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Abstract

Quantum information processors have the ability to drastically change our world. By

manipulating bits of information ruled by the laws of quantum mechanics, computational

devices can perform some computations that are classically intractable. Most quantum

algorithms rely on pure qubits as inputs and require entanglement throughout the compu-

tation. In this thesis, we explore a model of computation that uses mixed qubits without en-

tanglement known as DQC1 (deterministic quantum computation with one quantum bit),

using the physical system of liquid-state Nuclear Magnetic Resonance (NMR). Throughout

our research, we experimentally implement an algorithm that completely encapsulates the

DQC1 model, and take a close look at the quantum nature of DQC1-states as given by the

quantum discord and geometric quantum discord, which are measures of non-classicality

that capture correlations weaker than those measured by entanglement. We experimentally

detect and quantify these correlations in an NMR DQC1 quantum information processor.
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Chapter 1

Introduction

Devices for processing quantum information are currently in transition from figments of sci-

ence fiction to reality in laboratories across the globe. Quantum information and computa-

tion promise to drastically change the course of technology and society. Researchers have al-

ready achieved important milestones – from teleporting a quantum state [BPM+97, NKL98]

to perfectly securing election ballots using quantum cryptography [Gre07] – and the biggest

breakthroughs of the quantum revolution are yet to come. However, there is a long road

ahead before we have quantum gadgets in our homes and offices. Since the first quantum

computers were experimentally realized around the turn of the 21st century, many different

technologies for manipulating quantum bits, or qubits, have been developed in the hopes

of becoming the industry standard.

A qubit is the fundamental unit of information in a quantum information processor

and is physically realized in a system whose observables are the Pauli matrices. One

of the earliest implementations of quantum algorithms was performed in Nuclear Mag-

netic Resonance (NMR), where the qubits are encoded in the energy eigenstates of spin-

1/2 nuclei. NMR quantum computers have been used to implement Deutsch’s prob-

lem [JM98, CVZ+98, LBF98], Shor’s algorithm for factoring numbers [VSB+01], simu-

lating quantum systems [STH+99, TSS+99, NSO+05, CYC06], and magic state distilla-

tion [SZRL11], to name a few. Furthermore, NMR allows for incredible control over small

quantum systems [RLL09].

One of the drawbacks to NMR quantum computing is the highly mixed states of the

qubits when computations are performed at room temperature. Most quantum algorithms
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require the initial state preparation be composed of pure states, which are not readily

available in the NMR architecture. Another drawback is that there is no entanglement in

these systems – a hurdle that, until recently, had been thought to preclude NMR as truly

quantum computing.

Instead of trying to overcome these drawbacks, the DQC1 model of computation takes

an entirely different stance. DQC1 stands for Deterministic Quantum Computation with

One Quantum Bit, and is the broad topic of this thesis. The model was introduced in 1998

by E. Knill and R. Laflamme [KL98], and uses a highly mixed initial state to perform a

computation that has no known efficient classical algorithm. One of the most interesting

features of the DQC1 model is that it contains very little or no bipartite entanglement. To

be precise, the DQC1 model contains zero entanglement across the most natural bipartite

splitting, and has the potential for a small amount of entanglement across any other bipar-

tite split. The obvious question is what, if not entanglement, is the cause of the apparent

advantage in the DQC1 model? In addition, this model calls into question the notion that

entanglement is a distinguishing marker of quantum systems.

While entanglement has certainly been the most popular form of quantum correlations

discussed, it is not the only one. Recently, the measure of quantum correlations called

quantum discord [HV01, OZ01] has been at the forefront of research in quantum information

theory. This measure was discovered in the early 2000s and is based in the possibility of a

local measurement disturbing a distributed quantum state. Mixed states that do not have

entanglement, like the ones present in NMR, still have the potential to contain non-classical

correlations as measured by the quantum discord. In addition to quantum discord, there

have been several other measures of quantum correlations created, as the community tries

to determine the defining characteristics of a quantum system.

These questions have driven the research presented in this thesis. We take an experi-

mental look at the DQC1 model of computation and the quantum correlations present in it.

The vehicle for our experiments is liquid-state NMR which, due to the prevalence of mixed

states, is an ideal system for realizing DQC1. Throughout this thesis we present an imple-

mentation of a physically relevant, complete problem for the DQC1 model, as well as test

for and measure the quantum correlations present in DQC1 and its NMR implementation.

The paragraphs below outline in more detail the composition of this thesis.

Chapter 2 presents the background material required: Section 2.1 explains mixed-

state quantum computation, which includes an introduction to both NMR and the DQC1

2



model of computation, and Section 2.2 provides an introduction to quantum correlations.

Specifically, we discuss entanglement and quantum discord, going through several examples

to increase our familiarity with these sometimes counterintuitive concepts.

Chapter 3 presents the results of an experiment to approximate the Jones polynomial.

This problem has significance in statistical physics, quantum field theory, and applied

mathematics [Kau91]; and is of great interest because there is currently no classical al-

gorithm to approximate it efficiently. In 2007, approximating the Jones polynomial at

a particular point was shown to completely encapsulate the power of the DQC1 model.

We modify the original algorithm and experimentally differentiate six different knots us-

ing liquid-state NMR. This experiment is a practical application of mixed-state quantum

computation that pushes the boundaries of our current control in NMR.

In Chapter 4, we look for a signature of non-classical correlations, as measured by the

quantum discord, in an NMR implementation of a DQC1 algorithm. The amount of quan-

tum discord present in our experimental setup is numerically calculated to be very small

(on the order of 10−11), and we set out to determine if this is detectable with our current

level of control. To do this we use an experimentally friendly discord witness [DVB10].

After detecting quantum correlations in a DQC1 experiment (from Chapter 4), we look

to quantify the amount of correlations present. Previously, the only way to do this was

to use full knowledge of the quantum state and perform a numerical optimization. This

procedure does not scale well as we increase the size of the system, so we set out to find an

analytical expression for the amount of quantum correlations in a DQC1-state. We were

able to find an expression for the correlations that can be experimentally measured using

a DQC1 algorithm. Details and experimental data are found in Chapter 5.

Each research question investigated in this thesis falls under the umbrella of the DQC1

model of mixed-state quantum computation, and was motivated by the desire to better

understand what makes a quantum computer quantum. We do not claim to have found

the answer, but the work presented here plays a crucial role in this quest, as we investigate

a very intriguing model of computation and the quantumness it contains.
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Chapter 2

Background: Mixed-state quantum

computation and quantum

correlations

In this chapter we will introduce the background material necessary for full appreciation

of the material presented in subsequent chapters. It will also serve to establish the ter-

minology, both mathematical and linguistic, that will persist throughout this work. The

background material is separated into two sections: Section 2.1, mixed states for quantum

information processing and Section 2.2, quantum correlations. Both will give the basic

understanding that is required and direct to more resources should your curiosity get the

better of you.

2.1 Mixed states for quantum information processing

Mixed-state quantum computation is a common thread that binds this thesis work together.

It simply refers to quantum computation with the use of mixed states, which is in contrast

to quantum computation with the use of pure initial states. The first step to understanding

mixed state computation is having a solid grasp of mixed states: how they are created,

evolve, and behave under measurement. This information is given in Section 2.1.1 (a good

reference for the material is [NC00]). In Section 2.1.2 we discuss the physical system of
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Figure 2.1: The Bloch sphere is a graphical depiction of single qubit states. All pure

qubits lie on the surface of the sphere with orthogonal states located at opposite sides. For

instance, the two orthogonal states |0〉 and |1〉 are located at the top and bottom of the

sphere, respectively. Mixed states live in the volume of the sphere, anywhere beneath the

surface. The maximally mixed state ρ = I/2 is located at the centre.

Nuclear Magnetic Resonance (NMR) that naturally provides us with mixed states for use

in our experiments. Finally, in Section 2.1.3 we will discuss a model of computation that

utilizes mixed states, known as DQC1, or deterministic quantum computation with one

quantum bit, that can solve some problems better than current classical methods.

2.1.1 Mixed states

Most of the protocols in quantum information are described in the context of state vectors

|ψ〉, called pure states. A general, single-qubit pure state can be written as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉, (2.1)

where θ and φ have a very nice geometrical representation in what is called the Bloch sphere,

pictured in Figure 2.1. Pure states lie on the surface of the Bloch sphere, and orthogonal

vectors, somewhat counterintuitively, lie antiparallel to each other. The computational

basis states are depicted along the z-axis, with |0〉 at the top and |1〉 at the bottom.

5



However, the set of single qubit states is not limited to the surface of the Bloch sphere,

but rather to its volume. The states that lie inside the surface are called mixed states.

Both pure and mixed states can be mathematically described by the density matrix ρ.

Density matrices are operators on the Hilbert space (often referred to as density operators)

and are the most general way of describing physical quantum systems. Density matrices

are positive operators (〈i|ρ|i〉 is real and positive semi-definite for any |i〉) and have a

trace of one (Tr(ρ) = 1). The density operator of a pure state is written as the projection

operator

ρpure = |ψ〉〈ψ|.
Occasionally, our only description of the physical system is that of a mixture where we

have state |ψ1〉 with probability p1 and |ψ2〉 with probability p2, and is where the density

operator representation becomes necessary. The state of the system in this situation is

represented by

ρmixture = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|.
More generally, the density operator of such a mixture of pure states can be written as

ρmixed =
∑

i

pi|ψi〉〈ψi|, (2.2)

where
∑

i pi = 1. This convex combination of projectors is known as an incoherent mixture,

while a linear coherent superposition of the form |ψ〉 =
∑

i

√
pi|ψi〉 is a pure state.

Any single qubit state can be written in terms of the operators {I,X, Y, Z} as

ρmixed =
1

2
(I + ~a · ~σ) =

1

2
(I + axX + ayY + azZ), (2.3)

where I is the identity operator and ~σ = {X, Y, Z} is the vector of Pauli operators

{σx, σy, σz}. The vector ~a is called the Bloch vector and completely specifies the loca-

tion of the state ρ on the Bloch sphere – it falls on the surface of the sphere only when

|~a| = 1, which is the condition for pure states. Since a density operator can refer to both

pure and mixed states it is not always apparent which type of state you have. A quick

test for whether a density matrix represents a pure or mixed state is to take the trace of

the operator squared; if the state is pure then Tr(ρ2) = 1 whereas, if the state is mixed,

then Tr(ρ2) < 1. The maximally mixed state of N qubits, ρ = I/d where d = 2n is the

dimension of the n qubits, has Tr(ρ2) = 1/d. The maximally mixed state of a single qubit

lies at the very centre of the Bloch sphere.

6



Time evolution of a closed system is described by a unitary matrix U , and the evolved

state is written as

ρf = UρiU
†, (2.4)

where U † is the conjugate transpose of U . If a measurement described by the operators

{Mk} is performed, then the probability of outcome k is defined as

p(k) = Tr(M †
kMkρ), (2.5)

and the state after measurement is

ρk =
MkρM

†
k

p(k)
=

MkρM
†
k

tr(M †
kMkρ)

. (2.6)

For a general measurement M , the only restriction on the measurement operators is the

completeness relation ∑

i

M †
iMi = I. (2.7)

For projective measurements {Πi}, in addition to the completeness relation (rewritten as∑
i Πi = I), the following must hold true:

ΠiΠj = δijΠi. (2.8)

When we introduced mixed states at the beginning of this section, we described them

as a mixture of pure states, but this is not always practical. For instance, imagine that

you have a two qubit state ρAB, but only want to characterize part of it. Perhaps you gave

one of the qubits to your friend and want to describe the state of your remaining qubit.

Mathematically, in order to retrieve the state of one subsystem, we use the partial trace

operation. The density operator of system A is called the reduced density operator and is

defined as

ρA = TrB(ρAB), (2.9)

where the partial trace over system B is defined as

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|Tr(|b1〉〈b2|), (2.10)

and |a1〉, |a2〉 are any vectors on subsystem A, while |b1〉, |b2〉 are any vectors on subsystem

B.

7



As a concrete example, let us take one of the pure Bell states |ψBell〉 = 1/
√

2(|00〉+|11〉),
which is described by the density operator

ρBell = |ψBell〉〈ψBell|
=

1

2
(|00〉+ |11〉)(〈00|+ 〈11|)

=
1

2




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


 . (2.11)

The reduced density matrix of the first qubit can be found by tracing out qubit B as

follows:

ρA = TrB(|ψBell〉〈ψBell|) =
∑

i

B〈i|ψBell〉〈ψBell|i〉B, (2.12)

where {|i〉B} is any basis on system B, and reduces to

ρA = B〈0|ψBell〉〈ψBell|0〉B + B〈1|ψBell〉〈ψBell|1〉B
=

1

2
|0〉〈0|+ 1

2
|1〉〈1|

=
1

2

(
1 0

0 1

)
.

This means that a measurement on system A has a 50% probability of resulting in 0 or 1.

Examining the reduced density matrix of the second qubit,

ρB = TrA(ρBell) =
1

2

(
1 0

0 1

)
, (2.13)

you find the exact same result. The state ρBell is maximally entangled, and one of the

properties of maximally entangled states is that their reduced density operators are equal

to the completely mixed state. Entanglement is a form of quantum correlations, that will

be defined and discussed in Section 2.2.1.

Mixed states are very common in nature; a single qubit is very likely coupled to its

environment and once the environment is traced out, the state of the qubit is almost always

a mixed state. Despite the prevalence of mixed states in the real world, most research for

quantum information processing deals with pure qubits. This thesis works within the

8



realm of mixed state computation, using extremely mixed states (states very close to the

completely mixed state) for quantum computational tasks that offer an advantage over

current classical methods.

2.1.2 Nuclear Magnetic Resonance for Quantum Information Pro-

cessing

Nuclear Magnetic Resonance (NMR) quantum information processors utilize the two spin

states of spin-1/2 nuclei in a strong magnetic field as their qubit. By finding a molecule with

n distinguishable spin-1/2 nuclei, it is possible to construct an n-qubit quantum information

processor. The experimental samples used contain many (on the order of 1020) identical

molecules and are processed in parallel, resulting in bulk ensemble computation. There

are many references that explain the intricacies of NMR for use as a quantum information

processor (for example, see [VC04, BCCea07, Jon01]), hence a detailed description will

not be provided here. Instead, this section will give a quick overview of the information

necessary to understand the remainder of this thesis and lay the ground work for discussing

NMR as a mixed-state quantum information processor.

Spin-1/2 particles in the presence of a strong magnetic field are well-behaved qubits:

the form of the Hamiltonian of the system is well known, fairly easy to characterize, and

the values of T1 and T2 on the order of seconds, which allows use of multi-gate algorithms

before decoherence effects affect the computation. In addition, NMR benefits from years

of development by scientists who used the technology to characterize molecules and pro-

teins, or image the human body. The wealth of knowledge and experience with NMR has

allowed quantum information scientists to perform gates with excellent precision [RLL09]

and implement some of the very first quantum algorithms [JM98, JMH98, CVZ+98].

As mentioned above, in the presence of a magnetic field, the ground state of a spin-

1/2 nucleus undergoes Zeeman splitting into two spin levels, which are used to encode

each qubit. Let us now look at the individual terms that comprise the Hamiltonian.

(For more information, a good introductory level reference for NMR is the book Spin

Dynamics [Lev08].) The Zeeman Hamiltonian has the form

HZ = −
∑

i

2γi ~σi · ~B = −
∑

i

2γiB
0Zi, (2.14)

9



where γ is the gyromagnetic ratio, ~σ is the vector of Pauli matrices, ~B is the external mag-

netic field and subscript i refers to the ith spin. This convention will be used throughout.

It is always assumed that the external magnetic field is in the z-direction, simplifying the

Zeeman Hamiltonian. In addition, we represent the Pauli matrices {σx, σy, σz} as X, Y ,

and Z and the identity operator is denoted as I. The dimension of the identity operator

is occasionally written explicitly, but can often be inferred from context. Finally, the no-

tation Zi is understood to mean the Pauli-z operator on the ith spin, while the identity

is performed on all others. For example, X2 on four qubits is the operation I ⊗X ⊗ I⊗2,

where I⊗n is the Kronecker product of I with itself n times.

The Zeeman term of the Hamiltonian is customarily combined with the chemical shift,

which is a small change in the Larmor frequency due to the different chemical environments

of each nuclei. This is what allows us to distinguish two protons, for instance, in the same

molecule (provided there is an absence of symmetry). The single qubit Hamiltonian is then

simply written as

H = πωiZi, (2.15)

where ωi is the chemically shifted Larmor frequency, given in Hertz.

The two main interaction terms of the Hamiltonian are the direct dipole-dipole cou-

pling and the indirect dipole-dipole, or J-coupling. The direct dipole-dipole coupling is

the interaction of two spins directly through the space between them. The form of this

interaction is proportional to (3 cos2 Θjk − 1), where Θjk is the angle between the static

magnetic field and the vector joining spins j and k. In a liquid, the rapid tumbling and

translational motion of the molecules averages the dipole-dipole coupling to zero for both

intra- and intermolecular interactions. Because all of the experimental work presented in

this thesis is performed in the liquid state, dipolar coupling does not play a role.

The J-coupling is a much weaker interaction between two nuclei, as it is mediated

through bonding electrons (hence the name indirect dipole-dipole). The J-coupling Hamil-

tonian is

HJ =
∑

j<k

π

2
Jjk(XjXk + YjYk + ZjZk). (2.16)

In the weak coupling limit, where

πJjk � |ωj − ωk|, (2.17)
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the secular approximation becomes valid and the Hamiltonian reduces to

HJ =
∑

j<k

π

2
JjkZjZk. (2.18)

In the secular approximation, very small terms that do not commute with the large compo-

nents of the Hamiltonian can be ignored, which, in this case, are the off-diagonal elements.

Therefore, in the weak coupling regime of liquid state NMR, the internal Hamiltonian can

be written as

Hint =
∑

i

ωiZi +
∑

j<k

π

2
JjkZjZk. (2.19)

Control of the molecule is achieved by applying radio frequency (r.f.) fields to augment

the Hamiltonian of the system in order to perform the desired operation. The control

Hamiltonian in the rotating frame of the nuclei is of the form

Hcontrol = ωnut(t)(cosφ(t)X + sinφ(t)Y ), (2.20)

where the nutation frequency ωnut(t) and the phase φ(t) are user-defined. Single qubit

rotations are implemented by applying the r.f. fields at the particular resonant frequency of

the nuclei to be affected. Multiple qubit gates are easily performed in NMR by utilizing the

J-coupling of the internal Hamiltonian. Pulse design has evolved in recent years, enabling

experimentalists to ‘intelligently’ numerically optimize pulses that perform complicated

unitary evolutions. This is achieved by discretizing the pulses at small time intervals

where the nutation frequency and phase are constant. The propagator at each time step is

evaluated and the derivative of the gate fidelity is used to iteratively improve the pulse. The

experiments described in this thesis use pulses that are generated by a gradient accent pulse

engineering (or GRAPE) algorithm [KRK+05, RNL+08]. The GRAPE algorithm offers a

more efficient searching method by using previously estimated parameters to estimate the

propagator at each time step, which allows for the use of more searching parameters. For

instance, increasing the number of time steps leads to smoother, easier to implement pulses.

In addition, it is possible to optimize over a range of r.f. powers to combat inhomogeneities

in the r.f. field seen across the sample. Technical information about the codes used to

generate the pulses in this thesis were primarily written by Dr. Colm Ryan and details can

be found in his doctoral dissertation [Rya08].

One of the drawbacks to using NMR as a fully functional quantum computer is that the

thermal state is highly mixed. The thermal state of an n-qubit homonuclear liquid-state
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NMR quantum computer is

ρth ≈
1

2n
I +

B
2n+1

∑

i

Zi, (2.21)

where

B =
h̄γB0

kBT
(2.22)

is the Boltzmann factor and kBT is the thermal energy. If the different spins in the

system are for different nuclear species, then each species will have its own Boltzmann

factor. The experiments in this thesis are performed on carbon-13 nuclei (γ = 6.728284×
107 rad T−1s−1) at room temperature in a 16.7 T magnet, resulting in a Boltzmann factor

of B = 2.93× 10−5. The identity portion of the thermal state remains in the identity state

throughout the evolution and is not measured during an experiment, so it is often left

out of the description and only the deviation density matrix is described. The deviation

density matrix in Eqn. (2.21) is ρdev ∝
∑

i Zi, and as you can see, it is not a true density

matrix since tr(ρdev) = 0. To avoid dealing with traceless density matrices, in this thesis

NMR states will almost always be written in the form

ρNMR =
(1− α)

2n
I + αρpps, (2.23)

where α is referred to as the polarization and ρpps is the pseudopure state with unit trace.

If we write Eqn. (2.21) in the form of ρNMR, then the value of the polarization is a fraction

of the Boltzmann factor. It is worth noting that ρpps need not be pure and that the name is

used primarily for historical reasons. The polarization for experiments in this thesis is on

the order of 10−5. A polarization this small has implications for the entanglement present

in the system – but this discussion is left for Section 2.2.

The highly mixed thermal states of a liquid-state NMR experiment make it very dif-

ficult to create the initial states, such as |00 . . . 0〉, that are used in pure-state quantum

computation. While there exist procedures to create such states in NMR, that is not the

approach taken in this work. Instead, the mixed nature of NMR states is utilized to per-

form algorithms designed for such systems, using mixed-state computational models to

solve problems with no known efficient classical analogue.

Measurements in NMR are not the typical projection measurements often used in pure-

state quantum computation. Instead, the system is continually measured using a pickup

coil, where the magnetic moments of the nuclei induce an electric current in the coil.
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This signal is called the free-induction decay (FID) or simply the NMR signal. A Fourier

transform of the FID produces an NMR spectrum (an example of an NMR spectrum can

be seen in Figure 3.16 from Chapter 3). The coil used to detect the NMR signal is the

same coil that implements the r.f. pulses, and is positioned perpendicular to the static

magnetic field. This means that it only detects transverse magnetization:

Mx(t) = Tr(ρ(t)σx) and (2.24)

My(t) = Tr(ρ(t)σy). (2.25)

By observing the frequency of a particular spin for a given time, we are able to determine

〈σx〉 and 〈σy〉 by integrating the total spectrum. (The signal will be split into several

peaks due to the coupling terms in the Hamiltonian.) In order to measure the signal

parallel to the static magnetic field, a readout pulse is required. The readout pulse rotates

the magnetization in the x−y plane. As we will discuss in Section 4.2, it is possible to

apply different readout pulses to measure different operators.

2.1.3 Deterministic Quantum Computation with One Quantum

Bit

While most quantum algorithms use pure states as inputs, there is a class of quantum

computers with access to only one mixed state accompanied by n maximally mixed qubits.

This model of computation is known as DQC1, or Deterministic Quantum Computation

with One quantum bit, and was introduced in 1998 by E. Knill and R. Laflamme [KL98].

This model of computation is often misnamed the one clean qubit model, as only one qubit

is polarized away from the maximally mixed state. This name is misleading, however, as

it might be misconstrued that the single qubit must be pure, when in fact, even a highly

mixed qubit can be used, which we will see below.

The initial state of our system is

ρi =

(
1− α

2
I + α|0〉〈0|

)
⊗ I⊗n

2n
=

1

2n+1

(
(1 + α)I⊗n 0

0 (1− α)I⊗n

)
, (2.26)

where α is the polarization. If the first qubit was a pure state, then the polarization would

be one. As we can see in Figure 2.2, the top register consists of a singe qubit in a mixed

state, accompanied by n qubits in the completely mixed state. The algorithm involves
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(1 − α)
2

I + α|0〉〈0|

Figure 2.2: This circuit diagram depicts the DQC1 model of computation, where the first

qubit is in a mixed state that has a polarization α, while the n additional qubits are in the

maximally mixed state. After a Hadamard on the first qubit and a controlled unitary, a

measurement is performed on the top register. By measuring the expectation value of σx
and σy, the trace of the unitary is determined, which is a problem with no known efficient

classical algorithm. The trace of the unitary is scaled by the number of qubits in the

system and the value of the polarization of the first qubit, seen in Eqn. (2.28) and (2.29).

performing a Hadamard operation on the top register and a unitary on the bottom n

qubits, controlled by the top qubit. The only requirement on the unitary is that it have an

efficient decomposition into a complete set of one and two-qubit gates [BBC+95, DiV95].

After the controlled-unitary Un, the state of the system is of the form

ρf =
1

2n+1

(
I⊗n αU †n
αUn I⊗n

)
. (2.27)

By measuring the expectation values of the Pauli operator σx, you find

〈σx〉 = Tr(ρfσx) =
α

2n+1
(Tr(Un) + Tr(U †n))

=
α

2n
Re(Tr(Un)) (2.28)

and similarly, a measurement of 〈σy〉 will result in

〈σy〉 = Tr(ρfσy) =
α

2n+1
(Tr(Un)− Tr(U †n))

=
α

2n
Im(Tr(Un)). (2.29)

Regardless of whether the first qubit is pure or mixed, the DQC1 model of computation

gives a method for determining the trace of a unitary, which is a problem that cannot be
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efficiently solved with current classical algorithms. In order for the DQC1 model to be

implemented in a scalable manner, the unitary must have an efficient decomposition in one

and two-qubit gates. Note that even in this case, and efficient algorithm for estimating the

trace is still not known.

DQC1 is an excellent computational model for implementation in NMR. One reason

is that the expectation values of σx and σy are easily measured in the NMR architecture.

Also, the thermal state in NMR is perfect for the initial state of the DQC1 algorithm.

Recall that the (unnormalized) thermal state in NMR can be approximated to I+ ε
∑

i Zi.

In order to convert this into the DQC1 initial state we need to kill the polarization on

qubits 2 through n. To do this we rotate them into the x−y plane, and then apply a

gradient to the magnetic field. This kills the polarization of these qubits by randomizing

their phase and we are left with polarization on only the first qubit. This method is used

to initialize the NMR qubits for each DQC1 experiment in this thesis.

2.2 Quantum correlations

In addition to mixed-state quantum computation, the concept of quantum correlations

plays a dominant role in this thesis. In this section we will describe two different types of

quantum correlations. The first is entanglement, which is easily the most well-known form

of quantum correlations. It is often (incorrectly) credited as being an indicator of quantum

systems: you will often hear the terms entanglement and quantum used interchangeably.

While this is clearly a conflation of terms, it is easy to see why this happens: entanglement

is counterintuitive to our classical experience and has proven to be a powerful resource

in some protocols. For example, after years of being a staple in the science fiction world,

quantum teleportation is a physical reality because of the ability to manipulate entangled

systems with high fidelity control. After discussing entanglement, we will explain the sec-

ond measure of non-classical correlations called quantum discord – a measure that features

prominently in this thesis.

2.2.1 Entanglement

Entanglement is very important in the field of quantum information. In fact, it has been

shown that an algorithm with access to pure states can be simulated classically to within
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a certain tolerance, if there is less than a ‘suitable small amount’ of global entanglement

present [JL03, Vid03]. We also know that quantum channels that do not preserve entangle-

ment can be simulated classically [HSR03], and in quantum key distribution, a necessary

condition for security is that there be entanglement verified in the effectively distributed

state [CLL04].

A bipartite pure state in the Hilbert space HAB = HA ⊗ HB, is said to be entangled

if it cannot be written in the form |ψA〉 ⊗ |ψB〉. This means that you cannot completely

describe an entangled system by providing a state vector to each subspace individually,

but rather, it requires a description of the system as a whole. Important examples of this

are the Bell states, one of which is shown below:

|ψ+〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) =
1√
2

(|00〉+ |11〉). (2.30)

There is no possible way to write |ψ+〉 as |ψA〉 ⊗ |ψB〉, so we say it is entangled.

An entangled mixed state is one that cannot be written in the separable form

ρsepAB =
∑

i

piρ
i
A ⊗ ρiB, (2.31)

where {pi} is a probability distribution and ρiA, ρiB are density operators on system A

and B respectively. The state given in Eqn. (2.31) is the most general state that can be

created with local operations and classical communication (LOCC). In other words, it is

not possible to create an entangled state by using only LOCC and starting with a separable

state. Because separable states can be created using LOCC, the pervasive understanding

is that these states are classical in nature. This is not the case, and is an oversimplification

of the notion of classical and quantum. Please note that the concepts of classical and

quantum are very esoteric, and have not yet been concretely defined in this thesis. We will

precisely define what we mean by them in Section 2.2.2.

Entangled pure states are instrumental to many protocols, such as teleportation (first

discovered in 1993 [BBC+93]). Teleportation is the transferring of a quantum state from

one location to another, without having it travel through the space in between. To ac-

complish this feat, one entangled Bell pair (like the one in Eqn. (2.30)) and two bits of

classical communication are required. The protocol can be seen in Figure 2.3. Alice has

an unknown qubit she wants to send to Bob, but she does not have a quantum channel

available to send it. However, her and Bob share a Bell state. By taking her portion of the
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|ψ〉

Figure 2.3: This circuit diagram depicts the teleportation protocol where Alice (the top

pink block) has an unknown quantum state she wishes to send to Bob (the bottom blue

block). Alice and Bob share an entangled Bell state and have the ability to send two

classical bits between them, denoted by double lines in the circuit). By performing a Bell

measurement on her qubits and then sending the measurement result to Bob, Alice is able

to transform Bob’s portion of the Bell state into the qubit she wanted to send – up to a

unitary transformation. The unitary Bob needs to perform on his qubit is dictated to him

by the two bits of classical communication Alice sent.
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Bell state and the unknown qubit and performing a Bell measurement, she can transform

Bob’s portion of the Bell state into the unknown qubit, up to a unitary transformation

that can be communicated classically. A Bell measurement on two qubits is equivalent

to performing a controlled-not gate followed by a Hadamard on the control qubit, then

measuring both qubits in the computational basis. Alice then communicates the outcome

of her measurement to Bob via a classical channel, and Bob uses this information to per-

form the necessary unitary on his qubit to transform it into the one Alice wished to send

(Alice and Bob pre-communicated which operations correspond to which measurement

outcomes). By performing this procedure, Alice is able to transmit a quantum state to

Bob without it ever existing in the space between them, all that was required were two bits

of classical communication (one for each measurement outcome) and an entangled pair of

qubits. This is surprising, since in order to completely specify a qubit, three real numbers

are required, which require infinite resources to specify accurately. But, by utilizing the

strong correlations present in an entangled pair, it is possible to teleport the state with

only two bits of classical information!

Entanglement in mixed state computation

Entanglement is certainly a very interesting and, at times, counterintuitive feature of quan-

tum mechanical systems. Let us look at how entanglement features in the two examples

of mixed-state quantum computation mentioned in Section 2.1: NMR and DQC1.

• NMR: Recall that states in NMR are of the form

ρNMR =
1− α

2n
I + αρpps.

It has been shown that states of this form are always separable when the polarization

α obeys the relation [BCJ+99]

α ≤ 1

1 + 22n−1
, (2.32)

where n is the number of qubits. The experimental results in this thesis are for four

qubits, indicating that the states generated in NMR do not have entanglement if the

polarization is less than or equal to 1/(1+27) = 7.75×10−3. The initial states of the

four qubit DQC1 experiments in this thesis have a polarization of B/2 = 1.46×10−5,
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therefore we can confirm that there is never any entanglement in these experiments.

This is one of the reasons that have prompted some researchers to conclude that NMR

is not actually performing any genuine quantum task. However, in an article where

Braunstein et al. show that most NMR computations are done without any true

entanglement, they close with the assertion that “much more needs to be understood

about what it means for a computation to be a quantum computation”[BCJ+99].

Indeed, it is now generally understood that entanglement is not the only signature

of quantum systems.

• DQC1: One of the most interesting features of the DQC1 model is that it is separable

between the first and remaining n qubits at every point in the algorithm. This

indicates that there is no bipartite entanglement along this splitting, even when the

top register has a polarization of one and starts in a pure state. In fact, Datta et

al. showed that there is very little bipartite entanglement across any splitting in the

DQC1 model for a random unitary [DFC05]. Specifically, they showed that when

α > 1/2, there is a family of unitary matrices such that for any bipartite division

within the bottom register there exists an amount of bipartite entanglement that

is independent of the number of qubits in the system. They also show that for all

unitaries and bipartite splittings, the entanglement is bounded above by a function

of the polarization only, indicating that as the number of qubits in the system grows,

the fraction of possible entanglement per qubit shrinks.

When E. Knill and R. Laflamme introduced the DQC1 model of computation, they

were motived by the question: “Where does the apparent power of quantum com-

puters come from?” [KL98] Thirteen years after the creation of the DQC1 model, it

still appears to offer an advantage over classical methods, and the results mentioned

above [DFC05] have invoked more questions than it answered. In recent years, the

thought has been that perhaps other non-classical correlations, above and beyond en-

tanglement, are better suited to capture the apparent power of mixed state quantum

computation.

Entanglement Witnesses

There are several ways to measure the bipartite entanglement present in a system (nega-

tivity [ZHSL98, VW02] and concurrence [HW97, Woo98] are two examples) – but common
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among all measures is the necessity for full knowledge of the state. Acquiring the informa-

tion required to reconstruct the state of a physical system is a process called tomography

and it is not scalable. By this we mean that the number of resources required grows

exponentially with the size of the system: for n qubits, (4n − 1) parameters need to be

estimated. In order to solve this problem, entanglement witnesses [HHH96, Ter00] have

been created. A witness is an observable that characterizes the set of separable states and

allows experimentalists to physically detect entanglement with only a few measurements.

The operator W is defined to be an entanglement witness if it has at least one negative

eigenvalue and 〈ψA|〈φB|W |ψA〉|φB〉 ≥ 0 for all pure product states |ψA〉 and |ψB〉. Once W

is established as an entanglement witness, entanglement is detected in state ρ by witness

W if

Tr(Wρ) < 0. (2.33)

Figure 2.4 abstractly depicts the set of entangled states that can be detected by witness W

and those that it cannot discriminate from separable states. It is also clear from the figure

that while Tr(Wρ) < 0 witnesses entanglement, Tr(Wρ) > 0 does not indicate that a state

is separable. Different entanglement witnesses will witness entanglement for a different set

of states and can be used in combination to improve the probability of successful detecting

entanglement.

The introduction to entanglement presented here is by no means complete, as I have

only mentioned the aspects that are important for the remainder of this thesis. The

interested reader is directed to Ref. [HHHH09] for a thorough review.

Entropic quantities

Entropic quantities will be very important when we discuss quantum discord in the next

section, so it is valuable to discuss these properties in the context of entanglement first.

For more information, a good reference for classical information theory is Ref. [CT06]. The

Shannon entropy is defined as

H(X) = −pi log pi, (2.34)

where {pi} is a probability distribution and the logarithms in this thesis are always taken

to be base 2. The entropy is a measure of the uncertainty in a random variable X. For

instance, think about the roll of a die and the toss of a coin – we are more uncertain about

the outcome of the die than of the coin, because there are more equally probable outcomes.
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Figure 2.4: The line in this image depicts the entangled states that a particular entan-

glement witness W is able to detect (those to the left of the line). Note that the set of

separable states are always found to have no entanglement, as ensured by the definition of

an entanglement witness.

Therefore, we expect the entropy of the die to be larger than that of the coin. For the

coin, there are two options, each with probability 1/2, so that the Shannon entropy is

H(Xcoin) = −1/2 log 1/2− 1/2 log 1/2 = 1. For the roll of a dice, there are 6 possibilities,

each with the probability 1/6, so the Shannon entropy is H(Xdice) = 6(−1/6 log 1/6) =

log 6 ≈ 2.6. As predicted, H(Xdice) > H(Xcoin).

The entropy of a joint system H(X, Y ) has the exact same formulation, except the

probability distribution is now for the joint system {px,y}. The joint entropy must be

larger than or equal to the entropy of each subsystem:

H(X, Y ) ≥ H(X) and H(Y ), (2.35)

which makes intuitive sense as adding an additional random variable to our system should

not make us more certain of the outcome.

The quantum analog to the Shannon entropy is the von Neumann entropy:

S(ρ) = −Tr(ρ log ρ). (2.36)

In most situations we will not explicitly state whether we are using the von Neumann or

Shannon entropy, but it should be clear from the context. For ρ with eigenvalues λi, the
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entropy can be written as

S(ρ) = −
∑

i

λi log λi, (2.37)

where 0 log (0) is defined to be zero. The entropy of a quantum system is also a measure

of uncertainty, and the states that have maximal entropy are maximally mixed states

S(I/d) = d

(
−1

d
log

1

d

)
= log d, (2.38)

while the minimum entropy of zero is found for pure states.

Interestingly, the inequality in Eqn. (2.35) does not hold for all quantum states, only

separable (i.e. unentangled) ones. When ρAB is separable,

S(ρsepAB) ≥ S(ρA) and S(ρB), (2.39)

while when entangled

S(ρentAB) < S(ρA) and S(ρB). (2.40)

To illustrate this, recall that the density operator for the Bell state given in Eqn. (2.11) has

reduced density matrices ρA = ρB = I/2, each with entropy S(ρA) = S(ρB) = log(2) = 1

(remembering that all logarithms are base 2). On the other hand the Bell state has

eigenvalues {1, 0, 0, 0}, giving an entropy of

S(ρBell) = −1 log 1 = 0. (2.41)

This indicates that the Bell state has no uncertainty associated with it (there exists a

measurement outcome with corresponding probability of 1), whereas its subsystems have

maximal uncertainty (all measurement outcomes are equally probable).

2.2.2 Quantum Discord

While entanglement has received a lot of attention in the field of quantum information and

computing, it is not the only form of non-classical correlations. Soon after the turn of the

twenty-first century, the measure of quantum discord was created as a method of better

capturing the non-classical correlations present in a quantum state [HV01, OZ01]. These

correlations include, but are not limited to, entanglement.
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The term classical correlations as used in current literature (and this thesis) is con-

sistent with the idea that “classical information is locally accessible, and can be obtained

without perturbing the state of the system” [OZ01]. In this sense, we can think of classical

correlations as those that are insensitive to measurement. In this thesis, we define quan-

tum correlations and non-classical correlations to be the same, defined as all correlations in

excess of classical corrections. Thus, quantum correlations are sensitive to local measure-

ments. Note that in the literature, the definition for quantum correlations is not universally

agreed upon, and for that reason, I attempt to adhere to the language of ‘non-classical’

correlations, which tends to be less contentious. However, it is important to remember

that in this thesis, there is no distinction between quantum and non-classical correlations.

Before defining quantum discord and discussing how it can help us differentiate between

classical and quantum correlations, we first need to introduce the mutual information and

conditional entropy. Classically, the mutual information is defined as

I(X :Y ) = H(X) +H(Y )−H(X, Y ), (2.42)

and is a measure of how much information X and Y have in common. The relationship

between different classical entropic quantities can be seen in the Venn diagram in Figure 2.5

(these relationships are the consequence of Bayes’ rule). The diagram introduces another

quantity, the conditional entropy. The entropy of X conditioned on knowing Y is given by

H(X|Y ) = H(X, Y )−H(Y ) (2.43)

=
∑

y

pyH(X|Y =y), (2.44)

and can be seen directly in Figure 2.5. This value tells us how uncertain we are about X,

after having measured Y . Given these definitions, it is easy to see that we can write a

second, equivalent equation for the mutual information:

J(X :Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ). (2.45)

Now, let us translate these definitions to the quantum case. The mutual information

I(X :Y ) translates easily:

IQ(A :B) = S(A) + S(B)− S(A,B), (2.46)
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Figure 2.5: The different Shannon entropies of systems X and Y , described by classical

probability distributions, are represented in the Venn diagram above. The overlapping

area in the image is the mutual information I(X :Y ) = J(X :Y ), as defined in the text.

where we are using the shorthand S(A) = S(ρA). The problem occurs when creating a

quantum analogue to J(X :Y ). Because the result of a quantum measurement is highly

dependent on what measurement operator was used, the conditional entropy is ambiguous

unless a specific measurement is indicated. By looking at the state of system B after a

particular projective measurement {Πk} has been performed on system A,

ρB|k =
TrA((Πk ⊗ IB)ρAB(Πk ⊗ IB))

Tr((Πk ⊗ IB)ρAB(Πk ⊗ IB))
=

TrA((Πk ⊗ IB)ρAB(Πk ⊗ IB))

pk
, (2.47)

we can define the conditional entropy for that measurement as

S{Πk}(B|A) =
∑

k

pkS(ρB|k). (2.48)

It is now possible to write an expression for the quantum analogue to Eqn. (2.45),

JQ{Πk}(A :B) ≡ S(B)− S{Πk}(B|A), (2.49)

where the quantum conditional entropy is a function of the measurement performed. The

quantum discord is then defined as the minimum difference between the two classically
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equivalent formulations of the mutual information over all possible projective measure-

ments:

D(A :B) = min
{Πk}

(IQ(A :B)− JQ(A :B)) = S(ρA)− S(ρAB) + min
{Πk}

∑

k

pkS(ρB|k). (2.50)

If the quantum discord is zero, then the values for both formulations of the mutual

information are equivalent and the state ρAB is said to only contain classical correlations.

In this case there exists a measurement on system A that does not affect the entropy of the

total system, and all correlations present can be found in purely classical systems. However,

if the value of the quantum discord is greater than zero, then there exist correlations

stronger than what can be found in classical systems, known as non-classical or quantum

correlations.

Quantum discord is bounded from below by zero and above by the entropy of the

measured subsystem, S(A). The proof of this and many other properties of quantum

discord are very nicely described in the doctoral thesis of Dr. Animesh Datta [Dat08] and I

direct the interested reader there for more information. It is worth noting that for all pure

states, quantum discord is only found to be non-zero when ρpureAB is entangled. That is to

say that pure, separable states contain only classical correlations, while separable mixed

states, given by Eqn. (2.31), may contain non-zero discord.

Examples of States with Quantum Discord

In order to better understand the correlations captured by quantum discord, let us look

at a couple of examples. The first example will illustrate the lack of symmetry in the

measure of quantum discord, namely that D(A :B) is not necessarily equal to D(B :A).

The second example looks at a Werner state and how the quantum discord behaves over

the entangled/separable boundary.

1. Consider the state

ρAB =
1

2

(
|0〉〈0| ⊗ |−〉〈−| + |1〉〈1| ⊗ |0〉〈0|

)
, (2.51)

where |±〉 = 1/
√

2(|0〉±|1〉), which is a separable mixed state with non-zero quantum

discord D(B :A), although the discord D(A :B) is equal to zero. This illustrates that
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the quantum discord is not a symmetric measure, as it depends on which system the

measurement is acting on. In this example, D(A :B) = 0 can be easily determined

by noticing that a measurement in the computational basis on system A will not

disturb the total system. In other words, there exists a measurement on system

A such that the full state on HAB remains unchanged and IQ(A :B) = JQ(A :B).

On the other hand, if the measurement is being performed on system B, then any

choice of measurement will disrupt the final state, indicating the presence of non-zero

discord: D(B :A) ≈ 0.2.

This example illustrates what the literature calls a classical-quantum (CQ) state.

These states are defined by

ρCQAB =
∑

j

pj|j〉〈j| ⊗ ρBj , (2.52)

where {|j〉} is an orthonormal basis for system A, and ρBi are any density matrices on

system B. Classical-quantum states have D(A :B) = 0 and D(B :A) 6= 0. Similarly,

we can define quantum-classical (QC) states

ρQCAB =
∑

j

pjρ
A
j ⊗ |j〉〈j|, (2.53)

such that D(A :B) 6= 0 and D(B :A) = 0. Finally, to complete this set of definitions,

there are also states called classical-classical (CC) that have the form

ρCCAB =
∑

j,k

pjk|j〉〈j| ⊗ |k〉〈k|, (2.54)

where pjk is a joint probability distribution. These states are simply referred to as

classical states, and as one might suppose, CC states have zero discord, regardless of

what subsystem the measurement is performed on.

2. An interesting state to study is that of a maximally entangled Bell state |ψ+〉 =

1/
√

2(|00〉+ |11〉), combined with the maximally mixed state:

ρW =
(1− z)

4
I⊗2 + z|ψ+〉〈ψ+|. (2.55)

This state is well known, belongs to the set of Werner states, and is known to be

separable for z < 1/3. Using Eqn. (2.50), we can calculate the value of discord with-

out much trouble. The reduced density matrix ρA has eigenvalues {λi} = {1/2, 1/2},
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and an entropy of

H(ρA) = −
∑

i

λi log λi

= −1

2
log

(
1

2

)
− 1

2
log

(
1

2

)

= 1.

The full state ρAB has eigenvalues {λi} = {3z+1
4
, 1−z

4
, 1−z

4
, 1−z

4
}, giving an entropy of

H(ρAB) = −
∑

i

λi log λi

= −3z + 1

4
log

(
3z + 1

4

)
− 3

1− z
4

log
1− z

4

= −f log f − (1− f) log
1− f

3
,

where f = (3z + 1)/4. This just leaves the conditional entropy to calculate. Luckily,

the choice of measurement for this state does not change the conditional entropy,

as this state is symmetric and minimization is not required. For convenience, we

choose to measure in the computational basis. A measurement on system A has a

probability of 1/2 for both outcome 0 and 1. If the outcome of the measurement on

system A is 0, then the state of B is

ρB|A=0 =

(
1+z

2
0

0 1−z
2

)
, (2.56)

and when the outcome is 1,

ρB|A=1 =

(
1−z

2
0

0 1+z
2

)
. (2.57)

In both cases, the eigenvalues are the same: {1+z
2
, 1−z

2
}, leading to a conditional

entropy of

H(B|A) =
∑

i

piH(B|A = i)

=
1

2
H2

(
1− z

2

)
+

1

2
H2

(
1− z

2

)
,
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where H2(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function. The

discord of the Werner state is then

D(ρW ) = 1 + f log(f) + (1− f) log

(
1− f

3

)
+H2

(
1− z

2

)
, (2.58)

where f = 3z+1
4

. Figure 2.6 is a plot of the discord as a function of z and from it

one can see that the discord is non-zero, provided z > 0, even when there is zero

entanglement. In addition, the discord is smooth over the boundary at z = 1/3

(where the state becomes entangled), suggesting that there is nothing significant

about this boundary for the quantum correlations characterized by the quantum

discord.

Quantum discord is only one of many proposals for measures of quantum correla-

tions [HHH+05, OHHH02, PHH08, Xu11, SJSD11, GPA11, WG11, MPS+10, LZ09, GPW05].

In Chapter 5 we analyze the measure of geometric discord (a measure of quantum corre-

lations defined in Ref. [DVB10]), which has some advantages over quantum discord when

performing analytical calculations. While I have made every effort to cite the works on

quantum correlations that are most relevant to this thesis, the articles on quantum discord

and quantum correlations cited in this thesis are by no means exhaustive. When the work

on discord presented in this thesis began, there were only a handful of discord papers pub-

lished. Since then the number has increased dramatically, as can be seen in Table 2.1. For

a more thorough treatment of recent studies on quantum discord the reader is directed to

Ref. [CMS11].

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Citations 4 6 3 4 3 6 15 16 67 152

Table 2.1: The number of citations that the original paper defining quantum discord

[OZ01], published in 2002, has received each year as recorded by the American Physical

Society (data taken from prl.aps.org on January 7, 2012).
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Figure 2.6: Plot of the discord in the two-qubit Werner state ρW = (1−z)
4
I⊗2 + z|Ψ+〉〈Ψ+|

as a function of z. The line at z = 1/3 divides the separable states (those on the left with

z < 1/3) from the entangled states (those on the right with z ≥ 1/3). One can clearly

see that there are separable states that still have non-zero quantum discord. In fact, zero

discord is only achieved for z = 0 where the state is maximally mixed.
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Quantum discord mixed state computation

Now that we have a basic understanding of quantum discord, let us take a quick look

at quantum discord in the two examples of mixed-state quantum computation discussed

previously: DQC1 and NMR.

• DQC1: So far we have explained the DQC1 model of computation and the (lack of)

entanglement contained in the model. Here we would like to give a quick snapshot at

the studies done so far on discord and other non-classical correlations in DQC1. In

2007, it was shown that DQC1 contains a large amount of non-classical correlations

as indicated by the operator Schmidt rank, and therefore, it was conjectured that

the model is unlikely to be able to be simulated classically [DV07]. In the following

year, the non-classical correlations in the DQC1 model as measured by the quantum

discord were analyzed [DSC08], and it was found that the quantum discord in a

typical instance of the DQC1 algorithm for a larger number of qubits (> 5) is not

dependent on the number of qubits in the system, but only the polarization of the

top qubit. They showed that even when the polarization of the top qubit is less than

0.5 (where it is unlikely there is any entanglement [DFC05]) there are non-classical

correlations as measured by the discord. The non-classicality of the DQC1 model

has also been studied in the context of local noneffective unitary operations and

measurement-induced disturbance [DG09], which showed signs of non-classicality.

The quantum discord in a two-qubit DQC1 algorithm has been experimentally mea-

sured using optical qubits [LBAW08]. In order to measure the amount of discord,

full tomographic data for the final state of a DQC1 experiment was measured for

input states of varying purity and used to calculate the quantum discord and entan-

glement. Entanglement was not detected; however non-zero values for the quantum

discord was measured. Quantum discord in the DQC1 model are the main subjects

of Chapters 4 and 5, and this discussion will be continued there.

• NMR: As previously mentioned, the states present in NMR quantum information

processing are pseudopure states that generally have a small polarization. For in-

stance, the experiments in this thesis are performed with a polarization of 1.43×10−5,

which is below the threshold for entanglement. The presence of quantum discord in

an NMR quantum information processor would indicate that it is not a purely clas-

sical model, but contains quantum correlations. If we calculate the quantum discord
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Name Hamiltonian Discord

Weak coupling H = πω1ZI + πω2IZ + πJZZ 0

Strong coupling H = πω1ZI + πω3IZ + πJ(XX + Y Y + ZZ) 6.98× 10−8

Dipolar coupling H = πω1ZI + πω2IZ + πD(2ZZ −XX − Y Y ) 7.02× 10−8

Table 2.2: The amount of discord present in the thermal states of several Hamiltonians that

arise in two-qubit NMR systems. The discord is calculated assuming a carbon-13 nuclei in

a 16.7 T magnet at room temperature (ie. a polarization of 1.4× 10−5). Parameters used

in the Hamiltonians are: ω1 = 3000, ω2 = 10000 Hz, ω3 = 4000 Hz, and J = D = 20 Hz.

in the Werner state from Eqn. (2.55) for our experimental polarization, we find that

it is equal to 2.83× 10−10. This is a very small amount of discord, yet it is non-zero.

Note that currently, it is not known what a given amount of discord means; that is

to say that there is no known lower bound to which separates useful from unusable

discord. In Chapter 4 we set out to detect a very small amount of quantum discord

in liquid-state NMR.

While it has been shown that almost all quantum states contain quantum dis-

cord [FAC+10], the thermal state of a weakly-coupled liquid-state NMR experiment

has zero discord. However, this is not true of the thermal states of other NMR

Hamiltonians. The thermal state in NMR systems is defined as

ρth =
1

N
e−βH , (2.59)

where N is the number of spins and H is the Hamiltonian of the system. In Table 2.2

we summarize the amount of discord present in the thermal states of various two-

qubit Hamiltonians of interest in NMR, and as you can see, the thermal state can

contain non-zero discord. Note that while the thermal state in NMR can contain

non-classical correlations, the initial states for the DQC1 algorithm do not.

There have been a couple of experimental studies on the quantum correlations present

in NMR systems. In Ref. [AC+11] the authors measure the sudden-change in the

quantum and classical correlations of two qubits in experimental NMR pseudopure

states as they undergo relaxation. They also show that there are some states whose

classical correlations are robust against certain noise models. In Ref. [SPCA+10] they

investigate the quantum correlations present in a two-qubit state using a quadrupolar
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NMR system. They measured the quantum and classical correlations as well as the

mutual information during decoherence. Note that in both of these cases, only the

pseudopure state was accounted for, and not the physical NMR state. This is in

contrast to the work in this thesis, where we concentrate on detecting and quantifying

the discord present in the full quantum state.
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Chapter 3

Experimentally implementing a

DQC1-complete problem

In this chapter, we describe the experimental implementation of the DQC1 model of com-

putation from Section 2.1.3. The problem solved using DQC1 is that of approximating

the Jones polynomial at the fifth root of unity. The Jones polynomial is an important

knot invariant which distinguishes between distinct knots, a problem that cannot be effi-

ciently solved with current classical algorithms. The experimental implementation detailed

here uses four qubits in liquid-state NMR. Our motivation for performing this particular

experiment is outlined below:

• The DQC1 class of quantum computers is of great interest, primarily due to their

ability to solve a problem with no known efficient classical algorithm, despite pos-

sessing limited entanglement (as discussed in Section 2.2.1). In addition to being

a problem that can be solved efficiently on the DQC1 class of quantum computers,

approximating the Jones polynomial has been shown to be a complete problem for

DQC1. In other words, any problem that can be solved using DQC1 can be reduced

to the problem of solving for the Jones polynomial. Our experiment is the first

experimental implementation of a DQC1-complete algorithm.

• This algorithm relies on the ability to differentiate experimental outcomes with great

accuracy. It has recently been shown that in liquid-state NMR, single-qubit gates can

be performed with an average error per gate of 1.3±0.1×10−4 [RLL09], and this level
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of control, if applied to a four-qubit experiment, such as the one presented in this

chapter, would be exceptional. However, note that this average fidelity is for pulses

that perform single-qubit gates on a single-qubit molecule, and have a total length

of 516.8µs. Meanwhile, for the more complicated unitary transformations required

in this experiment, the gates require approximately 60ms, and as such, will have

lower average fidelity. In addition, when generalizing the benchmarking experiment

to multi-qubit gates, the average fidelity decreased by a factor of 10 for three qubits

(the set of gates used were single qubit rotations and CNOT gates between pairs of

qubits). The length of this experiment, and the precision required by the algorithm

in order to successfully distinguish distinct knots, make for a difficult experiment,

that pushes the boundary of our current level of control.

• The Jones polynomial is a quantity that has a broad application across many fields

in physics – including quantum gravity, particle theory, quantum field theory, sta-

tistical physics, and applied mathematics [Kau91]. A quantum algorithm that can

approximate the Jones polynomial and be implemented in a physical system is most

certainly of interest to the broad physics community.

The Jones polynomial is an important tool that is used for distinguishing knots. Given

two knots, it is very difficult to determine whether they are topologically distinct. Even the

simplest possible instance of this problem, distinguishing a knot from an unknotted loop

(fittingly called the unknot), is extremely difficult and is known to be in the complexity

class NP [HLP99]. (Note that in this introduction we mention several different complexity

classes only to indicate the comparative difficulty of certain tasks; the interested reader is

directed to Ref. [KLM07] for a comprehensive introduction to the topic, one that we do not

attempt in this thesis.) The problem of determining whether two knots are equivalent can

easily be understood using common experience: imagine being given a necklace that has

been tangled into a knotted mess and being asked if it is possible to untangle it without

undoing the clasp. This is precisely the problem of distinguishing a knot from the unknot.

In order to assist in differentiating knots, mathematicians have created a mathematical

tool called the knot invariant [Kau88]. Knot invariants have different values for knots that

are not equivalent; in other words, if a knot invariant evaluates to different values for two

knots, they are guaranteed to be distinct. One of the most important knot invariants is

called the Jones polynomial, and was discovered in 1984 by Vaughan Jones [Jon85]. It im-

proves on previously discovered knot invariants, such as the Alexander polynomial [Ale28],
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in its ability to distinguish oriented knots; in other words, it can distinguish between a

knot and its mirror image.

While the Jones polynomial is of great benefit to the field of knot theory, using it to solve

practical problems is not efficient as exact evaluation of the Jones polynomial at all but a

few points is hard for the complexity class #P [JVW90]. Quantum algorithms for evaluat-

ing the Jones polynomial have been attempted and approximations at several special points

have been shown to be complete for the complexity class BQP [FKW02, FLW02]. Building

on this work, it was then shown that approximations of the Jones polynomial at princi-

pal roots of unity can be computed on a quantum computer in polynomial time [AJL06],

later being shown that for certain closures the problem is BQP-complete [AA11, WY08].

The algorithm developed by P. Shor and S. Jordan shows that approximating the Jones

polynomial at the fifth root of unity for any knot is a complete problem for DQC1 [SJ08].

It is this algorithm that is modified for implementation in NMR, and is the focus of this

chapter.

There has been one other study on solving the Jones polynomial using quantum in-

formation processors: an algorithm that can solve the Jones polynomial for three strand

braids [KJ07] was implemented in NMR on two qubits for the specific cases of the tre-

foil knot, the figure-eight knot, and the Borromean rings [MFK+10]. The fundamental

difference between the work presented in this chapter and the experiment implemented

in Ref. [MFK+10], is that the latter only applies to knots whose braid representations

have three strands, while ours can be extended to any size knot without changing the

computational complexity.

This chapter describes the first experimental implementation of a complete problem

for the DQC1 model of quantum computation. The implemented algorithm is a modi-

fication of the algorithm developed by P. Shor and S. Jordan [SJ08] that is suitable for

implementation in NMR. The experimental findings have been published in Physical Re-

view Letters [PMRL09], copyright (2009) by the American Physical Society. The author

of this thesis performed the entirety of the experiment with guidance from C.A. Ryan and

modified the original algorithm and jointly analyzed the data with O. Moussa.

The first section of this chapter begins with a discussion of the relevant components of

knot theory that lead us to the definition of the Jones polynomial, which is evaluated for

the trefoil knot as an explicit example. Fibonacci particles, required for the construction of

the algorithm used, are explained in Section 3.2, and our modified algorithm is described
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a.)

c.)

b.)

Figure 3.1: These three manipulations are called the Reidemeister moves and do not change

the topological properties of a knot. If one knot can be transformed into another using only

Reidemeister moves, the two knots are said to be topologically equivalent, up to ambient

isotopy.

in Section 3.3. Finally, the experimental implementation is detailed in Section 3.4 with the

results and a discussion in Section 3.5.

3.1 Knots, Braids, and the Jones Polynomial

3.1.1 Knots

The mathematical definition of a knot is the embedding of a circle in R3, and can easily

be understood by imagining a knotted rope or string. More than one circle embedded in

R3 is a link. For our purposes it is not important to distinguish between links and knots

and we will refer to both as knots throughout this chapter. When it is said that two knots

are equivalent, we are referring to their topology. Technically, two knots are said to be

equivalent up to ambient isotopy, which means that two knots are topologically equivalent

if you can manipulate one (non-oriented) knot into the other without breaking any of the

strands. More specifically, flipping a knot around any axis is not permitted as this changes

the topological properties of oriented knots. In other words, an oriented knot and its mirror

image are not necessarily topologically equivalent. Mathematically, the permitted motions

are referred to as the three Reidemeister moves, which can be seen in Figure 3.1. The
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a

b

c

d

Figure 3.2: The line ‘cd’ is crossing over the line ‘ab’, as indicated by the break in line ‘ab’.

more complicated the knot, as measured by the number of strands and crossings, the more

difficult it is to distinguish. There quickly becomes a point where topologically equivalent

knots appear vastly different and manipulating them using Reidemeister moves becomes

impractical. In these situations, knot invariants are an essential tool.

Mathematically, knots are represented by characterizing their crossings. The depic-

tion of a single crossing in Figure 3.2 is understood as strand ‘cd’ crossing over strand

‘ab’. Constructing the Jones polynomial requires us to define the action of splicing such a

crossing, which is the action of removing the crossing by cutting the strands (leaving four

open ends) and fusing them together in order to create an avoided crossing. An individual

crossing can be spliced in two different ways, called the A and B splice, and are depicted

in Figure 3.3. In order to differentiate between them, we need to define the regions around

a crossing. When looking at a single crossing there are four regions, labeled as follows: if

you are approaching a crossing along the strand traveling underneath, the A region is on

your left and the B region is on your right. Then the A splice is defined so that it connects

the two A regions, and the B splice connects the B regions.

Now that we have the ability to deconstruct a crossing, we can use this to deconstruct

an entire knot. In doing so, we will create a tree of descendants, all the while keeping

track of the types of splicing used. We are interested in the primitive, or final descendants,

and the types of splicings used to create each descendant. In Figure 3.4 we can see the

eight primitive descendants of the trefoil knot. Note that if a knot has n crossings, then

it will have 2n descendants. (The trefoil knot, shown in Fig. 3.8 has three crossings and

23 = 8 primitive descendants.) The primitive descendants of a knot K are called the

states of K and are denoted σ. (Apologies for the duplicate notation with the Pauli
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A

A
BB

AA

B

Figure 3.3: The A (B) region is defined as the region that is to your left (right) when

approaching a crossing along the strand that travels underneath. The A and B splicings

connect the A and B regions, respectively.

matrices. The states of K feature only briefly in this chapter and therefore we will stick

with the conventional notation.) After defining the states of K, the bracket1 〈K|σ〉 can

be introduced, which is a product of the splicing types that were used to construct σ. An

example of a bracket for the trefoil knot that was deconstructed in Figure 3.4 is given in

Figure 3.5. We can also define the norm of state σ as ||σ||= (number of loops – 1). So the

norm of the state σ given in Figure 3.5 is ||σ|| = 3− 1 = 2.

1The bracket in knot theory has no relation to the bra-ket notation used in quantum theory, and only
features briefly in this chapter. Apologies again for the duplicate notation.
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B

B
B

B3

Figure 3.5: The bracket 〈K|σ〉 for a descendant of the trefoil knot where σ is the state

which was arrived at by three B splices.

3.1.2 Braids

In this section, we explain the braid representation of a knot, which is important in order

to understand the algorithm for approximating the Jones polynomial in DQC1. Braids are

composed of N strands that cross over and under each other, and can be seen in Figure 3.6.

When illustrating a braid, the top is the beginning and the bottom is the end.

Braids are comprised of elementary crossings2, σi, each of which is simply a single

crossing of strand i over strand i + 1. For an n-strand braid there are n − 1 elementary

crossings and their n − 1 inverses, where the inverse, σ−1
i , is strand i + 1 crossing over

strand i. These 2(n− 1) elementary crossings generate the braid group Bn. Multiplication

in the braid group is performed by attaching the bottom strands of one braid to the top

strands of another. Elementary crossings satisfy the following conditions:

σjσ
−1
j = 1 (3.1)

σjσk = σkσj for all |j − k| > 1 (3.2)

σjσj+1σj = σj+1σjσj+1 for all j. (3.3)

The second condition, Eqn. (3.2), is pictorially demonstrated in Figure 3.6.

Braids are related to knots by their “closure”. In fact, every knot can be represented

as the trace closure of a braid. The trace closure, as illustrated in Figure 3.7, connects

2Once again, apologies for the duplicate notation. Unfortunately, the elementary crossing feature
prominently in this chapter, so the Greek letter sigma will always refer to elementary crossings throughout
the chapter.
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Figure 3.6: Pictorially demonstrating the condition σjσk = σkσj for all |j − k| > 1 where

j = 1 and k = 3, in a four strand braid.

the top of each strand to the bottom in order to transform the braid into a knot or link.

The right most strand at the top of the braid is connected to the right most strand at

the bottom, and the second right most strand at the top is connected to the second right

most strand at the bottom, and so on until all the strands have been connected. This can

be done by adding n uncrossed strands to an n-strand braid and connection the tops and

bottoms as seen in Fig. 3.7.

With the braid representation comes the notion of the orientation of a knot. The

orientation of a knot can be thought of as the direction of the rope, as can be seen in

Figure 3.8. The convention is that when closing a braid, the direction of the strand goes

from the bottom to the top. Now that we have defined the orientation of a knot, it is

possible to define positive and negative crossings, as shown in Figure 3.9, and the writhe

of a knot. The writhe, w(K), is the number of positive crossings minus the number of

negative crossings in an oriented knot. The oriented trefoil knot in Fig. 3.8 has three

positive crossings, therefore w(trefoil) = 3. Note that elementary crossings σi correspond

to negative crossings, and elementary crossings σ−1
i correspond to positive crossings.
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Figure 3.7: The braid on the left undergoes the trace closure to become the knot on the

right. The trace closure is performed by taking the number of strands in the braid, adding

that number of uncrossed strands to the side of the braid (shown in the middle step) and

connecting the top of each new strand to the top of the corresponding braided strand, and

likewise for the bottoms.

3.1.3 Jones polynomial

We now have all the basic information needed to compose the equation for the Jones

polynomial, which we will explicitly find for the trefoil knot, pictured in Figure 3.8. We

begin by defining the bracket polynomial as

〈K〉 =
∑

σ

〈K|σ〉d||σ||, (3.4)

where σ runs over all the primitive descendants of K. Recall that the bracket 〈K|σ〉 is

a product of the splicings used to decompose knot K into primitive descendent σ. The

trefoil knot has a bracket polynomial of

〈trefoil〉 = A3d+ 3A+ 3A−1d+ A−3d2. (3.5)

The bracket polynomial itself is not a knot invariant, but by enforcing B = A−1 and

d = −A2 − A−2, the bracket polynomial becomes invariant under the second and third

Reidemeister moves. This simplifies the polynomial in Eqn. (3.5) to 〈trefoil〉 = A−7 −
A5 − A−3. The polynomial can become invariant over the final Reidemeister move by

42



Figure 3.8: Oriented trefoil knot. These three crossings are all positive, and give the knot

a writhe of w = 3.

normalization to create the “f-polynomial”:

fK(A) = (−A3)−w(K)〈K〉. (3.6)

The writhe of the oriented trefoil knot is given in Figure 3.8 is 3, leading to the f-polynomial:

ftrefoil(A) = −A−16 + A−4 + A−12. (3.7)

From here it is straightforward to define the Jones polynomial, VK(t) = fK(t−1/4). There-

fore, the oriented trefoil knot has a Jones polynomial of

Vtrefoil(t) = t+ t3 − t4. (3.8)

We are able to compose the Jones polynomial for simple knots with very few crossings,

but since the number of descendants grows exponentially with the number of crossings

in the knot, this method is not scalable. In fact, there is no known scalable method for

composing the Jones polynomial of a knot. There are, however, methods using quantum

information processing devices for approximating the Jones polynomial at the fifth root of

unity, as referenced in the introduction to this chapter.

3.2 Fibonacci Particles

In order to understand the algorithm for evaluating the Jones polynomial in DQC1, we

must first explain Fibonacci particles, which is done in the context of the Temperley-Lieb
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(+) (-)

Figure 3.9: Definition of the positive and negative oriented crossings. A positive crossing is

defined as the left strand crossing over the right, when you are traveling along the direction

of the strand. While the negative crossing is defined as the right strand crossing over the

left.

recoupling theory, following the route taken in Ref. [KL07]. However, the intricacies of this

theory are not important for the material presented in this chapter, so we only describe

the Fibonacci particles in a manner that will allow us to arrive at a unitary representation

of the braid group, whose trace is related to the Jones polynomial at a particular point.

(The explanatory route taken in this section follows the simplistic approach to the material

given in Ref. [SJ08].)

Fibonacci particles [KL07] are purely mathematical objects that can exist in two states,

marked (p) and unmarked (∗). For our purposes, the most important aspect of Fibonacci

particles are the rules they obey during interactions. Two marked particles can interact

to result in either a marked, or an unmarked particle. A marked and unmarked particle

always interact to create a marked particle, and two unmarked particles never interact in

this theory. These interaction rules are depicted in Figure 3.10 using tree diagrams.

The algorithm is constructed by making use of the different interaction pathways that

n marked particles can undergo to result in an unmarked particle. The different pathways

form a basis that allow us to discuss a connection between unitary operations and braiding

operations, which we will explain below. For example, let us look at the different path-

ways that four marked particles can undergo to result in an unmarked particle. This is

most easily seen graphically using several left-associated tree structures that have marked

particles at the top and one unmarked particle at the bottom. Figure 3.11 shows the tree

diagrams for the two different pathways. In this case, it can be seen that there are two

different paths, which represent the two basis vectors, p and ∗, in the complex vector space
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Figure 3.10: Tree diagrams showing the interaction rules for two Fibonacci particles. The

rules indicate that two marked (p) particles can interact to give a marked particle or an

unmarked particle (∗), while a marked particle and an unmarked particle always interact

to give a marked particle, and two unmarked particles never interact.

Figure 3.11: The complex vector space V
(4)

0 , has basis vectors p and ∗ which can be found by

creating a left-associated tree diagram with 4 marked particles at the top and an unmarked

particle on the bottom. The differences in the paths are indicated by a dotted circle and

indicate the basis vectors.
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Figure 3.12: The complex vector space V
(5)

0 , has basis vectors pp, p∗, and ∗p that can be

found by creating a left-associated tree diagram with 5 marked particles at the top and an

unmarked particle on the bottom. The differences in the paths are indicated by a dotted

circle and correspond to the basis vectors.

V 1111
0 = V

(4)
0 . In this notation the ones on the superscript indicate the number of marked

particles on the top of the tree, and the zero in the subscript indicates that an unmarked

particle is at the bottom of the tree. This vector space has dimension dim(V
(n)

0 ) = fn−1,

where fk = [1, 1, 2, 3, 5, 8, . . .] is the Fibonacci sequence. In this example where n = 4,

the dimension of the space is 2.

For a tree with five marked particles at the top, there are three different paths leading

to the unmarked state at the bottom (seen in Figure 3.12), and these three paths are the

three basis vectors in the 3-dimensional vector space, V
(5)

0 . Notice that the resulting fn−1

basis vectors contain every possible combination of p and ∗ with the restriction that there

are no two unmarked particles side by side. It is possible to separate the basis vectors

of the vector space V
(n)

0 into four subspaces: the vectors that start with p and end with

p, start with p and end with ∗, start with ∗ and end with p, and finally, those that start

and end with ∗. These subspaces are important for our purposes as we only encode two of

them (the fm−1 vectors of the form ∗ . . . p and the fm−2 vectors of the form ∗ . . . ∗, where

m is the number of elements in the basis vectors) for use in formulating the algorithm.

We are able to map the subset of Fibonacci basis vectors of interest to computa-

tional basis vectors that are suited for our computation by a Zeckendorf representation

(z-representation), which decomposes a whole number into a sum of non-consecutive Fi-

bonacci numbers. In order to do this we will label our m-element basis vectors smsm−1 . . . s1
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and let p correspond to 0 and ∗ correspond to 1. The original algorithm [SJ08] uses the

z-representation of z(s) =
∑

i sifi+1. To allow for better implementation with the ex-

perimental constraints we are working with, we modified the algorithm by changing the

Zeckendorf representation to be

z′ = 2b−1s1 +
m−2∑

i=2

si+s1fi, (3.9)

where m is the number of elements in our basis vectors, which will correspond to N = m−1

strands in the braid, and b = dlog2 fm−1e + 1, which corresponds to the number of qubits

required for our algorithm. As mentioned in the previous paragraph, we only convert

those basis vectors that start with ∗. This modification of the algorithm changes not only

the final expression for the Jones polynomial, but the DQC1 circuit that implements the

algorithm. This will be explained in detail in Section 3.3.

3.3 Algorithm for Approximating the Jones Polyno-

mial in DQC1

We now have all the tools required to formulate the algorithm that will approximate the

Jones polynomial at t = e2iπ/5. The original algorithm is the work of Ref. [SJ08], however

the algorithm detailed in this section has been modified to better suit our experimental

considerations. Changing the form of the Zeckendorf representation, as mentioned in the

previous section, is the major modification, leading to a change in the circuit to implement

the algorithm, explained below.

In Section 3.2 we described the Fibonacci basis vectors that are required to formulate

this algorithm. In order to determine what size Fibonacci basis vectors we need, we look

at the number of strands in our braid and place the Fibonacci basis vectors underneath

the braid, with one element between every two strands, as in Figure 3.13. For an n-strand

braid, this gives m = n + 1 elements in our basis vectors. Since we are only interested in

the basis vectors that begin with an unmarked particle (∗), we place only these vectors

underneath the braid.

Using the z′ Zeckendorf representation from Eqn. (3.9), the Fibonacci vectors in Fig. 3.13
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Figure 3.13: A four strand braid characterized by the elementary crossings σ1σ2σ3 with the

Fibonacci basis vectors that begin with the unmarked particle, (∗), positioned underneath

and have no two unmarked particles beside each other. The four strand braid requires

vectors consisting of five Fibonacci particles, and these basis vectors constitute the basis

for our Jones polynomial approximation.
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correspond to

∗pppp → 0 → 000

∗pp ∗ p → 1 → 001

∗p ∗ pp → 2 → 010

∗ppp∗ → 4 → 100

∗p ∗ p∗ → 5 → 101.

By converting the Fibonacci vectors to numbers via the Zeckendorf representation, and

then into base 2 notation, it is clear that we require three qubits to encode these vectors.

However, it is important to note that these three qubit states do not form a complete basis.

The unused basis states that result from our choice of Zeckendorf representation are not a

problem for the Jones polynomial approximation, as they will simply add a constant value

to the trace, which can be accounted for in our final calculation.

Now that we have an understanding of the basis encoding for this algorithm, we will look

at the generation of the unitary matrices required to approximate the Jones polynomial

in DQC1. There is a unitary transformation corresponding to every elementary crossing

in the braid. These unitaries are generated using the rules given in Eqns. (3.10)–(3.14),

which are unchanged from the original algorithm in Ref. [SJ08]. The middle elements on

the left hand side of the equations are marked with hats at the location of a crossing, if

the vector was placed underneath the braid as it is in Figure 3.13. We can think of the

braid uncrossing by the following rules:

∗ p̂p = a(∗pp) (3.10)

∗p̂∗ = b(∗p∗) (3.11)

p∗̂p = c(p ∗ p) + d(ppp) (3.12)

pp̂∗ = a(pp∗) (3.13)

pp̂p = d(p ∗ p) + e(ppp), (3.14)
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where

a = −A4

b = A8

c = A8τ 2 − A4τ

d = A8τ 3/2 + A4τ 3/2 (3.15)

e = A8τ − A4τ 2

A = e−i3π/5

τ =
2

1 +
√

5
= φ−1,

and φ is the golden ratio. For example, when generating the unitary transformation corre-

sponding to σ1, we look at the first three elements in the basis vectors, as these are in the

position of the elementary crossing. The first three strands in each basis vector are then

uncrossed according to the above rules, and the resulting matrix is

σ1 =

∗pppp
∗pp ∗ p
∗p ∗ pp
−−
∗ppp∗
∗p ∗ p∗
−−
−−




a

a

b

1

a

b

1

1




, (3.16)

where the order of the basis vectors is indicated on the left hand side of the matrix and

white space indicates a zero value for that matrix element. Both σ2 and σ3 in Eqn. (3.17)

contain off-diagonal elements. The ordering of the basis vectors is consistent with their z′

representation, and where there are unused basis vectors, a one has been placed along the

diagonal. As mentioned previously, this additional term will be accounted for in the final

approximation of the Jones polynomial. The unitary matrices corresponding to the other

50



two elementary crossings, σ2 and σ3, are

σ2 =




e d

a

d c

1

e d

d c

1

1




, and σ3 =




e d

d c

a

1

a

b

1

1




. (3.17)

Note that while the rules in Eqns. (3.10)–(3.14) are unchanged from Ref. [SJ08], the unitary

transformations used in this algorithm are different due to the different encoding of the

basis states.

In order to approximate the Jones polynomial at t = e2iπ/5 using the DQC1-model we

take the weighted trace of a unitary that describes the braid representation of a knot. This

unitary is created by multiplying the unitaries from each elementary crossing in the braid

(given in Eqns. (3.16) and (3.17)). Then the Jones polynomial at t = e2iπ/5 is given by

V (t|ei2π/5) = (−(ei2π/5)4)3wφ−1
(

2n−1(1 + φ)M− κ
)
, (3.18)

where w is the writhe of the braid, φ = (1 +
√

5)/2 is the golden ratio, κ = (2n−1− fm)φ+

(2n−1 − fm−1), n is the number of qubits in the bottom register, and m = n + 1 is the

number of elements in the Fibonacci basis vectors. The remaining undefined parameter in

Eqn. (3.18) is the trace parameter M is given by

M =
WTr(Un)

2n−1(1 + φ)
, (3.19)

where WTr is the weighted trace defined by

WTr = 1 ×(trace of subspace ∗ . . . ∗) +

φ ×(trace of subspace ∗ . . . p).

Recall that the DQC1 model of computation results in a measure of the trace of a

unitary, where the top register is initially in a pseudopure state and the qubits in the
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bottom register are in the maximally mixed state. We have identified a new way to directly

measure the weighted trace using DQC1 by purifying the top qubit in the bottom register

and rotating it in order to implement the desired weights. Recall that when discussing our

Zeckendorf representation, we indicated that we wanted to separate the ∗ . . . p and ∗ . . . ∗
subspaces into the subspaces where the first qubit of the bottom register was in the |0〉
and |1〉 states, respectively. Then, by rotating this state we are able to apply a different

weight to the first and second half of the diagonal elements of the unitary. In our case, by

purifying the first qubit in the bottom register and performing a rotation that transforms

|0〉 to (
√
φ|0〉+ |1〉)/√1 + φ, we ensure that the subspace of basis vectors with ∗ . . . p have

weight φ/(1 + φ) and the subspace with basis vectors of the form ∗ . . . ∗ have weighting

1/(1 + φ). The unitary that implements this rotation is given by

R =
1√

1 + φ

(√
φ −1

1
√
φ

)
. (3.20)

This explains the motivation behind the form of our z′-representation, which ensures the

basis states are arranged in such a way as to each receive the correct weight. This also

explains the form of the κ term in Eqn. (3.18), whose sole purpose is to subtract the added

value that was given to the trace by the unused basis vectors.

The computational model now contains two initialized qubits. However, this modifi-

cation does not change the computational power as DQC(k) is known to have the same

computational power as DQC1, provided k scales at most logarithmically with the total

number of qubits [SJ08]. The circuit for our evaluation of the Jones polynomial for four-

strand braids can be seen in Figure 3.14. It is worthwhile to note that the off-diagonal

elements in the rotated pseudopure qubit do not contribute to the result as the unitary

matrices Un are always block diagonal, thereby eliminating the off-diagonal elements in the

calculation of the trace. The state of the top qubit at the completion of the algorithm is

ρA =
1

2n−1(1 + φ)

(
1 WTr(U †n)

WTr(Un) 1

)
, (3.21)

which upon measurement of 〈σx〉 and 〈σy〉 yields the real and imaginary parts of M =

WTr(Un)/(2n−1(1 + φ)) respectively, where n is the number of qubits in the bottom regis-

ter. The measured quantity M is then used to calculate the approximation of the Jones

polynomial, V (t), as described in Eqn. (3.18).
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Figure 3.14: Circuit diagram for the approximation of the Jones polynomial for the knots

whose braid representations consist of four strands. The number of crossings in the braid

representation dictates how many controlled-unitaries are implemented. The deviation

matrix for the initial state is given. The single qubit gates are the Hadamard and the

rotation for implementing the weights of the trace. The measurements performed on the

top qubit are expectation values of the Pauli–x and y operators.

3.4 Experimental Implementation

In this section, we detail the liquid-state NMR implementation of the algorithm described

above for the set of knots whose braid representations have four strands and three crossings.

There are six distinct, oriented knots in this set, which are shown in Figure 3.15, with their

corresponding Jones polynomials evaluated at t = e2iπ/5. The goal of the experiment is

to distinguish between two distinct knots given their braid representations. Note that

different values for the Jones polynomial indicate topologically inequivalent knots, but

identical values of the Jones polynomial do not allow us to conclude the knots are the

same, since distinct polynomials may have the same value at t = e2iπ/5. We implement

experiments for 18 different braid representations, with three different braid representations

for each distinct knot, as shown in Table 3.1. All knots with the exception of knots 1 and

2 have more braid representations than were implemented.

For four strands, the Fibonacci basis vectors have five elements, and the subspaces

of interest, ∗ . . . p and ∗ . . . ∗ have f4 = 3 and f4−1 = 2 basis states respectively. Thus,

the encoding of the basis states requires 3 qubits in the bottom register and a fourth

as the control qubit. Our four qubits are the four carbon-13 nuclei in crotonic acid,

while the hydrogen are decoupled using the WALTZ-16 composite pulse sequence [SKF83].
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1. 2. 3.

4. 5. 6.

V = -2.12 + 3.44i

V = 1V = -0.31 - 0.95i V = 2.62

V = -0.31 + 0.95iV = -2.12 - 3.44i

Figure 3.15: These are the six topologically distinct oriented knots whose braid represen-

tations have four strands and exactly three crossings. The values of the Jones polynomial

at the point t = e2iπ/5 for each knot are indicated. The experimentally implemented braids

corresponding to these knots can be seen in Table 3.1.
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Knot 1 Knot 2 Knot 3 Knot 4 Knot 5 Knot 6

σ−1
1 σ−1

1 σ−1
1 σ1σ1σ1 σ−1

1 σ−1
1 σ−1

2 σ1σ1σ2 σ1σ2σ3 σ1σ1σ
−1
1

σ−1
2 σ−1

2 σ−1
2 σ2σ2σ2 σ−1

2 σ−1
2 σ1 σ2σ2σ

−1
3 σ2σ3σ

−1
1 σ2σ2σ

−1
2

σ−1
3 σ−1

3 σ−1
3 σ3σ3σ3 σ−1

3 σ−1
3 σ2 σ3σ3σ

−1
1 σ−1

1 σ−1
2 σ−1

3 σ3σ3σ
−1
3

Table 3.1: The experimentally implemented braids and their corresponding knots. The

knots and the approximation of their Jones polynomials at e2iπ/5 are given in Figure 3.15.

Note that there are more braids that yield knots 3− 6 than those listed above.

Information about the molecule as well as a detailed description of the experimental setup

is found in Appendix A. C1 is our readout qubit, whose initial state is given by the deviation

density matrix ρC1 = Z, C2 is purified to the pseudopure state |0〉〈0|, and the remaining

C3 and C4 are initialized to the completely mixed state. Pulses for the controlled unitary

operations, given in Eqns. (3.16) and (3.17), their inverses, the rotation and Hadamard

gates were numerically optimized to have fidelities of 0.998 using the GRAPE algorithm

(see Section 2.1.2) and to be robust against small (±3%) inhomogeneities in the r.f. field.

The controlled unitaries are each 60ms in length while the single qubit gates are 600µs.

The pulses are corrected for nonlinearities in the pulse generation and transmission to the

sample by measuring the r.f. signal at the position of the sample using a feedback loop and

iteratively modifying the pulse accordingly. Through the feedback loop, the implemented

pulse was found to have a simulated fidelity of 0.99 after correction. More information

about this procedure can be found in the doctoral dissertation of Dr. Colm Ryan [Rya08]

and in Appendix A.

At the end of the algorithm, the fitted spectrum of C1 is compared to a reference

spectrum. Traditionally, the reference spectrum is of the initial state – however, due to the

complex nature and length of this experiment, comparing the final result to the initial state

was not sufficient. Figure 3.16 shows the difference in signal strength after the pseudopure

state creation and the end of a reference experiment where pulses whose propagator was

designed to be the identity were generated using GRAPE to have the same length and the

same average power and fidelity as the controlled-σi were implemented. In the absence of

decoherence effects and other errors, we would expect these two spectra to be identical.

In an attempt to normalize some decoherence effects, we used the state at the end of the

reference experiment to compare to the final state. This is a crucial step in the experimental
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Figure 3.16: Spectra of the initial state of C1 both with and without reference identity

pulses. The dotted red line shows the state immediately after preparing the pseudopure

state and the solid black line shows the pseudopure state after three successive 60 ms pulses

designed to implement the identity. These pulses were generated using GRAPE to have

the same average power and length of the controlled unitary pulses used in the experiment.

The state after these reference identity pulses was chosen to act as the reference for the

experiment in an attempt to normalize some of the decoherence effects.

procedure, as the state measured after three successive identity pulses, totalling 180 ms

had only 60% of the original signal (see Figure 3.16). This is not surprising, given that the

T2 for the carbon nuclei is approximately 1s, indicating that the length of the controlled-

unitaries is 0.18T2. Pulses of this length were required due to the complicated nature of

the pulses: they required coupling between all four qubits.

Another difficulty experienced in this experiment was the need to decouple the hy-

drogen nuclei throughout the experiment. The decoupling procedure is not perfect, and

because we are decoupling more than one proton, off-resonant effects arise. We found that

very small changes in the decoupling parameters (length between pulses, frequency, and

power) had a large impact on the carbon spectrum. In order to better decouple certain

spins, we sacrificed others. In addition to these errors, decoupling procedures require con-
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stant pulsing, which heats the sample and changes the Hamiltonian slightly. For future

experiments, my recommendation would be to avoid decoupling for long experiments or

those that require extreme precision. This can be done by using a different molecule or

preparing the unused spins in a pseudopure state.

Finally, in addition to implementation difficulties, we found subtle problems with

the pulse generation methods used. When using the GRAPE algorithm to numerically

generate the pulses, we use the fitness function of the gate fidelity Fg(Usim, Ugoal) =

|Tr(U †goalUsim)|2/d2 to determine how faithful the generated pulse is to the ideal pulse.

However, in a DQC1 algorithm we are making a very specific measurement: one resulting

in the trace of the unitary. One can imagine that while a given unitary may have a gate

fidelity of 0.998, it may have errors concentrated along the diagonal. The consequences of

this idea are fleshed out in Appendix A.1 where we found that indeed, it is likely to effect

our experiment. In order to get around this problem, in addition to creating a pulse with

high gate fidelity, we ensured it had a “well-behaved” trace. This two-part pulsefinding

procedure is not ideal, and a solution to this problem is of great interest.

3.5 Results

In this section, we report the results of the experiment to approximate the Jones polynomial

at t = e2iπ/5 using DQC1. The results are found by fitting the spectra at the conclusion of

the DQC1 algorithm, which allows us to measure the trace. The output spectrum of C1

for the experiment implementing the unitary corresponding to the braid σ1σ2σ3 is shown

in Figure 3.17 together with the simulated spectra. The fitted spectra are then integrated

to find the real and imaginary components of the weighted trace, whose definition is given

in Eqn. (3.19). This procedure is followed for 18 different braid representations and the

value of the Jones polynomial, approximated at t = e2iπ/5, is displayed in Figure 3.18 for

all 18 experiments.

Systematic errors from imperfect initial state preparation and decoherence not cap-

tured by the reference state result in the offsets from the theoretical values. The main

contribution to the spreading of the experimental points is the finite fidelity of the pulses.

As mentioned in the previous section, we have measured the pulse at the sample and found

that it has a simulated fidelity of 0.99. We then simulated the experiment performed with

0.99 fidelity to find the statistical error present. The error ellipses given in Figure 3.18
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Figure 3.17: Spectra of the final state of an instance of the experiment to approximate

the Jones polynomial using a DQC1 algorithm. The spectrum shown here is of C1 after

the unitary transformations associated with a four-strand braid with elementary crossings

corresponding to σ1σ2σ3, a braid representation of knot 5. The solid black line shows the

experimental data and the blue dashed line is the scaled simulation, highlighting the level

of control in our experiment. The real part of the weighted trace is proportional to the

integral of this spectrum. The imaginary part of the weighted trace is proportional to the

integral of the spectrum phased by 90 degrees.
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demonstrate the statistical error with 86.5% confidence levels or 2 standard deviations.

These error ellipses are used to determine if two knots are distinct.

Two values of the Jones polynomial at best can distinguish between two knots if they

are sufficiently far apart, and at worst, give no information, as even evaluations of the Jones

polynomial that are identical would not be sufficient information to conclude that the two

knots are identical. This leads to two types of errors when interpreting the data: passive

and fatal errors. Passive errors occur when two distinct knots are impossible to distinguish

because of their relatively close distance to one another, while fatal errors occur when two

identical knots are determined to be distinct. The success rate for determining whether

knots are distinct is calculated as the average of the percent of distinct knots correctly

identified and the percent of identical knots correctly indistinguishable:

success rate =
1

2

(
passive errors

pairs of distinct knots
+

fatal errors

pairs of identical knots

)
. (3.22)

The error ellipses give a direct method for determining if two knots are distinct. If the error

ellipses for a pair of knots do not overlap then it is inferred that the knots are distinct;

if the two ellipses overlap no information is gained. For the confidence region plotted in

Figure 3.18, 134 of the possible 135 pairs of distinct knots are correctly distinguished with

3 fatal errors of a possible 18, corresponding to a success rate of 91%. Note that the reason

the error ellipses in Figure 3.18 do not overlap with the theoretical values is because we

did not analyze all sources of error in the experiment. Because our goal was simply to

distinguish distinct knots, further analysis of the experimental errors was not necessary.

3.6 Conclusion

In this chapter, we experimentally implemented an instance of the DQC1 model of compu-

tation to approximate the Jones polynomial for a set of knots whose braid representations

have four strands and exactly three crossings. This experiment was chosen for several

reasons. One of these is that approximation of the Jones polynomial is a problem with

no known efficient classical algorithm and has applications in a wide range of fields. In

addition, it is a complete problem for the DQC1 model of mixed state computation, which

has very little entanglement yet provides an advantage over classical methods. Finally, the

experiment requires extremely good control over a long period of time, and therefore, is a
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Figure 3.18: The results for the approximation of the Jones polynomial for knots whose

braid representations have four strands and three crossings. There are six unique knots

of this kind and their theoretical values of the Jones polynomial at the point t = e2iπ/5

are plotted for each of the six experiments. The corresponding experimental data points

of three braid representations for each experiment are plotted, along with error ellipses

demonstrating the statistical error (with 86.5% confidence levels or 2σ). The distribution is

generated by simulating each experiment 200 times with single pulse fidelities of 0.99 which

is the implemented pulse fidelity. Using the error ellipses as discriminators, these results

yields a 91% success rate for distinguishing distinct knots, calculated using Eqn. (3.22).
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good test for how well current NMR quantum information processors can solve quantitative

DQC1 problems.

This experimental implementation was based on an algorithm developed in Ref. [SJ08],

that was modified to suit the needs of our particular experiment. Our modification was

motivated by finding a unique way to measure the weighted trace of a unitary. In order

to perform the weighted trace by using an additional pure qubit, we had to modify the

encoding of the basis vectors. This is done by creating a different Zeckendorf represen-

tation than that used in the original algorithm. This changed the problem to a DQC(2)

computation, which only adds a constant overhead, and is as powerful as DQC1 as the

number of maximally mixed qubits grow [SJ08].

Our experiment was performed on four qubits in liquid state NMR. Within the set of

knots whose braid representations have three crossings over four strands, we were 91%

successful at distinguishing distinct knots. These results show the extremely precise imple-

mentation of a difficult quantum algorithm, pushing the boundaries of control in NMR. In

future work, it would be interesting to see how the values of the Jones polynomial spread as

you increase the number of strands and crossings in the braid representations, in order to

determine what size knot can be experimentally examined before noise and control errors

destroy the quantum advantage.
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Chapter 4

Experimentally detecting

non-classical correlations in a

mixed-state computation

In previous chapters we have explained the computational model of DQC1 and used it

to experimentally approximate the Jones polynomial, an important problem that cannot

be efficiently solved by today’s classical methods. We have also briefly discussed the cor-

relations present in the mixed states of the DQC1 model, indicating that they contain

very little, or no, entanglement. However, even in the bipartite splitting that gives rise to

zero entanglement, it can contain nonclassical correlations as measured by the quantum

discord [DSC08]. Quantum discord, as explained in Section 2.2.2, is a measure of the

correlations that exist in excess of those present in classical states. It is measured by the

difference in two classically equivalent formulations of the mutual information, where a

non-zero value indicates a deviation from purely classical correlations [HV01, OZ01]. It

is not yet known whether or not quantum discord assists quantum algorithms, but it is a

good candidate for the computational advantage offered by the DQC1 model, and under-

standing it better will certainly provide insights into the workings of quantum systems and

algorithms.

While it has been shown that almost every quantum state has quantum discord [FAC+10],

Datta, Shaji, and Caves showed that, on average, the quantum discord present in a DQC1

algorithm drops with a decrease in polarization [DSC08]. Typical liquid-state nuclear
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magnetic resonance (NMR) experiments are performed at room temperature, and the un-

entangled initial states have very small polarization. Therefore, the following question

remains: is it possible to experimentally detect quantum discord in a DQC1 algorithm

where the polarization is very small?

In this chapter we report on the experimental detection of non-classical correlations

in the output state of a DQC1 algorithm in NMR, using a state-independent non-zero

discord witness. Similar to entanglement, calculation of the quantum discord for a general

state requires full tomographic data; therefore, witnesses that detect the existence of these

correlations are a practical alternative. This experiment is the first physical implementation

of a non-linear discord witness that can detect discord in any state of any size. We are

able to detect discord without full tomographic data, using instead only a few experiments

for a four-qubit system.

The results of this work have been published in Physical Review A [PMTL11], copyright

(2011) by the American Physical Society. The experiment was performed by the author

of this thesis, who benefited from the assistance of O. Moussa during the planning stages

and throughout data analysis and interpretation. D. A. Trottier assisted on this project

for several months, working with the computational analysis.

This chapter proceeds as follows: Section 4.1 explains how quantum discord witnesses

work and summarizes several different witnesses from the literature. The experimental

setup is detailed in Section 4.2, and the results are given in Section 4.3. The chapter

concludes with a discussion of the results.

4.1 Witnessing Quantum Discord

In order to calculate the quantum discord in a particular state, full knowledge of the quan-

tum state and a minimization over all projective measurements is required. Quantum

state tomography is very expensive, as the number of resources required grows exponen-

tially with the number of qubits in the system – making it very impractical. Measuring the

entanglement in a system suffers from the same requirement. As a result of this require-

ment, soon after entanglement measures were articulated, entanglement witnesses were

created [HHH96, Ter00], the basics of which can be read in Section 2.2.1. Discord wit-

nesses have been created with exactly the same idea. In this section we discuss discord

witnesses and describe the witness used in our experimental work.
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4.1.1 States with zero quantum discord

Before defining a discord witness, it is important to take a better look at states that

have zero discord. Zero discord states were categorized in Section 2.2.2 as CQ states with

D(A :B) = 0, QC states with D(B :A) = 0 and CC states where D(A :B) = D(B :A) = 0.

In this chapter we are going to be concentrating on CQ states. A necessary and sufficient

condition for a bipartite quantum state having zero discord D(A :B) is that there exists a

measurement {Πk} such that

ρAB =
∑

k

(Πk ⊗ I)ρAB(Πk ⊗ I), (4.1)

where {Πk} is a projective measurement acting on subsystem A [Dat08]. A similar expres-

sion exists for states with zero discord D(B :A), where the measurement is performed on

subsystem B. The above statement appears very intuitive: if a measurement on system A

does not disturb or affect the total state, then the system contains no correlations in excess

of those that exist in classical systems. This is in agreement with our definition of classical

and quantum correlations given in Section 2.2, where we defined classical correlations as

those that can be locally accessed without disturbing the total system.

Alternatively, we can say that the state ρAB has zero quantum discord when it is block

diagonal in the eigenbasis of the reduced (marginal) state of system A. This criteria can be

seen by directly looking at the definition for CQ states (states with zero discord D(A :B)):

ρAB =
∑

j pj|j〉〈j| ⊗ ρBj , where {|j〉} is an eigenbasis for ρA.

Looking at the state originally given in Eqn. (2.51),

ρAB =
1

2
(|0〉〈0| ⊗ |−〉〈−| + |1〉〈1| ⊗ |0〉〈0|),

we can demonstrate these two criteria for states with zero discord. For this simple example,

it is straightforward to see that there exists a measurement on system A (in this case, in the

computational basis), that does not effect the state, indicating that there is zero discord,

D(A :B). On the other hand, we can see that there is no such measurement on system

B that does not disturb the state of the system. Equivalently, we could have written this

state in its matrix form:

ρAB =
1

2




1
2
−1

2
0 0

−1
2

1
2

0 0

0 0 1 0

0 0 0 0


 .
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In this example, the marginal eigenbasis of ρA is the computational basis, and when we

write the density matrix in that basis, it is easy to see that it is block diagonal. Another

state whose marginal eigenbasis is the computational basis is the Werner state given in

Eqn. (2.55):

ρW =
(1− z)

4
I⊗2 + z|ψ+〉〈ψ+|

=
1

4




1 + z 0 0 2z

0 1− z 0 0

0 0 1− z 0

2z 0 0 1 + z


 ,

which is not block diagonal for any value z 6= 0. This is consistent with what we found

in Section 2.2.2: ρW has non-zero quantum discord for any non-zero value of z. For

more information on criteria for vanishing quantum discord, please see Refs. [HWZ11]

and [Dat10].

Zero discord states in NMR

Typical NMR experiments have very small polarization, which lead to very small amounts

of quantum discord. One of the difficulties in measuring discord or similar properties in an

NMR experiment is that we only measure the pseudopure state in traditional experiments.

Recall that NMR states can be written as a mixture of the identity and a pseudopure state,

ρNMR =
1− α

2n
I + αρpps.

Experimentally, pseudopure states are measured and compared to a known state that serves

as a reference for α. If we detect the presence of quantum discord in the pseudopure state,

a priori, it is not known whether or not the physical state contains discord. However, it

turns out that detecting discord in the pseudopure state is sufficient for detecting discord

in the physical state (ρNMR). The proof of this statement is shown below.

Recall that a necessary and sufficient condition for a state ρ to have zero discord is that

there exist a projective measure {Πk} such that

ρ =
∑

k

(Πk ⊗ I)ρ(Πk ⊗ I). (4.2)
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Analyzing this condition for ρNMR:

∑

k

(Πk ⊗ I)ρNMR(Πk ⊗ I) = ρNMR

∑

k

(Πk ⊗ I)
(

(1− α)

2n
I + αρpps

)
(Πk ⊗ I) =

(1− α)

2n
I + αρpps

⇒ (1− α)

2n
I +

∑

k

(Πk ⊗ I)αρpps(Πk ⊗ I) =
(1− α)

2n
I + αρpps

⇒
∑

k

(Πk ⊗ I)αρpps(Πk ⊗ I) = αρpps

⇒
∑

k

(Πk ⊗ I)ρpps(Πk ⊗ I) = ρpps

for α 6= 0. The necessary and sufficient condition for non-zero discord in the physical NMR

state ρNMR is equivalent to the necessary and sufficient condition for non-zero discord in

the pseudopure state ρpps. In other words, if discord is found in the pseudopure state,

it indicates the presence of discord in the physical state, regardless of the amount of

polarization α.

This result has also been shown in the work of A. Ferraro et al.[FAC+10]. They indicate

that all states belonging to the set of zero discord states are connected to the maximally

mixed state, and that as one rectilinearly moves any state to the maximally mixed state

(this is equivalent to moving through the depolarizing channel), if the original state had

zero discord, then all states towards the maximally mixed will have zero discord. If it

has non-zero discord, on the other hand, then all states encountered prior to reaching

the maximally mixed state will also have non-zero discord. This is in stark contrast to the

existence of entanglement, which vanishes for a particular value of the polarization. Indeed,

this indicates that states in the highly mixed NMR architecture can contain correlations

above and beyond what is found in classical systems, as measured by the quantum discord.

4.1.2 Discord Witnesses

As mentioned above, discord witnesses are desirable due to the difficulty in measuring

the amount of discord present in an experimental state. To date there have been several

proposals for witnessing quantum discord, most of which are able to detect discord in a
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small set of cases. Note that unlike entanglement witnesses, a discord witness is necessarily

nonlinear as the set of zero discord states is not convex. Let us briefly mention them here

before explaining the witness chosen for our experiment.

• A witness for the correlations shared by a system and its environment was created

by Laine, Pillo and Breuer [LPB10]. This witness does not require any knowledge of

the structure of the state or the initial conditions of the environment. It has been

experimentally implemented in optics [SBC+11].

• The discovery that 2 × N -dimensional states that are not strong positive partial

transpose must contain non-classical correlations as measured by the quantum dis-

cord [BC10] lead to a natural witness for these states that is analogous to the Peres–

Horodecki positive partial transpose (PPT) criterion for entanglement.

• A single-experiment detectable witness for use in ensemble systems was developed

by Rahimi and SaiToh [RS10]. This witness requires a parameter to be determined

numerically before the witness can be experimentally helpful. This witness detects

CC states that have D(A :B) = D(B :A) = 0.

• An observable witness that works for any unknown quantum state was developed by

Yu et al. [YZCO11]. It requires four copies of the state to be processed simultaneously.

• A non-linear witness for certain two-qubit states has been proposed [MS10]. The

witness detects non-classical correlation if a two-qubit state written as

ρ =
1

4

(
I2 +

∑

i

(aiσi ⊗ I + biI ⊗ σi + ciσi ⊗ σi)
)

is not CC. This witness has been used to experimentally detect quantum discord in

a two-qubit NMR system [AMC+11]. They looked for discord in two Bell-diagonal

states, one of which was a QC state and the other was CC, as well as the thermal NMR

state. Recently, this witness was extended for use in arbitrary dimension [MCC11].

Finally, the witness we use in this experimental test for discord was introduced by

Dakic, Vedral and Brukner in 2010 [DVB10]. They used the definition for zero discord

states given in Eqn. (4.2) and proved that for a bipartite state written as

ρ =
∑

n,m

rnmAn ⊗Bm, (4.3)
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where {An}, {Bm} are bases of Hermitian operators, a sufficient condition for non-zero

quantum discord D(A :B) is that if the correlation matrix R with matrix elements rnm has

a rank greater than the dimension of system A. Similarly, for non-zero discordD(B :A), the

rank of the correlation matrix must be greater than the dimension of system B. Therefore,

in order to witness discord in a quantum system, instead of performing exponentially

many experiments to obtain the full quantum state, one only has to measure enough

elements of the correlation matrix to find a rank greater than dim(A). In addition to

being experimentally friendly, this witness works for states of any dimension and bipartite

splitting. Details on how we measure this experimentally are given in the following section.

4.2 Experimental Detection of Quantum Discord

Using the discord witness described above, we set out to detect quantum discord in an NMR

implementation of a DQC1 algorithm. While previous studies have theoretically [DSC08]

and experimentally [LBAW08] shown that DQC1 contains non-classical correlations, these

studies rely on full knowledge of the quantum state. This chapter details our experiment

to detect quantum discord using only a small number of experiments.

Our NMR experiment is implemented using four carbon-13 labeled nuclei in crotonic

acid (whose chemical structure and the Hamiltonian are found in Appendix A, along with

a diagram in Figure A.1), in the liquid state. The qubits are encoded in the spin states of

the spin-1/2 nuclei. The ground state bias, known as the polarization, is very small in this

experiment, with a value of 1.43× 10−5. For this polarization and perfect implementation

of the unitary transformations on the three qubits in the bottom register, the numerically

computed quantum discord present at the completion of the algorithm described below,

is 5.4 × 10−11. This corresponds very well with the analytical results [DSC08] for the

average discord after a DQC1 circuit for a unitary drawn uniformly by the Haar measure

of approximately 7.1 × 10−11. In this experiment we test whether or not it is possible to

detect an amount of discord this small.

We tested for quantum discord at the initial and final state of the DQC1 model. The

circuit diagram for each experiment can be seen in Figure 4.1. The unitary we chose is of

the form U = diag(a, a, b, 1, a, b, 1, 1), where a = −(e−i3π/5)4 and b = (e−i3π/5)8, and is an

important transformation in the approximation the Jones polynomial for a class of knots

whose braid representations have four strands. The Jones polynomial is an important
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Figure 4.1: DQC1 circuit diagram to test for quantum discord in the (a) initial and (b)

final states in a DQC1 experiment. The measurements are accompanied by single qubit

rotations that determine the operators observed in each experiment.
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application of the DQC1 model of computation as discussed in Chapter 3. For particular

information regarding the NMR experimental procedure, please consult Appendix A.

We are looking to detect discord across the zero-entanglement bipartite splitting of

the top and bottom register, so system A consists of a single qubit and system B of three

qubits. In order to write the state in the form of Eqn. (4.3), we chose the bases of Hermitian

operators to be {An} = {I,X, Y, Z} and {Bm} = {III, IIX, IIY, IIZ, IXI, IXX, . . .},
where X = σx (similarly for Y and Z) and {Bm} are all possible combinations of three

qubit Pauli operators. Then, for example, the (2, 2) element of the correlation matrix

is, r22 = Tr(XIIXρ). The choice of operators was made due to the ease of measuring

Pauli operators in NMR. The size of our correlation matrix R is 4× 64, and therefore has

a maximum rank of four. In order to witness discord D(A :B), we must show that the

rank(R) > dim(A) = 2.

We determine the rank of the correlation matrix by computing the number of non-zero

singular values. Finding a lower bound on the rank of a matrix does not require that all

elements of the matrix be measured, only a rectangular subset. We call this rectangular

subset our truncated correlations matrix, Rtrunc, which does not have a pre-set dimension

and can change size throughout the procedure. The procedure for determining if the rank

is greater than two is as follows:

1. Start by measuring a subset of the correlation matrix, denoting it Rtrunc. We chose

to start with 4× 4 section of the correlation matrix.

2. Determine the rank by performing a Monte Carlo sampling to determine which sin-

gular values can be reliably distinguished from zero (this procedure is explained in

more detail below)

3. Proceed as follows:

(a) If rank(Rtrunc) > 2: Quantum discord is detected!

(b) If rank(Rtrunc) ≤ 2: Since the rank is less than or equal to two, there must

be linearly dependent columns in the correlation matrix. Remove any linearly

dependent columns and replace by measuring an additional column of the cor-

relation matrix. Then, repeat from step 2.
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Figure 4.2: The operator XIZY is not inherently observable in NMR, so in order to observe

it we perform a π/2-rotation about the x-axis on the fourth qubit and observe XIZZ.

This procedure will continue until either quantum discord is witnessed, or the entire corre-

lation matrix has been measured, giving full tomographic data. It is important to note here

that if the rank is found to be less than the dimension of system A, we cannot conclude

that the system has zero discord – our test was simply inconclusive, as rank(R) > dim(A)

is sufficient but not necessary for non-zero discord.

Each experiment involved performing a readout pulse immediately before the mea-

surement that allowed us to measure the coefficients of different operators. In NMR, the

2n observables we measure for n qubits are X and Y on a single observed qubit, with

Z⊗mI⊗n−m−1 and their permutations for m = 0 . . . n − 1. In this four-qubit experiment

there are 16 observables. In order to measure each of the operators in the correlation ma-

trix R, we perform a rotation that allows us to measure the coefficient of an operator that

is not inherently observable in NMR. For instance, if you wanted to measure to operator

XIZY on four qubits, you could perform a readout pulse on the fourth qubit that consists

of a rotation of π/2 about the x-axis, then measure the observable XIZZ. This can be

seen graphically in Figure 4.2. An example of the spectra for the top qubit after a readout

pulse of π/2-rotations about XIY Y and the corresponding fit are shown in Figure 4.3.

More information about measuring operators in NMR can be found in Ref. [LM04].

The Monte Carlo sampling used during step 2 is required because any experimental

data will always have full rank due to small errors. In order to determine the rank of

our matrix that is robust against these small errors we perform a Monte Carlo sampling
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Figure 4.3: Above is the spectra resulting from the DQC1 experiment followed by a read-out

pulse of XIYY. After performing the readout pulse, we are able to measure the coefficients of

the following operators: {XIII,XIIX,XIXI, XIXX,XZII,XZIX, XZXI,XZXX,

ZIII, ZIIX,ZIXI, ZIXX,ZZII, ZZIX, ZZXI, ZZXX}. The first eight operators are

measured by fitting the resulting spectrum, with the last eight operators found by fitting

the spectrum above, phased by 90 degrees. This figure displays the experimental data and

the fitted curve.
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of each of the elements of the matrix. Each sampled element is determined by a normal

distribution around the measured value, whose variance is determined by the errors in the

spectral fitting process. Once a sampled value for each element is found, one set of singular

values are computed. We repeat this process many times to produce a histogram of singular

values (as can be seen in results Figures 4.4 and 4.5). The rank is then determined by the

number of distributions that do not overlap with zero.

4.3 Experimental Results

In this section we outline the experimental results to detect discord in the initial state and

the final state of the DQC1 algorithm.

4.3.1 Initial state

In measuring the correlation matrix for the initial state, we began this procedure with a

4×4 truncated matrix Rtrunc, found a rank of 1, measured another column of the correlation

matrix, found a rank of 1, and continued this process until the entire correlation matrix

had been measured. Therefore, we were not able to detect any quantum discord in the

initial state of the DQC1 algorithm. This result is not surprising, as simulations show zero

discord in this state.

The Monte Carlo sampling only ever looked at a 4 × 4 truncated matrix, because

we found that as the size of the matrix grew, the errors compounded, leading to much

wider spreads in the histogram of singular values. Instead, we would remove one linearly

dependent column as we added an additional one (item 3(b) in the procedure listed above).

This ensured we were not “missing” any non-zero singular values due to a very wide spread

in the histogram.

The histogram in Figure 4.4 was created using 1000 different 4 × 4 truncated correlation

matrices, each of these Rtrunc was sampled 10 times. Every truncated correlation matrix

Rtrunc was composed of the first column (which includes the IIII component, which is

known to be exactly 1) and three other random chosen columns. As can be seen, there is

one singular value around 1.4, due to the IIII element, and three others centred around

zero. The cumulative function is included in the figure to assist the reader in determining
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the integral of the distribution, which indicates the number of singular values accounted

for.

4.3.2 Final state

When measuring the final state, we began by measuring columns corresponding to Bm =

{III, IZI, IIZ, IZZ}. Recall that the rows correspond to An = {I,X, Y, Z}. The experi-

mentally measured truncated correlation matrix is

Rtrunc =




1 −0.01 0.00 −0.01

0.10 −0.34 −0.13 0.25

0.17 0.38 0.04 0.26

0.01 0.08 −0.01 0.02


 (4.4)

±




0 0.007 0.01 0.007

0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05

0.04 0.007 0.007 0.007


 ,

where the errors reported are propagated through linear inversion from spectral peak-

fitting, and correspond to a 68.2% confidence level in the results of the fitting process.

Each matrix element is calculated using linear inversion of variables fitted directly from

the NMR spectrum. In order to obtain these results, four instances of the experiment

were required, each with a different readout pulse and observing a different spin. Note

that the matrix element corresponding to the operator IIII has no error associated with

it, which is because this term is not measured, but is known to be one in order to ensure

that trace(ρ) = 1. All values in the correlation matrix are measured as a fraction of the

polarization α by comparing with a reference state.

Without performing any further data analysis, it is possible to estimate that the cor-

relation matrix of the final state has a rank of at least three, by simply inspecting the

elements of the correlation matrix in Eqn. (4.4). The first column is clearly linearly inde-

pendent from the rest due to the (1, 1) matrix element: r11 = 1. By looking at the matrix

elements r22, r23, r42, and r43, it can be assumed that the second and fourth columns in

Eqn. (4.4) are linearly independent:
(
r22 r42

r23 r43

)
=

(−0.34 0.25

0.38 0.26

)
, (4.5)
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Figure 4.4: Histogram of singular values from the initial state correlation matrix. This

histogram was generated by Monte Carlo sampling from the errors of a randomly chosen

4× 4 truncated correlation matrix. Errors on each of 1000 Rtrunc were sampled 10 times,

and the bin size of the histogram is 0.005. We used the truncated correlation matrices in

order to reduce the compounding of errors during the calculation of singular values. The

cumulative of the distribution is plotted to assist the reader in determining the rank. Here,

there are clearly three singular values consistent with zero and one non-zero singular value.

The conclusion drawn from this data is that the rank is very likely 1 and most certainly

less than the 3 required to detect discord.
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which leads to a rank of at least three. Indeed, checking this assumption by performing the

same form of Monte Carlo sampling as used on the initial state, the rank of the truncated

correlation matrix was determined to be at least three. Because only four columns of the

correlation matrix were measured, the 10000 values sampled in the Monte Carlo were only

for this instance of the truncated correlation matrix (unlike the 1000 truncated correlations

matrices that were sampled from in the initial state analysis). The histogram of singular

values is given in Figure 4.5, including the cumulative of the distribution to assist in

determining the rank. The data clearly indicates that there is one singular value consistent

with zero, two singular values in the middle, and another non-zero singular value around

one.

4.4 Discussion and Conclusion

While quantum discord is a good measure of the non-classical correlations present in a

quantum system, it is very difficult to measure the quantum discord for a generic system

since full tomographic data is required. As an alternative, it is possible to measure the

existence of non-classical correlations, as measured by the quantum discord, using a discord

witness. In this experiment, we set out to witness quantum correlations in the highly mixed

states of liquid state NMR that are found in the DQC1 algorithm. The particular witness

used was proposed by Dakic, Vedral and Brukner [DVB10], and works for generic states

of arbitrary dimension.

We know that the states in our NMR experiments cannot contain entanglement due to

their very small polarization, but it has been theoretically calculated that quantum discord

can exist in DQC1 algorithms that have non-zero polarization. In simulation, we show that

for the polarization of 1.43×10−5 in our experiment, the quantum discord is approximately

5.4 × 10−11, and in this chapter, we set out to determine whether or not it is possible to

measure such a small amount of non-classical correlations. In order to detect correlations

of that size in our experiment, we show that detecting correlations in the pseudopure state

ρpps is necessary and sufficient to detect correlations in the physical NMR state ρNMR.

In order to detect quantum correlations in the state

ρ =
∑

n,m

rnmAn ⊗Bm,
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Figure 4.5: Distribution of the singular values and the cumulative distribution computed

for the experimentally determined correlation matrix of the final state of a DQC1 algorithm

implemented in NMR. This distribution is created by sampling from a normal distribution

of the errors on each matrix element and calculating the singular values of the sampled

matrix. There are 10,000 samples in this plot and the histogram bin size is 0.005. The

cumulative of the distribution is included to guide the reader in estimating the integral of

portions of the distribution. With certainty, we deduce that the final state has a rank of at

least three, indicating that quantum discord is detected in this state. Discord is detected in

the pseudopure state ρpps, indicating the that physical state, ρNMR = (1− α)I/2N + αρpps
also has non-zero discord, regardless of the polarization α.
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where rnm are the matrix elements of correlation matrix R, we need to find that Rank(R) >

dim(A). In our case, system A consists of a single qubit. We measure the rank of the

correlation matrix in the pseudopure state at the initial and final points of the DQC1

algorithm. The experimental results given in Section 4.3 show that the rank of correlation

matrix R in the initial state of the DQC1 algorithm is one and the final state has a rank

of at least three. Therefore, while we were not able to detect discord in the initial state of

the DQC1 algorithm, we successfully witnessed non-classical correlations in the final state.

This is despite the fact that these correlations are on the order of 10−11. These results are

consistent with quantum discord being generated in the DQC1 algorithm, and support the

idea that it may be the source of the speedup over the best classical algorithms.

There are still many unanswered questions in the quest to understand the non-classical

nature of the DQC1 model. Since we know that almost all quantum states contain non-zero

discord, an interesting question is whether or not there is a threshold value for non-classical

correlations, such that any correlations above that give rise to ‘useful’ quantum effects?

And is there a way to efficiently measure the quantum correlations in the DQC1 algorithm,

or perhaps bound their amount? We tackle the latter question in Chapter 5.
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Chapter 5

Analyzing Discord in the DQC1

Model of Computation

As we have previously discussed in this thesis, the DQC1 model of computation is of

great interest in the quantum information community. We know that for the most natural

bipartite splitting, between the top and bottom register, there is never any entanglement,

yet there are quantum correlations measured by the quantum discord. It is possible to

numerically solve for the value of these correlations once given full tomographic data,

and in the absence of that, we can detect the presence of these correlations (Chapter 4).

However, because almost all quantum states contain non-zero quantum discord [FAC+10],

it is desirable to have an experimentally suitable method for measuring the magnitude of

the correlations.

In this chapter we describe how it is possible to measure quantum correlations in a

DQC1-state. This is achieved using the measure of quantum correlations known as the

geometric quantum discord (GQD) [DVB10] (to be explained in Section 5.2.1), which can

be analytically solved for a DQC1-state. We also show that solving for the geometric

discord in a DQC1-state is in the complexity class DQC1. In other words, in order to solve

for the GQD, you only need to perform a DQC1 algorithm. Specifically, a DQC1 algorithm

where the controlled-unitary is applied twice. This work is given in Section 5.2, and an

experimental measurement of the GQD of an NMR implementation of the DQC1 model is

detailed in Section 5.3.

In addition to this result, which holds for any size DQC1-state, for the special case
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of a two-qubit DQC1 algorithm, an analytical expression for the quantum discord (QD)

based on mutual information is found. Calculating the QD for a two-qubit DQC1 state

also only requires the result of the DQC1 algorithm (namely, the trace of the unitary).

This work is outlined in Section 5.4. Finally, we end this chapter with a conclusion in

Section 5.5. The results given in this chapter have been published in Physical Review

A [PML12], copyright (2012) by the American Physical Society. The author of this thesis

performed the experiment and the mathematical calculations. The ideas, methodology,

and discussion were done in collaboration with O. Moussa.

5.1 Background: Discord and DQC1

5.1.1 Previous work analyzing the Quantum Discord

Analytical expressions for the QD are desirable since computing the QD directly from its

definition is computationally intensive, as in addition to requiring full knowledge of the

state it requires an optimization over all possible projective measurements acting on one

of the subsystems. In the next section we will focusing on DQC1-states, but first let us

briefly describe some of the progress for creating a closed form equation for the quantum

discord of special sets of states.

• In 2008, Luo [Luo08] analytically studied the discord of a set of two-qubit states that

can be written as ρbd = 1/4(I+
∑

i ciσi⊗σi), known as Bell-diagonal states or states

with maximal mixed marginals. The quantum discord for this set of states is

D(ρbd) =
1∑

i,j=0

λij log 4λij − C(ρbd),

where C(ρ) is the value of classical correlations as defined by Henderson and Ve-

dral [HV01] and is equal to 1/2
∑1

i=0(1 + (−1)ic) log(1 + (−1)ic), for c = max(ci).

• The quantum discord for two parameters states of 2 × d dimension was found in

Ref. [Ali10]. The two (real) parameter state is defined as

ρδ,γ = δ
1∑

i=0

d−1∑

j=2

|ij〉〈ij|+ β(|φ+〉〈φ+|+ |φ−〉〈φ−|+ |ψ+〉〈ψ+|) + γ|ψ−〉〈ψ−|,
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where |ij〉 is an orthonormal basis for the 2 × d system, |φ±〉 = 1/
√

2(|00〉 ± |11〉)
and |ψ±〉 = 1/

√
2(|01〉 ± |10〉) are the Bell states, and β is a dependent variable by

requiring Tr(ρδ,γ) = 1 = 2(d− 2)α+ 3β + γ. Then the quantum discord of this state

is equal to

D(ρδ,γ) = β log(2β) + γ log 2γ − (β + γ) log(β + γ).

It has been shown that any bipartite state of dimension 2× d can be written in the

form ρδ,γ using local operations and classical communication [CL03]. Note that while

the discord does not change under local unitary operations, it can both increase and

decrease when you use classical communication in addition to local operations.

• The set of two-qubit states with an analytical expression for the discord grew in 2010

and 2011 when the set of two qubit X-states were added [ARA10, CZY+11]. True to

their name, X-states can be written in the computational basis as

ρX =




ρ00 0 0 ρ03

0 ρ11 ρ12 0

0 ρ∗12 ρ22 0

ρ∗03 0 0 ρ33


 .

• In 2011 the optimal measurements to measure an upper bound on the discord of

two-qubit states was found [LMXW11]. Using the so-called maximal-correlation-

direction measurement (MCDM), they prove that for zero-discord states and those

with maximally mixed marginals, this MCDM is optimal. For all other two-qubit

states, the MCDM gives an upper bound on the quantum discord present.

• Analytical progress on computing the quantum discord of general two-qubit states has

been made [GA11c], where the solution can be found by solving a set of transcendental

equations.

While all of this progress is promising, there is still no efficient method for calculating the

discord of a general quantum state.
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5.1.2 Discord for an average DQC1-state: analytical and numer-

ical

Let us shift our focus to the DQC1 model of computation, where Datta et al. [DSC08]

found an expression for the average discord in the state at the conclusion of the DQC1

model (what we hereafter refer to as the DQC1-state). The result is

Davg(ρDQC1) = 2−H2

(
1− α

2

)
− log(1 +

√
1− α2)− (1−

√
1− α2) log e,

with the assumptions that the number of qubits in the bottom register is large and that the

unitaries are chosen randomly from the Haar measure. They compare the average given by

the above expression with a numerically found average and show that the above expression

is a good estimate once the number of qubits in the bottom register reaches five.

After reading the work of Datta et al., we were very curious as to the spread of the

quantum discord for systems with a small number of qubits. Figures 5.1 and 5.2 show

numerical results for the discord in a DQC1-state where the unitary was chosen randomly

from the Haar measure, as a function of the polarization. Note that all graphs in Fig-

ures 5.1-5.2 have been plotted with the same scale on the vertical axis to allow for easier

comparison. We simulated a random unitary from the Haar measure in systems whose

bottom register has between one and six qubits. We found that the spread of the discord

in the DQC1-state (referred to as ρDQC1) decreases rapidly as the number of qubits in the

bottom register grows.

These figures suggest that as the dimension of the bottom register grows, the discord in

the average case is less likely to be near zero. However, we know that there are unitaries that

give rise to zero quantum discord in the DQC1 model: Dakic, Vedral and Brukner [DVB10]

found that unitary transformations of the form U = eiθA, where A2 = I give rise to zero

discord in the final DQC1 state1. So that begs the question: what about the discord of

the states after unitary transformations that are very close to a ‘zero-discord’ unitary, such

as the identity? To study this, we numerically look at the DQC1-states that arise from

controlled-unitaries that have a less than perfect fidelity with the identity. The gate fidelity

measure used is defined as

F (U1, U2) =
|Tr(U1U

†
2)|2

d2
,

1Note that there is a typographical error in the published version of the paper where they incorrectly
state that the binary observable has A2 = A. (Ref. [DVB10])
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where d is the dimension of the unitary. The plot in Figure 5.3 shows the discord for a

DQC1-state when the controlled-unitary has been generated to have a fidelity of between

0.86 and 0.99 with the identity2.

This figure indicates that, while the data in Figures 5.1 and 5.2 have a gap between

zero discord and the average for the DQC1-state as the dimension gets larger, this is a

consequence of the concentration of measure for Haar random unitary matrices, rather

than a property of the discord. It indicates that, while we can mathematically say that

most unitaries in the DQC1 model will give rise to values of quantum discord close to the

average, it does not give us any indication of the amount of discord present in a particular

DQC1 experiment. This is one of the reasons that we search for an analytical expression

for the amount of non-classical correlations present in the DQC1 model in Sections 5.2

and 5.4.

2Fidelities of 0.99 are important to the NMR experimental implementations in this thesis, as we have
simulated the fidelity of the four-qubit DQC1 controlled-unitaries to be implemented at approximately
0.99 fidelity (described in Appendix A).
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Figure 5.3: The quantum discord for a four-qubit DQC1-state after application of a

controlled-unitary designed to have a fidelity of between 0.85 and 0.99 with the iden-

tity. This confirms our suspicion that the gap from zero quantum discord and the mean

value in the ‘typical’ instances shown in Figures 5.1 and 5.2 is due to concentration of the

Haar measure, and is not a feature of the quantum discord of DQC1-states.

86



5.2 Geometric Discord of a DQC1-state

Until this point, we have concentrated on the quantum discord as a measure of quantum

correlations. We have come to realize that while QD is a very good measure of the corre-

lations in a state, it is extremely hard to measure. As mentioned in Section 5.1, work to

find analytical expressions for two qubit states have been tedious, and successful for only a

handful of states. This motivated Dakic, Vedral and Brukner [DVB10] to define a different

measure of quantum correlations called the geometric quantum discord (GQD). Directly

from their definition, with a relatively small amount of analysis, they were able to provide

an analytical expression for the GQD in an arbitrary two qubit state – an accomplishment

yet to be achieved in the case of quantum discord.

In this section we look at this measure of correlations in more detail, specifically for the

states present at the conclusion of the DQC1 algorithm. We are able to find an analytical

expression for the quantum discord of these states, which is contained in the complexity

class DQC1. That is to say that it is easily measured by a DQC1 algorithm. This section

proceeds as follows: in Section 5.2.1 we explain the measure of GQD and review the

existing literature. Section 5.2.2 is devoted to solving for an analytical expression for the

geometric discord for an arbitrary DQC1-state. In Section 5.2.3 we discuss these results

and look at the geometric discord for an average unitary, analogous to the work presented

in Section 5.1.2. Moving to Section 5.3, we report the results of an experiment to measure

the geometric discord in a four-qubit DQC1-state.

5.2.1 Geometric quantum discord as a measure of quantum cor-

relations

The geometric quantum discord [DVB10] is defined as the minimum norm distance between

the given state and the set of zero-discord states:

DA
G(ρ) = min

χ∈ΩA0

||ρ− χ||2 (5.1)

where Ω0 is the set of all classical-quantum, zero discord (D(A :B) = 0) states, parame-

terized by ΩA
0 =

∑
j pj|j〉〈j| ⊗ ρBj . The quantity ||ρ−χ||2 = Tr(ρ−χ)2 is the square of the

Hilbert-Schmidt norm of Hermitian operators. Note that the GQD (just like the QD), is not

symmetric in the subsystems, as DB
G(ρ) = minχ∈ΩB0

||ρ−χ||2, where ΩB
0 =

∑
j pjρ

A
j ⊗|j〉〈j|.
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Dakic, Vedral and Brukner were able to provide a closed form expression for the geo-

metric discord of arbitrary two-qubit states. They start by writing an arbitrary two-qubit

state as

ρ =
1

4

(
I ⊗ I +

3∑

i=1

xiσi ⊗ I +
3∑

i=1

yiI ⊗ σi +
3∑

i,j=1

Tijσi ⊗ σj
)
, (5.2)

where xi = Tr(ρσi ⊗ I), yi = Tr(ρI ⊗ σi), and Tij = Tr(ρσi ⊗ σj). Then the geometric

discord for this two-qubit state can be written as

DA
G2(ρ) =

1

4

(
||~x||2 + ||T ||2 − kmax

)
, (5.3)

where kmax is the largest eigenvalue of the matrix K = ~x~x> + TT>. This expression was

found to be valid for states with dimension 2 × d in Ref. [VR11], where the state is now

defined by

ρ =
1

2d

(
I +

3∑

i=1

xiσi ⊗ I +
d2−1∑

i=1

yiI ⊗Oi +
3∑

i=1

d2−1∑

j=1

Tijσi ⊗Oj

)
, (5.4)

where Oj is a basis of (d2− 1) linearly independent operators, and ~x, ~y, and T are defined

as above, with Oj in place of the Pauli matrices on the d-dimensional system.

While the existence of a closed form expression is a great improvement over other mea-

sures, there is no intuitive way to measure the geometric discord without full tomography.

This prompted Girolami and Adesso [GA11b] to propose a closely related measure that

is a lower bound to the GQD, and is written in terms of observables for two-qubit states.

They are able to extend their approach to larger systems, but the procedure is non-trivial

and very involved. Whereas, the analytical expression for the geometric discord for DQC1-

states given in the following section is a very elegant solution that does not change with

the system size, and only requires the implementation of the DQC1 algorithm to quantify

the GQD.

Shortly after the measure of geometric quantum discord was introduced, Luo and

Fu [LF10] showed that it is equivalent to

DA
G(ρ) = min

ΠA
||ρ− ΠA(ρ)||2, (5.5)

where ΠA(ρ) =
∑

k(Π
A
k ⊗ I)ρ(ΠA

k ⊗ I), and ΠA = {ΠA
k } is a projective measurement on

system A. That is to say that it is sufficient to consider the minimization over projective
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measurements. Likewise, DB
G(ρ) = minΠB ||ρ − ΠB(ρ)||2, where ΠB is a projective mea-

surement on system B. It is this expression for the quantum discord that we use to find

the analytical solution for DQC1-states.

Geometric discord has been extensively researched in the past couple of years. Studies

have been done on the properties of GQD and how it relates to the quantum discord

based on mutual information [BPPC11, GA11c]. The GQD has been studied for Gaussian

states [AG11], qubit-qutrit systems under dephasing [KG11], and has been compared to

other measures of correlations [GA11a]. In addition to the proposal to measure a lower

bound for the geometric discord of 2× d states mentioned above ([GA11b]), there exists a

proposal to directly measure the geometric discord for the set of two-qubit states [JZYS11].

5.2.2 Analytical expression for the Geometric discord of a DQC1-

state

In order to arrive at an analytical expression for the GQD of a DQC1-state, we must

perform a minimization over all possible projective measurements. We will be looking at

the geometric discord where the measurement is performed on the single qubit subsystem.

The GQD from Eqn. (5.5) can be written as

DA
G(ρ) = min

ΠA
||ρ− ΠA(ρ)||2

= min
ΠA

(Tr(ρ2)− 2Tr(ρΠA(ρ)) + Tr(ΠA(ρ)2)). (5.6)

The final state of a DQC1 algorithm (given in Eqn. (2.27)) is

ρDQC1 =
1

2n+1

(
I⊗n αU †n
αUn I⊗n

)
, (5.7)

where n is the number of qubits in the bottom register. We will parameterize the mea-

surements as ΠA
± = |ψ±〉〈ψ±|, where |ψ+〉 = a|0〉+ beiφ|1〉 and |ψ−〉 = b|0〉−aeiφ|1〉, so that

the state after a measurement is

ΠA(ρDQC1) = (|ψ+〉〈ψ+| ⊗ In) ρDQC1 (|ψ+〉〈ψ+| ⊗ In) + (|ψ−〉〈ψ−| ⊗ In) ρDQC1 (|ψ−〉〈ψ−| ⊗ In)

=
1

2n+1

(
In + αab(a2 − b2)(e−iφU + eiφU †) 2αa2b2(e−2iφU + U †)

2αa2b2(U + e2iφU †) In − αab(a2 − b2)(e−iφU + eiφU †)

)
,
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where we have used the fact that a2 + b2 = 1.

We can now immediately calculate each term in Eqn. (5.6). The first term, the purity

of the state of the total system, is invariant under unitary transformations. Therefore, it

can be calculated for the initial state, and only depends on the initial polarization of the

top register:

Tr(ρ2
DQC1) =

1 + α2

2n+1
. (5.8)

The second term is as follows:

Tr(ρDQC1ΠA(ρDQC1)) =
1

22n+1

(
α2a2b2Tr(e2iφU †2 + e−2iφU2) + (2α2a2b2 + 1)2n

)

=
α2a2b2

22n+1
Tr(e2iφU †2 + e−2iφU2) +

2α2a2b2 + 1

2n+1
,

and turns out to be equal to Tr(ΠA(ρDQC1)2), the third term. Then, the expression for the

geometric quantum discord of the DQC1 state simplifies to

DA
G(ρDQC1) = min

ΠA

(
1 + α2

2n+1
− α2a2b2

22n+1
Tr(e2iφU †2 + e−2iφU2)− 2α2a2b2 + 1

2n+1

)
. (5.9)

In order to find the minimum GQD, we must maximize the function

f(a, φ) =
α2a2b2

22n+1
Tr(e2iφU †2 + e−2iφU2) +

2α2a2b2 + 1

2n+1
, (5.10)

since it comes into the equation for the geometric discord with a negative sign.

Let us start by setting the partial derivatives of parameters a and φ (noting that

b =
√

1− a2) to zero. For the partial derivative with respect to a, we find that

∂f

∂a
= 0

=
2α2a(1− 2a2)

22n+1
Tr(e2iφU †2 + e−2iφU2) +

4α2a(1− 2a2)

2n+1
,

leading to the solution a0 = 1/
√

2. Note that a = 0 is also a valid solution, and is ruled out

in Appendix B. In addition, the equation above could be satisfied if Tr(e2iφU †2+e−2iφU2) =

−2n+1, however, this is not possible since the trace can only have a value between −2n and

2n.
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Now, let us determine the value of φ by setting the partial derivative with respect to φ

to zero:

∂f

∂φ
= 0

⇒ ∂

∂φ
Tr(e2iφU †2 + e−2iφU2) = 0,

assuming a 6= 0 and b 6= 0, which are shown in Appendix B. In order to solve for the value

of φ, we express the unitary in terms of its eigen-decomposition: U =
∑

j e
iθj |θj〉〈θj|. Then

the trace can be written as

Tr(e2iφU †2 + e−2iφU2) = Tr

(
e2iφ

∑

j

e−2iθj |θj〉〈θj|+ e−2iφ
∑

j

e2iθj |θj〉〈θj|
)

=
∑

j

(e2i(φ−θj) + e−2i(φ−θj))

=
∑

j

2 cos(2(φ− θj)). (5.11)

The minimization procures reduces to

0 =
∂

∂φ

∑

j

(cos(2(φ− θj)))

=
∂

∂φ

(∑

j

2 cos2(φ− θj)− 1

)

=
∑

j

4(cos(φ− θj) sin(φ− θj))

=
∑

j

2 sin(2(φ− θj))

=
∑

j

2
(

sin(2φ) cos(2θj)− cos(2φ) sin(2θj)
)

⇒ sin(2φ)

cos(2φ)
=

∑
sin(2θj)∑
cos(2θj)

=
Im(Tr(U2))

Re(Tr(U2))

⇒ φ =
1

2
arctan

(
Im(Tr(U2))

Re(Tr(U2))

)
.
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Figure 5.4: This circuit diagram shows the modified DQC1 algorithm that yields

αTr(U2)/2n upon measurement of 〈σx〉 + i〈σy〉. This experiment allows us to find the

optimal value of φ0 to minimize the geometric discord.

Thus, the optimal values for a and φ are

a0 =
1√
2
→ b0 =

1√
2

(5.12)

φ0 =
1

2
arg(Tr(U2)). (5.13)

These values are confirmed to correspond to a minimum GQD in Appendix B.

It is possible (although unnecessary) to experimentally determine the value of φ0 by

performing a DQC1 algorithm. The circuit required can be seen in Figure 5.4, where

we have applied the controlled-unitary twice. Then, by performing the standard DQC1

measurement (〈σx〉 and 〈σy〉), the trace of the unitary squared can be easily measured.

Now that we have found the optimal measurement basis, let us simplify the expression

for the geometric discord of the 2× n DQC1 state:

DA
G(ρDQC1) =

(α
2

)2 1

22n

[
2n − Tr(e2iφU †2 + e−2iφU2)

]
(5.14)

=
(α

2

)2 1

22n

[
2n −

∑

j

cos(2(φ0 − θj))
]
. (5.15)

The final term in Eqn. (5.15) for the geometric discord can be determined by performing

a modified DQC1 algorithm, where a rotation,

R =

(
1 0

0 e−iφ0

)
, (5.16)
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Figure 5.5: This circuit diagram shows that modified DQC1 algorithm that is used to solve

for
∑

j cos(2(φ−θj)). The angle of rotation is determined by a previous DQC1 experiment

where Tr(U2) was found. This allows us to experimentally determine the value for the

geometric discord in a DQC1 state.

is performed on the top qubit before the controlled unitary. By performing the rotation

and the controlled unitary twice back-to-back (as shown in Figure 5.5), a measurement of

〈σx〉 will yield the desired result, since the final state of this circuit is

ρφ2 =
1

2n+1

(
In αe2iφ0U †2

αe−2iφ0U2 In

)
, (5.17)

and a measurement of 〈σx〉 gives

〈σx〉 =
α

2n

∑

j

cos(2(φ0 − θj)). (5.18)

Although we are able to solve for the geometric discord with a DQC1 computation, it

turns out that experimentally, we do not need to perform the circuit given in Figure 5.5, as

the rotation can be ‘virtually’ performed. Since the rotation commutes with the controlled

unitary, it can be combined with the measurement at the conclusion of the algorithm. We

can directly see this by writing Tr(U2) = reiη, where r = |Tr(U2)| and η = arg (Tr(U2)) =

2φ0. This greatly simplifies our expression for the GQD. Looking at
∑

j cos(2(φ0 − θj))
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from Eqn. (5.15), we see that

∑

j

cos(2(φ0 − θj)) =
1

2
Tr(e2iφ0U †2 + e−2iφ0U2) (from Eqn. (??)) (5.19)

=
1

2

(
e2iφ0Tr(U †2) + e−2iφ0Tr(U2)

)
(5.20)

=
r

2

(
ei(2φ0−η) + e−i(2φ0−η)

)
(5.21)

=
r

2
(2) = |Tr(U2)|. (5.22)

The simplified equation for the geometric quantum discord of a DQC1-state is then

DA
G(ρDQC1) =

(α
2

)2 1

22n

[
2n − |Tr(U2)|

]
(5.23)

=
(α

2

)2 1

2n
[1− τ2] , (5.24)

where τ2 = |Tr(U2)|/2n and goes from 0 to 1. Therefore, the GQD of a DQC1-state can

be measured by a DQC1 circuit with back-to-back unitaries found in Figure 5.4. This

indicates that the geometric quantum discord of a DQC1-state has a minimum value of

0 and a maximum value of α2/2n+2, where α is the polarization of the top qubit in the

DQC1 model.

5.2.3 Discussion

Above we have found an analytical expression for the geometric discord for a generic DQC1-

state that only depends on the absolute value of the trace of the unitary squared. This

value is easily determined by implementing a DQC1 algorithm. In this section we will

discuss this result and the implications it has for both the measure of geometric quantum

discord and the DQC1 model of computation.

• Solving for the GQD of a DQC1-state is a problem in the complexity class DQC1.

This means that it can be solved on the model of computation that has a single bit

of quantum information available for computation, n completely mixed qubits, and

a classical computer, with the same conditions on the unitaries as described in the

DQC1 class.
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• The optimal measurement has a0 = 1/
√

2, independent of the unitary. This indi-

cates that the measurement is always in the x−y plane (transverse plane in the Bloch

sphere), which is the measurement performed in DQC1 algorithms. The phase φ0 of

the optimal measurement does depend on the unitary, and while it is possible to mea-

sure on a DQC1 quantum information processor, is not necessary to experimentally

perform, as we only need the magnitude of the trace to solve for the GQD.

• The amount of geometric discord in a DQC1-state scales quadratically with the

polarization of the top qubit. When looking for entanglement in a DQC1-state, the

value of the polarization is very important. In fact, when the polarization drops

below 0.5, entanglement has never been found [DFC05]. Datta et al. showed that

for the quantum discord measure of non-classical correlations, there was a decrease

in the correlations with a decrease in polarization, but only a zero value for the

polarization gave rise to zero quantum discord [DSC08]. This is exactly what we

found here: decreasing the polarization does not eliminate the GQD completely, but

it does decrease the quantity. In addition, as expected, we find that zero polarization

gives rise to zero geometric quantum discord.

• The GQD of DQC1-states does not depend on the eigenvectors of U , but rather the

distribution of eigenphases θj. This makes it possible to examine classes of unitaries

that give rise to the same GQD. For example, the unitaries that give rise to zero

GQD (and hence, QD) require |Tr(U2)| = 2n:

|Tr(U2)| =

∣∣∣∣∣
2n∑

j=1

e2iθj

∣∣∣∣∣ (5.25)

⇒ e2iθj = eiξ1, ∀ j, and any value of ξ (5.26)

⇒ 2θj = ξ ± 2π, ∀ j (5.27)

⇒ U = eiξ/2
2n∑

j=1

e±iπ|j〉〈j| (5.28)

U = eiξ/2A, (5.29)

where A is a binary observable (A2 = I). Note that this derivation gives rise to

the same result for unitaries leading to zero QD in DQC1 in Ref. [DVB10], where

they note that this is evidence that contradicts the idea that QD is the cause of the

quantum advantage in the DQC1 model.
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• On the other hand, there exists a set of unitaries whose trace can be efficiently

estimated on a classical computer, yet would generate discord in the final state of a

DQC1 algorithm. For example, consider the subgroup of the unitary group, V(d) ⊂
U(d), defined as V(d) = {V ⊗n; V ∈ U(2)} for d = 2n. Writing V as

V =

(
α β

γ δ

)
, (5.30)

for complex matrix elements α, β, γ, δ satisfying V †V = I, the trace is equal to

Tr(V ⊗n) =
n∑

k=0

(
n

k

)
αnδn−k, (5.31)

which can be efficiently determined, requiring at most a polynomial number of

queries. However, some of these unitaries in V(d) generate non-zero discord (pro-

vided they do not satisfy Eqn. (5.29)).

• The value of the GQD for DQC1-states is insensitive to phase errors in the final

measurement. This is not the case in many NMR experiments: for instance, in the

Jones polynomial experiments from Chapter 3, the phase was one of the major sources

of error and had to be carefully tracked and calibrated. For DQC1 experiments, this

phase insensitivity can eliminate much of the data post-processing. Currently, we

must fit the real and imaginary parts of the spectrum very precisely in order to

ensure we have the best approximation of the observables visible in that spectrum.

When we are not worried about the phase, we are able to simply integrate the signal

directly using the spectrometer software. Examples of this analysis are given in

Section 5.3.

• The GQD of DQC1-states scale as 1/2n, indicating that the GQD decreases rapidly

as the size of the completely mixed register grows. This is perhaps the most surpris-

ing property of the GQD for DQC1-states, as the quantum discord for an average

DQC1-state does not decrease with the size of the system. In fact, the quantum

discord for an average DQC1-state is independent of the size of the bottom register

for large n. A previous numerical study [BPPC11] compared quantum discord and

geometric quantum discord on two qubit states and they found that there was a

strong correlation between the two quantities.
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The qualitative similarities and differences for the QD and GQD of DQC1-states can

be better investigated by generating plots for unitaries randomly drawn from the

Haar measure for a small number of qubits and plotting the geometric discord. This

is done in Figures 5.6 and 5.7 and can be compared with the plots for the QD in

Figures 5.1 and 5.2, noting that the GQD plots are multiplied by 2n on the vertical

axis to assist the reader during comparison. We can see that aside from the 1/2n

dependence in the geometric discord, they both have a similar dependence on the

polarization. In Figure 5.8 we plotted the average and standard deviation of the

GQD (without scaling by 2n) over the 500 numerically generated values on a log

plot to illustrate the n dependence. This behaviour of the geometric discord suggests

that it and the quantum discord are measuring different quantities in the case of

DQC1-states.
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Figure 5.8: The mean geometric discord with standard deviation error bars for the data in

Figures 5.6 and 5.7. Unlike the aforementioned plots, this data is not scaled by 2n and is

plotted with a logarithmic vertical axis, in order to illustrate the n-dependence.
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• In order to more accurately compare the measures of GQD and QD for DQC1-states,

we must look at the geometric discord for a ‘typical’ DQC1-state, as is done in

Ref. [DSC08], where they found an expression for the average quantum discord to be

Davg(ρDQC1) = 2−H2

(
1− α

2

)
− log(1 +

√
1− α2)− (1−

√
1− α2) log e,

which is independent of the number of qubits for large n. Looking at our analytic

expression for the geometric discord of a DQC1-state, we can easily find the average

value for the geometric discord. A ‘typical’ instance of the DQC1 model is one where

the unitary matrix is randomly distributed by the Haar measure, which implies that

the eigenvalues are almost evenly spaced around the unit circle [Dia03]. Therefore, the

trace is very small and can be approximated to zero (which is the same approximation

made in Ref. [DSC08]). In doing this, the average geometric discord for a DQC1-state

is approximated to

DGavg(ρDQC1) =
α2

2n+2
.

A graphical comparison of the two measures for the average quantum correlations in

a DQC1-state is given in Figure 5.9. In order to plot the two measures of quantum

correlations on the same scale, we have normalized the geometric discord first by a

factor of two, since for a 2× d system, the maximum value for the geometric discord

(for a maximally entangled state) is 0.5, whereas the maximum value of the quantum

discord is one. We have also scaled the geometric discord by 2n to make the plot

independent of the number of qubits in the bottom register.
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Figure 5.9: Plot comparing the quantum discord with the geometric quantum discord of

‘typical’ DQC1-states of n qubits. The approximation for the quantum discord (shown in

blue) is valid for large n and has been shown to be a good approximation for n > 5 [DSC08].

The geometric discord is scaled by 2n+1 where a factor of 2 is for normalization and the 2n

factor is to remove the n-dependence of the GQD from the plot.
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5.3 Experimental measurement of the geometric dis-

cord

In Section 5.2.2 we derived an analytical expression for the geometric quantum discord

present in a DQC1 algorithm of arbitrary size. We also found that the expression is easily

calculated using the DQC1 model. Recall that the GQD for a DQC1-state is

DG(ρDQC1) =
(α

2

)2 1

2n
[1− τ2] ,

where τ2 = |Tr(U2)|/2n, n is the number of qubits in the bottom register, and α is the

polarization of the top qubit.

In this section we experimentally measure the geometric quantum discord in an instance

of the DQC1 model. In particular, we measure the GQD in the state that we detected

quantum discord in Chapter 4. Recall that the unitary used is one of the unitaries used to

approximate the Jones polynomial, and is of the form U = diag(a, a, b, 1, a, b, 1, 1), where

a = −(e−i3π/5)4 and b = (e−i3π/5)8. The experiment is performed in liquid state NMR using

four carbon-13 nuclei in trans-crotonic acid (nuclear structure, Hamiltonian information

and the experimental procedure are found in Appendix A). The circuit diagram for this

experiment is given in Fig 5.4, where we have the usual DQC1 circuit, followed by an ad-

ditional implementation of the controlled-U . The result of the usual DQC1 measurements

yield

|〈σx〉+ i〈σy〉| =
α|Tr(U2)|

2n
= α τ2. (5.32)

Figure 5.10 shows the Hilbert-Schmidt distance between the DQC1-state of interest and

the closest classical state, g(a, φ) = ||ρ−χ||2 as a function of the measurement parameters

a and φ. The top contour plot has the phase φ along the horizontal axis and a along the

vertical. The third dimension of the contour plot (the depth) is g(a, φ) normalized by α2.

The bottom plot is a cross-section of the top one where a0 = 1/
√

2, the horizontal axis is

still the phase, and the vertical axis is g( 1√
2
, φ). The plots are the analytical values, with

the experimental result indicated on the bottom plot. The error bars on the experimental

value are propagated from the error in experimental uncertainties and the spectral fit.

Our results indicate that we have a GQD for this particular DQC1-state of

DG = (0.0260± 0.0004)α2, (5.33)
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which, for the value of α = 1.4 × 10−5, the value of the quantum correlations is DG =

(5.10± 0.08)× 10−12. The theoretical value is calculated to be Dth
G = 0.02657α2.

The experimental results given above are determined by integrating the fitted NMR

spectrum. Generally this is the best method for extracting data, however, when we do not

need the exact phase of the spectrum, we can integrate directly on the NMR spectrometer

software3. In doing so, we receive the result (0.0262±0.0001)α2, and as expected, changing

the phase of the spectrum does not change the result. The uncertainty reported is due to the

signal-to-noise ratio. These calculations were performed very easily using the spectrometer

software, and give a very good estimate of the result.

5.4 Analytical results for two-qubit DQC1

In Section 5.2 we found an analytical expression for the GQD of DQC1-states of any

dimension. In this section, we look at the quantum discord based on mutual information

and derive an analytical expression for the special case of two-qubit DQC1-states. The

mathematical details given here provide reasonable detail so that each step can be followed

from the previous with only a small amount of algebra in-between. Those purely interested

in the results can find the major pieces summarized in Section 5.4.1 before we find the final

analytical expression and discuss in Section 5.4.2.

Recall that the equation for the quantum discord of a bipartite state is given by

D(A :B) = S(ρA)− S(ρAB) + min
{Pk}

∑

k

pkS(ρB|k). (5.34)

The initial state of our system is taken to be ρi =
(

1
2
I + α

2
X
)
⊗ 1

2
I, where I is the identity

on two qubits. At the end of the computation, the final two-qubit state is

ρAB =
1

4

(
I αU †

αU I

)
, (5.35)

with eigenvalues

λAB =
1

22
(1− α, 1− α, 1 + α, 1 + α). (5.36)

3We use the Bruker software, TopSpin.
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Figure 5.10: Shown are (i) the contour plot of the geometric distance, g(a, φ) = ||ρDQC1 −
ΠA(ρDQC1)||2, normalized by α2, as a function of the measurement parameters a and φ,

for ρDQC1 the output of the four-qubit DQC1 algorithm described in the text, and (ii)

the geometric distance at the optimal measurement axis a = a0 = 1/
√

2. The dashed

lines indicate the parameters that correspond to the optimal measurement. The experi-

mental data point for the geometric discord of ρDQC1 is shown on plot (ii) with error bars

propagated from experimental uncertainties and the spectral fit.

105



The joint entropy of the system is then given by

S(ρAB) = 1 +H2

(
1− α

2

)
, (5.37)

where H2(x) = x log(x) + (1 − x) log(1 − x) is the binary entropy. The reduced density

matrix of system A is

ρA =
1

2

(
1 α

2
Tr(U †)

α
2
Tr(U) 1

)
, (5.38)

with eigenvalues

λA =

(
1− α|τ |

2
,
1 + α|τ |

2

)
, (5.39)

where τ = Tr(U)/2, giving an entropy of

S(ρA) = H2

(
1− α|τ |

2

)
. (5.40)

We now have two out of the three terms required to find the quantum discord from

Eqn. (5.34). The last term is the minimization of the conditional entropy (Eqn. (2.48))

over all possible projective measurements. Let us start by defining our projectors, as in

the previous case, to be |ψ±〉〈ψ±| where

|ψ+〉 = a|0〉+ beiφ|1〉 (5.41)

|ψ−〉 = b|0〉 − aeiφ|1〉, (5.42)

are {a, b} ∈ [0, 1] such that a2 + b2 = 1, and φ ∈ [0, 2π] are the parameters to be optimized

over. The measurement operator acting on the two qubit system is then

|ψ±〉〈ψ±| ⊗ I =

(
a2I ±abe−iφI
±abeiφI b2I

)
, (5.43)

and the state on system B after the measurement on system A yields {±} is

ρB|± =
1

p±
TrA(|ψ±〉〈ψ±| ⊗ IρAB) (5.44)

=
1

4p±

(
(a2 + b2)I ± αab(e−iφU + eiφU †)

)
, (5.45)
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where p+ and p− are the probabilities of obtaining measurement outcome (+) and (−),

respectively. Expressing U by its eigenvectors and eigenphases, U =
∑2

j=1 e
iθj |θj〉〈θj| allows

us to write

e−iφU + eiφU † =
∑

j

e−i(φ−θj)|θj〉〈θj|+
∑

j

ei(φ−θj)|θj〉〈θj| (5.46)

=
2∑

j=1

2 cos(φ− θj)|θj〉〈θj|, (5.47)

and simplify the state after measurement to

ρB|± =
1

p±

2∑

j=1

(
1

4
± α

2
ab cos(φ− θj)

)
|θj〉〈θj|, (5.48)

where

p± =
1

2
± α

2
ab
∑

j

cos(φ− θj). (5.49)

Now we need to minimize S(B|A) =
∑
p±S(ρB|±). For simplicity, let us define the

variable xj = α
2
ab cos(φ− θj), so that

p± =
1

2
±
∑

xj and (5.50)

ρB|± =
1

p±

∑
(1/4± xj)|θj〉〈θj|. (5.51)

The eigenvalues of ρB|± are

λ+ =

{
1

p+

(
1

4
+ x1

)
,

1

p+

(
1

4
+ x2

)}
and λ− =

{
1

p−

(
1

4
− x1

)
,

1

p−

(
1

4
− x2

)}
,

which will allow us to find the entropy. The conditional entropy that we need to minimize

is composed of two terms:

∑

±

p±S(ρB|±) = p+S(ρB|+) + p−S(ρB|−), (5.52)
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let us look at each individually. The (+) term is

p+S(ρB|+) = −p+(λ1
+ log λ1

+ + λ2
+ log λ2

+) (5.53)

= −
(

1

4
+ x1

)
log

(
1/4 + x1

p+

)
−
(

1

4
+ x2

)
log

(
1/4 + x2

p+

)
(5.54)

= −
∑

j

(
1

4
+ xj

)(
log

(
1

4
+ xj

)
− log(p+)

)
. (5.55)

Similarly, the (−) term is

p−S(ρB|−) = −
∑

j

(
1

4
− xj

)(
log

(
1

4
− xj

)
− log(p−)

)
, (5.56)

and the sum, S(B|A) = f(x) =
∑
p±S(ρB|±), can be written as

f(x) =
2∑

j=1

[
−1

4
log

(
(1/4 + xj)(1/4− xj)

p+p−

)
− xj log

(
(1/4 + xj)p−
(1/4− xj)p+

)]
. (5.57)

We will perform the minimization by taking the first derivatives and setting them

equal to zero: df
da

= 0 and df
dφ

= 0. To keep the minimization process as streamlined as

possible, we will find the total differential of f(x), in terms of the variables x and p±, after

which, we perform a change of variables to a and φ. The details of the minimization are

detailed below, but the confirmation that the results we find are a minimum is located in

Appendix B.2. For simplicity, let us write Eqn. (5.57) as f(x) =
∑

j(f1(xj) + f2(xj)) and

look at each term separately. The first term is written as,

(5.58a)
df1(xj) = − log2(e)p+p−

4(1/4 + xj)(1/4− xj)




(
(1/4 + xj)(−dxj) + (1/4− xj)dxj

)
p+p−

p2
+p

2
−

−
(1/4 + xj)(1/4− xj)

(
p−dp+ + p+dp−

)

p2
+p

2
−




(5.58b)=
log2(e)xjdxj

2(1/4 + xj)(1/4− xj)
+

log2(e)dp+

4p+

+
log2(e)dp−

4p−
,
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while the second term is

(5.59a)

df2(xj) = −dxj log

(
(1/4 + xj)p−
(1/4− xj)p+

)

− xj log2(e)(1/4− xj)p+

(1/4 + xj)p−




(
(1/4 + xj)dp− + dxjp−

)
(1/4− xj)p+

(1/4− xj)2p2
+

−
(1/4 + xj)p−

(
dp+(1/4− xj)− dxjp+

)

(1/4− xj)2p2
+




(5.59b)
= −dxj log

(
(1/4 + xj)p−
(1/4− xj)p+

)
+ log2(e)xj

(
dp+

p+

− dp−
p−

)

− log2(e)xjdxj
2(1/4 + xj)(1/4− xj)

.

Putting it all together,

(5.60)
df(x) =

2∑

i=1

[
−dxj log

(
(1/4 + xj)p−
(1/4− xj)p+

)
− log2(e)xj

(
dp+

p+

− dp−
p−

)]

+
log2(e)

2

(
dp+

p+

+
dp−
p−

)
.

Recall that p± = 1
2

+
∑
xj = 1

2
+ x1 + x2, so dp± = ±∑ dxj = ±(dx1 + dx2). It is then

possible to simplify the following terms:

dp+

p+

+
dp−
p−

=
p−dp+ + p+dp−

p+p−

=
(1/2− x1 − x2)(dx1 + dx2) + (−dx1 − dx2)(1/2 + x1 + x2)

p+p−

=
−2(x1 + x2)(dx1 + dx2)

p+p−
, (5.61)

and
dp+

p+

− dp−
p−

=
p−dp+ − p+dp−

p+p−
=
dx1 + dx2

p+p−
. (5.62)
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We can quickly see that the two terms in Eqn. (5.60) that contain log2(e) cancel each other

out, and we are left with the simplified expression

df(x) = −
2∑

i=1

dxj log

(
(1/4 + xj)p−
(1/4− xj)p+

)
. (5.63)

Now that we have a simplified differential equation, we can determine what dxj is in

terms of the projective measurement variables a and φ:

xj =
α

2
a(1− a2)1/2 cos(φ− θj) (5.64)

dxj =
α

2

(
(1− a2)1/2 − a2

(1− a2)1/2

)
cos(φ− θj)da

−α
2
a(1− a2)1/2 sin(φ− θj)dφ (5.65)

=
α

2

(
1− 2a2

(1− a2)1/2

)
cos(φ− θj)da−

α

2
a(1− a2)1/2 sin(φ− θj)dφ. (5.66)

To minimize f , we take the partial differential equations to zero: df
da

= 0 and df
dφ

= 0, and

solve. The first equation takes the form

df

da
= 0 =

1− 2a2

(1− a2)1/2

2∑

j=1

(
cos(φ− θi) log

(
(1/4 + xi)p−
(1/4− xj)p+

))
, (5.67)

giving a solution of a0 = 1/
√

2 = b0 (which we can quickly find by looking at the term in

front of the sum). The solution to the second equation is a little more difficult to see, but

after substituting the value of a0 found above, and dividing by the constants, we are left

with

df

dφ
= 0 = sin(φ− θ1) log

(
(1/4 + x1)p−
(1/4− x1)p+

)
+ sin(φ− θ2) log

(
(1/4 + x2)p−
(1/4− x2)p+

)
. (5.68)

With the ansatz that p+ = p−, the above equation can be simplified further, noting that

under this assumption, x1 = −x2. Eqn. (5.68) is then reduced to

df

dφ
= 0 = (sin(φ− θ1)− sin(φ− θ2)) log

(
1/4 + x1

1/4− x1

)
(5.69)

⇒ sin(φ− θ1) = sin(φ− θ2). (5.70)
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Figure 5.11: The two eigenphases for the unitary U are shown graphically with angles θ1

and θ2. The measurement that leads to the minimum value for the discord is parameterized

by φ such that sin(φ− θ1) = sin(φ− θ2). It can be seen that the cosines of φ− θi will be

equal when φ is in the middle of θ1 and θ2, which indicates that the sines will be equal

when you add nπ/2 to it, for integer values of n.

Eqn. (5.70) must hold if Eqn. (5.69) is satisfied and the ansatz holds true. The solution to

this equation,

φ0 =
θ1 + θ2

2
+
π

2
, (5.71)

is easiest to see graphically, as shown in Figure 5.11. To verify this result, let us look at

both sides of Eqn. (5.70) and ensure they are equal. The left hand side becomes

sin(φ0 − θ1) = sin

(
π

2
+
θ2 − θ1

2

)
= cos

(
θ2 − θ1

2

)
, (5.72)

while the right hand side is

sin(φ0 − θ2) = sin

(
π

2
− θ2 − θ1

2

)
= cos

(
−θ2 − θ1

2

)
= cos

(
θ2 − θ1

2

)
, (5.73)

confirming φ0 = θ1+θ2
2

+ π
2

as a solution. Before stating the final results, we need to verify
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that our ansatz is valid:

p+ = p− = 1/2 ⇒ x1 = −x2

⇒ cos(φ− θ1) = − cos(φ− θ2)

⇒ cos

(
π

2
+
θ2 − θ1

2

)
= − cos

(
π

2
− θ2 − θ1

2

)

⇒ − sin

(
θ2 − θ1

2

)
= sin

(−(θ2 − θ1)

2

)

⇒ − sin

(
θ2 − θ1

2

)
= − sin

(
θ2 − θ1

2

)
,

and since the final line is correct – our ansatz was valid. Therefore, the projective mea-

surement parameters that minimize the discord are

a0 = b0 =
1√
2

(5.74)

φ0 =
θ1 + θ2

2
+
π

2
. (5.75)

5.4.1 Summarizing the results

Let us recap the important values before substituting everything into the equation for the

discord. Recall that the quantum discord is given by D(A : B) = S(ρA)−S(ρAB)+S(B|A),

where S(B|A) = min{Pk}
∑

k pkS(ρB|k). The first two terms in the discord are easy to

compute, were calculated in Eqn. (5.40) and (5.37), and are

S(ρA) = H2

(
1− α|τ |

2

)

S(ρAB) = 1 +H2

(
1− α

2

)
,

where α is the polarization on the top register in the DQC1 model and τ = Tr(U)/2n =

Tr(U)/2, for one qubit in the bottom register. The final term required an optimization

over the projective measurements, |ψ±〉〈ψ±|, where

|ψ+〉 = a|0〉+ beiφ|1〉
|ψ−〉 = b|0〉 − aeiφ|1〉,
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and we found the optimal values to be

a0 = b0 =
1√
2

φ0 =
θ1 + θ2

2
+
π

2
,

for a unitary that is characterized by its eigenphases: U =
∑2

j=1 e
iθj |θj〉〈θj|.

The conditional term S(B|A) is

S(B|A) =
2∑

j=1

[
−1

4
log

(
(1/4 + xj)(1/4− xj)

p+p−

)
− xj log

(
(1/4 + xj)p−
(1/4− xj)p+

)]
,

by substituting in that x1 = −x2 and p+ = p− = 1/2 we find

S(B|A) = −1

2
log

(
1

4
− 4x2

1

)
− 2x1 log

(
1/4 + x1

1/4− x1

)
.

Recall that

x1 =
α

4
cos(φ0 − θ1) =

α

4
cos

(
π

2
+
θ2 − θ1

2

)
=
α

4
sin

(
θ1 − θ2

2

)
,

simplifying the conditional entropy term to

(5.76)
S(B|A) = 1− 1

2
log

(
1− α2 sin2

(
θ1 − θ2

2

))

− α

2
sin

(
θ1 − θ2

2

)
log

(
1 + α sin

(
θ1−θ2

2

)

1− α sin
(
θ1−θ2

2

)
)
.

Putting Eqns. (5.40), (5.37), and (5.76) together, we find the analytical equation for the

QD of a state at the conclusion of a two-qubit DQC1 algorithm to be

(5.77)
D(A : B) = H2

(
1− α|τ |

2

)
−H2

(
1− α

2

)
− 1

2
log

(
1− α2 sin2

(
θ1 − θ2

2

))

− α

2
sin

(
θ1 − θ2

2

)
log

(
1 + α sin

(
θ1−θ2

2

)

1− α sin
(
θ1−θ2

2

)
)
.
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5.4.2 Discussion

The most interesting property of the analytical expression found for quantum discord in

the output state of a two-qubit DQC1 algorithm is that it only depends on the trace of

the unitary performed – which is precisely the quantity measured in the DQC1 algorithm.

While it is clear that the first two terms in Eqn. (5.77) depend only on the trace of the

unitary, it is not as easy to see that the value of θ1 − θ2 is also dependent on the trace of

the unitary. We outline this below, then rewrite the equation for the quantum discord in

terms of measurable quantities from the DQC1 algorithm.

By writing U =
∑2

j=1 e
iθj |j〉〈j|, we can see that

Tr(U) = eiθ1 + eiθ2 (5.78)

= eiθ2(ei(θ1−θ2) + 1) (5.79)

|Tr(U)|2 = (ei(θ1−θ2) + 1)(e−i(θ1−θ2) + 1) (5.80)

= 2(1 + cos(θ1 − θ2)). (5.81)

We can then rewrite Eqn. (5.81) into a term that can directly be substituted into Eqn. (5.77):

|τ |2 =
|Tr(U)|2

4
(5.82)

=
1 + cos(θ1 − θ2)

2
(5.83)

=
2 cos2

(
θ1−θ2

2

)

2
(5.84)

= 1− sin2

(
θ1 − θ2

2

)
(5.85)

⇒ sin

(
θ1 − θ2

2

)
=

√
1− |τ |2 (5.86)

Let us rewrite the equation for the quantum discord in terms of τ :

(5.87)
D(A : B) = H2

(
1− α|τ |

2

)
−H2

(
1− α

2

)
− 1

2
log
(
1− α2(1− |τ |2)

)

− α

2

√
1− |τ |2 log

(
1 + α

√
1− |τ |2

1− α
√

1− |τ |2

)
.
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Figure 5.12: Graph of the quantum discord for states in the two-qubit DQC1 algorithm.

The absolute value squared of the unitary in the DQC1 algorithm is plotted on the x-axis,

with the corresponding quantum discord on the y-axis for a polarization of α = 1.
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Consequently, it is now evident that the quantum discord of a two-qubit DQC1-state only

depends on the trace of the unitary. This allows us to calculate the QD for any two-qubit

DQC1-state, which is graphically shown in Figure 5.12 for a polarization on the top qubit

of one. We can see that the maximum value of the quantum discord is 0.2018 (which is

considerably less than the QD of one for a maximally entangled state), which occurs when

the absolute value of the trace squared is two. The minimum value of the QD is zero, and

occurs when the absolute value of the trace of the unitary is zero or two. This is keeping

with the result from Ref. [DVB10], which found that zero discord is found in DQC1 when

the unitary can be written as a phase multiplied by a binary observable.

Interestingly, the quantum discord for two-qubit DQC1-states does not depend on the

phase of the Tr(U), but only the absolute value. This is akin to the result for the geo-

metric discord given in Section 5.2, and is beneficial for experimental measurements of the

quantum discord for DQC1, as it eliminates a potential source of error.

The analysis in this section is only valid for two-qubit states; however, we have partial

results extending our analysis to n qubits in the bottom register in Appendix C. The

computation is much more difficult and we were unable to provide a complete analytical

expression. However, if the parameters for the optimal measurement are able to be found,

then it is possible to make a series approximation for the quantum discord, where each

term can be evaluated using a DQC1 algorithm. More details are provided in the appendix.

5.4.3 Comparing QD and GQD for two-qubit DQC1 states

We now have analytical expression for both the quantum discord and the geometric quan-

tum discord of two-qubit DQC1 states, which allows us to directly compare them. Let us

look at the set of unitaries that give rise to the maximum QD and GQD. Note that we

have already solved for the unitaries that give rise to minimum (zero) QD and GQD in

Section 5.2.3. We found that U = eiξ/2A, where A2 = I. Recall that the equation for GQD

of any size DQC1-state is

DG(ρDQC1) =
(α

2

)2 1

2n
[1− τ2] .
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Analyzing what this means for the two-qubit case, we find that GQD (and hence, QD) is

zero when

τ2 = 1 ⇒
∣∣Tr(U2)

∣∣ = 2 (5.88)

⇒
∣∣e2iθ1 + e2iθ2

∣∣ = 2 (5.89)

⇒
∣∣e2iθ1 + e2iθ2

∣∣2 = 4 (5.90)

⇒ 2 + 2 cos(2(θ1 − θ2)) = 4 (5.91)

⇒ 2(θ1 − θ2) = 2kπ, k ∈ Z (5.92)

⇒ θ1 = θ2 + kπ. (5.93)

Performing the same analysis for when GQD is a maximum we find:

τ2 = 0 ⇒
∣∣Tr(U2)

∣∣ = 0 (5.94)

⇒
∣∣e2iθ1 + e2iθ2

∣∣ = 0 (5.95)

⇒ cos(2(θ1 − θ2)) = −1 (5.96)

⇒ 2(θ1 − θ2) = (2k + 1)π, k ∈ Z (5.97)

⇒ θ1 = θ2 + (2k + 1)
π

2
. (5.98)

Let us now look at the unitaries that give rise to maximum QD. From Figure 5.12 we

see that the maximum QD is when |TrU |2 = 2. Therefore,

|TrU |2 = 2 (5.99)∣∣e2iθ1 + e2iθ2
∣∣2 = 2 (5.100)

2 + 2 cos(2(θ1 − θ2)) = 2 (5.101)

cos(2(θ1 − θ2)) = 0 (5.102)

θ1 − θ2 = (2k + 1)
π

2
, k ∈ Z (5.103)

θ1 = θ2 + (2k + 1)
π

2
, (5.104)

which is the same result as for the GQD. To get a better idea of the QD and GQD as a

function of the eigenphases θ1 and θ2, we plot the relationship in Figure 5.13. In order to

accurately compare the two plots, we have plotted 2× GQD to ensure that both the GQD

and QD have a maximum value of 1. The plots have assumed the value of the polarization

is α = 1. To further compare, in Figure 5.14 we have taken a cross section of each plot

from Figure 5.13, where θ1 = −θ2.
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Figure 5.13: Plots of the quantum discord (top) and geometric quantum discord (bottom)

for two-qubit DQC1-states. The QD and GQD are functions of the eigenphases θ1 and θ2

of the single-qubit unitaries. The GQD has been multiplied by a normalization factor of 2.

These plots show that the two measures of non-classical correlations are a minimum and

maximum for the same unitaries, but exhibit different values elsewhere. For instance, the

GQD is closer to zero for a broader range of unitaries, while the QD has a larger value for

more unitaries.
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Figure 5.14: The quantum discord, shown in blue, and the geometric quantum discord

(scaled by a factor of two), shown in red, for a cross section of two-qubit states. As can

be seen in Figure 5.13, both measures for quantum correlations are periodic, and this plot

captures all possible values. From this plot it is clear that both QD and GQD are zero for

the same states and a maximum for the same states. This was mathematically shown in

Eqns. (5.88)–(5.104).
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5.5 Conclusion

In this chapter we looked at the quantity of non-classical correlations that exist in a DQC1-

state by studying the measures of quantum discord and geometric quantum discord. We

started by numerically investigating the quantum discord in DQC1-states for small num-

bers of qubits. We found that the spread, or standard deviation, of the quantum discord

was much larger for a smaller number of qubits and decreased quickly as we added more

qubits to the bottom register. It was discovered that while a ‘typical’ instance of a DQC1

algorithm was unlikely to deviate from the average value, this does not indicate the quan-

tum discord of a given state will be near the average. This small spread in the quantum

discord of DQC1-states for unitaries chosen from the Haar measure is a result of the con-

centration of measure and by looking at particular unitaries of experimental relevance, we

were easily able to compute values for the quantum discord that lie between zero and the

average.

Next, we were interested in finding an analytic expression for the non-classical correla-

tions in a given DQC1-state without having to make any approximations or averages, that

is simple to evaluate experimentally. In order to do this, we used the geometric quantum

discord and were able to find closed-form expression that was easy to implement on a DQC1

quantum computer. In addition, we found that this measure only depends on the absolute

value of the trace of the unitary squared and has a dependence on the number of qubits in

the bottom register of 1/2n. This is in stark contrast to the quantum discord for a DQC1-

state, for, while we do not have an exact analytic expression, numerical studies show that

it does not have a similar n dependence. In Section 5.3, we experimentally measured the

geometric discord in a four-qubit DQC1 experiment, performed in liquid state NMR, and

successfully measured the geometric quantum discord to be DG = (5.10± 0.08)× 10−12.

Quantum discord has often been conjectured to be a potential resource for the apparent

quantum advantage in the DQC1 model. However, this is questioned in recent work by

Dakic, Vedral, and Brukner, where they found a set of unitaries that give rise to zero discord

in the DQC1 model, yet it is unlikely that the trace of these unitaries can be efficiently

calculated on a classical computer [DVB10]. On the other hand, we have found a set

of unitaries that give rise to non-zero discord, yet their trace can be efficiently computed

classically. Together, these findings suggest add to the suspicion that the apparent speedup

exhibited by (the dynamics of) DQC1 is not necessarily captured by discord measures at

the conclusion of the algorithm. In future work it would be very interesting to look at the
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dynamics of discord measures throughout the DQC1 algorithm. In the NMR architecture,

this could be done by looking at the discord at every time step of the numerically generated

GRAPE pulses.

Finally, we switched from the measure of geometric quantum discord back to the quan-

tum discord, and computed an analytic expression for the special case of two-qubits. We

found that, similar to the geometric discord case, the final expression only depends on the

absolute value of the trace of the unitary (only this time the unitary is not squared), indicat-

ing that it can be computed with a DQC1 quantum computer. With analytic expressions

for both the quantum discord and geometric quantum discord for two-qubit DQC1-states,

we were able to directly compare the values of the two measures, noting that they are both

a maximum and minimum for the same unitaries, but the geometric discord has a sharper

maximum peak and a smoother minimum peak while the quantum discord has the exact

opposite.

While the research presented in this chapter is another step forward in understanding

the correlations in the DQC1 model, there is more work that needs to be done. Specifically,

we are interested in determining whether discord plays a role in the quantum advantage

the DQC1 model offers. While we have looked at the final DQC1-state in this chapter,

future work should consider the dynamics of the discord throughout the computation. In

addition, future work should take a close look at different measures of quantum correlations

and work to determine which measures provide the best picture for the quantum nature of

quantum states.
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Chapter 6

Conclusions and outlook

My interest in quantum information and computation has been motivated by the question

of what makes a quantum computer quantum. This has lead me to study the DQC1

model of computation, which has the ability to outperform current classical methods, and

yet, contains limited entanglement. This very intriguing model has been the focus of

my research, and hence, this thesis. In the preceding chapters we have taken a closer

(experimental) look at this model, its potential for solving problems of interest, and the

quantum correlations it possesses.

This work started with a problem that completely encapsulates the power of the DQC1

model of computation. Approximating the Jones polynomial is a physically relevant prob-

lem with no known efficient classical algorithm, but can be solved on a quantum computer

with very little or no entanglement. Implementing this problem in NMR was not only a

proof-of-principle experiment, it pushed the limits of current control in liquid-state NMR

as this experiment required extreme precision in order to distinguish different knots. Be-

cause of the accuracy required, we noticed issues with the metric used in our pulsefinding

procedure. We found that two unitaries that are close using the gate fidelity figure of merit

did not necessarily translate to the same level of accuracy when evaluating the trace. It

is very possible that another figure of merit would be more appropriate for finding pulses

used in the DQC1 algorithm.

Because of the lack of entanglement in an NMR implementation of DQC1 (such as the

Jones polynomial experiment), the natural question that arises is whether or not there is

any quantum computation taking place. Indeed, it is the spirit of this question that the
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DQC1 model intended to provoke, and perhaps answer. We endeavoured to answer this

question from an experimental point of view by looking to witness quantum correlations

where there is no entanglement. It has been theoretically shown that on average, there is

non-zero discord in the DQC1 model, however the value of the average quantum discord

was found to decrease with the polarization. Because of the small polarization in liquid-

state NMR, we set out to detect quantum discord in our experimental setup. Using a

state-independent quantum discord witness, with only a few measurements we were able

to detect non-classical correlations in a state where these correlations were calculated to

be on the order of 10−11. Interestingly, the value of the discord, which is dependent on

the polarization, was not important when detecting quantum discord, provided we had a

good signal-to-noise ratio. Witnessing this small amount of correlations begs the question

of whether or not they are useful – an open question that is of much interest.

The final research presented in this thesis set out to quantify the quantum correlations

in order to better understand if they are useful in the DQC1 model. Using the geometric

quantum discord (GQD) as our measure of quantum correlations we were able to com-

pose an experimentally measurable expression for correlations present in a DQC1-state.

Measuring the GQD in these states is in the complexity class DQC1 and we provide ex-

perimental results for the GQD in the discord-detected NMR state mentioned above. A

previous theoretical study looked at the average quantum discord in DQC1-states of higher

dimension, and with our expression for the geometric quantum discord, we were able to

compare the average correlations in higher-dimensional DQC1-states. Although there are

some similarities between the two measures, one substantial difference is that the GQD

scales with one over the dimension of the bottom register while the quantum discord is

independent of this variable. Another interesting result is that we were able to find a

group of unitary matrices that give rise to non-zero discord, and yet their trace can be

efficiently calculated on a classical computer. Along with a previous result that found a

set of unitaries that give zero discord but are unlikely to have a trace that can be efficient

calculated, these results suggest that discord in the final DQC1-state may not be suitable

to quantify the quantum advantage exhibited by the dynamics of the DQC1 algorithm.

The pursuit for a better understanding of the quantum nature of physical systems has

led me, with the help of collaborators, to solve some very interesting questions. Along with

this new-found information, we have uncovered many more questions than I would have

thought to ask when this journey began. Only one thing is certain: the answers to these

(and other) questions will undoubtedly expand our knowledge and lead to new discoveries.
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Appendix A

Four qubit liquid state NMR

experimental parameters

Experiments in this thesis were performed using our workhorse liquid-state NMR four-qubit

molecule, crotonic acid, pictured in Figure A.1. For use as a four-qubit quantum informa-

tion processor the carbon nuclei, pictured in red, are synthesized to be carbon-13, while

the hydrogen nuclei, pictured in blue, are decoupled using the WALTZ-16 and WALTZ-32

composite pulse sequences [SKF83]. The molecule is diluted in deuterated acetone and the

ensemble of spin-1/2 molecules contains roughly 1020 spins. The experiments are imple-

mented on a Bruker Avance 700 MHZ spectrometer. The parameters of the Hamiltonian

at this field are given in Table A.1. Please note that the chemical shift terms are sensitive

to the concentration and change slightly over a timescale of months.

The radio frequency (r.f.) pulses that implement the unitary transformations are nu-

merically generated using the GRAPE algorithm [KRK+05, RNL+08] which starts from

a random guess and is then iteratively improved through a gradient ascent search. The

GRAPE pulses are optimized to produce a fidelity |tr(U †goalUsim)|2/d2, where d is the di-

mension of the Hilbert space of Ugoal, of no less than 0.998. These pulses are designed to

be robust to small inhomogeneities (±3%) in the r.f. control field.

In addition, the pulses are corrected for non-linearities in the pulse generation and

transmission to the sample by measuring the r.f. signal at the position of the sample using

a feedback loop and iteratively modifying the pulse accordingly [Rya08]. An example

of a pulse (specifically, a controlled-σ−1
1 pulse from the Jones polynomial experiment in
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C1
C2

C3
C4

O
H

Figure A.1: Schematic of the chemical structure of crotonic acid. The red nuclei are

carbon, the green are hydrogen and the blue nuclei are Oxygen. During the experiments,

the protons are decoupled and the oxygen do not appear in the Hamiltonian because they

have spin-0.

C1 C2 C3 C4

C1 2995

C2 41.6 25500

C3 1.5 69.6 21585

C4 7.0 1.2 72.3 29411

Table A.1: The parameters of the Hamiltonian given in Hz. The diagonal elements corre-

spond to the chemical shifts ωi with respect to the base frequency of carbon-13 (176.047829

MHz) with the Hamiltonian
∑

i πωiZi. The off-diagonal elements represent the J-coupling

constants Jjk with the Hamiltonian
∑

j<k
π
2
JjkZiZj.
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Chapter 3) can be seen in Figure A.2. This pulse has a length of 60ms and has been

discretized into time-steps of 4µs. As can be seen in the figure, the final pulse (“Fix 6”)

is much closer to implementing the desired unitary than the first attempt. As mentioned

above, the pulse is designed to have a fidelity of at least 0.998, however the implemented

pulse fidelity is not this high. By simulating the implemented pulse we find that pulses of

this length generally have a simulated fidelity of 0.99. Indeed, it is this fidelity that we use

for estimating the implementation error in the Jones polynomial experiment.

A.1 Notes on pulsefinding for the DQC1 algorithm

In this section we will discuss the complications arising from pulsefinding the controlled

unitary used in the DQC1 algorithm. Problems associated with this were first mentioned in

Section 3.4. We will show that despite creating pulses with a fidelity of 0.998, the resulting

measurement at the conclusion of the algorithm will not necessarily have as high fidelity.

The fidelity function used to generate the pulses is called the gate fidelity and is written

Fg(Usim, Uid) =
|Tr(UsimU

†
id)|2

d2
, (A.1)

where Usim is the numerically generated pulse, Uid is the ideal pulse, and d is the dimension

of the unitary.

Now, let us look at the types of pulses we create in the DQC1 algorithm. The pulses

are controlled unitaries and the final measurement determines the trace of the unitary. So,

although our pulse is designed to perform

cU =

(
In 0

0 Un

)
, (A.2)

at the end of the day (or, more precisely, end of the algorithm), we are only measuring the

trace of Un. In the DQC1 algorithm, assuming perfect initial state preparation and perfect

implementation of the Hadamard, the final state is (assuming unit polarization)

ρf = cUρicU
† (A.3)

= cU
1

2n+1

(
In αIn
αIn In

)
cU † (A.4)

=
1

2n+1

(
In αU †n
αUn In

)
, (A.5)
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and the measured result is

M = Tr
(

(σx ⊗ In)ρf

)
+ iTr

(
(σy ⊗ In)ρf

)
. (A.6)

In order to determine how good our designed pulse is, we calculate the distance between

Msim and Mid:

DDQC1 = |Msim −Mid|. (A.7)

To see how well pulses of a particular gate fidelity perform in the DQC1 algorithm,

we compared Fg(Usim, Uid) to DDQC1. The results are shown in Figure A.3. Each data

point represents the mean DDQC1 for 300 simulated unitaries with that particular Fg. The

error bars represent one standard deviation. Pulses numerically generated in this thesis

were all found to have a gate fidelity of 0.998, which over a simulation of 300 different

unitaries has DDQC1 = 0.0051 ± 0.0027. The problematic part of this result is the very

large error bars. This means that some pulses will perform much better in the DQC1

algorithm than others, despite having the same gate fidelity. In order to avoid this, in

the Jones polynomial experiment from Chapter 3, we added a step to the pulsefinding

procedure where we evaluate DDQC1 and only proceed with the pulses that have a DDQC1

value approximately equal to the desired fidelity.
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Figure A.3: Plot of the distance between the simulated and ideal final measurements

(DDQC1) in the DQC1 algorithm versus (one minus) the gate fidelity (Fg(Usim, Uid)) for

the instance of the four qubit controlled-σ1 unitary matrix (σ1 is given in Eqn. (3.16))

used to approximate the Jones polynomial. Each data point is the mean value from 300

simulated pulses and the error bars give one standard deviation.
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Appendix B

Analytical discord optimization

In this appendix we ensure that the values found during the optimization for the analytical

calculation of the geometric discord (for n qubits) and the quantum discord (for 2 qubits)

indeed correspond to minimums over their respective functions.

The possible extrema are found by taking the partial derivatives of the function in

question. Solutions a = x and φ = y to the following equations

∂f

∂a
= 0 (B.1)

∂f

∂φ
= 0 (B.2)

are candidates for the optimal values of the function f(a, φ). In order to determine whether

or not they correspond to a minimum, maximum or saddle point, we look to the Hessian

matrix. The Hessian matrix is a square matrix of second-order derivatives of a multi-

variable function. In our case, we have a function of variables a and φ that we would like

to optimize. The Hessian matrix is then the two-by-two matrix:

H(f(x, y)) =

(
faa(x, y) faφ(x, y)

fφa(x, y) fφφ(x, y)

)
, (B.3)

where fmn = ∂2f
∂m∂n

. Then,

• if |H(f(x, y))| > 0 and faa(x, y) > 0, then (x, y) is a local minimum of f , or
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• if |H(f(x, y))| > 0, and faa(x, y) < 0, then (x, y) is a local maximum of f , or

• if |H(f(x, y))| < 0, then (x, y) is a saddle point of f , and

• if |H(f(x, y))| = 0, then the test is inconclusive.

The notation |H| indicates the determinant of matrix H. In order to ensure that the

optima found are global, we also test the functions at the boundaries. Let’s jump right

into the optimization!

B.1 Optimization for the Geometric Quantum Dis-

cord

We start by performing the optimization for the geometric discord. The expression for the

geometric discord before minimization is given in Eqn. (5.9) and looks like

DA
G(ρDQC1) = min

ΠA

(
1 + α2

2n+1
− α2a2b2

22n+1
Tr(e2iφU †2 + e−2iφU2)− 2α2a2b2 + 1

2n+1

)
.

In Section 5.2.2 we showed that the optimal values for the measurement are

a0 =
1√
2
→ b0 =

1√
2

(B.4)

φ0 =
1

2
tan−1

(
Imag(Tr(U2))

Real(Tr(U2))

)
. (B.5)

In this appendix, we want to ensure that these values correspond to a minimum GQD. In

order to do this, we compute the terms of the Hessian matrix:

faa(a, φ) =
∂f

∂a

(
2α2a(1− 2a2)

22n+1
Tr(e2iφU †2 + e−2iφU2) +

4α2a(1− 2a2)

2n+1

)
(B.6)

=
α2

22n
(1− 6a2)Tr(e2iφU †2 + e−2iφU2) +

α2

2n−1
(1− 6a2). (B.7)

For our value of φ, we can see that Tr(e2iφU †2 + e−2iφU2) = 2|Tr(U2)|, which is worked out

in Eqns. (5.19)-(5.22). For convenience, we have rewritten the explanation here. Let us

write Tr(U2) = reiη, where r = |Tr(U2)| and

η = tan−1

(
Im[Tr(U2)]

Re[Tr(U2)]

)
= 2φ,
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then

Tr(e2iφU †2 + e−2iφU2) =
(
e2iφTr(U †2) + e−2iφTr(U2)

)

= r
(
ei(2φ−η) + e−i(2φ−η)

)

= r(2) = 2|Tr(U2)|.

Getting back to solving for faa, we continue from Eqn. (B.7), where defining τ = |Tr(U2)|/2n
and imputing a = 1/

√
2 leads to the simplification:

faa =
α2

2n
(2τ + 2)(−2) (B.8)

=
−α2

2n−2
(τ + 1), (B.9)

which is always negative since τ = |Tr(U2)|/2n is positive.

Next, we look at the off-diagonal terms of the Hessian matrix, which both end up

evaluating to zero at our solutions for a and φ:

∂f

∂a∂φ
=

∂

∂a

(
−α2a2(1− a2)

22n−1

∑

j

sin(2(φ− θj))
)

(B.10)

=
−α22a(1− 2a2)

22n−1

∑

j

sin(2(φ− θj)) (B.11)

= 0 for a =
1√
2

(B.12)

∂f

∂φ∂a
=

∂

∂φ

(
α22a(1− 2a2)

22n+1

∑

j

2 cos(2(φ− θj)) +
2α22a(1− 2a2)

2n+1

)
(B.13)

=
α22a(1− 2a2)

2n+1

∑

j

−4 sin(2(φ− θj)) (B.14)

= 0 for a =
1√
2
. (B.15)
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The final term of the Hessian matrix is:

fφφ(a, φ) =
∂

∂φ

(
−α2a2(1− a2)

22n−1

∑

j

sin(2(φ− θj))
)

(B.16)

=
−α2a2(1− a2)

22n−1

(∑

j

2 cos(2(φ− θj))
)

(B.17)

=
−α2

2n+1
τ. (B.18)

The final equality uses the same identity used to arrive at Eqn. (B.8), where we note that

Tr(e2iφU †2 + e−2iφU2) =
∑

j 2 cos(2(φ− θj)).
The Hessian matrix is then

H(f(a, φ)) =

(
−α2

2n
(τ + 1) 0

0 −α2

2n+1 τ

)
, (B.19)

and has a determinant of

|H(f(a, φ))| = α4

22n+1
τ(τ + 1) > 0. (B.20)

Therefore, we have shown that the optimal values of

a0 =
1√
2

(B.21)

φ0 =
1

2
arctan

(
Im(Tr(U2))

Re(Tr(U2))

)
(B.22)

give rise to a local maximum for the function f which indicates that they lead to the local

minimum geometric discord, as desired.

The only thing left to do is to show that we have a global maximum by evaluating the

function at the boundary conditions. Note that φ does not have any boundaries as it is

cyclic. Recall that the function is

f(a, φ) =
α2a2b2

22n+1
Tr(e2iφU †2 + e−2iφU2) +

2α2a2b2 + 1

2n+1
.

The boundaries of a are 0 and 1, which correspond to values for b of 1 and 0, respectively.

Then it is easy to find the value of the function at these values:

f(0, φ) = f(1, φ) =
1

2n+1
. (B.23)
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We need to compare this to the value of the function when a = b = 1/
√

2:

f(1/
√

2, φ) =
α2

22n+3
Tr(e2iφU †2 + e−2iφU2) +

2α2

2n+3
+

1

2n+1
(B.24)

=
1

2n+1

(
α2

2n+2
Tr(e2iφU †2 + e−2iφU2) +

α2

2
+ 1

)
(B.25)

=
1

2n+1

(
α2

2n+2
2|Tr(U2)|+ α2

2
+ 1

)
(B.26)

=
1

2n+1

(
α2

2
τ +

α2

2
+ 1

)
(B.27)

=
1

2n+1
+

α2

2n+2
(τ + 1). (B.28)

Since τ > 0, we have that f(1/
√

2, φ) > f(0, φ), and have shown that the boundaries are

not a maximum. This indicates that the optimal values given in Eqns. (B.21) and (B.22)

do indeed, give rise to the minimum geometric discord.

B.2 Optimization for the Quantum Discord

We will repeat the exact same procedure as for Section B.1, starting by reminding ourselves

of the function we are minimizing, which is originally given in Eqn. (5.57):

f(a, φ) =
2∑

j=1

[
−1

4
log

(
(1/4 + xj)(1/4− xj)

p+p−

)
− xj log

(
(1/4 + xj)p−
(1/4− xj)p+

)]
,

where xj = α
2
ab cos(φ− θj), p+ = 1/2 + x1 + x2, and p− = 1/2− x1 − x2. Also, remember

that b =
√

1− a2.

Looking back at the work in Section 5.4, we can see that the solutions we found for

a and φ were the only solutions, so we only need to check the boundary conditions once

we have ensured we indeed have a local minimum. Before diving into the mathematics,

let us remind ourselves of the simplifications that occur for the solutions of a = 1/
√

2 and

φ = θ1+θ2
2

+ π
2
. First, we have that p+ = p− = 1/2 and x1 = −x2. This also means that

cos(φ− θ1) = − cos(φ− θ2).

135



The first term we need to calculate for the Hessian is faa:

(B.29a)faa =
∂

∂a

(
−α
2

1− 2a2

(1− a2)
1
2

∑

j

cos(φ− θj) log

[
(1/4 + xj)p−
(1/4− xj)p+

])

(B.29b)
=

∂

∂a

(
−α
2

1− 2a2

(1− a2)
1
2

)
×
∑

j

cos(φ− θj) log

[
(1/4 + xj)p−
(1/4− xj)p+

]

+
−α
2

1− 2a2

(1− a2)
1
2

∂

∂a

(∑

j

cos(φ− θj) log

[
(1/4 + xj)p−
(1/4− xj)p+

])
.

From here we can see that the second line in Eqn. (B.29b) is equal to zero once we substitute

in a = 1/
√

2.

(B.30a)
faa =

−α
2

(
(1− a2)1/2(−4a)− (1− 2a2)(1/2)(1− a2)(−2a)

1− a2

)

×
∑

j

cos(φ− θj) log

[
(1/4 + xj)p−
(1/4− xj)p+

]

(B.30b)=
−α
2

(
(1− a2)1/2(−4a)

1− a2

)∑

j

cos(φ− θj) log

[
(1/4 + xj)p−
(1/4− xj)p+

]

(B.30c)= 2α

(
cos(φ− θ1) log

[
(1/4 + x1)

(1/4− x1)

]
+ cos(φ− θ1) log

[
(1/4 + x1)

(1/4− x1)

])

(B.30d)= 4α

(
cos(φ− θ1) log

[
(1/4 + x1)

(1/4− x1)

])

(B.30e)= 4α

(
cos(φ− θ1) log

[
(1 + α cos(φ− θ1))

(1− α cos(φ− θ1))

])

This value is always positive, regardless of the value of cos(φ− θ1).
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Now, let us look at the other diagonal term of the Hessian, fφφ:

(B.31a)fφφ =
∂

∂φ

(∑

j

α

2
a(1− a2)

1
2 sin(φ− θj) log

[
(1/4 + xj)p−
(1/4− xj)p+

])

(B.31b)=
∂

∂φ

(
α

4
(sin(φ− θ1)− sin(φ− θ2)) log

[
(1 + α cos(φ− θ1))

(1− α cos(φ− θ1))

])

(B.31c)
=
α

4

∂

∂φ
(sin(φ− θ1)− sin(φ− θ2))× log

[
(1 + α cos(φ− θ1))

(1− α cos(φ− θ1))

]

+
α

4
(sin(φ− θ1)− sin(φ− θ2))

∂

∂φ
log

[
(1 + α cos(φ− θ1))

(1− α cos(φ− θ1))

]
.

We know that sin(φ−θ1) = sin(φ−θ2) (from Eqn. (5.70)), so the second line in Eqn. (B.31c)

is zero and the expression simplifies to:

=
α

4
(cos(φ− θ1)− cos(φ− θ2)) log

[
(1 + α cos(φ− θ1))

(1− α cos(φ− θ1))

]
(B.32)

=
α

2
cos(φ− θ1) log

[
(1 + α cos(φ− θ1))

(1− α cos(φ− θ1))

]
. (B.33)

Therefore, fφφ is positive for the same reasons that faa is positive in Eqn. (B.30e). The

off-diagonal elements of the Hessian matrix are easily calculated to be zero, just as in

the geometric discord case. This indicates that the determinant of the Hessian matrix is

positive, as well as faa, and we have confirmed our solutions correspond to a local minimum.

Now, we just have to ensure the boundary conditions do not give rise to a smaller value

for f . Just as in the geometric discord case, the value of φ is cyclic and has no boundary.

We need to test for the case when a = 0, b = 1 and a = 1, b = 0. For both of these cases,

we have that xj = 0 and p+ = p− = 1/2. Therefore, the function is

f(0, φ) =
1∑

j=0

−1

4
log

(
(1/4)(1/4)

(1/2)(1/2)

)
(B.34)

= −1

2
log

(
1

4

)
(B.35)

= 1. (B.36)
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We need to evaluate the function for a = b = 1/
√

2 to compare. We can start from the

already simplified expression for f in Eqn. (5.76):

f(1/
√

2, φ) = 1− 1

2
log

(
1−α2 sin2

(
θ1 − θ2

2

))
−α

2
sin

(
θ1 − θ2

2

)
log

(
1 + α sin

(
θ1−θ2

2

)

1− α sin
(
θ1−θ2

2

)
)
.

Let x = θ1−θ2
2

for ease of notation, then we can simplify it as follows:

(B.37a)f(1/
√

2, φ) = 1− 1

2
log
(
1− α2 sin2(x)

)
− α

2
sin (x) log

(
1 + α sin(x)

1− α sin(x)

)

(B.37b)= 1− 1

2
log ((1− α sin(x))(1 + α sin(x)))− α

2
sin (x) log

(
1 + α sin(x)

1− α sin(x)

)

(B.37c)= 1− 1

2
log(1− α sin(x))−−1

2
log(1 + α sin(x))

− α

2
sin(x) log(1 + α sin(x))− α

2
sin(x) log(1− α sin(x))

(B.37d)= 1− 1

2

[
(1− α sin(x)) log(1− α sin(x)) + (1 + α sin(x)) log(1 + α sin(x))

]
.

The term in square brackets is always positive and is an element of [0, 1), implying that

f(1/
√

2, φ) < f(0, φ). This concludes the demonstration that the optimal values a0 = 1/
√

2

and φ0 = θ1+θ2
2

+ π
2
, do indeed, correspond to a minimum in the quantum discord for two

qubit DQC1-states.
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Appendix C

Towards solving for the discord in

n-qubit DQC1

In Section 5.4 we found an analytical expression for the quantum discord of a two-qubit

DQC1 system. In this appendix we look at the extension to n qubits in the bottom register.

The extension is straightforward until you reach the minimization, at which point we are

unable to solve the system of equations that yield the optimal values of the measurement

parameters. However, assuming that such a solution can be found, we find an expression

for the quantum discord that can be measured using a sequence of DQC1 algorithms that

does not grow as you add additional qubits. This will be explained in detail below.

The work in this appendix is most certainly a work in progress. A solution to the

problems worked on here is certainly of interest and we hope one is found in the near

future.

C.1 Quantum discord for an n-qubit DQC1-state

The two qubit case, while very interesting in that it only depends on the trace of the

unitary, if of limited practical use. Therefore, we extended the analytical search for the

discord to the n-qubit case. Our n-qubit state is initially ρi =
(

1
2
I + α

2
X
)
⊗ 1

2n
In, where

n is the number of qubits in the bottom register. The state of the entire system at the
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completion of the algorithm is

ρAB =
1

2n+1

(
I⊗n αU †

αU I⊗n

)
, (C.1)

with 2n eigenvalues of the form 1/2n+1(1−α) and 2n eigenvalues of the form 1/2n+1(1+α).

The final reduced density matrix of system A is

ρA =
1

2

(
1 α

2n
tr(U †)

α
2n

tr(U) 1

)
,

with eigenvalues

λA =

(
1− α|τ |

2
,
1 + α|τ |

2

)
,

where τ = Tr(U)/2n. Therefore, the entropy of the full system is

S(ρAB) = n+H2

(
1− α

2

)
, (C.2)

and the entropy of the reduced system A is

S(ρA) = H2

(
1− α|τ |

2

)
. (C.3)

These two entropy values are two of the three terms in Eqn. (5.34) for calculating the

quantum discord. Now, we must perform the optimization over all projective measurement

operators. To do so we follow the same procedure that was performed in the two qubit case,

so we will be less explicit with the mathematical details in this section. The measurement

is parameterized in the exact same way as given in Eqns. (5.41) and (5.42). The state on

system B after measurement is taken directly from Eqn. (5.45) and we write the n-qubit

unitary in terms of its eigenvectors and eigenphases as

U =
2n∑

j=1

eiθj |θj〉〈θj|, (C.4)
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simplifying the state

ρB|± =
1

2n+1p±
(I ± αab(e−iφU + eiφU †))

=
1

2n+1p±
(I ± 2αab

∑

j

cos(φ− θj)|θj〉〈θj|)

=
1

p±

2n∑

j=1

(
1

2n+1
± αab

2n
cos(φ− θj)

)
|θj〉〈θj|. (C.5)

The probability of measuring the different outcomes is directly extended to n-qubits from

Eqn. (5.49) to

p± =
1

2
± αab

2n

∑

j

cos(φ− θj). (C.6)

Just as in the two-qubit case, let us define

xj =
αab

2n
cos(φ− θj),

simplifying the above equations to

ρB|± =
1

p±

2n∑

j=1

(
1

2n+1
± xj

)
|θj〉〈θj|,

where

p± =
1

2
±
∑

j

xj.

Then the conditional entropy term can be written as S(B|A) = f(x) =
∑
p±S(ρB|±),

just as it was in Eqn. (5.57) with the sum extended,

f(x) = −
2n∑

j=1

(
− 1

2n+1
log

(
( 1

2n+1 + xj)(
1

2n+1 − xj)
p+p−

)
− xj log

(
( 1

2n+1 + xj)p−

( 1
2n+1 − xj)p+

))
,

and similarly for the differential

(C.7)
df(x) =

2n∑

i=1

[
−dxj log

(
( 1

2n+1 + xj)p−

( 1
2n+1 − xj)p+

)
− log2(e)xj

(
dp+

p+

− dp−
p−

)]

+
log2(e)

2

(
dp+

p+

+
dp−
p−

)
.
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By manipulating the terms containing log2(e), we can see that they cancel (shown in detail

in Section 5.4), and the differential reduces to

df(x) =
2n∑

i=1

−dxj log

(
( 1

2n+1 + xj)p−

( 1
2n+1 − xj)p+

)
.

By converting the parameters to those we want to optimize over,

xj =
αa(1− a2)1/2

2n
cos(φ− θj)

dxj =
α

2n

(
1− 2a2

(1− a2)1/2

)
cos(φ− θj)da−

α

2n
a(1− a2)1/2 sin(φ− θj)dφ,

the equations we must satisfy in order to find a minimum are:

df

da
= 0 =

1− 2a2

(1− a2)1/2

2n∑

j=1

(
cos(φ− θi) log

(
( 1

2n+1 + xi)p−

( 1
2n+1 − xj)p+

))
, (C.8)

df

dφ
= 0 =

2n∑

j=1

sin(φ− θj) log

(
( 1

2n+1 + xj)p−

( 1
2n+1 − xj)p+

)
. (C.9)

Equation C.8 is satisfied when a = b = 1/
√

2, just as in the two-qubit case. However,

Eqn. (C.9) is much more tricky. Since the probabilities p± are much more complex in

the n-qubit case we are not able to assume that they are equal. This leaves us with the

following complex equation to solve:

0 =
2n∑

j=1

sin(φ− θj) log

(
(1 + α cos(φ− θj))p−
(1− α cos(φ− θj))p+

)
.

While we were not able to solve for φ from this equation, we continued with the analysis

of the QD once a value of φ has been determined. This is detailed in the next section.

C.2 Experimentally determinable approximation for

the discord of a 2× d DQC1-state

Although we have not yet determined the value of φ, we will proceed with the calculation for

the quantum discord in an effort to gain insight and answer a few questions. One question
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of interest is whether or not the quantum discord for DQC1-states can be experimentally

determined. As we will see, they can be approximated on a DQC1 quantum information

processor, provided the optimal value of φ is known.

Recall that the equation for the discord of a bipartite quantum state is given by D(A :

B) = S(ρA) − S(ρAB) + S(B|A). For 2 × d DQC1 system, the first two terms are well

known and given in Eqns. (C.3) and (C.2). These terms are easily evaluated provided the

value of the polarization α is known and you can experimentally run the DQC1 algorithm

to determine the trace of the unitary used. The final term is a little more complicated,

but we show below how to formulate it in terms of quantities that can be experimentally

determined, provided φ has been determined.

The conditional entropy term is

S(B|A) = −
2n∑

j=1

(
− 1

2n+1
log

(
( 1

2n+1 + xj)(
1

2n+1 − xj)
p+p−

)
− xj log

(
( 1

2n+1 + xj)p−

( 1
2n+1 − xj)p+

))
,

where xj = α
2n+1 cos(φ − θj), p± = 1

2
±∑j xj. By defining wj = α cos(φ − θj), we can

simplify S(B|A):

S(B|A) =
2n∑

j=1

(
− 1

2n+1
log

(
1

2(n+1)2

(1 + wj)(1− wj)
p+p−

)
− wj

2n+1
log

(
(1 + wj)p−
(1− wj)p+

))

=
2n∑

j=1

log(22n+1)

2n+1
− 1

2n+1

2n∑

j=1

(log(1 + wj) + log(1− wj) + wj log(1 + wj)

− wj log(1− wj)− log p+ − log p− + wj log p− − wj log p+)

= n+1− 1

2n+1

2n∑

j=1

((1+wj) log(1+wj)+(1−wj) log(1−wj))+p+ log p+ +p− log p−

The terms that contain the logarithm cannot be observed in a DQC1 experiment – so let

us try to manipulate them into a better form.
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First, note that the series expansion for log(1 + x) and log(1− x) are

(C.10a)log(1 + x) =
∞∑

n

(−1)n+1

n
xn, and

(C.10b)log(1 + x) =
∞∑

n

−1

n
xn,

leading to

(C.11a)(1 + x) log(1 + x) =
∞∑

n

(
(−1)n+1

n
xn +

(−1)n+1

n
xn+1

)
, and

(C.11b)(1− x) log(1− x) =
∞∑

n

(−1

n
xn +

1

n
xn+1

)
.

Noticing that when summed, Eqns. (C.11a) and (C.11b) reduce to a sum over even numbers

(1 + x) log(1 + x) + (1− x) log(1− x) = 2
∑

neven

1

n(n− 1)
xn, (C.12)

which allows us to write the conditional entropy term as

S(B|A) = n+ 1 + p+ log p+ + p− log p− −
1

2n+1

2n∑

j=1

∞∑

keven

αk

k(k − 1)
cosk(φ− θj). (C.13)

We are then able to break this down one step further, so that the powers of cosines

turn into cosines of multiple angles, using the following relation for even k:

cosk(x) =
1

2k

(
k
k
2

)
+

2

2k

k/2−1∑

l=0

(
k

l

)
cos ((k − 2l)x).

Therefore, the final version of the conditional entropy is of the form

(C.14)
S(B|A) = n+ 1 + p+ log p+ + p− log p− −

1

2n+1

2n∑

j=1

∞∑

keven

αk

k(k − 1)

1

2k

(
k
k
2

)

− 1

2n+1

2n∑

j=1

∞∑

k even

αk

k(k − 1)

2

2k

k/2−1∑

l=0

(
k

l

)
cos ((k − 2l)(φ− θj)).
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While this term looks complicated, if we know that value of φ, we are able to measure

∑

j

cos(m(φ− θj)) =
2n〈σx〉r×m

α
, (C.15)

where 〈σx〉r×m is the expectation value of σx, measured after a DQC1 algorithm where

there has been a rotation

Rφ =

(
1 0

0 eiφ

)
, (C.16)

directly before the controlled-unitary, applied back-to-back m times. Thus, all terms in

Eqn. (C.14) can be determined experimentally using a DQC1 quantum information proces-

sor. Because the series converges, it is possible to approximate the value of the quantum

discord experimentally, with a number of experiments that independent of the size of the

system.

For an example of how the series converges for three qubits, the plot in Figure C.1

shows the approximation of the quantum discord using Eqn. (C.14) with a maximum k

value on the horizontal axis. The unitary was randomly chosen from the Haar measure.
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Figure C.1: Plot of the approximation of the quantum discord as a function of the number

of series terms used to calculate it. This example is for a three-qubit DQC1-model where

the two-qubit unitary on the bottom register was chosen at random from the Haar measure.
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