh(x)dX)
L—oo L SNB(e)

1 x
lim —— log <€L(h(x HG)/ dx)
L—oo L SPB(e)

= h(x*) +e. (2.34)

IN

IN

Selecting € to be arbitrarily small, (2.33) and (2.34) prove the lemma.

2.6.5 Proof of Lemma 2.4

According to Lemma 2.1, w;(x) is increasing and convex for V1 < j < J. Thus, the

objective function f(3) = Z‘jjzl vjuj(%) is also convex, and the region Sy is determined
J

by J convex inequality constraints and one affine equality constraint. Hence, in this case,

KKT conditions are both necessary and sufficient for optimality [122]. In other words, if
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there exist constants ¢; and v such that

ﬁlj(@)—cbj—V:O vi<j<J (2.35)
J J
¢; [ME{x;} — 3] =0 vi<j<J (2.36)

then the point 8* is a global minimum.

Now, we prove that either 87 = n;E{z;} for all 1 < j < J, or 87 > n;E{z;} for
all 1 < 5 < J. Let us assume the opposite is true, and there are at least two elements
of the vector 8%, indexed with & and m, which have the values of §; = nE{x;} and
Br, > nmE{x,}, respectively. For any arbitrary € > 0, the vector 8 can be defined as

below
Brte ifj=k
Brr=q Br—c ifj=m (2.37)
B; otherwise.

Then, we have

1 FB) = £(8)

e—0 €

1 * *
= lim-— {’quk (ﬁk - 6) + Vi Um (ﬁm 6)
e—0 € Nk N
()}
—YmUm | —
Mk
@ . Tk (ﬁz + 6’) Y (ﬁ% + 6”)
= lim —1}, -l | 2
=0 Mg Nk Nm Nm

__m 5_m) 0 2.38
nmm(nm = (2.38)

where €€ € [0,¢], and (a) follows from the Taylor’s theorem. Thus, moving from B~
to 3 decreases the function which contradicts the assumption of 8* being the global
minimum.

Out of the remaining possibilities, the case where 35 = n;E{z;} (V1 < j < J) obviously
agrees with Lemma 2.4 for the special case of v = 0. Therefore, the lemma can be
proved assuming 35 > n;E{z;} (V1 < j < J). Then, equation (2.36) turns into ¢; = 0
(V1 < j < J). By rearranging equation (2.35) and using the condition ijl B = a,
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Lemma 2.4 is proved.

2.6.6 Proof of Theorem 2.1

Sketch of the proof: First, it is proved that 7 > 0 if E{z;} < a. At the second step, we
prove that 5 = 0, if E{z;} > a. Then, KKT conditions [122] are applied for the indices
1 <k < J where E{z;} < « to find the maximizing allocation vector, n*.

Proof: The parameter v is obviously a function of the vector 1. Differentiating equa-

tion (2.9) with respect to 7 results in

<V77k> Vilk (Wk)
V| — | + —
o Yk Yk Yk (2.39)
o S (1)
=\

where v;(z) = lj_l(x), and v(r) denotes its derivative with respect to its argument. The

objective function can be simplified as

Z%Ua —j* Z%ug (vg mﬂ))- (2.40)

*

v* is defined as the value of v corresponding to n*. Next, we show that v* > 0. Let

us assume the opposite is true, i.e., v* < 0. Then, according to Lemma 2.1, we have

Uj(y;;?j ) < E{x;} for all j which results in g(n*) = 0. However, it is possible to achieve

a positive value of g(n) by setting n; = 1 for the one vector which has the property of

E{z;} < a, and setting n; = 0 for the rest. Thus, #* can not be the maximal point. This
contradiction proves the fact that v* > 0.

At the first step, we prove that n; > 0 if E{z;} < a. Assume the opposite is true for
an index 1 < k < J. Since Z}]:1 77; = 1, there should be at least one index m such that
ny, > 0. For any arbitrary e > 0, the vector n** can be defined as below

€ ifj==k
=9 m—e€ ifj=m (2.41)
ny otherwise.
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v** is defined as the corresponding value of v for the vector 7**. Based on equation (2.39),
we can write

V=t = (2.42)

Then, we have

@ {Um (szm) _ E{mk}} (2.43)

where (a) follows from (2.42). If the value of (2.43) is positive for an index m, moving in
that direction increases the objective function which contradicts with the assumption of
n* being a maximal point. If the value of (2.43) is non-positive for all indices m whose
ny, > 0, we can write

J * ok
E{ai} > Y 150 (”777’”) _ (2.44)
m=1

m

which obviously contradicts the assumption of E{x} < .
At the second step, we prove that 7 = 0 if E{z;} > a. Assume the opposite is true
for an index 1 < r < J. Since Z}Ll n; = 1, we should have i <1 for all other indices s.
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For any arbitrary € > 0, the vector 1*** can be defined as

ny—e ifj=r
ny otherwise.

*kk

v*** is defined as the corresponding value of v for the vector n***. Based on equation (2.39),
we can write

* ok * ok K ok
_ € {vr<” nr)ijan;(V m)
nx? Vg Yr Vr Yr

-y (” m) _ Py (” ”)} +0(). (2.46)
Vs Vs Vs

Then, we have

lim
e—0 €
_ i L {V*%i / (V*nz ) vt (V*n: )
= lim - U, € — v, €
=0 ¢ Vs Vs Vr Vr
J *2 -
; vn=
+ v Av Z TILU; < T,]J > + O(€%)
o= a7 Y

@ V*{UT (” 77’”) _ (” 77)} (2.47)
P Vs

where (a) follows from (2.46). If the value of (2.47) is positive for an index s, moving in
that direction increases the objective function which contradicts with the assumption of

n* being a maximal point . If the value of (2.47) is non-positive for all indices s whose

ny > 0, we can write

* ok J K ok
Bla) <o (25) < 3w () —a (2.18)
Yr g

s=1

which obviously contradicts the assumption of E{xz,.} > «a.
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Now that the boundary points are checked, we can safely use the KKT conditions [122]
for all 1 < k < J, where E{z;} < «, to find the maximizing allocation vector, n*.

m (V0 Ov
vj 8_ |V:V*
Vi Vj Mk

j= 1

—~

a)

:_ﬂ/vk(f;%) (2.49)

where ( is a constant independent of k, and (a) follows from (2.39). Using the fact that
Z}]:1 n; = 1 together with equations (2.9) and (2.49) results in

= —av*

= > e, (2.50)

E{z;}<a

A

Combining equations (2.49) and (2.50) results in equation (2.11) and g(n*) = Z}]:1 yiju; ().

2.6.7 Proof of Remark 2.4

Based on the arguments similar to the ones in appendix 2.6.6, it can be shown that 77 = 0
iff E{z;} > a. Since all the types are identical here, this means 777 > 0 for all j. Similar
to equation (2.49), applying KKT conditions [122], gives us

W,T
¢ i< 2
(ﬁ@) " (2.51)
(% = .
i TW.T
—(—o; ifi = iVt
No

)

where ¢;’s are non-negative parameters [122]. Putting T = proves equation (2.13).

2.6.8 Discrete Analysis of One Path

Q(n, k,1) is defined as the probability of having exactly k errors out of the n packets sent
over the path [. To compute Q(n, k,[) for any general M-state Markov model, the following

parameters are required: 1) a M x M matrix IT with the elements 7y, which represents
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the channel transition behavior. 7y, is the probability of the channel being in the state s’
provided that it has been in the state s when the last packet was transmitted; 2) a vector
a = (q1,--.,qu) where g; denotes the probability of having erasure conditioned on being
in the state s.

For Vs e {1,..., M}, m is defined as the steady state probability of being in the state
s. Obviously, the steady state probability vector « = (71, ..., 7)) can be computed using
the equation set 7 = Il7 and Zi\il s = 1.

Depending on the initial state of the path [, Ps(n,k,!) is defined as the probability of
having k errors out of the n packets sent over this path when we start the transmission in

the state s. It is easy to see that
Q(n, k,1) Zws (n, k,1). (2.52)

P;(n, k,1) can be computed from the following recursive equation

P,(n, k1) quﬂ's/|8 w(n—1,k—1,1)+
s'=1
M
Z(l _QS) 7-‘-s’\sps’<n_ Lk,l) (253)
s'=1

with the initial conditions

P,n,k,l)=0 fork>n
Py(n,k,1)=0 for k<0
Pin,k,l)=1 fork=n=0. (2.54)

According to the recursive equations in (2.53), to compute Ps(n, k,l) by memoization
technique, the functions Ps() should be calculated at the following set of points denoted
as S(n, k)

Sn,k)={(n,K)|0<K <k, n'—n+k <k <n'}.

Cardinality of the set S(n, k) is of the order |S(n, k)| = O (k(n — k)). Since O(M) oper-

ations are needed to compute the recursive functions Ps() at each point and M functions
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Pi(n,k,1) (s =1,..., M) have to be computed, Ps(n, k,) is computable with the complex-
ity of O (M?k (n — k)) which give us Q(n,k,[) according to equation (2.52). It is worth
mentioning that if the M-state extended Gilbert model is adopted, the computational
complexity of obtaining Q(n, k,[) would be reduced to O (Mk (n — k)).

2.6.9 Discrete Analysis of One Type

When there are n packets to be distributed over L; identical paths of type j, uniform
distribution is obviously the optimum. However, since the integer n may be indivisible by

L;, the L; dimensional vector N is selected as

LLEJ +1 for 1 <l < Rem(n,L,)

J

. (2.55)
LLEJ for Rem(n, L;) <1 < L,

j
where Rem(a, b) denotes the remainder of dividing a by b. N represents the closest integer
vector to a uniform distribution.

EN(E, 1) is defined as the probability of having exactly k erasures among the n packets
transmitted over the identical paths 1 to [ with the allocation vector N. According to the
definitions of Q;(n, k) and EN(k,1), it is obvious that Q;(n, k) = EN(k, L;). EN(k,l) can

be computed recursively as

EN(k, 1) = Y EN(k—i,l—1)Q(Nyi,1)
EN(E1) = 5(N1,k,1) (2.56)

where Q(V;,1,1) is given in appendix 2.6.8. Since all the paths are assumed to be identical
here, Q(Ny, k,1) is the same for all path indices, I. According to the recursive equations
in (2.53), the values of Q(V;,7,1) for all 0 < ¢ < kand 1 <[ < L; can be calculated with the
complexity of O(M?Nik) = O (MzLﬂjk) According to the recursive equations in (2.56),
computing EN(k, ) requires memoization over an array of size O(kl) whose entries can be
calculated with O(k) operations each. Thus, EN(k,[) is computable with the complexity
of O(k?1) if Q(N;,i,1)’s are already given. Finally, noting that Q;(n,k) = EN(k, L;), we
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can compute @Q;(n, k) with the overall complexity of O(k*L;) + O <M2Lﬂ]k:>

2.6.10 Proof of Lemma 2.5

A

The lemma is proved by induction on j. The case of j = 1 is obviously true as P.(n, k,1) =
P°P'(n,k,1). Let us assume this statement is true for j = 1 to J — 1. Then, for j = J, we

have

A

P.(n,k,J)

,\
INs

Ny
> QN i) Pu(n = NPk —i,J — 1)
=0

INE

Ny
> QNP P (n— NPk —i,J - 1)
=0

Ny

> QNP PN (k—i,J — 1)

1=0

= PNk, J) = P (nk,J)

INZ

—
=

where NP denotes the optimum allocation of n packets among the .J types of paths such
that the probability of having more than k lost packets is minimized. (a) follows from
the recursive equation (2.14), and (b) is the induction assumption. (¢) comes from the
definition of P (n, k,l), and (d) is a result of equation (2.16).

2.6.11 Proof of Theorem 2.2

Sketch of the proof: First, the asymptotic behavior of Q;(n,k) is analyzed, and it
is shown that for large values of L; (or equivalently L), equation (2.60) computes the
exponent of Q;(n, k) versus L. Next, we prove the first part of the theorem by induction
on J. The proof of this part is divided to two different cases, depending on whether % is
larger than E{x,} or vice versa. Finally, the second and the third parts of the theorem
are proved by induction on j while the total number of path types, J, is fixed. Again, the
proof is divided into two different cases, depending on whether % is larger than E{z;} or
vice versa.

Proof: First, we compute the asymptotic behavior of Q;(n, k) for k > nE{x;}, and n
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growing proportionally to L;, i.e. n =n/L;. Here, we can apply Sanov’s Theorem [113,123]

as n and k are discrete variables and n’ is a constant.

Sanov’s Theorem. Let X1, Xs,..., X, be i.i.d. discrete random variables from an al-
phabet set X with the size |X| and probability mass function (pmf) Q(x). Let P denote
the set of pmf’s in RI* je P = {P € R P(i) >0, Zlﬂ P(i) = 1}. Also, let Py,
denote the subset of P corresponding to all possible empirical distributions of X in L ob-
servations [123], i.e. P, = {P € P| Vi, LP(i) € Z}. For any dense and closed set [119]
of pmf’s E C P, the probability that the empirical distribution of L observations belongs
to the set E 1is equal to

P{E} =P{ENP,} = LPFIQ (2.57)
where P* = argmin D(P||Q) and D(P||Q) = Y1} P(i) log 59

PcE )

Focusing our attention on the main problem, assume that P is defined as the empirical
distribution of the number of errors in each path, i.e. for Vi, 1 < i < n/, P(i) shows
the ratio of the total paths which contain exactly ¢ lost packets. Similarly, for Vi, 1 <
i < n', Qi) denotes the probability of exactly i packets being lost out of the n’ packets
transmitted on a path of type j. The sets E and E,,; are defined as follows

E = {PeP| iiP(i) > 3} (2.58)

Eout = {PEP|ZZP(Z):ﬁ}

k
where § = —. Noting E and E,,, are dense sets, we can compute Q;(n, k) as
n

u ® -r; min D (P||Q)
Qj(n7k) (:) ]P){Eout} =e ’ PEEout

(2.59)
where (a) follows from the definition of @);(n, k) as the probability of having exactly k
errors out of the n packets sent over the paths of type j given in section 2.4, and (b) results
from Sanov’s Theorem.

Knowing the fact that the Kullback Leibler distance, D(P||Q), is a convex function

of P and Q [124], we conclude that its minimum over the convex set E either lies on an
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interior point which is a global minimum of the function over the whole set P or is located
on the boundary of F. However, we know that the global minimum of Kullback Leibler
distance occurs at P = Q ¢ E. Thus, the minimum of D(P||Q) is located on the boundary
of E. This results in

@ -1, min D (P||Q
Qjn, k) = e ! PEEous (PllQ)

. k
~r;min D (P||Q) ®) v, Lu;(—
min D (PlQ) @ vt (2:60)

= e
where (a) and (b) follow from equations (2.59) and (2.6), respectively.

2.6.11.1 First Part of Theorem

We prove the first part of the theorem by induction on J. When J = 1, the statement is
correct for both cases of & > E{z} and & < E{z1}, recalling the fact that P.(n,k,1) =
PP (n,k,1) and uy(x) = 0 for < E{x1}. Now, let us assume the first part of the theorem
is true for j = 1 to J — 1. We prove the same statement for J as well. The proof can
be divided into two different cases, depending on whether £ is larger than E{x,} or vice

versa.

K
Case 1: N E{z,}

According to the definition, the value of P.(N, K, J) is computed by minimizing Yoty
Qs(ny,i)P.(N —ns, K —i,J —1) over ny (see equation (2.16)). Now, we show that for
any value of ny, the corresponding term in the minimization is asymptotically at least
equal to PP"(N,K,J). ny can take integer values in the range 0 < n; < N. We split
this range into three non-overlapping intervals of 0 < n; < eL, eL <n; < N(1 —¢), and
N(1 —€) < ny < N for any arbitrary constant e < min {v;,1 — £}, The reason is that
equation (2.60) is valid in the second interval only, and we need separate analyses for the
first and last intervals.

First, we show the statement for eL <n; < N(1 —¢€). Defining i; = [n,% |, we have

iy K1
TLJ_N—’_O(L)’
K—-i; K 1

~ 2 40:= 2.61

N n, ~ TO(7) (2.61)
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as € is constant, and K = O(L), N = O(L). Hence, we have

> Qi(ng ))Pu(N —ny K —i,J — 1)
1=0

> QJ(nJ,iJ)pe<N—TLJ,K—iJ,J—1)

J
K |
() Lz;”j“j (N 0 (Z))
= e ji=

J
K
®) ’LZ 13t (N)
e J=1

(2.62)

where (a) follows from (2.60) and the induction assumption, and (b) follows from the fact
that w;()’s are differentiable functions according to Lemma 2.1 in subsection 2.3.1.

For 0 < n; < €L, since € < v, the number of packets assigned to the paths of type J
is less than the number of such paths. Thus, one packet is allocated to n; of the paths,
and the rest of the paths of type J are not used. Defining 7, ; as the probability of a path
of type J being in the bad state, we can write

1
—nJlog(—>
QJ(TLJ,RJ) = WZ‘} =€ To,J . (263)

Therefore, for 0 < n; < eL, we have

ngy
ZQJ(nJ,i)pe(N —ns, K—1,J—-1)
i=0

~

QJ(”J,TLJ)Pe(N —-ny, K—ny J— 1)
J—1
K — ny 1
_LZ’)/JUJ <N—nJ> —TLJIOg (E)
= e J=1 ’
J-1
K 1
@ 7LZ:7juj (N) — Lelog (E)
e J=1 '
J—1 J
K K
® —LZ%’W <N) —LZ%’% <N)
Jj=1 > e Jj=1

= e

v

(2.64)
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where (a) follows from the fact that ]KV%ZJ < & and (b) results from the fact that we can
select € arbitrarily small.

Finally, we prove the statement for the case ny > N(1 — ¢€). In this case, we have

nJj
> Quny )P(N —ny, K —i,.J - 1)
=0

Z QJ(nJaK)p6<N_nJ7O7J_1>

L A
o —Lyug | ————
@ AN (1=

e
J
K
23 ()
j=1

V=

e (2.65)

where (a) follows from the fact that e <1 — £ and P.(n,0,j) =1, for all n and j. Setting
e small enough results in (b).
Inequalities (2.62), (2.64), and (2.65) result in

J
LY u ()
j=1

A

P.(N,K,J) > e (2.66)

Combining (2.66) with Lemma 2.5 proves the first part of Theorem 2.2 for the case when
% > E{IJ}

K
Case 2: ¥ < E{z,}

K
Similar to Case 1 (N > E{xz,}), we show that for any value of 0 < n; < N, the
corresponding term of the minimization in equation (2.16) is asymptotically at least equal
to PP"(N, K, J). Again, the range of n; is partitioned into three non-overlapping intervals.

For any arbitrary 0 < € < min {ny, 1- %, %}, and for all n; in the range of eL < n; <
N(1 —¢€), we define iy as iy = [njE{z;}]. We have

U E{a) 40 (%) > E{z,}

ny
K—i, K 1
— 10| = 2.67
N-n, ° N <L) (2.67)
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Hence,

ng
ZQJ(NJ,i)pe(N—nJ7K—i,J—1)
=0

~

> Qi(ngig)Pe(N —ns K —iy,J —1)

i S K —i

J — g
@ L (n_J) — L (m)
= e Jj=1

1

w —Lysug (E{QJJ} + 0 (z>)
> e .

J-1
K 1
X (50 (2))
e J=1
J
K
o0 ()
e =t

(2.68)

where (a) follows from (2.60) and the induction assumption, and (b) is based on (2.67). (c)
results from the facts that u;()’s are differentiable functions, and we have u; (E{x;}) =0,
both according to Lemma 2.1 in subsection 2.3.1.

For 0 < n; < €L, the analysis of the Case 1 and inequality (2.64) are still valid. For
ny>(1—¢€)N, weset iy =[E{x;}n;]. Now, we have

iy >nsE{z;} > (1 —e)NE{z,;} > (1 - ¢)K. (2.69)
The above inequality can be written as
K—-ij<eK <1 (2.70)

since € < % Noting that K and i; are integer values, it is concluded that K < i;. Now,
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we can write

nj
ZQJ(nJ;i)pe(N_nJ,K_i,J_ 1)
=0

A

Qy(ny,if)P.(N —ny;, K —iy, J—1)

>
() :
= QJ(nJaZJ)
1
. —L’}/JUJ <E {l‘J} -+ —)
> e nJ
® —L E{z;} + !
D Youg oy (1 — e) N

1
—L’yJUJ (E {JZJ} +0 (Z) ()
=1

= e

(2.71)

where (a) follows from the fact that K < iy, and P.(n,k,j) = 1, for k < 0. (b) and (c)
result from n; > (1 — €)N and uy (E{z;}) = 0, respectively.
Hence, inequalities (2.64), (2.68), and (2.71) result in

J
LYy (a)
j=1

A

P.(N,K,J) > e (2.72)
which proves the first part of Theorem 2.2 for the case of % < E{z;} when combined with

Lemma 2.5.

2.6.11.2 Second and Third Parts of Theorem

We prove the second and the third parts of the theorem by induction on j while the total
number of types, J, is fixed. The proof of the statements for the base of the induction,
j = J, is similar to the proof of the induction step, from 7 + 1 to j. Hence, we just give
the proof for the induction step. Assume the second and the third parts of the theorem
are true for m = J to 7 + 1. We prove the same statements for j. The proof is divided

K

into two different cases, depending on whether % is larger than E{x;} or vice versa.
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Before we proceed further, it is helpful to introduce two new parameters N’ and K’ as

J
N' = N- N;
=j+1
K = K- ) K
m=j+1

According to the above definitions and the induction assumptions, it is obvious that

K K
NN +o(l) =a+o(1). (2.73)
K
Case 1: ~ E{z;}
First, by contradiction, it will be shown that for small enough values of € > 0, we have

Nj > eN'. Let us assume the opposite is true, i.e. Nj < eN'. Then, we can write

P.N'", K’ j)
N;

@ Y PN = N, K’ — i, j — 1)Q;(N;, i)
1=0

> p(N N JK'—Nj, j— )QJ( )

N;
©»o —LZw( _Nj)

1
© —Lnyg (1 — Z 777n> elog( bj)
e .

r=j+1
]_1 K/
Y ()
e r=1
J
(d) _LZ’WT (a)
> e r=1 (2.74)

where (a) follows from equation (2.16) and step (2) of our suboptimal algorithm, (b) results
from the first part of Theorem 2.2, and (¢) can be justified using arguments similar to those

of inequality (2.64). (d) is obtained assuming e is small enough such that the corresponding
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term in the exponent is strictly less than Lv;u; (%) and also the fact that % =a+o(1).
The result in (2.74) is obviously in contradiction with the first part of Theorem 2.2, proving
that Nj >eN'.
Now, we show that if N; > (1 — €)N for arbitrarily small values of ¢, we should have
Nj

E{z,} > aforall 1 <7 < j—1. Insuch a case, we observe 37 = 14 o(1), proving the

second statement of Theorem 2.2. To show this, let us assume N; > (1 — ¢)N’. Hence,

N
PQ(N/,K/,j) :Zpe<N/ _Nj7K/ _Z,] - 1)QJ<NJ7Z>

0
épe(N/ - Nj>07j - 1)Qj(Nj’K/)

F Y
S e~ (25w7) 2 o Lajuslacto(1) (2.75)

where (a) follows from the fact that P.(n,0,) = 1, for all values of n and j, and the fact
that N; > (1—€)N’. (b) is obtained by making e arbitrarily small and using equation (2.73).
Applying (2.75) and knowing the fact that P,(N', K',j) = e~ S1-17ur(@) | we conclude that
E{z,} > a, for all values of 1 <r < j —1.

~

P.(N',K',j) can be written as

P.(N'.K',j)
N;
_ . / . /_ . . _ .
= ogr]l\}jlgN’ 3 P.(N"— N;,K' — 1,7 — 1)Q;(N;, 1)
(a)
= min max

eN'<N;<(1—e)N'  0<i<N;

pe(N/ - NjaK/ _27] - 1)QJ(NJ7Z)

I-=

min max
EN’SNjS(l*G)N’ E{x]’}N]‘<’i§Nj

i A K —i
-t (55) -1 2 ()

e r=1
—L max min  My(i, N;)
- eN'<SN;<(1—e)N'  E{a;}N;<i<N;,
(¢ —L max min M.(B;, \;
ﬁ) e SAS(-e)  Efzi}<fi<h (5 ])‘ (2.76)
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where M;(i, N;) and M.(0;, ;) are defined as
i A K —i
) = o () S (2)
5 a—p,
M6(6j7>‘j) = U <)\_] +Z’YTUT 1— )\]‘ .
J r=1 J

In (2.76), (a) follows from the fact that N, is bounded as e N’ < N; < (1—¢€)N’. (b) results
from equation (2.60), P.(n, k, j) being a decreasing function of k, and the fact that we have
Q;(N;, i) <1 =Q;(N;,E{x;} N;) for i <E{x;} N;. 8; and \; are defined as §; = % and
A= % (c) is a result of having M.(3;,\;) = My(i, N;) + O (1). Hence, the discrete to

continuous relaxation is valid.

Let us define (ﬁ], ;‘) as the values of (3;,\;) which solve the max-min problem in

(2.76). Differentiating M.(5;, A;) with respect to 3; and A; results in

TN (A T S
AN 1—Xx

r=1,
E{z,}<(¢
. ﬂ l 5* Jj—1 ,-)/T(O./ - ﬂj)l (
r=1, J
E{z,}<(¢
* j—1 *
7J ﬁ r 8ﬁ]
=1 — —, —|x=ax
3 (%) > RO | gy
E{z,}<(
here ¢ = 2= Solving the ab ions gives the uni i lution (3%, \*
where ¢ = e olving the above equations gives the unique optimum solution ( 28 ])
J
as

5 = aX
1.
N pp—L 1 (2.77)
J
Y L(a)
r=1,a>E{z,}
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Hence, the integer parameters Kj, Nj defined in the suboptimal algorithm have to satisfy
% = 7 +o(1) and % = A; +o(1), respectively. Based on the induction assumption, it is
easy to show that

J

Z Yoty (@)

N’ r=1E{z,}<a

Z Yty ()

r=1E{z,}<a

which completes the proof for the case of E {z;} < £.
K
Case 2: ¥ < E{z;}
In this case, we show that % = 0(1). Defining i; = [E{z;}N;], we have

A~

K'—i; N
— J —a— (E{z;} —a)—L— +0(1 2.79
o =0 () e o) 279

using equation (2.73). Now, we have
P.(N', K", j)

N;
Y PN = N, K' —i,j — 1)Q;(N;, i)

7

>l

0
W(N' = Ny, K’ — iy, j — 1)Q (N, ij)
o~ Lvju; (E{z;} +0(1)) .

Jj—1 N
j
_L;%ur (a — (E{x;} — a)N/ = N)

J

—LY» vu | a— (E{z,;} — oz)—jA>
£ N —N

J

2V
gy

(&

= e

(2.80)

where (a) follows from the first part of Theorem 2.2 and (2.60). On the other hand,
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according to the result of the first part of Theorem 2.2, we know that

~

j—1
_Lz%‘ur ()
PN, K'.j)=e = ~

(2.81)

According to Lemma 2.1, u,(3) is an increasing function of § for all 1 <7 < j — 1. Thus,
Zf;} Yty (B) is also a one-to-one increasing function of 3. Noting this fact and comparing
(2.80) and (2.81), we conclude that % = o(1) as E{z,} — a is strictly positive. Noting

(2.78), we have % = o(1) which proves the second part of Theorem 2.2 for the case of
v < E{z;}.
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Chapter 3

Coding over Input-Independent

Channels

In this chapter, we focus on a general class of channels called input-independent channels, of
which erasure channels are a special case. Input-independent channels can be memoryless
or have a memory extended over the block length. Symmetric discrete memoryless channels
are also a special case of input-independent channels. First, we define this class in a
mathematically accurate way. Next, we derive a lower-bound on Pg of any code over an
input-independent channel. Using this lower-bound, we prove the optimality of MDS codes
over erasure channels (with or without memory).

The rest of this chapter is organized as follows. Section 3.1 defines the input- in-
dependent channel and introduces a lower-bound on Pg for a general input-independent
channel. Section 3.2 applies this lower-bound on erasure channels (with or without mem-
ory) and proves optimality of MDS codes over this class of channels. In section 3.3, the
super-symmetric DMC is studied and it is shown that perfect codes are optimal across this
channel. Finally, we simplify the proposed lower-bound for symmetric DMC and compare

it with the previously-known bounds on Py in section 3.4.

3.1 Input-Independent Channel

This section first defines an input-independent channel in a mathematically accurate way.
The definition includes channels with memory extended over a block of N symbols. Next,

we prove the main theorem on input-independent channels which has applications in the
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rest of the chapter.

Definition 3.1. Input-Independent Channels: consider a channel with the input alpha-
bet A = {ai,as,...,a.4} and the output alphabet B = {b;,b2,...,b5}. A block of N
transmitted symbols is denoted by the vector x € A" and the received vector by y € BY.
The channel is input-independent iff for any x;,x, € A", there is a one-to-one mapping
019 : BN — BY such that for all y € BY, we have P{y|x»} = P{o12(y)|x1}

The one-to-one mapping o2() may seem confusing. However, it simply represents a
permutation of the elements in BY. Intuitively speaking, the above definition means that
the channel shows the same response regardless of the input vector. In other words, P{y|x}
follows the same probability mass function (pmf) for all x. Next, a specific ordering of the

values in this pmf is defined.

Definition 3.2. Sorted pmf Vector: consider an input-independent channel as defined in
Definition 3.1. For any x € A", we sort the values of P{y|x} for all y € BY in the
non-increasing order into a vector of length B £ |B|Y. Due to the input-independent
characteristic of the channel, the sorted vector is the same for all x € AN. Thus, we can

define the sorted pmf vector corresponding to the channel p = [p1,pa, ..., pn), such that
P12Dp22= ... 2 P

To complete the definitions required in our main theorem, we need to define a code

(codebook) over the input-independent channel and the decoder corresponding to it.

Definition 3.3. Codebook: consider an input-independent channel as defined in Defini-
tion 3.1 and the corresponding sorted pmf vector as defined in Definition 3.2. A code
(codebook) of size M and length N is a set of M codewords of length N from the al-
phabet A, each representing a message. In other words the code C can be written as
C = {cy,cy,...,cpr} such that Vi, 1 <i< M : ¢; € AV,

Definition 3.4. Decoder: corresponding to a code C of size M and length N (Defini-
tion 3.3), a decoder is defined as a partitioning of the received vector set BY to M disjoint
subsets, each consisting of the received vectors mapped to a specific message (codeword).

We introduce 3 notations associated with a decoder:

e For any c¢; € C, D(c;) is defined as the subset of BY which includes all the received

vectors mapped to ¢;. We refer to D(c;) as the decision region corresponding to c;.
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e Conversely, for any y € BY, we define f4..(y) =c € C iff y € D(c).

e Assuming an equiprobable codebook, the average probability of error is defined as

é Zp{fdec 7éC2|X—C}

where x € AY and y € BY are the transmitted and received vectors, respectively.

Hence, fgec() denotes the decoding function which maps the received vector y to one
of the codewords. Now, we are ready to prove the main theorem of the chapter which
provides a lower-bound on the probability of error of any code over an input-independent

channel.

Theorem 3.1. Consider a codebook C = {cy,cs,...,cp} with M equiprobable codewords
of length N over an input-independent channel (with or without memory) with the input
alphabet A and the output alphabet B as defined in Definition 3.1. We have the following

lower-bound on the average probability of error for any decoder

ILIJ
mod % M

where || denotes the largest integer number smaller than x, and mod(a,b) indicates the

remainder of dividing a by b. p represents the sorted pmf vector described in Definition 3.2,

and B = |B|V.

Proof This theorem can be proved by selecting a uniform distribution on the output
alphabet in Theorem 28 of [42]. However, we provide an alternative proof in Appendix 3.6.1

which is based on the properties of input-independent channels. [ |

Next, we state a necessary and sufficient condition on the codebook (and the decoder)

which achieves the lower-bound in Theorem 3.1.

Theorem 3.2. Consider a codebook C = {cy,cs,...,cp} with M equiprobable codewords
of length N over an input-independent channel (with or without memory) with the input
alphabet A and the output alphabet B as defined in Definition 3.1. Let Pr denote the
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average probability of error for the decoder associated with the code as described in Defini-
tion 3.4. Pg satisfies the inequality in Theorem 3.1 with equality iff the following condition
15 satisfied:

P > P 1
min min P{y|c} > max o {yle}- (3.1)
Proof See Appendix 3.6.2. |

3.2 Erasure Channels with Memory

This section applies Theorem 3.1 and Theorem 3.2 to study general g-ary erasure channels
and obtain an optimality result. The result achieved here is NOT new, but the proof is.
We have published the same result in [21] (however, for linear MDS codes) with a different
proof. The importance of the new proof is that the optimality result can be interpreted
as a special case of the general theorems we proved in the previous section. Moreover, the
MDS code does not have to be linear. We start with the formal definition of an erasure

channel.

Definition 3.5. An erasure channel is defined as the one which maps every input symbol to
either itself or to an erasure symbol £. More accurately, an arbitrary channel (memoryless
or with memory) with the input vector x € AN, |A| = ¢, the output vectory € (AU {£})"
and the transition probability P {y|x} is defined to be erasure iff it satisfies the following

conditions:

1. P{y; ¢ {z;,&} |z;} =0, V j, where z; and y; denote the j’th elements of the vectors
x and y.

2. Defining the erasure identifier vector e as

e; & Ly =¢
! 0 otherwise

P{e|x} = P{e}, i.e. e is independent of x.
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It is easy to check that the erasure channel defined above is indeed an input-independent
one. Therefore, the two theorems in the previous section can be used to find a lower-bound
on its Pp. Here, we generalize our previous result in [21] to non-linear MDS codes and

provide an alternative proof for it.

Theorem 3.3. A (linear or non-linear) block code of length N with M equiprobable code-
words over an arbitrary erasure channel (memoryless or with memory) of alphabet size q
has the minimum probability of error (assuming optimum, i.e., maximum likelihood decod-

ing) among all block codes of the same size if that code is Maximum Distance Separable

(MDS).

Proof It is important to note that the straightforward application of Theorem 3.1 (with
the output alphabet size of ¢ + 1) does not result in a tight lower-bound. The intuitive
reason behind this fact is that when a codeword of length N is transmitted over an erasure
channel, the number of possible received vectors is much less than (¢ + 1)¥. Therefore,
we analyze the erasure channel as a combination of multiple (parallel) input-independent
channels with smaller received vector sets; we can do that since in an erasure channel, the
receiver always knows the erasure pattern before decoding the codeword. This technique
is explained in Appendix 3.6.3. |

3.3 Super-Symmetric DMC

In this section, we focus on super-symmetric discrete memoryless channels (DMC). This
channel is depicted in Fig. 3.1. Each transmitted symbol is received flawlessly with the
probability 1 — 7 or goes to one of the other ¢ — 1 symbols with the equal probability
= qf—l. We also assume that 1 — 7 > «’ or equivalently m < q;ql which not a strict
condition for large alphabet sizes. Applying the theorems of section 3.1 to this simple

channel, we get the following neat result.

Theorem 3.4. A (linear or non-linear) block code of length N with M equiprobable code-
words over a super-symmetric discrete memoryless channel of alphabet size q has the min-
imum probability of error (assuming optimum, i.e., maximum likelihood decoding) among
all block codes of the same size if that code is a perfect code. A code is perfect if it satisfies
the Hamming inequality, MZII:::O (]Z) (g — 1)* < ¢V, with equality.
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1—7m

q-1 q-1

Figure 3.1: Super-symmetric memoryless discrete channel with alphabet size ¢. Each
symbol goes to itself with the probability 1 — 7 and goes to each one of the other symbols
with the probability #’ = =,

s
q—1

Proof See Appendix 3.6.4. |

3.4 Symmetric DMC

This section proposes a lower-bound on Pg for any code of length NV with ¢’ equiprobable
codewords over a symmetric discrete memoryless channel (DMC). This channel is a more
general one than the super-symmetric DMC studied throughout section 3.3. The definition
of symmetric DMC we use in this work is the same as the one in [18]. Comparing the
following definition with Definition 3.1, it is obvious that the symmetric DMC is an input-

independent channel.

Definition 3.6. Consider a DMC with the input and output alphabet A = {a1, as, ..., a,}.
Let us define the g x ¢ channel transition matriz S = [s;;] where s;; = P{a; received| a;
transmitted}. The channel is symmetric if all rows and all columns of S are permutations

of a sorted probability vector w where 7y > 7 > --- > 7, > 0 and Zgzl m; = 1.

Based on the above definition, we can define a permutation corresponding to each
input symbol in the alphabet as follows. For each input symbol a, € A, we know that

the transition probabilities conditioned on a; being transmitted are a permutation of the
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Figure 3.2: Error exponent of L(N, K, ), i.e. , for a quadratic symmetric
channel with v = [0.90, 0.05, 0.03, 0.02] and the rate of R = % log ¢ = 0.6 log q is compared
with error exponents of lower-bounds SP67 [43], VF2004 [44], and ISP2008 [45] for different
values of N . Random coding error exponent E,(R) (lower-bound on error exponent) is
shown as the horizontal line.

—log L(N,K,)
N

vector 7. Let us denote this permutation by o,, (). Then for any output symbol a; € A,
we have P{a;|a)} = 7; where j = o,, (a;).

Let us consider an arbitrary code of length N with ¢% equiprobable codewords over the
symmetric channel defined in Definition 3.6. A codeword ¢ € C is transmitted, and any

vector y € AV can be received. We define the vector N with the length ¢ and entries N; as
N
N; & Z I(j = 0,(y;)). In this definition, ¢; and y; denote the i’th entries of vectors ¢ and

=1
y, respectively. I(s) is the indicator function, i.e. I(s) = 1 if the statement s is true, and
I(s) = 0 otherwise. We also define the extended distance between ¢ and y as d(c,y) £ N.

9 7™ for all of the received

=17}
N!
vectors whose extended distance satisfies d(c,y) = N. There exist (ﬁ) =17 N1 such
j=1+'J"

vectors. Following a similar terminology in [18], we call this group of vectors the type

Since the channel is memoryless, we have P{y|c} =

associated with N. The number of different types we can have equals the number of
solutions to the equation )7 | Nj = N such that N; > 0 for all j. Thus, there exist
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(Vrat) = O(Ne71) different types'. The big-O notation is defined as f(N) = O(g(N)) iff

qg—1

3Q, Ny such that VN > Ny, we have |f(N)| < Q|g(N)].
The output vector space has the cardinality of ¢~V, and there are ¢ codewords in
the codebook. Using Theorem 3.1, we have the following lower-bound L(N, K, 7w) £ 1 —

VK
i=1

{P{ylc}t} can. To identify these values, we need to sort different types based on their

pi on Pg for any code. p; to p,v-x denote the ¢V K largest values in the set

probabilities (probability of each vector in the type being received given a codeword is
transmitted). Therefore, we form the table T" with (N ;_q; 1) rows and two columns. Each
row corresponds to one of the possible types; the first column of the ¢'th row T'(¢,1) =

321 W;Vj represents the probability of each member of the type being received given a
codeword is transmitted. The second column T'(¢,2) = (g) equals the number of vectors
in the type. Next, we can use the quick sort algorithm to sort the rows in 7" based on their

first column values. We define ¢* as

tr = min t. (3.2)
Sy Tt 2)>gN-K
In other words, t* denotes the minimum number of types (rows) we need to include to form

a decision region of size ¢V ~%. Using t*, we can find the lower-bound of P

t*—1

L(N.K,m) = 1= T(t,1)T(t2) -

T(t*,1) (i T(t,2) — qN—K> . (3.3)

The above equation is based on the simple principle that we should include the more
probable types before the less probable ones.

Having L(N, K, ), the arising question is that how tight this lower-bound on Pg is.
In other words, can we find a lower-bound which is larger than L(N, K, ) and is still

valid for codes over the symmetric DMC? To answer these questions in the asymptotic
1
case, we define a new notation. We define f(N) = g(N) iff & A}im f(N) = NJ\}HH g(N).

Comparators > and < are also defined similarly. Then, we have the following theorem on

L Although there exist O(N?~1) different types, the number of vectors in each type is in the order of
O(¢"). Thus, we need O(N) bytes to store the number of vectors for each type. The total memory we
need for all types is in the order of O(N?).
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Figure 3.3: For block length N = 128, K = 48, and 3-PSK constellation with hard decoding
in presence of AWGN noise (a ternary DMC), L(N, K, ) is compared with lower-bounds
SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45] for different values of %

K

the asymptotic behavior of L(N, K, m) when %

is constant as N grows.
Theorem 3.5. Consider a symmetric DMC' as described in Definition 3.6. For % =r<

C
logq’

Moreover, C' = logq — H(m) denotes capacity of the channel, and E,.(R) is the random

we have L(N, K, m) = e NE-(B) where R = rlogq is the transmission rate of the code.

coding error exponent of the channel as defined by Gallager in [50]. Furthermore, any other
lower-bound on Pg, say L'(N, K, ), is asymptotically smaller than L(N, K, x), i.e. we
have L(N,K,7) > L'(N, K, 7).

Proof See Appendix 3.6.5. [ |

Finally, we compare L(N, K, ) with four other lower-bounds and the random coding
upper-bound e~ NVE-(R) [50]:

e SP59: this lower-bound [53] is valid for soft decoding of equal-energy codewords with
Gaussian constellation over the AWGN channel. It can be used as a benchmark for
comparison when the input constellation is M-PSK over the AWGN channel with
hard or soft decoding.

e SP67: the original sphere packing lower-bound on Pg in [43], valid for any DMC.
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e VIF2004: Velambois and Fossorier’s [44] improvement on SP67, valid for any DMC.

e ISP2008: the Improved Sphere-packing Bound (ISP) [45] for symmetric DMC.

In Fig. 3.2, error exponent of L(N, K, ), i.e. w, is compared with error

exponents of lower-bounds SP67 [43], VF2004 [44], and ISP2008 [45] for different values of
N. The channel is a quadratic one with 7« = [0.90,0.05,0.03,0.02] and rate R = % logq =
0.6log ¢. Random coding error exponent E,.(R) (lower-bound on error exponent) is shown
as the horizontal line. We know that all of the exponents converge to E,(R) as N grows.
However, it is clearly seen that L(NV, K, m) converges much faster (in shorter block lengths)
than the other lower-bounds.

Figure 3.3 considers the block length N = 128, K = 48, and a ternary DMC resulting
from 3-PSK constellation with hard decoding in presence of AWGN noise. L(N, K, )
is compared with lower-bounds SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45] for
different values of % It is observed that in very low ﬁ—g, SP59 is the tightest of the
previous lower-bounds, while ISP2008 becomes the tightest as ff—g grows. However, in any
case, the best of the previous lower-bounds remain almost 2dB below the upper-bound
for typical values of P (107* to 10710). On the other hand, L(N, K, 7) (our new lower-

~NE(R)) with almost 0.5dB gap. This translates to a

bound) follows the upper-bound (e
huge improvement in lower-bounding Pg for short block lengths.

Figure 3.4 considers the block length N = 64, K = 32, and a quadratic DMC resulting
from QPSK constellation with hard decoding in presence of AWGN noise. L(N, K, ) is
compared with lower-bounds SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45]. Among
the previous lower-bounds, ISP2008 is the tightest except in very low % in which SP59
dominates. Examining the plot for typical values of Pg, from 107* to 107!, it is observed
that for a fixed Pg, L(N, K, ) is just 0.5dB below the upper-bound. This should be
compared to the tightest of the previous lower-bounds, ISP2008, which is typically 1.5
to 2dB below the upper-bound. Again, we see that our proposed lower-bound by far

outperforms the previous ones.

3.5 Conclusion

We study the problem of lower-bounding the probability of error (Pg) over input- indepen-

dent channels. An input-independent is defined in the general case (channels with mem-
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Figure 3.4: For block length N = 64, K = 32, and QPSK constellation with hard decoding
in presence of AWGN noise (a quadratic DMC), L(N, K, 7) is compared with lower-bounds
SP59 [53], SP67 [43], VF2004 [44], and ISP2008 [45] for different values of %

ory), and a lower-bound on P is introduced. Next, we apply this general lower-bound
on three special input-independent channels: erasure channel, super-symmetric Discrete
Memoryless Channel (DMC), and g-ary symmetric DMC. We show that Mazimum Dis-
tance Separable (MDS) codes achieve the minimum probability of error over any erasure
channel (with or without memory). Moreover, we prove that perfect codes achieve the
minimum probability of error over a super-symmetric channel. Finally, we propose a new
lower-bound for Pg of any block code over symmetric DMC and show that this bound is
exponentially tight. For ternary and 4-ary symmetric channels, the proposed lower-bound
is compared with the previous lower-bounds in moderate to short block lengths. It is shown
that our lower-bound by far outperforms the previous bounds, especially for shorter block

lengths.
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3.6 Appendices

3.6.1 Proof of Theorem 3.1

We define P, £ 1— Pg. Then, proving the theorem is equivalent to finding an upper-bound

on P, as follows

@ 1 ZIP’{y € D(c))|x = ¢;}

Mzzl
1 M
- X X Plk-c)
i=1 yeD(c;)
ID(cy)]
®» 1 X
< 2 2P
i=1 j=1
B
(¢ 1
= MZ’QPZ (3.4)

where (a) follows from the definition of fy..() and D(c;) (Definition 3.4). (b) results from
the definition of the sorted pmf vector in Definition 3.2. (c) is true if the vector k =
[k1, ks, ..., ky] is defined as follows

M

CEDIAACH =) (3.5)

=1

where I() is the indicator function, i.e. I(s) = 1 if the statement s is true, and I(s) = 0
otherwise. According to the above definition, k; denotes the number of decision regions
(D(c;)) whose cardinality is larger than or equal to I. As we have only M decision regions,

the vector k obviously satisfies the following inequalities

M>K >Ky>...>Kg>0. (3.6)

78



Chapter 3. Coding over Input-Independent Channels

Moreover, the number of decision regions with cardinality [ equals k; — k1.

number of vectors y in all decision regions (with any cardinality) is

Using the above two results on the vector k, we can write

MP,

—

a)

IN

INE

—~
3}
~

INE

INT

3
Zkz i

LMJ+1

Z klpl‘i‘pL J+2 Z ky
=2 |+2

L3+t L3+t

Z k’sz-pL s 140 (B~ Z ki

57 L7

Msz > (M = k)p +
=1
| & ]+1

Bl P 2 P3| B

=1

Y EY
MY p=pizya ) (M —k)+
=1 =1
| & ]+1
Ris P s T2 [ B-) Kk
=1
I—]VI
MZpl Hl% mod (B, M)
LMJH |5 +1

+ Z kl)+pL%J+2 B — Z kl
=1 =1

%

JT

Z l+m0d M)pI.%JJ"l
=1
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where (a) follows from (3.4), while (b) and (d) and (e) result from the fact that the elements

in the sorted pmf vector p are listed in the non-increasing order. (c) is based on (3.7). W

3.6.2 Proof of Theorem 3.2

Necessary Condition: let us assume (3.1) is true. For any ¢g € C and any y; € D(cq) and

y2 & D(cp), we can easily write

P > min min P
{yileo} 2 min min P{ylc}

> max max Plylc} > P Co!t. 3.9
> max max P{ylc} > P{yalca} (39)

Defining the set P(co) = {P{y|co}|y € D(co)} and using the above result, we conclude
that

P(co) = {p1,p2: - » PD(co)) } (3.10)

where p; denotes the i’th element of the sorted pmf vector. In other words, the |D(co)|
elements in P(cy) take their highest possible values.
Similar to the proof of Theorem 3.1, we define P. = 1 — Pg. Using the result in (3.10),

it is seen that the inequality (b) in (3.4) turns into an equality. Therefore we can write

»
1
P.= Mlzlklpz (3.11)

where k; is defined in 3.5.
Next, using (3.10) and the non-increasing order of the sorted pmf vector, the condition

in (3.1) translates to

) > PiD (3.12)

where we define D £ max |D(c)| and D £ migl |D(c)|. Now, we can imagine two possible
ce ce
cases:

1. Cardinality of the decision region corresponding to c, i.e. |D(c)|, is the same for all
c € C. Since the decision regions altogether must cover all of the space B, this is
equivalent of [D(c)| = & for all ¢ € C. According to the definition of k; in (3.5),

we have k; = M for 1 <[ < % and [ = 0 for all other [. Replacing the values of
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k; in (3.11), it is easy to verify that the inequality in Theorem 1 is satisfied with
equality.

. At least two decision regions have different cardinalities, i.e. |D(c)| is NOT the same
for all ¢ € C. This means that D > 1+ D. Due to the non-increasing order of the
sorted pmf vector, we conclude that py < pi4p. Combining this result with (3.12),

we have

Pi+D =P24D =" =Pp = 1o (3.13)
for a constant py.

Using the fact that Zf\il |D(c;)| =B, it is easy to show that
B
> R
)

< o+ (3.14)

s o

Having this bound for L%J , we are ready to prove the necessarily condition as follows.

—

a

B
MP, = > kp
=1

=

=
=

D D
= MZPZ + po Z ki
=1 I=1+D
D
= MY p+po(B—MD)
=1
2 B
M pi+poM (LMJ —Q) =
=1
po mod (B, M)
D L37)
MY p+M > p+
=1 l=D+1

| mod (B, M) (3.15)

—
o
~

—
S
=

—
3}
~

P1y|

B
M

where (a) follows from (3.11). (b) and (e) result from (3.13) and the definition of k;
in (3.5) which gives us ky = M for [ < D and k; = 0 for [ > D. (c) follows from (3.7),
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and (d) is a direct result of the fact that B = M|=| + mod(B, M). Replacing P,

with 1 — Pg in (3.15) proves the necessary condition for case (2).

Sufficient Condition: we assume that the code (and the decoder) satisfies the inequality
in Theorem 3.1 with equality and prove that (3.1) must follow. The proof is obvious when
D = D. Thus, we give the proof only for the case where at least two decision regions have
different cardinalities.

Let us focus on (3.8) in the proof of Theorem 3.1. According to our assumption,
inequalities (a), (b), and (d) in (3.8) are satisfied with equality, i.e. are tight. Replacing
(a) with equality leads to inequality (b) in (3.4) being tight. This in turn requires the
condition in (3.10) to hold. In other words, the set P(co) = {P{y|co}|y € D(co)} must
include the |D(cy)| highest values for all ¢y € C. In the proof of the necessary condition,
we have already shown that under the condition in (3.10), (3.12) and (3.1) are equivalent.
Hence, we need to prove (3.12) instead of (3.1).

Going back to (3.8) and replacing inequality (b) with equality, we get

B
> ki(pzem) @

—
N

D
> hi(pige—n) =0

where (a) follows from the definition of k; in (3.5). Due to the non-increasing order of the
sorted pmf vector, none of the terms in the summation can be negative. Thus, all of the
terms should be equal to zero. Moreover, by definition, k; > 0 for { < D. Hence, we must

have

Pi2js2 =P|Bj4s =" =PD (3.16)
if | 2]+2<D.
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Similarly, replacing inequality (d) in (3.8) with equality, we get

S
o

L

—

(M — k) <pl _pL%JH) =
J

(M — kl) (pl _pL%JJrl) =0
I=D+1

~

(]

o~

— i
SEE

where (a) follows from the fact that k; = M for [ < D by definition. Again, all the terms
are non-negative. Thus, they all should be zero. Moreover, by definition, k; < M for

[ > D + 1. Hence, we must have

PD+1 =DPp+2 = =DP|2| =P 2|4 (3.17)

Combining (3.16) and (3.17) with (3.14), we see that condition (3.13) is satisfied. Hav-
ing (3.13), (3.12) is satisfied. As explained earlier, this is equivalent of (3.1) being proved.

Therefore, the proof of the sufficient condition is complete. |

3.6.3 Proof of Theorem 3.3

The trick used in the proof of this theorem is adaptive decision regions in the decoder.
Due to the nature of the erasure channel, the decoder can immediately extract the erasure
identifier vector e from the received vector y. Therefore, it can adjust the decision regions
according to e.

We start by the definition of the MDS code. A code is MDS iff it satisfies the Singleton

N=d+1 where d is the minimum Hamming distance

bound by equality, i.e. if we have M = ¢
of the code. Next, let m denote the number of non-zero elements in the binary vector e,
ie.m= Efil e;. For any erasure pattern (vector) e, we define the set )(e) as the set of
all possible received vectors if one of the codewords in the codebook C is transmitted and

the erasure pattern e is observed, i.e.

Ye) 2 {yeufehBeec :
P{y|x = ¢ & e occurred} > 0} . (3.18)

Now, we consider the following two cases.
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1. m < d—1: let us assume any two distinct codewords ¢; € C and ¢, € C are
transmitted. It is easy to see that the corresponding received vectors y; and y, must
be distinct as well. The reason is that if this is not true, the distance between c;
and c; would be less than d which is impossible by the definition of d. Therefore,
in this case, we have |Y(e)] = M and each y € )(e) corresponds to exactly one
codeword. The decision regions {D(c;)}M, are chosen as follows. For each y €
V(e) C (AU{e}", y is placed at D(c;) of the codeword ¢; it corresponds to. All
other vectors y € (AU {&})Y — Y(e) are impossible to occur and can be placed in
an arbitrary decision region, say D(c;). Using (3.4), probability of correct decoding

given e can be written as P = 1.

2. d < m < N: consider an arbitrary possible received vector y; € )Y(e). We choose
m — d + 1 erasure symbols (£) in specific locations in y;. There are ¢™ 9*1 distinct
ways to enhance y; by replacing these m —d + 1 erasure symbols with elements from

the input alphabet set A. We define C; as the set of all such enhanced vectors from y;.

Obviously, we have |C;| = ¢™ "' where |.| is the cardinality operator. We can do the
same enhancement for all other y € Y(e) and obtain disjoint sets Cy,Cs, ..., Ciy(e)|-
[Y(e)l

Now, consider the union of all such sets C £ U C;. Since C includes all possible
i=1
enhancements of )(e), i.e. partial codewords with N — m non-erased symbols, it is

obvious that C should include all the partial codewords with N — d + 1 non-erased
symbols (at the specified locations). Hence, we have |C| @ |V(e)|g™ 4t > M where
(a) follows from the fact that C is the union of |Y(e)| disjoint sets Cy, Ca, . . ., Cpy(e)-
On the other hand, we know that members of C are vectors of length N —d+1 entries
from the input alphabet A. Hence, we have |C| < ¢V=¢*! @ M where (a) follows
from the definition of the an MDS code. Combining this with the lower-bound on
the cardinality of C in the previous paragraph, we get |C| = M = ¢V ~9*1. In other
words, each member of C corresponds to the partial vector of exactly one codeword
in the codebook C.

Finally, since |C;| = ¢™~ %! for all i, we conclude that |V(e)| = ¢ ™. This means

m—d+1

that every y; € Y(e) may be associated to any of the ¢ codewords y; can be

m—d-+1

enhanced to. We pick one of such ¢ codewords arbitrarily. By proper labeling

of the codewords, we can assume that y; is mapped to ¢; for 1 <i < |Y(e)| = ¢" ™.
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Then obviously, we have P{y;|x = ¢; & e occurred} = 1. As in the previous case, all
other vectors y € (AU {€})" — Y(e) are impossible to occur and can be placed in
an arbitrary decision region, say D(c|y(e)+1). It should be noted that in the defined
decoder here, we have |D(c;)| = 1 for 1 < i < |Y(e)| = ¢ ™, while D(c;) = 0 for
"\ m < i < M.

It is easy to check that the above-described decoder (with the defined decision regions)
satisfies condition (3.1) in Theorem 3.2 readily. Therefore, an MDS code satisfies the
lower-bound of Theorem 3.1 on Pg and is optimal. Using (3.4), probability of correct

decoding given e can be written as

Pc|e =

=~
M:

Z P{y|x = ¢; & e occurred}
€D(c

1 yeD(ci)
|

EII

°) 1

==

@
Il
—

Combining the above two cases, we conclude that

MDS
P E

= 1-— Z]P’{e}Pde

SV I (P

m=d e:xw(e)=

where w(e) denotes the Hamming weight of the binary vector e. Moreover, it is easy to
see that in the described decoder, we have P{y|x = fu.(y)} = 1 for all y € Y(e). The
vectors iny € (AU {€})N —Y(e) are impossible to occur given e. For such vectors we have
P{y|x = ¢} = 0 for all ¢ € C. Therefore, this decoder obviously satisfies the maximum
likelihood condition, i.e. P{y|x = fiuc(y)} > P{y|x = ¢} for all y € (AU {e})"
ceC. |

3.6.4 Proof of Theorem 3.4

We start by the definition of perfect codes. A code is perfect if it satisfies the Hamming
inequality, M ZZ:O (]/Z )(q — 1)k < ¢V, with equality. ¢ is defined as t = L%J Graphically

speaking, this means that each codeword is surrounded by a sphere of radius (Hamming
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distance) ¢. Such spheres are obviously disjoint (use the triangle inequality on the Hamming
distance metric and the fact that 2¢ < d). If the union of these spheres for all codewords
covers the received vector space AV, the code is perfect.

For every y € AV and ¢ € C, we have P{y|x = c} = (1 —7)N~4ve)7/dy:) where d(y, c)
denotes the Hamming distance between y and c. This is a decreasing function of d(y, c)
as we assumed 1 — 7w > 7.

For each ¢ € C, we set D(c) as all of the received vectors in the sphere of radius ¢
centered at c. Since the code is perfect, these decision regions cover the received vector

space. With this structure of decision regions, we have

in min P > (1 —m)V it > P
min min, {yle} > (1 —m)"'x" > max max {ylc}
and the condition (3.1) in Theorem 3.2 is satisfied. Therefore, the perfect code is optimal
and achieves the lower-bound of Theorem 3.1 on Pr. Moreover, the structure of the decision

regions implies that the decoder is a maximum likelihood decoder. |

3.6.5 Proof of Theorem 3.5

We know that T'(t,1) = " 2j=1mileg ™ Noreover, based on the method of types in (18], it

is easy to verify that T'(t,2) = eNH®@+o) where n £ I and H(.) is the entropy function.

Thus, we have T'(t,1)T(t,2) = e~ NP®lm+o()) where D(.||.) denotes the Kullback-Leibler
distance defined in [18]. Next, we write

Qi

LN K,m) > Y T(t1)T(t2)
(i)

q—1
Y e NDwim

t=t*+1

—
S]
N

—
- oS
=

—ND(n**||r)

e

e~ ND@*|lm) (3.20)

&

where n** £ argmin D(n||w), and S; is defined as the set of all types which corre-
nes;
spond to the rows t* + 1 to the last row in the sorted table T. Similarly, we define
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N(1—

n* £ argmin D(n||7) and S, £ {n]eNH®) > ¢N-K — ¢N(-nlgdl Tp the above inequality,

neS,
(a) follows from (3.3). (b) results from the fact that the dominant term in a summation

with a polynomial number of terms (polynomial in terms of V) is the term with the largest
exponent. (¢) is based on Sy C &y, i.e. any n € S; can not correspond to any of the types
in the first t* rows of the table T

According to (3.20), the problem of lower-bounding L(N, K, 7) reduces to solving the

following optimization problem

min D(n||7)

s.t. H(n) > (1 —r)loggand > 27 n;=1. (3.21)

Since D(nl|7) is a convex function of n and has a global minimum of zero at n = 7 outside
of the optimization region, it is easy to show that the minimum point resides on the edge

where H(n) = (1 —r)logq. Using the Lagrangian method, we get

72 log
D(w|jm) = (5 - HZL BT o, (Zw) (3:22)

Jj=1"7

where the parameter ( is the solution of the following non-linear equation

! logm 1
R =logq+ == lqjﬁﬁg J—log(i ﬂf) (3.23)

Also, it can be shown that 1 < B <2, or equivalently 0 < 2 5 B <.

On the other hand, random coding error exponent [50] is defined as

E,.(R) £ max {—pR—f— max Ey(p, Q)} (3.24)

0<p<1

where Q is the input distribution, and Ey(p, Q) equals

1 1+P

Eo(p.Q) 2 —log | S |> " QUeP{jlk} L+ 7

j=1 | k=1
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Due to the symmetry of the channel, the uniform input distribution maximizes Fy(p, Q)

for each p. Therefore, the value of p which maximizes (3.24) can be found by solving the

aEO(p7 Q)
dp

equation R = . Solving this equation, we see that

_1
q 1+pm

m D o T log 75 . 1
E.(R) __Pm =T gl L log(z @ﬂm) (3.25)
j=1

(1 + IOM) ;1':1 7le+pm

where p,, is the solution to the following non-linear equation

1
q T+pm ) q
R =logq + =17 log 7T1J o Z lefpm) _ (3.26)
(14 p) Sl mi S

Setting 3 = 1+1pm’ we clearly see that equations (3.25) and (3.26) are identical to (3.22)
and (3.23). Therefore, we have D(n*||w) = E,.(R). Based on (3.20), it is concluded that
L(N,K,7) > e NE-(B),

We know that L(N, K, ) is a lower-bound on Pg of any code over the symmetric DMC.
Moreover, there exists at least one codebook (constructed by random coding) for which
Py < e NEr(B) Hence, we must have L(N, K, 7) < e NP(R) " Combining this with the
result of the previous paragraph, we get L(N, K, m) = e NE(R),

Finally, let us assume there exists another lower-bound L'(N, K, 7) on Pg of any code
of size [N, K|. For the same reason described in the previous paragraph, we know that
L'(N,K,w) < e NBr(B) = [(N, K 7). Therefore, L(N, K, ) is exponentially the tightest

lower-bound we can have in the asymptotic case. [ |
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Chapter 4

Diversity-Rate Trade-off in Erasure
Networks

This chapter addresses a fundamental trade-off between rate and diversity gain in erasure
networks. An erasure network is modeled by a directed graph whose links are orthogonal
erasure channels. Furthermore, the erasure status of the links is assumed to be fixed during
each block of transmission and known only by the destination node. For each link e in the

graph, a message transmitted on e is erased with probability p“(®). We define the diversity
log Pr;
logp
gain is the asymptotic slope of Py versus % in logarithmic scale. This definition is similar

gain as lim,_, where Pg is the probability of error. Intuitively speaking, the diversity
to the standard definition of diversity gain for the slow Rayleigh fading channel in the
wireless communication literature [19] if i is interpreted as Signal-to-Noise-Ratio (SNR).

Using diversity gain as a measure of reliability, we show that there is a fundamental
trade-off between rate and reliability in erasure networks. Moreover, it is shown that
conventional routing fails to achieve the optimum trade-off between these two. Instead,
linear network coding achieves the optimum trade-off between rate and reliability in all
cases.

Unlike the previous works which suggest the potential benefit of linear network coding
in the error-free multicast scenario (in terms of the achievable rate), our result demonstrates
the benefit of linear network coding in the erasure single-source single-destination scenario
(in terms of the diversity gain). To the best of our knowledge, this is the first work in
the literature which compares conventional routing and linear network coding in unicast

applications.
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Table 4.1: Different Notations for Diversity Gain

Notation Description Defined in
maximum diversity gain among all Definition 4.12 in
d°Pt(r) end-to-end connections with rate r subsection 4.2.5
maximum diversity gain among all Definition 4.13 in
amer end-to-end connections with non-zero rate | subsection 4.2.5
min d Definition 4.20 in
d>0,r>7(d)
d*(r) section 4.4
diversity gain of MDS coding + Disjoint section 4.3
dMPE(r) | Routing end-to-end connection with rate r
diversity gain of MDS coding + Max-Flow | subsection 4.5.2
dMME(r) | Routing end-to-end connection with rate r
diversity gain of MDS coding + Max-Flow | subsection 4.5.2
dMMED (1) Routing with Detours for rate r

4.1 Notation and Organization

throughout this chapter, capital bold letters represent matrices, while lowercase bold letters
and regular letters represent vectors and scalars, respectively. The superscript ’ stands for
the matrix transpose operation, while the operator det(.) denotes the determinant of a
matrix. Moreover, all sets are denoted by calligraphic letters. Finally, f(p) = O (g(p)) iff
Jeg, ¢ > 0 such that | f(p)| < c|lg(p)| for VO < p < €y (the standard big-O notation).

Different notations are used to denote diversity gain in different scenarios throughout
the chapter. These notations are listed in table 4.1.

The rest of the chapter is organized as follows. Section 1.3.2 reviews the related work.
In section 4.2, the system model is introduced, and the technical terms used in our work
are defined in a mathematically accurate way. These definitions include concepts like era-
sure graph, end-to-end connection, diversity gain, optimum diversity-rate trade-off, con-
ventional routing, and linear network coding. Section 4.3 is dedicated to the analysis
of diversity-rate trade-off for homogeneous erasure graphs. In section 4.4, we study the
diversity-rate trade-off in the general erasure graphs. Section 4.5 presents the simulation
results and compares the performance of linear network coding and conventional routing.

Finally, section 4.6 concludes the chapter.
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4.2 System Model and Definitions

4.2.1 Network Graph

The network is modeled as an erasure graph which is defined as follows.

Definition 4.1. Erasure Graph: a graph G = (V,€) is called an erasure graph if the

following conditions are met.
1. G is directed, weakly connected [125], and acyclic.

2. Each link e € &£ has two states: ON and OFF.V e € £, e is OFF with the probability
p“©) and is ON with the probability 1 — p“(©).

3. For Ve € £ connecting u € V to v € V — {u}, u transmits a vector of length o(e)
consisting of g-ary symbols per time slot on the link e. Then, if e is ON, v receives
the transmitted vector correctly during the same time slot. Otherwise (if e is OFF),

v receives an erasure symbol, £, independent of the transmitted vector.
4. o(e) is a positive integer number, o(e) € Z*.

5. ForVe € &, if e is ON (OFF), it stays ON (OFF) for the whole block of transmission.

In other words, links do not change their states in a block.

6. Graph links are delay-free. More accurately, the delay on each link is so small that a
message transmitted from the source at the time slot 1 <t < T can reach any other

node in the graph within the same time slot.

The the rest of this subsection lists some basic definitions which are used in the rest of

the chapter.

Definition 4.2. Head and Tail: for Ve € € connecting u € V to v € V — {u}, h(e) = u
denotes the head of the link and 7(e) = v denotes its tail.

Definition 4.3. For Ve € &£, x.; € F;“ denotes the o(e) symbols sent on the link e at
the time slot ¢. IF, represents the Galois field of size q.

Definition 4.4. For every set S C &, o(S) is defined as o(S) = 3 _s0(e). Similarly,
w(8) is defined as w(S) = 3", sw(e).
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Definition 4.5. For Vv € V, L;,(v) denotes the set of incoming links to v, and L, (v)

denotes the set of outgoing links from v.

Definition 4.6. Consider the nodes s € V and z € V — {s}, where there exists at least
one directed path from s to z. Any partition of V to two disjoint sets V; and V, such that
s € V) and z € Vs, is called an s — z cut of the graph G = (V, ). The set of links from V,

to Vs, is called an s — z cutset, Cy, y,(s, 2). In other words, we define

Cyo, (s, 2) = {e € E|r(e) € V1, h(e) € Va}. (4.1)

Definition 4.7. Min-Cardinality-Cut € Min-Cut: for every pair of end-nodes s € V and
z € V—{s}, the s—2z min-cardinality-cut, MCC(s, 2), is defined as the minimum cardinality

of s — z cutsets, i.e. MCC(s,z) £ |Cyy v, (8, 2)|. Similarly, min-cut,

g (CV1,V2(S7 Z))

min
V1,V2CV:isEV1,z€V, V1 (| V2=0

MC(s, 2), is defined as MC(s, z) = min
V1, Vo CV:s€V,26€V0, V1 n V=0

4.2.2 Justification of the Model

It should be noted that the erasure network model described in Definition 4.1 is an abstrac-
tion which captures the essential aspects of many practical networks like: i) wireless mesh
networks, ii) the Internet, iii) overlay networks [70,71,79]. Overlay networks are virtual
networks constructed over the Internet for various purposes and applications. Peer-to-Peer
(P2P) networks [14] and Content Delivery Networks (CDN) [79,101] are examples of over-
lay networks built over the Internet. The former consists of many end users sharing (music
and video) files. The latter is a special overlay network consisting of Edge Servers (nodes)
responsible for delivery of the contents (e.g. large files or video streams) from an original
server to the end users.

Based on the nature of the underlying network, the two assumptions in the erasure

network model (Definition 4.1) are justified here.

e Erasure status of the links does not change in one transmission block: for wireless mesh

networks, this assumption is equivalent to the well-known slow fading model [19,126].

In case the erasure network models the Internet or an overlay network working over

the Internet, this assumption can be justified for many applications, for example, video
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transmission. Consider a high-quality video stream (30 frame/sec) with the end-to-end
rate of 1 — 2 Mbps. According to [127], the average size of video packets is around
500 — 1500 Bytes, depending on the type of the packet!. This means that video packets
are transmitted every 4—12 ms on the average?. Due to the high computational complexity
of both linear network coding and Forward Error Correction (FEC) across packets, the
block length is kept below 100 — 150 packets in both coding methods [12, 15, 35, 129].
Thus, the block duration stays well below the ~ 2 sec limit. On the other hand, many
studies have shown that the outage of Internet links or routers typically last for much
longer periods (in the order of a few seconds to minutes) [130,131]. The outage event
may arise due to congestion in a router or an automatic update of the Internet path by
the Border Gate Protocol (BGP) [130,131].

Delay-free links: this assumption is added to the model to make the comparison between
conventional routing (with the possibility of FEC at the end nodes) and linear network
coding easier. However, all of the results of the chapter can be extended to erasure

networks whose links have non-negligible delay.

Let us consider linear network coding first. As later described in Definition 4.9 in subsec-
tion 4.2.4, each intermediate node generates several linear combinations (weighted sums
with different weights) of the received symbols (packets) and transmits them through the
outgoing links. Following the setup in [59], we assume that each packet includes a tag
(header) which contains the time of transmission from the source node. Since there are
multiple paths with different delays from the source to each intermediate node, the sym-
bols (packets) reaching the intermediate node at each instant of time do not correspond
to the symbols transmitted by the source at the same time. Thus, the intermediate node
has to wait long enough so that it receives all the symbols with the same time tag (gen-
erated at the same time) before it generates and transmits their linear combinations on
the outgoing links. Obviously, as long as the block duration 7' is much longer than the
maximum end-to-end delay of the erasure graph, the performance of the system is the

same as that of a delay-free network.

Similarly, when conventional routing takes advantage of FEC at the end nodes, the desti-

1Video packet size varies depending on the instantaneous rate and the type of frame the packet corre-
sponds to [127,128].

2The term “on the average” is important as the inter-packet time may vary significantly in video
applications.
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nation node has to wait some extra time until it receives all of the packets routed through
different paths (with different delays). Again, as long as the difference between the fastest
and slowest end-to-end paths (in terms of the delay) is negligible compared to the block
duration, the system can be effectively modeled by a delay-free network. For a more com-
prehensive discussion about linear network coding and routing in networks with delay,
refer to [59,61,63]; when each link has a fixed delay of one unit, all of the equations in
our work stay valid after multiplying a delay operator D to the entry corresponding to
that link in network transfer matrix F. Thus, we can still write the determinants of the
end-to-end transfer matrices as polynomials in terms of all the linear coefficients (weights)

as well as the delay operator D.

4.2.3 End-to-End Connection

An end-to-end connection from the node s € V to the node z € V—{s} with the normalized
rate r over T' time slots is denoted by notation €(s, z,r) in this work. Such an end-to-end

connection consists of the following components.

o Messages: a set of equiprobable messages M = {my, ma, ..., mu}, where M = ¢"T.

e Message Vectors: a one-to-one mapping of the messages to the vectors of size rT’

with elements in F,

w = f(m)
f M—=F] (4.2)

Therefore, sending the message m € M is equivalent to sending the vector w € IFZT.

e Encoding Strategy: for Ve € Ly,:(s), we consider a set of encoding functions

Xet = fs,e(taw)
fe o+ AL T} xFT = FJ. (4.3)

Therefore, f;.(t,w) is the vector of symbols the source transmits on the outgoing

link e at time ¢t if it tries to send the message vector w.
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e Network Strategy: for every intermediate node u € V — {s,z}, Ve € Lyu(u), we

consider a set of forwarding functions

Xet = feﬂs (Yu,t) (44)
fer + T (Z,t,F,u{}) —F©

where Y, ; is defined as a matrix of size o (L;,(u)) x ¢ whose j'th column contains
all the symbols u has received in the time slot j. Intuitively speaking, Y, ; includes
all the symbols that the node u has received (on all of its incoming links) up to the
time ¢. Moreover, we define ¥ £ o (L;,(u)), and T(m,n, A) denotes the set of all
m X n matrices with entries in the set A.

e Decoding Strategy: we consider a decoding function at the end node

W o= fz(Yz,T>
foo T(0(Lin(2),T,F,u{e}) = F7 (4.5)

where Y, 7 is defined similar to Y, ; in the previous bullet. w is the estimate of the

transmitted message vector at the receiver side. The receiver decodes the message
as m = f~1(w) where f() is defined in (4.2).

4.2.4 Conventional Routing & Linear Network Coding

Definition 4.8. Conventional Routing: an end-to-end connection €(s, z,7) uses conven-

tional routing if the following conditions are satisfied.

1. For Ve € L,(s) and 1 <t < T, we should have x.; € W?(®) where W is the set of

all elements in the message vector w.

2. For Vu eV —{s,z} and Ve € L,s(u) and 1 <t < T, we should have x.; € y;jf)
where ), + denotes the set of all the elements in the matrix Y, ;. Moreover, the routing
function which selects the elements of x.; out of the elements in Y, ; can only depend
on the state (ON or OFF) of the incoming edges to u. In other words, the set of
outgoing links on which a specific incoming symbol is forwarded is independent of the
incoming symbols. Instead, it only depends on the ON-OFF states of the incoming
links.
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The above definition describes the routing schemes used in the conventional packet
switched networks. A set of symbols (packets) are generated at the source and are conveyed
to the destination through the network. The intermediate nodes do not perform any
algebraic computation on the symbols (packets); they either simply forward or copy-and-

forward the packets received through the incoming links to the outgoing links.

Definition 4.9. Linear Network Coding: for an integer value of r, an end-to-end connec-

tion €(s, z,7) uses linear network coding if the following conditions are satisfied.

1. At the source side: for Ve € L,,:(s) and 1 <t < T, we have
Xer =TI, W' (4.6)

A / . . . .
where wt = [w(t,l)rﬂ, W(t—1)r42; - - - ,wtr] and I, is a matrix of size o(e) x r relating

the input message vector to the inputs for the edge e.

2. At the intermediate nodes: for Vu € V — {s,z} and Ve € Ly(u) and 1 <t < T, we
have

Xet = Z Be,e’xe’,t (47)

/€ Lip (u),¢is ON
where B, . is a matrix of size o(e) x o(¢’) relating the output vector on edge e to the
input vector on edge €’. It should be noted that the linear operator here is performed
only on the inputs of the edges which are ON. In other words, whenever we have
Xy = [€,€,...,&]" (a vector of length o(e’) consisting of erasure symbols), x.; is
just discarded.

3. At the destination side: for 1 <t < T, we have

w! = Z AeXey (4.8)

e€Lin(z),e is ON

where W' is defined similar to w’ and A, is a matrix of size r x o(e) relating the inputs
on edge e to the estimated message. It should be noted that the linear operator here

is performed only on the inputs of the edges which are ON.

The above definition means that the source transmits multiple linear combinations of

r message symbols in each time slot. The intermediate nodes also produce multiple linear
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combinations of the received symbols and transmit them on the outgoing links. The end
node should be able to reconstruct the r message symbols transmitted in each time slot by
computing linear combinations of the received symbols.

Note that the described linear network code is defined for integer values of r. However,
any non-integer rate can be achieved by time-sharing between two linear network codes

with different integer rates.

4.2.5 Diversity Gain

In section 1.3 of chapter 1, we introduced the diversity gain of an end-to-end connection
over an erasure graph as the (decaying) slope of Pg versus p in the logarithmic scale as
p — 0. We also stated that this definition is compatible with the concept of diversity gain
in the wireless communication literature if % is interpreted as the SNR. In this subsection,

we accurately define the previously introduced concepts.

Definition 4.10. Probability of Error: for an end-to-end connection from s to z with the

normalized rate r over T' time slots, the probability of error is defined as
P 2 P #m) 9 Piw #£ w) (4.9)

where P{.} denotes the probability of an event, and (a) follows from the fact that the

function f() in (4.2) is one-to-one.

Remark 4.1. For each block, let us define the binary random variable &, where & = 1 if
m # m, and € = 0, otherwise. Then, we clearly have Pp = E{€}. In other words, Pg
represents the statistical average of € in each block. In case we have a very long data
stream composing a large number of blocks, time average of € converges to the statistical
average of € (due to ergodicity). Intuitively speaking, the observed percentage of error

converges to the probability of error.

Definition 4.11. Diversity Gain: for an end-to-end connection from s to z with the

normalized rate r, €(s, z,r), we define the diversity gain as

log Pg

d® £ lim lim .
p—0T—o00 1ng

(4.10)

97



Chapter 4. Diversity-Rate Trade-off in Erasure Networks

Definition 4.12. Optimum Diversity Gain: for a rate r and end nodes s and z, the
optimum diversity gain is defined as the maximum diversity gain over all possible end-to-

end connections between s and z with rate r

dPt(r) & I(nax) d. (4.11)
&(s,2,r

Remark 4.2. We will later show that d°P*(r) is a decreasing function of r. More accurately,

there is a trade-off between d°(r) and r.

Definition 4.13. Mazimum Diversity Gain: for the end nodes s and z, the maximum

diversity gain is defined as

max A opt
ame = max dP(r). (4.12)

Definition 4.14. Strategy Factor: for an end-to-end connection €(s, z,7), we define the
strategy factor as
Pg

A%® 2 lim lim —¢.
p—0 T —o00 pd

(4.13)

FExample 4.1. Consider the network of Example 1.1 with the number of links n = 5 and rate
r = 3. The following end-to-end connection is denoted by €(s, z,7): every r packets are
coded into an MDS code of length n and then transmitted over the n links (as described in
Example 1.1). Figure 4.1 depicts the plot of Pg versus % in the log-log scale for €(s, z,7).
d® = 3 is the slope of the tangential line at % — 00. The strategy factor A® can be found

at the intersection of this tangential line with the vertical line 119 =1.

4.3 Homogeneous Erasure Graphs

In this section, we analyze the diversity-rate trade-off over erasure graphs with homogeneous

links defined as follows.

Definition 4.15. An erasure graph G = (V, &) is called a Homogeneous Erasure Graph
(HEG) if all the links have the same capacity and the same erasure probability. In other

words, Ve € £, we have o(e) = w(e) = 1.
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Figure 4.1: Pg vs. % in the log-log scale for the network of Fig. 1.1 with n =5 and r = 3.
The diversity gain is d* = 3 and the strategy factor A® is indicated in the plot.

Remark 4.3. In this work, to keep the analysis simple, we have defined an HEG such that
o(e) =w(e) =1 for all e € £. However, the results stay valid (with some scaling factors)
if Ve € &, we have w(e) = wp and o(e) = gy for some constants wy and op. We can still

r

apply the results of this subsection using the scaled rate ' = - and substituting p with

log PE

p' = p*°. Thus, the diversity gain d = lim,_.o &~

gets scaled by the factor wio

Furthermore, we define deterministic erasure graph to proceed with our analysis.

Definition 4.16. An erasure graph, in the sense of Definition 4.1, is called deterministic

if we have p = 0.

Lemma 4.1. Consider a deterministic erasure graph G = (V,E) with the end nodes s € V
and z € V — {s}. If there exists an s — z cutset Cy, 1, (S, z) with o (Cy, v,(s,2)) <, then

for any end-to-end connection €(s, z,r), we have limy_, Pgp = 1.
Proof See appendix 4.7.1. [

Lemma 4.2. In a HEG with the s — z min-cardinality-cut MCC(s, z), we have

lim Pg > n(s,z, MCC(s, z) — [r] + 1) pMeCE2-IM+1 (1 L O(p))

T—o00
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for any end-to-end connection €(s, z,r). Here, n(s,z,a) denotes the number of sets S C €
of cardinality o such that there exists a s — z cut of minimum cardinality, Cy, v, (s, z), for
which S C Cy, v,(8,2). Thus, we have dP'(r) < MCC(s, z) — [r] + 1. MCC(s, z) is defined
in Definition 4.7.

Proof See appendix 4.7.2. [ |

Lemma 4.3. In a HEG with the s—z min-cardinality-cut MCC(s, 2), there exist MCC(s, z)

link-disjoint paths from s to z.

Proof This lemma is direct result of the Ford-Fulkerson Theorem and the fact that o(e) =
1 for Ve € £ in a HEG. u

Definition 4.17. MDS Coding + Disjoint Routing (MDR): in a HEG with the s — z min-
cardinality-cut MCC(s, z), an MDR end-to-end connection with the integer normalized
rate 7 < MCC(s, z) is defined as follows:

1. At any time slot ¢, the node s encodes w(—1)r+1, - - ., Wy to MCC(s, 2) g-ary symbols
using an MDS code.

2. Then, s transmits the MCC(s, z) g-ary symbols along the MCC(s, z) link-disjoint
paths to z, one symbol per path.

3. If r or more symbols are received correctly by z, it can reconstruct wu—1y,41, - - ., Wy

Otherwise, an error is declared.

For non-integer values of r, an MDR end-to-end connection is achieved by time sharing. s
uses an MDR connection with the rate |r| for [r| — r percent of the time and an MDR

connection with the rate [r] for the rest of time.
Remark 4.4. According to Definition 4.17, it is obvious that MDR is a special case of
conventional routing.

Remark 4.5. For any MDS code of size [n,r], we know that the receiver can decode the
original r data symbols if out of the n transmitted symbols, at least r of them are received

correctly [56].
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Figure 4.2: Ladder-shaped HEG

Theorem 4.1. Consider a homogeneous erasure graph G = (V,€) and a MDS cod-
ing+disjoint routing end-to-end connection which transmits messages over MCC(s, z) link-
disjoint paths from s to z where MCC(s, z) is the min-cardinality-cut between s and z.
Assume the length of the i'th path is l;, for 1 <i < MCC(s, z). Then, for every rate r > 0,

the end-to-end connection achieves the diversity gain d™P? = (MCC(s, 2) — [r] + 1) and

the strateqy factor’
AMPR = N T L (4.14)

ICP rel
|T|=dMDR

where P = {1,2,..., MCC(s, 2)}, and we define z+ = %m
Proof See appendix 4.7.3. |

Remark 4.6. According to Theorem 4.1, for an MDR end-to-end connection with the nor-

MCC(s,z) I

malized rate r < 1, the strategy factor is equal to AMPR = ]2

Theorem 4.2. Consider a homogeneous erasure graph G = (V, &) and a pair of source
and destination nodes, s,z € V. For every rate r > 0, the optimum diversity gain is equal
to dP'(r) = (MCC(s, 2) — [r] 4+ 1)" where MCC(s, 2) is the min-cardinality-cut between s
and z and zt & %m Furthermore, there exists a MDS coding+disjoint routing end-to-end

connection which achieves the optimum diversity-rate trade-off.

Proof Combining Theorem 4.1 and Lemma 4.2, the proof becomes obvious. |

3Strategy factor is defined in Definition 4.14 in subsection 4.2.5.
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Definition 4.18. Flooding: an end-to-end connection with the rate r = 1 over a HEG is

called flooding if the following conditions are satisfied:
1. For Ve € L,(s) and 1 <t < T, we should have x.; = w;.

2. ForVueV —{s,z} and Ve € L,1(u) and 1 <t < T, we should have

Xet =

)

{ 0 if X C{0,&} (4.15)

w; otherwise

where X is the set of all elements in the ¢’th column of Y, 4, i.e. all of the symbols u
has received in at time slot ¢. The matrix Y, is defined in (4.4). Since in each time
slot t only one symbol w; is being broadcast, it is easy to verify that X can consist of
at most 3 elements: 0, &, and w;. The above equation simply states that if w; € X,

the node broadcasts it at all of the outgoing edges. Otherwise, it broadcasts 0.

Intuitively speaking, flooding works by each intermediate node broadcasting the same
packet on all of the outgoing links.

Theorem 4.3. Consider a homogeneous erasure graph G = (V, &) and a pair of source
and destination nodes, s,z € V. A flooding end-to-end connection from s to z achieves
the mazimum diversity gain d’' = d™*® = MCC(s, z) with the minimum possible strategy
factor of A7t = N(s,z) where N(s, z) is the number of min-cardinality-cuts between s and

z.
Proof See appendix 4.7.4. [ |

Example 4.2. Ladder Grid: consider the ladder-shaped HEG of Fig. 4.2. Clearly, we have
MCC(s, z) = 2 in this graph. An MDR end-to-end connection with the rate r = 1 consists
of two disjoint paths from s to z. Each path has the length of L 41 links. Thus, according
to Theorem 4.1 and Remark 4.6, such an MDR end-to-end connection has the diversity
gain of dMP! = 2 and the strategy factor of AMPR = (L + 1)

On the other hand, flooding provides us with the same diversity gain, d/! = 2, and a
better (lower) strategy factor. According to Theorem 4.3, Al = N(s,z) where N(s, z)
denotes the number of min-cardinality-cuts between s and z. In the graph of Fig. 4.2

there are L + 2 cuts of cardinality 2. L of them correspond to the L steps on the ladder.
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—

Figure 4.3: Square-shaped HEG

The last two cuts disconnect the end point (s and z) from the rest of the graph. Hence,
we have A/ = N(s,2) = L + 2 which is much less than AMPE = (L 4 1)2.

FExample 4.3. Square Grid: consider the square-shaped HEG of Fig. 4.3. Again, we have
MCC(s, z) = 2 in this graph. Any MDR end-to-end connection with the rate » = 1 consists
of two paths of length 2L links each. Thus, according to Theorem 4.1 and Remark 4.6,
it has the diversity gain of dP® = 2 and the strategy factor of AMPR = 412, Flooding
provides us with the same diversity gain, d/! = 2, and a much better (lower) strategy
factor, A/' = 2. The reason is that there are only two cuts of cardinality 2 in the graph,

the ones disconnecting s and z from the rest of the graph.

4.4 General Erasure Graphs

In this section, we analyze the diversity-rate trade-off for the general erasure graphs, mean-
ing that o(e)’s and w(e)’s can take different values. As we will observe, in the general
case, conventional routing fails to achieve the optimum diversity-rate trade-off. However,

we show that linear network coding in the intermediate nodes can achieve the optimum
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diversity-rate trade-off. First, we define the following notations.

Definition 4.19. Consider an erasure graph G = (V, ). For a pair of end nodes s,z € V
and any value of d > 0, 7(d) is defined as the minimum value of MC(s, z) over all graphs

G' = (V,&) such that & C £ and w(€ — &’) < d. Equivalently,

7(d) = min  min o (Cy, p,(s,2) —S), (4.16)
V1,V2 SCCy; vy (8:2) ’
w(8)<d

where Cy, 1, (s, 2) is an s — z cutset in G, such that V1,V C V;s € Vi;z € Vo, Vi [ Va2 = 0.

Definition 4.20. Consider an erasure graph G = (V, ). For a pair of end nodes s,z € V
and any rate r > 0, d*(r) is defined as

d*(r) £ min d,

d>0,r>7(d)
Lemma 4.4. 7(d) and d*(r) are both decreasing functions.

Proof See appendix 4.7.5. |

Lemma 4.5. Consider an erasure graph G = (V,&) and a pair of end nodes s,z € V. For
any end-to-end connection €(s, z,r) with rate r > 0, we have limy_,o, Pg > p? if r > 7#(d).

Equivalently, we have limp_, o, Pg > p? (),
Proof See appendix 4.7.6. [

Lemma 4.6. Consider an erasure graph G = (V,€), end nodes s,z € V, d > 0, and
any rate v < 7(d). The symbols transmitted on the links of G are assumed to be in
F, as explained in Definition 4.3. Let Eopr denote the set of OFF edges. For suffi-
ciently large values of q, there exists a linear network coding strategy €™C(s,z,7) such
that P {error|w (Eorr) < d} = 0.

Proof See appendix 4.7.7. [

4Linear network coding is defined in Definition 4.9.
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Figure 4.4: Pg of linear network coding, MDS Max-Flow Routing (MMR), and MDS Max-
Flow Routing with Detours (MMRD) vs. 1 in logarithmic scale for different rates r = 350

p

and r = 316. The network parameters are |V| =40, m = 5, and 10 < o(e) < 100.

Theorem 4.4. Consider a general erasure graph G = (V, &) and a pair of end nodes
s,z € V. The symbols transmitted on the links of G are assumed to be in Fy as explained
in Definition 4.3. For sufficiently large values of q, there exists a linear network coding

end-to-end connection which achieves the optimum diversity-rate trade-off. Moreover, the
optimum diversity-rate trade-off is equal to d*(r) as defined in Definition 4.20.

Proof See appendix 4.7.8. [

Theorem 4.5. There exists an erasure graph G = (V,€) and end nodes s,z € V such
that no conventional routing end-to-end connection from s to z can achieve the optimum

diversity-rate trade-off, d*(r). Conventional routing is defined in Definition 4.8.

Proof See appendix 4.7.9.

Remark 4.7. Theorem 4.5 shows a sharp distinction between HEG’s and general erasure
graphs. In a HEG, according to Theorem 4.1, it is possible to achieve the optimum diversity
gain for any rate using conventional routing (MDS Coding + Disjoint Routing). On the
other hand, in the general erasure graphs, there are cases where any conventional routing

strategy fails to achieve the optimum diversity gain. In such cases, the intermediate nodes
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Figure 4.5: Pg of linear network coding, MDS Max-Flow Routing (MMR), and MDS Max-
Flow Routing with Detours (MMRD) vs. 1 in logarithmic scale for different rates r = 310

p

and 7 = 300. The network parameters are |V| =40, m = 5, and 10 < o(e) < 100.

have to perform algebraic operation (instead of simple forwarding) on the incoming symbols
(packets) to achieve d°P(r).

4.5 Numerical Results

This section utilizes numerical evaluation to compare the performance of linear network
coding and conventional routing over erasure networks with random topologies. The net-

work topology is generated based on the random models explained in the next subsection.

4.5.1 Network Topology

To model the topology of practical networks realistically, we use the well-known Boston
university Representative Internet Topology gEnerator (BRITE) [132,133]. BRITE has
the ability to construct random network topologies based on the Barabasi-Albert (BA)
model [134] and Waxman model [135]. The BA model is able to capture the scale-free and
power-law degree distribution phenomena which are observed in many networks like the IP
routers, World Wide Web, social networks (Facebook, Orkut), scientific paper citations,

etc [136]. This model is based on two principles: incremental growth and preferential
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connectivity [134]. The BRITE topology generator identifies the BA model with two
parameters: the number of nodes (|V|) and the connectivity parameter m. During the
incremental growth phase, once a new node joins the network, it selects m old nodes and
connects to them. Due to the principle of preferential connectivity, the old nodes which
already have higher degrees are more likely to be selected. In other words, the probability
that an old node is selected by the new node is proportional to its degree [134].

The number of edges in a random graph with |V| nodes generated by the BA model
can be computed as follows. The first node has no other nodes to connect to and forms
zero new links. The second node forms one new link. Similarly, for 1 < i < m, the i'th
node added to the network forms ¢ — 1 new links. The nodes after the m’th node each form
exactly m new links. Adding all of the links together gives us the total number of edges
€] = m|V| — mmh),

On the other hand, Waxman model is based on the simple assumption that two close
nodes are exponentially more likely to connect (and form a link) than two far apart
nodes [135]. This property is called local preference. In the original Waxman model [135],
the nodes are uniformly distributed in a square of size Z; x Z,. The probability that
two nodes u and v with the distance [(u,v) of each other are connected is equal to
P(u,v) = ae_l(g; ) where Z = \/m is the largest Euclidean distance between any

two points in the area. The parameter a controls the total number of edges in the graph,

while 3 determines the ratio of long edges to the short ones. Unfortunately, according
to this model, the average degree of a node grows infinitely large as the total number of
nodes in the graph (|V|) grows. This trend is in contrast with the observations in most
practical networks like the Internet where the average degree stays limited as the network
grows [137]. Therefore, BRITE applies a variation of Waxman model in which each node
connects to m other nodes. Thus, the number of edges would be |E| = m|V|. When adding
a link whose tail is the node u;, there are |V| — 1 candidates for the head. Modified Wax-
man model picks the closer nodes with higher probability, i.e. the probability of u; being
selected is [138]

_ Mug,uyg)
e Bz
P(“"L?uj) = 'li‘v‘
J= l(ui,uj/)
e Bz
=Lyt

Unlike the BA model, Waxman model results in a degree distribution which decays expo-

nentially at large degrees [139]. Although this is in contrast with the scale-free property

109



Chapter 4. Diversity-Rate Trade-off in Erasure Networks

observed in the Internet [136], Waxman model is widely used to generate small-size net-
works due to its simplicity and local preference property [140]. We apply the modified
Waxman model with § = 0.2 (the default value in BRITE software [138]).

As stated, the BA model emulates the behavior of the real networks in the asymptotic
case where the number of nodes (and edges) in the graph is very large [136]. However, due
to the high complexity of computing d°’*(r), we do not grow the number of nodes more
than ~ 50 and the number of edges more than &~ 250 in the simulations. Therefore, we also
test graphs constructed based on the Waxman model which is more suitable for small-size
networks.

BRITE topology generator assigns a random capacity value o(e) to any edge e € £. o(e)
follows the heavy-tailed Pareto distribution [141] with the shape factor v = 1.2 (the default
value in BRITE software [138]), the minimum value set at BW,,;,, and the maximum at
BW ez w(e) is set to one for all e € £, i.e. each link in the graph may be OFF with the
probability p. We run the simulations for 4 BA topologies and 4 Waxman topologies:

e (a) |[V| =40, m =25, and 10 < o(e) < 100,
e (b) |V| =40, m =5, and 10 < o(e) < 15,
e (¢) |V| =30, m=4, and 10 < o(e) < 100,
e (d) |V| =30, m =4, and 10 < o(e) < 15.

As explained before, the number of nodes and edges in the network is kept small due to
high complexity of computing d°?*(r). The reason we adopted the connectivity parameter
m equal to 4 or 5 is that for smaller values of m, the network becomes too sparse (and in
some cases unconnected). Even if the network stays connected, the min-cut (bottleneck)
between most of source-destination pairs is composed of the edges connecting one of the
end-nodes to the rest of the network. In such cases, there is not much of difference between
the performance of conventional routing and linear network coding.

The distribution of the links’s capacity (o(e)) is selected such that networks (a) and
(c) become wvery heterogeneous, in the sense that capacity of their links vary significantly.
On the other hand, networks (b) and (d) can be viewed as almost-homogeneous erasure

networks. The reason is that capacity of the links in these graphs do not vary significantly.
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4.5.2 Random Routing vs. Linear Network Coding

To have a fair comparison between conventional routing and linear network coding, we

measure the performance of three different end-to-end connections:

e Linear Network Coding: according to theorem 4.4, we know that there exists at least
one linear network coding scheme which achieves the maximum diversity gain for any
rate 7, denoted by d°*(r).

e MDS Max-Flow Routing (MMR): for any 0 < r < MC(s, z), the source node, s,
encodes every r symbols (packets) into MC(s, z) symbols using an MDS code. Then,
we find a flow with the rate of MC(s, z) (max-flow) from s to the destination, z.
Finally, the state of each link is set to {ON,OFF} with the probabilities {1 — p, p}.

If less than r symbols reach the destination, an error is declared.

e MDS Max-Flow Routing with Detours (MMRD): this scheme is exactly the same
as MMR, except that the max-flow found by MMR is enhanced by adding random
extra detours to the path of each symbol from s to z. This is done until all links are

saturated and no detour can be found.

It is easily seen that both MMR and MMRD schemes can be categorized as conventional
routing end-to-end connections. Intuitively speaking, we expect MMRD to have a better
performance than MMR, (@50 (r) > @MME(r)). The reason is that MMRD takes advan-
tage of the unused links in the graph to send extra copies of the symbols to the destination.
This increases resilience of the end-to-end connection to link breakdowns.

The last two schemes have a random nature. Therefore, we generate up to 100 MMR
and MMRD schemes. Then for each rate, we select the MMR and MMRD schemes with
maximum diversity gain. This gives us the envelope of dMf(r) and dMMRP(r). Our
simulation results show little variation in the the diversity gains of 100 randomly generated
MMR (and MMRD) schemes for each rate. In the cases where more than 100 (say 1000)
random MMR and MMRD schemes were generated, the maximum diversity gain of MMR
and MMRD schemes for each rate (envelope of d”%(r) and d*#P(r)) did not change.
Therefore, there is no need to test more than 100 MMR and MMRD schemes.

Figure 4.4 and Fig. 4.5 depict Pg of linear network coding, MMR, and MMRD versus 713
for different rates over the BA network with topology (a) described in the previous subsec-

tion. The graph has the max-flow of MC(s, z) = 372. The diversity gains can be computed
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based on the decaying slope of Pg vs. 217 (in logarithmic scale). It is observed that the
slope increases as the rate decreases. Moreover, the diversity gain (slope) of linear network
coding is always larger than or equal to that of conventional routing (MMR and MMRD)
for the same rate. Figure 4.6 compares d°’*(r) with the envelope of MMR and MMRD
diversity gain (d™£(r) and dMMRP(r)) for 100 random routing schemes. Subfigures (a)
to (d) correspond to the four network topologies described in the previous subsection. All
of the topologies are generated based on the BA model. In all cases, the diversity gains
take integer values only and have stepwise shapes. This is an obvious result of the as-
sumption that w(e) =1 for all e € £. Comparing subfigure (a) with (b) and (c) with (d)
reveals that the gap between d°!(r) and conventional routing diversity gain (d™2(r) and
dMMED (1)) is significantly smaller in almost-homogeneous networks (graphs (b) and (d)).
In both almost-homogeneous networks (graphs (b) and (d)), the envelope of d*MFP(r) is
barely distinguishable from d°?*(r) (optimal diversity gain) at all rates. This observation
verifies Theorem 4.2 which states that proper conventional routing can achieve the opti-
mum diversity-rate trade-off in homogeneous erasure networks. In topologies (a) and (c),

dMMED (r) stays considerably smaller than d°?*(r). The reason

however, the envelope of
is that in such cases, the capacity of different links vary significantly, and conventional
routing fails to achieve the optimum diversity-rate trade-off.

Figure 4.7 depicts d°’*(r) and the envelope of MMR and MMRD diversity gain for the
scenarios (a) to (d) with the Waxman model. It is observed that the general trend is similar
to Fig. 4.6 (the BA model), i.e. the gap between d°P*(r) and d™MFP (1) is significantly larger
in heterogeneous networks (subfigures (a) and (c)) than in the almost-homogeneous ones
(subfigures (b) and (d)). However, this gap is slightly smaller in subfigures 4.7(a) and 4.7(c)
than in subfigures 4.6(a) and 4.6(c). This observation can be attributed to the fact that in
the BA model, the degree distribution is more non-uniform than in the Waxman model.
In other words, a small percentage of the nodes are highly connected, while the rest of
the nodes have low connectivity. Therefore, the advantage of linear network coding over

conventional routing is more significant in the BA model.

4.6 Conclusion

We have studied a fundamental trade-off between rate and diversity gain over an erasure

network. The erasure network is modeled as a directed acyclic graph whose links are
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orthogonal erasure channels. The erasure status of the links is assumed to be known only
by the destination node. First, we focused on the homogeneous erasure networks whose
links have the same erasure probability and capacity. The optimum diversity-rate trade-
off was derived for homogeneous erasure networks and was shown to be achievable by
MDS coding at the source node and disjoint routing in the intermediate nodes (a variant
of conventional routing). Next, we analyzed the general erasure networks whose links
may have different capacity and erasure probability values. It was proved that in general
erasure graphs, conventional routing strategies fail to achieve the optimum diversity-rate
trade-off. However, the optimum trade-off is always achievable by linear network coding.
Finally, we studied the diversity-rate trade-off through simulations over graphs constructed
based on the Barabasi-Albert and Waxman random models. The diversity gain of linear
network coding strategy was plotted versus the rate and was compared with that of different
conventional routing schemes. It was observed that linear network coding outperforms all

conventional routing strategies in terms of the diversity gain.

4.7 Appendices

4.7.1 Proof of Lemma 4.1

Let us denote the vector of symbols transmitted on the cut edges by x(C). Then w «
x(C) «» w form a Markov chain. Thus, the capacity of the end-to-end-channel from s to z

can be bounded as

Q
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where (a) follows from the data processing inequality and (b) from the fact that x(C) takes

at most qTU<Cv1,v2 (5,2))

different values. rlog, ¢ equals the non-normalized end-to-end rate
in bits. Using the strong version of the converse of the noisy channel (Shannon) theorem,

we know that limy .., Pg = 1 for rates above the capacity. This proves the lemma. |

4.7.2 Proof of Lemma 4.2

Let us denote all the s — 2 cutsets with the minimum cardinality as Ci,Ca,...,Cn(s,)-
Furthermore, we define £s as the event® that the edges in the subset S C £ are OFF and
a = MCC(s,z) — [r] + 1. Then, limy_., Py can be lower-bounded as

.
lim Pg> lim P < error ﬂ U U Es
T—o0 T—o0 T sce;
L |S|=a
p
= TlgrololP’ U (error ﬂ55>
S,|S|=a
\ 3::SCC;
(a)
> lim P{Es}P{error [Es}—
Tmoo S,|S|=a
3i:SCC;

Z P{EsnN&s}P{error |EsN&s}

S#8/,|8|=|S!|=a,
3,5:8CC;, 8" CC;

®) 2
> n(s, z,a)p® — N(s, 2)* (MCC(S’ 2)) p**!
a

=n(s,z,a)p” (1+ O(p)). (4.17)

Here, (a) follows from the principle of inclusion-exclusion [142] and (b) follows from i)
Lemma 4.1, ii) the facts that P{€s} = p* and P{EsN&Es} < p**! and iii) the fact
that the number of subsets S for which we have Ji : § C C;, can be upper-bounded by

N(s, z) (MC’i(s,z))‘ Therefore, for any end-to-end connection €(s, z,r), the above inequality

5In the axiomatic probability theory, an event is interpreted as a set. Thus, following the convention
of this thesis, we denote all events by calligraphic letters.
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results in d®* < MCC(s, z) — [r] + 1. |

4.7.3 Proof of Theorem 4.1

First, let us prove the theorem for integer values of . A path from s to z is called broken
if at least one of the links in the path is OFF. For each i, i € P, the probability of path
i being broken is p; = 1 — (1 — p)¥i, where [; is the number of links the path consists of.
It is easy to see that p; = [;p(1 + O(p)). In an MDR end-to-end connection with the
normalized rate r, the r packets at the source are coded into MCC(s, z) packets using an
MDS block code of size [MCC(s, z),r]. An error occurs iff more than MCC(s, z) —r packets
are lost. This is equivalent of MCC(s, z) — r 4+ 1 or more paths being broken (out of the
total MCC(s, z) paths). Therefore, Pr can be written as

MCC(s,z)

o= > 2 1Inm

d=MCC(s,z)—r+1 ICP z€l

|7=d
MCC(s,z)
= > > ra+om) ][
d=MCC(s,z)—r+1 ZICP €l
|7=d
_ pMCC(S,Z)*T*Fl(l + O(p)) Z H L.

ICP €L
|Z|=MCC(s,2)—r+1
The above result proves the theorem for integer values of r.

As explained in Definition 4.17, non-integer rates are achieved by time sharing between
two MDR connection of rates [r] and |r|. According to the above result, it can be seen
that the diversity gain corresponding to the higher rate ([r]) is smaller and therefore
dominates. Hence, the overall diversity gain and strategy factor are identical to those of a

connection with the rate [r|. This completes the proof. |

4.7.4 Proof of Theorem 4.3

A cutset is called broken if all of the links in the cutset are OFF. Let us denote &; as

the event where the i'th s — z cutset of minimum cardinality is broken, 1 < i < N(s, 2).
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Obviously, an error occurs iff at least one of the cutsets is broken. Hence, we have

n(s,z)
Py = PeJé€
=1
n(s,z)

< Z P{&}

=1

= N(s,z)pMCCt2), (4.18)

On the other hand, from Lemma 4.2, we know that hm Pg > n(s, z, MCC(s, 2))pMcC2),
According to the definition, we conclude that n(s z MCC(S z)) = N(s,z). Hence, the

flooding end-to-end connection achieves the optimum diversity gain of MCC(s, z) and the

minimum strategy factor of N (s, z). This completes the proof. [ |

4.7.5 Proof of Lemma 4.4

Let us consider d < d’. We have

7(d) = min min o (C 5,2)—S
( ) Cyy vy (5,2) SCCy, v, (5,2) ( V1,V2( ) )
w(S)<d
> min min o (CV17V2<3, Z) — 8) — f(d/)’ (419)
Cvy vy (5,2) SCCy vy (s,:2)
w(S)<d!

where Cy, 1, (8, 2) is defined in Definition 4.6. This proves that 7(d) is decreasing.

Next, let us consider » < r’. We have

d(r) = min d
d>0,r>7(d)
> min d = d*(r'). (4.20)
d>0,r'>7(d)
This proves that 7(d) is decreasing with respect to d. [

4.7.6 Proof of Lemma 4.5

Let us consider a value of d such that r > 7(d). According to the definition, there exists a
set & C &€ such that w(€ — &) < d and MC(s, z) = 7(d) < r over the graph G' = (V,&’).
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Furthermore, let us define D as the event where all edges in &€ — £ are OFF. Then, we

have

Tlim P > 21im P{error ND}
= Tlim P{error |D}P{D}

2 P{D} =p*¢) > p? (4.21)

where (a) follows from Lemma 4.1 and the fact that MC(s, z) < r for the graph G'.
Next, we prove limy_. Pr > p* ). According to Definition 4.20, it is obvious that
r > 7(d*(r)). Thus, setting d = d*(r) in (4.21) proves the lemma. |

4.7.7 Proof of Lemma 4.6

Sketch of the Proof: the proof is similar to the proof for capacity achievability of linear
network coding presented in [61]. Here, we have to show that there exists a linear network
code such that for any subgraph G = v, é) of G for which w (8 — éf) < d, it achieves the

deterministic capacity of G. To ensure this, we have to consider the multi-variate poly-
nomial obtained by multiplying the determinant of the transfer matrices corresponding
to each subgraph G and show that providing a Galois Field F, large enough, the corre-
sponding multi-variate polynomial is not equal to zero. This method is very similar to the
algebraic anlaysis of network coding in [61,63].

Proof: let us consider an arbitrary labeling ¢ : {1,2,...,0(£)} — & such that for
every edge e, we have |{x|{(z) =e}| = o(e). Now, we define the multivariate matrix
F of size 0(€) x o(€) over F, as follows. For any 1 < 4,5 < o(£), we have F;; = 0
it h(€(j)) # 7(€(7)). Otherwise, F;; = [;; where f3;; is a variable in F,. 3;; denotes
the coefficient used at the node h(¢(j)) to compute the effect of the corresponding input
symbol over £(j) on the corresponding output symbol over £(i). Hence, for any two edges

e, ¢’ with h(e’) = 7(e), every realization of {f;;},., , corresponds to B, s defined in

—el(j)=e
Definition 4.9. Accordingly, every realization of the m(ljlitivariate matrix F determines the
linear network operations in all intermediate nodes.

Similarly, we define the multivariate matrices A and C over [, with sizes r x (&) and
o(€) x r, respectively. A and C correspond to the linear network operations performed

at the destination and source nodes, respectively. More precisely, A;; = 0 if h(((j)) # 2.
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Otherwise, A;; = a;; where «;; is a variable in F, denoting the coefficient used at the
destination node to compute the effect of the corresponding input symbol over edge £(5)
on the i’th element of the output vector, y*. Similarly, C;; = 0 if 7(¢(7)) # s. Otherwise,
C,; = (., where ¢, ; is a variable in I, denoting the coefficient used at the source node
to compute the effect of the j’th element of the message vector, w?, on the corresponding
symbol over edge £(i).

In the case where all the edges in the network are ON, using the same argument intro-
duced in [61], the input and output vectors at time ¢ are related as y' = A (I — F)™' Cw?.
This is due to the facts that the network is delay-free and the underlying graph is di-
rected acyclic. Hence, the receiver can successfully decode the transmitted message if
det (A(I-F)"'C) #0.

However, according to the network model, each link in the graph can be in the ON
or OFF state. The state of the graph G is defined as the vector of the states of all
the links in the graph. Consider all states of the graph for which w (Eopr) < d. Let
us denote the number of such states by ¥ (obviously, ¥ < 2/€) and label them from
1 to W. Corresponding to the #’'th state, 1 < i < U, we define the graph G' = (V, &)
where £ 2 £ — Eorr, and the operator ‘—’ is defined as A — B = {z € A| z ¢ B} for
any two sets A and B. Let us assume the i’th state occurs. According to the definition
of linear network coding (Definition 4.9), the intermediate nodes disregard the symbols

received from the OFF edges. Thus, the input and output vectors at time t are related as
~ . A\ 1
yl = A’ <I - FZ> Cw! where

~ 0 E(k)) c€ — 51
Fi = )
7 Fj i otherwise
~ 0 g(k)) c€ — 51
’ A, otherwise

Let us consider an arbitrary cut Cy, 1,(s,2) in G. The projection of this cut on Gl

Cy, (5, 2)NE?, corresponds to a cut in G which is denoted by CE,VQ (5,2) 2 Cyyv, (5, 2)NEL

Since w (5 - é’z> < d, we conclude that w <Cvl,v2(37 z) — CE’VQ (s, z)> < d. Thus, we have

o <Cg,1i’v2(s,z)> > 7(d) g r. (4.22)
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Here, (a) results from Definition 4.19 and the facts that Cgﬁ’w(s, z) C Cy, 1, (s, 2) and

w (Crvals,2) = CY2(s5,2)) <.

and (b) results from the assumption of the Lemma.
The above inequality implies that the min-cut of graph G, is greater than or equal to
r, for all 1 <7 < W. Hence, according to the Ford-Fulkerson Theorem, a routing algorithm

with the rate r exists for every G;. Any routing algorithm with rate r over G; can be inter-
AL AL A~ A\ 1
preted as a realization of A", F* C for which the matrix A® (I — FZ> C is non-singular.

Accordingly, by defining the multivariate polynomial §; as ¢; = det (A’ (I - f‘i)_l C),
we conclude that §; is a non-zero polynomial of {«;, Bk, (i} over F,. Let us denote the
length of the longest path over G' by L. Hence, the entries of (I — 1:”) - are polynomials
with the degree of at most Lg — 1. Knowing that the entries of A’ and C are polynomials
with degree 1, we conclude ; is a polynomial of degree (Lg + 1)r.

Let us define the multivariate polynomial § £ H;Ijzl 0;. Since 9;’s are non-zero poly-
nomials of degree at most (Lg + 1)r, 0 is also a non-zero polynomial of degree at most
U(Lg + 1)r. Let us assume ¢ is large enough such that ¢ > V(Lg + 1)r. Applying
Schwartz-Zippel Theorem [143], we have

P {5 (i, Bjks Gix) = 0} < deg (9) < (Lg + Dr

q q

<1 (4.23)

Here, it is assumed that the variables are chosen independently and equiprobably from F,.
(4.23) implies that there exists a realization such that § # 0. Equivalently, there exists a
linear network code such that for all states of the network, the matrix A’ (I — f") - Cis
non-singular and the message vector can be decoded with zero error probability, Pg = 0.

This completes the proof of the lemma.

4.7.8 Proof of Theorem 4.4

Similar to the proof in appendix 4.7.7, we can define 2/¢| different states for the graph G
labeled arbitrarily from 1 to 2/¢!. Similarly, corresponding to the i’th state, we can define
the graph G = (V, SAI) where £ denotes the set of ON edges. Moreover, let us define D;

as the event that the ¢’th state occurs. Since D;’s are disjoint and cover all the possibilities,
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Pr can be upper-bounded as

2l€]

Py = Y P{error |D;}P{D;}
=1

2l€]

(@) Z P{error |D;}P{D;}

w(é'fé}"":)lzd* (r)

2l€]
® Z P{error ]Di}p‘”(‘g_éi)(l — p)‘“(g)

=1
w(E=E1)>d*(r)

2l€]
S Z pw(é‘fé‘z)(l . p)w(ﬁ)
w(SfS}iz)lzd*(r)
< 2lElpdt(n), (4.24)

Here, (a) follows from Lemma 4.6 by setting

d= max = w <5 — c‘j’l>
1<i<2l€l
w(S—c‘fi)<d*(r)

and the facts that: i) for all states in which w (5 - E:") < d*(r), we have w(Eppr) < d, and

ii) d < d*(r) which results in r < 7(d). (b) results knowing P{D;} = p“’(g_éi)(l - p)“’(gi).
Combining (4.24) and the lower-bound of P obtained in Lemma 4.5 completes the proof
of the theorem. [

4.7.9 Proof of Theorem 4.5

Since the theorem is an existential one, providing a constructive example is sufficient for
the proof. Thus, we prove the theorem by presenting a graph for which no conventional
routing scheme can achieve the optimum diversity-rate trade-off.

Consider the erasure graph in Fig. 4.8. All links have the same erasure probability, i.e.
w(e) = 1 for all edges. Furthermore, all links have unit capacity except the three links

from u to z which have the capacity of 5 symbols per time slot each. We label these links
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)

Figure 4.8: An example of conventional routing failing to achieve d°?*(r)

as ey, €9, and ez. Moreover, ¢4 denotes the only direct link from s to z.

Consider an end-to-end connection €(s, z,7) with r = 11 which uses conventional rout-
ing during 7' time-slots. Let the vectors s of size 127" denote the vector of the symbols
sent by the source on its outgoing links. Since, the intermediate node applies conventional
routing, the information symbols on the links ey, ..., e correspond to specific indices of
the vector s. For ¢ = 1...4, let A; denote the set of all indices of s which correspond to
the symbols sent on link e; during time slot 1 to 7.

We define Cy (s, z) as the s — z cutset consisting of ey, ..., es. According to Lemma 4.1,
if any two links in Cy(s, z) are OFF, we have limy_., Pp = 1. This implies that d% < 2,
i.e. we have d® =1 or d¥ = 2. Next, we show that d® = 2 leads to contradiction, proving
that we must have d® = 1.

Let us assume that d® = 2. This implies that even if e5 is OFF, the end node z should
be able to decode the transmitted data from s based on the symbols conveyed through ey,

es, and ey with the error probability of O(p). Thus, we can write

rT 11T
|A1 U, U ./44|
| A1 U As| + | Ayl

= A UA| + T,

INE

—
=
=
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where operator || denotes the cardinality of the set. Here, (a) follows from the fact that
any code with the rate greater than 1 has a strictly positive probability of error (constant
with p), and (b) follows from the fact that A4 and A; U Ay U Az are disjoint sets. The

above result is equivalent to
| AL + [ Az| = [Ar N Ap| > 10T (4.25)
Based on similar arguments for the cases where ey or e3 are OFF, we can write

‘.A1| + |.A3’ - |./41 N Ag’ > 10T

|A2| + |.A3| — |.A2 N ./43| > 10T (4.26)
Now, we have
(a)
11T > AU AU Aj
3 3 3
= D MAI=3 ) AN A
i=1 =1 ;;11
® >
> 307 =) A
i=1
()
> 15T (4.27)

Since u uses conventional routing, A; U Ay U A3 is a subset of the symbol indices on
its incoming links. This results in (a). (b) can be justified by adding the inequalities
in (4.25) and (4.26). (c) results from |A;| < 5T. (4.27) is an obvious contradiction. This
contradiction proves that for » = 11 and any conventional routing end-to-end connection
¢(s,z,7), we have d® < 1.

However, according to Theorem 4.4, for r = 11, we have d°*(r) = d*(r) = 2. Therefore,
for this graph, the diversity gain of any conventional routing end-to-end connection is
strictly smaller than d°’(r). This completes the proof. [ |
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Conclusion

5.1 Contributions

In this thesis, we studied the issue of diversity and reliability over erasure networks from
three different (but inter-connected) angles: rate allocation (RA) problem, coding, and
diversity-rate trade-off (DRT) over erasure networks. The next three subsections review

our contributions on each topic.

5.1.1 Rate Allocation Across Multiple Paths

In chapter 2, we focused on analyzing the probability of irrecoverable loss (Pg) for a block
of packets sent through multiple independent paths between two end-points. The end-
nodes apply Forward Error Correction (FEC) to overcome temporary packet loss on the
paths. Based on the results of chapter 3, we adopt an MDS code for FEC. We show that
Pg decays exponentially as the number of paths increases. We are also able to analytically
solve the RA problem for the asymptotic case (large number of paths). It is shown that
in the asymptotically optimal RA, each path should be included in RA iff its quality is
above a certain threshold; otherwise, it is assigned the rate zero. Finally, we propose a
heuristic suboptimal RA algorithm for practical (limited) number of paths. It is proved
that this suboptimal RA algorithm converges to the asymptotically optimal one as the
number of paths increases. Unlike the optimal RA algorithm, the suboptimal one has
polynomial time complexity. Simulation results confirm the near-optimal performance of

the suboptimal RA in practical scenarios.
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5.1.2 Coding

Although we are mainly interested in the erasure channel, we generalize our analysis into
a more broad class of channels called input-independent channels in chapter 3. Symmetric
discrete memoryless channel (DMC) and erasure channels with memory extended over a
block of symbols are all special cases of input-independent channel. We derive a lower-
bound on Pg of any code (with limited length) over a general input-independent channel.
Next, we apply this lower-bound on three special input-independent channels: erasure
channel, super-symmetric DMC, and g-ary symmetric DMC. We show that Mazimum Dis-
tance Separable (MDS) codes are optimal over erasure channels (with or without memory)
in the sense that they achieve the minimum probability of error among all block codes of
the same size. Moreover, we prove that perfect codes achieve the minimum probability of
error over a super-symmetric channel. Finally, using the method of types, we simplify our
lower-bound for Pg of any block code over symmetric DMC and show that this bound is
exponentially tight. For ternary and 4-ary symmetric channels, the proposed lower-bound
is compared with the previous lower-bounds in moderate to short block lengths. It is shown
that our lower-bound by far outperforms the previous bounds, especially for shorter block

lengths.

5.1.3 Diversity-Rate Trade-off over Erasure Networks

In chapter 4, we address a fundamental trade-off between rate and diversity gain for any
end-to-end connection in an erasure network. The erasure network is modeled as a directed
acyclic graph whose links are orthogonal erasure channels. First, we consider homogeneous
erasure networks whose links have the same erasure probability and capacity. It is shown
that a special form of FEC (MDS coding at the source node and disjoint routing) achieves
the optimum diversity-rate trade-off. This is obviously an example of conventional routing.

Next, we study general erasure networks in which links can have different capacity
and erasure probabilities. It is proved that linear network coding can always achieve the
optimum trade-off between rate and diversity gain. More importantly, there exist networks
for which any conventional routing scheme fails to achieve this optimum trade-off. Finally,
we construct networks using the standard random graph generation models and show
that the cases where conventional routing fails are indeed very prevalent. However, linear

network coding always achieves the optimum diversity-rate trade-off.
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5.2 Future Directions

Here, we list the directions in which our work can be extended. We categorize the future

work based on the chapter (i.e topic) they correspond to.

5.2.1 FEC Rate Allocation

e Correlated paths: in chapter 2, we study the problem of Rate Allocation (RA) for
a block of packets sent through multiple independent paths between two end-points.
In other words, it is assumed the L given paths are completely independent. In many
networks, it is not easy to find more than very few completely independent paths
between most two nodes. However, it is reasonable to assume that we can easily find

multiple partially correlated paths between the end-nodes.

Intuitively speaking, we expect to get less improvement from RA over multiple par-
tially correlated paths (compared to the case where the paths are independent). For
partially correlated paths, the question is that whether Pg drops exponentially with
the number of paths (L) or not? If yes, what is the exponent of Pg versus L? This
would be a measure of how much of the improvement is lost because of the depen-

dency between the paths.

5.2.2 Coding

e Lower-bounding Pg for non-block codes: the main lower-bound which is the basis
for all of the results in chapter 3 is valid for block codes only. An important gener-
alization of this work would include extending this lower-bound such that it is valid

for convolutional codes, etc.

e Complexity of the lower-bound for symmetric DMC’s: in section 3.4, we introduce
an algorithm for computing the general lower-bound (previously introduced in sec-
tion 3.1). This algorithm is based on he method of types in information theory [18]
and has the complexity of O(NY), i.e. it is polynomial in terms of the block length
N and exponential in terms of the alphabet size ¢. This imposes a serious restriction
on practicality of the algorithm and limits its application to short to moderate block

codes.
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This work can be improved significantly by introducing an algorithm which computes
(or approximates) the lower-bound on Py of block codes over symmetric DMC’s
(noted by L(N, K, 7)) with polynomial complexity in terms of both block length
N and alphabet size q. It should be noted that such an algorithm does not need to
compute L(N, K, ) precisely; even an approximation (a lower-bound) to L(N, K, )
suffices for our purpose, as long as the lower-bound to L(N, K, ) is tight enough such

that the overall lower-bound remains stronger than previously known lower-bounds.

e Symmetric DMC’s with soft decoding: the introduced lower-bound in section 3.4,
denoted by L(N, K, m), works for channels with limited alphabet size. This imposes
another restriction on the applicability of this bound. Unlike some previously known
lower-bounds [44, 45, 53], it can not be used for limiting Pg of soft-decoding over

AWGN channel with symmetric constellations.

5.2.3 Diversity-Rate Trade-off

e General models for network graph: the network model studied in chapter 4 is iden-
tified by an erasure graph. An erasure graph is defined as an acyclic directed graph
G = (V,€) whose links are orthogonal erasure channels. Each link e € £ has the
maximum rate of o(e) and the erasure probability of p*(®). The probability of a link

being OFF (in erasure state) is independent from the status of other links.

In the real networks modeled as erasure networks (the Internet, wireless mesh net-
works, etc), the erasure status of the links can have significant correlation with each
other. Moreover, the erasure status of each link may have a memory and depend on
the link status in the previous blocks. The fundamental trade-off we derived between
diversity and trade-off for the erasure graph model (described in the previous para-
graph) may not necessarily be valid for more general (and more practical) network

models.

e Complexity of computing the optimal diversity-rate trade-off: for any erasure graph,
we show that there exists a linear network coding strategy which achieves the opti-
mum diversity-rate trade-off, d°’*(r). However unfortunately, this optimum diversity
gain for a given rate r is not easy to compute. In other to find d°’*(r), we have to

compute a rather simple function over all cuts between the source and destination
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nodes. This obviously has an exponential complexity in terms of the network size. It
would be of great practical value if we can compute (or estimate) d°P*(r) with lower

complexity.

Optimum diversity-rate trade-off achieved by conventional routing: in general erasure
graphs, it is proved that conventional routing is not optimum in terms of diversity-
rate trade-off. More accurately, there exist general erasure graphs for which any
conventional routing strategy fails to achieve the optimum diversity-rate trade-off.
Since conventional routing strategies still dominate the sphere of routing in packet-
switched networks, one important question which arises is this: for a given network
and a given rate, what is the maximum diversity gain achieved by conventional

routing schemes? How different is this maximum from d°*(r)?
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