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Abstract

Many modern applications involve analyzing large amounts of data that comes from unstructured
text documents. In its original format, data contains information that, if extracted, can give more
insight and help in the decision-making process. The ability to answer structured SQL queries
over unstructured data allows for more complex data analysis. Querying unstructured data can be
accomplished with the help of information extraction (IE) techniques. The traditional way is by
using the Extract-Transform-Load (ETL) approach, which performs all possible extractions over
the document corpus and stores the extracted relational results in a data warehouse. Then, the
extracted data is queried. The ETL approach produces results that are out of date and causes an
explosion in the number of possible relations and attributes to extract. Therefore, new approaches
to perform extraction on-the-fly were developed; however, previous efforts relied on specialized
extraction operators, or particular IE algorithms, which limited the optimization opportunities of
such queries.

In this work, we propose an on-line approach that integrates the engine of the database man-
agement system with IE systems using a new type of view called extraction views. Queries on
text documents are evaluated using these extraction views, which get populated at query-time
with newly extracted data. Our approach enables the optimizer to apply all well-defined opti-
mization techniques. The optimizer selects the best execution plan using a defined cost model
that considers a user-defined balance between the cost and quality of extraction, and we explain
the trade-off between the two factors. The main contribution is the ability to run on-demand in-
formation extraction to consider latest changes in the data, while avoiding unnecessary extraction
from irrelevant text documents.
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Chapter 1

Introduction

We live in an era where data is everywhere. Huge amounts of data are being produced and
analyzed every day. Data is important mainly because it includes information hidden in it. The
perception of data evolved over time. Data used to be stored on magnetic disks in the form of
zeros and ones. These data formed text words and numbers that became readable. By applying
text analytics algorithms on the data, information can be extracted by identifying entities in the
textual data, such as organizations, person names, and locations. Information extraction took
data visualization to a higher level by analyzing information to infer knowledge about entities,
and figuring out the relations between them.

Information Extraction (IE) systems analyze unstructured text and produce structured rela-
tions. The rich and structured access of information and knowledge gives better insight into the
original forms of unstructured data. In the presence of large amounts of unstructured data, in-
ferring knowledge buried in this textual data and co-referencing extracted information become
together a lengthy operation that needs to be automated for efficient processing and a better
analysis. There has been continuous research effort in information extraction over the past few
decades.

In the absence of automatic means of extracting such information, one way to complete
such tasks is using keyword search to retrieve documents that are relevant to the query at hand,
followed by manually identifying the relevant data in the returned documents. This can be a very
expensive process which fails to leverage complex extraction techniques to find semantically
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Table 1.1: Company Relation Example

Company Name Employee Name Job Title
Apple Inc. Tim Cook CEO

relevant documents that do not contain the exact text of the keyword query, or when compiling
information from multiple documents. Consider a user who is looking for the name of the current
CEO of Apple Inc. Using web search engines, the user query is used to find list of relevant web
pages, where users can check and find the information they need. Information extraction tries
to directly answer the question asked. The IE system would analyze (relevant) web pages and
try to come up with a specific answer. For instance, one Washington Post’s article contains the
text “Apple chief executive Tim Cook has not made many changes to the company since taking
over as its top executive in late August”1. From this sentence, the required information can be
extracted to directly answer the user query, instead of directing the user to the relevant web pages.
The statement above can be used to fill in a relation about companies as shown in Table 1.1.

Extracting knowledge and information provides an evidence-based insight into the data. This
knowledge can help business management come up with well-informed conclusions and deci-
sions. Knowledge extraction assists the decision-making process by providing required complex
analysis together with evidence from the available data. While some of this data is stored in a
structured form, unstructured text documents such as Web pages, email messages, news articles
and reports contain rich information that can be very useful if extracted on time. The ability to
answer structured SQL queries over this kind of unstructured data allows for more complete anal-
ysis and better insights into that data. Example applications that benefit from structured queries
over unstructured textual data include reputation management systems, which download Web
pages to track the “buzz” around companies and products; comparative shopping agents, which
locate e-commerce Web sites and index the products offered; and other information extraction
applications, which retrieve documents and extract structured relations from the unstructured
text. For example, in business intelligence, a company about to release a product X may want to
know whether similar products are well received by consumers and find out the average price of

1http://www.washingtonpost.com/
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such products. Towards this goal, the company extracts information from online shopping Web
sites and aggregates the prices and users’ ratings of products that are similar to X.

As helpful information extraction is, it faces many technical challenges. The first challenge
is the quality of extracted data. The extracted data might be erroneous due to several reasons.
First, the information in the text documents might not be accurate or might be out-dated. Ex-
tracting such information may misinform the users. However, the correctness of information in
the text documents is hard to verify automatically. IE systems sometimes check for redundancy
of information to make sure they are correct and produce relations with higher confidence. In
general, most IE systems count on the user selecting trusted information sources. The second
problem is the accuracy of the extraction process itself. Many algorithms have been developed to
analyze the text and learn rules about how to perform the extraction. None of these algorithms is
perfect. The extracted data is expected to include false positives and to miss correct information
(false negatives). Another challenge is scalability of the extraction algorithms for larger data cor-
pora. Since the processed text is usually semi-structured or unstructured, extracting meaningful
information from text requires performing complex text analytic tasks such as language and vo-
cabulary analysis, part-of-speech tagging, named entity recognition, coreference resolution, text
segmentation and classification, regular expression matching, and other algorithms [34]. These
algorithms process complex operations on data, and they are time consuming. The efficiency
of information extraction systems poses a barrier to scalability and processing large amounts of
data. Therefore, this process is usually done offline. Information extraction techniques are ap-
plied on large amounts of text to extract the data and transform it into a structured format, after
which they load it into a data warehouse. Structured queries using SQL or similar languages
can then be posed on the data warehouse whenever needed. This approach is usually referred to
as Extract-Transform-Load (ETL). However, in the ETL approach, extraction and querying are
decoupled in time and space, which results in several limitations.

First, decoupling in time means that the data stored in the warehouse represents a snapshot
of the original document collection at the time of extraction, not at the time of query processing.
This may be suitable for static document collections, or for applications that do not require recent
and up-to-date results. However, for frequently changing data, this snapshot will become stale
quickly and will not accurately reflect the original documents. Updating the warehouse in real
time is infeasible due to the large amounts of data and the cost of the extraction process [3].
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Decoupling in space results from the fact that extraction is often performed with little knowl-
edge (if any) of the schema or attributes needed for future queries, which leads to an explosion
in the space of possible relations/attributes to extract. This in turn causes the extraction process
to be prohibitively expensive. To avoid such an explosion, assumptions have to be made to limit
the space of attributes to extract, which may limit the ability to answer certain future queries.
The link to the original data sources is lost, and only lineage information (if any) that is rendered
during the ETL operation is stored in the warehouse.

These limitations in many scenarios trigger the need for closer integration between IE and
database engines to allow extracting only timely and relevant data within reasonable run-time
constraints. We refer to this approach by the term just-in-time information extraction, in which
extraction is performed as part of query processing rather than as a separate offline process. This
ensures that the extracted information is up-to-date and reflects the state of the underlying text
document collection at query time. This approach is usually “query-aware”; the query at hand is
analyzed and only the relations and attributes needed by that query are extracted, thus avoiding
any unnecessary extraction cost. This approach to information extraction is useful in mashup
tools (e.g. [2, 32]) which join different Web sources to return answers to a user’s query, usually
ordered by some user-defined ranking score [33].

Just-in-time extraction can be implemented using specialized extraction operators on text
documents to produce structured tuples. However, previous efforts to implement this approach
have many limitations regarding query optimization opportunities. The work in [19, 21, 22] uses
specialized extraction and join operators to handle text documents and assumes that any two IE
systems either return the same set of attributes or have no common attributes at all, which limits
the possible combinations of IE systems to use. Furthermore, the join algorithms work only on
two document inputs and cannot be extended or chained since the join operators encapsulate the
extraction tasks and do not adopt the composability of relational operators. Other approaches
either employ query optimizations that are specific to certain IE techniques and not extensible
to others [30], or they rely on the user to decide the IE systems to use as well as the order of
execution [31]. A more detailed discussion of the related work can be found in Section 2.2.

The new extraction operators have to be fully integrated into the DBMS, which means they
have to be added to the relational algebra, and their interaction with the existing relational op-
erators has to be studied (operator precedence, commutativity, etc.). Furthermore, the query
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rewrite framework and the query optimizer have to be modified to incorporate these operators
into plan enumeration and selection, determining how to enumerate equivalent plans using the
new operators. The advantage of such implementation is that it would explore more optimiza-
tion opportunities and potentially find the most efficient way to answer a query. However, these
drastic changes to the DBMS internals can be very hard given the complexity of today’s DBMSs.

This work proposes a light-weight implementation of just-in-time extraction that does not
require fundamental modifications to the DBMS. The only modifications needed are changes to
the view selection algorithms, and modifying the cost model to take into consideration the new
structures. These modifications are considered minimal, since most of the used structures already
exist in DBMSs, such as views and table-valued functions. Instead of having specialized extrac-
tion operators, this approach integrates information extraction with traditional query processing
through view matching techniques. Information extraction systems are modeled as extraction
views; database views whose data is obtained by running corresponding IE systems on specific
document collections, rather than by running SQL queries on relational data. Extraction views
leverage the current view infrastructure available in most commercial DBMSs. They can be used
in queries in the same way as traditional database views. Encapsulating information extraction
in views allows queries to reference data from text documents as well as data that is already
stored in relational tables, since both types of data appear to the optimizer as relational objects
(tables and views). This design allows the DBMS to exploit well-developed query optimization
opportunities that are applicable to relational data, including pushing down predicates, and using
different access paths, join methods and join orders. These different optimizations, in addition
to which extraction views to use for a given query, constitute the plan space for that query. The
query optimizer utilizes a cost model to determine the best plan to answer the query. The cost
model considers both the efficiency of the IE systems as well as their extraction quality.

In summary, the proposed approach optimizes on-demand information extraction tasks based
on the user preference of performance (in terms of running time) or quality of extracted results.
The main contributions made are:

• Proposing extraction views as a solution inspired by the data integration paradigm. Extrac-
tion views encapsulate the information extraction tasks and use IE systems as black boxes
with minimum exploitation of IE metadata.
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• Developing a cost model that reflects the cost and output quality of extraction tasks and
their effect on query execution and result quality.

• Defining the statistics necessary to estimate execution cost and quality, taking into con-
sideration the information extraction portion, and showing how to obtain such statistics
efficiently and effectively from text collections.

• Extending the query optimizer of a relational DBMS to support the new extraction views,
giving it the ability to explore the full optimization space for queries involving such views
and choose the best plan based on the defined cost model.

The proposed system is evaluated with extensive experiments over a real-world data set and
using state-of-the-art IE systems. This work is organized as follows: chapter 2 highlights some
of the related work, along with background topics. chapter 3 formally defines the problem and
outlines the proposed approach, and chapter 4 presents our optimization techniques and how cost
and quality are estimated. The details of the implementation are discussed in chapter 5. chapter 6
presents the experiments conducted and the results obtained, along with performance analysis.
The work is concluded in chapter 7, and possible future work opportunities are discussed.
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Chapter 2

Background and Related Work

This chapter discusses some of the related work done in the area of information extraction. We
start by discussing the various developed IE frameworks in Section 2.1. Then, in Section 2.2, we
introduce some of the previous work in optimizing information extraction tasks. The last section,
Section 2.3, introduces some key concepts that are related to this work and will be referred to in
the following chapters.

2.1 Information Extraction Frameworks

Due to the current explosion in the amount of information being processed and the variety of
algorithms developed to perform extraction, some general frameworks have been developed to
standardize the process of analyzing unstructured information. These frameworks facilitate the
development, debugging, and testing of new information extraction algorithms. A framework
acts as a foundation for running information extraction systems. There have been many attempts
to develop such frameworks. In this section, two of these frameworks are discussed and briefly
explained.
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2.1.1 Apache UIMA Framework

Unstructured Information Management Applications (UIMA) is a software framework that sup-
ports a development and deployment of multi-modal analytics for processing unstructured infor-
mation [15]. It is currently an Apache licensed open-source software, and UIMA specifications
are standardized by OASIS.

The Apache UIMA framework provides APIs and tools to help the developer build analysis
components, such as tokenizers, named-entity recognizers, summarizers, and other components
that process unstructured information. It supports both Java and C++ development and allows
processing text, audio, and video data. UIMA is capable of wrapping components as network
services, and it can scale up to large amounts of data by replicating processing pipelines over a
cluster of networked nodes.

Figure 2.1: UIMA Architecture [15]
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UIMA Architecture

In many information extraction systems, the complex text analysis process can be decomposed
into smaller separate tasks that are performed in sequence. The output of one or more tasks is
the input to the next task in the flow. Having this paradigm in mind, UIMA allows developers to
divide the data analysis process into smaller, concrete tasks, and every task is modeled separately.
The basic modeling unit in UIMA is called an annotator. An annotator contains the analysis logic
to perform over data, and it produces a set of annotations, which in turn contains a defined set
of features. The input data is analyzed and the annotator marks up the documents according
to its logic. For example, an email annotator will produce email annotations over all email
addresses found in an input text document. UIMA supports a data structure called the common
analysis structure (CAS), which is shared across all elements of the framework. The produced
annotations are added to the CAS structure as output annotations. Annotators following in the
workflow can utilize previously extracted annotations to perform more complicated tasks. More
detailed information about the architecture of UIMA is shown in Figure 2.1

Meeting Detector Analysis Engine 

DateTime 
Annotator 

RoomNumber 
Annotator 

Meeting 
Annotator 

(Requires: Date, Time, Room Number) 

Date, Time 
Date, Time, 

RoomNumber 

Meeting 

Figure 2.2: An Example of An Aggregate Analysis Engine

Annotators are considered the building blocks of large information extraction systems, which
are called analysis engines in UIMA. An analysis engine is responsible for performing complete
data analysis tasks. An analysis engine can contain a single annotator, or it can aggregate multiple
annotators in a certain sequence. CAS annotations become available for following annotators
in the workflow. Figure 2.2 shows an example of an aggregate analysis engine that extracts
meetings. It includes three different annotators; DateTime Annotator, which extracts time and
date information; RoomNumber annotator, which extracts room numbers according to some
regular expression; and Meeting Annotator, which exploits the annotations produced in the two
previous analysis engines to infer information about meeting instances.

9



UIMA Tools

UIMA provides a set of useful tools that helps both the developers and users of information
extraction systems. The main tool is called UIMA Document Analyzer, which is responsible for
testing and running analysis engines on a set of documents. A screenshot of UIMA Document
Analyzer is shown in Figure 2.3. It is a GUI that is used to set up the environment required
for extraction. Users can select the analysis engine to run, data files to process, and any special
encoding. It shows the progress of extraction, and displays the results of extraction. Annotations
of processed documents are displayed The Annotation Viewer is another tool to view stored
analysis results. The framwork provides a CAS Visual Debugger tool to run UIMA analysis
engines and visually navigate through the CAS structure. Another very important tool is the
Processing Engine ARchive (PEAR) packager, which is used for distribution and reuse by other
applications. The tool help packaging all information, resources, and metadata required for an
analysis engine into a PEAR file, and the same tool can be used to deploy a PEAR file on a
different machine and install its analysis engine.

2.1.2 General Architecture for Text Engineering

Similar to UIMA, the General Architecture for Text Engineering (GATE) [10] is a framework for
developing information extraction systems. The main target of GATE is to separate low-level text
processing tasks from language processing algorithms and structures. Also, it provides standard
mechanisms to communicate data about language using standards such as Java and XML. The
framework is designed to allow reusability of the developed components. Like UIMA, GATE
includes some GUI tools to help developing and debugging information extraction modules. A
lot of applications have been developed on GATE to do different information extraction tasks
such as named entity recognition, coreference resolution, template element construction, tem-
plate relation construction, scenario template production, etc. GATE is older than 15 years, and
has many contributors who work on different projects. GATE also includes many tools to help
in the development and deployment of information extraction systems.
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Figure 2.3: A Screenshot of UIMA Document Analyzer

2.2 Related Work in Optimizing Information Extraction Tasks

In this section, we will discuss some of the efforts in optimizing information extraction tasks.
Researchers have been working on information extraction for many decades. Implementing
new extraction algorithms, working on semi-structured, unstructured and web data, develop-
ing frameworks for extraction, identifying entities in text documents, extracting relationships
between objects, extracting most relevant entities and performing co-reference resolution, ex-
tracting probabilistic data with confidence, and other text analytics tasks have been the center
of research. We focus on some of the work that is related to our just-in-time extraction (JITE)
approach. There have been some attempts to develop generic information extraction systems that
allow running structured queries over the extracted data. One of these attempts is System-T that
is developed by IBM.
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System-T

System-T [24] allows SQL-like queries over text documents. The main focus of System-T is to
optimize the performance of rule-based information extraction systems, when running on large
volumes of data. The authors present a formal algebraic framework [30, 9] – similar to that
used in relational databases – to improve the performance of rule-based extraction tasks. By
utilizing IE algebra, System-T performs query optimization and represents extraction tasks by
suitable operators to answer SQL-like queries. Data manipulation procedures are also modeled
as operators.

System-T includes three main types of operators: relational operators (similar to those of
the relational model), span extraction operators (to perform extraction), and span aggregation
operators (to aggregate spans). A span is defined as a pair of integers representing the start
and end index in a document. System-T handles one document at a time; therefore, a span
information is sufficient to identify a word in a certain text document.

Span extraction operators perform rule-based information extraction tasks over text. An op-
erator matches its corresponding rules against the text, and outputs a set of spans that match its
input pattern(s). The work in [9] describes an extraction rules language (AQL) and the extraction
process properties. There are two span extraction operators; Regular Expression Matcher and
Dictionary Matcher. As their names indicate, the regular expression matcher operator compares
the document text to some regular expressions, and successful matching spans are added to the
output. The dictionary matcher operator can also be thought of like the regular expression match-
ing operators. It takes a list of words (dictionary) and compares the document text to that list of
words. The spans of matching phrases are also added to the output.

Span aggregation operators take a set of input spans, and output a set of output spans, after
performing some aggregation process on the input set. There are three types of span aggregation
operators that correspond to three different span operations; containment consolidation, overlap
consolidation, and block operators. A containment consolidation operator rejects spans that are
contained within other spans. Overlap consolidation operator merges overlapping spans into one
span. The block operator restricts the number of spans within a specified text region. When the
block operator finds a violation, it utilizes some rules for selecting which annotations to preserve.
The system either keeps the annotation that occurs first, or utilizes a set of tie-breaking rules to
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rank the annotation domination.

Since the model of System-T is mainly built upon the traditional relational model, the authors
utilize the standard optimization techniques by generating alternative query plans to answer a
user query. Moreover, they present three rule-based and text-specific optimization opportunities
for the extraction tasks. The first introduced optimization is Shared Dictionary Matching (SDM).
SDM is used in Dictionary Matching operators. The operator loads the text token once, loads the
dictionaries to match in a hash table, and repeatedly matches the tokens against the hash tables.
The main insight is to avoid redundant computation when the same dictionary is used as part of
multiple extraction patterns [24]. The second optimization technique is Conditional Evaluation.
The idea is to avoid executing a subquery when it is not going to yield any results. For instance,
when joining two sub-trees based on a condition, if the first sub-tree does not yield any output,
the output of the join will be empty. Therefore, there is no need to execute the extraction of
the second sub-tree. The last optimization technique is Restricted Span Extraction. It carefully
tries to estimate the extraction span that might yield results, instead of processing unnecessary
text. Depending on the semantics of the rules of further attributes, the span of extracted attributes
is used, together with the joining conditions, in order to estimate the text span that might yield
attributes that are joinable with pre-extracted attributes.

The query optimizer enumerates a space of possible query plans by considering (a) different
join orders, (b) the standard transformations like pushing down selections, and (c) additional
plans generated by the application of the Conditional Evaluation and Restricted Span Extraction
techniques. The optimization in System-T is done on two phases; rule rewriting, and cost-based
optimization [24]. In order to produce the same results, rule rewriting is done in a way that does
not affect the semantics of the query, but improves its performance by generating more efficient
query execution plan. This is done by implementing a more efficient specialized regular expres-
sion matching engines. The designed matching engines work for restricted classes of regular
expressions. When such a regular expression is to be matched against text, the more efficient
engine is used instead of the standard POSIX one. This improves the performance by an order
of magnitude [24]. Shared dictionary matching is also considered part of the query rewriting
phase. The high selectivity of dictionary look-up tasks is considered a good optimization oppor-
tunity that the optimizer utilizes to improve the extraction performance. Cost-based optimization
is the core operation of query optimization. The optimizer will consider plans where the con-
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ditional evaluation can be utilized to avoid unnecessary extraction. Using these rewritings and
optimizations, the optimizer decides on the most efficient query plan based on cost estimates.

System-T is integrated in many systems that IBM provides, such as Lotus Notes (an email
client). IBM specialists install appropriate System-T modules according to the business needs.
System-T is useful for some applications; however, it suffers from a few limitations. (a) The
proposed approach focuses on specific rule-based extraction algorithms. Grammar-based and
dictionary look-up might not be practical for several applications that require more complicated
text processing tasks. (b) The limited extraction techniques allows extracting only single at-
tributes. In other words, it cannot be used to extract a complete relation. This is due to the fact
that the algorithm matches tokens against one rule. This issue is handled by joining individual
attributes based on their span properties, constructing an instance or a tuple of a relation, which
is not practical if the joining is based on more complex rules or requires further logical analy-
sis. (c) Extensibility is also a problem since these algorithms are integrated inside the operators
used for extraction. Moreover, the developer has to write the extraction rules inside the system,
disallowing ready made extraction systems to be used [24]. (d) The data model and algebra only
represent intra-document operations. The approach is designed to focus on information extrac-
tion tasks that process a single document at a time. Therefore, all attributes are expected to exist
on the same document, missing the potential to extract attributes from different documents.

SQL Queries over Unstructured Text (SQoUT)

Information extraction systems are used to extract relations from text documents. These struc-
tured relations can be queried for complex analysis. Efficiency is a key element in the process of
running queries over text databases because extraction is a time-consuming process. Therefore,
the query optimizer should choose the most efficient available extraction systems, if possible.
Also, it is important to reduce the number of documents that are processed. In general, informa-
tion extraction does not produce perfect or complete results. It may miss some tuples, or output
partially erroneous results. Moreover, ignoring some documents from the extraction process
might make the extraction miss some possible results, producing incomplete output. This trade-
off between the performance and the quality of the results is discussed in [19, 20, 21, 22, 23].
The authors of [19] proposed a method to consider both information extraction systems quality
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of output, and their performance represented in the time taken to perform extraction. This bal-
ance is user-specified, i.e., the user chooses which is preferred; quality over performance, or vice
versa.

SQL queries over unstructured text (SQoUT) is a system that targets answering SQL queries
from unstructured text. The work in [19] splits a table into vertical partitions, such that:

(a) the key attribute is included in all partitions, and

(b) no other attributes can exist in more than one partition

Each partition can be extracted by one or more IE systems. The optimizer determines which
partitions are relevant to the query, finds the best IE system for each partition, and uses these
IE systems to extract the needed partitions, then apply the query on the extracted data. This
approach performs better than extracting the whole database, but it has some limitations due to
the assumptions made. Since each partition must include the key, an IE system must produce
the key plus a number of other attributes. Therefore, it is not possible to extend this system
by plugging in and using a general purpose IE system (e.g., an IE system that extracts phone
numbers or email addresses). This requires knowledge of the relations to be extracted and their
schema when developing the IE systems to use in SQoUT. Also, the join algorithms described
in [21] work only on two input partitions, and cannot be extended to more than two, neither can
they be chained since they encapsulate the extraction process and do not adopt the composability
of relational operators. In terms of determining the best execution plan, the SQoUT project
considers data quality as a deciding factor together with execution cost when optimizing the
query [21, 20, 23].

When having multiple relations and several databases to extract from, some databases might
not be relevant to some relations, and hence, would provide wrong tuples. And since information
extraction is a process that takes long time, this time would be wasted when we extract data from
irrelevant text corpora. The authors in [23] consider the problem of exploring the potential of a
text corpus for extracting data of a certain relation.

The method proposed in [23] determines if a database is relevant to a certain relation. The au-
thors provide a technique that utilizes the tuples extraction confidence score. Since extraction is
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not a well-defined process, the extracted data can be false. Some information extraction systems
take advantage of various mathematical techniques to estimate the confidence of the extracted
data as score. In addition, the authors use the redundancy of extraction to boost the confidence
of the extracted tuples. It is likely that a certain fact would be mentioned many times in the same
text collection. Extracting data several times gives a confirmation about its validity. Both the ex-
traction confidence score and the redundancy information contribute in calculating the aggregate
confidence score of a tuple. This score gives an opportunity to rank the extracted tuples. The
confidence of some extracted tuples can give an idea about the relevance of the text corpus to the
examined relation.

The process counts on extracting a few good tuples from the text corpus and uses their con-
fidence score to determine the goodness of that corpus for extracting the relation. The simplest
way to pick the tuples is by randomly picking a sample of the documents, and extract tuples from
this random set of documents. This solution is not practical since any database would probably
contain many low-scoring tuples in a random sample of documents. The other approach is to get
the top-k ranking tuples. However, this approach is not desirable since in extraction-based sce-
nario, it would require almost complete processing of the database. A related line of work [34]
attempts to rank and return the top results based on the estimated data quality.

XLog

XLog [31] takes a different approach – as it uses a Datalog syntax as opposed to SQL – to
perform structured querying over unstructured data. It uses embedded extraction predicates to
represent information extraction tasks. An extraction predicate can reflect an IE program that
may take input and produces tuples in a certain format. It exploits some limited query optimiza-
tion opportunities, such as pushing down selections, narrowing down text regions from which
the extraction happens, and indexing extraction patterns. However, it has a few shortcomings.
First, the way the user writes the query determines how it is optimized. The system only uses the
extraction predicates entered as part of the query, even if there exist other equivalent predicates
that can run faster. Also, in XLog, the predicates often form a dependency graph that determines
the order of execution. So, the optimizer may have very little chance of changing join order for
example. Pushing down predicates can only be done if the user specifies rules that determine how
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certain predicates can be pushed down the execution plan. In summary, a user writing a query
has to also tell the system how to optimize that query. It was not clear from the work in [31] how
Datalog optimizations can be used with XLog queries. In addition, the system assumes that for
a given query, each row of the result must all come from the same document, i.e., no joining of
tuples from different documents.

Structured Querying of Web Text

There has been other attempts to run queries over large amounts of textual data. In [7], Cafarella
et al. introduce a Datalog-like querying language to run structured queries over documents re-
trieved from the Web. The authors propose a query system called extraction database (ExDB)
that supports SQL-like queries over Web text [7]. The system utilizes a few information extrac-
tion systems to extract all possible structured relations from the available text. The IE systems
can extract arity-two facts such as invented(Edison, phonograph) using TextRunner [4],
and hypernymy terms such as scientist(Einstein) using KnowItAll [13]. Extracted data
is modeled as probabilistic tuples, since extraction systems can be flawed. ExDB runs extrac-
tors over the downloaded Web text, and populates the probabilistic data model with all possible
information. The data model includes Objects (Einstein, Boston, light-bulb), Predicates (binary
tables populated with pairs of objects), and Semantic types which are populated with objects
such as city(Boston) and electronics(dvd-player). ExDB is designed to support synonymity of
objects, predicates, and types. For instance, invented and has-invented are supposed
to be synonyms. Queries are written in a Datalog-like notation. A user can ask a query like
invented(Edison,?i) to get a list of all the inventions of Edison . The system keeps query
lineage, and represents it by a proof tree for each item in the query’s answer. The system also
relates to synonym relations that are build using DIRT [27] and includes their results in the query
answer.

ExDB provides a good framework for querying web text, but it cannot be used for JITE
for the following reasons. First, the extraction is done offline, and all extractors are used to
extract all possible relations. This is similar to some extent to the ETL approach, but with a
basic difference. In the ETL approach, schemas are defined, and the loading step populates the
relations of the schema with the extracted data. In ExDB, however, there is no schema defined.
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The system tries to extract all possible relations (uniary and binary relations in this case). In
addition, the query language used is still limited, and only SPJU queries are supported. More
functionalities need to be implemented.

Extracting Entities from the Web

The work in [34] discusses efficient and effective extraction of concepts from the web. Concepts
are entities associated with some attributes. The authors consider both efficiency and quality of
extraction. The quality of extraction is affected by the quality of information on the web, and the
quality of the information extraction systems used to extract this information. Since extraction is
a lengthy process, it is important to avoid extraction from unimportant web documents. The au-
thors in [34] define a robust scoring function for entity attributes extracted from text documents,
by casting and addressing this problem as a top-k extraction processing task. The top-k extrac-
tion processing algorithm utilizes a scoring function for extracted attribute and returns its top-k
values. The scoring function includes the following components: (a) extraction confidence, (b)
importance of the webpage (based on its popularity given by a major search engine access log),
and (c) the number of sources where extraction originated (how many sources yielded the same
tuple, i.e., extraction redundancy). Ranking results is based on the designed scoring function.
The extraction confidence is the expected quality of an extracted attribute value given by an IE
system. A document importance is entity-specific. A certain document might be important for
extracting a certain entity but not important for extracting another entity. This is estimated based
on the frequency of accessing a certain document when searching for information related to an
entity. This information is retrieved from a search engine log. The authors define an attribute
value score as:

score(e, a, D) = Σ importance(e, d) × confidence(e, a, d)

for all d in D (all documents in the document collection), where e is the entity to be extracted, a
is a value for an e-attribute, and d is the web document.

The algorithm for extracting the top-k values consists of four steps:
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1) Document Selection: get a batch of unprocessed documents. The paper presents four ways
to select which documents to process first, but the main target is to try to get documents that
would yield high-ranked extracted attributes.

2) Perform extraction using IE system X.

3) Calculate top-k; update the rank of the extracted attributes, and re-rank the top-k attributes.

4) If top-k are reached, stop. Otherwise, go to step 1 again.

Other Approaches

Other related efforts studied the problem of posing queries over text documents that are already
structured, e.g. flat files with comma-separated values, or (key, value) pairs. Since the documents
are already structured, no information extraction is required (or minimal extraction, consisting
mainly of string manipulation). For instance, the work in [8] uses a relational form to express
queries on structured text documents, where each document is considered as a tuple containing
a set of fields, and all documents in the collection have the same fields. In this work, queries
have to specify explicitly which document source it references. In addition, the focus of [8] is on
join optimization. The work in [18] also operated on structured files as input. The paper offers a
high-level vision of the problem, and only focuses on minimizing file access.

2.3 Preliminaries

Before describing our proposed system architecture to implement JITE, we will briefly outline
some of the key concepts that are relevant to this work. Section 2.3.1 discusses the problem of
integrating data with different formats from multiple sources into one homogeneous data ware-
house. Section 2.3.2 describes how to answer queries given a set of views, and it also discusses
materialized views, their effect on improving the query answering performance, and some of the
challenging problems that face materialized views.
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2.3.1 Data Integration

Real life applications need to process huge amounts of information. Business produces large
amounts of data in different formats. Business data includes structured relational data, semi-
structured data such as web pages (HTML) or XML documents, or completely unstructured
data (emails, reports, reviews, memos, etc.). As mentioned above, analyzing data can help give
insight into the data and support the decision making process, by providing conclusions and
recommendations. In addition to the different formats of data, not all data resides on the same
habitat. Data is usually stored in different sources. To come up with a holistic overview of
the data, related data needs to be collected from heterogeneous sources that may have different
representations or data formats.

Data integration addresses the problem of blending data from different sources and making
it accessible through one homogeneous interface [26]. The main benefits of data integration are:

(a) It allows a single information access point, which may hide interaction with several data
sources.

(b) Requested information can be evaluated by analyzing data from several sources, giving a
more comprehensive answer.

Consolidating data residing in autonomous, heterogeneous data sources provides users with a
unified view of the data, known as the global schema or mediated schema [37]. The global
schema provides a reconciled virtual view of the underlying data sources, and users do not know
about the schemas or data representation of the local sources [26]. One way to achieve data
integration is the ETL approach mentioned in chapter 1, to transform the data from the local
schemas at each data source to the global schema and store the transformed data in a data ware-
house [17]. Data is extracted from different sources, transformed into a common format, and
loaded in a data warehouse that keeps all possible information coming from all of the available
data sources. The ETL approach works well when the individual data sources are not frequently
updated. Otherwise, the transformed data can get out-of-date quickly, which is not suitable for
applications that require fresh or real-time data. For this kind of applications, the global schema
is mapped directly to data residing at different local sources, instead of physically storing the
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data at a centralized warehouse. The global-to-local mapping provides information about where
to get the requested information, making the data and the schema definition loosely coupled.

However, this mapping is not an easy task, since information systems are not by default
designed to be integrated. Therefore, to provide a unified data model across all sources, an
additional adaptation layer is required on top of these sources [37]. This layer (usually called
a “wrapper”) is responsible for accessing data on each source, and providing a common data
interface that allows creating views on these sources. Queries posed over the mediated schema
are translated accordingly to queries on the local schemas of the original sources. There are two
main approaches to implement the mapping: Local-as-view and Global-as-view.

The Local-as-view (LAV) approach associates each element of the source schemas to a query
over the global schema [26]. The definition of each view reflects the information that its local
data source can provide. Whenever a new source is added, a view has to be created for that
source, and then linked to the global schema [17]. This new source does not alter the definition
of the global schema or its relation to the other sources. Answering queries over the global
schema becomes a matter of finding the set of views that can provide the required results. The
query is reformulated in terms of a set of queries over local sources [26]. Finding which views
cover the requested fields, and selecting which views to use is a process that requires complex
view matching techniques similar to the ones used with materialized views. Materialized views
and view matching will be discussed in Section 2.3.2.

The other way of representing the mapping between the global schema and data sources is the
Global-as-view (GAV) approach. GAV defines the global schema as a set of views over the data
sources, so each element in the global schema is associated to a query over the local schema [26].
Queries over the global schema would map directly to sources, just like translating a query on
a view to a query on base tables. As easy as it is to answer queries, adding a new data source
requires that the views of the global schema to be re-written in order to consider the new source.

From the query processing point of view, comparison between the LAV and the GAV favors
the GAV approach, since mapping is exact, and queries over the global schema can be directly
translated to a set of queries over the local schemas. This translation can be based on simple
unfolding strategy. In the LAV, however, it is not immediate to infer how to use the sources
to answer queries expressed over global schemas [26]. Sources in LAV contribute partially to
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the query answer. On the other hand, modeling the data integration system in the LAV is more
flexible than the GAV. In our work, we focus on LAV. We discuss the view matching techniques
required to answer queries in LAV data integration systems in the next section.

2.3.2 View-based Query Processing and View Matching

In a system where views are defined, view-based query processing studies computing an answer
to a query given a set of views. Views can help improve the query processing performance if
there exist materialized views that can provide an answer.

Materialized views are database views whose results are precomputed and physically stored
on disk. If a user issues a query over a materialized view, its results can be directly fetched
instead of having to be recomputed from the base tables, which helps speed up query execution.
Furthermore, if the user poses a query over base tables, with similar predicates to what is used
in a materialized view, the optimizer can choose to use the materialized view instead of the base
table, thus potentially avoiding to redo complex computations.

Choosing which materialized views to use to answer a query is known as view matching.
View matching is performed on the internal query representation before plan enumeration. In
such models, the query is usually represented as a tree with nodes (often referred to as query
blocks) representing base tables, selections, joins, and aggregations, and edges representing data
flow. Each block specifies what attributes are produced, and what predicates (if any) are used to
filter the outputs. This representation is different from execution plans, since it does not show
the join order, join methods, or physical operators to be used.

Example 1. Consider the database tables: Owner (oid, name, country) and Car (cid, make,
model, year, owner id). Also consider the query:
SELECT model FROM Owner, Car

WHERE oid = owner id

AND country = ‘Canada’

AND make = ‘Toyota’

AND year = 2000
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Figure 2.4: Query Tree Representation

Figure 2.4 shows the tree representation of this query. Block b1 represents the selection on the
Owner table, b2 represents the selection on the Car table, and b3 represents the join.

Since views are based on queries, they are also represented in the same way. In view match-
ing, the optimizer tries to match a query block with any of the existing views. If a successful
match is found, then another query tree is created, using the view instead of the base table(s),
and the optimizer is allowed to enumerate plans for both trees, and choose among them based on
the estimated cost. Materialized view matching is based on coverage or subsumption; a materi-
alized view is considered an exact match to a certain query block if the view produces the same
tuples and attributes that are produced by that block [36]. In case of non-exact matches, where
the view produces more tuples and/or attributes than the query block, a compensation block is
added to output only the desired tuples and attributes. This compensation is usually in the form
of applying additional predicates, projections, and/or aggregate functions to get only the desired
results.

Example 2. Given the tables and query in Example 1, assume that there exists a materialized
view v defined as:
v = SELECT owner id, make, model FROM Car WHERE year=2000 .
Figure 2.5(a) depicts the tree representation of v. This view can be used in place of the car table
for the purpose of the given query, since it covers the tuples and attributes needed by the query.
However, a compensation predicate (block b2′ in Figure 2.5(b)) needs to be added.
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Figure 2.5: View matching and compensation

Adding the compensation operations can potentially be more expensive than using the base
table, which is why the optimizer may opt to use the base table even though a materialized view
is available. The work in [36] describes the cases and conditions required for materialized view
matching.
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Chapter 3

Problem Definition and Proposed
Framework

We start this chapter by formally defining the approach of just-in-time information extraction
(JITE), then we introduce the framework proposed to implement this approach. We describe the
data model and its different components, and how they are manipulated to reflect the different
operations of JITE.

3.1 Problem Definition

JITE is an approach to extract only query-relevant information online under some performance
and quality constraints. We try to avoid assumptions about IE systems and the relations to extract.
Since not all documents are relevant to extraction, we want to avoid processing documents that
are not likely to yield query-relevant results. The main insight is to be able to perform online
extraction to reflect the latest state of data source (data changes), and avoid over-extraction for
the relations (and attributes) that are not requested by the query. We explain the data model that
we developed to implement JITE. In the following chapters, we will describe how the system
utilizes different components of the data model to run queries over unstructured text.
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3.2 Data Model

As explained in chapter 1, in the ETL approach, execution and querying are decoupled in time
and space, which leads to extracting all possible attributes and relations in advance by invoking
all of the available IE systems. In addition to the explosion in the number of attributes and
relations to extract, the data extracted soon becomes outdated by the time it is queried. To address
these problems, we propose a framework in which information extraction is query-driven. Our
proposed framework supports SQL queries on both relational data and data extracted from text
documents. Data is extracted from text documents during query processing, based on a schema
that is defined on demand.

3.2.1 Attribute Domains and Lineage

Our framework assumes the existence of a set of IE systems E . The IE systems in E can be
general purpose systems such as UIMA [15] annotators or GATE [10] applications. Each IE
system in E extracts data and returns it as objects with one or more attributes. All objects returned
by a given IE system E have the same set of attributes, attr(E). Hence, the output of each IE
system can be viewed as a set of tuples sharing the same attributes. It is possible to have multiple
IE systems in E that have overlapping attributes.

Definition 1. Given the set E of all available IE systems, the domain universe D is the set of all
possible domains extracted by all IE systems in E , i.e. for E = {E1, ..., En},D = attr(E1) ∪
... ∪ attr(En)

Example 3. Table 3.1 shows a group of 9 available IE systems, and the domains that can be
extracted by each. Based on these IE systems, D = {company, city, name, date, position, color,
time, address, country, email}

The set D represents the space of extractable information that is accessible to queries. Dif-
ferent applications can use different subsets of D. The domain names in D are unique, i.e. there
can be no two domains with the same name that extract different types of data. For example, all
the company domains in Table 3.1 refer to the same type of data, and hence company exists only
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Table 3.1: Example IE systems
IE system Domain(s)

E1 company
E2 company, city
E3 name
E4 date
E5 name, company, position
E6 color
E7 time
E8 address, city, country
E9 email

once in D. However, the same domain can be extracted by multiple IE systems. The domain
universe D can be expanded by adding new IE systems that return different domains. These
domains are independent of any particular queries or applications.

If an IE system E returns the domains d1, d2, ..., dm, each tuple returned by E has the follow-
ing:

• The values v1, v2, ..., vm, where vi belongs to the domain di; 1 ≤ i ≤ m, and

• The lineage of each vi. The lineage of an extracted attribute value is additional metadata
that indicates where that value was extracted from.

The simplest and most common form of lineage information can be 〈docURL, span〉, where
docURL is the URL of the document from which a particular attribute value is extracted, and
span is the position of that value inside the document, usually defined as (begin, end). We
assume that all IE systems expose this lineage information in addition to the actual extracted
data. In our work, we found that many real-life IE systems do in fact return this information as
a minimum [10, 15, 30]. This lineage information is often useful in linking data produced by
different IE systems.
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3.2.2 T-tables as Relational Wrappers

Our framework supports answering queries that reference both relational data and extracted data.
The relational data is represented as traditional relational tables. A relational table consists of (a)
an intension, which is the table definition (the set of attributes in the table, and the type of each
attribute), and (b) an extension, the actual data in that table, stored as tuples. To represent the
extracted data, we define a special type of table, called T-tables.

Definition 2. A T-table consists of only an intension, i.e. the table signature describing the
attributes in that table and their domains. A T-table has no extension, since its data is to be
extracted from text documents. Note that a T-table is not a view definition on other base tables.

T-tables provide a relational wrapper to the extracted data in order to be able to pose queries
on that data. From the query point of view, a T-table is just like a traditional relational table. The
difference is the source of the data in each. In traditional tables, the data has to be loaded before
any queries can be posed. This data is stored in a structured form (tuples), and read from disk
during query execution. T-tables only have to be defined prior to issuing any queries, but no data
is loaded into them. During query execution, data is directly extracted from text documents.

Each T-table can only include data that is available for extraction, i.e. only include attributes
that refer to the domains in D. The T-table definition is in the form T (a1 : d1, ..., an : dn) where
each ai is an attribute name, and di is the domain to which ai belongs.

Example 4. Consider the domain universe from Example 3, and suppose we need to pose queries
related to companies and employees. For this particular application, we can define the following
T-tables:

• Comp (cname: company, addr: address, cty: city, cntry: country)

• Emp (ename: name, birthdate: date, job: position, ecomp: company, hiredate: date)

Both the cname and ecomp attributes belong to the company domain in D. Similarly, the
birthdate and hiredate attributes belong to the date domain. Note that the T-table Emp cannot
include a salary attribute for example, since we have no money domain that can be extracted.
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As mentioned in chapter 1, our approach to the information extraction problem is inspired by
data integration techniques, specifically the LAV approach. In this sense, our T-tables correspond
to the “global schema” or “mediated schema” tables (cf. Section 2.3.1). Defining the T-tables
allows the user to pose queries such as:
SELECT job, min(hiredate)

FROM Comp, Emp

WHERE cname = ecomp

AND cntry = ’Italy’

GROUP BY job

3.2.3 Extraction Views and Joiners

Even though the definition of the T-table specifies the attribute domains, this definition does not
specify where the data is obtained from (which document collection) or how to obtain it (which
IE systems to use). This is accomplished using extraction views and joiners.

Definition 3. An extraction view v is defined as v(T,A,C,E), where:

• T is a T-table on which v is defined

• A is the set of attributes in T that v covers

• C is the document collection that is mapped to v

• E is the IE system that will be used to extract the tuples of v from the documents in C

Extraction views are a way of packaging IE systems into logical entities. The extraction view
definition tells the system where and how to obtain the data. It establishes the mapping between
the T-table attributes, the document collection, and the IE system. Different extraction views
can cover different groups of attributes (possibly overlapping) in the same T-table, each using a
different IE system and/or a different document collection. An extraction view v(T,A,C,E) is
valid only if the following conditions are met:
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• All the attributes in A must belong to the T-table T .

• The domains of the attributes inA (as specified in the definition of T ) must be among those
produced by the IE system E.

In addition to the above conditions, the IE system E must be applicable to the document col-
lection C. This is always true for general purpose IE systems that do not make any assumptions
about the document format. However, some extractors may be able to operate only on a specific
document format (e.g., binary files, semi-structured and XML documents, or even video files).
The user is responsible for assigning the extractors to their appropriate document collections.

Extraction views are similar to traditional database views in that they do not contain materi-
alized data, but have a way of obtaining this data at run time. In traditional database views, the
view definition is itself a query. At runtime when a particular view needs to be evaluated, the
system executes that view’s query and produces the returned data. In extraction views, when a
view needs to be evaluated, its corresponding IE system is invoked on the specified document
collection, and the extracted information is returned in relational format. Using views as a way
to package IE systems allows for arbitrarily complex queries that reference extracted data and
relational data at the same time. It also exploits all the database query optimization techniques
that are already supported by DBMSs, such as pushing down predicates, and using different join
methods and join orders.

Example 5. Suppose that we have two document collections: C1 contains company information,
and C2 contains employee information. Given the T-tables defined in Example 4, and given the
IE systems in Table 3.1, we can define the following extraction views (among others):

• v1(Comp, {cname}, C1, E1)

• v2(Emp, {ecomp}, C2, E1)

• v3(Emp, {ename}, C2, E3)

• v4(Emp, {birthdate}, C2, E4)

• v5(Emp{ename, ecomp, job}, C2, E5)

30



• v6(Emp, {hiredate}, C2, E4)

• v7(Comp, {addr, cty, cntry}, C1, E8)

The definition of v1 means that the attribute cname in T-table Comp can be obtained by
invoking IE system E1 on document collection C1. Note that some views overlap, e.g. v3 and v5
have the ename attribute in common.

One might argue that extraction views are not new, since many modern database systems
already have the infrastructure to plug in external data sources, e.g. using table-valued func-
tions. However, in systems that support such functionality, queries have to call these functions
explicitly, which is equivalent to explicitly specifying the extraction view in the query, leaving no
room for the optimizer to choose among multiple alternative views to answer the query. Further-
more, the currently supported table-valued functions often provide no statistics to the optimizer
regarding their execution cost or output cardinality or quality, which makes it extremely hard to
optimize queries that reference them. However, this infrastructure is not completely unrelated
to our work. One of our goals is to leverage modern DBMS support of external data sources
(e.g. table-valued functions) to enable support for extraction views, by using and extending the
properties of such structures to come up with a cost model as discussed in Section 4.4.

We often need to construct the tuples of a T-table from the tuples returned by multiple ex-
traction views. In Example 5, v1 and v7 together cover all the attributes of the T-table Comp.
However, with only the extraction views, it is not possible to determine which v1 tuple belongs
to which v7 tuple. Thus a join condition is needed to determine which values actually belong
to the same Comp entity. The concept of joining or linking the outputs of IE systems based on
positional information or other metadata already exists in some of today’s publicly available IE
frameworks. For example, UIMA [15] allows the definition of aggregate analysis engines, which
operate on the outputs of extraction modules, potentially using extraction metadata to join them.
Although in many cases, it is necessary to understand the semantics of the text to determine
which values belong together, this can often be determined by analyzing the position of attribute
values within the documents. This is especially true for documents that are semi-structured, e.g.
Web pages displaying search results or containing HTML tables. This is where the lineage in-
formation produced by the IE systems becomes useful. We exploit this information by defining
joiners.
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Figure 3.1: (a) Original query (b) Equivalent query (c) Execution plan

v7

v1
σcty=‘Toronto’

Πcname

<P>

SELECT cname
FROM Comp
WHERE cty=‘Toronto’

SELECT cname
FROM v1, v7
WHERE cty=‘Toronto’
AND <P>

(b)

(a) (c)

<P>: cname.docURL = addr.docURL and 
addr.begin – cname.end < 30

Definition 4. A joiner j is defined as j(T,A,C, P ), where:

• T is a T-table on which j is defined

• A is the set of attributes in T that j covers

• C is the document collection on which j applies

• P is a predicate (or set of predicates) on the values and/or lineage of the attributes in A.

The joiner definition is specific for a particular document collection, since the document
format in one collection can be different from another.

Example 6. Continuing our running example, we can define the joiner j1(Comp, {cname, addr}, C1, P )

where:
P = [cname.docURL = addr.docURL AND addr.begin -- cname.end < 30 ]

This joiner definition means that a tuple that contains a cname value (e.g. returned from v1),
and a tuple that contains an addr value (e.g. returned from v7) belong to the same logical entity if
the addr value is located less than 30 characters after the cname value within the same document.
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Using this joiner, the query in Figure 3.1(a) is equivalent to the query given in Figure 3.1(b) on
v1 and v7 using the join condition P , which would potentially result in the execution plan in
Figure 3.1(c). Section 4.2 explains in more detail how such an execution plan can be built.

Note that in Example 5, some extraction views (e.g. v4 and v6) use the same IE system
to extract two different attributes. On their own, these two views return the exact same date
values. However, with the other views and with the proper joiners, these two views can contribute
different information to queries.

3.2.4 Document Retrieval

Since extraction is a lengthy process, it is more efficient to skip processing documents that are
not likely to produce results. It is possible to use the relations and predicates in the query to
determine whether or not a document is relevant. The work in [19] introduces four strategies to
select a set of relevant documents.

In our work, we support two different document retrieval strategies: scan and filter-scan. The
scan strategy sequentially feeds all documents to the IE system. In the filter-scan strategy, query
predicates are used to determine the relevance of a document to the query. Query predicates
are used to derive keywords and search for them in the document. If a document contains one
or more of the keywords, it is passed for extraction. For example, in Figure 3.1(c), the condi-
tion [cty = ’Toronto’ ] can limit the documents processed by v7 to only those containing
’Toronto’ . An alternative approach can be used for document collections that offer a keyword
search interface. Since the documents in these collections are already indexed, a keyword search
can be issued using the constants obtained from the filtering predicates, and only the returned
documents are processed by the IE system. Note, however, that the filter-scan strategy can only
take advantage of equality predicates. Predicates such as [Age > 18 ] or [ Country <> ’USA’

] cannot be used to filter documents.

Generally, document retrieval strategies can affect both the cost and the quality of extraction
because the skipped documents may contain correct and/or incorrect matching tuples. Retrieval
strategies can be considered as physical access paths to the extraction views. More document
retrieval strategies can be integrated into the system to select a set of query-relevant documents.
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3.2.5 System Timeline

Objects and components described previously in this chapter are defined and used at different
points in time.

IE System Registration Time

This is the phase where IE systems are added to the framework. Registering an IE system tells
our framework how to invoke the IE system and what kind of information it can extract. This
updates the domain universeD (Definition 1). Registering IE systems is application-independent,
and can be done at any time, causing the domain universe to expand as new kinds of extractable
information become available.

Application Design Time

Given a particular application or query workload, this is where T-tables, extraction views, and
joiners are defined, using the available IE systems and attribute domains. The application or
workload cannot be started until this phase is completed.

Query Time

Queries are posed over the defined T-tables. During query optimization, the optimizer finds the
best execution plan using a combination of the defined extraction views and joiners (more details
in Section 4.2). During query execution, the IE systems associated with the selected views are
invoked, extracting information from the corresponding document collections and returning them
as relational tuples.
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Chapter 4

Query Optimization

In this chapter, we discuss the current work done to perform optimization for on-demand infor-
mation extraction tasks. In the JITE approach, we utilize the different framework components
described in Chapter 3. We first start by defining our optimization objective in Section 4.1. Sec-
tion 4.2 describes the process of enumerating different query plans, and the algorithm used to
select the best query plan. We describe further optimization opportunities in Section 4.3, and
describe how to estimate the parameters and collect statistics about cost and quality of extraction
in Section 4.4.

4.1 Optimizing IE tasks

IE algorithms vary in complexity, ranging from simple pattern matching to complex text analysis
(e.g., natural language processing). This variation causes IE systems to have different processing
costs. In queries that have extraction views, the cost of processing documents using their IE
systems is the main contributor to the overall execution cost. We define the cost of an extraction
view v, Cost(v), as the time taken to perform the extraction on its associated document collec-
tion. In Section 4.4, we show how to estimate this cost. We define the efficiency, Eff , as the
inverse of the Cost.
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Eff(v) =
1

Cost(v)
(4.1)

The variation in IE algorithms also leads to different kinds of extraction errors. Examples
of these errors include producing erroneous tuples, encountering different forms of the same
entity and not being able to recognize that fact, or missing some valid tuples. In order to correct
these errors, the extracted data may need to be cleaned as part of the query execution. Data
cleaning can include reference reconciliation techniques (also known as record linkage, among
other names [14, 28]). These extraction errors contribute to the quality of extracted data. For
example, one IE system might generate many false positives, while another IE system might be
more conservative, at the expense of possibly missing correct tuples (false negatives). We use the
same quality metric proposed in [19], which combines both precision and recall of the extracted
data1. The quality of a view v is:

Q(v) =
√
Pc(v)×Rc(v) (4.2)

where Pc(v) and Rc(v) are the precision and recall of the output relation produced by v, respec-
tively. The statistical estimation of Pc and Rc is discussed in Section 4.4.1. The definition of Q
assumes equal weight (importance) for the precision and recall, but it can be modified to favor
either of them.

There is a natural trade-off between the output quality and the query execution time. Simple
extraction techniques are fast, but may erroneously output invalid entities or relations. More
advanced methods may take longer to execute, but produce better results. Although some prior
research efforts [30, 31] focused only on optimizing execution cost, others [20, 21, 23] took both
factors into account while optimizing a query. In our work, we follow the latter path.

The balance between efficiency and quality is user-specific. One user may be interested
in a “quick and dirty” answer, while another user may be interested in a high quality answer
regardless of how long it would take. We adopt the user-specified parameter approach proposed
in [19] to reflect the user preference between cost and quality. A parameter, denoted by w,

1We acknowledge that other measures, such as the geometric mean (G-Score), exist to combine both precision
and recall in IR systems.
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represents the balance between efficiency and quality when comparing different query plans.
Using this parameter, we can combine both efficiency and quality in one goodness metric, as
proposed in [19]. The goodness of an extraction view v is defined as:

G(v, w) = Eff(v)w × Q(v)1−w 0 ≤ w ≤ 1 (4.3)

Our objective is to maximize the goodness, given the user parameter w. During optimization,
the query optimizer estimates the goodness score for alternative query plans, and chooses the one
with the highest goodness. For a query plan P that contains multiple views, the goodness of P
is:

G(P,w) = Eff(P )w × Q(P )1−w 0 ≤ w ≤ 1 (4.4)

Estimating the efficiency of P depends on the plan cost, which is estimated by the DBMS.
We describe the quality estimation of plans in Section 4.4.1.

4.2 Plan Enumeration and Selection

The problem of choosing which views and joiners to use for query evaluation is not trivial, given
that we allow overlapping views, and that some views may not be joinable with each other due
to the lack of appropriate joiners. The efficiency and quality constraints imposed by the user
also make it harder to find the best combination of views and joiners to generate the required
output. Traditional view matching, as that used for materialized views, is not adequate, because
of its reliance on the concept of subsumption, as described in Section 2.3.2. For a T-table to be
replaced by a view, the view must produce at least all the attributes and tuples required from
that T-table. However, it is often the case that there is no single view that covers all the required
attributes, but rather multiple extraction views that have to be joined. Traditional view matching
only considers joining views if all of them include the primary key of the base table they are
defined on, and does not consider joining views based on user-defined join conditions.

In addition, failed matching is not a problem in the case of materialized views, since a failed
match simply means that the query block has to be evaluated using the base tables. However,
in our case, a failed match means that the query can not be evaluated at all, since the extraction
views are the source of the data.
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Example 7. Given the T-tables defined in Example 4, consider the following query:
SELECT ename FROM Comp, Emp

WHERE cname = ecomp

AND job = ‘Manager’

AND cty = ‘Toronto’

Given the extraction views in Example 5 and the joiner in Example 6, we can see that v5 cov-
ers the attributes and tuples from the Emp T-table. Extraction view matching needs to recognize
that v1 and v7 can be used together (using the joiner j1) to produce the required attributes from
the Comp T-table.

In our system, we select the plan with the highest goodness, which is an aggregation of the
plan execution cost and the plan quality (Section 4.1). We view the process of generating an
optimal plan as a multi-objective optimization, where the objectives are the quality and the cost
of the plan. For two possible plans P1 and P2 of a given query, P1 dominates P2 if both the
quality and the efficiency of P1 are greater than the quality and the efficiency of P2, respectively.
The goodness metric in Equation 4.3 is monotone w.r.t. the quality and the efficiency of plans.
Therefore, it is possible to prune plans that are dominated w.r.t both objectives. The same prun-
ing criterion is used while generating sub-plans. The reason is that the efficiency of a plan is
monotone w.r.t. the efficiencies of the sub-plans, and similarly, the quality of a plan is mono-
tone w.r.t. the qualities of the sub-plans (see Section 4.4.1). It follows that replacing a sub-plan
P ′1 with another sub-plan P ′2 that dominates P ′1 results in increasing both the efficiency and the
quality, and hence the goodness, of the parent plan.

Algorithm 1 describes our plan enumeration and selection module. The getCandidatePlans
function takes the following as input: the set A of all required attributes (referenced in the SE-
LECT and WHERE clauses of the query), the set β of all the query predicates, and w the user-
defined weight preference between efficiency and quality. The function returns a candidate set of
execution plans that are not dominated. We obtain the optimal plan by computing the goodness
of each candidate plan, and returning the plan with the maximum goodness. This algorithm has
been developed by Amr El-Helw [11].

Algorithm 1 finds the candidate execution plans for a given query by recursively finding
candidate plans of sub-expressions of the query that are not dominated, and enumerating all
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v1σcty=‘Toronto’

Πename

P

cname = ecomp

v5

σjob=‘Manager’

Figure 4.1: Execution plan for query in Example 7

possible physical implementation of the current operation (e.g., selection, projection or join).
The algorithm makes use of an in-memory structure (MEMO), which saves the candidate plans
found for every set of attributes and predicates that has been previously encountered in order to
avoid repeated work. Each enumerated plan is evaluated, using the function MemoAdd, in order
to determine whether or not it is dominated by, or dominates, other plans. Dominated plans are
pruned. After enumerating all plans, the set of non-dominated plans are returned.

Splitting the original query into smaller expressions is performed based on the required at-
tributes (lines 12-14). For each subset of the given attributes and the corresponding predicates the
algorithm finds the candidate plans to obtain these attributes. These plans could either involve
using one extraction view (if there exists a view that produces all desired attributes), or multiple
joined views. In the latter case, these views must be joinable using a join predicate in the query
itself or a joiner.

Given two sets of candidate sub-plans for two sub-expressions, finding the candidate plans
that join these two sub-expressions is achieved using the getCandidateJoinPlans function (line
18). This function enumerates different join methods and orders, and returns the set of non-
dominated plans. This join plan either uses join predicates from the query, or pre-defined joiners.

For the query in Example 7, the algorithm is called withA = {ename, ecomp, job, cname, cty}
and β containing the three predicates. After trying different combinations, it would find that
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(ename, ecomp, job) can be obtained from v5, cname can be obtained from v1, and cty can be
obtained from v7. The views v1 and v5 can be joined using the join predicate in the query, while
v1 and v7 can be joined using the joiner j1. A possible plan to execute the query is shown in
Figure 4.1.

4.3 Join Predicate Push-down

We describe a further optimization opportunity to reduce the number of documents to process
in a query with two or more extraction views. Similar to the basic principle of semi-join algo-
rithm in distributed joins [35], the join predicates are pushed down the extraction view node to
guide the extraction. This reduces the extraction cost, as opposed to data transmission cost in
distributed databases. The pushed down predicates introduce additional filtering, regardless of
which document retrieval strategy is used.

The idea behind pushing down the join predicate is to avoid processing a particular document
if it is possible to infer that the outputs from that document will not contribute to the result of the
query. For instance, in Figure 3.1(c), the join condition specifies that tuples can be joined only if
they come from the same document. If the IE system corresponding to v7 is invoked first on each
document, and the filtering predicate is applied, the processing of v1 can be limited to documents
whose docURL values are in the filtered outputs of v7, instead of the whole document collection.
If the query includes filtering predicates on both v7 and v1, then it would also be possible to
evaluate v1 first and use its outputs to guide the evaluation of v7. Choosing which alternative to
use depends on the estimated selectivity of each filtering predicate.

In our implementation, we use a heuristic in which the optimizer forcefully pushes the join
predicates down to the extraction views only when the joined attributes are expected to come
from the same document. This optimization leads to processing fewer documents and has no
effect on output quality, since the discarded documents do not contribute to the results.
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4.3.1 Extraction Output Caching

Caching extraction results to avoid reprocessing documents improves the performance and re-
duces the amount of extraction performed during query processing. For example, without caching,
a nested loop join between two extraction views would repeatedly process all documents of the
inner child extraction view, for each tuple in the outer result set. We store the outputs of running
extraction views over text documents, and retrieve the cached results when the underlying corpus
did not experience significant changes. Currently, we keep the cache for each query, and retrieve
it whenever a cached extraction view is requested on a pre-processed file. Following queries re-
fresh the cache and re-extract from their files. It is possible to apply a more sophisticated caching
by storing the intermediate and final query results with corresponding query predicates, and use
them in following queries (similar to materialized views described in Section 2.3.2). We leave
advanced caching techniques for future work.

4.4 Cost Estimation

Cost estimation relies on statistics maintained by the system. Table 4.1 gives the statistics needed
to estimate the cost and quality of information extraction. We explain in Section 4.4.2 how these
statistics can be obtained.

Note that for some views, the statistics Timedoc and |Rowsdoc| may be available, while for
others, TimeKB and |RowsKB| may be available. Choosing which to collect depends on the
nature of the associated IE system, and the kind of information it extracts from text documents.
For example, consider a document collection that represents news articles. An IE system that
extracts mentions of places definitely depends on the document size, and would benefit from
having the TimeKB and |RowsKB| information available. In contrast, an IE system that extracts
the author of each article does not depend on how short or long the article is, and would spend
roughly the same amount of time on all documents. Hence it makes more sense to maintain
Timedoc and |Rowsdoc| for it.

Given the statistics in Table 4.1, a simple cost estimate of using a view v, with its associated
IE system, is as follows:

41



Table 4.1: Database statistics

Term Meaning
|Docs(C, x)| Average number of documents in document collec-

tion C returned by document retrieval strategy x

DocSize(C) Average size of documents in C (measured in KB)

|Rowsdoc(v)| Average no. of tuples extracted from a single

document by the IE system associated with v

T imedoc(v) Average time to retrieve and process a document

by the IE system associated with v

|RowsKB(v)| Average no. of tuples extracted by the IE system

associated with v, per KB of text

TimeKB(v) Average processing time by the IE system

associated with v per KB of text

Pc(v, x) Approximate precision of running v over its

document collection using retrieval strategy x

Rc(v, x) Approximate recall of running v over its

document collection using retrieval strategy x

Cost(v, x) =

{
|Docs(Cv, x)| ∗ Timedoc(v)

|Docs(Cv, x)| ∗DocSize(Cv) ∗ TimeKB(v)
(4.5)

where Cv is the document collection mapped to v. The choice of which cost formula to use
depends on the availability of either Timedoc(v) or TimeKB(v). Similarly, the output cardinality
of v can be estimated as:

|Rows(v)| =

{
|Docs(Cv, x)| ∗ |Rowsdoc(v)|
|Docs(Cv, x)| ∗DocSize(Cv) ∗ |RowsKB(v)|

(4.6)

The design and collection of previous statistics metrics are implemented by Amr El-Helw,
and utilized in the view matching algorithm, Algorithm 1.
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4.4.1 Quality Estimation and Propagation

Unlike execution cost, current DBMSs do not have a well defined way to propagate quality along
the query plan. We adopt the propagation model described in [19], where extraction errors are
assumed to be independent of any predicate selectivity. The quality of a view v reflects the
quality of its corresponding IE system E. This quality is estimated using Equation 4.2 with the
precision and recall values defined in Table 4.1. Consider a given intermediate node P in the
query plan. Let P1, ..., Pk be the child nodes of P . It can be easily shown that the precision and
recall at node P can be estimated as follows:

Pc(P ) =
k∏
i=1

Pc(Pi) (4.7)

Rc(P ) =
k∏
i=1

Rc(Pi) (4.8)

However, empirical studies in [19] showed that this assumption underestimates the actual preci-
sion. Therefore, the authors introduced a boosting mechanism to calculate the precision of joined
views as:

P̄ c(P ) =
n∏
i=1

Pc(vi)

1 + Pc(vi)
n ≥ 2 (4.9)

4.4.2 Statistics Collection

In addition to the traditional database statistics, the information in Table 4.1 is required to op-
timize queries on text documents. The statistics also need to be kept up-to-date to avoid large
estimation errors that result from outdated statistics. Statistics collection in databases is usually
an offline process that is performed separately from query processing. Statistics are not updated
whenever there is an update to the data for obvious cost considerations. Traditional systems try to
address this problem by periodically updating the stored statistics. It is also possible to perform
some on-the-fly updates for the database statistics during query processing, only for the statistics
required by a given query [12].

Statistics collection tools often use random sampling to reduce the time spent to collect these
statistics. We use sampling to compute the statistics in Table 4.1. For a document collection
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C, the value |Docs(C)| is usually available and easily accessible. For scan retrieval strategy,
|Docs(C, scan)| is the actual |Docs(C)|. However, |Docs(C, filter− scan)|must be estimated
during query time depending on selectivity of the query predicates. For the remaining statistics, a
random sample of size s can be taken from the complete document collection and used for statis-
tics collection. Assuming the documents in this sample are d1, d2, ..., ds, the average document
size DocSize(C) can be computed as follows:

DocSize(C) =
1

s

s∑
i=1

size(di) (4.10)

For a view v, its associated IE system is invoked on the document sample. Let Times(v) be
the time it takes to process all the documents in the sample, and let Rowss(v) be the set of rows
extracted from these documents. The statistics can be computed as follows:

|Rowsdoc(v)| = |Rowss(v)|/s (4.11)

Timedoc(v) = Times(v)/s (4.12)

|RowsKB(v)| = |Rowss(v)|/
s∑
i=1

size(di) (4.13)

TimeKB(v) = Times(v)/
s∑
i=1

size(di) (4.14)

As explained earlier in Section 4.4.1, the precision and recall are more challenging to collect.
To estimate the precision and recall of an extraction view v, the sample obtained from the corre-
sponding document collection C needs to be annotated (possibly by an expert). Annotating the
sample documents tells us the tuples that should be ideally extracted from these documents. Let
Ideals(v) refer to this set of rows. The precision and recall can be computed as follows:

Pc(v, x) =
|Rowss(v)

⋂
Ideals(v)|

|Rowss(v)|
(4.15)

Rc(v, x) =
|Rowss(v)

⋂
Ideals(v)|

|Ideals(v)|
(4.16)

As in traditional DBMSs, in the absence of statistics on tables, the system assigns default
values for quality.
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Algorithm 1 getCandidatePlans(A, β, w)
1: P ←MemoLookup(A, β)

2: if P 6= φ then
3: return P
4: end if
5: V ← getAllExtractionV iews()

6: for each v ∈ V do
7: if (A ⊆ attributes(v)) then
8: P ← plan(σβ(v))

9: MemoAdd(A, β, P )

10: end if
11: end for
12: for each X ⊂ A do
13: Y ← A−X
14: (βX , βY , β./)← split(β,X, Y )

15: PX ← getCandidateP lans(X, βX , w)

16: PY ← getCandidateP lans(Y, βY , w)

17: if (PX 6= φ AND PY 6= φ) then
18: P ← getCandidateJoinP lans(PX ,PY , β./, w)

19: for each P ∈ P do
20: MemoAdd(A, β, P )

21: end for
22: end if
23: end for
24: Candidates←MemoLookup(A, β)

25: return Candidates
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MemoAdd(A, β, P )

26: P ←MemoLookup(A, β)

27: if P is not dominated by any plan in P then
28: add P to the MEMO structure
29: end if
30: for each P ′ ∈ P do
31: if P dominates P ′ then
32: remove P ′ from MEMO
33: end if
34: end for
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Chapter 5

Implementation and Technical Details

This Chapter describes the details of system implementation. It explains how the components of
the framework mentioned in Section 3.2 are implemented. We integrated our framework inside
an existing RDBMS. In our prototype, we used Apache Derby [1] version 10.6.1 to support
JITE. Derby is an open source relational database management system implemented entirely in
Java and available under the Apache License, Version 2.0. The following sections describe the
modifications and additions done in Derby to support JITE.

5.1 Extending an RDBMS to Support Information Extraction

As explained in Chapter 1, JITE can be implemented as light-weight modifications to existing
RDBMS. We utilized existing components in Derby to avoid fundamental changes to the inter-
nals of the DBMS.

5.1.1 Supporting Information Extraction Systems

Different information extraction systems have different implementations and are not usually de-
signed for reusability. Section 2.1 described two frameworks that standardize the development
of IE systems. In our system, we support extractors developed using Apache UIMA [15]. We
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implemented a wrapper to use UIMA analysis engines to perform information extraction. The
extractors are developed in Java, but their code can use libraries developed in other languages.
For instance, we developed an analysis engine that runs GATE [10] applications, and two other
analysis engines to wrap generic named entity recognition (NER) libraries: LingPipe1 and Balie2.

Supporting Apache UIMA has a few advantages. First, UIMA is implemented in Java, which
allows close integration between the UIMA framework and Derby. Also, it supports analysis
engines to be plugged in the system and used directly without the need for any configurations.
This allows the users to use any UIMA extractors as black boxes without prior knowledge about
their configurations or about how they work. And since Apache UIMA is a standardized frame-
work, developing applications for it should be an easy process to learn. In our future work,
we plan to implement a direct integration between Derby and GATE, without the need for the
GATE-to-UIMA wrapper.

5.1.2 Implementing the Data Model

In this section, we will explain how the JITE data model is represented in Derby, and how it is
affected by different operations, such as adding a new extractor, or running statistics.

The components of the data model can be considered as metadata for each database instance.
Information about the T-tables, extraction views, attributes and their corresponding mapping and
lineage, and different performance and quality statistics are stored in the system catalog tables
of each database instance. We will describe the development of a database instance through an
example. All of the operations are performed through custom SQL commands that we added to
Derby.

Data Sources

Data sources represent repositories that contain unstructured data. A source can include a set
of text documents, or it can be a website, or theoretically any set of unstructured documents.

1http://www.alias-i.com/lingpipe/
2http://balie.sourceforge.net/
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Currently, only corpora containing text documents are supported, and we leave implementing
other data source types for future work. Implementing an interface for a new source type would
require implementing some functionalities such as documents retrieval, keyword search, and
documents access (retrieve data of a certain document).

Adding a data source is done by a custom SQL statement. A sample source that contains
documents about company information is:

CREATE SOURCE data source FROM ’/Company Data/’;

where the address is an absolute path, in the case of file system data source. An HTTP data
source would replace the path string with the URL of the website.

Information Extraction Systems (Extraction Views)

Users start by registering IE systems to the system. This registration makes the system aware of
such extractors. Currently, we only support Apache UIMA analysis engines. An analysis engine
has an XML descriptor file that includes all of the extractor’s properties: input, output, classes,
etc. An extraction view reflects a UIMA extractor. Derby supports user functions that returns ta-
bles (table-valued functions). An implementation of table functions is its Virtual Table Interface
(VTI). A VTI can be created using an SQL command, and the definition should include the lan-
guage of its implementation, the parameters, class name, and function to run. The function to run
should return an object of the type ResultSet, that would be used as a source for structured data.
We utilize the VTI object in Derby to implement the extraction views, with some modifications.
We added a custom VTI creation statement that meets our needs as extraction views. It wraps
the original VTI creation statement, adding some default values such as UIMA wrapper class
and parameters. A sample SQL command to create a VTI that reflects an IE system extracting
employees and companies they work in is as follows:

CREATE VTI E Comp

RETURNS TABLE

(

emp name VARCHAR(50),

comp name VARCHAR(100)
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)

FROM DESC ’/Extractors/EmployeeCompanyDescriptor.xml’

(

’COM.EComp.EmployeeName’,

’COM.EComp.CompanyName’

)

SOURCE data source;

The previous SQL statement creates a few entries in the database instance catalog tables.
First, it creates a VTI in the SYS.SYSVTIS table that holds information about the available
VTIs. Information about this VTI is its name (E Comp ), signature, and the corresponding UIMA
analysis engine descriptor file (DESC ). It assigns this VTI to run on a specific (data source

). The reason why VTIs (or extraction views) are linked to a certain data source is that an
extractor – usually – works on a specific type of data. For instance, an extractor may work on
XML documents, but cannot perform extraction on plain text documents. The TABLE attributes
returned by the VTI represent the (selected) possible output of the extractor, and the class types
are the UIMA types that correspond to these attributes. Information about the VTI columns are
stored in the SYS.VTICOLUMNS catalog table. It is the responsibility of the user to obtain and
assign information about the output of different extractors, and what data they operate on, as
we consider IE systems as black boxes. Adding a new extraction view (VTI) expands domain
universe by adding new attributes and a way to extract them, or provides a new way of extracting
existing attributes.

T-Tables

From a data integration point of view, extraction view (VTIs) represent the local data sources,
and the T-tables correspond to elements of the global schema. The attributes of a T-table are
selected from the available attributes domain. Supporting a new table type in Derby requires
implementing some classes, and modifying the system to realize the new table type. Performing
most operations in Derby is done using SQL statements. The SQL statements are compiled
into query trees that get executed to reflect the corresponding command. Creating a table is no
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different. We added a new table creatio node. We modified the SQL grammar to support creating
a T-table. A sample SQL statement to add a new T-table is:

CREATE TEXTTABLE EMPLOYEE

(

EmployeeName VARCHAR(50),

CompanyName VARCHAR(100)

);

The new T-table creation node is added to the query tree. The execution of a T-table creating
node can be considered as a regular table, but T-tables do not support data insertion, deletion, or
update. Also, currently, we do not support alteration of the table definition. The catalog tables are
changed to apply the new changes; adding the new T-table to the list of tables (with an appropriate
table type), and the columns with their properties to the system columns (in SYS.SYSCOLUMNS

table), referencing the T-table columns. The mapping (reference) represents a view coverage over
T-tables. The mapping between the T-tables and extraction views is currently done manually. The
command to map attributes of an extraction view to a T-table is as follows:

ALTER VTI E Comp REFERENCES Employee(EmployeeName, CompanyName);

The previous SQL statement updates the entries emp name and comp name in SYS.VTICOLUMNS
table to reference the EmployeeName and CompanyName column from the SYS.SYSCOLUMNS
table.

Joiners

Joiners are defined over attributes of a T-table. This allows any views sharing these attributes to
use the same joiner. They are defined using the SQL statement:

CREATE JOINER e emp comp ON Employee (EmployeeName, CompanyName)

AS ’#EmployeeName# docid = #CompanyName# docid

AND #CompanyName# begin - # EmployeeName# begin < 20’;

This previous joiner can include any user-defined join condition in the AS clause. When the
query on a T-table is rewritten in terms of VTIs and the joiner is used, the joining condition of
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Figure 5.1: System Architecture

the joiner is added to the SQL statement to join the VTIs.

5.1.3 System Architecture

Apache Derby includes the common modules found is most DBMS’s nowadays. Figure 5.1
shows the system architecture of Derby, along with the components that are added to support
JITE.
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User Interface Manager

The user interface manager (UI Man) is responsible for all communication with the user: DB
connection, updating catalog, querying, and displaying the results. The default UI tool in Derby
is called ij ; a command-line interface to run SQL commands and statements on a database and
display queries results. We developed a more user-friendly graphical user interface (GUI) for
Derby, mainly to support different operations performed during the JITE process. The GUI com-
municates with the UI Manager to pass commands and results. The UI Manager transforms the
user actions to appropriate commands (most probably SQL queries) sent to the query processing
engine of the DBMS.

Query Processing Engine

The query processing engine is the core of Derby. It includes components to parse, optimize, and
execute SQL statements. The parser takes plain text SQL statement, and parses it using a defined
grammar.

The parser is generated using JavaCC from the grammar file (SQLGRAMMAR.JJ ). The pars-
ing process generates a parsed query tree that represents the SQL statement in hand. Every node
in the tree represents a database operation. Assume we have the following T-table:

Employee(EmployeeName, CompanyName)

with two extraction views defined on it: E emp(emp name) and E comp(comp name), and the
joiner e emp comp defined above. Consider the following SQL statement:

Select EmployeeName, CompanyName

FROM Employee;

This is a single operation SQL statement to select two columns from a T-table. The parsed query
tree is then passed to the query optimizer.

The query optimization phase consists of three steps: preprocessing, optimization, and
modifying access paths. Briefly, the preprocessing performs rewritings in predicates, and it flat-
tens subqueries. In addition, we added our own view matching algorithm here to transform
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queries on the T-tables to equivalent queries on the extraction views. We implemented a ver-
sion of Algorithm 1 as a preprocessing phase, and heuristically, we prune subtrees with lower
goodness estimates to limit the expansion of plans space. Continuing the previous example, the
parsed query plan initially references the T-table Employee . The view matching algorithm in
the preprocessing phase finds a plan to use the two extraction views, E emp and E comp , and
join them using e emp comp . The SQL query is rewritten to:

Select emp name, comp name

FROM E emp, E comp

WHERE emp name docid = comp name docid

AND comp name begin - emp name begin < 20;

Other relational objects in the query tree are optimized normally. The Derby optimizer then
continues to the optimization step, which enumerates all possible join permutations and algo-
rithms, and selects the best join order. Modifying access paths pushes predicates down after the
best access path is determined for each component. Optimization generates an execution query
tree, with the physical operator nodes for required operations.

The execution engine takes an optimizer query tree that includes extraction views (VTIs)
nodes instead of the T-tables nodes. The execution engine runs on the root of the query tree
node. Each node calls its children according to its type, or performs an execution if it is a leaf
node. A nested-loop node, for instance, would open the left node, get a tuple from the left, open
the right node, get all tuples from the right, compare the left tuple with each of the right tuples
based on its join criteria, and return the tuples that satisfy the join conditions. Then, it gets
another tuple from the left, and so on.

As for extraction views (VTIs) nodes, our implementation target streams the extraction re-
sults to the user. We use the openCore function to set the parameters of execution: use the
recommended document retrieval strategy to initialize the list of extraction files and initialize
the extractor. We developed a wrapper to UIMA framework to initialize analysis engines and
perform extraction. When the execution starts, we take a file from the files list and perform ex-
traction on it (again, using the UIMA wrapper). This should return a ResultSet object that
includes the extraction results. Rows of the ResultSet object are returned one by one, until
they are finished. The next call triggers extraction from the next file in the list, if it exists, or
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returns a NULL , marking the end of extraction for this node. The results are streamed, tuple by
tuple, to the UI Manager, which displays them appropriately on the GUI.
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Chapter 6

Experiments, Results and Evaluation

We performed a few experiments to study just-in-time extraction (JITE) benefits and perfor-
mance. We divide the experiments into two main categories. The first category contains experi-
ments that compares our system – applying the JITE approach – to other approaches and systems.
The second category tests different optimizations, benefits and performance issues.

6.1 Experimental Settings

We start by describing the different settings that we used to perform experiments.

Computing Environment

All our experiments were conducted on a SunFire X4100 server (see Table 6.1). We implemented
our prototype in Java inside the Apache Derby DBMS [1], as explained in Chapter 5.

Available Information Extraction Systems

We extended Derby by adding support to the UIMA [15] framework, which allows us to plug
in IE systems (known as analysis engines in UIMA terminology). For these experiments, we
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Table 6.1: Computing environment for the experiments
CPU Two dual-core AMD Opteron 280 CPUs
RAM 8 GB
Disk Two 72 GB disks, in RAID-0 configuration
Operating System OpenSuSE Linux 10.1
Runtime Environment Java 1.6.0 18 (Sun)

Table 6.2: IE systems

IE system Domains(s)
EN name
EC organization
EJ position
EM email
ENC name, organization
ENJ name, position
ECJ organization, position
ENCJ name, organization, position
ENCM name, organization, email
EL location
ECL company, location

built IE systems using the GATE [10] framework, UIMA analysis engines, and the named entity
recognizers LingPipe1 and Balie2, all of which can be made to produce output that can be rec-
ognized by UIMA through appropriate wrappers. Using these frameworks and components, we
built the IE systems shown in Table 6.2.

1http://www.alias-i.com/lingpipe/
2http://balie.sourceforge.net/
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Table 6.3: Extraction views
View T-Table Attribute(s) IE system
vE Employee Ename EN

vC1 Employee Ecomp EC

vJ Employee Job EJ

vM Employee Email EM

vECJ Employee Ename,Ecomp, Job ENCJ

vECM Employee Ename,Ecomp,Email ENCM

vC2 Company Cname EC

vL Company Loc EL

vCL Company Cname, Loc ECL

Data Set and Relations

We use a subset of the North American News Text Corpus3, with articles from The New York
Times. We used a data set of 2,782 documents representing one month of news articles. For our
experiments, we defined two T-tables:
Company(Cname, Loc) and
Employee(Ename, Ecomp, Job, Email) .
Tables 6.3 and 6.4 show some of the defined extraction views and joiners respectively (all of
them reference the same document collection).

Queries

For workload-related experiments, we use 50 SQL queries over Company and Employee defined
manually to cover an interesting mix of selections and projections, including selections with
many and with few or no database matches.

3http://www.ldc.upenn.edu
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Table 6.4: Joiners

Joiner Attribute(s) Predicates
j1 Ename,Ecomp Ename.docURL=Ecomp.docURL and Ecomp.begin-Ename.begin <20
j2 Ename, Job Ename.docURL=Job.docURL and Job.begin-Ename.begin <20
j3 Cname, Loc Cname.docURL=Loc.docURL and Loc.begin-Cname.begin <20
j4 Ecomp,Email Ecomp.docURL=Email.docURL and Email.begin-Ecomp.begin <20

6.2 Comparing to Other Approaches

We start by comparing our system to the standard ETL approach, and then compare it to a similar
system, SQoUT.

6.2.1 Comparing to the ETL Approach

We compare our Just-in-Time Extraction (JITE) approach to the baseline Extract-Transform-
Load (ETL) approach. In the ETL approach, there is an offline phase where all the data is
extracted using all available extractors (enough to produce all relations) and stored in a data
warehouse, and then the queries are executed on that warehouse. To cope with changing data,
the warehouse has to be refreshed by removing old data and re-invoking the extraction phase.
In order to compare the two approaches, we add the refresh cost to the cost of the first query
executed after the refresh.

Figure 6.1(a) shows the running time of each query for both approaches. The cost using JITE
is almost constant in our workload. The cost of ETL starts high because of the initial loading cost,
then drops significantly since subsequent queries run on the extracted data. The ETL cost peaks
at refresh points. The refresh frequency determines the overall ETL cost. This refresh frequency
also affects the recency of the extracted data when there are new documents being added all the
time, which is the case for news articles or email archives. Since our document corpus is based
on the New York Times, we use the rate by which new articles are added to the New York Times

59



0%

2%

4%

6%

8%

10%

12%

14%

0 5 10 15 20 25 30 35 40 45 50

M
is

se
d

 D
o

cu
m

e
n

ts

Timeline (Queries)

ETL - no refresh ETL - refresh JITE

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50

R
u

n
n

in
g

 T
im

e
 (

 x
1

0
0

0
 s

e
c)

Timeline (Queries)

ETL JITE

(a)

(b)

Figure 6.1: ETL vs. JITE
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website4, which was one new document every 3-4 minutes on average. Figure 6.1(b) shows the
number of documents that are missed for every query. Using the ETL approach, a query misses
all the documents that have been added since the beginning of the most recent refresh, while
using JITE, a query only misses the documents added after that query starts executing.

In the extreme case, if the warehouse in the ETL approach is never refreshed after the initial
load, the number of missed documents keeps increasing. With periodical refreshes, the number of
missed documents increases with each query until the next refresh, causing the number of missed
documents for the first query after that to drop. The refresh frequency used in our experiment
caused the ETL approach to miss up to 6% of the documents. This can be lowered using a
higher refresh frequency, at the expense of increasing the overall execution cost (time taken to
finish extraction). Even if we decide to refresh the warehouse before each query, JITE would
still miss fewer documents than ETL, since the ETL approach would miss all the documents that
are added during refresh and query execution. The trade-off between data recency and execution
cost is ultimately application-specific.

Note that our experiments have only two T-tables. In settings where there are more T-tables
in the database, a single refresh needs to update all these T-tables, which would take more time,
causing more documents to be missed, and increasing the refresh cost in Figure 6.1(a).

6.2.2 Comparing to SQoUT

We compare our approach to SQoUT [19]. In SQoUT, structured queries are posed on tables
that are populated during query execution by IE systems. The two systems work in different
ways and may not be comparable strictly from a performance point of view. However, SQoUT
has the limitations described in Section 2.2, and can be seen as a special case of our approach.
To realize SQoUT in our system, we partition the attributes of a T-table as SQoUT allows (see
Section 2.2), and define extraction views such that each view returns exactly the attributes in any
given partition (including the primary key). Multiple views can be defined on the same partition,
using different IE systems. For this experiment, we assume all views on the Employee T-table
are available. SQoUT can only support views {vE , vECJ} since {vC1, vM , vJ} do not extract the
primary key, and {vECM , vEC} share Ecomp with vECJ .

4http://www.nytimes.com
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Table 6.5: Possible query plans under SQoUT and our system
Query SQoUT Our System
SELECT Ename, Email FROM Employee N/A P1=vECJ ./j4 vM
FROM Employee P2=(vE ./j1 vC1) ./j4 vM

P3=vECM
P4=vEC ./j4 vM

SELECT Ename, Job FROM Employee P1=vECJ P1=vECJ
FROM Employee P2=vE ./j2 vJ

P3=vECJ ./j2 vJ
P4=vEC ./j2 vECJ
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Figure 6.3: Query execution time in different settings

Table 6.5 shows two queries, and some of their possible execution plans under SQoUT and
our system. SQoUT cannot find a plan to answer the first query since there are no available views
to extract Job . For the second query, SQoUT has only one possible plan, while our system
supports a wider plan space that may contain a better plan with higher goodness. Figure 6.2
depicts the average goodness of the four plans of query 2, with varying w. SQoUT selects Plan
1, and JITE is capable of selecting better plans since it considers a wider plan space.

6.3 System Analysis

In this section, we will analyze different components of the system. We study performance under
different settings.

6.3.1 Optimization Benefit

We study the effect of the introduced optimization techniques, namely the document retrieval
strategies, and join predicate push-down, that reduce the number of processed documents. Choos-
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ing from the two supported document retrieval strategies, and enabling or disabling the join pred-
icate push-down gives a set of four settings. In this experiment we consider only the execution
cost measured by the time taken to process the query. We assume the available views are {vE ,
vC1}. We run a manually designed query where all settings are applicable:

SELECT E.Ename, E.Ecomp

FROM Employee E

WHERE E.Ecomp=’NBC’ AND E.Ename = ’John’

The average query execution time under the four settings are shown in Figure 6.3. In setting
(A), both views process all documents, and no optimization occurs. When enabling join predicate
push-down in (B), the number of documents processed by vC1 decreases. In (C), filter-scan limits
the documents processed by each view to those containing its corresponding keyword form the
WHERE condition. This improves the performance, especially when enabling the join predicate
push-down in (D), as vE will check only documents in the ouput of vC1.
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6.3.2 Number of Extracted Attributes

Figure 6.4 shows a box plot (a graph depicting the smallest observation, lower quartile, median,
upper quartile and largest observation) of the execution time, grouped by the number of columns
referenced by each query. It can be seen that queries that reference fewer attributes execute faster,
since only the IE systems that extract those attributes are invoked. For queries that reference
the same number of columns, some finish faster than others due to the presence of selection
predicates that filter out unneeded documents.
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Chapter 7

Conclusion and Future Work

We summarize the work we have done and introduce possible extensions and future work that
can extend our current approach.

7.1 Conclusion

The standard method of querying unstructured data is the Extract-Transform-Load (ETL) ap-
proach, but it suffers from decoupling in time and decoupling in space, and some applications
cannot tolerate these drawbacks. In these applications, analyzing real-time data can be critical,
and the schema might not be defined prior to extraction. In addition, the lineage information may
be of interest to the application and the end users. Therefore, we introduced Just-in-time Extrac-
tion (JITE); an approach to define an extraction schema on-the-fly and perform extraction process
online as part of query processing. We developed a system to allow users to utilize JITE to define
interesting applications schemas during session time and to link them to the available informa-
tion extraction systems. Users can pose SQL queries over the schema that reflects the structured
information hidden in the textual data. The system extracts only query-related information from
the underlying text corpus using state of the art IE systems. Since extraction happens during
query processing, it is necessary to avoid extracting irrelevant information that is not going to
contribute to the final query results. The query is analyzed, and the queried relations and query
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predicates are employed to limit the extraction of relevant relations from relevant documents.
The architecture of the system is inspired by the data integration Local-As-View approach. We
visualize the user-defined schema as the global schema, and the available IE systems as views,
called extraction views, over the global schema. We employ view matching algorithms to select
a set of extraction views to answer the query at hand. The query optimizer matches and selects
extraction views based on a defined cost model that considers the estimated extraction time and
the quality of the extracted results. Different IE algorithms may take longer time to perform more
analytic tasks and produce higher quality results. We allow users to specify their preference for
extraction time or results quality. We developed a few query optimization techniques to minimize
the number of documents processed in the extraction phase, based on the lineage of joining data
and keywords from the SQL query. We implemented a GUI to communicate with the database,
run SQL queries, show query answers, and visualize the origin of the extracted data.

7.2 Future Work

In our work, we focused on the basic functionality of extracting structured information from
documents, and running SQL queries over the extracted data. There are many potential exten-
sions that can add more functionalities and provide more optimization opportunities to JITE.
This section suggests some possible ideas to extend this system.

7.2.1 Utilizing Properties of Specific Information Extraction Algorithms

In the current implementation, IE systems are treated as black boxes, ignoring the details of
internal extraction algorithms. We used Apache UIMA to wrap IE systems, as it provides a
unified view for extractors, and produces basic metadata for the extracted information. Users can
plug a new UIMA extractor into the system, and the system considers it in the extraction process.
Using a standardized framework for IE systems supports reusability of pre-developed IE systems
that can apply any text analytics algorithms.

Having knowledge about how an information extraction system works, and about the details
of its algorithm and its parameters, can help the system have more control over the extraction
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process and can introduce more opportunities to enhance the performance, optimization, or qual-
ity of results. For instance, the system may be able to instruct the IE algorithm to restrict the
output annotations to only those requested by the query, even if the IE system may be capable
of producing more. Another possibility is to control a parameterized extraction algorithm to be
more flexible (or more strict) when matching text, or comparing to a certain threshold. A simple
parameter can be the document span to extract from. Limiting or widening the span window can
have an effect on the labeling of entities, which can affect the extraction process.

7.2.2 Data Cleaning on Extracted Data

As mentioned before, IE algorithms are not perfect, and they usually produce some erroneous
tuples. In the presence of integrity constraints over the extraction schema, an extracted relation
may violate some constraints, and thus, require further cleaning operations to resolve the viola-
tions. The violations can be in the form of duplicate records, violations of functional dependency
constraints, or other constraints. Data cleaning removes the violations that exist in a relation to
make it satisfy a set of integrity constraints. There are many algorithms designed to clean a
database instance and come up with some possible worlds or possible repairs [6, 5].

In JITE, data cleaning can be done as a post-extraction phase. The user can define some
schema constraints during schema definition. The system can check if there exist any constraints
defined on the queried relations. The extracted data is then checked for violations, and some
cleaning algorithms can be used to return clean results. The work in [19] performs record linkage
techniques as a post-extraction process, to get rid of noisy tuples. Cleaning extracted data can
help improve the quality of query results; however, it is an orthogonal problem and can be tackled
separately.

7.2.3 Probabilistic Information Extraction

In the relational model, data is defined to be certain. A tuple either exists, or does not exist. If it
exists, it will be considered a trusted piece of information and will be considered in any relevant
query. When performing extraction, however, some information cannot be certain to exist or
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match a certain entity. For instance, Conditional Random Fields (CRF) build probabilistic mod-
els to segment and label sequence data [25]. The CRF can be trained to perform names entity
recognition tasks to extract person names, locations, and organizations. The output of a CRF
extractor is not certain, but probabilistic, labeling. For each token, the CRF framework assigns
a set of possible tags with some probabilities. In general, the most likely label (the one with the
highest probability) is considered to be the output of the extraction. However, the probabilistic
tagging or extraction can have additional multiple benefits.

Probabilistic Query Answering

Querying uncertain data cannot be treated like regular relational data. Data can have probabil-
ities or confidence on the attribute level or the tuple level (or both). When querying, we can
output only tuples that are absolutely certain (with probability 100%), or those tuples that have
a non-zero probability, or the set of tuples with a minimum probability threshold [29]. Usually,
probabilistic queries run on probabilistic relations with no knowledge about how the probabili-
ties were assigned to the tuples. In JITE, the system can utilize the extraction probabilities when
answering a user-query.

Probabilistic Data Cleaning

Standard data cleaning techniques operate on certain tuples, but produce a set of probabilistic
possible worlds (or possible repairs). New techniques of data cleaning can employ the fact that
there may be more than one possible attribute value or joined record. For example, when the
highest probability attributes values violate some integrity constraint, the system may choose to
consider other values with lower probabilities.

7.2.4 Multi-Query Optimization: Caching

When processing a workload of queries, it is important to perform as much optimization as
possible. Results computed for one query can be used later as part of an answer for a following
query. This represents caching of pre-computed results for use in subsequent queries, providing
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fast access to data, and avoiding re-extracting relations. Such an approach can be thought to be
close to the concept of materialized views [16]. Query processing should consider the available
cached views when finding the best plan to answer the query. In materialized views, the result of
a view is cached to be re-used. In materialized views, when the base relations change, the cache
stalls. Maintaining the cache of extraction views will face a few challenges. JITE originally
targets applications that rely on fast changing data. Updating the cached results and incremental
cache maintenance techniques can be relevant topics to consider.
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