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ABSTRACT 

Solid phase microextraction ( S m )  has experienced rapid development in the 

recent decade. Especi aU y for volatile org anic compounds in environment al sample 

anaiysis, SPME features the special advantages of cornbining sampling, sample 

preparation, and sample transfer into a single step. However, due to the complexity of 

biomatrices and non-volatile and polar nature of the dmg compounds, most dmg analyses 

by SPME and in-tube SPME are still in their primary analytical optimization stage. 

Based on the fact that SPME is an equilibrium extraction process, in this thesis, 

SPME has been successfûlly applied for dmg-protein studies. The theory of protein 

binding study by headspace SPME was fmt  illustrated with selected alkylbenzene 

compounds binding to bovine serum albumin (BSA) as the model system. Drug binding 

to human serum albumin (HSA) was subsequentl y studied by direct SPME due to the 

non-volatile and polar nature of the model h g ,  diazepam. This method can be easily 

adapted to other dmgs. The theoretical as well as the experimental analysis demonstrated 

that, compared with the traditional methods, SPME is a simple and accurate method for 

protein binding studies. The small volume SPME method developed in this thesis is 

useful in the detennination of dmg binding to expensive proteins since only a very small 

volume (150 pL for each extraction) of the protein solution is required. 

The major difficulty in the analysis of the biological sample with the existing 

SPME coating materials is the lack of selectivity, which normally results in poor 

chromatographie separations odand the poor sensitivity. To overcome the difficulties, 

immunoaffinity SP- has been developed based on two types of molecular recognition 

elements: antibodies (Abs) and molecular impnnted polymers (MIPs). Theophylline 

antibodies were covdently immobilized on the surface of fused silica fiber and on the 

inner surface of fused silica capillaries for immunoaffinity SPMEfin-tube SPME analysis. 

This method has been successfully applied to human semm analysis. 

The research performed in this thesis demonstrates that such materials could have 

great potential for selective extraction once they can be coated on fused silica surfaces 

more reliabl y and effective1 y. 
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CHAPTER 1 

INTRODUCTION 

1.1 Solid Phase Microextraction (SPME) 

1.1.1 General Introduction 

Solid Phase Microextrac tion (SPME) is a solvent-free sample preparation 

technique Fust introduced by Dr. Janusz Pawliszyn and his coworkers in 1990 (1). In its 

early development stage, SPME was considered primarily suitable for the extraction of 

volatile organic compounds Erom environmental samples (1-3). It has been demonstrated 

that SPME provides many significant advantages over the traditional sample preparation 

methods by integrating sampling, sample pre-concentration and sample introduction into 

a single step. 

A schematic of the SPME device is shown in Figure 1.1. There are two basic 

components of this device: the holder and the needle assembly. The needle assembly 

includes a septum piercing needle, a tubing for fiber at tachent  and a piece of coated 

fused silica rod with diameter around 100 p and length about 1 cm. The holder is 

carefully designed for the protection of the needle assembly and for the convenience of 

the sample extraction and injection. The whole SPME device looks like a syringe. Pnor 

to the extraction or injection process, the fiber is withdrawn into the septum piercing 

needle by retracting the plunger of the holder. In the beginning of the process, the needle 

fmt pierces through the septum of the via1 or of the hot GC injector. The plunger is then 

depressed, exposing the fiber to the sample matrix to be malyzed or GC carrier gas. 

. During this period, the plunger is locked by its retaining screw to keep the fiber at a fixed 
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Figure 1.1: The SPME device. 

position until the extraction or injection process is completed. The plunger is then 

retracted before the SPME device is removed from the septum to avoid possible damage 

to the fiber. 

The major component of the sampling device is the h s e d  silica rod coated with a 

layer of polyrner. The polyrner coating is responsible for extracting analytes from the 

sample for further anaiysis. The properties of the coating, obviously, play a very 

important role in the sample analysis. Many factors are used to evaluate the performance 



of the fiber coating, such as the selectivity, the linearity of the response, the stability, the 

carryover, etc. Much effort has been made to find possible effective coatings. 

1.1.2 Practical Aspects of SPME 

SPME became commercially available with the introduction of the 100 p 

Poly(dimethy1siloxane) (PDMS) coated fiber by Supelco in 1993. Since then, many 

different fiber coatings have been introduced, drarnaticalIy enhancing the scope of the 

SPME applications. Now, SPME can be used to sample many matrices, including air, 

water and soil. For aqueous samples, sampling can be carried out direct. y from the 

sample solution or from the sample headspace, depending on the volatility of the 

andytes. SPME has found numerous applications in many applications (4). Some 

examples include the determination of subs ti tuted benzene compounds in water (5,6), 

volatile organic compounds (7-9), polycyclic aromatic hydrocarbons and polychlonnated 

biphenyls (10)- chlorinated hydrocarbons (1 1), pesticides (12-18), phenols (19-21)- and 

fatty acids (22), as well as lead and tetraethyllead (23,24). 

While initially SPME studies were concentrated on environmental sample 

analysis, recently, interest has shifted towards biologicd sample analysis. Fibers coated 

with different types of polymers have been employed for the analysis of many cirugs and 

dmg classes, including tricyclic antidepressants (25-28), phenothiazines (29), 

benzodiazepines (30), local anaesthetics (3 1,32), meperidine (33), cocaine (33,  

phencyclidine (36), amphetamines (34), 1-phenylethylamine (37), and diphenylmethane 

antihistarninics and their analogues (38). 



1.13 Theoretical Aspects of SPME 

The theoretical aspects of SPME ar.alysis have been studied in d e t d  (39). Louch 

et al (40) developed a theory for the two-phase system (sample solution-fiber coating), 

and Zhang and Pawliszyn (41) for the three-phase systems (sampIe solution-headspace- 

fiber coating). The effect of sample volume on the amount of the sample extraction by 

SPME in two-phase (sample solution-fiber coating) and three-phase (sample solution- 

headspace-fiber coating) systems has been further discussed by Gorecki and Pawliszyn 

(42-43). Some of the basic conclusions are described in the following paragraphs, while 

the theory for four-phase systems (sample solution-pseudo phase-headspace-fiber 

coating) will be discussed in detail in Chapter 2 of this thesis. 

SPME extraction is based on an equilibrium process, where analytes distribute 

between the polymenc coating of the fiber and the sample. Two different types of 

processes are involved in SPME, depending on characteristics of the fiber utilized for the 

extraction. The most widely used poIy(dimethylsiloxane) (PDMS) is a liquid coating. 

Aithough it Iooks like a solid, it is in fact a high viscosity rubbery liquid. Poly(acry1ate) 

PA)  is a solid glassy coating that c m  turn into liquid at certain desorption temperatures. 

Both PDMS and PA extract analytes via absorption. The remaining coatings, including 

PDMSLDVB (divin ylbenzene), CarbowadDVB (CW/DVB), Carbo w 6 e m p l a t e  Resin 

(CWlïR) and Carboxen, are mixed coatings, in which the primary extracting phase is a 

porous solid. Those coatings extract analyte via adsorption rather than absorption. The 

only comrnon feature is that both processes begin with analyte molecules getting attached 

to the surface of the coating. However, in absorption, analytes stick on the coating 



surface and then diffuse into the bulk of it during the extraction process, while in 

adsorption they stay on the surface of the solid (42). 

Absorption (PDMS and PA fibers) is a noncompetitive process. Therefore, the 

composition of the matrix generally does not affect the extraction- Exhaustive extraction 

can be accomplished only when the volume of a sample is small and the analyte has a 

very high affinity towards the fiber coating (39). At equilibrium, the amount of analyte 

extracted ( nf) by an absorption-type SPME in a two-phase system of limited sample 

volume only depends on the fiber/sample partition coefficient (Kfi), the volumes of the 

fiber coating and the sample (Vf and Vs, respectively), and the initial concentration of the 

analyte in the sample (Co), as illustrated in Equation 1.1. 

Equation 1.1 

When a large volume is sampled, or Kfi is very small (i.e. Vs >> K,V' ), which 

means that the analyte has low affïnity towards the fiber, the system can be described by 

Equation 1.2, where the amount of the analyte (nf) absorbed by the SPME fiber is 

proportional to the partition coefficient &), fiber volume (Vf) and initiai concentration 

of the analyte in the sarnple (Co): 

* f = KhVf CO - Equation 1.2 

For a three-phase system (sample-headspace-coating), the m a s  of the analyte 

extracted by the polymenc coating is related to the overall equilibrium of the analyte. The 

mass of the analyte absorbed by the coating, n, = CfTf, can be expressed as: 

Equation 1.3 



where CI' is the equilibrium concentration of the analyte in the coating; V' is the 

headspace volume. The coating/gas distribution constant was defined as 

K, = c / " / c ~  and the gaslsample matrix distribution constant as K ,  = c,' /c~ , where 

Cr and Csœ are the equilibrium concentrations of the analyte in the headspace and the 

sampIe solution, respectively; 

The equilibrium theory developed for the liquid PDMS coating does not apply to 

the adsorption-type coatings. The theoretical description of the extraction process for this 

type of fiber was described by  G6recki et al. (43). The mode1 was based on the Langmuir 

adsorption isotherm. In generai, there is a non-linear correspondence between the amount 

of an analyte extracted by the fiber and its concentration in the sample. Their dependence 

can only be approximated by a straight line at sufficiently low concentrations. 

Adsorption is a comgetitive process. Therefore, the matrix composition can 

significantl y affect the amount extracted. In terference compounds CO-extracted with the 

anal yte of interest may reduce the amount of analyte extraction and its quasi-linear range 

of the response. Therefore, great care should be exercised when performing quantitative 

analysis with p.Orous polymer SPME fibers. 

1.1.4 SPME/HPLC Interface 

While the majority of the work to date on dnig analysis by SPME has focused on 

GC (gas chrornatograph) or GCMS (mass spectrometry) analysis, the use of SPME 

coupled to HPLC and LClMS is gaining more attention. There are two modes by which 

SPME can be coupled to HPLC: conventional fiber coupling and the more recent in-tube 

SPME. With the conventional fiber coating, analysts are currently limited to performing 



manual extractions and desorptions. However, for automated extraction and analysis, in- 

tube SPME is much simpler to implement. 

Injector needle 
and seat 

To waste 

r - - From pump 

Figure 1.2: Schematic of fiber SPME interface for SPME/LC and SPME/LC/MS using 

Hewleît-Packard E P  1 100 LC/MS. 

A schematic of the conventiond fiber couplings is shown in Figure 1.2. In this 

interface, a three-way tee is used, with two of the ports connected in the position of the 

sample loop. The third position, a finger-tight fitting which compresses a standard 0.4 

mm i.d. GC fermle around the inner stainless steel tube of the fiber assembly, gives a 

convenient port to introduce the fiber to fluid flow for analyte desorption. Depending on 

the type of the analytes, sample desorption may be accomplished using only the flow of 

HPLC mobile phase, if the desorption process is fast enough to provide a sharp peak. 

Otherwise, another desorption solvent may be introduced to the interface to aid the 



desorption. The desorbed analyte solutior, will be transferred to the co1um.n via the HPLC 

mobiIe phase. In order to achieve acceptable performance, it is important to select a tee 

with sufficiently small intemal diameter to dlow a high linear flow rate of mobile phase 

to p a s  the fiber, and to allow the analyte be desorbed into as small a volume of liquid as 

possible. 

For in-tube SPME, a section of fused silica GC column, which has been internalIy 

coated with an appropriate material, is placed between the injection loop and the injector 

needle of the HPLC autosampler. In this technique, organic compounds in aqueous 

samples are extracted directly fiom the sample into the interna1 capillary coating. Al1 the 

capillary connections were facilitated with PEEK sleeve tubings of appropriate i.d. over 

the ends of the capillary, and then adding standard stainless steel fittings and ferrules- A 

schematic of this arrangement, as incorporated into Hewlett-Packard 1100 LC system, is 

shown in Figure 1.3. 

In the early research, sections of standard commercial GC capillaries, pnmarily 

PDMS and poly(ethy1ene glycol) based phases have been employed. Recently the 

conducting polymer polypyrrole (PPY) was coated on the inside wall of the capillary and 

used for the dmg analysis (44). In this thesis, the characteristics of an antibody coating 

(both in SPME fiber and in-tube SPME) have been investigated. 

During extraction (as shown in Figure 1.3(a)), sample solution is aspirated from 

the sample vial to the capillary, and then dispensed back into the sample. This process is 

repeated until either an equilibriwn been accomplished, or sufficient amount of analyte 

has been extracted to achieve the desired sensitivity. 
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Figure 1.3: Conf~guration of the in-tube SPME using Hewlett-Packard HP 1 100 LC/MS . 

(A) Extraction process; (B) Desorption process. 



Compared with the conventional fiber coupling, in-tube SPME is an easy and 

automatic sample extraction technique. Due to its larger inner surface area to contact with 

the sample soIution, in-tube SPME normaily has a higher sensitivity than the 

conventional fiber coupling. GC capillary was sekcted so that it wouId withstand the 

aggressive HPLC conditions. The possible selections of coating materials have been 

greatly enhanced, especially for highly polar compounds. In-tube SPME has been applied 

to many cases of drugs and pesticides analysis. Kataoka and Pawliszyn et al. utilized 

automated in-tube SPME coupled with Liquid Chrornatography/Electrospray Ionization 

Mass Spectrometry (LC/ESUMS) to determine B-blockers and metabolites in urine and 

serum samples (45). Other compounds, such as heteroc yclic amines (46), rani tidine (47), 

amphetamine, methamphetamine .and their methylenedioxy derivatives (48) and 

carbarnate pesticide (49-SI), have also been analyzed by tbis rnethod. 

1.1.5 Detection Methods Coupled with SPME 

SPME was initially developed for the volatile organic compound analysis. Its 

syringe-like configuration is very convenient for the GC injection. In SPME, the high 

temperature carrier gas flow in the injector port of a GC system is the driving force for 

the analyte desorption, as Figure 1.4 illustrated. The volatile organic compounds could be 

readily analyzed by GC or GC/MS. 
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Figure 1.4: Septum-equipped temperature programmable injector (SPI) interface. 

An S P M W L C  interface was then developed for semi- or non-volatile, polar 

organic compounds, such as various drugs and pesticides, analysis. Recently, with the 

progress of the development of LCMS, SPME coupled with LC/MS has k e n  used in 

many applications (44-51). By sampling ions directly from solution in mass spectrornetrïc 

analysis, the electrospray technique provides a simultaneous logical coupling of solution 

introduction of compound and the facility for ionization of highly polar and nonvolatile 

compounds. Therefore, compared to the conventional mass spectrometer, LC/ESI/MS 

features much higher sensitivity and lower detection limits. Recently, the direct coupling 

of SPME and ESIIMS has also been investigated by Mester et al. (52). 



1.2 Considerations in Biological Sample Analysis 

Biological samples are frequently encountered in phannaceutical, clinical, and 

forensic analyses. Therefore, andysis of dmgs in biological liquids is a very important 

subject. A biological fluid is not a simple mixture, but a very compfex one containing 

many different components, which may subrly interact and hence contribute to some 

interference during the analysis. For example, interferences may elevate or mask the 

analyte response or alter the actual values by depdation. 

Two important biological matrices encountered are plasma and urine. The chief 

feature of plasma and senun to the analysts is the presence of a large amount of protein. 

Obviously, the proteins themselves are chemically and physically different from the small 

dnig molecule nonnally being measured. However, there is often a strong affinity 

between such proteins and drugs. Straightforward removal of protein by means of 

ultrafiltration or dialysis could also remove a large fraction of the h g .  Therefore, any 

direct measurement of dmg could miss the "total" drug present in the sarnple and only 

measure the "free" dmg component. This problem c m  be solved by destroying the 

binding of dnig to proteia, followed by extracting the total drugs for analysis. Many 

methods have been investigated for this purpose (53). On the other hand, the 

measurement of "free" dmg and the affinity of dmg to protein is a fundamenta1 problem 

in pharmacokinetics as well as in metabolism analysis. In such applications, 

considerations should be given to prevent the dmg-protein binding equilibrium £kom 

being interfered with, in any procedures. 

Unlike plasma or senun, urine is generally free of protein and lipids and therefore 

can usually be extracted directly with an organic solvent. However, urine does have a 



wide variation in its gross composition, which depends very largely on the diet, and this 

can account for a quite startling range of colors. The normal types of compound found in 

urine are water-soluble small organic compounds, which have similar properties to the 

dnig compounds- The greatest difficulty arises because these water-soluble compounds 

could be extracted together with the dmg and interfere with the analysis. 

Drug analysis c m  be subsequently classified as two aspects: dmg confirmation 

and concentration analysis, and drug-protein binding analysis. Many methods have been 

used for dmg confirmation and concentration analysis in biological samples, such as GC, 

HPLC, radioirnmunoassay and other analytical methods. A suitable method should be 

chosen according to the properties of the analyte, and the requirements of the analysis. 

Many techniques have been applied in dmg-protein binding study, including 

equilibnum d id  ysis, ultrafiltration, gel filtration, and many other methods (54). 

In this thesis, SPME is investigated as an alternative method for h g  analysis in 

both of these two aspects. Compared with the previously mentioned methods, SPME is 

simpler, more efficient and effective. 

1.3 Difficulties in Biological Sample Analysis by SPME 

To date, most of the methods published in biological sample analysis by SPME 

are still at their preiiminary method optimization stage. The main difficulty arises from 

the complexity of the biological fluid matrices and the fact that most of the biologically 

active species are polar and non-volatile organic compounds. For the absorption-type 

SPME coatings, compounds other than the analyte of interest can be coextracted and 

interfere with the analysis. For adsorption type coating, the coextraction will not only 



interfere ~ 5 t h  the chromatography, but also reduce the sensitivity due to the cornpetition 

for the adsorption sites. 

One way to overcome this difficulty is to develop a type of coating that has high 

selectivity to the analyte of interest. The extraction of other compounds presented in the 

system is highly inhibited since they do not have the specific binding to the coating 

material. The feasible candidates for such kind of the coating include antibodies (Ab) and 

molecularly impnnted polymers W s ) ,  which have be studied in this thesis. 

1.4 Molecular Recognition Materials 

The ability to selectively recognize a target analyte, known as molecular 

recognition, is very useful in the development of rapid and sensitive analytical meihods 

(55). Molecular recognition depends on non-covalent forces. Due to the immense . 

numbers of the binding interactions and the variety of non-covalent interactions, 

unlimited capacity for recognition at the molecular leveI is possible. The challenge for the 

modem analytical chemist is the enhancement of analyte selectivity. Complex matrices, 

such as biological samples, often require tirne-consuming and error-prone cleanup steps 

to remove interferents prior to analysis. Although commercially available solid phase 

adsorbents provide sample pretreatment solutions, they impart little analyte selectivity. 

Research in natural and alternative molecular recognition techniques is becoming more 

and more important to the progress of health care and environmental studies. 

In classical bioanalytical techniques, the selective recognition elements are 

antibodies. They are the most common recognition structures in practicd use today. The 

versatility was demonstrated by their use in therapeutics, diagnostic assays and 



purification systems. Unmunoassay employs antibodies for the detennination of sample 

components. The selective binding nature of the antibodies with antigens allows the 

compounds to be employed in the development of imrnunoassay methods that are highly 

specific and that cm often be used directly with even complex biological matrices such as 

blood, plasma, or urine (56). 

Alternatives to natural recognition elements for chemical analysis are desired. To 

date, the most successful approach for producing synthetic recognition sites has been the 

technique of molecular imprinting. The imprinted polymer material is composed of a 

three-dimensional network that has memory of the shape and functional group positions 

of the template rnolecule. It has offered new possibilities for sensor technology as well 

for use in soiid phase extraction (SPE) materials (57-59). 

1.5 Objectives of the Thesis 

The major objective of this thesis is to establish SPME as a viable tool for 

biological sample analysis. The research presented in this thesis consists of two aspects. 

The first aspect is the drug-protein binding study by SPME, based on the fact that SPME 

extraction is an equilibrium process and the amount of the analyte partitioned ont0 the 

SPME fiber reaches equilibrium only with the free fonn of the analyte in the solution. 

The introduction of dissolved protein as a "pseudo phase" to the solution certainly makes 

the system more complicated. It is demonstrated that SPME is an alternative method, 

which is accurate and simple, to investigate the protein binding phenomenon based on the 

understanding of the thermodynamic and kinetic properties of SPME. 



The second aspect of the research is to identie and validate selective coatings for 

SPME in complex matruc analysis. Two materials have been investigated: antibody, a 

molecular recognition material that exists in nature, and molecularly imprinted polymer 

(MX?), which is a synthesized material having molecular recognition ability. This part of 

the work is mainly presented in Chapter 3 and Chapter 4. In Chapter 3, the antibody was 

investigated for the fiber SPME as well as in-tube SPME extraction. In Chapter 4, MIP is 

emplo yed for SPME analysis. 

As an integrated part of this thesis, benzodiazepines are analyzed with in-tube 

SPME by cornmerciai extraction capillary with LC/ESI/MS. This work is presented in 

Chapter 5- 

Finally, an overall summary of the scientific advancement from the compiled 

work presented herein and possible future work are provided in Chapter 6. 
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CHAPTER 2 

APPLICATION OF'SPRIE TO THE S'IWDY OF PROTEIN-LIGAND 

INTERACTIONS 

2.1 Introduction 

2.1.1 Defini tion and Significance 

Dmg binding is a reversible interaction between a h g  molecule and a protein or 

other rnacromolecules. It is analogous to the enzyme-substrate interaction, except that the 

complex does not decompose to yield new products; it is also analogous to most cimg- 

receptor complexes, unless they involve covalent bonding (1). 

The process of dnig transformation and dnig storage usually involves the binding 

of a dmg to the relative protein. The fate of a dmg in the body is controlled by protein 

interactions. 

As shown in Figure 2.1, the importance of the dmg-protein binding study lies in - 

three aspects. The fmt  is the investigation of possible multiple binding interactions of a 

dmg in the blood. Although senun albumin is the main protein binding to dmgs in the 

blood, many other components and proteins, as well as cells, c m  also bind drugs. 

Therefore, to study drug binding is important for us to know the distribution and 

biotransformation pathways of the cimg. 

The second aspect is the phannacokinetic consequence of h g  binding in blood. 

Drug binding c m  modify the apparent distribution volume, facilitate or prevent ce11 

penetration or govem the elimination clearance. Therefore, drug-protein binding study 



1 Drug design 1 

Figure 2.1: A schematic diagram representing the pharmacokinetic consequences 

of drug binding in blood. 

has implications for pathology since binding may be modified in disease state, due to 

changes in nature or arnount of protein, dehydration, or alteration of pH. 

The third aspect is that the bound dnig complex is of high rnolecular weight and is 

unavailable for tissue membrane transport. Only the unbound drug is capable of difising 

across tissue membranes to reach the target site (2). Therefore, only the free cimg is 

considered to be pharmacologically active. If the bound drug is rapidly associable, the 

rate of transport will not be greatly affected since the free cimg passing a membrane could 

be immediately replaced by newly dissociated drug. However, not dl dissociations are so 

rapid. Therefore, the stability of the bound form must be anaiyzed (3). This will affect the 

process of drug design. 



Among the plasma proteins, serum albumin is undoubtedly the most important 

carrier for drugs and other small molecules. Therefore, the attention of many scientists 

has been drawn to the phenornenon of the interactions between drugs and senun albumin. 

Because of the relative ease of the experiments, most standard binding assays use s e m  

albumin. 

2.1.2 Techniques Used for the Measurement of Drug-Protein Binding 

- Equilibn'um Dialysis. Equilibrium diaiysis is a very commonly used procedure for 

the protein binding studies. The method involves equilibration of a @en volume of 

protein solution within a dialysis bag with a known volume of dmg solution. Once 

equilibrium has been attained, measurernent of the free dmg concentration outside the 

bag will permit the calculation of the amount of h g ,  which has been taken up by the 

protein. The equilibriurn diaiysis technique is very simple and convenient for multiple 

sarnpfes. Drawbacks include time-scale: the period of 12 hours or more is required to 

obtain equilibnum, permitting possible decomposition of unstable compounds. While 

these problems may be minimized by carrying out the experiments at lower temperatures, 

binding will thereby be aitered. Often compounds will bind not only to the glass 

containers, but also, to a greater degree, to the dialysis bag. This can be a senous problem 

particularly for highly Iipophilic cinigs. Appropriate controls without protein should be 

run to detect such problems. Additiondly, significant overestimation of the free fraction 

can result from even a slight leakage of protein into the dialysate. Thus, the postdialysis 

stability of protein and its absence from the dialysate should be confmned by protein 

assay in a validation study. 



Ulrrafi1trmanon. Ultrafiltration has been introduced widely for routine fke drug 

monitoring in clinical laboratones (1). If a solution of dmg and protein is exposed under 

pressure to a dialysis membrane, the protein-free filtrate containing ftee drug only will be 

collected beyond the membrane. Knowing the initial concentration of the drug present, 

and of that in the ultrafiltrate, will permit the calculation of the appropriate protein 

binding parameters. Compared with equilibrium dialysis, this method offers significant 

advantages such as its short analysis tirne, simplicity, commercially available kits and the 

lack of dilution effects. 

Ultrafiltration is faster than equilibrium dialysis since the drug is initially in direct 

contact with the protein. However, it is perhaps not so readily adapted for large numbers 

of samples, and uses sornewhat more expensive and complicated apparatus. An important 

reservation is that a portion of the aqueous phase is forced away fiom the protein and the 

latter solution becomes more concentrated, thereby tending to increase binding. If the 

amount of solution removed by filtration is a relatively smail portion of the whole, such 

concentration change is quite srnaIl. 

Gel Filtration. Gel filtration is a very popular technique for measuring protein 

binding (1). In this technique, a solution of drug and protein passes through a column 

containing dextran mo1ecuIar exclusion gel. The protein-bound dmg is separated from the 

free h g  by emerging before the fiee h g  peak. 

If the equilibrium between bound and free drug is rapidly reversible, this simple 

approach would not be appropriate. One would expect that the molecules of bound dnig 

should dissociate as the protein-drug complex begins to separate from the free dmg and 

that the dmg should emerge from the column as a smear rather than a discrete peak. 



Nevertheless in certain cases, such as salicylate binding (4), the binding survives. This 

suggests that the equilibrium constant is so great that the amount of dmg, which 

dissociates is not readily detectable. 

Chromatographie Methods. Despite the fact that chrornatographic meîhods have 

been used for a long time for the determination of dmg-protein binding parameters, they 

have earned only limited attention. lii recent years, progress in chrornatographic 

technology has led to the development of highly automated systems yielding high 

resolution on small columns, allowing shorter analytical dmes, consuming less chemicais 

and avoiding the use of radio labeled-ligands. In general, binding data obtained by 

chrornatographic methods offers much higher precision and reproducibiiity than those 

measured by the previously described methoàs. 

The most widely used chrornatographic method is affinity chromatography. This 

method provides the possibility to detect very small differences in the binding afinity of 

ligands. OriginaIly designed for the isolation and purification of biologically active 

compounds, the introduction of HPLC stationary phase materids with immobilized 

biopol ymers (enz ymers, recep tors, ion channels, or antibodies) provided a powerful tool 

for studying the interactions of small ligands and biomacrornolecules. The advantages of 

these approaches are represented particularly by the stability and constant binding 

behavior of immobilized biopolyrners, the precision and reproducibility of the 

chrornatographic systen, and the effectiveness of using a smdl amount of ligands. 

However, because column preparation is a very time consuming process and column life 

is normally short, these methods are inconvenient. 



MisceUaneous Merhodr. Many other methods have k e n  employed in measuring 

the binding parameters. Differentid spectrophotometry takes advantage of the fact that 

the bound form of the drug will exhibit an absorption spectrum that is unlike that of the 

fiee drug (1). The magnitude of such an absorption peak can be used as a measure of dnig 

binding. 

The degree of binding could also be determined from changes in electro-magnetic 

field (EMF), conductivity, vapor pressure, boiling point, fieezing point and osmotic 

pressure, wtiich depend on the interactions of substances and proteins. 

Since only the unbound form of a h g  can exert antibacterial or other biological 

action, bioassays that measure the differences in the activity of a h g  in the presence or 

absence of protein can also be used as methods for determination of the binding affïnity. 

2.1.3 Evduation of the Binding Data 

One of the predominant values measured in a protein binding study is the free 

dnig concentration. Knowing the total concentration of the dnig and protein and the 

concentration of the free h g ,  the percentage of the drug bound cm be calculated. 

Experimental observations show that a high percentage of the drug is bound at low 

concentrations. If an accurate concentration of a pure protein solution can be prepared, 

and measurements are made at several concentrations of dmg, more meaningful 

treatments cm be employed to determine: the number of classes of identicai binding 

sites; the number of binding sites of each class; and the corresponding equilibrium 

constant for each class. 



Binding is commonly considered as a simple reversible reaction. 

[PI + [DI &CPDI Equation 2.1 

where [PI is the free protein concentration; [Dl is the fiee drug concentration; [PD] is 

drug-protein complex concentration. At equilibrium, it will have the equilibrium constant 

(KI : 

Therefore, 

KIPICDI 

and the quantity r may be defined as 

r =(moles of drug bound) / (total moles of protein) 

Equation 2.2 

Equation 2.3 

A - [PD1 - - ~ [ P l [ D l  - - KIDI Equation 2.4 
[PD]  + [Pl K[P][D]  + [Pl 1 + K [ D ]  

If there are a number (N) of identical independent sites, a senes of independent 

equations can be written and summed: 

Equation 2.5 

There is often more than one type of site on a given protein, each with its own 

equilibrium constant, so that 2 more general form of the equation 2.5 is: 

Fquation 2.6 

This is an equation for a hyperbola. The value of [Dl may be measured and 

r(tota1) calculated from the free and total drug concentration and protein concentration. 

The data may then be plotted in several ways so as to determine the values of N and K. 



Scatchar. Method The most commonly used method to analyze the binding data 

and determine the values of N and K is Scatchard's method (3, which plots r/[D] vs. r. 

The advantage of this method is that both the low values and high values of llr spread 

well, 

By rewriting Equation 2.5 

r i -  rK[D] = NK[D] 

and by rearranging 

r / [ D ]  = NK - rK 

Equation 2.7 

Equation 2.8 

where the y-intercept = NK , dope= K and x-intercept = N . 

Whiie certain substances yield straight line plots, curvilinear plots can also be 

obtained, in some cases. This indicates that there are at least two classes of binding sites. 

Such curves may be fitted as the surnrnation of two or more straight lines, each due to a 

different class of binding site. In such cases, computer programs are norrnally used to 

analyze the data (6). 

The above denvations assume that binding sites of a given class are independent 

of each other and that binding of the first molecule does not affect that of subsequent 

molecules. While this appears to be generally bue, there are some recognized examples, 

such as the binding of oxygen to hemoglobin, where pronounced interactions do occur 

(7), Le. cooperative binding. 

It is obvious that the binding of a charged molecule alters the over-dl electrostatic 

environment of the macromolecule, which increases the difficulty of adding another 

sirnilar ion. If the expenments are carried out in buffer, this problem will be more 

obvious. On the other hand, the cornpetition between drug and buffer ion for the same 



si te may produce much greater changes in the degree of association. An alteration in pH 

c m  aiso affect the overdl charge on the dnig, as weII as the charge on individual amino 

acids on the protein, thereby affects the dmg interaction. Binding experiments conducted 

in distilled water will avoid the cornpetition problem, but bear littie relationship to the 

physiological situation. 



2.2 Study of Akylbenzenes Binding to Bovine Serum Albumin by SPME 

2.2.1 Background 

2.2.1 General Introduction 

Small chah alkylbenzenes are a class of toxic, volatile organic compounds. The 

physical-chemical properties, such as boiling point (B.P.) and vapor pressure (V.P.), of 

the compounds used in this study are listed in Table 2.1. Since these analytes are volatile 

organic compounds, headspace SPME would be suitable for their analysis. The 

introduction of dissolved protein into the solution as a pseudo-phase certainly increases 

the complexity of the system. The system changes from a three-phase system (sample- 

headspace-coating) to a four-phase system (sample-dissolved protein-headspace-coating). 

Table 2.1: Surnmary of physical-chernical properties of the target compounds. 

1 1 I 

Analyte / Formula / j B. P. (OC) / V.P. (mm Hg) (20°C) 
I I I 

1 
I I 

1 

I 



2.2.1.2 Headspace GC Method 

The conventional methods for the protein binding study, such as dialysis, 

ultrafiltration and gel filtration, are suitable for the analysis of non-volatile compounds 

binding to a protein. They are not suitable for studying the analysis of binding of volatiIe 

organic compounds to a protein. The headspace GC method could be empbyed for this 

purpose (8). This method requires no standard solution of the analyte and no calibration 

of the GC detector. It oniy requires that the anaiyte is volatile enough to be measurable in 

the headspace and that the detector response is iinear. 

In reference (8), the partition coefficient of water-hexadecane was determined as 

an example by headspace GC method. The basic idea behind this rnethod was to measure 

the analyte concentration change in the vapor phase, which was in equilibnum with a 

dilute solution of the analyte in water, upon the addition of a h o w n  volume of 

hexadecane. The change is directly related to the partition coefficient of the analyte 

between water and hexadecane. Obviously, this method c m  be easily adapted for the 

study of binding of a volatile organic compound to protein. 

For this system, an initial aqueous solution is made and the anaiyte peak area is 

measured. Then a given amount of hexadecane is added and the peak area is again 

measured. From the measured change (ratio) of analyte peak areas, the partition 

coefficient of the anaiyte between water and hexadecane c m  be calculated. 

Based on the fact that the mutual solubility of water and hexadecane is very low 

(the solubility of water in hexadecane is 2 x 10" molR. and that of hexadecane in water 



is 4 x 104 m o n ) ,  the water-hexadecane system c m  be regarded as a s ystem containing 

two pure solvents (if the hexadecane portion is large enough). 

The andyte partition coeficient between the headspace and water Khw is defined 

as Khw = Ch / Cw , where Ci, and Cw are the analyte concentration in headspace and water, 

respectively. Also one c m  define the partition coefficient between the headspace and 

hexadecane (Klii6) as Kh ,, = Ch / , where Cl6 is the anal yte concentration in 

hexadecane. Then the partition coefficient between water and hexadecane Pw,16 can be 

determined by PW,,, = Khw l Kh16. Suppose the total amount of analyte in the system is 

nfofd , we have: 

Equation 2.9 

Therefore, the peak area ratio, which is the same as the ratio of the headspace 

analyte concentration before and after the hexadecane is added, c m  be written as 

Equation 2.10 

The supercnpt ' O 7  and '" stand for 'initial' and 'final7, respectively. The 

approximation in the above equation is correct only if the amount of analyte in the 

headspace is only a very small portion, which means V, << Vw / Khw . From Equation 

2.10, we c m  see that ratio of the analyte peak is linearly proportional to the volume of 

hexadecane added. Partition coefficient Pw,16 can be detennined from the plot of the ratio 



The descnbed method c m  be modified to cietennine the protein binding 

parameters. In such a study, the protein is dissolved in the water solution. The protein 

binding equilibrium constant K is defined as K = Cb where Cs, Cb and C, are the 
C s  - c p  

concentrations of the free h g  (Cs = ns /Vs ), bound ( C, = n,/vS ) and fixe protein 

(C ,  = np/Vs ), respectively. 

The total amount of andyte in the system nlold c m  be written as: 

Equation 2.11 

where Vh and V, are the volumes of the head space and solution and Kh is the partition 

coefficient of the analyte between the headspace and the water. Therefore, if the amount 

of analyte in the headspace is negligible (V, Vs / K, ), the peak area ratio can be 

expressed as: 

0 f A0 / A /  = n h  In, 
Equation 2.12 

Since the total protein concentration C is h o w n ,  the concentration of free 

protein C, c m  be determined as the following: 

The concentration of free analyte ~ J i s  available from the following relationshîp: 

Therefore, C, can be written as 



Equation 2.13 

From the plot of A' / vs. C, , the equilibrium constant K between the protein 

and analyte can be determined. The case where the arnount of andyte paaitioned into the 

headspace cannot be neglected will be presented in section 2.2.3.6.5. 

2.2.1.3 Present SPME for Free Concentration Measurement 

A few applications have been published using SPME for free concentration 

measurements in either a phospholipidwater system or a proteidwater system (9). The 

theoretical background of these measurements is that the depletion of analyte from the 

sample with SPME extraction is so small that it is neghgible. In other words, the amount 

of analyte extracted is insignificant and would not influence the equilibrium among the 

phases. The assumption that there is a linear correlation between the amount of the 

analyte on the fiber vs. the total concentration of the analyte added into the system was 

used. While in most of the cases, this assumption is true, in some cases where analytes 

have large affinity for the SPME fiber, the validity of this asslimption and the method of 

plotting the calibration curve needs to be verified. This is one of the objectives of the 

research work descnbed in this chapter. 

2.2.2 Theory 

SPME is based on the overall equilibnum of an analyte among al1 the phases. The 

absorption-type fiber is considered in this analysis. The schematic for the SPME 

headspace sampling from a four-phase system (dissolved protein-sample-headspace- 

coating) is illustrated in Figure 2.2. In this four-phase system, with the presence of 



dissolved protein, the analyte in the solution is actudy partitioned into two phases: the 

analyte fteely dissolved in the solution and the analyte bound to the dissolved protein. 

However, in SPME, the equilibrium is attained for the species in each phase. Therefore, 

the amount of analyte on the fiber will only reach equilibrium individually 

1 headspace 

/ 

Khr K/s A / sample solution 

Figure 2.2: A schematic diagram of equilibrium in a four-phase system. 

with the concentration in headspace, free concentration in solution, and the bound 

concentration in the solution, which was illustrated in Figure 2.2. It does not mach 

equilibrium with the sum of free and bound analyte in sample solution. 



Since the total m a s  of the anal yte remains the same before and after the 

extraction, we have: 

COVs = C x  + CFVh + CsVs + CrVs Equation 2.14 

where Co is the initial concentration of the analyte; CI", C l ,  Cr and CF are the 

equilibrium concentrations of analyte in the fiber coating, in the headspace, freely 

dissolved in solution and bound to dissolved protein respectively. The symbol ' = ' and 

footnote 'b' stand for 'at equilibrium' and 'bound concentration', respectively. The value 

of C," is defined as the concentration of the bound drug in the sample solution at 

equilibrium (Cr = n,/V, ). The coatingheadspace distribution constant is defined as 

K f i  = C T / C ~  and the headspace/ sample matrix distribution constant as K, = C,' /CI . 

Since only the equilibnum States are discussed in this chapter, the syrnbol ' = ' will be 

ornitted in the following discussions unless specified. 

To detemine the free concentration of the analyte, a calibration curve showing 

the relationship of the amount of the analyte on the fiber and free analyte concentration in 

the solution at equilibrium, should be obtained without the protein present. The 'free 

concentration' here means the actual concentration in the solution since 'free' is relative 

to the 'bound'. Because there is no protein involved in the calibration step, the word 

'free' is used here only for the convenience of further discussion. 

The calibration curve should correctly represent the situation where the unknown 

sample, which is the sample with the dissolved protein, is measured. Since the analyte on 

the fiber reaches equilibrium with the analyte in each phase individually, theoretically the 

calibration curve obtained on1 y represents the relationship between the amount of the 



analyte on the fiber and free analyte concentration in the solution after the system reaches 

equilibrium. Therefore, ffom the calibration curve, we can only measure the free analyte 

concentration in the solution with protein added at the moment when the equilibrium has 

been established among the fiber, headspace and solution. We c m o t  directly measure 

the initial free andyte concentration, which involves no headspace and SPME fiber. 

However, that parameter c m  be indirectly measured if the experimentd configurations 

such as volumes of headspace, sample solution, headspace-fiber partition coefficient, and 

the protein binding equilibrium constant are hown. 

In the experiment, the arnount of the total analyte in the system was a h o w n  

value. However, there is always confusion with respect to the meaning of the fkee 

concentration used in the calibration curve. The initial analyte concentration spiked into 

the system is often considered to be the free concentration that reaches equilibrium with 

the analyte on the fiber. But, this is incorrect, especially in the situation where the analyte 

is highly volatiIe and headspace contribution cannot be neglected. The correct 

interpretation is that only the free analyte, which is the portion of analyte after the amount 

of the analyte in the headspace and on the fiber have been subtracted from the total 

concentration, is the portion that reaches equilibrium with the amount of the analyte on 

the fiber. It is important to realize that this portion of the analyte should be used to 

construct the calibration curve. 

In the calibration step, which is a three-phase system (sample-headspace-fiber), at 

equilibriurn, the mass balance is: 

nIOIal = n/ + Il,, + ns 9 Equation 2.15 



where nf , n, and n, are the amount of the analyte on the fiber, in headspace and in the 

solution, respectively. The amount of the analyte on the fiber nf cm be obtained from the 

GC analysis by the fiber injection with the pre-detennined GC response factor, which c m  

be obtained from syringe injection. There are two approaches to estimate the amount of 

the anaiyte partitioned in the headspace (n, ). One method is to calculate it from the K, 

value, which can be obtained from the literature (9). The other method is to calculate it 

from the Henry's law constant. With the knowledge of n,, , the free analyte in the 

solution (n, ), is easily obtained. 

With this calibration curve, the free concentration in the protein binding study can 

be obtained from the fiber injection of the analyte with the GC system. Once the free 

concentration is available, the bound concentration of the andyte can be determined by 

the knowledge of the total concentration, the amount of the analyte on the fiber (obtained 

from response factor) and in the headspace (calculated by two previously mentioned 

methods). The equilibrium constant of the analyte protein binding can be calculated from 

equation 2.2, enswing that the molar concentration is used. 

2.2.3 Experimental 

Chernicals and Materialx Benzene, toluene, ethylbenzene, n-propylbenzene, n- 

butylbenzene and bovine semm albumin @SA) (98% purity) were al1 purchased from 

Sigma-Aldrich (Mississauga, ON, Canada). After a GC purity check, al1 chernicals were 

used as purchased. 

The SPME holder and fibers (coated with 30 p PDMS) were purchased from 

Supelco (Bellefonte, PA). Fibers were conditioned according to the manufacturer's 



instructions under a flowing helium Stream in the GC injector before each usage. The 15 

mL g la s  vials and syringes were also purchased from SupeIco. A VWR Dylastir hot 

plate/stirrer (VWR Scientific Canada) was used to agitate the aqueous samples. The 15 

mm stir bars were from Fisher Scientific (Nepean, ON, Canada). 

Ultra high purity nitrogen and hydrogen gases for flame ionization detection 

@'ID) and helium for the carrier gas were puïchased Erom Praxair (Waterloo, ON, 

Canada). Air for the flarne ionization detector was generated from a Balston (Scotch 

Plains, NJ) air generator. 

Instmmentation. Al1 analyses were performed on a Varian (Sunnyvale, CA) GC 

34ûûCX gas chromatograph equipped with 30 m x 0.25 mm id x 0.25 p SPB-5 column 

(Supelco, Bellefonte, PA), a septum-equipped programmable injector (SPI) with SPME 

insert and FID. The carrier gas was helium (25 psi head pressure). 

The column temperature program used in the experiments was 60 OC heId for 1 

min, increased at 20 OC min-' to 120 OC and held for 2 min. In dl SPME analysis, the 

injector temperature was kept at 250 OC. Detector response factors were determined by 

syringe injection of a standard solution of the alkylbenzenes in methanol, using the 

following column temperature program: 40 OC held for 1 min, increased at 10 OC min-' to 

120 OC and held for 1 min. In this experiment, the SPI injector was temperature 

programmed as follows: 43 OC held for 1 min, increased at 250 OC min-' to 250 OC and 

held for the rest of the m. Liquid CO2 was used to cool the injector before sample 

injection. 



Prepardon of Bufer and Analyiical Mixture. The pH 7.4 bufTer solution was 

prepared by combining 100 mM disodium hydrogen orthophosphate (Na2HP04) and 

1 OOmM sodium dih ydrogen orthophosphate (NaH2P04) solution with a certain ratio 

under the monitoring of pH meter. The calibration was performed in this buffer solution. 

In the protein binding measurement, the protein solution was prepared with this buffer 

solution and employed for the experiment. 

A 1 m g h L  standard mixture of benzene, toluene, ethylbenzene, propylbenzene 

and butylbenzene each was prepared by adding 10 mg analyte each into a 15 rnL vial, 

which was prefilled with 10 mL methanol- Standard solutions were prepared by dilution 

of the stock standard with methanol. 

2.2.4 Methods 

Calibration. Al1 experiments were carried out at 23OC using the set up s h o w  in 

Figure 2.2. The nominal volume of the via! was 15 mL. The actual volume of the vial was 

detennined by measuring the volume of the water required to completely fil1 the via1 with 

the stirring bar in it. The volumes of the buffer solution and headspace used were 8 mL 

and 7.8 mL, respectively. A certain amount of the analyte stock solution was spiked into 

the buffer solution to give the desired concentration. The vial was mounted on the stirrer 

plate for agitation. The fiber was inserted into the headspace of the vial to perform the 

extraction. After each extraction, the fiber was taken out the vial and introduced into the 

GC injector port for M e r  analysis. 



Protein Binding Analysis. The same procedure was used in the protein binding 

rneasurement, except that the protein buffer solution of the andytes was used instead of 

the pure buffer solution. 

GC Response Fartors. Syringe injections were used to calibrate the absolute mass 

of the andytes injected into the GC. By comparing the area count of the syringe injection 

and fiber injections, the absolute m a s  of the analyte that was injected into the GC 

injector by the fiber was determined. The so-called "sandwich" method was used for the 

syringe injection to make sure that the aU the amount of the analyte was injected into the 

GC system. A 5.0 pL gas tight syringe was used for this purpose. A segment of 0.5 pL 

methanol was first withdrawn into the syringe and then a segment of air (1 pL) and then 

the sample (no more than I pL). Another segment of air was finaIIy withdrawn before 

injection. 

Calculation. The cdculation was finally processed to obtain the kee 

concentration, bound h g  percentage and binding equilibrium constant. 

2.2.5 Results and Discussion 

GC Response Factor. The GC response factors for each of the five compounds 

were measured by the injection of an aliquot of 0.5 pL of a 1mgImL standard mixture of 

the five compounds repeatedly for nine replicates. The mass of the compounds injected 

into the system was 500 ng. The area counts from each injection for each compound and 

their mean values, standard deviations (STD) and percent relative standard deviations 

(%Sm) are Iisted in Table 2.2. 



Table 2.2: GC response factors of the target dkyIbenzenes detennined by syringe 

injection (/500 ng). 

Butylbenzene 
rr 

1 

2 

3 

4 

5 

6 

7 
b-. 

8 

9 

Mean 

STD 

%RSD 

Benzene 

94521 

94845 

98637 

92787 

99341 

88686 

83404 

82859 

88686 

93 174 

5601 

6.0 

Ethylbenzene 

91369 

95897 

100035 

93756 

102131 

109225 

9098 2 

83531 

109225 

97628 

6607 

6.8 

Toluene 

93791 

95657 

99800 

93564 

f 01037 

99902 

87459 

82942 

99902 

95887 

4810 

5 .O 

Propylbenzene 

84608 

89903 

94554 

88573 

96324 

109228 

875 15 

77743 

109228 

92958 

823 1 

8.9 
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Figure 2.3: Gas chrornatogram of alkylbenzenes. 

Calibrarion. A sample chromatogram of the selected alkylbenzene compounds 

analysis, dong with the temperature programming, is illustrated in Figure 2.3. The five 

compounds were very well separated. 

The calibration cuve  of the area count of fiber injection of various concentrations 

analysis of each compound vs. the nominal concentration of each compound in the 

solution was first obtained and illustrated in Figure 2.4. The calibration curves were 

based on 6-point measurement fiom 50 ng/rnL to 2000 ng/mL. For each concentration, 

three replicates were performed. As descnbed in the theory section 2.2.2, this 



Concentration [ppb] 

Figure 2.4: The cdibration curves of the area count of fiber injection vs. the spiked 

concentration of the analyte in the buffer solution. 

Table 2.3: Regression coefficients of the cdibration curves shown in Figure 2.4. 

Compound 1 Regession Equation 

Benzene 

il Toluene 

Ethylbenzene y = 2 1 . 9 ~  - 106, R~ = 0.9999 

Pmpylbenzene y = 6 3 . 5 x - 2 3 3 , ~ 2 = 1  

Butylbenzene y = 186x - 2.0483, R' = 0.9997 



calibration cannot be directly employed as the calibration curve to calculate the fke 

concentration in the protein binding study since the nominal concentration is not the m e  

free concentration in the solution. The nominal concentration is the summation of the 

compound partitioned in the solution, headspace and on the fiber. The absolute amount of 

the analyte extracted by the fiber can be measured fiom the response factor. 

The K, values of S P W D M S  data are listed in Table 2.4 (1 1). The volume of 

the polyrner coating for 30 pm PDMS fiber is 0.132 p l i  Since the m e  voiume of the vial 

was 15.8 d, the volume of the headspace was 7.8 mL. Since K,, = Cf /Ch , The arnount 

of the analyte in the headspace can be calculated according to the following equation: 

nrvh nh =- Equation 2.16 
K,Jf 

Therefore, the true free concentration of the analyte in the buffer solution c m  be 

calculated by the following equation: 

Equation 2.17 

The calculation results are listed in Table 2.5. 

Table 2.4: Summary of K,, and K,, SPMWPDMS data for selected alkylbenzene 

compounds. 

Compound K, (25OC) K,, (22OC) 

Benzene 301 58 

Toluene 818 189 

Ethylbenzene 2070 566 

Prop ylbenzene 5040 1664 

Butylbenzene 8590 401 1 



Table 25:  Summary of the data obtained fiom the calibration of akylbenzenes. 

Propylbenzene Vs = 8mL, V, = 7.8mL, V,  = 0.132pL. K, = 5040 , K, = 1664 
50 1 400 1 3181 1 17.62 1 92.8 1 36.2 

Benzene Vs = 8mL, Vh = 7.8mL, V, = 0.132&, K, = 301, K ,  = 58 

Butylbenzene Vs =8mL, V, =7.8mL, V, =0.132&, K, =8590, K, =4011 
50 1 400 1 9213 1 50.84 1 110 1 29.9 

Cspike 

50 
100 
200 
500 
1000 
2000 

LOO 
200 

nmw (ng) 
400 
800 
1600 
4000 
8000 
16000 

Area Count 
129 
256 
502 
1276 
2539 
5090 

Toluene Vs = 8mL, V, = 7.8mL, V f  = 0.132&, K,, = 8 18, K,, = 189 

800 
1600 

nr (ng) 
0.72 

50 
100 
200 
500 
1000 
2000 

6282 
12346 

ml (w) 
62.5 

400 
800 
1600 
4000 
8000 
16000 

391 
766 
1492 
3862 
7696 
15498 

Cs (PPW 
42.1 

Ethylbenzene V, = 8mL, Vh = 7.8m5, V f  = 0.132@, K, = 2070, K, = 566 

34.80 
68.39 

84.2 
169 
421 
842 
1684 

1.43 
2.80 
7.11 
14.16 
28-38 

2.1 1 
4.13 
8 .O5 
20.83 
41.51 
93.60 

50 
100 
200 
500 
IO00 
2000 

125 
245 
625 
1250 
2500 

186 
372 

73.1 
145 
288 
73 1 
1454 
2906 

400 
800 
1600 
4000 
8000 
16000 

72.4 
145 

40.6 
8 1.3 
163 
406 

813 
1625 

1039 
2 146 
4242 
10857 
21637 
43904 

5.49 
1 1.33 
22.40 
57.34 
114.3 
232.0 

82.5 
165 
330 
823 
1646 
3288 

39.0 
78.0 
156 
390 
780 
1560 



0.0 500.0 1000.0 1500.0 2000.9 

Concentration [ppb] 

Concentration [ppb] 

- u - B utylbenzene 5 300000 

Concentration [ppb] 

To Iuene 

Concentration [ppb] 

Concentration [ppb] 

Figure 2.5: Calibration cuves of 

the area count obtained from fiber 

injection vs. the free analyte 

concentrations in solution, for each 

of the five compounds. 



The calibration curves of the area counts vs. the accurate fiee concentrations in 

the solution of each compound are ihstrated in Figure 2.5. These calibration curves are 

employed for the determination of the free concentration in the protein binding study. 

Determina~ion of Protein Binding Parameters. The experimental setup for the 

detennination of the protein binding parameters was the same as descxibed in the 

calibration step, except that a 1 mg/mL BSA bufTer solution was used instead of the pure 

buffer solution. Three concentrations of the total arnount of the analyte (1 00 ng/mL, 200 

ng/mL and 500 ng/mL) were investigated by spiking 800 ng, 1600ng or 4000 ng into the 

protein solution. For each of the concentrations, three replicates were performed. The free 

analyte concentrations can be detennined with the calibration curve obtained in the 

previous section. The bound analyte concentration cm be calculated by the following 

equation. 

Equation 2.18 

This equation was denved from Equation 2.9. Since the molar concentration of 

bound analyte equais the molar bound concentration of the protein, the K value can be 

easily calculated from Equation 2.2. The experimental results are listed in Table 2.6. 



Table 2.6: Sumrnary of the experimentd results of akylbenzenes binding to BSA. 

Benzene, V, =8mL, V, = 7 . 8 d ,  Vf =0.132pL, KA =301, K f i  =58 

- 

500 4000 1203 6.7 1 398 25 1056 13-02 

Mean value of logK 3.5 1 

Toluene Vs = 8 d ,  Vh =7.8mL, V ,  =0.132& K, =818,  K, =189 

Mean value of logK 3.87 

Ethylbenzene V, = 8rn.L. V, = 7.8mL, V' = 0.132pL , K, = 2070, K, = 566 

Mean value of EogK 4.27 

Propylbenzene Vs = 8mL, Vh = 7.8d, VI = O.132pL , K, = 5040 , K, = 1664 

I 1 1 1 I I 
Mean value of logK 4.58 

Butylbenzene Vs = 8mL, V, = 7.8mL., Vf = 0.132pL , K, = 8590, K, = 401 1 

I I 

Mean value of ZogK 4.92 
* Molecular weight of BSA: 67,000 Dalton 



The results have been compared with the experimental results obtained by 

headspace GC method @y C m ,  P. (8) unpublished). Table 2.7 is the cornparison of the 

results obtained from the two methods independently. The similar results obtained by the 

two independent methods indicate that SPME is a valid method for protein binding study. 

Table 2.7: Cornparison of logK values obtained fiom the SPME method and from 

headspace GC analysis. 

Chernicals LO@&UE LogKIVadrpme cc Relative Difference (%) * 

Benzene 3.5 1 

Toluene 3.71 

Eth y1 benzene 4.15 

Propylbenzene 4.49 

butylbenzene 4.87 

* Relative Di fference (%) = a b ~ [ ( I o g K ~ p ~ ~ - l o g K - ~ ~  ~ ~ ) n 0 g K ~ ~ ~ ~ ] ~ 1 0 0  

Further Discussions. As shown in Table 2.8, the volume of the polymer coating 

of the fiber was very small. Evert for the PDMS 100 p fiber, which has the biggest 

volume of polymer of the phases commercidly available, the volume was still much 

smaller than 1 a. Since 8 mL of solution was used in the experiment, the analyte 

concentration was about 500 ng/mL, and the total mass of the analyte in the solution was 

4 pg. In order to have 10% of the free analyte to be extracted the K,, , would need to 

greater than 1,000,000. According to the available published data, this condition is hard 

to satisfy even for the highly hydrophobie PAHs (10). In fact, the K, values for most of 



Table 2.8: The geornetric dimensions of selected fibers. 

hase volume 
! 

1 1 i i 

fiber 1 1 i I ( m 3 )  1 (mm) f 1 (mm3) i 1 (mm3) 
a 

t 1 1 1 
l 

1 
1 1 

PDMS lQOpm 1 0.110 i 0.095 1 0.300 1 0.707 ! 0.612 
1 I 1 1 
1 I ! ! 

: I 1 1 

I 1 1 
I 1 1 
I 

1 1 
I 

1 

PDMS 7 ~JII 1 0.110 1 0.095 1 0.124 i 0.121 i 
1 1 I ! 

0.026 

I 1 1 1 

Total volume - Core volume = Phase volume 

Length of the fiber = 10 mm; D = Diameter 

the volatile organic compounds are below 100,000 (1 1). This means that in most cases, 

the analyte extracted by the fiber is less than 10% of the total amount of the free analyte. 

This value could be neglected without producing a significant error if we are only 

intereseted in determination of the free analyte concentration. However, for the 

calculation of bound analyte concentration, the partitioning on the fiber must be 

considered since it may be comparable to the bound concentration. 

The arnount of analyte partitioned in the headspace, however, could be significant 

compared with the total arnount of the analyte in the system. The percentage of the 

analyte partitioned in the headspace can be evaluated by the Henry's law constant. By 

using 500 ng/rnL solution with V, = 8 mL and V, = 7.8 mL as an example, the total 

arnount of the anaiyte spiked into the system, the arnount of the analyte extracted by the 



SPME fiber and the amount of the analyte partitioned into the headspace obtained from 

the calibration step are listed in Table 2.9. The Henry's law constant (KH) for each 

compound is also listed. 

Table 2.9: Summary of the experimental data of total amount of analyte spiked into the 

system, on the fiber and in the headspace. Henry's law constant (12) is also listed. 

Frorn Table 2.9, we c m  see that for volatile compounds like alkylbenzenes, the 

amount of the uialyte partitioned into the headspace was too large to be ignored. 

Therefore, it must be considered in the construction of the calibration curves. On the 

other hand, the partitionhg to fiber coating is also not negùgible in some cases. 

For equilibriurn constant measurement, equations are derived to describe the 

freel y available anal yte concentration in different systems. In a two-phase s ystem 

(sample-dissolved protein, without headspace), the mass balance is: 

( 0 )  ( 0 )  
= ns + n b  Equation 2.19 



(O) - Since C,, - Cp,, - c,"' , where Cp,totd is the initial protein concentration. A few simple 

rearrangements of Equation 2.2 wili yield the expression describing the bound 

concentration at equilibriurn: 

Equation 2.20 

The expression of the concentration of freely available analyte cm be 

subsequently obtained by substituting Equation 2.20 into Equation 2.19: 

Equation 2.21 

Note that Equation 2.21 is a quaciratic equation of c,'O) . 

In a three-phase system (headspace-buffer solution-dissolved protein), the mass 

balance is: 

(1)  
n,, = n, + n,'" + n,'" = (v, + KJ, )c,"' + C,("V, Equation 2.22 

Similarly, an equation describing the fieely dissolved analyte concentration in such a 

system can be obtained. The tenn in the denominator ( K,Vh ) shows the presence of 

headspace. 

Equation 2.23 

The four-phase system was estabiished after the fiber was introduced into the system, the 

mass balance for such a system is: 

ntord = nl + (v, + K,Vh )c,'~' + c~(~)v,  Equation 2.24 

The equation to describe the freely dissolved analyte concentration at equilibrium is: 



It is obvious from Equation 2.21, Equation 2.23 and Equation 2.25 that the 

concentrations of the freely dissolved analyte depend on the different systems due to the 

distribution of the analyte into the headspace andlor fiber. However, the difference c m  be 

represented by replacing the sample voiume V, in the first tenn of denominator by 

V' + K,V, + KfiVJ (for equation 2.25). This also provides the conditions when the 

partition to the fiber and headspace can be neglected for the calculation of free analyte 

concentration: 

which is similar to the condition for headspace GC analysis. 

Figure 2.6 illustrates this phenornenon. Toluene was used as the example to plot 

these curves. The following parameters have been employed. K = 7329mol-l L , 

K, = 0.23 , Kfi  = 189, V, = 8mL, V, = 7.8mL, C,,, = 5.97 x l~"rnol L-' . Curves (a), 

(b) and (c) correspond to Equation 2.2 1, Equation 2.23 and Equation 2.25, respectively. 

The term K,,V, represents the effect of the fiber extraction, which is usually very 

small. For volatile compounds, K, is usually no larger than 1, which means that 

headspace effect can be negiected only if it is very small with respect to the sample 

volume. Semi-volatile compounds have rnuch smaller K, , the K,V, term may be 

negligibl y srnaIl. However, such assumptions should always be verified before k i n g  

applied. 



Figure 2.6: The free toluene concentration curves of a. two-phase system (buffer-dissolved 

protein), b. three-phase system (buffer-dissolved protein-headspace) and c. four-phase 

s ystem (buffer-dissolved protein-headspace-fiber). 

Cornpanson with the calibration system, where there is no protein added, 

Equation 2.21 and 2.25 can be converted into: 

Equation 2.2 1 .c 

C 

C;(2) = ntotal - - Y ' c$O' Equation 2.25 .c 
VSC+KhrVhC+KfiVf V s C + K ~ v ~ c + K ~ V f  



where the symbol 'c' stands for calibration system. 

Frorn Equation 2 . 2 5 . ~ ~  it is clear that c:"' and c:"' are linearly dependent. 

However, comparing with Equation 2-21 and Equation 2.25, there is no such linear 

relationship between c,'~' and c,"' . Since the value of c,'" and c:'' are proportional to 

the fiber extraction amount n, and nfc , respectively, we can draw the conclusion that, 

unlike in the calibration step, there is no linear dependence between fiber extraction 

amount n, and the original fiee dmg concentration Cs"' . Therefore, it is impossible to 

directly estimate the original free analyte concentration c,"' (with protein presence, no 

headspace, no fiber) only from the calibration curve. c,"' can only be calculated with the 

extra information such as the total protein concentration (C,,, ) and binding equilibrium 

constant K. 

The only solution was to plot the calibration cwve of equilibriurn analyte 

concentration in aqueous solution (cf') vs. the amount of the analyte extracted by the 

fiber (n,"' ), which was used in this study. This plot can be used to determine the free 

analyte concentration (c,(*' ) which is in equilibnum with the protein, fiber and 

headspace, after the measurement of the fiber extraction amount (nf ). 

It is interesting to pay close attention to the relationship between c,"' and c,"'. 

The change of the analyte concentrations can be analogous to the drug elimination 

process in a pharamacology study (13). After the solution (with initial concentration 

c,"' ) was introduced into the vial, some portion of the free analyte in the solution would 



be transferred into headspace and fiber coating until equilibrium is attained, However, the 

decrease of fiee analyte concentration in the solution due to the binding to protein wili 

cause a certain portion of the bound andyte to become dissociated and released as Eree 

analyte into the solution. If KC,,,, /(1+ KC,"') >> 1,  then c,"' .= c,"' , which means 

that the free concentration will change very little. In such a case, the protein-bound 

analyte acts like a buffer. The analyte partitioned into the headspace and fiber comes 

from the dissociation of protein-bound analyte, even though the analyte amount in 

headspace can be comparable to the free analyte amount in the solution. If 

K V 
KC,,,, /(l + KC,"' ) << 1 and KCpJotd /(1+ KC,'~' ) << -hi- . the dependence between 

Y 

c,"' and c,'" will be the same as c:"' and c:'~' . Only under such circumstance, can the 

calibration curve of n,' vs. c~'O) be used to estirnate the free analyte concentration c,"' . 

2.2.6 Determination of the EquiLibrium Constant without the Calibration 

Discussion now switches back to the headspace GC anaiysis. The effect of 

headspace should be similar to the SPME case. If the headspace cannot be ignored, 

equation 2.12 should be modified as 

Equation 2.12.a 



Compared with equation 2.12, the effect of the headspace will contribute a multiplier of 

Y . This equation can be easily adapted to the SPME analysis, where: 
v s  + K,Vh 

Equation 2.12.b 

A' and are the analyte peak areas with protein absence or presence, respectively. 

Unbound protein concentration C, can be calculated from equation 2.13 "): 

where C,,,, is the total protein concentration; e s o i s  the total analyte concentration. 

Therefore, the plot of /A' vs. C, should be a line with siope of K Y  
vs + KkVh + KfSVf 

(') Note: Although Equation 2.13 is derived when analytes partition on fiber and headspace are ignored, it 

stili holds when the amount o f  analyte on fiber and headspace are significant. When protein is not present, 

When protein is added, 

Therefore, the bound protein concentration can be expressed as: 



Table 2.10: Summary of the data of the direct equilibrium constant measurement. 

Figure 2.7 and Table 2.10 illustrate the estimation of binding constant utilizing equation 

2.12.b. In this experirnent, the total protein concentration (C,,, ) of 0.25 mg/mL, 1.00 

mg/mL, 2.00 m@mL and 4.00 mg/mL were used. The sample solution volume V, and 

headspace volume Vil were 8.0 mL and 7.8 mL, respectively. The total analyte 

concentration c,' was 500 ppb. The estirnated result demonstrates that it is compatible to 

the previous rnethods. 

The advantage of this method is that only the relative ratio (4 / A j ) ,  total analyte 
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concentration c,' and total protein concentration ( C,,,, ) are required to calculate the 

first order binding equilibrium constant. There is no need to know the exact fiber 

extraction amount and the GC response factor. The only assumption was that the 

response of fiber and GC should be linear, which was satisfied in this experiment. 

Inherently, this method introduces less measurement error. 
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Figure 2.7: Curves to directly calculate 

the equilibrium constant. 



2.2.7 Conclusion 

This work demonstrated that SPME is an effective and accurate method to 

determine the binding parameter of volatile organic compounds to protein, which is 

difficult for most conventional methods. Compared with headspace GC, SPME is simpler 

in operation and no expensive apparatus required. Another important factor of SPME is 

that it does not have theoretical reservations. Several approaches to measure the protein 

binding constant have been investigated, including one which only utilizes the relative 

peak area ratios. 

However, to measure the fiee analyte concentration with protein presence 

correctly, special consideration should be exercised in the building up the calibration 

curve. While the amount of the analyte on the fiber could be neglected in most cases, the 

amount of analyte in the headspace is normally too large to be ignored for volatile 

organic compounds. Therefore, it is necessary always to validate the assumptions made to 

simplify the probIem. 



23 Study of Diazepam Binding to Human S e m  Albumin by SPME 

2.3.1 Background 

The postulated structure of human senun albumin (HSA) and the possible 

locations of dnig binding sites are illustrated in Figure 2.8 (3). The complete prïmary 

structure of human senun albumin has k e n  hown  since 1975 (14, 15). It consists of a 

single peptide chah containing 585 amino acid residues, which is formed into nine 

double loops or subdomains by paired disulfide bonds (14, 15). As proposed by Behrens 

er al. (14), the tertiary structure of HSA consists of three domains, each formed by three 

loops. Several similarities exist among the thiree domains with respect to amino acid 

composition and sequence (15). 

DOMAINS 

SUBDOMAINS 

LOOPS 

Figure 2.8: Loap structure of HSA indicating disulphide bonds forming loops, 

subdomains and domains. (Adapted from (3)). - : disulfide bond). 



MW 284.7 g/mol 

M.P. 125-126°C 

pK' 3.3 

Figure 2.9: Structure and some of the physical properties of diazepam. 

Brown and Shockley (16) developed a 3-dimensional model of HSA using 

restrictions imposed by helices, disulphide bridges, hydrophobic areas and the proline 

residues at the tip of each loop. Within each domain, subdomains consisting of loop A 

and B (large and small) and loop C were constmcted. Further work with space-filling 

models suggested that the hydrophobic faces of the AB and C subdomains fitted together 

leaving a hydrophobic channel through the domain and a large indentation on each side 

of the molecule. 

This space-filling model suggests two binding sites for fatty acids and /or dmgs in 

each domain, making a total of six sites. Fatty acid binding studies generally show 6 sites 

in agreement with this model (17, 18). Drug binding site II is located in subdomain 3AB 

and the likely location of site 1 is subdomain AB. 



Diazepam (7-~fil0r0-l,3-dihydr0-l-methyl-S-phenyl-3H-l ,4-knzodiazepin-2- 

one) was used in this thesis as the target compound to illustrate the effectiveness of 

SPME as an alternative way to investigate the interaction between drug and protein. 

Diazepam is one member of the benzodiazepine drug family widely used as tranquilizers, 

hypnotics, muscIe relaxants, and anticonvuisants (19,20). The structure of diazepam and 

some of its physicd properties are illustrated in Figure 2.9. 

It is well Iaiown that diazepam binds to serum albumin. Various authors (21) have 

proven the presence of one specific binding site. The binding constants, the 

thermodynamic parameters, and their variation with pH have also been deterrnined (22, 

23). 

The details of the molecular aspect of ligand binding to HSA is beyond the scope 

of this thesis. However, it is believed that diazepam binding to HSA occurs at binding 

site II, which is also called the "indole and benzodiazepine binding site" (24-26). The site 

binds several indole derivatives and benzodiazepines with a high degree of structural 

specificity (21-27-29). In fact, diazepam is one of the specific marker ligands for this site 

(26). 

2.3.2 Theory 

Since diazepam is a non-volatile, relatively polar organic compound, it is more 

likely to be hydroptiilic than the alkylbenzenes studied in the previous section. In 

addition, it is expected that a very smdl amount of the diazepam will be partitioned in the 

headspace since it is very non-volatile by nature. For these types of compounds, direct 



SPME, in which the extraction step is perfonned directly in the sample solution instead 

of in headspace, is employed. 

To avoid possible experimental enor introduced by the slight diazepam 

partitioning into the headspace, the headspace is totally eliminated in the experimental 

configuration. Employing the same methods that have been demonstrated in the previous 

section on alkylbenzenes binding to HSA, accurate results could be obtained even with 

the presence of the headspace by using the correct calculation method. Since it w i l  

increase the complexity of the data processing and the direct extraction method c m  be 

used, the via1 was totally filled with sample solution leaving no headspace, as shown in 

Figure 2.10. In this configuration, diazepam binding to HSA was a three-phase system, 

which is buffer-dissolved protein-fiber coating. During the calibration step, it was a two- 

phase system (buffer-fiber coating). 



Figure 2.10: Schematic of equihbrium in three-phase system (sample solution- 

dissolved protein-fiber coating). 

In the caiibration step, the mass balance is: 

n,, = nf + ns 

A simple derivation yields: 

Equation 2.26 

Equation 2.27 

If ni is negligible, we have: 



Equation 2.28 

This means that when the amount of the analyte on the fiber can be neglected, the 

calibration curve of initial concentration (Co)  vs. the amount of the analyte on the fiber 

can be employed to calculate the free anaiyte concentration in protein binding snidy. 

However, if the cornpound has a large partition coefficient towards the fiber, the amount 

of the analyte partitioned ont0 the fiber has to be taken into consideration. In this 

situation, Equation 2.27 should be employed to calculate the free concentration, which 

will be used in the calibration cuve  to determine the free concentration in the protein 

binding snidy. The amount of the analyte on the fiber cm be measured from the response 

factor of diazepam on GC, which can be obtained from syringe injection. 

The mass balance for system with dissolved protein is: 

nt& =nf +ns +nb Equation 2.29 

Once the free concentration (Cs ) is known from the calibration curve 

corresponding to the fiber injection amount nf , The bound concentration C, can be 

calculated from the following equation. 

Equation 2.30 

Since the molar bound dnig concentration equals the molar bound concentration of 

protein, the equilibnum constant can be caiculated frorn Equation 2.2. 



2.33 Experimental 

Chenzicals and Mu?eriaZs- Diazepam was purchased from Radian (Austin, TX) as 

a 1 mg/mL rnethanol solution. This solution was diluted with methaml into 0.1 mg/rnL, 

0.01 mg-, 0.001 mg/mL solutions for experimental convenience. AI1 these stock 

solutions were stored at -lO°C. The human serum albumin (HSA, 96% purity, no fatty 

acid) was purchased from Sigma (Mississauga, ON, Canada). SPME devices and fibers 

[lOO p poly(dirnethy1siloxane) (PDMS)] and al1 the vials used in the experiments were 

purchased from Supelco (Bellefonte, PA). 

The pH 7.4 buffer solution was prepared by combining 200 mM disodium 

hydrogen orthophosphate and 200 mM sodium dihydrogen orthophosphate solution at a 

certain ratio under the monitoring of a pH meter. This buffer solution was diluted to fonn 

a 0.067 M pH 7.4 buffer solution. The calibration and protein binding measurernents 

were performed in this buffer solution. 

Instmrnentation und Analytical Conditions. Al1 analyses were performed on a 

Varian (Sunnyvale, CA) 3500 gas chromatograph equipped with a 10 rn x 0.25 mm id x 

0.25 pm SPB-5 column (Sigma, Mississauga, ON, Canada), a septum-equipped 

progmnmable injector (SPI) with SPME insert and a FID. The carrier gas was helium 

(25 psi head pressure). The temperature program used for the fiber injection was 120 OC, 

held for 1 min, increased at 10 OC min-' to 300 OC, held for 5 min. Duing the whole 

analysis, the injector and detector temperatures were kept at 250 OC and 300 OC, 

respective1 y. 

The detector response factor was detennined by a syringe injection of a 1 mg/rnL 

standard diazepam solution in methanol(O.5 FL) using the same column temperature 



program. The SPI injector was temperature programmed as follows: 50 OC heId for 0.5 

min, increased at 250 OC/min to 250 OC, held for 22 min. Liquid CO2 was used to cool the 

injector before all injections. AU the extractions were carried out at 23 OC. A 7 mm x 2 

mm stirrer bar was used in each of the extraction vial (2 mL clear via1 fiom Supelco). 

Method. Since diazeparn is a non-volatile and relatively polar compound, direct 

SPME, in which the extraction was perfomed direct in the sample matrix instead of the 

headspace, was used in this expenment. A 2 mL via1 was used in the experiment to Save 

the protein solution. A stirrer bar was first put into the vial and then 1.9 rnL buffer or 

protein solution was added to cornpletely fil1 the vial. This process leaves no headspace 

in the vial, so that the analyte partitioning to the headspace was eliminated. This vial was 

mounted on the pIate/stirrer to start the agitation. The agitation speed was kept at 800 

rpm. After the agitation was stable, a PDMS fiber was inserted into the vial for the 

extraction. The extraction time was optirnized at 45 min. After the extraction, the fiber 

was transferred to the GC injector for analysis with a desorption time of 3 min. No 

carryover of andytes was observed. An extraction profile and calibration curve of 

diazepam were first investigated in 0.067 M phosphate buffer solution (pH = 7.4). For the 

protein binding study, 1 m@mL HSA solution was prepared in the same buffer solution 

and used for the extraction. The free dmg concentration was calculated from the GC 

response factor and the  calibration curve. The equilibrium constant was then obtained 

from the Scatchard method. 



23.4 Results and Discussion 

Decomposition of Diazepam. Like most of the benzodiazepines, diazepam is a 

thermally labile compound, which is likely to be decomposed in the GC system if the 

temperature is ~ ~ c i e n t l y  hi&. It was found that diazepam decomposed when a 30- 

meter column was used, since, on that column, the compound takes more time and higher 

temperature to elute. The problem was eliminated when a 10 rneter column was used. 

Extraction Profile. Al1 the extractions in this study were can-ïed out at 23OC. The 

extraction profile was fmt investigated to determine the equilibnum time. The 

equilibnum profile is presented in Figure 2.11. From the extraction profile, we can see 
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Figure 2.11: Extraction profile of diazepam by a PDMS 100 p fiber in 0.067 M 

pH = 7.4 phosphate buffer. Agitation speed was 800 rpm. 



that the equilibrium is reached after 35 min. Therefore, 45 min was used as the extraction 

time for al1 expenments. 

GC Response Factor. The GC response factor was determined by syringe 

injection an aliquot of 0.6 pL of 0.1 rng1m.L (total mass = 60 ng) diazepam methanol 

solution into the GC system. The "sandwich" method was used for the syringe injection. 

The response factor was determined as 3602 area counts per ng diazepam. 

Calibration Curve. The caiibration curve (Figure 2.12) was performed in 0.067 

M phosphate buffer (pH = 7.4) solution with diazepam concentration varying from 0.25 

~g /mL to 10 pg/mL. A diazepam standard methanol solution was spiked into the buffer 

solution to obtain the sample solution with a certain concentration. It was found that the 

trace amount of methanol could affect the precision of analysis by swelling the fiber 

Table 2.11: Summary of the data for diazepam analysis in buffer solution. 

1 The response factor is 3062 area count unitslng of diazeparn. I 



coating. Therefore, during the calibration, as werl as the protein binding analysis, 

methanol was added to the solution to keep methanol concentration the same in each 

analytical via1 for al1 the concentrations of diazepam. 

The amount of the anal yte partitioned ont0 the fiber coating can be calcuiated 

from the response factor and the area count of the fiber injection. The resdts are shown 

in Table 2.1 1. 

Column 5 in Table 2.11 shows that the amount of the analyte extracted by the 

Concentration [ppb] 

Figure 2.12: Caiibration curve of diazepam. The x-axis is the total concentration of 

diazepam. 



fiber is less than 3% of the total amount of the analyte in the solution. This amount is so 

small that it can be neglected in plotting the calibrôtion curve. Therefore, the calibration 

curve of the total concentration C,, vs. the area count c m  be used as the calibration 

curve to determine the fiee drug concentration in the protein binding study. The 

calibration curve is presented in Figure 2.12, The measurements were perfonned in 3 

replicates. The regression parameters are shown in the chart area. 

The calibration curve is linear with regression equation of y = 140.77~ and a 

square of regression coefficient (2) of 0.9903. 

Deteminahon of the Binding Parameters. The moles of clmg bound per moles of 

protein (r), the molar fiee concentration (Dl) and the value of r/[D] have been 

calculated and summarized in Table 2.12. A Scatchard plot was employed to calculate the 

equilibriurn constant and the number of binding sites in this study. 

The concentration of HSA used in this study was ImglmL, which is 1.45x10-' M 

(molecular weight of HSA is 69,000 g/moI). Since the analyte concentration loaded on 

the SPME fiber ody  reached equilibrium with the free andyte concentration in the 

solution, the concentration obtained frorn the calibration curve was the free diazepam 

concentration in the solution. The amount of the analyted loaded on the SPME fiber c m  

be calculated through the GC response factor. Therefore, the bound dnig concentration in 

the solution could be easily obtained from Equation 2.30. 



Table 2.12: Summary of the experimental data of diazepam binding to HSA. 

The Scatchard plot is presented in Figure 2.13. From the regression equation of 

the Scatchard plot, the slope was equal to 1.02 x106, y-intercept equal to 1.03x106, x- 

intercept equal to 1.0. Therefore, the equilibrium constant K = 1.02 x10' ~srnol-' and the 

logK value was 6.01. The nurnber of binding sites per protein molecule was 1.0. 

The apparent equilibrium constant and the total binding constant are reported as 

1. lBx1o6 L-mol-'and 4.9 19x10~ ~*rnol-' (23). This is the only value of equilibrium 

constant that is published about diazepam binding to HSA. Compared with the result in 

this study, which is 1 . 0 2 ~ 1 0 ~   mol-', the two resulu are very comparable with the 

relative difference of their log value being less than 1%. 
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Figure 2.13: Scatchard plot for diazeparn binding to HSA. 

2.3.5 Determination of the Equilibrium Constant without Calibration 

The direct equilibriurn constant measurement method developed for alkylbenzene 

binding analysis can be modified for diazepam binding analysis. Since no headspace is 

involved and the effect of fiber extraction amount is neghgible (about 3%), the mass 

balance for the system with protein in present can be written as: 

Equation 2.3 1 



For this experiment, the total protein concentration was constant and the diazepam 

concentration was varied Choosing the solution with diazepam concentration of c,'" 

without protein present as the reference system, then: 

'O) ' ci'') ,'"' v* * 
nrota~ 

Therefore, for systems with protein and different diazepam concentrations, using the fact 

Equation 2.32 

where the superscnpt '(O' and "*" stand for system with protein, and reference system 

without protein, respectively; c,"' is the unbound protein concentrations, which can be 

determined from following equations: 

Equation 2.33 

CE; A''' 
Table 2.13 and Figure 2.14 shows the plot of - - vs. c,'" . From the plot 

A"' 

we obtain an equilibrium constant of 9 . 7 7 ~ 1 0 ~   mol-', which agreed with the value 

attained from previous Scatchard pIot. 



Table 2.13: Experimental data of diazepam binding to HSA for direct equilibrium 

constant measurement. Note that for reference system, C ~ O )  was 1000 ppb without 

protein, with a corresponding area count A"' being 135,109. 
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Figure 2.14: Direct measurement of diazepam-HS A binding equilibrium constant. 
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2.3.6 Conclusion 

SPME is an equilibrium process between the amount of dmg partitioned ont0 the 

SPME fiber, the concentration of free dmg and the concentration of bound dmg in the 

solution. The portion of the drug malysed in a GC system through fiber injection 

represents the true amount of the dmg that had reached equilibrium with the solution. 

Therefore, the equilibriurn between the dmg-protein binding process was not affected. In 

most cases this value is so small that it could be neglected without influencing the 

equilibrium system. However, the verification should be always performed before the 

assumption is exercised. 

In this research, both the Scatchard plot and direct measurement were employed 

to determine the binding parameters of diazepam binding to HSA. In the direct 

measurement approach, no calibration and GC response factor was needed. Both the 

results are compared with the value obtained by different methods from the literahm. 

The experiment demonstrates that SPME is a viable alternative approach to study protein- 

binding phenornena. 



2.4 Diazepam Binding to HSA - Srnail Volume Analysis by SPME 

In the previous section, it was demonstrated that diazepam binding to HSA can be 

successfu1Iy studied by SPME. However, this application has been performed in a 2 mL 

vial. Although this volume is already fairly small, for some expensive or hard-to-obtain 

protein samples, it is desirable to further decrease the protein solution volume. In this 

section, the parameten of diazepam binding to protein have been measured in a small 

volume of protein solution (150 a). 
It is important to mention that the method descnbed in Section 2.3 is perfectly 

suitable for the small volume analysis. The neglect of the amount of analyte on the fiber 

in the calibration step should always be verified, especially for small volume analysis. 

2.4.1 Theory and Description of the Method 

In this method, a known arnount of the analyte was first loaded ont0 to the fiber 

from a buffer solution with a known concentration of the analyte. For the ease of the 

experiment, it is better to load the analyte from a solution with a large volume so that 

each load can have the same amount of analyte extracted. The GC response factor has to 

be determined in order to know the exact amount of the analyte on the fiber. A calibration 

cuve of amount of the anaiyte on the fiber vs. the free analyte concentration in the 

solution is constructed. This calibration curve is employed to determine the free 

concentration in the protein binding study. 

The fiber loaded with diazepam compound is then inserîed into the solution of 

known protein concentration, for desorption. There is no headspace for this protein 

solution. After equiiibrium has been reached, the fiber is withdrawn from the solution and 



analyzed by GC with fiber injection. The amount of the analyte left on the fiber can be 

determined by the GC response factor. 

The drug desorbed into the protein solution consists of two phases: freely 

dissolved in the buffer solution or bound to protein. The free concentration of the analyte 

is an important parameter that ne&s to be detennined. 

The amount of the analyte initially loaded ont0 the fiber is the total amount of the 

analyte in the protein binding process. So it is termed as "n,, ". When equilibriurn with 

protein solution has been obtained, n,, is equal to: 

nfofd = nb + n, + n, = C,Vs + C,V, + n Equation 2.3 1 

The amount of the analyte on the fiber after the desorption to the protein solution (n  ) 

cm be determined from the GC response factor. Given n, , the freely dissolved d m g  

concentration (Cs) can be determined from the calibration curve. Since the volume of the 

protein (V,) and the amount of the analyte loaded ont0 the fiber (n,,) are known values, 

the bound concentration (C , )  was easily cdculated. The Scatchard method was finally 

applied to determine the equilibrium constant. 



2.4.2 Experimental 

Cherniculs, Marerials and IflShUmentation, The chemicals, materials and 

instrumentation were used as described in Section 2.3 with the following exceptions. A 

polyethylene insert (Supelco, Bellefonte, PA; Catalogue number: 24798) was positioned 

in the 2 mL vial for the small volume analysis. The volume of the small insert was 150 

pL. The configuration of the experiment is shown in Figure 2.15. 

The analytical conditions for the GC analysis were also the same as described in 

Section 2.3- The methods of preparing the standard sample solutions, b-er solutions, 

and protein solutions were kept the same. 

SPME Fiber ti 
1 2mL Vial 

Buffer 
Solution 

1 ' 1  I Solution 

Pol yeth ylene 
Insert 

Figure 2.15: Experiment configurations for diazepam binding to HSA in srnall 

volume analysis. 



2.4.3 Results and Discussion 

Drug b a d i n g  and Calibraîiun. The same calibration curve was obtained as 

illustrated in Figure 2.12. The amount of the drug loaded on the f i k r  was determined 

from this curve using the area count obtained from GC analysis. The absolute mass of the 

analyte loaded on to the fiber was calculated from the GC response factor, which cornes 

from the previous analysis: 3062 per ng. This calibration curve was also employed in the 

protein binding study to determine the free analyte concentration. 

Determination o f  the Binding Parameters. During the protein binding analysis, 

three concentrations were investigated. The diazeparn was loaded from 500 ng/mL, 1OOO 

ng/mL and 2000 ng/mL 2 mL M e r  solutions, respectiveIy. For each of the 

concentrations, 3 replicates were measured. The extraction time in the drug loading step 

and the desorption time in the protein solution were controlled to be 45 min. The protein 

concentration in this study was 0.05 mglml  (7.25x1W7 M). The molecular weight of 

HSA is 69,000 g/mol. Table 2.14 summarizes the experimental results. 

The Scatchard plot is presented in Figure 2.16. From the regression equation of 

the Scatchard plot, the slope equals 1.25x106, y-intercept equals 1.17x10~, x-intercept 

equals 0.93. Therefore, the binding equilibrium constant K was 1 .25~10~   and the 

logK value was 6.10. The number of binding sites per protein molecule was 0.93, which 

is close to 1. 

in this study, the protein concentration used was 7.25~10'~ M (50 ppm) instead of 

1.45x10-' M as in the last experiment. The total drug concentration introduced by the 

amount of the analye loaded on the fiber was 4 . 5 3 ~ 1 0 " ~  (128.9 ng/lmL for the analye 

loaded from 1Oûû ng/mL buffer solution). Therefore, the molar concentration of total 



Table 2.14: Summary of the experïmental data of diazepam binding to HSA in small 

volume analysis. The protein concentration was 0.05 rng/mL. 

*molar concentration is use 

nf Cs "6 bound dnig 
r 

(ng) (ndmL) (ng) percentage 

Figure 2.16: Scatchard plot for srnaIl volume diazepam-HSA binding analysis. 



dnig and protein were in the same order of magnitude. This was an important 

consideration in the experimentai design to minimize the error for both bound and free 

concentration calculations. 

2.4.4 Direct Measurement for Srnail Volume Binding Study 

It is possible to directly determine the diazeparn binding constant without using 

the GC response factor. Using the same method as described in section 3.1, the fiber 

extraction amount (area count A' and A/ ) without and with protein was measured. 

From Equation 2.12 and Equation 2.13, the binding constant could be detennined, 

Then how would one to calculate the total diazepam concentration cS0 in 

Equation 2-13? When the fiber reached equilibriurn with buffer solution without protein, 

O the amount of diazepam left on fiber was nJ , the arnount desorbed into the solution was 

n,ot, - n , where n,,, is the amount of diazeparn loaded on the fiber from large volume 

solution with diazeparn concentration of CM . Therefore, the equilibrium distzepam 

O 

nf concentration without protein was Cs = - - AO Cl& --- Goad  . The total diazepam 
nroraf 4d 

concentration for the small volume system can be expressed as: 

Equation 2.32 

Substitute Equation 2.32 into Equation 2.13, the unbound protein concentration 

(C, ) was: 

Equation 2.13 a 



AO Table 2.15 and Figure 2.17 shows the plot of vs. C, . In this expriment, 

protein concentration of 0.05 m g / d  was used. From the plot, the àiazepam to HSA 

binding constant was determined as 0.995~10~ MI, which agrees with the result from 

section 2.3. 

Table 2.15: ExperimentaI data for diazepam binding to HSA (small volume) for direct 

equilibrium constant measurement. 

2.4.5 Conclusion 

In summary, this section provides another method to determine the dmg-protein 

binding affmity. This method was best suited for the small volume analysis since the 

amount of the analyte loaded on the fiber was normally very small. Theoretically, this 

method provides an accurate and economical approach. But the experimental error could 

possibly be larger than the method described in section 2.3 due to two factors. First, it is 

hard to agitate the protein solution in such a small volume. In this experiment, both 

mechanical and manud agitation methods were applied simuitaneously. Furthemore, the 

amount of the h g  loaded by the fiber cannot be detennined exactly since it involves GC 



response factors. This error will be amplified since al1 the concentrations used for 

cdculation of K are directly related to it, 

Direct measurement method for diazepam binding constant measurement was 

investigated for small volume analysis. Although this method successfully avoids the 

determination of GC response factor, it is more prone to the error from GC measurement 

since it needs a complicated formula (Equation 2.13a) to calculate the unbound protein 

concentration. 

Unbound Protein Concentration [MI 

Figure 2.17: Direct measurement of diazepam HSA binding equilibrium constant 

( s m d  volume). 



2.5 Conclusions of Protein Bindhg Analysis by SPME 

Drug binding to protein has a significant meaning in drug metabolism 

studies and other pharmocokinetic applications. The protein binding study by SPME for 

volatile organic compounds, e.g. alkylbenzenes, binding to BSA, and then a common 

dnig, diazepam, binding to HSA, have been investigated in this chapter. 

Binding of volatile organic compounds to BSA, which is difficuk for 

conventional methods, has been analyzed by SPME. The theory was discussed and 

possible confusions were clarified. 

Normally, for protein binding study, a calibration curve is first constnicted 

employing the solution without protein present. This calibration curve is then used to 

calculate the free ligand concentration in the protein solution. Special care should be 

exercised, especially for the binding of volatile organic compound to protein where 

headspace SPME is utilized. 

In this chapter, a method that c m  directly measure the equilibrium constant 

without constmcting a calibration curve and utilizing GC response factor was initiated. 

The method has been successfully applied to alkylbenzenes, diazepam and small volume 

diazepam binding studies. This method is suitable for the systems wiih fmt-order 

binding. 

In conclusion, the work done in this chapter demonstrated that SPME is an 

accurate and very applicable method for drug-protein binding study. 
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CHAPTER 3 

DETERWATION OF THEOPHYLLINE BY IMMUNOAFFINITY 

SPME AND IN-TUBE SPME IN SERUM 

3.1. Introduction 

3.1.1 Background 

Taking advantage of the extraordinary molecular recognition ability of antibodies, 

the imniobiiization of an antibody on a solid surface plays an important role in modern 

biotechnology for the development of rapid and sensitive analytical methods. This 

technique is especially crucial for the analysis of the complex matrices, such as biological 

samples, which often contain many different components contributing to some level of 

interference. 

From the fmt  adsorption immobilization of invertase onto charcoal and alumina 

by Nelson and Griffin in 1916 (l), through the intense research activities in the 1960s, 

immobilization of enzymes emerged in the 1970s as a major commercially viable 

technology for food and dnig processing. 

From the base technology derived from enzyme immobilization, immobilization 

methods of other proteins, such as antibodies, have k e n  developed. Immobilized 

antibodies have been used in establis hed immunoassa ys such as enzyme-linked 

irnmunoassay, radioimmunoassay, fluoroirnmunoassay (2,3). They dso form the basis of 

modem clinical diagnostics and are widely applied to new detection and diagnostic 

devices, such as biosensors (bioaffinity sensors), for applications in medicine, food and 

drug processing and environmental monitoring (4). Immobilized antibodies and binding 



proteins aiso serve as the basis for biospecinc separations, such as affinity 

chromatography and filtration, which are applied to the production of new genetically 

engineered products, such as drugs and hormones (5-1 1). An antibody-coated 

immunosorbent has dso been used for extremely sensitive (part per trillion (ppt) level) 

pesticides analysis by coupling on-line with liquid chromatography/atmospheric pressure 

chernical ionizatiodmass spectrometry (LC/APCUMS) (12). 

The objective of the study presented in this chapter is to develop a viable method 

to perfonn immunoaffinity SPME extraction for the analysis of cornplex biomatnces 

based on antibody immobilization techniques. 

3.1.2 Antibody and Antigen 

Antibodies (Ab) are an important subclass of proteins. Ab are highly selective 

molecules (glycoproteins) produced by mammalian immunological systems following 

exposure to a foreign molecule, i.e. an antigen. Of the many antibodies employed as the 

recognition element, imrnunogobulin antibodies, and in particular immunoglobulin G 

(IgG), are among the rnost frequently used. 

IgG is a globular, Y-shaped protein with dimensions of approximately 10 x 14 x 5 

nrn as determined by X-ray crystallography (13). The IgG antibody is composed of four 

polypeptide chains, two heavy and two light chains linked via disulfide groups (14); it 

bears two receptor sites, Fab (fragment antigen binding), and a carbohydrate Fc (fragment 

crystallizable) portion located at the base of the Y (Figure 3.1). The variable regions of 

the Fab fragments are the location of the binding site for the specific antigen. There are 

two binding sites per IgG. 



Immunoglobulins can be cleaved at the middle of their H chains by various 

proteases (15). For example, papain cleaves chains at the N-terminal side of the 

disulphide bridges that keep the H chains together, thereby generating two Fab fragments 

and one Fc fkagment. 
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Figure 3.1: Schematic of the structure of IgG antibody molecule. The four polypeptide 

chains, two heavy and two light chains, are linked via disuifide groups. The number of 

these disulfide groups can Vary, depending on the source of the antibody. 



3-13 Antibody Immobilization 

Selection of the Support and lmmobilization of Antibody. An ideal support for 

antibody immobilization should have the following characteristics: 1) be rigid and porous 

to d o w  more attachment of samples; 2) providing functionai groups to enable 

appropriate coupling with a sufficient amount of antibodies; and 3) be hydrophobie, to 

avoid nonspecific interactions with the analytes and the sample matrix (16). 

Many types of insoluble supporting materials have been utilized for antibody 

immobilization. However, few materials can satisQ all of these criteria. Cyanogen 

bromide-activated Sepharose has been mostly used in immunoaffinity applications (17). 

This support has very few nonspecific interactions, which is ideal for complex samples. 

But its positively charged groups at neutral pH and the toxicity of CNBr make it 

unsuitable for biological sample analysis. Rigid synthetic polymers are another group of 

support that is widely used. In general, these supports allow a good orientation of the 

antibodies, which are covalently bonded to the functional groups of the support material. 

However, nonspecifïc interactions may occur between the polymer matrix and the analyte 

(18)- 

At present, aldehyde-activated silica support is the best in tenns of the 

performance for its very low level of nonspecific interactions, its high stabiIity over a 

wide pH range and its resistance to high pressure. Possible disadvantages include low 

binding capacity and poor orientation of the antibody sites (18). However, these 

drawbacks cm be overcome by choosing proper imrnobilization methods. 



Prepararion of the Sil ica Su$àces. The preparation of the silica surface is very 

important for the antibody imrnobilization. The purpose of the surface preparation is to 

clean the surface free of grease and other contamination and to hydroxylate the surface 

for exposure of more silanol groups (-Si-OH). The silanol group dlows the modification 

of the surface with a variety of functional groups, through the covalent at tachent  of 

silane molecules. 

The experimentd procedure used for the preparation of surfaces can be 

summarized as follows (19,20): 

GIass/quartz supports with chemically polished surfaces should be sonicated 

subsequently in a detergent solution, rinsed with large amount of distilled water, wiped 

with an acetone-soaked Cotton swab, and sonicated again in dichIoromethane to remove 

the traces of polishing agent (usually it is an epoxy resin) from the surface. 

Normally there are two methods that c m  be used to perfonn the further cleaning 

and activation. a). Precleaned supports c m  be placed in a freshly prepared 'piranha' 

solution, 70:30 (v/v) concentrated sulfuric acid : 30% hydrogen peroxide, for 1 h at 60- 

70°C or under ultrasound. (Caution: Piranha solution is extremely corrosive and can react 

violently with organic compounds.) b). Alternatively, the supports can be treated with 

sulfochromic solution for 30 min at 70-80 OC. Xn both of the methods, the supports are 

subsequently rinsed with a large amount of distilled water, dried under a nitrogen Stream, 

and used immediately. 



Modi_Fcation of the Sufaces wirh S i lome Polymers. The f m t  cIass of 

compounds that cm be used for the covalent immobilization of proteins to both silicone 

and silicone dioxide surfaces is functionalized silanes. The surface of silica is formed by 

silanol (-Si-OH) and siloxane (-Si-O-Si-) groups. The surface concentration of silanol 

groups typically ranges between 1 and 3 pmollrn2 (21,22). The purpose of the chernical 

modification is to form a cross-linked siloxane monolayer on the surface and to provide a 

high concentration of functional groups that can be fuaher activated for binding with 

proteins. 

Silanes used for surface modification can be classified under two main groups: 

alkyltrichlorosilanes with the general formula Cl3-Si-(CH2),-X (where X is -CHî, -CF3, - 

CH=C&) and alkoxysilanes with the general formula R3-Si-(CH2),-X (where R is -OMe, 

-OEt, -CH3, and X is -m, -SH, -glycidyl, etc.). 

Functional groups on the silica surface formed from silane monomers (-.N&, -SH, 

-OH) can be chemically rnodified to f o m  the active intermediates that c m  react with 

protein. There are two main types of functional groups on protein moIecuIes that can be 

employed to attach the protein molecule ont0 the chemically modified silica surface: the 

prhary amine group of the lysine residues on the external surface of the globular 

molecular and the sulfydryl groups on the free cysteine residues. Many methods, 

including the types and the conditions of the reaction, have been investigated. Detailed 

reviews of protein immobilization methods c m  be found in references 23 and 24. 

In this thesis, the silica surface was first activated with (3-aminopropyl) 

triethoxysilane (APTES), leaving a primary amine group on the surface. Then 

glutaraldehyde was subsequently used to modify the surface, yielding an aldehyde that 



can form an imine linkage with the primary amines on the protein. The antibody 

molecules were finally attached on the silica surface through the reaction between the 

amine group on the protein and the aldehyde group on the surface. 

3.1.4 Immunoassay 

Immunoassay (IA) is an analytical method that employs antibodies for the 

determination of sample components. Because of the extraordinary affinity, specificity, 

and variet y of anti body-antigen binding reac tions, immunoassays have become essentid 

routine and research tools throughout the biological sciences, particular in clinical 

analysis, Currentiy, with the development and wide application of protein immobilization 

techniques, most of the immunoassays, especially nonisotopic immunoassys, rely on 

imrnobilized antibody (25,26). The immunoassay method has been used in this thesis to 

test the applicability of the antibody imrnobilized silica surface for SPME 

immunoaffinity extraction. 

There are nurnerous forms of immunoassays, each classified according to a range 

of criteria such as sample type, the nature of the analyte, assay conditions, etc. Based on 

the detection methods, immunoassay can be categorized as enzyme-linked 

immunosorbent assay (ELISA), radioimmunoassay (NA) and fluoroimmunoassay (FIA) 

(2,3). In ELISA, the analyte is measured with an enzyme-conjugated antibody and the 

enzyme substrate. In RIA, the radioactivity of the radiolabeled analyte is rneasured to 

indicate the amount of the bound analyte. In FIA, the bound analyte is quantitated by the 

fluorescence intensity. 



Based on the mechanism of the assay, the immunoassay can be subdivided into 

two categorïes: non-cornpetitive solid-phase immunoassays and competitive solid-phase 

immunoassays. A general approach of non-corripetitive, solid-phase immunoassay is 

iltustrated in Figure 3.2 (a) by employing radiolabeled antigen (RIA) as an example. The 

antibody was first immobilized ont0 the silica surface and then these antibody molecules 

extract the corresponding antigens (analytes) from the sample solution. The extracted 

analytes are finally detected by their radioactivities. In this analysis, the radioactivity is 

normally proportional to the free antigen concentration, if it is far below the antibody 

saturation level. 

Figure 3.2 (b) illustrates the principle of the competitive, solid-phase 

imunoassay. In this method, the assay is based on the cornpetition of antigen (analyte) 

with radiolabeled analogue of the analyte for the limited number of antibody binding 

sites. The immobilized antibodies are employed to extract the mixture of radiolabeled and 

non-radiolabeled antigen samples. The concentration of the hot (radiolabeled) analyte is 

kept constant and the concentration of cold (non-radiolabeled) antigen is varied. The 

concentration of the cold analyte is therefore inversely proportional to the amount of 

labeled analyte bound to the antibody. 



Figure 3.2: Noncornpetitive (a) and cornpetitive (b) solid-phase radioimmunoassay. 

4: Antigen (analyte); C: Radiolabeled antigen; -(: Antibody molecule; 



3.1.5 Scintillation Detection 

In RIA, the radioactivity of the radiolabeled antigen is detected by a liquid 

scintillation counter. Scintillation detection has certain distinct advantages such as 

introducing labels that induce o d y  very minor changes to the structure of the labeled 

antigen, and aiso hïgh sensitivity. A tritiated molecule has the same molecular size as the 

non-radioactive antigen, making the usage of these materials very convenient to study 

binding reactions of small molecules. However, sometimes the regdatory constraints in 

their usage and clean up costs make radioactivity a poor choice for a convenient 

immunoass ay. 

The first commercial mode1 of liquid scintillation counter became available in 

1954, soon after the basic principles of liquid scintillation were discovered in 1950 (27). 

As shown in Figure 3.3, the process of liquid scintillation counting is relatively simple. 

The beta decay eIectron emitted by the radioactive isotope in the sample excites a solvent 

molecule, which in tum transfers the energy to the solute, or fluor. The energy emission 

of the solute (the light photon) is converted into an electrical signal by a photomultiplier 

tube (Pm). 

Radioactive S olven t Fluor Photomultiplier 
Molecule Molecule Molecule Tube 

Figure 3.3: The scintillation process. 



The mixture of organic solvents and solutes is referred to as the scintillation 

cocktail. The main components of solvents include benzene, fluorobenzene and m-, p-, o- 

xylene- This mixture is designed to capture the beta emission and transforrn it into a 

photon emission, which can be detected via a photomultiplier tube within a scintillation 

counter. The cocktail must also act as a solubilizing agent, keeping a uniform suspension 

of the sample. 

Several physical processes may interfere with the efficiency of liquid scintillation 

counting: cherniluminescence, photoluminescence, and other processes that are generally 

referred to as background. Cherniluminescence is the spurious generation of light 

emissions as a result of chemical reactions between additives or specimens and the 

components of liquid scintillation. These photon ernissions are the result of chemical 

energy converted into molecular excitation energy, which in turn undergoes electronic 

decay with the emission of a photon detected by the PMTs. To reduce the effects of this 

phenornenon, sarnples should be equilibrated for a certain period of time in the 

scintillation counter. Photoiuminescence is simply the emission of photons from an 

excited molecular species. This may occur in vial walls, caps, and other materid 

activated by light. Photoluminescence can be reduced by acidification of the solubilized 

sample, but can be best eliminated by dark-adaptation of samples several hours before 

counting. The numerous processes grouped under the heading of background include 

chance coincidence, Cherenkov radiation, cross-talk between PMTs, and some existing 

forrn of natural radioactivity such as thorium, potassium-40, and uranium. 



3.2 Experhental 

Chernicals and Materials. Al1 chemicds were used as purchased Theophyhe 

an t i s em (developed in rabbit, product number: T-25 X), 3~-theophylline (specific 

ac tivity 14.5 Ci/mmol, concentration 12.4 pg/mL, product number: T4924), theoph ylline, 

caffeine, (3-aminopropy1)triethoxysilane (APTES), glutaraldehyde (25% aqueous 

solution), ethanolamine, ûifluoroacetic acid (TFA), sodium azide and the prepackaged 

phosphate buffered saline (PBS, pH = 7.4) were dl purchased from Sigma-Aldrich 

(Mississauga, ON, Canada). Diazepam was purchased from Radian (Austin, TX) as a 1 

m g h L  methanol solution. Water was obtained from a Barnstead/Thermodyne NANO- 

pure ultrapure water system (Dubuque, IA). Figure 3.4 shows the chemical structures of 

theophylline and cafTeine. 

The fued silica fibers (1800 p diameter, no cladding, no buffer, part number: 

FSnnl800) and fused silica capillaries (i-d. = 347 pm) were al1 purchased from Polymicro 

Technologies Inc. (Phoenix, AZ). 

Ecolume liquid scintiI1ation cocktail and 20 mL polyethylene scintillation vials 

were purchased from ICN Pharmaceuticals (Costa Mesa, CA). The dispenser for the 

scintillation cocktail was purchased from V W R  Scientific, Canada. A Beckman-Coulter 

liquid scintillation counter, mode1 LS 1701 (Fullerton, CA) was used for radioisotope 

counting. Culture tubes (13 x 75 mm) were purchased from Fisher Scientific (Nepean, 

ON, Canada). 



Theophylline 
C7H8N402 

MW: 180.7 g/mol 

Caffeine 
C8H,,N402 
MW: 194.19 g/mol 

Figure 3.4: Chernical structures of theoph ylline and caffeine. 

Preparation of Standizrd Murtures. The theophylline and caffeine 1 mg/& 

ethanol solutions were prepared by measuing the desired amount of the compounds into 

a certain amount of ethanol. The 0.1 rng/mL, 0.01 rng/rnL, 0.001 mg/mL theophylline 

and caffeine solutions were prepared by subsequently diluting the stock solution with 

ethanol and PBS. The 3~-theophylline solution was diluted with ethanol 100-, 1000-, 

10,000- fold to provide 124 ng/mL, 12.4 n g h L  and 1.24ng/mL standard solutions, 

respective1 y. 

The 1 rng/rnL of diazeparn solution was diluted with methanol into O.lmg/mL, 

O.Olmg/mL, 0.001mg/mL solutions for the convenience of the experiment. PBS solution 

was prepared by diluting one pack of prepackaged PBS powder with 1L NANO-pure 

water in volumetric flask according to the manufacturer's instruction. The pH 9.2 0.1 M 

carbonate buffer solution was prepared by mixing 0.1 M sodium carbonate and 0.1 M 

sodium bicarbonate under the monitoring of pH value with a pH meter. The 0.05% 



sodium mide solution was prepared by measuring the desired amount of sodium azide 

into PBS solution. MI the fused silica fibers and capillaries were stored in sodium azide 

(0.05%) PBS solution in the fndge (4k) after coating with antibodies. 

3.2.1 Method 

3.2.1.1 Preparation of the Antibody Immobilized Surface 

Preparation of the Fused Silica Surj5ace. The silica fibers were cut into 23 mm 

length pieces. This size of fiber cm fit into a 13 x 75 mm culture tube, in which dl the 

surface reactions for the fibers took place at room temperature. About 20 fibers were 

contained in the culture tube. The fused silica capillary was cut into 60 cm long pieces, 

coiled and put in a beaker. 

The fused silica surfaces were cleaned with a 30:70 mixture of 30% hydrogen 

peroxide (&O2) and concentrated sulfuric acid m2S04) with ultrasonication for 1 hour 

and then thoroughly rinsed in water, pure ettianol and water with ultrasonication 

respectively. The cleaning of the fiber was performed in the culture tube, while the 

cleaning solution was injected into the capillary when the inner surface of the capillary 

was cleaned. Special care should be exercised so that the surface of the fused silica was 

not touched with fingers to avoid any contamination (19,22, 28). 

Silanizatim of Cleaned Silica Surfaces. After the surface pretreatment, the 

capillary was interfaced to a Razel syringe pump, mode1 A-99 (Stamford, CT) as shown 

in Figure 3.5. The connection was simply accomplished by inserting the afinity SPME 

capillary inlet and syringe outlet into a small piece of tight fitting teflon tubing. Al1 the 



reactions to the inner surface of the capillary were conducted with this device. The 

reactions to the surface with the fiber were performed in the same culture tube. 

The silanization reaction scheme is shown in Figure 3.6 (a). AETES was used as 

the silanization reagent. For the silica fiber, the reaction was performed in the same 

culture tube as that in the cleaning step. For the silica capillary, the reaction was 

performed with the syringe pump assembly. A fresh ethano1 solution of APTES was 

prepared with 5% of APTES, 5% of deionized water and 90% ethanol (v/v). The 

fibers/capillarïes were allowed to react with this solution for 30 min at room temperature. 

t am il ton^ 1mL 
Capillary Gastight S yringe 

~ a z e l ~ ~  Mode1 A-99 
S yringe Pump 

I 

Figure 3.5: The schematic diagram represents the configuration of the capillary 

interfaced with the syringe pump for the inside-tubc reactions. 



In this reaction, the ethoxyl groups were first reacted with water in the solution to 

form silanol groups (-Si-OH). The h ydrol ysis of ethoxyl groups is followed by the 

formation of siloxane oligomers in the solution. These oligomers, as weil as the 

monomers containing fiee silanol groups, difise onto the surface and physically adsorb 

on it. The final and slowest step is the film formation process, which foms  Si-O-Si- 

bond through the reaction with silanol groups on the surface (22). 

After the reaction, the fibersfcapillaries were rinsed with water ten times followed 

by rinsing with ethanol twice. They were then cured in a vacuum oven, which had been 

flushed with nitrogen three times, at 60°C for overnight (about 15 hours). 

Su$ace Modification wlth Gliizaraldehyde. The reaction scheme for the coupling 

of glutaraldehyde to the silanized overlayer step is illustrated in Figure 3.6 (b). 

Glutaraldehyde has two aldehyde groups on each end of the carbon chah. One end is 

reacted with the amino groups of APTES on the silica surface and the other end reacts 

with the amino groups (of lysine residue) on the antibody molecules. 

Glutaraldehyde is the most commonly used reagent in protein immobilization 

since it is inexpensive, readily available, and easy to use. Detailed research shows that the 

commercial aqueous solutions of glutaraldehyde (25% or 70%) represent multi- 

component mixtures, which include free glutaraldehyde, mono- and dihydrate, a cycIic 

hemiacetal and oligomers (29). The pH of these aqueous solutions is 3.1. It is obvious 

that each of these components participates differently in cross-Iinking reactions. But they 

al1 exhibit the ability to react and cross-link with protein. Since the product of the 

reaction of glutaraldehyde to protein is very stable even without further reduction, it was 

suspected that the product is not through the formation of a Schiff base (29). The details 



of the proposed reaction mechanisrn of the glutaraldehyde coupling can be found in 

reference 29. 

The silanized fused silica surfaces were allowed to react with 2.5% of 

glutaraldehyde in PBS for 1.5 hour followed by thoroughly nnsing with PBS buffer. 

Immobilization of htibody. The glutaraldehyde activated surfaces were then 

reacted with an antibody solution for 10 hours. One via1 of theophylline antisenun was 

diluted with 2 mL pH 9.2 carbonate buffer(0.lh.l) and added to the culture tube 

containing 20 fused silica fibers. A 0.6 mg/rnL antibody solution (carbonate buffer at pH 

= 9.2) was prepared and allowed to react with the capillary inner surface by fully filling 

the capillary with the antibody solution. 

After the reaction, the antibody-coupled fiberdcapillary were rinsed with PBS and 

the remaining aldehyde groups on the surface were deactivated with ethanolamine (0.2M) 

in PBS for 1 hom The fiberskapillary were then rinsed with PBS and stored in 0.05% 

solutions of sodium azide in PBS for future use. 

Binding and  Desorption Conditions. Once the antibodies have been immobilized 

on the silica surface, they are ready for direct extraction. Ionic attraction, hydrogen 

bonding, hydrophobie attraction and van der Waals forces are al1 involved in the antigen- 

antibody interaction. Therefore, the pH value of the sample solution is very important for 

the binding. Normally, the maximum bindings are obtained at pH about 7.4, which is the 

pH value of human blood (4). Therefore, in this expeximent, the pH = 7.4 PBS solution 

was used. 
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While the antibody imrnobilized fibers were not designed for repeated usage, the 

antibody immobilized fused silica capillary was intended for repeated extraction and 

dissociation. T h e  dissociation method should be carefully considered and chosen. 

Theoretically, dissociation of the antibody-antigen complex cm be accomplished 

by any solution that is able to disturb the binding forces mentioned above. Furthemore, 

the elution buffer must not denature the antibody to allow the antibody-immobilized 

surface to be regenerated. 

The introduction of excess protons or hydroxyl ions by changing the pH of the 

elution buffer is one of the most widely used elution procedures. Altematively, the ionic 

strenB& of the elution buffer cm be aitered by the addition of chaotropic salts such as 

sodium thiocyanate and sodium chloride (1.5 - 8 m o n )  (30). An antibody-antigen 

complex can also be dissociated by the addition of any solution that contains polarity- 

reducing agents (Le. ethylene glycol, methanol, ethanol, and acetonitrile). These agents 

act by reducing the polarity of the solution surrounding the antibody-antigen complex and 

thus neutralizing the hydrophobie forces responsible for the attraction. Although it was 

thought that organic solvents would irreversibly denature antibodies, there are certain 

methods that use high concentrations of organic polarity modifier without the loss of 

antibody response (1 7 ,3  1). 

Conside~ng the method developed in this thesis has the potential to be coupled to 

a highly sensitive HPLC system, methanol: water : TFA 70 : 29 : 1 (v/v) was employed 

for desorption. 
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Figure 3.6: Reactions involved in the antibody immobilization. a. Silanizition of silica 

surface with APTES; b. Surface modification with glutaraldehyde; c. Immobilization 

of antibody. 



3.2.1.2 Test of the Antibody Immobilized SurFace 

Antibody immobilkedfiber. Several experiments have been designed to test the 

performance of the antibody-coated surfaces. The basic procedure is described as fdows  

by using malysis of antibody activity as an example. The fibers were removed from their 

storage solutions, and incubated in a freshly diluted, 3~-theophyHine in PBS for 3 hours 

at room temperature on a shaking bed. The fibers were then removed fiom the solution, 

washed twice by totally immersion in PBS and then placed in scintiIIation vials 

containing 20 mL of scintillation cocktail. The vials were vigorously shaken and counted 

in duplicate with the liquid scintillation counter for 5 min. The average values of the two 

counts were considered as the final counting results. This completely removed the labeled 

theophylline from the fiber as determined by subsequent counting of the fiber in fresh 

scintillation cocktail. 

The cornpetitive binding was analyzed by incubating the antibodycoated fibers in 

a solution of 3~-theophy~line and cafTeine at different concentrations. The binding 

specificity was investigated by using a fixed concentration of 3~-theophylline together 

with various arnounts of cold diazepam, which possesses no specific binding to anti- 

theophylline. In this analysis, the 3~-theophy11ine was kept at a concentration that can 

saturate the antibody-coated fiber and the concentrations of cold diazepam were varied. 

A human semm sample was finally analyzed. Certain amount of the theophylline 

was first added into the serum sample. The serum sample was diluted 100 fold and then 

the same analysis was performed. Safety cautions: Human serum sample is a potential 

biohazard. Unused semm samples should be treated with Javex before disposal as 

hazardous waste. 



Anribody immobilized capillary. For experircents with the capillary tubing, the 

similar scheme was used except that the experiment configuration was different. The 

capillary was mounted on the syringe pump as shown in Figure 3 -5 for the ease of the 

experiment. Both plastic comecting tubing and syringe were disposed of after each 

sample to avoid cross-contamination. Unless otherwise specified, a flow rate of 14 

pumin was used to introduce the analyte sample and 30 pumin for the wash and 

desorption solutions. The desorption solution was collected in a 20 mL polyethyIene 

scintillation via1 containing 20.0 mL Ecolume scintillation cocktail for scintillation 

counting. Pnor to dl injections, the affinity SPME capillary was conditioned with PBS 

for 10 min, 

3.2-2 Resulr and Discussion 

3.2.2.1 Reaction of Antibody immo bilization 

While there are many methods capable of immobilizing antibodies on a fused 

silica surface, it was found that the method used in this study is one of the most 

convenient, since the reaction conditions were very mild - the entire immobitization was 

performed at room temperature. 

It was found that the surface cleaning is the most crucial step for the whole 

reaction. A relatively rnild cleaning method, such as cleaning with pH 10 m 0 H  

solution results in no immobilization at dl. This is either because of contamination Erom 

grease and other coahng covering the surface or the hydroxylation with this method is not 

sufficient to expose silanol group on the surface. An alternative cleaning method, which 



performed very well, is to immerse the silica surfaces in hot chromic acid at 80°C for 30 

min and then to thoroughly Rnse with water. 

The scanning electron rnicrograph (SEM) of the cleaned silica surface before the 

reaction is shown in Figure 3.7 (a). The SEM picnires after reacting with glutaraldehyde 

and antibody are shown in Figure 3.7 (b) and Figure 3.7(c), respectively. It is can be seen 

from the difference in the rnicrographs that the silica surface was successfully modified 

using these reactions. 





Figure 3.7: Scanning electron micrographs (SEM) of (a) cleaned fused silica surface; 

(b) glutaraldeh yde activated surface; (c) an tibody-immobilized surface. 

3.2.2.2 Binding Studies with ImmobMzed Antibodies 

3.2.2.2.1 Antibody Immobilized Fiber Surface Analysis 

Specificiry. In this analysis, the concentration of ' ~ - t h e o ~ h ~ l l i n e  was kept 

constant at 4 ng/mL, while the concentration of diazepam was varied from 1 to 500 

ng/mL with 9 points investigated. Since the antibody does not specifically bind to 

diazepam, diazepam can only participate in non-specific binding. Therefore, if there is 

any non-specific binding of theophylline, the presence of the diazepam will cause a 



decrease in scintillation response to 3~-theophylline. As presented in Figure 3.8, the 

regression Iine is horizontal, which means there is no significant non-specific binding of 

anti-theopylline observed for coated fused silica fiber. This result is consistent with what 

has been reported by other researchers (28,30). 

Concentration of Diazepam [ppb] 

Figure 3.8: Binding of 3~-theophylline on the anti-theophylline immobilized silica 

fiber surface in the presence of various amounts of unlabeled diazepam. 



Binding Isothem The 3~-theophylline binding isotherms (concentration range 

from O to 12 nglmL) on the anti-theophyiline coated fused silica fiber surface are 

presented in Figure 3.9. 

Concentration of '~ - theo~h~l l ine  [ppb] 

Figure 3.9: Binding isothem of anti-theophylline immobilized fiber surface. 

The maximum binding of 3~-theophylline at the plateau region shown in the 

figure started at about 4 ng/mL of theophylline, where the scintillation value is about 350 

DPM. 
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Figure 3.10: Calibration curve of mass of 3~-theophylline on the fiber vs. the 

scintillation response. 

From îhe scintillation response calibration curve (Figure 3. IO), which was 

obtained from direct syringe injection to the scintillation cocktail, the absolute mass of 

theophylline to reach the saturated binding is about 1 .0xlo5 ng. Since the surface area of 

each fiber is 1.3 cm2, assurning the molecular weight of antibody is 150 KDa and each 

antibody molecule binds to exactly one theophylline molecule, the active surface density 

of antibody on the fused silica cm be estimated as 1 ng/cm2. This value is forth folds 

lower than the value reported in reference (32) (about 40 nglcm2) and two orders of 



magnitude lower than that reported in reference (28) (about 200 ng/cm3). The reason may 

corne from different aspects. It could be the property of silica surface since the number of 

hydroxyl group is hard to compare. Quartz, which is more pure in tems of the SiOz 

component, was used in reference (32) and that could also explain the discrepancy. 

Cross Reactivîty Study. A competitive immunoassay was also performed. The 

competitive binding was measured by keeping the concentration of 3~-theophylline at a 

fixed saturation value (4 ng/mL) and adding various concentrations of cold theophylline 

in the solution. The concentration of cold theophylline was varied from 0.005 ng/mL to 5 

ng/mL. The binding curve is shown in Figure 3.1 1. The competitive binding from 

caffeine to 3~-theophylline on the anti-theophylline immobilized surface is shown in 

Figure 3.12. The specificity (cross-reactivity) is defined as the ratio of antigen 

concentration to cross-reactant concentration at 50% inhibition of maximum binding 

(33). The cross-reactivity of theophylhne to anti-theophylhe is defined as 100%. From 

Figure 3.1 1, we can calculate that 0.4 n g / d  cold theophylline is needed to inhibit 50% 

of radiolabled 4 ng/mL theophylline binding. 

According to the manufacturer's information, the cross-reactivity of caffeine to 

anti-theophylline solution is 4%. This indicates that higher caffeine concentration is 

required to inhibit theophylline binding, which is demonstrated by the experirnental 

results shown in Figure 3.12. From this figure, we can calculate that 400 n g / d  caffeine 

is needed to inhibit 50% of theophylline binding, which corresponds to a cross ratio of 

0.1%. The possible reason is that since the immobilized antibody is highly orientated on 

the surface, the available surface area for possible non-specific binding becomes smaller 



comparing with of the antibody in solution, which will result in lower cross reac tivity 

value. 

Figure 3.11: Cornpetitive binding of cold theophylline with the 3~-theophylline to the anti- 

theophylline irnmobilized on a fused silica surface. The 3~-theophylline was kept at 

saturation value (4 ng/rnL), while the cold theophylline concentration was varied. Duplicates 

were measured for each point. 
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Figure 3.12: Cornpetitive binding of caffeine with 3~-theophylline on anti-theophylline- 

coated fused silica fibers. 

Serum Sample Analysis. The human serum was first spiked with theophylline. The 

concentrations were 10 ng/mL and 50 ng/mL respectively. This sample was diluted 100 

fold with PBS. The diluted solution was spiked with 4 ng/mL 3~-theophylline. The anti- 

theophylline-coated fiber was put in the 1 mC Mal containing this solution and incubated 

for 3 hours. After the incubation, the fiber was taken out of the solution, rinsed with PBS 

twice, and put in the scintillation vial for counting. The cornparison of the semm sample 

results with the results of shown in Figure 3.11 is listed in Table 3.1. 



3.2.2.2.2 Binding Study of In-tube Immunoaffinity SPME 

Spec@city. The binding characteristics of the immunoaffinity SPME capillary 

were compared to a bare silica capillary of equai dimensions. A 1000 fold (1 2.4 ng/mL) 

dilution of 3~-theophylline stock was prepared in PBS and introduced to both capillaries 

over a tirne range of 3-25 min at 14 pumin. The extracted 3~-theophylline was desorbed 

from either capillary and counted by the scintillation method as already described. 

Desorption of the bound theophylline was accomplished with a 500 PL solution of 

methanol : PBS : 1% TFA (70:29:1). It c m  be seen from Figure 3.13 that the binding of 

3~-theophylline with the bare fused silica capillary was very low compared with the 

irnmunoaffinity capillary. From the same figure, it also c m  be seen that the bare silica 

capillary reaches equilibriurn much faster than irnmunoaffinity capillary in the binding 

with 3 ~ -  theophylline. 

Table 3.1: Analysis of theophylline in human serum sample with antibody immobilized 

silica fiber. 

Concentration (ng/mL) 

(afier dilution for serum ) 

O. 1 

0.5 

*relative difference =[abs(senim sample-from figure 3.11)/fiom figure 3.111% 

"Relative 

Difference (%) 

0.4 

6.8 

S e m  sample 

[Dpw 

193.28 

142.15 

From Figure 3.1 1 

m'Ml 

194.04 

133.26 
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Figure 3.13: The cornparison of the immunoaffrnity capillary with the bare fused 

silica capillary in the binding to 3~-theophylline. The concentration of 'H- 

theophylline was 12.4 ng/mL. 

Cross Reactivity Study. A binding isotherm for the in-tube immunoaffinity SPME 

approach was generated with PBS samples spiked with a mixture of 1000 fold diluted 3 ~ -  

theophylline (12.4 ng/rnL) and various concentration of cold theophyiline (1.0-1000 

ng/mL) (Figure 3.14). The samples were passed through the immunoaffinity capillary for 



a period of one hour with the flow of 14 pUmin, followed by flushing the capillary with 

150 pL of PBS buffer. 

Conc. of Non-Labelled T heophylline [nglmL] 

Figure 3.14: The cornpetition of non-radiolabeled theophylline to 3~-theophylline 

in the binding with the anti-theophylline immobilized capillary. The concentration 

of 3~-theophylline was kept at 12.4 ng/rnL. 

The specificity of the theophylline immunoaffinity SPME capillary was 

investigated using a fixed concentration of 3~-theophylline together with concentrations 
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of caffeine that range over 1-10000 ng/mL (Figure 3.15). Cornparing with Figure 3.14 

and Figure 3.15, we c m  obtain a similar cross reactivity value for caffeine. 

Concentration of Caffeine [ng/mL] 

Figure 3.15: Cross reactivity study of caffeine to 3~-theophylline in the binding 

to anti-theophylline immobilized capillary. 

Semm Analysis. A 1500 pL aliquot of human semm sample was spiked with 

various amounts of theophylline (prepared in PBS) to provide a working concentration of 

1.0-100 ng/mL. The 3~-theophylline stock was diluted 10 fold in PBS and a 10 pL 

diquot was added to the serum standards. The sample was transferred to a 1.0 mL 



disposable plastic syringe. Extraction of the theophylline h m  the senun sample was 

accomplished by passing the sample through the immunoaffinity SPME capilIary at a rate 

of 14.0 pUmin for 1.0 h. The capillary was flushed with 150 pL of PBS buffer and the 

desorption of the bound theophylline was accomplished with a 500 pL alïquot of 

methanol : PBS : 1 TFA (70:29: 1). The elute fiom the capillary was collected into a 20.0 

mL polyethylene scintillation via1 containing 20.0 mL of scintillation cocktail. The semm 

sample results were compared to previously obtained theophylline binding isothenn. 

Table 3.2: Analysis of theophylline in human semm sample with antibody immobilized 

( Concentration (nglmL) 1 
(after dilution for serum ) PPW l IPPW 1 Difference (90) I 

100 
f l 

*relative difference =[abs(senim sample-from figure 3.14) 



3.3 Conclusion 

In this section, theophylline antiserurn was immobilized on fused silica surfaces 

(on a fiber and the inner surface of the capillary) and used for solid phase immunoaffinity 

analysis. The methods for surface preparation and antibody immobilization have been 

reviewed, SEM images of silica fibers at each surface modification stage have k e n  

collected. Combined with the results of diazepam and caffeine competitive binding 

studies, conclusions c m  be made that active theophylline antibodies have been 

successfully immobilized on the silica surfaces. 

Utilizing the high binding selectivity of immobilized anti-theophylline, the coated 

SPME fibers and capillaries were successfully employed to study the concentration of 

theophylline in human serum samples. The results demonstrated that antibody 

immobilized SPME and in-tube SPME c m  be used for dmg analysis in complex 

biomatrices. Compared with traditional immunoassays, the antibody immobilized SPME 

approach is simple and convenient, only requiring little sample preparation. Scintillation 

detection method was employed because of the low capacity of the coated 

fiber/capillaries, which is due to the small surface areas and low antibody surface density. 

This is likely because of the different property of the silica (34) or the disorientation of 

the antibody (35). The immobilization technique could be further improved to enhance 

the density of active antibodies, which may enable the direct coupling of antibody 

immobilized in-tube SPME with LC/MS systems. 

The stability of immobilized antibody was shown is that after one week of storage 

in a solution of sodium azide (5%) in PBS, no significant changes of fiber properties were 

noticed. 
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CEAPTER 4 

APPLICATION OF MOLECULAlUY IMPRINTED POLYMER IN 

SPME: A PRELIMINARY STUDY 

4.1 Introduction 

4.1.1 Moiecuiarly Imprinted Polymer (MW) 

In Chapter 3, the application of the immobilization of an antibody, both on a fused 

silica fiber and in a fused silica capillary, for SPME analysis has been discussed. 

However, the major disadvantage of this approach is the supply and stability of biological 

antibodies. Their production can be uncertain and costly. However, once available, it has 

been shown in Chapter 3 that extraction procedures based almost entirely on antibody- 

antigen interactions can be obtained. 

Starting with the first discovery of crown ethers by Pederson (1, 2), many 

researchers have been continuously trying to find artificid recognition materials. To date, 

the most successful approach for producing a synthetic recognition site has been the 

technique of molecular imprinting. 

MolecuIar imprinting is a technique used for preparing polymers with s ynthetic 

recognition sites having a predetermined selectivity for an analyte(s) of interest (3). The 

imprint is obtained by arranging polymerisable fûnctiond monomers around a template 

(the analyte). Complexes are then formed through molecular interactions between the 

analyte and the monomer precusors. The complexes are assernbled in the liquid phase and 

fixed by crosslinking polymerisation. Removal of the template from the resulting 

polyrner rnatrix creates vacant recognition sites that exhibit affinity for the analyte. 



4.1.2 Preparation of MIPs 

There have been two main approaches to the synthesis of MIPs. Wulff (4) and co- 

workers produced MIPs by synthesiùng specific sugar or amino acid denvatives, which 

contained a polymerizable function such as vinylphenyIboronate. After polymerization 

they hydrolysed the sugar moiety and used the polymer for selective binding. This 

approach is usually referred to as covalent molecular irnpnnting. 

Mosbach (5) and CO-workers developed the so-called non-covalent approach. 

They used a monomer such as methacrylic acid (MAA) dong with a cross-linker such as 

ethylene glycol dimethacrylate @MA) mixed with the template (the analyte molecule). 

After polymerization the analyte is washed out of the polymer leaving a cavity that c m  

selectively bind the template. 

4.1.3 Advantages and Applications of MIP 

The potential applications of MTP are many (4-6), since they show physical 

robustness, high mechanical strength, resistance to elevated temperatures and pressures, 

and stability in the presence of extremes of acids, bases, metal ions, and organic solvents, 

features that are favorable for routine analysis (7). 

To date, practical applications of MIPs for bio- and pharmaceutical analysis are 

still fairly limited. However, several possibilities for use in analytical methods have been 

extensively explored. These include the production of solid phase extraction (SPE) 

columns (a), HPLC columns for affinity separations (9-1 l), capillary 

electrochromatography media (12), selectively permeable membranes (13, 14), 

radioligand binding assays (15, 16), and sensors (17). 



4.1.4 Objective of This Study 

The objective of this study is to investigate the potentid application of MIP, as an 

alternative molecular recognition material to antibody, for SPME anal ysis. 

4.2 Theory 

4.2.1 Preparation of MIP for Diazepam 

The structure and ph ysical properties of diazepam are presented in Figure 2.8. In 

this work, a MIP imprinted with diazepam was synthesized and used as the target 

material to be studied. The schematic representation of the preparation of h4iP for 

diazepam is shown in Figure 4.1. 

The functional MAA is first mixed with the diazepam print molecule, and 

crossLinking monomer, EDMA, in a suitable solvent. M2I.A is selected for its ability to 

form hydrogen bonds with a variety of chemical functionalities in the pnnt molecule. The 

polymenzation reaction was then started by addition of initiator (2,2'- azobis (2- 

isobutyronitrile), AIBN). A rigid insoluble polymer is formed. Finally, the pnnt molecule 

is removed by solvent extraction. 'Imprints', which are cornplementary to the print 

molecule in both shape and chemical functionality, are now present within the p o l p e n c  

network. The curve line in Figure 4.1 represents an idealized polymer structure but does 

not take into account the accessibility of the substrate to the recognition site. 

The carboxylic acid function of MAA forrns ionic interactions with amino groups 

and hydrogen bonds with polar functions of the print molecules. Dipole - dipole and 

hydrophobie interactions may also contribute in the formation of the specific binding 

sites for the imprinted rnolecule (18, 19). It is also these non-covalent intermolecula. 



interactions between the print molecule in a sample solution and the functional groups of 

the MIP that subsequently drive the specific molecular recognition binding process. 

Of the imprinting strategies use& it has become evident that the use of non- 

covalent interactions between the print molecule and the fwictional monomers is the 

more versatile. The apparent weakness of these interaction types when considered 

individually may be overcome by allowing a multitude of interaction points 

simultaneously. The use on non-covalent interactions in the imprinting step closely 

resembles reco,onition processes observed in nature (20). 



Figure 4.1: Typical hydrogen bond interactions between diazepam (target) and 

MIP binding site are depicted by broken Lines (adapted from (20)). 
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Figure 4.2: Preparation of a diazepam MIP and binding vs. desorption. 



4.3 Experimental 

4.3.1 Chernicals and Materials 

The methacmc acid (MAA), ethylene glycol dimethacrylic (EDMA), diazepam 

and 2,2'-azobis (2-isobutyronitrile) (AIBN) were purchased from Sigma-Aldrich 

(Mîssissauga, Ontario). The diazepam was purchased under a license from Health Canada 

since it is a controlled substance. 

3 ~ - ~ i a z e p a m  was purchased from NEWM Life Science Products, Inc. (Boston, 

MA) as 3.454 pg/mL ethano1 sohtion. The specific activity is 82.5 Ci/mmol. 

4.3.2 Method 

Synrhesis of MIPs. To a glas 20 rnL flask were added dichloromethane (6.2 d), 

diazepam (0.2 g), MAA (0.36 g), EDMA (4.12 g) and AIBN (0.08g). The flask was 

capped with a rubber septum and vented with a syringe needle. The reaction mixture was 

sparged with nitrogen for 5 min while in a sonicating water bath before polymerization at 

4°C for 16 hours. The reaction was initiated with ultraviolet light (366 nm). The reaction 

was protected by nitrogen during the whole reaction time. 

After 30 min, a white, glassy polymer began to form in the fiask. The reaction 

was carried out for 16 hours, at which time the solvent had evaporated. The flask was set 

in a vacuum oven, which has been flushed with nitrogen 3 times, at 60°C for a minimum 

15 hours. 

The polymer was removed from the flask and ground by hand with a rnortar and 

pestle. The powder was sieved with water through a 25 sieve and recovered by 

filtration on No. 1 Whatman filter paper. 



The polymer (e 25 p) was sedimented severd times in acetonitrile to remove 

the fine material. The coarse polymer was extracted by extensive washing of the particles 

with MeOH/acetic acid (9/1, v/v). Finally the polyrner particles were dried under vacuum 

and stored in a desiccator at room temperature and ready for use. 

A control polyrner was synthesized using the same method except no imprint 

moIecule was added (18). 

Synthesis ofthe MIPs on the Fused SiZica Fiber. Before the reaction was initiated, 

an ordinary fused silïca SPME fiber (without coating, the fiber had been washed in the 

hot sulfuric acid for 5 min and then nnsed in water) was inserted into the reactant 

solution. After the polymerization was initiated and before the polymer becomes hard, the 

fiber was taken out from the viscous liquid. The polymerization reaction continued on the 

fiber. 

The fiber was then extensively washed with MeOWacetic acid (9/1. v/v) and 

dichloromethane. 

Zmmunoaffinity Analysis. A 1 mL C m 1 2  solution containing the test compounds, 

in which the components are different according to the different assays, was first added in 

a 1 mL polyethylene tube. The fiber was then inserted into the solution. Special care was 

exercised to make sure that the fiber was properly labeled and the polyethylene tube was 

covered. The tube was then mounted on the shaking bed for 3 hours extraction. After the 

extraction, the fiber was then withdrawn from the tube, briefly dipped into water, and put 

into 1 mL methanol solution for 5 min desorption. The fiber was taken out of the 

methanol solution and 19 mL scintillation cocktail was added to the methanol solution for 

scintillation counting. 



4.3.3 Results and Discussion 

Goa-ting of the MZP an the Fiber. One of the challenges of this study was to coat 

the MIP on the SPME fiber. Two approaches have been tried. The fmt one is direct 

synthesis of MIP on the fiber. The main disadvantage is the dificulty in removing the 

entire template analyte molecule. Even afier extensive washing, it was proven that it is 

dificuit to achieve this. Since the SPME technique, and especially SPME with a 

molecular recognition sorbent, is a very sensitive method, a trace amount of the analyte 

left on the fiber would be a vital impediment for the whole experiment. 

The other method is to glue the fine polymer powder to the hsed s i k a  SPME 

fiber. The fiber was washed in hot sulfuric acid to clean the surface from grease and other 

ccating before the gluing. A thin layer of glue was attached to the îùsed silica SPME bare 

fiber. The ~ilicon" glue was identified as the optimum adhesive that was sîudied in this 

application. The fiber had a Iayer of MIP powder wrapped ont0 it by rolling the fiber in 

the powder. The fiber was then put in the oven at 60°C for ovemight, and was then ready 

to use. 

Since the print molecule is much easier to be washed out from MIP fine powder 

than from the layer of polymer on the fiber, this method is more practical. However, in 

this research stage, dl the fibers are manually made. It is obvious that the reproducibility 

of the fiber preparation technique will be very poor and an expenmental emor is 

inherently introduced. Nevertheless, this coating method was employed with dl 

experiments in this study. Figure 4.3 presents Scanning EIectronic Micrographs (SEM) of 

the MIP coated fiber. 
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Figure 4.3: The schematic diagram representing the polymerization of MIP and SEM 

pictures showing the MIP powder after it is glued on the fiber surface. 



Immunoafinity Analysis - Prehinary Results . The comparison of anti-diazepam 

molecular impnnted polymer to the control polymer in binding 3~-diazepam was fmt 

performed. Figure 4.4 shows the comparison of the two fibers in extracting 1 ng/mL 3 ~ -  

diazeparn. The experiment was based on three duplicates of measurement. As mentioned 

earlier, due to the poor reproducibility of the 'home-made' fiber, the experimental emor is 

fairly large. 

anti-D iazepam Control Blank 

Figure 4.4: The comparison of anti-diazeparn MIP and controlled polymer in 

binding the 1 ng/mL ' ~ - d i z a ~ a m  in CHzClz solution. The blank value is the blank 

test (extraction of blank solvent) of anti-diazepam fiber. 



It is obvious from Figure 4.4 that the anti-diazepam binding is much higher than 

the control polymer. The blank test of the anti-diazepam fiber shows that the amount of 

the remaining diazepam on the M I .  is very smail. 

Cornpetitive binding of the cold diazeparn to ' ~ - d i a z e ~ a m  was dso performed. 

The concentration of '~-diaze~am was kept at 1 nglmL while the concentration of the 

cold diazepam was varied from 0.2 ng/mL to 3.0 ng/mL. The competitive curve showing 

these results is presentedjn Figure 4.4. The curve clearly shows the competitive binding 

trend with an increase in the cold-diazepam concentration. 

0 ! 1 L 1 L 1 1 1 
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Figure 4.5: The competitive binding of cold diazepam with ' ~ - d i a z e ~ a m  in the binding 

to anti-diazeparn MIP fiber. The concentration of ' ~ -d i aze~am was 1 ng/mL. 



The cross-reactivity from nordazepam, which is another important compound in 

the benzodiazepine compounds family, to the anti-diazepam MIP was also investigated 

with the sarne experimental rnethod. The results are presented in Figure 4.6. 

Concentration of Nordazepam [nglml] 

Figure 4.6: The competitive binding to nordazepam with 3~-diazepam in the binding 

to the anti-diazepam MIP fiber. The concentration of 3~-diazepam was 1 ng/mL. 



According to (21), the cross-reactivity of nordazepam to anti-diazepam MIP is 

27%. In our results, it is apparent that it takes a larger concentration of nordazepam than 

diazeparn binding for the scintillation value to decrease to the base value. 

4.4 Conclusion 

In this work, M P  has been applied to the SPME analysis. MIP particles were first 

glued on a SPME fiber and immunoassay were performed. Due to the tiny size of the 

SPME fiber, the capacity was too low to be detected either by GC or HPLCMS. A 

radioirnmunoassay with scintillation detection method was hence implernented. Although 

this work only represents some very preiiminary results, the research results already show 

that the MW is a promising molecular recognition material for the SPME andysis for 

biological sarnples. The only factor that restricts the work from broader application is that 

the technique of making the fiber rnanually was dificult and needs to be further 

improved, However, it is very likely that this disadvantage could be overcome. For 

example, MIPs have recently been electronically synthesed on fused silica surfaces with 

using polypyrrole conducting polymers (22)- 
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CHAPTER 5 

IN-TUBE SPME FOR BENZODLAZIEPINE ANALYSIS 

5.1 Introduction 

5.1.1 Benzodiazepines 

Benzodiazepines are an important class of àrugs that are frequently used in 

clinical practice as tranquilizers, sleep inducers, antiepileptic hypnotics, anticonvulsants, 

and muscle relaxants (1,2). Unfortunateiy, they are ofien subject to overdose in suicide 

attempts, abuse, tolerance and dependence. Therefore, they are kequently encountered in 

emergency toxicological screening, drug-of-abuse testing and forensic medicine 

examinations. 

Since benzodiazepine is widely seen in clinical and forensic cases, its 

rneasurements in specimens are widely practiced (3,4). Simple, accurate, and highly 

sensitive anaiytical techniques are often required for trace level quantification of 

benzodiazepines. The commonly used sarnple preparation techniques are liquid-liquid 

extraction (LLE) and soiid-phase extraction (SPE). The SPME fiber extraction has also 

been studied in this application wiîh Iimited results (5). Chromatographie techniques, 

particularly HPLC, GC and GC-MS, are most commody used to identify specific 

benzodiazepines present in specimens (6,7). OC-MS determination of benzodiazepines 

has been reviewed by Maurer (8). Further studies and cornparisons have also been made 

between this technique and various imrnunoassays (9-13). 

In recent years, the coupling of LC to MS has provided a useful and rugged 

technique for the andysis of dmg compounds. It has become an alternative to GC-MS, in 



which many themally labile compounds decomposed to give a common metabolite (14, 

15). The advent and development of soft-ionization techniques, such as electrospray 

ionization (16, 17), have further opened avenues for the specific detection and 

determination of various phannaceuticals. 

As stated in section 1.1.2, in-tube SPME has been applied to the analysis of many 

pharmaceutical compounds. In this study, as a class of common dmg, benzodiazepines 

have been analyzed by in-tube SPME coupled with LCESI-MS. 

5.1.2 Electrospray Ionization Mass Spectrometry 

Electrospray (ES) is a technique that allows ions to be transfemed h m  solution to 

the gas phase and subjected to mass spectrometnc analysis. Therefore, it is a perfect 

interface to allow HPLC coupling to mass spectrometry (MS) (16). The technique of 

electrospray ionization (ESI) was first introduced by Yamashita and Fenn in 1984 (18). 

However, it took a few more years before the importance of the method was recognized 

(19-2 1). 

An LC/ESI-MS interface is shown in Figure 5.1 (HP 1100 LCMS) (23). 

Unfortunately, a complete understanding of the ES mechanisrn is not yet available. 

However, the essence of the electrospray process can be described with simplicity (17) as 

follows. The ES1 ion generation process is presented in Figure 5.2 (22). In ESI, the 

production of ions begins with charged polar analytes in the HPLC eluent. A solution of 

the analyte is passed through a capillary, which is held at a high potential. The effect of 

the high electric field as the solution emerges is to generate an aerosol of highly charged 

droplets, which pass down a potential and pressure gradient towards the analyzer portion 
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of the mass spectrometer. D e n g  the transition, the droplets reduce in size by evaporation 

of the solvent or by "Coulomb explosion" (droplet subdivision resulting from the high 

charge density). Ultimately, fully de-solvated ions result from complete evapo- lation of 

the solvent or by field desorption fiom the charged droplets. Nebulization of the solution 

emerging fiom the capillary may be facilitated by a sheath flow of nebulizer gas, a 

technique for which the t e m  "ion-sprayy' was originally coined by its developers (20). 

Sampling of the N l y  or partially de-solvated ions is possible using a capiilary or a 

skimrner device. 

HPLC inlat 

Figure 5.1: An LC/ESI/MS interface. 
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Figure 5.2: ES1 ion generation process. 

5.2 Theory 

The configuration of the in-tube SPME using a Hewlett-Packard HP1 100 L C M  

is shown in Figure 1.3. The technique is easil y adapted into the Hewlett-Packard 1 100 

LCrMS system, as the configuration of the standard autosampler for this system ( A U  

1 100) is ideal for in-tube SPME. 

In the experiment, a coated capillary GC co lum was mounted between the 

injection needle and the injection loop of the HPLC autosampler. The needle hosts the 

capillary when it is pierced through the septum of the vial containing the spiked aqueous 

sample. 

The extraction process was achieved by aspirating (draw) and dispensing (eject) 

the aqueous sample a number of times between the sample and the capillary. The 



extracted analyte was then released from the coating directly by the mobile phase or by a 

segment of desorption solvent previously aspirated into the capillary and injected into the 

system for separation. 

For in-tube SPME, a higher extraction and separation efficiency could be 

achieved through manipulating several extraction conditions, including the types of the 

capillary column, pH value of the aqueous sample, the numbers draw/eject cycle, type of 

the desorption solvent, the speed of the draw/eject movement, etc. 

In this research, seven cornmonl y encountered benzodiazepines were anal yzed b y 

in-tube SPME coupled with HPLCIESIIMS system. Their chemical structures are listed 

in Figure 5.3. The objective of this study was to develop a simple, rapid and reliable 

method to analyse selected benzodiazepines in aqueous solutions as well as in biologicai 

fluid by in-tube SPME. 



Oxazepam 
MW: 286.7 

Desmeth yldiazepam 
MW: 270.7 

Clonazepam 
MW: 315.72 

Temazepam 
MW: 300.7 

Diazepam 
MW: 284.7 

Figure 5.3: Structures of the target benzodiazepine compounds. 



53 Experimental 

Chernicals and Mate rials. All seven benzodiazepine compounds were purchased 

from Radian International (Texas, Austin, USA) as lmg/ml methanol solutions. The 

solutions were diluted with methanol into O.lmg/ml, O.Olmg/ml and O.OOlmg/mI for 

experimental convenience and al1 solutions were stored at -10°C when not in use. All the 

inorganic compounds used to prepare the buffer solution were purchased from Sigma 

(Mississauga, Ontario). 

The solvents used in this study were al1 of HPLC grade and water filtered through 

a ~ i l l i -Q@ ultrafiltration system (Mïllipore) was used during al1 experiments. 

Capillaries (Supelco Q-PLOT, Supelcowax, Omegawax 250, SPB-5, SPB-1 and 

polar deactivated silica tubing) were purchased from Supelco (Bellefonte, PA). 

Preparation of Bufer Solutions. The 100 mM pH 2.5, pH 4.0, pH 5.5, pH 7.0, pH 

8.5 and pH 10.0 buffer were prepared separately. The pH 2.5 buffer was prepared by 

combining 0.1M phosp horic acid and 0.1M monobasic sodium monophosphate at certain 

ratios. The pH 4.0 and pH 5.5 buffer were prepared by 0.1 M acetic acid and 0.1 M 

sodium acetate at certain ratios. The pH 7.0 and pH 8.5 buffers were prepared from 0.1 M 

Tris (free base) and 0.1 M HCl. The pH 10.0 buffer was prepared by 0.1 M sodium 

carbonate and 0.1 M sodium hydrogen carbonate. The preparations for al1 of these buffers 

were performed under the monitoring of a pH meter. 

Instrumentation and Analytical Condirions. The apparatus used was a HP 1100 

LCESIlMS system (Hewlett-Packard, Palo. Alto, CA, USA) consisting of a degasser, a 

binary pump, an autosampler, a thermostatic column cornpartment, a variable wavelength 

detector and a mass selective detector (MSD). The ionization mode of the MSD was ESI. 



The column used for the separation was a Ci8 column (5.0 cmx2.lmm id., 3 prn 

particle size, Supelco, Bellefonte, PA). The mobile phase was cornposed of methanol 

(60%) and 50 m .  ammonium acetate in water @û%). The flow rate was kept at 0.3 

mUmin. The whole analytical time for each run took 12 minutes. Al1 the separations 

were performed at 25OC. 

ES1 positive mode was used. Operation conditions were optimized as follows: 

drying gas &) was 10 mL/min; drying gas temperature was 350°C; nebulizer pressure 

was 25psi; capillary voltage was 3500 V; ions were observed at mass range m/z 100-400; 

fragmentor voltage was set at 70V. For the selected ion monitoring (SM) mode, 

following ions were used: d z  217 for nordazepam, 284 for 7-aminoflunitrazepam, 285 

for diazepam, 287 for oxazepam, 300 for N-desmethytflunitrazepam, 301 for temazepam 

and 3 16 for clonazepam. 

5.3.1 Methods 

Zn-tube SPME. A GC capillary of 60 cm in length and 0.25 mm i.d. was used and 

the connections were facilitated by a 2.5cm sleeve of 1/16" polyetheretherketone (PEEK) 

tubing at each end. Normal 1/16" stainless steel nuts, ferrules and connectors were used 

to complete the connection. The inner volume for this capillary was 29.4pL. Vials (2 mL) 

filled with 1 mL of sarnple were set into the autosampler for analysis. In addition, two 

vials of 1.5 ml methanol were set on the antosampler to clean the capillary and needie. 

The extraction, desorption and injection procedure was controlled to give the best 

extraction and separation efficienc y. 



The capi l la .  was washed and conditioned by a drawleject cycle of 40 pL 

methanol prior to extraction. During the extraction process, it was optimised to ten 

repeated &aw/eject cycles. The draw/eject speed was set to 400 pLlmin in order to Save 

analytical time without loss of extraction efficiency. After washing the injection needle 

by draw/eject cycle of 1.5 pL methanol, the six-port valve was switched frorn LOAD to 

INJ'ECT position and the extracted benzodiazepines were desorbed from the capillary 

coating with mobile phase flow and transported to the LC column for the separation. The 

sample wou1d be further transferred to the MSD detector through the UV detector for 

detection. 

Preparation of Unne and Semm Sample. Drug-free urine and serum samples 

were collected from a healthy volunteer. Urine samples were used after filtration by a 

syringe microfilter (0.45 p, Gelman Science). Serum samptes were first diluted five 

times with 1% acetic acid and then ultrcilered with NANOSEP centrifuga1 

microconcentrator mode1 3K (fa11 Filtron, Northborough, MA, USA) at 10,000xg for 20 

min. An aliquot of 0.5 mL of each sample was pipetted into a 2 mL vial. An additional 

0.5 rnL of buffer (pH 8.5) was spiked for each vial before it was set on the autosarnpler. 

5.3.2 Resdts and Discussion 

5.3.2.1 Optimization of Analytical Conditions 

Selection of CapiElaries. In order to optirnize the extraction, several types of the 

- capillary colurnn were examined. The following capillaries were tested: Supelco Q- 

PLOT, Supelcowax, Omegawax 250, SPB-5, SPB-1 and polar silica tubing. The results 

were shown in Figure 5.4. The Supelco Q-PLOT column gave superior extraction 



efficiency compared to the others due to the properties of divinylbenzene (DVB) polymer 

coating. 

Selection of pH Value of M a t n i  Since benzodiazepines are basic compounds, the 

pH value of the matrix affects the existing fonn of the molecule and, therefore, its 

extraction efficiency. The effect of pH was examined using several buffer solutions from 

pH 2.5 to pH 10.0, at intervals of 1.5 pH units. Different sensitivities were observed at 

different pH values. As s h o w  in Figure 5.5, considenng the overall performance, tris- 

HC1 pH 8.5 gave the best extraction efficiency. 
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Figure 5.4: Cornparison of various types of capillaries for in-tube SPME in the 

extraction of benzodiazepine compounds. 
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Figure 5.5: The effect of pH on in-tube SPME efficiency of benzodiazepine compounds using 

Supelco-Q PLOT capillary as the extraction medium. 

The h b e r  of DrmEject Cycles. The number of draw/eject cycles was varieci 

over the range of 1 - 40 in order to investigate the equilibrium process of the extraction. 

A Supelco-Q plot capillary was used in this study. The extraction profile is show in 



Figure 5.6. From the figure, we cm see that the equilibnum condition was stiü not 

reached for the compounds (especidly for the four compounds with higher area counts) 

after 40 draw/eject cycles. Although the sensitivity was increased with more extraction 

cycles, a routine of ten &aw/eject cycles was selected for the analysis in order to save 

analytical time while maintaining a sufficiently high extraction efficiency. 

Figure 5.6: Extraction profile of benzodiazepine compounds illustrating the effect 

of drawkject cycles on the in-tube SPME efficiency. 



The absolute arnount of benzodiazepines extracted by the capillary under optimal 

conditions (Supelco Q-PLOT capillary, pH of the sample solution = 8.5, the number of 

draw/eject cycles = 10) was calculated by direct injection of the sample solution to the 

LC column. Knowing the total amount of the analyte in the sample vial, the extraction 

eficiency c m  be subsequently calculated. As shown in Table 5.1,26-83 ng (0.29-7.1 1%) 

was extracted by the in-tube SPME of benzodiazepines. These results were obtained by 

using 0.5 p g / d  sample solutions. 

Table 5.1: Cornparison of direct injection and in-tube SPME for the extraction of 

benzodiazepines. 

Compounds 

Nordazepam 

7-Aminofluni trazepam 

Diazepam 

Oxazepam 

Desmeth y1 fluni trazepam 

Temazepam 

Clonazepam 

Area Counts (x106) Ex traction 

Direct injectiona In-tube SPME~ Yieldc (%) 

O. 12 1.3 1 (26 ng) 9.2 

0.58 7.11 (31 ng) 8 -2 

0.20 3.41 (43 ng) 5.9 

0.028 0.62 (56 ng) 4.5 

0.020 0.36 (46 ng) 5 -6 

0.08 1 1.58 (49 ng) 5.1 

0.0087 0.29 (83 ng) 3 .O 

' 5 p L  500 ng/mL (2.5 ng) of benzodiazepines in 100 mM Tris HCI (pH 8.5) was directly 
injec ted. 

1 mL of 0.5 pglmL benzodiazepines in 100 mM Tris HCl (pH 8.5) was extracted by in- 
tube SPME, desorbed with mobile phase, and injected. Extracted amounts were 
calculated in cornparison with area counts of benzodiazepines in direct injection and in- 
tube SPME. 
C Percentages of extracted amount of benzodiazepines per initial amounts (500 ng) in 
sample solution using in-tube SPME. 



Samgle Desorption. The mobile phase was found to be the most suitable for 

desorption of benzodiazepines absorbed into the stationary phase of the capillary. Most 

conveniently, the desorbed benzodiazepines c m  be transported to the LC column with 

mobile phase flow. The entire in-tube SPME exiraction and desorption process was 

accompiished automatically in 15 minutes. Carryover of benzodiazepines was not 

observed. 

5.3.2.2 Quantitative Analysis 

Precision Analysis. The precision analysis was based on the continuous malysis 

of 100 ppb benzodiazepines samples (n=9). The relative standard deviations for al1 the 

compounds were less than 10.0%. 

Calibration Curve and Limits of Detechon. The reliability of the present method 

was tested b y quantitative measurements without an interna1 standard in SIM mode. Each 

peak area of the analytes was measured, and calibration curves were constnicted. The 

calibration curves were linear in the range frorn 0.5 to 500 ng/mL for 7- 

aminoflunitrazepam, from 1 to 500 n g / d  for nordazepam, diazepam and oxazepam, 

from 2 to 500 ng/mL for N-desmethylflunitrazepam and temazepam, and from 5 to 500 

ng/mL for clonazepam. No interference peaks from buffer solution was observed. The 

calibration curves are presented in Figure 5.7. 
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Figure 5.7: Calibration curves for benzodiazepine analysis by in-tube SPME. 
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Table 5.2: The regression coefficients of the calibration cunies for benzodiazepines 

analysis by in-tube SPME. 

1 Compounds Regression Equation 1 

Temazepam 

1 Nordazepam 

y = 3 177x + 1829 

Oxazepam 

0.9992 

y = 2633x + 4609 

I I 

The blank and the 10 ng/mL standard fiom the 1ineaIity study were used to 

estimate the limit of detection of the procedure (25). The maximum baseline height of the 

blank was measured at the approximate retention time of each drug/metabolite peak and 

this peak height was multiplied by a factor of 3. The concentrations correspond to these 

values are used as the limits of detection (LOD). The limits of detection of the seven 

benzodiazepine compounds under the LC/MS conditions were 0.02 ng/rnL for 7- 

aminoflunitrazepam, 1.0 nglmL for diazepam, nordazepam and temazepam, ? .5 ng/mL 

for oxazepam, and 2.0 nglmL for N-desmethylflunitrazepam and clonazepam. (Table 

5.2). The detection limits could be further increased with more drawleject cycles (Figure 

5.6) with a sacrifice in anal ytical time. The in-tube SPME method gave 1 1-33 times 

higher sensitivity than the direct injection method (Table 5.1). The relative standard 

deviation for these compounds obtained at the same concentration of 500 ng/mL were 

0.23-3.06% (n=3). 

0.9994 

y = 1242x +O391 

Desmethylflunitrazepam 1 y = 7 0 7 . 2 ~  + 3289 

Clonazepam 

0.9979 

0.9964 
1 

y =563.1~+5746 0.9940 



Table 5.3: The limits of detection of Benzodiazepine compounds by in-tube SPME. 

Compounds Limit of Detection (ng/mL) 

7-Aminoflunitrazepam 0.024 

Diazepam 1 .O 

Temazepam 1.5 

Nordazepam 1 .O 

Oxazepam 1.5 

Desmeth ylflunitrazepam 2.0 

Clonazepam 2.0 

5.3.2.3 Mass Spectra of Benzodiazepines 

To select the monitoring ion for each of the benzodiazepines, ES1 mass spectra 

were initially analyzed by direct liquid injection. Each dnig gave a very simple spectrum 

in the mass scan range of m/z 100-400 with @M+ZZ]+ ion as the base ion. Each base ion 

accounted for more than 70% of the total ions, which was suitabie for quantification in 

SM mode for each benzodiazepine compound. 

As shown in Figure 5.1 1 and Figure 5.12,7-aminoflunitrazeparn, N- 

desmethylflunitrazepam, clonazeparn, oxazepam, temazepam, nordazepam and diazepam 

were eluted in well-separated peaks at 2.4, 3 .8,4.2,5.8,6.5, 8.2 and 9.5 min, 

respectively. However, perfect separations are not necessary due to the sensitivity and 

resofution power of SIM mode of ESI-quadruple mass spectrometry. 

The electrospray used in this study was a pneumatically assisted electrospray 

system. The theoretical advantage of this system is the low influence of the eluent 

composition for the nebdization efficiency. This permits the use of a wide range of 



eluents without changing the performance of the nebulization and also pennits the use of 

normal HPLC flow rates (0.3- 1 mUmin). 

The capillary voItage was applied between the spray chamber and nebulizer, with 

the potentid of the nebulizer set at ground potential. (The polarity of the capillary voltage 

is always opposite to the polarity of the analyzed ion.) The charged capillary produces an 

electric field, which is the drawing force of the ion extraction from the fine droplets. The 

optimal voltage depends on the compounds and the geometnc parameters of the spray 

chamber, 

The hgmentor  voltage was applied to the exit end of the capillary, which 

connects the spray chamber with the first vacuum zone of the MS. The applied voltage 

influences the fragmentation of t!e compounds and the transmission of ions. 

Theoretically, the higher that the fragmentation voltages are, the higher is the ion 

transmission. However, some unstable compounds can be easily fragmented in the 

collision induced dissociation (CID) zone. 

Capillary voltages ranging from 1000 V to 6000 V were investigated. The 

sarnples for this study were 100 n g / d  and the fragmentor voltage was kept at 70 V for 

in-tube SPME analysis. The abundance of molecular ion w+HJ+ for each compound at 

different capillary voltages was shown in Figure 5.8. Each compound gave spectrum 

where the fragmentation patterns were dorninated similar molecular ion ([M+HJ*) for al1 

the different capillary voltages. However, Figure 5.8 shows that al1 the compounds have 

the highest abundance of ions in the range of 2500 V-3500 V. 

The fragmentor voltage from 20 V to 400 V was also investigated while keeping 

the capillary voltage at 3500V. With an increase in the fragmentor voltage, the 



fragmentation pattern of the compounds became more cornplex. The abundance of 

molecula. ion for each compound was decreased with an increase of the fragmentor 

voltage, whiIe the characteristic ions started to appear. Depending on the structure of the 

compound, the charactenstic ions appeared at a different fragmentor voltage. It was 

found that the compounds with hydroxyl group fiagmented at reIatively lower fragmentor 

voltage. This phenornenon can be clearly seen in Figure 5.9. It is obvious that the 

molecular ions of compounds with hydroxyl group, such as oxazepam and temazepam, 

give the highest abundance at lower voltage (-70V) as compared to the other compounds 

which do not possess hydroxyl groups (-IOOV). 
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Figure 5.8: Influence of the capillary voltage on the fragmentation of the 

benzodiazepine compounds. 



The spectra in Figure 5.10 were obtained by seaing capillary voltage at 3500V. 

Some characteristic ions were identified as listed in Table 5.4. 

Table 5.4: The identified characteristic ions of the selected benzodiazepines. 

Compounds Characteristic Ion 

Oxazepam (100~) '  287 [M+HJ+, 271 W H - M ' ,  241 w+H-NOHI+ 

Temazepam (100~) '  301 w+H]+, 255 ~ + H C N O H - J t  

Nordazepam ( 1 4 0 ~ ) '  27 1 @I+Hjc, 243 WH-NO]+. 208 M+H-NoCl]+ 

Diazepam (140~) '  285 w+Hj+, 257 w+H-CO]+ 

* The fragmentor voltage. 
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Figure 5.9: Influence of the fragmentor voltage on the fragmentation of 

benzodiazepine compounds. 







Figure 5.10: Mass spectra of benzodiazepine compounds obtained from HP 1100 

LC/ESI/MS . 

5.3.2.4 Analysis of Urine and Serum Samples 

The method has also been appiied to urine and serum sample analysis. As shown 

in Figures 5.1 1 and 5.12, no interference peaks were observed in non-spiked urine and 

senim samples. Benzodiazepines (each 50 or 500 ng) were spiked in the urine and senun 

samples and analyzed. As shown in Figure 5.1 LI3 and 5.12B, each of benzodiazepines in 

the urine and serurn samples could be selectively detected in SIM mode. However, the 

peaks were broadened compared with direct liquid injection. As s h o w  in Table 5.5, the 

recoverïes from urine and serum samples were in the range of 75.8 to 106.8% and 35.4 to 

53.796, respectively. Recoveries from serum sarnple were lower than that of urine sample 

because of the protein binding. Clearly, the recoverics need to be further improved. The 

coefficients of variation of three replicate analyses were below 10%. 



Figure 5.11: Total ion and S M  chromatograms obtained from urine samples 

(O.Spg/rnL) by in-tube SPME/LC/MS. A: Total ion chromatograms obtained fkom 

spiked urine sample. 1. 7-aminoflunitrazepam, 2. N-desmethylflunitrazepam, 3. 

clonazepam, 4. oxazeparn, 5. temazepam, 6. nordazepam, 7. diazeparn. B: SIM 

chromatograms obtained from spiked urine simples. 



Figure 5.12: Total ion and S I .  chromatograms obtained from senim samples 

(0.2pg/mL) by in-tube SPME/LC/MS. A: Total ion chromatograms obtained from 

spiked urine sample. 1. 7-aminoflunitrazepam, 2. N-desmethylflunitrazepam, 3. 

clonazepam, 4. oxazepam, 5. temazepam, 6. nordazepam, 7. diazepam. B: SIM 

chromatograms obtained from spiked urine samples. 
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Table 5.5: Recoveries of seven benzodiazepines spiked into urine and senun samples. 

Compounds 

Nordâzepam 

7-Aminoflunitrazepa 

Diazepam 

Oxazepam 

N-desmethylflunitrazepam 

Temazepam 

Clonazepam 

Recovery (%), Mean t SD (n=3) 

a Benzodiazepines were spiked into 1 ml urine, the mixture was filtered using a syringe 

microfilter. 0.5 mL of the pH85 buffer was added to 0.5 mL mixture to make a 1 mL 

solution before analysis. 

b Benzodiazepines were spiked into 100 pL of serum, and the mixture was diluted 5 

times with 1% acetic acid before analysis. 

5.4 ConcIusion 

In-tube SPME is an excellent sample preparation technique because of its fast 

operation, simple automation, low solvent requirement and low expense. Its application 

to benzodiazepines analysis is very important due to their clinical significance. The 

diversity of the chernical structures of this class of compounds makes it difficult to find a 

universal traditional method to analyse and screen them dl. However, after selecting the 

appropriate capillary, the automated in-tube SPME/LC/MS method demonstrated in this 



study could continuously perform extraction of benzodiazepines ftom aqueous samples, 

foilowed by the identification through LC/MS andysis. However, due to the structural 

complexity of biomatnx, the recovery of some of the compounds Erom semm was fairly 

low. Further iqrovement in this respect is expected- Regardless, this method provided a 

useful tool for the screening and determination of benzodiazepines in clinical control and 

forensic anal y sis. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Scope of SPME in Biological Appiications 

As a relatively new andytical technique, SPUZE has experienced rapid 

development in the past decade, especially for volatile organic compounds in 

environmental sample andysis. In principle, SPME is distinguished from other sample 

preparation techniques, such as LLE and SPE, by providing three important features. 

First, the extraction phase of SPME is very srnall compared with the sample rnatrix. 

Second, instead of exhaustive extraction rnethods such as LLE and SPE, SPME is an 

extraction technique based on equilibrium processes. Furthermore, SPME is a solvent- 

free, rapid and simple analytical technique, which combines sampling, sample 

preparation and sample introduction into a single step. 

The purpose of the work presented in this thesis was to investigate the viability of 

SPME for biological sampie analysis, The entire work consists of three parts (Figure 6.1). 

First, the application of SPME to the study of dmg-protein binding was investigated 

based on the equilibrium extraction process. Secondy, novel SPME coating materials 

with molecular recoO@tion ability, i.e. antibody and MIP, have been developed and 

investigated for biological sample analysis. Finally, application to benzodiazepine 

compounds analysis by in-tube SPME has been performed with a LC/ESI/MS system. 





6.2 Protein Binding Study with SPME 

The theory of SPME analysis of protein binding was thoroughly illustrated with 

five alkylbenzene compounds (benzene, toluene, ethylbenzene, propylbenzene and 

butylbenzene) and their binding to BSA in a mode1 system. Since these alkylbenzene 

compounds are volatile, the extraction was performed in the headspace of the sample. 

Therefore, the system had four phases (sample soIution-dissolved protein-headspace-fiber 

coating). 

The theoretical as well as the experimental analysis demonstrated that SPME is a 

very simple and accurate method for such studies. In the experiment, a calibration curve 

was first constructed by employing the arnount of the analytes partitioned on the fiber vs. 

the true free analyte concentration in the solution in the absence of protein. Special care 

should be exercised to rnake sure the correct concentrations in the calibration cuve  were 

utilized. NegIecting the amount of the analyte on the fiber and especially in the headspace 

must be verified before such an assumption is appIied. The Scatchard plot was finaily 

employed to obtain the number of binding sites and t!!e equilibrium binding constants. 

The results from the SPME analysis demonstrated that the binding between 

aklkylbenzene and BS A is first order. The equilibrium binding constants agree with the 

result from other methods, e.g. headspace GC analysis. 

The main error of this experiment cornes from the repeatability of the fiber and of 

the syringe injection (to obtain the GC response factor). However, for fmt order binding, 

the direct measurement initiated in this thesis does not need a GC response factor and 

calibration cuves, which decreases the experimental error by eIiminûting the error 

introduced from such measurements. The only measurement needed is the area count 



change (ratio) of the fiber injections before and after the protein was introduced into the 

system. This method is valid as long as both the GC and fiber extraction is linear. The 

direct measurement method greatly enhanced the accuracy of the binding study and 

reduced the workload by SPME. However, the limitation is that the number of binding 

sites has to be a pre-detennined value. 

Diazepam binding to HSA was also studied by SPME. Drug compounds, which 

are different from the allcylbenzene compounds, are normally non-volatile organic 

compounds. Therefore, direct extraction was ernployed instead of headspace SPME. This 

extraction system had tlxee phases: sample solution-dissolved protein-fiber coating. It 

has been proven in this thesis that SPME is an appropriate method for the drug-protein 

studies. In small volume SPME application, by combining the loading and extraction into 

a single SPME fiber, it is extremely usefd in the determination of drug binding to 

precious proteins since only very small amount (150 p L  for each extraction) of the 

protein solution and analyte is required. 

6.3 Imrnunomnity SPME 

The major difficulty of biological sample analysis with the existing SPME coating 

material is the lack of selectivity, which normally results in poor chromatographie 

separations or/and the poor sensitivity. This adversely limits the scope of the applications 

of SPME in biological sample analysis. The solution proposed in this thesis is to find the 

coatings that have the selectivity towards the specific analyte. Therefore, immunoaffinity 

SPME has been developed based on two types of molecular recognition elements: 

antibody and MIPs, 



Anti-theophylline was covalently immobilized on the surface of a fused silica 

fiber and on the inner surface of a fused silica capillary. The selectivity of the coating 

was demonstrated in the caffeine binding study, whïch showed lower caffeine- 

immobilized antibody cross reactivity compared with antibody of aqueous solutions. The 

results of human sema analysis showed that the methods are simple and effective. 

Due to the srnail surface area of the fiber and low surface density of the 

immobilized antibody, the capacity of fiberkapillary is relatively low. Therefore, more 

sensitive scintillation detection instead of the chromatographic method was employed. 

However, the capacity could be improved by increasing the surface density which can be 

achieved either by investigation of other immobilization methods under different reaction 

conditions or by immobilization of only the Fab part of the antibody on the surface to 

decrease the size of the antibody. Once the capacity is increased, the antibody- 

immobilized capillary can be coupled with an HPLC system for in-tube SPME analysis. 

Research on the application of MIP to SPhE is still in a preliminary stage due to 

the limitation of the MIP coating technique. The research performed in this thesis 

dernonstrated that such materials could have great potential for selective extraction once 

they can be coated on the fused silica surfaces more reliably and effectively. 

6.4 The Potential of SPME in Biological Applications 

In this thesis, the study of protein binding with SPME has k e n  thoroughly 

discussed. Further improvement for SPME in the drug confirmation and concentration 

analysis will focus on the development of the coating techniques for matends with 

specific molecular recognition abilities. 



One aspect of the improvements is to optirnize the type and conditions of 

immobilization reactions. The aim is to increase the density of active immobilized 

antibody on the solid support surface, which will increase the capacity of the extraction 

media. This will allow for the smaller size of the extraction media, which is the trend of 

current analyticd research, or more diversified detection methods coupling to either the 

antibody-immobilized fiber or the capillary. 

Several methods can be explored to achieve this goal. One way is to improve the 

orientation of the antibody on the surface so that the binding sites (Fab) face towards the 

sampIe solution- This c m  be accomplished by taking advantage of various functional 

goups available for the Iinkage either on the protein molecule or the cross-linking 

reagent (1-3). The other way is to immobilize only the Fab portion of the antibody. Since 

the binding sites of the antibody is located in the Fab part of the molecule, the onentated 

immobilization of Fab of antibody could enhance the active density by saving the space 

each antibody occupied (4,s). The Fab portion of the antibody can be obtained by 

digestion with pepsin followed by reduction with dithiothnetol @TT) (5). Altemativeiy, 

efforts can be made to use different types of materials, which possess more active 

functional groups, such as the acrylate polyrner and porous polydimethylsiloxane 

membranes (6,7). 

The major improvement for the application of M I .  in SPME extraction is finding 

the proper rnethod to attach the MIP on the solid support. Early studies by the author 

indicated that it is possible to polymerize the MIP directly on the fiber. However, it is 

very difficult to eliminate the imprint molecule. Recently, the MiP has been successfully 

synthesized on a solid support electrochemicaUy with a conducting polyrner technique 



(8). If such methods can be successfully applied to SPME fibers and in-tube SPME 

capillaries, this could be a definite breakthrough for SPME techniques. 
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GLOSSARY 

Ab 

Ag 

AIBN 

APCI 

APTES 

B.P. 

BSA 

CW 

DVB 

EDMA 

EMF 

FID 

GC 

HPLC 

HSA 

i.d. 

L4 

LC/ESI/MS 

LLE 

LOD 

MIP 

MAA 

PA 

PBS 

PDMS 

PMT 

P P ~  

PPt 

Antibody 

Antigen 

(2,2hzobis (2-methylpropionitrile) 

Atmospheric pressure chernical ionization 

(3-aminopropy1)triethoxysilane 

Boiling point 

Bovine senun albuaiin 

Carbowax 

Divinylbenzene 

Ethylene glycol dirnethacryiate 

Electro-magnetic field 

Flame Ionization Detector 

Gas Chromatography or Gas Chromatography 

High performance Iiquid chromatography 

Human s e m  albumin 

Inside diarneter 

Immunoassay 

Liquid Chromatography/Electrospray Ionization Mass Spectrometry 

Liquid-liquid extraction 

Limit of detection 

Molecularly imprinted polymer 

Methacrylic acid 

Pol ~(acrylate) 

Phosphate buf5ered saline 

Poly(dimethylsi1oxane) 

Photomultiplier tube 

Part per billion 

Part per trillion 



PPY 

RSD 

SEM 

S M  

SPE 

SPI 

SPME 

TFA 

TR 

v. P. 

Polypyrrole 

Relative standard deviation 

Scanning Electronic Micrography 

Selective Ionization Mode 

Solid phase extraction 

Septum-equipped temperature programmable injeetor, used in Varian GC 

Solid Phase Microextraction 

TnfIuoracetic acid 

Template Resin 

Vapor pressure 




