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Abstract

In the present work, the processes of steady combustion and autoignition of hydrogen are

investigated using the Conditional Moment Closure (CMC) model with a Reynolds Aver-

aged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) code. A study of the

effects on the flowfield of changing turbulence model constants, specifically the turbulent

Schmidt number, Sct, and Cǫ1 of the k − ǫ model, are investigated. The effects of two

different mixing models are explored: the AMC model, which is commonly used in CMC

implementations, and a model based on the assumption of inhomogeneous turbulence.

The background equations required for implementation of the CMC model are pre-

sented, and all relevant closures are discussed. The numerical implementation of the CMC

model, in addition to other techniques aimed at reducing computational expense of the

CMC calculations, are provided. The CMC equation is discretised using finite volume

(FV) method. The CFD and CMC calculations are fully coupled, allowing for simulations

of steady flames or flame development after the occurrence of autoignition.

Through testing of a steady jet flame, it is observed that the flowfield calculations follow

typical k − ǫ model trends, with an overprediction of spreading and an underprediction of

penetration. The CMC calculations are observed to perform well, providing good agree-

ment with experimental measurements.

Autoignition simulations are conducted for 3 different cases of turbulence constants

and 7 different coflow temperatures to determine the final effect on the steady flowfield. In

comparison to the standard constants, reduction of Sct results in a reduction of the centre-

line mixing intensity within the flowfield and a corresponding reduction of ignition length,

while reducing Cǫ1 results in an increase of centreline mixing intensity and an increase in

the ignition length. All scenarios tested result in an underprediction of ignition length in

comparison to experimental results; however, good agreement with the experimental trends

is achieved. At low coflow temperatures, the effects of mixing intensity within the flowfield

are seen to have the largest influence on ignition length, while at high coflow temperatures,

the chemical source term in the CMC equation increases in magnitude, resulting in very

little difference between predictions for different sets of turbulence constants.

The inhomogeneous mixing model is compared using the standard turbulence constants.

A reduction of ignition lengths in comparison to the AMC model is observed. In steady

state simulation of the autoigniting flow, the inhomogeneous model is observed to predict

both lifted flames and fully anchored flames, depending on coflow temperature.
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Chapter 1

Introduction

1.1 Overview

Increased awareness of the effects of greenhouse gas emissions and the demand for renewable

fuels has led to an interest in developing cleaner and more efficient combustion methods.

Due to the high energy demands of the automotive industry, a large amount of research has

been focused in developing the internal combustion engine for transportation use. It is of

great interest to the world’s automotive manufacturers to develop new analysis techniques

to provide faster and more accurate predictions of engine performance. Although research

efforts have increased in recent years, the gains in efficiency in gasoline and diesel based

engines are slowing. This has led researchers to focus on other areas of development, such

as hybrid powertrains and energy recovery methods, as well as continuously variable trans-

missions, all of which have the intent of providing increased performance in the combined

driving cycle. After over 100 years of development, the fundamentals of these engines are

only beginning to change, with new fuels and combustion methods being the focus of de-

velopment. One particular area of research investigates the use of hydrogen as a clean fuel

due to its high energy density and low emissions characteristics.

Hydrogen has been investigated for use in a role as a stabiliser of the ignition and

combustion processes occurring within traditional spark ignition and compression ignition

internal combustion engines, such as gasoline or diesel engines. Hydrogen’s resistance to ex-

tinction and ability to continually react under high strain rates provides many possibilities

for its use in small quantities as an additive to traditional hydrocarbon fuels, improv-
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ing the operating range and combustion characteristics of otherwise traditional engines.

Development of novel engine concepts that utilise hydrogen as a primary fuel, for exam-

ple the Homogeneous Charge Compression Ignition (HCCI) engine, requires an in-depth

understanding of the processes that occur during mixing between fuel and air, as well as

autoignition characteristics under varying operating temperatures, loads and pressures. At

present, there is only a limited understanding of the interactions that occur within the new

generation of engines; work is currently being done both numerically and experimentally

to advance the state-of-the-art.

As a result, the primary focus of numerical research is currently oriented towards the

development of mixing models that predict the complex interactions between fuel and ox-

idiser. Characterisation of the processes that are governed by turbulence as well as those

governed by molecular mixing and diffusion processes are key to gaining an improved abil-

ity to predict the macroscopic trends occurring in these engines. Additionally, complex,

multi-step chemical mechanisms must also be included with these mixing models to aid in

the prediction of autoignition precursors and emission levels. The final implementation of

these models within a numerical code ultimately needs to result in an application that is

accurate, computationally inexpensive and easy to use.

1.2 Objectives

In an effort to reproduce some of the phenomena occurring within an internal combustion

engine, different numerical and experimental methods have been attempted [1]. A large

amount of recent work has focused on the implementation of the Conditional Moment

Closure (CMC) model. This model shows great promise with more accurate prediction of

ignition characteristics, but also presents numerical difficulties, such as increased computa-

tional time. The focus on further developing these models aims to provide an understanding

of the strengths and weaknesses associated with this model, as well as providing a means to

making the computations more attainable for a standard Computational Fluid Dynamics

(CFD) end-user.

The focus of the present study is to provide an understanding of the performance of

the CMC model in conjunction with hydrogen autoignition. Two molecular mixing models

are tested and compared in order to provide insight into the effects of these models in
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terms of accuracy and computational efficiency. These models are the Amplitude Mapping

Closure (AMC) model [2] and a model based on the assumption of inhomogeneous turbu-

lence [3] To the author’s best knowledge, the latter has not yet been applied in a finite

volume formulation for autoignition problems. Additionally, the CFD code used in this

study provides an option for ”turning off” computationally expensive CMC calculations

where they are unneeded, offering a significant increase in performance and accessibility

of this model to more generic and unpredictable situations when it is not known a priori

where the active CMC calculations are required.

1.3 Outline

In Chapter 2 the general background of fluid dynamics are covered. The relations presented

serve as the basis for virtually all CFD simulations. The governing equations of fluid flow

and various methods typically used for modelling turbulence are discussed. Various aver-

aging techniques are discussed.

Following the outline of the CFD equations, Ch. 3 details the governing equations and

implementation of the CMC model used in this work in detail. Included is a derivation

of the finite volume inhomogeneous mixing model used in this study. The requirement for

mixing models and closure of other terms within the CMC formulation are presented.

A review of previous numerical work is presented in Ch. 4. The experimental method

and general results of the steady state flame used for initial validation of the CMC calcu-

lations is discussed. Following this, a review of the experimental work on the autoigniting

flame used in the study is detailed. A summary of previous numerical studies and the

respective findings is also provided.

Chapter 5 provides a further examination into the way the CFD model used in the

current research has been implemented. Numerical solution methods and their implemen-

tation are discussed in further detail. A schematic outline of the CMC code used in this

study is presented, explaining the coupling methods to link CMC and CFD calculations

together. The detailed chemical mechanism and implementation of the mechanism into

the solution is discussed. Solver methods used in the CFD and CMC calculations are also

presented.

The focus of Chapter 6 is demonstrating the performance of the CFD/CMC code in
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comparison with existing experimental data for steady flames. This includes the investiga-

tion of mixture fraction, temperature and rate of mixing documented in previous studies.

A brief analysis of options within the CMC code will be discussed, which includes an in-

vestigation of combining multiple CFD cells into a single larger CMC cell and the use of a

dynamic grid, activating/de-activating based on mean mixture fraction limits. A general

analysis of the CFD results is presented and compared to the experimental trends seen.

The overall performance of the CMC calculations in relation to experimental measurements

is compared in detail with available conditional measurements.

Chapter 7 provides an investigation into the autoignition of hydrogen jets. In-depth

details of the simulations performed in the current study are investigated, including bound-

ary conditions, mesh and timestep refinement, and variation of model constants. The effect

of the different mixing models is discussed in relation to various aspects of the CMC cal-

culations as well as experimental results.

Conclusions based on this study are presented in Chapter 8. This includes a summary

of all work performed and the findings of this study, as well as recommendations for future

areas of study using the present computational code.
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Chapter 2

Background

In this chapter, the fundamental equations governing thermodynamics and fluid flows are

presented. Complete understanding of these equations and the subsequent models that

arise for full closure in different simulation techniques is essential to the further under-

standing of the work presented in this study. The governing equations of fluid flow and

thermodynamics provide an exact representation of processes governing the fluid proper-

ties. Each of the fundamental equations is presented in full detail, without the use of

simplifications and assumptions. Following this, methods used to facilitate the use of these

exact equations in a numerical application are discussed. This includes an overview of sim-

ulation types, averaging techniques, turbulence models and common combustion models,

including many of the submodels required for closure.

2.1 Governing Equations of Fluid Flow

The governing equations of fluid dynamics can be separated into three general categories

that control fluid motion and thermodynamics: conservation of mass (continuity), momen-

tum and energy. For multicomponent flows, the species transport equation must also be

solved, which can be seen as analogous to the continuity equation, but for a single species.

Through the solution of these equations, the intensive and extensive properties can be

determined. For simplicity, the following equations are written in Cartesian coordinates
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using tensor notation.

2.1.1 Mass

The conservation of mass, or continuity equation as it is more commonly known, is given

by:

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0. (2.1)

The first term given on the left hand side (LHS) of Eq. 2.1 is the rate of change of mass

within the control volume, while the second term represents the convective mass transport.

The right hand side (RHS) of the equation indicates that there are no sources or sinks for

mass. When this value is positive, it indicates that mass is flowing into the system, and

when negative, mass is leaving the system.

2.1.2 Momentum

The conservation of linear momentum equation relates any external body forces or pressures

to density and velocity. The general conservation of linear momentum is given by:

∂(ρui)

∂t
+
∂ (ρuiuj)

∂xi
= − ∂p

∂xi
+
∂τij
∂xj

+Bi, (2.2)

where the first term on the LHS represents the local rate of change in momentum and the

second term represents the convective change in momentum. The first term on the RHS is

the pressure gradient acting on the fluid, the second term is the force due to the symmetric

shear stress tensor and the last term on the RHS represents body forces, such as those due

to gravity or magnetism.

The shear stress tensor, τij, is given by the equation

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− µ

2

3

∂uk
∂xk

δij . (2.3)

The Kronecker delta, δij , is equal to 1 when i = j, and is equal to 0 when i 6= j. The

turbulent viscosity is represented by µ.
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2.1.3 Enthalpy

The enthalpy of any fluid can be split into two separate components: the sensible enthalpy

and the enthalpy of formation. Sensible enthalpy is a measure of the energy required

to change the temperature from a base or reference state to another defined state. This

is often represented by integrating the specific heat capacity for species α, cpα, over the

given change in temperature. The second component of enthalpy is typically referred to

as the enthalpy of formation, hα,ref , and is a quantification of the energy contained within

the chemical bonds of species. It is the changing of these bonds that results in energy

liberation during a chemical reaction. Thus, the enthalpy of the fluid can be represented

by the expression

hα = hα,ref +

∫ T

Tref

cp,α (T ) dT. (2.4)

In a flow containing more than one species, the enthalpy of the flow is equal to the mass-

weighted sum of the component enthalpies of species α:

h =
Nα∑

α=1

Yαhα. (2.5)

Similarly, the specific heat capacity of the mixture, cp, is given by a mass weighted sum of

the specific heat capacities of species α:

cp =
Nα∑

α=1

Yαcp,α. (2.6)

Using this definition for enthalpy of the mixture, the transport equation for enthalpy within

the system can now be defined. This is given by

∂(ρh)

∂t
+
∂(ρuih)

∂xi
=
∂p

∂t
+
∂(uip)

∂xi
+
∂(uiτij)

∂xi
− ∂

∂xi
jq + uiBi + q̇rad. (2.7)

The terms on the LHS of Eq. 2.7 represent the rate of change in enthalpy and the convective

enthalpy transport, respectively. The first two terms on the RHS of Eq. 2.7 represent the

rate of change of pressure and the boundary work done by pressure. The third term on

the RHS represents the work done by shear stresses. The term ˙qrad represents radiative
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heat transfer, and uiBi is a representation of work done by body forces. The diffusive heat

flux, jq is given by the expression

jq = −λ∂T
∂xi

+

Nα∑

α=1

hαjα. (2.8)

In Eq. 2.8 λ is the thermal conductivity and jα is the diffusive heat flux represented by

Fick’s first law of diffusion as

jα = −ρDα

∂Yα
∂xi

, (2.9)

with the diffusivity of species α given by Dα and the mass fraction of species α given by Yα.

2.1.4 Species Transport

Similar to the concepts of having transport equations for intensive properties, it is also

appropriate to use similar transport equations adapted for use with scalars. In reacting

flows, it is of paramount importance to calculate the transport, production and destruction

of the different chemical species present. Therefore, the governing equation of species α is

given by

∂ (ρYα)

∂t
+
∂ (ρuiYα)

∂xi
= −∂ji,α

∂xi
+ ω̇alpha α = 1, 2, . . . , Ns, (2.10)

where Ns is the total number of species in the mixture. The chemical source term, ω̇α, is

dictated by the chemical mechanism calculations. This will be discussed further in 5.3.

2.2 Averaging Techniques

The statistical description of laminar flows is trivial; since there are no random fluctua-

tions, the flow can be completely characterised by the use of a mean scalar value which

is dependant only on time and position. As a flow transitions from laminar to turbulent,

small instabilities within the flow begin to have an effect on the larger flow structures.

As a flow becomes fully turbulent, the effects of these small instabilities begins to have a
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larger and larger effect on the flow. As a result, the analysis and characterisation for either

scalars or vector quantities within turbulent flows become much more complicated; even

steady turbulent flows cannot be defined by a mean value alone. The fluctuations about

the mean value must also be defined in a process known as decomposition, where the mean

value and an instantaneous fluctuation about the mean yield the instantaneous value [4].

It can be shown that both the mean values and fluctuations may be substituted into the

governing equations while providing proper closure.

Two different types of averaging techniques are commonly used to address the need for

scalar decomposition. The first type, Reynolds averaging, is commonly used in non-reacting

flows where the density does not have large fluctuations. The second type, Favre-averaging,

or density weighted averaging, is typically employed in flows where a large density change

is expected, either due to various species present or large changes in temperature.

2.2.1 Reynolds Averaging

Quantities in turbulent flows may be decomposed into mean and fluctuating components.

This can be represented for the quantity ψ as [4]

ψ (xi, t) = ψ (xi, t) + ψ′ (xi, t) , (2.11)

where ψ (xi, t) is the instantaneous value, ψ (xi, t) is the average value, and ψ′ (xi, t) is

the magnitude of the fluctuation about the average. The use of decomposition within the

governing equations allows separation of the mean and instantaneous values into different

sets of governing equations. It can be shown that the continuity and momentum equations

can be reduced to

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0 (2.12)

∂(ρui)

∂t
+
∂ (ρuiuj)

∂xi
= − ∂p

∂xi
+
∂τij
∂xj

+
∂
(
ρu′iu

′
j

)

∂xj
+Bi. (2.13)

These equations are known as the Reynolds Averaged Navier-Stokes (RANS) equations.

The new term present in Eq. 2.13,
∂(ρu′iu′j)
∂xj

, represents the Reynolds stresses. Reynolds
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stresses are a measure of the internal shear due to velocity fluctuations within the flow.

Closure of this term can be obtained using various turbulence models, some of which will

be described in further detail in Section 2.3.

Similar to the treatment of the RANS equations, the scalar transport equation may be

derived as follows

∂
(
ρψ
)

∂t
+
∂
(
ρuiψ

)

∂xi
=

∂

∂xi

(
ρDψ

∂ψ

∂xi

)
−
(
ρu′iψ

′
)

∂xj
+ ω̇. (2.14)

Equation 2.14 is analogous to both the RANS continuity and momentum equations; the

source term is represented by ω̇ and scalar fluctuations are represented by (u′iψ
′). These

fluctuations are referred to as turbulent scalar fluxes.

2.2.2 Favre-Averaging

The majority of flows involving buoyancy, temperature changes or multiple chemical species

produce large variations in density that cannot be neglected. For these flows, the density

weighted averaging, or Favre-averaging method is preferred [5]. The process of Favre-

averaging takes into account density variations within the flow when calculating mean

values, such that the Favre-averaged value is

ψ̃ (xi, t) =
ρψ (xi, t)

ρ
. (2.15)

Decomposition can occur in a similar fashion to Reynolds averaging, as shown in Eq. 2.12

through Eq. 2.14. Once again, the instantaneous value of the quantity ψ is equal to

ψ (xi, t) = ψ̃ (xi, t) + ψ′′ (xi, t) . (2.16)

Using the decomposition method shown in Eq. 2.16, a set of Favre-averaged governing

equations may be obtained:

∂ρ

∂t
+
∂ (ρũi)

∂xi
= 0, (2.17)

∂(ρũi)

∂t
+
∂ (ρũiũj)

∂xi
= − ∂p

∂xi
+
∂τij
∂xj

+
∂
(
ρũ′′i u

′′
j

)

∂xj
+Bi, (2.18)
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∂
(
ρψ̃
)

∂t
+
∂
(
ρũiψ̃

)

∂xi
=

∂

∂xi

(
ρDψ

∂ψ̃

∂xi

)
−

(
ρũ′′iψ

′′
)

∂xj
+ ω̇. (2.19)

2.3 Turbulence Modelling

In reaching the RANS equations, Eqs. 2.12 - 2.14 , it was observed that one term involv-

ing turbulent fluctuations remained without adequate closure. This term, the Reynolds

stress tensor, poses many of the difficulties encountered in the modelling of turbulent flows.

In order to provide closure for this term, many different models and methods have been

suggested. Within the RANS equations, these models are usually defined by the number

of additional transport equations required for closure, such as 0-equation, 1-equation and

2-equation. These models are linked to the Reynolds stress tensor via an approximation

known as the turbulent viscosity hypothesis [4]. In addition to these turbulent viscosity

based models, another frequently encountered model is the Reynolds stress model, which

attempts to resolve each of the individual stresses in the Reynolds stress tensor.

Instead of using the RANS equations, several additional techniques have grown in pop-

ularity recently. These techniques are known as Large Eddy Simulation (LES) or Direct

Numerical Simulation (DNS). As the name suggests, LES involves modelling the larger

turbulent eddies present in the flow. Instead of using averaged values, as with RANS, LES

uses filtered governing equations while providing models for lower energy length scales

within the flow. DNS takes this one step further by resolving the entire energy cascade,

including even the smallest flow structures. The drawback to this increased resolution is

the dramatic increase in computational cost. LES typically requires much finer grid spac-

ing than RANS simulations, often requiring a significant amount of parallel computing

power. The increase in computational cost for DNS is so dramatic that contemporary

supercomputers are only able to simulate low Reynolds number (Re) flows in extremely

small domains, on the order of centimeters. Although computing power has maintained an

exponential growth, the widespread use of LES and DNS for practical engineering problems

is still several years from reality.

The following section will investigate turbulence modelling in RANS simulations, LES

and DNS.
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2.3.1 Reynolds Averaged Navier-Stokes Simulations

RANS modelling involves solving the averaged Navier-Stokes equations presented in Sec-

tion 2.2.1. Since the Reynolds stress term remains unclosed, turbulence models must be

used to provide closure for this term using a turbulent viscosity model or a direct model.

The turbulent viscosity based models may be subdivided into 0-equation, 1-equation or

2-equation models. The order of the model refers to the number of additional transport

equations required for closure. An additional, more direct model exists that does not rely

on turbulent viscosity, providing an additional transport equation for each of the unclosed

Reynolds stresses.

Turbulent Viscosity Hypothesis

Before discussing the models further, it is important to outline the turbulent viscosity hy-

pothesis upon which the 0, 1 and 2 equation models rely. The turbulent viscosity hypoth-

esis, presented by Boussinesq in 1877, assumes that the Reynolds stresses are determined

by the mean velocity gradients, much in the same way as viscous stresses are related to

the bespoke velocity gradients [4]. This is shown as

ρu′iu
′
j = −µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρδijk. (2.20)

The second assumption is that the Reynolds stress anisotropy, aij is governed by the

relationship

aij = −2νTSij, (2.21)

where Sij is the mean rate of strain tensor. These relations have been shown to be inac-

curate in many flows; however, for simple shear flows, the turbulent viscosity hypothesis is

somewhat reasonable.

0-Equation Models

Perhaps the simplest of all turbulence models is the zero equation model. As the name

suggests, there are no additional transport equations required for closure, rather, a simple
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relation combined with assumptions about length scales present in the flow is used to de-

termine the turbulent viscosity. This model, commonly referred to as the mixing length

model was initially introduced by Prandtl [6]. It is assumed that the kinematic turbulent

viscosity, νT , is the product of a turbulent velocity scale and an assumed mixing length

scale, lm. Upon simplification of the model, it can be shown that

νT = l2m

∣∣∣∣
∂ui
∂xj

∣∣∣∣ . (2.22)

Further manipulation of Eq. 2.22 will yield a form suitable for implementation as the

Reynolds stress term in the closure of the Navier-Stokes equations. Therefore, the Reynolds

stresses can be described by

τij = τji = −ρu′iu′j = ρl2m

∣∣∣∣
∂ui
∂xj

∣∣∣∣
∂ui
∂xj

. (2.23)

Although this model is computationally inexpensive and easy to implement, the accuracy

of the simulations are completely dependent on selection of an appropriate length scale

[4, 6]. An implication of this model is that the velocity scale is locally calculated by the

gradient. There are, however, some circumstances where this is not true, such as in the

centre of a round jet or decaying grid turbulence [4]. As a result of these uncertainties and

potential inaccuracies, this model is not frequently used for industrial flows.

1-Equation Models

The implementation of a 1-equation model represents an evolution of the zero equation

models. The further development of this model yields a dynamic specification of the

velocity length scale that is not dependent on shear only. This model introduces the

concept of turbulent kinetic energy. Kolmogorov and Prandtl suggested that the velocity

scale should be dependent on the turbulent kinetic energy, such that

u∗ = ck
1

2 , (2.24)

where the turbulent kinetic energy (TKE), k, is given by [7, 1]

k =
1

2
ũ

′′2
i . (2.25)
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Similar to the zero equation model, the length scale is once again assumed to be constant.

Therefore, the turbulent kinematic viscosity is given by

νT = ck
1

2 lm, (2.26)

with c usually taken as 0.55.

Since the turbulent kinetic energy is a spatial (and temporal, if unsteady flow) de-

pendent term, an additional transport equation must be introduced for calculation of this

term. This transport equation is given as

ρ
∂k̃

∂t
+ ρuk

∂k̃

∂xk
=

∂

∂xk

[(
µt
σk

+ µ

)
∂k̃

∂xk

]
+ ρP − ρǫ̃, (2.27)

where ǫ̃ = Cdk
3

2/lm, σk is the the turbulent Prandtl number, Cd is an empirical constant,

usually set equal to 0.09 and P is the turbulent production rate. The production rate is

modelled using

P = −ũ′′i u′′j
∂ũj
∂xi

(2.28)

where

ũ′′i u
′′
j =

2

3
δij

(
k̃ − µT

ρ

∂ũk
∂xk

)
− µT

ρ

(
∂ũi
∂xi

+
∂ũJ
∂xK

)
. (2.29)

Although this model does present a slightly more physical representation of the turbulent

processes than the zero equation model, it is still plagued by some of the same limitations,

namely the specification of a fixed turbulent length scale.

2-Equation Models

A group of two equation models are in widespread use throughout most commercial CFD

codes. These models, while requiring slightly more computational expense, provide a

large improvement in accuracy in addition to an excellent understanding of the limitations

associated with the model. These models typically do not require anything more than

specification of a few constants which remain similar for many flows. Building on the

TKE transport equation introduced for the 1-equation model, a second transport equation
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is introduced, providing a means of calculating the length scale required by the turbulent

viscosity hypothesis for closure of the Reynolds stresses. The most widely used two equation

models are the k−ω proposed by Wilcox et al. [8] and the k− ǫ model proposed by Jones

et al. [7]. This section will focus on the implementation of the latter, as it is used in the

current study.

The k − ǫ model is perhaps the most widely documented and best understood of the

RANS turbulence models [4, 6]. The implementation of this model is achieved by using

the aforementioned turbulent kinetic energy equation, shown in Eq. 2.25 and introducing

a second transport equation for dissipation, ǫ, which is subsequently used to calculate the

turbulent length scale.

The dissipation equation is given as

ρ
∂ǫ̃

∂t
+ ρuk

∂ǫ̃

∂xk
=

∂

∂xk

[(
µT
σǫ

+ µ

)
∂ǫ̃

∂xk

]
+ Cǫ1ρP

∂ǫ̃

∂k̃
− Cǫ2ρ

ǫ̃2

k̃
, (2.30)

with

µT = Cµρ
k̃2

ǫ̃
. (2.31)

The standard model constants, first proposed by Launder and Sharma [9], are given as

Cµ = 0.09, Cǫ2 = 1.44, Cǫ2 = 1.92, σk = 1.0, and σǫ = 1.3. (2.32)

Equations 2.30 and 2.31 can be used to derive the turbulent length and time scales for the

flow:

lm =
k̃

3

2

ǫ̃
, (2.33)

and

τ =
k̃

ǫ̃
. (2.34)

The k − ǫ equation has many well known deficiencies [4, 6]; however, knowledge of its

shortcomings only further encourages its use. For example, it is well documented that this

model will overpredict the spreading of round jets, which leads to a subsequent reduction

in penetration length. Modification of the Cǫ1 and Cǫ2 constants is a common way of com-

pensating for these deficiencies, and has been used in previous studies [10, 11].
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Reynolds-Stress Model

The Reynolds-stress model differs from the 0-, 1- and 2-equation models in that it does

not use an eddy viscosity approximation to determine the Reynolds-stresses [4] . Instead,

a group of 6 additional transport equations are introduced into the calculation in order to

resolve the Reynolds-stress tensor. The equations take the form

∂

∂t
(ρu′iu

′
j) +

∂

∂xi
(ρuiu

′
iu

′
j) =

∂

∂xk

[(
ν +

2

3
Cs
k̃2

ε̃

)
∂u′iu

′
j

∂xk

]
+ Pij + φij −

2

3
δij ε̃. (2.35)

In the above equation, Pij is the exact production term, φij is the pressure strain correla-

tion, and Cs is a model constant.

Due to the increase in computational cost, the Reynolds-stress model is infrequently

used compared to simpler two-equation models, such as the k− ǫ model [6]. In addition to

the increased complexity, some of the same limitations seen with the k − ǫ model present

themselves. Further explanation of this model is not relevant to the current study; how-

ever, details of the model and its implementation may be found in [4, 6].

2.3.2 Large Eddy Simulation

Large Eddy Simulation (LES) is one of the methods that has been increasing in popularity

over the past several years, mainly due to the increase in parallel computing power. This

model, although extremely computationally expensive in comparison to simpler RANS

models, does present some advantages as well as disadvantages.

Instead of decomposing the flow into mean and fluctuating values, a filter is applied to

yield an instantaneous and residual value. The instantaneous values, which by the nature

of LES must be obtained by unsteady simulation even for steady flows, represent the larger

flow structures that would be entirely modelled within RANS. These larger eddies which

are fully resolved do potentially provide useful information when modelling combustion

processes: the unsteady nature of combustion processes often depends on temporal fluctu-

ations which are lost in RANS simulations [12]. The flow structures which are too small

to be resolved in LES are modelled by various models, further discussed in [4].

Although the benefits of LES are attractive, they do come at a significant computa-

tional cost. The filter width in LES is proportional to the grid spacing, which must be
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chosen such that the filter width is located within the inertial subrange of the flow [4].

This reduced grid spacing, with all else being equal, leads to a smaller timestep in order

to maintain the Courant number of the simulation [6]. Another compounding factor rele-

vant to this study is that LES are necessarily 3-dimensional flows, even for axisymmetric

domains, whereas RANS can be reduced to a two dimensional axisymmetric slice one cell

thick. When combined, these factors lead to the significant increase in computational cost,

which at present makes LES somewhat impractical for many industrial applications. How-

ever, one must consider that due to the steady increases in computational power, this may

not always be the case.

2.3.3 Direct Numerical Simulation

A further refinement of LES is direct numerical simulation (DNS). In contrast to LES and

RANS, DNS does not use any filtering or modelling of flow patterns; instead, even the

smallest length scales at which energy dissipation occurs are resolved. The implications

of this are similar in nature to those experienced with LES; the grid spacing must be fur-

ther refined and timesteps further decreased in order to maintain numerical accuracy and

stability [4]. As a result, massive amounts of computing power are required for low-Re

simulations, and it is currently impractical to model high Re flows. DNS studies are re-

stricted to determining flow statistics and providing data for validation of simpler models.

Further information can be found in [4, 6].

2.4 Stochastic Description of Flows

In Section 2.3.1, it was shown that a flow can be broken down into a mean value and

a fluctuation. Since these fluctuations are only modelled, and not resolved, it is key to

provide a statistical description of the flow. This description allow it to be said with some

probability whether an instantaneous value, the sum of the mean and the fluctuation, will

fall within a certain range. Therefore, one must rely on stochastic methods with which the

flow can be described.
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As an example, a variable, Φ, may take on values within the valid range of the sample

space variable, φ. Although Φ is able to take on any value within the sample space, the

likelihood of of Φ falling within a certain range can be characterised by use of a probability

density function (PDF) or cumulative distribution function (CDF) [4, 13]. Use of statis-

tical methods, although not able to predict exact values of variables, allows the value, or

range of values, to be stated with a level of confidence. The level of confidence of is related

to the width of the range, and the randomness of the field.

In the simplest sense, the cumulative probability of C(Φ < φ) is defined as the probabil-

ity of occurrence of Φ such that Φ < φ. Even though this statement seems relatively simple

and intuitive, its implications are extremely important. The value of φ can be selected to

be sufficiently small such that Φ < φ is never true, or sufficiently large that Φ < φ is

always true. The resultant probabilities will then be 0 and 1, respectively. As a result, the

function C is continually increasing, bounded by 0 and 1. Subsequently, for a given range

defined by the sample variables φ1 and φ2, C(φ1 < Φ < φ2) = C(Φ < φ2)− C(Φ < φ1).

An alternative way to represent the probability is via a probability density function.

The PDF, P , is defined as the derivative of the CDF

P (φ) = lim
δφ→0

C (Φ < φ+ δφ)− C (Φ < φ)

δφ
=
dC (Φ < φ)

dφ
(2.36)

such that
∫ +∞

−∞

P (φ) = 1. (2.37)

When used to describe random variables, the PDF can be easily employed to calculate

the mean or the variance of the variable. These values become extremely useful when only

the statistical behaviour of a variable is available but further details are required. The

mean, or expected value of the variable Φ is then defined by

〈Φ〉 ≡
∫ +∞

−∞

φP (φ) dφ. (2.38)

Similarly, this expression can be used to define the mean of any function of φ, f(Φ) as

〈f(Φ)〉 ≡
∫ +∞

−∞

f (φ)P (φ) dφ. (2.39)
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Based on the preceding analysis, the dependence of a variable on a single random

variable may be extended to two or more random variables using Bayes’ theorem [14]. The

resultant PDF is typically known as a joint PDF, and is defined as [4, 14, 13]

P (φ1, φ2) = P (φ|Φ2 = φ2)P (φ2) , (2.40)

in which P (φ|Φ2 = φ2) is the probability of Φ1 having a value of φ1 for all scenarios where

the condition of Φ2 = φ2 is satisfied. The conditional expectation can subsequently be

defined as

〈Φ1|Φ2 = φ2〉 =
∫ +∞

−∞
φ1P (φ1|Φ2 = φ2)P (φ2) dφ2

P (φ2)
. (2.41)

Likewise, for any function, f(Φ1), the conditional expectation may be defined as

〈f(Φ1)|Φ2 = φ2〉 =
∫ +∞

−∞
f(φ1)P (φ1|Φ2 = φ2)P (φ2) dφ2

P (φ2)
. (2.42)

2.5 Turbulent Reacting Flows and Non-premixed Com-

bustion

Flows in which a reaction occurs become greatly complicated by the additional processes

taking place. The Navier-Stokes equations, although still valid, must be supplemented to

fully account for the effects of reactions occurring within the fluid. This matter is greatly

complicated by the fact that there is, even still, a limited understanding of the full kinetics

and governing rates of chemical mechanisms and all of the interactions that take place

within. Further compounding the level of complexity is the fact that instead of a single

fluid species, reactions now require potentially hundreds of intermediate species in addition

to the reactants and products to be accounted for to fully and accurately define a process.

The difficulties associated with predicting combustion processes, a subset of the field of

reacting flows, stem from the uncertainties associated with mixing, temperature dependent

rates and providing simplified models to more efficiently evaluate the required information.

This section will provide a further discussion of some basic modelling assumptions and tech-

niques, as well as providing some common models used to predict combustion.
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2.5.1 Damköhler Number

It is widely understood, even to the layman without any technical background, that com-

bustion processes have the potential occur extremely quickly. Without this speed of reac-

tion, many of the devices upon which we rely daily would be completely different, if not

impossible. An excellent example of this is the automotive internal combustion engine,

which requires a fast, yet controlled, burning of the fuel in order to operate properly. At

the same time, turbulent mixing is also occurring within these processes. The ratio be-

tween the chemical and turbulent timescales has a very large impact on the way analysis

must be conducted for reacting flows. The ratio between these timescales is known as the

Damköhler number, or Da [15]. This non-dimensional number is a measure of the relative

rate of chemical reaction and turbulent mixing processes.

Da =
τt
τc
. (2.43)

For flows in which the Damköhler number is greater than 1, reactions occur faster than

the turbulent mixing. For flows in which the Damköhler number is less than 1, turbulent

mixing occurs faster than the chemical reaction. Use of this number is extremely relevant

to modelling of non-premixed reacting flows: if the value of Da is sufficiently large (i.e.

Da ≫ 1), a 1-step, infinite rate reaction can be assumed with little impact on the overall

results [16]. This situation corresponds to what is commonly known as a well-stirred reac-

tor. Conversely, when the value of Da is small, (i.e. Da ≪ 1), the effects of the chemical

mechanism have a large impact on the flow [16].

2.5.2 Mixture Fraction

The concept of mixture fraction is one of the key ideas required for successful evaluation

of turbulent reacting flows. The mixture fraction, ξ, is a normalised scalar that is used to

represent the relative amounts of fuel and oxidiser present in a given parcel of fluid. It is

defined as the local ratio of mass originating from the fuel to the total mass of the mixture

ξ =
mass originating from fuel

total mass of mixture
(2.44)

In order to properly use the variable ξ given in Eq. 2.44 , all non reacting elements that are

present in the fuel must be accounted for in addition to those participating in the reaction,
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otherwise the results will be inaccurate.

For a two-feed system, where fuel and oxidiser are supplied by separate means, mixture

fraction is defined as [1]

ξ =
ṁf

ṁf + ṁo

, (2.45)

where ṁf represents the mass flow of the fuel stream and ṁo represents the mass flow of

the oxidiser stream. If it is assumed that the diffusivities for all species are equal, or that

the mixing in the flow is governed by turbulence, the mixture fraction can be considered

as a conserved scalar (due to the conservation of mass), and is governed by the transport

equation

∂ (ρξ)

∂t
+

∂

∂xi
(ρuiξ) =

∂

∂xi

(
ρD

∂ξ

∂xi

)
. (2.46)

In Eq. 2.46, there are no sources or sinks included. Transport of the mixture fraction

scalar is entirely dependent on convective and diffusive means.

As shown previously in Section 2.2.2, for reacting flows it becomes necessary to use

a density weighted approach for solution of the transport equations. Eq. 2.46 may be

Favre-Averaged to yield

∂
(
ρξ̃
)

∂t
+

∂

∂xi

(
ρuiξ̃

)
=

∂

∂xi

(
ρDt

∂ξ̃

∂xi
− ρũ′′i ξ

′′

)
. (2.47)

In this equation, molecular diffusion processes are neglected by assuming a high Re flow.

The turbulent flux term, ũ′′i ξ
′′, is modelled using the gradient diffusion hypothesis

ũ′′i ξ
′′ = −Dt

∂ξ̃

∂xi
. (2.48)

In addition to mean mixture fraction transport, the proper treatment of the mean mixture

fraction variance, ξ̃ ′′2, also requires the use of a similar transport equation. The mean

mixture fraction variance transport equation is given by

∂
(
ρξ̃′′2

)

∂t
+

∂

∂xi

(
ρũiξ̃

′′2
)
= − ∂

∂xi

(
ρũ′′ξ ′′2

)
+ 2ρDt

(
∂ξ̃

∂xi

)2

− ρχ̃. (2.49)

Again, the turbulent flux term, ũ′′ξ ′′2, in Eq. 2.49 is modelled using the gradient diffusion

hypothesis. The effects of the mean scalar dissipation rate, χ̃, will be discussed in 2.5.3
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and in further detail in Chapter 3.

Following the solution of the mean mixture fraction and its variance, a presumed form

PDF can now be defined. Use of a presumed form PDF will be covered in further detail

in Chapter 3.

2.5.3 Mean Scalar Dissipation Rate

The mean scalar dissipation rate, χ̃, is a measure of the level of mixing present in a turbulent

flowfield. It can influence many characteristics of reacting flows, such as temperature,

ignition and extinction processes. A very small value of χ̃ means that combustion processes

are occurring at conditions close to equilibrium, while a very high χ̃ is indicative of a highly

strained flame that is close to extinction [6]. As the scalar dissipation rate increases, more

heat is removed from the reaction zone, subsequently lowering the rate of reaction and fluid

temperature. If the value of χ̃ exceeds a certain threshold, χ̃extinction, the chain reactions

controlling combustion can no longer continue and the flame is extinguished. Since the

value of χ̃extinction is directly related to diffusion of the fuel within the oxidiser, fuels with

high diffusivities such as hydrogen are able to withstand much higher scalar dissipation

rates without extinction.

An expression for the closure of the mean scalar dissipation rate, χ̃, was developed by

Peters [1]. An integral timescale for the mixing field can be defined as

τi =
ξ̃
′′2

χ̃
, (2.50)

while for the flow, the time scale is

τ =
k̃

ǫ̃
. (2.51)

Invoking the assumption of proportionality of timescales, a constant of proportionality of

the order of unity may be obtained [1]. This can be shown as

τ = Cχτi (2.52)

Upon substitution of Equations 2.50 and 2.51 into Equation 2.52, the following relation

for mean scalar dissipation rate is obtained

χ̃ = Cχ
ǫ̃

k̃
ξ̃ ′′2 (2.53)
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The value of the constant of proportionality is entirely dependent on the flow. Janicka and

Peters [17] found that a value of Cχ = 2.0 provides good performance when considering

an inert methane jet. Various other models have been suggested for closure of the mean

scalar dissipation rate [4]; however, they are not used in the current implementation of the

CMC equations and are beyond the scope of the present work.

2.6 Turbulent Combustion Models

Similar to the turbulence models discussed in Section 2.3, it is necessary to provide mod-

elling for proper closure of the enthalpy and chemical species transport equations. Once

again, similar to turbulence modelling, a wide array of modelling techniques exist, ranging

from the simple to very complex. Proper application requires a great amount of knowledge

of both the applicable flow and the features of the model being used. This section provides

an overview of the Eddy Break-up Model (EBU) [18], the Laminar Flamelet model (LF) [6]

and the PDF Transport Model [19]. The CMC combustion model is presented in greater

detail in Ch. 3.

2.6.1 Eddy Break-up Model

The Eddy Break-Up model (EBU) was first proposed by Spalding [18] as a method of

obtaining closure for the chemical source term. In this model, the rate of consumption of

reactants is governed by the level of turbulent mixing in the flow. The mixing-controlled

rate of reaction can be expressed in terms of the turbulent time scale, which is defined by

the ratio of the turbulent kinetic energy to the dissipation rate, k/ǫ. It is assumed that

the chemistry is infinitely fast, and that the reaction rate is only governed by turbulent

mixing. The initial intent of the model was to address premixed combustion processes;

however, by calculating the mixture fraction PDF, the EBU model can be adapted for

use with non-premixed combustion. The reaction rates for the fuel, oxidiser and products,

which are proportional to the turbulent dissipation rate, may be expressed as

˜̇ωfuel = −CRρỸfuel
ǫ

k
, (2.54)
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˜̇ωox = −CRρ
Ỹox
s

ǫ

k
, (2.55)

and

˜̇ωpr = −C ′
Rρ

Ỹpr
1 + s

ǫ

k
. (2.56)

In these equations, s represents the stoichiometric oxygen to fuel mass ratio, Y is the mass

fraction and CR and C ′
R are model constants. Typical values for the model constants are

CR = 1.0 and C ′
R = 0.5 [6], although some fine tuning may be required to yield the proper

results [4]. Since the rate equations are directly tied together via the conservation of mass,

the rate determining equation is taken as the minimum of the three, such that

˜̇ωfuel = −ρ ǫ
k
min

[
CRỸfuel, CR

Ỹox
s
, CR

Ỹpr
1 + s

]
. (2.57)

Since the reaction rate is entirely dependent on the quantities ǫ and k, the overall per-

formance of the combustion model hinges on successful and accurate modelling of the

turbulence. It is worth noting that only the bulk reaction rates are considered, the evolu-

tion of intermediate species are not considered.

2.6.2 Laminar Flamelet Model

The laminar flamelet model is a relatively simple model that combines computational effi-

ciency with some aspects of detailed chemistry. In this model, a high Damköhler number

and fast chemistry are assumed. Reaction is limited to a thin sheet positioned approxi-

mately parallel to the surface contour defined by stoichiometry. The impact of turbulence

results in a wrinkled sheet of reaction that is embedded within the turbulent structures

[6]. These reaction structures are known as flamelets.

The effects of varied chemical mechanisms are included in the calculation by providing

a series of flamelet libraries. Each of these flamelet libraries is pre-calculated for discrete

mixture fraction points and turbulent mixing levels, defined by the scalar dissipation rate,

χ, or the strain rate. The tables are generated by solving the one-dimensional governing

equations for non-premixed combustion for various levels of mixing.[6]. Interpolation is
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then used between the available libraries during the simulation, providing quick, computa-

tionally inexpensive and reasonably accurate chemical interactions. The pre-calculation of

the tables allows for prediction of intermediate species concentrations and pollutant forma-

tion, as well as using complex chemical mechanisms that would be otherwise impractical

or inefficient for full simulations.

The additional computational cost is minimal. Aside from the pre-generated flamelet

libraries, there is no need for full transport equations for the various chemical species in-

cluded in the mechanism; the only additional parameters required during simulation are

the transport equations for mean mixture fraction and mean mixture fraction variance

to complete the lookup. The enthalpy equation is necessarily coupled with the flamelet

library to provide the temperature increases associated with species evolution and reaction

[6].

Due to the reliance on pre-generated tables, the accuracy of these simulations is heavily

dependent on the resolution in mixture fraction space and the amount of different mixing

levels that are specified. Additionally, the applicability of this model is limited when the

assumption of Da ≫ 1 is not true or if the reaction zone is thicker than the Kolmogorov

length scale of the flow, i.e. the timescales of combustion must be very small in compar-

ison to the mixing timescales associated with the flow. This makes the laminar flamelet

model unsuitable for the prediction of autoignition or flames with large chemical timescales.

2.6.3 Lagrangian PDF Transport Model

The Lagrangian PDF transport model was initially developed by Pope in 1994 [19], and

can be used for both premixed and non-premixed combustion. This method results in

computational cost well in excess of the EBU and laminar flamelet models; however, it

does not rely on some of the assumptions made for convective transport in other models.

It is assumed that in a high Reynolds number flow, the transport equations are dominated

by convection, and the diffusive processes have little overall impact. As a result, imaginary

particles are introduced into the flow, each of which has its own set of properties for posi-

tion, velocity, species concentrations etc. Monte Carlo methods are used in the simulation

of the particle distributions. Use of particles instead of fluid parcels allows the fluid flow to

be modelled without invoking the gradient diffusion diffusion hypothesis used traditionally
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for closures of the RANS equations.

The overall performance of the PDF model is dependent on the models chosen for

the unclosed terms in the PDF transport equation. As this equation does not account

for scalar gradients, suitable closures are still required for viscous and molecular mixing

terms. Proper modelling of the mixing term is important in PDF methods. Modelling of

the mixing term also presents one of the largest difficulties in application of this method.

One of the largest benefits of the PDF model is that the chemical reaction rate is pre-

sented in closed form, and no further modelling is required. Additional information about

the derivation and formulation of the PDF transport equation can be found in reference [4].

2.7 Summary

In this chapter, much of the background information required for understanding of the

general modelling techniques used in this study has been presented. The governing equa-

tions for fluid flow, including conservation of mass, momentum and energy have been given

in their general form as well as in the Reynolds-averaged form. The technique of Favre-

averaging, important for the proper treatment of reacting flows, was also introduced in

conjunction with the Favre-averaged Navier-Stokes equations. Typical turbulence mod-

elling techniques for the RANS set of equations were covered with general model details.

Additionally, basic combustion models and the concept of mixture fraction was also intro-

duced. The following chapter, Ch. 3, covers the general concepts used for the Conditional

Moment Closure model, including required closures and relevant models.
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Chapter 3

Conditional Moment Closure

In this chapter, Conditional Moment Closure (CMC) along with the required submodels

and closures are introduced. A general derivation of the equations required for the model,

including the details on terms requiring closure is presented as background information.

The CMC model lies between the flamelet model and PDF methods in terms of mod-

elling assumptions and computational cost. The reduced complexity compared with PDF

methods combined with increased accuracy over flamelet models makes CMC an attractive

option for combustion modelling.

3.1 Overview

As it was examined in Section 2.5, there are many available methods of addressing the

complex phenomenon of turbulent combustion. The complexity of these models, as well

as their accuracy and ease of use is varied, and is often related to the assumptions made

during the formulation of the model. One combustion modelling approach that has been

gaining popularity in recent years is CMC. This method was developed independently by

Klimenko [20] and Bilger [21], and published in a joint paper [13].

One of the largest difficulties arising when predicting combustion or other reacting flows,

is accurately representing the non-linearities in the species concentration and temperature

equations. The goal of CMC is to provide closure of turbulence-chemistry interactions
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without Da restrictions posed by other combustion models, such as the laminar flamelet

model. CMC also allows easy provision of detailed chemistry mechanisms. In implementing

the CMC model, transport equations for chemical species and enthalpy are conditionally

averaged. Consequently, an additional conditioning variable is introduced into the solution

in the form of mixture fraction. Fluctuations about the conditional averages are much

smaller than the fluctuations about the unconditional averages. In first-order CMC, used

in the present study, these fluctuations are neglected, reducing the complexity of the trans-

port equations required to be solved.

Although Klimenko and Bilger derived the CMC equations independently and from

different starting points, the end result is the same. Klimenko’s approach began with the

PDF transport equation under high Reynolds number (Re) flows, and is therefore often

referred to as the joint-PDF method. Bilger used a decomposition approach very similar

to that used with turbulent fluctuations, with the instantaneous values separated into a

mean and fluctuation [21]. The following analysis will follow the decomposition approach

of Bilger.

3.2 Conditional Species Transport Equation

Although the mixture fraction transport equation is one of the key requirements of CMC,

since mixture fraction space is a dimension added to the analysis, it is still required that

each species have a transport equation in order to provide the species concentrations re-

quired for the subsequent chemistry calculations. Therefore, for species α, the conditional

average of the mass fraction, yα, can be defined as

Qα (η, xi, t) =
〈ρYα (xi, t) | ξ (xi, t) = η〉

ρη
, (3.1)

where ξ is the mixture fraction, η is the sample space variable upon which the mixture

fraction is conditioned, such that 0 ≤ η ≤ 1, and ρη = 〈ρ | η〉 is the conditional density.

The notation 〈|〉, denotes the ensemble average, where the quantity on the left of the

vertical bar is conditioned on the quantity to the right. Using decomposition, the mass

fraction of α, Yα can be shown as

Yα (xi, t) = Qα (ξ (xi, t) , xi, t) + y′′α (xi, t) , (3.2)
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where y′′ is a fluctuation with respect to the conditional mean. By definition of first order

CMC, y′′α (xi, t) = 0.

As a starting point, the species transport equation is combined with the definition of

the conditional average mass fraction, such that

∂(ρYα)

∂t
+
∂(ρuiYα)

∂xi
=

∂

∂xi

(
ρDα

∂Yα
∂xi

)
+ ω̇. (3.3)

It has been assumed that with high Re flows, the species diffusivities are dominated by

turbulent mixing and remain constant across all species, such that Dα = D. Subsequent

substitution of Eq. 3.2 into 3.3 followed by conditional averaging over η yields

〈ρ | η〉∂(Qα)

∂t
+ 〈ρ | η〉〈ui | η〉

∂(Qα)

∂xi
= 〈ρ | η〉〈χ | η〉

2

∂2Qα

∂η2
+ eQ + eY + 〈ω̇ | η〉, (3.4)

where

〈χ | η〉 = 2D
∂2Qα

∂η2
, (3.5)

is the conditional scalar dissipation rate. Two additional terms requiring closure are eQ

and eY . Following [13], eQ and eY are defined as

eQ =

〈[
∂

∂xi

(
ρD

∂Qα

∂xi

)
+ ρD

∂ξ

∂xi
· ∂

∂xi

(
∂Qα

∂η

)]
| η
〉
, (3.6)

and

eY = −
〈[

ρ
∂y′′α
∂t

+ ρui
∂y′′α
∂xi

− ∂

∂xi

(
ρD

∂y′′α
∂xi

)]
| η
〉
. (3.7)

Analysis by Klimenko and Bilger [13] indicates that the term eQ in Eq. 3.6 is small when

Re is large. As a result, this term can be neglected,

eQ ≈ 0. (3.8)

In order to simplify Eq. 3.7, the unconditional form is considered. By analysis of the

derivatives of the unconditional average, Bilger [13, 21] shows that the first and third term

are negligible, and that eY can be written as

eY = − 1

P (η)

∂

∂xi
(〈ρ | η〉〈u′′i y′′ | η〉P (η)) . (3.9)

29



By substituting the definition of the Favre-averaged PDF, P̃ (η) written as

P̃ (η) =
〈ρ | η〉P (η)

〈ρ〉 , (3.10)

where 〈ρ〉 is the unconditional density, Eq. 3.4 becomes

∂(Qα)

∂t
+ 〈ui|η〉

∂(Qα)

∂xi
=

1

〈ρ〉P̃ (η)
∂

∂xi

(
〈ρ〉〈u′′i y′′α|η〉P̃ (η)

)
(3.11)

+
1

2
〈χ|η〉∂

2Qα

∂η2
+

〈ω̇|η〉
〈ρ|η〉 .

The first term on the LHS of Eq. 3.11 represents the temporal rate of change of the con-

ditional species mass fraction, while the second term represents the conditional transport

by convection. The first term on the RHS of Eq. 3.11 accounts for the transport due to

turbulent flux, the second term represents the molecular mixing and the third term is the

chemical source term. Use of Eq. 3.11 forms the basis of the Conditional Moment Closure

model.

3.3 Conditional Enthalpy and Temperature Equation

The enthalpy, h, of a mixture of species is the summation of the enthalpy of each of its

constituents. The enthalpy of each constituent can be seen as a function of the mass

fraction Yα, temperature, T , such that

h = h (Y1, . . . , Yn, T ) =

n∑

α=1

Yα

(
(h0)α +

∫ T

T0

(Cp)αdT

)
. (3.12)

This definition can be extended to conditional form, such that

Qh =

n∑

α=1

Yα 〈h(xi, t)η〉Qα. (3.13)

Subsequently, the conditional temperature, QT , may be derived from the mixture enthalpy

equation where

h = a0 + a1T + a2T
2. (3.14)
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The enthalpy coefficients a0, a1, and a2 are calculated by summing the coefficient values

for the Favre-averaged species mass fractions.

The transport equation for the conditional average enthalpy, Qh = 〈h | η〉, may be

derived from the enthalpy transport,

∂(ρh)

∂t
+
∂(ρuih)

∂xi
=

∂

∂xi

(
ρDα

∂h

∂xi

)
+
∂p

∂xi
+ q̇rad, (3.15)

in a similar fashion as shown in the preceding section. The conditional enthalpy is defined

as

Qh(η, xi, t) = 〈h(xi, t) | ξ(xi, t) = η〉. (3.16)

The conditional enthalpy may be subsequently decomposed into

h(xi, t) = Qh(ξ(xi, t), xi, t) + h′′(xi, t), (3.17)

where, by definition, 〈h′′(xi, ) | η〉 = 0. Substitution of the conditional enthalpy into Eq.

3.15 followed by conditional averaging on η yields

∂Qh

∂t
+ 〈ui | η〉

∂Qh

∂xi
= − 1

〈ρ〉P̃ (η)
∂

∂xi

(
〈ρ〉〈u′′i h′′ | η〉P̃ (η)

)
+

1

2
〈χ | η〉∂

2Qh

∂η2
(3.18)

+
1

〈ρ | η〉

〈
∂p

∂t
| η
〉
− 〈q̇rad | η〉

〈ρ | η〉 .

The two terms on the LHS of Eq. 3.18 represent the temporal rate of change of conditional

enthalpy, and the conditional convective enthalpy transport, respectively. On the RHS of

this equation, the first term represents the enthalpy transport by turbulent flux, the sec-

ond term represents enthalpy dissipation, which is largely influenced by the local molecular

mixing rate, the third term is the pressure work term and the final term is the heat loss

due to radiation. The radiation losses are highly dependent on the products of the fuel,

where fuels producing large amounts of soot such as diesel may have extremely high heat

losses. Fuels such as hydrogen, which do not produce soot, have significantly less radiative

heat loss. The gaseous combustion byproducts, such as H2O, are the primary emitters for

H2.
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3.4 Terms Requiring Closure

In the Section 3.3, several terms are introduced that require closure in order to evaluate the

transport equations. This section outlines the models used to close the remaining terms.

These terms include the conditional chemical source term, 〈ω̇α | η〉, the turbulent fluxes,

〈u′′i y′′α | η〉 and 〈u′′iT ′′
α | η〉, the conditional velocity, 〈ui | η〉, and the PDF, P̃ (η). The final

unclosed term is that of the conditional scalar dissipation rate, 〈χ | η〉, and is presented in

full detail in Section 3.5.

3.4.1 Conditional Chemical Source Term

Production and evolution of chemical species is very dependent on the mechanism used.

Also, due to the nature of chemical kinetics, the highly non-linear reaction rates are very

sensitive to temperature. In general, a reversible reaction step may be represented as two

irreversible reactions, which are in equilibrium when the forward and reverse rates are

equivalent. Each of these irreversible reactions can be described by the reaction

A+B → Products. (3.19)

Despite the simplicity of this equation, it can be applied to any fundamental step in a

reaction mechanism. The rate of formation of products has previously been referenced

as the chemical source term, ω̇. Progress rate of the reaction is typically controlled by a

reaction rate calculation, where

ω̇ = ρk(T )YAYB. (3.20)

In this equation, YA and YB represent the mass fractions of the reactants, ρ is the average

density, and k(T ) is the temperature dependent reaction rate constant. The rate constant

is a simple, yet highly accurate description of the resultant rate of reaction, where

k = AT nexp

(−Ta
T

)
. (3.21)

A is the collision frequency factor, n is the temperature exponent, and Ta is the activation

temperature. The activation temperature is a description of the average kinetic energy
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required to initiate a reaction. When the temperature is below the activation temperature,

the reaction may be assumed to proceed sufficiently slowly that it may be neglected.

The temperature is calculated as a function of mixture enthalpy, based on the equations

presented in Section 3.3.

As a result of the non-linearity of the chemical source term, 〈ω̇〉 cannot be expressed

as a linear function of the unconditional averages 〈ρ〉, 〈T 〉, and 〈Y 〉, i.e.

〈ω̇α(Y, T )〉 6= ω̇α(〈Y 〉, 〈T 〉), (3.22)

which is due to the fluctuations in Y and h [13]. Therefore, when considering the effects

of fluctuations, the equation becomes

〈ω̇α(Y, T )〉 6= ω̇α(〈Y 〉, 〈T 〉). (3.23)

The magnitude of the conditional fluctuations are known to be considerably smaller than

the unconditional fluctuations [13], such that

y′′ ≪ y′, (3.24)

T ′′ ≪ T ′.

As a result, the average of the chemical source term may be conditioned on the mixture

fraction, yielding the conditional chemical source term equation

〈ω̇α(Y, T ) | η〉 = 〈ω̇α(〈Y | η〉+ y′′, 〈T | η〉+ T ′′) | η〉. (3.25)

By neglecting the conditional fluctuations due to the first order closure of the chemical

source term,

〈ω̇α(Y, T ) | η〉 ≃ 〈ω̇α(〈Y | η〉, 〈T | η〉) | η〉 = ω̇α(〈Y | η〉, 〈T | η〉), (3.26)

Klimenko and Bilger note that the intensities of the conditional fluctuations are dependent

on both the flow and the chemical reactions [13]. It follows that the accuracy of this closure

is therefore dependent on the magnitude of conditional fluctuations [13]. By performing a

second order Taylor series expansion of Eq. 3.20, it is seen that the equation

〈ω̇|η〉 ≃ 〈ρ|η〉k(QT )QAQB

[
1 +

〈y′′Ay′′B|η〉
QAQB

+

(
β +

Ta
QT

)(〈y′′AT ′′|η〉
QAQT

+
〈y′′BT ′′|η〉
QBQT

)
(3.27)

+
1

2

(
β(β − 1) +

2(β − 1)TA
QT

+
T 2
a

Q2
T

) 〈(T ′′)2|η〉
Q2
T

]
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can be derived. By assuming that the conditional fluctuations are small, with the exception

of the first term, all terms on the RHS of Eq. 3.27 are negligible. By neglecting these terms,

this equation is significantly simplified and reduces to

〈ω̇ | η〉 ≃ 〈ρ | η〉k(QT )QAQB. (3.28)

Thus, Eq. 3.28 represents the final form of the first order closure of the conditional chem-

ical source term required for the CMC model.

3.4.2 Turbulent Flux

The second group of terms requiring closure in the CMC equations are related to the con-

ditional turbulent transport flux, which can be shown as 〈u′′i φ′′〉 for the scalar φ. Analogous
to the approach used for obtaining closure in Eq. 2.47, the Favre-averaged mixture fraction

transport equation, closure for the current conditionally averaged terms are obtained by

invoking the gradient diffusion hypothesis. The gradient diffusion hypothesis states that

the turbulent transport of a conserved scalar, φ, is governed by the mean scalar gradient,

which occurs in the direction of −∇〈φ〉 [4], such that

〈u′′i φ′′〉 = −DT

∂φ

∂xi
(3.29)

where

DT =
νT
ScT

=
Cµ
Sct

k̃2

ǫ̃
(3.30)

In these equations, DT is the turbulent diffusivity, νT is the turbulent kinematic viscosity,

Cµ = 0.09 is an empirically derived constant, and ScT is the turbulent Schmidt number.

Closure for the conditional turbulent flux terms, 〈u′′i y′′α | η〉 and 〈u′′i T ′′
α | η〉, is obtained by

applying this hypothesis as shown in Eq. 3.29. These terms then become

〈u′′i y′′α | η〉 = −DT

∂〈yα | η〉
∂xi

, (3.31)

and

〈u′′i T ′′ | η〉 = −DT

∂〈T | η〉
∂xi

. (3.32)
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3.4.3 Conditional Velocity

Closure of the conditional velocity term is based on the linear model, initially proposed by

Kuznetsov et al. [22] and applied to CMC [10, 11]. This model assumes a linear progression

of the conditional velocity in the sample space, such that

〈ũi | η〉 = ũi +
ũ′′i ξ

′′

ξ ′′2
(η − ξ̃). (3.33)

As seen in Sec. 3.4.2, the gradient diffusion hypothesis is again used to obtain closure for

the turbulent flux term, ũ′′i ξ
′′, such that the conditional velocity becomes

〈ũi | η〉 = ũi −DT

(η − ξ̃)

ξ ′′2

∂ξ̃

∂xi
. (3.34)

In Eq. 3.34, ũi is the Favre-averaged velocity, ξ̃ is the Favre-averaged mixture fraction, ˜ξ ′′2

is the Favre-averaged mean mixture fraction variance and DT is the turbulent diffusivity.

The linear conditional velocity model is supported by various experimental data [22, 23]

and is considered to be a good approximation for flows where η is within two standard

deviations of ξ̃. Despite this, measurements performed by Li et al. raise some question as

to the accuracy and validity of this model [24].

Notwithstanding the potential flaws in the model, the linear conditional velocity model

remains popular due to its ease of implementation, low computational expense and numeri-

cal robustness. The linear conditional velocity model is used for the remainder of this study.

3.4.4 Probability Density Function

One of the most important unclosed terms in the CMC equation is the probability density

function. Although briefly discussed in Sec. 2.4, presumed probability density functions

require a large amount of computational cost and forethought for proper implementation.

The unclosed term appears in several locations within the CMC model: in the conditional

species mass fraction equations, the conditional temperature equation and the conditional

scalar dissipation rate equation. Due to its widespread implementation, the presumed form

PDF must provide a physically valid and accurate description of the flow. Without proper

modelling of the PDF, the CMC model is unlikely to provide accurate results.
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Defining the PDF is accomplished by using one of a number of presumed form PDFs.

Although there are many potential distributions that could be applied to a given problem,

the two most commonly found are the clipped Gaussian PDF and the β-PDF. Each of these

requires a mean and variance for the flow to be provided for calculation of the appropriate

probability distribution.

Clipped Gaussian PDF

The clipped Gaussian PDF is a modification of the Gaussian, or normal distribution.

The normal distribution is a perfectly symmetrical PDF, centered on the mean, with the

strength of the tails governed by the variance. The tails of the normal distribution extend

to infinity, but assume very low values at the furthest extents. By definition, the integration

of
∫ +∞

−∞

P (η)dη = 1 (3.35)

must be true. Contrary to the implications of Eq. 3.35, the variable η is limited only to

0 ≤ η ≤ 1 in the current application. Therefore, the integration of this PDF across η-space

is no longer true, i.e.

∫ 1

0

P (η)dη 6= 1. (3.36)

Due to this limitation, further modification is required to the PDF such that the LHS of Eq.

3.36 evaluates to be equal to 1. The clipped Gaussian form of the PDF is a modification

that provides proper closure.

In order to account for the discrepancy, the strength of the tails is accounted for by

providing a modification to the magnitude of the PDF. In order to achieve the proper

moments upon integration, for the range of 0 < η < 1 the PDF now takes the form

PT =
G(η)∫ 1

0
G(η)dη

, (3.37)

in which G(η) follows the normal distribution, i.e.

G(η) =
1

σg
√
2π

exp

(
−(η − ξg)

2

2σ2
g

)
. (3.38)
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The distribution of PT is valid for mixed fluid, i.e. η 6= 0 and η 6= 1, in which ξg and

σg represent the mean and variance, respectively. Although Eq. 3.38 provides proper

closure upon integration between 0 and 1, it does not provide a representation of unmixed

fluid. This is accomplished via the use of Dirac delta functions, δ(η), placed at the two

limits, representing pure fuel and pure oxidiser. The delta functions evaluate to 1 when the

argument is equal to 0, and 1 everywhere else. The strength of these two delta functions,

α1 and α2, is governed by the intermittency of the flow, or the likelihood that unmixed

fluid parcels will be present in a given location. These functions become strongest near the

fuel inlet and far downstream, but are otherwise relatively small. When combined with

PT , the equation for the PDF now becomes

P (η) = α1δ(η) + (1− α1 − α2)PT (η) + α2δ(1− η). (3.39)

In this formulation, the strength of the delta functions is related to the area under the tail

that is clipped from the PDF. Further information on the formulation of this PDF can be

found in [25].

The clipped Gaussian PDF has the distinct advantage of being easy and computa-

tionally inexpensive to implement; however, discontinuities at the limits of η-space can

potentially lead to some unphysical behaviour.

β-PDF

The β-PDF is one of the most commonly used presumed form PDFs in CMC modelling.

Girimaji [26] showed that the β form PDF characterises the evolution of P̃ (η) accurately,

a finding which is supported by the DNS results of Givi et al. [27], Eswaran et al. [28] and

Swaminathan et al. [29]. It has been included in a wide range of studies and flow types

[10, 11, 30, 31, 32, 33, 34, 35, 36].

The Favre-averaged β-PDF is given by the expression

P̃ (η) =
ηα−1(1− η)β−1

Ib
with Ib =

∫ 1

0

ηα−1(1− η)β−1dη. (3.40)

The distribution, shown as a function of η, is characterised by the two parameters α and

β. These parameters are calculated directly from the flowfield using the mean mixture
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fraction, ξ̃ and the mean mixture fraction variance, ξ̃ ′′2, using the definitions

α = ξ̃

(
ξ̃(1− ξ̃)

ξ̃ ′′2
− 1

)
, (3.41)

and

β = (1− ξ̃)

(
ξ̃(1− ξ̃)

ξ̃ ′′2
− 1

)
. (3.42)

The result of Eq. 3.40, Eq. 3.41 and Eq. 3.42 is a smooth PDF, which provides asymptotic

behaviour near the limits of η = 0 and η = 1 instead of using discontinuous delta functions

as in the clipped Gaussian PDF. The β-PDF provides an improvement in the representa-

tion of the PDF scalar over the range of valid η values, but at an increased computational

cost when compared to the clipped Gaussian PDF.

3.5 Conditional Scalar Dissipation Rate

Proper modelling of the conditional scalar dissipation rate, 〈χ | η〉, is the primary focus

of this study. Many different models with differing assumptions have been suggested for

providing closure for this term, ranging from constant values for all η, the assumption of

homogeneous turbulence [37, 2] and the assumption of inhomogeneous turbulence [3]. All

models have individual strengths and weaknesses, most of which will be summarised in the

following section.

3.5.1 Mixing Models based on Homogeneous Turbulence

Girimaji’s Model

Girimaji’s mixing model is formulated on the observation that the presumed β-PDF may

be used to accurately characterise the scalar PDF during all stages of two-scalar, constant

density mixing under statistically stationary, homogeneous turbulence [37]. The model is

derived using the homogeneous PDF transport equation as a starting point. This equation
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is integrated twice in η-space, such that an expression may be obtained for the conditional

scalar dissipation rate, yielding

〈χ | η〉 = −2χ
ξ̃(1− ξ̃)

ξ̃ ′′2

J(η)

P̃ (η)
. (3.43)

In Eq. 3.43, χ̃ is the Favre-averaged, unconditional mean scalar dissipation rate, given

previously by Eq. 2.53. The function J(η) represents the integral

J(η) =

∫ η

0

{
ξ̃(ln η′ − J1) + (1− ξ̃) [ln(1− η′)− J2]

}
P̃ (η′)(η − η′) dη′, (3.44)

where

J1 =

∫ 1

0

ln η dη, and J2 =

∫ 1

0

ln(1− η) dη. (3.45)

The derivation of this model is based entirely upon the assumption of statistically station-

ary, homogeneous turbulence, similar to grid generated turbulence. Therefore, Girimaji’s

model should not be applied in shear layers and similar flows as well as flows with highly

inhomogeneous turbulence.

Amplitude Mapping Closure

The Amplitude Mapping Closure model (AMC) is a mixing model that was initially de-

veloped by O’Brien [2]. This model assumes that the conditional scalar dissipation rate,

〈χ | η〉, is always proportional to a function, G(η), that is independent of the mean mixture

fraction ξ̃, and the mean mixture fraction variance, ξ̃ ′′2, such that

〈χ | η〉 = 〈χ | ξ = 0.5〉G(η). (3.46)

The function G(η) is given by

G(η) = exp
{
−2
[
erf−1(2η − 1)2

]}
, (3.47)

where erf−1 is the inverse error function. The error function erf−1(2η − 1)2 is singular

at η = 0 and η = 1, where limx→−1 erf
−1(x) = −∞ and limx→1 erf

−1(x) = ∞. These

singularities are avoided in Eq. 3.47 by use of the exponential function, resulting in
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Figure 3.1: AMC model G(η) distribution

G(0) = G(1) = 0. This curve is symmetrical about its maximum at η = 0.5, as shown in

Fig. 3.1.

In order to obtain proper closure with the value of 〈χ | ξ = 0.5〉, further modelling as-

sumptions are required. This quantity is obtained by the integration of Eq. 3.46 multiplied

by the Favre-averaged PDF, P̃ (η), from 0 ≤ η ≤ 1 such that

〈χ | η〉 =
∫ 1

0
〈χ | η〉P̃ (η)dη

∫ 1

0
G(η)P̃ (η)dη

=
χ̃∫ 1

0
G(η)P̃ (η)dη

, (3.48)

where χ̃ is the Favre-averaged mean scalar dissipation rate, given previously in Eq. 2.53.

3.5.2 Models Based on Inhomogeneous Turbulence

Quite often, the assumption of homogeneous turbulence is not valid, thus negating the

basic assumptions made in Girimaji’s model and the AMC model. In order to provide

a more generally applicable scalar dissipation rate model, Devaud et al. [3] developed a

model on the basic assumption of inhomogeneous turbulence. Due to the assumptions
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made during formulation, this model is appropriate to flows such as autoignition occurring

at low temperatures, where more complete mixing of the fuel is required before ignition

occurs. This model was formulated directly from the probability density function of the

conserved scalar mixture fraction, ξ̃.

The first step in derivation of this model is the double integration of the PDF transport

equation, shown in its original form as

∂〈ρ〉P̃ (η)
∂t

+
∂

∂xi

(
〈ρ〉〈ui | η〉P̃ (η)

)
=

∂2

∂η2

(
1

2
〈ρ〉P̃ (η)〈χ | η〉

)
, (3.49)

where once again, the term 〈ui | η〉 is the conditional velocity. In order to provide closure

for the conditional velocity term, the linear conditional velocity model, shown previously

in Eq. 3.34, is introduced. Following the double integration of Eq. 3.49, the general form

of the inhomogeneous model is obtained, yielding

1

2
P̃ (η)〈χ | η〉 = − 1

〈ρ〉

(
∂〈ρ〉Ĩ1(η)

∂t

)
+

−1

〈ρ〉
∂

∂xi

(
〈ρ〉ũiĨ1(η)

)
+

−1

〈ρ〉

(
〈ρ〉 ũ

′′

i ξ
′′

ξ̃ ′′2
Ĩ2(η)

)
.(3.50)

In this equation, I1 and I2 are integral quantities defined as

Ĩn(η) =

∫ 1

η

(
η0 − η

) (
η0 − ξ̃

)n−1

P̃ (η0)dη0, (3.51)

where n = 1 or n = 2. The boundary conditions for these integrals in η-space are [3]

Ĩ1(0) = ξ̃, Ĩ1(1) = 0, (3.52)

Ĩ2(0) = ξ̃ ′′2, Ĩ2(1) = 0.

In the range of 0 ≤ η ≤ 1, these functions are monotonic with respect to η [3].

Further simplification of Eq. 3.49 is achieved through the use of the gradient diffusion

hypothesis to replace ũ
′′

i ξ
′′ with the substitution

ũ
′′

i ξ
′′ = −DT∇ξ̃. (3.53)

Following simplification, Eq. 3.50 becomes

1

2
P̃ (η)〈χ | η〉 = − 1

〈ρ〉

(
∂〈ρ〉Ĩ1(η)

∂t

)
+

−1

〈ρ〉
∂

∂xi

[
−〈ρ〉ũiĨ1(η) +

〈ρ〉DT Ĩ2(η)

ξ̃ ′′2

∂ξ̃

∂xi

]
. (3.54)
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Rearranging Eq. 3.54 and applying the continuity and transport equations of ξ̃ yields

1

2
P̃ (η)〈χ | η〉 = − ∂

∂t
Ĩ1 (η)

︸ ︷︷ ︸
Term 1

+

[
−ũi

∂Ĩ1 (η)

∂xi

]

︸ ︷︷ ︸
Term 2

+

[
−Dt

∂ξ̃

∂xi

∂

∂xi

(
Ĩ2 (η)

ξ̃ ′′2

)]

︸ ︷︷ ︸
Term 3

(3.55)

+

(
Ĩ2 (η)

ξ̃ ′′2

)[
∂ξ̃

∂t
+ ũi

∂ξ̃

∂xi

]

︸ ︷︷ ︸
Term 4

,

which is in a form that is suitable for discretisation in the CMC code.

Devaud et al. compared the performance of this model based to Girimaji’s model and

DNS results [38] at various positions and found an improvement in predictions. Previous

studies have also used this model with success [11, 39].

3.6 Summary

This chapter presented an overview of the first-order Conditional Moment Closure Model.

Use of the CMC model allows for simulation of combustion with a wide range of chemical

timescales that cannot be accurately modelled using the EBU or laminar flamelet model.

The general form of the species transport equation including all unclosed terms was

presented. Common models for closure of the chemical source term, turbulent flux and

conditional velocity were presented. Two different models for closing the conditional proba-

bility density function were discussed, including the clipped Gaussian PDF and the β-PDF.

Several different models for the conditional scalar dissipation rate, including the inhomo-

geneous model which is the focus of the current study, were introduced.

The following chapter introduces and discusses the steady flame and autoigniting flames

used in this work. Also included are results and observations from previous numerical stud-

ies of these two flames.
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Chapter 4

Previous Experimental and

Numerical Studies

This chapter provides a summary of the two experimental and related numerical studies

used in the current work. The first experimental flame, which consists of a steady H2 jet

in a quiescent unconfined environment, provides a validation case for the current code. In

studying the performance of the CMC calculations in relation to the experimental results,

a baseline of calculation performance is obtained. The findings are applied to the second

case, which is the simulation of a transient autoigniting flame. In this case, a mixture of

H2 and N2 is injected into a turbulent coflow of air. As the fuel and oxidiser mix, chemical

interaction occurs resulting in autoignition of the mixture. The available numerical work

relating to this flame, including studies of chemical mechanisms and full simulations of the

autoigniting flow using various modelling techniques are also covered.

4.1 Steady Flame

The flame chosen to validate the CMC calculations for the first part of the current work

is that studied by Barlow and Carter [40]. This flame consists of a high velocity hydro-

gen jet in an essentially quiescent environment. Although the focus of the Barlow and

Carter study is to evaluate nitric oxide formation, detailed temperature and mixture frac-
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tion results are presented, in conjunction with conditional species mass fractions for the

OH radical. RANS simulations by Barlow et al. provide details about the nitric oxide

predictions yielded by the CMC and PDF combustion models when combined with various

radiation submodels [41].

4.1.1 Experimental Method

In the experimental study [40], a variety of different mixtures of H2 and He for fuel at

various Reynolds numbers were tested. The most complete data are presented for the

case of 100% H2 at a Reynolds number of 10000, so this case is chosen as the baseline for

comparison.

The experimental apparatus consists of a single straight tube used as the burner, with

an inner diameter, d, of 3.75mm and an outer diameter of 4.8mm [40]. The burner veloc-

ity was maintained such that the outlet Re is 10000, which corresponds to approximately

296m/s for pure H2. The stoichiometric mixture fraction, ηst, for this flame is equal to

0.0285. The coflow consisted of pure air maintained at a velocity of approximately 1m/s.

The coflow and burner outlet direction are parallel. In all cases, the experimental apparatus

maintained an unconfined flame, that is, the coflow existed in a free environment without

any external tube or walls to direct, enclose or otherwise influence the flow. Re above 10000

were not tested, as the flame tended towards liftoff conditions as the fuel velocity increased.

4.1.2 Experimental Results

A variety of results for the pure H2 flame are published, including radial temperature and

mixture fraction profiles, measured at L/8, L/4, 3L/8, L/2, 5L/8, 3L/4 and L, where L

represents the visible flame length, equivalent to 180d, or 675mm. Conditional OH values

were also presented at the L/8, 3L/8 and 3L/4 locations

The results for Favre-averaged temperature, mixture fraction and NO mole fraction are

included in Fig. 4.1. In this figure, the jet follows trends typical for a round jet, with

gradual mixing and widening of the jet with increasing axial distance from the inlet.

44



Figure 4.1: Steady mixture fraction, temperature and NO measurements, reproduced from

[40]
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4.1.3 Review of Previous Numerical Simulation

The primary focus of the numerical work by Barlow et al. [41] is the prediction of nitric

oxides and the performance of radiation submodels for simulation of the Barlow and Carter

flame [40]. The Barlow et al. study, which is conducted using a RANS CFD code, includes

detailed results from both the CMC and PDF combustion models. Favre-averaged flowfield

results, as well as detailed results for the conditional concentrations of O, OH , H2O, NO,

and conditional temperature are presented.

Through variation of the k − ǫ model constants, excellent agreement with the flowfield

is achieved. Centreline predictions of ξ̃ and ũ closely match the measured results. The

centreline Favre-averaged temperature results also exhibit excellent agreement with exper-

imental agreement for both the CMC and PDF models, indicating that the chemistry and

radiation calculations are performing well. The predictions of NO are seen to be within

20-30% of experimental measurements.

It is concluded by the authors that there is no clear advantage of using either the CMC

or the PDF combustion model in terms of predicting NO concentrations and radiation.

Both models provide good agreement with experimental results for conditional and Favre-

averaged values.

4.2 Autoigniting Flame

The second part of the present work, relating to the autoignition process, focuses on simu-

lating a single set of experiments, which are performed at ambient pressures with a heated

fuel stream and a coflow heated to varying temperatures. The effect of coflow temperature

is examined and analysed in relation to how the ignition length is affected. The experimen-

tal work performed by Markides and Mastorakos is chosen as the basis for the autoignition

portion of this study [42].

46



4.2.1 Experimental Method

In the experiments by Markides and Mastorakos [42], heated air flows are set up with

temperatures up to 1015K and velocities up to 35m/s. A fuel, which in the experiment

consisted of H2 gas, either pure or diluted with varying amounts of N2 gas, is injected

along the centreline at various temperatures and velocities. The autoignition of this in-

jected fuel is observed by using high speed photography to capture the chemiluminescence

of the hydroxyl, OH , radical which is a precursor to ignition [42].

During the experimentation, a sufficient number of trials are performed such that a sta-

tistical description of the autoignition process could be determined for all temperature and

velocity combinations. This includes an estimate of the autoignition length, Lign, mean

and variance. The values of Lign are presented along with the minimum observed ignition

lengths for selected combinations of coflow temperature and velocity.

4.2.2 Experimental Method

A schematic of the experimental apparatus, reproduced from [42], is shown in Fig. 4.2.

The incoming air is electrically heated by inline heaters. A feedback loop takes the air

Figure 4.2: Experimental apparatus for autoignition, reproduced from [42]
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temperature at the exit of the heater section in order to provide a steady air temperature

at the entrance of the test section. Following the heater, the coflow air passed through a

perforated plate to provide a uniform level of turbulence throughout the flow. The test

section is composed of a vacuum-insulated, jacketed quartz tube. This jacketing allowed

optical access to the test section, but also insulated the airflow enough that any heat losses

to surroundings are negligible. The quartz test section has an inner diameter of 25.0mm

and a total length of 500mm. Air velocities of up to 35m/s are achieved in the test section,

with temperatures as high as 1015K [42].

The fuel nozzle consists of a stainless steel tube, with a 2.25mm internal diameter and

a 0.32mm wall thickness. The exit of the nozzle is situated 63mm downstream of the per-

forated plate in order to allow the turbulence to stabilise. The injection of fuel is situated

coaxially with the test section such that an axisymmetric flow is obtained. The flow rates

for fuel are varied such that the inlet velocity ranged from 20 to 120m/s. Fuel temperatures

between 650K and 930K are used.

The fuel and air flows are carefully controlled by digital mass flow controllers in order

to maintain the maximum level of consistency between experimental conditions. The air

temperatures are measured at several locations along the test section for an non-reacting

flow, and it is determined that the temperature does not typically drop more than 3K per

100mm of the test section due to heat loss.

Markides and Mastorakos report that the flow across the test section is essentially uni-

form in terms of velocity, temperature and turbulence. The turbulence intensity under cold

(ambient) conditions is approximately 12-13%, although an estimation for the turbulence

intensity during operating conditions is not provided.

Temperature errors are estimated to be approximately 10K, or 1% of the coflow tem-

perature, due to a combination of systematic and random error sources [42].

4.2.3 Experimental Results

Although Markides and Mastorakos provide a range of results for different experimental

conditions, the main focus of this study will be on a small subsection that involve equal

fuel and oxidiser flow velocities, i.e. Ufuel = Uair = 26m/s. The fuel composition is held

at a hydrogen mass fraction, YH2
of 0.13, with the remainder of the fuel flow being N2.
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The fuel composition yields a stoichiometric mixture fraction, ηst of 0.184. The fuel inlet

temperature is maintained at 750K. As a result, only the air coflow temperature remains

unspecified, and it is therefore varied over a range of temperatures to capture the autoigni-

tion properties. The resulting set of conditions yields what is referred to as being similar

to a diffusion problem, since the spreading is largely due to turbulence and diffusion as

opposed to advective means [42].

Due to the nature of autoignition, it is difficult to associate an exact time of occurrence

to the event. As the igniting fluid parcel begins to react, chemical reactions begin to take

place, relatively slowly in comparison to a fully burning condition. This reacting parcel

will evolve various species as well as some enthalpy. The difficulty arises when setting a

minimum threshold for either species concentrations or temperature increase, both being

difficult to measure. The method adopted in this study is to observe the chemiluminescence

of the OH radical, which is recorded using high speed photography. Although chemilu-

minescence provides a convenient method of observing autoignition experimentally, the

threshold of chemiluminescence is difficult to represent numerically. Alternative methods

used to signal the autoignition event in numerical studies are discussed further in Section

4.2.4.

The experimentally observed autoignition lengths are provided in Fig. 4.3 [42], which

provides the relevant fuel mass fraction of YOH = 0.13 and velocity of Ufuel = 26m/s.

Although only a narrow range of coflow temperatures are provided, it can be seen that

there is a sharp increase in autoignition length with decreasing fuel temperatures.

The results of this study indicate that there are 4 specific regimes of autoignition

in the flow tested: no ignition, random spots, lifted flame and flashback [42]. The no

ignition regime is characterised by a lack of reaction due to insufficient mixture enthalpy

or high scalar dissipation rates which preclude reaction. The random spots regime con-

sists of small ignition kernels forming downstream from the injector, but are subsequently

convected downstream before the flame is able to propagate to a stable structure. The

lifted flame, which is typically seen with higher fuel velocity, consists of a quasi-steady

flame forming at some distance from the fuel outlet. The flame structure is maintained

at approximately a constant distance due to the balancing of downstream convective and

upstream diffusive heat transfer within the flame structure. The final regime is flashback,

in which the diffusive heat transfer is sufficient that convection is overcome, and a stable

flame becomes attached to the fuel outlet. The boundary between random spots and flash-
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Figure 4.3: Experimental autoignition results, reproduced from Markides and Mastorakos

[42]

back is observed to be sharp, typically occurring within 1-2K [42].

4.2.4 Review of Previous Numerical Simulation

Following the experiments by Markides and Mastorakos [42], there have been several nu-

merical works published to simulate the experiment and provide insight into the chemistry

and mixing interactions that cannot be directly measured. The studies that have been

performed to present cover a variety of numerical investigations, including RANS-CMC

[43], LES-PDF [44, 45], LES-CMC [46, 47], DNS [48] and a detailed investigation of au-

toignition performance of different chemical mechanisms under relevant temperature and

scalar dissipation rate conditions with the CMC model [46, 47].

Although the aforementioned studies cover a wide array of methods and details rele-

vant to the experimental results, each is useful as a basis for comparison with the current

numerical results. Section 4.2.4 through Sec. 4.2.4 provide a review of the general findings

of each study.
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Autoignition Criteria

Before beginning an in-depth review of the results from previous studies, it is important

to discuss the criteria for defining autoignition. Although autoignition is referred to as a

single event, it is the product of a complex interaction between various species within the

chemical mechanism, leading to a chain reaction in which the combustion products are

formed and the Favre-averaged temperatures of the flow increase. This process occurs over

a finite amount of time, and is not instantaneous.

Experimentally, there are limitations to what can be used for detecting autoignition.

Accurate detection of temperature increase can be extremely difficult, due to the short au-

toignition timescales and thermal inertia of measuring devices. Although it is mentioned

that sound can indicate the presence of chemical reaction occurring [42], the chosen method

in this study is to measure the presence of the OH radical through chemiluminescence.

The advantage of using chemiluminescence is that it provides a good representation of

location, and with the aid of high speed cameras and post processing abilities can provide

an accurate measurement of autoignition location and time.

The difficulty arising when analysing numerical results is not with the availability of

flow parameters, which for a given flow can be made available to the user at any loca-

tion and time within the simulation, but rather what is classified as autoignition. If the

presence of the OH radical is used as an indicator, proper criteria must be established

to determine a critical concentration or rate of evolution at which autoignition is deemed

to have occurred. Similarly, if temperature is used as an indicator, it must be established

whether conditional temperature curves or Favre-averaged temperatures are used, and how

large the increase must be.

Two different autoignition criteria have been suggested in previous studies involving

the H2 − O2 reaction mechanism [45, 49]. In [45], the criterion of a temperature increase

of 1% is suggested, while in [49], the criterion of the OH mass fraction reaching a Favre-

averaged value of 2 × 10−4 is proposed. Through investigation by Stanković [46], it is

determined that for the H2 − O2 mechanism under the relevant experimental conditions,

the autoignition predictions are insensitive to the criteria used. In the current study, the

1% Favre-averaged temperature increase criterion of Jones et al. [45] is used.
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Chemical Mechanisms

Due to the complexity of the chemical interactions occurring during combustion, for a given

fuel composition, there are often multiple detailed mechanisms available for use. Each pos-

sible mechanism provides a unique set of sensitivities and characteristics. Although the

mechanisms are validated by the authors to some extent [50, 51, 52, 53, 54], the perfor-

mance of each under various conditions will vary.

Stanković [46] and Stanković et al. [47] have conducted a comprehensive study of the

autoignition characteristics of many of the possible hydrogen-oxygen combustion mecha-

nisms. The mechanisms tested include those by Li et al. [50], Yetter et al. [53], Mueller

et al. [52], O’Conaire et al. [51] and Konnov [54].

The initial characteristic studied is the effect of the the scalar dissipation rate on au-

toignition delay. In effect, these simulations replicate a well stirred reactor for each mixture

fraction value in η-space. From this calculation, it can be determined how long the mini-

mum expected autoignition delay is for a given coflow temperature, scalar dissipation rate

and chemical mechanism.

The method used in the solution of this problem is to reduce Eq. 3.11 to

∂(Qα)

∂t
=

1

2
〈χ|η〉∂

2Qα

∂η2
+

〈ω̇|η〉
〈ρ|η〉 , (4.1)

which is referred to as the 0-dimensional CMC equation [46]. In Eq. 4.1, the spatial terms

are neglected, corresponding to the conditions of a well stirred reactor. This isolates the

effects of the scalar dissipation rate and chemical mechanism, allowing for simple and di-

rect comparison between cases. Solution of this equation provides an estimation of the

autoignition delay time, τign, and the most reactive mixture fraction, ηmr, where chemical

activity peaks in η-space.

It is found that for a coflow temperature of 1030K and a constant χ of 2 s−1, there is a

significant difference in the autoignition delay times predicted by the various mechanisms

although the predictions of ηmr remain fairly consistent for all mechanisms. The value of

ηmr is seen to vary by approximately 12%, while τign varies by approximately 27%. The

longest delay predicted is for the mechanism by Yetter et al. [53], and the shortest for that

by Konnov [54]. The results are summarised in Table 4.2.4.

The effects of scalar dissipation rate on τign are also studied for a fixed coflow tem-

perature. In this portion of the study, the AMC model is applied for the closure of the
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Table 4.1: Autoignition delay with 0-D CMC equation and Tcoflow = 1030K, from [46]

Mechanism τign[ms] ηmr

Yetter et al. [53] 0.302 0.0365

Mueller et al. [52] 0.293 0.0365

Li et al. [50] 0.274 0.0409

O’Conaire et al. [51] 0.276 0.0409

Konnov [54] 0.221 0.0409

scalar dissipation rate term in Eq. 4.1. The maximum value of the scalar dissipation rate

is given as 1
2
〈χ | η = 0.5〉. The results are shown in Fig. 4.4 a) and b) [46]. In Fig. 4.4

a), the coflow temperature is set to 960K. It can be seen that there is a sharp spike in

τign as the value of 〈χ | η = 0.5〉 increases, while in Fig. 4.4 b), there is a more gradual

increase in τign. Please note that in Fig. 4.4, the convention N is used as the conditional

scalar dissipation rate, which follows the conversion of 〈N | η〉 = 1
2
〈χ | η〉. In general, it

is demonstrated that the effect of increasing scalar dissipation rate corresponds to a net

increase in the ignition delay time. At lower temperatures, this effect is more pronounced

due to the reduced impact of the chemical source term in Eq. 4.1 [46].

An additional finding by Stanković is that the value of ηmr increases with increasing

(a) (b)

Figure 4.4: Effects on τign of increasing 1
2
〈χ | η = 0.5〉, reproduced from [46]

coflow temperatures. This result is consistently demonstrated through all of the tested
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mechanisms [46]. The values of ηmr are also seen to become richer as scalar dissipation

rate increases. Due to the dilution of the fuel from the low values of ηmr, the effects of fuel

temperature on autoignition are minimal.

RANS Simulations

The study performed by Patwardhan and Lakshmisha [43] is, at the time of writing, the

only other RANS based CMC study of the Markides and Mastorakos experiment [42]. This

study focused on evaluating the autoignition properties for the equal velocity case, where

Ufuel = Ucoflow = 26m/s. The fuel temperature is held constant at 750K, while the coflow

is varied between 960K and 1020K. The tuning of the flowfield is also investigated by using

a second set of mixing constants, with Cǫ1 = 1.6, Sct = 0.5, and Cχ = 14, from Eq. 2.53.

The AMC mixing model is utilised in this study.

Investigation into the mixing field shows a significant change in the predictions for ξ̃

and ξ̃′′2 when simulating a steady diffusion flame. The modified constants yield a signifi-

cant reduction in ξ̃′′2 near the inlet, and a corresponding increase in the centreline ξ̃ values.

With the code used in [43], this is seen to raise the Favre-averaged centreline temperatures

from a significantly underpredicted 1100K to a peak of 2000K for the steady flame [43].

Autoignition length in this study is slightly overpredicted compared to the experimen-

tal results. At lower coflow temperatures, the autoignition lengths are seen to follow the

trends predicted by the analysis of Stanković [46], with the decreasing coflow temperature

yielding a sharp increase in autoignition length.

As this study is performed on a fully coupled CFD-CMC code, some analysis is pro-

vided regarding post ignition behaviour. In all cases tested, the numerical results are seen

to form an attached diffusion flame. At lower temperatures, i.e. 960K coflow, the flame is

observed to travel a significant distance upstream to form a fully detached flame. This is

contrary to the experimental findings, which show a very distinct ”random spots” regime

at Tcoflow = 960K, where autoignition kernels are convected downstream before a contin-

ued chain reaction is able to form [42]. The cause of this is surmised by the authors to be

a result of the averaging nature of RANS simulations, which tend to suppress small flow

details such as the random ignition kernels.
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LES Simulations

Several different LES studies of the Markides and Mastorakos experiment have been con-

ducted [42]. The first study published is conducted by Jones et al. [44, 45], and investigates

the use of the Lagrangian PDF method, described in Sec. 2.6.3, for autoignition predic-

tions. The second study is that of Stanković [46], in which a fully coupled CMC calculation

is incorporated with LES flowfield calculations. Various aspects of autoignition and mixing

performance are studied, including autoignition length predictions for different flow condi-

tions.

LES PDF Method

Jones et al. [45] numerically replicate the burner used in [42]. In total, 6 different

cases are studied, with 4 cases having Ufuel = Ucoflow = 26m/s, which are the primary

focus of the current study. The fuel temperature is held at a constant temperature of 750K,

while the coflow temperature is varied at 950K, 955K, 960K and 980K [44]. A additional

publication of the study includes results from 1000K and 1020K coflows as well [45]. The

chemistry mechanism used is that of Yetter et al. [53].

It is found that the LES PDF method provides excellent agreement with experimental

results. The autoignition length predictions correspond well with those observed experi-

mentally, as shown in Fig. 4.5. Both the random spots and flashback regimes documented

by Markides and Mastorakos [42] are observed, including the sharp boundary between

regimes [44]. It is also found that the autoignition length and delay before an anchored

flame develops are inversely proportional to coflow temperature, agreeing with the chem-

istry trends shown by Stanković [46]. The random spots regime is also well represented,

with small ignition kernels forming and subsequently being convected downstream before

the flame can propagate and anchor. This is repeated continually, with new kernels form-

ing roughly every 2.5ms and then being convected downstream [44]. The no ignition and

lifted flame regimes are not observed due to the choice of simulation boundary conditions.

LES CMC Method

The study performed by Stanković [46] examines the performance of a fully coupled LES-

CMC code in relation to the experiments of Markides and Mastorakos [42]. In this study,
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Figure 4.5: LES-PDF autoignition length predictions, reproduced from Jones and Navarro-

Martinez [44]

detailed predictions of autoignition lengths and autoignition flow conditions are presented.

Again, the geometry of the experimental apparatus is modelled numerically, and several

cases with varying velocity and coflow temperature are presented. Fuel inlet velocity ranges

from 110-130m/s, with the coflow velocity ranging from 20-35m/s. Fuel temperatures are

held constant at 691K, and coflow temperatures of 935K, 945K, 960K, 980K and 1009K

are used.

The results published for autoignition length show good agreement with the experi-

mental trends predicted, with a sharp increase in autoignition length seen at lower coflow

temperatures. However, in order to obtain good agreement with the length predictions,

it is found that the ignition lengths required a 60K shift in the positive direction relative

to coflow temperature [46]. This is illustrated in Fig. 4.6, which is shown after the 60K

shift is applied. The most consistent performance is achieved using the mechanism of Li

et al. [50], which successfully demonstrates the 4 experimental regimes seen by Markides

and Mastorakos [42], i.e. no ignition, random spots, lifted flame and flashback. This is

achieved through variation of the fuel and coflow temperatures and velocities. In addition

to this, detailed results of the conditional values of the different terms in Eq. 3.11 are

presented for several locations in the flow.

In this study it is found that CMC model is able to accurately predict the chemical

activity seen experimentally, albeit with an underprediction of ignition length. The 4 ex-

perimental regimes observed by Markides and Mastorakos [42] are reproduced numerically
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Figure 4.6: LES-CMC autoignition length predictions, reproduced from Stanković [46]

by varying coflow velocity and temperature; however, this performance is dependent on the

chemical mechanism used. The transient nature of the random spots regime is observed

with small ignition kernels forming and subsequently being convected downstream before

flame propagation is able to occur.

DNS Study

To date, a single DNS study has been reported for the autoignition experiment used in

this study [42]. This study, performed by Kerkmeier at ETH in Zurich [48], investigates

the performance of a DNS code in both 2-Dimensional and 3-Dimensional autoignition

simulations.

In the 2-Dimensional axisymmetric simulations, the entire experimental domain is in-

cluded in the simulation. In these simulations, all of the experimental regimes observed,

no ignition, random spots, flashback and lifted flame, were produced by varying the coflow

temperature [48].

In order to minimise computational expense, the 3-Dimensional DNS study is per-

formed on a reduced domain, in which the height and radius of the domain are decreased

to the area of interest near the fuel inlet. In the 3-Dimensional simulation, the random

57



spots regime is simulated, with autoignition kernels forming, then being convected down-

stream before the flame is able to propagate and form a stable flame structure. Due to

the computational requirements, the scope of the 3-Dimensional study is mainly limited

to simulation of the flowfield and turbulence characteristics. It is found that the mixture

fraction predictions are in good agreement with the distribution predicted by the β-PDF,

while the scalar dissipation rate follows a log-normal distribution.

4.3 Summary

This chapter presented the previous experimental and numerical work used as a basis for

the current work. The first experimental work presented is of a steady state flame, used

for initial validation of the numerical code. This study provides detailed results about the

flowfield as well as some conditional values used used for validation of the CMC calcu-

lations. A numerical simulation performed by Barlow et al. on the same flame provides

evidence that the CMC model, when properly tuned to the flowfield, can provide excellent

correlation with experimental measurements. The second experimental work presented

is for an autoigniting flame. This flame, although the flowfield is not well documented,

provides an excellent basis for comparison of autoignition predictions. Several detailed nu-

merical studies, including RANS, LES and DNS simulations, are available for comparison.

It is seen that there is some difference in ability of the various modelling techniques to

predict the various experimental regimes, i.e. no ignition, random spots, lifted flame and

flashback. The LES and DNS studies show the ability to successfully predict the random

spots regime, while the RANS study is unable to simulate this experimental regime.

The following chapter discusses the numerical implementation of the equations pre-

sented in this chapter. The CMC transport equations are discussed with the finite volume

(FV) discretisation scheme. Additionally, solver methods and procedures for the non-linear

ODE’s in the chemical mechanism are presented.

58



Chapter 5

Numerical Implementation of

Conditional Moment Closure

Although many of the problems in fluid mechanics can be posed in terms of general ordi-

nary differential equations (ODE) or partial differential equations (PDE), in many cases,

solving these equations requires an efficient and accurate numerical implementation. The

numerical solution of these ODE’s and PDE’s forms the basic framework of CFD as well

as the basis for additional submodels, such as CMC. Implementation of these submodels

has been completed in many academic and commercial CFD codes. A number of different

numerical implementation topics will be explored in this chapter, including the general

structure of the computational code used in the current work, the present implementation

of CMC calculations, the coupling of the CFD and CMC calculations, as well as solver

methods and algorithms. Additionally, several strategies to improve the computational

efficiency of the calculations are introduced. The effectiveness, ease of use and reliability

of each of these efficiency strategies will be discussed.

5.1 Code Structure

The first step taken in examining the computational code used in this study is to provide

a general outline of the calculation structure. The structure of the code is pivotal in main-
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taining accurate and efficient calculations. A flow chart is used to provide an overview

of this structure, and each of the following subsections discusses the implementation and

effects of various features. The flow chart of this general structure is shown below in Fig.

5.1.

The code begins by reading the input file and initialising variables. All of the boundary

conditions, flow parameters and different settings used in the code, including the chemical

mechanism, are specified in this input file. Following this, all of the variables required for

calculation are either initialised, calculated (if dependent on other variables), or read in

from a previously saved file.

The save file feature of the code is extremely useful for initialising or backing up the

run. The saved files are output at a user specified interval, typically every 5 or 10 timesteps

or as required by the user for processing results, and allow the code to be entirely restarted

from that exact point. Using these saved points is also extremely useful in initialising a

flowfield prior to turning on the fuel inlet, i.e. allowing the velocity and temperature of a

coflow to fully stabilise under given flow conditions prior to adding a fuel mass flow.

The iteration loop, which forms the bulk of the code, begins by storing all variable val-

ues in a separate group of arrays for use in time derivative calculations. Only one previous

timestep is stored, meaning only first order backwards-differencing methods are used for

time derivative calculations. When required, individual variables needed for each species,

such as heat capacity, cpi, or species enthalpy, hi, are combined using a mass weighted sum

in order to provide mean values for the flowfield calculations.

The flowfield calculations are carried out in a very typical fashion for unsteady RANS

simulations. In this case, the chemical interactions are assumed to be frozen throughout

the bulk of the timestep when the CFD calculations are performed, later calculated and

updated at the end of each timestep calculation using CMC methods. This allows for a

full isolation and control of each of the CFD and CMC portions of the calculation, but

retains the interactions required for the calculations to be fully coupled.

The differencing scheme used in the CFD calculations follows the hybrid method de-

veloped by Patankar [55]. The hybrid method uses the Peclet number stability criterion

to modify the discretisation scheme used, alternating between the Upwind Differencing

Scheme (UDS) and the Central Differencing Scheme (CDS). The hybrid method provides

the inherent stability of first order UDS, while providing a slight increase in accuracy with

the provision of second order CDS where appropriate. Further details on this method and
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Figure 5.1: Flow chart of code structure
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its formulation can be found in [55]. Solution of the linked pressure-velocity equations

is accomplished through the use of the SIMPLER algorithm. The SIMPLER algorithm,

which stands for Semi-Implicit Method for Pressure Linked Equations - Revised, is a guess

and correct iterative method used for solving the coupled pressure and velocity equations,

which, for stability reasons are calculated on staggered grids. This method was initially

developed by Spalding [56] and further details of its implementation can be found in many

CFD texts [6, 55]. This solution methodology is very typical of RANS simulations [6].

The turbulence model used in flowfield calculations follows the standard k − ǫ model.

This model, which is one of the most common turbulence models used in RANS type sim-

ulations, is employed with a standard implementation, as outlined in Sec. 2.3.1. The user

may specify the model coefficients used in Eq. 2.30, such as Cǫ1 or Cǫ2, in the input file to

match the flow to given results.

Following the calculation of the flowfield, which is iterated such that the mass and ve-

locity residuals fall below 10−4, the CMC calculations proceed at the end of the timestep.

Due to the nature of the stiff ODE’s involved in the chemical mechanism, the computa-

tional time required at this stage dominates the total calculation time. The stiff ODE’s

are solved using a numerical algorithm developed specifically for the problem of solving

this type of chemical interaction. This solver, known as the Variable coefficient Ordinary

Differential Equation (VODE) [57] solver is used exclusively for the CMC calculations.

Further details of this solver, as well as the relevant discretisation methods, will be further

discussed in the Sec. 5.2.

5.1.1 Coupling of CFD and CMC

Some studies of autoignition using uncoupled CMC calculations have been completed [30,

39, 58]. The advantage to performing uncoupled calculations is that the flowfield and

CMC calculations may be performed independently from one another, i.e. the density

and chemical changes are small relative to the fluctuations in the flowfield. This allows an

extensively validated commercial CFD package to calculate the flowfield, while a standalone

code performs the CMC calculations based on the CFD output. The assumption used in

the uncoupled method, known as the frozen mixing assumption, becomes invalid at the

point of ignition when the temperature, density and changes in chemistry become large

and subsequently influence the flowfield. The drawback to this method is that it is only
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applicable prior to the onset of ignition and is not suitable for the simulation of flame

location and structure.

In order to overcome the frozen mixing assumption, feedback must be provided to the

CFD calculations. This is done in the form of mixture enthalpy, which reflects the chemical

changes occurring and resultant mixture temperature. Following the completion of every

CMC calculation, the conditional temperatures for the constituent species in the mixture

are calculated by use of the following relation

h = a0 + a1T + a2T
2. (5.1)

The resulting conditional temperatures and the conditional enthalpies are Favre-averaged

in order to return suitable feedback for the CFD calculations. This change in enthalpy

results in a corresponding density and temperature change which effect changes in the

flowfield. This iteration method of solving for the flowfield, performing CMC calculations,

then advancing the timestep with the new density and enthalpy values is repeated until

the desired simulation time is reached.

5.1.2 Finite Volume Method

In many previous implementations of CMC, the conditional species transport equation,

Eq. 3.4, is shown in non-conservative form using a Finite Difference (FD) discretisation

[10, 11, 39, 58]. Although these studies show the finite difference discretisation to be ade-

quate for use, a potential improvement in continuity and conservativeness can be realised

by the use of a Finite Volume (FV) discretisation. The use of the FV discretisation allows

the conditional species transport equation to be valid through variations of grid spacing,

which is an area that the FD assumptions lose validity.

In the present CMC implementation, the conditional species transport equation is dis-

cretised on a structured, hexahedral mesh. The directions are designated as e, east in the

positive axial direction, w, west in the negative axial direction, n, north in the positive

radial direction and s, south in the negative radial direction. The up and down conventions

are not used as this discretisation is used strictly in the 2-D axisymmetric case. The p

subscript denotes values at the centre of the computational cell of interest. Upper case

subscripts refer to values at adjacent nodes, while lower case subscripts refer to values
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at boundaries, typically velocities, which are required due to the staggered grid. When

considering values in mixture fraction, or η-space, the + subscript refers to values at the

positive boundary, ++ refers to values at the positive cell centre, − subscripts refer to

values at the negative boundary and −− subscripts refer to values at the negative cell

centre. This is shown schematically for spatial coordinates in Fig. 5.2.

As an initial step, the conditional species transport equation, Eq. 3.4, must be given

Figure 5.2: Schematic of computational grid, reproduced from [59]

in a form suitable for FV discretisation. That is, the conservative form of the equation

must be used as a starting point. Through manipulation of Eq. 3.4, it can be shown that

the conservative form of the conditional species transport equation is given by

∂

∂x

[
γuηQi − γDt

∂Qi

∂x

]
+

1

r

∂

∂r
r

[
γvηQi − γDt

∂Qi

∂r

]
= (5.2)

γ〈ωi | η〉+ γ
1

2
〈χ | η〉∂

2Qi

∂η2
+Qi

[
∂

∂x
(γun) +

1

r

∂

∂
r(γvηr)

]
.

The substitution γ = ρηP (η) = 〈ρ〉P̃ (η) is used in this equation. This equation is valid for

the quasi 2-D axisymmetric case. Planar 2-D or 3-D cases require a different formulation

of this transport equation accounting for use of an alternate coordinate system.

The conditional species transport equation is discretised by integrating the advective

and diffusive terms across the cell boundaries. By integration of Eq. 5.2 and using Gauss’
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Divergence Theorem, Eq. 5.2 becomes
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In this equation, the volume and area terms are calculated by

V = r dx dr, (5.4)

Ae = Aw = r dr,

An = rn dx,

As = rs dx.

Due to the differencing methods used during the solution of the ODE’s, some variable

values are required at the midpoint of each face. These are typically scalar fluid properties,

such as density and diffusivity, which are determined through linear interpolation methods.

Due to the differences in advective and diffusive terms, different methods are used for each

of the preceding situations. As an example, Eq. 5.5 demonstrates how this interpolation

is conducted at the east face. This yields

γeAe (uηQi)e ≈ γeAeUη,e (feQi,E + (1− fe)Qi,P ) , (5.5)

where fe represents the linear distance factor due to the cell spacing, subsequently providing

the approximation of Qi,e from the known values of Qi,P and Qi,E. In a similar fashion,

the diffusive term is calculated at the cell face by the central differencing equation

−γeAe
(
Dt

∂Qi

∂x

)

e

≈ −γeAe
(
Dt

∆x

)

e

(Qi,E −Qi,P ) . (5.6)

The spacing, ∆x is determined by

∆x = xE − xP (5.7)
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In order to facilitate the numerical implementation of Eq. 5.3, each term is divided by

V , such that

γe
γP

Ae
V

(
uηQi −Dt

∂Qi

∂x

)

e

− γw
γP

Aw
V

(
uηQi −Dt

∂Qi

∂x

)

w

+ (5.8)

γn
γP

An
V

(
vηQi −Dt

∂Qi

∂r

)

n

− γs
γP

As
V

(
vηQi −Dt

∂Qi

∂r

)

s

−

Qi

γV

[
γe
γP

(uηA)e −
γw
γP

(uηA)w +
γn
γP

(uηA)n −
γs
γP

(uηA)s

]
=

〈ωi | η〉+
1

2

〈χ | η〉
∆η

[(
∂Qi

∂η

)

+

−
(
∂Qi

∂η

)

−

]
.

Further, by defining the coefficients

ae =
γe
γP

Ae
V

(
−fuη +

Dt

∆x

)

e

, aw =
γw
γP

Aw
V

(
−fuη +

Dt

∆x

)

w

, (5.9)

an =
γn
γP

An
V

(
−fvη +

Dt

∆x

)

n

, as =
γs
γP

As
V

(
−fvη +

Dt

∆s

)

s

,

a+ =
〈χ | η〉
∆η∆η+

, a− =
〈χ | η〉
∆η∆η−

,

and also by defining specific mass flows across each of the faces as

Fe =
(γAuη)e
γV

, Fw =
(γAuη)w
γV

(5.10)

Fn =
(γAvη)n
γV

, Fs =
(γAvη)s
γV

,

substitution of Eq. 5.9 and Eq. 5.10 into Eq. 5.8 yields

(ae (Qi −Qi,E) + FeQi)− (aw (Qi −Qi,W ) + FwQi) (5.11)

+ (an (Qi −Qi,N) + FnQi)− (as (Qi −Qi,S) + FsQi)

= ωη,i + (a+ (Qi,++ −Qi)− a− (Qi −Qi,−−)) +Qi (Fe − Fw + Fn − Fs) .

Eq. 5.11 represents the final discretised form of 5.3. Further rearrangement of this equation

for Qi yields

Qi =
ωη,i +

∑
akQi,K

aP
(5.12)
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where k represents all boundaries (i.e. e, w, n, s, u, d, etc.) of a given node, K, and

aP =
∑
ak. This equation must be solved for all species, locations in physical space and

locations in η space. The resulting size of the system of equations, combined with the

inherent stiffness of the ODE’s, necessitates a significant computational effort for solution.

5.2 Solution of Ordinary Differential Equations

Due to the nature of chemical interactions, specifically those used in modelling turbulent

combustion and autoignition problems, a robust solver is required that is capable of deal-

ing with large changes in chemical species over an extremely small time. These chemical

interactions are known as stiff ODE’s. The term stiff refers to the inherent instability in

the equation, necessitating the use of a specialised solver and an extremely small time

step during solution. Several different solvers have been created and used with various

stiff chemistry interactions, such as LSODE [57], GEAR [60] and VODE [57]. Each of

these solvers was developed at or in conjunction with the Lawrence Livermore National

Laboratory with the intent of solving the stiff ODE’s with minimal computational cost.

In the case of CMC, such a solver is required to capture the chemical interactions oc-

curring within the CMC equations. Through testing and user feedback, it was determined

that GEAR was unable to deal with sharp time variations present in some chemical mech-

anisms, which lead to the development of a more robust methodology [57]. The new solver

produced through this work at the Lawrence Livermore Laboratory is the LSODE solver.

Further development by the creators of the LSODE solver yielded significant improvements

in terms of computational efficiency and reduction of computational resources required for

a given problem. This revised solver is the version of VODE implemented in the CMC code

used in this study. Further details of both the solver and its implementation are discussed

in the Sec. 5.2.1 and Sec. 5.2.2, respectively.

5.2.1 VODE Solver

The Variable coefficient Ordinary Differential Equation (VODE) solver is chosen as the

primary solver used in the current study for the solution of stiff ODE’s occurring in the
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CMC equations. VODE offers an increase in numerical stability and computational effi-

ciency over other available solvers, such as GEAR and LSODE, respectively [57]. Through

benchmarking studies conducted by the Lawrence Livermore Laboratory, it was determined

that the improvements over LSODE could be up to 49%.

In order to provide a brief outline of the methodology of VODE, the following summary

is provided. Further details on the structure and operation of VODE may be found in [57].

The initial step in solving the stiff chemical source term is to write the initial value

problem, using

Ẏ = f(t, Y (t)), Y (t0) = Y0. (5.13)

The basic linear multistep formulation for the chemical source term (stiff and non-stiff) is

given by
κ1∑

i=0

αn,iYn−i + hn

κ2∑

i=0

βn,iẎn−i = 0. (5.14)

The variables κ1,2, αn,i, βn,i are calculated based on the stiffness of the problem as well

as the results of the current and past timestep values in order to adapt to the solution at

hand [57].

For the solution of these formulas, VODE uses a modified direct Newton iterative

method. At the conclusion of the calculation for each timestep, the timestep size is modi-

fied to suit the kinetics. The solver continues in this fashion until the desired cumulative

timestep or the maximum number of internal iterations are reached. The chemistry rate

information is then returned to the CMC code.

The chemistry rate information provides the required details on the evolution of the

various chemical species involved over a single timestep. These values are used in the CFD

calculations to modify the flowfield for the following timestep.

5.2.2 Implementation of VODE Solver

As the VODE solver is required for the solution of stiff ODE’s, it is called upon during

the solution of the chemical source term equation. Specifically, the CMC code requires a

solution of the equation

∂Qα

∂t
=

1

2
{〈χ | η〉}∂

2Q

∂η2
+

〈ω̇ | η〉
〈ρ | η〉 . (5.15)
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The solution of the chemical source term allows the CMC calculations to proceed with

a revised mass fraction for each species, subsequently allowing for the calculation of all

conditional species mass fractions, as well as Favre-averaged density and temperature.

Competition between the mixing term, 1
2
{〈χ | η〉}∂2Q

∂η2
, and the chemical source term, 〈ω̇|η〉

〈ρ|η〉
,

affect the overall rate of species evolution in Eq. 5.15.

The user interface of the VODE solver allows specification of the overall (CFD and

CMC) timestep of the solution, which is broken up into a number of internal timesteps

within the solver. The overall timestep employed in the current work on autoignition is

1.0 × 10−6s. The VODE internal timesteps are limited to a maximum of 1000 per overall

timestep, with a user specified internal solution relative tolerance of 10−5 and an absolute

tolerance of 10−20.

5.3 Chemical Mechanism

The hydrogen-oxygen chemical mechanism has been the focus of many studies, and various

mechanisms have been published in order to provide some insight into the workings of this

interaction. The kinetics proposed by Li et al. [50], O’Conaire et al. [51], Mueller et al.

[52], Yetter et al. [53] and Konnov [54] all provide relevant mechanisms of varying levels

of complexity with differing reaction steps and rate constants. In an effort to maintain

continuity with the autoignition studies used in Ch. 7, the mechanism proposed by Yetter

et al. [53] is chosen for both the validation study, Ch. 6, and the autoignition study, Ch.

7 in the present work.

In its original form, the mechanism proposed by Yetter et al. [53] is presented in Table

5.1. In this table, only the forward reaction coefficients are given for each reaction step,

and it is stated that the reverse rate constants are to be computed from the forward rate

constants and the equilibrium constants [53].

As the present computational code only accepts forward reactions, each of the reactions

steps specified in Table 5.1 must be split into forward and reverse reactions with separate

coefficients. Each of the forward and reverse reaction equations is seen as a separate and

independent step by the code, with the net rate being equal to the sum of the forward and

reverse rates. CHEMKIN, a chemical kinetics solver, is used to calculate the reverse rate

coefficients from the information provided.
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Table 5.1: H2-O2 reaction mechanism - forward reaction constants

Step Af nf Eaf

H2-O2 Chain Reactions

1 H +O2 = OH +O 1.91× 1014 0.0 16440

2 H2 +O = H +OH 5.08× 104 2.67 6290

3 OH +H2 = H2O +H 2.16× 108 1.51 3430

4 H2O +O = OH +OH 2.02× 1014 2.02 13400

H2-O2 Dissociation/Recombination Reactions

5 H2 +N2 = H +H +N2 4.58× 1019 -1.4 104380

6 O +O +N2 = O2 +N2 6.16× 1015 -0.5 0.0

7 O +H +N2 = OH +N2 4.71× 1018 -1.0 0.00

8 H +OH +N2 = H2O +N2 2.21× 1022 -2.0 0.0

Formation and Consumption of HO2

9 H +O2 +N2 = HO2 +N2 3.5× 1016 -0.41 -1120

10 HO2 +H = H2 +O2 1.66× 1013 0.0 820

11 HO2 +H = OH +OH 7.08× 1013 0.0 300

12 HO2 +O = OH +O2 3.25× 1013 0.0 0.0

13 HO2 +OH = H2O +O2 2.89× 1013 0.0 -500

Formation and Consumption of H2O2

14 HO2 +HO2 = H2O2 +O2 4.2× 1014 0.0 11980

14b HO2 +HO2 = H2O2 +O2 1.3× 1011 0.0 -1630

15 H2O2 +N2 = OH +OH +N2 1.2× 1017 0.0 45500

16 H2O2 = H2O +OH 2.41× 1013 0.0 3970

17 H2O2 +H = H2 +HO2 4.82× 1013 0.0 7950

18 H2O2 +O = OH +HO2 9.55× 106 0.0 3970

19 H2O2 +OH = H2OHO2 1.00× 1012 0.0 0.0

19b H2O2 +OH = H2OHO2 5.80× 1014 0.0 9560
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The reaction rates follow the Arrhenius rate law, given as [61]

k = AT nexp

(−Ea
RT

)
. (5.16)

This expression is valid for both the forward and reverse reaction directions. In Eq. 5.16,

the rate constant, k, is calculated using the pre-exponential factor, A, the temperature

expressed in kelvin, T , the temperature dependence exponent, n, the activation energy, Ea

and the universal gas constant, R. These rate coefficients, defined as kfi and kri for the

forward and reverse directions, respectively, can be combined to determine the equilibrium

constant for reaction step i, KCi
, using the equation

KCi
=
kfi
kri
. (5.17)

The equilibrium constant, KCi
, is calculated in CHEMKIN by [62]

KCi
= KPi

(
Patm
RT

)∑K
k=1

νki

, (5.18)

with K representing the number of chemical species involved in reaction step i, and νki
representing the sum of the species coefficients in the stoichiometric reaction step equation.

The values of the constants KPi
are determined with the relationship

KPi
= exp

(
∆S0

i

R
− ∆H0

i

RT

)
, (5.19)

where ∆S0
i and ∆H0

i are the change in entropy and change in enthalpy in reaction i,

respectively. These values are calculated via the thermophysical data input into CHEMKIN

[62].

The forward and reverse activation energies, E
(f)
a and E

(r)
a , are related by the expression

[61]

E(f)
a − E(r)

a = Uproducts − Ureactants. (5.20)

Therefore, using the thermophysical data in conjunction with the forward activation en-

ergy, the reverse activation energy can be directly obtained.

Following the calculation of kfi and KCi
, Eq. 5.17 is used to determine the reverse rate

constant. This is combined with E
(r)
a in Eq. 5.16 to calculate Ar. These steps are repeated
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for all of the individual reaction steps until the entire mechanism is fully defined. For the

purposes of the calculation, it is assumed that the temperature dependence exponent, n,

is independent of reaction direction [61].

This mechanism, as used in the current code is detailed in Tables 5.2 and 5.3. It should

be noted that all relevant third body collisions occur using the N2 molecule, as other typ-

ical third body species, such as Ar, are not included in the simulation. This is done since

the influence of Ar and other minor constituents acting as third bodies is negligible in

comparison to the effects of N2, and does not justify the increase in computational expense

of adding another chemical species to the calculations.

Once the mechanism is fully defined, the output results in the present code are vali-

dated against CHEMKIN rate results under fixed conditions to ensure proper functionality.

5.4 Optimisation of CMC calculations

As mentioned in the introduction of Ch. 5, the computational expense of CMC calculations

has the potential to be a major portion of the total calculation time. This problem is com-

pounded when adding additional species to the mechanism, or additional refinements in

η-space. Although the base calculations have not been modified to yield improved perfor-

mance, two distinct strategies are presented which reduce the overall number of calculations

required per iteration. Employing either of these strategies has the potential for significant

reductions in computational expense, but other problems, such as instabilities and grid

dependence may become significant if the proper care is not taken with implementation.

5.4.1 Dynamic CMC Grid

CMC calculations are very time consuming in comparison to the CFD calculations due to

the complexity of the models and the solvers required. Any reduction in the effort required

to solve these equations will therefore offer a noticeable improvement in the computational

efficiency and usability of the code. Additionally, the CMC calculation grid must be set

up to completely encompass the desired physical location of reaction, which is not always
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Table 5.2: H2-O2 reaction mechanism - steps 1 - 13

Step Af nf Eaf

H2-O2 Chain Reactions

1-F H +O2 → OH +O 1.91× 1014 0.0 16440

1-R OH +O → H +O2 1.13× 1013 0.0 -330

2-F H2 +O → H +OH 5.08× 104 2.67 6290

2-R H +OH → H2 +O 2.23× 104 2.67 4440

3-F OH +H2 → H2O +H 2.16× 108 1.51 3430

3-R H2O +H → OH +H2 9.95× 108 1.51 18440

4-F H2O +O → OH +OH 2.02× 1014 2.02 13400

4-R OH +OH → H2O +O 2.02× 1014 2.02 -3480

H2-O2 Dissociation/Recombination Reactions

5-F H2 +N2 → H +H +N2 4.58× 1019 -1.4 104380

5-R H +H +N2 → H2 +N2 1.18× 1019 -1.4 180

6-F O +O +N2 → O2 +N2 6.16× 1015 -0.5 0.0

6-R O2 +N2 → O +O +N2 1.86× 1017 -0.5 119100

7-F O +H +N2 → OH +N2 4.71× 1018 -1.0 0.00

7-R OH +N2 → O +H +N2 8.35× 1018 -1.0 102300

8-F H +OH +N2 → H2O +N2 2.21× 1022 -2.0 0.0

8-R H2O +N2 → H +OH +N2 3.75× 1023 -2.0 119100

Formation and Consumption of HO2

9-F H +O2 +N2 → HO2 +N2 3.5× 1016 -0.41 -1120

9-R HO2 +N2 → H +O2 +N2 4.95× 1016 -0.41 47980

10-F HO2 +H → H2 +O2 1.66× 1013 0.0 820

10-R H2 +O2 → HO2 +H 4.55× 1013 0.0 55920

11-F HO2 +H → OH +OH 7.08× 1013 0.0 300

11-R OH +OH → HO2 +H 5.32× 1012 0.0 36770

12-F HO2 +O → OH +O2 3.25× 1013 0.0 0.0

12-R OH +O2 → HO2 +O 2.97× 1013 0.0 52230

13-F HO2 +OH → H2O +O2 2.89× 1013 0.0 -500

13-R H2O +O2 → HO2 +OH 3.48× 1014 0.0 69610
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Table 5.3: H2-O2 reaction mechanism - steps 13 - 19

Step Af nf Eaf

Formation and Consumption of H2O2

14-F HO2 +HO2 → H2O2 +O2 4.2× 1014 0.0 11980

14-R H2O2 +O2 → HO2 +HO2 3.24× 1015 0.0 50510

14b-F HO2 +HO2 → H2O2 +O2 1.3× 1011 0.0 -1630

14b-R H2O2 +O2 → HO2 +HO2 1.00× 1012 0.0 36900

15-F H2O2 +N2 → OH +OH +N2 1.2× 1017 0.0 45500

15-R OH +OH +N2 → H2O2 +N2 8.31× 1014 0.0 -5640

16-F H2O2 → H2O +OH 2.41× 1013 0.0 3970

16-R H2O +OH → H2O2 2.83× 1012 0.0 72020

17-F H2O2 +H → H2 +HO2 4.82× 1013 0.0 7950

17-R H2 +HO2 → H2O2 +H 1.71× 1013 0.0 24520

18-F H2O2 +O → OH +HO2 9.55× 106 0.0 3970

18-R OH +HO2 → H2O2 +O 1.57× 106 0.0 18670

19-F H2O2 +OH → H2OHO2 1.00× 1012 0.0 0.0

19-R H2O +HO2 → H2O2 +OH 1.56× 1012 0.0 31580

19b-F H2O2 +OH → H2OHO2 5.80× 1014 0.0 9560

19b-R H2O +HO2 → H2O2 +OH 9.05× 1014 0.0 41140
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known beforehand. In order to combat these drawbacks, a dynamic CMC grid is used to

provide a significant increase in the efficiency of calculations.

The dynamic grid is formulated on the assumption that relevant chemical reaction will

not occur outside a given range of ξ̃ values, such that

ηmin ≤ ξ̃ ≤ ηmax. (5.21)

The lower and upper bounds, ηmin and ηmax, respectively, are chosen such that the range

encompasses any potentially reactive mixture fractions. When the value of ξ̃ falls out of the

range defined in Eq. 5.21, the CMC node is effectively turned off, and no calculations are

performed at this location. An adjustable hysteresis value is set to limit boundary nodes

turning on and off with slight fluctuations in ξ̃ between subsequent timesteps. For example,

at low mixture fraction values, a cell will become active at a slightly higher mean value

than ηmin, and in order for it to become inactive, the mean value must fall to a slightly

lower mean value than ηmin. A zero flux boundary is set for all of the CMC boundaries.

The active nodes are updated at user specified time intervals.

The effects of the dynamic CMC grid are extremely noticeable at the early times of

simulation and when there is very little fuel present in the domain, and in situations where

there is no advanced knowledge of when or where chemical reaction may occur, such as

with autoignition. This effect is demonstrated in Fig. 5.3, which is taken from an au-

toignition simulation. In Fig. 5.3 a), the black area represents the active CMC nodes

at an early timestep of τ = 0.500ms with approximately 10% of the CMC nodes active,

while Fig. 5.3 b) represents the active CMC nodes at a later timestep of τ = 2.000ms,

with approximately 50% of the CMC nodes active. As it can be quite clearly seen from

Fig. 5.3, there is a significant difference in the number of cells included in the calculation.

This allows specification of a large initial CMC domain without the associated increase in

computational cost.

Provided ηmin and ηmax are selected such that combustion does not occur at any of

the CMC boundaries, there is no affect on the accuracy of the results.

Although the exact computational time savings are highly dependent on the flow pa-

rameters and area of simulation, the additional flexibility and usability afforded by this

feature make the model significantly more accessible to industry type usage as opposed to

solely being used in research.

75



0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.01 0.02

Radial Position [m]

A
xi

al
 P

os
iti

on
 [m

]

(a) Active CMC Nodes (black) at an early timestep
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(b) Active CMC Nodes (black) at a later timestep

Figure 5.3: Dynamic CMC grid

5.4.2 CMC Grid Multiplier

As shown in previous work [10, 11], conditional average values of scalars have a weak radial

dependence in self similar shear flows. In these studies, a cross-stream averaging technique

is used to weight the conditional averages based on the PDF, yielding a single axial value.

By reducing the number of CMC calculations required at each axial position, the compu-

tational efficiency of the simulations is significantly improved.

As it is shown that the grid sensitivity of CMC calculations can potentially be lower

than the grid sensitivity of the CFD calculations, a provision is included in the current code

that allows grouping of multiple CFD nodes into a single CMC node. This grid multiplier

feature allows the user to specify the multiplier in any direction used within the simulation.

For example, if the user wishes to specify a multiple of 3 in both the i and j directions,

a single CMC node would overlap 9 CFD nodes (i.e. a 3x3 square). Therefore, under the

aforementioned assumption that CMC calculations are less sensitive to spatial variations

than the flowfield CFD calculations, a significant computational savings can potentially be

realised.

Through a validation study completed, covered in greater detail in Ch. 6, it is ob-

served that there is a significant axial dependence on the CMC grid spacing. Although

cross-stream averaging techniques have proven successful in previous studies, the CMC grid

multiplication feature is not used in either the axial or radial direction for the remainder of

the study. Once baseline results have been established, future work in this area is advised
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in order to demonstrate and refine the effectiveness of this method.

5.5 Summary

This chapter provides an examination of the method used to numerically implement the

CMC model within the computational code used in the current work. The methods used

to couple enthalpy and density back to the flowfield is highlighted. The finite volume dis-

cretisation of the CMC equations, which guarantees continuity with any grid spacing, is

also presented in detail. Finally the solution of the chemical kinetics ODE’s are outlined.

The detailed chemical mechanism used in this study is presented in a tabular form.

It outlines each reversible reaction, broken into forward and reverse steps. The chemical

rates are validated against CHEMKIN output to ensure proper calculation.

Although the solution of the CMC governing equation, Eq. 3.11, is inherently difficult

and computationally expensive, several methods are discussed which may present a signif-

icant computational savings. The first, and most easily applied method, is the dynamic

CMC grid. This method is shown to provide a significant reduction of computational ex-

pense when the flowfield or main reaction region is not known in advance. This allows the

user more flexibility in defining the CMC domain without the risk of significant increase in

the simulation time. The second method outlined was a CMC grid multiplier. This method

was shown to be sensitive to grid spacing, requiring further experimentation. It is believed

that with proper trials, it could be established to provide a reduction in computational

expense proportional to the multiple used. Despite the potential for improvement, this is

beyond the scope of the current work and it is recommended that future study be focused

on this topic.

In summary, the CMC equations have been successfully and efficiently combined with

a CFD code into a standalone package, not requiring a commercial or external code for

flowfield solution. The code is easily configured for research work and is highly adaptable

for many different flows and studies involving CMC, ranging from autoignition to fully

developed flames.

The following chapter provides a detailed view of the initial validation study completed

with the CFD-CMC code. The validation focuses on a steady state hydrogen jet flame into

a quiescent ambient environment.
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Chapter 6

Steady State Validation

The focus for this chapter is to outline the steps taken to validate the code against pub-

lished results from an hydrogen jet flame. The preliminary validation allows an analysis of

the characteristics of initial CFD and CMC model performance. The trends observed in

the numerical prediction of the flowfield are compared to the known deficiencies with the

k − ǫ model. The conditional scalar results are presented for several locations in the flow

in order to evaluate the general trends predicted by CMC. The predictions of 〈YOH | η〉
are compared to experimental measurements in order to validate the chemical mechanism.

6.1 Boundary Conditions

The numerical study of this flame is carried out by reproducing the boundary conditions

outlined in the experimental study [40]. The fuel inlet matches the experimental inlet of

3.75mm, and the outer diameter is correspondingly 4.8mm. As the flow has a Reynolds

number of approximately 10000 [40], it is considered above the laminar-turbulent transition

of 4000, and therefore follows the turbulent pipe flow profile which is relatively uniform

across the diameter [63]. The velocity profile is therefore modelled as uniform across the

fuel inlet. The fuel and coflow inlet are placed at the lower boundary of the domain, sep-

arate by an adiabatic wall representing the burner pipe thickness. The outer boundary of

the domain was placed at a radial coordinate of 150mm, sufficiently far from the centreline

78



that boundary conditions had no impact on the flame structure. This outer boundary is

modelled as an opening, allowing fluids to enter or exit the domain such that the flow

remains unconfined. The top of the domain is modelled as an outlet boundary, allowing

fluid to flow out of the domain without any restriction. The axial length of the domain is

modelled as a total of 900mm, such that the flow exiting the domain was largely uniform.

The planar boundaries confining the axisymmetric mesh slice are modelled as symmetry

planes, meaning that all gradients perpendicular to these faces are held to zero.

The entire computational domain is represented by a structured hexahedral, axisym-

metric mesh. The CFD mesh is composed of 188 nodes in the axial direction and 134

nodes in the radial direction. The areas of refinement are concentrated to areas where

large spatial gradients in the flow are present, specifically in areas near the inlet and along

the mixing surface between the jet and coflow. The final CFD grid is shown in Fig. 6.1.

The CMC calculations are performed using a grid directly overlapping the CFD grid.

The lower boundary of the CMC domain begins approximately 20mm from the inlet and

extends to 900mm axially downstream. In the radial direction, the CMC domain extends

from the centreline to a radial coordinate of 150mm. Although the CMC grid is chosen

in order to capture essentially the entire CFD grid, the dynamic CMC grid function was

employed, automatically reducing the relevant calculation region only to the areas where

significant chemical reaction occurs.

The CMC calculations are initialised by use of the flamelet combustion model, con-

verged to 10−4 residuals for mass and velocity, in which several flamelet libraries were used

to provide a baseline initialisation of the various species mass fractions. Mixture fraction

space was modelled using 60 nodes, with 40 of these concentrated in the region of 0 to 4ηst.

The remainder of the region was gridded using the remaining 20 nodes. The same mixture

fraction grid is used for both the flamelet and CMC calculations, and is shown in Fig. 6.2

and Fig. 6.3.

The AMC mixing model, introduced in Sec. 3.5.1, was used for the steady flame in this

chapter.

79



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2

A
xi

al
 P

os
iti

on
 [m

]

Radial Position [m]

Figure 6.1: Final Steady State Mesh
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Figure 6.2: Full mixture fraction grid used for both flamelet and CMC calculations in
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Figure 6.3: Partial mixture fraction grid between η = 0 and η = 0.2 used for both flamelet

and CMC calculations in steady state validation case
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6.2 CMC Grid Density Sensitivity Analysis

Originally introduced in Sec. 5.4.2, the CMC grid density multiples used are required to

be odd positive integers, such that the centre of the CMC cell will always overlap exactly

with the centre of a CFD cell. This restricts the value of the multiple to the numbers

1, 3, 5, 7, ..., etc. An internal algorithm is used to correctly match the CFD and CMC

coordinates to allow for effective coupling of the calculations.

Initial experimentation with the CMC grid density multiplier investigated using a mul-

tiple of 3 in both the i and j directions, corresponding to one CMC cell overlapping 9 CFD

cells. Although the initial trends noticed in computational expense were positive, with

the modified grid taking only slightly more than 1/9th of the total computational time, it

was immediately noticed that the revised CMC grid presented numerical difficulties. The

results, calculated to the point where the solution would not converge further, indicated

that large oscillations in temperature were occurring in the flowfield. These oscillations

appeared in seemingly random, completely unphysical patterns. It was found that by re-

fining the grid further, this unphysical behaviour in calculated temperatures disappears.

Although it was shown in Sec. 5.4.2 that CMC results are less sensitive to spatial grid

spacing than CFD results, especially in the radial direction using cross-stream averaging

techniques, it was demonstrated that there was still an inherent sensitivity to the calcu-

lations with both the axial and radial direction multipliers. The radial sensitivity may be

eliminated by introducing a cross stream averaging technique [10, 11], the intent of this

code is to provide a more general application of CMC, not restricting it to a single type of

jet flow.

Through this experimentation, it was generally concluded that there is a maximum

allowable grid spacing for which the CMC calculations can be performed with sufficient

reliability, and that in the current flow, this limit is reached before the CFD calculations

become sensitive to grid spacing. As the CMC calculations consume the majority of the

computational time, this minimum CMC grid effectively determines the total calculation

time required for a given simulation, and the impact of the CFD calculations are minimal

in terms of the overall computational efficiency. It is possible that the observed spatial grid

CMC sensitivities may change in differing flows, and requires further testing for validation

of this effect.

For these reasons, the grid multiplier was not used in the remainder of this study.
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6.3 Numerical and Experimental Comparison

The comparisons possible between the validation simulation and the experimental results

are largely limited to those published in [40]. This section examines the differences in the

CMC code predictions in comparison to the experimentally observed values by Barlow and

Carter [40]. This limits the possible comparisons to temperature, mean mixture fraction

and conditional OH mass fraction. Further, mean mixture fraction variance, Z̃ ′′2, condi-

tional temperature, 〈T | η〉, conditional H2O mass fraction, 〈YH2O | η〉, and conditional

scalar dissipation rate, 〈χ | η〉, will be presented at various locations in the flowfield. Ve-

locity results, which were not included in the original publication, were made available

through a subsequent numerical study published by Barlow et al. [41].

It should be noted that only the chemical mechanism presented in Sec. 5.3 will be used.

Although various kinetics mechanisms are available for use, the mechanism presented by

Yetter et al. [53] will be used for continuity with the existing autoignition studies com-

pared in Ch. 7. Therefore, the qualitative and quantitative results are analysed accordingly.

Analysis of the effects of various mechanisms is performed by Stanković et al. [47], and is

discussed previously in Sec. 4.2.4.

6.3.1 Favre-Averaged Flowfield Results

Favre-Averaged Velocity

The initial stage of comparison with the experimental results is to examine the flowfield

predicted by the computational code with that seen experimentally. A comparison of

the Favre-averaged velocity and Favre-averaged mixture fraction values provides a good

indication of how the code predicts the general mixing trends in the flowfield.

The centreline velocity predictions indicate that there is a general underprediction of

jet velocities through the domain, shown in Fig. 6.4. Near the inlet, it can be seen that

there is a sharp drop off in velocity as the jet mixes with the surrounding air. Proceeding

along the centreline, the numerical predictions closely follow the trends demonstrated by
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measurements; however the underpredictions remain consistent throughout the length of

the domain. This underpredicted velocity corresponds to a general underprediction of jet

penetration.

Radial velocity profiles in [41], are shown in Fig. 6.5. In Figs. 6.5 a) - c), the velocity

profiles are shown in comparison to the experimental results at 3 locations: L/8, L/2

and 3L/4 [41]. The peak centreline velocities are underpredicted by approximately 35%,

corresponding to the centreline plot in Fig. 6.4; however, it is qualitatively observed

that the total jet momentum at a given axial location appears to be conserved, as the

overprediction of spreading by the numerical simulation leads to higher velocities further

from the centreline. The crossover point in experimental and numerical values moves

outward as the jet spreads throughout the domain.
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Figure 6.4: Centreline Ũ [m/s] profile

Mean Mixture Fraction

When examining the centreline values, Fig. 6.6, the underprediction in the radial profiles

is clearly shown, similar to the velocity results in 6.4. Once again, it can be seen that

the centreline numerical values drop off more suddenly than experimental values, a trend

that is maintained through the length of the domain. As is expected, the trends in mean

mixture fraction correlate well with those seen for velocity, indicating that the velocity and

mixture fraction fields are closely related.
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Figure 6.5: Ũ [m/s] radial profiles at different axial locations
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In Figs. 6.7 a) - f), the numerical and experimental mixture fraction fields are compared

at the L/8, L/4, 3L/8, L/2, 3L/4 and L locations. Fig. 6.7 a) demonstrates that close to

the inlet, there is a strong shear layer present, as there is a strong mixture fraction gradient

moving outwards from the centreline. At this axial location, it can be seen that although

the experimental and numerical results predict similar values at the r/d = 3 location, the

numerical results are beginning to overpredict spreading beyond this location. Moving

further downstream to the L/4 location, this trend continues, with an underprediction of

the centreline mixture fraction by approximately 35%, and a corresponding overprediction

of spreading beyond the r/d = 4 position. At the 3L/8 position, shown in Fig. 6.7 c),

the centreline underprediction remains at approximately 35% with the overprediction of

spreading. This trend remains largely the same for the remainder of the measured locations,

shown in Figs. 6.7 d) - f), with the crossover point between the experimental and numerical

values moving outward proportional to the jet width. This outward movement indicates

spreading of the mixing layer and the increase in the overall jet width. This appears to

occur at approximately the same rate as with velocity, substantiating the previous results

of mixing layer and jet spreading.
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Figure 6.6: Centreline mixture fraction profile
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Figure 6.7: Mixture fraction radial profiles at different axial locations
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Favre-Averaged Temperature

Observation of the Favre-averaged temperatures predicted in the numerical domain pro-

vides the first insight into the functioning of the CMC calculations in conjunction with the

specified chemical kinetics. Proper prediction of the Favre-averaged temperatures indicates

that the calculations are predicting reasonable mixing rates within the flow as well as the

proper species production and destruction rates.

In addition to demonstrating proper mixing and chemistry within the CMC calcula-

tions, the Favre-averaged temperature predictions are highly dependent on the spatial pre-

diction of the mixture fraction field. Unlike mixture fraction and velocity, the temperature

predictions are not only dependent on conservation equations, such as mass, momentum or

mixing, but are also functions of several additional variables, such as the chemical mech-

anism and mixture fraction. As a result, peak flame temperatures are highly dependent

on the mixture fraction, and are expected to closely follow the trends predicted in Fig.

6.7 and Fig. 6.6. It should be noted that the Favre-averaged temperature is not directly

calculated, but rather is derived from the mixture enthalpy calculated by Eq. 5.1.

Following closely with the velocity and mixture fraction fields, the centreline tempera-

ture profile in Fig. 6.8 demonstrates a trend of overpredicting spreading, with earlier peak

temperatures. The peaks occur earlier than the measured values due to the underprediction

of centreline mixture fraction and reduction of the influence of convection at the centre-

line. The lower predictions of mixture fraction values result in the reaction zone moving

upstream in comparison to experimental results, and correspondingly, the peak temper-

atures also shift upstream. The numerical results also demonstrate an earlier decline in

temperature downstream of the reaction zone, which is a further indication of increased

mixing and spreading of the mixture enthalpy throughout the computational domain.

The predicted Favre-averaged radial temperature profiles are shown in Figs. 6.9 a)

- f). Comparisons to the measured values are made at L/8, L/4, 3L/8, L/2, 3L/4 and

L axial positions. In Fig. 6.9 a), it can be seen that the predicted temperatures follow

the magnitude of the experimentally results closely, once again with an overprediction of

spreading. The peak temperatures are essentially identical to the experimental results,

suggesting that although the jet spreading is overpredicted at the L/8 location, the mixing

and chemical kinetics predictions are a very good fit to the chemical interactions. It is

apparent that the temperature peak exists off centre at this location, indicating that the

jet core is still too rich for significant chemical interaction. Within the mixing layer at the
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edge of the jet, there is a locally stoichiometric mixture fraction region, shown previously

in Fig. 6.7 b), and the chemical reactivity, and therefore temperature, peak in this area.

Further downstream, as shown in Fig. 6.9 b), a similar, yet less defined radial temperature

profile can be seen. At this location, the peak temperature predicted numerically is slightly

lower than that measured experimentally. It is also observed that the jet core tempera-

ture is higher than the experimental measurements. This suggests that the level of mixing

within the jet or the diffusion of heat is overpredicted. The cause of this is likely related

to the general underprediction of jet penetration length and overprediction of spreading

observed in the mixing field, i.e. at the lower predictions in centreline convection, resulting

from lower velocities, is counteracted by a larger contribution of heat diffusion, pushing

the flamefront and peak temperature upstream towards the inlet. At the 3L/8 location,

shown in Fig. 6.9 c), the numerical temperature predictions no longer demonstrate a peak

in temperatures due to reaction occurring at the edge of the jet, but rather show a peak oc-

curring at the domain centreline. The lack of defined reaction zone indicates that sufficient

mixing has occurred such that the core of the jet is now approaching stoichiometry and

is beginning to increase in chemical reactivity and species evolution. This trend continues

further downstream as shown in Fig. 6.9 d) to f). Although this mixing trend predicted

numerically is reflected in the experimental results, it occurs further downstream in the

experimental case, substantiated by the mixture fraction results, which show only a slight

radial dependence at the 3L/4 location. Beyond this point, both the experimental and

numerical results show significantly flatter curves due to the additional mixing and radial
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diffusion of heat.

Mean Mixture Fraction Variance

Although the mean mixture fraction variance, or Z̃ ′′2, was not published with the experi-

mental results, it provides a further metric of analysing the flowfield. The variance, which

is a scalar quantity for which there is a transport equation solved, is used with the mean

mixture fraction to ascertain a statistical distribution of the flow parameters, as described

in Sec. 3.4.4. While the mean value provides an expected value for a fixed point in space,

the variance represents the magnitude of the fluctuations about the mean value. Therefore,

in well mixed areas, such as far downstream from the inlet, or at large radial coordinates,

the variance is expected to be the lowest since these areas will either be fully mixed or

no mixing will be present due to the absence of fuel. The highest Z̃ ′′2 values are likely to

exist near the inlet or in the shear layer between the fuel and oxidiser, where the largest

fluctuations occur in the flow.

The strong peak of the centreline variance, and the asymptotic decrease with increasing

axial position, is clearly visible in Fig. 6.10. The shape of the centreline variance predic-

tion is very similar to that obtained by Markides et al. [35], even though the study was

completed using n-heptane instead of hydrogen. This result indicates that far downstream

from the inlet, the fuel and oxidiser are well mixed, with peak variance occurring in the

jet mixing layer.

At the L/8 position, Fig. 6.11 a), it can be seen that there is a peak in variance at

r/d = 2. Although this indicates strong mixing and high levels of fluctuations, it does not

correspond directly to a large Favre-averaged temperature, which peaks at approximately

r/d = 4 in Fig. 6.9 a). In fact, peak temperatures are observed to occur outside of the

peak variance layer, indicating that the mixing layer reduces mixture temperatures. This

is largely due to the fact that when the variance increases relative to the mean value, the

PDF is spread further across η-space, resulting in weaker and wider peaks and a more

constant profile overall. The resultant wide PDF due to the large variance means that the

temperature obtained when performing Favre-averaging is influenced by a larger section of

η-space, damping any peaks in conditional values. Moving outward radially, as the variance

decreases, the area of influence in the conditional scalar curves narrows due to a sharper

PDF, resulting in stronger peaks, and ultimately higher Favre-averaged temperatures due
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Figure 6.9: T̃ Radial profiles at different axial locations
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to peak chemical activity being captured. Proceeding further outward, the variance and

mean mixture fraction values decrease further as the PDF moves away from the chemical

peaks near stoichiometry in η-space. Proceeding downstream to the L/4 position, Fig. 6.11

b), it can be seen that although there is still a peak in variance due to the mixing layer,

it has shifted outward radially and the magnitude has decreased significantly. Still further

downstream, in Figs. 6.11 c) - f), the variance further decreases, with the peak moving

outward radially. Please note that the scales are not constant in Figs. 6.11 a) - f) to best

highlight the evolution of the radial variance profile.
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Figure 6.10: Centreline Z̃ ′′2 profile

Discussion of Favre-Averaged Results

The most immediately apparent observation when inspecting all of the Favre-averaged re-

sults is the underprediction of jet penetration and corresponding overprediction of spread-

ing. This is a trend noticed in all of the Favre-averaged values presented: temperature,

mixture fraction and velocity.

Although the underpredictions of the scalars Ũ and ξ̃ at the centreline appear to be

significant, on the order of 35%, this result is not uncommon or unexpected when using

the k − ǫ turbulence model. Indeed, it has been widely documented that the constants,

Cǫ1, Cǫ2 , and in some cases Cǫ3 [41], must be modified to obtain accurate results for the

round-jet case [6, 64, 65, 66, 67]. No subsequent modification of the k− ǫ model constants
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Figure 6.11: Mean mixture fraction variance, Z̃ ′′2, radial profiles at different axial locations,

note that the axis scales are not constant
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is made for the current simulation, as the intent of this chapter is only to characterise the

overall performance of the model and not to exactly match experimental results, as the

flow examined in Ch. 7 differs significantly from the current flow.

Despite the magnitude of the velocity and the mixture fraction being underpredicted

along the centreline, it is encouraging to observe that the predicted radial temperature

profiles are very close in magnitude to the experimental measurements. The centreline

temperature profiles, however, appear to be shifted upstream in comparison to the mea-

sured results. This upstream shift can be attributed to the overall underprediction of

jet penetration, i.e. the ignition and combustion processes occur further upstream in the

numerical simulations than experimentally. This upstream shift occurs because the magni-

tude of 〈χ | η〉 is strongly linked to the prediction of the ξ̃ and ξ̃′′2 fields. The overall peak

centreline temperature is lower than what is observed experimentally. However, despite

the lower centreline temperatures, the radial temperature profiles, especially upstream of

the L/2 location, provide very similar magnitudes when compared to the measured val-

ues. These results indicate that there may be an underprediction of the conditional scalar

dissipation rate near the fuel inlet, leading to the earlier onset of combustion, while there

is an overprediction of the conditional scalar dissipation rate while moving downstream,

evidenced by the lower peak temperatures seen numerically.

Although it is mainly focused on predictions of nitric oxide formation, a numerical study

by Barlow and Carter [41] is available for the current hydrogen jet flame. In this study,

modifications of the turbulence parameters, specifically Cǫ3, are required in order to match

the flowfield measurements [40, 41]. With this modification, excellent agreement with

experimental results is obtained for velocity, mean mixture fraction and Favre-averaged

temperature.

The results of the Barlow and Carter CMC study [41] show that the CMC model is

capable of providing excellent Favre-averaged flowfield results when turbulence parameters

are properly adjusted. Results from the current study in addition to the findings of Barlow

and Carter [41] indicate that the present code has the ability to closely match what is seen

experimentally.
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6.3.2 Conditional Results

As a method of further investigation into the operation and accuracy of the CMC calcu-

lations, the conditional scalar values may be investigated. Conditional values, which are

a function of position and η, show the possible values for a scalar at any mixture fraction

value. Conditional values can be used to quantify mixing, temperature, species mass frac-

tion, etc. In many cases, it is possible to measure intermediate species conditional mass

fractions, which can subsequently be used as a means to validate chemistry mechanisms.

This section will present conditional values at various spatial positions for the scalars

OH mass fraction, YOH , temperature, T , and scalar dissipation rate, χ. A direct compar-

ison is made between numerical and experimental OH mass fraction values.

Conditional Scalar Dissipation Rate

The conditional scalar dissipation rate, 〈χ | η〉, is one of the most crucial conditional terms

in combustion modelling, in particular CMC, as it represents the strength of mixing within

the flow. The mixing largely controls the chemistry and can influence ignition and ex-

tinction performance of the fuel. As a result, the conditional temperature and conditional

species mass fractions are largely dependent on the magnitude of the conditional scalar

dissipation rate.

Although it was not measured experimentally, it is important to document the results

seen with 〈χ | η〉 at various locations in the flow in order to further analyse other condi-

tional results. Results are taken at three different axial locations, L/8, 3L/8 and 3L/4. At

each of these axial locations, the results are subsequently split into 3 radial locations, r/d

= 0 (centreline), r/d = 5 and r/d = 10. At the L/8 location, an additional radial location

at r/d = 2 is included to capture the evolution of the profile near the centreline. Each of

these locations is plotted under the same conditions for a small region of η-space around

stoichiometry as well as the entirety of η-space. These different plots are placed alongside

each other in Fig. 6.12.

The conditional scalar dissipation rates at the L/8 axial position are shown in Fig. 6.12

a) and b). At this location, it can be seen that the mixing is strongest at the r/d = 2

location, due to the presence of the mixing layer. The magnitude decreases both inward

towards the centreline and outwards to the r/d = 5 position, further decreasing to essen-
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tially 0 by the time the r/d = 10 position is reached. The strong mixing concentrated

near the centreline will have a delaying effect on the onset of ignition, while lower mixing

levels nearer the edge of the flame, combined with a near stoichiometric mixture fraction

will promote the onset of ignition. At the r/d = 10 location, the extremely low mixing

predicted is an indication of little to no fuel being present so far outside the mixing layer.

This is substantiated by the predictions of mean mixture fraction in Fig. 6.7 a), which also

indicates essentially zero fuel present at this radial extent. At the 3L/8 location, shown

in Fig. 6.12 c) and d), peak mixing can be seen at the r/d = 5 location. The conditional

scalar dissipation rate decreases once again towards the centreline as well as radially out-

ward. This once again indicates the presence of a mixing layer near the edge of the jet.

This mixing layer moves outward with increasing axial distance. The 3L/4 location, Fig.

6.12 e) and f), shows further development of the strong mixing layer. The peak 〈χ | η〉
values are seen further outward, at the r/d = 10 location. In all cases, the peaks appear

to follow the progression of the radial variance plots, seen in Fig. 6.11 a), c) and e). At all

locations, the 〈χ | η〉 profiles dictated by the AMC model, as shown in Fig. 3.1.

The presence of the mixing layer will have a delaying affect on the ignition in this re-

gion, or in locations where the mixture is already burning, the level of mixing will suppress

peak temperatures. The proper prediction of 〈χ | η〉 is one of the most important aspects

of performing accurate CMC calculations. This will be discussed further in Ch. 7 where

an additional mixing model, the inhomogeneous model, is implemented.

Conditional OH Mass Fraction

The radical OH is an intermediate species in the hydrogen combustion mechanism. This

radical, which is short lived in the combustion process, provides information about the

state of the radical pool [40] and is responsible for the chemiluminescence that occurs

during the combustion process [42]. As a result, the OH radical is often used as a metric

for comparison between experimental and numerical results.

The conditional OH mass fraction is the only experimentally available conditional

value from the study by Barlow and Carter [40]. Measurements were performed along the

centreline of the flame in 3 axial locations, L/8, 3L/8 and 3L/4. These are presented in

the form of a scatter plot [40].

It can be seen in Fig. 6.13 a) to c) that there is a narrow band of chemical activity where
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Figure 6.12: 〈χ | η〉 profiles at multiple axial and radial positions
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the OH radical exists in significant quantities, focused mainly around the stoichiometric

mixture fraction. At the L/8 position shown in Fig. 6.13 a), where mixing is the most

intense, the experimental results show the largest variation in values, with a maximum

YOH of around 0.02. To the rich side of the peak in the numerical results, it can be

seen that the predictions closely follow the experimental measurements, while on the lean

side of the peak, there is a slight underprediction of the conditional OH mass fraction.

At this location, the discrepancy in experimental and numerical results may be caused

by the difference in chemical reactivity, indicated by the centreline temperature profile

in Fig. 6.8. Moving downstream to the 3L/8 and 3L/4 locations, Fig. 6.13 b) and c),

respectively, the numerical predictions provide excellent agreement with the experimental

results. The predicted OH conditional mass fraction curves follow the distribution of

experimental datapoints, indicating that the chemistry and mixing interaction yield an

accurate representation of the actual physical and chemical processes occurring. In general,

the predictions of OH do not show a strong dependence on the rate of mixing. The profiles

encompass approximately the same area of η-space and provide a similar magnitude in all

of the examined cases. The most noticeable difference is the distribution of experimental

data points, which is representative of the changing ξ̃ and ξ̃′′2 of the flow.

Conditional Temperature

The conditional temperature is a calculated value that is highly dependent upon other

scalars in the flow. Since conditional temperature is defined by the Eq. 5.1, it is highly

dependent on species composition of the flow. In general, there are three major factors

influencing the overall conditional temperature profile, as given by Eq. 3.11. The first

factor is the level of mixing, as defined by the 〈χ | η〉. The second major influence on the

species production, and therefore temperature, is the convective term, largely dependent

on the conditional velocity 〈ui | η〉. The final major term is the diffusive term, which is

dependent on the spatial gradient of the conditional species mass fraction, 〈Yi | η〉. De-

pending on the influence of these terms, they can be expected to cause a change in the

conditional temperature for a given mixture fraction while also shifting the location of the

peak temperature due to the resulting changes in chemical reactivity.

The first location used for output of conditional temperature data is the L/8 position,

shown in Fig. 6.14 a). At this axial position, it can be seen that there is a relatively large
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Figure 6.13: 〈YOH | η〉 profiles at different axial locations, with the solid line representing

numerical predictions and the diamond markers representing experimental data [40]
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radial variation in the predicted conditional temperature of the mixture. The peak condi-

tional temperatures are also similar to the peak Favre-averaged temperatures predictions

shown in Fig. 6.9 and Fig. 6.8. This radial variation is likely caused by 2 major factors:

the change in 〈χ | η〉, as shown in Fig. 6.12 a), and the change in the convective term,

due to changing velocity, as shown in Fig. 6.5 a). At this location, the r/d = 5 and r/d =

10 locations show the highest conditional temperatures, especially at lean mixture fraction

values. This is likely due to the lower influence of the convective term, due to the locally

small axial velocity, and corresponding increase in the importance of the diffusive term,

which is driven by large mass fraction gradients. The 〈χ | η〉 at further radial locations is
also significantly lower than near the centreline, leading to the higher temperature curve,

especially for lean and stoichiometric mixtures. At the centreline, where there is a sig-

nificant amount of mixing occurring, the conditional temperature peak occurs on the fuel

rich side of stoichiometry, at approximately ξ̃ ≈ 0.04, where the increased chemical reac-

tivity overcomes for the higher mixing and convection terms The conditional temperatures

remain fairly constant throughout the centre of the core, as seen through comparing the

centreline and r/d = 2 curves, which have similar mixing rates even though the local ve-

locity is quickly changing. At the 3L/8 location, seen in Fig. 6.14 b), shows that there is a

reduced cross-stream variation. The curves are essentially identical across the shown radial

locations, with only a slight peak occurring at the r/d = 10 location around stoichiometry.

The two major differences in conditions at this location are the reduced velocity and lower

〈χ | η〉. The combination of the reduced mixing and the reduction of heat conducted away

from this location allows the mixture to obtain a higher overall temperature at and around

stoichiometry than at the L/8 location. At the location furthest downstream from the

fuel inlet, shown in Fig. 6.14 c), the essentially uniform conditions present across the flow

result in very little variation between the predicted conditional temperature profiles at the

different radial locations. The reduced influence of the convective term and the small vari-

ation in mixing provide an effectively constant radial profile in conditional temperature.

These conditions provide the highest conditional temperature curve. The peak conditional

temperatures are observed at approximately stoichiometric mixture fraction, approaching

a maximum of 2430K.
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Figure 6.14: 〈T | η〉 [K] profiles at multiple axial and radial locations
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6.3.3 Discussion of Results

Conditional Results

Although the only available results from the experiment relate to the conditional OH

mass fraction, it is shown that the chemistry and mixing model interaction provide ex-

cellent agreement with the measured results. The predicted values fall well within the

experimental scatter, and the shape of the curve follows the distribution closely. Despite

the excellent agreement generally seen, it is observed that the conditional OH mass frac-

tion is underpredicted for fuel lean conditions in areas of very high mixing, notably at the

L/8 location.

From analysis of the conditional scalar dissipation rate, it is apparent that there is an

intense area of mixing forming near the shear layer of the jet. This area is seen to move

outwards radially at an increased axial distance from the fuel inlet as the jet spreads and

mixes with the coflow. This mixing area is observed to have an impact on the predicted

conditional temperatures, reducing chemical activity and temperatures within areas of in-

tense mixing. Areas with higher levels of mixing and large local velocities, especially within

the mixing layer, are seen to have relatively low peak conditional temperatures, with the

peak occurring on the fuel rich side of stoichiometry. The mechanism causing this is a

combination of the intense mixing and the increased importance of the convective term

in areas of high flow velocity, which remove enthalpy from the reacting parcel and dis-

tributing it or convect it towards less reactive areas. As 〈χ | η〉 decreases, the conditional

temperatures are seen to peak closer to stoichiometry. When far downstream from the fuel

inlet, the conditions across the flow are very similar, with the importance of the convec-

tive, diffusive and mixing terms all diminishing, resulting in little cross-stream variation

in the conditional temperature profile. At this far downstream locations, the conditional

temperatures are also seen to peak resulting from the nearly uniform flow. This reduced

impact at locations far downstream from the inlet indicates that the conditional scalar

dissipation rate has the largest affect on the flow at high values, while at low values, such

as far downstream, the overall effect is dampened.

Once again, some comparison can be made between the experimental study by Bar-

low and Carter [40] and the numerical work by Barlow et al. [41]. Conditional OH mass

fraction results show a general underprediction in comparison to experiments at all axial lo-

cations. Agreement with the conditional OH mass fraction tends to worsen with increasing
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axial distance, which is in contrast to the current simulation, which shows an improvement

with increasing axial distance. This difference in results may be attributed to the tuning

of the flowfield and resulting mixing differences that arise from this modification. Con-

ditional temperature values are slightly underpredicted at low axial distances, but show

excellent agreement with the L/2 and 3L/4 locations. Conditional scalar dissipation rate

is not presented in the either the numerical or experimental study, so no direct comparison

of magnitude throughout the domain with the current results is possible.

6.4 Summary

The purpose of this chapter is to provide a validation test case of the computational code

with a measured flow. It is seen that the code exhibits common characteristics of the

k − ǫ turbulence model, with predictions of ξ̃ and Ũ approximately 35% below the ex-

perimentally observed values. This result is not unexpected, as this performance is well

documented when the k − ǫ is applied to a round jet. Although various strategies have

been employed to tune the model performance, this is not desired in the current study, as

the autoigniting flow in the following chapter is significantly different than the current jet

flow.

The temperature, velocity and mixture fraction fields are seen to follow expected trends:

there is a large amount of momentum transfer and mixing occurring between the jet and

the coflow, leading to the spreading of the jet and dispersion of the fuel. The predicted

temperatures peak around the stoichiometric mixture fraction, which is typical of a jet

flame. Peak temperatures are slightly underpredicted in comparison to measured results,

which may be attributed to conditional scalar dissipation rate overpredictions as well as

the effects of the k − ǫ model.

The conditional OH mass fraction, temperature and scalar dissipation rate are pre-

sented at various locations in the flow. Numerical results are in excellent agreement for the

OH mass fraction measurements at locations downstream of the L/8 axial location. At

the L/8 location, the fuel rich predictions are in good agreement, however, in the fuel lean

regime, the conditional mass fractions are underpredicted. The conditional temperature

profiles are closely linked to the conditional scalar dissipation rate, convection and diffusion

terms in the CMC equation, as seen in Eq. 3.11. In areas where the conditional scalar
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dissipation rate is high, and the cross stream variation is large, it can be seen that there is

a large impact on the conditional temperature peaks. At locations where the conditional

scalar dissipation rate is low, there is very little cross stream variation in the conditional

temperature profiles or magnitudes.

Overall, the computational code has demonstrated that it provides accurate tempera-

ture predictions while the calculated flowfield displays trends characteristic of the turbu-

lence model used.

The following chapter uses the computational code to predict hydrogen autoignition

predictions with two different mixing models. These results are analysed in detail and

compared to various other studies of the same flow.
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Chapter 7

Autoigniting Flame

The focus of this chapter is to provide an analysis of the performance of the current CMC

code when used to predict autoignition in a transient flow. The steps taken to provide the

required numerical setup of the simulation are outlined, including boundary conditions,

grid selection and timestep selection. The results of the model are provided in terms of the

ignition length prediction. Comparison between the AMC mixing model and the inhomo-

geneous model is also presented, including an analysis of the predictions of both models

at different locations and times during the simulation. The performance of the inhomoge-

neous model is detailed, including a term-by-term analysis of the performance of the model.

7.1 Current Numerical Setup

In an effort to align the current work with previous numerical studies, the same set of

conditions used by Jones and Navarro-Martinez [44], Jones et al. [45] and Patwardhan

and Lakshmisha [43] is applied to the simulations. The fuel temperature is held at 750K

for all simulations, the fuel and coflow velocities are maintained at 26m/s, and every ef-

fort is made to accurately represent the physical conditions present in the experimental

work. Sections 7.2 to 7.5 outline the details used in setting up the numerical simulations

used in this work, as well as some of the numerical difficulties encountered during the study.
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7.2 Computational Domain and Boundary Conditions

To best represent the experimental apparatus, the computational domain is set up to have

the same geometric configuration. Therefore, the computational domain is composed of an

axisymmetric slice representing the central burner, the coflow inlet, the wall of the quartz

tube and the flow outlet. The selection of inappropriate boundary conditions can poten-

tially have a negative influence on the flow and quality of results, so each of the boundary

conditions is chosen to best represent the actual flow condition.

Since the flow under consideration is confined within a quartz tube, the domain is se-

lected to match the physical width of the experiment, while capturing the axial area of

interest for autoignition results. That is, the computational domain has a radius of 12.5mm

and a total length of 150mm.

The fuel and coflow inlets are placed along the base of the domain. The fuel inlet

is located along the centreline, with the coflow inlet occupying the remaining area. The

conditions at the fuel inlet provide a fuel velocity of 26m/s, and a fuel composition of

YH2
= 0.13 and YN2

= 0.87. The fuel temperature is held constant at 750K. The total

width of the inlet matches the experimental diameter of 2.25mm. It is separated from

the coflow by an adiabatic wall. The coflow boundary is modelled as an inlet of pure air,

YO2
= 0.232 and YN2

= 0.768, extending from a radial coordinate of 1.125mm (radius of

fuel inlet) to the domain radius of 12.5mm. Depending on the scenario used for simula-

tion, the coflow temperature is varied between 940K and 1080K, with the velocity held

constant at 26m/s. The conditions across both the fuel and coflow inlets provide a uniform

distribution of flow parameters, such as velocity, temperature, density, etc. Although the

experimental turbulence intensity for the coflow is measured at approximately 13%, the

turbulence intensity is set to 8% for the simulations due to numerical sensitivities in the

mixing models, which is discussed further in Sec. 7.5.

The outer boundary, representing the surface of the quartz tube containing the flow is

modelled as an adiabatic, no-slip wall. This boundary condition most closely represents

the flow, as during the experiments the apparatus is allowed to run until the temperature

loss throughout the domain is minimal. The no-slip boundary condition is representative

of the surface of the quartz tube, as there is no surface velocity.

The outlet is placed along the entire top boundary of the domain. The outlet boundary

forces a zero gradient condition on any flow parameter, i.e. pressure, velocity, temperature,
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etc. Therefore, this boundary must be placed sufficiently far from the flow that this forced

zero gradient does not impact the region of interest.

7.3 Timestep and Grid Refinement

As with the jet simulated in Ch. 6, selection of an appropriate computational grid is of

large importance to the accuracy of simulation results. A grid that is unable to capture

the spatial gradients and temporal changes with suitable accuracy will lead to error in

the results. Therefore, refinements in the grid are required where these phenomena are

expected to be at a maximum.

The major contrast between the autoigniting flow studied in the present chapter and

the jet flame studied in Ch. 6 is the velocity field. While there is a large variation

in velocity with the pure H2 jet flame studied in Ch. 6, the current flow has a nearly

uniform velocity throughout the domain. Therefore, appropriate mesh refinements will

be focused on capturing species gradients rather than significant velocity gradients. In

addition, autoignition inherently involves transient flows, so the areas of large gradient

will vary as the convection and diffusion within the domain affects the temporal flow

patterns. With this knowledge, the mesh refinements are focused on the area around the

axial centreline of the domain, restricted mainly to the area just downstream of the inlet

where the largest species concentration gradients are expected. Experimental results are

used as a guideline for appropriate refinement regions in order to best capture the chemical

reactivity of the flows. The resultant mesh is refined until it is deemed that no further

improvements in accuracy are made by further reduction of grid spacing.

The final mesh used in the current set of simulations contains 195 nodes in the axial

direction and 29 nodes in the radial direction. The large difference between the number

of axial and radial nodes is due to the large aspect ratio of the domain. As with the mesh

used in Ch. 6, the mesh refinements near the inlet strive to obtain an aspect ratio of unity.

The area of finest mesh spacing yields cells of 0.3mm x 0.3mm. The final computational

grid is shown in Fig. 7.1.

As the accuracy of the CMC calculations are highly dependent on proper calculations

within mixture fraction space, or η-space, selection of a proper mixture fraction mesh is

also crucial. The simulations conducted in Ch. 6 are for the purpose of calculating a
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Figure 7.1: Final Autoignition Mesh
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fully formed flame, with reactions occurring across large regions of η-space, and required a

distribution of η points that captured this performance. The primary concern is capturing

chemical reactivity in the vicinity of stoichiometry, so the highest grid density is in this

region. Additionally, in the current study, several simulations are continued past the point

of autoignition in order to evaluate the differences in mixing models, so it is important

to retain sufficient grid spacing throughout η-space in order to capture all of the chemical

kinetics present in the developed flame.

The final mixture fraction grid used for the autoignition simulations is shown in Fig. 7.2.

This mesh consists of 80 nodes, with 60 nodes placed between 0 and ηst, which is highlighted

in Fig. 7.3. Consistent with what is observed by Stanković [46], the most reactive mixture

fraction, ηmr, occurs lean of stoichiometry in all cases. Therefore, refinements in the area

between 0 and ηst will capture the region around ηmr. The remaining 20 nodes in η-space

define the region between ηst and 1. The increased grid density for lean η values is used in

order to properly capture the chemical interactions occurring around stoichiometry prior

to autoignition.

In addition to ensuring spatial and mixture fraction grid independence, it must also

be demonstrated that the simulation is not dependent on the chosen timestep. Adaptive

timestepping is not used in the present code, so a user defined timestep must be applied

to the simulation that provides sufficient resolution to capture the fast reaction rates and

changes in species mass fraction during the autoignition process. Although the VODE

solver uses an internal timestepping algorithm for solution of chemical interactions, the

CFD/CMC timestep must also be sufficiently small to facilitate the accurate solution of

the CMC equation. In the present study, a fixed timestep of 1×10−6s is selected. Flowfield

and CMC values are output from the code every 5 timesteps (5× 10−6s).

The spatial and mixture fraction grids, as well as simulation timestep, are tested and

the present results are determined to be grid independent.

7.4 Simulation Conditions

In the current study, several different aspects of the simulation are studied. The first of

these aspects is the effect of mixing constants on the flowfield. As was shown in Ch. 6, the

velocity, ξ̃ and ξ̃′′2 fields have a large impact on the CMC calculations. As the effects of
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autoignition calculations in steady state validation case

the k − ǫ model have not been studied in the current flow to the same extent as with the

jet flow in Ch. 6, it is not known what combination of turbulence constants will provide

the most accurate flow simulation. As an initial step into the analysis of the effects of

these parameters on the the flowfield, three sets of parameters are tested. These param-

eters are summarised in Table 7.1. The first case is undertaken to ascertain a baseline

Table 7.1: Sets of turbulence and mixing parameters used in autoignition simulations

Parameter Case Cǫ1 Sct

Case 1 - Standard Constants 1.44 0.7

Case 2 - Modified Cǫ1 0.40 0.7

Case 3 - Modified Sct 1.44 0.5

level of performance with the standard turbulence and mixing constants. This is taken as

the base level of performance and used to compare the effects of the modification of any

other constants. Reduction of the turbulent Schmidt number, Sct, for Case 2 follows the

study of Patwardhan and Lakshmisha [43], where in addition to the modification of Sct,
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modification of Cǫ1 and Cχ is also undertaken in the same case [43]. Reduction of the value

of Sct also follows the method of Markides et al. [68] in a study of a similar flow using

n-heptane as a fuel instead of a mixture of H2 − N2. Case 3 is undertaken to isolate the

effect of Cǫ1 modification in relation to the flowfield. The relatively large change of Cǫ1,

from the standard 1.44 to a modified 0.4, is chosen to provide an estimate of the magnitude

of the changes relative to the magnitude of the change in the constant. Each of these 3

cases is run under steady state conditions to evaluate the flowfield.

Following the characterisation of the flowfield, each of the 3 cases in Table 7.1 is used

to simulate autoignition at 7 different coflow temperatures using the AMC model. The

range of coflow temperatures used is 940K, 950K, 960K, 980K, 1000K, 1020K and 1080K.

After the autoignition simulations are carried out using the AMC model, investigation

of the inhomogeneous mixing model is undertaken. This involves a set of simulations fol-

lowing the standard constants used in Case 1 with each of the coflow temperatures. The

impacts of the different mixing model are evaluated in comparison to those seen with the

AMC model.

As a final metric for comparison between the two models, the AMC model and inhomo-

geneous model are each used to simulate a steady flame under identical conditions, both

with the Case 1 constants. This comparison allows analysis of the effect of the mixing

model on flame structure and species production.

7.5 Numerical Difficulties

During testing of the inhomogeneous model implementation, it was found that the 〈χ | η〉
predictions are particularly sensitive to the flow variance. If the values of ξ̃ ′′2 become too

large, the profiles of Ĩ1 and Ĩ2 in Eq. 3.55 become discontinuous, subsequently resulting

in a discontinuous 〈χ | η〉 profile. Several techniques to correct this were attempted, in-

cluding applying a scaling factor to the final profile to match known boundary conditions;

however, none of these produced satisfactory performance that matched the results pro-

vided by Devaud et al. [3]. Instead, it was found that reducing the turbulence intensity

of the simulations provided the requisite reduction in variance to make the model perform

properly, requiring no further numerical correction. It is thought that this was not seen in

previous testing in [11, 3, 39] due to the formulation of the flow, which typically resulted
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in a smaller magnitude ξ̃ ′′2 field. In general, this discontinuity is avoided if the magnitude

of ξ̃ ′′2 is kept below approximately 0.1ξ̃.

7.6 AMC Model Results

7.6.1 Effects of Turbulence and Mixing Constants on Steady

Flowfield

For each of the 3 cases given in Table 7.1, a steady state fully burning CMC simulation

with Tcoflow = 980K is run such that velocity and mass residuals converge below 1.0×10−4.

The flowfield in each of the 3 cases is examined primarily to determine the ξ̃ and ξ̃ ′′2 dis-

tribution within the flow. No analysis of the velocity field is provided, as the flow is largely

absent of shear and velocity gradients, especially when compared to the jet flow in Ch. 6.

As there are no measurements made on the steady flowfield during experimentation

[47], the analysis of steady conditions is undertaken only to evaluate relative changes in

the model, and not the absolute accuracy of the predictions.

7.6.2 Mean Mixture Fraction

The prediction of the mean mixture fraction field, ξ̃, is of extreme importance to the

prediction of autoignition. Parameters that affect the distribution of fuel within the flow-

field must be well understood, as modification may lead to a resultant spatial shift in the

occurrence of conditions that support or preclude autoignition. The areas in the domain

containing fuel at a lean mixture fraction are critical for predicting autoignition properties,

as the peak chemical activity during autoignition occurs lean of ηst [46].

The centreline ξ̃ distribution, as shown in Fig. 7.4, shows the distribution resulting

from the 3 different cases. With the mixing constants in Case 1, it can be seen that a

significantly higher mean mixture fraction is predicted in comparison to the other tested

cases. The constants for Case 2 and Case 3 yield very similar curves to each other, with a

significantly lower prediction in values than Case 1, especially in the region between x/d
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= 5 and x/d = 15. The difference in values indicates that a higher level of mixing is seen

along the centreline in Case 2 and Case 3.

Examining several radial profiles in Fig. 7.5 , located at x/d = 5, x/d = 10 and x/d

= 15, it can be seen that Case 1 does indeed predict a higher ξ̃ near the centreline of the

domain. The ξ̃ fields are similar to each other for Case 2 and Case 3, with any difference

in the curves reducing with an increase in radial position. The constants used in Case 2,

with Cǫ1 = 0.40, do consistently provide values slightly closer to the Case 1 predictions

than does Case 3. Case 2 predictions range from a 20% underprediction compared to Case

1 at an axial location of 5d, increasing to a 40% underprediction at an axial location of

15d. Case 3 predictions range from a 25% underprediction compared to Case 1 at an axial

location of 5d, increasing to a 50% underprediction at an axial location of 15d. Therefore,

for a 72% reduction of Cǫ1 in Case 2, the difference in centreline ξ̃ ranges from approxi-

mately 20-40% in the axial region investigated, while for a 29% reduction in the value of

Sct, a reduction of approximately 25-50% is observed for this same region. This indicates

that the predictions of ξ̃ are more sensitive to modification of Sct than modification of Cǫ1.
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Figure 7.4: Centreline ξ̃ profile

7.6.3 Mean Mixture Fraction Variance

The centreline ξ̃′′2 distribution, Fig. 7.6, shows much larger differences between cases than

was seen with ξ̃ in Fig. 7.4. At the early stages of mixing, i.e. near the fuel inlet, between
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Figure 7.5: ξ̃ Radial profiles at different locations
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x/d = 0 and x/d = 3, Case 1 exhibits the lowest variance. In comparison, Case 2 and

Case 3 predict a larger variance value in this region near the inlet. This large variance

indicates that this is a very strong region of mixing, and this mixing corresponds to the

large gradient seen in mixture fraction near the inlet seen in Case 2 and Case 3, shown in

Fig. 7.4. Further from the inlet, shown between approximately x/d = 3 and x/d = 7, a

significantly stronger peak in variance is seen for the constants in Case 2, with an increase

of approximately 30% in comparison to the peak Case 1 baseline results. The variance

values in Case 3, although larger than the values of Case 1 prior to x/d = 3, show an

early peak and drop off, falling below the predictions of the standard constants of Case 1.

The peak ξ̃ ′′2 values seen in Case 3 are approximately 27% lower than the peak predicted

by Case 1. This pattern indicates that although both Case 2 and 3 show strong initial

mixing, the effects of the change in Sct with Case 3 are greatest near the inlet, and then

decrease throughout the remainder of the domain, while modifications of Cǫ1 have an effect

throughout the majority of the domain.

Further comparison of ξ̃ ′′2 between the 3 cases is performed by analysis of radial profiles.

In Fig. 7.7 a), the radial ξ̃ ′′2 field at the x/d = 5 axial location is seen. At this location,

the profiles between Case 1 and Case 2 are very similar, as indicated in Fig. 7.6. Case 3

yields a much lower ξ̃ ′′2 value near the centreline; however, beyond the r/d = 1.5 radial

location, the 3 curves become quite similar in magnitude to each other. At the x/d =

10 location, shown in Fig. 7.7 b), it can be seen that the difference between Case 1

and Case 2 is increasing near the centreline, while Case 3 predicts the lowest variance

once again. This is representative of the trends seen in Fig. 7.6 at the x/d = 10 axial

location, where the Case 1 and Case 2 predictions begin to diverge slightly. The curves

begin to converge as the radial distance from the centreline increases, however at this axial

location, it does not happen until approximately the r/d = 2 position. At the x/d = 15

location, Fig. 7.7 c), much the same trends are seen as at the x/d = 10 location, however

the magnitude of the variance has decreased noticeably. The convergence between radial

profiles occurs after the r/d = 3 position, indicating that the effects of mixing constants

is spreading throughout the domain radially with the fuel. It is also observed that the

difference between the predictions tends to be largest near the centreline, while differences

tend to become smaller as the radial distance from the centreline is increased.
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Figure 7.6: Centreline ξ̃′′2 profile

7.6.4 Predictions of Ignition Length

The autoignition simulations conducted in the present study are divided into two major

parts. The first part, which employs the AMC mixing model, provides a characterisation of

the effects of temperature and mixing constants on the autoignition conditions. As a result,

for each of the 3 cases in Table 7.1, 7 different coflow temperatures are simulated. The

resulting 21 simulations provide a characterisation of the effects of turbulence parameters

on the autoignition event, as well as a baseline for expected flow and mixing conditions

which support autoignition. The second part provides an investigation into the effects

of mixing model selection. This is conducted via implementation of the inhomogeneous

mixing model with the mixing constants used in Case 1. The second part of this study is

presented in Sec. 7.7.

The autoignition length or delay is a metric used in assessing the time it takes for a

fuel in an unmixed state to mix with the oxidiser and reach the specified ignition criteria,

which, in this study, is a 1% increase in Favre-averaged temperature. The autoignition

length is highly dependent on the predictions of the mixture fraction and mixing fields, so

varying constants which affect the development of these fields can affect the autoignition

predictions.

A summary of autoignition results is presented in Table 7.2 for the AMC model. Table

7.2 includes the autoignition length at which the autoignition criterion is met, Lign, the

mean mixture fraction at the location of autoignition, ξ̃mr, the conditional scalar dissipa-
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Figure 7.7: ξ̃′′2 Radial profiles at different locations
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tion rate at the most reactive mean mixture fraction, 〈χ | η = ξ̃mr〉, and the reference

time at which ignition occurs relative to the start of the simulation, τign. For the purposes

of this analysis, the most reactive mixture fraction is taken as the mean mixture fraction

value at which ignition occurs.

In Fig. 7.8, results from the simulations undertaken in both the first and second parts

of the study are summarised with the experimental measurements. At almost all temper-

atures, the largest Lign is predicted by Case 2. Case 1 provides intermediate predictions,

while Case 3 constants yield the shortest ignition lengths, correlating with the lowest ξ̃ ′′2

predictions. At high temperatures, the difference between the cases is reduced, and all

cases predict essentially the same value of Lign. For each of the different cases presented

with the AMC model, the length predictions do not cross over each other. The reduction

of Lign with increasing Tcoflow, and a corresponding reduction in the sensitivity to the se-

lection of model constants indicates an increasing importance of the chemical source term

in the CMC equation. The effects of the mixing fields have less of an impact on ignition

predictions in this high temperature region.

The results for the AMC model indicate a general underprediction of the experimen-

tal ignition length. Although there are only 5 data points available for comparison, the

slope in the experimental results indicates a strong correlation between Tcoflow and Lign.

Following the presentation method of Stanković [46], as a method of comparison, the

experimental results are shifted by 10K to the left in Fig. 7.9. The choice of a 10K shift

corresponds with the stated experimental error, which is approximately 1% [42]. With

this shift, it is found that the numerical results from the present study provide much

better agreement with the experimental results, with only slight underpredictions. Using

the results from the Case 1 baseline, prior to the 10K shift in experimental results, with

Tcoflow = 950K, there is an underprediction of approximately 44%, and at Tcoflow = 960K,

the underprediction is approximately 41%. Following the 10K shift, at Tcoflow = 940K

there is an underprediction of approximately 17%, while with Tcoflow = 950K there is an

underprediction of approximately a 19%. The slope followed with the experimental results

is closely matched, indicating that the trends seen numerically are a good representation

of the actual physical processes occurring.

Although the predicted values of Lign stay within approximately 5% for all simula-

tions using the AMC model, the effects of mixing constants is more clearly seen through

analysis of ξ̃mr in Fig. 7.10. In general, all of the cases tested show a tendency for ξ̃mr to
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Table 7.2: Autoignition results with AMC mixing model

Temperature [K] Lign [m] ξmr 〈χ | η = ξ̃mr〉 [s−1]

Case 1 Standard k − ǫ, Sct = 0.7

1080 0.0038 0.0665 73.8

1020 0.0075 0.0661 43.1

1000 0.0102 0.0524 23.0

980 0.0142 0.0534 14.9

960 0.0224 0.0491 6.9

950 0.0304 0.0455 4.3

940 0.0455 0.0310 1.9

Case 2 Cǫ1 = 0.40, Sct = 0.7

1080 0.0042 0.0649 105.0

1020 0.0078 0.0658 58.5

1000 0.00108 0.0624 35.8

980 0.0155 0.0635 21.4

960 0.0248 0.0629 10.4

950 0.0320 0.0484 5.5

940 0.0465 0.0298 1.9

Case 3 Standard k − ǫ, Sct = 0.5

1080 0.0042 0.0405 32.7

1020 0.0075 0.0447 21.8

1000 0.0098 0.0500 17.8

980 0.0135 0.0500 11.1

960 0.0212 0.0405 4.4

950 0.0292 0.0383 2.7

940 0.0435 0.0217 0.9
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Table 7.3: Autoignition results with inhomogeneous mixing model

Temperature [K] Lign [m] ξmr 〈χ | η = ξ̃mr〉 [s−1]

Case 1 Standard k − ǫ, Sct = 0.7

1080 0.0038 0.0500 20.8

1020 0.0068 0.0542 16.8

1000 0.0092 0.0414 12.9

980 0.0125 0.0474 8.0

960 0.0196 0.0449 3.9

950 0.0268 0.0335 2.7

940 0.0338 0.0303 1.6
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Figure 7.8: Ignition length comparison for AMC and Inhomogeneous mixing model with

different mixing constants
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Figure 7.9: Ignition length comparison for AMC and Inhomogeneous mixing model with

different mixing constants, experimental results shifted by -10K

decrease with decreasing temperatures, especially as the ”no ignition” experimental region

is approached. This decrease at low temperatures, which matches what is seen experimen-

tally as the ignition limit, may be an indication of the chemical mechanism favouring lean

mixture fractions for improved ignition kinetics. At higher temperatures, specifically at or

above Tcoflow = 1000K, the value of ξmr becomes less sensitive to the coflow temperature.

This closely follows the findings of Stanković [46], indicating that the region of peak chem-

ical activity does not have a strong temperature dependence in the higher temperature

region. This is indication that the chemical source term in the CMC equation is the most

dominant term, with the spatial and mixing terms having little influence on the results.

The effect of mixing constant selection is also seen in Fig. 7.10 and Fig. 7.11. The

highest values of ξ̃mr and 〈χ | η = ξ̃mr〉 are seen for the Case 2 constants with the AMC

mixing model throughout the majority of the temperature range. As this corresponds

to the highest ξ̃′′2 seen in Fig. 7.6, it follows that an increase in ξ̃′′2 , and therefore χ̃,

favours a higher ξ̃mr at the time of ignition. The Case 1 baseline provided the next highest

predictions of ξ̃mr and 〈χ | η = ξ̃mr〉, with Case 3 providing the lowest predictions. This

corresponds to the magnitude of centreline ξ̃′′2 for each of Case 2 and Case 3.

As a general trend, it can be observed that as Tcoflow decreases, the values of ξmr and

〈χ | η = ξ̃mr〉 decrease sharply. Although there was no instance in which ignition was not

observed to occur, the sharp downward trends with decreasing temperature indicate that

the ”no ignition” boundary is not likely far below the minimum value of Tcoflow = 940K
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used in the simulations. These trends are explained by the dependence of the chemical

source term, ω̇, on Tcoflow. At low temperatures, ω̇ is a smaller magnitude and is in com-

petition with the effects of mixing, convection and diffusion. Therefore the timescales

associated with ignition are larger and of a similar order to the mixing timescales, meaning

that the predictions of 〈χ | η〉 have a larger influence on Lign. At high temperatures,

ω̇ dominates the CMC equation, and the associated timescales with the ignition process

decrease. As a result, the ignition predictions become less dependent on the mixing field

due to the magnitude of ω̇. This is exemplified by the spread of Lign predictions at low

temperatures, which range approximately 3mm from largest to smallest, while at higher

temperatures, the spread is reduced to approximately 0.5mm.

7.7 Comparison of Mixing Models

This section provides a detailed comparison between the results obtained with both the

AMC and inhomogeneous mixing models. The predictions of ignition length of the inho-

mogeneous model are presented in relation to the AMC model. Conditional values are

provided for both models at 3 different Tcoflow, 1080K, 980K and 950K. Included is an

analysis of the temporal evolution of the conditional scalar dissipation rate, the condi-

tional species mass fractions and conditional temperature. The steady flame predictions

of each model are also compared.

7.7.1 Predictions of Ignition Length

As it is shown in Sec. 7.6.4, the choice of turbulence constants only leads to a difference

of approximately 5% in the predictions of ignition length when using the AMC mixing

model. Upon simulation with the inhomogeneous mixing model, the ignition length is

seen to decrease throughout the domain, especially at lower Tcoflow, as shown in Fig. 7.8.

The Lign results from the inhomogeneous model stay within approximately 15% of Case

1 constants with the AMC model for the range of coflow temperatures tested. It is seen

that the difference between mixing model predictions is at the largest for low Tcoflow. This
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is explained by the temperature dependence of the chemistry, i.e. as Tcoflow increases, the

magnitude of the chemical source term increases to the point that ignition is not largely

dependent on the predictions of mixing intensity.

The flow conditions at which ignition occurs are seen to be slightly different depending

on the mixing model chosen. In Fig. 7.10, Case 1 constants for the AMC model and the

inhomogeneous model display similar trends, while the predicted values of ξ̃mr for the in-

homogeneous model remain slightly lower in magnitude. The temperature dependence at

low Tcoflow is again demonstrated, with a sharp increase in the value of ξ̃mr as temperature

increases, while at higher temperatures this dependence is not seen. The same mechanism

responsible for this trend with the AMC model is also responsible for the predictions of

the inhomogeneous model: as the temperature increases, the rate of reaction increases,

seen with a larger chemical source term in the CMC equation, and the ignition process

is controlled less by mixing and more by time available for reaction to occur, resulting in

similar values regardless of the model and constants chosen.

7.7.2 Conditional Scalar Dissipation Rate Temporal Evolution

This analysis examines three different coflow temperatures for the AMC and inhomoge-

neous mixing model, both using the Case 1 mixing constants. The coflow temperatures

used for analysis are 1080K, 980K and 950K.

Since the flowfields of both the AMC model and inhomogeneous model are identical up

to the point of ignition, any differences in the ignition predictions from the CMC equation,

Eq. 3.11 are due to the evolution of 〈χ | η〉. By its nature, the AMC model provides

regular distributions of 〈χ | η〉, according to Eq. 3.47. The shape of the inhomogeneous

model is not constant in η-space, but rather is dependent on multiple scalars and vectors,

as defined in Eq. 3.54. This varying influence of the flowfield allows the shape of the 〈χ | η〉
to vary with time and location.

The first basis of comparison of the two models is performed with Tcoflow = 1080K.

In Fig. 7.12 a), a temporal evolution of 〈χ | η = ξmr〉 is shown for the different mixing

models. It is immediately apparent that the choice of model provides a large difference in

the 〈χ | η = ξmr〉 evolution. At times leading up to ignition, the AMC model is seen to

predict a large spike in values, while the inhomogeneous model predicts a steady increase.
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It can also be seen that there is a large gap in the predictions of 〈χ | η = ξmr〉 at τign. The
high coflow temperatures involved in this simulation therefore allow for a large range of

〈χ | η = ξmr〉 and ξ̃ for which ignition is possible.

In Fig. 7.12 b) and c), the respective curves for 〈χ | η〉 at different times show opposing

trends for the two models. The overall magnitude of the AMC curve is seen to decrease

as τign is approached, while the overall magnitude of the inhomogeneous model is seen to

increase as τign is approached. Despite the contrasting predictions, the value of χ̃ does in-

deed increase with time at Lign for both models. The cause of this difference in predictions

is largely due to the position and shape of the PDF. As χ̃ is given by
∫ 1

0
P (η) 〈χ | η〉dη, the

subsequent shift in the distribution of the PDF changes the main η region of influence on

the 〈χ | η〉 curve. With the AMC model, this shift leads to a net decrease of the magnitude

of the curve, while providing an increase in χ̃. The inhomogeneous model demonstrates

the opposite trend, where the change of the PDF relative to the change in the 〈χ | η〉
profile leads to a net increase in magnitude of the curve.

The shape of the 〈χ | η〉 curves provided by both mixing models are similar in shape;

however, some differences may be seen by examining Fig. 7.12 b) and c). Both models

predict what is approximately a bell shaped distribution, however, the peak for the in-

homogeneous model is predicted slightly rich of η = 0.5, yielding an asymmetric profile.

In the area lean of η = 0.05, the inhomogeneous model provides only small changes in

〈χ | η〉 values as time progresses. This lack of temporal change of the curve indicates

that the mixing is only weakly dependent on time in this region with the inhomogeneous

model. Conversely, with the AMC model, the magnitude of 〈χ | η〉 in this region decreases

proportional to the peak value on the curve, as its shape is defined by a single function.

Therefore, the AMC model indicates that the mixing is indeed a strong function of time.

In the portion of the curve rich of η ≈ 0.9, the predictions begin to overlap between the two

models, with the inhomogeneous model predicting higher levels of mixing in this region

despite the rest of the curve being lower. As time progresses, the molecular mixing in this

region increases. Despite this change in mixing trends predicted at large η, the influence

of this region on the Favre-averaged values is minimal, as the probability in this area of

the curve is essentially zero.

The second temperature examined is Tcoflow = 980K. At this temperature, the pre-

dictions of 〈χ | η = ξmr〉 in Fig. 7.13 a) closely follow the trends outlined previously in Fig.

7.12 a). The AMC model shows a large peak, then a fast decline as ignition is approached,
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Figure 7.12: 〈χ | η〉 and PDF evolution at Lign for Tcoflow = 1080K
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Figure 7.13: 〈χ | η〉 and PDF evolution at Lign for Tcoflow = 980K
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while the inhomogeneous model again shows a steady increase up to the time of ignition.

This is reflected in the predictions of Lign, where this peak has a delaying effect, pushing

ignition to a distance further downstream of the fuel inlet. The values at which ignition

occur are beginning to converge for the two different models, with only a small gap present,

indicating that at this lower temperature the chemistry is more sensitive to mixing than

with Tcoflow = 1080K. The magnitudes of 〈χ | η〉 for the different models are illustrated in

Fig. 7.13 b). The trends previously observed for 〈χ | η = ξmr〉 are reproduced in the rela-

tive magnitudes of the curve, with the inhomogeneous model predicting a steady increase

and the AMC model providing a relatively fast decrease in 〈χ | η = ξmr〉. In Fig. 7.13

c), the relative changes between the models can be seen, substantiating what is seen in

Fig. 7.13 a) with a slow increase of 〈χ | η = ξmr〉 for the inhomogeneous model and a fast

decrease for the AMC model. Fig. 7.13 d) demonstrates the PDF values for the different

ignition locations at various timesteps. The results indicate that at early stages the PDF

for the inhomogeneous model shows a stronger and narrower peak than with the AMC

model, however, as time progresses, the distribution becomes very similar at ignition. The

wide spread of the PDF indicates that a large range of η-space has a strong influence on

the calculation of the Favre-averaged values for both models.

The final temperature used for comparison between the models is Tcoflow = 950K. At

this temperature, there is a longer delay in ignition, and the lower temperatures result in

ignition occurring in an area of lower mixing. The tendency towards reaction at a reduced

〈χ | η = ξ̃mr〉 is highlighted in Fig. 7.14 a), which shows significantly lower values than seen

at 980K or 1080K. The gap in the 〈χ | η = ξ̃mr〉 values between the two models is further

reduced at this temperature, which is a further indication that the temperature sensitivity

is playing an increasingly dominant role in the simulations. At Tcoflow = 1080K, the gap

between the 〈χ | η = ξ̃mr〉 predictions of the two models is large, on the order of 40s−1,

while at Tcoflow = 980K, this reduces to 3s−1 and at Tcoflow = 950K this is further reduced

to approximately 1s−1. This reduction indicates that the chemical source term is compet-

ing more with the 〈χ | η〉 predictions as the coflow temperature decreases, limiting chemical

reaction rates and providing an overall increase in autoignition lengths. The 〈χ | η〉 curves,
shown in Fig. 7.14 b) and c), show further demonstration of the trends observed at higher

coflow temperatures. While the AMC model predicts a sharp decrease as time progresses,

the inhomogeneous model shows an essentially constant value between 0 ≤ η ≤ 0.03, which

is close to ξ̃mr. The best agreement between the two models is also in this region. The PDF
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Figure 7.14: 〈χ | η〉 and PDF evolution at Lign for Tcoflow = 950K
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evolution for both models is shown in Fig. 7.14 d), where the inhomogeneous model once

again predicts ignition in areas with a slightly lower mean and lower variance, resulting in

narrower, stronger peaks in the PDF. Therefore, Favre-averaging with the PDF provided

by the AMC model tends to smear out any peaks in conditional temperature or species

productions, further delaying ignition.

Through examining the 〈χ | η〉 curves for both models leading up to and at the time of

ignition, the reasons for the reduced Lign values predicted by the inhomogeneous model can

be explained by examining the temporal 〈χ | η〉 evolution. The nature of the AMC model

and the fixed shape of the 〈χ | η〉 distribution provides unexpected behaviour: leading up

to the point of ignition, shifts in the PDF due to changes in the value of ξ̃ at the ignition

location result in the 〈χ | η〉 distribution decreasing the magnitude of the distribution

as time progresses, despite a net increase in χ̃. The inhomogeneous model displays the

opposite trend, with the magnitude of 〈χ | η〉 increasing with χ̃. At low Tcoflow, the overall

increased mixing provided with the AMC model precludes early ignition at locations which

are predicted by the inhomogeneous model. At high Tcoflow, despite the differences in pre-

dicted 〈χ | η = ξ̃mr〉, little difference in Lign is observed due to the increasing magnitude

of the chemical source term in the CMC equation.

7.7.3 Conditional Scalars

As the predictions of 〈χ | η〉 directly affect the chemistry calculations, examining the pre-

dictions of conditional species mass fractions is a direct indication of the performance of

the inhomogeneous and AMC mixing models. This section provides a comparison of the

conditional values for χ, P̃ (η), YOH , and T taken at the ignition location. In this com-

parison, the Tcoflow = 980K scenario is used, with plots taken 0.02ms prior to ignition, or

τ/τign = 0.95, as well as at the time of ignition.

In order to aid in the interpretation of the conditional predictions, the PDF for both

the AMC and inhomogeneous mixing model is provided in Fig. 7.15 a). It can be seen

for both models that there is a change in the mean value as time progresses, indicated

by a shift in the peak values of the respective curves. This is due to the fuel penetrating

further into the domain, and the local ξ̃ values increasing as time passes. As ξ̃ increases,

ξ̃ ′′2 also increases, leading to a wider and flatter PDF curve. As the PDF spreads, the
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influence of conditional values from a wider η range become increasingly important to the

Favre-averaged values. The PDFs relating to the inhomogeneous model are centered at

leaner η values and possess a smaller variance, due to ignition occurring further upstream

in the domain with the inhomogeneous model.

The 〈χ | η〉 profiles for both the AMC model and the inhomogeneous model are shown in

Fig. 7.15 b). The previous trends identified in Fig. 7.12 b) and c), Fig. 7.13 b) and c), and

Fig. 7.14 b) and c) are once again represented, with the AMC model predicting a decrease

in the magnitude of the 〈χ | η〉 curve as time progresses, and the inhomogeneous model

predicting an increase in the 〈χ | η〉 curve as time progresses. In the region of ξmr, which

for the AMC model is ξmr = 0.0534 and for the inhomogeneous model is ξmr = 0.0474,

the AMC model predicts a significant reduction of 〈χ | η = ξmr〉 over the timestep shown,

on the order of 10-20%, while the inhomogeneous model predicts an essentially unchanged

level of conditional scalar dissipation rate. This overall lower level of mixing, as well as a

less time dependent prediction around ξmr seen with the inhomogeneous model is expected

to provide an increase in the chemical activity at this location, and earlier predictions of

ignition.

The conditional OH mass fraction, 〈YOH | η〉, is an important precursor to ignition. In

previous studies [46, 47], it is used as a measure of determining the time at which ignition

occurs. Therefore, any difference seen in the predictions of 〈YOH | η〉 can influence the

overall ignition and combustion results. In Fig. 7.15 c), the 〈YOH | η〉 values from both

models are shown. At both times shown, the inhomogeneous model predicts a higher level

of OH radicals present in the flow. This is an indication that the lower 〈χ | η〉 leading

up to ignition predicted by the inhomogeneous model allows for an earlier buildup of the

concentration of radicals. The larger peak OH concentration for the inhomogeneous model

is also an indication of the lower overall 〈χ | η〉 at the time of ignition with the inhomoge-

neous model.

Although the calculations of 〈T | η〉 occur following the chemistry calculation, the

predicted values are still a good indication of the overall chemical activity occurring at a

location, without investigating each individual species separately. Large reaction rates at

a given η yield large amounts of evolved enthalpy, which causes a corresponding increase

in the conditional temperature. Fig. 7.15 d) indicates that the 〈T | η〉 trends closely

follow the 〈YOH | η〉 seen in Fig. 7.15 c). Again, the lower predictions of 〈χ | η〉 made

by the inhomogeneous model allow increased chemical activity and increased conditional
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Figure 7.15: Conditional values at τ/τign = 0.95 (thin lines) and at the time of ignition

(thick lines), all taken at Lign
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temperatures in comparison to what is seen with the AMC model. The buildup of 〈T | η〉
appears once again to be more gradual due to the steady increase of 〈χ | η〉, while the AMC

model predicts a peak 〈χ | η〉 occurring before ignition, which further delays predictions of

ignition.

The trends seen in the conditional values further substantiate the trends indicated pre-

viously in Figs. 7.12 - 7.14, with a steady increase of 〈χ | η = ξmr〉 predicted with the

inhomogeneous model and a peak, then rapid decrease of 〈χ | η = ξmr〉 predicted with

the AMC model. The behaviour of the AMC model leading up to ignition provides an

explanation of why the predictions of Lign are larger than that produced with the inhomo-

geneous model.

7.7.4 Steady Flame Predictions

Following the predictions of autoignition, the case with Tcoflow = 980K is run until steady

state is reached with both the AMC and inhomogeneous model. Although there are no

experimental data available to validate the numerical results, this provides a useful com-

parison of the performance of the AMC and inhomogeneous models in comparison to each

other when applied to a steady flame.

The comparison between the models is performed by comparing predictions at 4 loca-

tions in the flow, as shown in Table 7.7.4. Position 1 and Position 2 are taken at the same

axial location but different radial locations. Position 3 is taken further downstream along

the centreline of the flow, and Position 4 is taken still further downstream, where temper-

atures are in decline. Only centreline values at downstream positions in the flow are taken

for comparison, as there is little cross-stream variation in the 〈χ | η〉 curves predicted.
Examining the ξ̃ field along the domain centreline, shown in Fig. 7.16, it is apparent

Table 7.4: Sample locations for comparison between AMC and inhomogeneous models

Position Axial Location [x/d] Radial Location [r/d]

Position 1 5 0 (Centreline)

Position 2 5 1.0

Position 3 10 0 (Centreline)

Position 4 15 0 (Centreline)
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that there is virtually no difference between the AMC model and inhomogeneous model

calculations. Any differences in the flowfield values are due to different temperature and

density predictions, which cause a slight change in the mixing fields. The centreline ξ̃ ′′2,

not shown, is also similar for the two sets of simulations.

The centreline T̃ is an indication of the relative reaction progress for each of the two
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Figure 7.16: Centreline steady ξ̃ profile
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Figure 7.17: Centreline steady T̃ profile

models tested, shown in Fig. 7.17. The differences between the models become much more

apparent than seen with the ξ̃ or ξ̃ ′′2. The temperature begins to increase further upstream
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Figure 7.18: T̃ [K] distribution within the computational domain, with the AMC model

shown on the left and the inhomogeneous model shown on the right. The plots are mirrored

along the centreline to provide easier visual comparison

for the inhomogeneous model, indicating an earlier onset of chemical reaction. Tempera-

ture peaks are also higher for the inhomogeneous model, but begin to decline earlier than

what is seen with the AMC model. The peak temperatures are approximately 1970K for

the inhomogeneous model and 1930K for the AMC model. To provide a more complete

view of the temperature distribution within the domain, 2-Dimensional coloured plot is

provided in Fig. 7.18. In this plot, it can be seen that the AMC and inhomogeneous model

temperatures follow a similar pattern throughout the domain, with the inhomogeneous

model indicating a flame position slightly closer to the inlet.

The results at Position 1 are summarised in Fig. 7.19, which provides a comparison of

the P̃ (η) distributions for the two models at this location. Since the flowfields in Fig. 7.19

a) have been shown to be nearly equivalent for both of the models, the PDF for each of

the two models are expected to be similar, which is demonstrated. Fig. 7.19 b) shows that

there are some differences between 〈χ | η〉 curves for the two models. The inhomogeneous

model predicts a slightly lower value at η ≤ 0.5, while for η ≥ 0.5, the AMC model predicts

lower values. Although both curves return the same χ̃, the distribution in the inhomoge-

neous model favours higher levels of chemical activity, due to the reduced magnitude of

the mixing term in the CMC equation. Accordingly, it can be seen in Fig. 7.19 c) that
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the 〈YOH | η〉 calculations from the inhomogeneous model indicate reaction is occurring at

this location, while at the same location there is virtually no OH production for the AMC

model. This is also reflected in the conditional temperatures, shown in Fig. 7.19 d), where

the inhomogeneous model indicates a slight increase in temperature for lean mixture frac-

tion values, while at this point, the AMC model is showing pure mixing without reaction.

This finding substantiates the earlier centreline temperature results in Fig. 7.17, with the

AMC model predicting a later ignition location than the inhomogeneous model.

Position 2 provides further insight into the differences between the AMC and inho-
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Figure 7.19: P̃ (η), 〈χ | η〉, 〈YOH | η〉 and 〈T | η〉 at Position 1

mogeneous model. Fig. 7.20 a) shows the PDFs for each of the respective flows. Despite

the flowfields being extremely close in terms of predictions of ξ̃ or ξ̃ ′′2, small variations
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Figure 7.20: P̃ (η), 〈χ | η〉, 〈YOH | η〉 and 〈T | η〉 at Position 2
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occur due to the onset of ignition. The earlier ignition demonstrated with the inhomoge-

neous causes a local decrease in density, thus affecting the ξ̃ or ξ̃ ′′2. The resulting PDF

for the inhomogeneous model is wider and possesses a smaller peak than with the AMC

model. Although the respective changes are small, the effects are large in terms of the

scalar dissipation rate and chemical reaction. The conditional scalar dissipation rate, Fig.

7.20, is significantly different between the two models. Once again, both curves return the

same, or very similar, χ̃; however, it is mainly the difference in PDF which produces the

discrepancy in magnitude, while further discrepancy may be attributed to differences in χ̃

resulting from flowfield differences between the two models. This effect is similar to what is

observed, for example, in Fig. 7.12, where the magnitude of the AMC model curve shows

a strong dependence on the local ξ̃ and thus the PDF. The OH concentrations are shown

in Fig. 7.20 c). The inhomogeneous model shows much higher levels of chemical activity,

where the AMC model does not indicate significant changes in OH concentrations from the

non-reacting case. The conditional temperature again reflects the YOH changes seen, as the

conditional temperature begins to increase for the inhomogeneous model, while remains as

the mixing case for the AMC model.

The results from Position 3, which lies on the centreline, but further downstream

from Position 1, are shown in Figs. 7.21 a) - d). At this location, both models indicate

significant reaction and the difference between the PDF values is small, as shown in Fig.

7.21 a). In addition, the AMC and inhomogeneous models predict similar 〈χ | η〉 curves,
which is illustrated in Fig. 7.21 b). Despite the PDF and 〈χ | η〉 for both models being

almost identical, there are still significant differences in OH levels. This difference can be

attributed to the influence of the convective and diffusive terms in the CMC equation. The

larger YOH predicted by the inhomogeneous model can be partially attributed to convec-

tion of this radical from areas with higher concentrations upstream of Position 3, while at

the same time, diffusion driven by higher downstream temperatures leads to an increase

in mixture enthalpy and higher reaction rates for a given 〈χ | η〉. Fig. 7.21 d), showing

〈T | η〉, is further indication of the increased diffusive contribution, as the increased mix-

ture enthalpy leads to higher conditional temperatures with the inhomogeneous model.

The final position investigated is also the furthest downstream from the fuel inlet. At

this location, the majority of the reaction has taken place, and the centreline temperature

predictions between the two models, Fig. 7.17, are very similar, indicating that mixture

enthalpy and composition are very similar as well. Similar to Position 3, the PDF for
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Figure 7.21: P̃ (η), 〈χ | η〉, 〈YOH | η〉 and 〈T | η〉 at Position 3
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Figure 7.22: P̃ (η), 〈χ | η〉, 〈YOH | η〉 and 〈T | η〉 at Position 4
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both models at Position 4, Fig. 7.22 a) are almost identical. Only very small variations

can be seen, with the AMC model predicting a narrower, and slightly higher peak. Fig.

7.22 b) presents 〈χ | η〉. For η ≤ 0.1, the inhomogeneous model predicts slightly higher

mixing values, while for η ≥ 0.1, the AMC model predicts higher values. Consequently,

the 〈YOH | η〉 profile shown in Fig. 7.22 c) indicates larger values for the AMC model

for η ≤ 0.1, corresponding to a lower 〈χ | η〉, while the inhomogeneous model predicts

larger 〈YOH | η〉 for η ≤ 0.1, where it has a lower 〈χ | η〉. In general, both curves see

a reduction in peak 〈YOH | η〉 and 〈χ | η〉 values in comparison to Position 3, indicating

that chemical activity is slowing at this location. 〈T | η〉, shown in Fig. 7.22 d), shows a

higher predictions once again for the inhomogeneous model. This can also be attributed

to the lower 〈χ | η〉 predicted by the inhomogeneous model for η ≥ 0.1. The reduction in

mixing prolongs the chemical reaction for this region of η-space, partially contributing to

the higher 〈T | η〉. It is also seen that both curves for 〈T | η〉 are higher than at any other

location, indicating the increasing influence of the diffusive term in the CMC equation.

All other Tcoflow are run to steady convergence, with mass and velocity residuals

Figure 7.23: Steady flame T̃ [K] predictions, Tcoflow = 1080K on the left, Tcoflow = 1020K

in the centre, Tcoflow = 1000K on the right

below 1.0 × 10−4. Although the results are not presented in detail, the final flame struc-

ture of each scenario is of interest to this study, and is presented in Fig. 7.23 and Fig.
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Figure 7.24: Steady flame T̃ [K] predictions, Tcoflow = 960K on the left, Tcoflow = 950K in

the centre, Tcoflow = 940K on the right

7.24. The random spots regime and no ignition regimes, as defined by Markides and Mas-

torakos [42], are not observed for the range of Tcoflow tested. Similar to the conclusions by

Patwardhan and Lakshmisha [43], it is believed that the averaging nature of RANS type

simulations dampen the turbulent fluctuations sufficiently that the random spots regime

is not observed. Lifted flames are observed in the range of 940K ≤ Tcoflow ≤ 1020K, while

flashback is observed for Tcoflow = 1080K. This is seen to be independent of the present

mixing model used. It is also seen that in the lifted flame predictions, the liftoff distance

is inversely proportional to Tcoflow, with higher temperatures leading to a flame stabilised

nearer the fuel inlet. This is an indication of the increase in the influence of diffusion and

chemical reactivity at elevated temperatures, allowing combustion to occur for higher χ̃

with increasing coflow temperatures.

Overall, the inhomogeneous model is seen to predict the onset of combustion closer to

the fuel inlet with higher overall temperatures, both Favre-averaged and conditional. This

is the result of the 〈χ | η〉 distributions, which allow for increased chemical activity further

upstream in the domain. The enthalpy evolved is then convected downstream, encouraging

further reaction and higher conditional temperatures at subsequent locations. At areas far

from the inlet, such as Position 4, although the χ̃ values are similar for both models, the

distribution predicted by the inhomogeneous model provides a higher overall conditional
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temperature curve and increased chemical activity at large η.

7.8 Inhomogeneous Model Results

This section focuses on analysis of the results of the inhomogeneous mixing model. The

inhomogeneous model conditional scalar dissipation rate is examined on a term-by-term

basis to determine how and why the model provides different results at different locations

in comparison to the AMC model.

7.8.1 Equation Budgets

In Eq. 3.55, reproduced as:

1

2
P̃ (η)〈χ | η〉 = − ∂

∂t
Ĩ1 (η)

︸ ︷︷ ︸
Term 1

+

[
−ũi

∂Ĩ1 (η)

∂xi

]

︸ ︷︷ ︸
Term 2

+

[
−Dt

∂ξ̃

∂xi

∂

∂xi

(
Ĩ2 (η)

ξ̃ ′′2

)]

︸ ︷︷ ︸
Term 3

+

(
Ĩ2 (η)

ξ̃ ′′2

)[
∂ξ̃

∂t
+ ũi

∂ξ̃

∂xi

]

︸ ︷︷ ︸
Term 4

,

4 different terms are identified, each of which represents a contribution to the molecular

mixing, 〈χ | η〉. Term 1 is the temporal derivative of Ĩ1, and represents the changes due

to the transient nature of the flowfield. In steady simulations this term is equal to zero.

Term 2 represents the convective term, and is largely influenced by the magnitude of the

velocity. Term 2 is also dependent on the spatial gradients of Ĩ1, which is a function of the

PDF, as defined by Eq. 3.51. Term 3 represents the diffusion occurring in space, and is

a function of the turbulent diffusivity, spatial gradient of ξ̃, and the gradient of Ĩ2

ξ̃
′′2

. The

final term, Term 4, is a function of the value of ξ̃ ′′2 multiplied by the total derivative of ξ̃,

making it heavily dependent on the flowfield predictions.

For simplicity, the comparison is conducted using a single coflow temperature, Tcoflow =

980K, and multiple axial and radial locations within the flow. By using the results at the
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Table 7.5: ξ̃ and ξ̃ ′′2 of locations studied for inhomogeneous model equation budgets

Axial Position [L/Lign] Radial Position [r/d] ξ̃ ξ̃ ′′2

0.5 0.0 0.6783 0.0460

0.5 0.3917 0.0634

1.0 0.0154 0.0041

1.0 0.0 0.0479 0.0051

0.5 0.0444 0.0046

1.0 0.0159 0.0019

1.25 0.0 0.0016 9.4× 10−5

0.5 0.0020 1.1× 10−4

1.0 0.0016 1.0× 10−4

time of ignition, it is possible to investigate various regions of the flow close to the inlet,

where the temporal changes in the mixing field are smaller, and further into the domain,

beyond the location of ignition, where the fuel flow has not yet fully developed at the

timestep of interest. As such, the axial locations taken are 0.5Lign, 1.0Lign and 1.25Lign.

Investigation into locations beyond 1.25Lign is not possible at the time of ignition, as the

ξ̃ values beyond this location have not yet surpassed ηmin required for the dynamic CMC

cells to become active, as outlined in Sec. 5.4.1. Likewise, the radial coordinates are se-

lected to investigate the extents of the active CMC grid. This results in radial coordinates

of r/d = 0, r/d = 0.5, r/d = 1.0. At each of the locations, the contribution of each of the

terms in Eq. 3.55 is examined. Table 7.5 provides ξ̃ and ξ̃ ′′2 for each location examined.

At the axial location nearest the fuel inlet, x = 0.5Lign, it can be seen in Fig. 7.25

that the inhomogeneous model predicts a nearly symmetrical 〈χ | η〉. The centreline, or

r/d = 0 predictions indicate peak mixing occurs at approximately η = 0.5, and follows

the typical AMC curve the most closely. Progressing further outward, at r/d = 0.5, the

curve demonstrates higher 〈χ | η〉 values for all η. This corresponds to a position within

the mixing layer mixing layer, as identified previously in Fig. 7.7 a), with the peak vari-

ance values occurring off centre. The peak of this curve is shifted slightly rich of η = 0.5.

Following this peak magnitude in mixing seen at r/d = 0.5, the 〈χ | η〉 values at r/d = 1.0

decrease once again. The magnitude of the curves shown in Fig. 7.7 indicates that peak

mixing occurs somewhere away from the centreline, where the fuel and oxidiser streams

both interact.
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Figure 7.25: 〈χ | η〉 at r/d = 0, 0.5 and 1.0, x = 0.5Lign

To identify the cause for the differences seen in Fig. 7.25, the individual terms of the

inhomogeneous model as well as the PDF are examined in Fig. 7.26. Fig. 7.26 a) provides

a breakdown of the inhomogeneous terms and Fig. 7.26 b) provides the PDF. At this

location, Term 1 and Term 4 are seen to provide the largest contribution. The magnitude

of Term 1, the temporal term, indicates that the flowfield is still unsteady and subject

to relatively large changes. The evolution of Ĩ1 near the inlet over a short period of time

increases the magnitude of the term. Due to the negative sign on Term 1, its magnitude

remains entirely negative for all η. The contribution of Term 4, the ξ̃ field dependent term,

provides a similarly large positive contribution. Term 4 provides further agreement with

the large temporal gradients seen in Term 1, largely cancelling the influence of Term 1.

Term 3 provides a relatively minor overall contribution to the inhomogeneous formulation;

however it is seen to closely follow the shape and magnitude of the P̃ (η) predictions shown

at this location. This term is a measure of the influence of diffusion, which appears to be

at a maximum near η = 0.6. Term 2 is seen to provide a negligible impact in the formula-

tion, as there are no large velocity gradients in the flow prior to ignition. Moving outward

radially to the r/d = 0.5 location, with the inhomogeneous terms shown in Fig. 7.26 c)

and the PDF in Fig. 7.26 d), the influence of Term 1 has fallen to almost negligible levels

relative to the remaining terms, while the magnitude of Term 4 has increased by nearly a

factor of 10. This indicates a decrease in the significance of the temporal gradient of Ĩ1,

while the spatial gradients of ξ̃ have increased in importance. This is largely due to the

steep drop off in ξ̃ as the edge of the mixing layer is approached. Term 2, the convective
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term, provides a larger contribution at this location as well. This is a result of the increased

spatial gradient of Ĩ1, which is dependent on the ξ̃ field. Term 3 once again closely follows

the PDF, however, in this location it becomes the most significant term at large η. At

the r/d = 1.0 location, it is seen in Fig. 7.26 e) and f) that the value of ξ̃ is significantly

lower than seen in the previous locations. The effect on the model terms is immediately

obvious as well, with Term 1 and Term 3 becoming small relative to the remaining terms.

This is an indication that temporal gradients are small, and the influence of diffusion is

also relatively minor at this location, both largely due to the lack of influence of the fuel

stream. Term 2 indicates that the convective effects dominate in this area, as diffusion is

shown to be minor. It is interesting to note that the magnitude of Term 2 has changed

sign when compared to Fig. 7.26 c), indicating that a change of direction of the general

convection influence has occurred, possibly due to local variations in either axial or radial

velocity. As the velocity gradients are small, relatively small changes in either axial or

radial velocity could effect this change. Term 4 remains large because of the gradients in

Ĩ2 at the edge of the mixing layer.

Moving to the axial location of ignition, i.e. x = Lign, shown in Fig. 7.27, it can be

seen that there is a smaller cross-stream variation in 〈χ | η〉, especially at small η. Indeed,

it can be seen that at either the centreline location or r/d = 0.5 location, the 〈χ | η〉
predictions are nearly identical up to approximately η = 0.1. The predictions given at

r/d = 1.0 fall slightly in comparison to the locations closer to the centre of the flow, but

still provides a similar shape in the 〈χ | η〉 curve. At large η, particularly above η = 0.8,

the values at r/d = 1.0 are seen to exceed those at r/d = 0.5. Despite this, the distribution

of P̃ (η) is largest at small η, making this difference essentially negligible. The inhomoge-

neous model contributions and PDF at the r/d = 0 location, shown in Fig. 7.28 a) and b),

respectively, indicate that both the influence of the terms as well as the PDF are largest

below η ≈ 0.3. Term 1 and Term 4 provide the largest influence on the model predictions,

while Term 2 and Term 3 remain relatively small by comparison. As Term 1 is temporal,

it’s large negative magnitude indicates that the flowfield is still evolving at this location

relatively quickly. The magnitude of Term 4 also indicates that the total derivative of ξ̃

is large and plays a significant influence. The convective and diffusive influence, given by

Term 2 and Term 3, respectively, are minor as this location is along the centreline and only

axial scalar and vector gradients are significant. The conditions at this location and this

timestep support ignition of the mixture, as evidenced by an increase in Favre-averaged
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Figure 7.26: Inhomogeneous model terms and P̃ (η) at x = 0.5Lign

147



temperature. Moving outward to the r/d = 0.5 location, shown in Fig. 7.28 c) and d), the

influence of Term 2 and Term 4 have changed. Instead of being dominated by Term 4, as

seen at the centreline, Term 2 increases in importance, indicating that the convective term

increases off centre. The PDF remains similar to that seen at the centreline, so there are

no significant radial gradients of ξ̃ or ˜I1,2. At the r/d = 1.0 location, Fig. 7.28 e) and f) ,

the influence of the inhomogeneous terms remains largely unchanged from the r/d = 0.5

location; however, the magnitudes of the respective terms have decreased.

When examining the results at the x = 1.25Lign location, shown in Fig. 7.29,
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Figure 7.27: 〈χ | η〉 at r/d = 0, 0.5 and 1.0, x = 1.0Lign

the trends seen in Fig. 7.27 are reproduced, albeit at a smaller magnitude. The respective

〈χ | η〉 curves at the centreline and r/d = 0.5 locations, shown in Fig. 7.29, predict nearly

identical values below η ≈ 0.1, which is within the area of strongest influence from the

PDF due to the local ξ̃ values being on the order of 1×10−3. Once again, moving outward,

the 〈χ | η〉 curve decreases for all η. At large η values, it is seen that the curve appears to

be discontinuous for all locations shown; however, this is largely due to a lack of resolution

in this area due to the spacing of the η grid. This is not expected to influence the results

in any way, as the ξ̃ yield extremely low probabilities for large η at this axial location.

Looking at the term-by-term contributions and PDF for the centreline, Fig. 7.30 a) and

b), respectively, the most important terms are Term 1 in the negative direction and Term

4 in the positive direction. As ξ̃ is on the order of 10−3, the PDF is highly concentrated

near the pure air boundary. The strong and narrow peak of the PDF indicates that there

is little variation in fuel content at this location and mixing is almost complete. At the
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Figure 7.28: Inhomogeneous model terms and P̃ (η) at x = 1.0Lign
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r/d = 0.5 radial location, Fig. 7.30 c) and d), the inhomogeneous model terms once again

follow the trend seen further upstream at the x = Lign location, with Term 2 and Term

4 essentially swapping magnitudes. The PDF remains similar to the centreline position,

as there is very little cross stream variation in ξ̃ and ξ̃ ′′2. At the furthest radial location,

Fig. 7.30 e) and f), the inhomogeneous terms remain similar in relative contribution to the

model, with a slight reduction in magnitude. The PDF again remains similar to the other

radial locations seen at x = 1.25Lign.

Overall, for the current flow, the inhomogeneous model provides a 〈χ | η〉 curve some-
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Figure 7.29: 〈χ | η〉 at r/d = 0, 0.5 and 1.0, x = 1.25Lign

what similar in shape to the AMC model. The magnitude of the curve is largest off the

centreline, and appears to peak within the mixing layer between the fuel and oxidiser. The

magnitudes of the curves remain similar at small η, typically below η ≈ 0.1. As the PDF is

concentrated in this area for most locations, except very near the inlet, this area provides

the largest impact on the overall performance of the model.

Following examination of the inhomogeneous model term budgets, several trends emerge.

The first trend seen is that the magnitude of all terms within Eq. 3.55 have the largest

relative contribution in areas within η-space where the PDF is also large. Term 1 remains

negative in all instances seen within the current flow. Unsteady flows with large oscillations

or fluctuations, such as vortex shedding, would result in positive and negative oscillations

of Term 1 due to the alternating directions in the ξ̃ gradients; however, for the current

flow this is not seen. Term 1 is strongest along the centreline and decreases quickly with

increasing radial distance. Term 2 has minimal influence at locations close to the inlet, but
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(c) Inhomogeneous model terms at r/d = 0.5
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Figure 7.30: Inhomogeneous model terms and P̃ (η) at x = 1.25Lign
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increases in importance with increasing axial distance. It is observed to remain close to

zero along the centreline, but the importance increases with radial distance. Term 3 is seen

to be the largest close to the inlet, with the relative contribution decreasing with increased

axial distance. At locations close to the inlet, Term 3 appears to approximately follow the

shape of the PDF, while providing the largest contribution at the interface between fuel

and oxidiser, where flowfield gradients are largest. Term 4 is largest at areas close to the

inlet along the centreline. At increasing axial distance, the contribution of Term 4 while off

the centreline is seen to be small, decreasing in importance with increased radial distance.

In general, at large distances from the fuel inlet, the model predicts very consistent results

and contributions for the various terms, indicating that mixing remains fairly consistent

through this portion of the domain, while for areas near the inlet, the mixing shows a

strong spatial dependence.

The implementation of the inhomogeneous model in the present work, which follows

the method of Devaud et al. [3] and Milford [11], is shown to provide qualitatively sim-

ilar results in comparison to these previous numerical simulations. In both studies, the

magnitude of the individual terms are seen to be large where the PDF is also large, a

result mirrored in the present work. The autoignition simulations performed by Milford

[11] demonstrated different trends for Lign predictions; the inhomogeneous model is seen

to predict increased ignition lengths compared to the AMC model when applied to a high

pressure methane jet, a trend opposite to the present predictions. The difference is at-

tributed to application of the model in a significantly different flow.

7.9 Summary

This chapter describes the numerical simulation of an autoigniting flame using multiple

sets of turbulence constants and two different mixing models. The ignition length results

indicate that all models show an underprediction in ignition length compared to experi-

mental results; however, when results are shifted by 10K in the negative direction, equating

to the stated 1% experimental error [42], a much closer fit to the experimental data is seen,

with only slight underpredictions of ignition length observed. In the current study, both

the lifted flame and flashback regimes are attained, while it is believed that the coflow

temperatures tested are on the edge of the no ignition boundary.
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Modification of the mixing model constants resulted in large changes to the flowfield.

Reduction of Cǫ1 resulted in a decrease of centreline ξ̃, but an increase in the magnitude

of centreline ξ̃ ′′2 in comparison to the standard constants. The ignition length predictions

also increased compared to the standard constants. Reduction of Sct decreased centreline

ξ̃. Near the inlet, centreline ξ̃ ′′2 increased relative to the standard constants, however the

peak was reached early and ξ̃ ′′2 began to decline in relation to the standard constants and

the modified Cǫ1 case. The peak ξ̃ ′′2 is the lowest of the 3 cases tested. Predicted ignition

lengths for reduced Sct are shorter than those predicted by the standard model constants.

Comparison of the AMC and inhomogeneous models yielded slight differences in Lign,

with AMC providing the larger predictions. This is attributed to the temporal behaviour

of the 〈χ | η〉 distribution. The scaling undertaken with the AMC model in order to match

χ̃ causes the magnitude of the scalar dissipation rate to peak at early times, then subse-

quently decrease, while the inhomogeneous model is seen to produce a gradual ramp up of

〈χ | η〉, therefore promoting earlier ignition.

Examination of the conditional values leading up to the point of ignition provide further

evidence of the differences in performance. The lower mixing values throughout η-space

promote earlier reaction, leading to a quicker buildup of OH radicals prior to ignition.

This increase in chemical activity is followed by a corresponding increase in the condi-

tional temperatures and therefore the Favre-averaged temperature.

Steady state predictions of the flame differ between the AMC and inhomogeneous mod-

els, with the inhomogeneous model predicting an earlier location of reaction and an overall

higher peak centreline temperature. This is believed to be caused by the distribution of

the 〈χ | η〉 curve near the fuel inlet for the inhomogeneous model, which provides lower

conditional scalar dissipation rate values than the AMC model at low η, i.e. in the vicinity

of the peak chemical reactions. Within the flame, the 〈χ | η〉 distributions of both models

become similar, indicating that any differences are due to the diffusive and convective terms

of the CMC equation. Finally, the flame structures of each Tcoflow are shown, indicating

that both the lifted flame and flashback regimes are realised.

While examining the equation budgets for the inhomogeneous model, it is seen that

the strongest spatial dependence is near the fuel inlet, where gradients are largest. Moving

further downstream, the influence of the terms stabilise, showing very little spatial depen-

dence far from the inlet. The peak mixing values are seen off the centreline of the domain,

within the mixing layer between the fuel and oxidiser.
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Chapter 8

Conclusions

The focus of the present study is investigation of the performance of a finite volume based

CMC code, fully coupled with CFD calculations in conjunction with two different mixing

models, the AMC model and the inhomogeneous model. The performance of this code is

evaluated with respect to a well documented, steady jet flame, as well as with an autoignit-

ing flow upon which previous numerical work is based.

The numerical implementation of the various models are described, including the dis-

cretisation of the CMC equation and the AMC and inhomogeneous mixing models. The

method of implementing the solver used for the CMC equation and chemistry interactions

is also provided. Several strategies used to reduce computational cost of the CMC calcu-

lations are also investigated.

Simulation of a steady flame is presented following the experimental measurements of

Barlow and Carter [40]. This work provides a well documented flame from which to base

a steady simulation for code validation. Once preliminary results are obtained, the study

is further extended to include simulation of autoignition processes, based on the experi-

mental work by Markides and Mastorakos [42]. The effect of mixing model and turbulence

constants are explored in relation to the autoignition predictions.

For both the steady flame and autoignition case, the calculation is allowed to proceed

until a steady flame is obtained. The results were then compared with experimental data,

if available, or analysed accordingly.
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8.1 Numerical Techniques

The present study included a finite volume discretisation of the CMC calculation fully cou-

pled with flowfield calculations. It is seen that the feedback provided in this formulation

has the ability to predict combustion and autoignition in the flames studied, yielding accu-

rate conditional species predictions while providing a flowfield characteristic of typical k−ǫ
model performance, with jet penetration underpredicted and jet spreading overpredicted.

As a means of improving the computational efficiency of the CMC calculations, several

methods are investigated to improve the ability of CMC to adapt to various flows. This

includes the use of a CMC grid scaling factor, overlaying it with the CFD grid at multi-

ples of the base grid spacing, as well as providing a dynamic CMC grid, which adapts to

regions where ignition and combustion are likely to occur, thereby avoiding calculations

for locations that will not support combustion. The scaling factor is seen to provide a

proportional reduction in computational cost, however, a strong dependence on axial grid

spacing is observed. When the CMC mesh becomes too coarse, fluctuations in the condi-

tional values yield unphysical oscillations in the flowfield, and is not used in the bulk of

the study. The dynamic CMC grid proves to be extremely efficient, allowing the CMC

calculations to proceed at a fast rate, only slowing when fuel penetrates the domain to a

large extent.

The chemical mechanism used in the current study [53] is seen to provide accurate con-

ditional values when compared to experimental measurements. Temperature predictions

are slightly higher than experimentally observed values; however, this may be in part due

to the flowfield predictions which are not tuned for the steady flame calculations via ad-

justment of turbulence model parameters. The VODE solver used for solution of the CMC

equation is seen to capture the stiff chemical kinetics such that the autoignition events and

trends are well represented.

8.2 Steady State Results

Through steady state simulation, it is seen that the computational code exhibits typical

traits of the k − ǫ model, with an underprediction of the centreline penetration, and an

overprediction of spreading within the domain. The centreline values are underpredicted
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by approximately 35% compared to the experimental results, indicating that correction

of the turbulence constants is required if more accurate results are required. The general

trends for ξ̃, ξ̃ ′′2, Ũ and T̃ predictions are in good agreement with experimental data.

The CMC portion of the calculations appears to function well in relation to the ex-

perimentally measured values. The predictions of 〈YOH | η〉 are in good agreement with

experimental measurements. A close link is seen between the 〈T | η〉 and 〈χ | η〉 fields.

Some discrepancies can be seen due to the turbulent flow and mixing field simulations

using the standard k − ǫ model.

8.3 Autoignition Results

Simulation of the autoignition experiments performed by Markides and Mastorakos [42]

yield encouraging results. The agreement between experimental data and numerical simu-

lations is not as strong as some previous LES simulations, which use both CMC methods

[46] and PDF methods [45]; however predictions of ignition location and ignition condi-

tions follow experimental and previous numerical trends closely. An overall qualitative

improvement in comparison to previous RANS results is seen in relation to predictions of

flame structure [43]. A general underprediction of ignition length is seen in all cases.

The impact of the selection of turbulence constants is evaluated. The impact of turbu-

lence constants has a large effect on the formation of the steady flowfield for the autoignition

flow: reducing Cǫ1 to 0.40 from 1.40 yields an increase in centreline ξ̃ ′′2 and therefore χ̃.

Reducing Sct to 0.5 from 0.7 yields a reduction in centreline ξ̃ ′′2 and χ̃. However, the

choice of turbulence constants has a small impact on ignition length predictions, by chang-

ing Lign by 5% at most. The predictions of Lign are proportional to centreline ξ̃ ′′2, with

Lign increased by Cǫ1 = 0.40 in comparison to the standard constants, and Lign reduced

by Sct = 0.5 in comparison to the standard constants.
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8.4 Impact of Mixing Models

The selection of mixing model is seen to play a role in the predictions of Lign. Predictions

of Lign performed by the inhomogeneous model are lower than that of the AMC model by

up to 15%. The difference in predictions between the models decreases as the temperature

increases and dependence on mixing predictions decreases. The inhomogeneous model re-

sults indicate that the effect is largely due to the magnitude of the 〈χ | η〉 curve predicted.
The AMC model predicts an early peak in the magnitude of the 〈χ | η〉 curve, but the

magnitude decreases with increasing ξ̃. The inhomogeneous model predicts a slow ramp

up of 〈χ | η〉, increasing with χ̃ as time progresses. The slow ramp up of 〈χ | η〉 with the

inhomogeneous model provides conditions more suitable for autoignition, while the AMC

model 〈χ | η〉 progression leads to a delay in ignition.

The effects of using the inhomogeneous mixing model on a steady flame are also ex-

amined. It is seen that the inhomogeneous model predicts an earlier temperature peak

and overall higher temperatures throughout the domain. This is largely a result of the

distribution of 〈χ | η〉 predicted by the inhomogeneous model, favouring lower 〈χ | η〉 at

small η near the inlet. This leads to a faster rate of species evolution and earlier ignition

by the inhomogeneous model. Near the centre of the flame, the AMC and inhomogeneous

model yield very similar 〈χ | η〉 predictions; however, the effects of the convective and

diffusive terms in the CMC equation yield differences in the conditional values predicted.

The effects of the inhomogeneous model are seen to have the largest impact near the fuel

inlet and in areas with large gradients.

8.5 Recommendations and Future Work

Throughout the course of this study, several numerical problems were documented. This

included numerical errors in the form of discontinuities in the mixing model formulation,

typically appearing when ξ̃ ′′2 exceeds approximately 0.1ξ̃. Although it was attempted to

revise the calculations such that the discontinuity was avoided, this produced unsatisfac-

tory results with large portions of the 〈χ | η〉 curve becoming negative, and subsequently

forced to zero. The effect on the calculations was to yield unrealistically early autoigni-

tion predictions due to the conditional scalar dissipation rate being locally equal to zero.
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Further investigation into why this happens and how to provide a correction that yields

accurate results is recommended so that the simulations may be run under the exact ex-

perimentally documented conditions, i.e. increase the turbulence intensity to the value of

13% seen experimentally [42].

The steady simulation provided in this study was undertaken with only the standard

k − ǫ model coefficients. Although it was beyond the scope of the current study, further

testing and analysis of the steady flame used for comparison is recommended in an attempt

to provide better jet flame predictions with the current fully coupled CMC calculations.

To provide further characterisation of the chemistry, it is recommended that further

study be undertaken with the autoignition simulations at lower coflow temperatures, doc-

umenting the ”no ignition” and ”random spots” regimes seen experimentally. As the

lower temperature limit used, Tcoflow = 940K, still resulted in ignition, albeit at very low

〈χ | η = ξmr〉 values. It is currently unknown how RANS simulations will behave at the

lower temperature limit of autoignition with the current H2 −N2 fuel mixture.

A further area of improvement in model formulation is to include the effects of differen-

tial diffusion in the CMC equation and study the effects that this has on autoignition and

steady flame processes. As hydrogen is a highly diffusive fuel, the effects that this has on

the current numerical predictions may be large. Inclusion of the β-PDF for CMC calcula-

tions is also an area of improvement for the current model, as many chemical interactions

are seen to occur near the η = 0 boundary, where the clipped Gaussian PDF performs

somewhat poorly.
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