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Abstract

Anisotropic molecules confined on a spherical or other curved surface can display

coupled positional and orientational orderings, which make possible applications in

physics, chemistry, biology, and material science. Therefore, controlling the order

of such system has attracted much attention recently. Several distinct conforma-

tions of rod-like or chain-like molecules confined on a spherical surface have been

predicted, including states such as tennis-ball, rectangle, and cut-and-rotate splay.

These conformations have four +1/2 defects and are suggested to dominate over

the splay conformation that has two +1 defects. For the purpose of investigating

the conformations of 2-fold anisotropic molecules confined on the spherical surface,

the author of this thesis utilizes the Onsager model to study the system of rigid rods

and conducts Monte Carlo simulations on the bead-bond model to research the sys-

tem of semiflexible polymer chains. At low surface coverage density, no particular

pattern of the molecules would form. However, coupled positional and orientational

ordering begins to emerge beyond a transition density. On the basis of the numeri-

cal solutions of the Onsager model of rigid rods, the splay conformation is shown to

be the only stable state. On the other hand, Monte Carlo simulations on a polymer

system indicate that the ordered state always accompanies the tennis-ball symme-

try. With comparison to the continuous isotropic-nematic transition of a fluid of

hard rods embedded in a flat two-dimensional space, the disorder-order transition

for both the system of rigid rods and the system of polymer chains confined on the

spherical surface has first-order phase-transition characteristics.
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Chapter 1

Introduction

1.1 Anisotropic Molecules Confined on a Spher-

ical Surface

Controlling the ordering of matter is always the leading edge in physics; it not

only provides researchers opportunities to utilize and verify sophisticated theo-

retical ideas and mathematical methods, but also enables applications in physics,

chemistry, material science, and biology due to the strong relationship between

the ordering of matter and its properties. For instance, the positional ordering of

atom array determines the ductility of metal, while the optical properties of liquid

crystal applied in Liquid Crystal Displays rely on the orientational ordering of liq-

uid crystal molecules. Recently, researchers have paid attention to the ordering in

a system consisting of anisotropic molecules, which could have coupled positional

and orientational orderings and, consequently, novel properties and applications.

In an elegant paper, for example, Nelson [58] suggested the possibility of creating

a 4-fold tetravalent colloid particle by coating it with a nematic shell, a sheet of

anisotropic objects such as nanorods, polymers, or gemini lipids. In this case, the

micron-sized particles would have four chemical linkers similar to sp3 hybridized

chemical bonds of carbon, silicon, and germanium atoms [Fig. 1.1.(B)] and then

are able to arrange into a colloidal crystal with a diamond structure which has a

considerably larger photonic band gap than the common bcc or fcc colloid crystal
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[28]. Furthermore, the same idea of “colloidal diamonds” is useful to researchers

and engineers to construct more complex materials [46, 48], which can be applied to

photonic crystal optical devices and circuits [5] or biomedicine [54]. The more sig-

nificant point is that, this 4-fold tetrahedral symmetry of the nematic shell, which is

called the tennis-ball conformation, has explosively expanded researchers’ horizon,

since people had well believed that the conformation with Mermin’s boojums [53]—

so-called splay conformation [Fig. 1.1.(A)]—may be a good choice for the nematic

shell confined to a spherical surface. The competition of 2-fold splay conformation

and 4-fold tennis-ball conformation will be further discussed in this thesis.

In the system of anisotropic molecules confined to a curved surface, a question is

naturally raised how the in-plane order of anisotropic molecules couples the geomet-

ric deformations of the confinement. The same question can be asked for a three-

dimensional system where a bulk of anisotropic molecules interacts with a curved

surface. In short, due to the curvature of the surface confining the anisotropic

molecules, the conformation of molecules could spontaneously generate some topo-

logical defects which break the symmetry of the system of anisotropic molecules

and, hence, create orders coupled in the orientational and spatial distributions

[84, 85]. This thesis focuses on the conformation of 2-fold anisotropic molecules

confined on a spherical surface. The 2-fold molecule means that the molecule is

identical to itself if rotated by 180◦; such system includes rod-like liquid crystals,

polymer chains, etc.
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Figure 1.1: (taken from Ref. [58])(A) The splay conformation has two Mermin’s

boojums (point defects with topological index +1) on the north and south poles of

the sphere. (B) The “tennis-ball” conformation has four chemical linkers similar to

sp3 hybridized chemical bonds.
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1.2 Extension to Three Dimensions

Beyond the two-dimensional system, the conformation of the anisotropic molecules

interacting with a curved surface in three dimensions is quite interesting as well

and even more complicated.

For the system of liquid crystals, Huber and Stark [31] suggested that a hard

sphere dispersed into a nematic liquid crystal would drive the conformation of

liquid crystal surrounding it to display a “tennis-ball” symmetry. In experiments,

a nematic shell confined by double-emulsion drops may display various, complicated

conformations [25, 48]. Fig. 1.2 shows some typical conformations of a nematic shell

in a double emulsion drop with the inner drop of radius a and the outer drop of

radius R, where the nematic shell could have four defects, three defects, or two

defects. Note that the thickness of nematic shell is heterogeneous, since the inner

and outer drop are not concentric due to gravitational force.

The model of anisotropic molecules interacting with a curved surface is also

related to another class of systems — polymer chains in confined geometries. Typ-

ical examples include DNA wrapped around histones in the structure of chromatin

[39, 63, 50, 71, 24] (or similarly polyelectrolyte adsorbed on colloid particles or

micelles [82, 52]) and DNA packaging in bacteriophage capsid [23, 70, 13, 64, 94].

Understanding the physical mechanism of DNA conformation in nucleosomes or

bacteriophage capsids can help us to realize and even master artificial manipula-

tion of DNA. As a result, the model of a polymer chain adsorbed onto a spheri-

cal, cylindrical, or other non-planar surface has been developed to investigate the

DNA-confinement complexation. A primarily interesting topic of this model is the

adsorption-desorption transition, which has been studied theoretically [86, 22, 60,

42, 89, 18] or by computer simulations [87, 1, 80] for polymer chains of different

lengths and flexibilities. A range of various configurations of polymer adsorbed on

a spherical surface, such as “tennis-ball” like, solenoid, and multiloop conforma-

tions, were also unveiled [1, 80]. Fig. 1.3 shows some conformations of semiflexible

polyelectrolyte/particle complexes at various chain rigidities kang and ionic concen-

trations Ci. On the other hand, the experiments of DNA packaging in bacteriophage

capsids unveiled that DNA could be packaged in a highly condensed set of rings
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Figure 1.2: (taken from Ref. [48]) The conformation of a nematic shell in a double

emulsion drop, where the radii of inner and outer drops are a and R respectively

(a), could have four +1/2 defects (b and c), three defects (g and h), or two +1

defects (m and n).
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concentric due to the confinement of the capsid shell (Fig. 1.4). Therefore, some

authors looked into the model of a polymer chain confined inside a sphere theoreti-

cally [62, 37] or by computer simulations [37, 6, 44, 3] and discussed various possible

conformations of polymer chain, say spool-like, helical, coaxial, and concentric.

In summary, the three-dimensional system of anisotropic molecules interacting

with a curved surface is fundamental for us to comprehend some significant physical,

chemical, and biological phenomena and develop related applications. Of course,

for the purpose of understanding the three-dimensional system, it is a prerequisite

to understand the two-dimensional system of anisotropic molecules confined on a

curved surface that will be discussed in this thesis.
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Figure 1.3: (taken from Ref. [80]) The Monte Carlo snapshots of semiflexible

polyelectrolyte/particle complexes vary at different chain rigidities kang and ionic

concentrations Ci. The polymer chain is stiffer in greater kang, while greater Ci is

more likely to prevent the adsorption.
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Figure 1.4: (taken from Ref. [64]) DNA of bacteriophage T4 is shown to be packaged

in a highly condensed set of rings concentric to the capsid shell observed by cryo-

electronic microscopy and image reconstruction techniques. The inset shows the

spherically averaged density of DNA as a function of radius.
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Figure 1.5: +1 defects (A and B) and +1/2 defects (C and D).

1.3 Topological Defects and Theoretical Models

1.3.1 Topological point defects and Poincaré-Hopf theorem

The conformation of anisotropic molecules confined on a two-dimensional curved

surface could have one or more defects. For the purpose of studying the conforma-

tions, it is helpful for us to understand some basic ideas of defects. In topology, a

defect is described by its index (or charge), which is defined by the revolution that

the orientational field rotates around the defect. Fig. 1.5 shows some typical de-

fects which could exist in a field consisting of 2-fold “vectors”. In Fig. 1.5.(A) and

(B), the orientational field turns 2π counterclockwise following a path encircling

the defect counterclockwise; therefore, the index is defined as +1. In Fig. 1.5.(C)

and (D), the orientational field turns π counterclockwise instead of 2π; therefore,

the index is defined as +1/2.

According to knowledge of differential geometry, although the conformations of

anisotropic molecules could be very complicated, all of them must follow a simple
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Figure 1.6: Three distortions of nematic field: (A) splay (∇ · n 6= 0), (B) bend

(∇× n ⊥ n), and (C) twist (∇× n ‖ n). The twist distortion doesn’t exist in two

dimensional space.

rule of topology, which is described by the Poincaré-Hopf theorem [66, 30, 79]. For

a field confined on a closed surface S, the sum of the indexes of all defects must

equal to the Euler characteristic of the closed surface, i.e.∑
i

σi = χS, (1.1)

where σi is the index of i-th defect and χS is the Euler characteristic of surface S.

In particular, χS = 2 for any spherical or ellipsoidal surface, which implies that

the sum of the defect indexes must be 2 for a spherical nematic shell. This is why

researchers [25, 48] found that the conformations of a nematic shell could have two

+1 defects, four +1/2 defects, or two +1/2 and one +1 defect combination.

The Poincaré-Hopf theorem provides us a framework within which we search

for possible conformations by means of various theories and models.

1.3.2 Continuum model

If we are interested in a close pack of anisotropic molecules confined on a spherical

surface, it is a good idea to apply a continuum model, such as the Frank continuum

theory and Landau-de Gennes model, to investigate such system. In the continuum
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model, the orientational distributions (Fig. 1.6) of rod-like molecules are modeled

by a vector field n(r), i.e., the direction n of the molecule as a function of its

position r. Corresponding spatial derivatives, ∇ · n, n · (∇× n), and n× (∇× n),

characterize splay, twist, and bend distortions of the director field, respectively.

The Frank free energy is written as a sum of quadratic powers of the derivatives,

with the corresponding phenomenological splay, twist, and bend coefficients, K1,

K2, and K3 [21]. On a two dimensional surface, K2 is absent, since ∇×n is always

perpendicular to the surface for a two dimensional system. Therefore, we are left

with only splay and bend distortions. As Nelson suggested [58], one can use the

Frank continuum model to study the colloid particle coated by a layer of nematic

shell. The Frank free energy of the nematic shell is written as

FFrank =
1

2

∫
S2

[
K1(∇ · n)2 +K3(∇× n)2

]
dr. (1.2)

With the one Frank constant approximation (K1 = K3), the Frank free energy (1.2)

can be mapped into the energy of the ferromagnetic two-dimensional XY model

[59]. Then, one can show that the free energy is proportional to the square of the

defect index. In other words, +1/2 defect has only quarter of energy of +1 defect.

Hence, the total energy of four +1/2 defects is lower than that of one +1 and two

+1/2 combination, and, of course, lower than that of two +1 defects. Moreover,

to minimize the defect-defect repulsion, it is the best that the four +1/2 defects

are arranged to sit at the four vertices of a tetrahedron. Therefore, coating a

colloid particle with a layer of anisotropic molecules would create 4-fold tetrahedral

symmetry on the surface of the spherical particle, where the texture of the nematic

shell resembles a tennis ball [Fig. 1.1(B)]. Such tetrahedral symmetry was also

predicted by Lubensky and Prost who considered a more general model of a closed

membrane consisting of p-fold symmetric anisotropic molecules [49]. Note that this

thesis focuses on the case of p = 2, such as rigid rods and polymer chains.

In addition to the “tennis-ball” conformation of anisotropic molecules confined

to a spherical surface, researchers also provided us fresh insights into further con-

trolling the order of this system. As one of the possibilities, when the spherical sur-

face deforms to other geometries, the positions of defects may move on the surface

and then produce other symmetries instead of the perfect tetrahedral symmetry.
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Within the Landau-de Gennes model, Kralj et al. [40] studied the distribution of

local orientational order of a uniaxial ellipsoidal nematic shell, where the four +1/2

defects move to the north and south poles and even unite to two +1 defects for

more slender shell, or the four +1/2 defects move to the equator for flatter shell

(Fig. 1.7). The same system was also investigated by Bates et al. [8] using the

Lebwohl-Lasher lattice model. The conformation of anisotropic molecules can also

be changed by applying an external field [75].

The advantage of the phenomenological continuum model is that, with the help

of differential geometry, the free energy of the model can be derived into the ex-

pression of defect energy which can be easily handled for further analysis of the

conformations. However, the continuum model has its intrinsic weaknesses so that

we must consider other models. Such weaknesses include that, for example, the

continuum model is no longer convincing when the density of molecules is low.

In particular, at low densities the positional and orientational entropies dominate,

which drive the system towards a homogeneous and isotropic state. In this case,

the vector field n(r) cannot be defined. Only if the surface density goes beyond

a transition density, a nematic field starts to develop in this system. Hence, the

continuum model lacks the ability to describe the order-disorder transition of this

system.

1.3.3 Rod or chain model

Since we are considering the conformations of rod-like or chain-like molecules, it

is desirable to generate a rod or chain model, which contains no phenomenological

constants as those assumed in the continuum models, to describe such system.

To study these rod or chain models, we can apply analytical theories or conduct

Monte Carlo simulations. Note that the density of rods or chains is one of the

key parameters determining the macroscopic properties of the rod or chain model.

At low surface density, to maximize the orientational and positional entropies, no

particular pattern would form by these rods; therefore, the conformation is isotropic

and homogeneous. Beyond a transition density, coupled orientational and positional

ordering starts to emerge, giving rise to a configurational texture on the spherical
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Figure 1.7: (taken from Ref. [40]) For slender uniaxial ellipsoidal shell (left column),

the defects move to the poles. For flat uniaxial ellipsoidal shell (right column), the

defects move to the equator. Here, the black color means low orientational order

where the defect locates.

13



surface.

Consider the system of rod-like molecules confined to a spherical surface. Al-

though the continuum theory suggests the existence of the tetrahedral tennis-ball

conformation, could such configuration exist in the rod model of volume-excluding

rigid rods on the spherical surface? Or, even loosely, instead of having four de-

fects located exactly at the vertices of an equal-sided tetrahedron, can a tennis-ball

state exists, which can be defined as a structure where the vector joining the two

defects near the north pole is perpendicular to the vector joining the other pair

near the south pole [Fig. 1.9(A2)]? Recent Monte Carlo simulations of thin rods

have ruled out the existence of the perfect tetrahedral tennis-ball structure [74, 7].

Instead, other possible defect structures have been suggested. On the basis of a

Monte Carlo snapshot, Bates [7] showed a configuration that resembles a tennis-ball

texture but is more similar to splay, since the two +1/2 defects of each pair on the

north and south poles are very close to each other (Fig. 1.8); in another simulation

snapshot [7] the vector joining the two defects near the north pole is parallel to

the vector joining the other pair near the south pole, four defects forming corners

of a rectangle on the xz-plane shown in Fig. 1.9(A3). Shin et al. [74] and Bates

[7] also suggested the existence of a so-called “cut-and-rotate” splay structure —

the pattern resembles cutting a perfect splay state along the north-south pole plan

and then rotating one of the hemispheres by an angle about the y-axis shown in

Fig. 1.9(A4). None of these Monte Carlo simulations has assessed free energies of

these possible configurations and disorder-order transition. For the rod model, it

is well known that the competition between the entropic effects and the excluded

volume interaction can be transparently reflected by the main ingredients in the On-

sager theory [65], which has been used for describing nematic structure of rigid rods

in three dimensions [61]. Recently, our research group generalized the free energy

expression of Onsager, suitable for a spatially inhomogeneous system on a spheri-

cal surface, to study the resulting nematic defect structure and concluded that the

only stable state is the splay configuration within the considered parameter range

for thin rods [92, 93]. The instability of other possible configurations—tennis-ball,

rectangle, and cut-and-rotate splay—can also be assessed by means of the Onsager

free energies. Fig. 1.9 shows the four possible configurations of rigid rods confined
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Figure 1.8: (taken from Ref. [7]) Snapshot of Monte Carlo simulation shows two

+1/2 defects of each pair on the north and south poles are very close to each other.

to a spherical surface: splay (A1 and B1), tennis-ball (A2 and B2), rectangle (A3

and B3), and cut-and-rotate splay (A4 and B4), where the right column of figures

are the maps of orientational entropy fields that will be explained in Chapter 2.

As well, some theoretical studies on the conformation of a polymer chain on a

spherical surface were published recently [55, 77, 47, 57, 12, 43, 76, 20]. Considering

a Gaussian chain confined on a curved surface, Mondescu and Muthukumar [55]

calculated the probability distribution function of the end-to-end vector and the

mean-square end-to-end distance. Spakowitz and Wang [77] considered the statis-

tical behavior of a noninteracting wormlike chain confined to a spherical surface;

they provided a closed-form expression of the mean-square end-to-end distance for

any value of total chain length, persistence length, and sphere radius. Lin et al.

[47] obtained some numerical solutions of polymer conformations with local geo-

metrical quantities on cylindrical and ellipsoidal surfaces based on the principle of

minimization of bend energy. By applying the mean field theory to a noninteracting

wormlike chain confined on a spherical surface or in the interior of a sphere, Mor-

rison and Thirumalai [57] found highly wrapping conformation due to the stiffness

of the chain and the confinement of the sphere. Some other works [12, 43] also

supported the wrapping conformation by means of computer simulations. More-

over, if incorporating the excluded volume interaction in the semiflexible chains,

the wrapping conformation could have more complicated symmetry with some fine
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Figure 1.9: Four possible configurations are considered in this work: splay (A1 and

B1), tennis-ball (A2 and B2), rectangle (A3 and B3), and cut-and-rotate splay (A4

and B4). Plots B1-B4 represent distribution maps of orientational entropy fields

that are produced according to the procedure explained in Chapter 2.
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Figure 1.10: (taken from Ref. [20]) Three possible conformations may exist for a

polymer confined on a spherical surface: helicoidal (a), splay (b), and tennis-ball

(c), where the splay conformation is forbidden if the polymer chain has the excluded

volume interaction.

structures. By minimizing the energy of a linear chain of charges confined on a

spherical surface, Slosar and Podgornik [76] observed a helical symmetry of charge

distribution wound around the surface of the sphere. Indeed, similar to the splay

conformation of rods on a spherical surface, one can imagine a helicoidal confor-

mation for a self-avoiding polymer chain on a spherical surface [Fig. 1.10(a)]. Of

course, for a semiflexible polymer chain, the helicoidal conformation is not the only

option. Each +1 defect on either north or south pole of the helicoidal conformation

can be stretched into two +1/2 defects, and the four +1/2 defects locate on the

four vertices of a tetrahedron. This is the tennis-ball conformation for a polymer

chain on a spherical surface [Fig. 1.10.(c)]. By means of Monte Carlo simulations on

a semiflexible polymer chain confined on a spherical surface, Angelescu et al. [20]

confirmed that the tennis-ball state could not exist for neutral chains but can be

observed for charged chains. However, this conclusion does conflict with the con-

tinuum theory which doesn’t depend on any static electric interaction. Recently,

our group conducted Monte Carlo simulations on the neutral semiflexible polymer

chain confined on a spherical surface and confirmed that the ordered state always

accompanies the tennis-ball symmetry [91].
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1.4 Present Work and Organization of the Thesis

For the purpose of studying the conformations of anisotropic molecules confined on

a spherical surface, the thesis will discuss the conformation of rods in Chapter 2,

a long wormlike chain in Chapter 3, and many semiflexible chains in Chapter 3.

Finally, the summary and outlook for this topic are concluded in Chapter 5.

In Chapter 2, a system of self-avoiding hard rods is investigated on the basis

of a generalized Onsager model, which allows us to write the free energy as a

functional of the density distribution (which is a function of spatial and orientational

variables). The numerical solution of the model indicates that the splay state, where

on average rods line up in parallel to the longitudinal lines on the spherical surface,

is the only stable state. Although they can be enforced by numerical tricks, tennis-

ball, rectangle, and cut-and-rotate splay configurations all yield higher free energy

than that of a ground splay state. We also predict that the disorder-splay transition

has first-order characteristics.

In Chapter 3, using Monte Carlo simulations of a wormlike chain that contains

the excluded-volume interaction, it is demonstrated that a directionally anisotropic

state exists at high surface coverage, when the chain is confined to a spherical

surface. The isotropic-anisotropic transition has first-order phase-transition char-

acteristics and can be compared with the isotropic-nematic transition observed in

lyotropic polymer systems, both driven by the excluded-volume interaction. Unlike

a bulk nematic state, the anisotropic state of polymer-segment orientations observed

here always couples with positional ordering, displaying the so-called tennis-ball

texture.

In Chapter 4, we discussed a system of semiflexible chains confined to a spherical

surface with two approaches — Monte Carlo simulation and Onsager model. The

former demonstrates that, if the persistence length of each chain is comparable to its

contour length, the system displays a perfect tetrahedral tennis-ball configuration,

which has never been encountered for the system of rigid rods discussed in Chapter

2 or the system of a long wormlike chain studied in Chapter 3. The numerical

solution of Onsager model is fully prepared in mathematics, but not finished in this

thesis.
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Chapter 2

Onsager Model for the Structure

of Rigid Rods Confined on a

Spherical Surface

2.1 Introduction

Consider the system where N rod-like particles of length `, interacting with each

other through the excluded-volume interaction, are confined on a spherical surface

of radius R. This model belongs to a class of recently studied systems that points

to the existence of the 4-fold tetrahedral symmetry [58, 31, 25, 48]. Such struc-

ture breaks the azimuthal symmetry of a splay distribution, shown in Fig. 1.9(A1),

and contains four +1/2 defects appearing at the vertices of a tetrahedron on the

spherical surface, shown in Fig. 1.9(A2), two on the xz-plane near the north pole

and two on the yz-plane near the south pole. Note that the vector joining the two

defects near the north pole is perpendicular to the vector joining the other pair

near the south pole [Fig. 1.9(A2)]. However, recent Monte Carlo simulations of

thin rods confined on a spherical surface have ruled out the existence of the perfect

tetrahedral tennis-ball structure in this system. Instead, the rectangle conforma-

tion [7] and “cut-and-rotate” splay [7, 74] have been suggested. For the rectangle

conformation, the four +1/2 defects appear on the vertices of a rectangle on the
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xz-plane [Fig. 1.9(A3)]. The cut-and-rotate splay resembles cutting a perfect splay

state along the north-south pole plan and then rotating one of the hemispheres by

an angle about the y-axis shown in Fig. 1.9(A4).

In this chapter, we consider numerical solutions of a free-energy model, gener-

alizing the Onsager interaction between rod-like particles on a spherical surface.

It has been well accepted that Onsager theory is capable of describing nematic

structures of rigid rods [65], including spatially inhomogeneous systems [17, 14, 32]

where orientational degrees of freedom are coupled with positional degrees of free-

dom in the free energy expression. We aim at finding an exact solution of the

free energy functional [Sect. 2.2] in the Onsager model using a multiple-variable

approach [Sect. 2.3], so that the free energy can be minimized with no ambiguous

approximations. Incorporating the symmetric properties of the splay, tennis-ball,

rectangle, and cut-and-rotate splay configurations, we can also enforce the system

to each individual symmetry for the purpose to search for the possible existence

of these different states. One of the main results from this exercise is that the

global minimum of the free energy corresponds to only one state, namely the splay

state [Sect. 2.4.1-4]. Within the a wide range of the searched parameter space,

tennis-ball, rectangle, and cut-and-rotate splay configurations do not correspond to

a free energy minimum. Furthermore, we defined the orientational and positional

order parameters that can be used to characterize the physical properties near the

disorder-splay transition point [Sect. 2.4.5], and found that the nature of the tran-

sition is first order, within the current mean-field approach [Sect. 2.4.6], which is

also supported by the bifurcation analysis [Sect. 2.4.7].
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2.2 Free Energy Functional of Onsager Model

We consider a system of N rigid “rods” which are embedded on the surface of a

sphere of radius R. Because straight rods cannot be completely confined on a curved

surface, here we use the model that each rod is a curved geodesic segment of length

`, which is an arc portion of the so-called great circle whose radius equals the radius

R of the sphere. These rod particles interact with each other through an excluded-

volume interaction. Note that on a two-dimensional surface, the excluded volume

actually manifests itself in the form of an excluded area, which always exists even

for extremely small, vanishing rod radius to length ratio. In this thesis it is assumed

that rods have no thickness D, which can be considered as an approximation for

actual systems having small D/`.

In his classical work [65], Onsager developed a free-energy functional for the

three-dimensional, spatially homogeneous system of rigid rods interacting with each

other through excluded volume interactions, as a functional of the density distribu-

tion function. His approach can be easily generalized to write down the free energy

of the current system, now including both spatial and orientational dependencies,

βF =

∫
%(r,u) ln

[
8π2R2%(r,u)

]
drdu

+
1

2

∫
%(r,u)w(r,u, r′,u′)%(r′,u′) drdudr′du′, (2.1)

where β = 1/kBT . In the above, we have assumed a density distribution function,

%(r,u), where r and u are the position vector and tangent unit vector, respectively,

of the center of mass of a rod. The free energy as a functional of %(r,u) needs to

be minimized; the result is the stable-state distribution function for the system.

The first term arises from both orientational and translational entropies, where

a linear term %(r,u) ln 8π2R2 has been added which does not affect the structure

of the current theory. The second term contains a function w(r,u, r′,u′) that

depends on variables (r,u) and (r′,u′), which represent the coordinates of the

centers of mass of two rods; this function takes a value 1 if any parts of the two

rods overlap and 0 otherwise [17]. Although only accurate at the level of the second-

virial approximation, the competition between the entropy and the excluded-volume
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Figure 2.1: After the coordinate system is chosen, the location of a rod is given

by the polar angle Θ and azimuthal angle Φ, and the orientation of the rod by the

angle between the tangent vector u and the longitudinal line.

terms captures the important physics in most systems involving rigid rods, such as

the isotropic-nematic liquid-crystal phase transition [65, 33], the isotropic-nematic

interface [29, 56, 51, 36, 17, 14, 38], and nematic rods near a hard wall surface

[68, 67, 83].

To proceed further we adopt a spherical-coordinate system to specify the posi-

tion r of the center of mass of a rod by the polar and azimuthal variables, Θ and

Φ, shown in Fig. 2.1. The orientation of a rod is described by θ, the angle which

u makes with respect to the local longitudinal direction passing through the center

of mass (Fig. 2.1). The free energy can be rewritten as,

βF = R2

∫
%(Θ,Φ; θ) ln

[
8π2R2%(Θ,Φ; θ)

]
sin ΘdΘdΦdθ

+
R4

2

∫
%(Θ,Φ; θ)w(Θ,Φ, θ,Θ′,Φ′, θ′)%(Θ′,Φ′; θ′) sin Θ sin Θ′dΘdΦdθdΘ′dΦ′dθ′.

(2.2)
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The density distribution function %(Θ,Φ; θ) satisfies the normalization condition,

R2

∫
%(Θ,Φ; θ) sin ΘdΘdΦdθ = N, (2.3)

where N is the total number of rods in the system. Furthermore, we introduce the

probability distribution function

f(Θ,Φ; θ) ≡ R2%(Θ,Φ; θ)/N, (2.4)

which can be interpreted as the probability for finding the center of mass of a rod

at the position described by (Θ,Φ) and with an orientation represented by θ. The

function f(Θ,Φ; θ) is now normalized to∫
f(Θ,Φ; θ) sin ΘdΘdΦdθ = 1. (2.5)

As a functional of the probability distribution function f(Θ,Φ; θ), the free energy

can be rewritten as,

βF = N lnN +N

∫
f(Θ,Φ; θ) ln

[
8π2f(Θ,Φ; θ)

]
sin ΘdΘdΦdθ

+
N2

2

∫
f(Θ,Φ; θ)w(Θ,Φ, θ,Θ′,Φ′, θ′)f(Θ′,Φ′; θ′) sin Θ sin Θ′dΘdΦdθdΘ′dΦ′dθ′.

(2.6)

The equilibrium state of the model can be found from a minimization of F with

respect to f(Θ,Φ; θ).

The function w(Θ1,Φ1, θ1,Θ2,Φ2, θ2) contains six variables and can be defined

by using basic relations between the variables associated with two interacting rods.

The orientation vector ui and center-of-mass vector ri of rod i, where i = 1 and

2, can be written as ui = cos θiΘ̂i + sin θiΦ̂i and ri = RR̂i, where R̂, Θ̂, and

Φ̂ are unit vectors of the spherical-coordinate system. In this way we can define

the normal to the great-circle plane for a particle located at ri, ni = ri × ui.The

direction from the sphere’s center to the intersection point of two great circles on

the sphere’s surface is a vector that can be represented by j = n1 × n2/ |n1 × n2|.
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Based on these vector relationships the function w can be easily evaluated,

w(Θ1,Φ1, θ1,Θ2,Φ2, θ2) =



1, if j · R̂i > cos(`/2R)

for both i = 1 and 2,

or j · R̂i < − cos(`/2R)

for both i = 1 and 2,

0, otherwise.

(2.7)

The above is a function of `/R only for geodesic rods considered here. The leading

correction for rods of finite D/` can also be written in a similar expression, but we

focus on the case of D/` = 0 here.

In order to minimize the free energy, computationally we could represent the

function in question, f(Θ,Φ; θ), by direct discretization of all three involved vari-

ables. Such discretization was considered previously for similar rod systems where

two or three variables were involved [17, 14]. Because of the large number of

independent variables needed to numerically represent f(Θ,Φ; θ) with high preci-

sion, other numerical tricks were required. In this thesis we take an expansion of

f(Θ,Φ; θ) in terms of orthonormal basis functions, adjusting expansion coefficients

to minimize the free energy.
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2.3 Numerical Approach

In this thesis, the distribution function f(Θ,Φ; θ) is expanded in terms of orthonor-

mal basis functions, with expansion coefficients adjusted to minimize the free en-

ergy. In particular we use the basis function,

ψlmn(Θ,Φ; θ) = Ylm(Θ,Φ)Un(θ), (2.8)

as a combination of the spherical harmonics Ylm(Θ,Φ) and Fourier bases Un(θ), all

written as real functions (see Appendix A). The basis functions, each of which has

three indexes l, m, and n, follow the orthonormal condition,∫
ψlmn(Θ,Φ; θ)ψl′m′n′(Θ,Φ; θ) sin ΘdΘdΦdθ = δll′δmm′δnn′ , (2.9)

where δij is the Kronecker delta.

The function w can be then expanded in terms of the orthonormal bases,

w(Θ,Φ, θ,Θ′,Φ′, θ′) =
`2

4πR2

∑
lmn,l′m′n′

ψlmn(Θ,Φ; θ)Wlmn,l′m′n′ψl′m′n′(Θ′,Φ′; θ′).

(2.10)

At a given value of `/R, the constant matrix, Wlmn,l′m′n′ , can be evaluated according

to

Wlmn,l′m′n′ =
4πR2

`2

∫
ψlmn(Θ,Φ; θ)w(Θ,Φ, θ,Θ′,Φ′, θ′)

· ψl′m′n′(Θ′,Φ′; θ′) sin Θ sin Θ′dΘdΦdθdΘ′dΦ′dθ′. (2.11)

A constant, 4πR2/`2, has been factored out in the above to properly account for

the magnitude of the excluded volume. The integral part of (2.11) contains further

`/R-dependence through the expression in (2.7). Numerically, Wi,i′ is evaluated by

means of Simpson’s approximation, at an integration step `/36R for Θ and Φ and

π/36 for θ; the results were stored as a constant matrix before further computation

takes place.

The unknown function, f , can then be expressed in terms of unknown coeffi-

cients φlmn in the expansion,

f(Θ,Φ; θ) =
∑
lmn

φlmnψlmn(Θ,Φ; θ). (2.12)
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The normalization condition, (2.5), can be directly used to determine the coefficient

of the leading basis function, labeled (l,m, n) = (0, 0, 0),

ψ000 = 1
/√

8π2, (2.13)

which gives

φ000 = 1
/√

8π2. (2.14)

The free energy can then be treated as a function of multiple variables, all φlmn

other than φ000, in this search for the free energy minimum,

βF = N lnN +N

∫
f(Θ,Φ; θ) ln

[
8π2f(Θ,Φ; θ)

]
sin ΘdΘdΦdθ

+
N2`2

8πR2

∑
lmn,l′m′n′

φlmnWlmn,l′m′n′φl′m′n′ . (2.15)

The isotropic state is characterized by a constant density distribution. The

expansions considered here yield a free energy for the isotropic state,

βF0 = N lnN +
N2`2

8πR2
W000,000φ

2
000. (2.16)

We can then write the reduced free-energy difference per particle,

f̃ =(βF − βF0)/N

=

∫
f(Θ,Φ; θ) ln

[
8π2f(Θ,Φ; θ)

]
sin ΘdΘdΦdθ

+
ρ`2

2

∑′

lmn,l′m′n′

φlmnWlmn,l′m′n′φl′m′n′ ,

(2.17)

where the summation
∑′ runs taken over all (l,m, n) and (l′,m′, n′) except for

the (l,m, n) = (l′,m′, n′) = (0, 0, 0) terms. Beyond φlmn, the system contains two

parameters, the length-to-radius ratio `/R through the W matrix and the reduced

density

ρ`2 =
N`2

4πR2
(2.18)

as the coefficient of the second term in (2.17). For each set of specified parameters,

`/R and ρ`2, we attack the minimization problem, by treating f̃ as a multi-variable

function of φlmn, where (l,m, n) 6= (0, 0, 0).

26



In the actual computation, we further took advantage of the symmetry prop-

erties listed in Appendix B to reduce the number of unknown variables, φlmn. We

approximated the expansion by neglecting terms having indexes l = 8, n = 8 and

higher. The expansions including terms with index l = 8 and n = 8 were also

considered; although the minimized free energies were a little shifted, the results

discussed in next section would not be changed at all. For the purpose to save com-

putational time, we focused on the expansions with indexed up to 6. This means

that there are 16, 46, 47, and 91 bases needed to describe the splay, tennis-ball, rect-

angle, and cut-and-rotate splay states, respectively. The numerical error of ignoring

higher order terms are negligible, within the precision of required calculation.

The computational task for conducting the search of the free energy minimum

relies on an implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm explained in Ref. [26]. BFGS is a quasi-Newton method, which searches

for a stationary point of a multi-variable function starting from an initial guess

iteratively. At each step, BFGS method determines a search direction from the

gradient and uses the approximation of the Hessian matrix to find the next point.

The stationary point is located until the gradient converges to zero. At every search

step, the value of the function to be minimized, (2.17), and its gradient,

Glmn ≡ ∂f̃

∂φlmn

=

∫ {
1 + ln

[
8π2f(Θ,Φ; θ)

]}
ψlmn(Θ,Φ; θ) sin ΘdΘdΦdθ

+ ρ`2
∑
l′m′n′

Wlmn,l′m′n′φl′m′n′ ,

(2.19)

must be provided.

While the computational task of the W -related terms in both Eqs. (2.17) and

(2.19) can be performed efficiently by taking summations, the integration in terms

related to ln f(Θ,Φ; θ) in both expressions is not straightforward and most numeri-

cally expensive. For a given set φi, we evaluated the entire function f(Θ,Φ; θ) from

the expansion, (2.12), and treated these integrations involving logarithmic terms

taking a numerical integration based on Simpson’s rule.
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2.4 Results

2.4.1 Free-energy minimum

The model system that we are considering can be characterized by the length of

the rod, `, the radius of confining sphere R, and the number of particles N . Out

of these parameters, from a scaling point of view, only two reduced parameters are

important, `/R, and the reduced surface density, ρ`2 in (2.18). Indeed, the reduced

free energy, (2.17), contains these reduced parameters. The results discussed in this

section are presented as a function of ρ`2, with selected `/R in the range [0.1, 1].

The solid curves in Figs. 2.2-2.11 represent the minimized free energy obtained

from the numerical minimization for `/R = 0.1, 0,2, ..., 1, all corresponding to the

ground-state splay conformation. The number of independent φlmn in the expansion

(2.17) varies according to the underlying symmetry properties listed in Appendix

B. Because the splay conformation has a higher symmetry than the other three,

splay terms which exist in a splay configuration are also common in the expan-

sions of the free energies for other three types of configurations. For every given

system, we have employed four different processes of conducting the minimization

search. Each process corresponds to a study of a particular type of conformation;

we directly search for the free-energy minimum of this conformation by varying the

undetermined coefficients of all relevant terms and removing all other terms that

violate the symmetry properties of such a state. By the end of the search, all four

processes converge to one single result: in the expansion of f (Eq. 2.12), only the

coefficients φlmn of the splay terms are significantly present and coefficients φlmn of

the non splay terms vanish. Therefore, within the range of parameter space studied

and within the validity of the Onsager model, we find that the splay conformation

is the only stable conformation.

In order to dissect the structures associated with the non-splay conformations,

we took another approach in this numerical study. From the symmetry of the

expansion, we can see that each non-splay conformation is characterized by a leading

term in the free-energy expansion, tennis-ball state by the (l,m, n) = (3, 2, 0) term,

rectangle state by the (2, 2, 0) term, and cut-and-rotate splay state by the (3,−2, 0)
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Figure 2.2: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.1. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.3: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.2. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.4: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.3. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.5: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.4. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.6: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.5. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.7: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.6. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.8: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.7. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.

35



-3

-2

-1

0

1

2

f
(A) l/R=0.8

-3

-2

-1

0

1

f

(B)

0 5 10 15 20

ρl
2

-3

-2

-1

0

1

f

(C)

Splay

Tennis-ball

Splay

Splay

Rectangle

Cut-and-rotate splay

~
~

~

Figure 2.9: Minimized free energy plotted as a function of reduced density ρ`2 for

`/R = 0.8. Fig. (A) show the free energies of the splay states (solid curve) and

the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.10: Minimized free energy plotted as a function of reduced density ρ`2

for `/R = 0.9. Fig. (A) show the free energies of the splay states (solid curve)

and the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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Figure 2.11: Minimized free energy plotted as a function of reduced density ρ`2

for `/R = 1.0. Fig. (A) show the free energies of the splay states (solid curve)

and the tennis-ball states (dashed curves) with leading term coefficient fixed at -0.1

-0.08, -0.06, -0.04, and -0.02 from the top to bottom curves. Fig. (B) show the free

energies of the splay states(solid curve) and the rectangle states (dashed curves)

with leading term coefficient fixed at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to

bottom curves. Fig. (C) show the free energies of the splay states (solid curve) and

the cut-and-rotate splay states (dashed curves) with leading term coefficient fixed

at 0.1 0.08, 0.06, 0.04, and 0.02 from the top to bottom curves.
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term; these terms do not exist in a splay state. We fixed the coefficients φlmn of

these non-splay terms (hence enforced symmetry breaking into a particular state)

and numerically searched for the free-energy minima by varying other coefficients.

The fixed φlmn was set at small increments, covering a significant range to ensure

a thorough search. Examples of such a minimization procedure are displayed in

Figs. 2.2-2.11 as well. The dashed curves in Figs. 2.2(A)-2.11(A) show the resulting

free energies by letting the tennis-ball order parameter φ3,2,0 fixed at -0.1, -0.08,

-0.06, -0.04, and -0.02, from the top to bottom. The dashed curves in Figs. 2.2(B)-

2.11(B) show the resulting free energies by letting the rectangle order parameter

φ2,2,0 fixed at 0.1, 0.08, 0.06, 0.04, and 0.02, from the top to bottom. The dashed

curves in Figs. 2.2(C)-2.11(C) show the resulting free energies by letting the cut-

and-rotate splay order parameter φ3,−2,0 fixed at 0.1, 0.08, 0.06, 0.04, and 0.02, from

the top to bottom. Note the highest curves in all these plots have free energies far

exceeding the free energy of the isotropic state (i.e., f̃ is significantly positive) at

a wide range of ρ`2. Most importantly, f̃ as a function of φlmn for a considered

ρ`2 changes monotonically. Within the parameter range searched in this work, we

can rule out the existence of stable non-splay configurations. As well, these plots

demonstrates how other possible conformations converge to a splay ground state,

as the relevant φlmn decreases.

2.4.2 Onsager model and Frank energy

The consideration of a ground-state tennis-ball conformation stemmed from an

analysis of elastic theory of the orientational field generated by the particles. In

a one-Frank-constant approximation in two dimensions [58, 49], K2 is absent and

K1 = K3, where K1 for splay distortion, K2 for twist distortion, and K3 for bend

distortion are the Frank constants; the Frank energy can be mapped into the energy

of the two-dimensional ferromagnetic XY model [59]. Then one can show that

the free energy is proportional to the square of the defect index. The tennis-

ball conformation contains four +1/2 defects (the orientational field turns a π

angle around each defect) and the splay conformation contains two +1 defects (the

orientational field turns 2π around each defect). Thus, within this assumption, the

tennis-ball conformation has a lower energy than that of the splay [58, 49].
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Here we deal with the specific system of thin rods (D/` ∼ 0), for which we need

to check if the one-Frank-constant approximation is still satisfied. In fact, the Frank

free energy (Eq. 1.2) can be recovered from the Onsager free energy (Eq. 2.1); it

was explored previously for nematic textures to determine Frank constants from the

Onsager model [81, 73]. The basic idea in this comparison is to assume a distribution

function %(r,u) in terms of u and n(r) by introducing a trial function describing

the angular distribution about a vector director field n(r) and integrate out the u

dependence so that the free energy is now dependent on n(r) only. As the next step,

a square first-order-derivative expansion is carried out, leaving leading quadratic

terms in the same structure as the Frank energy. This way, one can pin down the

Frank coefficients for nematic rods, without phenomenological assumptions of the

magnitude of K1, K2 and K3. According to Refs. [81, 69], such a comparison gives

rise to K1 ' 0.06 � K3 ' 0.4 [81] in a system containing thin rods [74, 7]. This

estimate can be contrasted with the K1 ∼ K3 requirement for the stabilization of a

tennis-ball configuration discussed in Refs. [58, 49], and is the reason why nematic,

rigid rods does not display the tennis-ball configuration on spherical surface.

On the other hand, confined systems consisting of molecules with some semi-

flexibity might display the tennis-ball texture in high density. An interesting real

system is the liquid of 5CB molecules [48], which has K1 ≈ K3 [10], in consistence

with the one-Frank-constant condition; experimentally, non-splay textures were

observed [48]. Another related system, though theoretical, is a long self-avoiding

semiflexible polymer chain confined on a spherical surface. Because of the flexi-

bility along the chain, K3 now becomes comparable to K1. Using Monte Carlo

simulations, it was recently concluded that this system displays a disorder-order

transition, where the ordered state always accompanies the tennis-ball symmetry

[91].

Monte Carlo simulations of nematic rods on a spherical surface agree with the

results here [7]. It should be noted, however, the analysis in Refs. [81, 73] was

conducted by assuming a specific distribution form in %(r,u) and was done in three

dimensional space. A similar analysis for nematic rods embedded on a curved

surface will reveal the nature of K1 and K3 further and is useful.
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2.4.3 Cut-and-rotate splay

Using Monte Carlo simulations of thin rods on a spherical surface, Shin et al.

recently suggested the existence of the so-called cut-and-rotate splay conformation

in closely packed hard rods [74], where `/R ≈ 0.4 and ρ`2 ≈ 14. The hard rods

were modeled by straight lines and confined to the tangent plane of the sphere, each

rod having a nonzero diameter D = `/15. The excluded volume interaction of this

thickness-to-length ratio has the same effects as the excluded area interaction of

geodesic rods considered in this work. The cut-and-rotate splay configuration can

be visualized as if it is made from a perfect splay by cutting the plane containing

the north and south poles, rotating one of the hemispheres by an angle, and then

reforming the structure by combining two hemispheres. In an idealized picture

[Fig. 1.9(A4)] where the director field perfectly aligns along the longitudinal lines,

there is no Frank-free-energy cost for cutting and rotating and, consequently, the

cut-and-rotate splay configuration has a similar Frank energy as the splay state,

according to the analysis based on the Frank free energy model [58, 49, 74].

However, the angular distribution about the director field of this conforma-

tion contains a sharp change at the cutting circle. Following the trial function

approach and taking a complete expansion of the Onsager free energy in terms of

spatial derivatives of n(r), one can show that only the quadratic terms of first-order

derivatives correspond to the Frank energy [81, 73]. Higher order terms, both in

higher power of the first derivatives and higher-order derivatives of n(r), which are

included in the unexpanded version of the Onsager free energy, disfavor such sharp

changes by raising the free energy of the system. This effect rules out the cut-

and-rotate splay in the current system. It should be noted that the model in this

research deals with geodesic rods, which are not exactly straight rods simulated in

Refs. [74, 7]; despite this, we still expect the same qualitative physical picture in

the small `/R limit.

In the above we have already calculated the free energy of an enforced cut-and-

rotate splay symmetry shown in Figs. 2.2-2.11, from a numerical solution of (2.17)

by fixing a leading cut-and-rotate splay term, φ3,2,0. Here we take yet another

approach to examine this state by actually taking a “cut-and-rotate” process. To
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Figure 2.12: Cut-and-rotate-splay free energy plotted as a function of the rotation

angle α at various densities ρ`2 = 7.96 (circles), 11.94 (squares), 15.92 (up trian-

gles), and 19.90 (down triangles) for (A) `/R = 0.1 and (B) `/R = 0.2, based on

the solution of (2.6).
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Figure 2.13: Cut-and-rotate-splay free energy plotted as a function of the rotation

angle α at various densities ρ`2 = 7.96 (circles), 11.94 (squares), 15.92 (up trian-

gles), and 19.90 (down triangles) for (A) `/R = 0.3 and (B) `/R = 0.4, based on

the solution of (2.6).
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Figure 2.14: Cut-and-rotate-splay free energy plotted as a function of the rotation

angle α at various densities ρ`2 = 7.96 (circles), 11.94 (squares), 15.92 (up trian-

gles), and 19.90 (down triangles) for (A) `/R = 0.5 and (B) `/R = 0.6, based on

the solution of (2.6).
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Figure 2.15: Cut-and-rotate-splay free energy plotted as a function of the rotation

angle α at various densities ρ`2 = 7.96 (circles), 11.94 (squares), 15.92 (up trian-

gles), and 19.90 (down triangles) for (A) `/R = 0.7 and (B) `/R = 0.8, based on

the solution of (2.6).
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Figure 2.16: Cut-and-rotate-splay free energy plotted as a function of the rotation

angle α at various densities ρ`2 = 7.96 (circles), 11.94 (squares), 15.92 (up trian-

gles), and 19.90 (down triangles) for (A) `/R = 0.9 and (B) `/R = 1.0, based on

the solution of (2.6).
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show the cut-and-rotate effects, we took the density distribution fspl(Θ, θ) of the

splay conformation, which was obtained from the free energy minimization, and cut

it through the xz-plane. Then the distribution on the hemisphere containing the

positive y-axis was rotated by an α/2 angle about the y-axis, and the distribution

on the other hemisphere is rotated by a −α/2 angle. With the aid of the addition

theorem of spherical harmonics, the new distribution could be easily obtained,

which was substituted into Eq. 2.6 for evaluation of the free energy. In Figs. 2.12-

2.16, we display the cut-and-rotate splay free energy per rod, as a function of the

rotation angle α, for `/R = 0.1, 0.2, 0.3, ..., 1.0. From the plots, we can see that cut-

and-rotate splay state has a higher free energy in comparison with that of the splay

state (α = 0 or π). This is more so in large-`/R systems than in small-`/R systems.

These plots, together with the symmetry-based analysis in Figs. 2.2-2.11, preclude

the probability that cut-and-rotate splay is a stable state within the validity of the

free energy model in (2.6).

2.4.4 Nematic-director field, local entropy field, and defect

visualization

As discussed above, all four possible configurations considered in this Chapter con-

tain coupled orientational and spatial ordering. In this subsection, we discuss order

parameters resulting from the numerical solution of the Onsager model (Eq. 2.6).

The left panels in Fig. 1.9 are idealized texture illustrations where the local

nematic directors are indicated by unit vectors forming a director field. The im-

portant information on the local orientational entropy is not clearly represented

in these plots. On the basis of the distribution function containing Θ,Φ and θ as

variables, we consider here a scalar orientational entropy field σ(Θ,Φ), represented

by a local orientational order parameter defined by the following procedure. First,

a 2 × 2 matrix S is constructed,

S = 〈2uu− I〉 =

(
〈cos 2θ〉 〈sin 2θ〉
〈sin 2θ〉 −〈cos 2θ〉

)
. (2.20)
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The average 〈· · · 〉 is performed over the orientational distribution locally,

〈cos 2θ〉 =

∫
cos 2θf(Θ,Φ; θ)dθ∫
f(Θ,Φ; θ)dθ

, (2.21a)

〈sin 2θ〉 =

∫
sin 2θf(Θ,Φ; θ)dθ∫
f(Θ,Φ; θ)dθ

. (2.21b)

We then select the positive eigenvalue of the matrix S as a measure for the orien-

tational entropy field,

σ(Θ,Φ) =
√

〈cos 2θ〉2 + 〈sin 2θ〉2. (2.22)

Figures 1.9(B1)-(B4) are illustrations of σ(Θ,Φ) for L/R = 0.5 and ρL2 = 12,

based on f(Θ,Φ; θ) determined from the present work, which was obtained for

splay (all expansion coefficients free in minimization), tennis-ball (φ3,2,0 fixed at

0.1), rectangle (φ2,2,0 fixed at 0.1), and cut-and-rotate splay (φ3,−2,0 fixed at 0.1)

configurations. A color scheme is used in the plot, where red, yellow, green, cyan,

and blue are used to represent σ values ranging from high to low. These plots show

that the structural defects can be visualized not only by the director field but also

by an analysis of the orientational entropy field. In the splay configuration, two

low σ (high-entropy) defects are located at north and south poles. In a tennis-ball

state, four low-σ defects occupy the vertices of a tetrahedron, which is a similar

picture as the one displayed for the result of a Landau-de Gennes model under one-

Frank constant approximation [40]. In a rectangle configuration, four low σ defects

can be seen along a great circle cutting through xz-plane, where the pattern in

a low σ region is greatly distorted; in a cut-and-rotate splay configuration, four

low σ defects follow the same symmetry of the director-field defects; however, the

locations of the lowest σ (off the xz-plane) do not completely overlap with the

locations of the proposed defects (on the xz-plane) in the director field [74]. These

plots can be compared with Figs. 1.9(A1)-(A4), where an idealized illustration of

the four configurations is displayed.

2.4.5 Splay order parameter

Next we examine two order parameters that display the characteristics of the overall

orientational and positional ordering of the disorder-splay phase transition. One of
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Figure 2.17: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.1. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3

49



0 1 2 3 4 5 6 7 8 9 10

ρl
2

0.0

0.2

0.4

0.6

0.8

1.0

Ω l/R=0.2

(A)

0 1 2 3 4 5 6 7 8 9 10

ρl
2

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Σ

(B)

Transition gap

Transition gap

Figure 2.18: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.2. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.19: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.3. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.20: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.4. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.21: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.5. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.22: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.6. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.23: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.7. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.24: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.8. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.25: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 0.9. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.
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Figure 2.26: Orientational (A) and positional (B) order parameters, Ω, Σ, plotted

as functions of reduced density, ρ`2, for `/R = 1.0. Data points associated with

nonzero Ω and Σ were produced from splay configurations. The area inside the two

vertical lines indicate the transition region discussed in Sect. 2.4.3.

58



which, Ω, concerns the global orientational order and is defined by,

Ω =

∫
cos 2θf(Θ,Φ; θ) sin ΘdΘdΦdθ

= 2πφ002,

(2.23)

which yields a 0 value in the isotropic phase, a positive value in the splay phase

where rods line up along the longitudes (observed here), and a negative value in the

helicoidal phase where rods line up along the latitudes. The fact that we only see

a positive Ω for rigid rods verifies the fact that K1 � K3 discussed in Sect. 2.4.2;

this was noted by Nelson in Ref. [58].

The global spatial order parameter,

Σ =

∫
P2 (cos Θ) f(Θ,Φ; θ) sin ΘdΘdΦdθ

=

√
8

5
πφ200,

(2.24)

yields a 0 value in the isotropic phase, a positive value in a spatially ordered state

where the pole regions are more dense, and a negative value in a spatially ordered

state where the equator region is more dense.

Figures 2.17-2.26 show Ω and Σ as functions of ρ`2 for the splay branch. The ini-

tial guess of the density distribution function f(Θ,Φ; θ) in the numerical search was

taken from the optimized function determined earlier at a slightly higher value of

ρ`2. This way, in the region where a disorder state is stable (reflected by significantly

nonzero Ω and Σ), the minimized results closely adhered to a splay configuration.

As ρ`2 is lowered passing a transition region, an isotropic state is reached in the

low density region, where Ω = Σ = 0. Comparing Σ of the case `/R = 0.1 with

those of the systems `/R = 0.5 and 1.0, we can also see that the spatial ordering is

weakened as `/R becomes smaller. This is consistent with the expectation that this

model system here becomes spatially disordered approaching the asymptotic limit

of a flat two-dimensional system, `/R � 1, while keeping an orientational order (a

nematic state).
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Figure 2.27: Transition densities determined from the numerical results plotted

as a function of `/R in two perspectives: (A) ρiso`
2 (down triangles) and ρspl`

2

(up triangles) themselves and (B) with a curvature factor sinc(`/2R). The dashed

curves demonstrates a perceived isotropic-nematic transition in a curved space,

ρc`
2sinc(`/2R) = 3π/2, which is gives the correct transition point at `/R = 0 only.
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2.4.6 Disorder-splay phase transition

The order-parameter plots in Fig. 2.17-2.26 follow the splay solution of the model

and give us the approximate location of the transition density for the disorder-

splay phase transition (bifurcation point). To further study the characteristics of

the isotropic-splay transition, we used splay-relevant, undetermined φl0n and substi-

tuted them into Eq. 2.17, to produce an expansion of the free energy. In comparison

with the Landau expansion in the phase-transition theory, one important feature

in the expansion is the existence of third order terms coupling Ω with Σ and other

φl0n factors. This can be understood from the symmetry of the problem without

actually expanding the free energy. For example, making the transformation of

Ω → −Ω implies the change from splay to latitudinal helicoidal or vice versa; these

are two different physical states hence the corresponding free energies cannot be

identical. Moreover, the change in the free energies cannot be compensated by

the transformation of other coefficients φl0n. An immediate implication is that in a

Landau expansion, odd-power terms exist, so that the associated phase transition is

discontinuous. Using the numerical data presented above, we clarify the properties

of the transition in this subsection.

The method used here is similar to the determination of the first-order isotropic-

nematic phase transition in the lyotropic liquid-crystal theory, although there is

no spatial disorder in the latter [65, 61]. To determine the transition density,

conceptually we consider two systems, one is in an isotropic phase with a number

density ρiso and the other is in a splay state with ρspl. These two systems are

in phase equilibrium at the transition densities, in such a way that the chemical

potentials,

µ = (∂F/∂N)A, (2.25)

are the same in the two systems. We also equate the osmotic pressures,

Π = (µN − F )/A, (2.26)

in the two systems, where A = 4πR2 is the surface area,. The transition densities
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are determined from solving two non-linear equations,

µiso(ρiso) = µspl(ρspl), (2.27a)

Πiso(ρiso) = Πspl(ρspl). (2.27b)

The free energy βF is already given in (2.15) for the splay branch and (2.16) for

the isotropic branch. The derivatives of the free energy of the isotropic branch can

be obtained analytically from (2.16), while those of the splay branch were obtained

in this work by a numerical difference with respect to ρ. The procedure is identical

to the one used in studying the isotropic-nematic transition of a lyotropic system

of rods [61].

The transition densities ρiso`
2 and ρspl`

2 are plotted in Fig. 2.27(A) by down

and up triangles, respectively. The first-order transition gap is wider in larger

`/R-systems and converges to zero in the limit of a flat two-dimensional system

(`/R → 0). This fact implies that the first-order disorder-splay transition reduces

to a continuous isotropic-nematic transition in flat two dimensions as `/R → 0,

within the validity of the Onsager model; the asymptotic reduced transition density

at `/R = 0, 4.7, is consistent with the value found earlier ρc`
2 = 3π/2 [33, 15]. For

larger `/R, the transition densities deviate from 4.7, the theoretical critical density

of the isotropic-nematic transition of flat two dimensional hard-rod system, and

the first-order nature of the disorder-splay transition in finite L/R systems starts

to emerge, which can be compared to the first-order nature of the isotropic-nematic

transition in a three-dimensional lyotropic system [61, 34, 35, 16]. The reasons of

the deviation and the first-order nature are the curvature of the spherical surface

and the non-uniform spatial distribution of rods on the spherical surface, which are

discussed within two steps below.

First, we assume that the rods are uniformly distributed in space and consider

the effect of the curvature of the spherical surface. For two rods embedded in flat

two dimensions, the excluded volume is `2 sin γ, where γ is the angle between the

directions of the two rods. However, for two rods confined to a spherical surface,

the excluded volume must be rewritten as `2sinc(`/2R) sin γ due to the curvature

of the spherical surface (see Appendix C for the derivation), where the function

sincx = sin x/x. Taking into account the curvature of the spherical surface, we
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have to rewrite the reduced density as

ρ`2sinc
`

2R
=

N`2

4πR2
sinc

`

2R
. (2.28)

In the next subsection about the bifurcation analysis, we confirm that, within the

assumption of uniform spatial distribution, the disorder-splay transition should be

continuous and the critical density would be ρc`
2sinc(`/2R) = 3π/2, same as that

of flat two dimensions. In Fig. 2.27(B), we plot the transition densities as the

redefined reduced density ρ`2sinc(`/2R) v.s. `/R, which can be compared to the

constant value 3π/2 (dashed line). However, the transition densities still deviate

from ρc`
2sinc(`/2R) = 3π/2, which is due to the non-uniform spatial distribution

of rods in fact.

In the second step, we cancel out the assumption of uniform spatial distribution

to investigate the effects of non-uniform spatial distribution that indeed occurs in

the system here. According to the discussion in the next subsection, we confirm

that the non-uniform spatial distribution will generate cubic terms in the Landau

expansion of the free energy, which implies that the transition is first order. Besides,

as mentioned in the last subsection, the spatial order becomes stronger as `/R

becomes larger. Therefore, the gap and the deviation of transition densities away

from ρc`
2sinc(`/2R) = 3π/2 is more obvious for larger `/R (Fig. 2.27).

In summary, the fact that the first-order nature of the disorder-splay transition

of the rigid-rod system confined to the spherical surface differs from the continuous

isotropic-nematic transition of a hard-rod fluid in flat two-dimensional space is due

to both the curvature of the spherical surface and non-uniform spatial distribution

of rods.

Instead of the hypothetical phase-equilibrium physical picture, we are, however,

dealing with a single system where N (therefore ρ`2) is fixed. In a typical plot

given in Fig. 2.17-2.26 where ρ continually changes, we can divide ρ into three

regions. In the ρ ≤ ρiso or ρ ≥ ρspl region, the system is either in a disorder or

splay state. In the ρiso < ρ < ρspl region, the system is actually in a crossover state

between the disorder and splay states. Both Ω and Σ are different in this region

from the splay branch plotted in Fig. 2.28. For an isotropic-nematic transition in
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Figure 2.28: The orientational and spatial order parameters, Ω (A) and Σ (B), at

ρspl`
2 plotted as functions of `/R.

the thermodynamic limit, this density region normally corresponds to a isotropic-

nematic interface [17, 14, 19, 32]; details are not discussed further in this thesis.

We studied a free energy function in a mean-field theory level. As it turns

out, in a Monte Carlo simulation where the critical fluctuations existed, Frenkel

and Eppenga [27] provided concrete evidence that the two-dimensional isotropic-

nematic transition in a flat space is a Kosterlitz-Thouless (KT) transition. The

relationship between the disorder-splay transition of rods on a spherical surface

and the KT isotropic-nematic transition of rods in a flat surface remains to be

discovered by a theory or simulation where the critical fluctuations are properly

incorporated.
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2.4.7 Splay bifurcation analysis

Most of the results discussed in the previous subsections were based on the nu-

merical solutions to the Onsager model. The expansion in Eq. 2.17 also offers an

opportunity for us to examine the leading expansion terms of the free energy as a

function of the order parameters. The analysis in this subsection verifies the results

in the above for the disorder-splay transition.

Accurate to the cubic terms, in general we can write a small-φlmn expansion of

the free energy in Eq. 2.17,

f̃ =
∑

l,l′,n,n′

(
4π2δll′δnn′ +

ρ`2

2
Wl0n,l′0n′

)
φl0nφl′0n′

+
∑

l,l′,l′′,n,n′,n′′

Bl0n,l′0n′,l′′0n′′φl0nφl′0n′φl′′0n′′

+ O
(
φ4
)
,

(2.29)

where, because of the symmetry of splay configuration, all terms associated with

an index m 6= 0 vanish and all l and n must be nonnegative even numbers. The

coefficients of cubic terms Bl0n,l′0n′,l′′ is nonzero only if the rank l’s satisfy |l′− l′′| ≤
l ≤ l′ + l′′ and the rank n’s satisfy n = |n′ − n′′| or n = n′ + n′′. For example,

the coefficients of terms φ2
002φ004, φ002φ200φ202, φ200φ

2
202, and φ3

200 are not zero.

According to Appendix D, the coefficients of quadratic terms can be evaluated by

substituting

Wl0n,l′0n′ =
16π

1 − n2
δll′δnn′ +

(
`

R

)2

F(l, l′, n, n′) + O

[(
`

R

)4
]

(2.30)

into Eq. 2.29, where F(l, l′, n, n′) is a function of l, l′, n, and n′.

The discussion is organized into three steps. First, we consider the limit of flat

two dimensions, i.e. `/R → 0. In this case, only the first term of Wl0n,l′0n′ (Eq.

2.30) survives, which means the matrix W is diagonalized and the quadratic terms

of the Landau expansion of free energy (Eq. 2.29) become∑
l,n

[
4π2 + 8πρ`2/(1 − n2)

]
φ2
l0n.

65



For the quadratic terms of φ2
00n with n 6= 0, the coefficients could be positive at low

densities and negative at high densities, since 1 − n2 < 0 for n ≥ 2. Besides, the

lowest transition density is given by the leading term n = 2, where ρc`
2 = 3π/2.

The high n-rank order parameters φ00n are coupled to φ002 due to the cubic or high

order terms of the Landau expansion of free energy, e.g., φ004 ∼ φ2
002 from the cubic

term φ2
002φ004, which is actually of fourth order of φ002 [15]. For the quadratic terms

of φl00 with l 6= 0, the coefficients are definitely positive, which implies φl00 vanishes

during the minimization. For the quadratic terms of φl0n with l 6= 0 and n 6= 0,

one can see that order parameters φl02 for any l have the same critical density as

φ002, which is not surprising for a KT transition. During the KT transition, the

vortex-anti-vortex unbinding causes an inhomogeneous spatial distribution of rods

which may consist of any mode of rank l. In summary, the bifurcation analysis

for the limit `/R → 0 confirms a continuous isotropic-nematic phase transition at

the critical density ρc`
2 = 3π/2, which is consistent with the study of the hard-rod

system in flat two dimensions [33, 15].

Second, for finite `/R, the coupling quadratic terms, such as φ002φ200 and

φ002φ202, exist so that φ200 and φ202 are coupled to the linear order of φ002. There-

fore, the cubic terms φ002φ200φ202, φ200φ
2
202, and φ3

200 are indeed of cubic order and

contribute to the first order phase transition.

Finally, we consider finite `/R but still assume the density distribution is uni-

form in space, which means φl0n for l 6= 0 and any n vanishes and only the terms

φ00n survive in the Landau expansion of free energy (Eq. 2.29). We take more

delicate evaluation for W00n,00n′ in Appendix D with the assumption of uniform

spatial distribution, which is

W00n,00n′ =
16π

1 − n2
sinc

`

2R
δnn′ . (2.31)

Analogically, the coefficients of quadratic terms become∑
n

[
4π2 + 8πρ`2sinc(`/2R)/(1 − n2)

]
φ2
00n,

which implies a continuous transition at the critical density ρ`2sinc(`/2R) = 3π/2 ≈
4.7, which is used as a reference in the discussion of transition densities in the

previous subsection.
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2.5 Conclusion

In this Chapter, it is demonstrated that the Onsager treatment for rigid rods can

be generalized to study the system of curved rigid rods confined on the spherical

surface. The excluded volume interaction in the system can be approximated by

a free-energy term that depends on both orientational and positional variables. A

numerical method is developed, which allows us to minimize the free energy within a

controlled precision, adjusting the density distribution function. It is observed that

the free energy minimum corresponds to a stable splay state and that the tennis-

ball, rectangle, and cut-and-rotate splay configurations are all not stable, within

a significantly wide parameter region searched computationally. The properties of

the disorder-splay transition were also studied.
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Chapter 3

Monte Carlo Simulation of

Self-Avoiding Wormlike Polymer

on a Spherical Surface

3.1 Introduction

The model of a polymer chain confined to a spherical surface provides significant

insights into the physical properties of a number of chemical and biological systems

[77, 57, 12, 43, 76]. It has been shown that the competition among involved length

scales (the total contour length L of the polymer, the sphere radius R and the

persistence length `p of the polymer) creates interesting conformational properties

unique to this model [77, 43, 57, 12], which are normally seen in nanoscale in actual

systems. Adding to this competition, is the interaction between polymer segments,

which can make the wrapping polymer displaying more complicated conformational

structures [12, 76, 47]. One important feature of this system, is the coupling of the

segmental orientational properties with the positional properties, which can be

compared to bulk states observed in lyotropic wormlike polymer systems, where

the orientational and positional properties are not necessarily coupled [61].

Within the parameter region `p � R, Spakowitz and Wang [77] investigated

this model and provided an analytical expression for the mean-square end-to-end
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Figure 3.1: (A) Simulation snapshot for an isotropic state and (B) a highly heli-

coidal state (which actually contains a weak tennis-ball texture).

distance of a semiflexible chain without the excluded volume interaction. They

found that the chain tends to lie near the equator region of the spherical surface

due to the orientational correlation, which was also supported by a recent computer

simulation [43]. A similar observation was also made by Morrison and Thirumalai

[57] who went further to analytically study a noninteracting wormlike chain confined

to the interior of a spherical cavity.

An interesting but less investigated parameter region is `p ≤ R with length

scales more relevant to the DNA packaging problem, since the persistence length

of DNA [11] and the scale of bacteriophage capsid shell [64] are around 50nm. The

bending energy of a semiflexible chain normally creates an orientational correlation

typically persistent along the chain within a distance of a few `p. Any spacial

and orientational ordering would have been lost after the chain wraps around the

sphere, forming an isotropic state [Fig. 3.1(A)]. In this chapter, we demonstrate

that the excluded-volume interaction is responsible for the formation of an ordered

anisotropic state, in analogy to the isotropic-nematic phase transition of a two-

dimensional polymer liquid crystal, at a relatively high surface density.

Qualitatively, we expect that a helicoidal-like configuration (a resembling snap-

shot of the Monte Carlo simulation is given in Fig. 3.1(B)) could occur at high
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Figure 3.2: The illustration of the tennis-ball conformation is given with the defi-

nition of the coordinate system. Note that the fluctuations in segmental displace-

ments of a Monte Carlo snapshot obscure the tennis-ball symmetry. After x−, y−,

and z− axes are selected, the location of a polymer segment is given by the polar

angle Θ and azimuthal angle Φ, and the orientation of this segment by the angle

between the bond vector u and a latitude circle.
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surface coverage where the polymer forms a tight spacial packing arrangement. If

the configuration were perfectly helicoidal, the terminal ends of the polymer would

appear in the north and south poles and the entire polymer would wrap the sur-

face with almost perfect circular configurations. In a related system of small rigid

rod-like molecules confined to the surface of a sphere, liquid-crystal theories indi-

cated that the high-density anisotropic state could be a tennis-ball state (Fig. 3.2),

where the orientation pattern of molecules makes the system to display a partial

tetrahedron symmetry [58]. In a coordinate system where the location of a point on

the spherical surface is specified by the polar and azimuthal angles, Θ and Φ, the

coupled positional and orientational distribution function %(Θ,Φ; θ), where θ, the

angle that u makes with respect to local latitude, is a local variable that specifies

the molecular orientation at Θ and Φ, satisfies the tennis-ball symmetry properties

(Appendix B),

%(Θ,Φ; θ) = %(Θ, 2π − Φ; π − θ) = %(Θ,Φ; π + θ) =

%(Θ, π + Φ; θ) = %(π − Θ, π/2 + Φ;−θ). (3.1)

Therefore, an interesting question is: for the system of a polymer confined to

a spherical surface at high surface coverage, is the anisotropic state helicoidal or

tennis-ball like? Recent Monte Carlo simulation studies of polyelectrolyte adsorbed

on an oppositely charged spherical particle [87, 80] have indicated the formation of

a tennis-ball state. It has been further speculated that the tennis-ball state may

exist, probably as a precursor to a perfect helicoidal state[20]. There is, however,

no effort spent on proving that the segmental distribution function displays the

anticipated symmetry in Eq. 3.1 — a crucial step to recognize a tennis-ball state.

In this chapter, using Monte Carlo simulations [Sect. 3.2] we focus on the study

of the conformation of a wormlike chain confined to a spherical surface, taking into

account the excluded-volume interaction. For the purpose of distinguishing the

isotropic and anisotropic conformations of the confined polymer, we pay attention

to the orientational distribution of the polymer segments instead of properties such

as the mean square end-to-end distance discussed in Refs [77, 12]. Analyzing sev-

eral different order parameters, two of which are particularly designed to handle the

tennis-ball state, we provide concrete evidence that shows [Sect. 3.3.1 and 3.3.2]
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(a) there is an isotropic-anisotropic transition at relatively high surface segmental

density, (b) the anisotropic state has the symmetry properties of a tennis-ball state

(Eq. 3.1), and (c) there is no separate perfect helicoidal state in the system. More-

over, the isotropic-anisotropic transition is proved to have first-order characteristics

[Sect. 3.3.3].
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Figure 3.3: The bead-bond model of polymer chain include Nb + 1 beads and Nb

bonds with the bead diameter d and bond length b. In this thesis, it is fixed that

d = b.

3.2 Bead-bond Model and Monte Carlo Simula-

tion

We consider a semiflexible-chain model containing Nb+1 monomers (beads) linearly

connected by bonds of length b (Fig. 3.3) [9]. To model the semiflexibility a bending

energy ε is invoked for two connected bonds and the total bending energy of the

system is,

V =
ε

2

Nb−1∑
i=1

|ui+1 − ui|2, (3.2)

where ui is the bond vector, pointing from the i-th to the (i + 1)-th monomer.

We also assume that every monomer has a hard diameter of d = b, in order to

simulate the effects of the excluded-volume interaction. All monomers are allowed

to move only on the surface of a sphere having radius R. It turns out that when

a semiflexible chain is confined in a two-dimensional space, as long as `p � d, the

magnitude of d has little influence on results considered in this chapter. The choice

73



of d = b prevents intersecting of polymer segments.

In the Monte Carlo simulations, we implemented the pivot algorithm [45], which

has the promise of efficiently driving the simulated polymer into uncorrelated con-

figurations. Besides, for the purpose of efficiently checking the overlap of any two

beads with diameter d, the neighbor-list algorithm is also implemented [2]. At a

Monte Carlo step (MCS), we randomly selected a monomer dividing the polymer

into smaller and bigger portions; we considered the vector from the center of the

sphere to the selected monomer to be the rotation axis, against which the entire

smaller portion of the polymer was rotated by a random small angle. Note that

this maintains the fact that rotated monomers are still located on the surface of

the sphere (Fig. 3.3). Such a Monte Carlo move was then evaluated by both the

excluded-volume condition and the Metropolis transition probability [45] associ-

ated with the bending energy V (Eq. 3.2). Using the data blocking method, we

found that the longest correlation time of the studied systems is approximately 105

MCS. At the beginning of each Monte Carlo simulation, we generated a preliminary

configuration of a self-avoiding polymer and equilibrated the system with 106 MCS

before taking statistical measurements. Typical data points shown in Figs. 3.4-3.13

were produced by measurements accumulated from 107 MCS in a production run.

The consideration of the overall positional and orientational dependence of the

chain formation requires us to redefine a suitable coordinate system for every new

configuration generated. While the simulation was done on a static coordinate

system, during the course of a Monte Carlo run, the entire chain moves on the

spherical surface and the desired symmetry axes associated with the conformational

properties drift together with the chain motion. Within a new coordinate system

where the symmetry properties are maintained (Fig. 3.2), we need to specify the

location of the i-th bond (described by the polar and azimuthal angles, Θi and Φi)

and the the associated orientation (described by the angle θi that ui makes with

respect to a latitude circle). The selection of a new z-direction as a reference axis

becomes a critical step in determination of Θi for bond i. In this work, we defined

the z-axis of a configuration to coincide with the vector

w =
1

Nb − 1

Nb−1∑
i=1

(
ui × ui+1

|ui × ui+1|

)
, (3.3)
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which is invariant with respect to the choice of the static coordinate system. In a

perfect helicoidal configuration, directions of the unit vectors defined by the above

parentheses converge to one direction, i.e., the new z-axis. The selection of the

z-axis allows the definition of a helicoidal order parameter

S =
1

Nb

Nb∑
i=1

cos 2θi =
1

Nb

Nb∑
i=1

{
2
[
ui · Φ̂(Θi,Φi)

]2 − 1
}
. (3.4)

One can also show that in an isotropic state where ui vectors are random, the above

definition yields a vanishing S for large Nb, and that in a helicoidal or tennis-ball

state, S in nonzero. None of these two, w or S, can be used to distinguish a

tennis-ball structure from a perfect helicoidal structure.

To uniquely pin-point the existence of a tennis-ball state, two additional order

parameters are defined for the tennis-ball texture in this work. The selection of

the z-axis determines the location of the north and south poles of the sphere, but

the order parameters for a tennis-ball state also require the determination of the

azimuthal angle Φi for bond i which consequently requires the selection of the

x-axis. For this purpose, we divide the spherical surface into north and south

hemispheres cutting across the equator plane. As the first step, all bond vectors

ui in the north hemisphere were projected onto the equator plane to form a new

set of two-dimensional vectors, vi; renormalization was then performed to ensure

that each vi is a unit vector. A 2 × 2 traceless matrix was constructed following

the normalization,

B =
1

M

∑
i

(2vivi − I) , (3.5)

where the summation runs over all polymer bonds in the north hemisphere, M is

the total number of these bonds, and I is a 2 × 2 identity matrix. The eigenvector

of B corresponding to the positive eigenvalue defines a new unit vector AN lying

on the equator plane. A similar procedure analyzing bond vectors in the south

hemisphere yields another unit vector AS. A tennis-ball axial order parameter can

then be defined,

P = 2 |AN ×AS|2 − 1. (3.6)

In an ideal tennis-ball phase, AN and AS are always perpendicular to each other,

hence 〈P 〉 = 1. In an isotropic or perfect helicoidal phase, 〈P 〉 = 0. Here and in the
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rest of this chapter, 〈· · · 〉 represents the overall statistical average obtained from

the Monte Carlo measurements.

We also introduce a second tennis-ball order parameter, used to reveal the mag-

nitude of the tennis-ball order, directly from

τ =
1

Nb

Nb∑
i=1

P 2
2 (cos Θi) sin 2Φi sin 2θi, (3.7)

where Pm
l is the (l,m)-th rank associated Legendre function [4]. This definition

contains leading factors, in terms of a combined spherical-harmonic expansion and

Fourier expansion, that survive from the symmetry operation given in Eq. 3.1. To

use the definition, the x-axis (hence the Φi measurement) was identified in our

simulation to be along the direction of AN. The coupled position and direction

order in a tennis-ball phase is reflected by the presence of all three variables, Θi,

Φi, and θi, in the above definition.

One can show through an analytic treatment that the persistence length `p =

2βεb for a wormlike chain (without the excluded-volume interaction) embedded

in a flat two-dimensional space (see Appendix E), which can be contrasted with

`p = βεb in a three-dimensional space [72]. We use a bare persistence length

`p = 2βεb (3.8)

in the following analysis; although strictly speaking a spherical surface is different

from a flat surface.

In the model here, there are three important length scales specifying the system,

the total length of the polymer L = Nbb, the radius of the confining sphere R,

and the reduced bending energy βε defining a bare persistence length `p. The

anisotropic ordering in this lyotropic system is driven by an increasing number of

persistent segments per unit area, ρ = (L/`p)/(4πR
2), in the same spirit as the

formation of the nematic state in a flat, two-dimensional lyotropic system [61, 27].

Consider two segments of persistence length `p; the excluded-volume interaction

between monomers in the system manifests itself into an excluded area, with an

average size of order `2p. Note that this size is independent of the monomer excluding

diameter d in the limit of `p � d; most cases considered in this work are within this
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approximation. Hence, the relevant physical quantity in this system is the reduced

segment density ρ`2p, which can also be written as

ρ`2p =
1

4π

L

R

`p
R
, (3.9)

proportional to the product of two ratios, L/R and `p/R. The fact that ρ`2p is the

relevant physical quantity can also be shown more rigorously through an analytic

treatment based on the Onsager interaction of polymer segments [90].
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3.3 Results

3.3.1 Order parameters

We conducted a separate Monte Carlo simulation for a given set of three parameters

L, R, and `p. In the following we analyze the data by organizing the data points

that have a fixed ratio L/R and examine the behavior of order parameters 〈S〉, 〈P 〉,
and 〈τ〉 and the second moment 〈S2〉 − 〈S〉2 as functions of the reduced density

ρ`2p or equivalently as functions of `p/R. As an example we show in Fig. 3.4 the

data for L/R = 10, produced from [Nb, R/b] = [100, 10], [200, 20], [300, 30], and

[400, 40]. The four sets of data of different [Nb, R/b] asymptotically approach a

common trend (valid for a “continuous” polymer chain at R/b� 1) as the system

grows (Nb increases) and finite size effects reduce. Similar plots are also available

for L/R = 20, 30, 40, 50, 60, 70, 80, 90, and 100 (Figs. 3.5-3.13), each producing an

asymptotic curve unique to a given value of L/R.

A number of interesting physical features emerge from this analysis. In the

low-density regime 〈S〉 is close to 0, corresponding to an isotropic state; beyond

a transition region in density 〈S〉 increases significantly, indicating the formation

of an anisotropic state. Moreover, in high-density regime, 〈S〉 is close to 1, which

demonstrates a near-helicoidal conformation. In a system where `p � R, the

correlation between segmental orientations can persist in a few rounds of wrapping

[77, 57, 12, 43]. This can be used to, for example, qualitatively interpret the

wrapping of DNA around histone where the persistence length of DNA is around

50nm [11] and the radius of histone is around 5nm[39, 24]. Our numerical evidence

above shows that in systems where `p . R, an anisotropic state can also form,

driven by the excluded-volume interaction, not the orientational correlation. An

example is the system L/R = 100 where the isotropic-anisotropic transition occurs

approximately at `p/R ≈ 0.6. Although the study in this thesis is for a polymer on

a spherical surface, the observation can be compared to the conformation of a DNA

molecule (with the persistence length approximately 50nm [11]) helically packaged

in a capsid, where the length scale of a typical capsid is also around 50nm [23, 13].

From Figs. 3.4(B)-3.13(B) we can see that once the system enters into the
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Figure 3.4: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 10. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.5: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 20. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.6: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 30. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.7: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 40. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.8: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 50. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.9: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 60. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.10: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 70. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.11: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 80. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.12: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 90. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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Figure 3.13: (A) Helicoidal order parameter 〈S〉, (B) tennis-ball axial parameter

〈P 〉, (C) tennis-ball order parameter 〈τ〉, and (D) second moment of S are plotted

as functions of the reduced density ρ`2p for the case L/R = 100. Four curves in each

figure represent four different system sizes, respectively: black circles for R = 10b,

rad squares for R = 20b, green diamonds for R = 30b, and blue triangles for

R = 40b.
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transition region from the low-density side, a small value of the tennis-ball axial

order parameter 〈P 〉 can be observed. Because of the renormalization procedure

used in producing unit vectors AN and AS, 〈P 〉 has an artificial plateau in the

transition region and jumps to a higher plateau after reaching the anisotropic region.

As ρ`2p increases further, passing the transition region, not only does the helicoidal

order become intensified to accommodate the packing requirement of the polymer

chain [Figs. 3.4(A)-3.13(A)], but the angle between AN and AS of the tennis-ball

state in the north and south hemispheres also move towards a right angle, reflected

by an increasing 〈P 〉; note that as P ≥ 0.6 the system actually has |AN ×AS| ≥ 0.9.

This indicates that the anisotropic state always displays the tennis-ball symmetry.

To examine the magnitude of the orientational property we use the tennis-ball

order parameter 〈τ〉 (Eq. 3.7), plotted in Figs. 3.4(C)-3.13(C) as a function of re-

duced density. In our definition, because the x-axis is always selected to be the

eigenvector of the positive eigenvalue of B (Eq. 3.5), even in the isotropic region we

already see a nonzero 〈τ〉. Accompanying the increase of 〈S〉 and 〈P 〉, 〈τ〉 climbs

to a maximal value in the transition region. No intermediate plateau such as the

one in the axial order parameter, 〈P 〉, is observable for 〈τ〉 (Figs. 3.4(C)-3.13(C)).

As ρ`2p passes the transition region, the magnitude of the tennis-ball ordering, 〈τ〉,
starts to decrease, remaining significant in the entire anisotropic region. The grad-

ual weakening of the tennis-ball texture is caused by the fact that polymer segments

need to compress against each other further to accommodate the packing require-

ment in high reduced density. Such compression prefers a more perfect helicoidal

configuration in high densities over a tennis-ball configuration which is less packing

efficient.

3.3.2 Visualization of the tennis-ball conformation

To unveil the segmental conformation of the tennis-ball state in visualization, where

the orientational property is coupled with positional coordinates, we plot the density

distribution function, %(Θ,Φ; θ) in a map form in Fig. 3.14. The distribution was

taken from the Monte Carlo simulation measured from a system with parameters

Nb = 300, R = 10b, `p = 26.4b and was normalized after integrating over all three
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variables. This set of parameters corresponds to a reduced density ρ`2p ≈ 6.3, which

is just beyond the transition density in Fig. 3.6. Fig. 3.14 contains 20 × 20 cells

divided by black lines and each cell can be mapped back to the location Θ and Φ

on the surface of a sphere (Fig. 3.14(inset)) by using the values of the vertical and

horizontal coordinates in Fig. 3.14. Within every cell we consider the orientational

distribution for the location about Θ and Φ; starting from the center of the cell

we draw multiple radial staight lines where the angular spacing of these lines are

uniform; each line corresponds to given value of θ, specifying the angle between the

line and the positive horizontal axis; for illustration purpose we have also used a

color code to draw these lines according to the magnitude of %(Θ,Φ; θ): red, yellow,

green, cyan, and blue colors correspond to very strong, strong, intermediate, weak,

and very weak %. At Φ = 0, π/2, and π, the segments prefer an alignment along

θ = 0. In the region of Φ = (0, π/4), the segments prefer an alignment in a

direction of nonzero θ, which goes up from 0 to a nontrivial value; in the region

of Φ = (π/4, π/2), the alignment direction is also nonzero and eventually goes

back to θ = 0. The equator region Θ ∼ π/2 is where these directional alignments

display the most anisotropic texture. The distribution function obtained from the

simulation follows the symmetry properties described by Eq. 3.1, which are the

characteristics of a tennis-ball texture.

3.3.3 Isotropic-anisotropic transition

The transition region between the isotropic and anisotropic states in Figs. 3.4(A)-

3.13(A) is narrow but not trivially small. To study the order of the phase transition,

in Fig. 3.15(A), we further plot the distribution function h(S) collected from Monte

Carlo simulations for various values of the density across the transition region. The

distribution of S has only one peak in the relatively low or high densities, and there

is a crossover between these peaks in the transition region. This behavior is even

more revealing in Fig. 3.15(B), where the distribution function g(|w|) is plotted.

Note that |w| is always positive by definition and therefore has a residual positive

value in the isotropic phase. In the transition region, the distribution distinctively

displays two peaks, which can be labeled isotropic and anisotropic, respectively.

Such a two-peak distribution is commonly seen in a first-order phase transition.
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Figure 3.14: Monte Carlo result for the segmental density distribution function

%(Θ,Φ; θ) plotted in a [Θ,Φ] map divided into cells by black lines for ρ`2p = 6.3

and L/R = 30. The map repeats in the Φ = [π, 2π] region almost identically.

Within each cell, the direction of the orientational preference is visualized by using

a color scheme (see text). This figure demonstrates a tennis-ball state found in the

simulations.

91



-1 -0.5 0 0.5 1
S

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

h(
S)

(A)ρl
p

2
=1.0

ρl
p

2
=2.9

ρl
p

2
=4.8

ρl
p

2
=5.7

ρl
p

2
=6.7

ρl
p

2
=8.6

ρl
p

2
=10.5

0.0 0.1 0.2 0.3 0.4 0.5
|Ω|

0.0

0.1

0.2

0.3

0.4

g(
|w

|)

(B)

L/R=30

L/R=30

Figure 3.15: Probability distributions of (A) S and (B) |w| for the case L/R = 30.

Hence, the isotropic-anisotropic transition observed in this work has a first-order

phase transition characteristic.

In an isotropic-nematic transition, two characteristic densities, one representing

the isotropic state and the other nematic state, are identified at the first-order

transition boundary [34]. In the current system we should have determined two

transition densities in a similar way. These densities correspond to the beginning

and ending points of the transition region in plots such as Figs. 3.4(A, B, C)-3.13(A,

B, C). Because of less-than-ideal data points in Fig. 3.4(A, B, C)-3.13(A, B, C), we

opt to determine of a characteristic transition density, ρc`
2
p, from the peak location

of 〈S2〉 − 〈S〉2, given in Figs. 3.4(D)-3.13(D).

From an analysis based on a mean-field theory of the current system, we can

show that ρc`
2
p is a universal constant, independent of both L/R and `/R in the

system, as long as L/R is relatively large and `p/R relatively small. In Fig. 2.27

we display the characteristic transition density ρc`
2
p for all L/R cases considered in
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Figure 3.16: Reduced transition density ρc`
2
p as a function of L/R.

this work, with error estimates. The data points for the large L/R systems indeed

approach an asymptotically common value.

If we conceptually regard the polymer chain as a collection of fragments of length

`p, the isotropic-anisotropic transition point can be qualitatively compared with a

fluid of hard rods in a flat two-dimensional space. Using Monte Carlo simulations,

Frenkel et. al. [27] demonstrated that the isotropic-nematic phase transition of a

two-dimensional fluid of hard rods is a Kosterlitz-Thouless transition occurring at

ρc`
2
p ≈ 7. The mean field theory predicts the critical density ρc`

2
p = 3π/2 ≈ 4.7 [33]

for rods, and ρc`
2
p = 6π for long wormlike chains [15]. Our determination of ρc`

2
p in

Fig. 2.27 is comparable to these values.

Angelescu et. al. [20] have recently studied a system similar to that in this

chapter, where they have further added electrostatic interaction between monomers.

A transition to an anisotropic state was also observed; through an analysis of |Ω|,
they claimed that their observed anisotropic state is a tennis-phase. As stressed

earlier in this letter, the definition of w lacks the tennis-ball symmetries listed in

Eq. 3.1 hence cannot be used for distinguishing the tennis-ball symmetry from a

helicoidal symmetry.
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3.4 Conclusion

In this chapter, we investigated the equilibrium conformations of a self-avoiding

semiflexible polymer chain confined to a spherical surface using Monte Carlo simu-

lations; we concluded that an anisotropic state exists at a sufficiently high surface

density. The transition can occur at physical parameters where the orientational

correlation in a wormlike chain due to persistency is no longer important; the tran-

sition is entirely caused by the excluded-volume interaction. In the anisotropic

state, the polymer chain always wraps around the spherical surface in a tennis-ball

configuration, which is a distortion of a helicoidal configuration. The analysis was

performed in light of the symmetry properties of these states.
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Chapter 4

Towards a Perfect Tetrahedral

Tennis-ball Configuration

4.1 Introduction

Nelson suggested the tetrahedral tennis-ball configurations on the basis of the one

Frank constant approximation, K1 ≈ K3, applied to the Frank continuum theory

[58]. However, according to the discussions in Chapter 2, we ruled out the existence

of tennis-ball configurations for rigid rods confined on a spherical surface, because

the Frank constants of rigid rods have K1 � K3 [81, 73] which is not consistent

with the one Frank constant approximation. Meanwhile, for the long self-avoiding

wormlike chain confined on a spherical surface discussed in Chapter 3, although

the semiflexibility of the chain reduces the tennis-ball symmetry, the perfect tetra-

hedral tennis-ball configuration could not be achieved since we have approached

another limit of K1 � K3 for long polymer chains [41]. Therefore, to build up

the tetrahedral tennis-ball configurations of particular interest, we must consider a

system of semiflexible polymer chains on a spherical surface. The reason is that, if

the persistence length of a semiflexible chain is comparable to its contour length,

K1 ≈ K3 is possibly satisfied. To model the system of semiflexible polymer chains,

we have two approaches, Monte Carlo simulation on the wormlike chains discussed

in Chapter 3 and Onsager model discussed in Chapter 2.
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4.2 Monte Carlo simulation on wormlike chains

confined to a spherical surface

On the basis of bead-bond model discussed in Chapter 3, we may also consider

the system of many semiflexible chains with the contour length L and persistence

length `p for each chain. We conducted Monte Carlo simulations on such system

of N chains confined on a spherical surface with the radius surface R = 40b, where

b is the length of a bond as the unit of length in this research. The persistence

length of each chain is fixed at `p = 80b; the contour length L of each chain can be

altered, L = Nbb, while keeping NL ≈ 4000b approximately fixed, where Nb is the

number of bonds per chain.

For a perfect tetrahedral tennis-ball configuration, the bond vectors, u’s, also

form a tetrahedron. Therefore, to measure the tetrahedral symmetry of the tennis-

ball configuration, we build up the tetrahedral parameter Q3 [78],

Q3 =

[
4π

7

3∑
m=−3

∣∣Q̄3m

∣∣2]1/2 , (4.1)

which is invariant to the coordinate system. In the above,
∣∣Q̄lm

∣∣ is the averaged

spherical harmonics with the index l = 3,

∣∣Q̄lm

∣∣ =
1

Nb

Nb∑
i=1

∣∣Ylm(u)
∣∣. (4.2)

According to Fig. 4.1 where Q3 is plotted as a function of the ratio L/`p, we can find

a peak around L/`p = 1. The fact indicates that the configuration of semiflexible

chains is closest to perfectly tetrahedral tennis-ball if ` is comparable to `p. We also

plot a snapshot the data point shown in Fig. 4.1 at L/`p = 1 in Fig. 4.2, where we

can locate four defects on the four vertices of a tetrahedron. This perfect tetrahedral

tennis-ball configuration hasn’t been encountered with chain model before.
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Figure 4.1: The tetrahedral parameter Q3 is plotted as a function of L/`p for a case

of R = 40b, `p = 60b, and NL ≈ 4000b.

Figure 4.2: A snapshot of Monte Carlo simulation for semiflexible chains confined

on a spherical surface with L = `p = 60b, R = 40b, and N = 67.
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4.3 Onsager model on semiflexible chains on a

spherical surface

4.3.1 Free energy functional and modified diffusion equa-

tion

Based on the Onsager model, the free energy functional of a system ofN semiflexible

polymer chains can be written as,

βF = lnN !−N lnQ−
∫
%(r,u)ω(r,u)drdu+

`2p
2

∫
%(r,u)|u×u′|%(r,u′)drdudu′,

(4.3)

where Q is the partition function per chain and `p is the persistence length. Let L be

the contour length of a chain, Np = L/`p is the number of segments per chain. The

position r of a segment can be defined by the solid angle Ω on the spherical surface

with the radius R; the direction u as the tangent vector of a segment is described

by the angle, θ, that u makes with respect to the latitudinal line. Therefore, the

free energy can be rewritten in the chosen coordinate system,

βF = lnN ! −N lnQ−R2

∫
%(Ω, θ)ω(Ω, θ)dΩdθ

+
`2pR

2

2

∫
%(Ω, θ)

∣∣ sin(θ − θ′)
∣∣%(Ω, θ′)dΩdθdθ′. (4.4)

In the above, the free energy is a functional of the density distribution function

%(Ω, θ). Since the density distribution function % satisfies the normalization,

R2

∫
%(Ω, θ)dΩdθ = NNp, (4.5)

we can define the probability distribution function f(Ω, θ) as,

f(Ω, θ) ≡ R2%(Ω, θ)/(NNp), (4.6)
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then f is normalized to 1 and the free energy function can be expressed in terms

of f as

F

kBT
= lnN ! −N lnQ−NNp

∫
f(Ω, θ)ω(Ω, θ)dΩdΘ

+
`2pN

2
pN

2

2R2

∫
f(Ω, θ)| sin(θ − θ′)|f(Ω, θ′)dΩdθdθ′. (4.7)

Let w(Ω, θ) = Npω(Ω, θ) and C = N`2pN
2
p/4πR

2, then the free energy per chain can

be written as,

F

NkBT
= ln

C

Q
−
∫
f(Ω, θ)w(Ω, θ)dΩdθ

+ 2πC

∫
f(Ω, θ)| sin(θ − θ′)|f(Ω, θ′)dΩdθdθ′, (4.8)

where the free energy is shifted by a constant number ln(L2/4πR2). To minimize

the free energy functional with respect to f(Ω, θ), we need to consider the saddle

point equations,

w(Ω, θ) = 2πC

∫
| sin(θ − θ′)|f(Ω, θ′)dθ′; (4.9a)

f(Ω, θ) =

∫ 1

0
q(Ω, θ; s)q∗(Ω, π + θ; 1 − s)ds∫

dΩdθ
∫ 1

0
q(Ω, θ; s)q∗(Ω, π + θ; 1 − s)ds

, (4.9b)

where q and q∗ satisfy the modified diffusion equations

∂

∂s
q(r,u; s) =

[
L

`
∇2

u − Lu · ∇r − w(r,u)

]
q(r,u; s); (4.10a)

∂

∂s
q∗(r,u; s) =

[
− L

`
∇2

u − Lu · ∇r + w(r,u)

]
q∗(r,u; s). (4.10b)

The second equation in the above can be taken with a symmetry operation, u →
−u,

∂

∂s
q(r,u; s) =

[
L

`
∇2

u − Lu · ∇r − w(r,u)

]
q(r,u; s); (4.11a)

∂

∂s
q∗(r,−u; s) =

[
− L

`
∇2

u + Lu · ∇r + w(r,u)

]
q∗(r,−u; s). (4.11b)
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They can also be written as,

∂

∂s
q(r,u; s) =

[
L

`
∇2

u − Lu · ∇r − w(r,u)

]
q(r,u; s); (4.12a)

∂

∂s
q∗(r,−u; s) = −

[
L

`
∇2

u − Lu · ∇r − w(r,u)

]
q∗(r,−u; s). (4.12b)

Finally, we express the two equations within our chosen coordinate system,

∂

∂s
q(Ω, θ; s) =

[
L

`

∂2

∂θ2
+ L

(
sin θ

∂

∂Θ
− cos θ

sin Θ

∂

∂Φ

)
− w(Ω, θ)

]
q(Ω, θ; s);

(4.13a)

∂

∂s
q∗(Ω, π + θ; s) = −

[
L

`

∂2

∂θ2
+ L

(
sin θ

∂

∂Θ
− cos θ

sin Θ

∂

∂Φ

)
− w(Ω, θ)

]
q∗(Ω, π + θ; s).

(4.13b)

Therefore, to minimize the free energy functional with respect to the probability

distribution function f(Ω, θ), we consider the iteration. First, an initial guess of

f gives w according to the first saddle point equation (Eq. 4.9a); solve the two

modified diffusion equations for q and q∗ with a known w; then find a new f on the

basis of the second saddle point equation (Eq. 4.9b). To do this, we may expand

every function in a function space spanned by a set of orthonormal functions defined

in Appendix A.

4.3.2 Representation of basis functions

With the basis functions ψi(Θ,Φ, θ) in Appendix A, where each index combination

{lmn} is rewritten as a single notation {i}, we have the expansions for f , w, q, and

q∗ as,

f(Θ,Φ, θ) = fiψi(Θ,Φ, θ), (4.14)

w(Θ,Φ, θ) = wiψi(Θ,Φ, θ), (4.15)

q(Θ,Φ, θ; s) = q(s)iψi(Θ,Φ, θ), (4.16)

q∗(Θ,Φ, π + θ; s) = q∗i (s)ψi(Θ,Φ, θ). (4.17)
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Eq. 4.9a comes to be

wi =

∫
w(Θ,Φ, θ)ψi(Θ,Φ, θ) sin ΘdΘdΦdθ

= 2πC

∫
ψi(Θ,Φ, θ)| sin(θ − θ′)|f(Θ,Φ, θ′) sin ΘdΘdΦdθdθ′

= 2πCAijfj,

(4.18)

where

Aij =

∫
ψi(Θ,Φ, θ)| sin(θ − θ′)|ψj(Θ,Φ, θ

′) sin ΘdΘdΦdθdθ′. (4.19)

Eq. 4.9b can be rewritten under the expansions as

fi =

∫
f(Θ,Φ, θ)ψi(Θ,Φ, θ) sin ΘdΘdΦdθ

=

∫
ds
∫
q(Θ,Φ, θ; s)q∗(Θ,Φ, π + θ; 1 − s)ψi(Θ,Φ, θ) sin ΘdΘdΦdθ∫
ds
∫
q(Θ,Φ, θ; s)q∗(Θ,Φ, π + θ; 1 − s) sin ΘdΘdΦdθ

=
Qijk

∫
qj(s)q

∗
k(1 − s)ds∫

qd(s)q∗d(1 − s)ds
,

(4.20)

where

Qijk =

∫
ψi(Θ,Φ, θ)ψj(Θ,Φ, θ)ψk(Θ,Φ, θ) sin ΘdΘdΦdθ. (4.21)

Taking q as an example, the modified diffusion equation becomes

d

ds
qi(s) =

[
L

`

∫
ψi(Θ,Φ, θ)

∂2

∂θ2
ψj(Θ,Φ, θ) sin ΘdΘdΦdθ

+L

∫
ψi(Θ,Φ, θ)

(
sin θ

∂

∂Θ
− cos θ

sin Θ

∂

∂Φ

)
ψj(Θ,Φ, θ) sin ΘdΘdΦdθ

−
∫
ψi(Θ,Φ, θ)w(Θ,Φ, θ)ψj(Θ,Φ, θ) sin ΘdΘdΦdθ

]
qj(s),

(4.22)

which can also written as,

d

ds
qi(s) =

(
−L
`
n2
jδij + LBij −Qijkwk

)
qj(s), (4.23)

with the definition Bij,

Bij =

∫
ψi(Θ,Φ, θ)

(
sin θ

∂

∂Θ
− cos θ

sin Θ

∂

∂Φ

)
ψj(Θ,Φ, θ) sin ΘdΘdΦdθ, (4.24)
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Finally, we define a matrix Hij,

Hij = −L
`
n2
jδij + LBij −Qijkwk, (4.25)

and write Eq. 4.23 as,
d

ds
qi(s) = Hijqj(s), (4.26)

If the matrix Hij can be diagonalized as HU = UD, we have the solution of the

diffusion equation,

qi(s) = Uij exp (Djs)U
−1
j0 . (4.27)

The matrices, Aij, Bij, and Qijk, showing up in the saddle point equations

and the modified diffustion equations can be accessed analytically and evaluated in

Appendix F.

Therefore, the probability distribution function f can be solved from the it-

eration combining the expansions of the saddle point equations and the modified

diffusion equations.Although we didn’t have a chance to work on the numerical

solutions, we expect that the Onsager model of semiflexible chains will display a

conformation close to the perfect tetrahedral tennis-ball configuration.
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Chapter 5

Summary

This thesis studied the conformation of 2-fold anisotropic molecules — including

rigid rods and polymer chains — confined on a spherical surface. At low surface

densities, the system is homogeneous and isotropic to maximize the positional and

orientational entropies. Beyond a transition density, a configurational texture with

coupled positional and orientational orderings emerges. Researchers have predicted

the existence of several possible conformations of rigid rods on the spherical surface

— tennis-ball, rectangle, and cut-and-rotate splay; all of them contain four +1/2

defects. However, in Chapter 2 of this thesis, the numerical solutions of Onsager

model on thin rods confined on the spherical surface confirmed that the splay state

with two +1 defects is the only stable state for such system. In Chapter 3, Monte

Carlo simulations on the bead-bond model of self-avoiding semiflexible polymer

chain was discussed and the results yielded solid evidence to prove that the ordered

state always displays the tennis-ball symmetry. However, the tennis-ball config-

uration displayed by a long semiflexible chain may not have perfect tetrahedral

symmetry with four defects located on the four vertices of a tetrahedron. There-

fore, we considered a system of many semiflexible chains confined to a spherical

surface in Chapter 4. Although Chapter 4 is not entirely finished, we can still

conclude that, if the persistence length is comparable to the contour length for

each semiflexible chain, the system may display a perfect tetrahedral tennis-ball

configuration. Hence, to build up the tennis-ball symmetry for particular interest
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and applications, one may try to coat the semiflexible polymer chains around the

sphere.

For the system of rods or polymer chains, the disorder-order transition was also

studied, which is comparable to the continuous isotropic-nematic transition of a

fluid of hard rods embedded in a flat two-dimensional space. Based on the Onsager

model of rigid rods confined on the spherical surface, the transition density in the

limit of flat two-dimensional space agrees with the critical density predicted by

the mean field theory for the hard-rod fluid in flat two dimensions . Away from

the limit, the transition density deviates from the critical density of flat system

due to the curvature of the spherical surface and the inhomogeneous distribution

of rods on the sphere. Moreover, unlike the continuous transition of hard rods in

flat two dimensions, the disorder-order transition was confirmed to have first-order

characteristics for both the system of rigid rods and the system of polymer chains

confined on the spherical surface.

For the purpose to look for the tennis-ball conformation, we conducted the the-

oretical research on the Onsager model of rigid rods confined to a spherical surface.

On the basis of this research, we would like to open up new avenues to investigate

the system of 2-fold anisotropic molecules confined on curved surfaces within an es-

tablished area by presenting a straightforward numerical technique. First, although

the research on rigid rods rules out the existence of tennis-ball configuration, we

may further apply the Onsager model to the semiflexible chains; the mathematical

preparation for such research has been fully established in Chapter 4. Accordingly,

we may unveil the influence of semiflexibility of chains to their configuration on a

curved surface, which is a perfect example to illustrate that not only the geometry

of confinement but also the internal property of molecules may affect the configura-

tion. Furthermore, another meaningful series of investigations based on the research

in this thesis may be addressed to further study the 2-fold anisotropic molecules

confined within a three dimensional geometry. One of the examples is the system

of liquid crystals confined in a shell, which is closer to the experimental study on

the nematic shell in double emulsion. Finally and most significantly, the researches

of anisotropic molecules in confined geometries provides scientists and engineers

a new horizon to build up various complex materials which can have a variety of
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structures and properties and can be widely applied to chemistry, material science,

biology, and so on.
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Appendix A

Basis functions

In Chapter 2, to examine the Onsager model of rigid rods confined on a spherical

surface, a set of orthonormal basis functions needs to be chosen for the purpose

to expand the free energy. Here, the basis function is defined as combination of

spherical harmonics Ylm(Θ,Φ) and Fourier basis Un(θ). We have adopted the real

version of the spherical harmonics [88],

Ylm(Θ,Φ) =


√

2
√

2l+1
4π

(l−m)!
(l+m)!

Pm
l (cos Θ) cos(mΦ) if m > 0,√

2l+1
4π
P 0
l (cos Θ) if m = 0,

√
2
√

2l+1
4π

(l+m)!
(l−m)!

P
|m|
l (cos Θ) sin(|m|Φ) if m < 0,

(A.1)

where Pm
l is the associate Legendre function of the l-th and m-th rank [4]. Si-

nusoidal functions are used in a real Fourier expansion; the n-th rank basis Un(θ)

is,

Un(θ) =


1√
π

cos(nθ) if n > 0,

1√
2π

if n = 0,

1√
π

sin(|n|θ) if n < 0.

(A.2)
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Appendix B

Symmetries of various states

In this thesis, we considered and compared four different configurations for the

model system of rigid rods confined on a spherical surface, which are characterized

by the symmetry properties of the distribution functions %(Θ,Φ, θ):

%(Θ,Φ; θ) = %(Θ,Φ; θ + π), (B.1)

%(Θ,Φ; θ) = %(Θ,Φ + π; θ), (B.2)

%(Θ,Φ; θ) = %(Θ,−Φ;−θ), (B.3)

%(Θ,Φ; θ) = %(π − Θ,Φ + π/2;π − θ), (B.4)

%(Θ,Φ; θ) = %(π − Θ,Φ; π − θ), (B.5)

%(Θ,Φ; θ) = %(π − Θ, π − Φ; π + θ), (B.6)

∂%(Θ,Φ; θ)/∂Φ = 0. (B.7)

The table below summarizes the symmetry properties for each possible state,

State (B.1) (B.2) (B.3) (B.4) (B.5) (B.6) (B.7)

Splay
√ √ √ √ √ √ √

Tennis-ball
√ √ √ √

Rectangle
√ √ √ √

Cut-and-rotate-splay
√ √ √

Note that the distribution function of a splay state is Φ-independent.
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Appendix C

Excluded volume of two rods on a

spherical surface

To evaluate the excluded volume of two rigid rods, modeled as geodesic segments on

the spherical surface, we put one rod on the equator for convenience and consider

the area on the spherical surface that the center of the other rod cannot enter,

which is actually 2SABCD shown in Fig. C.1. Assume that the angle between the

two rods is γ. Let α be the latitude of the point C (or D); it satisfies

sinα = sin

_

CP

R
= sin

_

BC

R
sin γ = sin

`

2R
sin γ (C.1)

according to the knowledge of spherical trigonometry, where R is the radius of the

sphere and arc
_

CP is perpendicular to arc
_

AB.

Then we have

SABCD = R2

π/2∫
π/2−α

sin ΘdΘ

A∫
B

dΦ = R2 sinα · `
R
. (C.2)

Therefore, the excluded volume becomes

2SABCD = 2R2 sin
`

2R
sin γ · `

R
= `2sinc

`

2R
sin γ. (C.3)

If we consider two orthogonal rods, the excluded volume is `2sinc(`/2R). This

derivation is only valid if
_

BC /R = `/2R ≤ π/2, i.e. `/R ≤ π.
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Figure C.1: To evaluate the excluded volume of two rods on a spherical surface, we

set the angle between them to be γ and one of the rods (Arc
_

AB) on the equator.

So the surface area where the center of the other rod cannot enter is 2SABCD.
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Appendix D

Theoretical Evaluation of the

elements of matrix W

In this appendix, we analytically evaluate Wl0n,l′0n′ , i.e. the elements of matrix W

(Eq. 2.11b), which is written as

Wl0n,l′0n′ =
4πR2

`2

∫ [
NlnPl(cos Θ) cosnθ

]
w(Θ,Φ, θ,Θ′,Φ′, θ′)

·
[
Nl′n′Pl′(cos Θ′) cosn′θ′

]
sin Θ sin Θ′ dΘdΦdθ dΘ′dΦ′dθ′, (D.1)

where Nln is the normalization factor for the basis function Pl(cos Θ) cosnθ. We

consider the integration
∫
NlPl(cos Θ)w(Θ,Φ, θ,Θ′,Φ′, θ′) sin ΘdΘdΦ first, which is

the excluded volume (coupled by Pl(cos Θ)) where rod 1 (direction fixed by θ) is

excluded by rod 2 (position fixed on (Θ′,Φ′) and direction fixed by θ′) on the unit

sphere. We can write∫
NlnPl(cos Θ)w(Θ,Φ, θ,Θ′,Φ′, θ′) sin ΘdΘdΦ =

`/2R∫
−`/2R

`

R

∣∣∣sin [θ − θ̃′(ε)
]∣∣∣NlnPl

(
cos Θ̃′(ε)

)
dε, (D.2)

where ε is the length of arc on the rod 2 from the center of rod 2. θ̃′(ε), a function

of ε, is the angle locally between the longitudinal line and the segment of arc of rod
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2 that ε locates, and we also define Θ̃′(ε) as the polar angle of the segment specified

by ε. According to the spherical trigonometry, one can have that

sin θ̃′

sin Θ′ =
sin θ′

sin Θ̃′
(D.3)

cos Θ̃′ = cos Θ′ cos ε+ sin Θ′ sin ε cos θ′. (D.4)

By expanding the above equations with respect to small ε, we have

cos Θ̃′ = cos Θ′ + ε sin Θ′ cos θ′ − ε2

2
cos Θ′ + O(ε3) (D.5)

Θ̃′ = Θ′ − ε cos θ′ +
ε2

2
cot Θ′ sin2 θ′ + O(ε3) (D.6)

sin Θ̃′ = sin Θ′ − ε cos Θ′ cos θ′ +
ε2

2

(
cot Θ′ cos Θ′ sin2 θ′ − sin Θ′ cos2 θ′

)
+ O(ε3)

(D.7)

sin θ̃′

sin θ′
= 1 + ε cot Θ′ cos θ′ − ε2

2

(
cot2 Θ′ sin2 θ′ − cos2 θ′

)
+ O(ε3) (D.8)

θ̃′ = θ′ + ε cot Θ′ sin θ′ +
ε2

2
sin θ′ cos θ′ + O(ε3) (D.9)
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Then, we can also expand the integration D.2 as∫
NlnPl(cos Θ)w(Θ,Φ, θ,Θ′,Φ′, θ′) sin ΘdΘdΦ

=

`/2R∫
−`/2R

`

R

∣∣∣sin [θ − θ̃′(ε)
]∣∣∣NlnPl(cos Θ̃′(ε))dε

=

`/2R∫
−`/2R

`

R

∣∣∣∣sin [θ − θ′ − ε cot Θ′ sin θ′ − ε2

2
sin θ′ cos θ′ + O(ε3)

]∣∣∣∣
·NlnPl

(
cos Θ′ + ε sin Θ′ cos θ′ − ε2

2
cos Θ′ + O(ε3)

)
dε

=

`/2R∫
−`/2R

`

R

∣∣sin (θ − θ′) + A1(Θ
′, θ, θ′)ε+ A2(Θ

′, θ, θ′)ε2 + O(ε3)
∣∣

·Nln

[
Pl(cos Θ′) + B1(Θ

′, θ′)ε+ B2(Θ
′, θ′)ε2 + O(ε3)

]
dε

=

`/2R∫
−`/2R

`

R

[
|sin (θ − θ′)|NlnPl(cos Θ′) + C1(Θ′, θ, θ′)ε+ C2(Θ′, θ, θ′)ε2 + O(ε3)

]
dε

=

(
`

R

)2

|sin (θ − θ′)|NlnPl(cos Θ′) +

(
`

R

)4

D(Θ′, θ, θ′) + O

[(
`

R

)6
]
,

(D.10)

where A1, A2, B1, B2, C1, C2, and D are funcions of Θ′, θ, and θ′.

By substituting the expansion of the integration D.2 to the integral of Wl0n,l′0n′

(Eq. D.1), we have

Wl0n,l′0n′ = 4π

∫
NlnPl(cos Θ′) cosnθ

{
|sin(θ − θ′)| +

(
`

R

)2

D(Θ′, θ, θ′)

+O

[(
`

R

)4
]}

Nl′n′Pl′(cos Θ′) cosn′θ′ sin Θ′dΘ′dΦ′dθdθ′

=
16π

1 − n2
δll′δnn′ +

(
`

R

)2

F(l, l′, n, n′) + O

[(
`

R

)4
]
,

(D.11)

112



where F(l, l′, n, n′) is a function of l, l′, n, and n′.

Especially, we can evaluate W00n,00n′ with the excluded volume of two rods

uniformly distributed on the sphercial surface which is derived in Appendix C:

W00n,00n′ =
4πR2

`2

∫
1√
π

cosnθ

(
`

R

)2

sinc
`

2R

∣∣∣ sin(θ − θ′)
∣∣∣ 1√
π

cosn′θ′dθdθ′

=
16π

1 − n2
sinc

`

2R
δnn′ .

(D.12)
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Appendix E

Persistence Length of Wormlike

Chain in Two Dimensional Space

In this appendix, we discuss the persistence length of a wormlike chain embedded

in flat two-dimensional space. Let q (r,u; s) be the probability of a chain ending

at the position r and with an ending vector u, where s is its contour length. By

taking an integral over all the position r, it gives us∫
q (r,u; s) dr = Q (u; s) . (E.1)

Q (u; s) means the probability for finding a chain with an ending vector u disre-

garding the position of its end. If we assume a Hamiltonian of a wormlike chain in

two dimensions as

H =
ε

2

∫ L

0

∣∣∣∣∂u∂s
∣∣∣∣2 ds, (E.2)

the probability function Q (u; s) satisfies a diffusion-like equation

∂

∂s
Q (u; s) =

1

2βε
∇2

uQ (u; s) , (E.3)

which can be written as

∂

∂s
Q (θ; s) =

1

2βε

∂2

∂θ2
Q (θ; s) , (E.4)
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where θ is the angle that u makes with respect to a reference, say x-axis. The

function Q (θ; s) can be expanded in terms of Fourier basis functions

Q (θ; s) =
∑
m

am (s)
1√
2π
eimθ, (E.5)

which can be then substituted back to the diffusion-like equation∑
m

∂

∂s
am (s)

1√
2π
eimθ =

∑
m

−m2

2βε
am (s)

1√
2π
eimθ. (E.6)

Then we must have the solution

am (s) ∝ e
−m2s
2βε . (E.7)

The Green’s function is then

G (θ, θ′; s) =
1

2π

∑
m

eimθe−imθ′e
−m2|s|

2βε . (E.8)

Now, for the purpose to determine the persistence length, we can evaluate the

correlation function 〈u (s) · u′ (s′)〉 as

〈u (s) · u′ (s′)〉

=
1

2π

∫
dθ

∫
dθ′ cos (θ − θ′)G (θ, θ′; s− s′)

=
1

4π2

∫
dθ

∫
dθ′ cos (θ − θ′)

∑
m

eim(θ−θ′)e
−m2|s−s′|

2βε

=
1

4π2

∫
dθ
∑
m

(πδm,1 + πδm,−1) e
−m2|s−s′|

2βε

= e
−|s−s′|

2βε . (E.9)

Hence, the persistence length is

`p = 2βε. (E.10)

To prove the relationship above, the Monte Carlo simulation is also taken for a

polymer chain confined on a two dimensional flat space. According to Fig. E.1, `p

is linear to βε and the slope is 2.
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Figure E.1: Monte Carlo simulation shows that, for a polymer chain embedded in

flat two dimensions, the slope of `p as a function of βε is 2.
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Appendix F

Matrices in the Saddle Point and

Modified Diffusion Equations

Here we derive the elements of A, B, and Q required to numerically solve the

saddle point equations and the modified diffusion equations of Onsager model on

the semiflexible chains confined to a spherical surface.

Recall the basis function,

ψi(Θ,Φ, θ)

= Y mi
li

(Θ,Φ)Uni
(θ)

= Nli|mi|P
|mi|
li

(cos Θ)Umi
(Φ)Uni

(θ),

(F.1)

where Y mi
li

(Θ,Φ) = Nli|mi|P
|mi|
li

(cos Θ)Umi
(Φ) is the real spherical harmonic and

Uni
(θ) is Fourier basis function, cosnθ or sinnθ, and the normalization factor Nlm =√
2l+1
2

(l−m)!
(l+m)!

.
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First, we show the derivation of the matrix A,

Aij

=

∫
ψi(Θ,Φ, θ)| sin(θ − θ′)|ψj(Θ,Φ, θ

′) sin ΘdΘdΦdθdθ′

= δliljδmimj

∫
Uni

(θ)| sin(θ − θ′)|Unj
(θ′)dθdθ′

= δliljδmimj

∫
dθUni

(θ)

∫ 2π

0

| sinx|Unj
(θ + x)dx

= δliljδmimj

∫
dθUni

(θ)

(∫ π

0

sinxUnj
(θ + x)dx−

∫ 2π

π

sinxUnj
(θ + x)dx

)
= δliljδmimj

∫
dθUni

(θ)

(∫ π

0

sinxUnj
(θ + x)dx−

∫ π

0

sin(x+ π)Unj
(θ + x+ π)dx

)
= δliljδmimj

∫
dθUni

(θ)

(∫ π

0

sinxUnj
(θ + x)dx+

∫ π

0

sinxUnj
(θ + x+ π)dx

)
= δliljδmimj

(1 + (−1)nj)

∫
dθUni

(θ)

∫ π

0

sin xUnj
(θ + x)dx

= δliljδmimj
(1 + (−1)nj)

∫ π

0

dx sin x

∫ 2π

0

Uni
(θ)Unj

(θ + x)dθ

= δliljδmimj
(1 + (−1)nj) δninj

2

1 − n2
i

=
2 (1 + (−1)ni)

1 − n2
i

δliljδmimj
δninj

= a(i)δij

(F.2)

where a(i) = 2
1−n2

i
(1 + (−1)ni).

Second, we consider Qijk, which can be split into Qijk = Υ
mimjmk

lilj lk
µninjnk

. For

118



µninjnk
, we have,

µninjnk

=

∫ 2π

0

Uni
(θ)Unj

(θ)Unk
(θ)dθ

=



1√
2π
δninj

if nk = 0

1

2
√
π
3

∫ 2π

0

cosniθ [cos(nj − nk)θ + cos(nj + nk)θ] dθ

=
1

2
√
π
δni,nj+nk

if ni ≥ nj ≥ nk > 0

1

2
√
π
3

∫ 2π

0

cosniθ [cos(|nj| − |nk|)θ − cos(|nj| + |nk|)θ] dθ

=
1

2
√
π

(
δni,|nj |−|nk| − δni,|nj |+|nk|

) if ni > 0 > nk ≥ nj

(F.3)

For Υ
mimjmk

lilj lk
, it is well known that, where Y m

l is the complex spherical harmonic

function,∫
Y mi∗
li

Y
mj

lj
Y mk
lk
dΩ

=

∫ 1

−1

Nlimi
Nljmj

Nlkmk
Pmi
li
P

mj

lj
Pmk
lk
dx

×
(

1√
2π

)3 ∫ 2π

0

e−imiφeimjφeimkφdφ

=

∫ 1

−1

Nlimi
Nljmj

Nlkmk
Pmi
li
P

mj

lj
Pmk
lk
dx · 1√

2π
δmi,mj+mk

= (−1)mi

√
(2li + 1)(2lj + 1)(2lk + 1)

4π

(
li lj lk

0 0 0

)(
li lj lk

−mi mj mk

)
(F.4)

which implies that, if mi = mj +mk, then∫ 1

−1

Nlimi
Nljmj

Nlkmk
Pmi
li
P

mj

lj
Pmk
lk
dx

= (−1)mi

√
(2li + 1)(2lj + 1)(2lk + 1)

2

(
li lj lk

0 0 0

)(
li lj lk

−mi mj mk

)
(F.5)
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By substituting µmimjmk
, we write down Υ

mimjmk

lilj lk
by integrating three real

spherical harmonics as

Υ
mimjmk

lilj lk

=

∫
S2

Y mi
li
Y

mj

lj
Y mk
lk
dΩ

=

∫ 1

−1

Nli|mi|Nlj |mj |Nlk|mk|P
|mi|
li

P
|mj |
lj

P
|mk|
lk

dx ·
∫ 2π

0

Umi
(φ)Umj

(φ)Umk
(φ)dφ

=

∫ 1

−1

Nli|mi|Nlj |mj |Nlk|mk|P
|mi|
li

P
|mj |
lj

P
|mk|
lk

dx · µmimjmk

=



(−1)mi

√
(2li+1)(2lj+1)(2lk+1)

2

li lj lk

0 0 0

 li lj lk

−|mi| |mj| 0

 1√
2π
δmimj

if at lease one, say mk = 0

(−1)mi

√
(2li+1)(2lj+1)(2lk+1)

2

li lj lk

0 0 0

 li lj lk

−mi mj mk

 1
2
√
π
δmi,mj+mk

if mi ≥ mj ≥ mk > 0

(−1)mi+1

√
(2li+1)(2lj+1)(2lk+1)

2

li lj lk

0 0 0

 li lj lk

−mi |mj| |mk|

 1
2
√
π
δmi,|mj |+|mk|

if mi > 0 > mk ≥ mj and |mi| > |mj|

(−1)mj

√
(2li+1)(2lj+1)(2lk+1)

2

li lj lk

0 0 0

 li lj lk

mi −|mj| |mk|

 1
2
√
π
δmi,|mj |−|mk|

if mi > 0 > mk ≥ mj and |mi| < |mj|
(F.6)

where

(
li lj lk

mi mj mk

)
is the Wigner 3-j symbol.
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Finally, we figure out Bij; let Bij = B
(1)
ij −B

(2)
ij , where

B
(1)
ij

=

∫
ψi(Θ,Φ, θ) sin θ

∂

∂Θ
ψj(Θ,Φ, θ) sin ΘdΘdΦdθ

=

∫
Nli|mi|Nlj |mj |P

|mi|
li

(cos Θ)
d

dΘ
P

|mj |
lj

(cos Θ) sin ΘdΘδmimj

√
πµ−1,ninj

= Nli|mi|Nlj |mj |δmimj

√
πµ−1,ninj

∫ 2π

0

P
|mi|
li

(cos Θ)

(
d

d cos Θ
P

|mj |
lj

(cos Θ)

)
sin Θd cos Θ

= −Nli|mi|Nlj |mj |δmimj

√
πµ−1,ninj

∫ 1

−1

P
|mi|
li

(x)

(
d

dx
P

|mj |
lj

(x)

)√
1 − x2dx

= −Nli|mi|Nlj |mj |δmimj

√
πµ−1,ninj

×
∫ 1

−1

P
|mi|
li

(x)

(
− mx

1 − x2
P

|mj |
lj

(x) − 1√
1 − x2

P
|mj |+1
lj

(x)

)√
1 − x2dx

= Nli|mi|Nlj |mj |δmimj

√
πµ−1,ninj

∫ 1

−1

P
|mi|
li

(x)

(
mx√
1 − x2

P
|mj |
lj

(x) + P
|mj |+1
lj

(x)

)
dx

=

√
π

2
Nli|mi|Nlj |mj |δmimj

µ−1,ninj

×
∫ 1

−1

P
|mi|
li

(x)
(
P

|mj |+1
lj

(x) − (lj + |mj|)(lj − |mj| + 1)P
|mj |−1
lj

(x)
)
dx

(F.7)

And we have the overlap integral of two associated Legendre polynomials

NlimNlj ,m+1

∫ 1

−1

Pm
lj

(x)Pm+1
lj

(x)dx =
(−1)m

4

√
(2li + 1)(2lj + 1)

×
∑
k

(
1 − (−1)k

)
(2k+1)

√
(k − 1)!

(k + 1)!

Γ(k
2
)Γ(k

2
+ 1)

k−1
2

!Γ(k+3
2

)

(
li lj k

0 0 0

)(
li lj k

−m m+ 1 −1

)
(F.8)

where the sum is over |li − lj| ≤ k ≤ li + lj and k ≥ 1, and thie integral is zero

unless li + lj is odd.
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B
(2)
ij =

∫
ψi(Θ,Φ, θ)

cos θ

sin Θ

∂

∂Φ
ψj(Θ,Φ, θ) sin ΘdΘdΦdθ

=

∫
Nli|mi|Nlj |mj |P

|mi|
li

(cos Θ)
1

sin Θ
P

|mj |
lj

(cos Θ) sin ΘdΘ

×
∫
Umi

(Φ)
∂

∂Φ
Umj

(Φ)dΦ
√
πµ1,ninj

= −mjNli|mi|Nlj |mj |δmi,−mj

√
πµ1,ninj

∫ 1

−1

P
|mi|
li

(x)P
|mj |
lj

(x)
dx√

1 − x2

(F.9)

And we have∫ 1

−1

Pm
lj

(x)Pm
lj

(x)dx = (−1)(li−lj)/2
(li +m)!

(li −m)!m!
lj−li
2

!

Γ(m+ 1
2
)Γ(1

2
)Γ(

li+lj+1

2
)

Γ(
li−lj+1

2
)Γ(

li+lj+2

2
)

× 4F3

(
1
2
, 1

2
, −1

2
(li −m− 1), −1

2
(li −m)

1
2
(lj − li) + 1, −1

2
(lj + li − 1), m+ 1

; 1

)
(F.10)

where lj ≥ li and li + lj is even.
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Appendix G

Publications

Wu-Yang Zhang, Ying Jiang, and Jeff Z. Y. Chen, Phys. Rev. Lett., 108, 057801

(2012);

Wu-Yang Zhang and Jeff Z. Y. Chen, Europhys. Lett., 94, 43001 (2011);

Ying Jiang, Wu-Yang Zhang, and Jeff Z. Y. Chen, Phys. Rev. E, 84, 041803

(2011);

Wu-Yang Zhang, Ying Jiang, and Jeff Z. Y. Chen, Soft Matter (submitted).
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[8] M. A. Bates, G. Skačej, and C. Zannoni. Soft Matter, 6:655, 2009.
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[72] N. Saitô, K. Takahashi, and Y. Yunoki. J. Phys. Soc. (Japan), 22:219, 1967.

[73] T. Sato and A. Teramoto. Macromolecules, 29:4107, 1996.

[74] H. Shin, M. J. Bowick, and X. Xing. Phys. Rev. Lett., 101:037802, 2008.
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