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Abstract

The pendant drop technique was used to characterize the adsorption behavior of n-

dodecane-1-thiol and n-hexane-1-thiol capped gold nanoparticles at the hexane–water in-

terface. The adsorption process was studied by analyzing the dynamic interfacial tension

versus nanoparticle concentration, both at early times and at later stages (i.e., immediately

after the interface between the fluids is made and once equilibrium has been established).

Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads

to ordering and rearrangement of the nanoparticles at the interface and formation of a

dense layer. With increasing interfacial coverage, the diffusion-controlled adsorption for

the nanoparticles at the interface was found to change to an interaction-controlled assem-

bly and the presence of an adsorption barrier was experimentally verified. At the same

bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different ab-

sorption behavior at the interface, in agreement with the findings of Kutuzov et al.[1]. The

experiments additionally demonstrated the important role played by the capping agent. At

the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater

surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol.

1.6 nm, 2.8 nm, and 4.4 nm nanoparticles capped with n-dodecane-1-thiol, and 2.9 nm,

and 4.3 nm particles capped with n-hexane-1-thiol were used in this study. The physical

size of the gold nanoparticles was determined by TEM image analysis. The pendant drop

technique was also used to study the adsorption properties of mixtures of gold nanopar-

ticles at the hexane–water interface; and also investigate the effects of different factors

(i.e., temperature, pH or ionic strength) on interfacial tension (IFT). The interfacial prop-

erties of mixtures of these nanoparticles, having different sizes and capping agents, were

then studied. No interaction was found between the unmixed studied nanoparticles. Us-

ing the theory of non-ideal interactions for binary mixtures, the interaction parameters

for mixtures of nanoparticles at the interface were determined. The results indicate that

nanoparticle concentration of the mixtures has a profound effect on the interfacial nanopar-

ticle composition. A repulsive interaction between nanoparticles of different size and cap

was found in the mixtures at the interface layer. The interfacial tension for mixtures was

found to be higher than the interfacial tension for non-mixed nanoparticle suspensions.

The nanoparticle composition at the interface was found to differ from the composition of

nanoparticles in the bulk liquid phase. The activity of unmixed nanoparticles proved to be

a poor predictor of the activity of mixtures. It was observed that the most active nanopar-
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ticles concentrated at the interface. The effects of temperature, pH and ionic strength

concentration on the equilibrium and dynamic IFT of 4.4 nm gold nanoparticles capped

with n-dodecane-1-thiol at the hydrocarbon–water interface was studied. The pendant

drop technique was also used to study the adsorption properties of these nanoparticles at

the hexane–water and nonane–water interface. The addition of NaCl was found to cause

a decrease of the equilibrium and dynamic IFT greater than that which accompanies the

adsorption of nanoparticles at the interface in the absence of NaCl. Although IFT values

for acidic and neutral conditions were found to be similar, a noticeable decrease in the

IFT was found for more basic conditions. Increasing the temperature of the system was

found to cause an increase in both dynamic and equilibrium IFT values. The adsorption

of functionalized gold nanoparticles at liquid–liquid interfaces is a promising method for

self-assembly and the creation of useful nanostructures. These findings contribute to the

design of useful supra-colloidal structures by the self-assembly of alkane-thiol capped gold

nanoparticles at liquid-liquid interfaces.
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Chapter 1

Introduction

Although the principles of colloidal science have been known for many years, advances in

nanotechnology are providing a new set of tools to analyze problems and to develop novel

technologies. A wealth of knowledge already exists about the interaction of surfactants

and colloidal particles at air-liquid and liquid-liquid interfaces.This knowledge has been

acquired primarily from observations of natural phenomena and is owed to the importance

of interfacial phenomena in industrial applications. For example, surfactants are used

in chemical flooding processes for tertiary oil recovery [2]. Today, stable suspensions of

particles with dimensions in the nanometer range (i.e., colloids of nanoparticles), and their

interaction with fluid interfaces have become an interesting area of research. Colloidal

nanoparticles may permit the development of new applications and technologies, especially

those related to foams and emulsions. This promising research area has spawned a great

deal of new literature; both experimental and theoretical work on these systems, are being

conducted.

The study of the self-assembly of colloidal particles and their adsorption behavior at

interfaces has generated much scientific interest. Colloidal particles have the tendency to

adsorbed at interfaces. This allows the use of the interface as an effective and favorable

platform for particle self-assembly [3]. Nanoparticles (NPs) can make significant contri-

butions to the search for functional advanced materials. Controlled self-assembly at the

liquid-liquid interface is a proposed method for constructing two-dimensional materials [4].

For future development of novel functional devices, it is necessary to understand the self-

assembly of nanomaterials at the interfaces of films and to characterize their properties [5].
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The controlled assembly of nanoparticles can be achieved by tuning the size and the chem-

ical characteristics of ligands on NP surface. Uniform, and Janus-type [6], nanoparticles

may be produced by controlling the ligand type at the liquid-liquid interfaces. Crosslinked

sheets of nanoparticles can be produced by succeeding reactions of ligands at the inter-

face. This technique has been used to generate encapulants, and filtration devices [7].

Although the self-assembly of colloidal particles at liquid-liquid interfaces has been studied

thoroughly, the adsorption kinetics of nanoparticles has yet to be fully understood [8].

The behaviour of nanoparticles at fluid-fluid interfaces has attracted significant at-

tention in recent years, as a result of a drive to devise strategies for producing novel

functional materials or devices via size-selective particle self-assembly [9]. Binding of par-

ticles at liquid-liquid interfaces, which has been known to stabilize Pickering emulsions, has

been explained in terms of a decrease in the free energy [10]. Since placement of a single

spherical particle of radius r at the oil-water interface decreases the entropy by a about

kBT ,the interfacial energy change, ∆E, must be negative for placement of the particle to

be thermodynamically favoured. The energy change associated with placement of a single

particle at the oil-water interface depends on the particle radius r and on the particle-oil

(γp/o), particle-water (γp/w) and oil-water (γo/w) interfacial tensions as follows:

∆E = − πr
2

γo/w
[γo/w − (γp/w − γp/o)]2 (1.1)

An extension of this result to include the influence of line tension has been given by

Aveyard and Clint [11]. This extension was recently tested by molecular simulation [12]. A

thorough review of the thermodynamics of nanoparticle attachment at fluid-fluid interfaces

has been provided by Bresme and Oettel [13]. Equation 1.1 highlights a key difference

between µm-sized and nm-sized particles- the latter being much less stably adsorbed at

liquid-liquid interfaces. For typical interfacial tension values, the magnitude of ∆E is of

the order of kBT for particles with radius of a few nm. As a result, binding of very small

nanoparticles at fluid-fluid interfaces is expected to be destabilized by thermal fluctuations

[14] and this expectation is confirmed by experiment [15]. On the contrary, attachment of

µm-sized particles to fluid-fluid interfaces may be considered irreversible, due to the fact

that ∆E exceeds kBT by many orders of magnitude [14]. Using Young’s equation, it can be

also shown that the bracketed term in Equation 1.1 is a maximum when the contact angle

θ of the particle with the fluid-fluid interface is 90o and decreases rapidly as θ −→ 0o (or
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θ −→ 180o ), highlighting the influence of particle wettability on the stability of particle

attachment to the interface [14].

Although a large body of literature exists on the use of liquid-liquid interfaces as the

locus of nanoparticle self-assembly into a variety of supra-colloidal structures with applica-

tions in sensing, encapsulation, data storage and catalysis ( [15], [7], [16], [5], [17] ), much

less is known about the kinetics of nanoparticle adsorption at liquid-liquid interfaces. Dy-

namic interfacial tension measurements, made for example by pendant drop tensiometry,

are well suited for this task. This technique has been used extensively for interrogating

the adsorption kinetics of surfactants on liquid interfaces, but only a few applications to

nanoparticle adsorption have been reported. Glaser et al. used pendant drop tensiometry

to demonstrate the interfacial activity of Janus nanoparticles at the hexane-water interface

[18] . Using the same method, Kutuzov et al. studied the time evolution of toluene-water

interfacial tension as tri-n-octylphosphine oxide (TOPO)-stabilized CdSe nanoparticles,

initially suspended in toluene, diffused towards and were adsorbed at the toluene-water

interface [1]. Very recently, Isa et al. also used pendant drop tensiometry in a qualitative

study of self-assembly of iron oxide poly(ethylene glycol) core-shell nanoparticles at the

n-decane-water interface [4] .

Of the above mentioned studies, only the work of Kutuzov et al.[1] addressed quantita-

tively the kinetics of ligand-stabilized nanoparticle adsorption. These authors analyzed the

time evolution of the interfacial tension using the theory of Ward and Tordai [19] to infer

the characteristics of the adsorption process at early and late stages. For TOPO-stabilized

CdSe nanoparticles in the size range 2.3-6 nm, Kutuzov et al. [1] found the decay of in-

terfacial tension to be consistent with a mixed diffusion-activation adsorption mechanism.

Using a model developed by Liggieri et al. [20] to describe the adsorption kinetics of non-

ionic surfactants, they estimated a magnitude of the energy barrier to adsorption of a few

kBT , approximately equal to the desorption energy for a single particle calculated from

Equation 1.1. They proposed that such an adsorption barrier originates from particle-to-

particle interactions near the oil-water interface (collisions of the nanoparticles approaching

the interface from the bulk with nanoparticles that are already adsorbed or that desorb

from the interface due to thermal fluctuations), which become increasingly important with

increasing interfacial coverage. It is worth noting that a mixed diffusion-activation ad-

sorption mechanism has been found to apply to many different surfactants, with a small

adsorption barrier always in the range 2-5 kBT regardless of molecular weight, structure
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or critical micelle concentration of the surfactant - an observation consistent with the idea

that the adsorption barrier is related to the work, Wads, that a molecule must do against

surface pressure [21]. The latter may be estimated as , Wads = (γo − γ∞) × A × 10−23,

where (γo − γ∞) is the equilibrium surface pressure (in mN/m) and A is the area (in

Å2) at the fluid-fluid interface occupied by one adsorbed molecule. For adsorbed particles,

A=π(r sin θ)2 from geometrical considerations. Insofar as nanoparticles are considered, di-

rect evidence of an energy barrier to adsorption on liquid-liquid interfaces is, at present,

too limited to establish mixed diffusion-activation as the operative adsorption mechanism,

let alone elucidate the physical origin of an adsorption barrier.

Gold nanoparticles capped by alkanethiol self-assembled monolayers are easily synthe-

sized and are known to exhibit remarkable stability and ease of functionalization. Not

surprisingly, they are some of the most studied nanomaterials [22]. Yet, an investigation

of the adsorption kinetics of thiol-capped gold nanoparticles at liquid-liquid interfaces is

lacking, despite the fact that the adsorption process is a prerequisite for self-assembly

of these nanoparticles into useful supra-colloidal structures. Such an investigation is re-

ported in the present study. Similar to Kutuzov et al.[1], we also employ pendant drop

tensiometry to interrogate the kinetics of alkanethiol-stabilized gold nanoparticles at the

hexane-water interface. The effects of nanoparticle size, concentration in the bulk organic

phase and ligand chain length (n-dodecane-1-thiol vs. n-hexane-1-thiol) on adsorption

behaviour are investigated. The results corroborate the finding of Kutuzov et al.[1] that

a mixed diffusion-activation mechanism governs nanoparticle adsorption at a liquid-liquid

interface.

Despite progress recently made in understanding the adsorption kinetics of nanoparti-

cles at the liquid-liquid interfaces [1], [18], [4], no effort has been made, either theoretically

or experimentally, to understand the adsorption kinetics of mixtures of nanoparticles at

these interfaces. The adsorption process for mixtures of nanoparticles is far more complex

than for non-mixed nanoparticle suspensions. The adsorption process for binary mixtures

of surfactants, however has been studied extensively. In binary mixtures of surfactants,

very complex interactions have been found [23], [24], [25],[26],[27] and synergism between

the components has been documented. It has been proposed that the interfacial properties

of these surfactant mixtures are heavily influenced by molecular interactions between the

surfactants molecules [28], [29], [30]. The interfacial properties of some mixtures of surfac-

tants have been found to be radically different from those of their individual components.
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Similar to mixtures of surfactants, a synergistic effect may exist for mixtures of differently

sized or differently capped nanoparticles. Many factors have a pronounced effect on the

adsorption of surfactants at the oil–water interface. The nature of the surfactant and oil,

the ionic strength of the solution, and the temperature, all change the IFT of oil–water

interfaces [31], [32], [33], [34] , [35], [36], [37], [38]. It has been surmised that the adsorp-

tion of nanoparticles at an oil–water interface might be influenced by the above mentioned

factors in a similar way as for surfactant containing systems [39], [40]. The effects of tem-

perature, pH value and ionic strength on the interfacial behavior have not been directly

observed for gold nanaparticles at the liquid–liquid interface. It is important to know the

temperature dependence of IFT when temperature variations exist (e.g. along an extrac-

tion column) [41]. Miquilena et al. [42] studied IFT between decane and aqueous solutions

of Triton X-100 surfactant using the pendant-drop technique. Their results show that for

surfactants the IFT increases with an increase in temperature. The authors also state that

temperature has greater influence on the IFT for lower Triton X-100 concentrations than

it does for higher bulk surfactant concentrations. A similar behavior was observed by Ye et

al. [34] on the interfacial tension between crude oil and a gemini surfactant solution above

a certain temperature. After reaching the temperature of 70oC, the IFT for that system

increased with an increase in temperature. They claimed that the increase occurs because

there is diffusion of the surfactant from the interface to the oil phase. Sottmann and Strey

[43] found that an increase in temperature causes the IFT of water-n-alkane surfactant

systems to increase above a certain temperature. Ataev [44] determined that the IFT in

water-hydrocarbon systems also increase as the temperature is raised. Ataev surmised that

the increase may be due to an increase in the probability of impurities diffusing from the

interface to the bulk phase (i.e., impurities that are present in oil phase).

The addition of sodium chloride has been shown to change the IFT of oil–water–

surfactant systems. Han et al.[45] found that the IFT between crude oil and a gemini

surfactant solution is changed as salt is added to the system. Increasing the ionic strength

leads to a decrease in the IFT. According to Han et al.[45], adding salt may change the

oil–water interface because there is a change in the hydrophilic-lipophilic balance and there

is a compression of the electrical double layer at the interface. The net effect reduces the

thickness and rigidity of the interface film which leads to an increase in the density of the

surfactant at the interface (i.e., a decrease of the surface area occupied by one surfactant

molecule). Overall, a reduction in the IFT at the oil–water interface was observed. Gaonkar
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[46] also observed that the IFT decreases as the concentration of salt was increased in the

aqueous phase for a vegetable oil–water interface [46].

Simovic and Prestidge [47] investigated how the pH and concentration of an electrolyte

affected the adsorption of hydrophobic silica nanoparticles at the poly(dimethyl-siloxane)

(PDMS) droplet–water interface. They found a dramatic increase in particle interfacial

packing (i.e., a decrease in the adsorbed interfacial area per particle) with an increase in

the salt concentration. These results showed a pH-dependent adsorption at the interface.

The authors claimed that the balance of hydrophobic and electrostatic forces controls hy-

drophobic particle adsorption. Simovic and Prestidge [48] also investigated the adsorption

behavior of hydrophilic silica nanoparticles at the polydimethylsiloxane (PDMS) droplet–

water interface with the change of solution conditions (i.e., change of pH and electrolyte

concentration of solution). Their findings showed that the surface coverage and parti-

cle packing at the interface are significantly influenced by salt addition, but pH has a

very weak effect on particle adsorption. These findings indicate that the magnitude of

particle-droplet and particle-to-particle interactions have an effect on particle penetration

at the droplet-water interface. Santos et al. [49] studied the molecular behavior of ionic

and non-ionic surfactant in a saline medium. They found that KCl has a weak effect on

non-ionic surfactants. From experimental studies and computer simulations, Li et al. [50]

observed a significant synergistic effect between sodium dodecylbenzene sulfonate (SDBS)

and non-ionic Trion X-100 at the oil-water interface; the IFT values were lower as salt con-

centration increased. These authors speculated that as the salt concentration increases,

a greater screening of the electrostatic repulsion between anionic surfactants. Thus, the

hydrophobic interaction in the water phase increases, which in turn leads to a decrease in

IFT.

1.1 Nanoparticle Stabilized Emulsions

It has been demonstrated that the presence of a nanoparticle colloid has a stabilizing effect

on an emulsion, but the principles behind this effect are not clear. In an emulsion, the

stability of a liquid film is increased in the presence of nanoparticles. Theoretical and

experimental studies have been done in an attempt to understand these systems, but the

stabilizing effect is not clearly understood. It is known that the attachment of nanoparticles
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at a liquid interface directly affects the interfacial tension. A number of theoretical studies

of solid nanoparticles in two phase fluid systems have been undertaken, and many of these

studies focused on the partitioning of particles between aqueous bulk and fluid interfaces

[51]. A schematic of nanoparticles stabilize emulsions at the oil-water interface can be seen

in Figure 1.1.

AuNPs in 
Hexane

Water

Figure 1.1: Schematic of nanoparticle stabilized emulsions at the oil-water interface.

The affinity of nanoparticles for the fluid interface depends on the hydrophilic or

lipophilic character of the particles. In order to understand how a nanoparticle colloid

affects the stability of an interface, the properties of the colloid must be systematically

altered. By controlling the size, shape, and hydrophobicity of the nanoparticles as they

are synthesized, the properties of the colloid can be changed in a methodical way.

1.2 Colloidal Particles and Self-Assembly

Colloidal particles are small objects dispersed in a continuous medium. Particles range

in size from several nanometers to a few micrometers. Colloidal particles have been an

important research topic for the last few decades. Currently, self assembly is the most

effective method to locate NPs at the liquid-liquid interface. The self assembly of particles

at the interfaces is controlled by inter-particle interactions including capillary, dipolar, and
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electrostatic. Nanoparticles are attached to the interfaces by a reduction of energy (i.e.,

of the order of thermal energy). The self-assembly of nanoparticle is at the interface is

dynamic; particles can absorb or desorb from interfaces [52]. Assembled particles form

monolayers at the liquid-liquid interfaces [4]. The assembly of non-functionalized NPs and

functionalized NPs at the interfaces is quite different; as the presence of ligands modifies

surface activity [53]. Isa et al. studied the self-assembly of iron-oxide NPs stabilized

by a poly (ethylene glycol) PEG shell at a water-n–decane interface. They observed the

kinetics of NP at the liquid-liquid interface using the pendant drop tensiomentry method

and concluded that particles self-assemble into monolayers at the water-decane interface

[4]. The schematic of self assembly of nanoparticles without core shell, and with core shell

NPs at the oil-water interfaces can be seen in Figure 1.2 and Figure 1.3.

Water

Oil

Oil

Water

γOWγOP

γPW

H

R

Figure 1.2: Schematic of (a) a sperical particle and (b) self-assembly of nanoparticles at

the oil-water interface. [ Reproduced from reference [52], [7]].

1.2.1 Colloidal Particles and Surfactants

Colloidal particles behave in similar ways to surfactant molecules. They can spontaneously

gather at a two-fluid interface (either liquid-gas or liquid-liquid). At these interfaces, ad-

8



Figure 1.3: Schematics of core-shell NPs at a water–decane interface [4].

sorbed colloidal particles form monolayers. The interactions between the particles depends

on the properties of the fluids, and the nature of the adsorbed particles [9].

Binks [14] compared and contrasted the behavior of surfactants and particles. Surfac-

tant molecules are able to aggregate or self-assemble as micelles or in other liquid crystalline

phases. However, this behavior has not been observed using colloidal particles. Like surfac-

tant molecules, colloidal particles are able to stabilize emulsion droplets [54]. The systems

stabilized by surfactants can either be oil-in-water (o/w) or water-in-oil (w/o) emulsions.

The nature of the emulsion (either o/w or w/o) is defined by the hydrophile-lipophile

balance (HLB). HLB is dependent on the surfactant packing factor p. p is defined as

p = ae/ah, where ae and ah are the effective cross-sectional areas of the surface chain moi-

ety and cross-sectional areas of the head group, respectively. With oil-water-surfactants,

an o/w emulsion is formed if p < 1, whereas for p > 1 the emulsion is w/o [54]. Like surfac-

tants, particles readily adsorb at the oil/water interface. The surfactants are amphiphilic

in nature, but the particles are only a surface-active agent. The energy required to attach a

surfactant molecule at the oil-water interface is around 10-20 kBT . The colloidal particles

are isotropically hydrophilic or hydrophobic, whereas surfactants consist of well-separated

hydrophilic heads on one end, and hydrophobic tails at the other [3]. The adsorption of

surfactants at the oil-water interface is reversible, while particles are adsorbed irreversibly

[3].

Oil-water interfaces make a contact angle (θ) with the particle surface.Particle wetta-

bility is defined by θ which defines the emulsion type for particles. The schematic of NPs

9
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Figure 1.4: Schematic of NPs wettability at oil-water interface. Reproduced from reference

[55].

wettability at oil-water interface can be seen in Figure 1.4. Like HLBs in surfactant sys-

tems, wettability for a particle is the parameter relevant to the description of its oil-liking

or water-liking tendency at the interfaces. [54]. The energy required to locate a particle

at the oil–water changes with the particle wettabilty.

1.3 Interfacial Phenomena and Nanoparticle Self-Assembly

Much nanoparticle research has been focused on the self-organization of particles at inter-

faces [55]. Uncharged dielectric and metallic nanoparticles capped with organic molecules

are commonly used in nanoparticle self-assembly studies [56]. Through a deeper under-

standing of emulsified nanoparticle colloids, new nanostructured devices may be possible.
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For example, nanoporous containers, or filtering devices, may be possible [57].

Liquid interfaces could be used as a platform for self-assembly of colloidal particles [57].

Because of their potential for large-scale production, foams and emulsions may provide an

ideal means for mass-production of self-assembled nanoparticles within larger structures.

Some potentially valuable applications of this technology include: thin-membrane gener-

ation, functionalization and modification of nanometer-scale objects at specific position,

size selection of nanometer-sized objects, and controlled mixing of nanoparticles. Novel

opto-electronic materials could also be made by self-assembling nanoparticles into two or

three-dimensional superlattices. The optical, electrical, magnetic properties of nanoparti-

cles are size-dependent, so in the search for a method to organize nanoparticles at inter-

faces, consideration must be given to nanoparticle size [58]. Processes with a high degree

of nanoparticle organizational selectivity at the interfaces are the desired outcome.

In short, how supramolecular organization of nanoparticles, nanocrystals and other

nanometer-sized objects occur at interfaces needs to be more fully understood.

1.4 The Effect of Impurities on Interfacial Tension

Due to the significance of water-oil interfaces in chemistry, biology, and their industrial

importance, numerous studies have been done to characterize these interfaces. From these

studies, it has become apparent that the purity of the compounds in experimental works

is extremely important. Frequently, a surfactant may contain traces of other compounds.

If impure surfactants are used, the surface activity of these trace compound may be much

stronger than the surfactant itself; this will have a strong effect on the adsorption layer

[59]. It is thus necessary to remove these trace impurities from the investigated system.

However, the source of impurities may be from the solvents that is used (e.g., water). In

order to investigate the interfacial properties at liquid/liquid interfaces, it is necessary to

check the presence of surface-active trace impurities in both solvents [58].

1.5 Motivation & Description of Research Work

The interactions between adsorbed colloidal particles and the structure of the monolayer

they form at liquid–liquid interfaces has not been well studied. Knowledge of how nanopar-
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ticles behave at the liquid–vapor and liquid–liquid interfaces is necessary, especially in the

areas of mineral processing, flotation and refining crude oil. Due to their outstanding op-

tical, electronic, and magnetic properties, the controlled synthesis of the nanoparticles has

also become a very promising area of research. For their potential applications in opto-

electronics, catalysis and the other areas; the synthesis and physical characterization of

nanometer scale metal and semiconductor colloids is an exciting area of research. In this

respect, gold is one of the most widely investigated colloids. Gold nanoparticles exhibit

unique robustness and high surface area. AuNPs capped with different surface function-

alities can be used to provide highly selective nanoprobes for disease diagnosis [60]. They

are used in clinical diagnostic methods as imaging therapeutic agents [61]. AuNPs are now

recognized as a favorable platform for drug and gene delivery and function as a comple-

ment to more conventional delivery vehicles [62]. AuNPs are the best understood materials

in the field of nanoscience and nanotechnology. The self-assembled monolayer-protected

AuNPs can be used a a building block to design nano-devices and architecture. Due to

their potential applications in biology, catalysis, and optoelectronics, many studies have

been performed to synthesize and functionalize self-assembled monolayer protected AuNPs

[22]. Based on this previous research, gold nanoparticles were chosen as the study material

for the research presented in this thesis.

Alkanethiol gold nanocrystals were synthesized to perform the experiments. By chang-

ing the thiol to Au ratio, the reduction temperature, and the rate of reducing agent ad-

dition; different core sizes of alkanthiolate protected Au clusters can be made. Several

characterization techniques such as ultraviolet visible spectroscopy (UV-Vis), high- resolu-

tion transmission electron microscopy (HRTEM), proton nuclear magnetic resonance spec-

troscopy (1H-NMR) and Energy-dispersive spectroscopy (EDS) were performed to charac-

terize the synthesized gold nanoparticles. IFT measurements of gold-capped nanoparticles

at liquid-liquid interfaces were performed by pendant drop experiments using axisymmetric

drop shape analysis methods (ADSA). Figure 1.5 illustrates the schematic of a pendant

droplet of water held up by a needle in an organic suspension of alkhane-thiol capped gold

nanoparticles (AT-capped AuNps).

The attached ligands or surfactants on the surface of the nanoparticles are responsible

for its monodispersivity, stability, and controlled growth of each material. The surfac-

tant chain-length also has an effect on the interfacial tension (IFT). Different capping

agents (e.g., n-hexane-1-thiol, and n-dodecane-1-thiol) were used to synthesize the stabi-
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AT-capped AuNPs Hexane

Water droplet

Figure 1.5: Schematic of a pendant droplet of water held up by a needle in an organic

suspension of AT-capped AuNPs at the hexanel-water interface.

lized ligand-capped gold nanoparticles in oder to see their effects on the interfacial proper-

ties. It was observed that the interfacial tension changes as the bulk concentration, particle

size, nature of the capping agent and temperature change. The size selective self-assembly

of alkhanethiol capped gold nanoparticles (AT-capped AuNps) at the hexane–water can be

schematized in Figure 1.6. Experiments were done for different bulk concentrations with

different sizes of the nanoparticles by changing the temperature, ionic strength and pH

of the aqueous phase. An overview of this thesis and the potential applications for this

research can be seen in Figure 1.7 and Figure 1.8.
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AuNPs in Hexane

Water

Figure 1.6: Schematic of size selective self-assembly of (a) unmixed AT-capped AuNPs and

(b) mixed AT-capped AuNPs at the hexanel-water interface.

The following list summarizes the research objectives of this thesis:

Objective I: To investigate the adsorption kinetics of different sized n-dodecanethiol and

n-hexanethiol capped gold nanoparticles at the liquid -liquid interface. The following

factors were studied with respect to their effects on the interfacial tension at a hexane-

water interface:

• The effect of NP bulk concentration.

• The effect of NP size.

• The effect of capping agent.
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Figure 1.7: An overview of the thesis showing the different factors that have an effect on

the adsorption kinetics of AT-capped AuNPs at the liquid-liquid interface.

Objective II: To determine the interaction parameter representative of the interfacial

properties of mixtures of NPs. These experiments were performed by estimating

the interaction parameters at hexane-water interfaces. The following variables were

explored:

• mixtures of differently size NPs.

• mixtures of differently capped NPs.

Objective III: To determine the effects of temperature, ionic strength and pH on the

IFT and adsorption behaviour of AuNPs at the liquid-liquid interface. The following

factors were studied with respect to their effects on the interfacial tension at the

nonane-water and hexane-water interface:

• The effect of temperature.

• The effect of ionic strength.

• The effect of pH.
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Figure 1.8: Schematic of potential applications of research work

Throughout the whole research work, the effects of these parameters were studied

in order to understand the adsorption kinetics of the capped gold nanoparticles at

the liquid-liquid interface. The journal articles written on the basis of data obtained

during this research are listed in Appendix 8.2.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides an idea of the current research in the area of self-assembly

of NPs at liquid-liquid interfaces. The main focus of this survey was to scrutinize

16



how the issues stated in Section 1.5 have been addressed in the current research on

nanoparticle self-assembly. The literature review also emphasizes the factors that

govern the interfacial stability of NPs.

Chapter 3 presents the experimental procedures and characterization techniques

used to analyze the synthesized alkhanethiol capped gold nanoparticles. This chapter

also describes the other experimental methods used in this thesis.

Chapter 4 provides the theoretical information to analyze the adsorption kinetics of

alkhanethiol capped gold nanoparticles at liquid-liquid interfaces. This chapter also

briefly outlines the sample preparation procedure used in this thesis.

Chapter 5 extensively describes the adsorption kinetics of different capped alkhanethiol

gold nanoparticles at hexane-water interfaces. This chapter also describes the effects

of bulk nanoparticle concentration, particle size, and the nature of the ligands on

interfacial tension.

Chapter 6 describes the interfacial properties of both mixtures of differently sized

gold nanoparticles, and different capping agents at the hexane-water interface.

Chapter 7 describes the effects of temperature, pH, and ionic strength on the ad-

sorption behavior of nanoparticles at nonane-water and hexane-water interfaces.

Chapter 8 concludes the thesis with a summary of contributions that the research

presented in this thesis accomplished and a note on the future direction of research

in this field.

1.7 Summary

This chapter addresses the motivation and goals of the thesis and the contributions

that the findings make to the field of nanotechnology, especially in the area of NP

self-assembly. The chapter also provides a brief background on NP self-assembly at

liquid-liquid interfaces. The next chapter provides a literature review on the same

topic.
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Chapter 2

Literature Review

This chapter provides a general view of the self-assembly of NPs at the liquid-liquid

interfaces with a special focus on how these questions addressed the research issues

discussed in Chapter 1.

2.1 Effect of Nanoparticle Size on the Interfacial

Energy

2.1.1 Self-Assembly of Nanoparticles at Interfaces

The way in which nanoparticle self assemble depends on the particle size. According

to Lin et al., the fluid-fluid interfaces can be made by assembling ligand-stabilized

nanoparticles without changing the properties of the nanoparticles. Also, it was found

that smaller nanoparticles, ∼2 nm, have a very weak confinement at the fluid inter-

faces compared to larger ones. This enables one to choose the size-selective particle

assembly, two-dimensional phase behavior, and functionalization [15]. Nanoparti-

cles are easily displaced from the interface, but there is always a replacement of the

particles; the replacement rate depends on the particle size. The schematic of size

selective self-assembly of NPs at the oil-water interface can be seen in Figure 2.1.

Due to thermal activation, smaller particles are more rapidly displaced than larger

18



Water

Oil Oil

Water

       >

Small particles 
displaced by 
large particles 
at the interface

Figure 2.1: Schematic of size selective self-assembly of NPs at the oil-water interface.

Reproduced from reference [63].

particles, and so, assemblies of larger nanoparticles are more stable. Also, the free

energy for the smaller particles at equilibrium is less than for larger particles [57].

2.1.2 Kinetics of Nanoparticle Self-Assembly at Interfaces

Kutuzov et al. performed time-dependent interfacial tension measurements of water–

toluene/CdSe nanoparticle colloidal suspensions. They found that the dynamic in-

terfacial tension decreases with two parameters: time and particle size. For larger

particles, ∼6 nm, the interfacial energy decreases very sharply and mostly occurs

when the interface is initially created during droplet formation; this is the sharpest

decrease in the interfacial tension. For larger particles, the tension was found to

decrease very quickly in the early stages (t −→ 0), then decrease slowly, and fi-

nally become almost constant. For smaller particles, the interfacial tension becomes

constant only at long times (t −→ ∞). Given enough time, the rate of adsorption

and desorption of larger nanoparticles at the interface is the same, and a dynamic

equilibrium state is reached. The maximum coverage of these particles occurs at

equilibrium.
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2.1.3 Free Energy of Nanoparticles at Interfaces

Du et al. observed the energy of adsorption of nanoparticles and microparticles at the

oil-water interface, and found that the change of adsorption energy (∆E) of citrate-

stabilized gold nanoparticles is proportional to the square of the particle radius [8].

The reduction in the interfacial energy is the main driving force for the self assembly

of nanoparticles at the liquid-liquid interfaces [7]. Cheung et al. performed molecu-

lar simulations to determine the interaction energy between a fluid interface and a

nanoparticle. They found an attractive interaction between the nanoparticle and the

interface. The binding energy ( 1-10 kBT) increased in a quadratic relationship with

the radius of the particle [12]. Due to higher attachment energy at the interface,

larger particles are considered to be irreversibly absorbed, but smaller particles can

be easily detached from the interface. The attachment energy of the particle at the

liquid-liquid interface depends on the contact angle, and the line tension acting on

the particles surface at the interfaces [11].

As soon as a droplet is formed, the nanoparticles diffuse to the water-oil interface,

and the total free energy of the system decreases. The energy change for a single

particle can be seen in Equation 1.1 By holding the temperature, γo/w, γp/w, and

γp/o constant, changes in the interfacial energy, ∆E, are only affected by changes in

particle size. As a result, for a given constant temperature system, the stability of

the nanoparticles at the interface increases with particle size. From equation 1.1, it

is evident that larger particles adsorb more strongly than smaller particles because

the change in interfacial energy depends on the particle size.

Investigations of the assembly of tri-n-octylphoshpine oxde (TOPO) stabilized CdSe

nanoparticles with size of 2.8 nm and 4.6 nm have been done [15]. In these in-

vestigations, where a confocal fluorescence microscope was used, the adsorption of

larger nanoparticles was found to be greater. Figure 2.2 shows the size selective

self-assembly of different sizes of CdSe nanoparticles in toluene [15].
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(a) (b)

Figure 2.2: (a) Images of dispersion of water droplets stabilized by 2.8 nm diameter CdSe

nanoparticles in toluene. (b) After addition of 4.6 nm nanoparticles, water droplet sta-

bilized by larger particles. 4.6 nm particles (red) displace 2.8 nm nanoparticles(green).

Reproduced from reference [15].

2.2 Nanoparticle Assembly and Transport at Liquid-

Liquid Interfaces

In an investigation of the self-assembly of nanoparticles at fluid interfaces, TOPO

stabilized CdSe nanoparticles were dispersed in a toluene phase, and water droplets

were formed with diameters of 10 µm to 100 µm within the toluene phase. Within a

few seconds from droplet formation, the nanoparticles assembled at the toluene-water
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interface and stabilized the droplet The nanoparticles were found to form a densely

packed layer at the interface.

Over time, smaller particles were always replaced by larger ones (i.e., the exchange

of the particles depends on the size) [64], as it is known that the particle assembly

will occur in such a way to minimize the Helmholtz free energy. There is always a

size dependence on the adsorption of nanoparticles at the interface. For example,

it has been found that water droplets formed with 4.6 nm particles were stable for

days, while droplets formed with the 2.7 nm particles fused or coalesced within hours.

There was no droplet stabilization for particle less than ∼1.6 nm, because thermal

fluctuations act to reduce the adsorbed particle concentration to levels below what

is needed for a stable interface [64].

2.3 Effect of Contact Angle on Interfacial Tension

The contact angle between water and oil determines the position of the colloidal

particles at the interface. More of the particle will be in the water phase if the

particles are hydrophilic (i.e., the particles form a contact angle less than 90◦ with

the interface), whereas, for hydrophobic particles (i.e., particles with contact angle

greater than 90◦) most of the particle will be in the oil phase. This can be seen

schematically in Figure 1.4.

For nanometer-sized particles, the interfacial energy is on the order of the thermal

energy, kBT . The thermal energy is sufficient to allow nanoparticles trapped at the

interface to move into the bulk phase. Investigations of the partition profile of 10 nm

particles in water/oil two phase systems has been done. Nanoparticles with a contact

angle close to 90◦ remained at the interface, while particles with contact angles much

greater or less than 90◦ would move into one of the bulk phases. The change in the

free energy for a single spherical particle moving from one of the bulk phases to the

interface is given by one of the following equations:

∆Ep = −πr2γ[1− cos(Θ)]2, (2.1)

∆Ep = −πr2γ[1 + cos(Θ)]2, (2.2)
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where ∆Ep is the change in the free energy, r is the particle radius, γ is the inter-

facial tension, and Θ is the particle–liquid contact angle. Equation 2.1 is used when

particles transfer from the water phase to the interface, while Equation 2.2 is used

for particles moving from either the air or oil phases to the interface.

Partial wetting of the particle will occur for contact angles other than 0◦ or 180◦. If

the contact angle is near 0◦, then the particle will essentially be in the water phase,

and will most likely move into the bulk water phase. On the other hand, if the

contact angle is 180◦, then the particle will move into the oil phase. The amount

of aggregation depends on the contact angle. The behavior of micron-sized particles

has been studied using fundamental thermodynamics [56]. The attachment of the

colloidal particle at either the air–liquid or liquid–liquid interface is due to a decrease

in the interfacial energy. The decrease in interfacial energy depends on the contact

angle, the interfacial tension, and the maximum attachment energy. The maximum

attachment energy occurs when the particle is wetted by both phases equally (i.e.,

when Θ = 90◦) [56].

Micron-sized particles are effectively stuck at the interface because the interfacial

attachment energy is on the order of 106 × kBT . Since the attachment energy of

nanoparticles (<10 nm) is on the order of kBT , the nanoparticles can readily detach

from the interface and move into the bulk phase. Even a small deviation, only a few

degrees from 90◦, may make it impossible for the particles to attach to the interface

(i.e., the attachment becomes very poor for small particles because the interfacial

tension becomes very important) [11]. The addition of salt was found to destabilize

aggregates of particles at the interface. Aggregation was found to depend on the

contact angle of the particle with the interface.

The adsorption of spherical particles to a spherical liquid-liquid interface was inves-

tigated theoretically by Komura et al. [65]. Youngs equation was used to estimate

the equilibrium contact angle, for a particle absorbed at flat oil-water interfaces. Ko-

mura et al. argued that, same for flat interfaces, Youngs equation can also be used

to estimate the contact angle of a particle at the spherical interfaces. The authors

also surmised that the spherical curvature has an effect on the minimum adsorption

energy for the spherical particle absorbed at the interface [65].
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2.3.1 Effect of Line Tension on Particles Stabilization at the

Interfaces

Oil-water interfaces make a contact angle (θ) with the particle surface. Line tension

acts in the three phase contact lines around the absorbed particles at the interfaces.

This tension may have an effect on particle adsorption. Aveyard et al. studied the

effects of both positive and negative line tension on the free energy of adsorption of

the spherical particles at spherically curved liquid interfaces [54]. They found that

positive line tension drives small particles away from the interface of a drop, while

negative line tension stabilizes emulsions. Line tension does not affect larger particles

(radius>300 nm) [54]. For hydrophilic particles, (i.e., θ < 90◦), a larger portion of

the particle surface is present in the aqueous phase. Whilst, for the hydrophobic

particles, (i.e., θ > 90◦), most of the portion of the particles surface lies on the oil

phase [3],[14], [66]. Aveyard et al. argued that the effect of the line tension (τ) has

to be incorporated to calculate the attachment energy at the interfaces [54],[11]. The

authors argued that positive line tension acts at the three phase contact angle at the

interfaces. Due to positive line tension, and significant thermal energy fluctuation,

small nanoparticles (6 20) nm can easily be removed from interfaces. For θo/w close

to 90◦, a stable attachment at the interfaces can be obtained. However, in these

circumstances, the surfaces of the colloidal particles are partially wetted by either

the water or oil phase.

2.4 Interfacial Energy of the Nanoparticle

For microscopic particles at the interface, the energy gained is much larger than

kBT , but for nanoparticles it is on the order of kBT . Thus, microscopic particles

bind more strongly than nanoparticles. At a given concentration, larger particles

cover more area than smaller ones because the particles exchange more rapidly and

easily as particles size decreases [1]. For this reason, smaller particles need more time

to reach an equilibrium interfacial tension value. For example, the self-assembly of

2-bromo-2-methyl-propionate ligand stabilized nanoparticles of different types and

sizes were observed by Wang et al. [55]. Hydrophilic nanoparticles were found to

form a homogeneous thin film, while hydrophobic ones produced a heterogeneous film.
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Not only the size of particles, but also the contact angle with the water-oil interface

(i.e., the surface wettability) determines the interfacial surface activity. The terminal

groups of the capping ligands are responsible for interfacial self-assembly. When the

contact angle is close to 90◦ self-assembly can be understood clearly. Only recently

has work related to self-assembly of nanoparticle with diameters less than 10 nm

been done [55].

To date, only macroscopic measurements of the contact angle have been made to

obtain the overall effect of nanoparticles at the interface, as it is nearly impossible

to determine the contact angle of an individual nanoparticle.

2.5 Nanoparticles at the Interfaces

Molecular dynamic simulations have been done to study the interfacial assembly of

surfactants and negatively charged hydrophilic silica nanoparticles [2]. At air–water

interfaces, the surface tension of anionic and non-ionic surfactants were found to

decrease when negatively charged silica nanoparticles were added. Also, the simula-

tions showed that there was an increase in the interfacial activity of sodium dodecyl

sulfate (SDS), an anionic surfactant, after nanoparticles were added. However, the

interfacial activity for nonionic surfactants (e.g., tetraethylene glycol ethers (C8E4,

C12E4, C14E4), and Triton X-100) was unaffected by the addition of nanoparticles.

Repulsive forces between SDS and silica nanoparticles were found to be responsible

for enhancing the surfactant absorption at the air–water interface. Again from simu-

lation, the tri-chloroethylene–water (TCE–water) interface was studied. It was found

that the interfacial tension of both SDS and Triton X-100 surfactants decreased when

nanoparticles were introduced to the system. The addition of nanoparticles proved

to have little effect on the TCE-water interfacial tension for C12E4, C14E4 systems

(i.e., the tension was essentially the same with or without nanoparticle being added).

The simulations showed that C8E4, C12E4, C14E4 molecules do not absorb at the

TCE–water interfaces, rather they disperse into the TCE phase [2].

Although, it is important to know the interfacial adsorption of a system that con-

tains both surfactants and colloidal particles, this topic has not been widely stud-

ied. The surface activity of a liquid–liquid interface can be changed by adding sur-
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factants, nanoparticles, or both [2]. Experimental studies done by Ravera et al.

showed the effect of negatively charged silica nanoparticles (Dp ∼30 nm) and the

cationic surfactant hexadecyl-trimethyl-ammonium bromide (CTAB). The effective-

ness of the CTAB at air–water and hexane–water interfaces decreased when charged

silica nanoparticles were added. They postulated that the nanoparticles went to the

interface because CTAB adsorbed on the nanoparticle surface [51].

Udayana et al. performed a molecular dynamics (MD) simulation of uncharged NPs

and non-ionic tri-(ethyleneglycol)-dodecyl ether surfactant [53]. It was noticed that

uncharged NPs and surfactant were confined to the oil-water interface by lowering

IFT. NPs alone did not significantly change the oil-water interfacial tension. To-

gether, surfactants and NPs showed synergistic behavior and resulted in lowered

oil-water interfacial tension; this phenomenon was observed at low surfactant con-

centration. At higher surfactant concentrations, this synergy decreased. NPs func-

tionalized with surfactants were not as effective at lowering the oil-water interface

tension as the individual NPs or surfactants. Udayana et al. observed that many

(a) (b)

Figure 2.3: Snapshots of a packing structures of (a) unfunctionalized and (b) surfactant

functionalized NPs at oil-water interface. The packing structures of a functionalized NPs

are very different from their unfunctionalized one [53].
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surfactants oriented in a proper direction to reduce the oil–water interfacial tension

at low C12E3 surfactant coverage on the surface of the NP (left: system E5). At

higher coverage (right: system E3), due to steric repulsion forces some surfactants

formed unfavorable structures. This can be seen in Figure 2.3 and may be because,

upon binding, surfactants are driven into unfavorable positions with respect to the

interface. This leads to hetergenous surfactant coverage, and possibly explains the re-

duced efficiency [53]. It has been shown that both NPs and surfactants have a strong

tendency to bind to interfaces. Surfactants lower the interfacial tension, while NPs

lower the surface area. A system with both NPs and surfactants shows interesting

and complex behavior at the fluid-fluid interfaces [53].

2.6 Effect of Particle Concentration on the Inter-

facial Properties

The time dependent interfacial tension of a water and toluene-CdSe nanoparticle

suspension changes when the concentration of the bulk solution changes [1]. The time

required for the system to reach equilibrium depends on particle size. For suspensions

of larger particles, the system reaches the equilibrium interfacial tension more quickly

than for smaller particles. Smaller particles reach equilibrium only when the particle

concentration is very high, while larger particles will reach equilibrium very quickly

for all concentrations. For smaller particles, at the lowest particle concentrations,

equilibrium is not reached over the duration of the experiment.

Figure 2.4 and Figure 2.5 show the time dependence of the interfacial tension for

CdSe-TOPO nanoparticles at the toluene–water interface. The lowest particle con-

centrations are represented by the curves at the top of the figure. As the particle

concentration increases, the curves drop quickly with the highest concentration repre-

sented by curves nearer to the origin [1]. As the particle concentration increases, the

equilibrium interfacial tension decreases until a critical concentration, c′, is reached.

At this concentration, the interface reaches the maximum coverage, Γ∞, of the ab-

sorbed nanoparticles (i.e., the interface is saturated), and a susbequent increase in

particle concentration will not change the equilibrium interfacial tension.

It was also found that apparent diffusion coefficients decrease with an increase in the
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Figure 2.4: Time dependence of the interfacial tension at the toluene-water interface for

2.3 nm CdSe-TOPO nanoparticles of various concentrations [1].

particle concentration [1]. At longer adsorption times and higher particle concen-

trations, the interaction between particles nearer to the water-oil interface increases.

It was assumed that this reduced the diffusion coefficient at the later times. There

are always collisions between either nanoparticles adsorbed at the interface or des-

orbed from the interface, and nanoparticles approaching the interface from the bulk

suspension. Over time, collisions increase within the sub-layer because the number

of particles increases as the particle concentration increases. At the interface, the

adsorption of additional nanoparticles is hindered by nanoparticles that are already

desorbing. As shown in Figure 2.6, in the vicinity of the sub-layer, a potential barrier

arises close to the interface that prevents particles from moving perpendicular to the

interface. The motion of particles near the interface are influenced by two mecha-

nisms: diffusion of the particles from the bulk to the sub-layer, and overcoming a

potential barrier between the interface and the bulk. At the low concentrations, a

28



Figure 2.5: Time dependence of the interfacial tension at the toluene-water interface for

6.0 nm CdSe-TOPO nanoparticles of various concentrations [1].

distinction between the sub-layer and the interface is difficult because it becomes in-

distinguishable from the bulk phase. The width and position of the potential barrier

depends on the strength of inter-particle interactions.

2.6.1 Dynamic Surface Tension of Non-Ionic Surfactants

Using a maximum bubble pressure instrument, Eastoe et al. studied the dynamic sur-

face tension for a variety of nonionic surfactants [21]. These surfactants included the

following: glucamide surfactants; di-(C5-Glu), di-(C6-Glu), di-(C7-Glu), and n-alkyl

polyglycol ethers; C10E4, C10E5, C12E5 C12E6, C12E7, and C12E8. The surface tension

was observed for different concentrations for each of the surfactants. The concentra-

tion of each surfactant was adjusted to levels above and below the critical micelle

concentration (CMC) and the dynamic surface tension was observed. Immediately

after a bubble was formed, the adsorption was found to be diffusion controlled. Over
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Figure 2.6: Schematic of the energetics associated with spherical CdSe-TOPO nanoparti-

cles at the oil-water interface. CdSe-NP1 is at the interface, while CdSe-NP2 is in the bulk

[1].

time, it was found that a mixed mechanism, diffusion–activation, was responsible for

the dynamic adsorption, with the creation of an adsorption barrier of between 5 and

12 kJ/mol [21].
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2.7 Effect of Temperature and Pressure on Inter-

facial tension

Investigations of the interfacial tension for a number of n-alkane–water systems using

the emergent drop experimental technique were performed by Zeppieri et al.. A linear

dependence was found for the interfacial tension as a function of temperature for

several n-alkanes (see Figure 2.7). As the length of the carbon chain increased, the

interfacial tension increases [67]. The interfacial tension between various n-alkanes

and water as function of temperature and pressure was also studied by Motomura

et al.[68]. A summary of the results can be seen in Figure 2.8 and Figure 2.9. The

authors found a linear dependence between the interfacial tension and pressure, while

the interfacial tension decreased as the temperature increased. Miquilena et al. [42]

studied IFT between decane and aqueous solutions of Triton X-100 surfactant using

the pendant-drop technique. Their results show that for surfactants the IFT increases

with an increase in temperature. The authors also state that temperature has greater

influence on the IFT for lower Triton X-100 concentrations than it does for higher

bulk surfactant concentrations. A similar behavior was observed by Ye et al. [34]

on the interfacial tension between crude oil and a gemini surfactant solution above

a certain temperature. After reaching the temperature of 70oC, the IFT for that

system increased with an increase in temperature. They claimed that the increase

occurs because there is diffusion of the surfactant from the interface to the oil phase.

Sottmann and Strey [43] found that an increase in temperature causes the IFT of

water–n-alkane surfactant systems to increase above a certain temperature. Ataev

[44] determined that the IFT in water-hydrocarbon systems also increases as the

temperature is raised. Ataev surmised that the increase may be due to an increase

in the probability of impurities diffusing from the interface to the bulk phase (i.e.,

impurities that are present in oil phase).

2.8 Effect of Ligands on Interfacial Tension

Colloidal particles are not stable at interfaces. Increased particle stability requires a

hydrophobic coating, so that that interfacial attachment of nanoparticles is achiev-
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Figure 2.7: Interfacial tension values as a function of temperature for several n-alkanes.

12–dodecane, 11–undecane, 10–decane, 9–nonane, 8–octane, 7–heptane, 6–hexane [67].

able. Duan et al. argued that only particles with hydrophobic surface coatings

are able to absorb at oil-water interfaces [69]. They observed the self assembly of

hydrophilic AuNP, Ag−NPs, and hydrophobic γ-Fe2O3 at water-toluene interfaces.

The authors reported that the particles were attached to the interface when capped

with a 2-bromopropionate ligands [69]. They suggested that the ligands may make

the contact angles of the nanoparticles close to 90◦ at the interfaces. This, in turn

would drive nanoparticle self-assembly to form closely packed arrays at the water-

toluene interface. Duan et al. used 2-bromo-2-methylpropiorate as a surface ligand

on AuNPs, AgNPs, and γ-Fe2O3NPs [69]. The authors claimed that this provided

the particles a contact angle very close to 90◦. The particles were found to assemble

exactly in the middle of a toluene-water interface. This indicates that an appro-

priate selection of capping ligands can adjust the wettability of NPs at interfaces

[69]. The image of the self-assembled Au@DTBE nanoparticles at the water-toluene

interface can be seen in Figure 2.10. Du et al. observed the energy of adsorption of

32



Figure 2.8: Interfacial tension of oil—water interface versus pressure at 298.15K. 1–hexane,

2–octane, 3–decane, 4–dodecane [68].

nanoparticles and microparticles at the oil-water interface and found that the change

of adsorption energy (∆E) of citrate-stabilized gold nanoparticles is proportional to

the square of the particle radius [8]. They recorded a decrease of the interfacial

tension for 2.5 nm citrate stabilized gold nanoparticles (Au−cit) and 2.3 nm (1-

mercatoundec-11-ye)tetra(ethylene glycol) stabilized gold nanoparticles (Au−TEG )
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Figure 2.9: Interfacial tension of oil—water interface versus temperature at atmospheric

pressure 1–hexane, 2–octane, 3–decane, 4–dodecane [68].

at the octafluoropentyl acrylate (OFPA)-water interface. By changing the concen-

tration of salt and the organic solvent, the binding energy can be adjusted at the

interface. The adsorption energy of 2.5 nm Au−cit and Au−TEG on the droplet

OFPA are -5.1kBT and -60.4 kBT , respectively. The latter value is 12 times greater

than the ∆E for similar sized Au−cit. Therefore, the ligand has an effect on the

adsorption energy (i.e, interfacial tension) [8].

Ranatunga et al. performed molecular dynamics simulations to understand the be-

havior of surfactant-functionalized nanoparticles at oil-water interfaces [70]. They
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Figure 2.10: Image of the self-assembled Au@DTBE nanoparticles at the water/toluene

interface in a plastic tube [69].

studied four NPs with different surface coverage. It was found that the coating on

the surface of NPs has a profound effect on the interfacial activity. They also sug-

gested that the particles can be deformed from an idealized spherical shape at the

liquid-liquid interfaces due to the flexibility of ligands on the NPs surface [70]. The

composition of the ligand shell on the surface of the NPs has a profound effect on

the wettability of the particles at interfaces as the stable assembly of NPs at the

interface depends on particle wetting. The snapshots of characteristic behavior of

surface-ligated NPs in the vicinity of an oil-water interface can be seen in Figure

2.11. Glogowski et al. observed that AuNPs capped with equimolar amounts of n-

dodecanethiol and 11-mercapto-1-undecanol stabilized emulsions. However, an excess

of the same ligands on the NPs surface caused inability to stabilize the emulsions.

Therefore, mixed-monolayer protected NPs can be used as a new tool to stabilize

emulsion water droplets in oil [71].
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Figure 2.11: Snapshots of characteristic behavior of surface-ligated NPs in the vicinity of

an oil/water interface. The regions are (A) deep in the oil phase, (B) in the oil phase close

to the interface, (C) at the interface, (D) in the water phase close to the interface, and (E)

deep in the water phase [70].

At the oil–water interface, self-assembly of 2-bromo-2-methyl-propionate terminus

ligand stabilized nanoparticles of various size and chemical composition was discussed

by Wang et al. [55]. Hydrophilic nanoparticles were found to form a homogeneous

layer at the interface, while hydrophobic nanoparticles were found to generate het-

erogeneous layers. The terminal groups of the capping ligands are determined by the

self-assembly of the nanoparticles at the interface.
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2.9 Effect of Salt on the Interfacial Tension at

Liquid–Liquid Interfaces

Simovic and Prestidge investigated the adsorption behavior of hydrophilic silica

nanoparticles at the polydimethylsiloxane (PDMS) droplet-water interface [48]. It

was found that the change in free adsorption energy, (∆G), and maximum adsorption

density, (Γmax) in increased pH conditions were insignificant. These values were sig-

nificantly increased with an increased salt concentration. At low salt concentration,

the hydrophilic silica nanoparticles adsorbed at the liquid droplets with negligible

interfacial accumulation. As the salt concentration was increased, particle-droplet

and particle-to-particle lateral electrostatic repulsion was reduced. This leads to

an increase in particles assembly at the interface. The authors demonstrated that

the particles adsorbed very densely at the interface when double-layer thickness is

reduced to a few nanometers [48].

The dynamic interfacial tension between a commercial soybean oil–water, and soy-

bean oil–brine interface at three temperatures (5◦C, 20◦C and 50◦C) has been studied

[46]. Since there are a number of impurities in the commercial oil, they have a dra-

matic effect on the dynamic interfacial tension.

The presence of the salt (NaCl) in the oil–brine system, decreased the interfacial

tension compared to a oil–water interface. It was postulated that the polar nature

of the salt caused impurities in the oil to be concentrated at the oil–brine interface,

thus reducing the interfacial tension. The solubility of the polar impurities changes

not only with salt concentration, but also with temperature. Thus, changes in tem-

perature also cause an increase in the rate of reduction in interfacial tension. The

higher the temperature the greater the rate of reduction in the tension. Without

salt, higher temperatures caused a smaller rate of reduction in the interfacial ten-

sion. This observation may be due to a reduction in the adsorption of impurities

present in the oil, or on the dependence of the temperature, or both. These effects

can be seen in Figure 2.12. The study was also conducted on the same system for

soybean oil that had been purified by passing the oil through a glass column packed

with a mixture of Florisil and silica gel. By removing the impurities in the oil, the

interfacial tension did not change substantially over time. The dynamic interfacial
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Figure 2.12: Interfacial tension between commercial soybean oil and water in the presence

and absence of NaCl (3%) at three temperatures [46].

tension for a number of experimental conditions can be seen in Figure 2.13. The

effect of salt on the interfacial tension for purified soybean oil–water systems with

added surfactants (i.e., stearic acid, oleic acid, ricinolic acid, and linoleic acid) was

also investigated. This was done to see the effect of salt and impurities in the systems

in a controlled way. Simply by adding the surfactants to the purified oil there was

a noticeable drop in the initial interfacial tension. Also for the case ricinoleic acid

(9-cis-12-hydroxyoctadecenoic acid), there was a substantial drop in the interfacial

tension for brine versus water. Again, these effects can be seen in Figure 2.14. In

the case of ricinoleic acid, the drop in interfacial tension may be due to the presence

of an –OH group close to the double bond within the molecule.
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Figure 2.13: Interfacial tension between purified soybean oil and water in the presence and

absence of NaCl (3%) at three temperatures [46].

2.10 Effect of Ethanol at Oil–Water Interfaces

Reincke et al. showed that citrate capped gold nanoparticles formed a randomly

packed colloidal monolayer at the water–heptane interface after adding ethanol. More

nanoparticles would gather at the interface as the concentration of ethanol increased.

These results were confirmed by electrophoretic measurements which showed that

the ethanol reduced the particle surface charge density [56].
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Figure 2.14: Dynamic interfacial tension for 0.1% fatty acid: purified oil–water systems in

the presence and absence of NaCl (3%) at 323K [46].

2.11 Effect of pH on the Stability of Particles at

Oil–Water Interfaces

The pH of aqueous solutions in contact with an organic phase also has an effect

on IFT. The organic phase in contact with the water phase provides an electrical

negative charge at the organic-aqueous interface. This is due to the adsorption of

hydroxyl ions (OH – ) at the interface from the bulk aqueous phase which leads to a

decrease in the IFT [72], [73], [74], [75],[76].

Reincke et al. showed that by changing the pH of the aqueous phase, 4-mercaptobenzoic
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acid capped 8 nm AuNPs can be attached and detached from the water-heptane in-

terface. The particles can also be re-dispersed in the aqueous phase [56]. No particles

were found to attach at the interface when NPs were introduced to the water-heptane

interface; this is due to the particles hydrophilic nature. The pH of the aqueous phase

was then adjusted by adding dilute HCl. This resulted in protonation of the AuNPs,

and caused them to adsorb to the interface; the particles formed a purple film at

the water-heptane interface; this can be seen in Figure 2.15. The authors observed

Au-MBA

Add HCl

Au-MBAWater

Au
Add NaoH

Figure 2.15: Photographs display the HCl and NaoH effect on aqueous solutions of 4-MBA

capped 16 nm AuNPs at heptane-water interface heptane [56].

reversible interfacial self-assembly when the pH of the aqueous solution was adjusted
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to a value of 9. The color of the aqueous solution returned to its original red color

at this pH. This confirmed the detachment of the AuNPs from the interface [56].

Reincke et al. et al. also studied, the self assembly of charge-stabilized colloidal

Au and CdTe at the water-heptane interface. The particles are capped with 3-MPA

pH=4.4

pH=9.4

pH Reduction

pH=5.8

Figure 2.16: Confocal images show the pH effect on an aqueous solution of 3-MPA capped

CdTe nanoparticles at the heptane-water interface. With the reduction of pH (from 9.4 to

4.4), more CdTe particles drive to the interface [Reprodued from reference [56].

and 4-MBA. At low pH, the surface charge density reduced due to the protonation

of the carboxylic acid groups on the surfaces. This lead to an increase in surface

hydrophobicity, and allowed a greater number of nanoparticles to attach at the water-

heptane interface. At high pH, surface charge density is increased due to the de-
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protonation of the carboxylic acid groups this results in expulsion of particles from

the interface into the bulk water phasen [56]. The pH effect on an aqueous solution

of 3-MPA capped CdTe nanoparticles at the heptane-water interface is shown in

Figure 2.16. Simovic and Prestidge investigated the adsorption of hydrophobic silica

nanopartcles at the PDMS droplet-water interface and found that when the pH of the

aqueous phase was increased, particle adsorption was reduced [47]. This may have

been due to the increment of interaction between the droplet and particle in addition

to particle-particle electrostatic repulsion. On the other hand, particle adsorption

increased with increased salt concentration.

2.12 Effect of Impurities on Interfacial Properties

In order to investigate the interfacial properties of liquid–liquid interfaces, it is nec-

essary to check for the presence of surface-active trace impurities. From observations

of water–n-alkane systems, it has been found that many alkanes, as obtained from

chemical suppliers, often contain many impurities and fail to satisfy the stringent

requirements necessary for interfacial studies. In order to get reliable results, the

impurities in these stock alkanes must be removed. The procedures used to purify a

substance and test that it is pure enough for interfacial studies of air–water interfaces

can also be applied to water–oil interfaces. There are a few methods to remove the

impurities from the oil phase: (1) A solid adsorbent column filled with basic alumina,

or (2) shaking the oil with water for a few hours. By using one or a combination of

these methods, the impurities can be removed from an oil phase.

Any study of the adsorption properties of amphiphiles at the water–oil interface,

must have impurities removed from both the water and the oil phases. Impurities

may have a very strong effect on the interfacial properties. For example, a strong

effect of impurities on interfacial tension for a n-decane–water interface can be seen in

Figure 2.17. At the same time, when the phases are free of impurities, the interfacial

tension has a constant and definite value [59].
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Figure 2.17: Water–n-decane interfacial tension [59].

2.13 Effect of the hydrocarbon chain length on the

interfacial tension

Investigations of the interfacial tension of different hydrocarbons at the water–oil

interfaces were done. It was found that the interfacial tension value depends on the

carbon number, Nc of the n-alkane. As the chain length increases, the interfacial

tension also increases. This is shown in Figure 2.18.
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Figure 2.18: Water–n-alkane interfacial tension [59].

2.14 Effect of Particle Shape on the Stability at

Interfaces

Bresme and Faraudo determined the dependence of the stability of NPs at the liquid

interfaces on particle geometry [77]. Particles with an aspect ratio, α, larger than

a critical value are not stable at liquid-liquid interfaces. The effect of the particle

geometry on the free energy of three nanoparticles with the same surface area, but

different shapes can be seen in Figure 2.19. The oblate (disk) shaped particles are

the most stable while spherical nanoparticles and prolate (rod) shaped particles are
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Higher Stability                Lower Stability 

Figure 2.19: Schematic view of effect of particle shape on the stability [13].

metastable and unstable at the interface, respectively [77],[13]. Until now, many

investigations performed at the liquid-liquid interface have dealt with spherical, low

aspect ratio colloidal particles [78], [79]. The interfacial assembly of high aspect ratio

non-spherical particles at the interfaces is still an open question [13].

2.15 Effect of Janus Particles at the Interfaces

Janus particles, named after the Roman god of doorways, are particles with two faces.

The interfacial activity of Janus particles is many times greater than homogeneous

particles [6]. The amphiphilic character of surfactants, and physical properties of

nanoparticles are combined in Janus particles. This opens up a new and exciting re-

search area related to the development of nanotechnology and emulsion stabilization

[6]. Some of the most common Janus nanoparticles consist of gold (Au) and another

material. Nanoparticles of gold (Au) and ironoxide (Fe3O4) were synthesized to de-

termine the effect of Janus particles on interfacial activity [18]. The surface activity

of nanoparticles was studied at room temperature using the Pendant drop method.
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The Au–Fe3O4 Janus nanoparticles were dispersed in an n-hexane phase. A water

drop was made in this phase. Immediately after the water drop was formed, the Janus

particles moved to the interface and the interfacial tension of the water–n-hexane be-

gan to decrease and eventually reached an equilibrium value. The interfacial tension

of the Janus particles was found to be lower than that for either homogeneous Au

or Fe3O4 nanoparticles. From this study, it was found that Janus particles are more

effective at decreasing interfacial tension. It was concluded that the Janus particles

aligned, thus reducing the interfacial tension, at the liquid–liquid interface. This can

be seen schematically in Figure 2.20. The long-chain hydrocarbon end of the gold

side stays in the hexane phase, while the iron oxide remains in the water phase. The

drop in the interfacial tension was found to be higher for the Janus particles than

the homogeneous nanoparticles, as can be seen in Figure 2.21.

Figure 2.20: Schematic representation of Janus nanoparticles at the hexame–water inter-

faces [18].
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Figure 2.21: Interfacial tension of water–hexane versus time for various nanoparticle types.

DDT: dodecanethiol, ODT: octadecanethiol, NP: homoegneous nanoparticles, JP: Janus

particle [18].

2.16 Colloidal Stability at the Interface and DLVO

Theory

The Derjaguin, Landau, Verwey, and Overbeek theory (DLVO) states that the sta-

bility of colloidal systems is dependent upon its total potential energy function (VT ).

The total potential is sum of the three potential contributions:

VT = VA + VR + VS (2.3)

whereVS is potential of the solvent, VA and VR are van der Waals attractive and

repulsive potential between the particles, respectively. However, VS has a small con-

tribution to the total potential energy over few nanometers of separation. DLVO

theory demonstrates the effects of van der Waals and electrostatic interactions be-

tween two approaching surfaces. The net force due to van der Waals interaction is

attractive. The electrostatic interactions between like-charged particles is repulsive;

whereas for the unlike charged particles, the interaction is attractive. The apparent

net force acting between two particles, approaching each other, in the solution can
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be obtained by adding van der Waals and electrostatic interactions [80], [81]. The

energy barrier arises due to the repulsive force prevent particles in approaching each

other. If high repulsion exist among particles, dispersion tries to prevent flocculation

and the colloidal system turns to be stable. The zeta potential indicates magnitude

of the interaction between colloidal particles or determine the stability of colloidal

systems. The large positive or negative zeta potential value represents that parti-

cles in the suspension repel each other. However, particles with low zeta potential

indicate that particles adhere with each other or flocculate in the solution. Particles

having zeta potentials more than +30 mV or more than -30 mV are considered sta-

ble in the suspension.[82]. Smith et al. studied adsorption of charged nanoparticles

at the oil-water interface [83]. Using DLVO theory, authors investigated interac-

tion potentials for negatively charged hexadecane droplets with anionic polystyrene

(PS) latex particles or cationic gold nanoparticles. They found that with an increase

of ionic strength; there is a decrease in the decay length of electrostatic repulsion.

Hence, the electrical double layer around the particles and oil tends to shrink. As

a consequence, van der Waals attractions and interfacial attractions begin to govern

at the interfaces. This enhances particle adsorption at the oil-water interface. Using

small-angle scattering experiments, for PS latex particles, they found that the highest

particle adsorption occurred at average ionic strength and low pH. For cationic gold

particle, using DLVO calculations, authors observed that the particle adsorption at

the interface is highest at the neutral pH.

2.17 Summary

This chapter surveyed the roles that bulk nanoparticle concentration, size, shape,

wettability, and surface ligands, play on the behavior of NPs at liquid-liquid inter-

faces. The effects of salt concentration and pH were also discussed.

The next chapter provides the overview of experimental procedures, methods and

materials used for the experiments performed in Chapter 5, 6 and 7.
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Chapter 3

Experimental Methods and

Materials

This chapter presents the experimental procedures for synthesis of alkhanethiol capped

gold nanoparticles and describes the materials, and methods used in this work. This

chapter also outlines the characterization techniques used to study the nanoparticles.

3.1 Axisymmetric Drop Shape Analysis

Axisymmetric Drop Shape Analysis (ADSA) is a powerful technique for measuring

interfacial tensions and contact angles of pendant drops, sessile drops and bubbles.

Numerous methodologies have been developed for the measurement of interfacial ten-

sions, but of these, ADSA is considered to be the most powerful. This is primarily

due to the high accuracy, simplicity, and versatility of the technique [84]. Through

the use of digital image analysis, ADSA is well suited for automated computer imple-

mentation. Automated ADSA systems fit the shape of the droplet to a mathematical

model based on the classical Laplace equation of capillarity [85].

Advantages of using pendant and sessile drop methods are as follows: (1) only small

quantities of liquid are required, (2) the technique can be used to study both liquid–

vapor and liquid–liquid interfaces. The methods can be applied to a wide range of

materials—from organic liquids to molten metals, from pure solvents to concentrated
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solutions. The technique can be applied at low or high temperatures, and from

vacuum conditions to high pressure. In automated systems, a least-squares algorithm

using the interfacial surface tension as a fitting parameter fits the Laplace equation

of capillarity:

∆P = γ

(
1

R1

+
1

R2

)
(3.1)

where R1 and R2 are the principle radii of curvature of the droplet , ∆P is the

pressure difference across the curved interface.

When fitting this equation to experimental data, the surface or interfacial tension is a

parameter that is varied until a good fit is established. In recent years, the use of au-

tomated systems for measuring interfacial properties of fluids (i.e., surface tensions,

and interfacial tensions), has not only improved the accuracy of the measurements,

but it has also permitted the study of phenomena that were not possible or diffi-

cult to investigate in the past. Examples include: ultra-low interfacial tensions, the

relaxation of absorption layers, and dynamic surface tensions [84]. Using a modern

desktop computer, the time required for a single interfacial tension measurement has

been reduced from hours of dedicated work to just a few seconds. Thousands of time-

independent measurements can be performed, unattended, in a single day. The only

information required to use the ADSA method is the local gravitational constant,

the density of the two phases, and several arbitrary, yet accurate coordinate points

selected from the droplet profile [85].

A range of scientific disciplines have shown strong interest in accurate measurements

of interfacial and surface tensions. From a technology standpoint, surface and inter-

facial tension measurements are important because of the role they play in several

chemical processes (e.g., gas absorption, distillation, extraction, etc.). The IFT mea-

surements were made using Axisymmetric Drop Shape Analysis (ADSA) [84], [85],

[86], [87],

3.1.1 Equipment For Temperature Measurement

A constant temperature chamber (stainless steel, 13 cm long, 5 cm wide and 7 cm

tall with three quartz windows for viewing the sample) was made for this analysis.

The pendant drop profiles were viewed by a camera through the windows in the
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chamber. A syringe was inserted from the top of the chamber to form a pendant drop

of water. A glass cuvette containing the colloidal suspensions was held within the

constant temperature chamber. The chamber was well insulated and the chamber’s

temperature was measured using a high precision temperature probe to ensure that

it remained constant. A schematic of the setup can be seen in Figure 3.1.

aqueous phase
oil phase

CCD cameralight source

temperature probe

syringe pump

heating tape & 
insulation

windowwindow

cuvette

Figure 3.1: Schematic of different components of temperature chamber.
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3.2 Materials and Experimental Procedures

3.2.1 Materials Used in the Work

In Table 3.1 a list of materials that were used in the work is shown. Some of the

chemicals, alkanes in particular, were purified prior to their use in interfacial tension

measurements.
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3.3 Experimental Procedures

The experimental procedures consist of synthesizing gold nanoparticles and then

testing their effect on interfacial tension.

3.3.1 Axisymmetric Drop Shape Analysis (ADSA)

Interfacial tension measurements of capped gold nanoparticles at hydrocarbon-water

interfaces were performed by pendant drop experiments using Axisymmetric Drop

Shape Analysis (ADSA). These measurements include the following steps: (1) image

acquisition, (2) image processing and (3) numerical calculations to fit the Laplace

equation. The hardware of ADSA consists of the following components: a CCD

camera, image-digitizing board, optical components (i.e., focusing elements), a light

source, and a cell holder. An experimental setup is shown in Figure 3.2.

light
diffuser

CCD Camera

data acquisition

lamp

droplet

Figure 3.2: Schematic of the axisymmetric drop shape analysis (ADSA) system

In ADSA, a white light source illuminates the pendant drops that are hanging from

the tip of the stainless steel needle. It is necessary to have an uniformly illuminated

drop with little heat transferred from the lamp. For this reason, the light passes

through a heavily frosted light diffuser prior to image capture. In order to precisely

control the volume of the droplet formed, a stepper motor is used. Images of the

droplet are captured by using an image-digitizing board to capture individual frames

from the CCD camera. After the image has been acquired, software (Video Contact
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Angle 2500 XE) fits the shape of the droplet to the Laplace equation of capillarity

[85], [86], [87].

3.4 Experimental

3.4.1 Nanoparticle Synthesis, Preparation, and Characteri-

zation

A series of gold nanoparticle colloids were synthesized using a technique established

by Brust et al.[88] and subsequently modified by Hostetler et al.[89].

The size of the synthesized nanoparticles can be controlled by changing the (1) thiol

to Au ratio, (2) the reduction temperature, or (3) the rate at which the reducing agent

is added to the solution [89]. The core size has a pronounced effect on the chemical

and physical properties of the nanoparticles. Several material characterization tech-

niques are used to verify the composition of the particles; such as, ultraviolet visible

spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM),

Energy-dispersive spectroscopy (EDS) and proton nuclear magnetic resonance spec-

troscopy (1HNMR).

Synthesis of capped gold nanoparticles

n-alkanethiol-capped gold nanoparticles were synthesized using a procedure devel-

oped by Hostetler et al.[89] and Brust et al. [88]. Synthesis begins by dissolving

1.5g of tetraoctylammonium bromide (N(C8H17)4Br) in 80 mL of toluene. In the

second step, the aqueous solution of 0.31g of hydrogen tetrachloroaurate trilydrate

(HAuCl4 · 3 H2O) in 25 mL deionized water is prepared at room temperature. The

organic solution is added to the aqueous phase and stirred. Immediately, a two-

layer system was formed. The system was kept stirring until the bottom layer (the

aqueous phase) became transparent and, the top layer (the organic phase) became

orange-brown. This assures the transfer of all Au+3 from the aqueous phase into the

organic phase. During this reaction step, the phase transfer reagent ((N(C8H17)4Br))

was transferred AuCl –
4 from the aqueous phase to organic layer. At the end of the
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reaction, it formed a complex structure with the cationic part of the phase transfer

reagent. The organic phase was decanted, and the desired amount of dodecanthiol in

25 mL of toluene was added to the decanted organic phase and vigorously stirred. In

the final step, an aqueous solution of 0.389 NaBH4 in 25 mL of deionized water was

made, and added to the system at the reduction temperature 30◦C. Immediately, the

pale, yellow, organic phase turned dark brown. Stirring, at the reduction tempera-

ture, was continued for 30 minutes, and then further stirred at room temperature for

three hours. The organic phase was decanted, and concentrated to ∼ 5mL by rotary

evaporator. The reduced organic phase was precipitated by adding 30 mL of ethanol.

The colloidal solution was then kept for cooling in ice for one hour. Next, the

black precipitate was filtered using filter paper. The collected precipitate was further

washed, with 80 mL of ethanol and 350mL of acetone several times. Finally, the

dodecanethiol capped gold nanoparticles were dried in a petri dish open to air. The

synthesized thiol capped gold nanocrystals form a stronger bond to the Au [89]. The

overall reaction processes can be seen in Equations 1a and 1b below:

(1.a) AuCl –
4 + N(C8H17)

+
4 (C6H5Me) −→ N(C8H17)

+
4 AuCl –

4 (C6H5Me)

(1.b) mAuCl –
4 (C6H5Me) + nC12H25SH(C6H5Me) + 3 me – −→

4 mCl – + (Aum)(C12H25SH)n(C6H5Me)

The dried samples were further cleaned by ethanol, to completely remove all impu-

rities and free ligands. The particles were then re-dispersed in hexane and dried in

a round flask cleaned by ethanol, and again re-dispersed in hexane. The cleaning

procedure was repeated at least 25 times to confirm the removal of free ligands and

by-products before performing various characterizations discussed in the following

sections. The sample was stored in a −20◦C freezer for further use. During the reac-

tion, NaCl and sodium borate, may be produced as byproducts. Similar procedures

were used to synthesize n-hexanethiol capped gold nanoparticles. In this case, the

surfactant n-hexanethiol was added instead of n-dodecanethiol.
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3.4.2 Nanoparticle Characterization

The nanoparticle colloids were synthesized at 30◦C using the experimental condi-

tions shown in Tables 3.2 and 3.3. During the synthesis, either n-hexane-1-thiol or

n-dodecane-1-thiol was added to the colloidal solution to act as a capping agent,

resulting in a total of five colloidal suspensions.

Table 3.2: Synthesis conditions for the nanoparticle suspensions.

Ratio of gold atoms

Condition to capping molecules Cap

(a) 1:8 dodecanethiol

(b) 6:1 dodecanethiol

(c) 12:1 dodecanethiol

Table 3.3: Synthesis conditions for the nanoparticle suspensions.

Ratio of gold atoms

Condition to capping molecules Cap

(d) 6:1 hexanethiol

(e) 8:1 hexanethiol

To avoid interference from free surfactant molecules, the synthesized nanoparticles

were rinsed with ethanol and re-dispersed in hexane. This process was repeated 25

to 30 times to ensure that the nanoparticles were free of excess capping ligand. The

size distributions of the synthesized nanoparticles were determined by analyzing TEM

images of the material. UV-VIS and proton NMR measurements were then performed

to confirm that free ligands were completely absent in the colloidal suspensions used

to measure nanoparticle adsorption at the hexane-water interface.

HR-TEM analysis

High-resolution transmission electron microscopy (HR-TEM) was performed using a

FEI Titan microscope at 300 kV and JEOL 2010F TEM ( Phillips CM12) electron
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microscope operating at 60kV. A drop of the synthesized colloid was placed onto a

400 mesh copper TEM grid coated with formvar. The samples were dried in air for

at least one hour prior to analysis.
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Core diameter [nm]

µ= 1.60  nm
σ= 0.278 nm

(ii)

20 nm

(i)

Figure 3.3: TEM image and associated size distribution for 1.6 nm gold nanoparticles

synthesized using condition (a) capped with n-dodecane-1-thiol are shown respectively in

(i) and (ii).

Figure 3.3 illustrates the TEM images and associated size distribution for 1.6 nm gold

nanoparticles synthesized under condition (a) and capped with n-dodecane-1-thiol.

Nanoparticle diameters were determined by image analysis using the ImageJ software.

The average size of the n-dodecane-1-thiol nanoparticles synthesized under condition

(a) was found to be µ = 1.60 nm with a standard deviation of σ = 0.278 nm. The

particles were found to have a log normal distribution. Figure 3.4 shows an HR-TEM

image of the 1.6 nm gold nanoparticles, and the corresponding selected area electron

diffraction (SAED) pattern of HR-TEM image is also shown. As seen in this figure,
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(ii)

(ii)

(ii)

(i)

2 nm

Figure 3.4: HR-TEM image, selected area and associated SAED are shown respectively

in (i), (ii) and (iii); for 1.6 nm gold nanoparticles synthesized using condition (a) capped

with n-dodecane-1-thiol.

the diffraction pattern consists of rings or spotty ring patterns and illustrates that

AuNPs have a crystalline structure. Energy-dispersive spectroscopy (EDS) was car-

ried out to better understand the chemical composition of gold nanoparticles. Figure

3.5 shows the EDS spectra of 1.6 nm n-dodecane-1-thiol capped gold nanoparticles.

EDS displays peaks solely ascribed to gold. In addition to gold peaks, carbon peaks

are also shown in the spectra. The latter signals arise from the carbon coated formvar

film on the copper grid used for analyzing the synthesized gold nanoparticles.
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Figure 3.5: EDS spectrum for 1.6 nm gold nanoparticles synthesized using condition (a)

capped with n-dodecane-1-thiol.

Figure 3.6 shows the TEM images and associated size distribution for 2.8 nm gold

nanoparticles synthesized under condition (b) and capped with n-dodecane-1-thiol.

The average size of the n-dodecane-1-thiol capped nanoparticles synthesized under

conditions (b) were larger than those of condition (a); they were found to be µ = 2.78

nm with a standard deviation of σ = 0.273 nm. The HR-TEM images and EDS

spectrum of the particles are shown in Figures 3.7 and 3.8. As in Figure 3.3, Figure

3.9 and 3.10, show TEM images and SAED for 4.4 nm n-dodecane-1-thiol capped

AuNPs. For 2.9 nm and 4.3 n-hexane-1-thiol capped AuNPs, TEM images and

SAED are shown respectively in Figure 3.12, Figure 3.13 and Figure 3.15, Figure

3.16. The average size of the n-dodecane-1-thiol capped nanoparticles synthesized

under conditions (c) were found to be µ = 4.4 nm with a standard deviation of σ = 0.6

nm. The average size of the n-hexane-1-thiol capped nanoparticles synthesized under

conditions (d) were found to be µ = 2.9 nm with a standard deviation of σ = 0.188
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Figure 3.6: TEM image and associated size distribution for 2.8 nm gold nanoparticles

synthesized using condition (b) capped with n-dodecane-1-thiol are shown respectively in

(i) and (ii).

nm; while the average size of the n-hexane-1-thiol capped nanoparticles synthesized

under conditions (e) were found to be µ = 4.3 nm with a standard deviation of

σ = 0.7 nm. Analysis of HR-TEM, EDS and SAED patterns are the same as 1.6

nm dodecane-1-thiol capped AuNPs. As can be seen from Figure 3.8 and Figure

3.14, the EDS spectrum illustrates the evidence of gold nanoparticles in the capped

dodecanethiol and hexanethiol AuNPs. In addition to gold peaks, copper and carbon

peaks are also shown in the spectra. The latter signals arise from the carbon coated

formvar film on the copper grid used for analyzing the synthesized gold nanoparticles.

The SAED pattern confirms the crystal structure formation for all particles. Chen et

al. also obtained similar EDS spectra and selected area electron diffraction (SAED)

pattern for dodecanethiol capped gold nanoparticles [90]. From Figures 3.11 and
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(iii)

(ii)
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2 nm

Figure 3.7: HR-TEM image, selected area and associated SAED are shown respectively

in (i), (ii) and (iii); for 2.8 nm gold nanoparticles synthesized using condition (b) capped

with n-dodecane-1-thiol.

3.17, it can be seen that the histogram is symmetrical, and the distance between the

two successive peaks is 0.23 nm, corresponding to the (111) planes for gold. Similar

results have been obtained by Liang et al. [91].

UV-Vis Absorbance Spectra

An Ocean Optics USB2000+ UV–VIS Absorbance Spectrophotometer was used to

obtain the spectra of the nanoparticle colloids. Pure hexane, as supplied by Sigma-

Aldrich, was used for the reference spectrum in these measurements. The spectra,
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Figure 3.8: EDS spectrum for 2.8 nm gold nanoparticles synthesized using condition (b)

capped with n-dodecane-1-thiol.

which were taken in the range of 250-850 nm, can be seen in Figure 3.18 and Figure

3.19. From Figure 3.18, it is evident that the expected plasmon resonance peak

for gold nanoparticles is undetectable for condition (a). A single plasmon resonance

peak is just visible for conditions (b) and (c) at ∼510 nm and ∼540 nm, respectively.

From Figure 3.19, it can be seen that a single plasmon resonance peak is visible

for conditions (d) and (e) at ∼510 nm and ∼540 nm, respectively. This result is

consistent with the work of Hostetler et al. [89] and Alvarez et al. [92].
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Figure 3.9: TEM image and associated size distribution for 4.4 nm gold nanoparticles

synthesized using condition (c) capped with n-dodecane-1-thiol are shown respectively in

(i) and (ii).

NMR Spectra

Proton NMR (1H-NMR) spectra were taken using a BRUKER 500 Shield@TM spec-

trometer. NMR spectra of stock n-dodecane-1-thiol solution and suspensions of

nanoparticles capped with n-dodecane-1-thiol for conditions (a), (b) and (c) are

shown in Figure 3.20. The stock n-dodecane-1-thiol was prepared by dissolving 1

mL of pure dodecanethiol into 1.5 mL CDCl3. NMR samples of the synthesized

nanoparticles were made by suspending ∼14 mg of the nanoparticles into 1.5 mL of

CDCl3. The resulting concentrations of suspensions (a), and (b),(c) for this analysis

were 1.31× 1020 particles/L and 2.54× 1019 particles/L, respectively. For nanopar-

ticles synthesized under condition (a), Figure 3.20, shows three multiplets located at
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Figure 3.10: HR-TEM image, selected area and associated SAED are shown respectively

in (i), (ii) and (iii); for 4.4 nm gold nanoparticles synthesized using condition (c) capped

with n-dodecane-1-thiol.

1.546 PPM, 1.26 PPM and 0.892 PPM.

The NMR spectra obtained for nanoparticles synthesized under experimental con-

dition (b) and (c) yielded three broad multiplets at 1.547 PPM, 1.266 PPM and

0.893 PPM. These results are also consistent with Hostetler et al. [89]. The result-

ing spectra for the capped nanoparticles differ from the spectrum obtained for stock

n-dodecane-1-thiol solution. For the capped nanoparticles, all of the observed peaks

are broader than those of stock n-dodecane-1-thiol sample. It is known that an NMR

peak at 2.58 PPM is associated with a proton attached to the –SH group. This peak
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nm

Figure 3.11: Histogram spectrum for 4.4 nm gold nanoparticles synthesized under condition

(c) capped with n-dodecane-1-thiol is shown .

can be seen in the spectra of the stock n-dodecane-1-thiol, but is not observed in the

spectra for the capped nanoparticles. The lack of this peak indicates that the thiol

group is attached to the gold nanoparticle surface, thus quenching the 2.58 PPM

peak associated with the proton of the thiol. The NMR peak at 0.88 PPM in the

stock n-dodecane-1-thiol is associated with the terminal –CH3 group. In the capped

nanoparticle samples, this peak is not significantly shifted (i.e., only a small shift

from 0.88 PPM to ∼0.89 PPM is observed). Such a small shift indicates that the

methyl group of the n-dodecance-1-thiol cap is far from the nanoparticle surface.

NMR spectra of stock n-hexane-1-thiol and nanoparticles capped with n-hexane-1-

thiol produced under condition (d) and (e) are shown in Figure 3.21. The mea-

surement for the stock n-hexane-1-thiol was prepared by dissolving 1 mL of the
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Figure 3.12: TEM image and associated size distribution for 2.9 nm gold nanoparticles

synthesized under condition (d) and, capped with n-hexane-1-thiol are shown respectively

in (i), (ii) and (iii).

hexanethiol into 1.5 mL CDCl3. NMR samples of the synthesized nanoparticles were

made by dissolving ∼10 mg of the nanoparticles into 1.5 mL of CDCl3. The resulting

particle concentration was 3.66× 1019 particles/L. In Figure 3.21 , the peaks for the

stock n-hexane-1-thiol are found at 0.933 PPM, 1.33 PPM, 1.648 PPM, and 2.57

PPM. Three multiplets of the n-hexane-1-thiol capped gold nanoparticles are seen

at 1.55 PPM, 1.27 PPM, and 0.856 PPM. The NMR peak at 2.58 PPM is associated

with a proton attached to the –SH group. This peak is observed in the spectra of the

stock n-hexane-1-thiol, but is not seen in the spectra for the capped nanoparticles.

The lack of this peak indicates that the thiol group is attached to the gold nanopar-

ticle surface, thus quenching the 2.58 PPM peak associated with the proton of the
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2 nm

(ii)

(ii)

Figure 3.13: HR-TEM image, selected area and associated SAED are shown respectively

in (i), (ii) and (iii); for 2.9 nm gold nanoparticles synthesized using condition (d) capped

with n-hexane-1-thiol.

thiol. These results confirm that the thiol group is completely attached to the gold

nanoparticle surface. Here, greater proximity of the –CH3 group to the nanoparticle

surface results in more significant shift from 0.933 PPM to 0.856 PPM.

3.5 Summary

This chapter outlines the procedure of gold nanoparticle synthesis based on the tech-

nique established by Hostetler et al.[89] and Brust et al. [88]. The size distributions

of the synthesized nanoparticles were determined by analyzing TEM images of the

69



Au
Au

Au

Cu

Cu

C

Au Au
0

200

400

600

800

1000

0 5 10 15 20 25

B

C
ou

nt
s

Energy [keV]

Figure 3.14: EDS spectrum for 2.9 nm gold nanoparticles synthesized under condition (d)

capped with n-hexane-1-thiol is shown .

particles. EDS spectra showed evidence of gold in the spectrum. A SAED pattern

illustrates the crystal structure of the capped nanoparticles. This chapter also shows

the UV-vis and NMR measurement data for all synthesized nanoparticles.

The next chapter describes the theoretical consideration and sample preparation for

the performed experiments.
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Figure 3.15: TEM image and associated size distribution for 4.3 nm gold nanoparticles

synthesized using condition (e) capped with n-hexane-1-thiol are shown respectively in (i)

and (ii).
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(iii)

(ii)

(i)

10 nm

Figure 3.16: HR-TEM image, selected area and associated SAED are shown respectively

in (i), (ii) and (iii); for 4.3 nm gold nanoparticles synthesized using condition (e) capped

with n-dodecane-1-thiol.
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Figure 3.17: Histogram spectrum for 4.3 nm gold nanoparticles synthesized under condition

(e) capped with n-hexane-1-thiol is shown .
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Figure 3.18: UV–Vis spectra of 1.6 nm, 2.8 nm and 4.4 nm n-dodecane-1-thiol capped gold

nanoparticles produced under conditions (a), (b) and (c).
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Figure 3.19: UV–Vis spectra of 2.9 nm and 4.3 nm n-hexane-1-thiol capped gold nanopar-

ticles produced under conditions (d) and (e).
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Figure 3.20: NMR spectra of stock n-dodecane-1-thiol and nanoparticles produced under

conditions (a),(b) and (c) (i.e., nanoparticles capped with n-dodecane-1-thiol).
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Figure 3.21: NMR spectra of stock n-hexane-1-thiol and nanoparticles produced under

condition (d) and (e) (i.e., nanoparticles capped with n-hexane-1-thiol).
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Chapter 4

Theoretical Considerations and

Sample Preparation

This chapter describes the theories used for the analysis of the experimental results.

The sample preparation is described, in brief, for all of the experiments that were

performed.

4.1 Theoretical Considerations For Unmixed Nanopar-

ticles

Equilibrium between nanoparticles in the bulk and nanoparticles adsorbed at the

hexane–water interface is assumed to obey the Langmuir equilibrium isotherm:

Γ = Γmax ·
C

aL + C
(4.1)

where Γmax is the monolayer capacity of the liquid-liquid interface, reflecting the

maximum amount of nanoparticles that can be adsorbed, aL is the Langmuir param-

eter, and C is the bulk nanoparticle concentration at equilibrium. Assuming ideal

behavior, an assumption valid at low nanoparticle concentrations, the adsorption

density and bulk nanoparticle concentration at equilibrium are related by the Gibbs

adsorption equation:

Γ = − 1

RT

dγ

d(lnC)
(4.2)
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Combining Equation 4.1 and Equation 4.2, yields the well-known Langmuir-Szyszkowski

equation which relates explicitly, the interfacial tension to nanoparticle concentration

in the bulk phase [93]:

γ = γ0 −RT · Γmax · ln
(

1 +
C

aL

)
(4.3)

where γ0 is the interfacial tension of the hexane–water interface in the absence of

nanoparticles. When diffusion controls the adsorption kinetics of gold nanoparticles,

the theory of Ward and Tordai applies [19]:

Γ(t) = 2

√
D

π

(
C
√
t−
∫ √t

0

Cs(0, t− τ)d(
√
t)

)
(4.4)

where Cs is the nanoparticle concentration in the subsurface (a region of the bulk

solution immediately next to the hexane–water interface) and D is the diffusion

coefficient of nanoparticles in the bulk phase. The asymptotic forms of the time

dependence of dynamic interfacial tension for t −→ 0 and t −→∞ are given by [94]:

γ(t) = γ0 − 2RTC

√
Dt

π
(4.5)

dγ

d(t+
1
2 )
|t→0 = −2RTC

√
D

π
(4.6)

γ(t) = γ∞ +
RT · Γ2

C

√
π

4Dt
(4.7)

dγ

d(t−
1
2 )
|t→∞ =

RT · Γ2

C

√
π

4D
(4.8)

where γ∞ is the interfacial tension at equilibrium (i.e., as t −→ ∞). The latter

quantity is obtained from the intercept of a plot of long-time dynamic interfacial

tension data against t−
1
2 . The Langmuir isotherm parameters can be estimated from

a fit of the Langmuir-Szyszkowski equation to equilibrium surface pressure data,

γ0−γ∞. The Szyszkowski isotherm permits an estimation of the maximum adsorption

density, Γmax, Langmuir parameter, aL, the minimum molecular area occupied by a

nanoparticle at the interface, Amin, and the Gibbs free energy of adsorption, ∆Gads.

These values may be estimated using the following equations [95], [96]:

Amin =
1

Γmax ·NA

(4.9)
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∆Gads = −RT · ln
(

1

aL

)
(4.10)

where NA is the Avogadro’s number.

Should the adsorption kinetics be controlled by diffusion of nanoparticles in the

bulk phase at all times, one should find that D0 = D∞. This is not the case for

the adsorption of nanoparticles at liquid-liquid interfaces – a fact attributed to the

presence of an adsorption barrier, such that D∞ � D0 [97, 1].

For sufficiently dilute colloidal suspensions, such as the ones considered here, the

Stokes-Einstein equation should be expected to provide a reasonably accurate pre-

diction of the diffusion coefficient of nanoparticles in solvent:

DS−E =
kBT

6πηr
(4.11)

where kB is the Boltzmann constant, η is the viscosity of the solvent and r is the

nanoparticle radius. The Stokes-Einstein equation derives, with the assumption that

a single rigid solute sphere is diffusing in a continuum of solvent. The net velocity

(v) of this sphere is directly proportional to the force acting on it (i.e. force = f ·v).

As the sphere moves slowly, according to Stokes law, this friction coefficient f is equal

to 6πηr. Einstein stated that the force, acting on the sphere, is equal to negative

chemical potential gradient. The assumption in this analysis is that the velocity or

flux is assumed to vary with the chemical potential gradient. This equation is valid

when the solute is larger than the solvent. However, experimentally it is found to

be inaccurate in the non-ideal solutions [98]. During the early stages of adsorption

from sufficiently dilute nanoparticle suspensions, one expects D0 = DS−E. In the

context of the theory put forth by Liggieri and co-workers [20] for mixed diffusion-

activation controlled adsorption, the analysis of late-time dynamic IFT data provides

an apparent diffusion coefficient which depends on the magnitude of the adsorption

barrier [20]:

D∞ = D0exp

(
−∆E

kBT

)
(4.12)

where ∆E is the activation energy of the barrier and D0 is the diffusion coefficient.

It is assumed above that there is no interaction among nanoparticles at the liquid-

lquid interface. To clarify this assumption, Frumkin models can be applied instead
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of Langmuir. The Frumkin adsorption isotherm and equation of state respectively,

are given by [99],[100]:
C

aL
=

Γ

Γ∞ − Γ
· exp

(
KΓ

Γ∞

)
(4.13)

γ = γ0 +RT · Γ∞ ·
(

ln

(
1− Γ

Γ∞

)
− K

2
·
(

Γ

Γ∞

)2
)

(4.14)

where, parameter K represents the interaction among the particles. The value of K

> 1, shows an evidence for favoring any interaction among the studied non-mixed

nanoparticles . For K61, indicates that no interaction exists among the particles.

[100],[101].

4.2 Theoretical Considerations For Nanoparticle

Mixtures

For insignificant surface interactions, the Langmuir isotherm that is used for single

components can also be generalized for two component systems [102], [103]. The

generalized Langmuir isotherm for two component systems (eg. A and B), is given

by:

ΓA =
ΓmaxKL,ACA

1 +KL,ACA +KL,BCB
(4.15)

ΓB =
ΓmaxKL,BCB

1 +KL,ACA +KL,BCB
(4.16)

where KL,i = 1
aL,i

represents to component i. CA and CB are the concentration

of components A and B in the bulk, respectively. The corresponding equation for

surface pressure Π = γ0 − γ is:

Π(CA, CB) = −RTΓmax · ln
(

1− ΓA
Γmax

− ΓB
Γmax

)
(4.17)

Equations 4.15, 4.16 and 4.17 are valid only if Γm,A and Γm,B ≈ Γmax. Otherwise an

improved approach or model is needed for multicomponent systems [102].
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Using non-ideal interactions in binary mixtures (NIBM) theory, the mole fraction of

adsorbed nanoparticles at the interfacial layer at the water–hexane interface can be

estimated by [104], [105], [95], [106] :

X2
1 · ln

(
C1,t

C0
1,t·X1

)
(1−X1)2 · ln

(
C2,t

C0
2,t·(1−X1)

) = 1 (4.18)

where X1 is the mole fraction of type-1 nanoparticles at the interface; α is the mole

fraction of type-1 nanoparticles in the bulk suspension; C1,t and C2,t are the molar

concentrations of type 1 & 2 nanoparticles in the bulk suspension; C0
1,t and C0

2,t are

the molar concentration of type 1 & 2 nanoparticles that would be needed to produce

the same interfacial tension as a binary mixture of nanoparticles having a total molar

concentration of Ct. Further, it is also known that C1,t = αCt and C2,t = (1− α)Ct.

The interaction parameter, β, represents the interaction between the two components

in a mixed nanoparticle interfacial layer and, assuming a monolayer of nanoparticles

at the interface, it can be calculated as follows:

β =
ln
(

C1,t

C0
1,t·X1

)
(1−X1)

2 (4.19)

The parameter β measures the deviation from an ideal mixing of the two nanoparticle

types and it is proportional to the free energy of mixing in the system. If β = 0

then there is ideal mixing between the two types of nanoparticles and no interaction

between the two types of nanoparticles is observed. A negative value of β indicates

that there is an attractive interaction between the two nanoparticle types, when

compared to the attraction between nanoparticles of the same type. A positive

value of β indicates that there is a repulsive interaction between the two types of

nanoparticles.

4.3 Measurements

Below are the sample preparation methods and measurements for the experiments

outlined in Chapters 5, 6 and 7.
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4.3.1 Sample Preparation for the Experiments Performed

in Chapter 5

Dynamic interfacial tension measurements

The effect of nanoparticles on the dynamic interfacial tension was investigated using

a series of colloids of varying nanoparticle concentration, achieved by diluting each of

the three kinds 1.6 nm, 2.8 nm n- dodecane-1-thiol capped and 2.9 nm n-hexane-1-

thiol capped synthesized nanoparticles in pure hexane. A drop of deionized ultra-pure

water (∼18.2 MΩ·cm) was formed at the end of a steel needle placed into the colloidal

suspension and images of this drop were recorded over time. Image aquisition and

determination of dynamic interfacial tension by axisymmetric drop shape analysis

(ADSA) were performed using the VCA 2500 XE equipment and software (AST

Products, Billerica, MA).

Calibration and verification of ADSA system

All glassware, syringes, and equipment were well cleaned using either acetone, tetrahy-

drofuran, or both. Before use in the ADSA measurements, the hexane (Sigma-

Aldrich, > 99% purity) was shaken with a nearly equal volume of ultrapure water for

thirty minutes to achieve equilibrium between the two phases. The water was then

removed and the process repeated a total of three times in order to remove trace

impurities from hexane. The interfacial tension of pure water droplets in hexane

treated in this manner was then measured. The purity of hexane-water interface was

confirmed and, is shown in Appendix 8.2. A constant interfacial tension value of 51.2

± 0.4 mN/m was found at a temperature of 295.5 K for these droplets, which is con-

sistent with the literature value of 51.4 mN/m reported by Goebel and Lunkenheimer

[59]. Prior to any interfacial measurement, the equipment was checked by measuring

the interfacial tension of a pure water droplet in equilibrated hexane to verify that

the measured interfacial tension had not deviated from the established value of 51.2

mN/m.
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4.3.2 Sample Preparation for the Experiments Performed

in Chapter 6

The interaction behaviour of mixtures of nanoparticles at the interfacial layer was

investigated by preparing a series of nanoparticle suspensions containing two types of

nanoparticles at various concentrations in pure hexane. A droplet of deionized ultra-

pure water (∼18.2 MΩ·cm) was then formed at the end of a steel needle placed into

the colloidal suspension and images of the droplet were recorded over time. A similar

procedure, as discussed in Section 4.3.1, was followed for the dynamic interfacial

tension measurements, and calibration of ADSA system.

4.3.3 Sample Preparation for the Experiments Performed

in Chapter 7

Colloidal suspensions were prepared by adding the synthesized nanoparticles to either

pure hexane or nonane. Prior to use, the hexane and nonane (Sigma-Aldrich, > 99%

purity) were shaken with approximately equal volume of ultrapure (∼18.2 MΩ·cm)

water for thirty minutes in order to achieve equilibrium between the two phases. The

water was then removed and the process was repeated a total of three times in order to

remove trace impurities from both the hexane and nonane. The aqueous phases used

in this study were made from deionized ultra-pure water to which various amounts

of either NaCl (J. T. Baker), NaOH (Caledon), or HCl (Fisher Scientific) were added

to adjust the ionic strength and pH of the solution. As a control, the equilibrium

IFT of pure water droplets was measured in the system resulting in constant IFT

values of 51.2 ± 0.4 mN/m for water–hexane and 52.2 ±0.3 mN/m for water–nonane

at a temperature of 297.65 K. These values are consistent with literature values for

water–hexane (51.4 mN/m) and water–nonane (52.4 mN/m) as reported by Goebel

and Lunkenheimer [59]. The reported interfacial tension values are the average of

at least two measurements. The pH was measured using a calibrated pH meter

(VWR SB21, Symphony) with an uncertainty of±0.01. The experiments were carried

out at temperatures in the range of 25oC to 43oC using a fresh sample solution at

constant pH and bulk nanoparticle concentration. The dynamic interfacial tension

measurements, and calibration of ADSA system were done as described in Section
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4.3.1.

4.4 Summary

This chapter illustrates the theoretical formulae necessary for analysis of the experi-

mental data (analysis is shown in chapters 5, 6 and 7). It also outlines the procedure

followed for sample preparation in each investigation performed in this thesis.

The next chapter provides the effect of factors, i.e., bulk concentration, particle size

and nature of the capping agent on the adsorption kinetics of AT-AuNPs at the

hexane-water interface.
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Chapter 5

Effect of Bulk Concentration,

Particle Size and Capping Agent

on Interfacial Tension

This chapter discusses the effect that nanoparticle bulk concentration, particle size

and nature of the capping ligand has on the IFT at the water-hexane interface.

The pendant drop technique was used to characterize the adsorption behavior of

n-dodecane-1-thiol and n-hexane-1-thiol capped gold nanoparticles. UV-Vis spec-

troscopy and proton NMR measurements were performed to confirm the removal of

free ligands from the nanoparticle suspensions prior to their use. The characteristics

of the adsorption process was obtained by analysis of dynamic interfacial tension

data as a function of particle concentration in the bulk.

5.1 Effect of Particle Concentration and Size on

the Interfacial Properties

Time dependent interfacial tension measurements were performed on the hexane–

water interface. For these measurements, n-dodecane-1-thiol and n-hexane-1-thiol

capped nanoparticles were suspended in the hexane phase prior to the formation of
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the interface. It was found that the dynamic interfacial tension decreases with time

for all cases as shown below.

5.1.1 Concentration Effect on the Dynamic Interfacial Ten-

sion for n-Dodecane-1-Thiol Capped Gold Nanoparticles

Figures 5.1 and 5.2 illustrate that at higher particle concentrations, the rate at which

the interfacial tension decreases is greater and a lower interfacial tension is reached

at equilibrium. For each observed concentration, the equilibrium dynamic interfacial

tension (i.e., t −→ ∞) was obtained by fitting straight lines to γ vs. t−
1
2 data at

late times and reading γ∞ as the intercept (cf. Equation 4.7). These results can

be seen in Tables 5.1 and 5.2. Semi-log plots of the equilibrium interfacial tension

vs. nanoparticle concentration are shown in Figure 5.3. It is evident that as the

nanoparticle concentration increases, the equilibrium interfacial tension decreases

until a critical concentration, c′, is reached for which the interface reaches maximum

coverage, Γ∞, by absorbed nanoparticles (i.e., the surface is saturated). The values

of c′ for 1.6 ± 0.28 nm and 2.8 ± 0.27 nm particles are 2.12 × 1017 particle/L and

8.28× 1016 particles/L respectively.

Table 5.1: Adsorption behavior for n-dodecane-1-thiol capped gold nanoparticles synthe-

sized under condition (a) at the hexaxe–water interface. These particles were sized using a

log-normal fit; resulting in a mean particles size of µ = 1.60 nm with a standard deviation

of σ = 0.278 nm.
Nanoparticle Equilibrium Diffusivity

concentration int. tension [m2/s]

C [particle/L] γ∞[mN/m] D0 D∞

2.12× 1015 40.70 4.42× 10−10 1.98× 10−10

8.51× 1015 35.58 8.14× 10−11 5.70× 10−12

2.12× 1016 32.85 9.90× 10−12 3.54× 10−13

4.26× 1016 30.90 3.63× 10−12 1.56× 10−13

2.12× 1017 26.30 2.57× 10−13 7.31× 10−15

2.55× 1017 26.07 1.39× 10−13 2.73× 10−15
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Figure 5.1: Interfacial tension of a water droplet in hexane with 1.6± 0.28 nm Au capped

n-dodecane-1-thiol nanoparticles at various concentrations: (1) 2.55×1017 particles/L, (2)

2.12×1017 particles/L, (3) 4.26×1016 particles/L, (4) 2.12×1016 particles/L, (5) 8.51×1015

particles/L,and (6) 2.12× 1015 particles/L.
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Figure 5.2: Interfacial tension of a water droplet in hexane with 2.8± 0.27 nm Au capped

n-dodecane-1-thiol nanoparticles at various concentrations: (1) 1.27×1017 particles/L, (2)

8.48×1016 particles/L, (3) 4.24×1016 particles/L, (4) 2.12×1016 particles/L, (5) 8.48×1015

particles/L, and (6) 4.24× 1015 particles/L
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Table 5.2: Adsorption behavior for n-dodecane-1-thiol capped gold nanoparticles synthe-

sized under condition (b) at the hexane–water interface. These particles were sized using a

log-normal fit; resulting in a mean particles size of µ = 2.78 nm with a standard deviation

of σ = 0.273 nm.
Nanoparticle Equilibrium Diffusivity

concentration int. tension [m2/s]

C [particle/L] γ∞[mN/m] D0 D∞

4.24× 1015 36.47 3.54× 10−10 5.16× 10−12

8.48× 1015 34.60 1.29× 10−10 1.41× 10−12

2.12× 1016 32.30 1.37× 10−11 3.72× 10−13

4.24× 1016 31.0 3.52× 10−12 9.16× 10−14

8.48× 1016 29.69 7.56× 10−13 1.07× 10−14

1.27× 1017 29.62 2.24× 10−13 6.55× 10−15

5.1.2 Concentration Effect on the Dynamic Interfacial Ten-

sion for n-Hexane-1-Thiol Capped Gold Nanoparticles

As with Figures 5.1 and 5.2, Figure 5.4 also shows that there is an effect on the

interfacial tension associated with nanoparticle concentration. The rate at which the

interfacial tension decreased was also found to be higher for n-hexane-1-thiol capped

nanoparticles as concentration was increased. Again, the equilibrium interfacial ten-

sion was found to be lower at higher nanoparticle concentrations. These results can

be seen in Table 5.3. With an increase in the nanoparticle concentration, the equilib-

rium interfacial tension also decreased until the critical concentration, c′ = 8.61×1016

particles/L, was reached.

5.1.3 Size Effect on the Dynamic Interfacial Tension

For larger particles (2.8±0.27 nm), the interfacial tension falls very sharply when the

droplet is initially formed. The interfacial tension also falls for smaller nanoparticles (

1.6±0.28 nm), but not as sharply as for the larger ones. As soon as the water droplet

is formed in the hexane-Au suspension, nanoparticles go to the interface. The total
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Figure 5.3: Extrapolated equilibrium interfacial tension of (i) 1.6± 0.28 nm and (ii) 2.8±
0.27 nm Au capped n-dodecane-1-thiol nanoparticles showing the critical concentration

[particle/L]. The straight line represents a fit on the Gibbs adsorption isotherm.

free energy of the system decreases as a result. The change in free energy associated

with adsorption of a single particle is given in Equation 1.1, which shows that for

constant temperature, γo/w, γp/w, and γp/o, larger particles are more stably attached

at the liquid-liquid interface. On the contrary, smaller particles are more easily

displaced as a result of thermal fluctuations. For a given bulk concentration, greater

surface coverage is initially achieved by adsorption of larger particles, hence a greater

initial reduction of the interfacial tension is observed. As t −→ ∞, equilibrium

coverage of the interface is achieved faster for larger nanoparticles. For the same bulk

concentration of (4.25± 0.1)× 1016 particles/L, Figure 5.5 shows that the interfacial

tension is slightly smaller for the larger nanoparticles (31.87 mN/m vs. 33.33 mN/m).
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Figure 5.4: Plot of the interfacial tension of a water droplet in hexane with 2.9 ± 0.19

nm Au capped n-hexane-1-thiol nanoparticles at various concentrations: (1) 1.30 × 1017

particles/L, (2) 8.65×1016 particles/L, (3) 2.16×1016 particles/L, (4) 8.61×1015 particles/L

and (5) 4.32× 1015 particles/L.

Similar observations have been made by Kutuzov et al.[1].

92



Table 5.3: Adsorption behavior for n-hexane-1-thiol capped gold nanoparticles synthesized

under condition (c) at the hexane–water interface. These particles were sized using a log-

normal fit; resulting in a mean particles size of µ = 2.85 nm with a standard deviation of

σ = 0.188 nm.
Nanoparticle Equilibrium Diffusivity

concentration int. tension [m2/s]

C [particle/L] γ∞[mN/m] D0 D∞

4.32× 1015 31.70 3.70× 10−10 9.12× 10−13

8.61× 1015 29.70 2.38× 10−10 5.39× 10−13

2.16× 1016 28.24 2.83× 10−11 3.54× 10−15

8.65× 1016 25.25 1.31× 10−12 6.62× 10−15

1.30× 1017 25.22 5.79× 10−13 2.91× 10−15

5.2 Effect of Nature of the Capping Agent on the

Interfacial Properties

Figure 5.6 demonstrates a significant effect of the chain length of alkanethiol ligands

on adsorption behaviour. Specifically, at the same bulk concentration of (8.56 ±
0.18) × 1016 particles/L, the longer n-dodecane-1-thiol is apparently more effective

at shielding the polar gold core than n-hexane-1-thiol, thereby decreasing the hy-

drophilic character and reducing the surface activity of n-dodecane-1-thiol stabilized

gold nanoparticles relative to nanoparticles of the same size that are stabilized with n-

hexane-1-thiol. Figure 5.6 shows that a significantly lower value of interfacial tension

is reached following the adsorption of n-hexane-1-thiol stabilized gold nanoparticles

(27.63 mN/m vs. 32.07 mN/m) for nanoparticles of the same size stabilized with

n-dodecane-1-thiol).
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Figure 5.5: Time dependence of the interfacial tension for the adsorption of Au capped

n-dodecane-1-thiol nanoparticles of different diameters (1) 1.6±0.28 nm and (2) 2.8±0.27

nm at the same bulk concentration ( 4.25± 0.1× 1016 particles/L).

5.3 Adsorption Kinetics of n-Dodecane-1-Thiol-

and n-Hexane-1-Thiol-Stabilized Gold Nanoparti-

cles

In this section, the gold nanoparticle adsorption data obtained are quantitatively

analyzed. For 1.6± 0.28 nm n-dodecane-1-thiol particles, the Langmuir-Szyszkowski

isotherm is characterized by a maximum adsorption density, Γ∞ = 1.27 × 10−6
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Figure 5.6: Time dependence of the interfacial tension for the adsorption of Au capped (1)

n-dodecane-1-thiol and (2) n-hexane-1-thiol nanoparticles of almost same diameters ( ∼ 3

nm ) at same bulk concentration (8.56± 0.18× 1016 particles/L).

mol/m2, and Langmuir parameter, aL = 1.15 × 10−7 mol/m3. It is instructive to

compare the value of Γ∞ to what would be expected for some simple closely-packed

arrangements of particles at the liquid-liquid interface, as shown in Figure 5.7. For

the 1.6 nm particles, the theoretical maximum adsorption density is Γsq = (0.71 ±
0.23)×10−6 mol/m2 for the square arrangement and Γtri = (0.82±0.27)×10−6mol/m2

for the triangular one. The experimental value, Γmax = 1.27 × 10−6 mol/m2 is

thus consistent with Γtri (i.e., hexagonal). Similarly, the Langmuir-Szyszkowski

isotherm for the 2.8 ± 0.27 nm n-dodecane-1-thiol stabilized particles is charac-
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Figure 5.7: Particle packing arrangements at the interface (i) triangular and (ii) square

arrangement.

terized by a maximum adsorption density, Γmax = 8.43 × 10−7mol/m2 and Lang-

muir parameter, aL = 4.89 × 10−9mol/m3. For this particle size, one estimates

Γsq = (2.2±0.42)×10−7mol/m2 and Γtri = (2.5±0.5)×10−7 mol/m2. The latter value

is consistent with experiment. The same is true of the 2.9±0.19 nm n-hexane-1-thiol

stabilized particles, for which the Langmuir-Szyszkowski isotherm is characterized by

a maximum adsorption density of Γmax = 7.82× 10−7mol/m2 and Langmuir param-

eter, aL = 2.38 × 10−10 mol/m3, whereas Γsqu = (2.00 ± 0.27) × 10−7mol/m2 and

Γtri = (2.31 ± 0.3) × 10−7mol/m2. Albeit rough, these estimates indicate a closely

packed arrangement of the adsorbed nanoparticles at the hexane-water interface, as

also found by Kutuzov et al.[1] for CdSe nanoparticles at the toluene-water interface.

Figure 5.8 shows fits of the Langmuir isotherm to experimental data for 1.6 nm and

2.8 nm n-dodecane-1-thiol capped gold nanoparticles studied. Maximum or nearly

maximum coverage of the interface is evidently achieved at equilibrium for all bulk

concentrations considered,(i.e., Γ ∼= Γmax).

Using Equation 4.5 and Equation 4.7, the diffusivity of gold nanoparticles may be

estimated from early- and late-time interfacial tension data, respectively. These
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Figure 5.8: Equilibrium adsorption density of (i) 1.6±0.28 nm (ii) 2.8±0.27 nm Au capped

n-dodecane-1-thiol nanoparticles and (iii) 2.9± 0.19 nm n-hexane-1-thiol nanoparticles as

a function of bulk nanoparticle concentration.

estimates provide insight into the kinetics of the adsorption process. Should the

adsorption kinetics be controlled by diffusion of nanoparticles in the bulk phase at

all times, one should find D0 = D∞. For dilute colloidal solutions such as the ones

considered here, the Stokes-Einstein equation (See Equation 4.11) should be expected

to provide a reasonably accurate prediction of the diffusivity of nanoparticles in

hexane. Calculations of D0 and D∞ from dynamic interfacial tension data for each

kind of gold nanoparticles synthesized are summarized in Tables 5.1, 5.2 and 5.3. We
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find D0 > D∞ typically by at least an order of magnitude, for all but the smallest

nanoparticle concentration. Both D0 and D∞ decrease with increasing concentration

of the bulk solution. Early-time (t −→ 0) diffusivity estimates, D0, are plotted as a

function of bulk nanoparticle concentration in Figure 5.9, where the predictions of

nanoparticle diffusivity provided by the Stokes-Einstein equation are also shown for

comparison. For the 1.6 nm and 2.8 nm n-dodecane-1-thiol stabilized nanoparticles

the DS−E values are (8.92 ± 1.56) × 10−10 m2/s and (5.00 ± 0.48) × 10−10 m2/s,

respectively, whereas for the 2.9 nm n-hexane-1-thiol stabilized nanoparticles DS−E

= (4.79± 0.3)× 10−10 m2/s. Only for the lowest bulk concentrations, D0 is seen to

agree well with DS−E, suggesting that diffusion in the bulk hexane phase controls

the adsorption kinetics only under conditions of low coverage of the hexane-water

interface by nanoparticles. Over increasing adsorption times (t −→ ∞) and for

adsorption from higher bulk concentrations, where high coverage of the interface by

nanoparticles is realized at earlier times, the estimates of diffusion coefficient afforded

by Equation 4.5 are significantly lower than the DS−E values. Similar observations

have been made by Kutuzov et al.[1] for CdSe nanoparticles at the toluene-water

interface. These authors have suggested that an adsorption barrier rapidly sets in

with increasing surface coverage, as a result of increasing collisions in the sub-layer

between nanoparticles desorbed from the interface with nanoparticles approaching

the interface from the bulk solution. In the context of the theory put forth by

Liggieri and co-workers [20] for mixed diffusion-activation controlled adsorption, the

preceding analysis of experimental data provides an apparent diffusion coefficient

which depends on the magnitude of the potential barrier and free diffusion coefficient

as follows [20]:

D = DfExp

(
−∆E

kBT

)
(5.1)

where ∆E is the activation energy of the barrier and Df is free diffusion coefficient.

In the absence of an energy barrier to adsorption (i.e. when adsorption is limited by

free diffusion of nanoparticles from the bulk solution to the subsurface), Df is equal

to DS−E.

Taking the effective diffusivity equal to D∞ values obtained from experiments with

the highest nanoparticle concentrations, the estimated values of the potential barrier

to adsorption, ∆E, are 4.4 × 10−20J and 4.6 × 10−20J , respectively, for the 1.6 nm
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Figure 5.9: Diffusivity of (i) 1.6±0.28 nm (ii) 2.8±0.27 nm Au capped n-dodecane-1-thiol

nanoparticles and (iii) 2.9± 0.19 nm n-hexane-1-thiol nanoparticles as a function of bulk

nanoparticle concentration.

and 2.8 nm n-dodecane-1-thiol stabilized particles, and 4.8×10−20J for the 2.9 nm n-

hexane-1-thiol stabilized particles. These values are approximately equal to 10kBT ,

as also found by Kutuzov et al.[1] for TOPO-stabilized Cd-Se nanoparticles of dif-

ferent sizes at the toluene-water interface. The latter authors suggested that, under

conditions of high coverage of the interface with nanoparticles, the adsorption process

is controlled by the rate of desorption of already adsorbed nanoparticles, such that

the activation energy, ∆E, is roughly given by Equation 1.1. For all nanoparticles

tested in this work, we find this suggestion consistent with a contact angle of about
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157◦ (measured from the aqueous phase). Alternatively, equating ∆E to Wads, the

work that a particle must do against surface pressure [21], and using experimentally

measured surface pressure data, we find equilibrium contact angles of 117◦± 14◦ and

148◦ ± 4◦ for the 1.6 nm and 2.8 nm n-dodecane-1-thiol stabilized particles, respec-

tively, and 150◦ ± 4◦ for the 2.9 nm n-hexane-1-thiol stabilized particles [107]. Such

interpretations, however, must be viewed with great caution. When deformable soft

organic ligands cover the particle surface, assessment of the energetics of nanoparti-

cle localization at a fluid-fluid interface via determination of an equilibrium contact

angle in the framework of Youngs theory is challenged by molecular dynamics sim-

ulations [70]. Further work is clearly needed before predictions of the magnitude of

the adsorption barrier can be made.

5.4 Summary

This chapter describes the adsorption kinetics of alkhane-thiol capped of gold nanopar-

ticles at the water-hexane interface. The effect of nanoparticle size, particle concen-

tration and nature of the capping agent on the interfacial tension was discussed at

the water–hexane interface. The characteristics of the adsorption process at the early

stages, as t −→ 0, and the later stages, t −→∞, were obtained from the time evolu-

tion of the interfacial tension. At the interface, the particles first undergo free diffu-

sion, then adsorption of the particles occurs due to the ordering and rearrangement

of the nanoparticles at the interface, and, finally, by the formation of a monolayer due

to the collection of the nanoparticles at the interface. By increasing the interfacial

coverage, the diffusion-controlled adsorption for the nanoparticles at the interface

changes to an interaction-controlled assembly. While performing these experiments,

two factors were taken into consideration: (1) the concentration of nanoparticles,

and (2) nanoparticle size. Two kinds of ligand stabilized gold nanoparticles were

used to investigate the effect of ligand chain length on the adsorption behavior at the

interface. It was found that the nanoparticle size, particle concentration and nature

of the capping agent all have a profound impact on the interfacial properties.

The next chapter describes the interfacial properties of mixtures of these nanoparti-

cles, having different sizes and capping agents.
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Chapter 6

Interaction Behaviour During

Adsorption of Mixtures of

Alkanethiol Capped Gold

Nanoparticles at the

Hexane–Water Interface

This chapter addresses the adsorption properties of mixtures of gold nanoparticles at

the hexane-water interface. The interaction parameters for mixtures of nanoparticles

at the interface were also estimated. 1.6 nm, 2.8 nm, and 4.4 nm nanoparticles capped

with n-dodcane-1-thiol and 4.3 nm particles capped with n-hexane-1-thiol were used

in this study. The interfacial properties of mixtures of these nanoparticles, having

different sizes and capping agents, were then studied. The nature and strength of the

interaction between the nanoparticles within a mixture may be assessed in the con-

text of the theory of non-ideal interactions in binary mixtures (NIBM) put forward

by Rosen and coworkers [104], [105], [95], [106]. The NIBM theory has been used

to determine an interaction parameter between the surfactant components in a mix-

ture and the composition of mixed adsorption layers using the equilibrium interfacial

tension isotherms. Using the NIBM theory, the mole fraction of adsorbed nanopar-

ticles at the interfacial layer at the water–hexane interface can be estimated. Using
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Equation 4.18 and Equation 4.19, the mole fraction of nanoparticles at the interface,

X1, and interaction parameter, β were estimated at the water-hexane interface. β,

represents the interaction between the two particles in a mixed nanoparticle interfa-

cial layer. These parameters were estimated using interfacial tension isotherms that

were obtained for each type of nanoparticle prior to mixing and data obtained for

the mixed suspensions. These equations can be seen in Chapter 4.

6.1 Adsorption of 4.4 nm n-Dodecane-1-Thiol and

4.3 nm n-Hexane-1-Thiol Capped Gold Nanoparti-

cles at the Hexane–Water Interface

Experiments were performed to investigate the adsorption kinetics of 4.4 nm n-

dodecane-1-thiol and 4.3 nm n-hexane-1-thiol-stabilized gold nanoparticles at the

hexane–water interface. Figures 6.1 and 6.2 show the time-dependent interfacial ten-

sion measurements of n-dodecane-1-thiol and n-hexane-1-thiol-capped nanoparticles

at the hexane–water interface. For these measurements, 4.4 nm n-dodecane-1-thiol

and 4.3 nm n-hexane-1-thiol-capped nanoparticles were in the hexane phase prior

to forming the droplet. The asymptotic forms of the time dependence of dynamic

interfacial tension for t −→ 0 and t −→ ∞ were used to estimate the diffusivity of

gold nanoparticles for early, D0, and late times, D∞ [94]. For each observed con-

centration, the equilibrium dynamic interfacial tension (i.e., t −→ ∞) was obtained

by fitting straight lines to γ versus t−
1
2 at late times and by determining γ∞ at the

intercept; this technique was developed by Fainerman et al. [94] for surfactants. The

slope of a plot of early time data (t.500 sec) of γ(t) versus t
1
2 was used to calculate

D0. By using Equation 4.5 and Equation 4.7, the diffusion coefficients, D0 and D∞

for the nanoparticle suspensions may be estimated using both early-time and late-

time interfacial data, respectively. The estimated values for D0 and D∞ from the

dynamic interfacial tension data for each kind of gold nanoparticle are summarized

in Tables 6.1 and 6.2. For dilute colloidal suspensions, such as the ones presented

here, the Stokes-Einstein equation (See Equation 4.11) is expected to provide a rea-

sonably accurate prediction for the diffusivity of nanoparticles in hexane. For 4.4

nm n-dodecane-1-thiol, and 4.3 nm n-hexane-1-thiol-capped gold nanoparticles, the
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Stokes-Einstein diffusion, DS−E, values were found to be (3.36± 0.45)× 10−10 m2/s

and (3.47± 0.56)× 10−10 m2/s, respectively.
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Figure 6.1: The interfacial tension of a water droplet in hexane with 4.4 ± 0.6 nm, n-

dodecane-1-thiol capped gold nanoparticles at various concentrations: (1) 3.15× 1016 par-

ticles/L, (2) 6.32× 1015 particles/L, (3) 4.43× 1015 particles/L, (4) 2.21× 1015 particles/L

and (5) 1.74× 1015 particles/L.

The data obtained for the different types of nanoparticle suspensions were fitted by

the Langmuir-Szyszkowski equation, which relates the interfacial tension to nanopar-

ticle concentration in the bulk phase (See Equation 4.3) [93]. The parameters Γ∞

and aL, were obtained by fitting the Equation 4.3; using a nonlinear optimization
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Table 6.1: Adsorption behaviour for 4.4±0.6 nm n-dodecane-1-thiol capped gold nanopar-

ticles at the hexane–water interface.

Nanoparticle Equilibrium Diffusivity

concentration int. tension [m2/s]

C [particle/L] γ∞[mN/m] D0 D∞

1.74× 1015 38.78 4.33× 10−10 3.93× 10−11

2.21× 1015 31.73 3.48× 10−10 1.73× 10−11

4.42× 1015 30.02 7.68× 10−11 1.44× 10−11

6.32× 1015 29.71 8.84× 10−11 5.05× 10−13

3.15× 1016 27.64 3.54× 10−12 1.50× 10−13

Table 6.2: Adsorption behaviour for 4.3 ± 0.7 nm n-hexane-1-thiol capped gold nanopar-

ticles at the hexane–water interface.

Nanoparticle Equilibrium Diffusivity

concentration int. tension [m2/s]

C [particle/L] γ∞[mN/m] D0 D∞

1.92× 1015 37.92 3.51× 10−10 4.02× 10−11

4.00× 1015 37.61 3.14× 10−10 6.64× 10−12

5.49× 1015 36.46 7.48× 10−11 2.95× 10−12

2.75× 1016 34.03 4.51× 10−12 0.45× 10−13
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Figure 6.2: Interfacial tension of a water droplet in hexane with 4.3± 0.7 nm, n-hexane-1-

thiol capped gold nanoparticles at various concentrations: (1) 2.75× 1016 particles/L, (2)

5.49× 1015 particles/L, (3) 4.00× 1015 particles/L, and (4) 1.92× 1015 particles/L.
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scheme in MATLAB. These parameters were obtained by minimizing the sum of

the square of errors between the experimental data and the predicted values. Using

Equation 4.2, and the slope of the curve from the ”equilibrium IFT vs concentration”

graph, Γ∞ was also estimated. The best fitting and estimated values for Γ∞ from

the experiment were almost the same.

6.1.1 Effects of Cap length and Capping Arrangements on

the NPs Surface on Interfacial Tension

At the same bulk concentration, 4.3×1015±7×1013 particles/L,a significantly lower

value of IFT is obtained for 4.4 nm n-dodecanthiol-1-thiol (30.02 vs 36.47) than 2.8

nm n-dodecane-1-thiol stabilized gold nanoparticles.These results again confirm that

larger sized nanoparticles, decrease the IFT to a greater extent than smaller NPs.

This can be seen from Table 6.1, and Table 5.2.

Although having almost the same size, and the same bulk concentration (4.21 ±
0.07) × 1015 particles/L; the decrease in equilibrium IFT was found to be higher

for 4.4 nm n-dodecane-1-thiol capped gold nanoparticles than 4.3 nm n-hexane-1-

thiol capped gold nanoparticles. These results are shown in Table 6.1 and 6.2, and

they indicate that the longer n-dodecane-1-thiol are more effective in reducing IFT

than the shorter n-hexane-1-thiol. This result is in apparent contradiction with the

finding (See Figure 5.6) for ∼ 3 nm particles at a concentration of (8.56±0.18)×1016

particles/L.

The obtained results can be analyzed with respect to the packing arrangement of

ligands on the NPs surface. NPs are topologically equivalent or homeomorphic to

spheres. The sulfur head groups of the ligands are tightly packed on the NP surface,

and the tail groups (−CH3) extend radially from the surface to the outer boundaries.

The tail groups spacing of the adjacent ligands is larger than that of the head groups

[108]. NPs capped with longer ligands take up more space between the adjacent tail

ends than NPs with shorter ligands. Due to the longer molecular length, n-dodecane-

1-thiol ligands are more flexible on the surface of AuNps than the shorter n-hexane-

1-thiol ligands. This, in turn, increases the hydrophilic character of the n-dodecane-

1-thiol capped gold nanoparticles compared to those capped with n-hexane-1-thiol.
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This results in an increased surface activity of the n-dodecane-1-thiol capped gold

nanoparticles compared to NPs of the same size but capped with n-hexane-1-thiol.

Reiterated from Chapter 5, 2.9 nm AuNPs capped with n-hexane-1-thiol are more

surface active in reducing IFT than 2.8 nm AuNPs of same size capped with n-

dodecane-1-thiol. Similarly sized ligands tend to spread with the same tilt angle

on the NPs surface. Although having almost same size, the larger molecular length

n-dodecane-1-thiol is more flexible than the shorter n-hexane-1-thiol on the NPs

surface. However, the longer chains tend to cluster or lay along the NP surface,

instead of splaying out uniformly over the NPs surface due to high curvature or

poor packing on the NPs surface [109], [110],[108]. Thus, the shielding around the

polar gold core reduces the surface activity of n-dodecane-1-thiol that of the shorter

n-hexane-1-thiol. Consequently, at the same bulk concentration, a lower value of

IFT is obtained using 2.9 nm n-hexane-1-thiol capped gold nanoparticles than using

2.8 nm n-dodecane-1-thiol capped gold nanoparticles. These results can be seen in

Chapter 5, and also in work that has been published [97].

However, different adsorption behavior was observed for the smaller 2.9 nm n-hexane-

1-thiol capped AuNPs and the larger 4.3 nm n-hexane-1-thiol capped AuNPs. The

rate at which the IFT decreased was found to be higher for 2.9 nm n-hexane-1-

thiol capped gold nanoparticles than that of 4.3 nm n-hexane-1-thiol capped gold

nanoparticles at the same bulk concentration, (4.16± 0.1)× 1015 particles/L.

For small NPs, the ligands tend to spread out more along the surface than on larger

NPs; this means that the tilt angle of smaller NPs is greater than that of larger NPs.

This leads to more space for their tail groups relative to their sulfur groups. The

spacing between the tail groups decreases with an increase of NP diameter [111], [112];

whereas, the head group spacing remains unchanged as the size of the NP changes.

The ligands are not ordered properly on small NPs; due to their high curvature [113],

[110]. With an increase in NP size, the effect of curvature is reduced. The ligands

are arranged more in a more orderly fashion on the NP surface as NP size increases.

In the ordered phase, the ligands have the same tilt angle on the certain portions of

the sphere [108], [112].

With the increase of the ratio of the radius of the NP to the length of the ligand, the

polar core is more covered by the ordered ligands. This means that the tail groups
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are more in contact with the water-hexane interface than that of the polar gold core.

This, in turns, reduces the surface activity of 4.3 n-hexane-1-thiol compared to that of

2.9 nm n-hexane-1-thiol. As a result, at the same bulk concentration,(4.16±0.1)×1015

particles/L, a lower value of IFT is obtained using 2.9 nm n-hexane-1-thiol (31.70 vs

37.61) than using 4.3 nm n-hexane-1-thiol stabilized gold nanoparticles. This results

can be seen in the Table 5.3 and Table 6.2.

From the aforementioned results, it is evident that the surface activity of the NP

changes with the increase of the ratio of the radius of the NP to the length of the

ligand. Therefore, the capping has a large effect on NP surface activity. These conclu-

sions can also be confirmed by the results obtained by Glaser et al.[18]. The authors

carried out a study using 10 nm gold nanoparticles stabilized with n-dodecane-1-thiol

at the hexane-water interface [18]. They also observed that the larger the length of

the capping agent, the larger the decrease in IFT [18]. They observed that at a bulk

concentration of 7×1016 particles/L, the IFT drops to a value 35 mN/m. However, in

this experiment, carried out at a bulk concentration of 3.65× 1016 particles/L using

4.4 nm n-dodecane-1-thiol stabilized AuNPs, a significantly lower value of IFT was

found. This showed that the surface activity of the AuNP changes with the increase

of the ratio of the radius of the NP to the length of the ligand. Ranatunga et al.

performed molecular dynamics simulations to characterize the behavior of surfactant

funtionalized NPs, and also suggested that the coating has a profound effect on the

interfacial activity of NPs. The functionalized ligands on the NPs surface are flexible;

this permits particle deformation from an idealized spherical shape and results in a

change in NPs activity [70]

6.1.2 Interaction Among the Non-mixed Nanoparticles at

the Hexane–Water Interface.

In this section, data were analyzed to clarify that no interaction exists between non-

mixed nanoparticles at the hexane–water interface. The data for 1.6 nm, 2.8 nm, 4.4

nm n-dodcanethiol capped AuNPs, and 2.9 nm, 4.3 nm n-hexanethiol capped AuNPs

were analyzed in terms of the Frumkin models. The Frumkin adsorption isotherm

and equation of state can be seen from Equation 4.13 and Equation 4.14, respectively.

The obtained results show no interactions between the non-mixed nanoparticles at
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the hexane–water interface. The parameters, Γ∞, K and aL were obtained to fit

Equations 4.13 and 4.14 by using a nonlinear optimization scheme in MATLAB. The

value of K is negative and very small positive number (< 1). Hence, the value K shows

no evidence for favoring any interaction among the studied non-mixed nanoparticles

[100],[101]. The best fit to the optimization procedure and the experimental data

points for 1.6 nm, 2.8 nm n-dodecane-1-thiol capped AuNPs, and 2.9 nm n-hexane-

1-thiol capped AuNPs were obtained. This can be seen in Figures 8.1, 8.2, and 8.3 in

Appendix 8.2. The results indicate that interactions between unmixed nanopartices

is insignificant. The obtained parameters from the Langmuir and the Frumkin models

for synthesized AuNPs are shown in Table 6.3. The estimated adsorption parameters

for AT-capped gold nanoparticles at the hexane–water interface are listed in Table

6.3. The adsorption parameters for 1.6 nm and 2.8 nm n-dodecane-1-thiol capped

AuNPs, and 2.9 nm n-hexane-1-thiol capped AuNPs; are taken from Chapter 5. A

maximum or nearly maximum coverage of nanoparticles at the interface was achieved

at equilibrium for all of the nanoparticle concentrations that were tested ( i.e., Γ ∼=
Γmax).

Table 6.3: Adsorption constants obtained by an optimal fit for synthesized AuNPs under

conditions shown in Table 3.2 and Table 3.3.
Capping Size Model Γ∞ Γexp aL K

mole. [nm] [mol/m2] [mol/m2] [mol/m3]

DT 1.6 L-M 1.27× 10−6 1.26× 10−6 1.15× 10−7

F-M 1.22× 10−6 3.49× 10−6 −7.29

DT 2.8 L-M 8.43× 10−7 9.19× 10−7 4.89× 10−9

F-M 8.30× 10−7 3.78× 10−8 −4.12

DT 4.4 L-M 5.99× 10−7 5.98× 10−7 5.87× 10−12

F-M 5.94× 10−7 5.82× 10−13 0.05

HT 2.9 L-M 7.82× 10−7 8.50× 10−7 2.38× 10−10

F-M 7.74× 10−7 1.52× 10−10 0.80

HT 4.3 L-M 5.92× 10−7 6.22× 10−7 5.78× 10−10

F-M 5.54× 10−7 2.94× 10−10 −1.11
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Nanoparticles form self-assemble layers at the hexane–water interface.

To quantify the packing arrangements of nanoparticles at the hexane-water interface;

the hydrodynamic diameter has to be precisely defined. The hydrodynamic diameter,

dH , is defined by dH = dTEM +(2L), where dTEM is the TEM measured core diameter

of the particle, and L is the fully extended molecular length of the capping agent

(attached to the particle). The molecular length is estimated by the formula L =

0.12(n+1) nm, where n is the number of carbon atoms [108]. The estimated molecular

lengths for hexanethiol (L6) and dodecanthiol (L12 ) are 0.86 nm and 1.56 nm. The

value of dH was estimated for all studied nanoparticles by following the method

outlined by Wuelfing et al.[111]. Wuelfing et al. estimated the values dH , for gold

cores (d ∼ 1 − 5) nm coated with self-assembled monolayers of alkhane-thiolate

ligands. They stated that dH values were in agreement with dTEM + (2L) values for

the small core. However, for the larger core, dH values were about a half monolayer

shorter than dTEM + (2L). Adsorption density, Γ∞, were estimated theoretically

by taking into account the cap length, and also without consideration of the cap

size. The estimated dH and Γ∞ values are shown in Table 6.4. Using Equation 4.9

and Equation 4.10, the minimum area occupied by the particles, and the adsorption

energy at the hexane-water interface was estimated. This value is shown in Table

6.5. The low values of Amin indicate that the nanoparticles at the hexane–water

interface formed tightly packed layers. The adsorption tendency is much higher for

4.4 nm n-dodecane-1-thiol gold particles than for 4.3 nm n-hexane-1-thiol capped

nanoparticles, which is most likely caused by a significant difference in the values of

free energy of adsorption for the two nanoparticle types. When the absolute value

of ∆Gads is high, a higher adsorption at the interface is obtained [95]; these results

can be seen in Table 6.5. For 4.4 ± 0.6 nm n-dodecane-1-thiol capped particles,

the theoretical maximum adsorption density is Γsqu for a square arrangement of

nanoparticles at the interface; and Γhex for a hexagonal (i.e., triangular) arrangement

of nanoparticles at the interface can be seen in Table 6.4. The estimated value for

Γ∞ = 5.99× 10−7 mol/m2 is consistent with Γhex, indicating that the particles may

be arranged in a hexagonal close packed arrangement at the interface. Similarly, for

4.3±0.7 nm n-hexane-1-thiol capped particles, Γ∞ = 5.92×10−7 mol/m2 is consistent

with the value Γhex; this means a close-packed hexagonal layers arrangement of the

nanoparticles at the interface. Dai et al. observed the multiphase interactions and
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Table 6.4: Estimated hydrodynamic particle diameter and theoretically estimated adsorp-

tion density for synthesized capped AuNPs under conditions shown in Table 3.2 and Table

3.3.
Capping Mol. length dTEM dh Without cap With cap

molecule [nm] [nm] [nm] Γsqu Γtri Γsqu Γtri

×10−6 ×10−6 ×10−7 ×10−7

[mol/m2] [mol/m2] [mol/m2] [mol/m2]

DT L12 = 1.56 1.6 4.72 0.71 0.82 0.75 0.87

(±0.278) (±0.28) (±0.23) (±0.27) (±0.09) (±0.1)

DT , , 2.8 5.92 0.22 0.25 0.48 0.55

(±0.273) (±0.27) (±0.42) (±0.05) (±0.04) (±0.05)

DT , , 4.4 7.52 0.09 0.1 0.3 0.34

(±0.6) (±0.6) (±0.02) (±0.02) (±0.04) (±0.05)

HT L6 = 0.84 2.9 4.52 0.2 0.23 0.80 0.92

(±0.188) (±0.18) (±0.02) (±0.03) (±0.06) (±0.07)

HT , , 4.3 5.98 0.09 0.11 0.48 0.55

(±0.7) (±0.7) (±0.03) (±0.03) (±0.11) (±0.12)

Table 6.5: Adsorption parameter for synthesized AT-capped gold nanoparticles under con-

ditions shown in Tables 3.2 and 3.3.

Capping mole. Size ∆Gads Amin

[nm] [kJ/mol] [nm2/particle]

DT 1.6 −39.5 1.32

DT 2.8 −47.0 1.97

DT 4.4 −64.0 2.77

HT 2.9 −54.8 2.12

HT 4.3 −52.0 2.80
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self-assembled structure of nanoparticles at a trichloroethylene-water interface. They

also found that 1-5 nm dodecanethiol-capped silver nanoparticles formed multilayers

at the interface [114].

6.2 Nanoparticle Mixtures at the Hexane-Water

Interface

For insignificant interactions among the nanoparticle, the Langmuir isotherm used

for the single components can be generalized for two or multicomponent systems

[102],[103]. The Langmuir isotherm for two component systems can be seen in Chap-

ter 4. Using Equations 4.15, 4.16 and 4.17, the surface adsorption density for com-

ponents A and B was estimated for NPs mixtures; values correspond to ΓA and ΓB

[102],[103]. The parameters, Γmax, KL,A, and KL,B, were obtained by fitting Equa-

tions 4.15, 4.16 and 4.17 using a nonlinear optimization scheme in MATLAB. The

estimated values of ΓA and ΓB for all nanoparticle mixtures studied can be seen in

Tables 6.6, 6.7 and 6.8.

As Γm,A 6= Γmax, Equations 4.15, 4.16 and 4.17, cannot be used for studied nanopar-

ticles mixtures. The obtained results indicate that there is significant surface interac-

tion among nanoparticles in the mixtures. In light of this, the interaction parameters

for mixtures of nanoparticles were estimated next.

6.2.1 Interfacial Properties and Nanoparticle–Nanoparticle

Interaction During Adsorption From Nanoparticle Mixtures

In this section, the interfacial properties of three nanoparticle mixtures and respective

nanoparticle-to-nanoparticle interactions at the hexane-water interface are quanti-

tatively discussed. Using Equation 4.18 and Equation 4.19, the mole fraction of

nanoparticles at the interface, X1, and the interaction parameter, β, were estimated

at the hexane-water interface. These parameters were estimated using interfacial

tension isotherms that were obtained for each type of nanoparticle prior to mixing

and data obtained for the mixed suspensions.
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Table 6.6: Adsorption density for mixtures of 1.6 nm and 2.8 nm n-dodecane-1-thiol

capped gold nanoparticles at the water–hexane interface.

Unmixed Mixture Equilibrium Ads. Ads. Max.

Conc. Con. IFT density for NP1 density for NP2 density

C [particle/L] Ct γ∞ ΓA ΓB Γmax

1.6 [nm]– 2.8[nm] [particle/L] [mN/m] [mol/m2] [mol/m2] [mol/m2]

2.12× 1015 − 2.12× 1016 2.10× 1015 39.45 9.29× 10−9 6.89× 10−7 6.99× 10−7

4.26× 1016 − 4.24× 1016 4.24× 1016 35.50 1.00× 10−8 6.88× 10−7 , ,

1.06× 1017 − 8.48× 1016 9.46× 1016 35.46 1.00× 10−8 6.88× 10−7 , ,

1.28× 1017 − 1.27× 1017 1.26× 1017 35.30 9.29× 10−8 6.89× 10−7 , ,

1.28× 1017 − 2.12× 1016 6.14× 1016 37.53 5.31× 10−8 6.46× 10−7 , ,

1.28× 1017 − 4.24× 1016 8.49× 1016 35.28 2.71× 10−8 6.71× 10−7 , ,

Table 6.7: Adsorption density for mixtures of 2.8 nm and 4.4 nm n-dodecane-1-thiol capped

gold nanoparticles at the water–hexane interface.

Unmixed Mixture Equilibrium Ads. Ads. Max.

Conc. Con. IFT density for NP1 density for NP2 density

C [particle/L] Ct γ∞ ΓA ΓB Γmax

2.8 [nm]– 4.4[nm] [particle/L] [mN/m] [mol/m2] [mol/m2] [mol/m2]

4.24× 1016 − 1.74× 1015 2.20× 1016 35.72 1.31× 10−8 4.51× 10−7 4.65× 10−7

8.49× 1016 − 4.42× 1015 2.98× 1016 34.65 1.04× 10−8 4.54× 10−7 , ,

8.49× 1016 − 2.21× 1015 4.35× 1016 39.77 1.75× 10−8 4.47× 10−7 ..

1.27× 1017 − 1.74× 1015 6.20× 1016 36.43 2.57× 10−8 4.39× 10−7 , ,
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Table 6.8: Adsorption density for mixtures of 4.3 nm and 4.4 nm n-dodecane-1-thiol

capped gold nanoparticles at the water–hexane interface.

Unmixed Mixture Equilibrium Ads. Ads. Max.

Conc. Con. IFT density for NP1 density for NP2 density

C [particle/L] Ct γ∞ ΓA ΓB Γmax

4.3 [nm]- 4.4[nm] [particle/L] [mN/m] [mol/m2] [mol/m2] [mol/m2]

2.08× 1015 − 1.74× 1015 1.91× 1015 40.64 5.75× 10−9 3.99× 10−7 4.05× 10−7

1.92× 1017 − 1.74× 1015 1.80× 1015 37.27 5.30× 10−9 3.99× 10−7 , ,

5.49× 1015 − 1.74× 1015 4.24× 1015 41.18 4.02× 10−8 3.64× 10−7 , ,

2.75× 1014 − 2.21× 1015 1.48× 1016 37.42 5.01× 10−8 3.54× 10−7 , ,

2.75× 1016 − 4.42× 1015 1.98× 1016 37.25 4.02× 10−8 3.64× 10−7 , ,

5.49× 1015 − 1.74× 1015 3.60× 1015 41.13 1.23× 10−8 3.92× 10−7 , ,

5.49× 1017 − 6.32× 1015 5.70× 1015 36.39 1.51× 10−8 3.89× 10−7 , ,
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Mixtures of 1.6 nm and 2.8 nm n-dodecane-1-thiol capped gold nanopar-

ticles

Experiments were done to understand the interfacial properties of a mixture of 1.6

nm and 2.8 nm n-dodecane-thiol capped nanoparticles. The adsorption parameters

for each type of nanoparticle can be seen in Tables 6.3 and 6.5. These values are

taken from Chapter 5.

Figure 6.3 illustrates the interfacial tension isotherms at the hexane–water interface

for two types of nanoparticles and an equimolar mixture of the two. Equilibrium

IFT for two studied nanoparticle mixtures are shown in Table 6.9. Table 6.10 shows

the interaction action parameter, β, for various mole fractions of the two types of

nanoparticles in the bulk phase.

Figure 6.3 shows that 2.8 nm particles lowered the interfacial tension at the hexane-

water interface much more effectively than 1.6 nm particles. This was expected, as

the larger nanoparticles lead to a larger drop in the interfacial tension [1], [97]. The

minimum area occupied by a particle at the interface (Amin) is 1.97 nm2 for 2.8 nm

nanoparticles, and 1.32 nm2 for 1.6 nm particles. The estimated low value of Amin

indicates that the hexane–water interface is tightly packed interface. The difference

between the estimated ∆Gads for the two types of nanoparticles can be seen in Table

6.5. Although the difference is not great, it still indicates a higher tendency for 2.8

nm nanoparticles to adsorb to the interface. The adsorption behaviour for mixtures

of 1.6 nm and 2.8 nm n-dodecane-1-thiol capped gold nanoparticles can be seen in

Table 6.9.

The estimated values of surface mole fraction, X1, and β, for mixtures with different

molar ratios of 1.6 nm and 2.8 nm particles are shown in Table 6.10. The table

shows that the composition of nanoparticles at the interfacial layer is different from

the composition of nanoparticles in the bulk hexane phase. Estimated values for β

indicate that there is a repulsive interaction between the nanoparticles at the hexane–

water interface. For equimolar mixtures, the values of X1 are within the range of 0.51

to 0.66. The composition of nanoparticles at the interfacial layer cannot be predicted

solely by the higher relative interfacial activities of the individual nanoparticles in

the mixture. However, the interfacial area of non-equimolar mixtures is primarily

occupied by nanoparticles with a higher activity (i.e., 2.8 nm). As the mole fraction
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Table 6.9: Equilibrium IFT for mixtures of 1.6 nm and 2.8 nm n-dodecane-1-thiol capped

gold nanoparticles at the water–hexane interface.

Unmixed concentration Mixture concentration Equilibrium Mole

C [particle/L] Ct [particle/L] int. tension Fraction

1.6 [nm]–2.8[nm] γ∞[mN/m] α

2.12× 1016 − 2.12× 1016 2.10× 1016 39.45 0.5

4.26× 1016 − 4.24× 1016 4.24× 1016 35.50 0.5

1.06× 1017 − 8.48× 1016 9.46× 1016 35.46 0.52

1.28× 1017 − 1.27× 1017 1.26× 1017 35.30 0.5

1.28× 1017 − 2.12× 1016 6.14× 1016 37.53 0.86

1.28× 1017 − 4.24× 1016 8.49× 1016 35.28 0.75

Table 6.10: Interfacial mole fraction of 1.6 nm n-dodecane-1-thiol capped gold nanoparti-

cles at the water–hexane interface and their interaction parameter.

Mole Surface Interaction

Fraction Fraction Parameter

α X1 β

0.5 0.51 8.77

0.5 0.52 6.88

0.52 0.51 9.85

0.5 0.54 8.53

0.86 0.43 11.80

0.75 0.47 10.30
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Figure 6.3: Extrapolated equilibrium interfacial tension of (1) 1.6±0.28 nm, (2) 2.8±0.27

nm n-dodecane-1-thiol capped gold nanoparticles and (3) their equimolar mixture

of 1.6 nm particles increases, fewer are found at the interface. There is a preference

for the 2.8 nm particles to adsorb at the interface over the 1.6 nm particles, which

indicates that higher activity nanoparticles are more prevalent at the interfacial layer.

In effect, the presence of 1.6 nm particles at the interface is limited due to their lower

activity when compared to the higher activity of the larger nanoparticles. It was

found by Lin et al. [15], that larger nanoparticles are more stable at an interface

than smaller particles. Hence, larger nanoparticles try to dominate at the hexane–

water interface. The positive values that was estimated for β indicates a strong

repulsion between the nanoparticles adsorbed at the interface. These results can be
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seen in Table 6.9 and Table 6.10.

Mixtures of 2.8 nm and 4.4 nm n-dodecane-1-thiol capped gold nanopar-

ticles.

This study was performed with a mixture of 2.8 nm and 4.4 nm n-dodecane-1-thiol

nanoparticles. The adsorption behaviour for non-equimolar mixtures of nanoparticles

was also studied. These are shown in Tables 6.11 and 6.12, respectively.

Table 6.11: Equilibrium IFT for mixtures of 2.8 nm and 4.4 nm n-dodecane-1-thiol capped

gold nanoparticles at the water–hexane interface.

Unmixed Concentration Mixture Concentration Equilibrium Mole

C [particle/L] Ct [particle/L] int. tension Fraction

2.8 [nm] – 4.4 [nm] γ∞[mN/m] α

4.24× 1016 − 1.74× 1015 2.20× 1016 35.72 0.96

8.49× 1016 − 4.42× 1015 2.98× 1016 34.65 0.95

8.49× 1016 − 2.21× 1015 4.35× 1016 39.77 0.97

1.27× 1017 − 1.74× 1015 6.38× 1016 35.22 0.98

Our findings show that the interfacial area was mainly occupied by the higher activity

4.4 nm particles. Hence, at the interface, the smaller particles were replaced by the

larger particles [15].

6.2.2 Mixtures of 4.4 nm n-dodecane-1-thiol and 4.3 nm n-

hexane-1-thiol capped gold nanoparticles.

The interfacial properties (i.e., equilibrium IFT, surface mole fraction, interaction

parameter) of a mixture of same size but different ligand gold nanaoparticles were

analyzed. The results obtained for non-equimolar mixtures of 4.4 nm n-dodecane-

1-thiol and 4.3 nm n-hexane-1-thiol capped gold nanoparticles can be seen in Table

6.13 and Table 6.14.
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Table 6.12: Interfacial mole fraction of 2.8 nm n-dodecane-1-thiol capped gold nanoparti-

cles at the different concentrations.

Mole Surface Interaction

Fraction Fraction Parameter

α X1 β

0.96 0.54 7.38

0.95 0.47 7.06

0.97 0.44 15.0

0.98 0.49 8.95

Table 6.13: Equilibrium IFT for mixtures of 4.3 nm n-hexane-1-thiol and 4.4 nm n-

dodecane-1-thiol capped gold nanoparticles at the water–hexane interface.

Unmixed Concentration Mixture Concentration Equilibrium Mole

C [particle/L] Ct [particle/L] int. tension Fraction

4.3 [nm]–4.4[nm] γ∞[mN/m] α

2.08× 1015 − 1.74× 1015 1.91× 1015 41.64 0.54

1.92× 1017 − 1.74× 1015 1.80× 1015 37.27 0.52

5.49× 1015 − 1.74× 1015 4.24× 1015 41.18 0.90

2.75× 1014 − 2.21× 1015 1.48× 1016 37.42 0.92

2.75× 1016 − 4.42× 1015 1.98× 1016 37.38 0.90

5.49× 1015 − 1.74× 1015 3.60× 1015 41.13 0.76

5.49× 1017 − 6.32× 1015 5.70× 1015 36.39 0.72
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Table 6.14: Interfacial mole fraction of the 4.3 nm n-hexane-1-thiol capped gold nanopar-

ticles and the molecular interaction parameter at the water–hexane interface.

Mole Surface Interaction

Fraction Fraction Parameter

α X1 β

0.54 0.63 8.64

0.52 0.68 4.03

0.90 0.50 10.1

0.92 0.53 10.8

0.90 0.57 11.3

0.76 0.55 10.9

0.72 0.78 4.56

The interfacial area was mainly occupied by 4.3 nm n-hexane-1-thiol capped nanopar-

ticles. The longer chain length on the 4.4 nm n-dodecane-1-thiol capped particles may

permit more van der Waals forces between the caps; resulting in a more stable inter-

action at the bulk phase. As a result, a more complex, intertwined, stable structure

would result at the bulk phase, so there would be less concentration of n-dodecane-

1-thiol gold nanoparticles adsorbed at the interface. The obtained IFT and β for

non-equimolar mixtures of 4.3 nm n-hexane-1-thiol- and 4.4 nm n-dodecane-1-thiol

capped gold nanoparticles are shown in Table 6.13 and Table 6.14. The molar con-

centration of 4.3 nm n-hexane-1-thiol capped nanoparticles was always higher than

that for 4.4 nm nanoparticles. As a result, the interfacial area was mainly occupied

by the lower activity particle, 4.3 nm n-hexane-1-thiol. The results show a repulsive

interaction (i.e., β is positive) between nanoparticles adsorbed at the interface.
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6.3 Summary

This study was performed with the aim to understand the interaction behaviour

of mixtures of different sized and different ligand stablized gold nanoparticles at the

hexane-water interface using pendant drop tensiometry. Using the NIBM theory that

was developed for mixtures of surfactants, the interaction behaviour of alkanethiol-

capped gold nanoparticles at the hexane–water interface was studied. The compo-

sition of the interfacial layer and the interaction parameter between two types of

nanoparticles were then estimated using this theory. These results may prove use-

ful in predicting the interfacial tension of nanoparticle mixtures and in determining

the applicability of the NIBM theory to mixtures of nanoparticles. No interaction

was observed between the unmixed studied nanoparticles. However, a significant in-

teraction was found to be existed at the interface between NPs in a mixture. The

composition of NPs at the interfacial layer is different from the composition of NPs

in the bulk. It was observed that the most active nanoparticles concentrated at the

interface. Regardless of the NP composition, all NP mixtures showed a repulsive

interaction at the interface. The positive values of β indicate a repulsive interaction

between the adsorbed nanoparticle types at the interface.

The next chapter illustrates the effects of temperature, pH and ionic strength of the

aqueous phase on IFT at the liquid-liquid interface.
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Chapter 7

Effects of Temperature, pH and

Ionic Strength on the Adsorption

of Nanoparticles at Liquid-Liquid

Interfaces

This chapter describes the effects of temperature, ionic strength, and pH on the equi-

librium and dynamic IFT of 4.4 nm gold nanopraticles capped with n-dodecanethiol

at the liquid-liquid interfaces. To our knowledge, no other study has been done to

characterize how pH, temperature and ionic strength affects the adsorption behavior

of nanoparticles at oil–water interfaces. The results reported here showed that these

factors significantly affect the tension of liquid–liquid interfaces with adsorbed gold

nanoparticles.
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7.1 Temperature Effect on the Adsorption Kinet-

ics of n-Dodecane-1-Thiol Capped Gold Nanopar-

ticles

The effect of temperature on the adsorption of 4.4 nm gold nanoparticles at the

nonane-water interface was studied at two different bulk nanoparticle concentra-

tions. Hexane was not suitable for temperature studies because of its high volatility

at elevated temperatures. Measurements were carried out at pH =7.0 in the absence

of NaCl. The middle point of acidic and basic conditions is pH=7.0; hence it was

chosen to study the effect of temperature on adsorption kinetics of Au nanoparticles

at liquid-liquid interfaces.The study was done in the time range 0 to 1500 sec. Re-

sults are summarized in Table 7.1 and Table 7.2 for low and high bulk nanoparticle

concentrations, respectively. As shown in Figure 7.1, the equilibrium IFT increases

as the temperature increases for both bulk nanoparticle concentrations. The dynamic

IFT behavior of the gold nanoparticles as a function of temperature at nonane–water

interface for the studied concentrations can be seen in Figure 7.2 and Figure 7.3.

Table 7.1: Effect of temperature on the adsorption behavior of n-dodecane-1-thiol capped

gold nanoparticles at the nonane–water interface for low (5.06 ± 0.5) × 1015 particle/L )

bulk nanoparticle concentration.

Temperature Equilibrium IFT Diffusion Coefficient [m2/s] Adsorption Barrier
oC γ∞ [mN/m] DS−E [m2/s] D0 [m2/s] D∞ [m2/s] ∆E [J]

26 35.17± 0.21 1.51× 10−10 1.22× 10−10 1.06× 10−12 1.95× 10−20

29 38.99± 0.3 1.61× 10−10 0.4× 10−10 1.39× 10−12 1.38× 10−20

30 41.14± 0.2 1.64× 10−10 0.38× 10−10 4.0× 10−12 0.92× 10−20

40 44.87± 0.17 1.95× 10−10 0.15× 10−10 12.3× 10−12 0.08× 10−20

43 43.45± 0.1 2.03× 10−10 0.34× 10−10 7.32× 10−12 0.63× 10−20

It was noticed that IFT reached almost a constant value after 40◦C for low bulk

nanoparticle concentrations, and around 38◦C for high concentrations (See Figure

7.1). However, it was decided to continue the study up to 43◦C. It was found that
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Figure 7.1: Water-nonane equilibrium interfacial tension as a function of temperature in

the presence of Au nanoparticles capped with n-dodecane-1-thiol (1) at low (5.06± 0.5)×
1015 particle/L and (2) at high (1.2±0.1)×1016 particle/L bulk nanoparticle concentration.

Lines are a guide to the eye.
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Figure 7.2: Water-nonane dynamic interfacial tension as a function of temperature in the

presence of Au nanoparticles capped with n-dodecane-1-thiol at low (5.06 ± 0.5) × 1015

particle/L bulk nanoparticle concentration.
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Figure 7.3: Water-nonane dynamic interfacial tension as a function of temperature in the

presence of Au nanoparticles capped with n-dodecane-1-thiol at high (1.2 ± 0.1) × 1016

particle/L) bulk nanoparticle concentration.
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Table 7.2: Effect of temperature on the adsorption behavior of n-dodecane-1-thiol capped

gold nanoparticles at the nonane–water interface for high (1.2 ± 0.1) × 1016 particle/L )

bulk nanoparticle concentration

Temperature Equilibrium IFT Diffusion Coefficient Adsorption Barrier
oC γ∞ [mN/m] DS−E [m2/s] D0 [m2/s] D∞ [m2/s] ∆E [J]

25 31.7± 0.34 1.52× 10−10 3.19× 10−11 4.84× 10−13 2.67× 10−20

26 33.33± 0.25 1.51× 10−10 — — —

32 38.84± 0.3 1.70× 10−10 1.95× 10−11 2.54× 10−12 1.82× 10−20

36 39.72± 0.2 1.82× 10−10 0.84× 10−11 1.25× 10−12 0.81× 10−20

38 39.71± 0.2 1.89× 10−10 2.28× 10−11 1.13× 10−12 1.29× 10−20

39 40.02± 0.15 1.95× 10−10 1.62× 10−11 1.83× 10−12 0.94× 10−20

43 42.08± 0.25 2.03× 10−10 1.67× 10−11 4.04× 10−12 0.61× 10−20

bulk concentration has a profound effect on adsorption kinetics of nanoparticles at

the liquid-liquid interfaces [97]. Hence, for this work, the focus was given to explore

the temperature effect on the adsorption kinetics of the nanoparticles for two bulk

concentrations at liquid-liquid interfaces. Obtained results were not comparable to

each other as bulk concentrations were different. The decrease in IFT is high for

higher bulk concentration and low for lower bulk concentration. Results, shown in

Table 7.1 and Table 7.2, were independent of each other. Therefore, temperature

range inconsistency did not have any affect in understanding the temperature effect

at two studied concentrations.

Using Equation 4.5 and Equation 4.7, the diffusion coefficient of the nanoparticles at

the early times, D0 and the late timesD∞ in the adsorption process were estimated for

all observed temperatures. Accounting for the effect of temperature on the viscosity

and the diffusion coefficient, the DS−E value was estimated using Equation. 4.11

for the studied nanoparticles and can be found in Tables 7.1 and 7.2. It can be

seen from Table 7.1, that at low bulk nanoparticle concentrations, the nanoparticles

undergo almost free diffusion ( i.e., D0 ' DSE
) at early times. At late times the

diffusion coefficient, D∞, decreases for all temperatures. For higher bulk nanoparticle

concentrations, however, the particles did not exhibit free diffusion (i.e., D0 6= DSE
)
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at early times D∞ < D0 for all measured temperatures. A similar behaviour has been

observed by Kutuzov et al. [1] for CdSe nanoparticles at the toluene–water interface

for a constant temperature.

Taking the effective diffusivity equal to D∞, the potential barrier to adsorption was

calculated for the highest nanoparticle concentrations (1.2 × 1016 particles/L). At

25oC and 43oC, the estimated values of the potential barrier to adsorption, ∆E, are

2.67 × 10−20 J and 0.61 × 10−20 J, respectively. A similar behaviour was observed

for the lower nanoparticle concentration suspensions (5.06× 1015 particles/L). These

results indicate that with an increase in temperature, the adsorption barrier decreases

significantly for lower nanoparticle concentrations but remains almost constant at

higher bulk nanoparticle concentrations. As temperature increases, the particles

exhibit a near diffusion-controlled adsorption. Hence, the nanoparticles may diffuse

from the interface back into the bulk phase. Ye et al.[34] and Ataev [44] have seen an

increase in the IFT at oil–water interfaces (with and without added surfactants) as the

temperature is raised. Ye et al. have argued that this behavior is due to the diffusion

of surfactants from the interface into the oil phase. Lutton et al.[115] have argued

that as the temperature increases the order of a crystalline monolayer of surfactant

molecules adsorbed at the interface is lost. It is surmised that same effect may occur

for nanoparticles adsorbed at liquid–liquid interfaces. Using Eq.4.2, the maximum

adsorption density was estimated as Γ∞ = (8.52 ± 0.39) × 10−7mol/m2 and Γ∞ =

(6.05± 1.29)× 10−7mol/m2 at the temperatures of 26oC and 43oC. The intrapolated

value of maximum adsorption density was used for all of the other temperatures that

were studied. Thus, as the temperature is increased, particle interfacial coverage

decreases. At these temperatures, using Equation 4.9, the estimated area per particle,

Amin, was found to be 1.94×10−18 m2 and 2.74×10−18 m2, respectively. Considering

the area occupied by a single nanoparticle, it is obvious that fewer nanoparticles are

necessary to saturate the interface at 43oC than 26oC, indicating that as temperature

increases nanoparticles diffuse from the interface back into the bulk phase. The

particles reached a maximum coverage at the temperature 26oC and decreases as the

temperature reached to 43oC.
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7.2 Effect of Ionic Strength on the Adsorption Ki-

netics of n-Dodecane-1-Thiol Capped Gold Nanopar-

ticles

The effect of ionic strength was characterized by conducting experiments over a wide

range of ionic strengths (NaCl concentrations from 0 to 0.5 M), at a constant pH of

7.0 in ambient atmosphere and a constant temperature of 297.65 K. The middle point

of acidic and basic conditions is pH=7.0; hence it was chosen to study the effect of

ionic strength on adsorption kinetics of Au nanoparticles at liquid-liquid interfaces.

The study was done in the time range 0 to 1500 sec. The dynamic IFT behavior

of the nanoparticles at constant bulk concentration and varying ionic strengths can

be seen in Figure 7.5 and Figure 7.6. Obtained results were not comparable to each

other as bulk concentrations were different. The reduction in IFT is high for higher

bulk concentration and low for lower bulk concentration. Results, shown in Table

7.3 and Table 7.4, were independent of each other. Hence, inconsistency in NaCl

concentrations did not have any affect in understanding the adsorption kinetics of

nanoparticles at liquid-liquid interfaces. The equilibrium IFT values for two different

bulk nanoparticle concentrations at different ionic strengths are shown in Figure

7.4. The effect of NaCl concentration on the dynamic IFT is not significant when the

NaCl concentration is low. As the NaCl concentration is increased, the IFT decreases

gradually for both of the nanoparticle concentrations that were considered.

It is known that colloidal Au made by chemical reduction develops a negative charge

on the surface of the nanoparticle [116], [117], [118]. This charge is partially reduced

by the capping ligand. Therefore, the synthesized gold nanoparticles must carry a

slight negative charge. The negative charge introduces an electric double layer on

the surface of gold nanoparticles at the interface. At very low NaCl concentrations

(6 0.005M), the ions (Na+ and Cl – ) in the bulk aqueous phase are stable and

do not come close to the oil-water interface, so that the structure of water at the

interface remains unperturbed [119]. As the NaCl concentration is increased (e.g. >

0.005M), ions come into closer contact with the oil–water interface. The reduction

of the IFT upon adding NaCl is presumably due to a higher interaction between

the gold nanoparticles and the aqueous solution. The sodium cation (Na+)interacts
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more readily with the partially negatively charged gold nanoparticles. The negative

charge on the surface of gold nanoparticles are screened by the opposite charge of

Na+. This reduces the thickness of the double layer which in turn leads to a higher

density of nanoparticles at the interface which reduces the IFT value. However,

Cl – are also present in the double-layer as counter ions and are assumed to also

adsorb to the oil-water interface. Tian et al. [76] showed in a recent molecular

dynamics simulation that there is possible adsorption of Cl – ions at hydrophobic

material–water interfaces. As the NaCl concentration increases, more nanoparticles

are adsorbed to the interface due to their attraction to Na+. More nanoparticles at

the interface reduce the IFT [47]. This behavior was observed in our study for the

higher bulk nanoparticle concentrations (see Table 7.3 and 7.4). Thus, salt reduces

the IFT at the oil–water interface which indicates an increase in the number of

particles at the interface as the ionic strength is increased.

Using Equation 4.5 and Equation 4.7, the diffusion coefficient of the nanoparticles

at the earlier time, D0, and the later time, D∞, were estimated over a wide range of

NaCl concentrations (i.e., NaCl= 0 M to 0.5 M).

Table 7.3: Effect of NaCl concentration on the adsorption behavior of n-dodecane-1-thiol

capped gold nanoparticles at the hexane–water interface for low ((1.7 ± 0.04) × 1015 par-

ticle/L ) bulk nanoparticle concentration.

NaCl Con. Equilibrium IFT Diffusion Coefficient Adsorption Barrier

[mol/L] γ∞ [mN/m] DS−E [m2/s] D0 [m2/s] D∞ [m2/s] ∆E [J]

0 38.78± 0.14 3.36± .46× 10−10 4.33× 10−10 3.93× 10−11 0.99× 10−20

0.005 37.42± 0.1 ,, 7.10× 10−10 5.93× 10−11 1.02× 10−20

0.05 36.17± 0.14 ,, 6.77× 10−10 4.45× 10−11 1.12× 10−20

0.1 35.09± 0.1 ,, 3.50× 10−10 4.24× 10−11 1.09× 10−20

0.5 33.03± 0.24 ,, 3.50× 10−10 3.27× 10−11 0.89× 10−20

Using Eq. 4.11 for the hexane–water system, DS−E is estimated to be 3.36± 0.46×
10−10 m2/s (see Tables 7.3 and 7.4). For both bulk nanoparticle concentrations, the

nanoparticles undergo almost free diffusion ( i.e., D0 ' DS−E) at early times. At

later times, the diffusion coefficient, D∞, decreases for all of the NaCl concentrations
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Figure 7.4: Water-hexane equilibrium interfacial tension as a function of NaCl concen-

tration in the presence of Au nanoparticles capped with n-dodecane-1-thiol (1) at low

(1.7± 0.04)× 1015 particle/L and (2) at high (6.3± 0.04)× 1015 particle/L bulk nanopar-

ticle concentration. Lines are a guide to the eye.
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Figure 7.5: Water-hexane dynamic interfacial tension as a function of NaCl concentration

(1) NaCl = 0 mol/L , (2) NaCl = 0.005 mol/L, (3) NaCl = 0.05 mol/L, (4) NaCl =

0.1 mol/L and (5) NaCl = 0.5 mol/L in the presence of Au nanoparticles capped with

n-dodecane-1-thiol at low (1.7± 0.04)× 1015 particle/L bulk nanoparticle concentration.
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Figure 7.6: Water-hexane dynamic interfacial tension as a function of NaCl concentration

(1) NaCl = 0 mol/L , (2) NaCl = 0.01 mol/L, (3) NaCl = 0.05 mol/L and (4) NaCl =

0.5 mol/L in the presence of Au nanoparticles capped with n-dodecane-1-thiol at high

(6.3± 0.04)× 1015 particle/L bulk nanoparticle concentration.
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Table 7.4: Effect of NaCl concentration on the adsorption behavior of n-dodecane-1-thiol

capped gold nanoparticles at the hexane–water interface for high (6.3 ± 0.04) × 1015 par-

ticle/L ) bulk nanoparticle concentration.

NaCl Con. Equilibrium IFT Diffusion Coefficient Adsorption Barrier

mol/L γ∞ [mN/m] DS−E [m2/s] D0 [m2/s] D∞ [m2/s] ∆E [J]

0 28.20± 0.33 3.36± .46× 10−10 1.54× 10−10 3.19× 10−13 2.54× 10−20

0.01 23.6± 0.4 ” 5.56× 10−10 1.14× 10−13 3.49× 10−20

0.05 18.78± 0.32 ” 6.78× 10−10 0.78× 10−13 3.72× 10−20

0.5 18.16± 0.21 ” 7.73× 10−10 0.73× 10−13 3.80× 10−20

,

that were studied. The potential barriers to adsorption, ∆E, were calculated by

taking the effective diffusivity equal to D∞. Without added NaCl and at a NaCl

concentration of 0.5 M, the estimated values of ∆E was calculated for the highest

nanoparticle bulk concentration (6.3± .04)×1015 particle/L)to be 2.54×10−20 J and

3.8× 10−20 J, respectively. As the NaCl concentration was increased, the adsorption

barrier likewise increased. However, for lower bulk concentrations, the barrier was

almost constant.

7.3 Effect of pH on the Adsorption Kinetics of

n-Dodecane-1-Thiol Capped Gold Nanoparticles

The effect of pH on adsorption was investigated over a range of pH without any

added NaCl at a constant temperature of 297.65 K in an ambient atmosphere. The

equilibrium IFT for low and high particle concentrations at various pH conditions can

be seen in Tables 7.5 and 7.6. Obtained results were not comparable to each other

as bulk concentrations were different. The reduction in IFT is high for higher bulk

concentration and low for lower bulk concentration. Results, shown in Tables 7.5 and

7.6, were independent of each other. Hence, inconsistency in pH range did not have

any affect in understanding the adsorption kinetics of nanoparticles at liquid-liquid

interfaces. Due to less effective screening of the H+ ion relative to Na+, an extremely
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large double layer is formed on the surface of the particles for acidic conditions. H+

ions do not come as close to negative ions as metal ions do because of their smaller

size [119] and it is expected that they maintain a greater distance from negative

charges on gold nanoparticles than Na+ would. This leads to little or no effect on

the nanoparticles and the IFT remains almost the same when the pH is 7 or less.

As the NaOH concentration is increased ( i.e., pH >7), the IFT decreases due to

the interaction of partially negatively charged gold nanoparticles with Na+. The

negative charges on the surface of gold nanoparticles are screened by Na+, which

reduces the thickness of the double layer. As the thickness of the double layer is

reduced, more nanoparticles are attracted to the interface which lead to a reduction

in the IFT. However, Cl – can be present at the interface for the lower pH values that

were studied, while OH – can be present at higher pHs. It is surmised that these ions

also adsorbed at the interface. Tian et al. [76] observed that it is possible for both

Cl – and OH – ions to absorb at the interfaces between hydrophobic materials and

water. This behavior was observed for the higher bulk nanoparticle concentration.

From Figure 7.7 to Figure 7.9, it is evident that at lower pH values (i.e.< 7), the

IFT remained almost constant for both bulk nanoparticle concentrations. At higher

pH values (i.e., > 7), the IFT decreases rapidly for both bulk nanoparticle concen-

trations. When the pH of the aqueous solution was reduced from 7 to 1.2, at the

low nanoparticle concentration ( 1.7×1015 particle/L), the IFT increased by only 3.0

mN/m. An increase in the pH from 7 to 12.6 resulted in a decrease in the IFT by 15.65

mN/m. This behavior was also observed for higher nanoparticle concentrations, but

with less of an affect. These results show that both the pH and the concentration of

nanoparticles greatly influence the IFT value and, therefore, nanoparticle adsorption.

In Table 7.5 and Table 7.6, it can be seen that for both bulk nanoparticle concentra-

tions, nanoparticles undergo almost free diffusion ( i.e., D0 ' DS−E) at early times,

while at later times, D∞ � D0 for all of the pH values that were considered. For

pH= 1.2 and pH= 10.8, the estimated values for ∆E for the highest nanoparticle

concentration (6.3 ± .04 × 1015 particle/L), are 2.75 × 10−20 J and 3.47 × 10−20 J,

respectively. As the pH was increased, the adsorption barrier also increased slightly

for the higher bulk particle concentration, while the barrier remained almost constant

for the lowest nanoparticle concentration that was studied.
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Figure 7.7: Water- hexane equilibrium interfacial tension as a function of pH in the presence

of Au nanoparticles capped with n-dodecane-1-thiol (1) at low (1.7±0.04)×1015 particle/L

and (2) at high (6.3± 0.04)× 1015 particle/L bulk nanoparticle concentration. Curves are

added as a guide.
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Figure 7.8: Water-hexane dynamic interfacial tension as a function of pH (1) pH= 1.2,

(2) pH = 4.1, (3) pH = 7.0, (4) pH = 11.6 and (5) pH = 12.6 in the presence of Au

nanoparticles capped with n-dodecane-1-thiol for low (1.7 ± 0.04) × 1015 particle/L bulk

nanoparticle concentration.
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Figure 7.9: Water-hexane dynamic interfacial tension as a function of pH (1) pH = 1.2, (2)

pH = 7.0, (3) pH = 7.9, (4) pH = 9.0 and (5) pH = 10.8 in the presence of Au nanoparticles

capped with n-dodecane-1-thiol for high (6.3 ± 0.04) × 1015 particle/L bulk nanoparticle

concentration.
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Table 7.5: Effect of pH on the adsorption behavior of n-dodecane-1-thiol capped gold

nanoparticles at the hexane–water interface for low(1.7 ± 0.04) × 1015 particle/L bulk

nanoparticle concentration.

pH Equilibrium IFT Diffusion Coefficient Adsorption Barrier

γ∞ [mN/m] DS−E [m2/s] D0 [m2/s] D∞ [m2/s] ∆E [J]

1.2 41.64± 0.1 3.36± .46× 10−10 3.28× 10−10 4.75× 10−11 0.79× 10−20

4.1 42.27± 0.13 ,, 7.50× 10−10 2.75× 10−11 1.36× 10−20

7.0 38.74± 0.14 ,, 4.33× 10−10 3.93× 10−11 0.99× 10−20

11.6 26.30± 0.16 ,, 7.37× 10−10 2.86× 10−11 1.33× 10−20

12.6 23.09± 0.1 ,, 4.41× 10−10 5.42× 10−11 0.86× 10−20

Table 7.6: Effect of pH on the adsorption behavior of n-dodecane-1-thiol capped gold

nanoparticles at the hexane–water interface for high (6.3 ± 0.04) × 1015 particle/L ) bulk

nanoparticle concentration.

pH Equilibrium IFT Diffusion Coefficient Adsorption Barrier

γ∞ [mN/m] DS−E [m2/s] D0 [m2/s] D∞ [m2/s] ∆E [J]

1.2 29.93± 0.2 3.36± .46× 10−10 4.19× 10−10 5.12× 10−13 2.75× 10−20

7.0 28.20± 0.33 ” 1.54× 10−10 3.19× 10−13 2.54× 10−20

7.9 26.63± 0.3 ” 3.14× 10−10 2.52× 10−13 2.93× 10−20

9.0 19.59± 0.22 ” 9.01× 10−10 1.04× 10−13 3.72× 10−20

10.8 17.24± 0.3 ” 7.54× 10−10 1.62× 10−13 3.47× 10−20
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7.4 Summary

This chapter describes the effects of temperature, ionic strength, and pH on the

adsorption behavior of gold nanoparticles at the liquid–lquid interface was stud-

ied. All the factors found to have a profound affect on the adsorption behavior of

nanoparticles at the oil–water interface. These findings may find use in applications

of nanoparticles for encapsulation and catalysis.

The next chapter provides the summary of the thesis and the contributions to the

research.

140



Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This chapter concludes the thesis with a summary of contributions that the research

presented in this thesis accomplished and a note on the future direction of research

in this field.

This research has intensely focused on an investigation of the adsorption kinetics

of alkhane-thiol capped gold nanoparticles at liquid-liquid interfaces. Alkhanethiol

capped gold nanocrystals were synthesized to perform the experiments. By changing

the thiol to gold ratio, different core sizes of alkhanethiolate protected gold nanopar-

ticles were synthesized. Several techniques such as UV-Vis, HR-TEM, EDS and

H-NMR were performed to characterize the particles. Prior to this study, the ad-

sorption kinetics of gold NPs was poorly understood, despite the fact that adsorption

is a prerequisite for self-assembly into useful supra-colloidal structures. During the

literature survey, reports were found that demonstrated changing interfacial tension

correlated with changes in NP bulk concentration, particle size, temperature, ionic

strength and pH. This thesis focuses on understanding the effects of these variables

on, adsorption kinetics at liquid-liquid interfaces. IFT measurements of gold-capped

nanoparticles at liquid-liquid interfaces were performed by pendant drop experiments

using ADSA.

The following list summarizes the research objectives of this thesis:
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Objective I: To investigate the adsorption kinetics of different sized n-dodecanethiol

and n-hexanethiol capped gold nanoparticles at the liquid -liquid interface. The

following factors were studied with respect to their effects on the interfacial ten-

sion at a hexane-water interface:

• The effect of NP bulk concentration.

• The effect of NP size.

• The effect of capping agent.

Objective II: To determine the interaction parameter representative of the inter-

facial properties of mixtures of NPs. These experiments were performed by

estimating the interaction parameters at hexane-water interfaces. The follow-

ing variables were explored

• mixtures of differently size NPs.

• mixtures of differently capped NPs.

Objective III: To determine the effects of temperature, ionic strength and pH on

the IFT and adsorption behaviour of AuNPs at the liquid-liquid interface. The

following factors were studied with respect to their effects on the interfacial

tension at the nonane-water and hexane-water interface:

• The effect of temperature.

• The effect of ionic strength.

• The effect of pH.

Throughout the whole research work, the effects of these parameters were stud-

ied in order to understand the adsorption kinetics of the capped gold nanopar-

ticles at liquid-liquid interfaces.

The results obtained in this research work are summarized as follows:

1. With an aim to improve the understanding of self-assembly of ligand-stabilized

nanoparticles at liquid-liquid interfaces, we studied, by pendant drop tensiome-

try, the kinetics of alkanethiol-stabilized gold nanoparticles at the hexane-water

interface. From the time evolution of the interfacial tension at the early (t −→ 0)

and late (t −→∞) stages of adsorption we could infer a switch, with increasing

interfacial coverage, from diffusion-controlled kinetics to interaction-controlled

kinetics.
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2. The potential barrier for nanoparticle adsorption to the hexane-water interface

was estimated from the diffusion constants of the late stages of adsorption and

found equal to approximately 10kBT , for gold nanoparticles of different size

stabilized with different ligands (n-dodecane-1-thiol and n-hexane-1-thiol).

3. For constant bulk concentration and nanoparticle size, it was additionally found

that adsorption of nanoparticles stabilized with shorter alkanethiol ligands leads

to a lower equilibrium interfacial tension.

4. The goal was to understand the interaction behavior of mixtures of different size

and different ligand-stablized gold nanoparticles at the liquid-lquid interface by

pendant drop tensiometry.The composition of the mixed adsorbed monolayer at

the hexane-water interface is completely different from the bulk hexane phase.

Although high interfacial activities of the individual nanoparticles formed a

densely populated interface, they lost the tendency to adsorb more in mixed

systems.

5. The positive values of β indicate the repulsive interaction between the adsorbed

nanoparticles in the mixed monolayer. The estimated interfacial composition

and repulsive interaction in the mixed monolayer are highly dependent on the

bulk mole fraction, α.

6. Possible formation of association complexes and the interaction between the

nanoparticles can explain this behavior. The interfacial isotherms obtained for

the individual nanoparticles and their mixture show no synergism in interfacial

tension reduction. These findings may be contribute to the design of nanoparti-

cle formulations of controlled tension alkane-thiol capped gold nanoparticles at

liquid-liquid interface or interfacial compositions with the minimal amounts of

NPs used.

7. Temperature was found to have a profound affect on the adsorption behavior of

nanoparticles at the oil–water interface. The IFT was found to increase for both

low and high bulk nanoparticle concentrations as the temperature was raised.

8. On the other hand, the IFT was found to decrease as the ionic strength and pH

of the aqueous phase was increased. It is surmised that an increase in the ionic

strength and pH of the aqueous phase, leads to more nanoparticles adsorbing

at the interface between the fluids. These findings improve our understanding
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of nanoparticle adsorption at liquid-liquid interfaces and may contribute to de-

veloping applications for gold nanoparticles (e.g., encapsulation and catalysis).

8.2 Recommendations and Future work

The results obtained in this work may be improved upon by exploring the following

suggestions and recommendations:

• The solvent chain-length has an effect on IFT. The larger the chain length, the

higher the IFT drop. Investigations should be done using different solvents to

clarify the effect of hydrocarbon chain length on IFT.

• It is known that Janus particles are more effective at decreasing the IFT than

homogenous nanoparticles. It may be worthwhile to modify the capped gold

nanoparticles for use as Janus particles, despite the fact that Janus particle

synthesis requires significant effort. Janus particles exhibit enhanced stability

compared to homogenous nanoparticles. The use of gold-capped Janus particles

could reduce the thermal fluctuations in the self-assembly experiments.

• The NP surface ligands are responsible for its stability, controlled interfacial

self-assembly, and interfacial properties at the interface. It is necessary to bet-

ter quantify the role that surface ligands play on NP interaction at the interface.

Further experiments using gold-NPs capped with different ligands, different ter-

minal groups, and different ligand chain lengths would be beneficial.

It has been shown that the binding energy of the NPs at the liquid-liquid inter-

face can be controlled by selecting appropriate surface ligands.

• The research presented in this thesis was performed by using the pendant drop

technique. The images of the drop were taken at a frequency of one image per

minute. The images were then processed and fitted to the Laplace equation to

give the IFT over time. As the studied particles are very surface active, it is

suggested that images of the drop should be taken at a frequency of one image

per millisecond or one image per second. This will improve understanding of

the adsorption kinetics of the capped gold nanoparticles at the liquid-liquid

interfaces more precisely; especially at earlier stages.
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• The stability of nanoparticles at the fluid interfaces is strongly dependent on

particle geometry because this affects the free energy of the NPs. This study

may be extended to different shapes of capped gold nanoparticles. This will

improve the understanding of self-assembly of non-spherical nanoparticles at

the interface. At present, the study of interfacial self-assembly of non-spherical

NPs is a major challenge.

• Further investigations may involve studying the reversibility of the interfacial

attachment of the particles at the liquid-liquid interface. These experiments

could open the possibility of further developing the encapsulation technique at

the liquid-liquid interface.

• It is known that pressure has an effect on IFT. A study may be conducted

to determine the effect of pressure on IFT at the interfaces. The temperature

chamber may be modified for such experiments.

• Experiments performed using different types of salts could be done to improve

the understanding the effect of ionic strength on IFT at the interfaces.

By incorporating the above suggestions, future studies may help to better under-

stand the adsorption kinetics of capped nanoparticles at liquid-liquid interfaces. More

knowledge may help to improve the potential of these NPs for use in applications

including encapsulation, controlled self-assembly, size selective adsorption, and bio-

catalysis at liquid-liquid interfaces.
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Appendix

List of Publications

The research presented in this thesis originated the following publications:

1. Sultana Ferdous and Marios. A. Ioannidis and Dale Henneke, “Adsorption ki-

netics of alkhanethiol-capped gold nanoparticles at the hexane-water interface,”

Published in Journal of Nanoparticle Research, DOI 10.1007/s11051-011-0565-y.

2. Sultana Ferdous and Marios. A. Ioannidis and Dale Henneke, “Effects of temper-

ature, pH and ionic strength on the adsorption of nanoparticles at liquid-liquid

interfaces,” Accepted in Journal of Nanoparticle Research. [Revised manuscript]

3. Sultana Ferdous and Marios. A. Ioannidis and Dale Henneke, “Interaction be-

haviour during adsorption of mixtures of alkhanethiol capped gold nanoparticles

at the hexane-water interface,” Ready to submit in Journal of Nanoparticle Re-

search.

Some Experimental Analysis

• The best fit to the Frumkin model discussed in Chapter 6 (See Section 6.1) are

shown below:

• Figure 8.4 shows the interfacial tension at the water-hexane interface discussed

in Chapter 4 (See Section 4.3).
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Figure 8.1: The best fit obtained from Frumkin isotherem using the optimization procedure

and the experimental points for 1.6 nm n-dodecane-1-thiol capped gold nanoparticles.
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Figure 8.2: The best fit obtained from Frumkin isotherem using the optimization procedure

and the experimental points for 2.8 nm n-dodecane-1-thiol capped gold nanoparticles.
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Figure 8.3: The best fit obtained from Frumkin isotherem using the optimization procedure

and the experimental points for 2.9 nm n-hexane-1-thiol capped gold nanoparticles.
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Figure 8.4: Interfacial tension at a pure water-hexane interface.
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