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ABSTRACT 

 A thorough understanding of typical shoulder motion is desirable for both clinicians and 

shoulder researchers. With this knowledge, comparisons between normal and special populations 

(e.g. athletic, working, elderly, injured) are enabled and injury mechanisms for heightened or 

diminished performance may be identified.  The purpose of this study was to generate a robust 

quantification of typical shoulder kinematic profiles during dynamic humeral elevation in six 

vertical movement planes, and to determine the influence of humeral movement plane, 

movement phase, gender, and humeral elevation angle on typical scapulothoracic (ST), 

glenohumeral (GH), acromioclavicular (AC), and sternoclavicular (SC) kinematics.  

 Upper limb kinematic data were collected on 15 males and 14 females as they elevated 

and lowered their right humerus in six vertical movement planes with elbows fully extended. A 

total of 60 shoulder kinematic profiles were generated for both raising and lowering motion 

phases. Trial-to-trial repeatability of the measured rotations, as indicated by intra-class 

correlation coefficient was found to be moderate (0.658) to high (0.999). Overall, as the humerus 

was elevated, scapulothoracic (ST) upward rotation, ST posterior tilt, sternoclavicular (SC) 

elevation, SC retraction, acromioclavicular (AC) elevation and glenohumeral (GH) elevation all 

increased. However, ST protraction/retraction, GH internal/external rotation, GH 

anterior/posterior plane of elevation, and AC protraction/retraction responses were less 

consistent.  

There was a main effect of humeral movement plane and elevation angle (p < 0.001) 

identified for all measured joint rotations. A significant phase main effect was not found for right 

glenohumeral +anterior/-posterior plane of elevation (GAP), glenohumeral +medial/-lateral 
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elevation (GLE), and acromioclavicular protraction/retraction (APR). At least one significant 

interaction of the main effects, including that of gender, was present for all rotations.  

The typical shoulder kinematic profiles provided in this investigation is the largest to date 

of its kind obtained using skin-mounted shoulder tracking techniques. Clinical scientists will find 

the profiles useful because they provide motion trends that can be compared to profiles from 

other segments of the population, including patients with specific shoulder injuries. This work 

supports the more ambitious future clinical goal of being able to identify people who are at risk 

for developing shoulder pathologies in clinical settings in a non-invasive manner. 
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1. INTRODUCTION  

1.1 Shoulder motion description 

 Accurately describing human shoulder motion has been a goal of shoulder researchers 

and clinicians for some time. Inman et al. (1944) first described the geometric characteristics and 

scapulothoracic motion during humeral abduction and flexion, as well as describing the muscular 

contribution to these motions. The results of this study provided fundamental insight into 

scapular motion that is still relevant today, including that normal glenohumeral joint motion 

relies not only on the interaction of the humerus and scapula at the glenohumeral joint, but also 

on the interactions of the sternoclavicular and acromioclavicular joints and scapulothoracic 

gliding (Inman et al., 1944). They concluded, in abduction, that the ratio between glenohumeral 

and scapulothoracic rotation was 2:1. This general finding has guided clinicians in shoulder 

assessments. Unfortunately, the  scapulothoracic results of this classic study were limited to 2-

dimensional roentgenographic analysis on a single subject and objective information on other 

joint involvement was limited (Inman et al., 1944; Hogfers et al., 1995; de Groot et al, 1998; 

Borstad and Ludewig, 2002). Moreover, the researchers themselves admitted that the ratio was 

inconsistent below 30° of humeral elevation. This notion was confirmed by subsequent 

researchers who found ratios between 4:1 (Poppen and Walker, 1976) and 7:1 (Doody et al., 

1970) at humeral elevation angles below 30⁰ in the “scapular plane”, (approximately 40° anterior 

to the frontal plane). In addition, inter-subject variability of this ratio increases at higher 

elevation angles (Ludewig et al., 2009). Modern work on glenohumeral and scapular motion has 

expanded on the topic in terms of the planes assessed (Karduna et al., 2001; McClure et al., 

2006; Bourne et al., 2007;  Ludewig et al., 2009), comparisons of healthy and injured individuals 

( McClure et al., 2004; Fayad et al., 2008; Braman et al., 2009), and static and dynamic three-
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dimensional kinematic analysis, (static – de Groot et al., 1998; Meskers et al., 2000; dynamic – 

Karduna et al., 2001; Ludewig et al., 2009).  

 Controlled shoulder motion is a coordinated effort involving several moving irregular 

shaped bones and joints, which makes scapular kinematic measurement difficult. The shoulder is 

essentially a closed chain linkage, composed of the sternum, clavicle, scapula, humerus and 

thorax, and the joints that connect them, including the gliding of the scapula over the thorax 

(Happee and van der Helm, 1995).  Therefore, the clavicle and thorax constrain scapular motion 

creating an interdependency of the sternoclavicular (SC) and acromioclavicular (AC) 

articulations during any scapular movement. This has important modeling implications. In order 

to successfully model three-dimensional (3D) shoulder kinematics, one must consider the 

rotations and translations about these joints along with the glenohumeral (GH) and 

scapulothoracic (ST) joints (Happee and Van der Helm, 1995).  

 Several shoulder motion capture techniques exist, each with their own benefits and 

limitations. Traditional methods of measurement of these articulations included skin-mounted 

goniometry (Doody et al., 1965), and roentgenographic projection (Inman et al., 1944; de Groot 

et al., 1998). The accuracies of these methods are debatable, and analysis is often planar with 

limited applicability. Transcortical bone pins (Karduna et al., 2000, 2001; Ludewig et al., 2009; 

McClure et al., 2006) may provide more robust information with reduced skin artifact; however 

the invasiveness of these techniques limits the sample size of these studies. More recently, skin-

mounted electromagnetic (de Groot et al., 1998; Meskers et al., 1998; Borstad et al., 2002) and 

infrared motion capture (van Andel et al., 2009) technologies have been presented as reliable and 

acceptable methods to measure 3D scapular kinematics while the humerus remains below 120° 

of elevation.  Above this angle, soft tissue overlying the acromion reduces the accuracy of these 
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techniques. Reliable and accurate skin-mounted kinematic techniques would be advantageous 

because they would allow for dynamic motion capture and analysis on large sample sizes.   

1.2 Inconsistencies in past shoulder motion research  

 Comparing results of studies investigating glenohumeral and scapular kinematics must be 

done with caution due to several confounding factors which affect scapular motion. 3D rotations 

of the scapula depend on humeral elevation angle, plane of elevation (Ludewig et al., 2009; 

McClure et al., 2006), external shoulder load (Kon et al., 2008; McQuade and Smidt, 1998; 

Meskers et al., 1998), humeral elevation velocity (de Groot et al., 1998; Johnson et al, 2001), and 

rotation sequence used to calculate segment rotation (Karduna et al., 2000) among other factors. 

Also, the variability of shoulder motion across individuals is very high, emphasizing the need to 

have a high participant sample size in shoulder kinematic studies. Since most scapular kinematic 

studies are limited in the number of humeral elevation planes tested (typically less than three), 

understanding 3D scapular position during diverse glenohumeral and scapular motions requires 

combining the results of several studies with differing methodological approaches. Therefore, 

clinicians and upper limb researchers would benefit from having a robust collection of shoulder 

kinematic profiles collected on a large sample of participants. 

 Although experimental protocols differ between prior studies, there have been attempts to 

standardize data collection techniques. Standardized definitions of boney landmarks used to 

define upper limb segment coordinate systems and to describe joint rotations have been 

suggested by the International Society of Biomechanics (Wu et al., 2005).  This is vital when 

using Euler angles to describe scapular rotation because the resulting angles are sequence 

dependent (and non-communitive). Moreover, researchers have attempted to control for the 

humeral orientation in that the majority of upper limb studies. The most common approach is to 
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limit analyses to vertical planar humeral motions, particularly in the scapular plane. Although 

controlling for plane is beneficial, narrowing focus to one motion plane limits what can be 

learned about typical shoulder motion. Interesting information on typical shoulder motion may 

be gained by investigating other planes, and injured shoulders could potentially show different 

joint motion in vertical planes other than the scapular plane. 

1.3 Normative shoulder kinematic data applications 

Possessing normative typical shoulder kinematic data would make the identification of 

pathological shoulder motion easier for clinicians. These data would provide a single source for 

clinicians to contrast results from a clinical assessment against. If an individual or individuals 

motion trends are deviant relative to typical normative kinematic data, these trends could be 

classified as atypical. Early identification of atypical shoulder motion would allow for the 

prescription of clinical interventions such as postural correction or corrective exercises to prevent 

shoulder injury from occurring (McClure et al., 2006). Moreover, tracking a patient’s shoulder 

kinematic profiles during a prolonged rehabilitation program can serve as a means to monitor 

recovery towards an uninjured state (McClure et al., 2004).  

 Understanding what factors affect healthy dynamic shoulder motion will justify current 

clinical assessment approaches and assist with assessment design. For example, a common 

approach applied by therapists during a shoulder assessment is to track scapular motion visually 

during humeral elevation and lowering (Borstad & Ludewig, 2002). If obvious kinematic 

changes occur between motion phases, clinicians consider these differences as abnormal or 

“dyskinetic” (Kibler & McMullen, 2003). Therefore, discovering no meaningful effects of 

motion phase on scapular kinematics for a typical population would justify this approach. In 

addition, finding scapular kinematic differences during humeral elevation in one plane (e.g. 
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frontal plane) compared to elevation in another (e.g. sagittal plane) would suggest pathological 

motion if typical normative data shows no effect of plane. Finally, discovering kinematic 

changes at specific elevation angles might indicate atypical motion if the typical population does 

not display similar changes. For instance, a reduction in posterior tilt and upward scapular 

rotation is often hypothesized to occur in populations suffering with rotator cuff pathologies 

(Ludewig & Cook, 2000; McClure et al., 2004).  

Understanding how an uninjured shoulder moves may also provide insight into potential 

injury mechanisms. Contrasting scapular kinematic profiles of an injured population against a 

robust collection of healthy scapular kinematics should show incidences where the profiles 

deviate from each other. The direction of this deviance might explain a contributing cause of the 

injury. For example, if injured profiles of scapular tilt and upward rotation become less posterior 

and less upward compared to a healthy population, this would hint at a reduction of sub-acromial 

space. This trend is often suggested to occur in populations suffering from sub-acromial 

impingement syndrome (Lukasiewicz et al, 1999).   

1.4 Purpose 

The purposes of this investigation were to produce a comprehensive description of typical 

shoulder kinematics during dynamic humeral elevation in six vertical movement planes, and to 

identify which factors contribute to typical shoulder motion. Results of this study will offer 

clinical researchers normative typical upper limb kinematic profiles that will assist with the 

identification of pathological shoulder motion. Specifically, the following questions are asked: 

 Do significant changes in 3D shoulder rotations occur as the humerus is elevated in 

planes other than the scapula plane?  
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 Do gender and motion phase (i.e. raising or lowering the humerus) influence typical 

shoulder motion? 

 Are certain shoulder kinematic outcomes more influenced by vertical humeral movement 

plane or by humeral elevation level 

 If shoulder kinematic changes occur due to the modification of movement plane, 

elevation angle, motion phase, or gender, do these changes contribute to or diminish the 

possibility of becoming injured? 

 How does the variability of shoulder joint rotations change as the humerus is elevated? 

 Does humerus elevation in certain vertical movement planes produce more reliable upper 

limb kinematic measures than others? 

Current shoulder kinematic data is incomplete due to limited scope of previous studies or 

inadequate measurement techniques. A common ambition of many clinical researchers is to be 

able to reliably classify atypical shoulder motion as a means to identify individuals at risk of 

developing some upper extremity disorder. In order to successfully do this, what is known about 

typical shoulder motion and its determinants must be expanded. The results of this study will 

help build on what is known about typical shoulder motion, as the research questions address 

several of the limitations of current work on the 3D scapular kinematics outlined previously. 

Finally, recording shoulder kinematic data on a single population sample will limit the errors 

associated with making comparisons across studies 

1.5 Hypotheses 

This investigation will quantify scapular kinematics in multi-planar humeral motion and 

demonstrate the dependency of shoulder muscular activation on the same humeral motion.  The 

specific hypotheses of this investigation were:  
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1) As vertical humeral movement plane is changed progressively across the body, dynamic 

shoulder rotations  occurring about a vertical axis (i.e. scapulothoracic protraction, 

acromioclavicular protraction, sternoclavicular protraction) and axial shoulder rotations 

(i.e. glenohumeral internal rotation, glenohumeral anterior plane of elevation) will 

increase more than shoulder rotations occurring about a horizontal axis (i.e. 

scapulothoracic lateral rotation, scapulothoracic posterior/anterior tilt, glenohumeral 

elevation, acromioclavicular elevation, sternoclavicular elevation).  

2) As humeral elevation angle increases, dynamic shoulder rotations occurring about a 

horizontal axis will increase more than those rotations occurring about a vertical axis.  

3) Intra-subject trial-to-trial reliability, indicated by intra-class correlation coefficients 

(ICC), of shoulder (i.e. scapulothoracic, glenohumeral, acromioclavicular, and 

sternoclavicular) kinematics will be high.    

4) 3D scapular kinematics inter-subject variability, indicated by standard deviation, will be 

highest below 30⁰ of humeral elevation for all thoracohumeral elevation planes 

5) There will be no effect of gender on shoulder kinematics.  

6) Lowering the humerus will produce significantly different shoulder kinematics than 

elevation. 
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2. REVIEW OF RELEVANT LITERATURE 

2.1 Shoulder joint motion capture and description 

 Positioning the humerus in three-dimensional (3D) space can be accomplished by means 

of countless orientations of SC, AC, GH, and ST joints thereby making joint description 

challenging. The following sub-sections outline the methods used to collect shoulder kinematics 

and describe upper limb joint motion and inter-connecting segments orientations. 

2.1.1 Shoulder motion capture  

 The earliest method of assessing upper limb motion was by means of hand-held 

goniometers. Their published use dates back to the early 1920’s and are still used in clinical 

settings (Hewitt, 1928; Bovens et al., 1990). The device can also be used to reliably position the 

humerus in desired elevation angles or planes. The technique is useful in rehabilitation settings 

due to quick and easy measurement outcomes and high intra-tester reliability with experience use 

(Youdas et al., 1994). However, 3D scapular kinematics cannot be deduced with a single hand-

held goniometer. Bovens et al (1990) found that the error of measurement when using a 

goniometer is as high as 10° for several upper limb joint measurements.  

 With researchers’ strong desire to collect accurate GH and ST kinematic data, advanced 

imaging techniques have been utilized as early as the 1940’s. Inman et al’s (1944) oft cited 

description of the “spino-humeral” angle in sagittal plane flexion and frontal plane abduction, 

better known today as scapulothoracic rhythm, was captured using 2-dimensional 

roentgenography. Modern studies continue to use 2-dimensional projections (Bagg and Forrest, 

1988; de Groot et al., 1998), but cannot accurately capture shoulder kinematics because upper 

limb motions are not planar or static (de Groot et al., 1998). The advent of cine film in the 1950’s 

allowed for the capture of passive skin based surface markers during dynamic motions (Taylor 
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and Blascke, 1951; Engen and Spencer, 1968; Dvir, 1978; Langrana, 1981). Unfortunately, data 

processing of cine film is laborious and skin based surface markers were prone to skin artifact 

error. Motion capture systems using active markers such as light-emitting diodes (Anglin and 

Wyss, 2000; van Andel et al., 2008), or passive optical technology (Picco et al., 2010) have also 

been applied recently.  

 Most recently, there has been increased use of electromagnetic motion tracking systems 

consisting of a transmitter containing three energized orthogonal coils that emit electromagnetic 

fields detected by skin-mounted sensors’ orthogonal fields. This technique allows for the 

calculation of the 6 degree of freedom position and orientation of skin mounted receivers relative 

to a transmitter. However, the accuracy of this system is greatly affected by any object that 

interferes with magnetic fields (e.g. metals, computer monitors, and mains) the distance between 

the transmitter and receivers (Nixon et al., 1998) and must be carefully calibrated.   

 Of the upper limb segments, 3D scapular kinematics are the most challenging to collect 

with current motion capture technologies due to skin motion artifact and movement of bones 

subcutaneously. Bone pins inserted directly into the scapula are frequently cited as a gold 

standard for scapular kinematic collection (Ludewig et al., 2009). However, due to its 

invasiveness and limited access to those qualified to insert the pins, it is difficult to collect data 

on a large sample population using the pins. This has led to the development of several scapula 

tracking techniques that allow for the scapula to be either directly measured over the skin; or by 

means of reconstructing the scapula with a rigid marker cluster. Accuracy of these methods is 

often assessed by means of bone pins. The more commonly used techniques are as follows: 

Palpator (van der Helm and Pronk, 1995): The positions of 11 anatomical landmarks are 

recorded manually with a palpator whose endpoint location is calculated using potentiometers. 
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Rotations of the scapula are described relative to the torso reference system located at the jugular 

notch Drawbacks to this technique are that only static recordings are possible due to the time 

required for each posture measurement. Each posture took approximately 2.5 minutes to 

manually record increasing fatigue potential. The accuracy of this system was assessed by the 

repeatability of locating the landmarks with the palpator and was deemed acceptable. 

Measurement error was found to be comparable with other contemporary techniques at the time. 

Scapula locator (Meskers et al., 1998): Two rigid pieces of plastic are connected in the 

middle similar to a lowercase “t” (Figure 1). At the end of the rigid pieces are three movable rods 

that can be positioned over the acromion angle (AA), root of the scapular spine (RS), and inferior 

scapula angle (IA). A reference system is created on the locator with an electromagnetic sensor 

or marker cluster. The orientations of the three rods relative to the locator reference system are 

measured with a digitizer, allowing for a scapula reference system to be reconstructed for every 

measured frame. The orientation of this reference system is used to decompose Euler angles and 

describe scapula orientation.  Similar to the palpator, the locator’s applicability is limited to 

measuring static postures. However, the measurement of each posture is reduced compared to the 

2.5 minutes noted by van der Helm and Pronk (1995), as orientations of the humerus, clavicle, 

and torso area reconstructed each frame from electromagnetic sensors with embedded reference 

systems. Locator accuracy was assessed in a similar fashion as the palpator and orientation 

results were found to be comparable to van der Helm and Pronk’s palpator (1995), with some 

differences being attributable to methodological differences. 
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Figure 1: Adjustable scapula locator (Meskers et al., 1998) 

Scapula tracker (Karduna et al., 2001): An electromagnetic receiver is mounted to an 

adjustable “base” that conforms to the mid-portion of the scapula spine. An adjustable “arm” 

extends from the base and at its end is a footpad secured to the posterior lateral acromion (Figure 

2). Both the base and the footpad are secured to the skin overlying the scapula with Velcro. 

Scapula anatomical landmark locations relative to the reference system embedded in the receiver 

are determined with a digitizer and reconstructed for subsequent tracked motions. The advantage 

of this technique is that it can record dynamic scapula motion. Also, the scapula tracker has been 

validated with bone pins for humeral elevation angles less than 120°  

 

Figure 2: Scapula tracker fixed to the mid-portion of the scapula spine and posterior lateral acromion 

(Karduna et al., 2001) 

Acromion marker cluster (McQuade and Smidt, 1998; Karduna et al., 2001; van Andel et 

al., 2008): Either an electromagnetic receiver or marker cluster is fixed to the posterior-lateral 
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acromion proximal to the deltoid attachment (Figure 3). Similar to the tracker method, relevant 

anatomical landmark locations relative to the cluster are captured in a calibration frame and are 

reconstructed in subsequent frames. The majority of recent studies recording scapular motions 

use a version of the acromion marker cluster (AMC). The major difference between studies 

centers on the materials used to construct the acromion reference system (e.g. active or passive 

infra red markers, electromagnetic sensors). This technique has also been validated using bone 

pins for humeral elevations under 120° (Karduna et al., 2001).  

 

Figure 3: Acromion marker cluster (AMC) attached to acromion (van Andel et al., 2008)  

Measuring clavicle rotations with surface markers is also challenging due to skin motion 

artifact and methods to correct this error have been attempted. The most accurate way to measure 

clavicle motion and minimize this error is with a coordinate system fixed to a bone pin inserted 

into the clavicle (Inman et al., 1944; Karduna et al., 2009). However, because of the invasiveness 

of this technique and the difficulties in measuring axial rotation with surface markers, 

sternoclavicular (SC) and acromioclavicular (AC) joint motion is often ignored in many upper 

limb kinematic analyses. At best, clavicle protraction/retraction and elevation/depression angles 

are used to describe the translation of the scapula (Anglin and Wyss, 2000; Karduna et al., 2001; 

McClure et al., 2001; 2004). 
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A new technique that attempts to track 3D clavicle rotation with a coordinate system 

fixed to the skin overlying the clavicle has been proposed by Szucs et al., (2010). In their study, 

clavicle kinematics was measured simultaneously with a skin-based coordinate system and a 

bone-fixed system on six cadaver shoulders. Corrective regression equations using 

thoracohumeral (TH) elevation angle and recorded rotations were generated that correct 

elevation angle and axial rotation.  Limitations to this technique are obvious including the use of 

cadavers and limited number of specimens. However, the regression equations generated offer 

the only available method to define an orthogonal clavicle coordinate system that is crucial in 

describing 3D clavicle rotations in accordance to ISB standards (Wu et al., 2005). 

2.1.2 Euler Angles 

 Commonplace in upper limb kinematic analysis is the use of Euler angles to describe 3D 

joint rotations. Euler angles allow for the orientation of one segment to be described relative to 

another segment or system of interest. Between the two segments is some articulation where 

these rotations are assumed to take place. To apply this technique to a desired joint, body 

segment coordinate systems of the segments proximal and distal to the articulation are first 

constructed using appropriate anatomical landmarks. Then, the orientation of the distal 

segment’s coordinate system is described relative to the proximal segment’s coordinate system 

using three rotations (i.e. “Euler angles”) of its system. Depending on the order of rotations 

chosen, the descriptive Euler angles can be used to describe clinically relevant joint rotations 

(Wu et al., 2005), as well as joint dynamics if desired (Vaughan et al., 1999).  

2.1.3 Euler Angle Limitations 

 The magnitudes of the Euler angles calculated depend on the order of rotation because 

the rotations are not cumulative (Hill et al., 2007). Depending on the order of rotations about the 
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distal segment axes, the resulting Euler angles will be different. For some investigators, this 

notion is seen as a drawback to the technique (Woitring, 1994). When Karduna et al (2000) 

altered rotation sequences differences in joint rotations were as large as 50°. An often cited 

clinical example illustrating this limitation is “Codman’s Paradox” (Figure 4), where the 

humerus is flexed 90° in the sagittal plane, then abducted 90° in the transverse plane, then 

adducted 90° in the frontal plane (Codman, 1934).The position of the humerus is “paradoxically” 

externally rotated 90°.  

 

Figure 4: Visual representation of Codman’s Paradox (Hill et al., 2008) 

 A second drawback of using Euler angles to describe joint motion is that one must 

assume that there is no joint translation. Neglecting to account for intersegmental translation 

when modeling shoulder articulations will result in descriptions unrepresentative of clinical 

reality. For example, due to the degree of freedom constraints of Euler notation, the 

glenohumeral joint is often modeled as a pure ball and socket joint with no linear translation 

between the glenoid fossa and humeral head. However, it is know that as the humerus is 

elevated, the GH center of rotation is not fixed, and that the humeral head, slides and rolls along 

the glenoid fossa (Paletta et al. 1997; Yamaguchi et al., 2000). Attempts have been made to 

account for both ST rotations and translations at the AC joint. Karduna et al (2001) and McClure 
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et al (2006) have modeled the ST joint motion with 3 degrees of rotational freedom and 2 

degrees of translational freedom. Translation was limited 2 degrees of freedom 

(elevation/depression; protraction/retraction) due to the rigidity of the clavicle. 

 A final drawback associated with the use of Euler angles is the potential for Gimbal lock. 

Gimbal lock occurs when the sequence of rotation used to describe a segment’s orientation 

causes axes to become coincident (Hill et al., 2008). A system that once had 3 DOF becomes an 

indeterminate 2 DOF system. For example, in a shoulder abducted to 90°, the axial rotation axis 

of the humerus would coincide with the flexion axis of the GH joint. If the first Euler angle of 

the sequence is flexion, the system would be indeterminate (Rab et al., 2002). If the experimental 

design does not guard against Gimbal lock, erroneous shoulder kinematic measurements will 

result.   

2.1.4 Standardization of shoulder kinematic descriptions  

 The widespread use of Euler angles in shoulder kinematic studies has resulted in the 

establishment of standardized protocols for reporting shoulder kinematic data. Standardization 

prevents comparisons of rotations deduced from different rotation sequences. The 

Standardization and Terminology Committee of International Society of Biomechanics (ISB) 

proposed definitions of joint coordinate systems and rotations for each segment and articulation 

of the upper limb (Wu et al., 2005). The definitions are outlined in a way similar to that of Grood 

and Suntay’s “Joint Coordinate System (JCS)” of the knee (Grood and Suntay, 1983). A “Body-

fixed” axis is identified in each segment whose relative motions are being analyzed. The two 

segments share a common “floating” axis that is perpendicular to the body fixed axes.  In their 

description, the rotations of the distal segment are described with respect to the proximal 

segment, using rotations about the body fixed and floating axes. The orientations of the axes are 
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defined to allow for clinically relevant joint rotation to be determined. A summary of all upper 

limb anatomical landmarks and JCS defined by the International Society of Biomechanics are 

provided by Wu et al. (2005).  

When interpreting the results from past studies, consideration to the methods used is 

important when interpreting results. Studies specifically measuring scapular kinematics have also 

been performed utilizing methods pre-existing ISB standards with the abovementioned 

techniques (van der Helm et al., 1995; Karduna et al., 2001; McClure et al., 2006). In the 

following section, all joint motions are summarized using the joint coordinate systems defined 

International Society of Biomechanics guidelines unless otherwise stated (Wu et al., 2005).  

 Glenohumeral (GH) joint: The GH joint is typically modeled as a perfect ball-and-socket 

joint with 3 degrees of rotational freedom. The sequence of the three rotations is (Figure 5):  

1) Plane of elevation measured about an axis fixed to the scapula coincident with the y-

axis of the scapula  

2) elevation about the humeral fixed axis coincident with the x-axis of the humerus 

coordinate systems  

3) axial (internal/external rotation) about the y-axis of the humerus 
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Figure 5: Humerus coordinate system and example of GH joint motion. Lowercase h refers to the humeral 

local coordinate system; lowercase s refers to the scapula coordinate system. 1) Glenohumeral plane of 

elevation; 2) Thoracohumeral elevation; 3) Humeral axial rotation (Wu et al., 2005) 

 Sternoclavicular (SC) joint: The sequence of rotations defined for the three SC joint are 

(Figure 6):  

1) Clavicle retraction/protraction about the fixed thorax axis coincident with the y-axis 

of the thorax coordinate system 

2) Clavicle elevation/depression about a common axis perpendicular to the fixed axes of 

the thorax and clavicle coincident 

3) Axial rotation about the fixed clavicle axis coincident with the z-axis of the clavicle 

coordinate system  

 

Figure 6: Clavicle coordinate system and example of SC joint motion. Lowercase c refers to the clavicle local 

system; lowercase t refers to the thorax system. 1) SC protraction/ retraction; 2) SC depression/elevation; 3) 

Clavicle axial rotation (Wu et al., 2005) 

1) 2) 3) 

1) 2) 3) 
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 Acromioclavicular (AC) joint: The sequence of rotations defined for the AC joint is 

(Figure 7):  

1) Scapula retraction/protraction relative to the clavicle fixed axis coincident with the y-

axis of the clavicle  

2) Scapula lateral/medial rotation about the common axis perpendicular to the clavicle 

and scapula fixed axis  

3) Anterior/posterior scapula tilt about the scapula fixed axis coincident with the z-axis 

of the scapula coordinate system.  

 

 
Figure 7: Scapula coordinate system and example of AC joint motion. Lowercase s refers to the scapula local 

coordinate system; lowercase c refers to the clavicle coordinate system. 1) AC protraction/retraction; 2) AC 

lateral/medial rotation; 3) AC anterior/posterior tilt (Wu et al., 2005) 

 Scapulothoracic (ST) joint: The ST joint is often modeled as a segment with 3 degrees of 

rotational freedom about the thorax local coordinate system. It is important to note that the ST 

joint is not a true joint as it has no fixed axis of rotation. Rather, motion descriptions for this joint 

describe segment rotation not joint rotation (Hill et al., 2007). ST joint motion is typically 

documented relative to humeral-thoracic elevation. The ratio between ST joint motion and 

humeral elevation is called “rhythm.” The sequence of rotation describing scapula motion at the 

ST joint is:   

1. Scapula retraction/protraction about fixed thorax axis 

2) 1) 3) 
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2. Scapula lateral/medial rotation about the common axis perpendicular to the fixed axis 

of the thorax and scapula 

3. Scapula anterior/posterior tilt about the scapula fixed axis  

2.1.5 Normal shoulder joints’ ranges of motion 

 Shoulder joint motion ranges are typically presented relative to humeral elevation angle. 

Since the majority of methods used to collect scapular rotational kinematics are valid for less 

than 120° of humeral elevation, most joint ranges presented in the literature are only valid sub-

maximally. Table 1 indicates the average resting position and end range of motion at 120° 

humeral elevation for each shoulder joint (Ludewig et al., 2009). End ranges were averaged 

across each plane to give an indication of general shoulder motion. For instance, from the table, 

one can see that ST joint upward rotation increases nearly 44° on average (from 5.4° to 50°) 

during humeral elevation. An example plot of ST joint motion is demonstrated in Figure 8. For 

additional plots of shoulder motion, the reader is referred to Ludewig et al (2009).  
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Table 1: Shoulder joints’ range of motion: Initial = resting anatomical position; End = 120° humeral elevation 

in the respective plane anatomical position. ¹All angles are measured relative to the torso with the exception 

of the acromioclavicular and glenohumeral joints and are averaged across frontal and scapular plane 

abduction and sagittal plane flexion 

Joint 
*Mean initial 

position (°) 
¹Average end 

position (°) 
 

Sternoclavicular joint (SC) 

 

  

Retraction 19.2 (SE 2) 39  

Elevation 5.9 (SE 1)             17  

Posterior rotation 0.1 (SE 0) 31  

Scapulothoracic joint (ST) 

 

  

Internal rotation 41.1 (SE 2) 35  

Upward rotation 5.4 (SE 1) 50  

Anterior tilting 13.5 (SE 2) -8  

Acromioclavicular joint (AC) 

 

  

Internal rotation 60 (SE 2) 65  

Upward rotation 2.5 (SE 1) 16  

Anterior tilting 8.4 (SE 2) -15  

Glenohumeral joint (GH) 

 

  

Elevation 0.8 (SE 1) 85  

Plane of elevation 3.1 (SE 2) -  

External rotation 14.1 (SE 4) 51  

 

It is well establish that there is high between-subject variability in shoulder kinematic 

measures. For example, recorded ratios between GH and ST rotation vary between 2:1 (Inman et 

al., 1944) to 7:1 (Doody et al., 1970).  In addition, between-subject scapula protraction/retraction 

recorded during elevation is most variable of the three scapulothoracic measures (McClure et al., 

2004; Ludewig et al., 2009). As the humerus is elevated, it is known that the scapula consistently 

rotates upward, and tilts posteriorly. However, whether the scapula protracts or retracts appears 

to depend on the individual. Within-subject kinematic measures are more precise, although 

accuracy is difficult to determine.  Typical trial-to-trial intra-class correlation coefficients of 

measured joint rotations are typically above 0.94, signifying that rotation measurements were 

repeatable (Bourne et al., 2007; Ludewig et al., 2009). Scapulothoracic rotation root mean square 
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differences between trials range from 1.1° (Bourne et al., 2007) to 5.4° (de Groot & Valstar, 

1998) 

 

Figure 8: Plot of 3D scapulothoracic motion relative to humeral elevation angle (from Ludewig et al., 2009) 
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2.2 Determinants of shoulder kinematics 

2.2.1 External force 

 Scapular kinematics are dependent on the weight held in the hand, although the 

magnitude of the affect is difficult to conclude. McQuade and Smidt (1998) used the acromion 

marker cluster method (via an electromagnetic receiver) to quantify external arm resistance’s 

effects on scapula lateral rotation in scapular plane abduction. Three loads were tested: passive 

abduction, zero external load, and maximal resisted arm elevation applied using a Cybex 

isokenetic dynamometer. The ratio of scapula lateral rotation to thoracohumeral elevation was 

not consistent between conditions. Important to note, however, is that the largest relative changes 

were seen at near maximum humeral elevation angles and beyond the range that the cluster 

method has been validated. Pascoal et al (2000) attempted address the narrow scope of McQuade 

and Smidt’s investigation. They utilized moderate external loads (0-4kg) and tested different 

planes of humeral elevation (frontal and sagittal). They also found that the affect of load was not 

consistent for all planes tested and all rotations calculated. Unfortunately, the direction of the 

affect is unclear and interactions between elevation angle and external load were not accounted 

for.  Kon et al (2008) found significant affects of arm load on lateral scapular rotation at 

scapulothoracic elevation angles between 35° and 45° only (Figure 9).  

 

Figure 9: Plot showing a significant effect of external load on scapular lateral rotation at 35° and 45° of arm 

elevation (Kon et al., 2008) 
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2.2.2 Humeral elevation velocity 

 Recent evidence suggests that the velocity of humeral elevation will affect scapular 

kinematics. de Groot et al (1998) found a significant effect of scapular plane humeral elevation 

velocity of planar scapular kinematics, but concluded that the differences were negligibly small. 

However, the fidelity of de Groot et al’s findings is speculative, as scapular orientation was 

calculated with a 2-dimensional x-ray video system. Later work comparing dynamic and static 

scapular orientation during scapular plane abduction showed that scapular lateral rotation 

measurements were significantly different, although the techniques used to assess motion were 

not the same as de Groot et al. (Johnson et al, 2001). Later work by Fayad et al (2006) 

investigating sagittal plane flexion and frontal plane abduction found less scapula lateral rotation 

in dynamic measurements. Reasons used to explain the differences between static and dynamic 

measures are speculative and generally lack rigorous evaluation.  

2.2.3 Plane of elevation 

 The plane of humeral elevation often dictates shoulder joint orientations. Ludewig et al. 

(2009) directly tracked clavicle, humerus, and scapula movements with electromagnetic sensors 

fixed to bone pins during humeral elevation in frontal, sagittal, and scapular planes. These planes 

have been investigated before, but rarely are all three evaluated in the same investigation. This 

allows for comparisons of SC, AC, GH, and ST joint motions across the same population 

sample. For example, in each elevation plane, transverse-plane joint rotations showed the largest 

changes in magnitude for each plane. In flexion, the clavicle was more protracted, the scapula 

was more internally rotated, and the humerus was more internally rotated than in abduction.  

Detailed descriptions of the significant joint rotation differences across planes are numerous and 

described by Ludewig et al (2009).   
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 Scapular kinematics observed during arm eccentric humeral lowering show subtle yet 

significant differences compared to concentric arm elevations. Ludewig et al (2009) verbally 

described small differences between lowering and raising the humerus, although these 

differences were not presented graphically nor tabulated. Borstad and McClure (2002) did not 

find any significant changes in scapular kinematics between raising and lowering the humerus in 

the scapular plane below 80°. However, at higher abduction angles, greater posterior scapular 

tilting was evident.  McClure et al (2001) observed similar scapular joint rotations patterns for 

both raising and lowering the humerus, although joint rotation description differences between 

the two actions reached 5° or more. 

2.2.4 Injury 

 A connection between shoulder kinematics and shoulder pathology has been made. 

Unfortunately, whether the altered kinematics pre-exist an injury or are caused by an injury is 

unknown. The links between injury and kinematic outcome are discussed in section 2.4.1 “Links 

between shoulder pathology and shoulder motion” 

2.3 Clinical implications of scapular motion 

 Shoulder pathology occurrence has been linked to scapular kinematics and relative 

muscle activity. This deduction comes from comparing kinematics and EMG profiles of an 

injury symptom-free population sample to an affected population. Comparisons do not always 

yield consistent results and whether or not the aberrations are compensatory or causal is often 

speculative. Although causation cannot be confidently determined, the link between altered 

kinematics and muscle activity to shoulder pathologies, such as rotator cuff disorders or 

glenohumeral instability, is interesting and warrants further research. Future references to 
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“normal” kinematics and muscle activity refer to kinematics of a non-symptomatic, pain-free, 

typical population sample. 

2.3.1 Links between shoulder pathology and shoulder motion 

 Shoulder pathology is often associated with abnormal scapular kinematics. Shoulder 

disorders linked to deviations in scapular kinematics include rotator cuff disorders (Cools et al., 

2003; Phadke et al., 2009), GH joint instability (Matias and Pascoal, 2006), and adhesive 

capsulitis (Fayad et al., 2008). The rotator cuff disorder sub-acromial impingement syndrome 

(SAIS) has received the most attention in kinematic studies due to it high prevalence in working 

populations (Cook et al., 1996; Hagberg and Wegman, 1987; Herberts et al., 1984). First 

described by Neer (1972) SAIS is a consequence of mechanical compression of the rotator cuff 

muscles (particularly the supraspinatus tendon) and sub-acromial bursa against the undersurface 

of the acromion process (Figure 10). Scapular lateral rotation and posterior tilt present in normal 

populations are said to occur to increase the sub-acromial space as the humerus elevates and thus 

decrease mechanical compression on the rotator cuff (Cools et al., 2003). Any significant 

increase in this rotation in patients with SAIS is assumed to be compensatory. If a causative link 

between the shoulder pathology and scapular kinematics is made, clinicians can design 

interventions that prevent future injury by correcting the kinematics. 
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Figure 10: A visual representation of sub-acromial impingement of the supraspinatus tendon and sub-

acromial bursa 

 Unfortunately, the kinematic changes correlated with SAIS are not consistent. McClure et 

al. (2006) found increased scapular lateral rotation and clavicle elevation during humeral flexion 

and greater posterior scapular tilt and clavicle retraction in scapular plane humeral abduction in 

patients with SAIS. On the contrary, Endo et al, (2001) found less lateral scapular rotation and 

posterior tilt in symptomatic subjects. Ludewig et al (2000) investigated the affect of elevation 

angle on lateral rotation and saw an initial decrease in symptomatic subjects at angles below 60° 

and then a compensatory increase as the humerus was positioned above 90°. Explanations for 

these discrepancies are likely associated with methodological differences. Ludewig et al (2000) 

tested special population (injured construction workers) and tracked scapular motion utilizing the 

acromion marker cluster method (McQuade and Smidt, 1998), while McClure et al (2006) 

utilized the scapula tracker (Karduna et al., 2001). Furthermore, Endo et al (2001) used planar 

radiographic projections to calculate angles, while both McClure et al (2006) and Ludewig et al 

(2000) described motion with 3D Euler rotations. Also, interactions between plane of humeral 

elevation and humeral elevation angle cloud interpretations. 
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3. RESEARCH METHODS 

Data collection occurred in sessions lasting approximately one and a half hours in the 

Digital Industrial Ergonomics and Shoulder Evaluation Laboratory at the University of Waterloo. 

Participants raised and lowered their right arm in six different vertical planes with posture 

recorded with passive reflective markers. Each motion was repeated twice. 

3.1 Participants 

 Twenty-nine (15 males; 14 females) right-hand dominant participants sampled from the 

University of Waterloo student population volunteered to participate in this investigation. 

(Participant anthropometrics are provided in Table 2). Exclusion criteria for study participation 

included a history of shoulder instability, positive Neer (Neer, 1983) and Hawkins-Kennedy 

(Hawkins and Abrams, 1987) tests for shoulder impingement, painful arc of motion between 60° 

and 120° (Kessel and Watson, 1977) (Figure 11), or allergies to rubbing alcohol and skin 

adhesives. The study received clearance from the Office of Research Ethics and participants 

provided informed consent.    

Table 2: Study participants’ anthropometrics 

Gender Age (years) Stature (cm) Mass (Kg) 

Male 23.4 (+1.5) 180.2(+6.4) 82.9(+10.0) 

Female 22.8(+3.0) 167.0(+7.6) 61.4(+12.7) 
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Figure 11: Sub-acromial impingement tests: 1) Painful arc of motion (Hawkins and Abrams, 1987); 2) 

Hawkins-Kennedy test; 3) Neer test (Park et al., 2005) 

3.2 Experimental variables 

 Upper limb motion data was collected dynamically during each trial. Each trial was 

repeated twice. Four independent variables were tested with differing levels of each variable: 

1) Shoulder elevation plane (6): 0°, 30°, 40° (i.e. scapular plane), 60°, 90°, 120° 

2) Thoracohumeral elevation angle (23): 5 degree increments between 10° and 120°, 

measured dynamically 

3) Motion phase (2):  Raising, lowering 

4) Gender (2): Male, female 

The shoulder elevation plane was measured relative to the approximate glenohumeral 

(GH) joint center. The 0° plane was parallel with the frontal plane while the 120° plane was 

directed 30° medial to the sagittal plane. Elevation planes were measured externally with a 

goniometry about a vertical axis coincident with the vertical z-axis of the thorax coordinate 

system at the GH joint (Wu et al., 2005). Thoracohumeral (TH) elevation angle was measured 

with kinematic data after data collection and defined as the rotation about an axis coincident with 

the forward pointing y-axis of the humerus at the GH joint (See Table A2 and Figures A1-A4 in 

Appendix A for descriptions of segment coordinate systems). In subsequent sections, values 

referring to humeral elevation increments will be identified with an “E” after the increment and 
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elevation plane will be denoted using a “P.” For example, “60E” refers to 60° of humeral 

elevation, while “60P” refers to the 60° movement plane.  

Each participant had 2- seconds to raise their humerus past 120° starting from the 

anatomical position and 2 seconds lower the humerus to the initial position with the aid of a 

metronome. Dependent variables were scapulothoracic (ST) +protraction/-retraction, ST 

+medial/-lateral rotation, ST +posterior/-anterior tilt, glenohumeral (GH) +anterior/-posterior 

plane of elevation, GH -elevation, GH –internal/+external rotation, sternoclavicular (SC) -

elevation, SC +protraction/-retraction, acromioclavicular (AC) -elevation, and AC +protraction/-

retraction.   

3.3 Equipment 

3.3.1 Motion tracking 

 Three-dimensional thorax, clavicle, scapula, and humerus motion were tracked using 

eight VICON MX20 infrared cameras. The cameras tracked the position of ten passive reflective 

markers secured to the skin over anatomical landmarks outlined in Table 3. Ten additional 

markers constituting rigid marker clusters of the humerus, acromion marker cluster, and 

digitizing stylus tracked (Table 4, Table A3 in Appendix A). Captured kinematic data was 

recorded using the VICON Nexus 1.4 software (VICON Motion Systems, Oxford, UK) at a 50 

Hz sampling rate. 
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Table 3: Anatomical locations and acronyms of reflective markers  

 

 

Table 4: Cluster markers labels and descriptions 

Marker 

label 
Description 

AMC1 

Acromion Marker Cluster AMC2 

AMC3 

HUM1 

Humerus triad HUM2 

HUM3 

STY1 

Stylus markers STY2 

STY3 

STY4 

 

3.3.2 Digitizing stylus 

 A digitizing stylus was manufactured from a rigid plate with a defined point (diameter 

=2.0 mm) secured at one end. Four reflective markers (diameter = 9.0 mm) were secured to the 

plate surface with double sided tape to create the stylus coordinate system (Figure 13). The tip 

was at an orientation represented by the vector [7.0, 134.0, 25.5] mm measured in the local stylus 

coordinate system from the origin at STY4 (Figure 12). The stylus allowed for scapular 

anatomical landmark positions to be captured in a static calibration frame.  

Marker 

label 
Description 

C7 7th cervical vertebra spinous process 

RA Right acromion 

AC Right AC joint 

SC Right SC joint 

LA Left acromion 

SSN Suprasternal notch 

XP Xyphoid process 

T8 8th thoracic vertebra spinous process 

ME Medial humeral epicondyle 

LE Lateral humeral epicondyle 
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Figure 12: Digitizing stylus with orthogonal coordinate system. Xd is perpendicular to the plane created by 

STY1, STY2, STY3, and STY4 directed forward. “T” is the tip of the stylus 

3.3.3 Acromion marker cluster 

 The acromion marker cluster (AMC) method (McQuade and Smidt, 1998; van Andel et 

al., 2008) was used in an effort to reduce skin motion artifact during scapular motion capture. 

The method has been validated for humeral elevation angles less than 120°. The AMC used 

consisted of a triangular cluster of three reflective markers (inter-marker distance 30 mm) fixed 

to a rigid plate secured to a metal “L”-bracket. The base of the bracket is positioned over the flat 

portion of the posterior lateral-acromion and secured with tape (Figure 13). The cluster was 

converted to a local coordinate system so that scapular landmarks could be measured relative to a 

calibration frame (Table A3 and Figure A5 in Appendix A). The scapular landmarks were then 

recreated in each frame for subsequent trials rather than being directly captured using skin 

mounted markers.  

T 



32 
 

 

Figure 13: Acromion marker cluster secured to participant’s posterior lateral acromion with tape  

3.4 Experimental protocol 

3.4.1 Collection volume calibration 

 The 8 VICON cameras were aimed, focused and calibrated prior to motion data 

collection and participant instrumentation. First, the calibration wand provided by VICON was 

placed in the center of the anticipated motion capture volume and each camera was aimed and 

focused to ensure that any reflective marker passing through the volume was visible by all 

cameras. Any aberrant reflective noise seen by cameras was manually masked. Next, the VICON 

cameras were calibrated allowing the system to define the capture volume and the relative 

orientation of the cameras. To calibrate, the calibration wand was waved through the collection 

volume, allowing each camera to record the wand position. The calibration was deemed 

acceptable if the root mean square difference of the markers recorded locations and real locations 

were less than 0.20 mm for each camera. Finally, the global coordinate system origin was 

defined as a point on the ground so that all participant marker positions were positive. The global 

positive x- y- and z-axes were directed right, forward and up in relation to the body, respectively.      
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3.4.2 Collection protocol 

Reflective markers were secured to the participant’s skin overlying the 10 anatomical 

landmarks outlined in Table 3. Rigid plates containing 3 markers each were fixed in place over 

the mid-humerus. Finally, the acromion marker cluster (AMC) was fixed to the posterior lateral 

acromion with adhesive tape. Three static anatomical calibration trials were then performed with 

the participant seated with feet shoulder width apart in anatomical position, allowing for the 

acromion angle (AA), acromion inferior angle (IA), and the root of the scapula spine (RS) 

locations to be palpated and recorded with the digitizing stylus (Figure 14). Foot alignment was 

indicated on the floor with tape. The calibration allowed for the global position of all anatomical 

and clustered markers to be known.  

 

Figure 14: Palpating the inferior angle (AA) of the scapula with the digitizing stylus 

 Participants remained seated with feet shoulder-width apart and pointed forward as the 

researcher identified the six movement planes. To do so, the upper limb was positioned in the 

desired humeral elevation plane with the arm fully extended, elevated to 90° and thumb pointing 

upward, using a goniometer located at the approximate GH joint center. The arm position for 

subsequent humeral elevation trials was constrained with a tall narrow rod as to guide the 

participant’s humeral motion and prevent line-of-sight obstructions with the infrared cameras. 

The rod positions for the respective elevation planes were marked with tape on the floor. A 
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second rod was placed behind the participant. He or she was asked to maintain contact with this 

rod during all trials. To reinforce this rod’s position, it was taped to the participant’s back. If the 

participant side flexed his or her torso during humeral elevation, the rod visibly swayed and the 

trial was repeated. 

Participants performed the seated humeral elevation trials in the outlined planes three 

times in a random order for a total of 18 upper limb movements. Anatomical position with the 

thumb pointed in the direction of the movement plane represented the initial and final positions 

for all trials. On the investigator’s cue, the participant raised the arm maintaining an extended 

elbow to a sub-maximal elevation angle beyond 120E along the specific elevation plane and then 

lowered it back on plane to the anatomical position (Figure 15). For movement within the 120P, 

the elbow was bent at lower elevation as to prevent collisions with the thigh (Figure 16). Each 

raise-lower cycle was performed to a metronome and completed in 4 seconds. 

 

Figure 15: Examples of recorded elevation motions. LEFT: 0P sub-maximal elevation. RIGHT: starting 

position of the 120P humeral elevation  

3.5 Data analysis 

 Upper limb kinematic data was processed using custom-built scripts written in MATLAB 

software version R2009b (Mathworks Inc., MA, USA). Link segments were deduced from 
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filtered marker data and segment coordinate systems created. Analyses of variance were 

performed using JMP® 8.0.2.2 statistical software (SAS Institute Inc., NC, USA) while intra-

class correlation coefficients were calculated using SPSS Statistics v19.0 (IBM, NY, USA). 

3.5.1 Kinematics 

 All raw kinematic data were low pass filtered with a cut-off frequency specific to each 

participant as determined by residual analysis (Figure 16) (Winter, 2009). One cut-off frequency 

per participant was chosen in a conservative matter (2.0 – 6.5 Hz cut-off range). Segment length 

and orthogonal coordinate systems were constructed using definitions provided by Wu et al 

(2005) (Tables A1, A2, A3, and Figures A1-A4 in Appendix A). The scapula landmarks 

acromion angle (AA), inferior angle (IA), and scapular spine root (RS) were measured using the 

digitizing stylus in three calibration trials with the participant in anatomical position (i.e. one 

calibration per digitized landmark) and used to define the scapula plane. The global three-

dimensional position of the stylus tip and anatomical landmarks it palpates were calculated with 

(from Meskers, 1998):  

(1.0) 

 

Where sx, sy, and sz is the position vector of the stylus tip in the global system; osx, osy, and osz is 

the position vector of the origin of the stylus coordinate system in the global system; vCx, vCy, 

and vCz are the position coordinates of the vector between the stylus tip and the origin of the 

stylus coordinate system; [R] is the cluster to global rotational matrix as described in Appendix 

B.  
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Figure 16: Graphical user interface used to determine participant cut-off frequencies using residual analysis 

(Winter, 2009)  

 Static calibration trials were performed to determine the position of the scapular 

landmarks relative to the acromion marker cluster (ACM) coordinate system and allowed for the 

scapular plane to be reconstructed in every subsequent recorded frame. The vectors between the 

digitized AA, IA, RS landmarks and the ACM were calculated by (from Meskers, 1998):                     

(2.0) 
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Where vbx, vby, and vbz are the coordinates of the vector between the AMC system and a scapular 

landmark (AA, IA, or RS); bx, by, and bz are the global coordinates of the position vector the 

scapular landmark; osx, osy, and osz are the global coordinates of the position vector of the origin 

of the AMC system; [R] is the cluster to global rotational matrix as described in Appendix B. 

Upper limb joint angle amplitudes were reported at 5° increments of humeral elevation 

and lowering, beginning and ending at 10° of elevation. Due to the dynamic nature of the task, 

there was a continuous stream of kinematic data collected throughout the trial and there was no 

guarantee that the incremental elevation angle outcomes would be explicitly recorded. To correct 

for this, joint rotational data were averaged across ±1.5° of the targeted humeral elevation angle. 

For example, an elevation trial may produce a continuous stream of thoracohumeral angles of 

59.4°, 59.7°, 60.1°, 60.6°, 60.9°, and no angle at exactly 60E. To account for this, all recorded 

joint rotations at humeral elevation angles between 58.5° and 61.5° were averaged to generate 

one value for 60E elevation.  

Figures 17 through 19 provide an example of the process used to obtain relevant 

kinematic data for one joint rotation (scapulothoracic tilt) during movement within one plane 

(0P) repeated twice. First, the relevant humeral elevation angle range had to be identified. Figure 

17 demonstrates the complete thoracohumeral elevation range (interrupted line) and the relevant 

humeral raising range between 10E and 120E (solid line). The frames in which this relevant 

range occurs were noted. Next, the angle magnitudes occurring over these frames were recorded 

(Figure 18). This was done for all three trials and the resulting angle profiles were averaged to 

provide one joint rotation measure for one movement plane (Figure 19).    
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Figure 17: Example thoracohumeral elevation profile (dashed line) used to identify when the humerus was 

within 10E to 120E humeral elevation (solid line)  

 

 

Figure 18: Scapulothoracic tilt profile (dashed line) and range of tilt occurring between 10E and 120E 

humeral elevation (solid line)  
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Figure 19: Tracings of the three scapulothoracic tilt measures (interrupted lines) and their computed average 

(solid line) displayed relative to humeral elevation angle  

3.5.3 Joint rotation descriptions 

Grood and Suntay’s “Joint Coordinate System” (JCS) method (1983) for describing 

upper limb joint motion was applied to analyze the SC joint ST interaction and Euler 

decomposition were used to describe GH joint rotations in adherence to ISB standards found in 

Wu et al (2005). However, for the SC joint, only clavicle elevation/depression and 

protraction/retraction were recorded because clavicle axial rotation could not be measured. AC 

joint descriptions did not adhere to ISB guidelines for the same reason.  The JCS method was 

developed to give clinically relevant meaning to three-dimensional joint rotation descriptions. 

System axes from the proximal and distal segment are defined as “body-fixed” axes and a 

common perpendicular to these axes is called the “floating” axis. As a result, the floating axis is 

constantly altered as the distal segment rotates relative to the proximal segment (Robertson et al., 
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2004). Joint rotations were measured as angular projection of the floating axis or an axis from 

the distal segment on to an axis from the proximal segment. For the ST joint: 

(3.1) 

(3.2) 

(3.3) 

 

Where α, β, and γ are the angles of scapula protraction(+ve)/retraction(-ve), medial(+ve)/ lateral 

(-ve) (i.e. upward) rotation, posterior(+ve)/anterior(-ve) tilt respectively; J is an axis at the joint 

coincident with the positive thorax y-axis. i is an axis at the joint coincident with the positive 

scapula x-axis; K is an axis coincident with the positive thorax z-axis; FA is the floating axis 

normal to the body fixed axes (thorax z-axis and scapula x-axis). 

For the SC joint, γ could not be calculated accurately because j (clavicle forward-pointing 

y-axis) is created using the normal to the torso’s vertical z-axis and the clavicle laterally directed 

x-axis. Since the torso’s vertical axis was stationary, j could not be accurately determined. 

However, α and β were calculated using Equations 3.1 and 3.2. They represented clavicle 

protraction(+ve)/retraction(-ve) and depression(+ve)/ elevation(-ve) respectively. J is an axis at 

the joint coincident with the positive thorax y-axis; i is an axis at the joint coincident with the 

positive clavicle x-axis; K is an axis at the joint coincident with the positive thorax z-axis; FA is 

the floating axis normal to the body fixed axes (thorax z-axis and clavicle x-axis)   

Further difficulties were present for AC joint motion calculations because no vertical 

clavicle z-axis was discernible. As a result, an attempt was made to modify the AC joint 

description described in Wu et al. (2005). The FA used for AC joint rotation in the current study 

was created using the normal to the long axis of the clavicle pointed towards the thorax and the 

scapular vertical z-axis. This allowed for α (acromion protraction(+ve)/retraction(-ve)) and β 

(acromion depression(+ve)/ elevation(-ve)) to be calculated using equations 3.1 and 3.2. J 
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represents the scapula’s forward pointing y-axis, i represents the long axis of the clavicle 

pointing towards the torso, and K represents the vertical z-axis of the scapula.  

 GH joint descriptions were based on a Z-Y-Z Euler rotation sequence (Wu et al., 2005): 

 

                                   (4.0)  

 

where αh, βh, and γh are the GH plane of elevation about the scapula z-axis, GH elevation 

about the humerus y-axis, and axial rotation about humerus z-axis respectively. Decomposition 

and rotational transformation matrices for equation 4.0 are found in Appendix B. A graphical 

user interface (Figure 20) was created in Matlab to view outputted ST and GH angle 

measurements to ensure that neither system became indeterminate and entered Gimbal Lock.  
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Figure 20: Graphical user interface used to screen outputted joint kinematics for potential abnormalities.  
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3.6 Statistical analysis 

3.6.1 Intra-class correlation coefficient (ICC) 

Intra-class correlation coefficient (ICC – Type 3,1) was used to determine trial-to- trial 

consistency (Shrout & Fleiss, 1979; Weir, 2005) of each participant’s joint motions. This 

resulted in a collection of ten ICCs (i.e. one for every measured rotation) per measured 

movement plane for a total of 60 ICCs per participant. These data were then averaged across 

participants in two ways. First ICCs were averaged across plane and across individuals to 

produce ten overall joint rotational ICCs. The second method had ICCs averaged within plane 

and then across individuals to produce one ICC per plane. Absolute maximum and minimum 

recorded ICCs were determined, along with variability indicated by (standard deviation)  

3.6.2 Kinematic profiles 

All joint three-dimensional rotations were presented graphically relative to humeral 

elevation angle at 5° increments with variability provided. Between each increment, linear 

interpolation was performed. Standard deviation was chosen over standard error because the 

demonstration of high kinematic variability was to be emphasized. Presenting standard error 

would have given the perception that the profiles were more reliable, due to the higher sample 

size. Sixty plots were generated for each motion phase (ten joint rotations x six movement 

planes). Profiles included both male and female data.  

3.6.3 Variability summary 

Joint rotation variability at every increment of humeral elevation (indicated by standard 

deviation from the kinematic profiles) was averaged across each movement plane and presented 

in a stacked bar graph. This gave the reader an indication of how the variation of certain joint 

rotations changed over the range of humeral elevation measured. A second stacked bar graph of 
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the joint rotational variability averaged within each plane was provided to give an overall 

indication of which movement plane resulted in the highest joint motion variability.   

3.6.4 Analysis of variance (ANOVA) 

 Ten separate 4-way mixed model analysis of variance (ANOVA) were used to test the 

effects of the independent variables (plane of elevation, elevation angle, motion phase of and 

gender) on the ten measured joint. To allow for independent comparisons of humeral motion, 

only eight levels of humeral elevation were tested: 15E, 30E, 45E, 60E, 75E, 90E, 105E, and 

120E. Statistical significance was considered at α = 0.05. When interaction effects were present, 

Tukey HSD was used post hoc to compare individual factor means.  

 

 

 

 

  



45 
 

4. RESULTS 

Participant trial-to-trial movement consistency was found to be moderate to high and 

significant movement plane, humeral elevation angle, phase, and their interactions effects were 

present for the majority of averaged joint rotations.  Repeatability of the joint motion ranges 

between 0.658 and 0.999 when rotational ICCs are averaged across tested movement planes. 

When ICCs are averaged within movement planes, repeatability ranged between 0.822 and 

0.852. Observable changes in kinematic profiles due to humeral elevation angle and movement 

plane are more prominent than changes due to elevation phase. Glenohumeral elevation displays 

largest overall range of motion (73.32⁰, 120P, raising phase). The smallest range of motion is 

seen in scapular posterior/anterior tilt (2.44⁰, 30P, raising phase). Significant main effects of 

humeral movement plane, elevation angle, elevation phase are seen for the majority of measured 

joint rotations; at least one main effect interaction is seen for all measured joint rotations. 

Finally, most cumulative kinematic variability is evident at lower humeral elevation angles. 

5.1 Intra-class Correlation Coefficients 

Mean three-dimension upper limb joint rotation ICCs varied from moderate (0.597) to 

high (0.999). Mean, maximum and minimum ICCs for the measured rotations organized by 

tested movement plane are presented in Table C6 in Appendix C. Each mean in Table C6 is an 

average across all participants and both movement phases while each maximum and minimum 

are individual values. Glenohumeral elevation, glenohumeral internal/external rotation, humeral 

elevation, clavicle elevation/depression, and scapular protraction/retraction all had ICCs of 

greater than 0.90 regardless of movement plane. Glenohumeral movement plane, 

acromioclavicular protraction/retraction, and humeral internal/external rotation had ICCs of less 
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than 0.80 regardless of movement plane. Individual ICCs ranged between 0.000 

(acromioclavicular elevation – 120 plane) to 0.999 (multiple rotation-plane combinations).  

Similar results to the mean ICCs for the measured rotations are seen when these means 

are averaged across humeral movement plane; however, there is little difference between overall 

joint rotation ICCs within each humeral movement plane. Glenohumeral elevation, glenohumeral 

internal/external rotation, humeral elevation, clavicle elevation/depression, and scapular 

protraction/retraction ICCs remain greater than 0.90 (see Table 5). However, when rotations are 

averaged across humeral movement plane, glenohumeral movement plane, acromioclavicular 

protraction/retraction, and humeral internal/external rotation had ICCs of less than 0.70. When 

all rotations are averaged within a humeral movement plane, there is little difference between 

resultant ICCs (see Table 6). 

Table 5: Overall ICCs for each rotation. Each mean ICC represents the average within-rotation mean ICCs 

displayed in Table C6  

Rotation Mean ICC STD 

GLE 0.999 0.004 

CED 0.959 0.046 

GIE 0.924 0.059 

SPR 0.935 0.049 

SPA 0.918 0.071 

CPR 0.814 0.019 

AED 0.808 0.042 

SML 0.744 0.019 

APR 0.693 0.043 

GAP 0.658 0.021 

 

Table 6:  Overall ICCs for each plane of humeral elevation. Each mean ICC represents the average within-

plane mean ICCs displayed in Table C6  

Plane Mean ICC STD 

0° 0.828 0.139 

30° 0.830 0.149 

Scapular 0.838 0.147 

60° 0.825 0.130 

90° 0.852 0.108 

120°  0.822 0.114 
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4.2 Descriptive Statistics and motion profiles 

4.2.1 Scapulothoracic Kinematics 

There was a tendency for the scapula to protract as the humerus is elevated; however at 

high humeral elevation angles there was a small scapula protraction reduction relative to the 

thorax.  At rest (10⁰ elevation angle), the participants’ scapula was protracted. Range of motion 

(ROM) was marginal for the movement planes from 0P through to 60P, with a maximum range 

of 4.14⁰ for these respective planes. Protraction ROM increased more substantially for the 

remaining movement planes, with a maximum 18.87⁰ ROM seen in the 120P. Movement phase 

had very little effect on ROM. Scapulothoracic kinematics descriptive statistics are seen in Table 

C1 in Appendix C. Scapulothoracic +protraction/-retraction (SPR) motion profiles with 

variability for the raising phase are shown in Figure 21 below while the lowering phase profiles 

can be found in Figure D1 in Appendix D. 
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Figure 21: Mean scapular +protraction/-retraction (SPR) kinematic profiles, with +/- one standard deviation, 

for the six tested vertical planes – raising phase 

As the humerus elevated, the scapula laterally rotated upwards. Overall scapulothoracic 

rhythm was -3.13 (SD 0.37) and -3.33 (SD 0.52) for raising and lowering phases respectively (a 

complete list of the scapulothoracic rhythm organized by plane can be found in Table C2 in 

Appendix C). Scapula lateral rotation ROM decreased marginally as the movement plane 

changes from the 0P plane across to the 120P plane (36.71⁰ to 32.70⁰ respectively), and phase 
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changes were subtle.  Scapulothoracic +medial/-lateral (SML) rotation motion profiles for the 

raising phase are shown in Figure 22 below while the lowering phase profiles are seen in Figure 

D2 in Appendix D. 

 
Figure 22: Mean scapulothoracic +medial/-lateral rotation (SML) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase 
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The scapula tilted posteriorly relative to the thorax as the humerus elevated in all tested 

movement planes. At rest, the scapula tended to be anteriorly titled. Tilting ROM increases as the 

movement plane changes from the 0P across to the 120P (7.62⁰ to 11.92⁰ respectively). Also, 

there is a small reduction in tilting ROM during lowering phases compared to the raising phase 

in the 0P, 30P, and SCAP. An increase in the ROM for the remaining movement planes was 

found. Scapulothoracic +posterior/-anterior tilt motion profiles for the raising phase are shown in 

Figure 23 below while the lowering phase profiles are seen in Figure D3 in Appendix D. 
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Figure 23: Mean scapulothoracic +posterior/-anterior (SPA) tilt kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase 
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4.2.2 Glenohumeral Kinematics 

Glenohumeral motion plane (GAP) profiles and ROM were influenced by the plane of 

humeral elevation. At elevation angles below 60⁰, there are no consistent trends across 

movement planes. However, as the humerus moves elevates to the end of the movement (for the 

raising phase; start of the movement for the lowering phase), GAP tended to return to the 

magnitude observed at the start of the movement for the raising phase (i.e. end of movement for 

lowering phase). Glenohumeral plane ROM increased substantially movement plane was 

modified from 0P across to 120P (18.07⁰ to 35.16⁰ respectively). The lowering phase produced 

glenohumeral plane reductions for movement planes past the SCAP. Glenohumeral kinematics 

descriptive statistics are seen in Table C3 in Appendix C. Glenohumeral +anterior/-posterior 

plane motion profiles with variability for the raising phase are shown in Figure 24 below while 

the lowering phase profiles are seen in Figure D4 in Appendix D. 
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Figure 24: Mean glenohumeral +anterior/-posterior elevation plane (GAP) kinematic profiles, with +/- one 

standard deviation, for the six tested vertical planes – raising phase 

 There was a direct linear relationship between glenohumeral and humeral elevation 

angles. Glenohumeral elevation (GLE) ROM varied between 68.33⁰ and 73.32⁰ across humeral 

movement planes, with no specific trends between them. The phase of humeral motion did not 

affect glenohumeral elevation in a consistent matter. Glenohumeral -elevation motion profiles 
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with variability for the raising phase are shown in Figure 25 below while the lowering phase 

profiles are seen in Figure D5 in Appendix D. 

 

 
Figure 25: Mean glenohumeral -elevation (GLE) kinematic profiles, with +/- one standard deviation, for the 

six tested vertical planes – raising phase 
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Both plane of humeral elevation and motion phase influenced the glenohumeral 

internal/external rotation motion profiles. Glenohumeral external rotation ROM increased as 

movement plane was modified from the 0 plane across to the 120 plane for both phases of 

motion (10.01⁰ to 37.06⁰ for the raising phase; 6.94⁰ to 43.56⁰ for the lowering phase). 

Generally, as the humerus was at 60⁰ of elevation or below for both phases,   the humerus 

externally rotated on the glenoid. At humeral elevation angles above 60⁰, the humerus generally 

internally rotated. Also, as humeral movement plane was varied from 0P to 120 P, the humerus 

was progressively more internally rotated at the start of the recorded humeral motion. 

Glenohumeral +internal/-external rotation motion profiles with variability for the raising phase 

are shown in Figure 26 below while the lowering phase profiles are seen in Figure D6 in 

Appendix D. 
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Figure 26: Mean glenohumeral –internal/+external rotation (GIE) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase 
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4.2.3 Acromioclavicular Kinematics 

As the humerus elevated in the examined movement planes, the acromion first retracts 

relative to the clavicle at elevation angles approximately below 40⁰ and then protracts for the 

remainder of the motion. For all tested humeral elevation angles and planes, the acromion was 

protracted. For the raising phase, the total ROM increased within the tested planes as participants 

movement planes progressed in order from 0P to 120P (6.38⁰ to 12.98⁰ respectively). More 

acromioclavicular retraction accounted for this increase in ROM. For the lowering phase, this 

trend of increasing ROM stopped at 90P (6.29⁰ to 10.86⁰). Acromioclavicular kinematics 

descriptive statistics are seen in Table C4 in Appendix C. Acromioclavicular +protraction/-

retraction motion profiles with variability for the raising phase are shown in Figure 27 below 

while the lowering phase profiles are seen in Figure D7 in Appendix D. 
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Figure 27: Mean acromioclavicular +protraction/-retraction (APR) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase. 

 

 Overall, the acromion elevated relative to the clavicle as the humerus elevated within the 

tested movement planes. Most acromion elevation occurred above 60⁰ degrees of humeral 

elevation. As humeral movement planes progressed from abduction (0P) to 120P, ROM 

increased (12.26⁰ to 21.13⁰).  Acromioclavicular +elevation/-depression motion profiles with 
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variability for the raising phase are shown in Figure 28 below while the lowering phase profiles 

are seen in Figure D8 in Appendix D. 

Figure 28: Mean acromioclavicular –elevation/+depression (AED) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase. 
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4.2.4 Sternoclavicular Kinematics 

As the humerus was elevated, the clavicle retracted relative to the sternum in all 

examined planes except the 120P where protraction occurred at lower elevation angles. These 

motion trends also existed for the lowering phase in a reversing trend. ROM changes due to 

humeral movement plane changes were marginal for both phases of motion (1.37⁰ maximal 

difference for the raising phase; 1.4⁰ maximal difference for the lowering phase). There was a 

subtle decrease in ROM in the lowering phase across all tested movement planes. 

Sternoclavicular +protraction/-retraction motion profiles with variability for the raising phase are 

shown in Figure 29 below while the lowering phase profiles are seen in Figure D9 in Appendix 

D. Sternoclavicular kinematics descriptive statistics are seen in Table C5 in Appendix C. 
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Figure 29: Mean sternoclavicular +protraction/-retraction (CPR) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase 

 

Overall, the clavicle was elevated relative to the sternum when the humerus was elevated 

away from the torso for both motion phases. However, this relationship was less direct during the 

lowering phase, as evident by comparing the motion profiles for each phase in Figures 28 and D9 

in Appendix D. ROM for 30P, SCAP, 60P, and 90P were very similar for both phases as 

indicated in Table C5 in Appendix C (0.62⁰ maximal difference for the raising phase within 
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these movement planes; 0.76⁰ maximal difference for the lowering phase). Sternoclavicular         

-elevation/+depression motion profiles with variability for the raising phase are shown in Figure 

30 below while the lowering phase profiles are seen in Figure D10 in Appendix D. 

Figure 30: Mean sternoclavicular –elevation/+depression (CED) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – raising phase. 
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4.3 Analysis of Variance (ANOVA) 

4.3.1 Scapulothoracic Kinematics 

There was a main effect of humeral movement plane (p < 0.0001), angle (p < 0.0001), 

and phase (p < 0.0001) on right scapulothoracic +protraction/-retraction (SPR), +medial/-lateral 

rotation (SML), and +posterior/-anterior tilt (SPA). An interaction effect of sex and plane was 

present for all three ST rotations (p < 0.0355, p = 0.0001, and p = 0.0001 for SPR, SML, and 

SPA respectively). Sex-elevation angle and movement plane-elevation angle interaction effects 

occurred for SPR (p < 0.0001; p < 0.0001) and SPA (p < 0.0001; p < 0.0001). An interaction 

effect of sex and phase was present for SPR (p = 0.0277) and SML rotations (p < 0.0001). 

Finally, a plane-phase interaction existed for SPA (p < 0.0001) and SML (p = 0.0012). A 

summary of the main effects and interactions with F-statistics and p-values for scapulothoracic 

kinematics is provided in Tables F1 through F3 in Appendix F. 

As movement plane was modified progressively across the body from 0P to 120P, overall 

least square mean (LSM) scapular protraction (SPR) increased significantly for each plane 

(23.93⁰ for 0P to 48.72⁰ for 120P). As humeral elevation angle increased, scapular protraction 

increased. Higher humeral elevation angles 90E, 105E, and 120E displayed statistically the same 

amount of protraction (36.94⁰, 37.52⁰ and 37.75⁰ respectively), while 15E had significantly 

lower scapular protraction (32.21⁰) than all other elevation angles. Additionally, the raising 

phase displayed significantly more scapular protraction (36.15⁰) than the lowering phase 

(34.66⁰). Plots of interaction effects indicating the results of post-hoc Tukey HSD for 

scapulothoracic kinematics are provided in Figures 31 through 36 below, with the exception SPR 

sex-humeral elevation and movement plane-elevation angle interactions. These interactions are 

displayed in Tables 5 and 6. 
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Figure 31: Interaction effects of humeral movement plane and elevation angle on least squares mean (LSM) 

right scapulothoracic +protraction/-retraction (SPR)  
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Table 6:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

scapulothoracic +protraction/-retraction. For plane, 1 = 0° plane; 2 = 30° plane; 3 = scapular plane; 4 = 60° 

plane; 5 = 90° plane; 6 = 120° plane. Levels not connected by same letter are significantly different (p-value: 

0.05) 

Level                                             LSM 

6,90 A 
                     

53.42 

6,105 A 
                     

53.06 

6,75 A 
                     

52.57 

6,120 A 
                     

51.36 

6,60 A B 
                    

50.52 

6,45 
 

B C 
                   

47.63 

5,105 
  

C D 
                  

44.99 

5,90 
  

C D 
                  

44.94 

5,120 
   

D 
                  

43.99 

5,75 
   

D 
                  

43.87 

6,30 
   

D 
                  

43.68 

5,60 
   

D E 
                 

42.16 

5,45 
    

E F 
                

40.07 

4,120 
     

F G 
               

38.33 

4,105 
     

F G 
               

38.11 

4,90 
     

F G H 
              

37.70 

5,30 
     

F G H 
              

37.64 

6,15 
     

F G H I 
             

37.51 

4,75 
      

G H I J 
            

36.73 

4,60 
      

G H I J K 
           

35.65 

4,45 
       

H I J K L 
          

34.83 

5,15 
       

H I J K L M 
         

34.60 

3,120 
        

I J K L M N 
        

34.40 

4,30 
         

J K L M N O 
       

33.99 

4,15 
          

K L M N O P 
      

33.57 

3,105 
          

K L M N O P 
      

33.43 

3,90 
           

L M N O P Q 
     

32.51 

3,15 
           

L M N O P Q R 
    

32.09 

3,75 
           

L M N O P Q R 
    

31.81 

2,120 
            

M N O P Q R 
    

31.73 

3,30 
             

N O P Q R 
    

31.42 

3,60 
             

N O P Q R 
    

31.41 

3,45 
              

O P Q R 
    

31.18 

2,105 
               

P Q R 
    

30.80 

2,15 
                

Q R S 
   

29.77 

2,90 
                

Q R S 
   

29.58 

2,30 
                 

R S 
   

29.37 

2,75 
                 

R S 
   

29.21 

2,60 
                 

R S 
   

29.10 

2,45 
                 

R S 
   

29.03 

1,120 
                  

S T 
  

26.66 

1,15 
                   

T U 
 

25.71 

1,105 
                   

T U V 24.74 

1,30 
                   

T U V 23.73 

1,90 
                    

U V 23.49 

1,45 
                     

V 22.53 

1,75 
                     

V 22.52 

1,60 
                     

V 22.08 
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Figure 32: Interaction effects of humeral elevation phase and elevation angle on LSM right scapulothoracic 

+protraction/-retraction (SPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 33: Interaction effects of sex and humeral elevation angle on LSM right +protraction/-retraction 

(SPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

B A 
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Table 7:  Interaction effects of sex and humeral elevation angle on least squares mean (LSM) scapulothoracic 

+protraction/-retraction (SPR).  For sex, 1 = female; 2 = male. Levels not connected by same letter are 

significantly different (p-value: 0.05) 

Level 
               

LSM 

2,105 A B C 
         

M 
  

39.08 

2,120 A B C 
         

M 
  

38.95 

2,90 A B C 
         

M 
  

38.49 

2,75 A B C D 
 

F 
      

M 
  

37.56 

1,120 A 
  

D E 
 

G H 
       

36.55 

2,60 
   

D E F 
  

I 
      

36.35 

1,105 A B 
 

D E F G H I J 
     

35.97 

1,90 A B C D E F G H I J K 
    

35.39 

2,45 
    

E 
 

G 
 

I J K L 
   

35.12 

1,75 
 

B C 
  

F 
  

I J K L 
   

34.68 

1,60 
  

C 
       

K L M N 
 

33.95 

2,30 
      

G H 
 

J K L 
 

N O 33.80 

1,45 
           

L M N O 33.30 

1,30 
            

M N O 32.80 

2,15 
       

H 
     

N O 32.47 

1,15 
              

O 31.95 

 

 

 

 
Figure 34: Interaction effects of humeral elevation phase and movement plane on LSM right +protraction/-

retraction (SPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

A B 
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Figure 35: Interaction effects of sex and humeral movement plane on LSM right +protraction/-retraction 

(SPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 36: Interaction effects of sex and humeral elevation phase on LSM right +protraction/-retraction 

(SPR). Levels not connected by same letter are significantly different (p-value: 0.05) 
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There were no significant difference in scapula +medial/-lateral (SML) rotation for the 

movement planes between 0P (-14.26⁰) and 60P (-14.26⁰), while 120P had significantly lower 

higher lateral scapular rotation than all other planes (-18.15⁰). Moreover, each increasing 

humeral elevation increment produced progressively greater scapular lateral rotation (2.01⁰ at 

15E; -31.01⁰ at 120E). Also, the lowering phase demonstrated more scapular lateral rotation (-

15.12⁰) than the raising phase (-14.49⁰). Plots of interaction effects indicating the results of post-

hoc Tukey HSD for SML kinematics are provided in Figures 37 through 42 below.  
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Figure 37: Interaction effects of humeral movement plane and elevation angle on LSM right scapulothoracic 

+medial/-lateral rotation (SML). Levels not connected by same letter are significantly different (p-value: 0.05) 

  

A 
B 

A 
B C B 

B B 
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Figure 38: Interaction effects of humeral elevation phase and elevation angle on LSM right scapulothoracic 

+medial/-lateral rotation (SML). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 39: Interaction effects of sex and humeral elevation angle on LSM right scapulothoracic +medial/-

lateral rotation (SML). Levels not connected by same letter are significantly different (p-value: 0.05) 

A B 
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Figure 40: Interaction effects of humeral elevation phase and movement plane on LSM right scapulothoracic 

+medial/-lateral rotation (SML). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 41: Interaction effects of sex and humeral movement plane on LSM right scapulothoracic +medial/-

lateral rotation (SML). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 42: Interaction effects of sex and humeral elevation phase on LSM right scapulothoracic +medial/-

lateral rotation (SML). Levels not connected by same letter are significantly different (p-value: 0.05) 

 

For scapulothoracic +posterior/-anterior tilt, (SPA), more scapular posterior tilt occurred 

as movement plane was modified from 0P through all movement planes to 120P. 0P resulted in 

significantly more scapula posterior tilt than all other planes (2.99⁰), while planes 90P (-2.14⁰) 

and 120P (-2.77⁰) resulted in significantly more anterior tilt than any other planes. In addition, 

there was a direct relationship between humerus elevation angle and scapular posterior tilt. 15E 

displayed the most scapular anterior tilt (-4.51⁰), while 120E displayed the most posterior 

scapular tilt (4.99⁰). Finally, the lowering phase displayed significantly less anterior tilting (-

0.13⁰) than the raising phase (-0.88⁰).  Plots of interaction effects indicating the results of post-

hoc Tukey HSD for ST kinematics are provided in Figures 43 through 48 below, with the 

exception of SPA of sex-humeral elevation and movement plane-elevation angle interactions. 

These interactions are displayed in Tables 8 and 9. 
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Figure 43: Interaction effects of humeral movement plane and elevation angle on LSM right scapulothoracic 

+posterior/-anterior tilt (SPA) 
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Table 8:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

scapulothoracic +posterior/-anterior tilt (SPA). Levels not connected by same letter are significantly different 

(p-value: 0.05) 

Level 
                   

LSM 

1,120 A 
                  

8.56 

1,105 A B 
                 

7.18 

2,120 A B C 
                

6.45 

3,120 A B C 
                

6.42 

1,90 A B C D 
               

5.84 

4,120 
 

B C D E 
              

4.37 

1,75 
 

B C D E 
              

4.22 

2,105 
 

B C D E 
              

4.19 

3,105 
  

C D E F 
             

3.71 

5,120 
  

C D E F G 
            

3.02 

1,60 
   

D E F G H 
           

2.40 

2,90 
    

E F G H I 
          

2.07 

3,90 
    

E F G H I J 
         

1.60 

4,105 
    

E F G H I J 
         

1.52 

6,120 
    

E F G H I J K 
        

1.10 

2,75 
     

F G H I J K L 
       

0.57 

1,45 
     

F G H I J K L M 
      

0.44 

3,75 
      

G H I J K L M N 
     

-0.01 

5,105 
      

G H I J K L M N O 
    

-0.30 

2,60 
       

H I J K L M N O 
    

-0.58 

4,90 
        

I J K L M N O P 
   

-1.05 

3,60 
        

I J K L M N O P Q 
  

-1.21 

6,105 
         

J K L M N O P Q R 
 

-1.48 

1,30 
         

J K L M N O P Q R S -1.49 

2,45 
         

J K L M N O P Q R S -1.74 

5,90 
          

K L M N O P Q R S -2.21 

3,45 
          

K L M N O P Q R S -2.22 

4,75 
           

L M N O P Q R S -2.47 

2,30 
           

L M N O P Q R S -2.79 

6,90 
           

L M N O P Q R S -2.83 

5,75 
            

M N O P Q R S -2.98 

4,60 
             

N O P Q R S -3.04 

3,30 
             

N O P Q R S -3.12 

5,60 
             

N O P Q R S -3.20 

5,45 
             

N O P Q R S -3.21 

6,45 
             

N O P Q R S -3.23 

6,60 
             

N O P Q R S -3.43 

6,75 
              

O P Q R S -3.47 

6,30 
              

O P Q R S -3.49 

4,45 
              

O P Q R S -3.50 

1,15 
              

O P Q R S -3.64 

5,30 
              

O P Q R S -3.65 

4,30 
               

P Q R S -4.10 

2,15 
               

P Q R S -4.38 

3,15 
               

P Q R S -4.40 

5,15 
                

Q R S -4.60 

4,15 
                 

R S -4.75 

6,15 
                  

S -5.29 
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Figure 44: Interaction effects of humeral elevation phase and elevation angle on LSM right scapulothoracic 

+posterior/-anterior tilt (SPA). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 45: Interaction effects of sex and humeral elevation angle on LSM right scapulothoracic +posterior/-

anterior tilt (SPA).  

A B 
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Table 9:  Interaction effects of sex and humeral elevation angle on least squares mean (LSM) scapulothoracic 

+posterior/-anterior tilt. Levels not connected by same letter are significantly different (p-value: 0.05) 

Level 
               

LSM 

2,120 A 
        

J 
     

9.30 

2,105 
 

B 
         

L 
   

5.82 

2,90 
  

C 
            

2.99 

2,75 
   

D 
 

F 
         

0.96 

1,120 A B C D E 
 

G 
        

0.68 

2,60 
   

D E F 
 

H 
       

-0.42 

1,105 A B C D E F G H I 
      

-0.88 

2,45 
    

E 
 

G H I 
 

K 
    

-1.52 

1,90 
     

F 
 

H I J K 
 

M 
  

-1.84 

1,75 
     

F 
 

H I J K L M N 
 

-2.33 

2,30 
      

G 
 

I 
 

K 
 

M N O -2.60 

1,60 
     

F 
 

H I J K L M N 
 

-2.60 

1,45 
         

J K L M N 
 

-2.97 

1,30 
           

L 
 

N O -3.62 

2,15 
            

M N O -4.26 

1,15 
              

O -4.76 

 

 

 
Figure 46: Interaction effects of humeral elevation phase and movement plane on LSM right scapulothoracic 

+posterior/-anterior tilt (SPA). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 47: Interaction effects of sex and humeral movement plane on LSM right scapulothoracic +posterior/-

anterior tilt (SPA). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 48: Interaction effects of sex and humeral elevation phase on LSM right scapulothoracic +posterior/-

anterior tilt (SPA). Levels not connected by same letter are significantly different (p-value: 0.05) 
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4.3.2 Glenohumeral Kinematics 

There was a main effect of humeral movement plane (p < 0.0001) and angle (p < 0.0001) 

on right glenohumeral (GH) +anterior/-posterior plane of elevation (GAP), +medial/-lateral 

elevation (GLE), and +internal/-external rotation (GIE). There was also a movement phase effect 

(p = 0.0008) on GIE. A movement plane-elevation angle interaction effect occurred for GAP (p 

< 0.0001) and GIE (p < 0.0001). Additionally, sex-movement plane (p < 0.0001), sex-elevation 

angle (p < 0.0001), and sex-movement phase (p = 0.0024) interactions were present for GLE. A 

summary of the main effects and interactions with F-statistics and p-values for GH kinematics is 

provided in Tables F4 through F6 in Append F. 

As movement plane progressively changed across the body from 0P to 120P, overall 

LSM GH plane significantly increased anteriorly (23.93⁰ for 0P through to 48.72⁰ for 120P). 

GAP at 15E (23.19⁰) was statistically the same as 75E (24.64⁰) and 90E (21.08⁰). GAP at 30E 

(28.88⁰) was statistically the same as 45E (29.95⁰), 60E (28.23) and 75E (24.64). Plots of 

interaction effects indicating the results of post-hoc Tukey HSD for GAP kinematics are 

provided in Figures 49 through 54 below, with the exception GAP movement plane-elevation 

angle interactions. These interactions are displayed in Tables 10. 
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Figure 49: Effects of humeral movement plane and elevation angle on LSM right glenohumeral +anterior/-

posterior rotation (GAP) 
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Table 10:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

glenohumeral +anterior/-posterior movement plane. Levels not connected by same letter are significantly 

different (p-value: 0.05) 

Level 
                      

LSM 

6,60 A 
                     

62.19 

6,45 A 
                     

61.25 

6,75 A B 
                    

54.93 

5,45 A B C 
                   

54.66 

6,30 A B C D 
                  

52.87 

5,60 A B C D E 
                 

50.93 

5,30 A B C D E F 
                

50.11 

6,90 A B C D E F 
                

49.06 

5,75 
 

B C D E F G 
               

44.87 

4,30 
 

B C D E F G H 
              

40.63 

4,45 
  

C D E F G H 
              

40.02 

6,105 
   

D E F G H 
              

39.77 

5,90 
   

D E F G H I 
             

38.05 

4,60 
    

E F G H I J 
            

37.34 

4,15 
     

F G H I J K 
           

35.62 

5,15 
      

G H I J K L 
          

33.43 

4,75 
      

G H I J K L 
          

32.58 

5,105 
      

G H I J K L M 
         

30.88 

6,120 
       

H I J K L M N 
        

29.91 

3,15 
       

H I J K L M N O 
       

27.56 

4,90 
       

H I J K L M N O 
       

26.99 

6,15 
       

H I J K L M N O P 
      

26.00 

3,30 
        

I J K L M N O P 
      

24.14 

5,120 
        

I J K L M N O P Q 
     

24.04 

2,15 
        

I J K L M N O P Q R 
    

23.44 

3,45 
         

J K L M N O P Q R 
    

22.94 

4,105 
          

K L M N O P Q R S 
   

21.34 

3,60 
           

L M N O P Q R S 
   

20.13 

2,30 
           

L M N O P Q R S 
   

19.52 

3,75 
            

M N O P Q R S 
   

17.54 

4,120 
            

M N O P Q R S 
   

16.61 

2,45 
             

N O P Q R S 
   

15.40 

3,90 
              

O P Q R S 
   

14.26 

2,60 
              

O P Q R S 
   

12.91 

3,105 
               

P Q R S 
   

11.15 

2,75 
               

P Q R S T 
  

10.80 

3,120 
                

Q R S T 
  

9.14 

2,90 
                 

R S T 
  

8.99 

2,105 
                  

S T U 
 

6.76 

2,120 
                  

S T U 
 

6.71 

1,120 
                   

T U V -4.11 

1,15 
                    

U V -6.92 

1,105 
                    

U V -8.00 

1,90 
                     

V -10.90 

1,75 
                     

V -12.86 

1,30 
                     

V -13.99 

1,60 
                     

V -14.10 

1,45 
                     

V -14.56 

 

 



82 
 

 
Figure 50: Effects of humeral elevation phase and elevation angle on LSM right glenohumeral +anterior/-

posterior rotation (GAP). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 51: Effects of sex and humeral elevation angle on LSM right glenohumeral +anterior/-posterior 

rotation (GAP). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 52: Effects of humeral elevation phase and movement plane on LSM right glenohumeral +anterior/-

posterior rotation (GAP). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 53: Effects of sex and humeral movement plane on LSM right glenohumeral +anterior/-posterior 

rotation (GAP). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 54: Effects of sex and humeral elevation phase on LSM right glenohumeral +anterior/-posterior 

rotation (GAP). Levels not connected by same letter are significantly different (p-value: 0.05) 

 

For glenohumeral (GH +lowering/-elevation (GLE), GH elevation increased as 

movement plane changed across the body. Although some differences were significant, 

magnitude of changes were small. A maximum significant difference of -3.07⁰ GLE occurred 

between 0P (-55.18⁰) and 120P (-58.25⁰). 30P, SCAP, and 60P were statistically the same. 

Finally, there were no significant GLE differences between 60P, 90P and 120P. Each increasing 

humeral elevation increment produced progressively greater glenohumeral elevation (-22.22⁰ at 

15E; -89.99⁰ at 120E). Plots of interaction effects indicating the results of post-hoc Tukey HSD 

for GLE kinematics are provided in Figures 55 through 60.  

a a a a 
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Figure 55: Effects of humeral movement plane and elevation angle on LSM right glenohumeral elevation (-) 

(GLE). Levels not connected by same letter are significantly different (p-value: 0.05) 

 

A 

C C 
B
C 

A
B 

A
B 
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Figure 56: Effects of humeral elevation phase and elevation angle on LSM right glenohumeral elevation (-) 

(GLE). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 57: Effects of sex and humeral elevation angle on LSM right glenohumeral elevation (-) (GLE). Levels 

not connected by same letter are significantly different (p-value: 0.05) 
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Figure 58: Effects of humeral elevation phase and movement plane on LSM right glenohumeral elevation (-) 

(GLE). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 59: Effects of sex and humeral movement plane on LSM right glenohumeral elevation (-) (GLE). 

Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 60: Effects of sex and humeral elevation phase on LSM right glenohumeral elevation (-) (GLE). Levels 

not connected by same letter are significantly different (p-value: 0.05) 

Changing the movement plane 30P through to 90P did not significantly change the 

resulting glenohumeral (GH) +internal/-external rotation (GIE) (-62.50⁰ through -65.65⁰ 

respectively). 0P had significantly less external GH rotation than all other planes (-50.17⁰). There 

was no significant difference in measured external rotation between 30E (-62.26⁰) and 90E (-

61.69⁰). 15E and 120E had the least external rotation (-52.59⁰ and -54.97⁰ respectively) and were 

statistically the same. Lastly, the raising phase demonstrated significantly less GH external 

rotation than the lowering phase (-59.46⁰ and -61.91⁰ respectively). Plots of interaction effects 

indicating the results of post-hoc Tukey HSD for GIE kinematics are provided in Figures 61 

through 66 below, with the exception GIE movement plane-elevation angle interactions.  
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Figure 61: Effects of humeral movement plane and elevation angle on LSM right glenohumeral internal 

(+)/external (-) rotation (GIE).   
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Table 11:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

glenohumeral +internal/-external rotation. Levels not connected by same letter are significantly different (p-

value: 0.05) 

Level 
             

LSM 

6,15 A 
            

-33.80 

1,15 A B 
           

-45.09 

1,120 A B C 
          

-48.28 

5,15 
 

B C D 
         

-48.74 

1,30 
 

B C D E 
        

-49.88 

1,105 
 

B C D E F 
       

-50.26 

1,45 
 

B C D E F G 
      

-51.62 

1,60 
 

B C D E F G H 
     

-51.85 

1,90 
 

B C D E F G H 
     

-51.86 

1,75 
 

B C D E F G H I 
    

-52.55 

2,120 
 

B C D E F G H I J 
   

-53.98 

3,120 
 

B C D E F G H I J 
   

-54.13 

6,30 
 

B C D E F G H I J K 
  

-54.71 

2,105 
 

B C D E F G H I J K L 
 

-57.13 

4,120 
 

B C D E F G H I J K L 
 

-57.16 

3,105 
 

B C D E F G H I J K L 
 

-57.71 

5,120 
 

B C D E F G H I J K L M -58.09 

6,120 
 

B C D E F G H I J K L M -58.18 

4,15 
  

C D E F G H I J K L M -59.76 

2,90 
  

C D E F G H I J K L M -60.69 

3,90 
  

C D E F G H I J K L M -61.16 

6,105 
  

C D E F G H I J K L M -61.67 

4,105 
  

C D E F G H I J K L M -61.90 

5,105 
   

D E F G H I J K L M -62.81 

2,75 
    

E F G H I J K L M -63.00 

5,30 
    

E F G H I J K L M -63.52 

3,15 
    

E F G H I J K L M -64.00 

6,90 
     

F G H I J K L M -64.13 

2,15 
     

F G H I J K L M -64.14 

3,75 
     

F G H I J K L M -64.20 

2,60 
      

G H I J K L M -65.30 

6,45 
      

G H I J K L M -65.69 

4,90 
      

G H I J K L M -65.77 

6,75 
       

H I J K L M -65.95 

5,90 
        

I J K L M -66.54 

3,60 
        

I J K L M -66.68 

6,60 
         

J K L M -67.01 

2,45 
         

J K L M -67.16 

3,30 
          

K L M -68.41 

4,30 
          

K L M -68.45 

3,45 
          

K L M -68.53 

2,30 
          

K L M -68.59 

4,75 
           

L M -69.04 

5,75 
           

L M -69.30 

5,45 
           

L M -70.38 

5,60 
           

L M -71.05 

4,60 
           

L M -71.05 

4,45 
            

M -72.06 
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Figure 62: Effects of humeral elevation phase and elevation angle on LSM right glenohumeral 

+internal/+external rotation (GIE). Levels not connected by same letter are significantly different (p-value: 

0.05) 

 
Figure 63: Effects of sex and humeral elevation angle on LSM right glenohumeral +internal/+external 

rotation (GIE). Levels not connected by same letter are significantly different (p-value: 0.05) 

A B 
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Figure 64: Effects of humeral elevation phase and movement plane on LSM right GH +internal/+external 

rotation (GIE). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 65: Effects of sex and humeral movement plane on LSM right glenohumeral +internal/+external 

rotation (GIE). Levels not connected by same letter are significantly different (p-value: 0.05) 

A B 
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Figure 66: Effects of sex and humeral elevation phase on LSM right glenohumeral +internal/+external 

rotation (GIE). Levels not connected by same letter are significantly different (p-value: 0.05) 

4.3.3 Acromioclavicular Kinematics 

There was a main effect of humeral movement plane (p < 0.0001) and angle (p < 0.0001) 

on right acromioclavicular (AC) +protraction/-retraction (APR) and  +depression/-elevation 

(AED). There was also an elevation phase effect on AED (p < 0.0001). A sex-plane interaction 

effect existed for both APR (p = 0.0004) and AED (p < 0.0001); however, sex-elevation angle (p 

< 0.0001), movement plane-angle (p < 0.0001), and elevation angle-phase (p = 0.0002) 

interactions existed only for APR. A summary of the main effects and interactions with F-

statistics and p-values for AC kinematics is provided in Tables F7 in Appendix F8. 

Humeral elevation within 60P resulted in significantly less AC elevation than any other 

plane (10.18⁰) while 30P, SCAP and 90P produced statistically identical AC elevation results 

(11.59⁰, 11.40⁰ and 11.06 respectively). The most elevation was seen in the 120P (15.32⁰). 



94 
 

Increasing humeral elevation increments from 60E to 120E displayed significant increases in AC 

elevation (9.56⁰ of elevation for 60E and 22.20⁰ for 120E), while 15E, 30E and 45E were 

statistically the same and resulted in the lowest AC elevation (7.44⁰, 7.59⁰ and 8.19⁰ of elevation 

respectively). Finally, the lowering phase resulted in significantly less AC elevation (13.24⁰) 

than the raising phase (11.40⁰). Plots of interaction effects indicating the results of post-hoc 

Tukey HSD for acromioclavicular –elevation/+depression (AED) kinematics are provided in 

Figures 67 through 72, with the exception of AED movement plane-elevation angle interactions  

which are presented in Table 12. 
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Figure 67: Effects of humeral movement plane and elevation angle on LSM right acromioclavicular               -

depression /+elevation (AED) 
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Table 12:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

acromioclavicular elevation. Levels not connected by same letter are significantly different (p-value: 0.05) 

Level 
                  

LSM 

4,30 A 
                 

-5.49 

4,45 A B 
                

-5.68 

5,30 A B C 
               

-6.49 

5,45 A B C 
               

-6.49 

5,15 A B C 
               

-6.58 

4,15 A B C 
               

-6.58 

6,15 A B C 
               

-6.71 

4,60 A B C 
               

-6.75 

3,30 A B C D 
              

-6.88 

3,45 A B C D E 
             

-7.06 

2,15 A B C D E F 
            

-7.24 

2,30 A B C D E F 
            

-7.43 

5,60 A B C D E F 
            

-7.59 

3,15 A B C D E F G 
           

-7.79 

2,45 A B C D E F G 
           

-8.01 

3,60 A B C D E F G 
           

-8.17 

1,15 A B C D E F G 
           

-8.53 

4,75 A B C D E F G 
           

-8.53 

2,60 A B C D E F G H 
          

-9.10 

6,30 
 

B C D E F G H I 
         

-9.60 

1,30 
  

C D E F G H I 
         

-9.65 

5,75 
  

C D E F G H I 
         

-9.75 

3,75 
  

C D E F G H I 
         

-10.00 

2,75 
   

D E F G H I J 
        

-10.79 

6,45 
    

E F G H I J 
        

-10.84 

1,45 
     

F G H I J 
        

-11.05 

4,90 
      

G H I J 
        

-11.57 

1,60 
       

H I J K 
       

-12.65 

3,90 
       

H I J K L 
      

-12.85 

5,90 
       

H I J K L 
      

-12.97 

2,90 
       

H I J K L 
      

-13.01 

6,60 
        

I J K L 
      

-13.07 

1,75 
         

J K L M 
     

-14.35 

4,105 
          

K L M N 
    

-15.66 

6,75 
          

K L M N 
    

-15.73 

1,90 
          

K L M N 
    

-16.33 

2,105 
          

K L M N 
    

-16.33 

3,105 
           

L M N O 
   

-16.75 

5,105 
            

M N O P 
  

-17.33 

6,90 
             

N O P Q 
 

-18.76 

1,105 
             

N O P Q 
 

-18.79 

1,120 
              

O P Q 
 

-20.31 

2,120 
               

P Q 
 

-20.84 

4,120 
               

P Q 
 

-21.12 

5,120 
                

Q 
 

-21.32 

3,120 
                

Q 
 

-21.68 

6,105 
                

Q 
 

-21.94 

6,120 
                 

R -25.92 
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Figure 68: Effects of humeral elevation phase and elevation angle on LSM right acromioclavicular –

elevation/+depression (AED). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 69: Effects of sex and humeral elevation angle on LSM right acromioclavicular –elevation/+depression 

(AED). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 70: Effects of humeral elevation phase and movement plane on LSM right acromioclavicular –

elevation/+depression (AED). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 71: Effects of sex and humeral movement plane on LSM right acromioclavicular –

elevation/+depression (AED). Levels not connected by same letter are significantly different (p-value: 0.05) 

A B 
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Figure 72: Effects of sex and humeral elevation phase on LSM right acromioclavicular –

elevation/+depression (AED). Levels not connected by same letter are significantly different (p-value: 0.05) 

 

 

Humeral elevation within 0P resulted in significantly more AC protraction than any other 

plane (45.56⁰ of protraction). 60P and 90P were statistically the same (39.36⁰ and 38.58⁰ of 

protraction respectively) and resulted in the least AC protraction. Protraction within 30P, SCAP, 

and 120P were also statistically equivalent (41.74⁰, 40.84⁰ and 41.47⁰ respectively).120E 

demonstrated significantly more AC protraction than all other elevation angles (47.05⁰). 30E, 

45E, 60E, and 75E were statistically identical and resulted in the lowest AC protraction (39.63⁰, 

38.69⁰, 38.63⁰, and 39.57⁰ of protraction respectively). 15E and 105E resulted in statistically 

equivalent AC protraction (41.36⁰ and 41.25⁰ respectively). Plots of interaction effects indicating 

the results of post-hoc Tukey HSD for acromioclavicular +protraction/-retraction (APR) 
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kinematics are provided in Figures 73 through 78, with the exception of APR sex-humeral 

elevation angle which are presented in Table 13. 

 
Figure 73: Effects of humeral movement plane and elevation angle on LSM right acromioclavicular 

+protraction/-retraction (APR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 

A B B 

C C B 
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Figure 74: Effects of humeral elevation phase and elevation angle on LSM right acromioclavicular 

+protraction/-retraction (APR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 75: Effects of sex and humeral elevation angle on LSM right acromioclavicular +protraction/-

retraction (APR). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 76: Effects of humeral elevation phase and movement plane on LSM right acromioclavicular 

+protraction/-retraction (APR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 77: Effects of sex and humeral movement plane on LSM right acromioclavicular +protraction/-

retraction (APR). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Table 13:  Interaction effects of sex and humeral movement plane on least squares mean (LSM) 

acromioclavicular +protraction/-retraction. Levels not connected by same letter are significantly different (p-

value: 0.05) 

Level 
         

LSM 

1,1 A 
   

E 
    

46.87 

2,1 A B 
       

44.25 

1,2 
 

B C 
  

F G 
  

42.17 

2,6 
  

C D 
     

42.14 

2,2 
  

C D E F 
 

H 
 

41.31 

2,3 
  

C D E F 
 

H 
 

41.14 

1,6 
 

B C D 
 

F G H I 40.79 

1,3 
 

B C D 
 

F G H I 40.55 

2,4 
    

E F G H I 39.42 

1,4 
   

D 
   

H I 39.30 

1,5 
   

D 
   

H I 38.71 

2,5 
      

G 
 

I 38.46 

 

 

 
Figure 78: Effects of sex and humeral elevation phase on LSM right acromioclavicular +protraction/-

retraction (APR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 

  

b b a a 
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4.3.4 Sternoclavicular Kinematics 

There was a main effect of humeral movement plane (p < 0.0001), angle (p < 0.0001), 

and phase (p < 0.0001) on right sternoclavicular (SC) +protraction/-retraction (CPR) and 

+depression/-elevation (CED). Sex-movement plane, sex-elevation angle, sex-phase, movement 

plane-elevation angle, movement plane-phase, and elevation angle-phase interaction effects were 

present for both CPR (p <0.0001 for all significant interactions) and CED (p <0.0001 for all 

significant interactions except for sex-movement plane where p = 0.0124). A summary of the 

main effects and interactions with F-statistics and p-values for SC kinematics is provided in 

Tables 9 in Appendix 10 

As movement plane progressively changed across the body from 0P through to 120P, 

overall SC retraction decreased significantly (-32.31⁰ to -24.92⁰ respectively). However, 

significant increases of SC retraction occurred at each increment of elevation (-19.16⁰ at 15E 

through to -39.91 at 120E). Also, more retraction occurred during the lowering phase (-30.17⁰) 

than the raising phase (-27.30⁰). Plots of interaction effects indicating the results of post-hoc 

Tukey HSD for SC retraction kinematics are provided in Figures 79 through 84, with the 

exception of SC retraction movement plane-elevation angle interactions which are displayed in 

Table 14. 
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Figure 79: Effects of humeral movement plane and elevation angle on LSM right sternoclavicular 

+protraction/-retraction (CPR) 
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Table 14:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

sternoclavicular +protraction/-retraction. Levels not connected by same letter are significantly different (p-

value: 0.05) 

Level 
                             

LSM 

6,30 A 
                            

-15.03 

6,15 A B 
                           

-16.42 

6,45 A B 
                           

-16.83 

5,15 
 

B C 
                          

-18.20 

4,15 
 

B C D 
                         

-18.53 

3,15 
  

C D E 
                        

-19.31 

5,30 
  

C D E F 
                       

-19.66 

2,15 
   

D E F G 
                      

-20.70 

4,30 
    

E F G 
                      

-20.88 

6,60 
    

E F G 
                      

-20.91 

1,15 
     

F G H 
                     

-21.80 

3,30 
     

F G H 
                     

-21.82 

5,45 
      

G H 
                     

-22.01 

2,30 
       

H I 
                    

-23.47 

4,45 
       

H I J 
                   

-23.81 

3,45 
        

I J K 
                  

-24.50 

5,60 
        

I J K L 
                 

-24.96 

1,30 
        

I J K L M 
                

-25.44 

6,75 
         

J K L M 
                

-25.84 

2,45 
          

K L M N 
               

-26.22 

4,60 
           

L M N O 
              

-26.83 

3,60 
            

M N O 
              

-27.23 

1,45 
             

N O P 
             

-28.11 

5,75 
             

N O P 
             

-28.33 

2,60 
              

O P Q 
            

-28.89 

4,75 
               

P Q R 
           

-29.70 

3,75 
               

P Q R 
           

-29.99 

6,90 
                

Q R S 
          

-30.75 

1,60 
                

Q R S 
          

-30.80 

2,75 
                 

R S T 
         

-31.65 

5,90 
                 

R S T 
         

-31.72 

4,90 
                  

S T U 
        

-32.55 

1,75 
                   

T U V 
       

-33.65 

3,90 
                   

T U V 
       

-33.70 

2,90 
                    

U V W 
      

-34.45 

6,105 
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Figure 80: Effects of humeral elevation phase and elevation angle on LSM right sternoclavicular 

+protraction/-retraction (CPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 81: Effects of sex and humeral elevation angle on LSM right sternoclavicular +protraction/-retraction 

(CPR). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 82: Effects of humeral elevation phase and movement plane on LSM right sternoclavicular 

+protraction/-retraction (CPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 83: Effects of sex and humeral movement plane on LSM right sternoclavicular +protraction/-

retraction (CPR). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 84: Effects of sex and humeral elevation phase on LSM right sternoclavicular +protraction/-retraction 

(CPR). Levels not connected by same letter are significantly different (p-value: 0.05) 

The highest observed SC elevation occurred in 120P (-21.32⁰) while the lowest occurred 

in SCAP and 60P (-16.64⁰ and -16.31⁰ of elevation respectively). Significantly greater SC 

elevation occurred at each increment of elevation (-9.60⁰ at 15E through to -25.80⁰ at 120E). 

Lastly, significantly more elevation occurred during the lowering phase (-18.24⁰) than the raising 

phase (-17.57⁰).  Plots of interaction effects indicating the results of post-hoc Tukey HSD for SC 

elevation kinematics are provided in Figures 85 through 90, with the exception of SC retraction 

movement plane-elevation angle interactions which are displayed in table for in Table 15. 
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Figure 85: Effects of humeral movement plane and elevation angle on LSM right sternoclavicular -

depression/+elevation (CED) 
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Table 15:  Interaction effects of movement plane and humeral elevation angle on least squares mean (LSM) 

sternoclavicular +depression/-elevation. Levels not connected by same letter are significantly different (p-

value: 0.05) 

Level 
                     

LSM 

2,15 A 
                    

-8.66 

4,15 A 
                    

-8.68 

3,15 A 
                    

-8.80 

4,30 A B 
                   

-9.74 

5,15 A B 
                   

-9.83 

1,15 A B 
                   

-9.83 

3,30 A B C 
                  

-10.25 

2,30 A B C D 
                 

-10.48 

5,30 
 

B C D E 
                

-11.10 

6,15 
  

C D E F 
               

-11.83 

4,45 
   

D E F 
               

-12.10 

1,30 
    

E F 
               

-12.52 

3,45 
    

E F 
               

-12.68 

5,45 
     

F 
               

-13.05 

2,45 
     

F 
               

-13.05 

4,60 
      

G 
              

-14.88 

3,60 
      

G 
              

-15.36 

6,30 
      

G 
              

-15.45 

1,45 
      

G 
              

-15.61 

5,60 
      

G 
              

-15.69 

2,60 
      

G H 
             

-15.78 

4,75 
       

H I 
            

-17.58 

3,75 
        

I 
            

-17.95 

2,75 
        

I 
            

-18.32 

6,45 
        

I J 
           

-18.35 

1,60 
        

I J 
           

-18.38 

5,75 
        

I J K 
          

-18.47 

3,90 
         

J K L 
         

-20.17 

4,90 
          

K L 
         

-20.24 

2,90 
           

L M 
        

-20.69 

1,75 
           

L M 
        

-20.88 

5,90 
           

L M N 
       

-21.22 

6,60 
           

L M N 
       

-21.33 

4,105 
            

M N O 
      

-22.40 

3,105 
             

N O 
      

-22.72 

1,90 
             

N O 
      

-22.94 

2,105 
             

N O P 
     

-23.04 

5,105 
              

O P Q 
    

-23.66 

6,75 
              

O P Q R 
   

-23.84 

4,120 
               

P Q R S 
  

-24.86 

1,105 
                

Q R S T 
 

-24.89 

3,120 
                

Q R S T 
 

-25.22 

2,120 
                

Q R S T 
 

-25.36 

5,120 
                

Q R S T 
 

-25.41 

6,90 
                 

R S T 
 

-25.53 

1,120 
                  

S T U -26.40 

6,105 
                   

T U -26.71 

6,120 
                    

U -27.54 
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Figure 86: Effects of humeral elevation phase and elevation angle on LSM right sternoclavicular -

depression/+elevation (CED). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 87: Effects of sex and humeral elevation angle on LSM right sternoclavicular -depression/+elevation 

(CED). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 88: Effects of humeral elevation phase and movement plane on LSM right sternoclavicular -

depression/+elevation (CED). Levels not connected by same letter are significantly different (p-value: 0.05) 

 
Figure 89: Effects of sex and humeral movement plane on LSM right sternoclavicular -depression/+elevation 

(CED). Levels not connected by same letter are significantly different (p-value: 0.05) 
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Figure 90: Effects of sex and humeral elevation phase on LSM right sternoclavicular -depression/+elevation 

(CED). Levels not connected by same letter are significantly different (p-value: 0.05) 
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4.4 Variability Summary 

Figure 91 provides a graphical summary of the variability (standard deviation SD) 

observed for each measured joint rotation, averaged across all movement planes and movement 

phases, at each increment of humeral elevation. The total of each bar represents the total average 

SD observed at that humeral elevation angle. Each stacked bar represents the average SD 

observed for a given rotation (indicated in the legend) at a given humeral elevation angle. SD 

measures at given elevation angles and movement planes were taken from the kinematic profiles 

in Figures 21 through 30. The greatest total average kinematic SD was evident at the 10E 

elevation angle (223.74⁰), while 105E demonstrated the lowest total average SD (126.34⁰). 

Moreover, glenohumeral +internal/-external rotation or glenohumeral +anterior/-posterior plane 

of elevation demonstrated the highest individual average SD measures at a given elevation angle 

while clavicle rotations demonstrated the lowest. 

 
Figure 91: Total and individual joint rotation variation (standard deviation) at all measured humeral 

elevation angles averaged across planes 
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 Figure 92 provides a graphical summary of the variability (SD) observed for each 

calculated joint rotation averaged within movement plane. The total of each bar represents the 

total average SD observed in a specific movement plane, averaged across the measured range of 

humeral elevation. Each stacked bar represents the average SD observed for a given rotation for 

a given movement plane. The greatest total average kinematic SD was seen in the 120P plane 

(171.62⁰). Likewise, the average SD observed in the 0P plane was similarly high (170.42⁰). 

However, the difference between the largest (120P, 171.62⁰) and smallest (60P, 151.82⁰) within 

plane total SD was 19.81⁰, representing an 11.54% difference. The rotations with the highest 

individual average SD within each plane were GIE and GAP, while HLE and the clavicle 

rotations demonstrated the lowest within plane average SD. 

 
Figure 92: Total and individual joint rotation variation (standard deviation) for all measured humeral 

elevation angles averaged within planes 
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5. DISCUSSION  

The purposes of this investigation were to produce a comprehensive description of typical 

shoulder kinematics during dynamic humeral elevation in six vertical movement planes, and to 

determine which factors influence shoulder kinematics. By offering detailed standards to 

compare results and quantifying the variability of typical shoulder motion, the findings benefit 

movement scientists and clinicians who attempt to indentify pathological shoulder motions. In 

terms of the factors hypothesized to influence typical shoulder kinematics, this study is 

innovative because it includes movement planes never before described. Also, the studied 

movements were dynamic, which allows movement phase to be investigated. Further, gender is 

rarely tested as a potential factor that could influence shoulder motion. Finally, all of these 

factors have yet to be tested on the same sample population to determine their relative influences 

on shoulder complex kinematics. 

This discussion is organized into three sections. First, hypotheses are restated and 

addressed in the context of the specific results of the study. Next, the kinematic profiles are 

discussed and compared to previously reported data sets in terms of similarities in ranges of 

motion (ROM), trial-to-trial consistency, and variability. Statistical results are discussed in the 

context of factors known to affect shoulder kinematics and the implications of the study findings 

for future applications are discussed. Finally, study limitations will be summarized 

5.1 Addressing the Hypotheses 

Hypothesis 1 

On page 18 it was hypothesized that as humeral movement plane was changed 

progressively across the body from frontal plane abduction (0P) through to 30⁰ past flexion 

(120P), shoulder joint rotations occurring about a vertical axis (i.e. scapulothoracic (ST) 



118 
 

protraction, acromioclavicular (AC) protraction, and sternoclavicular (SC) protraction), as well 

as axial shoulder joint rotations (i.e. glenohumeral (GH) anterior plane of elevation and GH 

internal rotation) would be affected more than those rotations occurring about a horizontal axis 

(ST upward rotation, AC elevation, SC elevation, and GH elevation) and sagittal plane (ST 

posterior/anterior tilt) joint rotations. There was a main effect of plane (p < 0.0001) for every 

transverse plane rotation. However, SC protraction/retraction was more affected by humeral 

elevation angle than plane (elevation F-statistic = 2024.91; plane F-statistic = 317.24). In 

addition, AC protraction/retraction was equally affected by movement plane and humeral 

elevation angle (elevation F-statistic = 62.09; plane F-statistic = 58.17). Since movement plane’s 

effects on shoulder transverse plane and humerus axial rotation were strong, Hypothesis 1 was 

supported by the study’s findings. However, humeral elevations’ significant effects on these 

rotations are important to note.  

Hypothesis 2 

 It was further hypothesized on page 19 that humeral elevation angle would influence 

kinematics of those rotations occurring about a horizontal axis more than those occurring about a 

vertical axis. There was a main effect of humeral elevation angle on each these joint rotations (p 

< 0.0001). Moreover, the calculated elevation F-statistics for these joint rotations were always 

greater than that of the calculated elevation F-statistics of the transverse plane and axial 

rotations. Therefore, Hypothesis 2 was supported by the study’s results. 

Hypothesis 3 

 On page 19 it was further hypothesized that individual subjects would be able to perform 

the three repeated humeral movements within each plane consistently. Likewise, it was expected 

that all resulting shoulder joint rotations would be consistent as well. Since overall GH and ICCs 



119 
 

were high (0.999 (SD 0.013)), it can be concluded that the participants elevated their arms in a 

consistent matter. However, for the joint rotations that were less constrained such as humerus 

axial rotations and scapular lateral rotation, motions were less consistent. It was determined that 

when all joint rotation ICCs were averaged within each plane, overall ICCs for each plane were 

very similar (0.822 to 0.852 ICC range) and acceptable. However, since only eight of the thirteen 

calculated average joint rotation ICCs of each joint rotation were greater than 0.800, Hypothesis 

3 was partially supported by the study’s results. 

Hypothesis 4 

Earlier, on page 19 it was hypothesized that kinematic variability would be the highest at 

lower humeral elevation angles. When the standard deviations (SD) from kinematic profiles were 

separated by humeral elevation angle (Figure 91), averaged across phase and movement plane, 

and summed together, the highest cumulative SD existed at 15⁰ humeral elevation (223.75⁰) and 

decreased gradually at each incremental elevation angle until 70⁰ humeral elevation (127.71⁰). 

Beyond this point, a plateau in cumulative SD occurred through to the end of measured humeral 

elevation where the observed maximum change in SD was 1.74⁰. However, ST upward rotation 

and SC elevation variability did not change drastically (approximate 6% increase) over the span 

of the humeral elevation. Moreover, GH elevation and ST tilt SD increased with increasing 

elevation angle. Therefore, Hypothesis 4 was only partially supported by the study’s results. 

Hypothesis 5 

On page 19 it was hypothesized that gender will have no effect on shoulder kinematics. 

Sex did not have a significant main effect on any of the thirteen measured joint rotations. ST tilt 

demonstrated the highest probability of a gender main effect (P = 0.286) but was not significant. 
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However, at least one significant interaction effect with gender as a factor was present for all 

kinematic results except for GH internal/external rotation and GH plane of elevation. Since 

significant gender interaction effects on shoulder were found, Hypothesis 5 was not supported. 

Hypothesis 6 

It was hypothesized that the phase of humeral motion (i.e. raising and lowering) would 

significantly affect shoulder kinematics. A significant main effect of movement phase was found 

for all shoulder joint rotations with the exception of GH elevation plane, GH elevation, and AC 

protraction. Moreover, each joint rotation except GH plane of elevation, GH internal/external 

rotation, and the AC rotations demonstrated at least one significant interaction effect involving 

movement phase. Therefore, Hypothesis 6 supported. 

5.2 Kinematic profiles - Comparison to the literature 

This section compares this investigation’s typical kinematic profiles to past literature. 

Bone pin studies by McClure et al. (2001) and Ludewig et al. (2009) will be emphasized during 

comparisons, as this method directly measures scapula position and is considered the gold 

standard in kinematic measurement (Karduna et al., 2001; van Andel et al., 2009). However, 

general trends will be compared to skin-mounted techniques as well. Evaluation of scapular 

kinematics will be more detailed due to its prevalence in the literature. Important to note is that 

the profiles presented in this study display overall trends and any comparisons of these profiles 

to previous works are observational. An interpretation of statistical findings will be discussed. 

Also, a conscious effort was made to make note of the previous studies’ tested humeral elevation 

ranges. 



121 
 

5.2.1 Scapular Kinematics 

The typical motion profiles presented in Figures 21 through 23 demonstrate that the 

scapula laterally (i.e. upwardly) rotated and posteriorly tilted in a linear pattern as the humerus 

elevated in each movement plane regardless of phase. These trends have been observed in 

previous kinematic studies investigating only scapular plane abduction (de Groot et al., 1999; 

Ludewig and Cook, 2000; McClure et al., 2001; Borstad and Ludewig, 2002; Dayanidhi et al., 

2005; Ludewig et al., 2009) and those limited to frontal and sagittal plane analyses (Meskers et 

al., 1998; Fayad et al., 2006, et al.; Bourne et al., 2007; van Andel et al., 2009; Ludewig et al., 

2009). The combination of upward ST rotation and posterior tilt maintains the sub-acromial 

space during humeral elevation to prevent rotator cuff impingement (Cools et al., 2003). It is 

reasonable to expect that this motion pattern occurs in all planes as this investigation found.  

There are notable similarities and differences in the magnitude of scapular upward 

rotation ROM in response to humeral elevation found in the literature. The current study 

demonstrated between 32.70⁰ and 36.71⁰ of upward rotation across all elevation planes and 

phases (Table C1; Figure 22). This ROM is very similar to the approximate 35⁰ of rotation 

reported in the bone pin studies by McClure et al. (2001) and Ludewig et al. (2009) over the 

same tested humeral elevation levels, although their participants’ scapulae were more upwardly 

rotated at the start of the movement. de Groot et al. (1999) also presented a comparable 39⁰ 

ROM. The under estimation of upward rotation could be due to the acromion tracking technique 

applied in this investigation. Karduna et al (2001) stated that this method typically under 

estimated upward rotation. Moreover, the sample sizes of these bone bin studies were less than 

half of the sample size used in the current investigation. It is reasonable to suggest that their 

average trends would change somewhat if more participants were investigated.  
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This investigation’s scapular posterior tilt ROM results agree in polarity to past works but 

dissimilar in magnitude. For the frontal, scapular and sagittal planes, findings of 11.92⁰, 10.58⁰ 

and 7.98⁰ (Table C1; Figure 23) were similar to Ludewig et al. (2009) findings of approximately 

12⁰ 10⁰ and 13⁰, respectively; however, their participants were substantially more anterior tilted 

at rest. McClure et al. (2001) found subtly higher posterior tilt ROMs in the scapular and sagittal 

planes of approximately 16⁰ and 13⁰ respectively. Elsewhere, ROMs were found to be as high as 

20⁰ (de Groot et al., 1999) and as low as 3.5⁰ (Dayanidhi et al., 2005) in the scapular plane. 

These tilt outcome discrepancies are most like due methodological differences. For example, the 

investigation by de Groot et al. (1999) was static, while the participants’ humeral in the 

investigation by Dayanidhi et al., (2005) were more internally rotated, which has been shown to 

decrease posterior tilt (Koishi et al., 2011). Moreover, skin-mounted methods applied in the 

current study and Dayanidhi et al. (2005) are less accurate at measuring tilt at higher humeral 

elevation angles compared to bone pin studies (Karduna et al., 2001; van Andel et al., 2009). 

However, the most important finding from these studies is that the scapula always tilted 

posteriorly in typical populations during humeral elevation, which coincides with the current 

findings.  

 During humeral elevation in the frontal through scapular planes, the scapula retracted to 

the mid phase of elevation and then protracted as the movement was completed (Figure 21). This 

phasic trend, although slight, was also observed by Fayad et al. (2006) during frontal plane 

abduction. However, there is no consensus on the scapula protraction/retraction trends within 

these elevation planes. Borstad and Ludewig (2002) documented increasing protraction during 

scapular plane abduction while Dayanidhi et al. (2005) showed the opposite despite a similar 

experimental set-up. Drastic ST protraction/retraction trend differences exist in studies using 
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bone pins. Ludewig et al. (2009) found very little change in protraction (2⁰ range) when the 

humerus was elevated in the frontal plane whereas increases in protraction greater than 15⁰ were 

found by Bourne et al. (2007); however, the latter study’s participants’ motion planes were not 

physically constrained, possibly affecting results. Likewise, as with scapular tilt measures, the 

skin-mounted scapular protraction measurement technique applied in this study is error prone at 

higher humeral elevations. (Karduna et al., 2001; van Andel et al., 2009).  This could partially 

influence the apparent scapulothoracic protraction kinematic profile changes observed at higher 

humeral elevation angles in Figure 23. Unfortunately, the directions of measurement errors are 

unknown. 

Sagittal plane flexion (i.e. 90P) demonstrated scapular protraction/retraction kinematic 

trends comparable to past findings. As the humerus elevated to 90 ⁰ progressive amounts of 

protraction occurred; beyond this point, the scapula retracted (Figure 21). This observable 

response has been demonstrated using bone pins (McClure et al., 2001; Ludewig et al., 2009) 

and skin-based acromion tracking techniques (Meskers et al, 1998; Fayad et al., 2006; van Andel 

et al., 2009). Humeral elevation within the 120P resulted in similar trends to sagittal plane 

flexion with the exception of increased protraction occurring in the mid to end range of humeral 

elevation. No previous study has investigated motions within this plane, but biomechanically it is 

feasible that the scapula must protract more to move the right humerus in a vertical plane angled 

30⁰ anterior (left) to the sagittal plane.  

 Likewise, when comparing measured ranges of scapula protraction/retraction to the 

literature, inconsistencies exist.  For frontal plane (i.e. 0P) motions, 4.14⁰ of scapula 

protraction/retraction occurred (Table C1). This result is similar to the 5⁰ range found in van 

Andel et al. (2009), but is substantially greater than the approximate 1⁰ of retraction presented in 
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Fayad et al. (2006) (Note: Fayad et al. averaged data over three elevation phases). In the scapular 

plane, the current study results show a ST protraction range of 3.62⁰. This is smaller than the 12⁰ 

of retraction found in de Groot et al. (1999) and the approximately 7⁰ range presented in Borstad 

and Ludewig (2002) and Dayanidhi et al. (2005). However, this 3.62⁰ range is consistent with 

the findings from the bone pin investigation in Ludewig at al. (2009). 

5.2.2 Glenohumeral kinematics 

Typical frontal and sagittal plane GH motion plane profiles (Figure 24 through 26) align 

well with the literature; however ROM magnitudes do not. For frontal plane elevation between 

10⁰ and 40⁰, a progressive decrease in anterior plane motion was found, followed by an increase 

after this point. The opposite trend was found in 60P and 90P motions. This finding is 

comparable to Ludewig et al. (2009) mirror opposite frontal and sagittal plane profiles. ROMs 

they presented were approximately 16⁰ for these planes, aligning with the current study’s 0P 

(17.69⁰) ROM but almost 14⁰ less than observed in 90P (29.78⁰). Also, Ludewig et al. showed 

very little ROM changes within the scapular plane as opposed to the 21.71⁰ found in the current 

study  

There were both similarities in motion trends but differences in magnitudes between the 

current study’s typical GH external rotation profiles (Figure 26) and the GH profiles found in 

Ludewig et al (2009). Both studies demonstrated an initial period of external rotation at low 

elevation levels for 0P and SCAP followed by increasing internal rotation for the remainder of 

elevation. The current study also showed that trend for 90P. However, Ludewig et al. presented a 

linear trend of GH external rotation throughout the entire motion. The amount of GH external 

rotation seen at the end of elevation in the current study was nearly the same for each movement 

plane (approximately 55⁰), with the exception of 0P (48⁰). This is similar to Ludewig et al., 



125 
 

(2009) whose GH external rotation profiles congregated at the same point. However, their end 

magnitude was higher (approximately 60⁰). Another discrepancy is that their roughly 45⁰ of GH 

external rotation ROM in 90P was substantially higher than the current study’s 25.46⁰. 

Differences between studies could be attributed to the humerus axial rotation not being 

constrained in the current study. Also, variability of both GH plane of elevation and 

internal/external rotation was quite high, particularly at lower elevations, and could further lead 

to differences. Fortunately, GH axial rotation at low humeral elevations is not often implicated as 

a contributing factor to shoulder injuries. 

GH elevation kinematic profiles (Figure 25) and ranges (Table C3) were very similar to 

the bone pin results of Ludewig et al. (2009). The current investigation showed between 68.63⁰ 

and 73.32⁰ increases in GH elevation across all movement planes and phases. This trend and 

range is nearly identical to Ludewig et al.’s documented 70⁰ (approximate), although their 

participants were slightly less elevated at the start of humeral elevation. 

5.2.3 Acromioclavicular kinematics 

In accordance with previous research, acromioclavicular (AC) elevation increased in all 

movement planes and phases as the humerus was elevated. There were little noticeable changes 

in the AC elevation kinematic profile between 10⁰ and 50⁰ of elevation within all movement 

planes except 120P (Figure 28). Beyond this point, the majority of AC elevation occurred. 

Ludewig et al. (2009) documented the opposite, with the majority of AC elevation occurring at 

the beginning movement. Another discrepancy was that they found a reduction in AC elevation 

ROM as plane was altered across the body (approximately 14⁰ to 8⁰ of elevation). The current 

study showed an increase in ROM (12.26⁰ to 18.22⁰ of elevation).  
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The typical AC protraction/retraction kinematic profiles shown in Figure 27 show trends 

that are different in magnitude than those documented in bone pin studies. An initial phase of 

retraction is visible in each elevation plane and phase between approximately 10⁰ and 50⁰ of 

elevation. After this point, the acromion protracts on the clavicle. In contrast, Ludewig et al. 

(2009) demonstrated a linear relationship between humeral elevation and AC protraction. 

Moreover, the AC retraction ROM reported for all movement planes (between 3⁰ and 6⁰ of 

retraction; Table C4) was half of that found in the current investigation (between 6.38⁰ and 

12.98⁰). The most likely cause for the AC joint rotation results not aligning well with previous 

studies is that the clavicle was only afforded 2 degrees of rotational freedom (no clavicle axial 

rotations were recorded. As a result, the International Biomechanics Society (ISB) (Wu et al., 

2005) joint description recommendations could not be followed for AC joint motion. Therefore, 

analogous comparisons between the results of this study and investigations using bone pins 

cannot be confidently made. 

5.2.4 Sternoclavicular kinematics 

Typical sternoclavicular (SC) retraction profile motion trends found in this study (Figure 

29 and 30) align well with bone pin studies found in the literature; however SC elevation ROM 

was substantially higher in the current investigation. The clavicle retracted on the sternum in a 

linear fashion during humeral elevation in all movement planes, with the exception of 120P 

(Figure 29), and had ROMs between 16.89 ⁰ and 18.26⁰. McClure et al. (2001) and Ludewig et 

al. (2009) demonstrated similar linear trends but with SC retraction ROMs lower than 12⁰.  

At the beginning of humeral elevation, there was little SC elevation (see Figure 30). 

Beyond 20⁰ of humeral elevation, all of the clavicle elevation occurred. Ludewig et al. (2009) 

found a similar period of minimal clavicle elevation, but McClure et al (2001) did not. In 
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addition, SC elevation ROMs in this study was higher (between 20.24⁰ and 22.79⁰) in 

comparison to both Ludewig et al. (2009) (no greater than 7⁰) and McClure et al (2001) (no more 

than 9⁰) across all planes.  

Unfortunately, as with AC joint rotation, sternoclavicular (SC) anterior/posterior rotation 

(i.e. rotation about the long axis of the clavicle) could not be measured with skin-mounted 

motion capture techniques. However, SC retraction and elevation measurement outcomes do 

align with ISB recommendations provided found in Wu et al. (2005) because joint rotation 

description utilizes the thorax local coordinate system. 

5.3 Kinematic profile application example 

Three previously recorded 3D scapular kinematic profiles available in the literature 

obtained from participants free from shoulder injury symptoms were overlaid on top of the 

scapular kinematic profiles obtained in the current study to provide an example application of the 

curves. The scapular tracking methods used to collect the kinematics in Figures 93 through 95 

include the gold standard bone pins (McClure et al., 2001; Ludewig et al., 2009) and an 

acromion tracking method similar to the current investigation (Dayanidhi et al., 2005). All other 

collection methodologies were the similar. For scapular protraction, the results from the literature 

fall with plus or minus one SD of the current studies profile. However, the studies using bone 

pins demonstrated retraction with increasing elevation while acromion tracking techniques 

presented a protracting scapula. On the contrary, none of the overlaid profiles of scapular lateral 

(i.e. upward) rotation fell within the current study’s range. Conversely, all upward movement 

trends were very similar. Similar movement profiles were found for scapular tilting as well, 

although the ROM of Dayanidhi et al. (2005) was small. Lastly, only McClure et al (2001) 
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demonstrated scapular posterior tilt results outside of the typical range found in the current 

investigation.  

 
Figure 93: Comparison of ST protraction observed during humeral elevation (raising phase) in the scapular 

plane with select kinematic profiles available in the literature. 

 



129 
 

 
Figure 94: Comparison of ST upward rotation observed during humeral elevation (raising phase) in the 

scapular plane with select kinematic profiles available in the literature. 

 
Figure 95: Comparison of ST posterior tilt observed during humeral elevation (raising phase) in the scapular 

plane with select kinematic profiles available in the literature. 
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5.4 The utility of kinematic profiles for identifying pathological shoulder motion 

Typical normative shoulder kinematic data provide clinicians a means to identify 

pathological shoulder motion. To illustrate the utility of the profile curves to identify shoulder 

motion abnormalities, two hypothetical examples of pathological shoulder motion citied in the 

literature are contrasted against this study’s typical profiles (Figures 96 and 97). The first 

example is the rapid upward scapular rotation reductions occurring during the end ranges of 

humeral lowering observable during some clinical evaluations of injured individuals (Kibler & 

McMullen, 2003), also known as the “shoulder dump”  (McMullen & Uhl, 2000) (Figure 96). 

The second example is a reduction in posterior scapular tilt shown to occur at higher humeral 

elevation angles of those diagnosed with sub-acromial impingement syndrome (Ludewig & 

Cook, 2000) (Figure 97). In both cases, the trends of the hypothetical motion profiles do not 

agree with those presented in this thesis.  In the first example, the phasic kinematic scapular 

upward rotation trend in response to humeral elevation angle is drastically different than the 

linear trend reported in this thesis (Figure 96). Likewise, the current results included increases in 

scapular posterior tilt at higher humeral elevation angles, rather than reductions in posterior tilt 

or increases in anterior tilt (Figure 97).  
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Figure 96: Hypothetical comparison of a pathological scapular upward rotation motion profile (Path) to the 

normative upward rotation profile generated in the current study (Norm) – Scapular plane, lowering phase 

 

Figure 97: Hypothetical comparison of a pathological scapular tilt kinematic profile (Path) of an injured 

individual to the normative tilt curve generated in the current study (Norm) – Scapular plane abduction 



132 
 

5.5 Kinematic profile variability 

 There was considerably more variability overall, indicated by cumulative standard 

deviation (SD), observed during the first half of humeral elevation than the second half; however 

the majority of this variability was attributable to humeral axial rotations (see Figure 91). For GH 

plane of elevation and internal/external rotation, 171.05% and 170.48% reductions in respective 

SDs were observed when moving from 10⁰ to 60⁰ humeral elevation. However, ST and AC 

protraction were the only other rotations that experienced variability reductions greater than 3% 

over this range (12.34% and 8.82% respectively). This indicates that most rotations either had 

constant increasing variability during humeral elevation. The variability of these rotations at 

lower elevations was likely high due to protraction/retraction of the shoulder girdles or 

positioning upper arms to locate the vertical pole that guided their movement. Recent researchers 

have not commented on how rotational SDs change with respect to humeral elevation angle for 

GH rotations, other than that between subject variability is high (Ludewig et al., 2009).  

 The variability of several joint rotations increased with increasing humeral elevation 

despite a decline in cumulative variability. ST upward rotation, ST posterior tilt, SC elevation, 

GH elevation, and AC  elevation increased in variability as the humerus was elevated from 10⁰ 

to 120⁰ (4.13%, 24.73%, 6.64%, 28.22%, and 19.92% increases respectively; Figure 91). 

Identifying that ST upward rotation variability was not highest at lower elevation angles 

disagrees with the findings of Braman et al., (2009) as well as the classical work of Inman et al. 

(1944). Interestingly, these joint rotations were most influenced by humeral elevation angle. 

Therefore, rotations affected by elevation angle are more variable at higher elevation angles. 

This influence will be addressed statistically in a subsequent section. 
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No visible differences in cumulative variability (SD) existed across movement planes 

when all joint rotations SD were averaged within a plane of elevation (Figure 92). This 

demonstrated that, on average, joint rotations measured within one humeral movement plane 

were no more or less variable than in any other plane. GH plane of elevation and 

internal/external rotation tended to be the most variable rotations measured, while the clavicle 

rotations were less variable. The influence of plane of movement on individual measured joint 

rotations as determined statistically is discussed later.  

 Important to consider is the variability of each rotation relative to its respective total 

range of motion. This consideration is similar to the coefficient of variability with the exception 

that the rotational SD is divided by the rotation’s range of motion instead of the mean. The 

higher this relative variability is the less confident one is that the healthy curve represents the 

sample population.  For example, ST protraction demonstrated the highest observed relative 

variability when averaged across all elevation angles, at 300.76% of ROM. This could explain 

why the movement profile observed for this rotation did not align well with both McClure et al. 

(2001) and Ludewig et al. (2009) protraction profiles. However, these researchers did state that 

ST protraction was the most variable of the ST rotations. Likewise, both GH plane of motion and 

internal/external rotation relative variability was substantially higher than that of GH elevation 

(106.86% and 158.02% respectively versus 15.76%). This could explain why their tracings did 

not align with Ludewig et al (2009) profiles as well as GH elevation did.  

The high variability of the kinematic profiles presented in this study and in others is most 

likely due to different resting scapular orientations measured across participants rather than 

different motion trends. Ludewig et al (2009) found resting scapulothoracic orientation to be 

quite variable at rest. At the lowest humeral elevation angle measured in the current 
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investigation, scapular kinematic variability was also quite high. However, over the entire range 

of recorded humeral motion, scapulothoracic kinematic variability did not change drastically. 

This suggests the possibility that any offset in scapular kinematics at rest was maintained 

systematically throughout the range of tested humeral elevation. To demonstrate this suggestion, 

the raw kinematic profiles for each participant’s scapula upward rotation during scapular plane 

elevation are presented in Figure 98. Any large differences existing between individuals’ 

scapular upward rotation profiles can be attributed to participants’ scapular orientations at lower 

elevation angles. Likewise, these large differences persisted until humeral elevation was 

complete.  Some overlap in individual profile trends did occur. Fortunately these overlaps tended 

to be between individuals with very similar raw magnitudes of upward rotation. The finding of 

similar raw kinematic profile trends measured across participants further emphasizes the utility 

of the kinematic trends for future shoulder motion assessments, rather than the raw magnitudes 

of the profiles.  

 
Figure 98: Participants’ raw scapular upward rotation profiles overlaying the mean of these scores in bold 

with +/- one standard deviation shaded in grey – Raising phase of scapular plane elevation. 
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5.6 Intra-class correlation coefficient interpretation 

All average joint rotation ICCs were greater 0.658, constituting comparable trial-to-trial 

movement consistency to previous research. Specifically, the 0.755 to 0.938 range of average ST 

rotational ICCs documented in Table C6 in Appendix C are similar to the 0.76 to 0.90 ICC range 

presented in Fayad et al. (2006) and the 0.63 to 0.96 range found in Brochard et al. (2011). 

Glenohumeral elevation was determined to be the most consistent of the rotations (ICC = 0.999). 

It is hypothesized that its ICC was higher than others because the movement plane and elevation 

angle were constrained.  SC rotations were also consistent (0.814 for SC protraction; 0.959 for 

SC elevation), most likely because clavicle translation is tightly constrained at the SC and AC 

joints (McClure et al., 2001). Average ST upward rotation ICC was lower than anticipated 

(0.755). A reason for this could be that the upward scapula orientation is dependent of several 

other joint orientations. Perhaps the inconsistency occurring at the SC and AC joints manifest 

amplify the inconsistencies in ST upward rotation.  

Movement plane ICCs ranged from 0.822 to 0.852 (Table 6) suggesting that the 

participants moved consistently trial-to-trial, regardless of plane. In the literature, ICCs are 

typically presented averaged across the tested planes and therefore individual movement plane 

consistencies are hard to determine. Ludewig et al. (2009) found average scapular rotation ICCs 

of 0.96, 0.94, and 0.92 for scapular, frontal, and sagittal planes respectively. The higher ICC 

values in their study could be attributed to a different type of ICC calculation used (Type 1,1), or 

the fact that bone pin readings may be more consistent. 

According to previous research, the findings of this study support at least acceptable trial-

to-trial movement consistency by participants. This is in light of the lack of consensus on how to 

rank ICC values in the movement sciences (Weir et al., 2005). For example, Brochard et al. 
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(2011) identified an ICC of 0.63 as “good” and 0.96 as “excellent” but offer no support for their 

explanations. Likewise, van Andel describe ICCs less than 0.60 as “poor,” between 0.60 and 

0.80 as “acceptable,” and above 0.80 as “excellent”. The existence of multiple ICC calculation 

types further complicates comparisons. For example, Ludewig et al. ICC calculations, although 

high (greater than 0.92), were performed using a different ICC calculation (Type 1,1). Most 

scapular kinematic papers judging participant movement consistently utilize ICC calculation 

Type 3,1 because it emphasizes random error associated with participant movement.  

5.7 Statistical Interpretations  

5.7.1 Plane and elevation angle effects on shoulder kinematics 

The scapula rotated upward and the clavicle and humerus elevated at statistically 

significant increments at each humeral elevation level. A main effect of plane on scapulothoracic 

(ST) upward rotation and glenohumeral (GH) elevation was present; however the largest relative 

difference for each of these rotations were modest, at only 5.86% and 3.66% of ROM (between 

the frontal and sagittal planes). Moreover, humeral elevation in 30P, scapular, 60P and 90P 

planes produced statistically equal amounts of clavicle elevation at each respective humeral 

elevation increment. Ludewig et al (2009) found that significantly more scapular upward rotation 

and clavicle and humeral elevation occurred in frontal plane abduction compared to scapular and 

sagittal plane movements, although these differences were also small. The largest difference 

reported was 3⁰ more scapula upward rotation elevation levels above 90⁰. The current study 

demonstrates that frontal plane rotations (ST upward rotation, GH elevation, and SC elevation) 

work together to elevate the humerus in the same matter, regardless of plane.  

ST and SC protraction/retraction and glenohumeral (GH) elevation plane interactions 

were highly coordinated and each contributed to the positioning of the humerus in the proper 
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movement plane. ST and GH relative contributions depended on humeral elevation angle and 

movement plane while SC retraction significantly increased throughout the entire humeral 

elevation range. Positioning the humerus in the frontal plane and elevating it from 15⁰ to 45⁰ 

required SC retraction (Figure 79), reduced ST protraction (Figure 31), and an increase in 

posterior GH elevation plane (Figure 49).  For the 30P and scapular planes, this trend was 

repeated; however reductions in ST protraction were very small. Statistically, ST retraction did 

not change in these two planes throughout the full humeral elevation ROM while reductions in 

GH anterior plane were significant. For movements within 60P and sagittal planes, ST 

protraction increased throughout the range of humeral elevation, although a statistical plateau 

was reached at 60⁰ humeral elevation. Beyond this point, SC retraction maintained movement 

plane as it was the only rotation of the three that steadily increased throughout the entire 

elevation range. This example of coordinated shoulder joint movements demonstrates the 

interdependency of upper limb joint rotations to move the humerus through space originally 

outlined by van der Helm & Pronk (1995). 

Scapulothoracic posterior tilt decreased as movement plane became more sagittal 

(Figures 43, 46, and 47). However, due to the variability of the rotation relative to its small 

ROM, many of these changes were not significant.  For example, no significant differences in 

posterior tilt were observed at 120⁰ of humeral elevation across 30P through 90P planes despite a 

53.18% reduction in tilt. This large relative change in posterior tilt, and the overall affect of 

plane, is likely meaningful. Ludewig et al. (2009) found no significant plane effect on tilt 

measures for same reasons mentioned above coupled with a smaller sample size (n = 12).   

High amounts of posterior tilt measures observed in the frontal could have been due to 

the high glenohumeral external rotation observed in this plane (Figures 49, 52 and 53). The 



138 
 

humerus was significantly more externally rotated during frontal plane elevation than any other 

plane at all humeral elevation angles except for 120⁰. Koishi et al. (2011) reported that scapular 

anterior tilt increased (i.e. moved more anteriorly) as the humerus was internally rotated at 90⁰ 

humeral elevation in frontal plane. It is speculated that different more anterior scapular tilt would 

occur if the current study was repeated with the thumb pointing perpendicular to the plane of 

motion, instead of in line with it. Another explanation for increased tilt could be increased 

deltoid muscle bugle occurring frontal plane elevation, which would affect measurement. 

However, this bulge was not explicitly measured. 

Acromioclavicular (AC) elevation linearly increased during humeral elevation within the 

frontal plane; however in all other planes AC elevation occurred only after 45⁰ of humeral 

elevation (Figure 67). A direct relationship between humeral and AC elevation was expected in 

all planes, particularly at lower elevations, as demonstrated by Ludewig et al. (2009).  Also, 

because the clavicle and scapula linearly rotated upward, it is reasonable to expect that AC joint 

connecting them would elevate in a similar matter (Teece et al., 2008). Discrepancies in AC joint 

motion findings were most likely due to the inability to record clavicle axial rotation. ISB 

standards describes AC rotation utilizing a “floating axis” (Grood and Suntay, 1983) created with 

the vertical clavicle z-axis and the lateral scapular y-axis. Since a vertical clavicle axis could not 

be discerned, AC joint rotation was described using a floating axis created the scapula’s vertical 

z-axis and the long axis of the clavicle. This methodology potentially caused measurement error. 

Further evidence of AC measurement inaccuracies existed in the AC 

protraction/retraction outcomes in response to elevation plane changes. As humeral elevation 

plane moved from 0P to 30P, a significant 3.82⁰ decrease in protraction occurred, representing 

an 8.34% reduction (See Figure 76 for an example). This went against expectations and evidence 
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provided by Ludewig et al. (2009).  Fortunately, no other planes demonstrated reductions greater 

than 1.5⁰, and an increase in AC protraction occurred in the 120P movement pane compared to 

sagittal plane elevation. Moreover, AC protraction did occur at higher humeral elevation angles 

in each movement plane in agreement with past findings (Ludewig et al. 2009). Therefore the 

AC elevation and protraction/retraction measurement approach applied in this study appeared to 

respond well to humeral elevation changes, but not movement plane changes.  

5.7.2 Gender effects on shoulder kinematics 

At least one gender interaction effect existed for every joint rotation, yet previous studies 

have routinely neglected gender as a possible factor. Often, the interaction effects found in this 

study were small in absolute magnitude. However, since rotations such as ST posterior tilt, ST 

protraction, AC protraction and AC elevation presented small ranges of motion (see Table C4), 

these small differences could be meaningful. Unfortunately, previous researchers who included 

females in their population samples did not treat gender as an effect (see Meskers et al., 1998; 

McClure et al., 2001; Ebaugh et al., 2005; van Andel et al., 2005; Ludewig et al., 2009). This 

limitation to shoulder kinematic research is remarkable, seeing that gender is known to affect 

other joints’ kinematic outcomes such as in the hip (Cho et al., 2004) and knee (McKean et al., 

2007; Boyer et al., 2008). It is recommended that gender be included a main factor in all 

subsequent shoulder kinematic research. 

Males demonstrated observably more ST protraction than females.  Males were only 

significantly more protracted at 60⁰ of humeral elevation (2.40⁰ more protracted). Similar 

differences were seen beyond this position, but were not significant (see Figure 45). For 

example, 2.88⁰ more protraction occurred for males at 75⁰ humeral elevation and 3.37⁰ more 

protraction occurred at 90⁰ humeral elevation. Considering that these ST protraction differences 
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represent over 50% of the participants average ROM, these differences are meaningful. Also, 

males were more protracted in every observed plane by 2.0⁰ to 2.5⁰ with the exception of 120P. 

A potential explanation for the increased protraction in males could be their higher amounts of 

SC retraction observed. Perhaps males have to protract their scapula more during humeral 

elevation to overcome this increased clavicle retraction, although this causal relationship is 

speculative since males’ and females’ acromioclavicular protraction amounts was very similar.  

A second ST finding was that males demonstrated more ST posterior tilt than females in 

every plane and humeral elevation angle measured (see Figure 47). Again, the differences were 

not always statistically significant due to the relatively high variability of this rotation. Only in 

planes 30P and 120P were differences significant (3.09⁰ and 4.53⁰ more posterior tilt 

respectively); however larger gender-related differences were observed in plane 90P (4.72⁰). 

Males demonstrated substantially more posterior tilt at higher elevation angles. Only at 90⁰ of 

humeral elevation were gender-elevation effects significant (4.82⁰ more posterior tilt in males), 

yet the absolute differences between the sexes at 120⁰ elevation were higher (8.62⁰ more 

posterior tilt in males compared to females).  

If these ST tilt findings truly represent gender-related tilt differences, they have 

considerable clinical importance. Posterior tilt at higher humeral elevation angles is typically 

characterized as a protective mechanism against sub-acromial impingement of the rotator cuff 

(Borstad and Ludewig, 2002; McClure et al., 2004; Cools et al., 2007). Our results suggest that 

females may be predisposed to a higher risk of rotator cuff injury due to these kinematics. The 

tissues at other joints are injured disproportionately in females, such knee anterior cruciate 

ligament tears (Moore and Dalley, 1999). However, these posterior tilt differences may be 

partially caused by the inaccuracy of the acromion marker cluster (AMC) at higher elevations. 
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Karduna et al. (2001) found an approximate 3.5⁰ root mean square (RMS) error at higher 

elevations; although this error value was not higher than seen at lower elevations. It is reasonable 

to suggest that the higher tilt measures could be from the deltoid muscle bulging underneath the 

cluster at higher elevations (assuming that males possess larger deltoid muscle bulk than 

females) thereby tilting the cluster posteriorly (note: the scapular orientation is not indicative of 

AMC orientation. i.e. the scapula could be anteriorly tilted and the cluster posteriorly tilted). In 

light of these limitations, further investigation into gender related kinematic differences should 

be performed to determine if females are at an inherent increased risk for shoulder injury. 

Gender appeared to have kinematic implications on AC elevation as well; however this 

difference could be attributed to artefact as well. At 75⁰, 90⁰ and 105⁰, of humeral elevation, 

males had significantly more AC elevation than females (males presented up to 8.62⁰ more AC 

elevation over these angles – see Figure 69). However, deltoid muscle bulk at higher elevations 

could be the source of gender-related differences. One would expect ST upward rotation to 

increase disproportionately in males as well if these changes in AC were true, yet this increase 

was not observed. Male scapulae were observably less upwardly rotated on average compared to 

females.  

5.7.3 Movement phase effects on shoulder kinematics 

Previous studies have cited both movement phase-movement plane (PH-PL) and PH-

elevation angle (PH-E) interaction effects on ST rotations. This study found only significant PH-

PL interaction effects on ST upward rotation and tilt (Figures 40 and 46). During sagittal plane 

movements, the raising phase had l.67⁰ less upward rotation than the lowering phase 

representing nearly 5% of upward rotation ROM and most likely is not meaningful. However, 

significantly less posterior tilt observed in the raising phase during frontal (2.49⁰ less) and 
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scapular planes (1.57⁰ less) are meaningful as they constitute 20.89% and 14.84% of ST 

posterior tilt ROM respectively. Similar tilt differences were found in other planes but were not 

significant. Ludewig et al. (2009) did not find a significant PL-PH interaction but found that in 

each elevation increment participants were on average 2⁰ less posterior tilted in the raising phase. 

Borstad and Ludewig (2002) also documented a reduction in posterior tilt, but only at elevation 

angles above 80⁰.  

The most likely cause of the lower posterior tilt during the raising phase is that 

participants actively moved differently during this phase. Since bone pin studies (McClure et al., 

2001; Ludewig et al., 2009) demonstrated similar movement phase-related ST tilt effects, 

differences could not be attributed to the skin-mounted scapular tracking technique used in this 

study. Likewise, the higher scapular stabilizing muscle activity during the raising phase work 

together to encourage posterior tipping (Dvir et al., 1978; Johnson et al., 1994; Phadke et al, 

2009), not reduce it. Most likely, lower posterior tilt occurred because participants were actively 

moving differently during the raising phase. Perhaps they were reaching excessively past the 

pole in the raising phase, as suggested by the documented significant 1.49⁰ protraction increase 

in the raising phase. Increases in protraction in protraction could potentially result in reductions 

in posterior tilting as evident by the similar increases in ST protraction and ST anterior tilt as 

movement plane was altered across the body.  

Clinicians have proposed that observable changes in scapular kinematics during the 

lowering phase constitute abnormal motion and are a cause of concern. They suggest that rapid 

reductions in ST upward rotation and observable scapular winging (increased ST protraction and 

anterior tilt) during humerus lowering compared to raising is indicative of “scapular dyskinesis” 

(Borstad and Ludewig, 2002; Kibler and McMullen, 2003). In this study, significant phase main 



143 
 

or interaction effect found were unlikely observable as the maximum change in scapular 

kinematics due to movement phase was less than 3⁰. Therefore this study’s findings partially 

supported this clinical hypothesis. However, only an injury-free population sample was tested. 

The finding that the raising phase had significantly less SC retraction (2.87⁰ less) 

supports the notion that participants reached more forward in this phase compared to lowering. 

Participants’ clavicles were significantly more protracted at every humeral elevation increment 

in the raising phase (maximum difference = 4.84⁰) except for at 15⁰ and 30⁰ of elevation. Both 

Ludewig et al. (2009) and Ebaugh & Spinelli (2010) demonstrated similar increases in SC 

protraction in the raising phase, however most of these changes were observed at higher 

elevations.  Perhaps participants gave a more conscious effort to reach towards the pole when 

raising the humerus. For lowering, since participants knew where the pole was, they did not 

make the same effort. 

PH-E and PH-PL interaction effects on GH internal/external (GIE) rotation (Figures 62 

and 64) suggest that participants had difficulties locating the pole that constrained their elevation. 

Participants were approximately 6⁰ less externally rotated at 15⁰ and 30⁰ humeral elevation 

during the raising phase. Moreover, participants were 5.68⁰ less externally rotated in the 0P 

plane during humerus raising. This difference represents 56.74% of GIE ROM in this plane. It is 

reasonable to suggest that participants had to position their humeri differently in this range of 

humeral elevation in the 0P because they could not see the pole in their periphery.  

When significant PH-gender interaction effects existed, phase interacted with gender the 

same for all rotations with the exception of three. In the raising phase, male scapulae were 

significantly less upwardly rotated by 1.67⁰, humeri 1.20⁰ more elevated relative to the glenoid, 

and clavicles 1.08⁰ less elevated compared to the lowering phase. On the contrary, no phase 
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effects were seen in females for these rotations. Since no past studies have tested for gender 

effects, these differences cannot be compared to the literature.  Despite interaction effects being 

small, they support the inclusion of gender as a factor in future studies. 

5.8 Study Limitations 

 In general, the study results are specific to the population sample tested: university-aged 

male and female volunteers. Investigating older and younger sample populations may have 

resulted in different findings. In a study by Dayanidhi et al. (2011), children (aged 4 – 9) had 

significantly more upward rotation than adult males during scapular plane elevation. Moreover, 

bone pin studies by Ludewig et al. (2009) and McClure et al. (2001) were performed on older 

population samples (29.3 ± 6.8 years and 27 to 37 year age range respectively) and therefore age 

could be the source of differences found between this study’s kinematic profiles these previous 

works.  

 The movement planes tested were constrained to control movement variability and 

therefore did not define functional movement. Some researchers have suggested that more 

clinically relevant shoulder kinematic information can be attained by having participants perform 

goal orientated movements. For example, Braman et al. had their participants to “raise their arms 

as if reaching for an object on a high shelf” (2009). The reason behind this suggestion is that 

humans rarely move within tightly controlled vertical planes. However, since a goal of this paper 

was to determine if plane of humeral elevation dictated shoulder joint orientations, movement 

plane was treated as an independent variable that was modified by the researchers, rather than a 

dependent variable. Further, constrained tasks may be more straightforwardly instructed and 

interpreted in the context of clinical screening or evaluation. Verily, shoulder kinematic profiles 

of activities of daily living (ADL) are useful for workstation modifications and living 
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environment design for elderly or injured people, and evidence exists to support differences on 

the basis of factors such as age (Magermans et al., 2005;  Hall et al., 2011). However, 

investigating ADL performance was outside the scope of the current investigation. 

Skin-mounted scapular motion capture techniques possess documented measurement 

errors in comparison to direct scapular measurement techniques. The acromion marker cluster 

used in this investigation has been validated for humeral elevation angles below 120⁰ and 

vertical humeral elevation planes including and between frontal through to sagittal (Karduna et 

al., 2001). However, the method was untested for other elevation planes. Therefore, the accuracy 

of the scapular kinematic measurements within the 120P is unknown. Moreover, Karduna et al. 

(2001) did not discuss the direction of the measurement error for scapular tilt and protraction 

measurements, nor provided error profiles for the sagittal and frontal planes. This makes 

discussing potential error in scapular measurement difficult because interpretation of whether tilt 

or protraction/retraction outcomes are over or underestimated is somewhat speculative. 

Clavicle axial rotations were not measured and therefore robust descriptions of 3- 

dimensional sternoclavicular (SC) and acromioclavicular (AC) motion could not be determined. 

As a result, SC and AC joints were only afforded 2 rotational degrees of freedom. SC elevation 

and protraction/retraction were measured in accordance to ISB standards (Wu et al., 2005); 

however AC elevation and protraction/retraction rotations were not because no z (i.e. vertical) 

clavicle axis could be determined. Coupled with the notion that the skin-mounted acromion 

cluster use to measured scapula orientation possesses a level of inherent error, AC rotation 

outcomes are likely less accurate than other joint measurements. 

Using invasive bone pins rigidly fixed to the clavicle is the only way to measure 3-

dimension clavicle orientation directly. However, this method is very invasive and often limits 
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the study sample size (Ludewig et al., 2009), and may inhibit natural movement. An attempt to 

use a rigid cluster coordinate system secured to the skin overlying the clavicle was made, as 

suggested by Szucs et al. (2010). However, fixing the small cluster to a nearly cylindrical 

clavicle proved to be problematic and camera line of sight site issues arose. After attempting the 

method on 5 participants, the technique was abandoned. In a best case scenario, any clavicle 

orientation results using this method would have been suspect because the technique has only 

been validated thus far using 5 cadaveric specimens. 

Finally, visual feedback of humeral movement plane was not provided to the participant 

during motion trials. This could potentially result in participants elevating the humerus in 

unintended movement planes. However participants remained seated through the duration of the 

study and both foot and torso positions were constrained to that the motion planes did not move 

relative to the defined approximate glenohumeral joint center. In addition, movement planes 

were verified throughout the investigation using the goniometer when the pole guiding motion 

was repositioned. Thus, the associated potential for movement error should be modest. 

5.9 Future Research Directions 

To investigate the potential clinical usefulness of the developed shoulder kinematic 

profiles, an identical study protocol should be repeated to study the movements of a diagnosed 

injured population. It is hypothesized that shoulder joint rotation trends, particularly 

scapulothoracic upward rotation and posterior tilt, would be different in injured populations 

(Ludewig and Cook, 2000). Perhaps most importantly, motion assessment should include 

multiple humeral elevation plane analyses, rather than the current standard of just scapular plane 

elevation. For example, the current results suggest that the plane in which kinematics is tested 

affects scapular tilt kinematics. In injured populations, this effect of plane is likely lessened or 
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heightened. Likewise, tilt and upward rotation measures might be present as “typical” in certain 

planes, but not others. Furthermore, certain shoulder pathologies (e.g. shoulder instability vs. 

sub-acromial impingement syndrome) may present different kinematic trends compared to 

typical populations, enabling more specific non-invasive diagnosis. For example, an unstable 

shoulder might have more posterior tilt during humeral elevation compared to the typical 

kinematic curve, while the impinged shoulder may present less tilt. The current results provide a 

robust basis for making these comparisons. 

The discovery that males have more posterior scapular tilt than females, particularly at 

higher elevation angles, should be further investigated using direct scapular kinematic 

measurement techniques (i.e. bone pins). If this finding is confirmed, it strongly suggests that 

females may be more predisposed to sub-acromial impingement syndrome. Moreover, the 

discovery that gender interacts with other main effects such as movement plane and elevation 

angle suggests gender should be controlled for treated as an independent variable in future 

shoulder kinematic investigations and clinical evaluations. 

 The current investigation was performed in conjunction with an investigation by Grewal 

(2011) that attempted to develop regression equations that predict scapular and clavicle 

orientations based on externally measured humeral and thorax static positions. Twenty-eight 

participants from the current study also participated in the second study. Future work will input 

the humeral and thorax data from these participants into the regression equations found in 

Grewel (2011) and compare these to dynamic scapular motion profiles found in Figures 21 to 23. 

It is hypothesized that these profiles will closely align, as the equations were generated using the 

same sample population. To further test the feasibility of applying these equations to a general 

population, dynamic shoulder kinematics from a new sample of the university population should 
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be collected. Thorax and humeral measures from this sample should then be inputted into the 

regression equations, and outputs compared to dynamic measures. 

Further work into the validation of the acromion marker cluster (AMC) skin-mounted 

scapular kinematic measurement technique is also warranted. The current investigation supports 

the notion that 3D scapular kinematics are highly variable across people. Therefore validating the 

AMC using only eight participants, as done by Karduna et al. (2001), may be inadequate. 

Presenting profiles detailing root mean square measurement error at each humeral increment 

level across multiple movement planes will benefit future biomechanists when considering their 

specific motion tracking instrumentation options. 

5.10 Clinical applications of findings  

Scapular upward rotation and posterior tilt kinematic profile trends and ranges presented 

in this study are useful for identifying shoulder motion abnormalities. For example, as the 

humerus was elevated beyond 30⁰, scapula upward rotation was directly related to humerus 

elevation. Failure to see this linear relationship or finding reductions in upward rotation at higher 

humeral elevation angles could indicate dyskinetic scapular motion. Likewise, if an individual 

presents a scapula that anteriorly tilts as the humerus is elevated, this could be deemed as 

abnormal as well. This combination of decreased upward rotation and increased anterior tilt at 

higher humeral elevation angles is often cited as one of the potential causes a reduction in sub-

acromial space and rotator cuff tears (Ludewig & Cook, 2000; Borstad & Ludewig, 2002; 

McClure et al., 2004). The utility of scapular kinematic profiles to detect kinematic differences 

between uninjured and pathological shoulder motion was presented in Section 5.4 and shown 

graphically in Figures 96 and 97. 
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Due to the high variability of shoulder rotational outcomes found in Figures 21 through 

30, the magnitudes of kinematic profiles will most likely not align precisely with the shoulder 

kinematic outcomes of all healthy individuals. This was exemplified for the scapular rotations in 

Figures 93 through 95, where the mean scapulothoracic protraction, upward rotation and tilt 

profiles obtained from typical individuals in four different studies, including this one, did not 

align perfectly with each other. However, overall trends persisted across raw individual 

kinematic profiles as shown for scapular upward rotation in Figure 98. Therefore, finding a 

discrepancy between the kinematic profile magnitudes presented in this study and raw kinematic 

magnitudes of an individual during a clinical assessment is not indicative of atypical motion.    

This investigation adamantly supported moving away from singular scapular plane 

shoulder kinematic analyses in clinical settings. For example, movement plane did not 

meaningfully affect scapular upward rotation. Therefore any visible differences in scapular 

upward rotation in response to modifying movement plane should be classified as atypical and 

may indicate dysfunction. On the contrary, scapulothoracic posterior tilt and protraction were 

highly dependent on motion plane. If no changes are seen in these two scapular rotations in 

response to altering vertical humeral elevation plane, this response should be classified as 

atypical as well. Therefore, the identification of pathological scapular motion can be made 

possible if scapular motion is assessed during humeral elevation in multiple vertical movement 

planes. 

Females presented less scapular posterior tilt than males at higher elevation angles, 

suggesting a predisposition to increased shoulder injury risk. Kinematic differences due to 

gender have been shown to occur at other joints such as the knee. Moreover, some of these 

differences have been linked to increased occurrences of anterior cruciate knee ligament tears in 



150 
 

females. The current investigation’s findings hint at a similar connection between scapular 

kinematic differences in females and potential shoulder injury risk increases. Lower scapular 

posterior tilt, shown in females at higher elevation angles in the current investigation, is 

suggested to be a contributing factor to the development of shoulder impingement syndrome 

(Ludewig & Cook, 2000; McClure et al., 2004). However, this study was the first to test for 

gender effects on scapular kinematics. Therefore more clinical research into gender effects on 

scapular kinematics must be completed to validate the claim of increased shoulder injury risk in 

females. 

Any significant effect of movement phase (i.e. raising or lowering of the humerus) on 

scapular upward rotation and anterior tilt would most likely not be perceptible by the eye in an 

assessment of motion in a clinical setting. This supports the notion that any visible change in 

scapular kinematics that occur in humeral lowering compared to raising should be classified as 

non-healthy (Borstad & Ludewig, 2000; Kibler, 2009). Moreover, findings suggest that this 

notion should be extended to the additional humeral elevation planes tested in this investigation. 

Therefore, if observable scapular kinematic changes do occur as a result of altering humeral 

elevation phase in a clinical assessment of shoulder motion, this should be classified as 

pathological. In addition, the absence of a visible motion phase effect in one movement plane 

does not guarantee that this absence persist across all movement planes.  
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6. CONCLUSIONS 

The purposes of this investigation were to profile typical shoulder kinematics during 

dynamic humeral elevation and to determine statistically the potential factors that influence 

typical 3D shoulder kinematics. The following conclusions can be made pertaining to humeral 

elevation in six constrained vertical movement planes: 

 Normal shoulder kinematics is highly variable across people. Several measures of 

variability, indicated by standard deviations, exceeded 100% of the recorded ROM 

(maximum 300.76% for scapulothoracic protraction).  

 Most kinematic profile trends presented in this study agree with prior reports, when 

comparisons are possible. For example, the scapula presented upward rotation, increased 

posterior tilt, and range of scapular protraction/retraction occurring with increasing 

humeral elevation has been repeatedly documented in the past.  

 Movement plane heavily influenced normal shoulder kinematics for all transverse plane 

rotations, as well some sagittal and frontal plane rotations such as scapulothoracic 

posterior tilt.  

 Plane does not meaningfully affect normal typical scapular upward rotation.  

 At least one significant gender interaction effect existed for all measured joint rotations 

excluding glenohumeral plane of elevation and internal/external rotation.  

 Any significant motion phase main effect or interactions was most likely visually 

unobservable due to low magnitudes.  

This investigation has produced the most comprehensive collection of typical 3D 

scapulothoracic, glenohumeral, and sternoclavicular kinematic profiles obtained using skin-

mounted motion tracking techniques according to International Society of Biomechanics (ISB) 
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standards (Wu et al., 2005). The six motion planes assessed extend our knowledge of typical 

shoulder motion beyond the typically profiled scapular plane and humeral raising. Likewise, this 

study’s inclusion of gender as a potential factor that influences shoulder kinematics was novel, 

and results showed that females might be predisposed to a higher risk of sub-acromial 

impingement than that of males. Most importantly, the dynamic profiles presented in this study 

provide researchers and clinicians a single reference for normative shoulder kinematic data that 

they can use to identify shoulder motion abnormalities. By testing for movement plane, elevation 

angle, motion phase, and gender effects on scapular kinematics specifically, clinicians gain 

insight into what observable scapular patterns during clinical assessments should be deemed 

typical or abnormal.  
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APPENDIX A: Link segment and local coordinate system descriptions 

Table A1: Link segment definitions anatomical landmarks (Wu et al., 2005) 

Segment Definition 

Thorax Plane created by the C7, T8, XP, and SSN  

Scapula Plane created by the AA, IA, and RS 

Humerus 
Link connecting the midpoint between LE and ME and the approximate 

GH joint center  

Forearm 
Link connecting the midpoint between LE and ME and the midpoint 

between the US and RS 

 

 

Table A2: Segment-based orthogonal coordinate system definitions (Wu et al., 2005) 

System Definition 

Thorax coordinate 

system       

(Figure A1) 

Origin: Coincident with the suprasternal notch 

x-axis (Tx): Line normal to the plane formed by XP, SSN, C7, and T8, 

directed laterally 

y-axis (Ty): Line normal to the x and z-axis directed forward 

z-axis (Tz): Line connecting the midpoint  between the SSN and C7, and 

the  midpoint between the XP and T8 directed upward.  

Clavicle 

coordinate system     

(Figure A2) 

Origin: Coincident with SC 

x-axis (Cx): Line connecting SC and AC directed laterally 

y-axis (Cy): Line normal to the clavicle x-axis and the thorax z-axis 

directed forward   

z-axis (Cz): Line normal to the y-axis and x-axis directed superiorly  

Scapula 

coordinate system 

(Figure A3) 

Origin: Coincident with AA 

x-axis (Sx): Line connecting SR and AA directed at AA 

y-axis (Sy): Line normal to the plane created by AA, IA, and SR 

directed forward   

z-axis (Sz): Line normal to the y-axis and x-axis directed superiorly 

Humerus 

coordinate system 

(Figure A4) 

Origin: Coincident with the GH 

x-axis (Hx): Line normal to the z- and y-axis directed laterally 

y-axis (Hy): Line normal to the plane formed by the LE, ME, and GH 

directed forward  

z-axis (Hz): Line connecting the midpoint  between the LE and ME and 

the GH directed at GH  
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Figure A1: Orthogonal thorax system with the origin at the supersternal notch (SSN) at A. Yt is directed 

perpendicular to the plane created by XP, SSN, C7, and T8directed forward   (Image from Primal Pictures) 

(Image from Primal Pictures) 

 
Figure A2: Orthogonal clavicle system with the origin at the sternoclavicular joint at point A. Yc is directed 

perpendicular to the plane created by Zt and Xc directed forward (Image from Primal Pictures) 
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Figure A3: Orthogonal scapula system with the origin at the acromion angle AA at point A. Ys is directed 

perpendicular to the plane created by the AA, inferior angle (IA) at C, and scapular spine root (SR) at C 

directed forward (Image from Primal Pictures) 

 
Figure A4: Orthogonal humerus system with the origin at the glenohumeral joint (GH) at point A. Yh is 

directed perpendicular to the plane created by the medial epicondyle (ME), lateral epicondyle (LE), and GH 

directed forward (Image from Primal Pictures) 
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Table A3: Marker cluster orthogonal coordinate system definitions  

System Definition 

Acromion marker 

cluster       

(Figure A5) 

Origin: AMC3 

x-axis: Line connecting AMC3 and AMC2 directed laterally 

y-axis: Line normal to the plane created by AMC1, AMC2, directed 

forward 

z-axis: Line orthogonal to the x- and y-axis directed superiorly 

Digitizing stylus     

(Figure A6) 

Origin: STY3 

x-axis: Line connecting STY3 and STY2 directed laterally 

y-axis: Line normal to the plane created by AMC1, AMC2, directed 

forward 

z-axis: Line orthogonal to the x- and y-axis directed superiorly 

Humerus cluster  

Origin: HUM3 

x-axis: Line connecting HUM3 and HUM2 directed laterally 

y-axis: Line normal to the plane created by HUM1, HUM2, directed 

forward 

z-axis: Line orthogonal to the x- and y-axis directed superiorly 

 

 

Table A4: Joint coordinate system (JCS) (Grood and Suntay, 1983) definitions of the SC and AC joints; ST 

and TH segments. Each JCS floating axis is defined as the common perpendicular of the stationary and 

moving system’s fixed axes, with the exception of the  

Joint or segment Definition 

SC 
Stationary system/fixed axis: Thorax coordinate system/z-axis  

Moving system/fixed axis: Clavicle coordinate system/x-axis 

AC 
Stationary system/fixed axis: Clavicle coordinate system/x-axis 

Moving system/fixed axis: Scapula coordinate system/z-axis 

ST 
Stationary system/fixed axis: Thorax coordinate system/z-axis  

Moving system/fixed axis: Scapula coordinate system/x-axis 
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Figure A5: Orthogonal acromion marker cluster (AMC) coordinate system with the origin at AMC2 at point 

A. YAMC is perpendicular to the plane created by AMC1, AMC2, and AMC3 directed forward.  

 

 
Figure A6: Orthogonal digitizing stylus system with the origin at STY4. Sd is perpendicular to the plane 

created by STY1, STY2, STY3, and STY4 directed forward. 
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APPENDIX B: Decomposition and rotational transformation matrices 

 

1) Decomposition rotation matrix [R] (order: Z-Y-Z) construction used to determine 

Euler angles that describe 3D GH joint rotation: 

 

[R] = [Rz] [Ry] [Rz]          B1.0 

 

Where:            B1.1 

 

100

0cossin

0sincos

][ zR

      
cos0sin

010

sin0cos

][ yR

    
100

0cossin

0sincos

][ zR   

Therefore:    B1.2 

cossinsinsincos

sinsinsincossincoscoscossinsincoscos

cossincoscossinsincossinsincoscoscos

][R

 
 

2)  Rotational transformation matrix [TR] used to determine the projection of the 

humerus coordinate system (unit vectors i, j, k) on to the scapular coordinate system 

(unit vectors I,J,K) 

 
 

   B2.0 

Where:    B2.1 

kzkykx

jzjyjx

iziyix

Thum ][

   
KzKyKx

JzJyJx

IzIyIx

Tscap ][

 

Therefore:    B2.2 

kKjKiK

kJjJiJ

kIjIiI

R scap

hum][

 

T

scaphum

scap

hum TTR][
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3) Rotational transformation matrix used to determine the projection of the digitizing 

stylus or acromion marker cluster (“cluster”) coordinate systems (unit vectors i, j, k) 

on to the global coordinate system (unit vectors I,J,K) 

 

 

                           B3.0 

Where:    B3.1 

kzkykx

jzjyjx

iziyix

Tcluster ][

   
KzKyKx

JzJyJx

IzIyIx

TGLOBAL ][

  
100

010

001

 
  

T

GLOBALcluster

GLOBAL

cluster TTR][
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APPENDIX C: Descriptive statistics and intra-class correlation 

Table C1:  Three-dimensional scapulothoracic kinematics descriptive statistics for the examined humeral 

elevation planes organized by elevation phase (SPR = scapulothoracic +protraction/-retraction; SML = 

scapulothoracic +medial/-lateral rotation; SPA = scapulothoracic +posterior/-anterior tilt). All values are in 

degrees (°) 

  
Raising Phase Lowering Phase 

Rotation Plane Range Max Min Range Max Min 

SPR 

0° 4.14 26.75 22.61 3.93 25.49 21.56 

30° 2.44 32.35 29.91 3.28 31.22 27.93 

Scapular 3.62 35.52 31.90 3.56 33.38 29.82 

60° 4.65 38.92 34.28 5.57 37.83 32.26 

90° 12.03 46.10 34.07 13.29 44.25 30.95 

120°  18.87 54.92 36.05 16.24 52.03 35.80 

SML 

0° 36.71 4.35 -32.37 33.12 1.96 -31.16 

30° 33.71 4.16 -29.56 31.85 2.13 -29.72 

Scapular 35.15 5.04 -30.11 32.51 3.21 -29.30 

60° 35.14 3.93 -31.21 33.11 2.61 -30.50 

90° 34.32 2.80 -31.51 33.17 1.28 -31.89 

120°  32.70 0.07 -32.63 36.15 3.36 -32.79 

SPA 

0° 11.92 7.61 -4.31 13.77 9.27 -4.50 

30° 11.43 6.43 -4.99 12.26 6.75 -5.51 

Scapular 10.58 5.60 -4.97 12.65 7.50 -5.15 

60° 10.16 4.54 -5.62 9.51 4.48 -5.02 

90° 7.98 3.11 -4.87 7.66 2.70 -4.96 

120°  7.62 2.09 -5.53 6.03 -0.11 -6.14 

 

 
Table C2:  Scapulothoracic rhythm for the examined humeral elevation planes organized by elevation phase 

Plane 

Raising Phase Lowering Phase 

Rhythm SD Rhythm SD 

0° -2.86 0.27 -3.23 0.30 

30° -3.09 0.29 -3.35 0.63 

Scapular -3.18 0.35 -3.25 0.19 

60° -3.13 0.26 -3.24 0.33 

90° -3.08 0.31 -3.10 0.32 

120° -3.45 0.50 -3.65 0.90 

OVERALL -3.13 0.37 -3.30 0.52 
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Table C3:  Three-dimensional glenohumeral kinematics descriptive statistics for the examined humeral 

elevation planes organized by elevation phase (GAP = glenohumeral +anterior/-posterior plane; GLE = 

glenohumeral –elevation; GIE glenohumeral +interior/-exterior rotation). All values are in degrees (°) 

  
Raising Phase Lowering Phase 

Rotation Plane Range Max Min Range Max Min 

GAP 

0° 18.07 1.51 -16.56 21.95 8.47 -13.48 

30° 21.71 27.04 5.33 23.91 31.58 7.67 

Scapular 17.69 25.45 7.76 21.84 32.37 10.53 

60° 25.71 42.02 16.31 23.48 40.42 16.95 

90° 29.78 55.01 25.24 29.71 54.89 25.18 

120°  35.16 60.59 25.43 41.54 65.07 23.53 

GLE 

0° 68.33 -19.74 -88.07 71.11 -17.81 -88.93 

30° 71.26 -18.97 -90.23 70.17 -19.80 -89.97 

Scapular 69.69 -20.02 -89.72 70.56 -19.51 -90.07 

60° 68.64 -20.06 -88.70 70.49 -19.50 -89.99 

90° 71.60 -18.63 -90.23 72.40 -17.64 -90.04 

120°  73.32 -17.80 -91.12 72.42 -19.90 -92.32 

GIE 

0° 10.01 -40.31 -50.32 6.94 -49.03 -55.97 

30° 11.60 -53.46 -65.05 19.15 -54.38 -73.52 

Scapular 11.56 -53.81 -65.37 20.19 -54.07 -74.27 

60° 17.53 -54.38 -71.91 16.88 -56.39 -73.26 

90° 25.46 -45.20 -70.66 35.20 -36.73 -71.94 

120°  37.06 -29.76 -66.82 43.56 -23.73 -67.29 

 

Table C4:  Two-dimensional acromioclavicular kinematics descriptive statistics for the examined humeral 

elevation planes organized by elevation phase (APR = acromioclavicular +protraction/-retraction; ; AED = 

acromioclavicular  –elevation). All values are in degrees (°) 

  
Raising Phase Lowering Phase 

Rotation Plane Range Max Min Range Max Min 

APR 

0° 6.38 50.77 44.39 6.29 49.69 43.40 

30° 7.23 46.94 39.71 7.17 46.42 39.26 

Scapular 7.94 46.77 38.84 7.05 45.72 38.67 

60° 9.92 46.25 36.33 9.48 45.20 35.72 

90° 11.95 45.99 34.04 10.86 46.01 35.16 

120°  12.98 49.32 36.34 9.66 48.68 39.02 

AED 

0° 12.26 -8.39 -20.65 14.03 -7.75 -21.78 

30° 13.65 -7.35 -21.00 14.39 -6.58 -20.97 

Scapular 15.04 -6.47 -21.51 15.15 -6.98 -22.13 

60° 16.41 -4.53 -20.94 15.60 -5.99 -21.59 

90° 18.22 -4.25 -22.47 13.94 -8.12 -22.06 

120°  21.13 -5.91 -27.05 16.41 -8.73 -25.14 
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Table C5:  Two-dimensional sternoclavicular kinematics descriptive statistics for the examined humeral 

elevation planes organized by elevation phase (CPR = sternoclavicular +protraction/-retraction; ; CED = 

sternoclavicular –elevation). All values are in degrees (°) 

  
Raising Phase Lowering Phase 

Rotation Plane Range Max Min Range Max Min 

CPR 

0° 18.26 -8.82 -27.08 16.05 -10.00 -26.05 

30° 17.57 -8.34 -25.92 15.88 -8.84 -24.72 

Scapular 17.81 -7.95 -25.77 15.06 -9.56 -24.62 

60° 16.89 -8.26 -25.15 15.41 -9.09 -24.50 

90° 17.43 -8.51 -25.94 14.71 -10.50 -25.21 

120°  18.25 -9.83 -28.08 16.12 -11.20 -27.32 

CED 

0° 21.48 -20.74 -42.22 20.66 -22.74 -43.39 

30° 20.77 -19.14 -39.91 21.19 -20.56 -41.75 

Scapular 20.86 -18.02 -38.87 21.30 -19.29 -40.59 

60° 20.37 -17.45 -37.81 21.95 -18.50 -40.46 

90° 20.24 -17.31 -37.55 21.69 -18.16 -39.85 

120°  22.79 -14.94 -37.73 25.02 -14.83 -39.84 

 

 

Table C6:  Mean intra-class correlation coefficients (ICCs) of all measured joint rotations for each plane of 

humeral elevation. ICCs are sorted from largest to smallest 

Plane Rotation Mean Max Min STD Plane Rotation Mean Max Min STD 

0
° 

p
la

n
e
 

GLE 0.998 0.986 0.924 0.011 

3
0

° 
p

la
n

e
 

GLE 0.999 0.998 0.987 0.002 

SPR 0.968 0.994 0.673 0.057 CED 0.969 0.999 0.603 0.058 

CED 0.958 0.999 0.489 0.071 SPR 0.961 0.998 0.659 0.063 

SPA 0.941 0.999 0.200 0.142 SPA 0.960 0.998 0.659 0.064 

GIE 0.937 0.998 0.628 0.076 GIE 0.930 0.998 0.637 0.087 

AED 0.815 0.997 0.035 0.261 AED 0.864 0.997 0.070 0.207 

CPR 0.794 0.996 0.001 0.240 CPR 0.782 0.994 0.060 0.230 

APR 0.723 0.988 0.040 0.252 SML 0.765 0.997 0.018 0.249 

SML 0.683 0.995 0.027 0.268 APR 0.634 0.992 0.014 0.305 

GAP 0.668 0.995 0.030 0.318 GAP 0.627 0.988 0.017 0.299 

S
ca

p
u

la
r 

p
la

n
e
 

GLE 0.999 0.999 0.980 0.003 

6
0

° 
p

la
n

e
 

GLE 1.000 0.992 0.987 0.002 

CED 0.955 0.999 0.319 0.127 CED 0.942 0.987 0.166 0.148 

SPA 0.951 0.997 0.288 0.125 GIE 0.941 0.997 0.209 0.116 

SPR 0.950 0.997 0.288 0.125 SPR 0.939 0.998 0.342 0.121 

GIE 0.947 0.997 0.821 0.044 SPA 0.844 0.998 0.007 0.277 

AED 0.887 0.990 0.274 0.151 CPR 0.829 0.998 0.160 0.217 

CPR 0.836 0.996 0.219 0.194 AED 0.813 0.996 0.060 0.239 

SML 0.755 0.995 0.010 0.270 SML 0.755 0.995 0.010 0.268 

APR 0.628 0.975 0.040 0.321 APR 0.683 0.988 0.028 0.267 

GAP 0.627 0.989 0.023 0.284 GAP 0.623 0.992 0.080 0.301 

9
0

° 
p

la
n

e
 

GLE 0.999 0.986 0.990 0.002 

1
2

0
° 

p
la

n
e
 

GLE 0.999 0.998 0.986 0.002 

CED 0.967 0.986 0.752 0.040 CED 0.963 0.999 0.810 0.038 

GIE 0.935 0.995 0.547 0.078 SPA 0.884 0.994 0.189 0.178 

SPR 0.929 0.998 0.264 0.131 SPR 0.861 0.995 0.189 0.188 

SPA 0.927 0.998 0.264 0.133 GIE 0.857 0.991 0.089 0.212 

CPR 0.825 0.997 0.051 0.222 CPR 0.816 0.995 0.160 0.246 

SML 0.798 0.990 0.059 0.222 AED 0.717 0.981 0.000 0.243 

APR 0.784 0.985 0.120 0.201 SML 0.711 0.988 0.016 0.264 

AED 0.749 0.989 0.045 0.260 APR 0.706 0.984 0.075 0.248 

GAP 0.704 0.986 0.011 0.255 GAP 0.700 0.995 0.046 0.294 
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APPENDIX D: Kinematic profiles for the lowering phase 

 
Figure D1: Mean scapulothoracic +protraction/-retraction (SPR) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase 
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Figure D2: Mean scapulothoracic +medial/-lateral rotation (SML) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase 
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Figure D3: Mean scapulothoracic +positive/-retraction (SPA) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase 
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Figure D4: Mean glenohumeral +anterior/-posterior elevation plane (GAP) kinematic profiles, with +/- one 

standard deviation, for the six tested vertical planes – lowering phase 
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Figure D5: Mean glenohumeral -elevation (GLE) kinematic profiles, with +/- one standard deviation, for the 

six tested vertical planes – lowering phase 
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Figure D6: Mean glenohumeral +internal/-external rotation (GIE) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase 
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Figure D7: Mean acromioclavicular +protraction/-retraction (APR) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase. 
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Figure D8: Mean acromioclavicular –elevation/+depression (AED) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase. 
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Figure D9: Mean sternoclavicular +protraction/-retraction (CPR) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase 
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Figure D10: Mean sternoclavicular –elevation/+depression (CED) kinematic profiles, with +/- one standard 

deviation, for the six tested vertical planes – lowering phase. 
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APPENDIX E: Kinematic profiles’ average standard deviation by elevation angle 

 

Table E: Standard deviation measurements used in Figure 91 and 92. ELE = elevation angle 

ELE SPR SML SPA CED CPR GAP GLE GIE AED APR 

10 13.73 14.20 9.68 5.45 8.16 68.28 9.92 69.68 11.87 12.79 

15 14.91 13.61 9.25 5.27 8.26 58.53 10.08 58.12 11.48 12.89 

20 15.45 13.48 9.15 5.29 6.80 51.12 10.52 48.09 11.28 12.33 

25 14.75 13.43 9.23 5.46 5.86 45.05 10.79 40.72 11.57 11.91 

30 14.62 13.51 9.26 5.53 5.99 39.52 11.17 35.62 11.41 11.88 

35 14.48 13.56 9.32 5.73 6.12 35.32 11.46 31.99 11.32 11.77 

40 14.40 13.65 9.34 5.91 5.77 32.10 11.57 28.80 11.25 11.39 

45 14.22 13.75 9.39 6.12 5.62 29.31 11.52 26.39 11.08 10.95 

50 14.07 13.73 9.45 6.25 5.65 27.04 11.62 24.73 11.02 10.61 

55 13.88 13.61 9.56 6.35 5.95 26.07 11.84 25.46 10.98 10.47 

60 13.93 13.62 9.71 6.37 5.93 23.84 12.01 23.59 11.16 10.43 

65 14.01 13.71 9.90 6.40 5.94 22.62 12.18 22.61 11.32 10.42 

70 14.07 13.90 10.11 6.41 5.94 21.23 12.42 21.50 11.63 10.48 

75 14.12 14.08 10.33 6.39 5.95 19.55 12.77 20.15 12.00 10.59 

80 14.12 14.23 10.54 6.35 6.01 18.64 13.15 19.54 12.34 10.74 

85 14.18 14.38 10.77 6.29 6.08 17.87 13.41 19.00 12.72 10.88 

90 14.32 14.51 10.99 6.23 6.09 17.18 13.71 18.51 13.00 11.00 

95 14.49 14.68 11.19 6.20 6.07 16.63 13.96 18.14 13.26 11.17 

100 14.67 14.89 11.30 6.18 6.06 16.11 14.13 17.80 13.49 11.38 

105 14.84 15.00 11.41 6.16 6.10 15.64 14.37 17.47 13.66 11.53 

110 15.01 15.10 11.56 6.11 6.21 15.18 14.39 17.38 13.75 11.64 

115 15.37 14.94 11.87 6.03 6.42 14.81 14.34 17.40 13.83 11.55 

120 14.85 15.01 12.31 6.14 6.73 13.91 14.04 17.58 13.80 11.96 
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APPENDIX F: Analysis of variance (anova) summaries  

Table F1:  Scapulothoracic protract/retraction ANOVA summary table. * indicates significance (P-value: 

0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.16 0.694 

PLANE 5 2020.09 <.0001* 

ELE 7 80.55 <.0001* 

PHASE 1 87.23 <.0001* 

SEX*PLANE 5 2.39 0.0355* 

SEX*ELE 7 4.57 <.0001* 

SEX*PHASE 1 4.85 0.0277* 

PLANE*ELE 35 18.29 <.0001* 

PLANE*PHASE 5 0.98 0.4271 

ELE*PHASE 7 0.12 0.997 

 

Table F2:  Scapulothoracic medial/lateral rotation ANOVA summary table. * indicates significance (P-value: 

0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.04 0.8489 

PLANE 5 35.37 <.0001* 

ELE 7 1112.24 <.0001* 

PHASE 1 6.74 0.0095* 

SEX*PLANE 5 5.01 0.0001* 

SEX*ELE 7 0.70 0.6756 

SEX*PHASE 1 17.98 <.0001* 

PLANE*ELE 35 0.46 0.997 

PLANE*PHASE 5 4.02 0.0012* 

ELE*PHASE 7 0.57 0.781 

 

Table F3:  Scapulothoracic posterior/anterior tilt ANOVA summary table. * indicates significance (P-value: 

0.05) 

Source DF F Ratio Prob > F 

SEX 1 1.19 0.2858 

PLANE 5 93.63 <.0001* 

ELE 7 150.30 <.0001* 

PHASE 1 17.86 <.0001* 

SEX*PLANE 5 5.04 0.0001* 

SEX*ELE 7 33.36 <.0001* 

SEX*PHASE 1 3.03 0.082 

PLANE*ELE 35 3.48 <.0001* 

PLANE*PHASE 5 7.76 <.0001* 

ELE*PHASE 7 0.73 0.6484 
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Table F4:  Glenohumeral anterior/posterior plane ANOVA summary table. * indicates significance (P-value: 

0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.01 0.9421 

PLANE 5 505.77 <.0001* 

ELE 7 29.18 <.0001* 

PHASE 1 1.05 0.305 

SEX*PLANE 5 1.44 0.2058 

SEX*ELE 7 0.24 0.9764 

SEX*PHASE 1 0.18 0.675 

PLANE*ELE 35 7.67 <.0001* 

PLANE*PHASE 5 0.82 0.5378 

ELE*PHASE 7 0.23 0.978 

 

Table F5:  Glenohumeral elevation ANOVA summary table. * indicates significance (P-value: 0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.00 0.9608 

PLANE 5 11.95 <.0001* 

ELE 7 3771.28 <.0001* 

PHASE 1 1.81 0.179 

SEX*PLANE 5 25.85 <.0001* 

SEX*ELE 7 9.41 <.0001* 

SEX*PHASE 1 9.23 0.0024* 

PLANE*ELE 35 1.29 0.1159 

PLANE*PHASE 5 1.94 0.0843 

ELE*PHASE 7 0.51 0.8243 

 

Table F6:  Glenohumeral internal/external rotation ANOVA summary table. * indicates significance (P-

value: 0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.29 0.5916 

PLANE 5 39.50 <.0001* 

ELE 7 22.26 <.0001* 

PHASE 1 11.28 0.0008* 

SEX*PLANE 5 1.11 0.3536 

SEX*ELE 7 0.89 0.5126 

SEX*PHASE 1 0.44 0.5093 

PLANE*ELE 35 3.61 <.0001* 

PLANE*PHASE 5 1.94 0.0843 

ELE*PHASE 7 1.56 0.1434 
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Table F7:  Acromioclavicular protraction/retraction ANOVA summary table. * indicates significance (P-

value: 0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.01 0.9405 

PLANE 5 58.17 <.0001* 

ELE 7 62.09 <.0001* 

PHASE 1 0.01 0.9229 

SEX*PLANE 5 4.56 0.0004* 

SEX*ELE 7 1.63 0.123 

SEX*PHASE 1 1.28 0.2584 

PLANE*ELE 35 1.23 0.1647 

PLANE*PHASE 5 2.15 0.0571 

ELE*PHASE 7 0.34 0.9337 

 

 

Table F8:  Acromioclavicular elevation ANOVA summary table. * indicates significance (P-value: 0.05) 

Source DF F Ratio Prob > F 

SEX 1 1.13 0.2974 

PLANE 5 63.06 <.0001* 

ELE 7 348.45 <.0001* 

PHASE 1 80.20 <.0001* 

SEX*PLANE 5 5.47 <.0001* 

SEX*ELE 7 52.71 <.0001* 

SEX*PHASE 1 0.89 0.3448 

PLANE*ELE 35 2.92 <.0001* 

PLANE*PHASE 5 1.42 0.2135 

ELE*PHASE 7 3.98 0.0002* 

 

Table F9:  Sternoclavicular protraction/retraction ANOVA summary table. * indicates significance (P-value: 

0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.48 0.4953 

PLANE 5 317.24 <.0001* 

ELE 7 2024.91 <.0001* 

PHASE 1 608.21 <.0001* 

SEX*PLANE 5 6.52 <.0001* 

SEX*ELE 7 24.15 <.0001* 

SEX*PHASE 1 24.28 <.0001* 

PLANE*ELE 35 7.34 <.0001* 

PLANE*PHASE 5 6.95 <.0001* 

ELE*PHASE 7 22.14 <.0001* 
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Table F10:  Sternoclavicular elevation ANOVA summary table. * indicates significance (P-value: 0.05) 

Source DF F Ratio Prob > F 

SEX 1 0.94 0.3406 

PLANE 5 271.76 <.0001* 

ELE 7 1921.63 <.0001* 

PHASE 1 50.80 <.0001* 

SEX*PLANE 5 2.92 0.0124* 

SEX*ELE 7 13.15 <.0001* 

SEX*PHASE 1 18.79 <.0001* 

PLANE*ELE 35 3.52 <.0001* 

PLANE*PHASE 5 24.20 <.0001* 

ELE*PHASE 7 14.91 <.0001* 

 

 

 

 


