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Abstract 

 

 

Purpose 

  
To examine soft contact lens fitting characteristics using anterior segment imaging techniques and 

comfort. The specific aims of each chapter are as follows: 

 

Chapter 2: To calibrate the new ZEISS Visante
TM 

anterior segment optical coherence tomographer (OCT) 

using references with known physical thickness and refractive index equal to the human cornea and  to 

compare the Visante measures to those from a previous generation OCT (Zeiss-Humphrey OCT II). 

 

Chapter 3: The first purpose of this study was to measure the repeatability of the Visante
 TM

 OCT in a 

normal sample.  The second was to compare corneal thickness measured with the Visante
 TM

 OCT to the 

Zeiss-Humphrey OCT II (model II, Carl Zeiss Meditec, Jena Germany) adapted for anterior segment 

imaging and to the Orbscan II
 TM

 (Bausch and Lomb, Rochester New York). 

Chapter 4: Conjunctival displacement observed with the edges of the contact lens, when imaged may be 

real or may be an artefact of all OCT imagers. A continuous surface appears displaced when the refractive 

index of the leading medium changes at the edge of a contact lens. To examine this effect, edges of the 

contact lenses were imaged on a continuous surface using the UHR-OCT. Contact lens edges on the 

human conjunctival tissue were also imaged to see if the lens indentation on the conjunctival tissue is real 

or an artefact at the edge of the lens. 

Chapter 5:  The main purpose of this study was to determine if we can predict end of the day discomfort 

and dryness using clinical predictive variables. The second purpose of the study was to determine if there 
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was any relationship between lens fitting characteristics and clinical complications and especially to the 

superior cornea and conjunctiva with a dispensing clinical trial. 

 

Methods  

 

 
Chapter 2: Twenty two semi-rigid lenses of specified thicknesses were manufactured using a material 

with refractive index of 1.376. Central thickness of these lenses was measured using Visante
TM

 OCT and 

Zeiss-Humphrey OCT II (Zeiss, Germany). Two data sets consisting of nominal measures (with a 

standard pachymeter of the lenses and one obtained using a digital micrometer) were used as references. 

Regression equations between the physical and optical (OCT) measures were derived to calibrate the 

devices.  

 
Chapter 3: Fifteen healthy participants were recruited. At the Day 1 visit the epithelial and total corneal 

thickness, across the central 10mm of the horizontal meridian were measured using the OCT II and the 

Visante
 TM

 OCT. Only total corneal thickness across the central 10mm of the horizontal meridian was 

measured using the Orbscan II.  The order of these measurements was randomized. These measurements 

were repeated on Day 2.  Each individual measurement was repeated three times and averaged to give a 

single result. 

Chapter 4: (2-D) Images of the edges of marketed silicone hydrogel and hydrogel lenses with refractive 

indices (n) ranging from 1.41-1.51 were taken placing them concave side down on a continuous surface. 

Five images for each lens were taken using a UHR-OCT system, operating at 1060 nm with ~3.2um 

(axial) and 10μm (lateral) resolution at the rate of 75,000 A-scans/s. The displacement of the glass slide 

beneath the lens edge was measured using Image J. 
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Chapter 5: Thirty participants (neophytes) were included in the study and the four lenses (Acuvue 

Advance 8.3, Acuvue Advance 8.7, Pure Vision 8.3, and Pure Vision 8.6) were randomly assigned for 

each eye. The lenses were worn for a period of two weeks on a daily wear basis for 8 to 10hrs per day. 

Lens performance was monitored over the 2week period.  Assessment of subjective comfort was made 

using visual analogue scales. Total corneal and epithelium thickness was measured using the Visante 

OCT, the lens edge profiles of the contact lenses were observed using the ultra-high resolution OCT and 

the conjunctival epithelial thinning was measured using the RTVue OCT. Conjunctival blood velocity 

was measured at the baseline and 2 week visit using a high magnification camera.  

Results  

 
 

Chapter 2: Before calibration, repeated measures ANOVA showed that there were significant differences 

between the mean lens thicknesses from each of the measurement methods (p<0.05), where Visante 

measurements were significantly different from the other three (OCT II, MG and OP) methods (p<0.05). 

Visante thickness was significantly higher than the microgauge measures (453±37.6 µm compared to 

445.1±38.2 µm) and the OCT II was significantly lower (424.5±36.1 µm  both, p<0.05). After calibration 

using the regression equations between the physical and optical measurements, there were no differences 

between OCT II and Visante OCT (p<0.05). 

 

Chapter 3: Mean central corneal and epithelial thickness using the Visante™ OCT after calibration at the 

apex of the cornea was 536± 27 µm (range, 563-509 µm) and 55± 2.3 µm (range, 57.3-52.7 µm), 

respectively. The mean corneal and epithelial thickness using OCT II at the apex was 520±25µm and 

56±4.9 µm, respectively. The mean of total corneal thickness measured with the Orbscan II was 

609±29µm. Visante
 
OCT was the most repeatable for test-retest at the apex, nasal and temporal quadrants 

of the cornea compared to OCT II and Orbscan II. COR‟s of Visante OCT ranged from ±7.71µm to 
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±8.98µm for total corneal thickness and ± 8.72 µm to ± 9.92 µm for epithelial thickness. CCC‟s  with 

Visante OCT were high for total corneal thickness for test-retest differences ranging from 0.97 to 0.99, 

CCC‟s for epithelial thickness showed moderate concordance for both the instruments.  

Chapter 4: Results showed that artefactual displacement of the contact lens edge was observed when the 

lenses were imaged on the glass reference sphere, custom made rigid contact lenses (1.376) and on the 

conjunctival tissue. The displacement measured on the conjunctival tissue ranged from 7.0±0.86 µm for 

the Air Optix Night and Day to 17.4±0.22 µm for the Acuvue Advance contact lenses. The range of 

displacement with the soft lens edges imaged on the rigid contact lens was from 5.51±0.03 µm to 

9.72±0.12 µm. 

Chapter 5:  The lenses with the steepest sag (Acuvue Advance 8.3, Pure Vision 8.3) resulted not only with 

the tightest fit, but with compromise to the superior conjunctiva. This was especially seen with the 

Acuvue Advance lenses. The steeper lenses caused more total corneal swelling, superior epithelial 

thinning, mechanical compression of conjunctiva, conjunctival staining, bulbar hyperemia, conjunctival 

indentation and reduced blood flow at the lens edge. Not many associations were observed between 

baseline clinical and 2 weeks sensory variables. However, significant associations were observed when 

comparing the baseline clinical variables to end of the day sensory variables. Baseline clinical variables 

compared to 2 week clinical variables also showed significant correlations. 

Conclusions 
 

Chapter 2: Using reference lenses with refractive index of the cornea (1.376) allows rapid and simple 

calibration and cross calibration of instruments for measuring the corneal thickness. The Visante and 

OCT II do not produce measurements that are equal to physical references with refractive index equal to 

the human cornea. 
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Chapter 3: There is good repeatability of corneal and epithelial thickness using each OCT for test-retest 

differences compared to the between instruments repeatability. Measurements of epithelial thickness are 

less repeatable compared to the total corneal thickness for the instruments used in the study.  

Chapter 4: When contact lenses are imaged in-situ using UHR-OCT the conjunctival tissue appeared 

displaced. This experiment indicates that this displacement is an artefact of all OCT imagers since a 

continuous surface (glass slide) was optically displaced indicating that the displacement that is observed 

is a function of the refractive index change and also the thickness of the contact lens edges. 

Chapter 5: Discomfort is a complex issue to resolve since it appears to be related to ocular factors such as 

the corneal and conjunctival topography and sagittal depth; to lens factors that is 1) how the sag depth of 

the lenses relate to the corneal/conjunctival shape and depth and therefore how well it moves on the eye. 

2) Also with the lens material; whether they are high or low modulus, low or high water content, 

dehydration properties, wetting agents used and its resistance to deposits, lens edge profile and thickness 

and its interaction with the upper eyelid.      
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Chapter 1 

 

This thesis discusses the soft contact lens fitting characteristics and the effect of the lens performance on 

the anterior segment of the eye. The experiments in this thesis cover a wide range of topics relating to 

optical coherence tomography (OCT) calibration and repeatability and soft lens fitting characteristics 

including their physiological effects on the bulbar conjunctiva. Contact lens edge characteristics were 

examined using a custom made ultra-high resolution OCT. Variables such as meridonial corneal and 

epithelial thickness, curvature changes and blood velocity measurements were also studied in silicone 

hydrogel contact lens wearers. 

1.1 Introduction and literature review 

 

Hydrogel soft contact lens wear has been associated with a number of changes to the ocular surface such 

as mechanical, inflammatory and hypoxic responses since their introduction in 1964.
1
 Mechanical 

complications associated with hydrogel lenses include superior epithelial arcuate lesions (SEAL‟s), 

localized papillary conjunctivitis and conjunctival epithelial staining.
2-4

 These complications are related to 

both lens and patient characteristics and can be minimized by altering the lens material,  designs and 

manufacturing procedures.
5
 Frequent replacement schedules, improvement in lens material and changes 

in contact lens solutions have been reported to minimize the inflammatory problems associated with 

contact lens wear.
5;6

   

Sufficient oxygen should diffuse through the lens material for maintenance of normal corneal function, 

and according to Holden and Mertz,
7
 fitting a hydrogel contact lens with high water content to maximise 

Dk/t is not effective in increasing the Dk/t to an appropriate level. In order to improve the oxygen 

transmissibility of contact lenses over that of conventional hydrogel contact lenses new silicone lens 

materials were developed in 1970. In the early 90‟s silicone hydrogel materials were developed 
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incorporating silicone molecules into the hydrogel skeleton.
8
 Silicone hydrogel lenses have more complex 

monomer compositions compared to pHEMA-based materials. The most common silicone is 

polydimethylsiloxane (PDMS) (Figure1-1). It has been reported that the hydrophobic characteristic of 

PDMS induces increased lipid affinity, poor wettability and corneal adhesion.
9
 To overcome this, PDMS 

was modified by combining the high oxygen permeability property of PDMS with the hydrophilic nature 

and wettability of polyHEMA.
9
 The development of the silicon-containing trimethylsiloxy silane (TRIS) 

monomer lead to the development of the current commercial contact lenses. The two lenses that were 

used in the clinical experiment reported in this dissertation (chapter 5) are Purevision (Bausch and Lomb) 

and Acuvue Advance (Johnson and Johnson).  

 

Figure 1-1 The structure of PDMS 

 (Image courtesy: Silicone Hydrogels the rebirth of continuous wear contact lenses, D.F Sweeney, 

copyright permission- appendix B) 

 

The first commercially available silicone hydrogels adopted two different approaches. The first approach 

by Bausch and Lomb incorporated silicone monomers with enhanced compatibility in hydrophilic 

hydrogel-forming monomers.
9
 The silicone monomers increased the stiffness or modulus of the lens 

material compared to that of HEMA lens. 
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Figure 1-2 Modification site of TRIS by the introduction of hydrophilic groups  

(Image courtesy: Silicone Hydrogels the rebirth of continuous wear contact lenses, D.F Sweeney, 

copyright permission- appendix B) 

 

The second approach by Johnson and Johnson (J&J), was the development of siloxy macromers 

containing hydrophilic polyethylene oxide segments and oxygen permeable polysiloxane units, which are 

very hydrophilic materials and are widely used as surfactants.
9
 The reduction of silicone monomers by the 

replacement with theses surfactants reduces the modulus of these lens materials compared to the lens 

approach of B&L (and Ciba Vision). 

 

Figure 1-3 Structure of siloxy-based polyfluoroether macromer.  

(Image courtesy: Silicone Hydrogels the rebirth of continuous wear contact lenses, D.F Sweeney, 

copyright permission- appendix B) 
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Silicone hydrogel contact lenses were introduced commercially in 1998 and have become the lens of first 

choice for practitioners, and their application for daily wear is increasing.
10;11

 There are several silicone 

hydrogel materials currently available in the market, including balafilcon A (PureVison, Bausch 7 Lomb, 

Inc), lotrafilcon A and B ( Focus Night and Day and O2 Optix, respectively, CIBA Vision), galyfilcon A 

(Acuvue Advance, Vistakon), senofilcon A (Acuvue Oasys, Vistakon) and comflicon A (Biofinity, 

Cooper Vision). The introduction of the silicone hydrogel lenses has reduced most of the hypoxia related 

complications such as corneal swelling, and limbal and conjunctival injection in both daily and extended 

wear modalities.
12-14

 Figure 1-4 demonstrates how the silicone hydrogel lenses have superior oxygen 

transmission compared to conventional hydrogel lenses and how by increasing the amount of water in the 

lenses reduces the oxygen permeability for silicone hydrogel lenses since the amount of oxygen bonding 

silicone is reduced. The J&J lenses would therefore have less oxygen permeability compared to the B&L 

lenses due to aforementioned material differences.  

 

Figure 1-4 Oxygen permeability of silicone hydrogel and hydrogels  

(Image courtesy: Tighe B) 

 

Infectious and inflammatory events such as microbial keratitis, contact lens acute red eye, and infiltrative 

keratitis, occur at rates similar to conventional hydrogel lenses.
15-17

 Mechanical complications with the 
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silicone hydrogel lenses such as superior epithelial arcuate lesions, localized papillary conjunctivitis and 

conjunctival epithelial staining and flaps occur at rates higher than conventional hydrogel lenses.
2;18

  

1.1.1 Dehydration and lens material factors affecting comfort  

 

Studies have suggested that the major cause of discontinuation with the contact lenses is  poor comfort 

and dryness.
19-22

 One report was that after 5 to 6 years of contact lens wear twelve percent of contact lens 

patients discontinued contact lens wear permanently, primarily because of discomfort (49%) and dryness 

(9%) symptoms.
23

 Schlanger et al. reported that 72% of patients discontinued contact lens wear due to 

poor comfort, dryness being the most commonly reported symptom.
19;24

 A further 20% failed because of 

inadequate visual acuity, with the remaining 8% failing because of inconvenience or for economic 

reasons. 

The number of contact lens discontinuations in United States ranges between 10 and 16 million people.
25

 

A study by Morgan et al. reported that there are approximately 2.1 million contact lens dropouts in the 

UK which represents 60% of contact lens wearers.
26

 One of the studies by Weed et al. has shown that the 

temporary discontinuation rates range from 30% to 50% and at least half of these patients may drop out 

for 2 years or longer.
27

 The primary reasons for discontinuation were discomfort (27%), dryness (16%) 

and red eyes (11%). Although many treatment options exist, such as change in lens material, change in 

care solutions and use of rewetting drops, not many practitioners are successful in refitting their 

patients.
27

Also there is little literature documenting the proportion of lapsed wearers who can successfully 

be refitted with contact lenses. 

Contact lens induced dryness is a major cause of contact lens intolerance. Symptoms of discomfort and 

dryness with contact lenses have been related to lens fit and movement,
28;29

 edge profiles,
18;30

 

dehydration,
31

 protein and lipid deposition,
32

 modulus,
30

 wettability and lubricity,
33

 and solution 
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toxicity.
34;35

 Several studies indicate that contact lenses disrupt the tear film by causing lipid and mucin 

abnormalities thereby changing the three layer structure of the tear film.
36-38

 An increase in tear 

evaporation may cause evaporative dry eye, but the sensation of dryness is  complex and appears to be 

related to a number of factors.
39

 Several studies have shown the dehydration characteristics of hydrogel 

contact lenses during wear.
40;41

 It has been reported that low water content, thick lenses dehydrate less 

than high water content thin lenses but the amount of dehydration seems unlikely to depend on the initial 

water content of the lenses.
42

 It is also unclear if ionic lenses appear to dehydrate more than non-ionic 

lenses since in-vitro results perhaps show more dehydration with ionic lenses, however this observation 

was not supported by in-vivo results.
42

  

Dehydration of contact lenses may be influenced by factors such as tear quality, blink rate, palpebral 

aperture size
43

 and many environmental conditions on the eye.
44

 Studies have also indicated that the   

dehydration of contact lenses can alter the lens parameters such as base curve,
45

 diameter,
29

 refractive 

index, thickness and oxygen transmissibility.
46

 With the introduction of frequent replacement lenses many 

problems relating to the dehydration and dryness with contact lenses have been addressed. Few studies 

indicate that silicone hydrogel lens materials classified as low water content lenses (24%-36%) decrease 

dryness symptoms
39

 but anecdotal reports also suggest that this might not be true. It has been shown that 

the use of frequent replacement lenses can convert previous unsuccessful contact lens wearers to 

successful lens wearers.
47;48

   

1.2 Lens materials and wettability  

 

In order to increase the oxygen permeability (Dk) of soft lenses, silicone is combined with the 

conventional hydrogel monomers. The silicone component of the material provides extremely high 

oxygen permeability and the hydrogel component facilitates flexibility, wettability and fluid transport 

which aids in lens movement. Silicone and fluoroalkyl groups are lipophilic, therefore, at the lens surface 
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they attract lipids and lipophilic proteins from the tear film which contribute to destabilization of the tear 

film, increased deposits, poor wettability, poor visual performance and perhaps increased inflammatory 

responses.
8;49

 Therefore some silicone hydrogel lenses have to be surface treated to make them more 

biocompatible. The purpose of surface treatment is to increase the surface wettability of the contact lenses 

by masking the hydrophobic silicone from the tear film and in turn reducing the deposition from the tear 

film.
50

  

Focus Night and Day™ lenses are permanently modified in a gas plasma reactive chamber to create a 

permanent, ultrathin, high refractive index and continuous hydrophilic surface.
51

 PureVision™ lenses are 

surface treated in a gas plasma reactive chamber which transforms the silicone components on the surface 

of the lenses into hydrophilic silicate components.
52

 However the Focus Night and Day™ lens is 

chemically uniform with no visible island- like appearance. Both these lenses are surface treated and not 

surface coated, which perhaps prevents the lenses from getting damaged while cleaning and handling on a 

day to day basis. Acuvue Advance™ material is the first non surface treated silicone hydrogel lens 

material which uses an internal wetting agent (Hydraclear™) based upon PVP and is designed to provide 

a hydrophilic layer at the surface of the material “shielding” the silicone at the material interface, thereby 

reducing the degree of hydrophobicity typically seen at the surface of siloxane-hydrogels. Studies have 

shown that the surface treatments used in PureVision™ and Focus Night and Day™ have been partially 

effective at masking the silicone and had more silicone and hydrophobic surface exposed when compared 

to the conventional hydrogel lenses.
53

 There is only one report about the silicone exposure on the surface 

with the Acuvue Advance™ lenses and their wetting properties.
54

  

Ideally, a contact lens must support a continuous and rupture-resistant anterior tear film and allow smooth 

recovery during eye closure. The term wettability refers to the ability of the tear film to cover and 

maintain itself over the contact lens surface. Once the contact lens is placed on the eye the pre-corneal 
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tear film is disrupted into pre-lens and post-lens tear film.
55

 Lens wettability relates to the pre-lens tear 

film as the posterior side of the lens is completely immersed in the tear film.   

Wettability is measured in terms of contact angle. It is basically the ability of the tear fluid to spread over 

the contact lens surface. A wettable contact lens is important for reducing lens deposits and for improving 

the optical quality of the contact lens. There have been numerous studies in the literature looking at the 

in-vivo and in-vitro wettability measures of contact lenses.
56-58

 Wettability is assessed clinically and one 

method of measuring wettability is to measure the pre-lens non-invasive break-up time (NITBUT) using a 

Tearscope™ or a Placido ring from a corneal topographer.
59;60

 Soft contact lens wear disrupts the normal 

tear film physiology and has an effect on the NITBUT. 
60-63

 that decreases dramatically in tolerant contact 

lens wearers and in symptomatic contact lens wearers.
60;64

  

Gullion et al.
65

 have shown that the in-vivo wettability is improved with silicone hydrogel lens wear but in 

a study by Maldonado-Codina
66

 et al. it was shown that silicone hydrogel lenses exhibited poor 

wettability and shorter NITBUT compared to conventional hydrogels. Regardless, a direct correlation 

between comfort and in-vivo wettability has not yet been established and it could be hypothesised that 

pre-lens tear film structure i.e. quality and thickness, has greater impact on the comfort compared to 

NITBUT alone.
67

 

As stated earlier one of the main reasons for poor wettability of the contact lens surface might be high 

levels of deposition. Contact lens deposition begins within minutes of lens insertion into the eye.
68

 Lens 

surface build up is mainly composed of proteins,
69

 lipids from tears,
70

 carbohydrates, minerals, microbial 

toxins and polysaccharides.
71

 Franklin and colleagues
72

 examined lipid and protein deposition on human 

worn lenses and studied the effect of surfactant cleaning on these deposits. They assessed lipid and 

protein deposition using fluorescence spectroscopy and showed that lipid deposition was largely 

influenced by an individual‟s life-style, tear film composition and surrounding environment, whereas 

protein deposition was driven by the composition, charge and water content of the contact lens material. 
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Studies have shown a significant reduction in deposition levels on frequent replacement lenses and thus 

improving patient comfort and acceptance compared to the hydrogel lenses that have relatively rapid 

uptake of lipids and proteins.
73;74

 

Little work has been conducted on the deposition levels of silicone hydrogels. Silicone hydrogels have 

exceptional transmissibility characteristics because of the incorporation of siloxane groups.
49;50

 However, 

these groups result in materials with an increased modulus compared to conventional HEMA based 

materials and also results in surfaces that are significantly more hydrophobic. The hydrophobic substrates 

have a tendency to denature proteins and lipids. Deposition of proteins seems to be greatest on U.S. Food 

and Drug Administration (FDA) group IV materials (high-water content, ionic)
75;76

 and group II (high-

water content, non-ionic) attracts more lipid deposition.
76;77

 Brennan et al. reported that with lotrafilcon A 

and balafilcon A lenses worn on a 30 night CW schedule, visible deposition and post-lens debris was 

minimal compared to traditional conventional hydrogel lens material.
78

  

1.3 Non inflammatory silicone hydrogel lens complications 

 

Developments in the contact lens industry in terms of materials, production techniques, mode of lens wear 

and efficacy of care systems have reduced the concern with lens deposition. Studies have been reported 

that show that with the advent of higher oxygen transmissible silicone hydrogel lenses there have been 

benefits to the ocular physiology such as reduction of hypoxia related complications including bulbar 

hyperaemia, limbal hyperaemia, corneal edema, epithelial microcysts and vascularisation.
79;80

 However, 

there are still problems associated with inflammation, trauma and mechanical insult to the ocular tissue 

such as superior epithelial arcuate lesions (SEALs) and localized contact lens papillary conjunctivitis 

(CLAPC) 
48;81;82

 each associated with silicone hydrogel continuous wear lenses and perhaps due to the 

increase in the modulus of these lenses.
5;83
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The first generation silicone hydrogel lenses such as balafilcon A (PureVision, Bausch and Lomb) and 

lotrafilcon A (Focus Night & Day, CibaVision) have up to five times greater modulus compared to 

conventional hydrogel lenses. Materials with higher relative silicone content have higher oxygen 

permeability. The higher oxygen content will result in lower water content which generally makes the 

material stiffer and with a higher modulus. The second generation silicone hydrogel materials, galyfilcon 

A (Acuvue Advance, Johnson & Johnson), senofilcon A (Acuvue Oasys, Johnson & Johnson), comfilcon 

A (Biofinity, Cooper Vision) and lotrafilcon B (AirOptix, CibaVision) have relative lower moduli of 

elasticity but still, two to three times higher than conventional hydrogels.
84

  

Excessive frictional pressure and shear force on the epithelium have been hypothesised to contribute to 

the formation of SEALs, although, most of the time, their presence is not associated with any symptoms. 

Typically the lesion is approximately 1mm from the limbus and stains with fluorescein dye. The 

prevalence of SEALs was around 7% with the first generation silicone hydrogel lens materials and has 

reduced to 4% with the second generation silicone hydrogels.
85

 A study conducted at Centre for Contact 

Lens Research (CCLR) reported that up to 4% of people wearing continuous wear of the Focus Night and 

Day lenses reported the formation of SEALs.
5
 Another condition commonly seen with CL wear is contact 

lens induced papillary conjunctivitis that is proposed to occur due to mechanical trauma to the tissue and 

also from perhaps immunological response to the denatured proteins deposited on the lens surface. The 

prevalence of CLAPC was also reduced with lower modulus lens materials compared to 6% prevalence 

with the first generation silicone hydrogel lenses. However, prevalence of local CLAPC is as high as 7% 

with silicone hydrogels compared to 0.7% with conventional hydrogel lenses.
86

  

A number of patients also present with mucin balls with silicone hydrogel lens wear. Mucin balls appear 

as debris between the corneal epithelium and back surface of the contact lens, mainly forming during eye 

closure, perhaps when the lens shears the tear film and mucin rolls into small balls that get trapped under 

the lens.
5
 They are usually most commonly seen with relatively stiffer lens materials but are flushed out 
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with the lens removal.
87

 Mucin balls may leave dents or imprints on the corneal epithelial surface but 

have not been associated with any visual degradation. Morgan et al. have reported approximately 71% of 

Focus Night and Day silicone hydrogel lens wearers develop mucin balls compared to 45% having them 

when they wore PureVision lenses.
88

 Therefore, perhaps modulus can affect the clinical performance of 

contact lenses. 

1.4 Lens Design and comfort 

 

Contact lens edges can be assigned into three groups 1) knifepoint 2) chisel and round.

   

Figure 1-5: Contact lens/edge shapes: knifepoint (left), chisel (center) and round. 

 (With permission from Contact Lens Spectrum, copyright Wolters Kluwer Pharma Solutions, Inc.) 

 

Silicone hydrogel lenses have higher moduli and non-rounded edge shapes and may impact the 

conjunctival tissue to a greater degree compared to conventional HEMA lenses. The conjunctiva is a thin, 

clear mucous membrane that lines the posterior surface of the eyelids (palpebral conjunctiva), and the 

basement membrane of the conjunctiva covers part of the sclera (bulbar conjunctiva). This membrane is 

composed of collagen, lymphocytes, plasma, mast cells, nerve fibers and blood vessels. The non-

keratinized epithelium of the conjunctiva also secretes goblet cells which play an important role in 

forming the mucus layer of the tear film.  

Contact lens associated conjunctival staining is seen commonly in contact lens wear and unlike corneal 

staining, conjunctival staining of the bulbar conjunctiva has not been extensively studied. Contact lens 
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wearers also present with conjunctival indentation along with staining. In lens wearers with conjunctival 

indentation, extra conjunctiva appears to extrude from the conjunctiva proper. This extra tissue appearing 

as loose folds or flaps, takes up fluorescein dye. In addition an imprint of the CL left on the conjunctiva 

perhaps due to poor edges or no lens movement is also visible with fluroscein.
89;90

 

Løfstrøm and Kruse
91

 were the first to report on the conjunctival epithelial flap (CEF). Sixteen successful 

silicone hydrogel lens wearers who had worn lotrafilcon A or balafilcon A lenses on continuous wear 

basis were examined. Thirty four percent of the 32 eyes examined were found to have CEF of varying 

sizes in the superior, inferior or both quadrants but no CEF was seen in nasal and temporal quadrants. 

They also reported that the majority of the participants wearing lotrafilcon lenses presented with 

conjunctival indentation and staining and sometimes just conjunctival staining hypothetically due to the 

chisel-shaped edge design compared to the contact lens wearers with the rounded edge design in the 

balafilcon A lens. A similar study conducted by Santodomingo et al. also reported higher incidence of 

CEF with lotrafilcon A lenses compared to balafilcon A lenses. The author also reported higher 

prevalence of CEF with continuous wear modality compared to daily wear and also flatter fitting lenses 

had higher prevalence of conjunctival epithelial flaps.
92

 Figure 1-6 shows conjunctival epithelial flap with 

contact lens overnight wear. 

 

Figure 1-6 Conjunctival epithelial flap 
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Løfstrøm and Kruse et al. suggested that the lens edge perhaps might be digging into the superficial 

conjunctival tissue during eye closure, and subsequent movement upon eye opening may irritate the 

conjunctival epithelial tissue and increases the conjunctival epithelial cell production that the authors 

hypothesised to be hyperplasia of the conjunctival epithelium resulting in a conjunctival flap.
93

 However, 

as the authors indicated, the small sample size in their study did not help in determining the prevalence 

rates of CEF. The paper also did not report the patient factors involved such as eye shape, lid tension and 

age and also subjective comfort.  

Another study comparing galyfilcon A and lotrafilcon A by Maldonado-Codina and colleagues
66

 found a 

minimal difference in the physiological response to the two lenses. Increased conjunctival staining was 

reported in wearers of the galyfilcon A lens and this was attributed to the design features of these lenses. 

1.5 Evaluation of soft contact lens fit 

 

Optimisation of lens fit and proper lens selection may be important to improve patient satisfaction and 

long term success with contact lens wear. The relative stiffness of the silicone hydrogel contact lenses 

compared to conventional hydrogel lenses suggests that clinicians should take more care in examining the 

lens/cornea relationship with silicone hydrogels compared to the conventional hydrogels.
29

 Most silicone 

hydrogel lenses are available in one or two base curves and all the rules and procedures that apply to 

hydrogel lens fitting broadly apply to silicone hydrogel lens fitting.
94

 Veys et al. have reported that most 

of the patients can be fit with flatter base curves which is usually the lens of first choice.
95

 Although the 

fitting rules remain the same for silicone hydrogels and conventional hydrogel lenses, the modulus of the 

material is higher for silicone hydrogels compared to conventional hydrogel lenses which indicate that the 

material resists deformation and as a consequence these lenses do not drape over the cornea as much.
94
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The resulting lens fluting and foreign body sensation may perhaps may be the basis of discontinuation of 

lens wear.
96

   

Evaluating the fit of the soft contact lens such as assessment of the stability of vision, evaluation of 

keratometry mires, and subjective comfort of the patient and slit lamp examination are the most 

commonly used techniques.
94;97;98

 Judging the fit of the contact lens involves evaluating both static and 

dynamic fit of the lens; lens centration, lens movement on blink, lens lag in primary gaze and lens 

tightness or looseness assessed with the push up test.
94

 The dynamic fit of the lens is very important to 

maintain the ocular integrity
94

; the contact lens should be fitted so that there is a proper exchange of tears 

enabling, among other things, the metabolic debris from underneath the lens to be flushed out. Proper lens 

movement is also important for corneal oxygenation and the ideal lens movement has been suggested to 

be approximately 0.2mm to 0.4mm.
88;94

 

The movement of thick high water and low modulus lenses is less compared to thick low water content 

lenses.
94

 It is sometimes difficult to judge the fit of the lens with just looking at the movement of the lens; 

the lens push-up test gives a better idea about the dynamic fit of the lens. In the push up test, the 

practitioner assesses the tightness of the lens by moving the lens vertically up by applying pressure on the 

lower lid and then allowing the lens to re center. The relative ease with which the lens returns to its 

original position and the speed of recovery is graded with 100% representing a lens that fits very tight or 

steep and 0% representing a loose lens that falls off the eye.
94

  

1.6 Sagittal height and lens fit 

 

Although the practitioner assesses the lens fit using the guidelines recommended by the manufacturer, 

Young et al. have reported that these variables may perhaps have little predictive value in deciding if the 

fit is successful.
99

 For example a lens showing good centration and tightness might not move adequately 
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on the eye but still have a satisfactory appearance. Therefore apart from the fitting characteristics of the 

lenses, a variety of ocular dimensions affect the lens fit such as corneal sagittal height, corneal diameter, 

corneal asphericity and scleral shape.  Keratometry readings are the gold standard measurements for 

selection of contact lens trials but studies have indicated that keratometry measures are poor indicators of 

soft lens fit.
100

 Dumbleton et al. reported that K measurements are not sensitive enough and are an 

oversimplified predictor of soft contact lens fit.
28

 They showed that steep K was a useful predictor of the 

base curve of first choice when fitting lotrafilcon A high-DK silicone hydrogel lens. They also showed 

that comfort improved when a flatter (8.6mm) base curve lens was replaced by the steeper lens (8.4mm).
29

 

Traditionally, hydrogel contact lenses are also fit in reference to back optic zone radius (BOZR). 

28;94;99;101;102
 In order to increase the movement of the lenses, the BOZR is increased and to reduce the 

movement, the BOZR is reduced, however there are reports that an report that an alteration in the BOZR 

has a minimal effect on the fit of the lens.
28

 However, this does not imply that changing the base curve 

does not affect the movement but only that it might not show the predicted effect on lens fit. Changes in 

the lens diameter (LD) is a better predictor of lens fit and appears to impact the fit of the lens to a greater 

extent than changes made to BOZR.
94

 

Increasing the total diameter of the lens increases the sag of the lens and theoretically tightens the lens. 

Decreasing the total diameter will have an opposite effect on the fit. Altering the diameters of the lenses 

and in turn the sag will also hopefully improve lens centration. Lowther and Tomlinson studied the effects 

of the BOZR and total lens diameter on clinical fit and reported that relatively large changes were 

required in the parameters to produce a significant modification to the clinical performance of the lens.
103

 

In order to understand why corneal diameter is so critical in soft lens fitting it is important to understand 

the concept of sagittal height or the sag value.  
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Figure 1-7: Illustration of sagittal height  

 

The sagittal depth of an aspherical curve is the perpendicular distance from the apex of the curve to the 

chord defined by the two ends of the aspherical curve. The distance between the two ends of the curve 

represents the diameter and the radius of curvature is equal to the radius of the center of the aspheric 

surface. Changing the radius or the diameter would alter the sagittal height and in turn, the fit of the lens. 

A normal healthy cornea with a radius of 7.85 mm and a diameter of 12.9 mm has a sag value of 

approximately 3.12 mm with a p-value of 0.76 (horizontal) and 0.82 (vertical). Garner et al. have reported 

that for a successfully fitting lens, the back surface sagittal height is greater than the curvature of the 

anterior segment of the eye.
104

 During clinical evaluation, a tight fitting lens is considered to have too 

great a sagittal height compared to the curvature/sagittal height of the cornea and for a loosely fitting lens 

the sagittal height is too low. Ocular sagittal height is not just the function of the diameter and the radius 

of corneal curvature but also a function of the corneal shape factor (amount of flattening from the centre 

to the periphery) and curvature and shape factor of the para-limbal sclera. 

The amount of asphericity or rate of flattening (e) also plays an important role in the determining the 

sagittal height of the eye. The average asphericity/eccentricity in the normal population is an e value of 

0.5. Young et al. have reported that variation in corneal eccentricity and diameter have greater effects on 
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corneal sag than the radius of  curvature.
105

 This study also reported that with a lens of 14.00 mm 

diameter, a change in 0.40 mm BOZR corresponded to approximately 0.30 mm difference in sagittal 

height or depth. Again this suggests that considering the corneal curvature measurements with 

keratometry alone to predict the BOZR does not optimise the lens selection. Corneal diameter and corneal 

shape factor are important parameters in predicting BOZR. 

Young et al. reported an increase in the overall value of the corneal sagittal measurement with increasing 

corneal radius, but changes in the scleral radius were insignificant (1mm change in the scleral radius 

changes the sagittal height by only 0.05 mm).
105

 A recent study by Sorbara et al. measured the shape of 

the corneal/scleral area using a high resolution Visante™ OCT (Carl Zeiss Meditec, Dublin, California) 

essential for large diameter semi scleral or large diameter gas permeable lens fitting. In this study 

measurements of nasal and temporal angles were measured tangentially to the sclera at 15 mm chord 

length to describe the flatter scleral shape. They reported a mean corneal/scleral depth of 3.47 ± 0.19 mm 

when measured with the Visante™ OCT  at a 15 mm chord length and as expected, due to the individual 

changes in the scleral shape beyond the limbus, there was significant but poor association between the 

corneal/scleral sagittal depth and the nasal/temporal angles at 15mm.
106

 

Horizontal visible diameter (HVID) is also one of the fitting parameters that optimize the soft contact lens 

fit. A recent study
94

 reported a range of HVID of 10.2 mm to 13.0mm when measured on 200 normal 

corneas. Patients who had HVIDs between 11.6 to 12 mm appeared to have a higher percentage of 

success using the traditional fitting approach. However, the study also reported that the eyes that have a 

small HVID may need a smaller diameter or flatter base curve, and eyes that have a large HVID may 

require a larger diameter or steeper base curve. Ideally the HVID must be at least 1mm less than the total 

diameter of the lens for optimal fit.
94
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Initial comfort during trial lens fitting greatly influences the patient‟s perception of contact lenses
29;107

 and 

with the introduction of higher modulus silicone hydrogel lenses manufacturers and practitioners must 

take utmost care in streamlining the lenses and achieving optimal lens fit through trials for ultimate 

success of contact lens wear. Newer technologies, such as topographical mapping systems, may provide 

sagittal values for each contact lens design to make sagittal height measurements as commonly accepted 

as are base curve and lens diameter. 

1.7 Physiological and vascular response to contact lens wear  

 

Contact lenses interact mechanically with the cornea and potentially compromise its function.
2;81;108;109

 A 

major consequence of contact lens wear is lens-induced chronic hypoxia and corresponding 

hypercapnia.
109;110

 Polymethyl methacrylate lenses (PMMA) contact lenses caused varying degrees 

vascular responses on the eye until high oxygen permeable silicone hydrogel lenses were introduced.
111

 

112;113
 

Holden et al.
82

 studied the effect of long term (5years) extended unilateral hydrogel lens wear compared 

with the non-lens wearing fellow eye in the subjects. The results of the study were significantly thinner 

corneal epithelium, greater number of corneal epithelial microcysts, thinner corneal stroma, greater 

amounts of limbal and bulbar hyperaemia and neovascularisation.
82

 However this study also reported that 

many of changes to corneal epithelium were reversed over a one month period after removal of lenses and 

also that  its oxygen consumption improved over a period of time. They hypothesised that chronic-lens 

induced hypoxia was the underlying cause of the physiological effects on the cornea. 

1.7.1 Limbal response 

 

Limbal hyperaemia represents one of the first signs of tissue response to hypoxia associated with daily 

and extended wear of hydrogel contact lenses.
17;114;115

 Chronic limbal vessel dilation provides an active 
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vascular plexus adjacent to the cornea which provides access to blood–borne defence mechanisms. Papas 

et al. have reported an association between hypoxic effects of low-Dk hydrogel lens wear and limbal 

hyperaemia. They reported that the mean peripheral Dk/t required to avoid a change in limbal redness was 

95x10
-9 

(cm/second) (mlO2/mL.mm Hg) the amount almost equal to the CL oxygen transmissibility in 

that region. Currently it is believed that soft contact lenses with 125x10
-9

 (cm/second) (mlO2/mL.mm Hg) 

reduce limbal hyperaemia.
114

  

Wearing high oxygen transmissible silicone hydrogel lenses should reduce limbal hyperaemia 

substantially. Dumbleton et al. found a significant reduction in limbal hyperaemia when comparing an 

extended wear (EW) high Dk/t silicone hydrogel lens to a low Dk/t hydrogel lens for over a period of 9 

months.
115

 Papas et al. have also indicated that reducing the flow of oxygen to the cornea without using 

contact lenses can also produce limbal hyperaemia.
116

 They have also showed that negative powered 

lenses used to correct myopia are of more concern as these lenses have thicker lens edges compared to 

positive powered lenses and therefore hinder the amount of oxygen supplied to the limbal region.
116

 They 

report a Dk/t reduction of about 80% and this is of serious concern as the hypoxic damage to limbal stem 

cells can have serious long term effects on the cornea.
116

 

 

1.7.2 Neovascularization and bulbar hyperaemia 

 

Neovascularization is produced as a response to a metabolic or an angiogenic factor released by blood 

vessels. New blood vessels form from existing vasculature and disturb the dynamic equilibrium of pro 

and anti-angiogenic factors responsible for maintaining the normal corneal avascularity.
117

 

Neovascularization is presumed to be a response to contact lens wear and hypoxic stress created by the 

lens wear. Studies have shown that the vessels refill when the hypoxia is relieved after a period of contact 
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lens discontinuation. 
17

 Additional studies have reported the prevalence of neovascularization to be higher 

with low Dk/t lenses and significantly less neovascularization with high Dk/t silicone hydrogel lenses.
115

 

Contact lens wear has also been reported to induce bulbar hyperaemia.
85;118;119

 Brennan et al.
78

 and Coles 

et al.
120

 found reduced bulbar conjunctival hyperemia in high Dk/t lens silicone hydrogel lens wearers 

compared to low water thin hydrogel lenses. 

1.7.3  Formation of epithelial microcysts  

 

Epithelial microcysts form with daily and extended wear contact lenses and are most reliable indicator of 

chronic hypoxic stress. They usually appear within 2 to 3 months of lens wear, are usually asymptomatic, 

and were first observed in PMMA lens wearers.
121;122

 Epithelial microcysts are small (10 to 50 µm) and 

non-inflammatory translucent and irregular dot like structures. Epithelial microcysts are hypothesised to 

be the result of chronic hypoxia with EW of low-Dk hydrogel lenses.
123

 Slit lamp examination using 

retro-illumination can identify microcysts. Microcysts have been hypothesised to consist of degenerative 

cellular material produced in the basal layer of the epithelium and that they move towards the surface 

during epithelial turnover.
123;124

 

Keay et al. have indicated that there is a rebound effect when patients were refitted with high Dk/t lenses, 

as microcyst numbers appear to increase for a short period of time until the epithelium returns to its 

previous metabolic state.
124

 

1.8 Effects of contact lenses on corneal epithelium, corneal shape alterations. 

1.8.1 Rate of exfoliation 

 

The normal epithelium is a self-renewing tissue undergoing relative rapid and continuous cell turnover 

throughout life (see Figure 1-7). Epithelial stem cells are of utmost importance in maintaining long term 
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health of the corneal epithelium. Stem cells are slow cycling, divide infrequently and give rise to mature 

cell types that further differentiate under normal conditions.
125

 The stem cells of the corneal epithelium 

are exclusively located in the basal cell layer of the limbal epithelium.
126

 

Hypoxia and the physical presence of the contact lens on the eye significantly reduce and slow the 

turnover of the corneal epithelium by suppressing epithelial cell proliferation
127

, migration
128

 and also by 

decreasing the rate of exfoliation.
129

 The conditions observed due to these changes include 

microcysts,
82;124

compromise in epithelial junctional integrity,
130;131

epithelial defects,
82

 

neovascularization
115;132

 and reduced corneal sensation 
108;133;134

. The effects on the epithelial structure 

also include reduced nerve density, edema, epithelial thinning and abnormal cell shapes.
135

 

Extended lens wear of soft and rigid gas permeable lenses is characterized by significant thinning of 

central corneal epithelium, an increase in the surface cell size and a decreased rate of exfoliation.
136

 Ren 

et al. reported that in extended soft contact lens wear, the epithelial metabolism is perhaps reduced 

because of the 15% decrease in the oxygen avaliablity.
137

 During overnight RGP lens wear, rabbits‟ 

central corneal epithelial proliferation rate was significantly decreased by 47% centrally.
138

 Others have 

shown that lens related variables such as oxygen transmissibility, material rigidity and wear schedule
129

 

decreases cell exfoliation 
136;137

.  

The rate of exfoliation and apoptotic driven cell death in central corneal epithelium is similar in contact 

lens wearers to the rate under closed eye conditions.
139

 The increase in the cell size at the corneal surface 

during contact lens wear is hypothesised to slow exfoliation and therefore the cells reside on the cornea 

for longer. Stapleton et al. reported that after 3 months of extended silicone hydrogel lens wear the sizes 

of exfoliated corneal epithelial cells was similar to the sizes of the cells found in non-lens wearing eyes. 

In addition the cell sizes increased significantly after 6 to 9 months of lens wear. However, with silicone 
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hydrogel lens wear, Ladage et al. have shown that after long term wear (up to 3 years), the cell size 

recovers to pre-lens wearing levels.
140

  

 

Figure 1-8 : Represents the renewal and replacement of the corneal epithelium (X, Y, Z hypothesis) 

proposed by Throft and Friend.   

 

1.8.2 Epithelial thinning 

 

The degree of central corneal epithelium thinning is affected by the lens type, oxygen transmissibility and 

duration of contact lens wear and is not affected by short term hypoxia.
141;142

 Studies have shown that 

higher oxygen transmissible silicone hydrogel lenses have less pronounced effects on the ocular health 

than hydrogel lenses of lower oxygen transmissibility or rigid gas permeable lenses of equal oxygen 

transmissibility and a greater adaptive recovery during long term extended wear.
88;143

 
110

 In a 5 year study 

conducted on 27 participants unilaterally wearing high water content hydrogel lenses
110

 a reduction of 

epithelial thickness of 6% was reported.. However the corneal epithelial thickness returned to normal 

within one week after lens removal. 
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 Ren et al. reported that hydrogel lenses of lower oxygen transmissibility cause more epithelial thinning 

than hydrogel lenses of higher oxygen transmissibility during the first year of lens wear. They reported 

that the corneal epithelium reached a maximal thinning after the first month of extended wear and 

thereafter partial adaptive recovery occurred.
137

 This was questioned by Gonzalez et al. who reported that 

the recovery of the epithelium would never be complete.
144

 In another study by Patel et al. the thinning of 

the epithelium was reported to occur in the temporal epithelium and not in the central epithelium of long 

term daily contact lens wearers.
145

 

Studies of the effects of CL wear on epithelial homeostasis in animals and humans have suggested 

inhibition of cell shedding as a possible mechanism for epithelial thinning. Increased epithelial cell 

surface area
129;146

 and reduced epithelial cell desquamation
129

 have been shown to occur in all types of 

contact lens wearers.
127;137

 Studies on soft contact lens wearing monkeys
147

 and rigid contact lens wearing 

rabbits
139

show similar epithelial cell flattening,
138;139

 reduced surface epithelial cell death through 

apoptosis and reduced central basal cell proliferation.
127

 Based on these findings Ladage et al. have 

suggested that contact lens wear causes reduced demand for new surface cells. They reported that the 

contact lens forms a shield protecting the surface cells especially during the blink, and this leads to a 

decrease in the shedding rate and an increase in the epithelial cell size.
148

 Insufficient basal cell 

proliferation and movement of epithelial cells to the corneal surface is associated with central corneal 

thinning.
148

 This study also showed a decreased, central basal cell proliferation (-33.8%) with silicone 

hydrogels and -40.8% with low oxygen transmissible hydrogel lenses. They  reported basal cell recovery 

in silicone hydrogel lens wearers but it was not clear if this phenomenon was due to the physiological 

adaption of the epithelium or caused by delay of cells entering the cell cycle.
148

 

They also reported that corneal epithelial thinning perhaps could be due to the direct physical pressure by 

the contact lenses. Studies have shown a significant thinning effect on the epithelium when subjects were 

fitted with a high DK rigid gas permeable CL‟s compared to the thinning effect caused by soft contact 
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lens of similar oxygen transmissibility.
148

 Localized corneal and epithelial thinning is also observed in 

ortho-keratology lens wearers where the direct pressure of the lens may involve in epithelial thinning and 

shape change.
149

 

In summary, the central corneal epithelium thinned by 5.6% in unilateral, long-term, extended-wear 

contact lens wearers.
110

 A thinning of 4.6 % with conventional hydrogel lens wear, 2.9% with weekly 

silicone hydrogel lens wear and 3.2% with monthly silicone hydrogel lens wear was reported.
137

 A central 

thinning of 10% at 12 months of RGP lens wear was also reported.
144

 

1.8.3 Corneal shape alterations  

 

Corneal shape alterations have been noted with various imaging techniques revealing that all types of 

contact lenses are capable of changing the corneal topography. Montenegro et al. reported a change in 

topography of normal corneas to be around 8% compared to relatively large percentages such as 75% 

with PMMA lens wear, 57% with RGP lens wearers and 31% with daily wear hydrogel lenses. Central 

corneal steepening or flattening, changes in regular or irregular astigmatism, loss of radial symmetry,
150

 

and changes in optical higher order aberrations are some of the topographic patterns resulting from 

contact lens wear. The most commonly reported change was a flattening of the cornea in areas of lens 

bearing resulting in a flattening of the corneal topography.
150-154

 It  has been  reported that there is  

increased corneal curvature with contact lens wear 
155

 although in overnight wear of  high DK GP lenses 

as well as long term wear of PMMA lenses, a decrease or no change in the curvature of the cornea has 

been reported.
156-158

  

The only modality that was widely available for monitoring the topographical changes and measuring 

corneal curvature was the keratometer. A major limitation of the keratometer is that it assumes the cornea 

to be a sphero-cylindrical surface and provides no information of the central and peripheral topography. 
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This makes the keratometer a measurement technique for fitting contact lenses on normal cornea and 

provides limited topographical information for irregular corneas such as keratoconus and post refractive 

surgeries.
159

 

Orbscan™ (Bausch & Lomb, Rochester, NY) corneal topography is a relatively new and widely used slit 

scanning technique that provides pachymetry measures of the cornea. This system
160

 is capable of 

measuring the entire corneal thickness by calculating the difference in elevation between anterior and 

posterior corneal surface. However, Yaylali et al. reported that the Orbscan™ system measures the 

corneal thickness 23 to 28 µm greater than that obtained by ultrasound pachymetry and argued that one 

possible reason for this may be the non contact nature of the Orbscan™ topography system compared to 

the ultrasound pachymetry which is invasive.
161

 Liu et al. reported that the mean corneal thickness 

measured with the Orbscan™ was reduced by 30-50 µm with long term wear of contact lenses compared 

to normal eyes without contact lenses. They have also reported significant corneal and epithelial thinning 

in long term contact lens wearers who wore the lenses for more than 13 years. They stated that no specific 

reason for corneal and stromal thinning has been established in contact lens wearers but gave a possible 

explanation for both corneal epithelium and stromal thinning that perhaps is due to chronic edema of the 

corneal stroma and biochemical changes in corneal stromal composition.
162

 

The Medmont E300™ corneal topography system provides information on the dynamics of tear-film 

behaviour and corneal topography. This instrument enables us to acquire multiple dynamic sequences of 

images and the user can choose the best map that shows the most appropriate alignment. Cho et al. have 

reported the repeatability and reproducibility of the apical radius, eccentricity and elevation to be better 

than other commercially available topographers.
163

 Wilfred et al. have reported that the Medmont™ 

corneal topographer shows high repeatability in measuring six different test surfaces such as a sphere, an 

asphere, a multicurve, and three bicurve surfaces. The Medmont™ was reported to be the most repeatable 

instrument in the study comparing a number of topographers.
164

 Cho et al. have reported that the 
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repeatability of Medmont™ and Humphrey Atlas™ were consistently higher with intraclass correlation 

coefficient (ICC) values ranging from 0.94 to 0.99 compared to the Orbscan II™ and Dicon CT200™ 

topography imaging systems. The Orbscan II™ was the poorest performer with ICC‟s ranging from -

0.0095 to 0.69. They reported poor repeatability to be an indicator of the poor image capture by the 

Orbscan™, due to poor fixation and focusing as the patients have difficulty keeping their eyes open 

during the image acquisition process.
165

 

1.8.4 Corneal swelling with soft contact lens wear 

 

Hypoxia induced corneal swelling is a normal phenomenon that is the result of reduced availability of 

oxygen. In humans, contact lens wear and eye closure with and without contact lens wear is an effective 

model of measuring hypoxia and is one of the primary indices of corneal physiological change.
108

 Holden 

et al. have shown that corneal swelling is inversely proportional to contact lens oxygen transmissibility.
7
 

Short term hypoxia can lead to thickening of the corneal stroma and long term hypoxia can lead to 

thinning of the corneal stroma. In general the cornea swells 2 to 4% with overnight eye closure and 

recovers the following morning.
7;166;167

 It has also been shown that cornea swells regionally and the 

highest swelling occurs in the anterior and posterior stroma due to perhaps altering the physiological 

pump and disruption of the stromal barrier function .
141

 

Holden and Mertz
7
 showed that the minimum oxygen transmissibility (DK/t) of 87±3.3 barrer/cm was 

required to avoid overnight corneal swelling, and in a recent study, Harvitt et al.
168

 theorized that a (DK/t) 

of 125 barrer/cm was required to reduce lens induced overnight corneal swelling. Moezzi et al. studied 16 

non-lens wearers before and after wearing conventional hydrogel and PMMA contact lenses and reported 

that corneal swelling was significantly greater in those using soft lenses compared to when PMMA lenses 

were worn, and this was attributed to the larger diameter of the soft contact lenses and less tear mixing 

beneath the lenses.
160
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Holden et al. 
169

 measured corneal edema along the horizontal meridian after contact lens wear and 

reported that the periphery of the cornea swelled significantly less than the center and they suggested that 

this was due to the physical restraint in the limbal region. Moezzi et al. also showed a greater swelling 

centrally and reported that the flattening of the posterior surface of the cornea is independent of the lens 

type.
160

 This observation was supported by Bergenske et al. who demonstrated that there was an increase 

in the central and mid-peripheral corneal thickness with contact lens wear and eye closure.
170

 Fonn et al. 

reported a peculiar finding of corneal swelling of the contralateral control eye, that was influenced by the 

swelling of the fellow high-DK lens wearing eye, suggesting a sympathetic physiological response.
166

  

Conventional hydrogel lenses have shown to cause more overnight corneal swelling compared to silicone 

hydrogel lenses. Hydrogel lenses are characterized by several factors such as their water content, ionicity, 

and oxygen permeability (Dk). Hamano et al. studied two hydrogel lens materials (nelfilcon A and 

etafilcon A) and three silicone hydrogel lens materials  (galyfilcon A, senofilcon A, and lotrafilcon A) and 

showed that after just one hour of dozing, a significant physiological effect on the cornea was seen with 

hydrogel lens wear but not after silicone hydrogel lens wear.
171

 In an another study reported by Steffen et 

al., twenty five subjects were fitted with four different types of silicone hydrogel lenses (balafilcon A, 

etafilcon A, lotrafilcon A, senofilcon A) and the other eye did not wear a lens. The swelling response was 

measured after 8 hours of closed eye wear and the silicone hydrogel materials produce little corneal 

swelling when worn on an overnight basis. Induced corneal swelling also did not significantly differ from 

the eye without the lens.
172

 Therefore, theses data provide support for the idea that silicone hydrogel 

lenses have less physiological effects on the cornea 

Changes in meridonial corneal thickness have also been reported in orthokeratology. With reverse 

geometry lens designs, changes in thickness have been reported, with central corneal thinning and mid-

peripheral corneal thickening occurring when compared to the baseline corneal thickness. This change in 
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the corneal thickness has been suggested to be due to the redistribution of the epithelial tissue during lens 

wear.
149;173

   

 

1.9 Instruments and imaging of the cornea 

Although many of the following devices are not directly used in my experiments much of the work has 

used one of many devices, therefore theses devices will be reviewed in the following sections. 

1.9.1 Ultrasonic methods 

 

Ultrasonic pachymetry is used for measuring corneal thickness in the center and periphery of the cornea. 

The ultrasonic pachymeter is an A-scan ultrasonography instrument consisting of a hand-held probe and a 

digital display console. The probe generates and directs ultrasound waves into the cornea and then detects 

the reflected ultrasound waves. When high frequency sound waves are propagated through soft tissues, 

the acoustic reflection of these waves is recorded in one dimension in the path of the beam.
174

 The 

thickness can be estimated from the time delay between these boundaries. Reinstein et al. have reported 

the repeatability of the hand-held ultrasound pachymetry to be about ±20µm. 
175

  

High-frequency ultrasonic biomicroscopy (UBM) is a new ultrasonic method which in addition applies 

image processing in imaging microstructures in 2D and 3D.
176

 In UBM, high-frequency (50-100 MHz) 

polymer transducers are used, which have resolutions from 20 to 60 µm and depth of penetration of 

approximately 4mm.
177

  

Pavlin et al. measured various features including corneal thickness, anterior chamber angle of the eye, and 

imaged iris and anterior segment tumours using UBM. They defined the term ultrasonic biomicroscopy as 

the production of images at true microscopic resolution in living tissues using ultrasound.
177

 Newer fourth 

generation UBM models with 100-MHz transducers have sufficient penetration depth to be capable of 
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imaging the entire anterior chamber. However, the axial resolution does not match other optical 

techniques.
178

 

1.9.2 Specular microscopy  

 

The principle technique of specular microscopic pachymetry is to focus on the specular reflection from 

the anterior and the posterior corneal surfaces with a microscope and  measure the distance between these 

two layers.
179

 The Topcon SP-2000P is a commercially available non-contact specular microscope that 

images the endothelium, and provides specular images from which corneal thickness is calculated 

simultaneously. Specular microscopy has been used to study corneal endothelial morphology in addition 

to measure the corneal thickness. The measurements, with the specular microscopy have been reported to 

be reproducible for measures of cell morphology and corneal thickness.
180;181

 

1.9.3 Optical pachymetry  

 

Optical pachymetry has been used to measure the corneal thickness since its introduction in 1952.
182;183

 

The optical pachymetry system typically consists of an image splitting device, inserted into one eyepiece 

of the slit lamp. This device consists of two glass plates that split the image of the cornea. A slit beam is 

projected perpendicularly to the cornea through the narrow diaphragm of the instrument and the right-

sided split image eyepiece replaces the regular eye piece of the slit-lamp. By moving the scale of the 

instrument, the focused upper half of the corneal image is positioned so that its posterior surface is in 

apposition with the anterior surface of the lower image.
184

  

The optical pachymeter has been used to measure the corneal thickness profiles in the peripheral cornea 

with soft contact lens wear. They are also used to measure the epithelium across the entire cornea and to 

evaluate changes to the cornea in orthokeratology lenses.
169;185
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1.9.4 Orbscan II  

 

The Orbscan™ is a non-contact optical topographer that measures anterior and posterior corneal elevation 

(relative to a best-fit sphere), surface curvature, and corneal thickness using a slit scanning mechanism.  

Elevation maps of the anterior cornea enable clinicians to visualize the shape of abnormal corneas, which 

helps in accurate diagnoses and consistent surgical results. The instrument was designed to acquire the 

elevation information directly, but was mostly used for deriving the curvature information. The Orbscan 

II™ incorporated a placido disk (Figure 1-8).  

 

Figure 1-9: The Orbscan™ II topographer (Bausch & Lomb, Rochester, NY) 

(Image courtesy: Sameena Haque) 
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During the acquisition, the placido disk used for corneal curvature data is illuminated and the mire‟s 

reflection from the anterior corneal surface is stored. Subsequently, 40 slits, 20 from the right and 20 from 

the left are projected on the cornea at an angle of 45 degree to the instrument axis. As the light from these 

slits passes through the cornea, it is scattered and the backscattered component is captured by the digital 

video camera. 
186-189

 

This device can also be used to study cornea during refractive surgery and contact lens wear and also to 

measure corneal thickness post orthokeratology.
190-193

 Cho et al. reported that central corneal thickness 

measurements acquired using the Orbscan™ was perhaps more repeatable than measurements from the 

peripheral cornea.
194

 Since the Orbscan II™ appeared to produce higher corneal thickness measures 

compared to ultrasonic pachymeters, an acoustic factor of 0.92 was introduced to “correct” the final 

measurements of the corneal thickness.
195

 

1.9.5 Optical Coherence Tomography 

 

Optical coherence tomography (OCT) is a recently developed non-contact imaging technology for 

performing high-resolution cross-sectional images (Figure 1-9).
196

 Its principle is similar to ultrasonic 

imaging, but the magnitude of reflected (backscattered) light is measured instead of reflected sound 

waves. OCT uses low coherence Michelson interferometry to compare a partially coherent reference 

beam to one reflected from the tissue. The two beams are combined at the beam splitter and interference 

between the two optical beams occurs only when their path lengths match to within the coherence length 

of the light source. Because interferometry measures optical paths, which is the product of the physical 

distance traversed by the optical beam and the refractive medium it travel through, OCT effectively maps 

the spatial variation of the tissue refractive index. If the average refractive index of biological tissue is 

known (has been measured with other techniques), then OCT can be used to measure precisely the 

physical dimensions of different morphological. Because the tissue refractive index is wavelength 
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dependent, and OCT uses broad spectral bandwidth to achieve high axial imaging resolution. Proper 

calibration of the OCT system is required for precise measurements of the physical dimensions of 

morphological features in biological tissue.  

 

 

Figure 1-10: Schematic diagram of Michelson interferometer. 

(With permission from: Recent developments in optical coherence tomography for imaging the retina) 

 

The OCT provides ultrasound-A-scan-like information at a single point. The resolution of the OCT ranges 

from 1 µm to 15 µm and the instrument is capable of scanning a large area (up to 20mm scan 

diameter).
197

 OCT technology has been applied to address a wide range of problems in fiber optics, 

interferometry, high-speed optical detection and biomedical imaging. The OCT has also been used for a 

variety of biomedical applications including measuring the thickness of cartilage around joints
198

, retinal 

imaging 
199-202

, anterior segment imaging 
203-207

 and in gastroenterology 
208

, dentistry 
209

, urology
210

 and 

neurology.
211

  

The OCT image is a grey scale or false color two dimensional representation of backscattered light 

intensity in a cross-sectional plane; in medical imaging, the OCT image represents differential 

backscattering contrast between tissue types on a micron scale. OCT was originally developed for 
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imaging the transparent tissue of the eye and has been extensively used for imaging the retina and anterior 

eye. Various studies have reported the benefits of OCT imaging system in diagnosis and monitoring of 

disease such as glaucoma .
197;212

 OCT has been widely used in the study of glaucoma,  in macular diseases 

such as age related macular degeneration, in systemic diseases such as diabetes and to examine structural 

changes such as hole formation.
197;213-216

 OCT can also be applied to the non invasive, in vivo assessment 

of retinal blood flow.
217

  OCT imaging was extended to in vitro pathology in non transparent tissue such 

as skin and blood vessels .
218;219

  

In OCT, the lateral (transverse) resolution is a function of the optics of the device (among others) and 

may be achieved by using a large numerical aperture, and focusing the beam to a small spot size.
197

 

Commercially available OCT‟s lateral resolutions range from 10-60 µm. The theoretical lateral resolution 

of the OCT system can be calculated using the following formula Δx = 1.22 λ/2NA where NA is the 

numerical aperture of the imaging lens if the eye optical imaging probe. Higher numerical aperture 

improves the lateral resolution, though this improvement comes at the price of reduced depth of focus, 

which can introduce detrimental image contrast variation with depth in the OCT images. Axial resolution 

is determined by the central wavelength and bandwidth of the light source.
212

 High axial resolution can be 

obtained by using broad bandwidth and a light source with higher wavelength.
212

 formula lc = 21n(2)/π  x  

λ0
2
/nΔλ where λ0 is the central wavelength of the light source and n is the refractive index of the sample 

under investigation.  

OCT systems such as the Humphrey™ OCT II and some custom OCT imaging devices use super 

luminescent diodes (SLD‟s) as a partial-coherence light source. SLDs are commonly used because they 

are compact with high efficiency and low noise. However, the output power is limited to only several 

hundred microwatts and available bandwidth permits imaging with 10-15 micron resolution.
197

 Other 

superluminescent sources such as fluorescence from organic dyes and Ti:Al2O3 have been used to achieve 

higher resolution.
197
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The earliest clinical devices were time domain OCT.
220

 Recently, a new class of OCT instruments 

employing spectral (Fourier) domain technology has been developed. An alternative way to obtain a 

spectrogram is to use a frequency-swept laser or a tuneable laser with just a single detector which is 

referred as swept source OCT (SS-OCT). In SS-OCT as in SD-OCT no moving parts are required for 

axial scan; however this system has been mostly used as a research grade system and not as a commercial 

OCT. 

1.10 Time-domain OCT 

Basic principles  

The generally referred to time–domain OCT (TD-OCT) is a system in which the position of reference 

mirror is systematically changed to match the optical path from reflections within the sample, and like 

other OCT‟s the light in the interferometer is split into two paths. One path is directed to the eye through 

the scanning mirrors and the other path is directed to a moving reference mirror (Figure 1-10). Light is 

then reflected back from the reference mirror and the eye and it is combined in the interferometer and this 

combination is analyzed by a detector and an “A-scan” is created. This process is then repeated with 

another scanning system slightly displacing each sagittal scan in order to create the cross sectional “B-

Scan” image.  
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Figure 1-11:  Schematic diagram of a TD-domain OCT. 

Diagram courtesy of the National Research Council, Canada. 

1.11 Spectral domain OCT/ Fourier domain OCT  

Basic principles  

In the spectral-domain (SD) OCT the reference mirror is stationary, and the OCT signal is acquired as a 

function of wavelength, either by using a spectrometer as a detector or by varying the (narrowband) 

wavelength of the light source in time (Figure 1-11). The light reflected back from the eye is combined 

with the light from the stationary reference mirror in the interferometer. The signal is then split up by a 

grating into wavelength components and each of these wavelengths is then analyzed by a spectrometer to 

create a spectro-interferogram. A Fourier transform is then performed on the spectro-interferogram to 

create an A-scan.  
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Figure 1-12: Schematic diagram of a SD-domain OCT  

(Image courtesy: Huang D) 

1.12 Anterior segment optical coherence tomography  

 

Corneal and anterior segment OCT imaging was first reported by Joseph Izatt et al. in 1994 using light 

with a wavelength of 830 nm.
212

 Most early corneal OCT studies used the commercially available retinal 

scanners OCT1, OCT2, and Stratus OCT (Carl Zeiss Meditec, Dublin, CA).
207;221-225

 These early retinal 

OCT systems acquired only 100 to 400 axial scans (A-scans) per second. At this low speed, the anterior 

and posterior segment OCT images had motion artefacts and did not enable visualization of angle 

structures such as the scleral spur and important landmarks for anterior chamber biometry.   

To overcome these limitations, commercial OCT technology for the anterior segment has become 

available and the growth of literature on anterior segment OCT imaging has increased remarkably.
226-236

  

An important step in the development of high performance anterior segment OCT designed specifically 

for imaging the angle of the anterior chamber was longer wavelength sources at 1310-nm.  
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Light at the 1310-nm wavelength is strongly absorbed by water. Less than 7% of the 1310-nm light 

incident on the cornea reaches the retina, compared to 93% transmitted for 830-nm light. So a much 

higher power level can be used at 1310 nm and this ability to use more power for corneal and anterior 

segment OCT imaging makes it twenty times faster. A high-speed OCT using 1.3 µm wavelength was 

first reported by Radhakrishnan et al.
204

 with an acquisition speed of 4000 axial scans per second. 

1.13 Clinical Utility 

 

1.13.1 Anterior Chamber imaging  

 

The anterior chamber angle imaging is an important aspect in diagnosis and management of glaucoma. 

The current way of viewing the angle is gonioscopy, an invasive procedure that requires direct contact 

with the patient‟s eye, unlike anterior segment OCT. Also, anterior segment OCT provides quantifiable 

measurements of the angle.
237

 Commercially available OCT‟s such as the Zeiss Stratus™ OCT, have been 

used for imaging the anterior chamber angle. For example Kalev-landoy et al. have reported on the 

clinical utility of the instrument in patients with different angle configurations 
238

 and the Visante
TM

 OCT 

has been effective in imaging the anterior chamber angle in glaucomatous eyes. 
239

 AS-OCT has been 

shown to be an important screening tool for glaucoma.
237;240

  

Nemeth et al. reported a good anterior chamber depth measurement repeatability with the Visante
TM

 OCT 

than with immersion ultrasound.
241

 Sorbara et al. have reported the use of Visante
TM

 OCT in measuring 

the sagittal scan images of the anterior chamber to derive the chords and the sagittal depth measurements 

for fitting large diameter semi scleral contact lenses.
106
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1.13.2 Cornea  

 

Corneal thickness has been traditionally measured by optical or ultrasound pachymetry.
242-245

 Ultrasound 

pachymetry remains the gold standard because of its reliability, ease of use and relative low cost.
246;247

 

Mean corneal thickness is reportedly higher when measured using ultrasonic devices when compared to 

measurements using the optical pachymetry.
246

 Central corneal thickness measured using the modified 

retinal OCT.
248-250

 Wang et al.
248

 were able to measure a chord of the cornea of approximately 10mm and 

plot corneal and epithelial thickness at baseline and after 3 hours of hydrogel lens wear in closed eye 

conditions. This study demonstrated the hypoxic swelling occurred mostly in the central cornea, but no 

apparent change was seen to the epithelial thickness.
248

 

The corneal layers that are imaged by the OCT can be differentiated into epithelium and stroma including 

Descemets membrane and the endothelium. The Descemets membrane around 8 microns thick and the 

endothelium is about 5 microns in thickness. The instruments used in this thesis for examining the corneal 

thickness have axial resolutions ranging from 10-18 microns and at this larger resolution compared to the 

thickness of the tissue the Descemets membrane and the endothelium cannot be differentiated from the 

stroma due to the limitations in OCT imagers. 

 Haque 
225

 et al. reported the meridonial corneal and epithelial changes in subjects who wore Ortho-

Keratology lenses. They showed a significant decrease in central thickness but an increase in paracentral 

thickness. 

More recently, an anterior segment OCT (AS-OCT) instrument has been developed that offers high 

resolution cross-sectional imaging of the cornea and allows both central and peripheral pachymetry. A 

recent study by Hutchings et al.
251

 used this UHR-OCT operating in the 1060 nm range to evaluate the 

changes in thickness of the anterior, stromal, and posterior corneal laminae in response to hypoxia 

induced corneal swelling. The results from this study showed a regional swelling due to hypoxic 
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provocation. On removal of the hypoxic stimulus, the rate of recovery was different for different layers 

except the endothelium-Descemets membrane complex that exhibited a biphasic recovery.  

Central corneal thickness and LASIK flap thickness measurements were commonly reported using these 

devices.
252-254

 A limitation of the OCT when imaging the cornea is that the image degrades in contrast 

from the center to the periphery. There are two factors that affect the quality of the images at the 

periphery. The first factor is the lack of compensation for the change in curvature towards the periphery 

this induces an error in the peripheral corneal thickness due to Snell‟s law and due to non paraxial 

incident rays. The second factor relates to the change in refractive index and thickness from the center to 

the periphery which is not accounted for.  

High resolution corneal pachymetry images from anterior segment OCT‟s have been reported to be useful 

for refractive surgeons to be able to image the cornea pre-operatively and also be able to assess the post-

operative results.
255

 AS-OCT produces pachymetry maps that may reveal keratoconus, ectatic or corneal 

thinning prior to laser refractive surgery. 

1.13.3 Tear film thickness 

 

The estimates of the human tear film thickness vary from 3 to 40 microns.
256-258

 Some reasons for the lack 

of agreement include the difference between instruments used and the invasive or non-invasiveness of the 

techniques used.
259-261

 Prydal and Campbell
261

 reported that the mean thickness measured using confocal 

microscopy was 34 to 45 microns, and King-Smith et al.
260

 reported the tear film thickness measured 

using reflection spectra to be approximately 3 microns. 

Wang et al. have shown that it was possible to measure the pre-corneal tear film thickness with a 

modified commercial retinal OCT, but due to the limited axial resolution of the their device these 

measurements had to be indirect. They reported tear film of approximately 3.3 microns, in agreement with 
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the results reported by King-Smith et al.
260;262

  Wang et al. have shown that they are able to measure the 

tear film thickness at the upper and lower meniscus statically and dynamically. 
263

  

The post-soft lens tear film space has been recently imaged using the spectral-domain OCT. The spectral-

domain OCT has a very short acquisition time approximately 100 times faster than time-domain 

instruments which eliminates motion artefacts and produces high resolution images.  

1.14 Humphrey Zeiss retinal OCT II adapted for anterior segment imaging 

 

Initially designed to image the retina, the Zeiss Humphrey retinal OCT II™ was adapted to perform 

anterior segment imaging. Figure 1-12 shows the OCT II instrument.  

 

Figure 1-13: Zeiss Humphrey retinal OCT II™ 
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Figure 1-14: An OCT image of the central cornea with a 1.13 mm scan length. The image consists of 

100 axial scans 

 

Figure 1-15: An OCT image obtained with a larger scan length of 5mm (100 axial scans)  

 

The OCT II uses a near infrared light source operating at the wavelength of 820nm. The nominal axial 

resolution of the instrument is 10 microns. Each image consists of a set of 100 axial scans. The OCT 

image is shown as a pseudo color representation of backscatter intensity (Figure1-13). Each column of 

pixels represents a single axial scan. Figure 1-14 shows an OCT image obtained over 5mm (but still 100 

axial scans), and can be compared in terms of detail with the previous image (Figure 1-13). The axial 



 

 42 

resolution of OCT II is inadequate for imaging the cornea at the cellular level, but can distinguish the 

epithelial layer from the stroma.
197

  

1.15 Visante optical coherence tomography 

 

The Visante™ OCT was the first commercially available OCT system with sufficient speed to map in a 

single image acquisition epoch (Figure 1-15). It is a time domain OCT (TD-OCT) that produces cross-

sectional tomograms of the eye without contact. The light source is a 1,310 nm SLD with axial resolution 

of 18µm and the transverse resolution of 60µm. The scan dimensions are 6mm by 16mm wide for the 

anterior segment scans and 3mm by 10mm for the pachymetry scans.
264;265

  

 

 

Figure 1-16: A Visante™ anterior segment scan. 

 
 

The pachymetry map (Figure 1-16) from the Visante™ OCT comprises 10-mm radial lines on eight 

meridians centered on the apex. Each meridonial scan consists of 128 A-scans and can be visualized as a 

cross-sectional image. The entire scan takes approx. 0.5 seconds to acquire. 
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Figure 1-17: Corneal pachymetry map. 

 

Figure 1-18: A participant at the Visante™ OCT  

 
In the Visante™ OCT software, different tools are available for measurement depending on capture mode 

of the image. In any of the high resolution corneal imaging modes, thickness callipers, a flap 

measurement and/or an annotation tool can be used (Figure 1-18). The flap tool consists of a calliper that 
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is automatically placed on the boundaries delineating anterior/posterior surfaces of the cornea with an 

operator- moveable marker that can be placed at the putative surgical flap/stroma interface. 

 

Figure 1-19: High resolution corneal single map with measurement tools. 

 

1.16 RT-Vue Optical Coherence tomography 

 

The RTVue™ is a Fourier/spectral domain OCT system that can image both the anterior and posterior 

segments of the eye (Figure 1-19). The RTVue™ OCT obtains 26,000 axial scans per second with an 

axial resolution of 5 microns. The higher resolution of the instrument allows detailed corneal and anterior 

segment cross sectional images. The RTVue™ operates at a shorter wavelength of 830 nm that allows the 

instrument to be used in both anterior and posterior segment imaging. 

The corneal mapping pattern of RTVue™, consist of 8 high definition meridonial scans acquired in 0.31 

seconds. An algorithm detects the anterior and posterior corneal boundaries on a cross sectional image. 

Prakash et al.
266

reported that the RTVue™ provided repeatable measures of corneal thickness in 100 

healthy subjects and  reported a mean central thickness of 521 ± 34.7 microns. 
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Figure 1-20: A participant on the RT-Vue™ Optical Coherence Tomographer 

 

Corneal Anterior Module  

To obtain corneal and anterior segment images with the RTVue™, a corneal adaptor module (CAM) was 

developed. The CAM lenses of the RTVue™ were designed to provide images from the device‟s 

telecentric scanning system. There are two adaptor lenses 1) a wide angle lens 2) a high magnification 

lens. The wide angle lens allows a scan width of 6mm and a transverse resolution of 15 microns (Figure 

1-20) and the high magnification lens allows a scan width of 4mm and a transverse resolution of 10 

microns (Figure 1-20). The adaptor lens is placed in front of the retinal objective lens to focus the OCT 

beam on the anterior segment.  
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Figure 1-21: Corneal Anterior Modules 

 

The basic functions of the CAM lens are to control the focusing, the reference arm delay, and corneal and 

anterior segment imaging software. The CAM software also automatically “dewarps” the images to 

recover the shape so that measurements can be made on the corrected image. With the CAM addition one 

is able to capture anterior segment images illustrated in Figure 1-21 (contact lens edge on the bulbar 

conjunctiva).  

 

 

Figure 1-22: Profile of CL edge and bulbar conjunctiva 

 

1.17 Custom built Ultra high resolution OCT  

 

The UHR-OCT system
251;267;268

 is based on a compact fibre optic Michelson interferometer, connected to 

a SLD (Superlum Ltd.; λc =1020 nm, Delta λ=110nm). The sample arm of the system is connected to an 

optical imaging probe, consisting of three achromatic lenses and a pair of galvanometric scanners, 

mounted on a modified slit lamp biomicroscope. The interference signal is detected with a custom, high-

performance spectrometer (P&P Optica, Inc.), interfaced to a 1024 pixel array InGaAs camera (SUI, 
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Goodrich Corp.) with 92 kHz readout rate (Figure 1-22). The UHR-OCT system provides 3 micron axial 

and 10 micron lateral resolution. In this system the acquired images do not require post-processing for 

dispersion compensation since water has a null in the 1 micron spectral region.
267-269

 Images are processed 

with MATLAB
 ®

 (Mathworks) and Amira (Visage Imaging, Inc.) 

 

 

Figure 1-23: A schematic diagram of the UHR-OCT system.  

CCD – InGaAs camera, CL – collimator lens, DG - diffraction Grating, FL- focusing lens, OL - ocular 

lens, PC - polarization controllers, SLD – super luminescent diode, TS – computerized translation stage, 

X,Y – galvanometric scanning mirrors. 

 
This UHR-OCT imaging system has been applied to imaging of the anterior structures of the human eye, 

this system has an advantage over the high resolution OCT‟s operating at 800 nm or 1300 nm.  

 

 

1.18 Medmont E300™ Corneal Topographer 
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The Medmont E300™ is a computerized video-keratometer, using placido rings to map the surface of the 

human cornea (Figure 1-23). This instrument uses 32 rings with 9,600 measurements at 102,000 analysis 

points and the coverage of each image extends from a minimum ring diameter of 0.25mm to beyond 

10mm. 

 

Figure 1-24: Positioning of a participant at Medmont E300™ Corneal Topographer 

 

The data can be used to assist in contact lens fitting, refractive surgery, orthokeratology and general 

assessment of the cornea.
270-272

 Chui et al. compared the performance of three topographers Medmont 

E300™, Keratron Scout™, and Humphrey Atlas 991™ to measure apical radius, flattest corneal 

curvature, eccentricity (e) on children. They found that the repeatability of the measurements from the 

Medmont™ and the Atlas™ were good.
273

 In another study, Tang et al. evaluated the repeatability of 

three placido disc videokeratoscopes (Keratron™, Medmont™ and TMS™). Six test surfaces were 

measured; a sphere, an asphere, a multicurve and three bicurve surfaces. The repeatability of measures 

from the Keratron™ and the Medmont™ instruments were the highest.  
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Figure 1-25: Medmont E300™ curvature map 

1.19 Red blood cell velocity measurement  

 

There are several studies reporting various quantitative and the qualitative aspects of blood flow measured 

at the posterior segment of the eye,
274-279

 including microcirculatory hemodynamic state of the retina.
280-283

 

There have been reports of red blood cell (RBC) velocity obtained using measurements from in vivo 

microscopy videos. This requires precise tracking of each RBC to estimate the velocity in large blood 

vessels were the blood moves at right angles to, and along the long axis (among others) of the vessel. 
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Imaging micro vessels (5-10 microns), although more challenging because of high magnification 

required, is less complex because the red blood cells (which are in the range of 6-8 microns) line up in a 

single file and move along the vessel long axis.
284;285

 

There is not much literature on hemodynamics of the bulbar conjunctiva. This is perhaps surprising 

because the bulbar conjunctiva is one of the few regions of the body in which the circulation of the blood 

can be viewed directly and noninvasively in humans. Blood flow in conjunctival capillaries is comparable 

to the blood flow in other capillaries of the body especially to blood flow in the brain.
286

  Red blood cell 

movement can be observed clinically using a slit lamp but the low magnification and contrast between the 

red blood and the paler sclera makes the tracking of the RBC movement quite challenging. Processing of 

video images, from cameras with high spatial and temporal resolution and high dynamic range, enable 

tracking of RBC movement and provides more usable qualitative information of the conjunctival blood 

flow. 

Duench measured bulbar conjunctival red blood cell velocity in a group of hydrogel lenses wearers and 

compared it to non lens wearers. She reported that the participants in the lens wearing group had 

significantly lower blood velocities, compared to the control group. This result supports the notion that 

contact lens wear has an effect on the bulbar conjunctival vasculature by effecting the content of the 

blood vessel.
287

 

The present study uses Handy Alpha, Hyper Micro Color CCD Camera with LED lighting (Figure 1-25) 

which was mounted on a modified slit-lamp (Figure 1-26). 
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Figure 1-26  The Handy Alpha camera with accessories 

 

Figure 1-27  A participant at a modified slit-lamp with camera 
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Chapter 2 

Accuracy of Visante and Zeiss-Humphrey Optical Coherence Tomographers and 

their cross calibration with optical pachymetry and physical references  

 

2.1 Introduction 

 

The measurement of corneal thickness has various important clinical and research applications. Some of 

these may be to measure corneal swelling after overnight wear of continuous wear contact lenses,
1
 after 

overnight orthokeratology,
2
 to monitor thickness changes in patients with thinning disorders such as 

keratoconus
3
 or for refractive therapy techniques.

4;5
 Corneal thickness can be measured optically

6;7
 or 

using ultrasound techniques among others.
8;9

 One of the advantages of optical measures over ultrasound is 

the non-contact nature of the technique (except for the confocal microscopy). Despite the reported 

accuracy of ultrasound measures, corneal contact and the use of anaesthetics makes these methods more 

inconvenient.
10;11

 Also, the indentation of the cornea has been hypothesised to result in an under-

estimation of corneal thickness when compared to other methods.
11

  

Optical Coherence Tomography (OCT) is a newer non-contact optical imaging technique that can 

measure biological tissue thickness with higher nominal resolution, ranging from 2 to 20 microns.
12-16

 

OCT works on the Michelson interferometry principle and images are typically two-dimensional data sets 

which represent optical backscattering in a cross-sectional plane through the tissue.
17;18

 Time domain 

OCT (TdOCT) has been useful in the visualization of different ocular tissues including the cornea.
12

 Its 

main disadvantage is a longer acquisition time causing a decrease in image quality and thus limiting its 

clinical applications. On the other hand, the spectral domain OCT (SOCT) has a shorter acquisition time 

eliminating many of the motion artefacts and have been used for cross sectional imaging of the 

cornea.
12;19-21
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Previous work has suggested that corneal and epithelial thickness can be measured using the Zeiss–

Humphrey retinal OCT II (Zeiss Humphrey Systems, Dublin, CA), a posterior segment instrument, that 

has been adapted to measure the anterior segment.
2;22;23

 The OCT II uses a partially coherent 

superluminescent light source (SLD) with the wavelength peak at 830-850 nm and band width of 32 nm. 

The axial resolution is about 10 microns.
24

  

A recently marketed anterior segment Td-OCT instrument, the Visante OCT (Zeiss Meditec, Dublin, CA) 

calculates corneal thickness throughout the entire cornea (in eight meridians nearly simultaneously) 

something that is advantageous in characterizing the whole corneal structure.
25;26

  The Visante OCT uses 

a source with a peak wavelength of 1310nm. This longer wavelength theoretically allows better 

delineation of the anterior and posterior surfaces of the cornea and the better penetration enables clearer 

imaging particularly of the limbus. Its high speed scanning system enables the generation of pachymetry 

maps in addition to linear cross-sectional images, in seconds. The axial resolution of the device is 18µm 

and the transverse resolution is 60µm. Each scan is in a zone 6mm by 16mm for anterior segment scans, 

3mm by 10mm for the pachymetry.
25;27

 
28

 

Anterior segment OCTs are now more commonly being used for a range of diagnostic and post-surgical 

analyses.
7;29-32

 For instance, there are a number of reports of the assessment of patients prior to and after 

surgery examining such things as corneal oedema and ectasia.
7;33-37

 Despite strong associations, between 

devices measuring corneal thickness,
10;26;38

 there is no gold standard to cross calibrate these instruments 

and to assess their accuracy, although attempts have been made.
39;40

 

Although there is abundant literature on the precision of instruments for measuring corneal 

thickness,
10;23;26;38;41-43

 very few studies have reported accuracy of these methods.
39;40

 

Measurements could be repeatable and not accurate and therefore, in addition to precision, a measurement 

technique should also be demonstrably accurate. The purpose of this study was first, to measure the 

accuracy of the Visante OCT as it compared to a direct measure with mechanical gauge (MG). The 
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materials used to mimic the cornea were transparent plastic lenses made with a refractive index similar to 

the cornea, that is n= 1.376. The second purpose was to compare these results with an Optical Pachymeter 

(OP) and the Zeiss–Humphrey retinal OCT II. In order to calibrate the two OCT‟s (Visante OCT and 

Zeiss–Humphrey retinal OCT II) the measurements using the MG were taken as true measurements.   

2.2 Methods 

2.2.1 Lenses 

Twenty two rigid lenses with varying thicknesses were manufactured using a plastic material with a 

refractive index of 1.376±0.0005 (at 589 nm), verified by the manufacturer. This plastic material was 

developed by Optical Polymer Research, Inc., Gainesville, Florida. All the lenses were made with plano 

power (parallel anterior and posterior surfaces) with a base curve of 8.6mm and no prism. The physical 

center thickness of the calibration lenses (ranging from 100 to 764µm) was measured four times and then 

averaged. (Table 2.1) 

2.2.2 Instrumentation 

 

The central thickness of the same set of lenses was also measured using the following three instruments: a 

computerized optical pachymeter (OP) mounted onto a Zeiss 30 SL-M biomicroscope, Zeiss–Humphrey 

retinal OCT II, and Visante OCT. 
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     Table 2.1 The actual central thickness of twenty-two lenses  

Actual lens center thickness (µm) 

1 301 

2 580 

3 420 

4 350 

5 470 

6 560 

7 360 

8 630 

9 489 

10 527 

11 312 

12 470 

13 650 

14 700 

15 240 

16 450 

17 150 

18 580 

19 100 

20 500 

21 190 

22 764 

Mean 445 

Standard deviation 179 

 

The Visante OCT “high resolution” mode was used to scan the rigid contact lenses. The image of the 

Visante OCT comprises 512 axial scan and the scan dimensions were 10 mm by 3 mm. The scanned 

image was considered to be optimally aligned when the specular reflex, which is a high intensity 

reflection from the center of the front surface of the contact lens, was visible (Figure 2-1). 
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Figure 2-1 Visante OCT image of the contact lens with n=1.376 

 

Scans were judged to be of adequate quality based on the following criteria: good demarcation of the 

anterior and posterior boundaries of the contact lens and absence of artefacts. Instead of using the built in 

callipers provided by the instrument, custom software was used which automatically delineated the 

anterior and posterior borders of the cross-sectional images of the contact lens and the radial distance 

between the anterior and posterior surface were obtained, that is, the thickness of the contact lens.  

Version 2.0 of the Visante OCT software was used and the raw unaltered binary image file (*.bin) was 

exported for analysis. To convert pixels obtained from the binary image, to millimetres, a conversion 

factor was used (71 pixels=1mm). 

With the Zeiss–Humphrey OCT II similar methods were used and one hundred axial scans (1.13-mm 

width) were processed. The same custom software was used to analyse the data. Averages of the 

thicknesses were then used. (Figure 2-2) 
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Figure 2-2 Zeiss-Humphrey retinal OCT II of the contact lens with n=1.376 

 

2.2.3 Procedure  

 

The lenses were installed on a circular holder in a random order. A number was assigned to each with no 

reference to the thickness of the lens. All the measurements using the MG, OP, OCT II and the Visante 

OCT were performed by me. Each lens was measured four times and the average of the four readings was 

calculated. Multiple measurements were necessary in order to minimize measurement variability.
41;44

 The 

measurement order with the instruments was randomized in the study. The accuracy of the measurements 

of the optical instruments was determined by comparison of the physical CT of the lenses obtained using 

the MG to those from the optical devices. 

2.2.4 Data analysis 

 

Using a repeated-measures analysis of variance, the effects of measurement devices were examined. (P 

values < 0.05) were considered statistically significant. Post-hoc Tukey tests (significant level p< 0.05) 

were used to determine the significance of specific pairs. Regression equations between the MG and all 
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optical measures were derived to calibrate the devices. The Bland & Altman recommendations were used 

to examine the limits of agreement between pre and post calibration.
45

 

2.3 Results 

 

Using repeated measures ANOVA, there was a significant difference in the lens thickness between each 

of the instruments calibrating them, as shown in Figure 2-3. Please note the graph shows the means and 

the 95 % confidence intervals of the estimate of the mean whereas the significance testing is whether the 

means of the differences are equal to zero: These are not the same thing. Tukey post hoc testing revealed 

that the Visante OCT measurements were significantly higher than the other three (OCT II, OP and MG) 

methods (p=0.001).  The Visante thickness was 453.0±37.6 µm compared to 445.1±38.2 µm with the 

microgauge and the OCT II was significantly lower (424.5±36.1µm) compared to the other three methods 

of measurement both (p=0.001). There was no statistically significant difference (p>0.05) between 

thickness measured using the MG (445.1±38.2 µm) and the OP (444.2±38.2 µm).  
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Figure 2-3 Center thickness (µm, Mean ± 95 % CI) of lenses prior to calibration measured with 

each instrument  

 

The following figures compare the standard microgauge measures to each of the measurements made by 

the three instruments (using Bland-Altman plots). Figure 2-4 compares the microgauge versus the optical 

pachymeter before calibration and illustrates how little difference there was between these two 

instruments. Figure 2-5 demonstrates the differences between the OCT II and the microgauge and 

indicates that the thickness of thicker lenses (450 um and up) were over-estimated by the instrument. On 

the other hand, the Visante OCT overestimated the thickness especially when lenses were thinner (250 to 

400 um) in comparison to the microgauge measurements (Figure 2-6). 

 

Figure 2-4 The means of microgauge and optical pachymeter thickness measures versus the 

differences between the microgauge and optical pachymeter measures. The thin line represents the 

mean difference and the thick lines represent the 95% limits of agreement. 
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Figure 2-5 The means of microgauge and OCT II thickness measures versus the differences 

between the microgauge and OCT II measures. The thin line represents the mean difference 

and the thick lines represent the 95% limits of agreement. 
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Figure 2-6 The means of microgauge and Visante OCT thickness measures versus the 

differences between the microgauge and Visante OCT measures. The thin line represents the 

mean difference and the thick lines represent the 95% limits of agreement. 

 

The relationship between the OP and MG lens thickness measurements is shown in Figure 2-7. 

 

Figure 2-7 Comparison (regression equation) of microgauge and Optical Pachometer thicknesses 

prior to calibration. 

The correlations of pre calibrated OCT II and the Visante OCT to the MG were significant (R=0.99 

p=0.001, for both, Figures 2-8 and 2-9). The calibration equations that were derived from the regression 

analysis were then used to calibrate the instruments.  
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Figure 2-8 Comparison (regression equation) of microgauge and Zeiss-Humphrey OCT II 

thicknesses prior to calibration. 

 

Figure 2-9 Comparison (regression equation) of microgauge and Visante OCT thicknesses prior 

to calibration. 

The differences between the two OCT instruments and the MG were eliminated after applying the 

calibration equations to each of these devices. (Table 1.2)   
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 Mean  SE CI -95% CI +95% N Calibration Equation 

Microgauge (µm) 445.1 38.2 365.7 524.6 22 N/A 

Visante OCT(µm) 453.0 37.6 374.8 531.3 22 
-15.15+1.01 X Measured CT 

OCT II (µm) 424.5 36.1 349.5 499.6 22 -4.73+1.05 X Measured CT 

Optical pachymeter (µm) 444.2 38.2 364.7 523.7 22 0.34+1.00 X Measured CT 

Table 2.2 The average central thicknesses of the twenty-two lenses for each of the instruments and 

the respective calibration equations. 

 

The difference between pre and post calibration versus the average of the pre and post calibration 

thickness values of the Visante OCT is shown in Figure 2-10. The results indicate that the overestimation 

of the thickness of the thinner lenses is reduced post calibration.  

 

Figure 2-10 The means of pre and post calibrated Visante OCT thickness measures versus the 

differences between pre and post calibrated Visante OCT measures. The thin line represents the 

mean difference and the thick lines represent the 95% limits of agreement. 
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2.4 Discussion 

 

My intent in doing this experiment was to explore whether there are differences among the optical devices 

that are used to perform pachymetry. There were differences and so the method proposed by Moezzi et al. 

39
 was used to remove the differences. The calibration equations that were derived enable the direct 

comparison among devices so that the commonly reported differences among pachymetric methods are 

now unimportant.
46

  

Accurate (post-calibrated) corneal thickness measured with any of these devices is perhaps important for 

a number of reasons including understanding corneal hypoxia
47;48

 in CL wearers and or in diabetics,
49

 for 

accurate IOP measurements,
50

 in cases of pre-surgical patients for refractive surgery,
4
 pre

51
 and post-

surgical
52

 keratoconus patients and in patients wearing ortho-keratology lenes.
22

 

Many instruments that are used to measure corneal thickness have calibration methods based on imaging 

the front surface of a reference sphere or an asphere, but, the posterior surface typically cannot be 

calibrated with these devices. The calibration method I used required only a transparent contact lens (that 

is with a visible posterior surface), with a similar refractive index to the human cornea.  Cross -calibrating 

various optical pachymeters can therefore be easily implemented. 

Although previous studies show regional variation of corneal refractive index as well as variation of 

refractive index between different layers of the cornea,
53

 an average refractive index of 1.376 is 

reasonable based on the current evidence of corneal refractive index.
54;55

 Using reference lenses with the 

refractive index of the cornea (1.376) allows rapid and simple calibration and cross calibration of these 

optical instruments for measuring corneal thickness, although of course the assumption is that it is 

refractive index is constant across subjects and across  cornea. 
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The calibration I used demonstrates that when measuring lenses within the “normal” corneal thickness 

range (from 375 to 550microns) the instruments are quite accurate, but, with thicker or thinner reference 

lenses, the error is increased. Thinner measures are over-estimated and thicker measurements are under-

estimated with the Visante OCT (Figure 2-10). The internal calibration of the Visante OCT using its own 

solid calibration sphere is perhaps limited in range of thicknesses which it operates.  

Central corneal thickness differences outside of the average range can be clinically significant if decisions 

regarding refractive surgery are being made and regarding correction factors for the measurement of 

IOP.
56;57

 When decisions are made about eligibility for surgery using a thickness criterion, it is perhaps 

not clear that the recommended + 20 microns used to define the range of uncertainty is appropriate; it 

might be considered to be much less.
58

  

Calibration requires that our „phantom corneas‟ have two optical characteristics. The first is that the 

refractive index is as specified by the manufacturer and that this index is the “same” as the cornea. The 

second is that the refractive index is constant over the samples we used. Problems with the former (e.g. 

misspecification of refractive index) would result in the absolute measures of central corneal thickness 

obtained after calibration of each device being fractionally in error (the amount being a function of the 

misspecification). However, the calibration between devices would still be valid. Assuming that the 

cornea has a homogeneous refractive index is in itself an approximation since refractive index varies in 

depth and extra-axially.
53;59

 Therefore, in a sense, the phantom corneas with a single refractive index are 

only a first approximation.  The second problem of heterogeneity of the refractive index across the sample 

lenses, provided it was non-systematic, would not be expected to affect the calibration equations other 

than diminishing the goodness-of-fit.  

Dunne et al. examined the inaccuracy of the Visante OCT using ray tracing through images of contact 

lenses with a refractive index of 1.493 and centre thicknesses ranging from 0.3 to 0.7mm (in 0.1mm 

steps). Their results indicated that there was no variation in accuracy with thickness.
56

 My approach was 
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different to theirs, with differences in measured/assumed refractive indices and also how the images were 

acquired; they used the “anterior segment map” (with custom software callipers) while I used the “high 

resolution map” (also with custom software callipers) . 

A potential drawback of my study is perhaps that only central thickness accuracy was examined and not 

peripheral. These lenses had parallel front and back surfaces and therefore there should be no differences 

in the lens thickness in the center and the periphery. Since this is a comparison of devices there is no 

specific reason that one device‟s peripheral measurement is more or less accurate than another, I believe 

that the results can be generalized to the periphery. In addition, the range of the thickness of the rigid 

reference lenses included what might be expected for peripheral corneal thickness 
60

 and so, again the 

results apply to peripheral measurements.  

Finally, there was no compensation for the difference in the two wavelengths that each OCT (OCT II and 

Visante OCT) uses. The former uses 820 nm and later 1300nm. Most instrument comparisons do not take 

into account this difference in wavelength which results in difference in index of the tissue examined 

perhaps due to the relatively small effect. 
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Chapter 3 

Repeatability and comparative study of corneal thickness using the Visante™ 

OCT, OCT II and Orbscan II™ 

 

3.1 Introduction 

 

Imaging of the ocular adnexa has evolved significantly since its conception. The early forms of capturing 

images began with the use of film based slit lamp cameras. Ultrasound A scan and B scans gave axial length, 

position and thickness of the crystalline lens, anterior chamber depth and information about the posterior 

pole.
1
 Although these forms of imaging still hold value, computer technology has allowed for advancements 

in the imaging field. Various imaging techniques have been used over the past few years to improve 

identification, characterization and quantification of the ophthalmic disorders. In recent studies optical 

coherence tomography (OCT) has been used as a microscopic imaging technique for in vivo examination of 

the posterior and the anterior segment.
2-7

   

Techniques for measuring central corneal thickness (CCT) include ultrasound pachymetry (UP),
8
 confocal 

microscopy,
9
 ultrasound biomicroscopy (UBM),

10
 scanning slit imaging (Orbscan II

 TM
)

11
 and OCT.

12-14
 

Optical coherence tomography is a non-invasive, non-contact imaging technique that typically uses infrared 

light to obtain high resolution cross-sectional images in vivo.
14

  Although the technique has been used 

primarily in the diagnosis of optic nerve and retinal pathology, more recently it has been shown to be 

valuable for the study of the cornea.
13-16

  

The Visante
 TM

 OCT (Zeiss Meditec, CA) is time domain OCT (TD-OCT), utilizing optical coherence 

tomography to image the anterior segment. The Visante 
TM 

OCT Model 1000 can provide detailed in vivo 

examination of the anterior segment of the eye without eye contact. It provides high resolution cross-



 

 68 

sectional images. The axial resolution of the Visante™ OCT image is 18µm and the transverse resolution is 

60µm.
17;18

 The Visante
 TM  

OCT and Stratus
 TM

 OCT devices allow the scanning probe to move transversely, 

thus enabling for the reconstruction of a 2-dimentional image form a series of transversely displaced axial 

scans. The difference between the Stratus
 TM

 OCT and the Visante
 TM

 OCT is in the wavelength of light that 

is used in the device.
15;19

 The Stratus
 TM

 OCT uses a near-infrared light with a wavelength of 820 nm, 

whereas the Visante
 TM

 OCT uses a wavelength of 1310 nm. By increasing the wavelength of light, the 

amount of signal scattering is reduced, and this potentially facilitating better penetration past the limbus and 

sclera.  

The first purpose of this study was to measure the repeatability of the Visante
 TM

 OCT in a normal sample. 

The second was to compare this instrument with other measures of topographic total corneal and epithelial 

thickness as measured with the Zeiss-Humphrey OCT II (OCT II) (model 2000, Carl Zeiss Meditec, Jena 

Germany) adapted for anterior segment imaging 
20

 and the Orbscan II
 TM

 (Bausch and Lomb, Rochester New 

York). 

3.2 Methods 

3.2.1 Study Design 

 

Ethics clearance was obtained from the Office of Research Ethics at the University of Waterloo prior to 

commencement of the study and the study was conducted according to the Tenets of Helsinki.  Fifteen 

healthy participants (9 women, 6 men) were recruited and their eligibility was determined at a screening 

appointment. The age range of the participant was 20 and 32 years. They were free of any ocular disorder, 

with no history of eye surgery, ocular trauma, or current systemic disease. Informed consent was obtained 

from all participants prior to enrolment in the study. The measurements for each eye (randomized) 

approximately the same time on each day with the same instructions and procedures by myself. 
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Subjects were positioned on the chin and fore headrest and were encouraged to keep their eyes open as 

wide as possible but were allowed to blink as needed. At the screening visit (Day zero), visual acuity was 

measured and biomicroscopy was performed. At the Day 1 visit the epithelial and total corneal thickness, 

across the central 10mm of the horizontal meridian was measured using the OCT II and the Visante
 TM

 

OCT. Total corneal thickness across the central 10mm of the horizontal meridian was measured using the 

Orbscan II
 TM

.  Three measurements were taken across the cornea at the center, nasal and temporal cornea 

with the Visante
 TM

 OCT, OCT II and the Orbscan II
 TM

. Nasal and temporal corneal measurements were 

3mm away from the center. Because of a limited scanning range of the OCT II, an external fixation target 

was used to control eye position to enable measurement of nasal and the temporal corneas \with the 

device. Measurements were taken 3 mm nasally and temporally from the central corneal scan with the 

OCT II using the external fixation target and were compared to the total corneal and epithelial thickness 

in same area for the Visante
 TM

 OCT and the Orbscan II
 TM

. The order of these measurements was 

randomized. These measurements were repeated on Day 2.  Each individual measurement was repeated 

three times on both day 1 and day 2 and the measurements were averaged to give a single result. 

3.3 Instruments 

3.3.1 Visante™ optical coherence tomographer 

The Visante™ OCT uses a wavelength of 1310nm and has a nominal axial resolution of 18µm and 

transverse resolution of 60µm. The participant was comfortably positioned at the chin rest and aligned for 

the scan. The participant was asked to fixate at the start burst fixation pattern inside the instrument. A 

high resolution corneal single map was acquired for the study. The scanned image was considered to be 

optimally aligned when the specular reflex, which is a high intensity reflection from the front surface of 

the cornea, was visible on the screen. Data were analyzed using the inbuilt calliper tool that automatically 

places itself on the boundaries delineating anterior/posterior surfaces of the cornea. Measurements of 
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corneal and epithelial thickness at day 1 and day 2 for central, nasal and temporal locations on the cornea 

were taken using the Visante™ OCT. 

3.3.2 OCT II 

 

The OCT II adapted for anterior segment imaging 
21-23

 was used to obtain thickness data of the cornea and 

the epithelium. A scan width of 1.13mm was used to acquire images. 

Study participants were seated comfortably at the OCT instrument with their chin and forehead on the 

headrest and the participants were asked to fixate the peripheral fixation lights of the fixation target. The 

incident beam was aligned with the fixation light of the target on the corneal surface, and the specular 

reflection confirmed that the scan was perpendicular to the cornea.  

Once the specular reflection was obtained at the 3mm nasal and temporal locations from the center of the 

cornea, an optimal image and the raw data were captured. Central corneal and epithelial thickness was 

obtained using custom analysis software. Custom software read the raw files consisting of position vs. 

reflected intensity for each of the 100 sagittal scans. The software imported the raw data from the 

instrument and then located the peak reflectance that corresponded to front and back surface of the 

cornea. From the curves fit to these surfaces, thicknesses were calculated for each pixel point along the 

front surface (the shortest distance between the anterior and posterior surfaces).The averages of these 

thicknesses were then used. 

3.3.3 Orbscan II
 TM

 

 

The Orbscan II
 TM

 (Bausch & Lomb, Rochester, NY) provides topographic images of both the on and 

front and the back surface of the cornea and also provides pachymetric thickness measurements of the 

cornea. The Orbscan II™ is based on Placido disk technology. The instrument is used to acquire and 
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analyze the elevation and curvature measurements on both the anterior and posterior surfaces, on and off 

the axis of the cornea. 

The patient was positioned with a chin and forehead rest and asked to look at a fixation target. The device 

projects 40 slits, 20 from the right and 20 from the left at an angle of 45 degrees to the instrument axis. As 

the light from these slits passes through the cornea, it is scattered in all directions which is backscattered 

toward the digital video camera of the device, which records the appearance in 2-dimensional 

images.
11;24;25

  

3.3.4 Data management and analysis 

 

Data analysis was conducted using Statistica (Version 7). The coefficient of repeatability (COR), Bland-

Altman limits of agreement
26

 and the correlation coefficient of concordance (CCC) were used.
27

 The COR 

was 1.96 x test-retest differences. CCC describes concordance between repeated measurements by 

analyzing the deviation of test and re-test measures from a perfect 45⁰-line through the origin (i.e. 

CCC=1). CCCs <1 represent deviations from this perfect line and correspond to a weaker repeatability. P-

values less than 0.05 were considered to indicate statistical significance. Analysis of measurements taken 

from the center and ±3mm on either side are reported. In addition, measures from pairs of  instruments 

were compared using t-tests. 

3.4 Results 

 

There were nine females and six males enrolled in the study, ranging from 20 to 32 years. The 

measurements were taken on two separate days, but, at the same time of day ±60mins. Mean central 

corneal thickness imaged by the Visante™ OCT at the center of the cornea was 536± 27 µm (range, 563-

509 µm) and the mean epithelial thickness using the Visante™ OCT was 55± 2.3 µm (range, 57.3-52.7 

µm). Table 3-1 represents the mean corneal and epithelial thickness at the center imaged by the Visante™ 
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OCT and OCT II and the mean corneal thickness using the Orbscan II. A t-test showed that there was a 

significant difference in apical corneal thickness imaged by the Visante™ OCT and OCT II (p<0.05). 

Significant difference was also found in corneal thickness (p<0.05) between measures using the 

Visante™ OCT and the Orbscan II
 TM

 at the center. There was no statically significant difference between 

the epithelial thickness measured with Visante™ OCT and the OCT II (p>0.05).  

Table 3-1 Mean corneal and epithelial thickness at center (mean± 95 % CI) for Visante OCT, OCT 

II and Orbscan. 

 

Central thickness Visante OCT OCT II Orbscan II 

Total thickness 536± 27µm 520±25µm 609±29µm 

Epithelial thickness  55± 2.3µm 56±4.9µm Not applicable 

 

The mean corneal and epithelial thickness at the temporal  location imaged by the Visante™ OCT was 

554± 26 µm and 53± 0.7µm respectively, the 5
th

 and 95
th
 percentiles for corneal and epithelial thickness 

were between 580 to 528 µm and 53.7 to 52.3 µm respectively. Table 3-2 represents the mean corneal and 

epithelial thickness at the nasal position imaged using the OCT II the Visante™ OCT, and the Orbscan II
 

TM
. Nasally there was no significant difference in the corneal and epithelial thicknesses between 

measurements from the Visante™ OCT and OCT II (p>0.05), but there was a difference between 

measures from the Visante™ OCT and Orbscan II
 TM

 (p<0.05).  

Table 3-2: Mean corneal and epithelial thickness at the nasal position (mean± 95 % CI) for Visante 

OCT, OCT II and mean corneal thickness using the Orbscan II
TM 
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Nasal thickness  Visante OCT OCT II  Orbscan II 

Total thickness  554± 26µm  599±36µm 609±27µm 

Epithelial thickness  53± 0.7µm  56±3.4µm Not applicable 

 

Table 3-3 shows the mean corneal and epithelial thickness at the temporal location acquired using the 

Visante™ OCT, OCT II and Orbscan II
 TM

. There was no significant difference in the corneal thickness at the 

temporal location between data from Visante™ OCT and OCT II (p>0.05). Epithelial thickness at the 

temporal location measured using the Visante™ OCT and OCT II was statistically significantly different 

(p<0.05). 

Table 3-3: Mean corneal and epithelial thickness at the temporal location (mean± 95 % CI) for 

Visante
 TM

 OCT, OCT II and Orbscan II 
TM 

 

Temporal thickness Visante OCT OCT II Orbscan 

Total thickness 565± 26µm 555±39µm 600±29µm 

Epithelial thickness 53± 0.8µm 54±2.2µm NA 

 

Table 3-4 and table 3-5 presents the COR of the corneal thickness and the epithelial thickness for the 

three instruments (Visante™ OCT, OCT II and Orbscan II
 TM

). There is better repeatability of corneal and 

epithelial thickness measured with Visante™ OCT between the sessions when compared to the OCT II 

and Orbscan II
 TM

 imaging systems. 
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Table 3-4: Coefficient of repeatability of corneal thickness with Visante
 TM

 OCT , OCT II and 

Orbscan II 
TM 

 

COR Total corneal thickness (Test/Retest) 

Instruments Center Temporal (3mm) Nasal (3mm) 

OCT II ± 13.31µm ± 13.98µm ± 19.94µm 

Visante OCT ± 8.98µm ± 8.62µm ± 7.71µm 

Orbscan II ±10.71µm ± 13.66µm ± 11.53µm 

 

Table 3-5: Coefficient of repeatability of epithelial thickness with Visante ™ OCT, OCT II and 

Orbscan II™. 

 

COR Epithelial thickness (Test/retest) 

Instruments Center Temporal (3mm) Nasal (3mm) 

OCT II ± 8.81µm ± 9.68µm ± 9.49µm 

Visante OCT ± 8.72 µm ± 9.92 µm ± 9.72 µm 

Orbscan II NA NA NA 

 

Coefficient of Concordance (CCC) was also estimated between sessions for the Visante™ OCT, OCT II 

and Orbscan II
 TM

 imaging systems. There was good concordance of total corneal thickness with the 

Visante™ OCT (0.90-0.99 at either center, temporal or nasal locations), the OCT II (0.97-0.99 at either 
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center, temporal or nasal locations) and the Orbscan II
 TM

 (0.97-0.98 at either center, temporal or nasal 

locations) between sessions (Table 3-6). 

Table 3-6: Correlation coefficient of concordance of total corneal thickness with Visante™ OCT, 

OCT II and Orbscan II
 TM

.
  

CCC Total corneal thickness 

Instruments Center Temporal (3mm) Nasal (3mm) 

OCT II 0.97 0.98 0.99 

Visante OCT 0.99 0.90 0.97 

Orbscan II 0.98 0.97 0.98 

 

There is moderate concordance of epithelial thickness measurements for both Visante™ OCT and the 

OCT II with CCCs ranging between 0.52 and 0.81 respectively (Table 3-7). 

Table 3-7: Correlation coefficient of concordance of epithelial thickness with Visante™ OCT and 

OCT II. 

 

CCC Epithelial Thickness 

Instruments Center Temporal (3mm) Nasal (3mm) 

OCT II 0.70 0.58 0.52 

Visante OCT 0.81 0.53 0.54 

Orbscan II NA NA NA 
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The CCC was estimated between instruments comparing the measures of corneal and epithelial thickness 

from the Visante
 TM

 OCT with the OCT II and for corneal thickness and epithelial thickness measures 

(Tables 3-8 & 3-9). There was good concordance of corneal thickness measures on day 2 (range 0.86-0.97 

center, temporal and nasal cornea) comparing Visante™ OCT and the OCT II measurements and 

moderate concordance on day 1 (ranging between 0.66 to 0.68 at the center, nasal and temporal cornea).  

Table 3-8: Correlation coefficient of concordance of total corneal thickness between instruments 

comparing the Visante
 TM

 OCT and OCT II. 

 

CCC Total corneal thickness 

Visante OCT  Vs OCT II Center Temporal (3mm) Nasal (3mm) 

Day 1 0.68 0.68 0.66 

Day 2 0.97 0.88 0.86 

 

Table 3-9: Correlation coefficient of concordance of epithelial thickness between instruments 

comparing the Visante
 TM

 OCT and OCT II. 

 

CCC Epithelial Thickness 

Visante OCT Vs OCT II Center Temporal (3mm) Nasal (3mm) 

Day 1 0.54 0.75 0.53 

Day 2 0.34 0.54 0.57 
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CCC‟s were also estimated from corneal thickness measures obtained using the Visante
 TM

 OCT and the 

Orbscan II
 TM

 (Table 3-10). Measures were moderately concordant on either day 1 or day 2 (ranging 

between 0.55-0.78 center, nasal and temporal cornea). Visante™ OCT and the OCT II epithelium thickness 

measures also demonstrated moderate concordance on either day 1 or day 2 (range; 0.53-0.75 center, nasal 

and temporal cornea). 

Table 3-10: Correlation coefficient of concordance of total corneal thickness between instruments 

comparing the Visante
 TM

 OCT and Orbscan. 

 

 

CCC Total corneal thickness 

Visante OCT Vs Orbscan Center Temporal (3mm) Nasal (3mm) 

Day 1 0.59 0.59 0.73 

Day 2 0.67 0.55 0.78 

 

In summary, the CCC‟s revealed good agreement between measures of corneal and epithelial thickness 

within all the three instruments compared to between the instruments where the CCC was moderately 

concordant. 

Agreement between the measurements of the three instruments was also examined with Bland-Altman 

plots and limits of agreement (LOA) were calculated.
26

 These plots of the difference between measures on 

the y-axis versus the averages of the corneal or epithelial thickness measures from the Visante
 TM

 OCT, 

OCT II and Orbscan II
 TM

 on the x-axis on different days are shown from Figures 3-1 to 3-18.  
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Figure 3-1: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the center (corneal thickness 

day 1). 

Figure 3-2: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the nasal cornea (corneal 

thickness day 1). 

Figure 3-3 Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the temporal cornea (corneal 

thickness day 1). 
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Figure 3-4: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the center (corneal thickness 

day 2). 

Figure 3-5: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the nasal cornea (corneal 

thickness day 2). 

Figure 3-6: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the temporal cornea (corneal 

thickness day 2). 
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Figure 3-7: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the center (epithelial 

thickness day 1). 

Figure 3-8: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the nasal cornea (epithelial 

thickness day 1). 

Figure 3-9: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the temporal cornea 

(epithelial thickness day 1). 
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Figure 3-10: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the center (epithelial 

thickness day 2). 

Figure 3-11: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the nasal cornea (epithelial 

thickness day 2). 

Figure 3-12: Bland and Altman graph of Visante
 TM

 OCT vs OCT II at the temporal cornea 

(epithelial thickness day 2). 
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Figure 3-13: Bland and Altman graph of Visante
 TM

 OCT vs Orbscan at the center (corneal 

thickness day 1). 

Figure 3-14: Bland and Altman graph of Visante
 TM

 OCT vs Orbscan at the nasal cornea (corneal 

thickness day 1). 

Figure 3-15: Bland and Altman graph of Visante
 TM

 OCT vs Orbscan at the temporal cornea 

(corneal thickness day 1). 
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Figure 3-16: Bland and Altman graph of Visante
 TM

 OCT vs Orbscan at the center (corneal 

thickness day 2). 

Figure 3-17: Bland and Altman graph of Visante
 TM

 OCT vs Orbscan at the nasal cornea (corneal 

thickness day 2). 

Figure 3-18: Bland and Altman graph of Visante
 TM

 OCT vs Orbscan at the temporal cornea 

(corneal thickness day 2). 
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3.5 Discussion 

 

Ultrasound pachymetry has been the gold standard for central corneal thickness measurement because of 

its established reliability, but no corneal contact and high speed anterior segment OCT provides a 

promising alternative. Izatt et al. 
28

 were the first to show the potential for corneal imaging and they 

demonstrated that epithelium and endothelium layers could be distinguished in an OCT image. Bechmann 

et al. and Wong et al. have reported that ultrasound pachymetry overestimates corneal thickness by 

approximately 49 microns and 31.9 microns respectively. 
14;29

 Commercial anterior segment OCT‟s have 

been most commonly used for examining corneal and epithelial thickness,
30

 diurnal variation in corneal 

thickness,
20

 measurement of tear film thickness, 
31

measurement of corneal thickness pre and post 

refractive surgery 
32

 and also to assess corneal morphological effects of corneal edema.
23

  

In this study we compared repeatability of two commercially available TD-OCT (Visante™ OCT and the 

adapted Zeiss–Humphrey retinal OCT II) and examined the measures of total corneal and epithelial 

thickness across central, temporal and nasal locations on the cornea. Repeatability of Orbscan II
 TM

 was 

also examined for the total corneal thickness at the same three locations on the cornea. The average 

corneal thickness for day 1 and day 2 at the center of the cornea was 536±27 µm, the nasal and temporal 

corneas were 554±26 µm and 565 ±26 µm respectively using the Visante™ OCT. When these results are 

compared to the Orbscan II
 TM

, there is a significant difference with Orbscan producing higher average 

corneal thickness measurements of 609±29µm, 609±27µm and 600±29µm for the central, nasal and 

temporal corneas respectively. The nasal measurement of corneal thickness with the OCT II was higher 

by 45 microns compared to the Visante™ OCT. The average CCT with the OCT II at the center was 

520±25µm, which is very similar to the results obtained by Muscat et al. and Bechmann et al. of 

526±28µm and 530±32µm respectively.
13;29
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Muscat et al. evaluated the repeatability of CCT using Humphrey-Zeiss OCT found an CCC of 0.998 

which is comparable to the results of my study.
13

 The repeatability of the central corneal thickness was 

similar for all the three instruments although the Visante™ OCT produced the highest CCC of 0.99, 

similar to the results in other recent studies with reported CCC‟s of 0.962
33

 and 0.998.
34

 The range of 

corneal thickness CCC‟s for all the three instruments was 0.97 to 0.99. The nasal and temporal locations 

measured with both the instruments showed less repeatability compared to the center with CCC ranging 

from 0.52 to 0.58. The epithelial thickness measures showed poor repeatability with Visante™ OCT and 

OCT II with CCC  ranging from 0.34 to 0.75. 

Peripheral corneal pachymetry measurements were difficult to repeat. Some of the previous studies have 

also shown similar results; Li et al. reported thinner and less reliable measurements in the peripheral zone 

of 7mm diameter or greater.
35

 Sin et al. have also reported central corneal epithelial thickness 

repeatability to be much lower compared to the corneal thickness measure repeatability and have 

emphasised the importance of averaging images and the requirement of increasing sample size to 

potentially overcome poor repetability.
30

 

The within device repeatability was generally good, excluding some epithelial measures. There was 

poorer concordance between the instruments compared to within instrument test-retest. The highest CCC 

of 0.97 was between the Visante™ OCT and the OCT II for measures of central corneal thickness on day 

2. The range of between-device central corneal thickness CCC‟s was 0.66 to 0.97. The epithelial 

measures were less repeatable, ranging from 0.53 to 0.57, similar to the report by Muscat et al.
13

  

In this chapter I have reported that the Visante™ OCT has the most repeatable measurements of corneal 

and epithelial thickness, with COR‟s approximately ranging from 7.71 µm to 9.92 µm. Similarly, Muscat 

et al.
13

 have shown a COR of 11 µm averaged for 6 radial scans and COR of 10 µm for central corneal 

thickness 
30

.  
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The Orbscan II
 TM

 corneal thickness measures were significantly higher (p<0.05) compared to the 

Visante™ OCT and OCT II but their repeatability was similar to the other three instruments. The COR‟s I 

estimated using the measures from the Orbscan II
 TM

 were  ± 11 µm , similar to that of apical measures 

reported by Marsich and Bullimore.
36

  

An important reason for performing the repeatability studies is to get insight about the measurements 

themselves. My results were that the test-retest and between-device measurements were generally 

consistent and that the within-device Visante™ OCT repeatability was the best. On the other hand the 

repeatability of the epithelial thickness measurements was poorer; this variability can be minimized by 

averaging multiple images. This was also suggested by Sander et al. who showed that averaging OCT 

images enables recovery of detailed structural information. 
37

 My results are similar to this and also to 

those reported by Sin et al. Because clinicians typically do not collect multiple images and average them, 

they perhaps could be a little more careful when interpreting these measurements. 
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Chapter 4 

Lens edge artefact occurring when imaged with an ultra-high resolution Optical 

coherence tomographer 

 

4.1 Introduction 

 
The lens edge has been identified as a possible source of contact lens discomfort. Conjunctival staining, 

indentation and conjunctival flaps outside the limbus, which are associated with the lens edge, are 

examples of complications observed with contact lenses.
1-3

 Although the slit-lamp examination perhaps is 

the standard technique for contact lens examination and is irreplaceable in the assessment of contact lens 

fit, by itself it gives limited information about the relationship between the surface of the eye and the 

posterior surface of the contact lens. Partly for this reason, fluorescein pattern analysis was introduced and 

became part of the routine procedure in contact lens practice. However, recent studies have shown that slit-

lamp examination with fluorescein may not always be sufficiently sensitive.
4;5

 Better assessment of the 

fitting relationship between a contact lens and the ocular surface could be helpful to achieve an optimal fit 

thus, to improve success rates.
6
  This has been demonstrated especially in eyes with astigmatism 

7
 and in 

ortho-keratology.
8-10

 

Optical coherence tomography (OCT) is an imaging method that allows for non-invasive imaging of the 

morphology of the biological tissue with micrometer scale resolution.
11-14

 Over the past two decades OCT 

has found numerous medical applications, and in particular in ophthalmology for non-invasive, imaging of 

the human retina 
15-18

 and the anterior eye chamber.
18-22

 

Recent advances in laser and infrared camera technologies have led to the development of spectral domain 

OCT (SD-OCT)
23-26

 and swept source OCT (SS-OCT)
20;27-29

 which offer significantly improved sensitivity 
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and reduced image acquisition time as compared to Time domain OCT (TD-OCT). The faster image 

acquisition speed results in OCT tomograms free from distortions that are typically observed in TD-OCT 

images and are caused by the motion of the object.
30;31

  

In the present study, we demonstrate the application of a research grade high speed, ultra high resolution 

optical coherence tomography (UHR-OCT) system, operating in the 1060nm spectral range that can acquire 

high resolution images of the contact lens edge on a continuous surface and on human conjunctival tissue. This 

UHR-OCT system provides approximately 3 micron axial and 15 micron lateral resolution in the corneal 

tissue. Imaging the anterior segment with the 1060nm spectral range has major advantages over the similar 

systems operating at other 800nm and 1300nm – it provides similar resolution to 800nm OCT anterior segment 

systems, without the necessity for hardware or software dispersion compensation.
32

 

4.2 Methods 

4.2.1 Imaging 

 

The UHR-OCT system used in this study is based on a compact fibre optic Michelson interferometer, 

connected to a super luminescent diode (SLD; Superlum Ltd.; λc =1020 nm, Delta λ=110nm) (Figure 4-1). The 

reference arm consists of an achromatic collimator (Edmund Optics), a custom tuneable dispersion unit based 

on a pair of BK7 glass prisms, a focusing achromat lens and an Ag mirror mounted on a translation stage. The 

corneal imaging probe is comprised of 3 achromat doublet lenses (Edmund Optics, f1 = 20mm, f2 = f3 = 35mm) 

and a pair of galvanometric scanners (Cambridge Technologies). The interference signal is detected with a 

custom, high-performance spectrometer (P&P Optica, Inc.), interfaced to a 1024 pixel array InGaAs camera 

(SUI, Goodrich Corp.) with 47 kHz readout rate. The UHR-OCT system provides 3.2 micron axial and 15 

micron lateral resolution in biological tissue. All tomograms were processed with Matlab (Mathworks).  
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Figure 4-1: A schematic diagram of the UHR-OCT system.  

CCD – InGaAs camera, CL – collimator lens, DC – dispersion compensation unit, DG - diffraction 

Grating, FL- focusing lens, OL - ocular lens, PC - polarization controllers, SLD – superluminescent 

diode, TS – computerized translation stage, X,Y – galvanometric scanning mirrors. 

 

Two dimensional tomograms (2-D) of a selection of marketed silicone hydrogel and hydrogel lenses 

(refractive indices ranging from 1.41 to 1.51) were acquired using the UHR-OCT. Images were acquired 

after placing the lenses concave side down on a glass spherical reference sphere (n=1.52), and on a rigid 

contact lens manufactured with a refractive index similar to that of the human cornea (n=1.376). The 

contact lenses used in the study were J&J: 1-day Acuvue Moist™, Acuvue Advance™, Ciba Vision: Air 

Optix Night and Day™, and Bausch and Lomb: PureVision™. All lenses imaged were of the same power 

(-3.00 D) and with similar base curves. Images of the glass spherical reference sphere and the custom 

made rigid contact lens were acquired without the lens for comparison purposes. All contact lens images 

were acquired at room temperature and within ~1minute after removal from the original package to 

minimize distortions in the images resulting from dehydration of the lenses. A total of 5 cross-sectional 
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OCT images were acquired from each of the soft contact lenses while the lenses were placed on the glass 

sphere and on the contact lens.  

OCT images were acquired after 5 minutes to adaption to the lens. During the imaging procedure, the imaging 

probe was initially aligned with the corneal center. Subsequently, the position if the imaging probe was 

adjusted laterally to acquire images of the edge of the lenses. Figures 4-2 and 4-3 show the lens edge imaged 

on the glass surface and human conjunctiva respectively.  

 

Figure 4-2: Soft contact lens edge on a continuous glass surface. 

 

 

Figure 4-3: Soft contact lens edge on human conjunctival tissue.  

 

In order to derive the estimates of displacement illustrated in figures 4-2 and 4-3 the following method 

was used using the constants defined in figure 4-1. 
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Figure 4-4: Measurement method- A (2-D) UHR-OCT tomogram (1000 A-scans x 512 pixels)  

Bausch & Lomb Pure Vision contact lens (-3.00D ; n= 1.426) on conjunctival tissue.  

 

Physical thickness of the lens edge is Z1 - Z0                                                                       equation 1 

Optical thickness of the contact lens is Z1 - Z0
I       

equation 2 

and an  increase in the path length difference is  Z0 - Z0
1 
                equation 3 

Optical thickness = physical thickness x refractive index (n).      

 Or Z1-Z0
1
=Z1-Z0 x n                 equation 4. 

And by rearrangement of one can obtain; 

n = Z1-Z0
1 

      Z1-Z0 

And we can obtain Physical thickness= Z1-Z0 / n 

The optical displacement was measured as the difference between the optical thickness and the physical 

thickness in microns using Image J software.  



 

 92 

4.3 Results 

 

Displacement of a continuous surface was observed when the lenses were imaged on the glass 

reference sphere and also on the rigid contact lenses.  

Figures 4-5, 4-6, 4-7, 4-8 are (2-D) UHR-OCT images of the soft contact lens edges on the glass 

reference sphere (n=1.52). 

  

Figure 4-5: (2-D) UHR-OCT tomogram of Air Optix (-3.00D; n=1.42). 

Figure 4-6: (2-D) UHR-OCT tomogram of PureVision (-3.00; n=1.426). 

 

Figure 4-7: (2-D) UHR-OCT tomogram of 1-day Acuvue Moist (-3.00D; n=1.509). 

Figure 4-8: (2-D) UHR-OCT tomogram of an Acuvue Advance (-3.00D; n=1.405). 

 

Figures 4-9, 4-10, 4-11, 4-12 are images of soft contact lens edges on rigid contact lenses with 

refractive index of the cornea (n=1.376). 
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Figure 4-9: (2-D) UHR-OCT tomogram of Air Optix (-3.00D; n= 1.42). 

Figure 4-10: (2-D) UHR-OCT tomogram of PureVision (-3.00D; n= 1.426). 

  

Figure 4-11: (2-D) UHR-OCT tomogram of a 1-day Acuvue Moist (-3.00D; n= 1.42). 

Figure 4-12: (2-D) UHR-OCT tomogram of a Acuvue Advance (-3.00D; n=1.405). 

 

Representative images of contact lens edges on the conjunctiva are shown in Figures 4-13 to 4-16. 

  

Figure 4-13: (2-D) UHR-OCT tomogram of Air Optix (-3.00D; n= 1.42). 
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Figure 4-14: (2-D) UHR-OCT tomogram of PureVision (-3.00D; n= 1.426). 

  

Figure 4-15: (2-D) UHR-OCT tomogram of an 1-day Acuvue Moist (-3.00D; n= 1.42). 

Figure 4-16: (2-D) UHR-OCT tomogram of an Acuvue Advance (-3.00D; n=1.405). 

 
In each of the figures above it appears that the lens is indenting the surface on which it is placed. This 

perhaps makes sense for the conjunctiva because of the softness of the tissue but is obviously impossible 

when the substrate on which the lens is positioned is glass or plastic. Therefore, this discontinuation 

present in the images on the continuous substrate (glass or plastic) is an artefact. 

Table 4-1 shows the displacement artefact of the contact lens edge on the glass spherical reference sphere 

(n=1.52) derived from images using ImageJ. A t-test showed a significance difference between measured 

(physical) and calculated (optical) results (p<0.05).  

Table 4-1: Displacement measurements on a glass reference sphere (n=1.52) 
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Table 4-2 shows the displacement artefact of the contact lens edge on rigid contact lenses with a 

refractive index of the cornea (n=1.376). A t-test showed a significance difference between measured 

(physical) and calculated (optical) results (p<0.05). 

Table 4-2: Displacement measurements on rigid contact lens with a refractive index of the cornea 

(n=1.376). 
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Table 4-3 shows the displacement measured conjunctival tissue at the edge of the lens. The t-test 

showed a significance difference between measured (physical) and calculated (optical) results 

(p<0.05).  

Table 4-3: Displacement measurements on human conjunctival tissue 

 

The range of displacement when measured with the glass reference sphere ranged from 5.39±0.06 µm 

with Acuvue Advance to 11.99±0.18 µm with Air Optix Night and day.                               

The range of displacement when measured on a rigid contact lens with a refractive index of the human 

cornea (1.376) ranged from 5.51±0.03 µm for Pure Vision to 9.72±0.12 µm with Air Optix Night and 

day. The displacement of the conjunctiva ranged from 7.0±0.86 µm for the Air Optix Night and Day™ to 

17.4±0.22 µm for the Acuvue Advance™ contact lenses.  
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4.4 Discussion 

 

UHR-OCT technology has great clinical potential since it allows non-contact in vivo examination of the 

anterior segment of the eye, may be a useful tool in aiding in contact lens fitting and can provide insight 

into complications arising from contact lens wear.
33;34

  

This study has shown that clinicians might be more careful at interpreting any conjunctival indentation 

reported to be caused when imaged with optical imagers.  

I believe that the conjunctival displacement and/or compression observed with the edges of the contact 

lens when imaged with the UHR-OCT is partly an artefact of the OCT imaging systems where a 

continuous surface appears displaced when the refractive index (n) of the leading medium changes from 

air to the edge of the contact lens. The displacement was not just observed when the contact lens edges 

were imaged on the human conjunctival tissue but especially when the contact lenses were imaged on 

continuous surfaces. 

The artefact is visible when imaging the lenses and can be quantified by subtracting the baseline curve of 

the glass plate (without the contact lens) from the images with the lenses. The size of the artefact is 

proportional to (n x d) where n is the refractive index and d is the physical thickness. This displacement 

artefact of the surface (due to the incident medium refractive index difference) not only affects the 

measurements with contact lenses but also could affect, for example, tear film volume measurement using 

the OCT devices. Morphometric characteristics of tissue are not always simple attributes of the tissue 

alone, but are also affected by the imaging device. 

In addition, of course, we do not actually know that the nominal lens refractive index is correct near the 

lens edge and secondly, the thickness of the lens is also measured with error (the lens does not have the 

same RI as the tissue RI assumed by the OCT). These two conspire to making the actual artefact very 

difficult to actually quantify in vivo. 
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In summary, this study has demonstrated that when contact lenses are imaged in-situ using UHR-OCT the 

conjunctival tissue was optically displaced beneath the edge of the contact lens and some of this 

displacement is perhaps an artefact of OCT (and other optical) imagers where a continuous surface is 

imaged discontinuous. This displacement is a property of the thickness and refractive index of the contact 

lens edges.  
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Chapter 5 

Relationship between lens fitting characteristics, corneal and conjunctival 

response and comfort 

5.1 Introduction  

 

Soft contact lenses are preferred by both practitioners and wearers because of the relative ease of fitting, 

patient comfort and quick adaption. Sub-optimal fits can lead to discomfort and potentially physiological 

changes and subsequent discontinuation.
1-3

 Soft contact lens fitting involves the selection of the most 

appropriate lens materials, dimensions and wearing modality to match the ocular characteristics and 

patient needs, whilst giving the best fit and visual acuity.
4;5

  

Safety and comfort of the contact lens fitting is determined on the eye. The performance is judged using 

both static and dynamic criteria, including lens centration, corneal coverage and lens movement in 

response to blinking. The factors that influence lens performance include corneal topography, lens base 

curve and peripheral curve radius, lens diameter, edge design, lens material and modulus and lens 

dehydration.
6-10

 

Effects of contact lenses on the anterior surface of the eye are subjective discomfort, dryness, etc.
11-15

 

These symptoms may ultimately lead to either temporary or permanent discontinuation of contact lens 

wear.
16

 Up to fifty percent of hydrogel lens wearers report symptoms of dryness 
14

 and while several 

strategies have been employed to reduce these symptoms, for example comfort drops,
17;18

 interchanging 

material characteristics etc, the actual symptoms have not been thoroughly investigated. 
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Assessment of subjective discomfort relating to contact lens wear is generally made using psychophysical 

methods such as visual analogue scales.
19

 Objective measures of dry eye are usually based on the 

Schirmer test or phenol red thread test, tear break up time and biomicroscopy.
20-22

  

Tear exchange has been hypothesised to play an important role in reducing complications associated with 

extended wear of soft contact lenses and it is not obvious which soft lens variables have the greatest 

influence on tear exchange.
23

 Factors may include the diameter, base curve radius or the peripheral lens 

geometry and all of these can have a substantial impact on the tear exchange.
23

 Young‟s modulus of 

elasticity has been shown to have an effect on lens performance 
24

; a material with a lower modulus will 

offer improved comfort in comparison to a stiffer material of higher modulus
25

 however, there would be 

greater lens flexure on the cornea especially toric corneas.
25

 With the advent of silicone hydrogel lenses, 

attention has started to focus on the mechanical properties and the ocular complications that can arise as a 

result of stiffer, less flexible materials.
26;27

 When silicone hydrogel contact lenses are worn on an 

extended wear basis there are several complications that are hypothesised to arise as a result of 

mechanical irritation, such as superior epithelial arcuate lesions, contact lens related papillary 

conjunctivitis and mucin ball production.
28

  

There has been a great deal of research focusing on the impact of soft contact lens on the cornea such as 

corneal neovascularisation,
29

 corneal staining,
30

 topographical changes, microbial keratitis 
31

etc. Due to 

the proximity of the upper eyelid to the superior cornea, additional physiological changes might perhaps 

be expected in this region dependent on the lens material, lens design and eyelid pressure. Certainly, 

eyelid pressure has been reported as a factor in corneal changes due to downward gaze angle,
32

 eye 

movements
32

 and different visual tasks including reading, and computer work.
33

 The superior eyelid has 

been associated with various complications with extended soft contact lens wear due to mechanical 
28;34-36

 

and hypoxic stress
37-42

 on the superior cornea and this is said to affect the risk of complications with soft 

contact lens wear. In terms of the hypoxic stress, Holden et al. 
43

 reported that wearing contact lenses on 
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an extended wear basis mimics prolonged eye closure; swelling of 12% overnight and 4% during the day 

was reported in subjects during continuous wear of hydrogel contact lenses. Studies have shown that 

immediately after retracting the upper eyelid the oxygen uptake of the cornea significantly increases 

compared to the central and inferior cornea. 
44-46

 Benjamin et al.
45

 reported that the uptake in oxygen is 

reduced and reversed when exposing the entire cornea uniformly. Their results provide support to the 

view that superior cornea is perhaps chronically hypoxic
45

. Hypoxia and mechanical complications of lens 

wear affecting the superior cornea include super arcuate epithelial lesion, neovascularization, epithelial 

folds, limbal hyperemia, and conjunctival indentation.
28;39;47-49

 

Silicone hydrogel contact lenses transmit more oxygen to the eye compared to the conventional hydrogel 

lenses and are supposed to lower the risk of hypoxia related complications. 
50-52

 Studies have reported 

improvement in general ocular health, including the cornea and conjunctival tissue, with silicone hydrogel 

lenses and hence these lenses have become the preferred lens for clinical fitting compared to the low 

oxygen permeable lenses (low Dk).
53-55

 It has been reported that the risk of corneal infections and 

inflammatory reactions have been reduced with the silicone hydrogel wear. 
54;56;57

 However, there are 

conflicting reports suggesting that wearing these lenses is still associated with risk of infalmation.
49;58;59

  

The main purpose of this study was to determine if we are able to predict end of the day comfort and 

dryness using clinical predictor variables. In addition, to examine the relationship between the soft 

contact lens fitting characteristics and clinical complications observed. The superior cornea and 

conjunctiva were examined to explore regional differences.  

5.2 Objective 

 

The main purpose of this study was to determine if we are able to predict end of the day discomfort and 

dryness using clinical predictive variables. The second purpose of the study was to determine if there was 

any relationship between lens fitting characteristics and clinical complications, especially to the superior 
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cornea and conjunctiva. All observations were made with a higher modulus (PureVision) and lower 

modulus (Acuvue Advance) silicone hydrogel contact lenses that were fitted steeper (AA 8.3, PV 8.3) and 

flatter on the eye (AA 8.7, PV 8.6). 

5.3 Materials and Methods  

5.3.1 Participants 

 

Thirty participants (neophytes) were recruited. Study lenses were worn for two weeks on a daily wear basis 

for 8 to 10 hours per day. Neophytes were selected so that any physiological (or other) response to the 

experimental lenses would not be influenced by any previous contact lens wear. Those study participants who 

could not be fitted with all four designs of lenses were excluded from the study. The participants were 

recruited for the study using Centre for Contact Lens Research records with the use of an advertisement 

circulated on the University of Waterloo campus and local residential community. Eligibility was determined 

using the inclusion and exclusion criteria detailed below. 

5.3.2 Inclusion and Exclusion criterion 

A person was eligible for inclusion in the study if he/she: 

1. Was a non contact lens wearer for at least 6 months 

2. Was a spectacle wearer with the power range from -12.00 to +8.00 DS. 

3. Was at least 17 years of age and has full legal capacity to volunteer. 

4. Had read and signed an information consent letter. 

5. Was willing and able to follow instructions and maintain the appointment schedule. 

6. Had an ocular examination in the last two years. 

A person was excluded from the study if he/she: 

1. Had any ocular disease. 



 

 103 

2. Had any systemic disease affecting ocular health. 

3. Was using any systemic or topical medications that may affect ocular health. 

4. Was known to be sensitive to the diagnostic pharmaceuticals to be used in the study. 

5.3.3 Study lenses  

The lenses used for the study were Purevision (8.3 and 8.6 base curve) and Acuvue Advance (8.3 and 8.7 base 

curve). Table 5.1 summarize the lens parameters. 

Table 5.1 Lens parameters 

 Acuvue Advance PureVision 

Manufacturer Vistakon Bausch & Lomb 

Material Galyfilcon A Balafilcon A 

FDA classification I III 

Health Canada license # 67836 64120 

Stiffness (g/mm2) 43 110(150) 

EWC (%) 47% 36% 

Dk/t (-3.00D) 86  99 

BOZR (mm) 8.40, 8.80 8.30, 8.60 

Diameter (mm) 14.00 14.00 

Spherical powers (D) +8.00 to -12.00D +6.00 to -10.00D 

 

5.3.4 Study visits 

There were two phases to the study. In phase one, subjects were randomly assigned to wear higher or lower 

modulus lens that was steep or flat for each eye. Thus different lenses were worn in each eye. In phase two, 

the other combinations of modulus and base curves were worn. The examiner was masked to the lens type 

worn in each eye. Figure 5-1 shows the study design flow chart. 
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Figure 5-1: Study design flow chart 

 

This study had a screening assessment and 4 measurement visits. The visits consisted of the following.  

i. Screening (0.5 hours per visit) 

Subject eligibility for this study was determined. 

ii. Study visits at baseline for each phase (2 hours per visit) – Randomization of lenses was assigned. 

Lenses were fitted and assessed. Visante
TM

, Soft contact lens analyzer, Medmont E300
TM

, RT-Vue 

OCT and RBC velocity (one eye) measurements were obtained.  
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iii. Study visits at 2 week follow up for each phase (2 hours per visit) – Randomization of lenses was 

assigned. Visante
TM

, Soft contact lens analyzer, Medmont E300
TM

, RT-Vue OCT and RBC velocity 

(one eye) measurements were obtained.  

Participant eligibility was determined at a screening appointment according to the inclusion and exclusion 

criteria outlined below. Informed consent was obtained for all participants prior to their enrolment in the 

study. This protocol was approved by the Office of Research Ethics at the University of Waterloo. Informed 

consent was obtained from all participants prior to the study.  

 

5.3.5  Visante
TM

 optical coherence tomography (OCT) 

 

A Visante
TM

 OCT was used to obtain pachymetry scans of the cornea to measure corneal and epithelial 

thickness. The participants exam experience with the Visante
TM

 OCT was brief and comfortable, with no 

direct contact by the instrument. Patients were instructed to look at an internal fixation target during 

scanning. Rough alignment was achieved by centering the cornea on the real-time video display. The 

scanned image was considered to be optimally aligned when the specular reflex, which is a high intensity 

reflection from the center of the front surface of the contact lens, was visible on the screen. They were 

also instructed to keep their eyes wide open during scanning and when necessary, the lids were gently 

held apart to ensure that the lids did not block the measurement of the central 10mm (diameter) of the 

cornea. Acceptable scans were judged to be of adequate quality based on the following criterion: good 

demarcation of the anterior and posterior boundaries of the cornea, and absence of artefacts. Three 

pachymetry scans per each eye were performed and averaged for corneal and epithelial thickness 

measures. The procedure took approximately 3 minutes per eye. 

The Visante
TM

 OCT software (Version 2.0) automatically processed the OCT image and calculated the 

corneal pachymetry map. The maps were divided into zones by octants (superior, superotemporal, 

temporal, inferotemporal, inferior, inferonasal, nasal, superonasal) and annular rings (2mm, 5mm, 7mm 
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and 10mm distance). The minimum, average, and maximum corneal thickness of each zone were listed in 

the pachymetry map and in the data table.  

The Visante
TM

 OCT software was also used to export the raw unaltered binary image file (*.bin) for 

analysis. Custom software was used to obtain all values of corneal and epithelial thickness. This was 

measured for all the study lenses at baseline and at the 2 week visit. The software imported the raw data 

from the instrument and then located the peak reflectance that corresponded to the front and rear corneal 

surfaces. From the curves fit to these surfaces (the shortest perpendicular distance to the posterior surface) 

were calculated for each pixel point along the front surface. This procedure was followed for each of the 

three images obtained and the average thickness from the three images was used for analysis. 

Thickness was determined along 5 meridians (0, 45, 90, 135, and 180) degrees and for 7 points on each 

meridian. The points on each meridian were at the apex and at three measurement points on each side at 

1mm intervals. 

The Visante
TM

 OCT comes equipped with the built-in callipers, which were used in the study to measure 

the sagittal depth at the diameter of the contact lens on a high resolution anterior segment image. Three 

images were acquired and the average sagittal depth of the three measurements was used in the analysis. 

Figure 5-2 represents the sagittal height measurements in the enhanced anterior segment mode using the 

Visante
TM

 OCT.  
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Figure 5-2 Sagittal height measurements with Visante
TM

 OCT 

5.3.6 Soft contact lens analyzer  

 

A soft contact lens analyzer (Chiltern Optimec Limited, Malvern, UK) was used in this study to determine 

the dimensions of the soft contact lenses, including sagittal depth and diameter. Prior to the measurement, 

the saline compartment of the analyzer was filled with preserved saline. Using tweezers, the contact 

lenses were placed onto the mantle inside the saline compartment of the analyzer with the concave lens 

surface facing down. A letter-sized paper was placed on the lens projection screen and the image of the 

contact lens was projected onto the paper covering the screen. The contours of the magnified lens image 

(edges and lens apex) were manually sketched on the paper. Using a ruler, the magnified dimensions of 

diameter and sagittal depth were measured and converted into the actual size by considering the 

magnification factor. Three images were taken for the sagittal depth measurements over a period of three 

days and the results were averaged for further analysis. Figure 5-3 shows the soft contact lens analyzer. 
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Figure 5-3 Soft contact lens analyzer 

5.3.7 Medmont E300™ corneal topographer  

 

The Medmont E300™ is a computerized video-keratometer, using Placido rings to map the surface of the 

human cornea. The instrument uses 32 rings with 9,600 measurements and 102,000 analyzed points, and 

the Medmont E300™ provides detailed topographic data over a wide range of the cornea by reflection. 

Participants were instructed to rest their forehead and chin firmly and look at the green fixation target. 

The target, along with the ring patterns of the Medmont E300™ defines the video-keratoscope axis.  

Tangential curvature of the cornea at the baseline and 2week visit with the study lenses was measured at 

three corneal locations; 2mm, 4mm and 6mm zone from the apex (in 1mm steps) and along the five 

meridians (0, 45, 90, 135 and 180 degrees). Three repeated captures of corneal topography were done 

with the topographer and an average of the measurements was used for subsequent analysis. 

5.3.8 Optovue™ optical coherence tomography  

The Optovue™ (RT-Vue OCT) was used to examine the effect of the lens edge on the bulbar conjunctiva. 

During the examination the patient was instructed to look into the imaging aperture with the starburst 

fixation target against a dark background and a scan was performed. 

5.3.9 Image analysis  

The lens edge in vivo was observed using the RT-Vue OCT. Conjunctival epithelial tissue thickness was 

measured within 100 microns of lens edge using ImageJ software (Version 1.44p; National Institutes of 

Health, USA). The conjunctival epithelial thickness was measured at the lens edge and at three 1mm steps 

on either side as shown in Figure 5-4. 
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Figure 5-4  RT-Vue OCT image of a lens edge and the measurement increments at which epithelial 

thickness was obtained. 

 

5.3.10 Red blood cell (RBC) velocity measurement  

 

Videos of the conjunctival blood vessels were taken with the Hyper Micro Color CCD Camera (Plumnet 

Co. Ltd, Japan), which was mounted on a modified slit-lamp. The camera was connected to a PC via USB 

and AVI movies were recorded at a frame rate of 30fps, with a resolution of 720 x 480 pixels 

(24bits/pixel). In order to record the position of the observation and the illumination arms of the slit-lamp 

a protractor was designed and attached to the slit lamp base. At each subsequent visit the illumination arm 

was rotated precisely to the same position for recording the red blood cell velocity. One eye of each 

subject was randomly assigned for video measurement.  

Videos were obtained for the temporal conjunctiva and vessel of interest (VOI) was identified. I recorded 

several minutes of video in order to ensure good quality and an ample number of frames. To ensure 

consistent results, the participant‟s head was restrained with a Velcro strip across the back of their head in 

addition to being supported with a chin rest. During video acquisition the participant was instructed to 

look at a target to their right or left depending on which eye was randomly assigned for video 

measurement.  
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The conjunctival vessels were digitally imaged with high enough magnification to clearly resolve 

movement of the blood within the vessel. For each video one vessel was selected and the cell shift along 

the vessel center line was evaluated using the semi automated analysis software (described in section 

1.4.7) to estimate mean red blood cell velocity. A graticule was used for calibration. It was calculated that 

1mm in the graticule corresponded to 331.5 pixels per mm. Flow rate was calculated using the formula: 

flow = distance * mm/pixel * (frame rate) 

5.3.11 Image analysis macro 

 

A macro was written for Fiji (Version 1.46a; National Institutes of Health, USA) that extracted velocity 

from adjacent frames by examining shifts in peak intensity and shifts in groups of peaks. The following 

steps were taken to obtain RBC velocity measurements.  

 

Figure 5-5 Interface of the macro for RBC velocity measurements 
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 The avi. Video file opened in the macro.  

 A series of frames was selected by reviewing the video file and excluding any frames where there was 

obvious uneven illumination, blink and/or large eye movements. The remaining frames were examined to 

ensure that movement was visible along the VOI centerline. The frame numbers were entered into the 

macro (Figure 5-6) for analysis. 

 The pixels per/mm (331.5) was entered. And a rectangular selection (Figure 5-5;“Rectangle” button) 

around the VOI was manually drawn (Figure 5-7). 

 For the rectangular selection the consecutive frames were registered using “Rigid body” transformation in 

StackReg and a centerline was drawn for the VOI (Figure 5-8) 

 The centerline was analyzed to obtain the RBC velocity estimates (Figure 5-9). 

 

Figure 5-6  Tab to enter frames  
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Figure 5-7  Rectangular isolation of region of interest 

 

 

Figure 5-8  Substack registration using StackReg (left image) and centerline through vessel of 

interest (right image). 
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Figure 5-9   Raw data post processing.  

 A contour map describing the pixel intensity (color) for a position on the centerline (y-axis) for 

each frame in the series (x-axis) was generated using STATISTICA (Figure 5-10).  

 The contour maps were smoothed (3 x 3 pixel blur) in Fiji for better visualization. 

 The angle tool was used to determine the slope ( ) of similar intensities over time. 

 Tan
-1

( ) was calculated and converted to mm/sec for the RBC velocity measurement. 
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Figure 5-10  Graph illustrating RBC velocity measurements  

 

5.3.12 Assessment of subjective comfort 

 

Subjective comfort was assessed using 0-100 visual analogue scales (VAS) for symptoms of comfort, 

vision and dryness. These were assessed by each participant in the morning at insertion, after 2 hours and 

6 hours of lens wear on day 1 and similarly at day 14. These subjective symptoms were assessed for each 

eye separately in both phases of the study.  

5.3.13 Clinical outcome measures 

 

The following clinical outcomes were obtained at each measurement visit: Lens movement; Lens lag on 

up gaze; Lens tightness; Horizontal and vertical lens centration; corneal, conjunctival and limbal staining; 

bulbar and limbal hyperemia, and conjunctival indentation. 
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5.3.14 Data analysis 

 

Data analyses were done using STATISTICA v7 (Stat Soft Inc., Tulsa, OK). An alpha level of ≤ 0.05 was 

considered statistically significant. Data are presented in tables as mean ± standard deviation and in 

figures as the mean with 95% confidence intervals. Repeated measures ANOVA (RM ANOVA) was 

employed for the main outcome variables and Tukey HSD Post-hoc testing (α ≤ 0.05) was used to 

examine pair-wise differences.  

Data was also analyzed using correlation matrices to compare the sensory variables (dryness, discomfort 

and vision) with the clinical outcomes at baseline and 2 weeks. The results were reported as Pearson 

correlation coefficient values (r) with α ≤ 0.05. 

5.4 Results 

5.4.1 Study sample 

Forty participants were screened for the study and 30 participants completed both phases of the study (22 

female, 8 male). Sample size estimations are problematic because of the relatively large number of new 

outcome variables that were studied: Unfortunately, for most of the novel ones, there are no historical 

data to use to rationally calculate effect sizes (means, within and between variances etc.). Nevertheless, 

power calculations were used to examine, for fixed α and β, what effect size the sample size used would 

be able to “detect”. This illustrated in Figures 5-11 and 5-12 below. For the paired test, the interpretation 

is relatively straight forward (and applies to many comparisons used in this thesis). For the sample used 

(n=30), the effect size is 0.46 and so the mean difference needs to be just a bit less than half the standard 

deviation of the difference for this to be significant. Unfortunately, the greater complexity of the repeated 

measures ANOVA precludes as straight forward an interpretation. Nevertheless, as will become apparent, 

the large effect sizes reported in subsequent sections illustrate how large the effect sizes were and so this 

sample size provided more than enough power to obtain statistical significance. 
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Figure 5-11 Effect size graph estimation for paired t test (effect size=0.46, n=30, power= 0.8) 

 

Figure 5-12 Effect size graph estimation for repeated measures ANOVA (effect size=0.22, n=30, 

power= 0.8) 

Table 5.2 summarizes the screening outcome. 
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Table 5.2: Screening outcome 

Participants screened 40 

Did not meet incl./excl. criteria 5 

Chose not to participate (personal reasons) 4 

Participants enrolled for dispensing 31  

Discontinued prior to dispensing 1 

Participants completed 30 

 

The mean age ± SD of the completed participants was 28 ± 1.5 years (ranging from 29.5 to 26.5 years). 

Table 5.3 summarizes few ocular characteristics of the eligible study participants.  

No adverse events were reported over the course of the study.  

Table 5.3 Ocular characteristics 

 

  OD OS 

K-readings Flat K 

Steep K 

42.93±1.34 
43.58±1.35 

42.92±1.30 
43.66±1.41 

Corneal cylinder  -0.40±0.21 -0.44±0.37 

Refractive error   Sphere 

Cylinder 

-1.95±1.67 

-0.40±0.26 

-2.05±1.65 

-0.40±0.28 

 

5.4.2 Lens fitting characteristics 

 

For each fitting characteristic, RM ANOVA was run with visit (baseline, 2 weeks), modulus (AA=low, 

PV=higher) and fit (steep, flat) as simple effects. 

Lens movement  

The results of lens movement for each lens and each time point are shown in Table 5.4 and Figure 5-13.  

Table 5.4  Mean and standard deviation of subjective lens movement (mm) at baseline and 2 weeks. 

 



 

 118 

Lens Baseline 2  weeks 

AA 8.3 0.30 ±0.07 0.26±0.06 

AA 8.7 0.30±0.09 0.31±0.07 

PV 8.3 0.29±0.07 0.28±0.07 

PV 8.6 0.31±0.07 0.30±0.08 

 

 

 

Figure 5-13: Mean subjective lens movement (mm) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 

8.3 and PV 8.6 (error bars represent mean ± SD). 

Lens movement was significantly different between steep and flat lenses (RM ANOVA, Fit p=0.035). 

The least movement was shown by the AA 8.3 lens (multiple pair wise comparisons, Tukey p=0.028). 

Modulus, visit and the other interactions were not significantly different for lens movement (RM 

ANOVA, all p>0.05). All the lenses decreased in movement by the end of 2 weeks except for AA 8.7. 

Lens lag on primary position of gaze 

 



 

 119 

The results of lens lag for primary gaze for each lens and each time point are shown in Table 5.5 and 

Figure 5-14. Lens lag for primary gaze showed no significant difference in any main effects or their 

interactions (RM ANOVA, all p>0.05).  

Table 5.5 Mean and standard deviation of lens lag (mm) for primary gaze at baseline and 2 weeks. 

Lens Baseline 2  weeks 

AA 8.3 0.17±0.05 0.15±0.05 

AA 8.7 0.16±0.06 0.16±0.06 

PV 8.3 0.17±0.06 0.14±0.05 

PV 8.6 0.16±0.06 0.16±0.05 

 

 

Figure 5-14 Mean Lens lag in primary position at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 

and PV 8.6  (mm) (error bars represent mean ± SD). 
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Lens lag with up gaze 

The results of lens lag with up gaze for each lens and each time point are shown in Table 5.6 and Figure 

5-15. 

Table 5.6 Mean and standard deviation of lens lag with up gaze (mm) at baseline and 2 weeks. 

 

Lens Baseline 2  weeks 

AA 8.3 0.16±0.06 0.13±0.04 

AA 8.7 0.18±0.07 0.17±0.06 

PV 8.3 0.15±0.06 0.14±0.06 

PV 8.6 0.17±0.08 0.15±0.06 

 

 

Figure 5-15 Mean Lens lag with up gaze (mm) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 

and PV 8.6 (error bars represent mean ± SD). 
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Lens lag with up gaze was significantly different between steep and flat lenses (RM ANOVA, Fit 

p=0.011), with flatter lenses showing greater lens lag with up gaze. Modulus, visit and all the interactions 

were not significantly different for lens lag with up gaze (RM ANOVA, all p>0.05).  

Lens tightness grading 

 

The results of lens tightness with up gaze for each lens and each time point are shown in Table 5.7 and 

Figure 5-16. 

Table 5.7 Mean and standard deviation of lens tightness (%) at baseline and 2 weeks. 

Lens Baseline 2  weeks 

AA 8.3 50.03 ±6.32 52.00±6.77 

AA 8.7 44.7±6.17 45.93±6.55 

PV 8.3 46.5±7.08 45.83±4.92 

PV 8.6 48.4±7.42 47.00±4.84 
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Figure 5-16  Mean lens tightness (%) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and PV 

8.6 (error bars represent mean ± SD). 

 

There was a significant interaction between modulus and fit for lens tightness (RM ANOVA, modulus*fit 

p=0.021).  Steeper AA lens (lower modulus) had greater lens tightness than flatter AA lenses and both PV 

lenses. The PV (high modulus) steeper lenses had less lens tightness than PV flatter lenses (Tukey, all 

p<0.05). 

Horizontal lens centration  

The results of horizontal lens centration for each lens and each time point are shown in Table 5.8 and 

Figure 5-17. 

Table 5.8 Mean and standard deviation of horizontal centration (mm), temporal (-) and nasal (+) at 

baseline and 2 weeks. 

Lens Baseline 2  weeks 

AA 8.3 0.27±0.23 0.17±0.22 

AA 8.7 0.28±0.28 -0.02±0.30 

PV 8.3 0.25±0.28 0.16±0.26 

PV 8.6 0.26±0.20 0.19±0.23 
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Figure 5-17 Mean horizontal lens centration (mm) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 

8.3 and PV 8.6 (error bars represent mean ± SD). 

 

There was a significant interaction between visit and modulus for horizontal lens centration (RM 

ANOVA, visit*modulus p=0.002) (Figure 5-18).  Both AA and PV lenses shifted towards a more central 

position at 2 weeks compared with baseline, and the shift was greater in the AA lenses (Tukey, p<0.05). 
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Figure 5-18 Horizontal lens centration (mm) with AA and PV lenses at baseline and 2 weeks (error 

bars represent mean ± SD). 

Vertical lens centration  

The results of vertical lens centration for each lens and each time point are shown in Table 5.9 and Figure 

5-19.  

Table 5.9 Mean and standard deviation of vertical lens centration (mm), inferior (-), superior (+) at 

baseline and 2 weeks. 

Lens Baseline 2  weeks 

AA 8.3 -0.05 ±0.43 -0.02±0.30 

AA 8.7 0.05±0.32 -0.04±0.20 

PV 8.3 0.11±0.30 0.11±0.23 

PV 8.6 -0.03±0.32 -0.08±0.22 
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Figure 5-19: Mean vertical lens centration (mm) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 

8.3 and PV 8.6 (error bars represent mean ± SD). 

 

Vertical lens centration was significantly different between steep and flat lenses (RM ANOVA, Fit 

p=0.033). Modulus, visit and all the interactions were not significantly different for vertical lens 

centration (RM ANOVA, all p>0.05). Flatter lenses of both AA and PV lenses significantly decentred 

vertically (RM ANOVA, vertical lens centration p<0.05). 

Lens sagittal height at actual lens diameter on the eye vs. sag of the eye  

Table 5.10 and 5.11 shows the mean sagittal height of the eye at the chord of the measured diameter of 

the contact lens. Table 5.11 shows the sagittal depth of the contact lens at the chord of its measured 

diameter. Figure 5-2 represents the measurement technique for sagittal height measurements on the eye 

using the Visante OCT.  

Comparing the sag of the cornea to the sag of the lens there was a significant difference (p<0.05). There is 

no difference in the sagittal height comparing AA 8.3 and PV 8.3 lenses (p>0.05) but there is a significant 
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difference in the sag of AA 8.7 and PV 8.6 lenses (p<0.05). The AA 8.7 lenses had the least sag. The 

sagittal depth of both steeper lenses was 0.46mm greater than the sagittal depth of the eye at the lens 

diameter chord. The flatter lenses of AA 8.7 and PV 8.6 were 0.14 and 0.22mm respectively greater than 

the sagittal depth of the eye.  

Table 5.10 Mean and standard deviation corneal sagittal depth at lens diameter. 

Lens Diameter (lens) mm SAG (cornea) mm 

AA 8.3 14.18±0.11 3.41±0.16 

AA 8.7 14.21±0.18 3.39±0.19 

PV 8.3 14.12±0.15 3.38±0.15 

PV 8.6 14.32±0.24 3.43±0.16 

 

Table 5.11 Mean and standard deviations sagittal depth of the lens. 

Lens Diameter (lens) mm SAG (lens) mm 

AA 8.3 14.18±0.11 3.87±0.16 

AA 8.7 14.21±0.18 3.53±0.08 

PV 8.3 14.12±0.15 3.84±0.03 

PV 8.6 14.32±0.24 3.65±0.06 

 

 

      Corneal topography  

For corneal topography, RM ANOVA was run with visit (baseline, 2 weeks), modulus (AA=low, 

PV=higher), fit (steep, flat), meridian (0, 45, 90, 135, 180) and location (+2, +4, +6 mm) as simple 

effects. The results of corneal topography (tangential curvature) for each lens, meridian, location and time 

point are shown in Table 5.12 to 5.14 and Figures 5-20 to 5-22. 
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Table 5.12 Mean and standard deviation of radius of tangential curvature at 2mm location from the 

apex at baseline and 2 weeks visit. 

 

Lens Baseline 2 weeks 

 2mm 2mm 

 T-0 ST-45 S-90 SN-135 N-180 T-0 ST-45 S-90 SN-135 N-180 

AA 

8.3 

7.88±0.25 7.84±0.23 7.79±0.24 7.85±0.22 7.88±0.23 7.87±0.25 7.84±0.24 7.80±0.24 7.84±0.24 7.88±0.25 

AA 

8.7 

7.95±0.34 7.90±0.32 7.85±0.33 7.84±0.28 7.89±0.27 7.89±0.24 7.84±0.24 7.85±0.30 7.84±0.24 7.95±0.34 

PV 

8.3 

7.87±0.25 7.83±0.24 7.77±0.24 7.82±0.23 7.85±0.25 7.89±0.25 7.85±0.25 7.79±0.24 7.84±0.24 7.87±0.24 

PV 

8.6 

7.89±0.25 7.84±0.25 7.76±0.26 7.84±0.25 7.90±0.27 7.88±0.23 7.84±0.24 7.79±0.27 7.86±0.25 7.89±0.25 

 

Table 5.13 Mean and standard deviation radius of tangential curvature at 4mm location from the 

apex at the baseline and 2 week visit. 

 

Lens Baseline 2 weeks 

 4mm 4mm 

 T-0 ST-45 S-90 SN-135 N-180 T-0 ST-45 S-90 SN-135 N-180 

AA 

8.3 

7.96±0.28 7.92±0.29 7.86±0.32 7.99±0.31 8.02±0.26 7.97±0.28 7.92±0.28 7.87±0.39 7.98±0.29 8.01±0.25 

AA 

8.7 

8.01±0.22 7.95±0.25 7.89±0.25 7.97±0.32 7.99±0.32 8.03±0.26 7.95±0.32 7.83±0.37 7.95±0.35 7.98±0.28 

PV 

8.3 

7.98±0.27 7.94±0.28 7.87±0.31 7.90±0.29 7.99±0.24 7.99±0.28 7.95±0.29 7.85±0.48 7.99±0.32 7.98±0.25 

PV 

8.6 

7.99±0.26 7.91±0.27 7.78±0.46 7.98±0.34 8.00±2.67 7.99±0.25 7.95±0.29 7.86±0.34 8.00±0.33 8.05±0.28 
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Table 5.14 Mean and standard deviation radius of tangential curvature at 6mm location from the 

apex at the baseline and 2 week visit. 

 

Lens Baseline 2 weeks 

 6mm 6mm 

 T-0 ST-45 S-90 SN-135 N-180 T-0 ST-45 S-90 SN-135 N-180 

AA 

8.3 

8.28±0.37 8.21±0.47 8.28±0.98 8.296±0.42 8.42±0.36 8.37±0.41 8.32±0.57 9.00±3.96 8.34±0.49 8.42±0.36 

AA 

8.7 

8.36±0.34 8.27±0.43 8.25±1.28 8.15±0.54 8.32±0.45 8.47±0.32 8.39±0.42 8.07±1.23 7.95±0.35 8.29±0.42 

PV 

8.3 

8.36±0.40 8.22±0.47 8.27±0.97 8.19±0.46 8.35±0.29 8.34±0.42 8.39±0.63 8.34±2.92 8.19±0.39 8.28±0.34 

PV 

8.6 

8.36±0.34 8.19±0.47 7.98±0.56 8.21±0.53 8.34±0.38 8.35±0.35 8.25±0.38 8.09±0.81 8.38±0.45 8.40±0.41 
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Figure 5-20 Mean tangential radius of corneal tangential curvature (mm) at 2mm from the apex for 

baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and PV 8.6 at (0,45,90,135,180) meridians (error 

bars represent mean ± SD). 

 

 

 

 

Figure 5-21 Mean tangential radius of curvature (mm) at 4mm from the apex for baseline and 2 

weeks with AA 8.3, AA 8.7, PV 8.3 and PV 8.6 at (0,45,90,135,180) meridians (error bars represent 

mean ± SD). 
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Figure 5-22 Mean tangential radius of curvature of the cornea curvature (mm) at 6mm from the 

apex for baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and PV 8.6 at (0,45,90,135,180) 

meridians. 

 

There was no significant change in tangential curvature over time (RM ANOVA, p=0.168), no change 

with base curve (RM ANOVA, p=0.741) and no change comparing higher and lower modulus lenses (RM 

ANOVA, p=0.237).  

There was a significant difference in tangential curvature between meridians (RM ANOVA, meridians 

p=0.001), and between locations for different fits (RM ANOVA, fit*location p=0.036). The tangential 

curvature was significantly steeper superiorly than the nasal and temporal cornea by the end of 2 weeks 

(Tukey, both p=0.001). All the flatter and steeper lens fits showed a flatter tangential curvature at 

locations more distant from the apex by the end of 2 weeks (Tukey, all p<0.05). At similar distances from 

the apex there was no significant difference in tangential curvature between fit types (Tukey, p>0.05). 
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Corneal and epithelial thickness 

 

For both corneal and epithelial thickness, RM ANOVA was run with visit (baseline, 2 weeks), modulus 

(AA=low, PV=higher) and fit (steep, flat) at central (0), temporal locations (-1, -2, -3) and nasal locations 

(1, 2, 3) along four meridians (0, 45, 90 and 135 degrees). Data was analysed for the central and 

peripheral location at +3 in the vertical (superior) meridian. Comparisons were made using the Fisher 

LSD post-hoc tests and were Bonferonni corrected. The total corneal and epithelial thickness has been 

tabulated for baseline and 2 weeks and reported in Appendix A and B. 

 

Corneal thickness 

Figures 5-23 and figure 5-24 illustrates corneal thickness at the superior and central quadrants with lower 

(AA) and higher (PV) modulus lenses comparing the steeper and flatter fit along the vertical meridian. 

There was a significant interaction between visit, modulus, fit, meridian and location (RM ANOVA 

visit*modulus*fit*location, p=0.002) for total corneal thickness. At baseline with the PV lens there was a 

significant difference in corneal thickness for each base curve (Fisher LSD, both p=0.001). In the central 

location there were significant changes for both steep AA and PV lenses indicating corneal thinning at 2 

weeks (Fisher LSD, all p=0.002).Comparing the baseline with 2 weeks for both AA and PV lenses, the 

steeper base curves of both lenses and flatter base curve of the AA, in the superior meridian had a 

significant amount of corneal thinning (Fisher LSD, both p=0.014 respectively)  

At 2 weeks comparing the superior and central cornea with the higher modulus lens (PV) with the steeper 

base curve indicated that there was no difference (Fisher LSD, p=0.119)  
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Figure 5-23 Mean central corneal thickness with lower (AA) and higher (PV) modulus lenses 

comparing the steeper and flatter fit. Error bars represent mean ± SD. 
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Figure 5-24 Mean corneal thickness along the 90 degree meridian for superior cornea with lower 

(AA) and higher (PV) modulus lenses comparing the steeper and flatter fit. Error bars represent 

mean ± SD. 

 

Epithelial thickness 

There was a significant interaction between modulus, fit and location (RM ANOVA, 

modulus*fit*location p=0.042) for epithelial thickness (Figure 5-25). Steeper AA lens (lower modulus) 

had greater epithelial thinning than flatter AA lenses and both PV lenses in the superior location (Tukey, 

all p<0.05). Figure 5-25 illustrates epithelial thickness data at central, superior, inferior, nasal and 

temporal locations with lower (AA) and higher modulus (PV) lenses comparing the steeper and flatter fit. 
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Figure 5-25 Mean epithelial thickness at central, superior, inferior, nasal and temporal locations for 

lower modulus (AA) and higher modulus (PV) lenses comparing the steeper and flatter fit. Error 

bars represent mean ± SD. 

 

Comparing the superior and inferior locations for epithelial thickness for the lower modulus lenses (AA) 

with the steeper BC there was a significant thinning of the epithelium superiorly (Tukey, p=0.038). 

Comparing the superior and central location with the higher modulus lens (PV) with the steeper base 

curve indicated that there was more epithelial thinning occurring centrally (Tukey, p=0.037). Nasal and 

temporal comparisons showed a significant thinning temporally for the lower modulus lenses (AA) with 

the steeper base curves (Tukey, p=0.014). 
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5.5 Biomicroscopy  

For each biomicroscopy finding, RM ANOVA was run with visit (baseline, 2 weeks), modulus (AA=low, 

PV=higher), fit (steep, flat) and location (temporal, superior, nasal, inferior) as simple effects. 

Corneal staining  

Corneal staining was rated on a scale of 0 (negligible) to 100 (severe) for each quadrant (nasal, 

temporal, superior and inferior) and the central region. The results of corneal staining for each lens and 

each time point are shown in Table 5.15 and Figure 5-26. 

From the product of severity and percent coverage, global staining score (GSS) was calculated as the 

mean of the five quadrants. Corneal staining showed no significant difference in any main effects or 

their interactions (RM ANOVA, all p>0.05).  

Table 5.15 Mean and standard deviation of corneal staining at baseline and 2 week visit  

 

Lens Baseline 2  weeks 

AA 8.3 33.83±68.24 45.16±69 

AA 8.7 65.83±92.07 47.50±74.0 

PV 8.3 52.33±76.57 48.00±65.2 

PV 8.6 50.67±108.65 47.0±73.3 
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Figure 5-26 Mean global corneal staining (average of five locations) at baseline and 2 weeks with 

AA 8.3, AA 8.7, PV 8.3 and PV 8.6 (error bars represent mean ± SD). 

 

Bulbar Hyperemia 

Bulbar hyperemia was rated on a scale of 0 (negligible) to 100 (severe) for each quadrant (nasal, 

temporal, superior, and inferior) and averaged over all quadrants to derive an average bulbar hyperemia. 

The results of bulbar hyperemia for each lens and each time point are shown in Table 5.16 and Figure 5- 

27. 

Table 5.16 Mean and standard deviation of bulbar hyperemia (0-100) at baseline and 2 week visit 
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Lens Baseline 2  weeks 

 Temp Superior Nasal Inferior Temporal Superior Nasal Inferior 

AA 

 8.3 

25.6±3.8 21.6±3.03 26.1±3.6 22.1±2.81 27.0±3.89 23.27±4.28 27.24±4.14 23.45±4.03 

AA 

8.7 

24.1±3.41 21.1±3.10 24.3±3.80 20.8±2.90 26.9±3.64 23.28±4.49 25.17±5.09 23.28±3.84 

PV 

 8.3 

25.83±8.6 21.10±2.89 25.5±3.31 21.33±2.60 25.10±5.11 23.17±3.07 26.67±3.79 23.00±2.82 

PV 

 8.6 

27.00±9.1 21.50±3.25 24.5±3.56 21.67±3.79 26.33±4.34 21.83±4.63 25.83±3.73 21.83±4.45 

 

 

There was a significant interaction between fit and location for bulbar hyperemia (RM ANOVA, 

modulus*fit p=0.034) (Figure 5-27). There was a significant increase in bulbar hyperemia at the nasal and 

temporal locations for both baseline and 2 weeks with AA (lower modulus) and PV (higher modulus) 

lenses (Tukey, all p<0.05). However, there was a significant decrease in the bulbar hyperemia with PV 

(higher modulus) lenses at 2 weeks compared to the baseline at the temporal location. (Tukey, p<0.05) 
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Figure 5-27 Mean bulbar hyperemia (0-100) at baseline and 2 weeks with AA (low modulus) and 

PV (high modulus) at temporal, superior, nasal and inferior locations (error bars represent mean ± 

SD). 

Limbal hyperemia 

Limbal hyperemia was rated on a scale of 0 (negligible) to 100 (severe) for each quadrant (nasal, 

temporal, superior, and inferior). The results of limbal hyperemia for each lens and each time point are 

shown in Table 5.17 and Figure 5-28. 

Limbal hyperemia was significantly different over time (RM ANOVA, a p=0.007) and by location (RM 

ANOVA, p=0.029). There was an increase in limbal hyperemia at 2 weeks which was found mainly in the 

nasal and temporal quadrants.  

Table 5.17 Mean and standard deviation of limbal hyperemia (0-100) at baseline and 2 weeks. 
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Lens Baseline 2  weeks 

 Temporal Superior Nasal Inferior Temporal Superior Nasal Inferior 

AA 

8.3 

10.17±4.99 8.00±2.82 10.33±4.34 7.83±3.13 11.55±4.03 8.96±3.09 11.89±4.10 9.31±4.95 

AA 

8.7 

10.33±4.34 8.33±3.55 11.50±4.76 7.83±3.13 12.07±4.12 10.00±3.54 13.10±4.10 11.03±4.89 

PV 

8.3 

10.37±4.06 8.67±3.19 11.73±4.60 8.83±3.13 10.83±3.49 8.83±3.39 11.5±3.26 9.33±4.49 

PV 

8.6 

10.67±4.30 8.33±3.30 10.33±2.92 8.83±3.87 11.0±4.03 8.67±3.46 11.83±5.17 9.50±3.79 

 

 

 

Figure 5-28 Mean limbal hyperemia at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and PV 

8.6 (0-100) (error bars represent mean ± SD). 
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Conjunctival staining  

 

Conjunctival staining with a fluorescein stain was graded on a scale of 0(none) to 100 (severe) for 

nasal, temporal, superior and inferior quadrants. The results of conjunctival staining for each lens and 

each time point are shown in Table 5.18 and Figure 5-29.  

Table 5.18 Mean and standard deviation of global conjunctival staining at baseline and 2 weeks. 

Lens Baseline 2  weeks 

 Temporal Superior Nasal Inferior Temporal Superior Nasal Inferior 

AA 

8.3 

5.83±7.55 4.67±8.80 6.17±10.06 3.00±6.90 17.93±13.40 16.03±16.11 17.59±13.60 25.28±16.91 

AA 

8.7 

7.00±8.50 2.50±6.66 7.50±9.35 2.50±5.53 19.35±16.69 16.55±14.46 18.45±14.83 24.48±15.89 

PV 

8.3 

7.00±10.39 1.67±5.14 4.17±7.08 1.17±3.13 14.50±12.27 5.50±8.55 9.83±9.78 10.00±11.14 

PV 

8.6 

7.33±8.88 3.83±9.44 6.50±10.01 5.83±10.99 13.00±12.08 5.50±12.48 10.00±10.51 11.83±13.55 
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Figure 5-29 Global conjunctival staining at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and 

PV 8.6 at temporal ,inferior, nasal and superior conjunctiva (error bars represent mean ± SD). 

 

There was a significant interaction between visit, fit and location for conjunctival staining (RM ANOVA, 

visit*fit*location p=0.029) (Figure 5-30). Steeper fitting lenses of AA and PV showed a significantly 

higher conjunctival staining for all the lenses at the 2 week visit (Tukey, p<0.05). 

 

Figure 5-30 Global conjunctival staining at baseline and 2 weeks with fit and steep fitting lenses at 

temporal, inferior, nasal and superior conjunctiva (error bars represent mean ± SD). 

5.5.1 Limbal staining  

 

Limbal staining, visualized with sodium fluorescein was rated on a scale of 0 (negligible) to 100 (severe) 

for each peripheral quadrant (nasal, temporal, superior, and inferior) and was averaged to derive global 

limbal staining. The results of limbal staining for each lens and each time point are shown in Table 5.19 

and Figure 5-31. 
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There was minimal limbal staining with both AA and PV lenses for baseline and 2 weeks. Data was only 

analysed for the 2 week visit as there were multiple visits at baseline where staining was 0 and had no 

variance.  

 

Table 5.19 Mean and standard deviation of limbal staining (0-100) at baseline and 2 weeks. 

 

Lens Baseline 2  weeks 

 Temporal Superior Nasal Inferior Temporal Superior Nasal Inferior 

AA 

8.3 

1.17±3.13 0.33±1.83 0.67±2.86 2.17±7.84 2.07±4.91 0.86±3.01 2.24±5.60 3.79±6.22 

AA 

8.7 

0.67±2.17 0.00±0.00 1.17±3.40 0.67±2.54 2.41±4.15 0.69±2.21 3.45±6.14 3.79±5.12 

PV 

8.3 

1.50±5.11 0.00±0.00 0.17±0.91 0.00±0.00 2.33±6.12 0.33±1.27 0.67±1.73 2.17±5.52 

PV 

8.6 

1.50±3.51 0.50±1.53 1.33±3.93 2.00±5.19 1.33±3.20 0.17±0.91 1.17±4.68 1.83±3.83 
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Figure 5-31 Limbal staining at temporal, superior, nasal and inferior location at 2 weeks (error 

bars represent mean ± SD). 

A significantly higher limbal staining was observed with higher modulus lenses (RM ANOVA, p=0.231). 

A significantly lower limbal staining was observed in the superior quadrant compared to the other 

locations (RM ANOVA, p=0.024). 

Conjunctival indentation  

 

Conjunctival indentation, visualized with sodium fluorescein was rated on a scale of 0 (negligible) to 100 

(severe) for each peripheral quadrant (nasal, temporal, superior, and inferior) and was averaged to derive 

global conjunctival indentation. The results of conjunctival indentation for each lens and locations are 

shown in Table 5.20. 

On a 0-100 scale very little indentation was observed across all lenses, fits and visits. RM ANOVA could 

not be carried out because many variables were 0 and had no variance. Examining only the superior 

conjunctiva at the 2 week visit it was noted that there was a significant difference comparing the low and 

high modulus lenses. The low modulus lenses induced more indentation (ANOVA, p=0.047). 

 

Table 5.20 Mean and standard deviation of conjunctival indentation at baseline and 2 weeks  

 

 

Lens Baseline 2  weeks 

 Temporal Superior Nasal Inferior Temporal Superior Nasal Inferior 

AA 

8.3 

0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.86±4.64 3.45±9.07 0.35±1.86 2.41±7.51 

AA 

8.7 

0.33±1.83 0.00±0.00 0.00±0.00 0.00±0.00 1.38±4.20 5.00±11.57 1.38±4.41 3.97±8.28 



 

 144 

PV 

8.3 

0.33±1.83 0.33±1.83 0.33±1.826 0.00±0.00 1.67±5.47 1.33±5.24 0.00±0.00 0.17±0.91 

PV 

8.6 

0.33±1.83 0.00±0.00 0.33±1.83 0.67±3.65 0.33±1.83 1.00±5.48 0.00±0.00 0.83±3.24 

 

    Conjunctival epithelial thinning (RTVue-OCT)  

 

For conjunctival epithelial thickness, RM ANOVA was run with visit (baseline, 2 weeks), modulus 

(AA=low, PV=higher), fit (steep, flat), location -3 (inside the lens edge), 0 at apex, +3 (outside the lens 

edge) and quadrant (temporal, nasal, superior, inferior) as simple effects. The results of conjunctival 

epithelial thickness for each lens, location, and quadrant are shown in Tables 5.21 and 5.22 and Figures 5-

33 to 5-35. 

Conjunctival epithelial thickness was measured in three positions (1/3 mm steps) on either side of the lens 

edge and the difference in conjunctival thickness from the baseline at each study visit was calculated.  

A significantly higher conjunctival epithelial thinning was seen with modulus, fit and location (RM 

ANOVA, p=0.003), significant conjunctival thinning was also seen with visit, modulus and quadrant (RM 

ANOVA, p=0.008). Interaction of visit, modulus, fit and location also showed a significant conjunctival 

epithelial thinning (RM ANOVA, p=0.018). Overall, steeper fitting AA lenses showed a significantly 

greater thinning at the 0.33mm inside location compared to the PV lenses for steep and flat fit (Tukey, 

p=0.003). Conjunctival epithelial thinning was greater in the inferior quadrant at baseline and 2 weeks 

with the AA lenses (Tukey, p=0.008). The conjunctival thinning was a change of 13.6% for the AA 8.3 

and 13.3% for the AA 8.7 lenses compared to 12.8% with PV 8.3 and 3.37% with PV 8.6 from baseline to 

2 weeks. 

Table 5.21  Mean and standard deviation of conjunctival epithelial thickness at nasal (Nas), 

temporal (Temp), superior (Sup) and inferior (Inf) quadrant at baseline. 
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Lens Loc Position 

  -3 -2 -1 0 1 2 3 

AA 

8.3 

Temp 54.06±13.9 49.88±12.3 51.43±15.3 60.74±12.9 50.64±12.4 55.90±12.8 56.85±14.0 

 Nas 57.20±17.3 53.80±13.9 50.30±13.0 53.47±16.3 51.26±20.6 48.68±12.8 50.24±14.2 

 Sup 63.49±18.2 66.35±22.1 59.70±19.7 63.32±25.4 59.22±20.9 61.87±19.4 57.80±18.1 

 Inf 57.89±22.1 51.01±16.9 50.84±18.3 54.61±18.4 52.20±15.3 49.69±15.4 58.89±18.0 

AA 

8.7 

Temp 49.38±12.4 46.50±14.4 52.97±15.6 54.99±15.1 45.93±15.0 53.86±17.8 59.56±23.5 

 Nasal 62.02±20.6 55.57±14.8 50.69±12.5 48.39±10.4 49.40±13.8 47.74±11.9 51.31±16.2 

 Sup 66.18±24.1 66.95±21.3 60.29±20.9 59.74±21.3 58.53±16.3 59.25±17.9 55.99±16.6 

 Inf 58.99±18.6 58.00±18.1 52.79±16.0 60.91±18.7 58.14±20.6 56.96±22.6 54.81±22.2 

PV 

8.3 

Temp 48.99±11.1 54.08±11.2 50.24±11.8 54.45±14.9 52.62±19.7 56.07±18.3 60.86±20.1 

 Nasal 54.46±18.0 52.45±15.6 47.24±12.3 49.12±12.2 45.74±9.7 45.74±12.9 46.38±12.4 

 Sup 56.13±16.0 59.22±14.1 59.23±17.7 58.66±20.7 56.21±20.7 58.30±15.2 62.19±19.5 

 Inf 61.89±25.3 56.12±19.2 48.93±16.2 54.65±14.4 53.14±17.6 57.92±16.4 60.36±20.6 

PV 

8.6 

Temp 57.19±12.8 54.12±13.2 51.40±11.6 57.13±14.3 50.42±13.7 56.49±14.8 60.39±19.2 

 Nas 72.61±62.8 51.86±14.9 47.79±14.4 48.71±14.7 48.32±10.7 47.75±12.5 46.27±14.4 

 Sup 66.94±20.2 68.03±25.8 64.82±24.5 60.23±16.7 58.70±20.1 60.44±24.2 75.64±28.3 

 Inf 57.08±19.1 49.67±17.2 51.70±19.2 61.76±16.3 53.44±16.6 51.90±20.3 54.29±21.6 

 

 

Table 5.22  Mean and standard deviation of conjunctival epithelial thickness at nasal (Nas), 

temporal (Temp), superior (Sup) and inferior (Inf) at 2weeks.  

Lens Loc Position 

  -3 -2 -1 0 1 2 3 

AA 

8.3 

Temp 52.88±37.8 52.19±37.2 49.67±36.7 51.22±35.9 50.36±36.1 48.97±36.3 53.09±35.8 

 Nas 50.13±35.9 54.23±36.7 55.53±40.2 55.20±42.9 50.10±39.4 47.07±38.5 49.45±36.0 

 Sup 70.20±41.8 62.06±39.7 59.11±38.5 56.47±36.8 52.66±37.9 53.87±39.8 60.45±34.1 

 Inf 52.89±38.1 51.10±38.0 46.03±37.5 51.18±38.4 52.38±35.7 51.99±37.2 50.23±36.9 

AA Temp 52.42±34.8 51.94±35.0 51.29±35.3 47.74±36.3 50.74±37.8 45.23±36.6 49.85±35.7 
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8.7 

 Nas 53.56±37.5 49.93±38.6 49.37±36.9 45.49±38.6 45.82±36.9 46.04±36.6 43.86±38.5 

 Sup 59.74±37.5 62.39±37.5 55.82±36.8 55.16±39.0 51.28±36.6 55.04±36.9 51.78±36.8 

 Inf 50.26±36.6 52.05±38.9 49.26±37.4 46.96±38.2 47.94±38.2 48.73±38.1 50.06±38.9 

PV 

8.3 

Temp 54.12±35.7 54.61±35.5 53.24±35.9 52.44±35.9 50.45±35.6 51.46±36.2 52.74±35.9 

 Nas 50.15±36.9 46.18±37.5 46.47±37.1 46.29±38.0 46.96±37.4 47.05±36.6 45.73±37.5 

 Sup 56.65±35.5 55.22±36.1 51.95±35.9 54.87±35.7 53.78±36.1 55.25±36.6 64.95±37.0 

 Inf 49.16±37.6 48.23±38.3 50.26±37.8 49.31±37.8 50.00±37.7 46.51±37.1 50.96±36.1 

PV 

8.6 

Temp 50.84±36.3 50.39±35.9 47.50±36.7 52.34±36.3 46.62±37.0 47.44±37.2 51.22±37.3 

 Nas 51.53±36.4 48.19±36.0 47.70±38.8 49.67±38.9 46.40±38.5 44.10±37.7 46.52±36.8 

 Sup 58.34±37.0 63.16±37.1 58.85±36.0

4 

60.01±40.0 58.65±37.0 58.65±37.9 60.37±37.8 

 Inf 54.66±35.9 53.79±37.1 50.74±37.3 51.40±36.4 57.30±38.9 53.49±37.1 58.62±37.2 

 

 

 

Figure 5-32 Mean conjunctival thickness -Acuvue Advance 8.3 at baseline and 2 weeks at temporal, 

superior, nasal and inferior conjunctiva (error bars represent mean ± SD). 
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Figure 5-33 Mean conjunctival thickness -Acuvue Advance 8.7 at baseline and 2weeks at temporal, 

superior, nasal and inferior conjunctiva (error bars represent mean ± SD).  

 

Figure 5-34 Mean conjunctival thickness- Purevision 8.3 baseline and 2 weeks at temporal, 

superior, nasal and inferior conjunctiva (error bars represent mean ± SD). 
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Figure 5-35 Mean conjunctival thickness- Purevision 8.6 baseline and 2weeks at temporal, superior, 

nasal and inferior conjunctiva (error bars represent mean ± SD).  

 

5.6 Conjunctival blood velocity  

 

Mean (±SD) velocity of conjunctival blood velocity contents ranged from 0.114± 0.04 mm/sec for the AA 

8.7 lens to 0.195±0.07 mm/sec for the PV 8.6 lenses at the 2 week visit. The results of red blood cell 

velocity at baseline and 2 weeks are shown in Table 5.23 and Figure 5-36. 

There was no effect of lens fit over time on blood velocity. No interactions were observed. There was a 

significant difference in blood velocity with lens types (RM ANOVA, p=0.001). There was a significant 

increase in blood velocity with higher modulus PV lenses compared to lower modulus AA lenses (Tukey, 

p=0.021).  

Table 5.23 Mean and standard deviation of RBC velocity measurement (mm/sec) at baseline and 2 

weeks. 
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Lens 

 

Baseline(Blood velocity) 

(mm/sec) 

 

2 Weeks(blood velocity) 

(mm/sec) 

AA 8.3 0.156±0.15 0.153 ±0.11 

AA 8.7 0.114± 0.04 0.127±0.05 

PV 8.3 0.161±0.047 0.170±0.05 

PV 8.6 0.173±0.29 0.195±0.07 

 

 

 

Figure 5-36  Mean red blood cell velocity (mm/sec) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 

8.3 and PV 8.6  (error bars represent mean ± SD). 

5.7 Subjective ratings 

For each subjective rating, RM ANOVA was run with visit (baseline, 2 weeks), modulus (AA=low, 

PV=higher), fit (steep, flat) and assessment (insertion, +2 hours, +6 hours) as simple effects. 
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Comfort 

Participants rated comfort on a scale of 0 (very poor comfort) to 100 (excellent comfort). The results of 

comfort scales for each lens and each time point are shown in Table 5.24 and Figure 5-37. 

Table 5.24 Mean and standard deviation of comfort ratings (0-100) at insertion, 2 hrs and 6 hrs at 

baseline and 2 weeks. 

 

 

Lens Baseline 2 Weeks 

Insertion 2 Hours 6 Hours Insertion 2 Hours 6 Hours 

AA 8.3 90.97±12.94 84.04±36.45 81.76±36.38 83.28±36.54 90.72±12.01 80.17±37.99 

AA 8.7 88.57±9.85 82.70±35.92 79.67±36.83 88.90±14.11 91.28±11.10 85.52±16.64 

PV 8.3 87.86±9.07 90.14±9.31 85.14±10.79 87.11±12.23 87.89±11.12 80.96±15.03 

PV 8.6 86.48±11.86 88.89±9.67 81.74±16.00 80.04±37.86 87.04±11.77 73.31±38.74 

 

 

Figure 5-37 Mean subjective comfort at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and PV 

8.6 at insertion, 2hrs and 6hrs (error bars represent mean ± SD). 
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Lower modulus lenses were more comfortable overall when compared to lenses of higher modulus (RM 

ANOVA, modulus p=0.041). There was a decrease in comfort from the time of insertion to 6 hours later 

(RM ANOVA, assessment p=0.021). Overall the steep lenses were more comfortable at baseline 

compared to steep lenses at 2 weeks, and compared to flat lenses at baseline and 2 weeks (Tukey, all 

p<0.005). 

Dryness 

Participants rated dryness on a scale of 0 “very dry” to 100 “not dry at all”. The results of dryness scales 

for each lens and each time point are shown in Table 5.25 and Figure 5-38. 

 

Table 5.25 Dryness ratings (0-100) 

 

Lens Baseline 2 Weeks 

Insertion 2 Hours 6 Hours Insertion 2 Hours 6 Hours 

AA 8.3 96.31±6.22 87.32±12.13 84.89±14.24 90.25±13.69 88.21±13.98 74.14±39.04 

AA 8.7 91.90±13.63 86.45±15.84 82.17±20.10 90.10±14.03 87.79±14.44 79.034±19.22 

PV 8.3 89.11±19.67 85.46±11.40 80.89±14.35 89.75±14.12 85.07±14.14 74.79±17.64 

PV 8.6 88.89±22.67 84.44±16.21 75.67±22.26 89.96±10.31 86.27±11.40 68.08±38.22 
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Figure 5-38 Subjective dryness ratings at baseline and 2 weeks with AA 8.3, AA 8.7, PV 8.3 and PV 

8.6 at insertion, 2hs and 6hrs (error bars represent mean ± SD). 

Lower modulus lenses were overall rated as less dry when compared to lenses of higher modulus (RM 

ANOVA, modulus p=0.007). There was also a significant difference in dryness at different times of 

assessment (RM ANOVA, assessment p=0.002) and showed increasing dryness between insertion, 2 

hours and 6 hours (Tukey, all p<0.05). 

Burning 

Participants rated burning on a scale of 0 (no burning at all) to 100 (severe burning). The results of 

dryness scales for each lens and each time point are shown in Table 5.25 and Figure 5-39. 

There is no significant difference in the burning ratings for any of the main effects or their interactions 

(RM ANOVA, all p>0.05).  

Table 5.26 Mean and standard deviation in burning rating (0-100) at insertion, 2 hrs and 6 hrs at 

baseline and 2 weeks. 
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Lens Baseline 2 Weeks 

Insertion 2 Hours 6 Hours Insertion 2 Hours 6 Hours 

AA 

8.3 

98.14±6.02 93.32±18.64 93.11±18.92 96.46±6.98 97.14±5.57 98.86±6.10 

AA 

8.7 

91.93±18.38 93.21±18.79 91.97±19.10 94.93±13.93 96.03±11.50 94.38±13.80 

PV 

8.3 

96.11±10.64 97.71±3.91 94.50±10.38 94.14±12.44 94.93±13.07 93.68±13.82 

PV 

8.6 

95.11±9.63 94.26±12.76 92.56±14.66 94.28±13.73 97.00±5.69 94.60±8.84 

 

 

Figure 5-39 Mean subjective burning ratings (0-100) at baseline and 2 weeks with AA 8.3, AA 8.7, 

PV 8.3 and PV 8.6 at insertion, 2hs and 6hrs (error bars represent mean ± SD). 

Subjective vision rating  

 

Participants rated vision on a scale of 0 (poor vision) to 100 (clear vision) and the results in summarized 

in Table 5.27 and Figure 5-40.  
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Table 5.27 Mean and standard deviation of subjective vision rating (0-100) at insertion, 2 hrs and 6 

hrs at baseline and 2 weeks. 

 

Lens Baseline 2 Weeks 

Insertion 2 Hours 6 Hours Insertion 2 Hours 6 Hours 

AA 8.3 89.76±14.50 89.11±15.80 87.21±13.77 87.68±15.24 85.07±16.03 82.79±18.87 

AA 8.7 86.87±18.39 88.10±15.60 86.90±13.49 86.24±15.40 84.52±16.24 81.83±20.40 

PV 8.3 90.32±15.19 90.18±11.91 84.04±17.14 90.18±10.31 87.32±12.39 80.54±19.95 

PV 8.6 92.23±10.61 91.78±9.36 85.85±14.01 88.40±15.05 86.92±11.97 81.08±16.61 

 

 

Figure 5-40 Mean subjective vision rating (0-100) at baseline and 2 weeks with AA 8.3, AA 8.7, PV 

8.3 and PV 8.6 at insertion, 2hs and 6hrs (error bars represent mean ± SD). 

The subjective rating of vision was significantly different dependent on modulus and the time after 

insertion of assessment (RM ANOVA, modulus*assessment p=0.047). The subjective ratings of vision 

did not change significantly between times of assessment with lower modulus (AA) lenses (Tukey, all 
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p>0.05). The rating of vision was highest for the higher modulus (PV) lenses at insertion and decreased 6 

hours after insertion (Tukey, all p<0.05).  

5.8 Correlations between sensory and clinical variables at the baseline and 2 weeks  

 

In this experiment, sensory variables of end of the day discomfort, dryness, burning and vision at the 

baseline and the 2 week visit were compared to clinical variables (lens performance) using correlation 

statistics in order to see if we can predict the end of the day sensory variables.  

Baseline clinical variables vs end of the day sensory variables 

Baseline clinical variables were correlated to end of the day sensory variables for the baseline visit and 

the results are that there are a number of variables that are associated with the sensory variables measured 

at the end of the day. In wearers of the AA 8.3 lens, horizontal centration, topography along 90 degree 

meridian (4mm from apex), and blood flow were significantly correlated to the sensory variables of 

burning (r=0.53) ,discomfort (r= 0.30), and vision (r=0.43) at the end of the day. In AA 8.3 lens wearers 

there was a significant correlation between blood flow and end of the day discomfort (r = 0.54).  

In lens wearers of AA 8.7, there were a significant associations between vision at the end of the day and 

lens movement, lens lag and horizontal centration (r=0.58, r=0.43, r=0.41 respectively). There was also a 

significant correlation between blood flow and end of day dryness (r=0.55) in these subjects. 

Subjects wearing PV 8.3 and PV 8.6 showed mechanical effects, there were significant correlations 

between conjunctival compression, corneal thickness and epithelial thickness and end of the day 

discomfort (r=0.52), burning (r=0.57) and vision (r=0.52).  

Number of variables correlated (clinical vs. sensory) for the 2 week visit was less compared to the number 

of variables correlating at the baseline visit. Corneal thickness measured with Visante
TM

 OCT along the 

90 degree meridian and at the 3 mm vertical location had a negative correlation with the burning at the 
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end of the day (r=-0.36) with AA 8.3 lens wearers. PV 8.3 lens wearers showed a significant correlation 

between bulbar hyperemia in the superior quadrant and end of the day discomfort (r=0.40). There was no 

correlation seen in lens wearers with PV 8.3 and PV 8.6 lenses comparing the clinical and end of day 

sensory variables for the 2 week visit. 

Clinical variables at baseline visit vs 2 week sensory variables 

Correlations were also performed between the clinical variables measured at the baseline visit and 2 week 

sensory variables; there appeared to be a cluster of vascular effects. Subjects wearing AA 8.3 lens showed 

a significant correlation between superior limbal staining, superior bulbar hyperemia with end of the day 

dryness (r=0.46) and burning (r=0.44).  Red blood cell velocity measurements in AA 8.3 lens wearers was 

correlated with dryness symptoms at 2 weeks ( r=0.91). 

In study participants fitted with AA 8.7 lenses there was a significant correlation between horizontal lens 

centration and end of the day symptoms of dryness (r=0.48) and burning (r=0.65). There was also a 

significant correlation between corneal epithelial thickness measured with the Visante
TM

 OCT and end of 

the day discomfort (r=0.56) after two weeks of lens wear. 

In wearers of PV 8.3 lenses there was a correlation between horizontal lens centration and burning 

(r=0.62), superior bulbar staining and discomfort (r=0.53), superior limbal staining and dryness (r=0.60) 

and superior limbal hyperemia and burning (r=0.62). In wearers of PV 8.6 lenses there was a significant 

correlation with the lens fitting parameter of horizontal lens centration and vision (r=0.46) at 2 weeks.  

 

Sensory variables at the baseline vs clinical variables at 2 weeks 

Analysis was done to examine if there were any correlation between the sensory variables at the baseline 

and the clinical variables examined at 2 weeks. There was a significant correlation between tangential 

curvature data along the 90 degree meridian (4mm away from the apex) and discomfort (r=0.47), burning 

(r=0.53) and vision (r=0.37) for study participants wearing AA 8.3 lens. Those wearing AA 8.7 lens 
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showed a significant negative correlation of lens centration with discomfort (r=-0.37) and dryness (r=-

0.51).  

There was a significant correlation between sensation of burning at the baseline and lens lag (r=0.38) 

observed at the 2 week visit with study studies wearing PV 8.3 lens, there was also a significant 

correlation observed between the sensation of end of the day dryness and conjunctival staining (r=0.43) 

and bulbar hyperemia (r=0.41) observed at 2 weeks. Sensory variables like dryness and discomfort at 

baseline correlated with superior bulbar hyperemia (r=0.456) for study participants wearing PV 8.6 lens.  

Clinical variables at baseline and clinical variables at 2 weeks 

The number of clinical variables collected in the study at baseline and 2 weeks were compared to see if 

they correlate. Conjunctival compression observed in the superior quadrant at the baseline visit seemed to 

correlate with the conjunctival indentation ratings (r=0.47) and the superior bulbar hyperemia ratings 

(r=0.57). The horizontal centration with study wearing AA 8.3 lens correlated with the topographic 

change (r=0.53) measured at the 90 degree meridian (4mm away from apex).  

Significant correlations were also observed with study subjects wearing AA 8.7 lens. A correlation was 

seen between superior bulbar hyperemia observed at the 2 week visit and superior conjunctival 

indentation (r=0.46) seen at the baseline. The conjunctival indentation observed superiorly at the 2 week 

visit had a significant correlation with the superior bulbar hyperemia observed at the baseline visit (r= 

0.46). There was also a significant correlation between the lens movement at the baseline visit and the 

Visante epithelial thickness measured at the superior cornea along 90 degree meridian (3mm away from 

the apex). Lens movement and corneal topography along 90 degree meridian (4mm location away from 

the apex) at 2 weeks also showed a significant correlation comparing the lens movement (r=0.63) and 

topography (r=0.64) at the baseline visit for study subjects wearing AA 8.7 lens. 

5.9 Summary of results  
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The results confirm that the flatter base curve lenses moved more than the steeper lenses. There was a 

significant difference for the two base curves of the AA lenses, the flatter lens having more movement. 

The primary gaze lens lag showed no significant difference in any main effects or their interactions. Lens 

on lag up-gaze was significantly different with fit, with flatter lenses showing greater lens lag with up 

gaze.  

Horizontal centration results indicated that both AA and PV lenses shifted more centrally at the 2 week 

visit compared to the baseline. The shift was greater with the AA compared to the PV lenses. For vertical 

centration the flatter fitting lenses for both AA and PV decentred more vertically. The steeper AA lenses 

had the best centration in the vertical direction.  

There was a significant effect of the lens modulus for lens tightness and centration where the lower 

modulus lens had more resistance with the push-up test and was less decentred, but the modulus 

difference was not seen for lens movement and lag. In vitro it was also observed that flatter AA had the 

least sagittal depth values when measured at the diameter of the contact lens (14mm). This indicates a 

better match with the corneal sagittal depth and therefore the best fitting relationship which is supported 

by the previous results. Both the AA and steeper PV lenses had a higher sagittal depth compared to the 

cornea at the same lens diameter, indicating the steepest fitting relationship. 

Subjective grading for comfort and dryness were reduced for flatter fitting PV lens which did not align 

with the better fitting lens observation. This indicates that the subjects rated the steeper fitting AA as the 

most comfortable lens and the PV lens that moved the most were rated the least comfortable. Comfort and 

dryness perhaps appears to be associated with lenses that move the least. This observation is well 

supported in the literature. The lower modulus lens was also found to be more comfortable and less dry, 

which perhaps aligns with the previous findings on tightness and centration. There was no significant 

difference in burning with any of these lenses. 
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The results from the corneal topography showed that neither the steep nor the flat fitting lenses have any 

effect on the corneal tangential curvature at all the three locations along the five meridians. Perhaps, these 

results may be due to small sample size and short wearing period of two weeks. Another consideration is 

that the back surface curvature of the cornea could be changing instead of the front surface. 

Results from corneal staining showed no significant difference with the lenses. This result perhaps 

indicates that non-preserved peroxide care system being used was gentle to the cornea. The steeper fitting 

lenses of AA and PV showed a significantly higher conjunctival staining at the 2 week visit compared to 

the baseline. Lenses that fit steeper did in fact correspond to more conjunctival staining. There was no 

lens effect on limbal staining; however there was trace amounts of limbal staining with the 2 weeks of 

silicone hydrogel lens wear especially in the superior cornea.  

The mechanical effect of the lens edge of the silicone hydrogel lenses on the conjunctival tissue at the 2 

week visit was assessed with the slit lamp. There was a significant difference in indentation comparing 

the low and high modulus lenses at the superior conjunctiva where the AA lenses induced more 

indentation compared to the PV lenses. 

In addition, the lens edge effect of silicone hydrogel lenses on the conjunctival tissue at the baseline and 2 

week visit was imaged and measured using the RTvue OCT by measuring the conjunctival epithelial 

thickness. There was a BOZR difference where the flatter PureVision lens induced the least amount of 

conjunctival epithelial thinning. The most thinning was found with steeper fitting Acuvue Advance lens 

in the inferior quadrant under the lens edge. 

Hyperaemic response and corneal thickness changes with 2 weeks of silicone hydrogel lens wear were 

also observed. There was a significant interaction between fit and location for bulbar hyperemia. Nasal 

and temporal conjunctiva showed more bulbar hyperaemia. There were no significant bulbar hyperaemic 

effects under the lid at the superior cornea, seen with the two silicone hydrogel lenses with different 
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BOZRs. However, bulbar hyperemia was significantly reduced with higher modulus PV lenses at 2 weeks 

compared to the baseline at the temporal quadrant. Limbal hyperemia was significantly greater in 

temporal and nasal locations at the 2 week visit. 

Total corneal and epithelial thickness profiles with daily wear of silicone hydrogel lenses for 2 weeks 

were measured. A significant difference in the total corneal thickness in the superior meridian was 

observed comparing the baseline with 2 weeks for steeper base curves of both lenses and flatter base 

curve of the AA indicating corneal thinning. Overall the AA steep lens caused more epithelial thinning 

compared to the AA flat lens and both PV lenses at the 2 week visit in the superior cornea.  

There was a significant difference in the red blood cell velocity with lenses of different modulus. 

However, no difference of lens fit over time on blood velocity. Purevision lenses with higher modulus 

showed an increase in blood flow compared to the Acuvue Advance lenses. This perhaps indicates that 

the modulus or the stiffness of the contact lenses do play a role in reducing the blood velocity, the lens 

with the lower modulus and tighter fit did impede the blood flow the most.  

The other important objective addressed in this study was to determine if we are able to predict end of the 

day discomfort and dryness using clinical predictive variables at baseline. Discomfort and dryness are the 

most commonly cited reasons for discontinuation of contact lens wear.
15;60;61

 From the results of this study 

I found that when comparing the clinical and end of the day sensory variables at the baseline visit, there 

were many variables that showed significant correlations with the lenses used in this study. The clinical 

variables such as blood flow, horizontal lens centration, corneal topography, superior conjunctival 

compression seemed to affect the end of the day sensory variables like discomfort, dryness and vision. 

However, when comparing the clinical variables on 2 week visit to the sensory variables at the end of the 

day, there were very few variables that were correlated and this could possibly be due to an adaptation 

effect by the end of two weeks. 
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This study also provides information regarding the sensory effects such as end of the day discomfort and 

dryness at the end of two weeks and their ability to predict the clinical observations that were see at the 

baseline visit. The limbal staining, conjunctival staining, superior bulbar hyperemia, blood flow, 

horizontal centration all had a significant effect on discomfort, dryness and burning by the end of 2 

weeks. This could be a very important relationship that contact lens practitioners who have been dealing 

with the problem of contact lens related discomfort and dryness over the years can use as indicators. 

Measuring blood velocity is not a common practise by contact lens practitioners due to the lack of clinical 

instrumentation and also due to the lengthy chair time. However, the measurement of blood flow in this 

study at baseline was highly correlated with the sensation of dryness at the end of the two week visit. 

The results from this study also emphasise the point that grading of clinical variables such as limbal 

hyperemia, staining and the lens fitting characteristics are important. Increased staining and indentation 

effects on the cornea and conjunctiva would probably lead to more symptoms of discomfort with lens 

wear at the end of 2 weeks but this study did not confirm this association since the most comfortable lens 

possessed the poorest fitting characteristics.  

Clinical variables collected at the baseline were also correlated to see if any change over time can be 

predicted. A number of significant associations were seen when correlating clinical variables at baseline 

to clinical variables at the end of two weeks for study subjects wearing AA 8.3, AA 8.7, PV 8.3 and PV 

8.7. AA 8.3 was the tightest fitting lens and the conjunctival epithelial thinning measured superiorly with 

this lens at the baseline visit had the most correlation to clinical variables such as superior bulbar 

hyperemia, superior conjunctival indentation at the 2 week visit. The lens centration also seemed to affect 

the tangential curvature measurements of the cornea at 2 weeks.  

Study subjects wearing AA 8.7 lens had shown a significant correlation to the lens fit such as lens lag and 

movement to the physiological changes to cornea and conjunctival such as superior limbal staining, 
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limbal hyperemia and superior bulbar hyperemia at the end of 2 weeks. Superior conjunctival indentation 

observed with these lenses seemed to have a significant correlation to bulbar hyperemia in the superior 

quadrant and this could be possible due to the mechanical effects and also the fitting relationship under 

the lid with the contact lenses. The loosest fitting Pure Vision 8.6 lens correlated significantly to 

horizontally lens centration at the end of 2 weeks of lens wear. This indicates the importance of choosing 

the lens of the correct parameters for trial fitting and if one assumes that the lens would center better by 

the end of two weeks, the poor centration may still be a cause of discomfort depending on the material 

used. Systematic associations of blood flow with vascular and staining effects was seen at the end of 2 

weeks with all the lenses indicating the potential hypoxic and mechanical effects with the lenses.   
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Chapter 6 

General discussion 

 

The experiments in this thesis cover a wide range of topics relating to optical coherence tomography 

(OCT) calibration and repeatability and soft lens fitting characteristics including their physiological 

effects on the bulbar conjunctiva. Contact lens edge characteristics were examined using a custom made 

ultra-high resolution OCT. Variables such as meridonial corneal and epithelial thickness, curvature 

changes and blood velocity measurements were also studied in silicone hydrogel contact lens wearers. 

The clinical application of theses lenses that is described in chapter 5 demonstrates that prescribing 

contact lenses with the appropriate material, lens dimensions and wearing modalities is the key to 

successful contact lens wear but the most critical factor is the optimization of lens fit. Sub optimal fit or 

poorly fitting lenses can alter ocular physiology and can contribute to lens discontinuation.
1-3

 This thesis 

examined parameters such as base curve, modulus and lens edge designs and investigated their effects on 

a few specific aspects of the ocular physiology and compared it to subjective comfort.  

Slit lamp biomicroscopy has been the standard technique for evaluating lens fit.
4;5

 In this thesis I have 

demonstrated the use of wide range of imaging techniques that can be used to examine some components 

of the physiological changes of the anterior segment. Commercially available optical coherence 

tomographers were used in quantitatively characterizing the lens fit and to look at the topographic 

alteration in the conjunctiva with lens wear. A custom built ultra high resolution OCT was also used in 

the study. The physiological effects of corneal swelling and topographical curvature changes were also 

assessed.  
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In order to measure the lens effect on the corneal thickness using the Visante™ OCT, the instrument 

needed to be calibrated and assessed for repeatability. In addition, the experiment that was done 

determined that there are differences in measurements among optical devices that are used to perform 

pachymetry. Corneal thickness measures can be repeatable but might not be accurate. It is very important 

to have accurate measures of corneal thickness when physiology is disrupted normally (e.g. hypoxia 

under the lid, in numerous pathological conditions and pre and post surgery) and a number of devices are 

used to assess theses effects. This study examined at the calibration of the Visante™ OCT and Zeiss–

Humphrey retinal OCT II and optical pachymetry. Central thickness of semi rigid lenses with known 

physical thicknesses and with a refractive index similar to that of the cornea (n=1.376) was measured with 

the two OCT‟s and they were compared to measurements with a mechanical gauge and the pachymeter. 

Calibration equations were derived using these comparisons, so that the difference between the 

instruments could be eliminated. The method used was proposed by Moezzi et al. 
6
 The importance of 

having accurate (post-calibrated) corneal thicknesses when measured with any of these devices is that 

they are necessary for measurement of thickness in case of corneal hypoxia
7;8

 in CL wearers and in 

diabetics
9
 and for accurate IOP measurements,

10
 in cases of pre-surgical patients for refractive surgery,

11
 

pre
12

 and post-surgical
13

 keratoconus patients and contact lens wearing patients for ortho-keratology 

among many others.
14

 

Many instruments that are being used to measure corneal thickness cannot be calibrated. Part of the 

difficulty might be in imaging the posterior surface but the refractive index of the cornea is a variable 

common to all techniques for measuring corneal thickness by optical methods, that needs to be 

controlled.
15

 Therefore, a remedy, at least for the optical measurement techniques, would be  to calibrate 

the instruments using a transparent material with a similar refractive index as the human cornea in the 

form of a contact lens (that is with a visible posterior surface).
6
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Although previous studies show regional variation of corneal refractive index as well as variation of 

refractive index between different layers of the cornea,
16

 a refractive index of 1.376 is regarded as the 

overall corneal refractive index.
17-22

 Using reference lenses with refractive index of the cornea (1.376) 

allows rapid and simple calibration and cross calibration of these optical instruments for measuring 

central corneal thickness.  This method demonstrates that in measuring lenses within the “average” 

corneal thickness range (from 375 to 550 microns) the instruments are quite accurate, but, with thicker or 

thinner reference lenses the error is increased. Thinner measures are over-estimated and thicker 

measurements are under-estimated with the Visante™ OCT (Figure 2-10). Possibly the internal 

calibration of the Visante using its own solid calibration sphere is limited in the range of accuracy.  These 

central thickness differences outside this average range can be clinically significant if decisions regarding 

refractive surgery are being made and when correcting the measurement of IOP for corneal thickness.
23;24

 

On the other hand, when decisions are made about eligibility for surgery using a thickness criterion, it is 

not at all clear that + 20 microns is used to define a range of uncertainty; it might be considered to be 

much less.
25

  

Dunne et al. examined the inaccuracy of the Visante™ OCT using ray tracing of contact lenses with a 

refractive index of 1.493 and centre thicknesses ranging from 0.3 to 0.7mm (in 0.1mm steps). Their 

results indicated that there was little variation in accuracy of thickness although other errors were 

reported.
23

 Our approach was different to theirs in that there were differences in measured/assumed 

refractive indices. Also how the images were acquired differed; they used the Visante‟s anterior segment 

map (with custom software callipers) while I used the high resolution map (with custom software). 

The results from chapter 2 also addresses a perhaps important point that attention should be given to 

corneas that are thinner or thicker than average as in cases of keratoconus and post-refractive surgery as 

well as post-penetrating keratoplasty. These measurements may not be accurate when acquired using the 

Visante, OCT II and optical pachymeters. 
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Commercially available anterior segment OCT‟s have been used for measuring the corneal and epithelial 

thickness,
26

 diurnal variation in corneal thickness,
27

 tear film thickness, 
28

 corneal thickness pre and post 

refractive surgery 
29

 and also to assess corneal morphological effects of corneal edema.
30

 

 In order to assess the repeatability of the Visante OCT a second experiment was done where the 

measures of repeatability of two commercially available TD-OCT (Visante™ OCT and Zeiss–Humphrey 

retinal OCT II adapted for anterior segment imaging) were assessed. Corneal and epithelial thickness 

across 10 mm of central, temporal and nasal cornea was measured using the two OCT‟s and repeatability 

of the Orbscan II was also included in the study. These measurements were repeated on two days and 

each individual measurement was repeated three times and averaged.  

The mean corneal thickness with the Visante™ OCT was the most repeatable at the corneal apex, nasal 

and temporal cornea. The epithelial thickness was found to be less repeatable compared to the total 

corneal thickness. In addition to this, the study also demonstrated the importance of averaging multiple 

measurements to improve the repeatability of the thickness measures. This was also suggested by Sander 

et al. who showed that OCT averaging enables recovery of detailed structural information about the retina 

and averaging helps in improved imaging of the retina and also that averaged images correlate well with 

known pathology.
31

    

The average corneal thickness with the OCT II at the apex in the studies reported in chapter 2 and 3 was 

520±25µm  and it  was very similar to the results obtained by Muscat et al. and Bechmann et al. of 

526±28µm and 530±32µm respectively.
32;33

 The first study by Muscat et al. that evaluated the 

repeatability of corneal thickness using OCT II found an CCC of 0.998 which is comparable to the results 

of my study.
32

 The repeatability of the central corneal thickness in my study was similar for all the three 

instruments, with the Visante™ OCT showing the highest CCC of 0.99 similar to the results in reported 

recent studies with CCC‟s ranging between 0.962
34

 and 0.998.
35

 The range of CCC between the three 

instruments in my study was from 0.97 to 0.99.  
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The epithelial thickness repeatability (CCC) of the Visante™ OCT and OCT II was of 0.81 and 0.70. The 

nasal and temporal locations measured by both the instruments were less repeatable compared to the apex 

with CCC values ranging from 0.52 to 0.58. The results from chapter 3 were that peripheral corneal 

pachymetry measurements were more difficult to repeat than apical ones. Some of the previous studies 

have also shown similar results. Li et al. reported the thickness measurements are thinner and are not 

reliable when measured in a peripheral zone of 7mm diameter or greater.
36

 Sin et al. have also reported 

central corneal epithelial thickness repeatability to be much lower compared to the corneal thickness 

measures and have emphasised the importance of averaging images and the suggested increasing image 

numbers to overcome poor repatability.
26

 

Chapter 3 showed that there was good repeatability of corneal thickness measures between days 

(test/retest) at all the locations with the Visante™ OCT, OCT II and the Orbscan II
 TM

. The best 

concordance (estimated using CCC) between the Visante™ OCT and the OCT II for central corneal 

thickness on day 2 was 0.97. The range of between-device central corneal thickness CCC‟s was 0.66 to 

0.97. The epithelial thickness repeatability was also relatively poor when compared with the corneal 

thickness and clinicians and scientists could perhaps be a little more careful when interpreting these 

measurements and take the variability into consideration. 

Examination of the features of the lens edge and their interaction with the conjunctival surface was 

performed using the ultra-high resolution OCT (chapter 4). The conjunctival displacement observed at the 

edges of the contact lenses when imaged with the OCT imagers may be real or an artefact of the imaging 

system. This study used an ultra-high resolution OCT system to acquire two dimensional images of edges 

of hydrogel lenses with varying refractive indices. To examine this displacement effect of the refractive 

index change from air to contact lens material, images of lens edges were taken on continuous surfaces 

(e.g. glass reference sphere, rigid lenses (n=1.376)) and also on the human conjunctiva. ImageJ software 

was used to measure the physical and optical thickness at the edges of these lenses and displacement was 
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measured. There was a range of displacements from 7.0±0.86 µm for the Air Optix Night to 17.4±0.22 for 

Acuvue Advance when measuring the lens edges on the glass/plastic. The results from this study have 

implications since there is very little literature regarding the lens edge and conjunctival interaction and the 

mechanical and physiological changes such as indentation, staining and epithelial folds caused by the lens 

edge and lid interaction. Results from Chapter 3 emphasised that it is important to understand that the 

morphometric characteristics of tissue imaged at the lens edge are not always simple attributes of the 

tissue alone, but are also affected by the imaging device and that the displacement observed is a property 

of the thickness and the refractive index of the contact lens edges.  

Studies have shown that the most common reason for lapsed contact lens wear is discomfort.
3
 The 

patient‟s experiences of inadequate comfort may have arisen from a variety of sources. Among them, one 

of the most important is inappropriate lens fit.
1;37

 Silicone hydrogel lenses have improved the 

physiological responses to contact lens wear 
38-40

 but not much has been done to look at the conjunctival 

tissue responses with these lenses. The study reported in chapter 4 showed that care is needed when 

interpreting the indentation imaged using OCT or optical imagers.  

The results from chapter 5 confirm those from the previous studies; soft contact lenses rarely conform to 

the ideal fit described in fitting guides.
41-43

 Subjective lens movement was reduced in eyes fitted with the 

steeper base curves (BOZR) of both the lenses. PureVision (PV 8.6) appeared to be flat and had the most 

lens movement at baseline and at 2 weeks and Acuvue Advance (AA 8.3) moved the least. Lag on up 

gaze and  lateral gaze are considered to be sensitive indicators of soft contact lens fit.
2;4;41;44

 On up gaze, 

both flatter  AA and PV lenses showed a significant lag suggesting a flat fit. 

The assessment of fit by the push-up test has been reported to provide useful information about lens fit 

especially for tight fitting lenses compared to loose fitting lenses.
2;4;45

 There was a significant difference 

in tightness with the four different types of lenses. Wearers of AA 8.3 experienced increasing graded 

tightness of lens fit at baseline and 2 weeks indicating a steep fitting lens and wearers of AA 8.7 appeared 
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to have the lowest graded lens tightness. Horizontal and vertical lens centration helps in the interpretation 

of the lens fit and is more likely to indicate a loose and tight fitting lens on the eye where the loose fitting 

lens is generally more decentered.
2;4

 There was a significant difference in horizontal lens centration 

among the wearers of all lenses over time. Both AA and PV lenses shifted more centrally at the 2 week 

visit compared to the baseline and the AA lens resulted in better centration. 

Central corneal curvature measurement has been used to select the appropriate soft contact lens base 

curve
2;45;46

. However, several studies have confirmed that the optimal base curve does not correlate with 

central corneal curvature.
47;48

 Young et al. have reported that the relationship between the sagittal depth 

(sag) of the lens and the sagittal depth of the anterior segment of the eye at the lens diameter determines 

the fit of the lens.
46

 It has been reported that if the lens sag is greater than the ocular sag the lens will fit 

steeper and so we need a steeper base curve, and if the lens sag is smaller than the ocular sag the lens will 

fit flat.
46

 There are reports that suggest that not only sagittal depth but other ocular dimensions such as 

corneal asphericity and diameter will also affect soft contact lens fit.
46;49;50

 For successful contact lens 

wear and to reduce the sagittal differences between the lens/cornea  it is important to choose the lens with 

appropriate parameters and this can be done by matching the corneal sag and the lens sag.
51-53

 I used 

Visante™ OCT to measure the ocular sagittal depth of eyes fitted with the two different types of silicone 

hydrogel lenses at the lens diameter. The sagittal depth and the diameter of the contact lenses were 

measured using the Chiltern (Optimec) metrology instrument. Despite hypotheses about the ocular and 

lens shapes characterised by sags being important (e.g., flat lenses are more uncomfortable), these ideas 

were not generally supported and only in wearers of steeper AA lenses was there any correlation with 

comfort (albeit relative poorly).  

Silicone hydrogel lenses have higher modulus compared to the conventional hydrogel lenses and this is 

perhaps one of the reasons why the fit of the silicone hydrogel contact lenses can alter the corneal 

topography.
42;54;55

 In this thesis I examined whether these stiffer lenses induced a change in ocular 
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topography. Regional curvature measurements have been used in fitting rigid lenses but are not a common 

practise in soft lens fitting. In the present study I evaluated the effect of base curve and modulus on 

changes in corneal tangential topography.
56;57

 

Tangential topographical data at 2mm, 4mm and 6mm and along 5 meridians (0, 45, 90, 135, and 180) 

degree meridian was analysed. I examined areas under the upper lid because it was hypothesised that the 

putative mechanical and hypoxia effects in this region might be associated with structural and sensory 

changes. There was no change in the topography from baseline to two weeks any of the sensory effects 

were not occurring because of the changes to the surface. 

Corneal thickness was monitored at baseline and at the 2 week visit. I used the Visante™ OCT to 

examine meridonial corneal and epithelial thickness in contact lens wearers. The cornea is hypothesised 

to be in a chronic state of hypoxia under the eyelid and especially the upper eyelid and there is limited 

evidence of how the corneal structure is influenced in this region.
58;59

 This experiment addresses this issue 

by using high resolution OCT imaging of the corneal structure and examining if there are any changes to 

the corneal and epithelial thickness while wearing daily wear silicone hydrogels.  

Doughty et al. reported in a study using meta-analysis that normal value of central corneal thickness 

(CCT)  in adult human eyes is 0.535 mm which is higher than the 0.518 mm that was considered normal 

by Mishima.
60

 They reported CCT data from literature over a period of 30 years. Overall, studies using 

slit lamp based pachymetry were reported to show a marginally lower CCT values (average 0.530mm) 

compared to ultrasound based studies (average 0.544).
61

 

Contact lenses have been reported to alter corneal thickness.
62;63

 Short- term contact lens wear for a period 

of 3 hours to 3 months is associated with an increase in corneal thickness 
64-68

 Few studies report a 

decrease in corneal thickness in individuals wearing contact lenses for several years.
69;70

 After 18 months 

of wearing contact lenses, corneal thinning was seen in some patients and corneal thickening was seen in 

others.
71

 Doughty et al.
61

 summarized data from various studies and reported that an 8% increase in CCT 
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was expected after wearing hydrogel lenses.
72-76

 A larger increase in CCT was reported with overnight 

wear of contact lenses.
77-80

 The average CCT was reported to be 0.532 mm from studies where baseline 

and experimental values were measured with contact lenses.
75;79;81

 

 I examined corneal and epithelial thickness in participants wearing silicone hydrogel lenses (Acuvue 

Advance, PureVision) for a period of two weeks on a daily wear basis. Corneal and epithelial thickness 

was measured at baseline and after 2weeks of lens wear. Meridonial thickness was measured along 

horizontal and vertical meridian and at 3 points along each meridian (-3 mm, Apex, and 3 mm). There 

was a significant difference in the corneal thickness when comparing the silicone hydrogel lenses. There 

was significant corneal thinning along the superior meridian, at 2 weeks compared to baseline, in wearers 

of both steeper lenses and in wearers of the flatter AA. In wearers of the flat AA lenses there was more 

epithelial thinning at the 2 weeks in the superior cornea. However, a limitation of the corneal thickness 

measurements is perhaps that the baseline measurements were found to be different with the two lenses 

between the two phases indicating that perhaps a two day washout was not sufficient. In addition, 

however because the paired statistical tests used examined the mean differences (and not the difference 

between the means) and these were significant, perhaps in this instance the baseline difference is 

relatively unimportant. 

It has been reported that some degree of corneal staining occurs with contact lens wear.
82-84

 The 

prevalence of corneal staining is reported to be 4 to 79% in normal, non-contact lens wearing patients.
85-87

 

Factors that are related to corneal staining include the contact lens materials, daily wearing time, care 

system and contact lens deposition.
84;88

 Studies on wearers of  hydrogel contact lenses have suggested that 

front surface dehydration of the lens leads to an absorption of liquid from the post-lens tear film and 

subsequent corneal staining. 
88;89

 However there are reports that high water content and silicone hydrogel 

contact lenses are protective against hypoxia because they provide high oxygen levels to the cornea, 

which might perhaps help in maintaining epithelial cell viability.
90;91

 There is also evidence of the 
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presence of corneal staining due to the interactions of the silicone hydrogel lenses and preserved care 

systems.
92;93

 

I found nearly all corneal staining was micropunctate as indicated by the low average staining scores. 

There was no significant difference between lenses and over time in the global staining scores (GSS). It 

has been reported that contact lens deposition is related to corneal staining and this is perhaps mainly due 

to the disruption of the mucin layer of the tear film. There was mild to moderate deposition on the contact 

lens surface and therefore, perhaps the reason in my thesis that there was so little staining was that lens 

deposition was low or the subjects wore the lenses on a daily wear basis. The use of an unpreserved 

peroxide system could also have contributed to the lack of corneal staining. 

Studies have reported that the most common reason for lapsed contact lens wear is discomfort.
3;94-98

 

Among the many reasons for discomfort with silicone hydrogel lens wear, the physiological change to the 

conjunctival tissue and its response might be an important factor to consider but this has not been studied 

extensively.
99-101

 The conjunctival staining and indentation are common conjunctival changes during 

contact lens wear.
102;103

 and the wearers are usually asymptomatic. The conjunctival indentation is seen as 

a thin band of fluorescein pooling. Studies have also reported the conjunctival histological changes with 

soft contact lens wear with dry eyes.
104-106

 

It is believed that perhaps due to the interaction of the lens edge with the ocular surface, particularly in 

continuous wear of higher modulus silicone hydrogel lenses the superficial layers of conjunctival cells 

delaminate.
107

 Lofstrom and Kruse
107

 reported that of the 32 eyes fit with lotrafilcon A or balafilcon A 

contact lenses, 11 (34%) were found to have CEF (conjunctival epithelial flaps). The authors reported that 

the majority of CEF was observed in subjects wearing the lotrafilcon A lens, and that this lens edge had a 

chisel-shaped edge design, compared with the rounded edge design of the balafilcon A lens. I did not 

observe any conjunctival epithelial flaps in this study perhaps due to shorter duration of lens wear and 

also that the lenses were worn on a daily wear basis. 
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There are no published reports of the conjunctival epithelial thinning underneath and adjacent to the 

contact lens edge. In this study I measured the conjunctival thickness adjacent and beneath to the contact 

lens edge to see if the mechanical pressure had any effect on the conjunctival epithelial thickness. The 

most thinning was found with the tighter fitting AA lens under the lens edge in the inferior quadrant 

where Kessing‟s space may be minimal and the least amount of thinning was with the flatter fitting PV 

lenses. These results indicate that it is not modulus that perhaps causes conjunctival epithelial thinning 

but that there is statically significant association between steeper lens fit instead. This result does align 

with the conjunctival staining and indentation found with AA lenses. 

Subjective grading of the conjunctival indentation and staining is commonly carried out by using slit lamp 

microscopy with yellow filter.
108-110

 Recent evidence suggests a relationship between conjunctival 

staining and dry eye,
111

 contact lens designs and fit
112-114

 and contact lens care systems.
115

 Conjunctival 

staining is observed in soft contact lens wearers.
103;107;111;114

 Lakkis et al. reported 62% of contact lens 

wearers had a greater than grade 1 conjunctival staining (0-4 scale) compared to 12% in non-contact lens 

wearing group. They also reported that conjunctival staining was associated with symptoms of dryness 

and itchiness.
112

 Du toit et al. studied 150 presbyopes and they reported that 9% had conjunctival staining 

greater than grade 1 (0-4 scale) and this increased to 20% with soft contact lens wear.
116

  

The aetiology of the conjunctival staining may perhaps be related to unstable tear film and dry eyes.
89;117-

119
 Lens edges, contact lens modulus and inappropriate lens fit can also cause lens related conjunctival 

staining.
107;120

 In the study reported in chapter 5, there was an increase in the conjunctival staining with all 

the lenses at the 2 week visit compared to the baseline. The wearers of steeper fitting lenses of AA and 

PV showed a significantly higher conjunctival staining for all the lenses at the 2 week visit.  

Conjunctival indentation is most likely to be related to improper lens fit, edge design of the contact lens 

and modulus of the lens material. Pressure from the upper lid during blink might result the indentation to 
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be most commonly seen in the superior quadrant.
97;107;121;122

 Indentation might also be caused by 

individual factors such as loosely adherent conjunctiva.
107

 The results from my study indicated that 

conjunctival indentation is related to the tightness of the lens and not the modulus. It appears that perhaps 

the tight edge of the lens forms an imprint on the bulbar conjunctiva where as a flatter lens edge sits 

parallel to the bulbar conjunctiva not inducing conjunctival indentation. 

Previous studies that indicate that stiffer lenses with higher modulus of elasticity produce greater 

conjunctival indentation and other conjunctival effects such as conjunctival flaps are reported only in 

extended wear studies.
121-123

 In this daily wear study, wearers of galyfilcon A (Acuvue Advance) lenses 

had higher rates of lens indentation compared to balafilcon (PureVision) lenses which are stiffer. 

Therefore, the modulus of lens is perhaps not a factor in daily wear in causing conjunctival indentation.  

Limbal staining may be due to a poor lens cornea fitting relationship that might be related to the lens base 

curve and also the diameter. In this study, a trace amount of limbal staining was observed in the superior 

quadrant in wearers of higher modulus lenses. 

Perhaps the most noticeable changes seen of the eye wearing contact lenses are those that impact the 

bulbar and limbal vasculature. Various lens related factors have been reported to affect the vasculature 

including hypoxia,
124-126

 poorly fitting lenses,
127

 mechanical effects,
124

 edge suction and trauma 
128

Aakre et 

al.
129

 studied a group of 49 contact lens wearers wearing a variety of low transmissibility hydrogel lenses 

on a daily wear basis, and 30 of them were refitted with either with lotrafilcon A or balafilcon A on a 

continuous wear schedule and the rest of them were asked to continue with their habitual lens wear. The 

results were an increase in bulbar hyperemia in the low transmissibility lens wearing group. 

I evaluated bulbar and limbal hyperemia of 30 neophytes after 2 weeks of daily lens wear. There was a 

significant increase in bulbar hyperemia at the nasal and temporal locations for both baseline and 2 weeks 

with AA (lower modulus) and PV (higher modulus) lenses. However, at the temporal location the bulbar 
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hyperemia was significantly reduced in the temporal location perhaps due to the higher oxygen 

transmission of the lenses. Limbal hyperemia has been also associated with wearing low oxygen 

transmissibility lenses there is a recent report that 31% to 35% of contact lens wearers had limbal redness 

of grade one or greater, compared to 5% of non lens wearers.
130

 Limbal redness has also been reported to 

increase during sleep and it has also been shown that using low oxygen transmissibility lenses increases 

limbal redness after only 4 hours, and this persisted until the next morning. Papas et al. reported a study 

using nitrogen-filled goggles to reduce the oxygen availability to the anterior eye and they demonstrated 

that limbal vasculature responded to the hypoxia.
131

 

I examined that there was no significant difference in limbal hyperemia while wearing steeper and flatter 

base curves lenses and also there was no effect with lens wear of higher and lower modulus materials. In 

my study I found an increase in limbal hyperemia over the 2 weeks in the nasal and temporal locations 

only. However, since this study is acute (2 weeks) it might be of interest to see if the hyperemia increased 

significantly with prolonged use of lenses and whether it was the lower Dk of AA or some other 

difference that was responsible for this reddening effect.  

Red blood cell velocity was measured. There are reports of strong associations between hypoxic effects of 

the contact lens wear and bulbar and conjunctival hyperemia.
125;131-133

 Contact lens wear has been 

associated with initiating neovascularization or growth of new blood vessels and this is perhaps due to 

chronic hypoxia, injury and inflammation.
134

 Vessel dilation is also hypothesised to be one of the causes 

of new vessel growth and has been shown to decrease blood flow and blood velocity.
125

 The chronic level 

of vessel dilation in soft lens wearers is a cause for concern as persistent dilation of the limbal vessels 

may be a precursor to new blood vessel growth. In this study I showed a decrease in the red blood cell 

velocity in wearers of the lower modulus AA lenses with both base curves. This result suggests that 

mechanical compression on the conjunctival tissue due to a tighter lens with lower modulus might have 

an effect on the blood velocity. This further supports the evidence that the contact lens may perhaps 
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interfere with the content of the blood vessel. However, increasing the oxygen permeability of contact 

lenses and perhaps changing the lens design may reduce the eye's vascular response.
135;136

  

Assessment of subjective comfort relating to contact lens wear can be made using descriptive items 
137

 

and variety of scales including visual analogue scales (VAS).
138-142

 The subjective assessment of contact 

lens wearers‟ symptoms such as ocular comfort and quality of vision is as important as the clinical 

assessment by practitioners. Visual analog scales have  been used in experiments for gathering subjective 

information in clinical trials.
143-145

 Studies have revealed that VAS is the most accurate form of subjective 

measurement and their reliability and responsiveness have been established.
142;146

  

Contact lens related dry eye is a very common clinical problem and is associated with reduced wearing 

time and also lens discontinuation. Orsborn et al.
147

 reported that 18 to 30% of soft contact lens patients 

had symptoms of dry eye. 12 to 21% of these subjects reduced contact lens wearing time due to the 

related symptoms and 6 to 9% discontinued lens wear. Doughty et al.
148

 reported that almost 50% of soft 

contact lens wearers report symptoms of dryness.  

Symptoms of dryness at insertion, 2 and 6 hours were reported by subjects wearing the lenses used in my 

study. Increased dryness at the end of 6 hours was also reported. It was observed that lower modulus AA 

lenses were perceived to be the least dry and higher modulus PV lenses were reported to be the driest at 

both baseline and at the 2 week visit. This difference was both statistically and clinically significant. This 

may be related to the wetting agent used with the AA lens in addition to the previously mentioned 

differences between theses lenses. 

The other common problems associated with contact lens wear other than dryness is the burning sensation 

with the lenses. Silicone hydrogel lens wearers in the present study reported no difference in the sensation 

of burning with the different lenses.  
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It has been reported that stiffer materials may provide improved vision because of decreased lens 

flexure.
149

 Since contact lenses rest directly on the eye, flexure, decentration and tear lens formation are 

possible and these can impact the vision.
3;150

 In this study there was a significant association between 

modulus and time of day. The subjective ratings of vision did not change significantly between time of 

day with lower modulus (AA) lenses. The rating of vision was highest for the higher modulus (PV) lenses 

at insertion and decreased 6 hours after insertion and this could perhaps be due to the aspheric optics of 

this lens.  

The associations observed between the clinical and sensory variables at the baseline and the 2 week 

period with the study lenses were of interest, so the other important question addressed in this experiment 

was whether end of the day subjective variables were associated with clinical variables. There have been 

number of reports on end of the day dryness and discomfort with the contact lens wear and associated 

contact lens discontinuation.
38;151-154

 A few studies have reported that there is little difference between the 

silicone hydrogel lens wear and the conventional low-Dk hydrogel wear 
98;155

 but there are reports that 

patients wearing silicone hydrogels have higher levels of comfort.
130;156;157

   

In the study reported in Chapter 5, I examined the associations between the clinical variables at the 

baseline visit, and the sensory variables at 2 weeks. This would perhaps be of importance to contact lens 

practitioners to help them choose an optimal trail lens based on the sensory variables reported by the 

subjects at the end of two weeks. In the summary paragraphs that are to follow, the results are organised 

based on the lens types and base cures. 

In wearers of tighter fitting AA 8.3 lenses there was a low association between superior limbal and bulbar 

hyperemia and sensory variables of discomfort, dryness and burning at the end of 2 weeks. Superior 

limbal staining in wearers of AA 8.3 was also associated with discomfort and dryness. Red blood cell 

velocity had a high association to dryness and discomfort with the AA 8.3 lens. This perhaps indicates the 
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importance of optimal lens fit as a tight fitting contact lens might interfere with the content of blood 

vessel.  

The wearers of the tight fitting PV 8.3 lens showed moderate association between limbal and bulbar 

hyperemia and the sensory variables of discomfort and burning at the end of 2 weeks. Wearers of flatter 

fitting AA 8.7 and PV 8.6 did not show any systematic associations between the clinical and sensory 

variables. No systematic associations were observed between any other clinical and sensory variables at 2 

weeks. 

When comparing the baseline clinical variables to the end of the day sensory variables, lens wearers of 

AA 8.3 had lower associations between topographic changes along the 90 degree meridian to the sensory 

variables of dryness, discomfort and vision at the end of the day. Blood flow had moderate association 

with the sensation of discomfort at the end of the day. In wearers of the flatter fitting AA 8.7 lens there 

were moderate associations between the lens fitting characteristics at baseline and sensory variables at the 

end of the day. Lens movement, lens lag and horizontal lens centration were also significantly associated 

with vision at the end of the day. Blood flow was associated with the sensation of dryness in those 

wearing AA 8.7 lens. In wearers of PV 8.3 lenses there was a moderate association between superior 

conjunctival epithelial thinning and burning. No systematic correlations were observed between the 

clinical and sensory variables in wearers of PV 8.6 lenses. 

There were no systematic effects seen when comparing the clinical variables to sensory variables at 2 

weeks and this could perhaps be due to an adaptation effect. However, there were some correlations seen 

when comparing the clinical variables at the baseline to 2 weeks. The conjunctival epithelial thickness in 

wearers of the steeper AA 8.3 lens at baseline was moderately correlated to superior bulbar hyperemia at 

the 2 weeks. In wearers of the flatter AA 8.7 there were lower correlations between the fitting 

characteristics (lens movement and lens lag) and corneal and epithelial thickness along the 90 degree 
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meridian, and between superior limbal and bulbar hyperemia. In wearers of PV 8.3 and PV 8.6 there were 

no systematic correlations.  

In conclusion, the end of day sensory variables at two weeks was not strongly associated with the clinical 

variables measured at baseline. There appeared to be random association occasionally seen between some 

clinical and sensory variables but no systematic associations emerged. I thought this comparison would be 

useful for contact lens practitioners; to be able to predict how the lens would feel after 2 weeks of lens 

wear based on clinical measures collected on the first day of lens wear seem to be a worthwhile outcome 

to pursue.  

Associations between outcome and predictor variables were explored in order, primarily, to assess 

whether early data may be usefully related to later data (either, for example “acute” same day morning vs. 

afternoon or “chronic” baseline vs. 2 week). There is a fundamental difficulty in doing exploratory 

correlation analyses in that by chance alone one might expect 5 out of 100 significant associations (using 

an 0.05 significance level). There were many more correlations than would be anticipated by chance 

alone that were significant and often the correlations appeared to be in physiologically plausible clusters, 

e.g., vascular outcomes. These suggest that the conclusions drawn should not be regarded with too much 

caution, although, type 1 errors are always a real possibility. In addition, almost none of the correlations 

reported were very “strong”. This is not unexpected; these were physiological and clinical variables, 

many notorious for being highly variable (e.g., the subjective ratings) and so the absolute size of the 

correlations should not detract too much from the interpretations of the collection of the associations I 

found. 

This too seems to be a potentially useful thing to know. If important 2 week clinical results can be 

predicted on day 1 of lens wear, many long term complications might be eliminated. In lens wearers of 

steeper fitting AA 8.3 and PV 8.3, vascular and staining outcomes were significantly associated with 

measures of lens fit and corneal topography. Superior conjunctival compression was observed in wearers 
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of these lenses and this was associated with superior conjunctival indentation and bulbar hyperaemia. 

RBC velocity at baseline correlated with limbal and conjunctival staining at 2 weeks. The ocular effects 

on the vasculature of the bulbar conjunctival with different lens materials needs to be elucidated since 

complications with contact lenses continue to be reported.  

Chronic level of vessel dilation with contact lens wear is a cause of concern as persistent vessel dilation 

indicates an inflammatory response and may be precursor to new vessel growth and changes in the ocular 

surface. Red blood cell velocity measured in this study perhaps showed an effect on the sensory 

parameters such as discomfort and dryness. Although decrease in limbal redness and inflammatory 

response in the cornea are reported with silicone hydrogel lens wear perhaps more attention should be 

focused on the bulbar area of the conjunctiva since this study indicates an effect of RBC velocities 

suggesting an ocular response due to mechanical or inflammatory effects. 

In summary, discomfort with contact lenses is a complex issue to resolve since it appears to be related to 

number of factors such as vascular, structural changes with lens wear, physiological changes and lens 

fitting characteristics. Lens materials, whether they are high or low modulus, high or low water content, 

with various wetting properties perhaps play a role in affecting comfort. A balance among all these 

factors must be achieved in order to optimize lens comfort.  
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Appendix A 

 

Results from chapter 5 

Table shows mean and standard deviation of corneal thickness at baseline with AA 8.3, AA 8.7, PV 8.3 

and PV 8.6 lenses along 0, 45, 90 and 135 degree meridian at 7 locations. 

 

Lens Loc Position 

 Deg -3 -2 -1 0 1 2 3 

AA 

8.3 

0 600.4±47.5 565.59±43.7 549.05±40.1 547.93±38.4 546.95±39.2 561.63±39.2 586.09±47.0 

 45 592.00±45.8 558.05±40.7 543.44±39.5 543.59±37.3 543.59±37.3 549.07±38.6 570.39±43.1 

 90 646.39±45.5 599.23±42..3 568.49±39.8 546.9±38.9 547.26±37.7 552.82±38.5 575.83±39.5 

 135 651.52±48.8 601.71±43.7 567.77±40.6 549.94±40.2 547.45±36.9 550.83±39.2 571.58±40.7 

AA 

8.7 

0 561.70±41.6 588.31±45.5 638.00±51.6 648.81±62.5 599.91±54.3 566.48±46.2 550.15±40.7 

 45 570.63±37.7 604.79±42.2 658.29±45.1 643.31±54.3 591.96±45.7 559.85±45.4 545.19±40.0 

 90 554.01±37.1 579.33±36.5 621.44±40.1 670.66±34.7 647.25±45.7 602.26±42.7 571.21±40.3 

 135 553.07±37.8 575.44±38.7 612.09±40.6 665.65±43.3 654.31±45.6 604.17±42.6 568.13±39.4 

PV 

8.3 

0 639.56±48.6 650.48±52.3 598.31±45.8 563.92±40.0 547.78±37.5 547.11±38.4 547.63±39.2 

 45 652.07±50.7 652.07±50.7 587.89±44.9 557.44±41.7 542.36±37.7 541.21±36.3 541.21±36.3 

 90 614.16±46.1 663.48±38.4 643.91±45.6 598.24±42.3 566.51±40.1 547.15±39.6 546.54±38.5 

 135 613.95±45.1 666.72±46.3 653.78±48.3 603.32±46.4 565.39±41.4 548.09±38.5 544.96±37.7 

PV 

8.6 

0 544.22±39.1 545.38±39.4 559.70±43.0 585.58±50.0 634.76±55.8 659.15±53.2 605.56±48.1 

 45 544.31±35.5 548.09±37.75 563.19±41.6 592.09±47.4 646.77±47.0 656.42±48.6 599.06±44.2 

 90 549.37±36.7 544.12±38.27 550.73±38.2 575.00±40.0 612.89±45.3 662.05±32.3 652.92±43.4 

 135 547.81±38.4 545.19±36.91 552.57±37.7 574.05±42.1 612.04±44.5 661.71±43.2 649.58±45.9 
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Table shows mean and standard deviation of corneal thickness at 2 weeks with AA 8.3, AA 8.7, PV 8.3 

and PV 8.6 lenses along 0, 45, 90 and 135 degree meridian at 7 locations. 

 

Len

s 

Loc Position 

 Deg

. 

-3 -2 -1 0 1 2 3 

AA 

8.3 

0 653.90±50.3 602.14±42.8 567.28±40.0 548.61±39.2 546.27±38.9 546.93±39.4 559.72±43.7 

 45 646.33±43.1 594.24±38.3 559.70±37.9 554.55±36.9 542.87±37.7 542.87±37.7 549.03±38.0 

 90 668.62±48.2 645.60±47.1 599.12±40.4 567.31±39.9 546.57±37.9 545.49±36.7 552.82±37.2 

 135 666.49±48.1 651.07±54.3 602.12±47.7 566.17±42.5 547.51±40.2 546.39±37.3 551.89±37.5 

AA 

8.7 

0 548.88±38.9 562.85±43.4 591.48±49.3 640.93±56.9 645.23±58.7 597.13±51.7 563.49±43.9 

 45 549.14±35.4 567.91±37.2 601.30±42.8 653.63±46.0 643.43±53.5 593.01±46.7 559.49±43.3 

 90 545.59±37.6 552.97±36.0 578.72±36.8 624.81±38.7 662.17±33.5 648.84±45.7 601.41±41.9 

 135 542.89±39.6 550.29±37.2 572.84±39.8 612.63±41.8 663.59±39.8 653.55±46.6 602.79±42.3 

PV 

8.3 

0 589.69±47.83 640.02±54.7 652.42±53.2 600.36±46.1 566.07±42.5 548.04±39.3 545.51±39.7 

 45 597.22±46.0 647.18±47.9 645.63±44.7 590.55±41.6 557.42±38.7 542.11±38.4 541.54±37.0 

 90 576.76±39.9 616.87±41.6 660.29±38.3 646.42±44.5 598.72±41.1 567.05±38.8 547.91±39.6 

 135 572.71±40.7 614.29±44.7 662.39±43.1 649.43±48.9 601.26±45.0 563.95±41.0 547.09±38.1 

PV 

8.6 

0 546.06±39.7 543.89±38.8 547.99±39.4 564.36±41.2 593.05±46.2 642.33±51.5 662.32±53.5 

 45 544.61±41.2 541.16±39.7 546.21±38.5 563.47±40.8 593.29±45.8 645.46±41.3 654.41±51.0 

 90 568.46±40.2 546.04±39.6 545.92±40.1 552.39±39.9 577.37±40.4 615.14±42.9 665.23±32.5 

 135 565.29±39.0 545.29±38.6 543.51±41.3 552.49±40.7 567.61±42.0 614.68±45.8 671.07±29.4 
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Table shows mean and standard deviation of epithelial thickness at baseline with AA 8.3, AA 8.7, PV 8.3 

and PV 8.6 lenses along 0, 45, 90 and 135 degree meridian at 7 locations. 

 

Lens Loc Position 

 Deg. -3 -2 -1 0 1 2 3 

AA 

8.3 

0 54.55±1.7 55.97±1.5 57.57±2.5 56.26±3.2 54.55±2.4 55.57±1.9 54.59±1.5 

 45 54.82±1.4 56.94±2.0 57.21±2.1 55.99±2.4 55.43±2.1 54.66±2.0 54.94±1.5 

 90 55.05±2.2 55.08±1.9 58.01±2.8 56.26±2.7 55.45±2.4 54.47±2.1 52.92±2.6 

 135 55.22±1.5 56.18±2.6 58.00±2.4 56.42±2.8 56.15±2.4 55.26±2.0 54.63±2.0 

AA 

8.7 

0 54.24±1.3 55.19±1.5 56.68±2.5 56.47±2.7 55.89±2.4 54.71±2.1 55.32±1.6 

 45 55.18±1.3 56.13±2.5 58.44±3.2 55.41±2.4 55.63±2.8 55.12±2.5 54.71±1.8 

 90 55.79±1.4 54.72±1.2 58.70±2.8 56.95±3.3 55.89±2.7 54.91±2.7 53.98±2.9 

 135 55.74±1.5 57.04±2.3 57.98±2.2 56.85±3.2 56.12±3.0 55.15±2.1 54.74±2.0 

PV 

8.3 

0 54.81±1.5 55.78±1.8 56.52±2.2 56.61±2.8 55.92±2.7 54.32±2.0 54.95±1.4 

 45 55.04±1.4 56.14±2.0 57.86±2.6 57.02±2.8 55.92±2.4 55.43±2.3 54.63±1.7 

 90 55.69±1.7 55.11±2.0 58.64±2.6 56.24±2.7 55.62±2.3 54.88±1.5 53.90±2.0 

 135 55.09±1.7 57.21±2.5 58.00±2.8 56.01±2.6 55.96±2.4 55.71±2.3 54.21±2.0 

PV 

8.6 

0 54.75±1.5 55.95±1.8 56.34±2.2 56.15±2.8 55.79±2.7 54.96±1.9 54.64±1.2 

 45 54.94±1.4 55.98±2.0 58.05±3.5 56.48±2.2 56.00±2.9 54.92±1.7 54.91±1.4 

 90 55.15±1.7 54.49±2.1 59.05±3.1 55.66±2.4 55.25±2.6 54.68±2.0 52.60±2.7 

 135 54.59±2.5 57.36±2.0 57.35±2.5 56.28±2.8 56.29±2.5 55.23±2.1 54.34±1.4 
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Table shows mean and standard deviation of epithelial thickness at 2 weeks with AA 8.3, AA 8.7, PV 8.3 

and PV 8.6 lenses along 0, 45, 90 and 135 degree meridian at 7 locations. 

 

Lens Loc Position 

 Deg

. 

-3 -2 -1 0 1 2 3 

AA 

8.3 

0 54.74±1.9 56.42±1.7 56.93±1.9 57.08±3.2 55.52±2.6 54.96±1.9 55.59±1.2 

 45 54.73±1.6 56.36±1.9 57.60±2.4 56.37±3.1 55.46±2.4 55.23±2.2 55.49±1.7 

 90 55.75±1.7 55.23±2.0 55.54±2.8 56.18±3.1 56.16±3.2 55.31±2.0 53.14±2.9 

 135 55.28±1.7 57.17±2.3 58.58±2.2 56.83±2.5 56.18±2.7 54.99±1.6 54.02±1.8 

AA 

8.7 

0 54.77±1.9 55.62±1.8 56.18±2.0 56.24±3.0 55.83±2.4 55.11±2.4 55.14±1.5 

 45 54.98±1.7 56.34±2.4 57.61±2.8 55.78±2.6 55.04±2.8 55.10±2.0 55.67±1.9 

 90 56.37±1.7 55.01±2.0 59.54±3.9 56.64±3.1 55.92±2.5 55.17±2.0 53.94±2.6 

 135 55.06±1.5 57.04±2.8 58.44±2.5 56.31±3.0 55.69±2.5 54.97±1.8 54.18±1.9 

PV 

8.3 

0 55.11±1.4 56.27±2.4 56.07±2.9 55.21±3.2 55.21±2.5 54.76±2.4 54.57±2.7 

 45 54.49±1.6 55.35±2.1 57.19±2.8 55.74±2.9 55.19±2.9 54.86±2.7 54.72±1.7 

 90 55.48±1.9 55.10±2.2 58.65±3.8 56.06±2.8 54.65±2.4 54.28±2.6 53.38±2.1 

 135 55.51±1.5 56.95±2.1 56.78±2.4 55.97±3.2 55.63±2.8 55.41±2.1 54.27±1.4 

PV 

8.6 

0 54.64±1.8 54.35±2.0 56.39±1.9 56.02±2.9 55.54±2.9 54.68±2.3 54.78±1.5 

 45 54.99±1.7 56.31±2.4 57.81±1.9 55.48±2.3 54.94±3.0 54.88±2.2 54.13±1.8 

 90 55.21±1.6 54.75±1.7 57.41±2.3 55.92±2.8 55.33±2.8 54.72±2.1 51.52±3.9 

 135 55.05±1.7 57.32±2.3 57.96±2.6 56.20±3.4 56.48±2.4 55.65±1.9 54.54±1.6 
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