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Abstract

In classical model reference adaptive control, the goal is to design a controller to make
the closed-loop system act like a prespecified stable reference model. A recent approach
yields a linear periodic controller which simultaneously performs probing, estimation, and
control. This linear controller is not only able to handle time-varying systems, but also
provides exponential stability. In addition, from simulations, it is found that the controller
has excellent noise rejection in certain cases.

In this thesis, we used the induced noise gain as the measurement of noise rejection.
For plants that are minimum phase with relative degree one, we started with the case
where the plant is first order and linear time-invariant. Then we moved to the case where
the plant is first order and linear time-varying. Finally, we extended to the general case
where the plant is linear time-varying with relative degree one. For the above cases, we
quantitatively investigated how certain control parameters affect the induced noise gain.
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Chapter 1

Introduction

1.1 Background

The objective of adaptive control is to deal with plants with unknown or time-varying
parameters. The basic idea is to have a controller which tunes itself to the plant being
controlled. An adaptive controller typically consists of a LTI compensator and a turn-
ing mechanism, which adjusts the compensator gains to match the plant [3]. Because of
the modification law, a typical adaptive controller is nonlinear. One of the fundamen-
tal concepts of classical adaptive control is based on the use of parameter estimations.
Common methods of estimation include Least Squares Algorithm and Gradient Algorithm
from Goodwin and Sin [5]. Both of these methods provide update laws which estimate the
plant parameters in real time. From the estimated plant parameters, the controller then
generates the control signal to the use of the plant.

One of the most important problems of adaptive control is the Model Reference Adap-
tive Control Problem (MRACP). This was first suggested by Whitaker [6] to solve the
autopilot control problem in the early 1950’s. However, the proof of global stability was
not completed until 1978-1980 [7,8,9,10]. In MRACP, the goal is to have the output of the
plant asymptotically track the output of a stable reference model in response to a piecewise
continuous bounded input. To solve the MRACP, classical assumptions on the plant model
are:

i) the plant is minimum phase;

ii) an upper bound on the plant order is known;
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iii) the plant relative degree is known;

iv) the sign of the high-frequency gain is known.

Later work has shown that iii) can be leveraged to require only the upper bound of the
relative degree of the plant [11] and iv) can be removed [12]. Based on these results,
many adaptive controllers were build during the period of 1980 to 2000 [13][14][15][16][17].
However, most controllers suffer from some of the following problems:

i) the controller cannot track time-varying system well;

ii) poor transient behavior - only asymptotic results are proved;

iii) the controller is often highly nonlinear, so the effect of initial conditions and the
input are coupled;

iv) system typically requires large control signal.

To solve the above problems, a new approach to MRACP was presented in [3]. This
approach is based on a linear sampled-data periodic control. Different from other adaptive
controllers, this controller directly estimates the control signal rather than estimating the
plant parameters. The intuition is from the fact that generating the desired control signal is
the ultimate goal. This controller is periodic; it divides each control period into estimation
phase and control phase, and performs estimation and control sequentially. This linear
adaptive controller has greatly improved all the aforementioned undesirable properties. In
addition, due to the fact that this controller is linear, the closed-loop system has tolerance
to unmodelled dynamics. Of course, there is no free lunch. This controller also has the
following weaknesses:

i) control signals are rapidly varying in each control period, which may require fast
actuators for real implementation;

ii) to achieve optimal tracking, a small sampling period is used, which leads to large
controller gains and poor noise tolerance.

Using the same type of idea, [1] cleverly redesigned the controller of [3]1. Rather than
sequentially doing estimation and control in each control period, the modified controller

1In this thesis, we will refer the original LPC (linear periodic controller) to the controller designed in
[3] and the redesigned LPC as the one purposed in [1].
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simultaneously performs estimation and control 2. With the modification, the control signal
is much less erratic. Similar to the controller presented in [3], exponential convergence
results are proven for the redesigned controller. This ensures immediate tracking as opposed
to asymptotic convergence. In addition, compared to the original controller, the redesigned
controller allows the use of a much larger sampling period for the same level of performance.

Another nice side-effect is that the redesigned controller improves the noise tolerance.
If the high frequency gain is assumed to be known, simulations show that noise has only
a minor effect for a first order time-varying system. Furthermore, for a first order LTI
plant, simulations indicate that the induced noise gain converges to a modest value as the
sampling period goes to zero. On the other hand, simulation from [18] shows that the noise
gain is large for a relative degree two system.

1.2 Objectives

The objective of this thesis is to investigate the noise behavior of the controller proposed
in [1]. From the simulations, nice noise behavior has been observed for some particular
plants. Of course, this is not enough to say that the noise is well behaved; we are not
sure under which conditions noise is going to behave well. Hence, our first objective is to
investigate the noise gain for different types of plants. This includes first order LTI plants,
first order time-varying plants, relative degree one time-varying plants, and relative degree
n time-varying plants3. For each type of plants, we would like to find an expression for the
induced noise gain as a function of the sampling period.

Next, we should focus on how to improve the noise behavior. In other words, we would
seek a way to reduce the induced noise gain. If we have an expression of the induced noise
gain, we should be able to see which parameters affect the induced noise gain, and hence
find a way to reduce it.

1.3 Achievements

We started with the simplest plant, a first order LTI plant and derived expressions for the
induced noise gain. It was found that the induced noise gain is small for any relative degree

2Most classical adaptive controllers performs estimation and control simultaneously.
3In this thesis, we did not show any result for the case where the plant is relative degree n > 1 and

time-varying. This is because the noise gain appears to be large from simulation results and no constructive
result was found to reduce the noise gain.
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one plant. Moreover, we found that if the free controller parameters are chosen properly,
the induced noise gain converges to one as the sampling period tends to zero. This result
is consistent with the previous simulations, and is definitely a desirable feature.

1.4 Overview of Thesis

The outline of this thesis is as follows. The next chapter presented some preliminary
mathematics. The problem setup was presented in Chapter 3. Starting from the simplest
case, in Chapter 4, we found an upper bound of the induced noise gain for first order
LTI plants. In Chapter 5, a similar result was derived for first order linear time-varying
plants. Finally, in Chapter 6, we leveraged the previous results and found a bound of the
induced noise gain for relative degree one plants. In Chapter 4, 5, and 6, we presented
detailed proofs of the bound of the induced noise gain as well as simulations supporting the
related results. Concluding remarks, the main result, and possible future work is provided
in Chapter 7.
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Chapter 2

Mathematical Preliminaries

Let Z denote the set of integers, Z+ denote the set of non-negative integers, N denote the
set of positive integers, R denote the set of real numbers, R+ denote the set of non-negative
real numbers, C denote the set of complex numbers, and C− denote the set of complex
numbers with a real part less than zero.

We use the Euclidean norm of vector x ∈ Rn to measure its size: ||x|| := (
∑n

i=1 x
2
i )

1
2 .

For a real-valued matrix A ∈ Rn×m, we use the corresponding induced norm to measure
its size:

||A|| = sup
||x||=1

||Ax||
||x||

.

We let PC(Rn×m) denote the set of piecewise continuous functions from R+ to Rn×m. For
function f ∈ PC(Rn×m), define

||f ||∞ := sup
t∈R+

||f(t)||.

Let PC∞(Rn×m) denote the set of f ∈ PC(Rn×m) for which ‖f‖∞ < ∞. To reduce
clutter, we drop the Rn×m and simply write PC and PC∞. We let PS(Rn×m) denote
the set of piecewise smooth elements of PC(Rn×m). We let PS∞(Rn×m) denote the set of
f ∈ PS(Rn×m) for which ‖f‖∞ < ∞ and ‖ḟ‖∞ < ∞. With T > 0, we let PS(Rn×m, T )

denote the set of f ∈ PS(Rn×m) for which every discontinuity of

[
f

ḟ

]
are at least T

time units apart, and we define PS∞(Rn×m, T ) in an analogous way. Henceforth, when
the dimension is clear from the context, we drop the Rn×m and simply write PS, PS∞,
PS(T ), and PS∞(T ).
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In this paper, we will deal with time-varying systems, and it will be convenient to
discuss the gain of such a system when the initial condition at time zero is zero. To this
end, the gain of G: PC∞ → PC is defined by

‖G‖ := sup

{
‖Gum‖∞
‖um‖∞

: um ∈ PC∞, ‖um‖∞ 6= 0

}
.

We say that f : R+ → Rn×m is of order T j, and write f = O(T j), if there exist constants
c1 > 0 and T1 > 0 so that

‖f(T )‖ ≤ c1T
j, T ∈ (0, T1).

If the function f does not only depend on T > 0 but also depends implicitly on a variable
θ̄ restricted to a set P̄ ⊂ PS, we say that f = O(T j) if there exist constants c1 > 0 and
T1 > 0 so that

‖f(T )‖ ≤ c1T
j, T ∈ (0, T1), θ̄ ∈ P̄ .

There are many places in this thesis where we use the Taylor Series with order notation.
We say that for T > 0 and a ∈ R,

eaT = 1 + aT +O(T 2).
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Chapter 3

Problem Formulation

3.1 Generalized Plant

In both [1] and [3], the controller design process starts with a classical input-output model

which is in terms of an auxiliary variable η. With (Dif)(t) := dif
dti

(t), consider∑n
i=0 ai(t)D

iη = g(t)u,

y =
∑n−m

i=0 bi(t)D
iη,

(3.1)

where the variables are normalized so that an = bn−m = 1. If the parameters are constant,

then the transfer function is given by g
∑n−m

i=0 bis
i∑n

i=0 ais
i , where g represents the high frequency

gain and m represents the relative degree. Under some reasonable assumptions, the above
can be modelled using the single-input single-output (SISO) linear time-varying plant P ,
which is described by:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,
y(t) = C(t)x(t),

(3.2)

with x(t) ∈ Rn being the plant state, u(t) ∈ R being the plant input, and y(t) ∈ R being
the plant output. Since we allow a good deal of model uncertainties, we let P denote the
set of admissible models1.

The stable SISO reference model Pm is described by:

ẋm = Amxm +Bmum, xm(t0) = xm0 ,
ym = Cmxm,

(3.3)

1The list of assumptions and the definition of P are described more precisely in the later sections.
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with xm(t) ∈ Rnm being the state, um(t) ∈ R being the reference model input, and
ym(t) ∈ R being the reference model output. The reference model is chosen to have
desired behavior of the close loop system. Hence, the control objective is to let the plant
output track the reference output. So, we define the tracking error by

e(t) := ym(t)− y(t).

Since the designed controller is a sampled data controller, which periodically samples an
external modeled input um, an anti-aliasing filter is applied before sampling um. The
anti-aliasing filter is

˙̄um = −σūm + σum, ūm(t0) = ūm0 , (3.4)

and σ > 0. In the following sections, we denote the anti-aliasing map as Fα. With the use
of the anti-aliasing filter, the reference model is updated to:

˙̄xm = Amx̄m +Bmūm, x̄m(t0) = xm0 ,
ȳm = Cmx̄m,

(3.5)

which the input-output map of the updated reference model is labeled P̄m. We also define
the associated tracking error by

ē(t) := ȳm(t)− y(t). (3.6)

We consider the following class of sampled-data compensators:

z[k + 1] = F (k)z[k] +G(k)y(kh) +H(k)x̄m(kh) + J(k)ūm(kh), z[k0] = z0 ∈ Rl,
u(kh+ τ) = L(k)z[k] +M(k)y(kh), τ ∈ [0, h),

(3.7)
whose input-output map is labeled K (with z0 = 0) and whose gains F , G, H, J , L and
M are periodic of period p ∈ N. The period of the controller is T := ph, and we represent
this controller by (F,G,H, J, L,M, h, p). Observe that (3.7) can be implemented with a
sampler, a zero-order-hold, and an lth order periodically time-varying discrete-time system
of period p. The control schematic is shown in Figure 3.1.

Note that the controller is a combination of discrete and continuous subsystems. Hence,
the closed-loop states are a mixture of discrete and continuous states. This is defined by

xsd(t) :=


x(t)
x̄m(t)
ūm(t)
z[k]

 , t ∈ [kh, (k + 1)h).

Now, we borrow the notion of stability from [3].
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Figure 3.1: The Feedback Diagram

Definition 1. The controller (3.4), (3.5), and (3.6) exponentially stabilizes P if there exist
constants γ > 0 and λ < 0 so that, for every P ∈ P, set of initial conditions x0, x̄m0, ūm0,
and z0, set of initial times k0 ∈ Z+ and t0 = k0h, with um(t) = 0 for t ≥ t0 we have

‖xsd(t)‖ ≤ γeλ(t−t0)(‖x0‖+ ‖x̄m0‖+ ‖ūm0‖+ ‖z0‖), t ≥ t0.

Hence, for the reference plant, we can choose γm > 0 and λm < 0 such that ‖eAmt‖ ≤
γme

λmt. Since the stability is defined using the filtered input ūm rather than um (we are
looking at the associated tracking error ē instead of e), one might wonder how the anti-
aliasing filter will affect the result. However, a result from [1] illustrated the transient
behaviour of |ē(t)− e(t)| - for σ > ‖Am‖ we have

|ē(t)− e(t)| = |ȳm(t)− ym(t)| ≤ ‖Bm‖ · ‖Cm‖
σ − ‖Am‖

[(γm + 1)eλmt|ūm0|+

(γm
‖Am‖
|λm|

+ 1)‖um‖∞], t ≥ 0. (3.8)

Hence, by choosing a sufficiently large filter gain σ > 0, the difference between ē and e can
be made as small as desired.

Under some reasonable assumptions, it is shown in [3] that how to convert (3.1) to
a state-space model with specially chosen states that isolate the zero dynamics. The
underlying goal is to isolate the zero dynamics and try to control what is left. Here, we
will only present the state space model with a list of assumptions on its parameters. If we
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associate state w with the zero dynamics and state v with output y and its derivatives,
such that

w :=


η
Dη
...

Dn−m−1η

 and v :=


y
Dy
...

Dm−1y

 , (3.9)

the state space representation of (3.1) is:[
ẇ
v̇

]
=

[
A1(t) b1c2

b2c1(t) A2(t)

] [
w
v

]
+

[
0

g(t)b2

]
u,

y =
[

0 c2

] [ w
v

]
,

(3.10)

with

A1(t) :=


1

. . .

1
−b0(t) −b1(t) · · · −bn−m−1(t)

 , b1 =


0
...
0
1

 ∈ Rn−m,

A2(t) :=


1

. . .
1

−β0(t) −β1(t) · · · −βm−1(t)

 , b2 =


0
...
0
1

 ∈ Rm,

c1(t) =
[
α0(t) · · · αn−m−1(t)

]
, c2 =

[
1 0 · · · 0

]
.

(3.11)

The above state-space model is parameterized by

θ̄(t) :=
[
α0(t) · · · αn−m−1(t) β0(t) · · · βm−1(t) b0(t) · · · bn−m−1(t) g(t)

]T
,

(3.12)
which takes value in R2n−m+1.

The set of assumptions made on θ̄(t) and the reference model are:
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Assumptions:

• Assumption 1: (Compact set) There exists a compact set Γ̄ so that θ̄(t) ∈ Γ̄ for all
t ≥ 0.

• Assumption 2: (Infrequent jumps) There exists a T̄0 > 0 so that θ̄ ∈ PS∞(T̄0).

• Assumption 3: (Bounded derivative) There exists a constant µ̄1 so that

esssupt≥0 ‖ ˙̄θ(t)‖ ≤ µ̄1 for all t ≥ 0.

• Assumption 4: (Regularity of g) There exists a positive constant g so that |g(t)| ≥ g.

• Assumption 5: (Uniformly exponential stable zero dynamics) There exists a positive
constant γ0 > 0 and λ0 < 0 so that the transition matrix ΦA1 corresponding to A1

satisfies
||ΦA1(t, t0)|| ≤ γ0e

λ0(t−t0), t ≥ t0 ≥ 0.

Remark 1. Since Γ̄ is a compact set, then the biggest admissible value of g is well defined

ḡ := sup{θ̄2n−m+1 : θ̄ ∈ Γ̄}.

With the above assumptions, in [1], the set of plant uncertainties is presented to be of
the form

P̄(n,m, Γ̄, µ̄1, T̄0, g, γ0, λ0). (3.13)

For every n ≥ m ≥ 1, compact set Γ̄ ⊂ R2n−m+1, set of positive constants µ̄1, T̄0, g, and γ0

and negative constant λ0, there exists a natural class of models of the form (3.14)-(3.11)
that satisfies the listed assumptions.

Combine the plant - (3.10), the reference model - (3.5), and the anti-aliasing filter -

(3.4), and define x̄ :=


w
v
x̄m
ūm

; then the generalized plant is:

˙̄x =


A1(t) b2c2 0 0
b2c1(t) A2(t) 0 0

0 0 Am Bm

0 0 0 −σ

 x̄+ g(t)


0
b2

0
0

u+


0
0
0
σ

um,[
y
ē

]
=

[
0 c2 0 0
0 −c2 Cm 0

]
x̄.

(3.14)
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In addition, a natural assumption is made on the reference model:

• Assumption 6: The relative degree of the reference model is at least m.

3.2 The Ideal Controller

As mentioned previously, rather than estimating the plant parameters, the control signal is
directly estimated in both [1] and [3]. Hence, the so-called ideal control signal is required.
Here, we summarize how the ideal control law is constructed. To illustrate the idea,
consider the first order linear time invariant system

ẏ = ay + gu. (3.15)

The differential equation which describes the error ē = ȳm − y is

( ˙̄ym − ẏ) = am(ȳm − y) + (bmūm − gu+ (am − a)y). (3.16)

In practice, initial mis-matches between the reference model and plant exist. Here, if we
wish to have the difference ē decay to zero like eamt, we should set

bmūm − gu+ (am − a)y = 0, (3.17)

so that (3.16) becomes
˙̄e = amē.

Hence, (3.17) suggests the ideal control law to be2

uo =
1

g

[
am − a 0 bm

]  y
ȳm
ūm

 .
Of course, for the general case, the derivation of the ideal control law is much more involved.
Here we only present the result. First define

Λ2 :=


1

. . .

1
0 0 · · · 0

 , f2(t) :=
[
β0(t) · · · βn−m−1(t)

]
.

2We denoted the ideal control signal by uo(t).
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Choose f̄2 so that Ā2 = Λ2 + b2f̄2 is stable and has eigenvalues with real parts less than
λm. Using Assumption 6, we can choose k1 ∈ R1×nm and k2 ∈ R so that

Pm(s)

c2(sI − Ā2)−1b2

= k2 + k1(sI − Am)−1Bm,

and we end up with the ideal control law

uo(t) =
1

g(t)

[
−c1(t) f̄2 − f2(t) k1 k2

]
x̄(t). (3.18)

3.3 The Redesigned LPC

In [3], the original design, the idea is to use small test signals to probe the system to obtain
parameter estimation, and then apply the control signal based on the estimation. As a
modified design, in [1], probing, estimation, and control are carried out simultaneously.
To avoid repetition, the design procedure is omitted here. From Assumption 1 and 4, it
follows that

G :=

{
|g| ≥ g : there exists a ψ ∈ R2n−m so that

[
ψ
g

]
∈ Γ̄

}
is a compact set which does not include zero. By the Stone-Weierstrass Approximation
Theorem, for every ε > 0 there exists a q ∈ N such that the polynomial f̂ε(g) =

∑q
i=0 cig

i

satisfies ∣∣∣1− gf̂ε(g)
∣∣∣ < ε, g ∈ G. (3.19)

In [1], the above approximation method is used to estimate the ideal control law. This will
be elaborated more in the later sections. Now, define two (m+ 1)× (m+ 1) matrices and
a vector:

Sm =


1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2m

...
1 m m2 · · · mm

 , Y(t) :=


y(t)

y(t+ h)
...

y(t+mh)

 ,

Hm(h) = diag{1, h, h
2

2!
, · · · , h

m

m!
}.

(3.20)
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The control period T is defined to be

T :=

{
mh q = 0,
(q + 2)mh q ≥ 1,

where q ∈ N is the order of the polynomial f̂ε(g). Denoted the estimated ideal control
signal by ûo(t) and a scaling factor ρ > 0, the controller in [1] is defined to be:

Controller: The controller is defined via five parts for k ∈ Z+.

(i) For t ∈ [kT, kT +mh), set

u(t) = ûo(kT ),

φ̂0(kT ) :=
[
f̄2 −1

]
Hm(h)−1S−1

m Y(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
.

(3.21)

(ii) If q > 1 and t ∈ [kT +mh, kT + 2mh), set

u(t) = ûo(kT ) + ρφ̂0(kT ),

φ̂1(kT ) := 1
ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m [Y(kT +mh)− Y(kT )].
(3.22)

(iii) If q > 1 and t ∈ [kT + imh, kT + (i+ 1)mh), i = 2, . . . , q, set

u(t) = ûo(kT ) + ρφ̂i−1(kT )− ρφ̂i−2(kT ),

φ̂i(kT ) := φ̂i−1(kT ) + 1
ρ

[
0 · · · 0 1

]
Hm(h)−1S−1

m [Y(kT + imh)− Y(kT )].

(3.23)

(iv) If q > 1 and t ∈ [kT + (q+ 1)mh, kT + (q+ 2)mh) = [kT + (q+ 1)mh, (k+ 1)T ), set

u(t) = ûo(kT )− ρφ̂q−1(kT ). (3.24)

(v) In all cases, set

ûo[(k + 1)T ] = ûo(kT ) +

q∑
i=0

ciφ̂i(kT ), ûo[0] = ûo0. (3.25)

In [1], it is shown that if a reasonable condition ε < 1 is imposed, then the controller
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should do a good job of estimating the ideal control law. In addition, the following
remark shows that the estimation can be extremely simple.

Remark 2. ( Remark 3 in [1] ) If every element of G is positive, then there exist positive
g, ḡ ∈ R satisfying G ⊂ [g, ḡ]. If we set f̂ε to be constant and of value f̂ε(g) = 1

2ḡ
, then it

is easy to confirm that

|1− gf̂ε(g)| ≤ 1−
g

2ḡ
< 1, g ∈ G.

This means that we can use a zero-th order polynomial to get ε < 1, and if it was used in
the afore-mentioned control law then there is no probing3.

In addition to Remark 2, when there is not probing, q = 0 and f̂ε(q) = c0. Hence, to
ensure closed-loop stability, we need to satisfy |1− gc0| < 1. In other words, for g ∈ [g, ḡ],

the good range of c0 is (0, 2
ḡ
).

As the main result, Theorem 1 from [1] shows some desirable features of the controller:

Theorem 1. For every δ > 0 and λ ∈ (max{λ0, λm}, 0) there exists a controller of the
form (3.4), (3.5), and (3.7) with the following properties:

(i) the controller exponentially stabilizes P̄ , and

(ii) for every θ̄ ∈ P̄ , x̄0 ∈ Rn+nm+1, and um ∈ PC∞, when t0 = k0 = 0 the closed-loop
system satisfies

|y(t)− ym(t)− C̄Φcl(t, 0)x̄(0)| ≤ δeλt(‖x̄0‖+ |û0
0|) + δ‖um‖∞, t ≥ 0.

Remark 3. It is important to point out that this controller is linear (time-varying) and
exponentially stabilizes the plant. Since the controller is linear (time-varying) and exponen-
tially stabilizes the plant, one can prove that this controller is able to tolerate sufficiently
small unmodeled dynamics.

3The concept of probing is used in both [1] and [3]. Probing refers to the test signals that the controller
uses to ‘probe’ the plant during a control period. The controller collects information of how the plant
respond to the probing signals and then decide the control signal. For the controller from [1], probing
signals refers to equation (3.22)-(3.24).
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3.4 Examples

Since most features can be clearly illustrated with a first order plant, the examples from
[1] focus on such a system4. To this end, consider the first order time-varying plant

ẏ(t) = a(t)y(t) + g(t)u(t). (3.26)

The set of uncertainty is chosen to be

P̄(n = 1,m = 1, Γ̄, µ̄1 = 1, T̄0 = 5, g, γ0 = 1, λ0 = −5),

where Γ̄ and g are different for each example. The reference model is

˙̄ym = −ȳm + ūm

while the reference model anti-aliasing filter is chosen to be

˙̄um = −50ūm + 50um.

In addition, we choose the probing scaling parameter ρ = 1 and set um to be a square wave

um(t) = sign
(

cos(
2πt

15
)
)
.

Example 1 in [1] simulates the case where the sign of the high frequency gain is known.
It is considered that

Γ̄ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g ∈ [0.5, 1.5]}, g = 0.5. (3.27)

Figure 3.2 shows the simulations with plant parameters a(t) = cos(t/2) and g(t) = [1 +
0.5 sin(t/4)] and initial conditions y0 = 3, ūm0 = 0. In this simulation, the sampling period
h is chosen to be 0.01 second. In addition, random noise of maximum magnitude of 0.01
is injected at the output measurement at t = 66 seconds. As we can see, the redesigned
LPC presented in [1] gives good performance and a somewhat smooth control signal. More
importantly, it has excellent noise rejection - the effect of noise on the plant output is
almost invisible; the effect of noise on the control input is minimal.

4For most of the following simulations, note that it is often comparing the responses of the original LPC
(controller from [3]) and the redesigned LPC (controller from [1]). However our interest is the response of
the redesigned LPC.
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Figure 3.2: The plant output and control signal with a and g varying with time [1]

On the other hand, Example 2 in [1] simulates the case where the sign of the high
frequency gain is unknown. Here we have:

Γ̄ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g2 ∈ [1, 1.4]}, g = 1. (3.28)

Figure 3.3 shows the simulations with plant parameters a(t) = cos(t/2) and g(t) = [1.2 +
0.2 sin(t/2)] × sign[cos(t/4)] and initial conditions y0 = 3, ūm0 = 0. The sampling period
h is chosen to be 0.01 second. The random noise signal of maximum magnitude of 0.01 is
injected at the output measurement at t = 66 seconds. We can see, the redesigned LPC
presented in [1] gives good performance and a somewhat smooth control signal. However,
the noise rejection is not as good as the previous case - the effect of noise on the plant
output is visible; the control signal looks noisy.

Figure 3.3: The plant output and control signal with a and g varying with time [1]
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3.5 Noise Behavior

The previous simulations examined the tracking performance and noise behavior for one
sampling period. Interestingly, for the case where the sign of the high frequency gain is
known, noise has a small impact on the system. When the noise is small in size, it almost
has no effect on the output. Hence, it is clearly of interest to carefully examine the tradeoff
between performance and noise rejections as a function of the sampling period h. This has
also been looked at in [1]. In the existence of noise, let yn(t) := y(t) + n(t) denote the
measured output and Tnyn denote the corresponding map from n→ yn.5 Define

‖Tnyn‖ := sup{‖Tnynn‖∞
‖n‖∞

: n ∈ PC∞, 0 < ‖n‖∞ <∞},

to be the induced noise gain from the noise to the measured output. First, we are going to
look at the case where the sign of the high frequency gain is known. Consider the case of
Example 1. Figure 3.4 plots ‖Tnyn‖ as a function of the sampling period. We observe that

Figure 3.4: ‖n→ yn‖ for the case where the high frequency gain is known

as the sampling period decreases, the induced noise gain tends toward a constant value
around 2. Generally speaking, as the sampling period gets smaller, the high frequency
component of the noise is amplified, which makes the estimation inaccurate and therefore

5In [1], to investigate the induced noise gain, the map n → e has been looked at instead of n → yn.
However, the gain of ‖n→ e‖ and ‖n→ yn‖ are exactly the same.
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distorts the control signal. This behavior is observed in the original LPC but not the
redesigned LPC. Indeed, this nice behavior on the induced noise gain of the redesigned
LPC is desirable.

To demonstrate this behavior more clearly, another simulation is carried out with using
different sampling periods. For the following simulation, we choose

Γ̄ = {
[
a
g

]
∈ R2 : a ∈ [−1, 1], g ∈ [0.5, 1.5]}, g = 0.5. (3.29)

Figure 3.5 shows the simulations with plant parameters a(t) = cos(t) and g(t) = [1 +
0.5 sin(t/2)] and initial conditions y0 = 3, ūm0 = 0. The sampling period h is chosen to be
0.1s, 0.01s, and 0.001s respectively. To clearly demonstrate the noise behavior, we choose
large random noise signals with maximum magnitude of 1 (100 times bigger than the ones
in Example 1). In this simulation, we observe that with large size random noise, the plant

Figure 3.5: The plant outputs simulated with different sampling period; parameter a and
g are time-varying.
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output still tracks the reference output well. In addition, the output plots appears to
superimpose the noise on the ‘noiseless’ output.

Now, we are going to look at the case where the sign of the high frequency gain is
unknown. For the case of Example 2, Figure 3.6 plots ‖Tnyn‖ as a function of the sampling
period h. From this simulation, we observe that the noise gain of the redesigned LPC

Figure 3.6: ‖n→ yn‖ for the case where the high frequency gain is unknown

amplifies with decreasing sampling period. This is an undesirable feature of the controller.
For faster convergence and a better tracking, the redesigned LPC requires a faster sampling
rate. If the sign of the high frequency gain is unknown, smaller sampling period implies
worse noise rejection. Clearly, tracking performance and noise rejection are the tradeoffs.

3.6 Goal

In the previous section, we examined the noise behavior with different sampling periods.
For the case where the sign of the high frequency gain is unknown, as the sampling period
h decreases, Tnyn increases. On the other hand, if we assume that the sign of the high
frequency gain is known, the system has good noise rejection even when the sampling
period is small. Hence, in the rest of the paper, we will assume that the sign of the
high frequency gain is known. In particular, we assume6

6We implicitly assumed that the sign of the high frequency gain is positive, for if it is negative, we can
absorb it into u.
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• Assumption 7: (Regularity of g) There exists a positive constant ḡ so that g(t) ∈ [g, ḡ]
for all t ≥ 0.

Figure 3.4 indicates that as h→ 0, the induced noise gain ‖Tnyn‖ approaches a constant
number around 2. However, there are still a few questions remaining:

1. What is the constant? Is it exactly at 2.0?

2. The simulation from (3.4) examines only the size of the induced noise gain for one
particular first order plant. Can this result be applied to other types of plants?
(i.e. other first order time-varying plants, relative degree one plants, or second order
plants?)

3. Can we change the controller in such a way that the induced noise gain can be
reduced? How much can we improve?

The assumptions in [1] allow infrequent jumps on the plant parameters. In this thesis,
to simplify the proof, we impose an additional assumption:

• Assumption 8: θ̄(t) is absolutely continuous for all t ≥ 0.

Since we are interested in the set of plants with plant uncertainties of the form (3.13)
and assuming that θ̄(t) is absolutely continuous, we update the set of plant uncertainty to
be of the form

P̄ac(n,m, Γ̄, µ̄1, T̄0, g, γ0, λ0). (3.30)

Next, we will look at some different notations. Since our interest is the effect of noise
on the plant output, let Tny denote the map from n→ y and define

‖Tny‖ := sup{‖Tnyn‖∞
‖n‖∞

: n ∈ PC∞, 0 < ‖n‖∞ <∞}. (3.31)

It is easy to see that
Tnyn = Tny + 1.
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Since Tny is strictly causal, it follows that

‖Tnyn‖ = ‖Tny‖+ 1.

Hence, if the simulation of Figure 3.4 indicates that as h→ 0,

‖Tnyn‖ → 2,

then we should have
‖Tny‖ → 1.

In the rest of the thesis, we will look at ‖Tny‖ instead of ‖Tnyn‖.

3.7 Controller for the relative degree one case

In this thesis, all the plants under consideration are relative degree one (m = 1) and has
known sign of the high frequency gain. Here, we will first simplify and formulate the
controller to the cases we consider. According to Remark 1, we can use a zero-th order
polynomial to get ε < 1, and if it it used in the afore-mentioned control law, then no
probing is needed (i.e. q = 1). With this information, the complexity of the controller is
greatly simplified. For k ∈ Z+, the controller can be reduced to:

φ̂0(kT ) :=
[
f̄2 −1

]
H1(h)−1S−1

1 Y(kT ) +
[
k1 k2

] [ x̄m(kT )
ūm(kT )

]
,

ûo[(k + 1)T ] = ûo(kT ) + c0φ̂0(kT ), ûo(0) = ûo0,
u(t) = û0(kT ).

(3.32)

In the presence of noise, the measurement of system output y(kT ) is distorted and affects
the control signal. Here, denote the group of noisy outputs as

Yn(kT ) :=

[
y(kT ) + n(kT )

y(kT + h) + n(kT + h)

]
.

Thus, when noise is considered, Yn should be used instead of Y . From (3.32), notice that
the reference signals um(kT ) and xm(kT ) are linearly independent from the noise n(kT ).
If one’s interest is to know the system noise gain, the effect of um and xm can be neglected.
Hence, set um = xm = 0. Combining the above information and substituting the values of
Sm and Hm(h), the controller can be expressed as:

φ̂0(kT ) =
[
f̄2 −1

] [ 1 0
0 T

]−1 [
1 0
1 1

]−1 [
yn(kT )

yn[(k + 1)T ]

]
,

u[(k + 1)T ] = u(kT ) + c0φ̂0(kT ).

(3.33)
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Chapter 4

Fixed parameter case

In this chapter, we analyze the induced noise gain with the simplest setup. Here, a first
order LTI plant is considered. In particular, we assume the set of plant uncertainty to be

P̄ac(n = 1,m = 1, Γ̄, µ̄1 = 0, g, γ0, λ0),

and the plant is parameterized by θ̄(t) =

[
β0(t)
g(t)

]
. As stated earlier, the objective is

to find the maximum induced noise gain when the plant has relative degree one and the
sign of the high frequency gain is known. Specifically, the goal is to obtain a closed form
expression of the induced noise gain as h → 0+. The simulation from [1] shows that, for
a particular example, the maximum induced noise gain goes to a constant value as the
sampling period h → 0+. This chapter uses a theoretical approach to obtain a closed
form expression of the maximum induced noise gain. In addition, based on the result,
recommendations are given on the selection of the estimation parameter c0 to ensure a
small noise gain when the sampling period is small.

4.1 LTI system

For all the plants that have relative degree one, the first order LTI plant is the simplest.
In this chapter, we are going to consider such a system. In addition, we assume that the
sign of the high frequency gain is known. As we are going to see, when a first order linear
time invariant plant with known sign of the high frequency gain is considered, using the
controller provided in [1], the closed-loop system is linear time invariant.

23



4.1.1 First order plant

For

[
a
g

]
∈ Γ̄, consider the first order LTI plant1

ẏ(t) = ay(t) + gu(t). (4.1)

With the control period T > 0, since the plant parameters are fixed and the control signal
u(t) is piecewise constant on the interval [kT, (k + 1)T ), the solution of (4.1) is

y[(k + 1)T ] = eaTy(kT ) +
eaT − 1

a
gu(kT ). (4.2)

Note that the above LTI plant is strictly proper and has relative degree one. Combining
(3.33) and (4.2), it is not hard to recognize that the closed-loop system is LTI. The control
signal is updated at the end of every control period and fed into the plant.

4.2 State Space Representation

To carry out the analysis, we are going to express the system with a state space rep-
resentation. Here, the controller and the plant are treated as two subsystems that are
connected in series and feedback. We first find state-space representation for each ’sub-
system’. Then, we connect the two subsystems. After some algebraic manipulations, a
state-space representation is obtained with taking the noise as the input of the system.

4.2.1 State Space Representation of the Controller

It follows from (3.33) that

u[(k + 1)T ] = u(kT ) + c0(
1

T
+ f̄2)yn(kT ) + c0(− 1

T
)yn[(k + 1)T ], k ≥ 0. (4.3)

Using the shifting theorem and expressing the above equation in the delay operator form,
we have

u(kT ) = u[(k − 1)T ] + c0(
1

T
+ f̄2)yn[(k − 1)T ] + c0(− 1

T
)yn(kT ), k ≥ 1. (4.4)

1Instead of using θ̄ =

[
β0

g

]
, we use θ̄ =

[
a
g

]
to embrace the natural notation of the first order LTI

plant ẏ(t) = ay(t) + gu(t).
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Taking the Z-transform of (4.4) and considering the initial conditions, we have:

U [z] = U [z]
z

+ u(−1) + c0( 1
T

+ f̄2)(YN [z]
z

+ yn(−1)) + c0(− 1
T

)YN [z],

z−1
z
U [z] =

[
c0( 1

T
+ f̄2)1

z
+ c0(− 1

T
)
]
YN [z] + c0( 1

T
+ f̄2)yn(−1) + u(−1),

so

U [z] =
1

z − 1

[
c0(

1

T
+ f̄2)− c0

T
z
]
YN [z]︸ ︷︷ ︸ +

z

z − 1

[
c0(

1

T
+ f̄2)yn(−1) + u(−1)︸ ︷︷ ︸

]
.

zero state response zero input response
(4.5)

In our controller, the initial estimated input ûo(0) will be set to zero. Hence, we have
u(0) = ûo(0) = 0. Since we are looking at the induced noise gain from n → y, then
y(k) = u(k) = n(k) = 0 for all k < 0. Since the plant is strictly proper, we also have
y(0) = 0. Equation (4.5) separates the system response into the zero state response and
the zero input response. First, take a look at the zero state response. We have

U [z]

YN [z]
=
c0( 1

T
+ f̄2)− z( c0

T
)

z − 1

=
c0( 1

T
+ f̄2)− (z − 1) c0

T
− c0

T

z − 1

=
c0( 1

T
+ f̄2 − 1

T
)

z − 1
− c0

T

= c0f̄2
1

z − 1
− c0

T
. (4.6)

A natural choice of the state space representation (4.6) is:

x1[(k + 1)T ] = Acx1(kT ) +Bcyn(kT ),
u(kT ) = Ccx1(kT ) +Dcyn(kT ),

(4.7)

with Ac = 1, Bc = 1, Cc = c0f̄2, and Dc = − c0
T

. In (4.7), the input is the plant output
with noise. The output is the control signal u(kT ).

To find the initial state value, take the output equation from (4.7) and then substitute
k = 0, so that

u(0) = c0f̄2x1(0)− c0

T
yn(0) = 0,
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and

x1(0) =
1

f̄2T
yn(0) =

1

f̄2T
n(0).

Analyzing the system behavior using the above is complicated since n(0) sets up an initial
condition on the LTI controller model, which is unusual and conceptually difficult. To
simplify the analysis, we will instead analyze the case in which n(0) = 0, thus avoiding
this problem. Since the closed-loop system is time invariant, we can use the fact that the
induced gain of the map from n→ y is the same even though we impose this constraint.

4.2.2 State Space Representation of the Plant

Based on (4.2), a natural choice of the state space representation of the plant is:

x2[(k + 1)T ] = Apx2(kT ) +Bpu(kT ),
y(kT ) = Cpx2(kT ) +Dpu(kT ),

(4.8)

with Ap = eaT , Bp = eaT−1
a

g, Cp = 1, and Dp = 0. From the output equation, it is observed
that y(kT ) = x2(kT ). Thus, x2(0) = y(0). Hence, to find the induced noise gain, we can
set the initial condition to be zero (i.e. y(0) = x2(0) = 0).

4.2.3 System State Space Representation

Combining the controller (4.7) and the plant (4.8), yields(
x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
Ac 0

BpCc Ap

](
x1(kT )
x2(kT )

)
+

[
Bc

BpDc

]
yn(kT ),

(
x1(0)
x2(0)

)
= 0,

y(kT ) =
[
DpCc Cp

]( x1(kT )
x2(kT )

)
+
[
DpDc

]
yn(kT ).

Substituting values of (A1, B1, C1, D1) and (A2, B2, C2, D2) obtained earlier, we have(
x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
1 0

eaT−1
a

gc0f̄2 eaT

](
x1(kT )
x2(kT )

)
+

[
1

− eaT−1
a

g c0
T

]
(y(kT ) + n(kT )),

y(kT ) =
[

0 1
]( x1(kT )

x2(kT )

)
.
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Since x2(kT ) = y(kT ), we then have(
x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
1 1

(eaT − 1) gc0f̄2
a eaT − (eaT − 1) gc0

aT

](
x1(kT )
x2(kT )

)
+

[
1

−(eaT − 1) gc0
aT

]
n(kT ),

y(kT ) =
[

0 1
]( x1(kT )

x2(kT )

)
.

Finally, the closed-loop state space equations with noise being the only input of the
system can be written as

x[(k + 1)T ] = Aclx(kT ) +Bcln(kT ), x(0) = 0,
y(kT ) = Cclx(kT ) +Dcln(kT ),

(4.9)

with

Acl =

[
1 1(

eaT − 1
)
gc0f̄2

a
eaT −

(
eaT − 1

)
gc0
aT

]
,

Bcl =

[
1

−
(
eaT − 1

)
gc0
aT

]
,

Ccl =
[

0 1
]
,

Dcl = 0.

4.3 The Diagonalized System

In the previous section, a system state space expression is obtained for first order plant
with fixed-parameters. For a linear time-invariant system, the eigenvalues of Acl play a
key role on the stability of system (4.9). In the later sections, it is shown that the induced
noise gain depends on the eigenvalues of Acl. In this section, the goal is to diagonalize Acl
and find the similarity transformation.

4.3.1 Using Order Notation

Since the goal is to find noise gain as T → 0+, high order terms corresponding to the
sampling period T can be neglected. Using the Taylor Series with order notation, we have:

1. eaT = 1 + aT +O(T 2),

2.
(eaT−1)

aT
=

[
aT+

(aT )2

2!
+O(T 3)

]
aT

= 1+aT
2

+O(T 2).

27



Applying the above order notations to the closed loop system, the state matrices of (4.9)
can be written as:

Acl =

[
1 1

gc0f̄2T + O(T 2) 1− c0g + aT (1− gc0
2

) +O(T 2)

]
,

Bcl =

[
1

−gc0 +O(T )

]
, Ccl =

[
0 1

]
, Dcl = 0.

4.3.2 Block-Diagonalization

In [2], a simple transformation is presented for time-invariant systems. This transforma-
tion diagonalizes the state matrix. In particular, for systems with one fast and one slow
subsystems, this method is useful to separate the “slow” and “fast” eigenvalues of the
subsystems. In our case, the plant acts “slowly” and the controller responds “rapidly”.
Using this diagonalization method, we can easily analyze how each eigenvalue affects the
system output.

Step 1 - Upper triangular form

The first step of this transformation is to transform the state matrix Acl into an upper
triangular form. Denote

Acl :=

[
A11 A12

A21 A22

]
.

With L ∈ R, consider the following transformation[
1 0
L 1

]
Acl

[
1 0
−L 1

]
=

[
A11 − A12L A12

LA11 + A21 − LA12L− A22L LA12 + A22

]
. (4.10)

The goal here is to make the matrix into a upper triangle form. Thus, L is the real root
of LA11 +A21 − LA12L−A22L = 0. Hence,

L
(
gc0 − a

(
1− gc0

2

)
T +O

(
T 2
))

+ gc0f̄2T + O(T 2)− L2 = 0,

L2 +
(
−gc0 + a

(
1− gc0

2

)
T +O

(
T 2
))
L− gc0f̄2T + O

(
T 2
)

= 0. (4.11)

Denote:
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• b̄ := −gc0 + a
(
1− gc0

2

)
T +O (T 2),

• c̄ := −gc0f̄2T + O (T 2),

then the solution of (4.11) is

L =
−b̄±
√
b̄2−4c̄

2

=
−b̄±|b̄|

√
1− 4c̄

b̄2

2
.

Using the Taylor Series expansion, we can have,√
1− 4c̄

b̄2
= 1 + 1

2

(
−4c̄
b̄2

)
− 1

8

(
−4c̄
b̄2

)2
+ · · ·

= 1− 2c̄
b̄2
− 2c̄2

b̄4
+ · · · ,

where
2c̄
b̄2

=
2(−gc0f̄2T+ O(T 2))

[−gc0+a(1− gc0
2 )T+O(T 2)]

2

= −2f̄2

gc0
T +O(T 2),

and
2c̄2

b̄4
= O(T 2).

Therefore, the two solutions of L are:

1. L(T ) =
−b̄+|b̄|

√
b̄2−4c̄

2
= gc0 −

[
a(1− gc0

2
) + f̄2

]
T +O(T 2) = O(1),

2. L(T ) =
−b̄−|b̄|

√
b̄2−4c̄

2
= −f̄2T +O(T 2).

Since this transformation should have a small impact on the diagonal terms of Acl, we
select the solution of L(T ) (or simply L) which is smaller for small T , namely

L = −f̄2T +O
(
T 2
)
. (4.12)

Substituting (4.12) into (4.10) yields[
1 0
L 1

]
Acl

[
1 0
−L 1

]
=

[
1 + f̄2T +O (T 2) 1

0 1− gc0 +O (T )

]
.
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Step 2 - Diagonalization

In this step, the upper triangular form is transformed to a diagonal form. Now, with
P ∈ R, consider the following transformation:[

1 P
0 1

] [
1 0
L 1

]
Acl

[
1 0
−L 1

] [
1 −P
0 1

]
=

[
1 P
0 1

] [
A11 − A12L A12

0 LA12 + A22

] [
1 −P
0 1

]
=

[
A11 − A12L (A11 − A12L) (−P ) + A12 + P (LA12 + A22)

0 LA12 + A22

]
.

(4.13)

To make the matrix diagonal, P is the real root of (A11 − A12L) (−P )+A12+P (LA12 + A22) =
0. Using values from Acl, we have

(1− L) (−P ) + 1 + P (L+ A22) = 0,

=⇒ P (−1 + 2L+ A22) = −1,

=⇒ P = 1
1−2L−A22

= 1
1+2f̄2T+O(T 2)−(1−gc0+O(T ))

= 1
gc0+O(T )

.

Thus,

P =
1

gc0

+O (T ) . (4.14)

With L and P given by (4.12) and (4.14), and the transformation shown in (4.13), we are
able to transform Acl into a diagonal form. Let

T −1 :=

[
1 P
0 1

] [
1 0
L 1

]
and T :=

[
1 0
−L 1

] [
1 −P
0 1

]
.

Denote Ācl := T −1AclT , B̄cl := T −1Bcl, and C̄cl := CclT . This yields

Ācl =:

[
λ1 0
0 λ2

]
=

[
1− L 0

0 L+ A22

]
=

[
1 + f̄2T +O (T 2) 0

0 1− gc0 +O(T )

]
,
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B̄cl =:

[
B̄cl1

B̄cl2

]
=

[
1 + PL P
L 1

] [
1

−gc0 +O(T )

]
=

[
1 + PL+ P (−gc0 +O(T ))

L− gc0 +O(T )

]
=

[
1 + ( 1

gc0
+O(T ))(−f̄2T +O (T 2)) + ( 1

gc0
+O(T ))(−gc0 +O(T ))

−f̄2T +O(T 2)−gc0 +O (T )

]
=

[
O(T )

−gc0+O(T )

]
,

C̄cl =:
[
C̄cl1 C̄cl2

]
=

[
0 1

] [ 1 −P
−L 1 + PL

]
=

[
−L PL+ 1

]
=

[
f̄2T +O (T 2) 1 + −f̄2

gc0
T +O (T 2)

]
=

[
f̄2T +O (T 2) 1 +O(T )

]
.

From the above equations, observe that the first eigenvalue of Ācl is related to the reference
model parameter am, since f̄2 is chosen so that f̄2 ≤ am. On the other hand, the second
eigenvalue 1 − gc0 + O(T ) is characterized by the controller, and the size of the second
eigenvalue depends on the controller parameter c0.

4.4 Analyze the LTI system

In the previous sections, we found a discrete time state-space representation of the system.
Using the afore-mentioned dicrete time state-space representation, we obtain information
of the input/output at the sampling point. However, the induced noise gain should be
computed using continuous signals (i.e. y(t) and n(t)). For this reason, we will first look
at the discrete time plant output (i.e. y(kT )). Then we will analyze the output between
the sample points to get a full picture of the output y(t).

4.4.1 Impulse response

For a LTI SISO discrete-time system, the infinity norm induced gain is equal to the one
norm of the impulse response. In other words, with n being the input, y being the output,
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and h(j) for j ∈ Z+ being the impulse response, we have2

sup

{
supk≥0 |y(kT )|
supk≥0 |n(kT )|

: 0 < sup
k≥0
|n(kT )| <∞

}
=
∞∑
j=0

|h(j)|.

This is a well-known result and has been proved in [19]. For i ∈ Z+, the impulse response
of the state-space model represented in (4.9) can be summarized as

h(i) =
{ Dcl i = 0,
CclA

i−1
cl Bcl i > 0.

(4.15)

Using the diagonalization method introduced in (4.13) yields∑∞
i=0 |h(i)| =

∑∞
i=1 |h(i)|

=
∑∞

i=1

∣∣CclAcli−1Bcl

∣∣
=

∑∞
i=1

∣∣C̄clĀi−1
cl B̄cl

∣∣
=

∑∞
i=1

∣∣C̄cl1λ1
i−1B̄cl1 + C̄cl2λ2

i−1B̄cl2

∣∣,
so

∞∑
i=0

|h(i)| ≤
∞∑
i=1

∣∣C̄cl1λ1
i−1B̄cl1

∣∣+
∞∑
i=1

∣∣C̄cl2λ2
i−1B̄cl2

∣∣,
It follows that3

sup
k≥0
|y(kT )| ≤

( ∞∑
i=1

∣∣C̄cl1λ1
i−1B̄cl1

∣∣+
∞∑
i=1

∣∣C̄cl2λ2
i−1B̄cl2

∣∣)‖n‖∞. (4.16)

4.4.2 Maximum induced noise gain

Now, we are going to analyze each part of (4.16) to find the maximum induced noise gain.
As T → 0, the first eigenvalue λ1=1 + f̄2T +O (T 2) is a positive value close but less than
1. Substitute the matrix value obtained previously, we have:∑∞

i=1

∣∣C̄cl1λ1
i−1B̄cl1

∣∣ =
∣∣[f̄2T +O (T 2)

]∣∣ ∣∣∣[ 1
−f̄2T+O(T 2)

]∣∣∣ |O(T )|

=
(
1 +O(T )

)
|O (T ) |

= O(T ).

(4.17)

2In discrete time systems, we usually denote ‖y‖∞ = supk≥0 |y(kT )|. However, in this thesis, since
our signals are in continuous time, we set ‖y‖∞ = supt≥0 |y(t)|. To avoid mixing continuous and discrete
signals, we use supk≥0 |y(kT )| to denote the infinity norm of discrete time signal y(kT ).

3Since n ∈ PC∞ is arbitrary and bounded, we can say that ‖n‖∞ = supk≥0 |n(kT )| = supt≥0 |n(t)|.
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Hence, the first eigenvalue has only minor affect on the plant output.

On the other hand, the second eigenvalue λ2 = 1−gc0 +O(T ) has a magnitude strictly
less than one, although λ2 itself can be either positive and negative. Using the property of
the sum of geometric series, we have:

a. If λ2 ≥ 0, then
∑∞

i=1

∣∣λ2
i−1
∣∣ = 1

1−λ2
and∑∞

i=1

∣∣C̄cl2λ2
i−1B̄cl2

∣∣ =
∣∣C̄cl2∣∣∣∣∑∞i=1 λ

i−1
2

∣∣∣∣B̄cl2

∣∣
=

∣∣∣[1 +O(T )]
[
−gc0+O(T )
gc0+O(T )

]∣∣∣
= 1 +O(T ).

(4.18)

b. If λ2 < 0, then
∑∞

i=1

∣∣λ2
i−1
∣∣ = 1

1+λ2
and∑∞

i=1

∣∣C̄cl2λ2
i−1B̄cl2

∣∣ =
∣∣C̄cl2∣∣∣∣∑∞i=1 λ

i−1
2

∣∣∣∣B̄cl2

∣∣
=

∣∣∣[1 +O(T )]
[
−gc0+O(T )
2−gc0+O(T )

]∣∣∣
=

∣∣∣ gc0
2−gc0

∣∣∣+O (T ) .

(4.19)

From the above results, as T → 0+, the maximum noise gain is not dependent on plant pa-
rameter a. On the other hand, the selection of c0 directly affects the noise gain. Combining
the results in (4.17), (4.18), and (4.19) with (4.16), it is easy to check that

i. If 0 ≤ λ2 < 1, then

sup
k≥0
|y(kT )| ≤

(
∞∑
i=1

∣∣C̄cl1λ1
i−1B̄cl1

∣∣+
∞∑
i=1

∣∣C̄cl2λ2
i−1B̄cl2

∣∣) ‖n‖∞
=

(
1 +O(T )

)
‖n‖∞. (4.20)

ii. If −1 < λ2 < 0, then

sup
k≥0
|y(kT )| ≤

(
∞∑
i=1

∣∣C̄cl1λ1
i−1B̄cl1

∣∣+
∞∑
i=1

∣∣C̄cl2λ2
i−1B̄cl2

∣∣) ‖n‖∞
=

(∣∣∣∣ gc0

2− gc0

∣∣∣∣+O(T )

)
‖n‖∞. (4.21)
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So far, we have examined the affect of noise on the plant output at the sample points.
We see that the ‘noisy plant output’ is well behaved at the sample points. However, we
still do not know the inter-sample behavior of the plant output. With a first order LTI
plant, the answer is actually simple.

Claim 1. If a and b are bounded fixed values, then for k ∈ Z+ and t ∈ [kT, (k + 1)T ), the
system:

y(t) = eaty(kT ) +
∫ t

0
eaτbu(t− τ)dτ,

u(t) = u(kT ),
(4.22)

has the following property

|y(t)| ≤ max {|y(kT )|, |y[(k + 1)T ]|}.

Proof. Taking the derivative of the y(t) equation and use the fact that u(t) is constant in
[kT, (k + 1)T ), we have:

ẏ(t) = aeaty(kT ) + eatbu(kT )
= [ay(kT ) + bu(kT )]︸ ︷︷ ︸

=:c

eat

= ceat.

(4.23)

Hence, for t ∈ [kT, (k + 1)T ), the sign of ẏ(t) does not change. Therefore, we can directly
conclude that

|y(t)| ≤ max {|y(kT )|, |y[(k + 1)T ]|}.

From the above, we see that the output is also well behaved between every sample
points. Hence, the results of (4.20) and (4.21) can be extend to:

i. If 0 ≤ λ2 < 1, then
‖y‖∞
‖n‖∞

= 1 +O(T ), (4.24)

ii. If −1 < λ2 < 0, then
‖y‖∞
‖n‖∞

=

∣∣∣∣ gc0

2− gc0

∣∣∣∣+O(T ). (4.25)
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Note that in the second case, gc0 > 1 so
∣∣∣ gc0

2−gc0

∣∣∣ > 1. This means that when 0 ≤ λ2 < 1,

the induced noise gain is smaller. However, λ2 = 1 − gc0 +O(T ) and g ∈ [g, ḡ] ⊂ (0,∞).

Hence, if we choose c0 ∈ (0, 1
ḡ
), then for small T , we will be guaranteed to have

λ2 ∈ [0, 1), so that (4.24) holds.

Proposition 1. For a first order time-invariant plant of the form (4.1), for which the sign
of the high frequency gain is known, using controller (3.21)-(3.25), the maximum induced
noise gain is bounded. In particular, if the selection of c0 satisfies c0 ∈ (0, 1

ḡ
), then for

every δ > 0, there exists a T̄ > 0 such that for every T ∈ (0, T̄ ) and θ̄ ∈ P̄ac(n = 1,m =
1, Γ̄, µ̄1 = 0, g, γ0, λ0), we have

‖Tny(θ̄, T )‖ ≤ 1 + δ. (4.26)

Proof. The proof follows from (4.24).

Remark 4. In [1], it is required that |1 − gc0| ∈ (0, 1). To ensure that this holds for all
g ∈ [g, ḡ], we need to choose c0 ∈ (0, 2

ḡ
). Here, we select c0 ∈ (0, 1

ḡ
) which means that

gc0 ∈ (0, 1). By sacrificing about half of the allowed range of c0, we ensured a low noise
gain - ‘1 +O(T )’.

4.5 Simulation Results

As a verification to the previous results, simulations are generated in this section. To begin,
consider the following first order linear time-invariant plant

ẏ(t) = ay(t) + gu(t),

where a and g are the fixed plant parameters. The reference model is

˙̄ym = −ȳm + ūm, (4.27)

so that am = −1 (stable) and bm = 1. The modeled input um is set to be a square wave
such that

um(t) = sign(cos(
2πt

15
)). (4.28)

The reference model anti-aliasing filter is chosen to be

˙̄um = −50ūm + 50um. (4.29)

With the above reference model setup, the modeled output goes in between ±1. To provide
good visibility to the behavior of the noise, we choose ||n||∞ = 1. Also, in all the following
simulations, we choose y(0) = 3 and u(0) = 0 to be the initial conditions. In addition, in
all cases, we choose a = 1 so that we have an unstable plant.
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4.5.1 Example 1

When gc0 ∈ (0, 1), our result shows that the maximum induced noise gain is 1 + O(T ).
In Figure 4.1, simulation is performed with choosing c0 = 1, and g = 0.25, 0.5, and 0.75.
We choose the sampling period h to be 0.0001s and have the random noise injected at the
measurement of plant output.

Figure 4.1: Fixed parameter simulation with gc0 ∈ (0, 1).

Since we choose ||n||∞ = 1, the maximum induced noise gain should be 1 + O(T ).
Therefore, the outputs live in the envelope of ym(t) ± (1 + O(T )). This can be observed
from the above plot.

4.5.2 Example 2

From our previous results, we see that the noise is not amplified with smaller sampling
periods. This is a very nice feature! In practice, running the system at a faster rate gives
faster convergence. However, this is usually limited by the occurrence of the high frequency
noise. Surprisingly, in our case, the system can run with the maximum possible sampling
rate without worrying about the effect of the noise. In this simulation, we test this property
by increasing the sample rate. Figure 4.2 plots the outputs with using sampling periods
h = 0.1s, h = 0.001s, and h = 0.00001s. For these simulations, we choose gc0 = 0.75 so
that ‖Tny‖ = 1 + O(T ). As we can see, the outputs y(t) are always inside the desired
bound.
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Figure 4.2: Fixed parameter simulation with using different sampling period.
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Chapter 5

Time-varying Parameter Case

In the previous chapter, we derived an expression of the induced noise gain for the case
where the plant is first order and linear time-invariant. The result shows that the induced
noise gain is 1 + O(T ) when the controller parameters c0 satisfies c0 ∈ (0, 1

ḡ
), for then

gc0 ∈ (0, 1) for all admissible g.

To extend the previous result, in this chapter we will look at the case with a first order
time-varying plant. In particular, we assume the set of plant uncertainty to be

P̄ac(n = 1,m = 1, Γ̄, µ̄1, g, γ0, λ0),

and the plant is parametrized by θ̄(t) =

[
β0(t)
g(t)

]
. In the light of the previous result, we

would like to find the induced noise gain when g(t) ∈ [g, ḡ] is time-varying and the controller

parameters c0 ∈ (0, 1
ḡ
). It turns out that the function 1− g(t)c0 plays an important role in

the analysis. If we set ε := 1− gc0, then for all t,

1− g(t)c0 ∈ (1− ḡc0, 1− gc0)

∈ (0, 1− gc0)

= (0, ε).

For simplicity, we also assumed that the plant parameters are continuous (Assumption 8).
In other words, we will not consider the case where plant parameters can have infrequent
jumps. Since the plant parameters are slowly time-varying compared to the sampling rate,
we expect the induced noise gain to be bounded just like in the LTI case.
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5.1 State Space representation with first order time-

varying plant

To formulate the problem for the time-varying case, we first express the system in the state
space representation. Since the plant is first order, the controller is linear time-invariant.
This can be seen from (3.33). Hence, the model of the controller is exactly the same as

(4.7). On the other hand, the plant model is linear time-varying. With

(
a(t)
g(t)

)
∈ Γ̄ and

g(t) ∈ [g, ḡ] for all t ≥ 0, consider the first order time-varying plant1

ẏ(t) = a(t)y(t) + g(t)u(t). (5.1)

For t1, t2 ∈ R+, denote the transition matrix of a time interval [t1, t2] to be

Φ(t1, t2) = e
∫ t2
t1
a(w)dw.

Then, the discrete version of (5.1) is

y[(k + 1)T ] = Φ
(
(k + 1)T, kT

)
y(kT ) +

∫ (k+1)T

kT

Φ((k + 1)T, τ)g(τ)u(τ)dτ, k ≥ 0. (5.2)

Due to the complexity of the transition matrix of a time-varying system, we will express
(5.2) using the order notation. Applying Lemma 3 from Appendix B, if we denote the
discrete-time state space matrices to be

Ap(kT ) = 1 + a(kT )T +O(T 2),

Bp(kT ) = Tg(kT ) +O(T 2),

Cp(kT ) = 1,

Dp(kT ) = 0,

it follows that the discrete-time state space representation of the plant is

x2[(k + 1)T ] = Ap(kT )x2(kT ) +Bp(kT )u(kT ), x2(0) = 0,
y(kT ) = Cp(kT )x2(kT ) +Dp(kT )u(kT ).

(5.3)

1Instead of using θ̄(t) =

[
β0(t)
g(t)

]
, we use θ̄(t) =

[
a(t)
g(t)

]
to embrace the natural notation of the first

order linear time-varying plant ẏ(t) = a(t)y(t) + g(t)u(t).
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For the case where the plant is first order LTV, the controller is exactly the same as
the one for a first order LTI plant. Hence, we will use the state-space representation as
presented in (4.7) for the controller. For the closed-loop system, connect the controller and
the plant in series. By combining (4.7) and (5.3), we have(

x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
Ac 0

Bp(kT )Cc Ap(kT )

](
x1(kT )
x2(kT )

)
+

[
Bc

Bp(kT )Dc

]
yn(kT ),

y(kT ) =
[
Dp(kT )Cc Cp(kT )

]( x1(kT )
x2(kT )

)
+
[
Dp(kT )Dc

]
yn(kT ).

(5.4)
Substituting the values of (Ac, Bc, Cc, Dc) and (Ap(kT ), Bp(kT ), Cp(kT ), Dp(kT )), we have:(

x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
1 0

g(kT )c0f̄2T +O(T 2) 1 + a(kT )T +O(T 2)

](
x1(kT )
x2(kT )

)
+[

1
−g(kT )c0 +O(T )

]
yn(kT ),

y(kT ) =
[

0 1
]( x1(kT )

x2(kT )

)
.

Since x2(kT ) = y(kT ) and yn(kT ) = y(kT ) + n(kT ), the state-space representation
for the time-varying case can be written as:(

x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
1 1

g(kT )c0f̄2T +O(T 2) 1− g(kT )c0 +O(T )

]
︸ ︷︷ ︸

=:Acl(kT )

(
x1(kT )
x2(kT )

)
︸ ︷︷ ︸

=:x(kT )

+

[
1

−g(kT )c0 +O(T )

]
︸ ︷︷ ︸

=:Bcl(kT )

n(kT ), x(0) = 0,

y(kT ) =
[

0 1
]︸ ︷︷ ︸

=:Ccl(kT )

(
x1(kT )
x2(kT )

)
.

5.1.1 The Transformed State x̄

Unlike in the previous chapter, the closed-loop system is a linear time-varying system.
Since the state matrices are time-varying, there is no easy way to diagonalize the system.
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However, we can diagonalize the system at every time step. We use the same diagonaliza-
tion method that is used in Chapter 4, and use

• L(kT ) = −f̄2T +O(T 2),

• P (kT ) = 1
g(kT )c0

+O(T );

we end up with a time-varying diagonalization matrix

T (kT ) =

[
1 −P (kT )

−L(kT ) 1 + P (kT )L(kT )

]
=

[
1 − 1

g(kT )c0
+O(T )

f̄2T +O(T 2) 1− f̄2T
g(kT )c0

+O(T 2)

] (5.5)

whose inverse is

T −1(kT ) =

[
1 + P (kT )L(kT ) P (kT )

L(kT ) 1

]
=

[
1− f̄2T

g(kT )c0
+O(T 2) 1

g(kT )c0
+O(T )

−f̄2T +O(T 2) 1

]
.

(5.6)

With Λ(kT ) := T −1(kT )Acl(kT )T (kT ), the state equation of (5.5) can be written as

x[(k + 1)T ] = T (kT )Λ(kT )T −1(kT )x(kT ) +Bcl(kT )n(kT ).

It follows that

T −1(kT )x[(k + 1)T ] = Λ(kT ) T −1(kT )x(kT )︸ ︷︷ ︸
=:x̄(kT )

+T −1(kT )Bcl(kT )n(kT ).

Hence, the update equation for x̄ is

x̄[(k + 1)T ] = T −1[(k + 1)T ]x[(k + 1)T ]

= T −1[(k + 1)T ]T (kT )Λ(kT )x̄(kT ) + T −1[(k + 1)T ]Bcl(kT )n(kT )

=
[
Λ(kT ) + (T −1[(k + 1)T ]T (kT )− I)Λ(kT )︸ ︷︷ ︸

=:∆1(kT )

]
x̄(kT ) +

[
T −1(kT )Bcl(kT ) + (T −1[(k + 1)T ]− T −1(kT ))Bcl(kT )︸ ︷︷ ︸

=:∆2(kT )

]
n(kT ).
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It turns out that all of the matrices in this equation have a rich structure:

Λ(kT ) = T −1(kT )Acl(kT )T (kT )

=

[
1 + f̄2T +O(T 2) 0

0 1− g(kT )c0 +O(T )

]
,

∆1(kT ) = (T −1[(k + 1)T ]T (kT )− I)Λ(kT )

=

[
O(T 2) O(T )
O(T 2) O(T 2)

]
,

T −1(kT )Bcl(kT ) =

[
O(T )

−g(kT )c0 +O(T )

]
,

∆2(kT ) = (T −1[(k + 1)T ]− T −1(kT ))Bcl(kT )

=

[
O(T )
O(T 2)

]
.

(5.7)

For notational simplicity, denote

Ācl(kT ) := Λ(kT ) + ∆1(kT ),

and
B̄cl(kT ) := T −1(kT )Bcl(kT ) + ∆2(kT ).

The update equation of the x̄ system becomes

x̄[(k + 1)T ] = Ācl(kT )x̄(kT ) + B̄cl(kT )n(kT ). (5.8)

Furthermore, the output equation of the x̄ system can be written as

y(kT ) = Ccl(kT )T (kT )︸ ︷︷ ︸
:=C̄cl(kT )

x̄(kT ), (5.9)

with

C̄cl(kT ) = Ccl(kT )T (kT )

=
[

0 1
] [ 1 − 1

g(kT )c0
+O(T )

f̄2T +O(T 2) 1− f̄2T
g(kT )c0

+O(T 2)

]
=
[
O(T ) 1 +O(T )

]
.

Combining all of the above, the x̄ system can be written as:

x̄[(k + 1)T ] = Ācl(kT )x̄(kT ) + B̄cl(kT )n(kT ), x̄(0) = 0,

y(kT ) = C̄cl(kT )x̄(kT ),
(5.10)

with Ācl(kT ) and B̄cl(kT ) shown in (5.8) and C̄cl(kT ) shown in (5.9).
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5.2 Analyzing the LTV system

In Chapter 4, where the LTI case was examined, we diagonalized the system to compute
the induced noise gain. Unfortunately, for the time-varying case, we are unable to do so
because state space matrices are time-varying so the diagonalization matrix is not constant.
In the previous section, we derived the difference equation for the transformed state x̄, and
Ācl(kT ) is not purely diagonal. In this section, we first find a weak bound in the state x̄,
which we then leverage to obtain tighter bounds. Eventually, we derive the desired bound.

5.2.1 Stability

Since Ācl(kT ) is not diagonal, we cannot separate the ‘fast’ and ‘slow’ mode of the closed-
loop system. Note that the two eigenvalues of Ācl(kT ) are roughly at 1 + f̄2T and 1 −
g(kT )c0, which, for small T , are inside the unit disk. However, the stability/instability
of a linear time-varying system cannot be determined from the eigenvalues of Ācl(kT ) as
demonstrated [4].

In this section, we will first find a bound on ‖Ācl(kT )‖. Since Ācl(kT ) is ‘almost’ in the
diagonal form, we expect that the bound of ‖Ācl(kT )‖ is closely related to the slow mode
(1 + f̄2T ) of the system.

Claim 2. With f̃2 a negative constant satisfying f̃2 ∈ (f̄2, 0), we have

||Ācl(kT )|| < ef̃2T , k ∈ Z+. (5.11)

Proof. Consider

Ā(kT ) := Ācl(kT )
(
e−f̃2T I

)
Recall that

‖Ā(kT )‖ < 1 ⇐⇒ I − ĀT (kT )Ā(kT ) > 0.

But

Ā(kT ) = Ācl(kT )
(
e−f̃2T I

)
=

(
Λ(kT ) + ∆1(kT )

)(
e−f̃2T I

)
=

[
1 + f̄2T +O(T 2) O(T )

O(T 2) 1− g(kT )c0 +O(T )

] [
1− f̃2T +O(T 2) 0

0 1− f̃2T +O(T 2)

]
=

[
1 + (f̄2 − f̃2)T +O(T 2) O(T )

O(T 2) 1− g(kT )c0 +O(T )

]
.
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So it follows that

I − Ā(kT )T Ā(kT ) = I −
[

1 + (f̄2 − f̃2)T +O(T 2) O(T 2)
O(T ) 1− g(kT )c0 +O(T )

]
·[

1 + (f̄2 − f̃2)T +O(T 2) O(T )
O(T 2) 1− g(kT )c0 +O(T )

]
= I −

[
(1 + (f̄2 − f̃2)T )2 +O(T 2) O(T )

O(T ) (1− g(kT )c0)2 +O(T )

]
=

[
1−

[
1 + (f̄2 − f̃2)T

]2

+O(T 2) O(T )

O(T ) 1− (1− g(kT )c0)2 +O(T )

]

=

[
−2
(
f̄2 − f̃2

)
T +O(T 2) O(T )

O(T ) 2g(kT )c0 + (g(kT )c0)2 +O(T 2)

]
.

Following the definition of f̃2, we have (f̄2− f̃2) < 0. Since we choose c0 so that g(kT )c0 ∈
[gc0, ḡc0] ⊂ (0, 1), then there exist positive constants γ3 and a time-varying function γ4(kT )
such that:

• γ3 := −2(f̄2 − f̃2) > 0,

• γ4(kT ) := 2g(kT )c0 + c2
0g(kT )2 ≥ 2gc0 + c2

0g
2 > 0,

and

I − Ā(kT )T Ā(kT ) =

[
γ3T +O(T 2) O(T )
O(T ) γ4(kT ) +O(T )

]
.

Hence, for small T , the leading principal minors are:

• γ3T +O(T 2) > 0,

•
(
γ3T +O(T 2)

)(
γ4(kT ) +O(T )

)
−O(T 2) ≥ (γ3T +O(T 2))(2gc0 + g2c2

0 +O(T ))−O(T 2)

= (2gc0 + g2c2
0)γ3T +O(T 2)

> 0.

Since all the leading principal minors are positive, we conclude that for small T , I −
Ā(kT )T Ā(kT ) is positive definite, or equivalently,

||Ā(kT )|| < 1, k ∈ Z+. (5.12)
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It follows immediately that for small T,

‖Ācl(kT )‖ < ef̃2T , k ∈ Z+,

as required.

The above result gives us a bound on ‖Ācl(kT )‖. This gives us information about ‘how
fast’ the x̄ system converges. Now, the solution of (5.10) can be written as

x̄[(k + 1)T ] =

(
k∏
i=1

Ācl(iT )

)
B̄cl(0)n(0) +

(
k∏
i=2

Ācl(iT )

)
B̄cl(T )n(T ) + · · ·+

Ācl(kT )B̄cl[(k − 1)T ]n[(k − 1)T ] + B̄cl(kT )n(kT ).

If we set γ5 = ḡc0 + 1, it follows that for small T , we have

‖B̄cl(kT )‖ ≤ γ5, k ≥ 0.

If we take the vector norm on both sides of the above equation and use the fact that
‖Ācl‖∞ < ef̃2T < 1, k ≥ 0, and ‖n(kT )‖ ≤ ‖n‖∞, we end up with

‖x̄[(k + 1)T ]‖ ≤
(
ef̃2T

)k
‖B̄cl(0)‖|n(0)|+

(
ef̃2T

)k−1

‖B̄cl(T )‖|n(T )|+ · · ·+(
ef̃2T

)1

‖B̄cl[(k − 1)T ]‖|n[(k − 1)T ]|+
(
ef̃2T

)0

‖B̄cl(kT )‖|n(kT )|

≤γ5

k∑
i=0

(
ef̃2T

)i
||n||∞

≤γ5

∞∑
i=0

(
ef̃2T

)i
||n||∞

≤γ5
1

1− ef̃2T
||n||∞

≤γ5
1

−f̃2T +O(T 2)
||n||∞, k ≥ 0.

Hence, for small T we see that

||x̄(kT )|| ≤ 2γ5

|f̃2|T
||n||∞, k ≥ 0. (5.13)

In the next section, we are going to use this weak bound to obtain better bounds.
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5.2.2 Tighter bounds

If we take a look at the state equation of the x̄ system in detail, we have(
x̄1(k + 1)T
x̄2(k + 1)T

)
=

[
1 + f̄2T +O(T 2) O(T )

O(T 2) 1− g(kT )c0 +O(T )

](
x̄1(kT )
x̄2(kT )

)
+(

O(T )
−g(kT )c0 +O(T )

)
n(kT ),

where the dynamics governing x̄1 is closely related to 1 + f̄T and the dynamics governing
x̄2 is closely related to 1− g(kT )c0. In the following, we are going to look at the updated
equation of x̄1 and x̄2 separately. First, by examining the x̄2 equation, we have

x̄2[(k+ 1)T ] = O(T 2)x̄1(kT ) +
(
1− g(kT )c0 +O(T )

)
x̄2(kT ) +

(
− g(kT )c0 +O(T )

)
n(kT ).

Using (5.13) and the fact that |g(kT )c0| ≤ 1 for all k ≥ 0, we have

x̄2[(k + 1)T ] ≤ O(T )||n||∞ +
(
1− g(kT )c0 +O(T )

)
x̄2(kT ) +O(1)||n||∞

=
(
1− g(kT )c0 +O(T )

)
x̄2(kT ) +O(1)||n||∞.

Since ε = 1− gc0 and we choose c0 so that g(kT )c0 ∈ [1− ε, ḡc0] ⊂ (0, 1) for all k ≥ 0, it
follows that there exists a constant γ7 such that for small T

|x̄2[(k + 1)T ]| ≤
(

1− 1− ε

2

)k
|x̄2(kT )|+ γ7||n||∞, (5.14)

which means that

|x̄2(kT )| ≤
(

1− 1− ε

2

)k
|x̄2(0)|+ 2γ7

1− ε
||n||∞. (5.15)

With zero initial condition, we have

|x̄2(kT )| ≤ 2γ7

1− ε
||n||∞, k ≥ 0. (5.16)

Hence,
sup
k≥0
||x̄2(kT )|| = O(1)||n||∞, (5.17)

which a tighter bound for x̄2.
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Now we will obtain even tighter bounds on both x̄1 and x̄2. The state equation for x̄1

is
x̄1[(k + 1)T ] =

(
1 + f̄2T +O(T 2)

)
x̄1(kT ) +O(T )x̄2(kT ) +O(T )n(kT ).

Since |x̄2(kT )| = O(1)||n||∞ and |n(kT )| ≤ ||n||∞ for all k ≥ 0, then there exists a positive
constant γ8 such that for small T

|x̄1[(k + 1)T ]| ≤
(

1 + f̄2T
2

)
|x̄1(kT )|+ γ8T ||n||∞, k ≥ 0. (5.18)

Hence,

|x̄1(kT )| ≤
(

1 + f̄2T
2

)k
|x̄1(0)|+

∑k−1
i=0

(
1 + f̄2T

2

)i
γ8T ||n||∞

≤
(

1 + f̄2T
2

)k
|x̄1(0)|+

∑∞
i=0

(
1 + f̄2T

2

)i
γ8T ||n||∞.

Following the definition of f̄2, we have 0 < 1 + f̄2T
2
< 1. Then, with zero initial conditions,

we have that for small T

|x̄1(kT )| ≤ 2γ8

|f̄2|
||n||∞, k ≥ 0. (5.19)

Hence, for small T
sup
k≥0
‖x̄1(kT )‖ = O(1)‖n‖∞. (5.20)

Next, we will prove the tighter bounds on x̄2 using induction. As alone, by examining
the x̄2 equation we have

x̄2[(k + 1)T ] = [1− g(kT ) +O(T )] x̄2(kT ) +O(T 2)x̄1(kT ) + [−g(kT )c0 +O(T )]
= [1− g(kT )c0] x̄2(kT )− g(kT )c0n(kT )+
O(T 2)x̄1(kT ) +O(T )x̄2(kT ) +O(T )n(kT )︸ ︷︷ ︸

=:∆3(kT )

(5.21)
Using the bound on ‖x̄1‖∞ given in (5.20) and the bound on ‖x̄2‖∞ given by (5.17), it
follows that there exists a constant γ9 such that for small T ,

‖∆3(kT )‖ ≤ γ9T‖n‖∞, k ≥ 0.

Suppose x̄2(0) = 0; we claim that for small T ,

‖x̄2(kT )‖ ≤
(

1 +
γ9

1− ε
T

)
‖n‖∞, k ≥ 0. (5.22)
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To prove this, suppose that it is true for k = 0, 1, · · · j; then

|x̄2[(j + 1)T ]| ≤ |1− g(jT )c0||x̄2(jT )|+ |g(jT )c0|‖n‖∞ + γ9T‖n‖∞
≤ |1− g(jT )c0|(1 + γ9

1−εT )‖n‖∞ + |g(jT )c0|‖n‖∞ + γ9T‖n‖∞
≤ (|1− g(jT )c0|+ |g(jT )c0|)︸ ︷︷ ︸

=1

‖n‖∞ + ε γ9

1−εT‖n‖∞ + γ9T‖n‖∞

≤
[
1 + γ9

(
1 + ε

1−ε

)
T
]
‖n‖∞

=
(
1 + γ9

1−εT
)
‖n‖∞,

(5.23)

as desired. We conclude that

sup
k≥0
‖x̄2(kT )‖ = (1 +O(T )) ‖n‖∞. (5.24)

5.2.3 Maximum Noise Gain (Time-varying Case)

Using the results from (5.20) and (5.24) and substituting into (5.9), we have

|y(kT )| =
∣∣Ccl(kT )T (kT )x̄(kT )

∣∣
≤ O(T ) sup

k≥0
‖x̄1(kT )‖+ (1 +O(T )) sup

k≥0
‖x̄2(kT )‖

=
(
1 +O(T )

)
||n||∞, k ∈ Z+. (5.25)

Hence, the output is well behaved at the sample points.

Now, we will show that the output is also well behaved in between the sample points.
Since x(kT ) = T (kT )x̄(kT ), if we use the bound found for x̄, we have

x(kT ) = T (kT )x̄(kT )

=

[
1 − 1

g(kT )c0
+O(T )

f̄2T 1− f̄2T
g(kT )c0+O(T 2)

](
O(1)

1 +O(T )

)
‖n‖∞

=

(
O(1)

1 +O(T )

)
‖n‖∞, k ≥ 0,

so, in particular,
x1(kT ) = O(1)‖n‖∞, k ≥ 0.

Substituting the above into the output equation of (4.7), we have

u(kT ) = O(1)‖n‖∞ +

(
1

T

)
(−c0)(y(kT ) + n(kT )), k ≥ 0.
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Using (5.25), it follows that

supk≥0 |u(kT )| = O(T )‖n‖∞ +O
(

1
T

)
[(1 +O(T ))‖n‖∞ + ‖n‖∞]

= O
(

1
T

)
‖n‖∞.

Note from the above that the bound on the control input is inversely proportional to the
sampling period. Hence, sampling faster could cause a large control signal, which is the
case in practice. Now, let’s look at the output equation of (5.1). Using the previously
defined transition matrix, the solution of (5.1) for t ∈ [kT, (k + 1)T ) is

y(t) = Φ
(
t, kT

)
y(kT ) +

∫ t

kT

Φ(t, τ)g(τ)u(τ)dτ, k ≥ 0. (5.26)

Since we are using the sample-data controller, then for t ∈ [kT, (k + 1)T ), u(t) = u(kT ).

Since

[
a
g

]
lie in a compact set Γ̄, there exist constants ā and ḡ such that

‖a‖∞ ≤ ā and ‖g‖∞ ≤ ḡ.

It is easy to see that

Φ(t, τ) = 1 +O(T ), kT ≤ τ ≤ t ≤ (k + 1)T, k ∈ Z+.

Using Lemma 2 from Appendix B, we have

g(τ) = g(kT ) +O(T ).

Using the above results in (5.26), we end up with

y(t) = (1 +O(T ))y(kT ) + (t− kT )(g(kT ) +O(T ))u(kT )

= [y(kT ) + (t− kT )g(kT )u(kT )] +[
O(T )y(kT ) +O(T 2)u(kT )

]
, t ∈ [kT, (k + 1)T ]. (5.27)

Hence,

|y(t)− [y(kT ) + (t− kT )g(kT )u(kT )]| = O(T )‖n‖∞, t ∈ [kT, (k + 1)T ], k ≥ 0.

This means, in particular, that∣∣∣y[(k + 1)T ]−
[
y(kT ) + Tg(kT )u(kT )

]∣∣∣ = O(T )‖n‖∞, k ≥ 0,
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so ∣∣∣[y[(k + 1)T ]− y(kT )
]

+ Tg(kT )u(kT )
∣∣∣ = O(T )‖n‖∞, k ≥ 0.

Hence, ∣∣∣y(t)− y(kT )− t−kT
T

(y[(k + 1)T ]− y(kT ))
∣∣∣

=
∣∣∣y(t)− y(kT )− (t− kT )g(kT )u(kT )

∣∣∣+O(T )‖n‖∞
= O(T )‖n‖∞, t ∈ [kT, (k + 1)T ].

However,∣∣∣∣y(kT ) +
t− kT
T

(y[(k + 1)T ]− y(kT ))

∣∣∣∣ ≤ max{|y(kT )|, |y[(k+1)T ]|}, t ∈ [kT, (k+1)T ], k ∈ Z+,

so
|y(t)| ≤ sup

k≥0
|y(kT )|+O(T )‖n‖∞, t ∈ [kT, (k + 1)T ], k ∈ Z+.

Using (5.25), we conclude that

‖y‖∞ = (1 +O(T ))‖n‖∞. (5.28)

Since n ∈ PC∞ is arbitrary, it follows that

‖Tny‖ = 1 +O(T ), (5.29)

which leads to our second main result.

Proposition 2. For a first order time-invariant plant of the form (5.1) with known sign of
the high frequency gain, using controller (3.21)-(3.25), the maximum induced noise gain is
bounded. In particular, if the selection of c0 satisfies c0 ∈ (0, 1

ḡ
), then for every δ > 0, there

exists a T̄ > 0 such that for every T ∈ (0, T̄ ) and θ̄ ∈ P̄ac(n = 1,m = 1, Γ̄, µ̄1, g, γ0, λ0) for
all t ≥ 0, we have

‖Tny(θ̄, T )‖ ≤ 1 + δ. (5.30)

Until now, we showed that the maximum induced noise gain can be controlled to be
1+O(T ) if the plant is first order and linear time-varying. This leads to a natural question
- can we still control the induced noise gain if the plant order is two or higher? In the
next chapter, we are going to look at a more general case; we are going to look at the case
where the plant is time-varying and with relative degree one.
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Chapter 6

General Case

In the previous chapter, we examined the induced noise gain for the case where the plant
is first order and time-varying. In this chapter, we will extend the result to the relative
degree one case. In particular, we assume the set of plant uncertainties to be

P̄ac(n,m = 1, Γ̄, µ̄1, g, γ0, λ0),

and the plant is parameterized by

θ̄(t) :=
[
α0(t) · · · αn−2(t) β0(t) b0(t) · · · bn−2(t) g(t)

]T
.

As we did in Chapter 5, we will look at the induced noise gain when g(t) ∈ [g, ḡ] is time-

varying and the selection of c0 satisfies g(t)c0 ∈ (0, 1) for all t ≥ 0, namely c0 ∈ (0, 1
ḡ
). Also,

we still set ε = 1−gc0 so that 1−g(t)c0 ≤ ε < 1 for all t ≥ 0. We expect to prove a similar
result as we did in chapter 5. The intuition for why this works is that for the relative degree
one case, the plant is the composition of a first order linear time-varying plant and the
zero dynamics. The ideal controller, which inspired the design of the adaptive controller, is
designed in such a way that the zero dynamics are decoupled from the rest of the system.
In our case, since the controller is only an approximation of the ideal controller, the zero
dynamics is not completely decoupled from the rest of the system; the zero dynamics is
weakly coupled to a first order linear time-varying system. Since we are assuming that
the zero dynamics is uniformly exponential stable (Assumption 5), the ‘weak’ connection
between the first order linear time-varying plant and the zero dynamics should not affect
the plant output much.
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6.1 State-Space Representation

As in the previous chapters, we write the plant and the controller in the state-space repre-
sentation and then construct the closed-loop system. First, let’s look at the relative degree
one plant.

6.1.1 Relative Degree One Plant

For the relative degree one case, m = 1. Hence, the input output model of (3.1) becomes∑n
i=0 ai(t)D

iη = g(t)u

y =
∑n−1

i=0 bi(t)D
iη.

(6.1)

Using (3.14), the state-space representation of the relative degree one plant can be repre-
sented as1:

(
ẇ
v̇

)
=



A1(t)︷ ︸︸ ︷
1

. . .

1
−b0(t) −b1(t) · · · −bn−m−1(t)


b1︷ ︸︸ ︷
0
...
0
1

[
α0(t) α1(t) · · · αn−m−1(t)

]︸ ︷︷ ︸
c1(t)

[−β0(t)]︸ ︷︷ ︸
A2(t)


︸ ︷︷ ︸

=:Apc(t)

(
w
v

)
+




0
0
...
0


[g(t)]


︸ ︷︷ ︸

=:Bpc(t)

u,

y =
[ [

0 0 · · · 0
]

[1]
]︸ ︷︷ ︸

=:Cpc(t)

(
w
v

)
, (6.2)

where the state w =


η
Dη
...

Dn−2η

 is associated with the zero dynamics. Since m = 1, we

have y = v. Note that all the time-varying elements of Apc(t) and Bpc(t) (or θ̄(t)) are inside
the compact set Γ̄. In addition, we assume that g(t) ∈ [g, ḡ] for all t ≥ 0.

1The notation here is consistent with (3.14). For the relative degree one case, we also have b2 = c2 = 1.
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To discretize the plant, we use the result of Lemma 3 from Appendix B. Applying
Lemma 3 to (6.2) yields:(

w[(k + 1)T ]
v[(k + 1)T ]

)
= (I + Apc(kT )T +O(T 2))

(
w(kT )
v(kT )

)
+ (Bpc(kT )T +O(T 2))u(kT ),

y(kT ) = Cpcx2(kT ).
(6.3)

If we break down the equation, we have:

w[(k + 1)T ] = (I + A1(kT )T +O(T 2))w(kT ) + (Tb1 +O(T 2)) v(kT ) +O(T 2)u(kT ),
v[(k + 1)T ] = (1 + A2(kT )T +O(T 2)) v(kT ) + (Tc1(kT ) +O(T 2))w(kT )+

(Tg(kT ) +O(T 2))u(kT ).

Denote the state of the discretized plant by x2(kT ) :=

(
v(kT )
w(kT )

)
(Note that the order

of v and w is switched). With

Ap(kT ) :=

[
1 + A2(kT )T +O(T 2) Tc1(kT ) +O(T 2)

Tb1 +O(T 2) I + A1(kT )T +O(T 2)

]
,

Bp(kT ) :=

[
Tg(kT ) +O(T 2)

O(T 2)

]
, and

Cp(kT ) :=
[

1 0 · · · 0
]
,

and zero initial conditions, the discrete time state-space representation of the plant is:

x2[(k + 1)T ] = Ap(kT )x2(kT ) +Bp(kT )u(kT ), x2(0) = 0,
y(kT ) = Cp(kT )x2(kT ).

(6.4)

Combining the controller in (4.7) and the plant in (6.4), the closed-loop system state-space
representation is:(

x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
Ac 0

Bp(kT )Cc Ap(kT )

](
x1(kT )
x2(kT )

)
+

[
Bc

Bp(kT )Dc

]
yn(kT ),

y(kT ) =
[

0 Cp(kT )
]( x1(kT )

x2(kT ).

)
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Since yn(kT ) = y(kT ) + n(kT ) and y(kT ) = Cp(kT )x2(kT ), we have(
x1[(k + 1)T ]
x2[(k + 1)T ]

)
=

[
Ac BcCp(kT )

Bp(kT )Cc Ap(kT ) +Bp(kT )DcCp(kT )

]
︸ ︷︷ ︸

=:Acl(kT )

(
x1(kT )
x2(kT )

)
+

[
Bc

Bp(kT )Dc

]
︸ ︷︷ ︸

=:Bcl(kT )

n(kT ).

y(kT ) =
[

0 Cp(kT )
]︸ ︷︷ ︸

=:Ccl(kT )

(
x1(kT )
x2(kT )

)
.

Note that for the above state space representation, noise is the only system input. If
we substitute the value of (Ac, Bc, Cc, Dc) and (Ap(kT ), Bp(kT ), Cp(kT )), then the state
matrices are

Acl(kT ) =

 1 1 0
Tc0f̄2g(kT ) +O(T 2) 1− c0g(kT ) +O(T 2) c1(kT )T +O(T 2)

O(T 2) O(T ) I + A1(kT )T +O(T 2)

 ,
Bcl(kT ) =

 1
−c0g(kT ) +O(T )

O(T )

 ,
Ccl(kT ) =

[
0 1 0 · · · 0

]
.

Hence, we end up with the state-space representation of the closed-loop system:

x[(k + 1)T ] = Acl(kT )x(kT ) +Bcl(kT )n(kT ), x(0) = 0,
y(kT ) = Ccl(kT )x(kT ), (6.5)

where the state x(kT ) =

(
x1(kT )
x2(kT )

)
=

 x1(kT )
v(kT )
w(kT )

 .

6.1.2 The Transformed State x̄

In Chapter 5 where the plant is first order and time-varying, we did a similarity transfor-
mation to the closed-loop system so that the ‘A’ matrix is almost in a diagonal form. For
case presently under discussion, we are going to perform similar transformation. We define
L(kT ), P (kT ), and T (kT ) as in Chapter 5:
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• L(kT ) = −f̄2T +O(T 2),

• P (kT ) = 1
g(kT )c0

+O(T ),

• T (kT ) =

[
1 −P (kT )

−L(kT ) 1 + P (kT )L(kT )

]
,

and let

P(kT ) :=

[
T (kT ) 0

0 I

]
and P−1(kT ) :=

[
T −1(kT ) 0

0 I

]
,

and
Λ(kT ) := P−1(kT )Acl(kT )P(kT ),

then the state equation of (6.5) becomes:

x[(k + 1)T ] = P(kT )Λ(kT )P−1(kT )x(kT ) +Bcl(kT )n(kT ),

P−1(kT )x[(k + 1)T ] = Λ(kT )P−1(kT )x(kT )︸ ︷︷ ︸
=:x̄(kT )

+P−1(kT )Bcl(kT )n(kT ).

This means that

x̄[(k + 1)T ] = P−1[(k + 1)T ]x[(k + 1)T ]

=
[
Λ(kT ) + (P−1[(k + 1)T ]P(kT )− I)Λ(kT )︸ ︷︷ ︸

:=∆1(kT )

]
x̄(kT ) +

[
P−1(kT )Bcl(kT ) + (P−1[(k + 1)T ]− P−1(kT ))Bcl(kT )︸ ︷︷ ︸

:=∆2(kT )

]
n(kT ).

Denote Ācl(kT ) := Λ(kT ) + ∆1(kT ) and B̄cl(kT ) := P−1(kT )Bcl(kT ) + ∆2(kT ), so that
the state equation becomes

x̄[(k + 1)T ] = Ācl(kT )x̄(kT ) + B̄cl(kT )n(kT ).
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Using the fact that all the plant parameters have uniformly bounded derivatives (Assump-
tion 3 ), we have:

Λ(kT ) = P−1(kT )Acl(kT )P(kT )

=

 1 + f̄2T +O(T 2) 0 T
g(kT )c0

c1(kT ) +O(T 2)

0 1− g(kT )c0 +O(T ) c1(kT )T +O(T 2)
O(T 2) O(T ) I + A1(kT )T +O(T 2)

 ,
∆1(kT ) = (P−1[(k + 1)T ]P(kT )− I)Λ(kT )

=

 O(T 2) O(T ) O(T 2)
O(T 2) O(T 2) O(T 3)

0 0 0

 ,
P−1(kT )Bcl(kT ) =

 O(T )
−g(kT )c0 +O(T )

O(T )

 , and

∆2(kT ) = (P−1[(k + 1)T ]− P−1(kT ))Bcl(kT )

=

 O(T )
O(T 2)

0

 .
The output equation of (6.5) is

y(kT ) = Ccl(kT )x(kT )
= Ccl(kT )P(kT )︸ ︷︷ ︸

=:C̄cl(kT )

P−1(kT )x(kT )︸ ︷︷ ︸
=:x̄(kT )

, (6.6)

with
C̄cl(kT ) = Ccl(kT )P(kT ) =

[
O(T ) 1 +O(T ) 0

]
. (6.7)

56



In addition, the initial condition is x̄(0) = P−1(0)x(0) = 0. From the above, with state

x̄(kT ) :=

 x̄1(kT )
x̄2(kT )
w̄(kT )

 and state matrices

Ācl(kT ) =

 1 + f̄2T +O(T 2) O(T ) T
g(kT )c0

c1(kT ) +O(T 2)

O(T 2) 1− g(kT )c0 +O(T ) c1(kT )T +O(T 2)
O(T 2) O(T ) I + A1(kT )T +O(T 2)

 ,
B̄cl(kT ) =

 O(T )
−g(kT )c0 +O(T )

O(T )

 , and

C̄cl(kT ) =
[
O(T ) 1 +O(T ) 0

]
.

the state-space representation of the system is

x̄[(k + 1)T ] = Ācl(kT )x̄(kT ) + B̄cl(kT )n(kT ), x̄(0) = 0,
y(kT ) = C̄cl(kT )x̄(kT ).

(6.8)

For notation simplicity, we also denote:

Ācl(kT ) =:

 A11(kT ) A12(kT ) A13(kT )
A21(kT ) A22(kT ) A23(kT )
A31(kT ) A32(kT ) A33(kT )

 ,
B̄cl(kT ) =:

 B1(kT )
B2(kT )
B3(kT )

 .

6.2 Analyzing the LTV System

Since the plant is ‘almost’ separated into a first order linear time-varying plant and the
zero dynamics, we would like to utilize the approach used in Chapter 5. In particular,

notice that the first 2 by 2 subsystem (i.e.

[
A11(kT ) A12(kT )
A21(kT ) A22(kT )

]
) is exactly the same as

Ācl(kT ) from Chapter 5.

In Chapter 5, we could immediately conclude stability; here, this requires more work.
In the following, we assume x̄(0) = 0 and n ∈ PC∞ is arbitrary.
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6.2.1 Step 1: Stability

From Claim 2 of Chapter 5, there exists an f̃2 < 0 so that for small T

‖Ācl(kT )‖ ≤ ef̃2T . (6.9)

Hence, with zero initial condition we have(
x̄1

x̄2

)
[(k + 1)T ] = Ācl(kT )

(
x̄1

x̄2

)
(kT ) +

[
B1(kT )
B2(kT )

]
n(kT ) +

[
O(T )
O(T )

]
w(kT ).

If we regard both n and w as exogenous inputs, by linearity, we can use (5.20) and (5.24)
to get a bound on the effect of n; we can use (6.9) to obtain a bound on the effect of w.
Using the above arguments, we conclude that there exists a constant γ10 > 0 such that for
small T :

‖x̄1(kT )‖ = γ10‖n‖∞ + γ10 max
0≤j≤k

‖w(jT )‖, (6.10)

‖x̄2(kT )‖ = (1 + γ10T )‖n‖∞ + γ10 max
0≤j≤k

‖w(jT )‖, ∈ Z+. (6.11)

From Assumption 5, we assume that the zero dynamics of the plant is uniformly expo-
nentially stable. Since A33(kT ) is the discrete version of A1(t), we have that for small
T,

‖ΦA33 [kT, k0T ]‖ ≤ γ0e
λ0(k−k0)T

= γ0

(
eλ0T

)k−k0

= γ0

(
1 + λ0T +O(T 2)

)k−k0

≤ γ0

(
1 +

λ0T

2

)k−k0 , k ≥ k0 ≥ 0. (6.12)
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Since A31 = O(T 2), A32(kT ) = O(T ), and B3(kT ) = O(T ), then with zero initial condi-
tions, it follows from the update equation for w̄(kT ) that

‖w̄(kT )‖ ≤

∥∥∥∥∥
k−1∑
i=0

ΦA33 [[(k − 1)T ], [(k − i)T ]]
{
A31[(k − i− 1)T ]x̄1[(k − i− 1)T ] +

A32[(k − i− 1)T ]x̄2[(k − i− 1)T ] +B3[(k − i− 1)T ]n[(k − i− 1)T ]

}∥∥∥∥∥
≤ γ0

∣∣∣∣∣
k−1∑
i=0

(
1 +

λ0T

2

)i∣∣∣∣∣(O(T 2) max
0≤j≤k

‖x̄1(jT )‖+O(T ) max
0≤j≤k

‖x̄2(jT )‖+

O(T )||n||∞
)

(6.13)

= O(T ) max
0≤j≤k

‖x̄1(jT )‖+O(1) max
0≤j≤k

‖x̄2(jT )‖+O(1)‖n‖∞.

Hence, there exists a constant γ11 ≥ γ10 such that for small T ,

‖w̄(kT )‖ = γ11T max
0≤j≤k

‖x̄1(jT )‖+ γ11 max
0≤j≤k

‖x̄2(jT )‖+ γ11‖n‖∞, k ∈ Z+. (6.14)

Since the RHS of (6.10), (6.11), and (6.14) are monotonically increasing, we can conclude
that for small T :

max
0≤j≤k

‖x̄1(jT )‖ ≤ γ11‖n‖∞ + γ11 max
0≤j≤k

‖w̄(jT )‖, (6.15)

max
0≤j≤k

‖x̄2(jT )‖ ≤ (1 + γ11T )‖n‖∞ + γ11 max
0≤j≤k

‖w̄(jT )‖, (6.16)

max
0≤j≤k

‖w̄(jT )‖ ≤ γ11‖n‖∞ + γ11T max
0≤j≤k

‖x̄1(jT )‖+

γ11 max
0≤j≤k

‖x̄2(jT )‖, k ∈ Z+. (6.17)

Substituting (6.15) into (6.17) we see that for small T , we have the following implicit
bound:

max
0≤j≤k

‖w̄(jT )‖ ≤ γ11‖n‖∞ + γ2
11T‖n‖∞ + γ2

11T max
0≤j≤k

‖w̄(jT )‖+ γ11 max
0≤j≤k

‖x̄2(jT )‖, k ≥ 0.

Hence, there exists a constant γ12 such that for small T :

max
0≤j≤k

‖w̄(jT )‖ ≤ γ12‖n‖∞ + γ12 max
0≤j≤k

‖x2(jT )‖, (6.18)

max
0≤j≤k

‖x̄1(jT )‖ ≤ γ12‖n‖∞ + γ12 max
0≤j≤k

‖x2(jT )‖. (6.19)
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Now we need to look at the update equation for x̄2. By using the fact that for small T :

|1− g(kT )c0 +O(T )| ≤ 1− 1− ε

2
,

we see that there exist a constant γ13 ≥ γ12 such that

‖x̄2(kT )‖ ≤ γ13T
2 max

0≤j≤k
‖x̄1(jT )‖+ γ13T max

0≤j≤k
‖w̄(jT )‖+ γ13‖n‖∞, k ≥ 0.

Using (6.18) and (6.19) in the above equation yields

sup
0≤j≤k

‖x̄2(jT )‖ ≤ γ13T
2 max

0≤j≤k
‖x̄1‖+ γ13T max

0≤j≤k
‖w̄(jT )‖+ γ13‖n‖∞

≤ (γ13 + γ12γ13T + γ12γ13T
2)‖n‖∞ + (γ12γ13T + γ12γ13T

2) max
0≤j≤k

‖x̄2(jT )‖,

so there exist a positive constant γ14 such that for sufficient small T:

sup
0≤j≤k

‖x̄2(jT )‖ ≤ γ14‖n‖∞, k ≥ 0,

so
sup
j≥0
‖x̄2(jT )‖ ≤ γ14‖n‖∞, k ≥ 0, (6.20)

as well. If we substitute the above into (6.18) and (6.19), we see that

sup
j≥0
‖w̄(jT )‖ ≤ (γ12γ14 + γ12)‖n‖∞, (6.21)

sup
j≥0
‖x̄1(jT )‖ ≤ (γ12γ14 + γ12)‖n‖∞. (6.22)

Hence, we have stability.

6.2.2 Step 2: Tighter bound

Now, we will utilize the approach of Chapter 5 to obtain a tighter bound on the state x̄2.
Combining (6.22) and (6.21) with the update equation for x̄2 we have

x̄2[(k + 1)T ] = [1− g(kT )c0 +O(T )]x̄2(kT ) +O(T 2)‖n‖∞ +O(T )‖n‖∞+
[−g(kT )c0 +O(T )]‖n‖∞

= [1− g(kT )c0]x̄2(kT ) + [−g(kT )c0n(kT )] +O(T )x̄2(kT ) +O(T )‖n‖∞︸ ︷︷ ︸
=:∆4(kT )

.

(6.23)
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The above equation is essentially the same as (5.21) of Chapter 5. Using exactly the same
argument, it follows that

sup
k≥0
‖x̄2(kT )‖ = (1 +O(T ))‖n‖∞. (6.24)

6.2.3 Induced Noise Gain (For relative degree one case)

Using the result from (6.22), (6.24), and (6.21) and substituting into (6.6), we have

|y(kT )| = |C̄cl(kT )x̄(kT )|
= O(T ) sup

k≥0
‖x̄1(kT )‖+ (1 +O(T )) sup

k≥0
‖x̄2(kT )‖

= (1 +O(T )) ||n||∞, k ∈ Z+, (6.25)

which implies that the output is well behaved at the sample points.

Now, we will show that the output is also well behaved in between the sample points.

Since x(kT ) = P(kT )x̄(kT ), if we use the bound found for x̄, we have

x(kT ) =

 1 − 1
g(kT )c0

+O(T ) 0

f̄2T +O(T 2) 1− f̄2T
g(kT )c0

+O(T 2) 0

0 0 I


 O(1)

1 +O(T )
O(1)

 ‖n‖∞,
=

 O(1)
1 +O(T )
O(1)

 ‖n‖∞, k ≥ 0,

so in particular,
x1(kT ) = O(1)‖n‖∞. (6.26)

Substituting the above result into the state-space output equation of the controller (4.7),
we have

u(kT ) = O(1)‖n‖∞ +
1

T
(−c0) (y(kT ) + n(kT )) , k ≥ 0.

Substituting the result of (6.25) into the above equation, it follows that

supk≥0 |u(kT )| = O(T )‖n‖∞ +O
(

1
T

)
[(1 +O(T ))‖n‖∞ + ‖n‖∞]

= O
(

1
T

)
‖n‖∞.

(6.27)
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As in Chapter 5, the bound on the control input is inversely proportional to the sampling
period. Sampling faster could cause a large control signal, which is the case in practice.
Now, let’s look at the continuous time relative degree one plant equation (6.2). Let ΦApc

denote the transition matrix, we have that for any t ∈ [kT, (k + 1)T ),(
w(t)
v(t)

)
= ΦApc(t, kT )

(
w(kT )
v(kT )

)
+

∫ t

kT

ΦApc(t, τ)Bpc(τ)u(τ)dτ. (6.28)

Since we are using the sample-data controller, we have for t ∈ [kT, (k+1)T ), u(t) = u(kT ).
Since every element of Apc and Bpc lies in a compact set Γ̄, there exist constants γ13 and
γ14 such that

‖Apc‖∞ ≤ γ13 and ‖Bpc‖∞ ≤ γ14.

It is easy to see that

ΦApc(t, τ) = I +O(T ), kT ≤ τ ≤ t ≤ (k + 1)T, k ∈ Z+.

Applying Lemma 2 from Appendix B, we have

Bpc(τ) = Bpc(kT ) +O(T ).

Using the above results in (6.28), we end up with(
w(t)
v(t)

)
= (I +O(T ))

(
w(kT )
v(kT )

)
+ (t− kT )(Bpc(kT ) +O(T ))u(kT ). (6.29)

Since y(t) = v(t) and Bpc(kT ) =


0
...
0
g(t)

, we have

y(t) = (I +O(T ))y(kT ) + (t− kT )(g(kT ) +O(T ))u(kT )

= [y(kT ) + (t− kT )g(kT )u(kT )] + [O(T )y(kT ) + (t− kT )O(T )u(kT )] .

The above equation is exactly the same as (5.27) of Chapter 5. Hence, using exactly the
same argument, we conclude that the output is well behaved between the sample points
and

‖y‖∞ = (1 +O(T ))‖n‖∞. (6.30)

Since n ∈ PC∞ is arbitrary, it follows that

‖Tny‖ = 1 +O(T ).

Finally, we present our main result.
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Proposition 3. For a relative degree one time-varying plant of the form (6.2) with known
sign of the high frequency gain, using controller (3.21)-(3.25), the maximum induced noise
gain is bounded. In particular, if the selection of c0 satisfies ḡc0 ∈ (0, 1), then for every
δ > 0, there exists a T̄ > 0 such that for every T ∈ (0, T̄ ) and θ̄(t) ∈ P̄ac(n,m =
1, Γ̄, µ̄1, g, γ0, λ0) for all t ≥ 0, we have

‖Tny(θ̄, T )‖ ≤ 1 + δ. (6.31)

In this chapter, we leveraged some Chapter 5’s results to assist our new proof. As
expected, the induced noise gain is the same as in the previous chapters.

6.3 Simulation Result

To illustrate the noise behavior for relative degree one case, a simulation is presented here.
In this simulation, we use the same reference model, modeled inputs, and anti-aliasing
filter as presented in (4.27), (4.28), and (4.29). Here, we choose the plant to be second
order but with relative degree one. The plant is chosen to be:

ẋ(t) =

[
0 1

a0(t) a1(t)

]
x(t) +

[
0
g(t)

]
u(t),

y(t) =
[

0 1
]
x(t),

with

a0(t) = 2 cos(t),

a1(t) = 4 cos(t/2), and

g(t) = 1.5 + 1.2 sin(
t

2
).

We choose c0 = 1
3

so that g(t)c0 ∈ [0.1, 0.9] for all t ≥ 0. We inject noise at the measurement
of the plant output. To make the noise behavior more visualizable, we choose large random
noise signals such that ||n||∞ = 1. The initial condition of the output is set to be y(0) = 0.
The simulation is shown in Figure (6.1).
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Figure 6.1: Relative degree one plant simulation with different sampling period

The first three figures plot the modeled output ‘ym’ and the plant outputs ‘y’ with
sampling period h being 0.01s, 0.001s and 0.0001s, respectively. The last plot shows the
time-varying plant parameters. As we can see, as the sampling period gets smaller, the
output appears to be more “noisy”. More importantly, we see that all the plant outputs
are within the ±1 bound. This confirms our proven result.
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Chapter 7

Conclusion

In this thesis, we analyzed the noise rejection of the MRAC in Miller [1]. For the sampled-
data system in [1], we investigated the cases where the plant is first order LTI, first order
LTV, and LTV with relative degree one. For each of the above cases, we found an expression
for the induced noise gain as a function of a key controller parameter c0 and provided a
range for which the noise performance is good. We provided detailed derivations and proofs
of the expression of the induced noise gain.

It was found that to improve the noise rejection of our sampled-data control system, we
first have to assume that the sign of the high frequency gain is known. This assumption
is one of the classical assumptions on the plant model for the MRACP. More importantly,
we also found that the controller parameter c0 has direct impact on the induced noise gain.
To improve noise rejection, we add more restrictions to the range of c0. Sacrificing about
half of the allowed range of c0 (that is specified in [1]), we ensured that the induced noise
gain is always 1 +O(T ).

Adding assumptions on the sign of the high frequency gain and embracing a mild
restriction on the selection of the control parameter c0, the sampled-data controller in [1]
now has the following properties:

• the controller is linear; control signal is modest in size,

• it can handle rapidly time-varying plant parameters,

• tracking is immediate rather than asymptotic,

• extremely good noise rejection if the relative degree of the plant is one.
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These desirable properties of the noise rejection made the controller more practical (since
measurement noise naturally exists in real-life applications).

In this thesis, the result ensured good noise rejection for LTV relative degree one plants.
However, the result would be much stronger if we can extend to plants with higher relative
degree. In the view of the author, this might require modifications to the structure of the
controller. We will leave this as the future work.
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Appendix A

List of Notations

Since this thesis contains a significant amount of notations, we will compile the important
terms with descriptions provided. Although it may sometimes be repetitive, to improve
accessibility, we will present the list of the notations according to the corresponding chap-
ters.

Table A.1: Notation for Chapter 3

Symbol (Eq./page#) Description
n (3.1) Order of the plant.
m (3.1) Relative degree of the plant.
h p.8 Sampling period.
T p.8 Control period. Depending on the relative degree

of the plant, one control period could consist mul-
tiple sampling periods (i.e. T = mh).

Pm (3.3) The stable reference plant.
(Am, Bm, Cm) (3.3) State matrices of Pm.

Fα (3.4)
Anti-aliasing filter, where ūm = σūm + σum,
ūm(t0) = ūm0 , and σ > 0.

ē (3.6) Tracking error, where ē(t) := ȳm(t)− y(t).

w, v p.9
States of the general plant, where w is associated
with the zero dynamics and v is associated with
the output y and its derivatives.

θ̄ (3.12)
A compact set where θ̄ ∈ PS∞. The state-space
model of the general plant is parametrized by θ̄.
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P̄ (3.13) The set of plant uncertainties.
uo (3.18) The ideal control signal.
ûo (3.21)-(3.25) Estimated ideal control signal.

γm, λm p.9
Parameters of the reference plant. γm > 0 and
λm < 0 are chosen so that ‖eAmt‖ ≤ γme

λmt.

f̄2 (3.18)
Control parameter. f̄2 need to be chosen so that
Ā2 = Λ2 + b2f̄2 is stable and has eigenvalue with real
parts less than λm.

g,ḡ p.20
Positive constant such that the high frequency gain
g(t) ∈ [g, ḡ] for all t ≥ 0.

n(kT ) p.22
Measurement noise on the plant output at time
t = kT .

yn(kT ) p.22
Measured plant output at t = kT . yn(kT ) :=
y(kT ) + n(kT ), where y(kT ) is the real plant out-
put

Table A.2: Notation for Chapter 4

Symbol Eq./page# Description

(Ac, Bc, Cc, Dc) (4.7)
The state-space matrices corresponding to the
controller.

(Ap, Bp, Cp, Dp) (4.8)
The state-space matrices corresponding to the
first order LTI plant.

(Acl, Bcl, Ccl, Dcl) (4.9)
The state-space matrices of the closed-loop sys-
tem when connecting the controller with a first
order LTI plant.

L, P (4.10,4.14)
Used to perform a similarity transformation
which diagonalize Acl.

T 4.15

Similarity transformation matrix which diago-
nalize Acl, where

T :=

[
1 0
−L 1

] [
1 −P
0 1

]
.
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(Ācl, B̄cl, C̄cl) p.30,31
The state-space matrices of the closed-loop sys-
tem after performing similarity transformation.
Ācl is diagonal.

h(·) (4.15) The impulse response.
λ1,λ2 (4.16) The two eigenvalues of Ācl.

Table A.3: Notation for Chapter 5

Symbol Eq./page# Description

ε p.38
A fixed positive constant. We set ε = 1−gc0

so that |1− gc0| ≤ ε < 1.(
Ap(kT ) Bp(kT )
Cp(kT ) Dp(kT )

)
(5.3)

The state-space matrices of the the first order
LTV plant.(

Acl(kT ) Bcl(kT )
Ccl(kT ) Dcl(kT )

)
(5.5)

The state-space matrices of the closed-loop
system when connecting the controller with
a first order LTV plant.

L(kT ), P (kT ) (5.5)
Used to perform a similarity transformation
which diagonalize Acl(kT ). Note that both
L(kT ) and P (kT ) are time-varying.

T (kT ) (5.5)

Similarity transformation matrix which diag-
onalize Acl, where

T (kT ) =

[
1 0

−L(kT ) 1

] [
1 −P (kT )
0 1

]
.

Λ(kT )
∆1(kT )
∆2(kT )

(5.7)

Matrices used to define the state matrices of
the x̄ system, where

Λ(kT ) = T −1(kT )Acl(kT )T (kT ),

∆1(kT ) = (T −1[(k + 1)T ]T (kT )− I)Λ(kT ),

∆2(kT ) = (T −1[(k + 1)T ]− T −1(kT ))Bcl(kT ).
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Ācl(kT )
B̄cl(kT )
C̄cl(kT )

(5.10)

The state-space matrices of the closed-loop
system after performing similarity transfor-
mation, where

Ācl(kT ) = Λ(kT ) + ∆1(kT ),

B̄cl(kT ) = T −1(kT )Bcl(kT ) + ∆2(kT ),

C̄cl(kT ) = Ccl(kT )T (kT ).

f̃2 p.43
A negative constant. It is used when proving
stability.

Table A.4: Notation for Chapter 6

Symbol Eq./page# Description

(Apc(t), Bpc(t), Cpc(t)) (6.2)
The c.t. state-space matrices of the rela-
tive degree one plant.

(Ap(kT ), Bp(kT ), Cp(kT )) (6.4)
The d.t. state-space matrices of the rela-
tive degree one plant.

(Acl(kT ), Bcl(kT ), Cpc(kT )) (6.5)

The state-space matrices of the closed-
loop system when connecting the con-
troller with the relative degree one LTV
plant.

P(kT ) p.55

Similarity transformation matrix.

P(kT ) =

[
T (kT ) 0

0 I

]
.

Λ(kT )
∆1(kT )
∆2(kT )

p.56

Matrices used to define the state matrices
of the x̄ system, where

Λ(kT ) = P−1(kT )Acl(kT )P(kT ),

∆1(kT ) = (P−1[(k + 1)T ]P(kT )− I)Λ(kT ),

∆2(kT ) = (P−1[(k + 1)T ]− P−1(kT ))Bcl(kT ).
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Ācl(kT )
B̄cl(kT )
C̄cl(kT )

(6.8)

The state-space matrices of the closed-
loop system after performing similarity
transformation, where

Ācl(kT ) = Λ(kT ) + ∆1(kT ),

B̄cl(kT ) = P−1(kT )Bcl(kT ) + ∆2(kT ),

C̄cl(kT ) = Ccl(kT )P(kT ).
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Appendix B

Proofs

Before starting the proofs, two technical results are presented which are used in other
proofs. In these results, A(t) is a time-varying square matrix and B(t) is a time-varying
matrix with dimension n ×m. We let ΦA denote the transition matrix corresponding to
A.

Lemma 1. [3]: Consider the differential equation

η̇(t) = A(t)η(t)

with A ∈ PC∞ and c := ||A||∞. Then, for t ≥ t0,

‖ΦA(t, t0)‖ ≤ ec(t−t0),

‖ΦA(t, t0)− I‖ ≤ (ec(t−t0) − 1).

Lemma 2. : Consider a time-varying matrix B(t) of dimension n×m, where n ≥ m ≥ 1.
If B ∈ PC∞ and γ := ‖Ḃ‖∞, then for all k ≥ 0, and t ∈ [kT, (k + 1)T ),

B(t) = B(kT ) +O(T ).

Proof. At any time t ∈ [kT, (k + 1)T ),

B(t) = B(kT ) +

∫ t

kT

Ḃ(τ)dτ.
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Then

||B(t)−B(kT )|| =

∥∥∥∥∫ t

kT

Ḃ(τ)dτ

∥∥∥∥
≤

∫ t

kT

∥∥∥Ḃ(τ)
∥∥∥ dτ

≤ γ(t− kT )

≤ γT.

This means that
B(t)−B(kT ) = O(T ),

or
B(t) = B(kT ) +O(T ).

Lemma 3. For A ∈ Rn×n and B ∈ Rn×1, if every element of A(t) and B(t) is absolutely
continuous and satisfies:

• ‖A‖∞ ≤ c1, c1 > 0,

• ‖B‖∞ ≤ ḡ,

• ‖Ȧ‖∞ ≤ µ̄1,

• ‖Ḃ‖∞ ≤ µ̄1,

then the linear time-varying system:

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = 0, (B.1)

with
u(t) = u(kT ), kT ≤ t < (k + 1)T, k ∈ Z+,

can be discretized as

x[(k + 1)T ] =
[
1 + A(kT )T +O(T 2)

]
x(kT ) +

[
TB(kT ) +O(T 2)

]
u(kT ), k ≥ 0.
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Proof. First, let us consider a slightly different system. For k ∈ Z+ and t ∈ [kT, (k+ 1)T ],
consider:

˙̂x(t) = A(kT )x̂(t) +B(kT )u(t), x̂(kT ) = x(kT ),
u(t) = u(kT ).

(B.2)

Denote the associated transition matrix by

Φ(t, t0) := eA(kT )(t−t0), kT ≤ t0 ≤ t ≤ (k + 1)T,

so the solution of (B.2) is

x̂(t) = Φ(t, kT )x(kT ) +

(∫ t

kT

Φ(τ, kT )dτ

)
B(kT )u(kT ).

Since

• ‖A‖∞ ≤ c1, c1 > 0,

• ‖B‖∞ ≤ ḡ,

applying Lemma 1 (from Appendix B) yields

‖x̂(t)‖ ≤ ec1(t−kT )‖x(kT )‖+ (t− kT )ec1(t−kT )ḡ|u(kT )|. (B.3)

At t = (k + 1)T , (B.2) has the solution

x̂[(k + 1)T ] = eA(kT )Tx(kT ) +

(∫ T

0

eA(kT )τdτ

)
B(kT )u(kT ). (B.4)

Using Taylor Series expansion with order notation, we have that

eA(kT )T = I + A(kT )T +O(T 2), (B.5)

and
eA(kT )τ = I + A(kT )τ +O(τ 2).

It follows that ∫ T
0
eA(kT )τdτ =

∫ T
0
Idτ + A(kT )

∫ T
0
τdτ +

∫ T
0
O(τ 2)dτ.

= IT + A(kT )O(T 2) +O(T 3),∫ T

0

eA(kT )τdτ = IT +O(T 2). (B.6)
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Use the results of (B.5) and (B.6) in (B.4) yields

x̂[(k + 1)T ] =
(
I + A(kT )T +O(T 2)

)
x(kT ) +

(
TB(kT ) +O(T 2)

)
u(kT ). (B.7)

Notice that the above equation carries exactly the same form as the one we want.
However, in the x̂ system, we are assuming that the state matrices are time invariant within
every sampling period. Since every element of A(t) and B(t) is smooth and uniformly
bounded, we expect that their variation inside each sampling period has maximum O(T 2)
effect to the system.

Now, for t ∈ [kT, (k + 1)T ], let

x̃(t) := x(t)− x̂(t).

It follows that

˙̃x(t) = ẋ(t)− ˙̂x(t)
= A(t)x̃(t) + (A(t)− A(kT ))x̂(t) + (B(t)−B(kT ))u(kT ).

Since x(kT ) = x̂(kT ), we have x̃(kT ) = 0. Using the fact that

• ‖Ȧ‖∞ ≤ µ1, and

• ‖Ḃ‖∞ ≤ µ1,

then with Lemma 2 (from Appendix B), it follows that:

• ‖A(t)− A(kT )‖ ≤ µ1(t− kT ),

• ‖B(t)−B(kT )‖ ≤ µ1(t− kT ).

Hence, for t ∈ [kT, (k+1)T ], if we denote the state transition matrix of A(t) to be ΦA(t, kT ),
then

‖x̃(t)‖ ≤
∫ t

kT

‖ΦA(t, kT )‖
[
µ1(τ − kT )‖x̂(τ)‖+ µ1(τ − kT )|u(kT )|

]
dτ. (B.8)

Applying Lemma 1, we have for τ ∈ [kT, (k + 1)T ],

‖ΦA(τ, kT )‖ ≤ ec1(τ−kT ) ≤ ec1T .
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Using (B.3) and the above result in (B.8) yields

‖x̃(t)‖ ≤
∫ t
kT
ec1T

{
µ1(τ − kT )

[
ec1T‖x(kT )‖+ ḡ(τ − kT )ec1T |u(kT )|

]
+

µ1(τ − kT )|u(kT )|
}
dτ

= µ1e
2c1T (t−kT )2

2
‖x(kT )‖+ ḡµ1e

2c1T (t−kT )3

3
|u(kT )|+

µ1
(t−kT )2

2
ec1T |u(kT )|.

(B.9)

Hence, at t = (k + 1)T , it follows that

x̃[(k + 1)T ] = O(T 2)x(kT ) +O(T 2)u(kT ). (B.10)

Using the above and (B.7), we can have

x[(k + 1)T ] = x̂[(k + 1)T ] + x̃[(k + 1)T ]
= (I + A(kT )T +O(T 2))x(kT ) + (TB(kT ) +O(T 2))u(kT ).

(B.11)

as desired.
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